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P A R TI

NEURAL SIGNAL AND

IMAGE PROCESSING

AND MODELING

TH I S P A R T focuses on the analysis and modeling of neural activity and

activities related to electroencephalography (EEG) using the nonlinear and

nonstationary analysis methods, including the chaos, fractal, and time-frequency

and time-scale analysis methods. It focuses on measuring functional,

physiological, and metabolic activities in the human brain using current and

emerging medical imaging technologies, including functional magnetic

resonance imaging (fMRI), MRI, single photon emission computed

tomography (SPECT), and positron emission somography (PET).

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.
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CHA P T E R1

OPTIMAL SIGNAL PROCESSING

FOR BRAIN–MACHINE

INTERFACES
Justin C. Sanchez and Jose C. Principe

1.1 INTRODUCTION

Several landmark experimental paradigms have shown the feasibility of using neuropros-

thetic devices to restore motor function and control in individuals who are “locked in” or

have lost the ability to control movement of their limbs [1–19]. In these experiments,

researchers seek to both rehabilitate and augment the performance of neural–motor

systems using brain–machine interfaces (BMIs) that transfer the intent of the individual

(as collected from the cortex) into control commands for prosthetic limbs and/or compu-

ters. Brain–machine interface research has been strongly motivated by the need to help the

more than 2 million individuals in the United States suffering from a wide variety of

neurological disorders that include spinal cord injury and diseases of the peripheral

nervous system [20]. While the symptoms and causes of these disabilities are diverse,

one characteristic is common in many of these neurological conditions: Normal function-

ing of the brain remains intact. If the brain is spared from injury and control signals can be

extracted, the BMI problem becomes one of finding optimal signal processing techniques

to efficiently and accurately convert these signals into operative control commands.

A variety of noninvasive and invasive techniques have been used to collect control

signals from the cortex. Some of the earliest brain–computer interfaces (BCIs) utilized

electrical potentials collected from the scalp through the use of electroencephalography

(EEG) [21]. This approach to interfacing individuals with machines has the appeal of a

low threshold of clinical use since no surgical procedures are required to install the

sensors detecting the control signals. Additionally, EEG hardware technology is at a

stage where it is relatively inexpensive, portable, and easy to use. In terms of ease of

access to the neurophysiology, EEG is an attractive choice; however, in terms of signal

processing, this approach has been limited to basic communication capabilities with a

computer screen and suffers from a low bandwidth (a few bits per second). The fundamen-

tal difficulty of using EEG for BCI is due to the “spatiotemporal filtering” of neuronal

activity resulting from the different conductivities of the scalp, skull, and dura, which

limits the signal-to-noise ratio of the time series and blurs the localization of the neural

population firings [22]. Long training sessions are often required for BCI users to learn

to modulate their neuronal activity, and users can respond only after minutes of concen-

tration. Another approach to noninvasively collecting control signals is through the use
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of near-infrared (NIR) spectroscopy, which uses the scattering of light to detect blood oxy-

genation [23]. Like EEG, NIR spectroscopy is also a noninvasive technologywith relatively

course spatial resolution, however the temporal resolution is on the order of tens of milli-

seconds. To overcome the difficulties of recording control signals through the skull,

researchers have moved to using a more invasive technique of measuring EEG on the

surface of the brain with the electrocorticogram (ECoG). By placing dense arrays directly

upon the motor cortex, this approach has the appeal of increasing the spatial resolution of

EEG, and studies are now underway to assess the utility of the collected signals [24].

Recently, invasive techniques that utilize multiple arrays ofmicroelectrodes that are chroni-

cally implanted into the cortical tissue have shown the most promise for restoring motor

function to disabled individuals [10]. It has been shown that the firing rates of single

cells collected from multiple cortices contain precise information about the motor intent

of the individual. A variety of experimental paradigms have demonstrated that awake,

behaving primates can learn to control external devices with high accuracy using optimal

signal processing algorithms to interpret the modulation of neuronal activity as collected

from the microelectrode arrays. A recent special issue of the IEEE Transactions on Biome-

dical Engineering (June 2004) provides a very good overview of the state of the art.

A conceptual drawing of a BMI is depicted in Figure 1.1, where neural activity from

hundreds of cells is recorded (step 1), conditioned (step 2), and translated (step 3) directly

into hand position (HP), hand velocity (HV), and hand gripping force (GF) of a prosthetic

arm or cursor control for a computer. The focus of this chapter is centered on step 3 of the

diagram where we will use optimal signal processing techniques to find the functional

relationship between neuronal activity and behavior. From an optimal signal processing

point of view, BMI modeling in step 3 is a challenging task because of several factors:

the intrinsic partial access to the motor cortex information due to the spatial subsampling

of the neural activity, the unknown aspects of neural coding, the huge dimensionality of the

problem, the noisy nature of the signal pickup, and the need for real-time signal processing

algorithms. The problem is further complicated by the need for good generalization in non-

stationary environments, which is dependent upon model topologies, fitting criteria, and

training algorithms. Finally, we must contend with reconstruction accuracy, which is

linked to our choice of linear-versus-nonlinear and feedforward-versus-feedback models.

Since the basic biological and engineering challenges associated with optimal signal

processing for BMI experiments requires a highly interdisciplinary knowledgebase invol-

ving neuroscience, electrical and computer engineering, and biomechanics, the BMI mod-

eling problem will be addressed in several steps. First, an overview of the pioneering

modeling approaches will give the reader depth into what has been accomplished in

this area of research. Second, we will familiarize the reader with characteristics of the

Figure 1.1 Conceptual drawing of BMI components.
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neural recordings that the signal processing methods utilize. Third, we cover in detail the

current approaches to modeling in BMIs. Finally, real implementations of optimal models

for BMIs will be presented and their performance compared.

1.2 HISTORICAL OVERVIEW OF BMI
APPROACHES/MODELS

The foundations of BMI research were probed in the early 1980s by E. Schmidt and

E. Fetz, who were interested in finding out if it was possible to use neural recordings

from the motor cortex of a primate to control an external device [1, 25]. In this pioneering

work, Schmidt measured how well primates could be conditioned to modulate the firing

patterns of single cortical cells using a series of eight target lamps each symbolizing a cel-

lular firing rate that the primate was required to produce. The study did confirm that a

primate was able to modulate neural firing to match the target rates and additionally esti-

mated the information transfer rate in the neural recordings to be half that of using the

intact motor system as the output. With this result, Schmidt proposed that engineered inter-

faces could be designed to use modulations of neural firing rates as control signals.

Shortly after Schmidt [1] published his results, Georgopoulos et al. [2] presented a

theory for neural population coding of hand kinematics as well as a method for reconstruct-

ing hand trajectories called the population vector algorithm (PVA) [3]. Using center-out

reaching tasks, Georgopoulos proposed that each cell in the motor cortex has a “preferred

hand direction” for which it fires maximally and the distribution of cellular firing over a

range of movement directions could be characterized by a simple cosine function [2].

In this theory, arm movements were shown to be constructed by a population “voting”

process among the cells; each cell makes a vectoral contribution to the overall movement

in its preferred direction with magnitude proportional to the cell’s average firing rate [26].

Schmidt’s proof of concept and Georgopoulos et al.’s BMI application to reaching

tasks spawned a variety of studies implementing “out-of-the-box” signal processing mod-

eling approaches. One of the most notable studies by Chapin et al. [6] showed that a recur-

rent neural network could be used to translate the neural activity of 21–46 neurons of rats

trained to obtain water by pressing a lever with their paw. The usefulness of this BMI was

demonstrated when the animals routinely stopped physically moving their limbs to obtain

the water reward. Also in the neural network class, Lin et al. [27] used a self-organizing

map (SOM) that clustered neurons with similar firing patters which then indicated move-

ment directions for a spiral drawing task. Borrowing from control theory, Kalaska et al.

[28] proposed the use for forward- and inverse-control architectures for reaching move-

ments. Also during this period other researchers presented interpretations of population

coding which included a probability-based population coding from Sanger [29] and

muscle-based cellular tuning from Mussa-Ivaldi [30].

Almost 20 years after Schmidt’s [1] and Georgopoulos et al.’s initial experiments,

Wessberg and colleagues [10] presented the next major advancement in BMIs [2, 3] by

demonstrating a real (nonportable) neuroprosthetic device in which the neuronal activity

of a primate was used to control a robotic arm [10]. This research group hypothesized that

the information needed for the BMI is distributed across several cortices and therefore

neuronal activity was collected from 100 cells in multiple cortical areas (premotor,

primary motor, and posterior parietal) while the primate performed a three-dimensional

(3D) feeding (reaching) task. Linear and nonlinear signal processing techniques including

a frequency-domain Wiener filter (WF) and a time delay neural network (TDNN) were

used to estimate hand position. Trajectory estimates were then transferred via the Internet

to a local robot and a robot located at another university.
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In parallel with the work of Nicolelis [20], Serruya and colleagues [14] presented a

contrasting view of BMIs by showing that a 2D computer cursor control task could be

achieved using only a few neurons (7–30) located only in the primary motor cortex of a

primate. The WF signal processing methodology was again implemented here; however

this paradigm was closed loop since the primate received instant visual feedback from

the cursor position output from the WF. The novelty of this experiment results from the

primate’s opportunity to incorporate the signal processing model into its motor processing.

The final BMI approach we briefly review is from Andersen’s research group, which

showed that the endpoint of hand reaching can be estimated using a Bayesian probabilistic

method [31]. Neural recordings were taken from the parietal reach region (PRR) since they

are believed to encode the planning and target of hand motor tasks. Using this hypothesis

this research group devised a paradigm in which a primate was cued to move its hand to

rectangular grid target locations presented on a computer screen. The neural-to-motor

translation involves computing the likelihood of neural activity given a particular target.

While this technique has been shown to accurately predict the endpoint of hand reaching,

it differs for the aforementioned techniques by not accounting for the hand trajectory.

1.3 CHARACTERISTICS OF NEURAL RECORDINGS

One of the most important steps in implementing optimal signal processing technique for

any application is data analysis. Here the reader should take note that optimality in the

signal processing technique is predicated on the matching between the statistics of the

data match and the a priori assumptions inherent in any signal processing technique

[32]. In the case of BMIs, the statistical properties of the neural recordings and the analysis

of neural ensemble data are not fully understood. Hence, this lack of information means

that the neural–motor translation is not guaranteed to be the best possible, even if

optimal signal processing is utilized (because the criterion for optimality may not

match the data properties). Despite this reality, through the development of new neuronal

data analysis techniques we can improve the match between neural recordings and BMI

design [33, 34]. For this reason, it is important for the reader to be familiar with the charac-

teristics of neural recordings that would be encountered.

The process of extracting signals from the motor, premotor, and parietal cortices of a

behaving animal involves the implantation of subdural microwire electrode arrays into the

brain tissue (usually layer V) [10]. At this point, the reader should be aware that current

BMI studies involve the sampling of a minuscule fraction of motor cortex activity

(tens to hundreds of cortical cells recorded from motor-related areas that are estimated

to contain 100 million neurons) [35]. Each microwire measures the potentials (action

potentials) resulting from ionic current exchanges across the membranes of neurons

locally surrounding the electrode. Typical cellular potentials as shown in Figure 1.2a

have magnitudes ranging from hundreds of microvolts to tens of millivolts and time

durations of tens to a couple of milliseconds [34]. Since action potentials are so short in

duration, it is common to treat them as point processes where the continuous voltage wave-

form is converted into a series of time stamps indicating the instance in time when the

spike occurred. Using the time stamps, a series of pulses (spikes—zeros or ones) can be

used to visualize the activity of each neuron; this time series shown in Figure 1.2b is

referred to as a spike train. The spike trains of neural ensembles are sparse, nonstationary,

and discontinuous. While the statistical properties of neural recordings can vary depending

on the sample area, animal, and behavior paradigm, in general spike trains are assumed to

have a Poisson distribution [33]. To reduce the sparsity in neuronal recordings, a method
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of binning is used to count the number of spikes in 100-ms nonoverlapping windows as

shown in Figure 1.2c. This method greatly reduces the number of zeros in the digitized

time series and also provides a time-to-amplitude conversion of the firing events. Even

with the binning procedure, the data remain extremely sparse. In order for the reader to

assess the degree of sparsity and nonstationarity in BMI data, we present in Table 1.1

observations from a 25-min BMI experiment recorded at the Nicolelis’s laboratory at

Duke University. From the table we can see that the percentage of zeros can be as high

as 80% indicating that the data are extremely sparse. Next we compute the firing rate

for each cell in nonoverlapping 1-min windows and compute the average across all

cells. The ensemble of cells used in this analysis primarily contains low firing rates

given by the small ensemble average. Additionally we can see the time variability of

the 1-min ensemble average given by the associated standard deviation.

In Figure 1.3, the average firing rate of the ensemble (computed in nonoverlapping

60-s windows) is tracked for a 38-min session. From minute to minute, the mean value in

the firing rate can change drastically depending on the movement being performed. Ideally

we would like our optimal signal processing techniques to capture the changes observed in

Figure 1.3. However, the reader should be aware that any of the out-of-the-box signal pro-

cessing techniques such as WFs and artificial neural networks assume stationary statistics

TABLE 1.1 Neuronal Activity for 25-min Recording Session

Percentage of

zeros

Average firing rate

(spikes/cell/min)

3D reaching task (104 cells) 86 0.25+ 0.03

2D cursor control task (185 cells) 60 0.69+ 0.02

Figure 1.2 Spike-binning process: (a) cellular potentials; (b) a spike train; (c) bin count for single

cell; (d ) ensemble of bin counts.
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over time, which means that the derived neural-to-motor mapping will not be optimal

unless the window size is very well controlled. More importantly, any performance evalu-

ations and model interpretations drawn by the experimenter can be biased by the mismatch

between data and model type.

1.4 MODELING PROBLEM

The models implemented in BMIs must learn to interpret neuronal activity and accurately

translate it into commands for a robot that mimic the intended motor behavior. By analyz-

ing recordings of neural activity collected simultaneously with behavior, the aim is to find

a functional relationship between neural activity and the kinematic variables of position,

velocity, acceleration, and force. An important question here is how to choose the class of

functions and model topologies that best match the data while being sufficiently powerful

to create a mapping from neuronal activity to a variety of behaviors. As a guide, prior

knowledge about the nervous system can be used to help develop this relationship.

Since the experimental paradigm involves modeling two related multidimensional time

variables (neural firing and behavior), we are directed to a general class of input–

output (I/O) models. Within this class there are several candidate models available, and

based on the amount of neurophysiological information that is utilized about the

system, an appropriate modeling approach can be chosen. Three types of I/O models

based on the amount of prior knowledge exist in the literature [36]:

. “White Box” The model is perfectly known (except for the parameters) and based on

physical insight and observations.

. “Gray Box” Some physical insight is available but the model is not totally specified

and other parameters need to be determined from the data.

Figure 1.3 Time-varying statistics of neuronal recordings for two behaviors.
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. “Black Box” Little or no physical insight is available or used to choose the model, so

the chosen model is picked on other grounds (e.g., robustness, easy implementation).

The choice of white, gray, or black box is dependent upon our ability to access and

measure signals at various levels of the motor system as well as the computational cost

of implementing the model in our current computing hardware.

The first modeling approach, white box, would require the highest level of physio-

logical detail. Starting with behavior and tracing back, the system comprises muscles, per-

ipheral nerves, the spinal cord, and ultimately the brain. This is a daunting task of system

modeling due to the complexity, interconnectivity, and dimensionality of the involved

neural structures. Model implementation would require the parameterization of a complete

motor system [37] that includes the cortex, cerebellum, basal ganglia, thalamus, corticosp-

inal tracts, and motor units. Since all of the details of each component/subcomponent of

the described motor system remain unknown and are the subject of study for many neu-

rophysiological research groups around the world, it is not presently feasible to implement

white-box BMIs. Even if it was possible to parameterize the system to some high level of

detail, the task of implementing the system in our state-of-the-art computers and digital

signal processors (DSPs) would be an extremely demanding task.

The gray-box model requires a reduced level of physical insight. In the gray-box

approach, one could take a particularly important feature of the motor nervous system,

incorporate this knowledge into the model, and then use data to determine the rest of the

unknown parameters. Two examples of gray-box models can be found in the BMI

literature. One of the most common examples is Georgopoulos’s PVA [3]. Using obser-

vations that cortical neuronal firing rates were dependent on the direction of armmovement,

a model was formulated to incorporate the weighted sum of the neuronal firing rates. The

weights of the model are then determined from the neural and behavioral recordings. A

second example is given by Todorov, who extended the PVA by observed multiple corre-

lations of M1 firing with movement position, velocity, acceleration, force exerted on an

object, visual target position, movement preparation, and joint configuration [7, 8]. With

these observations, Todorov [42] proposed a minimal, linear model that relates the

delayed firings in M1 to the sum of many mechanistic variables (position, velocity, accel-

eration, and force of the hand). Todorov’s model is intrinsically a generative model [16, 43].

Using knowledge about the relationship between arm kinematics and neural activity, the

states (preferably the feature space of Todorov) of linear or nonlinear dynamical systems

can be assigned. This methodology is supported by a well-known training procedure devel-

oped by Kalman for the linear case [44] and has been recently extended to the nonlinear

case under the graphical models or Bayesian network frameworks. Since the formulation

of generative models is recursive in nature, it is believed that the model is well suited for

learning about motor systems because the states are all intrinsically related in time.

The last I/O model presented is the black-box model for BMIs. In this case, it is

assumed that no physical insight is available for the model. The foundations of this

type of time-series modeling were laid by Norbert Wiener for applications of gun

control during World War II [45]. While military gun control applications may not

seem to have a natural connection to BMIs, Wiener provided the tools for building

models that correlate unspecified time-series inputs (in our case neuronal firing rates)

and outputs (hand/arm movements). While this WF is topographically similar to the

PVA, it is interesting to note that it was developed more than 30 years before Georgopou-

los was developing his linear model relating neuronal activity to arm movement direction.

The three I/O modeling abstractions have gained large support from the scientific

community and are also a well-established methodology in control theory for system
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identification [32]. Here we will concentrate on the last two types, which have been

applied by engineers for many years to a wide variety of applications and have proven

that the methods produce viable phenomenological descriptions when properly applied

[46, 47]. One of the advantages of the techniques is that they quickly find, with relatively

simple algorithms, optimal mappings (in the sense of minimum error power) between

different time series using a nonparametric approach (i.e., without requiring a specific

model for the time-series generation). These advantages have to be counterweighted by

the abstract (nonstructural) level of the modeling and the many difficulties of the

method, such as determining what a reasonable fit, a model order, and a topology are to

appropriately represent the relationships among the input and desired response time series.

1.4.1 Gray Box

1.4.1.1 Population Vector Algorithm The first model discussed is the PVA, which

assumes that a cell’s firing rate is a function of the velocity vector associated with the

movement performed by the individual. The PVA model is given by

sn(V) ¼ bn0 þ bnxvx þ bnyvy þ bnzvz ¼ B �V ¼ jBjjVj cos u (1:1)

where the firing rate s for neuron n is a weighted (bnx,y,z ) sum of the vectoral components

(vx,y,z ) of the unit velocity vectorV of the hand plus the mean firing rate b0
n. The relationship

in (1.1) is the inner product between the velocity vector of the movement and the weight

vector for each neuron. The inner product (i.e., spiking rate) of this relationship becomes

maximum when the weight vector B is collinear with the velocity vector V. At this point,

the weight vectorB can be thought of as the cell’s preferred direction for firing since it indi-

cates the direction for which the neuron’s activity will be maximum. The weights bn can be

determined by multiple regression techniques [3]. Each neuron makes a vectoral contri-

bution w in the direction of Pi with magnitude given in (1.2). The resulting population

vector or movement is given by (1.3), where the reconstructed movement at time t is

simply the sum of each neuron’s preferred direction weighted by the firing rate:

wn(V, t) ¼ sn(V)� bn0 (1:2)

P(V, t) ¼
X

N

n¼1

wn(V, t)
Bn

kBnk
(1:3)

It should be noted that the PVA approach includes several assumptions whose appropriate-

ness in the context of neural physiology and motor control will be considered here. First,

each cell is considered independently in its contribution to the kinematic trajectory. The

formulation does not consider feedback of the neuronal firing patterns—a feature found

in real interconnected neural architectures. Second, neuronal firing counts are linearly

combined to reproduce the trajectory. At this point, it remains unknown how the neural

activation of nonlinear functions will be necessary for complex movement trajectories.

1.4.1.2 Todorov’s Mechanistic Model An extension to the PVA has been proposed

by Todorov [42], who considered multiple correlations of M1 firing with movement vel-

ocity and acceleration, position, force exerted on an object, visual target position, move-

ment preparation, and joint configuration [2, 4, 10, 12–15, 38–41]. Todorov advanced the

alternative hypothesis that the neural correlates with kinematic variables are epipheno-

mena of muscle activation stimulated by neural activation. Using studies showing that

M1 contains multiple, overlapping representations of arm muscles and forms dense
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corticospinal projections to the spinal cord and is involved with the triggering of motor

programs and modulation of spinal reflexes [35], Todorov [42] proposed a minimal,

linear model that relates the delayed firings in M1 to the sum of mechanistic variables

(position, velocity, acceleration, and force of the hand). Todorov’s model takes the form

Us(t � D) ¼ F�1GF(t)þ mHA(t)þ bHV(t)þ kHP(t) (1:4)

where the neural population vector U is scaled by the neural activity s(t) and is related to

the scaled kinematic properties of gripping forceGF(t), hand acceleration HA(t), velocity

HV(t), and position HP(t).1 From the BMI experimental setup, spatial samplings (in the

hundred of neurons) of the input s(t) and the hand position, velocity, and acceleartion are

collected synchronously; therefore the problem is one of finding the appropriate constants

using a system identification framework [32]. Todorov’s model in (1.4) assumes a first-

order force production model and a local linear approximation to multijoint kinematics

that may be too restrictive for BMIs. The mechanistic model for neural control of

motor activity given in (1.4) involves a dynamical system where the output variables,

position, velocity, acceleration, and force, of the motor system are driven by an high-

dimensional input signal that is comprised of delayed ensemble neural activity [42]. In

this interpretation of (1.4), the neural activity can be viewed as the cause of the

changes in the mechanical variables and the system will be performing the decoding. In

an alternative interpretation of Eq. (1.4), one can regard the neural activity as a distributed

representation of the mechanical activity, and the system will be performing generative

modeling. Next, a more general state space model implementation, the Kalman filter,

will be presented. This filter corresponds to the representation interpretation of Todorov’s

model for neural control. Todorov’s model clearly builds upon the PVA and can explain

multiple neuronal and kinematic correlations; however, it is still a linear model of a

potentially nonlinear system.

1.4.1.3 Kalman Filter A variety of Bayesian encoding/decoding approaches have

been implemented in BMI applications [12, 16, 48]. In this framework, model designs

have been developed based upon various assumptions that include the Kalman filter

(linear, Gaussian model), extended Kalman filter (EKF, nonlinear, Gaussian model),

and particle filter (PF, linear/nonlinear, Poisson model). Our discussion will begin with

the most basic of the Bayesian approaches: the Kalman filter. This approach assumes a

linear relationship between hand motion states and neural firing rates as well as Gaussian

noise in the observed firing activity. The Kalman formulation attempts to estimate the state

x(t) of a linear dynamical system as shown in Figure 1.4. For BMI applications, we define

the states as the hand position, velocity, and acceleration, which are governed by a linear

dynamical equation, as shown in

x(t) ¼ ½HP(t) HV(t) HA(t)�
T

(1:5)

whereHP,HV, andHA are the hand position, velocity, and acceleration vectors,2 respect-

ively. The Kalman formulation consists of a generative model for the data specified by the

linear dynamic equation for the state in

x(t þ 1) ¼ Ax(t)þ u(t) (1:6)

1The mechanistic model reduces to the PVA if the force, acceleration, and position terms are removed and

neurons are independently considered.
2The state vector is of dimension 9þ N; each kinematic variable contains an x, y, and z component plus the

dimensionality of the neural ensemble.
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where u(t) is assumed to be a zero-mean Gaussian noise term with covariance U. The

output mapping (from state to spike trains) for this BMI linear system is simply

s(t) ¼ Cx(t)þ v(t) (1:7)

where v(t) is the zero-mean Gaussian measurement noise with covariance V and s is a

vector consisting of the neuron firing patterns binned in nonoverlapping windows. In

this specific formulation, the output-mapping matrix C has dimensions N � 9. Alterna-

tively, we could have also included the spike counts of N neurons in the state vector as

f1, . . . , fN. This specific formulation would exploit the fact that the future hand position

is a function of not only the current hand position, velocity, and acceleration but also

the current cortical firing patterns. However, this advantage comes at the cost of large

training set requirements, since this extended model would contain many more parameters

to be optimized. To train the topology given in Figure 1.4, L training samples of x(t) and

s(t) are utilized, and the model parameters A and U as given in (1.6) are determined using

least squares. The optimization problem to be solved is given by

A ¼ arg min
A

X

L�1

t¼1

kx(t þ 1)� Ax(t)k2 (1:8)

The solution to this optimization problem is found to be

A ¼ X1X
T
0 (X1X

T
1 )

�1 (1:9)

where the matrices are defined as X0 ¼ ½x1 � � � xL�1�, X1 ¼ ½x2 � � � xL�. The

estimate of the covariance matrix U can then be obtained using

U ¼
(X1 � AX0)(X1 � AX0)

T

L� 1
(1:10)

Once the system parameters are determined using least squares on the training data,

the model obtained (A,C,U) can be used in the Kalman filter to generate estimates of hand

positions from neuronal firing measurements. Essentially, the model proposed here

assumes a linear dynamical relationship between current and future trajectory states.

Since the Kalman filter formulation requires a reference output from the model, the

spike counts are assigned to the output, as they are the only available signals.

The Kalman filter is an adaptive state estimator (observer) where the observer

gains are optimized to minimize the state estimation error variance. In real-time

Figure 1.4 Kalman filter block diagram.
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operation, the Kalman gain matrix K (1.12) is updated using the projection of the error

covariance in (1.11) and the error covariance update in (1.14). During model testing, the

Kalman gain correction is a powerful method for decreasing estimation error. The state

in (1.13) is updated by adjusting the current state value by the error multiplied with the

Kalman gain:

P�(t þ 1) ¼ AP(t)AT þ U (1:11)

K(t þ 1) ¼ P�(t þ 1)CT(CP�(t þ 1)CT)�1 (1:12)

x̃(t þ 1) ¼ Ax̃(t)þK(t þ 1)(S(t þ 1)� CAx̃(t)) (1:13)

P(t þ 1) ¼ (I�K(t þ 1)C)P�(t þ 1) (1:14)

While the Kalman filter equations provide a closed-form decoding procedure for

linear Gaussian models, we have to consider the fact that the relationship between neur-

onal activity and behavior may be nonlinear. Moreover, measured neuronal firing often

follows Poisson distributions. The consequences for such a mismatch between the

model and the real system will be expressed as additional errors in the final position

estimates. To cope with this problem, we need to go beyond the linear Gaussian

model assumption. In principle, for an arbitrary nonlinear dynamical system with arbi-

trary known noise distributions, the internal states (HP, HV, and HA) can be estimated

from the measured outputs (neuronal activity). Algorithms designed to this end include

the EKF, the unscented Kalman filter (UKF), the PF, and their variants. All of these

algorithms basically try the complicated recursive Bayesian state estimation problem

using various simplifications and statistical techniques. In the literature, BMI research-

ers have already implemented the PF approach [16].

In this most general framework, the state and output equations can include nonlinear

functions f1(.) and f2(.) as given in

x(t þ 1) ¼ f1(x(t))þ u(t) s(t) ¼ f2(x(t))þ v(t) (1:15)

Experimental observations have shown that the measured spike trains typically follow a

Poisson distribution, which is given in

p(s(t) j x(t)) ¼
Y

N

n¼1

e�li(x(t))½li(x(t))�
yi(t)

½si(t)�!
(1:16)

The tuning function of the ith neuron is denoted by li and si(t) is the firing count of the ith

neuron at time instant t. In order to decode neuronal activity into hand kinematics for the

nonlinear observation equations and Poission spiking models, the recursive Bayesian

estimator called the PF can be used. In this approach, we seek to recursively update the

posterior probability of the state vector given the neuronal measurements as shown in

(1.17), where St is the entire history of neuronal firing up to time t :

p(x(t)jSt) ¼ mp(s(t)jx(t))p(x(t)jSt�1) (1:17)

After some manipulations, the equivalent expression in (1.18) can be obtained [49]:

p(x(t)jSt) ¼ mp(s(t)jx(t))

ð

p(x(t)jx(t � 1))p(x(t � 1)jSt�1) dx(t � 1) (1:18)

Notice that (1.18) is essentially the recursion of the conditional state distribution that we

seek from p(x(t � 1)jSt�1) to p(x(t)jSt). Analytical evaluation of the integral on the right-

hand side is, in general, impossible. Therefore, the following simplifying assumption is

made: The conditional state distribution can be approximated by a delta train, which
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samples the continuous distribution at appropriately selected values called particles. Each

particle also has a weight associated with it that represents the probability of that particle,

as shown in Figure 1.5. The elegance of the PF approach lies in the simplification of the

integral in (1.18) to a summation. These simplifications lead to the following update

equations for the particles, their weights, and the state estimate:

xi(t þ 1) ¼ f1(xi(t)) (1:19)

~wi(t þ 1) ¼ P(s(t)jxi(t))wi(t) (1:20)

wi(t þ 1) ¼
~wi(t þ 1)

P

i ~wi(t þ 1)
(1:21)

x̃(t þ 1) ¼
X

N

i¼1

wi(t þ 1)xi(t þ 1) (1:22)

We have shown that, using measured position, velocity, and acceleration as states

and neuronal firing counts as model outputs within this recursive, probabilistic framework,

this approach may seem to be the best state-of-the-art method available to understand the

encoding and decoding between neural activity and hand kinematics. Unfortuntely, for

BMIs this particular formulation is faced with problems of parameter estimation. The

generative model is required to find the mapping from the low-dimensional kinematic

parameter state space to the high-dimensional output space of neuronal firing patterns

(100þ dimensions). Estimating model parameters from the collapsed space to the high-

dimensional neural state can be difficult and yield multiple solutions. Moreover, in the

BMI literature the use of the PF has only produced marginal improvements over the stan-

dard Kalman formulation, which may not justify the extra computational complexity [16].

For this modeling approach, our use of physiological knowledge and choice of modeling

framework actually complicates the mapping process. As an alternative, one could

disregard any knowledge about the system being modeled and use a strictly data-driven

methodology to build the model.

1.4.2 Black Box

1.4.2.1 Wiener Filters The first black-box model we will discuss assumes that there

exists a linear mapping between the desired hand kinematics and neuronal firing counts. In

this model, the delayed versions of the firing counts, s(t2 l ), are the bases that construct

the output signal. Figure 1.6 shows the topology of the multiple input–multiple output

(MIMO) WF where the output yj is a weighted linear combination of the l most recent

Figure 1.5 Estimation of continuous distributions by sampling (particles).
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values3 of neuronal inputs s given in (1.23) [32]. Here yj can be defined to be any of the

single coordinate directions of the kinematic variables HP, HV, HA, or GF. The model

parameters are updated using the optimal linear least-squares (LS) solution that matches

the Wiener solution. The Wiener solution is given by (1.24), where R and Pj are the auto-

correlation and cross-correlation functions, respectively, and dj is hand trajectory,

velocity, or gripping force:4

yj(t) ¼ Wjs(t) (1:23)

Wj ¼ R�1Pj ¼ E(sTs)�1E(sTdj) (1:24)

The autocorrelation matrix R and the cross-correlation matrix P can be estimated directly

from the data using either the autocorrelation or the covariance method [32]. Experimen-

tally we verified that the size of the data block should contain at least 10 min of recordings

for better performance. In this MIMO problem, the autocorrelation matrix is not Toeplitz,

even when the autocorrelation method is employed. One of the real dangers of computing

the WF solution to BMIs is that R may not be full rank [50]. Instead of using the Moore–

Penrose inverse, we utilize a regularized solution substitutingR21 by (Rþ lI)21, where l

is the regularization constant estimated from a cross-validation set. Effectively this sol-

ution corresponds to ridge regression [51]. The computational complexity of the WF is

high for the number of input channels used in our experiments. For 100 neural channels

using 10 tap delays and three outputs, the total number of weights is 3000. This means

that one must invert a 1000 � 1000 matrix every N samples, where N is the size of the

training data block.

As is well known in adaptive filter theory [32], search procedures can be used to find

the optimal solution using gradient descent or Newton-type search algorithms. The most

widely used algorithm in this setting is the least mean-square (LMS) algorithm, which

utilizes stochastic gradient descent [32]. For real data we recommend the normalized

LMS algorithm instead,

Wj(t þ 1) ¼ Wj(t)þ
h

ks(t)k
ej(t)s(t) (1:25)

where h is the step size or learning rate, e(t) ¼ dx(t)2 yx(t) is the error, and ks(t)k is the

power of the input signal contained in the taps of the filter. Using the normalized LMS

Figure 1.6 FIR filter topology. Each neuronal input sN contains a tap delay line with l taps.

3In our studies we have observed neuronal activity correlated with behavior for up to 10 lags.
4Each neuronal input and desired trajectory for the WF was preprocessed to have a mean value of zero.
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algorithm (NLMS), the model parameters are updated incrementally at every new sample

and so the computation is greatly reduced. The step size must be experimentally deter-

mined from the data. One may think that the issues of nonstationarity are largely resolved

since the filter is always being updated, tracking the changing statistics. However, during

testing the desired response is not available so the weights of the filter have to be frozen

after training. Therefore, NLMS is still subject to the same problems as the Wiener sol-

ution, although it may provide slightly better results when properly trained (when the

data are not stationary, the LMS and the Wiener solution do not necessarily coincide [32]).

Linear filters trained with mean-square error (MSE) provide the best linear estimate

of the mapping between neural firing patterns and hand position. Even though the solution

is guaranteed to converge to the global optimum, the model assumes that the relationship

between neural activity and hand position is linear, which may not be the case. Further-

more, for large input spaces, including memory in the input introduces many extra

degrees of freedom to the model, hindering generalization capabilities.

1.4.2.2 Time Delay Neural Network Spatiotemporal nonlinear mappings of neur-

onal firing patterns to hand position can be constructed using a TDNN [52]. The TDNN

architecture consists of a tap delay line memory structure at the input in which past neur-

onal firing patterns in time can be stored, followed by a one-hidden-layer perceptron with a

linear output as shown in Figure 1.7. The output of the first hidden layer of the network can

be described with the relation y1(t) ¼ f (W1s(t)), where f(.) is the hyperbolic tangent non-

linearity ½tanh(bx)�.5 The input vector s includes l most recent spike counts from N input

neurons. In this model the nonlinear weighted and delayed versions of the firing counts

s(t2 l ) construct the output of the hidden layer. The number of delays in the topology

should be set so that there is significant coupling between the input and desired signal.

The number of hidden processing elements (PEs) is determined through experimentation.

The output layer of the network produces the hand trajectory y2(t) using a linear combi-

nation of the hidden states and is given by y2(t) ¼ W2y1(t). The weights (W1, W2) of

this network can be trained using static backpropagation6 with the MSE as the learning

criterion. This is the great advantage of this artificial neural network.

This topology is more powerful than the linear finite impulse response (FIR) filter

because it is effectively a nonlinear combination of FIR filters (as many as the number

of hidden PEs). Each of the hidden PE outputs can be thought of as a basis function

of the output space (nonlinearly adapted from the input) utilized to project the

Figure 1.7 Time delay neural network topology.

5The logistic function is another common nonlinearity used in neural networks.
6Backpropagation is a simple application of the chain rule, which propagates the gradients through the topology.
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high-dimensional data. While the nonlinear nature of the TDNN may seem as an attractive

choice for BMIs, putting memory at the input of this topology presents difficulties in train-

ing and model generalization. Adding memory to the high-dimensional neural input intro-

duces many free parameters to train. For example, if a neural ensemble contains 100

neurons with 10 delays of memory and the TDNN topology contains five hidden PEs,

5000 free parameters are introduced in the input layer alone. Large data sets and slow

learning rates are required to avoid overfitting. Untrained weights can also add variance

to the testing performance, thus decreasing accuracy.

1.4.2.3 Nonlinear Mixture of Competitive Local Linear Models The next model

topology that we will discuss is in general similar to the TDNN; however, the training pro-

cedure undertaken here is significantly different. This modeling method uses the

divide-and-conquer approach. Our reasoning is that a complex nonlinear modeling task

can be elucidated by dividing it into simpler linear modeling tasks and combining them

properly [53]. Previously, this approach was successfully applied to nonstationary

signal segmentation, assuming that a nonstationary signal is a combination of piecewise

stationary signals [54]. Hypothesizing that the neural activity will demonstrate varying

characteristics for different localities in the space of the hand trajectories, we expect the

multiple-model approach, in which each linear model specializes in a local region, to

provide a better overall I/O mapping. However, here the problem is different since the

goal is not to segment a signal but to segment the joint input/desired signal space. The

overall system archtitecture is depicted in Figure 1.8.

The local linear models can be conceived as a committee of experts each specializ-

ing in one segment of the hand trajectory space. The multilayer perceptron (MLP) is

introduced to the system in order to nonlinearly combine the predictions generated by

all the linear models. Experiments demonstrated that this nonlinear mixture of competitive

local linear models is potentially more powerful than a gated mixture of linear experts,

where only the winning expert’s opinion or their weighted sum is considered. In addition,

Figure 1.8 This topology consists of selecting a winner using integrated squared errors from each

linear model. Outputs from M trained linear models are then fed to a MLP.
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for BMI applications, it has the advantage that it does not require a selection scheme in

testing, which can only be accurately done using the desired output. For example, in a

prosthetic arm application, the desired hand position is not available in practice.

The topology allows a two-stage training procedure that can be performed

independently: first competitive learning for the local linear models and then error back-

propagation learning for the MLP. In off-line training, this can be done sequentially, where

first the local linear models are optimized and then their outputs are used as training inputs

for the following MLP. It is important to note that in this scheme both the local linear

models and the MLP are trained to approximate the same desired response, which is the

hand trajectory of the primate.

The training of the multiple linear models is accomplished by competitively (hard or

soft) updating their weights in accordance with previous approaches using the normalized

least-mean-square (NLMS) algorithm [32]. The winning model is determined by compar-

ing the (leaky) integrated squared errors of all competing models and selecting the model

that exhibits the least integrated error for the corresponding input [54]. In competitive

training, the leaky integrated squared error for the ith model is given by

1i(t) ¼ (1� m)1i(t � 1)þ me2i (t) i ¼ 1, . . . , M (1:26)

whereM is the number of models and m is the time constant of the leaky integrator. If hard

competition is employed, then only the weight vector of the winning model is updated.

Specifically, the hard-competition update rule for the weight vector of the winning

model is

wwinner(t þ 1) ¼ wwinner(t)þ
hewinner(t)s(t)

gþ ks(t)k2
(1:27)

where wwinner is the weight vector, s(t) is the current input, ewinner (t) is the instantaneous

error of the winning model, h is the learning rate, and g is the small positive constant. If

soft competition is used, a Gaussian weighting function centered at the winning model is

applied to all competing models. Every model is then updated proportional to the weight

assigned to that model by this Gaussian weighting function:

wi(t þ 1) ¼ wi(t)þ
h(t)Li, j(t)et(t)x(t)

gþ kx(t)k2
i ¼ 1, . . . ; M (1:28)

where wi is the weight vector of the ith model, the jth model is the winner, and Li,j(t) is the

weighting function

Li,j(t) ¼ exp �
d2i,j

2s2(t)

 !

(1:29)

where di,j is the Euclidean distance between index i and j which is equal to j j2 ij, h(t) is

the annealed learning rate, and s2(t) is the kernel width, which decreases exponentially as t

increases. The learning rate also decreases exponentially with time.

Soft competition preserves the topology of the input space by updating the models

neighboring the winner; thus it is expected to result in smoother transitions between

models specializing in topologically neighboring regions (of the state space). However,

in the experimental results, it was shown that the hard-competition rule comparisons on

data sets utilized in BMI experiments did not show any significant difference in general-

ization performance (possibly due to the nature of the data set used in these experiments).

The competitive training of the first layer of linear models to match the hand

trajectory using the neural activity creates a set of basis signals from which the following
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single hidden-layer MLP can generate accurate hand position predictions. However, this

performance is at the price of an increase in the number of free model parameters

which results from each of the local linear models (100 neurons � 10 tap delays � 3

coordinates � 10 models ¼ 30,000 parameters in the input). Additional experimentation

is necessary to evaluate the long-term performance (generalization) of such a model in

BMI applications.

1.4.2.4 Recurrent Multilayer Perceptron The final black-box BMI model dis-

cussed is potentially the most powerful because it not only contains a nonlinearity but

also includes dynamics through the use of feedback. The recurrent multilayer perceptron

(RMLP) architecture (Fig. 1.9) consists of an input layer with N neuronal input channels, a

fully connected hidden layer of PEs (in this case tanh), and an output layer of linear PEs.

Each hidden layer PE is connected to every other hidden PE using a unit time delay. In the

input layer equation (1.30), the state produced at the output of the first hidden layer is a

nonlinear function of a weighted combination (including a bias) of the current input and

the previous state. The feedback of the state allows for continuous representations on mul-

tiple time scales and effectively implements a short-term memory mechanism. Here, f (.) is

a sigmoid nonlinearity (in this case tanh), and the weight matricesW1,W2, andWf as well

as the bias vectors b1 and b2 are again trained using synchronized neural activity and hand

position data. Each hidden PE output can be thought of as a nonlinear adaptive basis of the

output space utilized to project the high-dimensional data. These projections are then lin-

early combined to form the outputs of the RMLP that will predict the desired hand move-

ments. One of the disadvantages of the RMLP when compared with the Kalman filter is

that there is no known closed-form solution to estimate the matrices Wf, W1, and W2 in

the model; therefore, gradient descent learning is used. The RMLP can be trained with

backpropagation through time (BPTT) or real-time recurrent learning (RTRL) [55]:

y1(t) ¼ f (W1s(t)þWf y1(t � 1)þ b1) (1:30)

y2(t) ¼ W2y1(t)þ b2 (1:31)

If the RMLP approach for the BMI is contrasted with Todorov’s model, one can see that

the RMLP accepts the neuronal activity (also as binned spike counts) as input and gener-

ates a prediction of the hand position using first-order internal dynamics. Although the

model output y2 can consist of only the hand position, the RMLP must learn to build an

efficient internal dynamical representation of the other mechanical variables (velocity,

Figure 1.9 Fully connected, state recurrent neural network.
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acceleration, and force) through the use of feedback. In fact, in this model, the hidden state

vector (y1) can be regarded as the RMLP representation of these mechanical variables

driven by the neural activity in the input (s). Hence, the dynamical nature of Todorov’s

model is implemented through the nonlinear feedback in the RMLP. The output layer is

responsible for extracting the position information from the representation in y1 using a

linear combination. An interesting analogy exists between the output layer weight

matrix W2 in the RMLP and the matrix U in Todorov’s model. This analogy stems from

the fact that each column of U represents a direction in the space spanning the mixture

of mechanical variables to which the corresponding individual neuron is cosine tuned,

which is a natural consequence of the inner product. Similarly, each column of W2 rep-

resents a direction in the space of hand position to which a nonlinear mixture of neuronal

activity is tuned. In general, the combination of Todorov’s theory with the use of nonli-

nearity and dynamics gives the RMLP a powerful approximating capability.

1.4.3 Generalization/Regularization/Weight Decay/
Cross Validation

The primary goal in BMI experiments is to produce the best estimates of HP, HV, and GF

from neuronal activity that has not been used to train the model. This testing performance

describes the generalization ability of the models. To achieve good generalization for a

given problem, the two first considerations to be addressed are the choice of model top-

ology and training algorithm. These choices are especially important in the design of

BMIs because performance is dependent upon how well the model deals with the large

dimensionality of the input as well as how the model generalizes in nonstationary environ-

ments. The generalization of the model can be explained in terms of the bias-variance

dilemma of machine learning [56], which is related to the number of free parameters of

a model. The MIMO structure of BMIs built for the data presented here can have as

few as several hundred to as many as several thousand free parameters. On one extreme

if the model does not contain enough parameters, there are too few degrees of freedom

to fit the function to be estimated, which results in bias errors. On the other extreme,

models with too many degrees of freedom tend to overfit the function to be estimated.

In terms of BMIs, models tend to err on the latter because of the large dimensionality of

the input. The BMI model overfitting is especially a problem in topologies where

memory is implemented at the input layer. With each new delay element, the number of

free parameters will scale with the number of input neurons as in the FIR filter and TDNN.

To handle the bias-variance dilemma, one could use the traditional Akaike or BIC

criteria; however, the MIMO structure of BMIs excludes these approaches [57]. As a

second option, during model training regularization techniques could be implemented

that attempt to reduce the value of unimportant weights to zero and effectively prune

the size of the model topology [58].

In BMI experiments we are not only faced with regularization issues but also we

must consider ill-conditioned model solutions that result from the use of finite data sets.

For example, computation of the optimal solution for the linear WF involves inverting

a poorly conditioned input correlation matrix that results from sparse neural firing data

that are highly variable. One method of dealing with this problem is to use the pseudoin-

verse. However, since we are interested in both conditioning and regularization, we chose

to use ridge regression (RR) [51] where an identity matrix is multiplied by a white-noise

variance and is added to the correlation matrix. The criterion function of RR is given by

J(w) ¼ E½kek2� þ dkwk2 (1:32)
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where w are the weights, e is the model error, and the additional term dkwk2 smooths the

cost function. The choice of the amount of regularization (d) plays an important role in the

generalization performance and for larger deltas performance can suffer because SNR is

sacrificed for smaller condition numbers. It has been proposed by Larsen et al. that d

can be optimized by minimizing the generalization error with respect to d [47]. For

other model topologies such as the TDNN, RMLP, and the LMS update for the FIR,

weight decay (WD) regularization is an on-line method of RR to minimize the criterion

function in (1.32) using the stochastic gradient, updating the weights by

w(nþ 1) ¼ w(n)þ hr(J)� dw(n) (1:33)

Both RR and WD can be viewed as the implementations of a Bayesian approach to com-

plexity control in supervised learning using a zero-mean Gaussian prior [59].

A second method that can be used to maximize the generalization of a BMI model is

called cross validation. Developments in learning theory have shown that during model

training there is a point of maximum generalization after which model performance on

unseen data will begin to deteriorate [60]. After this point the model is said to be over-

trained. To circumvent this problem, a cross-validation set can be used to indicate an

early stopping point in the training procedure. To implement this method, the training

data are divided into a training set and a cross-validation set. Periodically during model

training, the cross-validation set is used to test the performance of the model. When the

error in the validation set begins to increase, the training should be stopped.

1.5 EXAMPLES

Four examples of how optimal signal processing can be used on real behavioral and neural

recordings for the development of BMIs will now be given. The examples are focused on

comparing the performance of linear, generative, nonlinear, feedforward, and dynamical

models for the hand-reaching motor task. The four models include the FIR Wiener

filter, TDNN (the nonlinear extension to the WF), Kalman filter, and RMLP. Since each

of these models employs very different principles and has different mapping power, it

is expected that they will perform differently and the extent to which they differ will be

quantitatively compared. With these topologies, it will be shown how BMI performance

is affected by the number of free model parameters, computational complexity, and non-

linear dynamics. In the following examples, the firing times of single neurons were

recorded by researchers at Duke University while a primate performed a 3D reaching

task that involved a right-handed reach to food and subsequent placing of the food in

the mouth, as shown in Figure 1.10 [10]. Neuronal firings, binned (added) in nonoverlap-

ping windows of 100 ms, were directly used as inputs to the models. The primate’s hand

position (HP), used as the desired signal, was also recorded (with a time-shared clock) and

digitized with a 200-Hz sampling rate. Each model was trained using 20,010 consecutive

time bins (2001 s) of data.

One of the most difficult aspects of modeling for BMIs is the dimensionality of the

neuronal input (in this case 104 cells). Because of this large dimensionality, even the sim-

plest models contain topologies with thousands of free parameters. Moreover, the BMI

model is often trying to approximate relatively simple trajectories resembling sine

waves which practically can be approximated with only two free parameters. Immediately,

we are faced with avoiding overfitting the data. Large dimensionality also has an impact

on the computational complexity of the model, which can require thousands more multi-

plications, divisions, and function evaluations. This is especially a problem if we wish to
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implement the model in low-power portable DSPs. Here we will assess each of the four

BMI models in terms of their number of free parameters and computational complexity.

Model overfitting is often described in terms of prediction risk (PR), which is the

expected performance of a topology when predicting new trajectories not encountered

during training [61]. Several estimates of the PR for linear models have been proposed

in the literature [62–65]. A simple way to develop a formulation for the prediction risk

is to assume the quadratic form in (1.34), where e is the training error for a model with

F parameters and N training samples. In this quadratic formulation, we can consider an

optimal number of parameters, FOpt, that minimizes the PR. We wish to estimate how

the PR will vary with F, which can be given by a simple Taylor series expansion of

(1.34) around FOpt as performed in [65]. Manipulation of the Taylor expansion will

yield the general form in (1.35). Other formulations for the PR include the generalized

cross validation (GCV) and Akaike’s final prediction error (FPE) given in (1.36) and

(1.37). The important characteristic of (1.35)–(1.37) is that they all involve the interplay

of the number of model parameters to the number of training samples. In general, the PR

increases as the number of model parameters increases:

PR ¼ E½e2(FN)� (1:34)

PR � e2 1þ
F

N

� �

(1:35)

GCV ¼
e2

(1�F=N)2
(1:36)

FPE ¼ e2
1þF=N

1�F=N

� �

(1:37)

The formulations for the PR presented here have been extended to nonlinear models [66].

While the estimation of the PR for linear models is rather straightforward, in the case non-

linear models the formulation is complicated by two factors. First, the nonlinear

Figure 1.10 Reaching movement trajectory.
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formulation involves computing the effective number of parameters (a number that differs

from the true number of parameter in the model), which is nontrivial to estimate since it

depends on the amount of model bias, model nonlinearity, and amount of regularization

used in training [66]. Second, the formulation involves computing the noise covariance

matrix of the desired signal, another parameter that is nontrivial to compute, especially

in the context of BMI hand trajectories.

For the reaching task data set, all of the models utilize 104 neuronal inputs, as shown

in Table 1.2. The first encounter with an explosion in the number of free parameters occurs

for both theWF and TDNN since they contain a 10-tap delay line at the input. Immediately

the number of inputs is multiplied by 10. The TDNN topology has the greatest number of

free parameters, 5215, of the feedforward topologies because the neuronal tap delay

memory structure is also multiplied by the 5 hidden processing elements following the

input. The WF, which does not contain any hidden processing elements, contains 3120

free parameters. In the case of the Kalman filter, which is the largest topology, the

number of parameters explodes due to the size of the A and C matrices since they both

contain the square of the dimensionality of the 104 neuronal inputs. Finally, the RMLP

topology is the most frugal since it moves its memory structure to the hidden layer

through the use of feedback, yielding a total of 560 free parameters.

To quantify how the number of free parameters affects model training time, a

Pentium 4 class computer with 512 MB DDR RAM, the software package NeuroSolutions

for the neural networks [67], and MATLAB for computing the Kalman and Wiener sol-

ution were used to train the models. The training times of all four topologies are given

in Table 1.2. For the WF, the computation of the inverse of a 1040 � 1040 autocorrelation

matrix took 47 s in MATLAB, which is optimized for matrix computations. For the neural

networks, the complete set of data is presented to the learning algorithm in several iter-

ations called epochs. In NeuroSolutions, whose programming is based on C, 20,010

samples were presented 130 and 1000 times in 22 min, 15 s and 6 min, 35 s for the

TDNN and RMLP, respectively [67]. The TDNN was trained with backpropagation and

the RMLP was trained with BPTT [55] with a trajectory of 30 samples and learning

rates of 0.01, 0.01, and 0.001 for the input, feedback, and output layers, respectively.

Momemtum learning was also implemented with a rate of 0.7. One hundred Monte

TABLE 1.2 Model Parameters

WF TDNN Kalman filter RMLP

Training time 47 s 22 min, 15 s 2 min, 43 s 6 min, 35 s

Number of epochs 1 130 1 1000

Cross validation N/A 1000 pts. N/A 1000 pts.

Number of inputs 104 104 104 104

Number of tap delays 10 10 N/A N/A

Number of hidden PEs N/A 5 113 (states) 5

Number of outputs 3 3 9 3

Number of adapted

weights

3120 5215 12073 560

Regularization 0.1 (RR) 1 � 1025 (WD) N/A 1 � 1025 (WD)

Learning rates N/A 1 � 1024 (input) N/A 1 � 1022 (input)

1 � 1025 (output) 1 � 1022 (feedback)

1 � 1023 (output)
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Carlo simulations with different initial conditions were conducted of neuronal data to

improve the chances of obtaining the global optimum. Of all the Monte Carlo simulations,

the network with the smallest error achieved a MSE of 0.0203+ 0.0009. A small training

standard deviation indicates the network repeatedly achieved the same level of perform-

ance. Neural network training was stopped using the method of cross validation (batch

size of 1000 pts.), to maximize the generalization of the network [60]. The Kalman

proved to be the slowest to train since the update of the Kalman gain requires several

matrix multiplies and divisions. In these simulations, the number of epochs chosen was

based upon performance in a 1000-sample cross-validation set, which will be discussed

in the next section. To maximize generalization during training, ridge regression,

weight decay, and slow learning rates were also implemented.

The number of free parameters is also related to the computational complexity of each

model given in Table 1.3. The number of multiplies, adds, and function evaluations describe

how demanding the topology is for producing an output. The computational complexity

especially becomes critical when implementing the model in a low-power portable DSP,

which is the intended outcome for BMI applications. In Table 1.3 define N0, t, d, and N1

to be the number of inputs, tap delays, outputs, and hidden PEs, respectively. In this case,

only the number of multiplications and function evaluations are presented since the

number of additions is essentially identical to the number of multiplications. Again it can

be seen that demanding models contain memory in the neural input layer. With the addition

of each neuronal input the computational complexity of the WF increases by 10 and the

TDNN by 50. The Kalman filter is the most computationally complex [O((N0 þ 9)3)]

since both the state transition and output matrix contain dimensionality of the neuronal

input. For the neural networks, the number of function evaluations is not as demanding

since they contain only five for both the TDNN and RMLP. Comparing the neural

network training times also exemplifies the computational complexity of each topology;

the TDNN (the most computationally complex) requires the most training time and

allows only a hundred presentations of the training data. As a rule of thumb, to overcome

these difficulties, BMI architectures should avoid the use of memory structures at the input.

In testing, all model parameters were fixed and 3000 consecutive bins (300 s) of

novel neuronal data were fed into the models to predict new hand trajectories.

Figure 1.11 shows the output of the three topologies in the test set with 3D hand position

for one reaching movement. While only a single movement is presented for simplicity, it

can be shown that during the short period of observation (5 min) there is no noticeable

degradation of the model fitting across time. From the plots it can be seen that qualitatively

all three topologies do a fair job at capturing the reach to the food and the initial reach to

the mouth. However, both the WF and TDNN cannot maintain the peak values of HP at the

mouth position. Additionally theWF and TDNN have smooth transitions between the food

and mouth while the RMLP sharply changes its position in this region. The traditional way

to quantitatively report results in BMI is through the correlation coefficient (CC) between

TABLE 1.3 Model Computational Complexity

Multiplications Function evaluations

WF N0 � t � d N/A

TDNN N0 � t � N1 � d N1

Kalman filter O((N0 þ 9)3) N/A

RMLP N0 � N1 þ N1 � d þ N1 � N1 N1
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the actual and estimated hand position trajectories as shown in Table 1.4 which was

computed for the entire trajectory. The WF and TDNN perform similarly on average in

their CC values while the RMLP has significantly greater performance. In general, the

overall experimental performance can also depend on the movement trajectory studied,

animal, daily recording session, and variability in the neurons probed.

The reaching task which consists of a reach to food and subsequent reach to the

mouth is embedded in periods where the animal’s hand is at rest as shown by the flat tra-

jectories to the left and right of the movement. Since we are interested in how the models

perform in each mode of the movement we present CC for movement and rest periods. The

performance metrics are also computed using a sliding window of 40 samples (4 s) so that

an estimate of the standard deviation could be quantified. The window length of 40 was

selected because each movement spans about 4 s.

The reaching task testing metrics are presented in Table 1.5. It can be seen in the

table that the CC can give a misleading perspective of performance since all the models

produce approximately the same values. Nevertheless, the Kolmogorov–Smirnov

(K–S) for a p value of 0.05 is used to compare the correlation coefficients with the sim-

plest model, the WF. The TDNN, Kalman, and RMLP all produced CC values that were

significantly different than the FIR filter and the CC values itself can be used to gauge if

TABLE 1.4 Model Performance

Correlation coefficient

X Y Z

WF 0.52 0.60 0.64

TDNN 0.46 0.56 0.58

Kalman filter 0.56 0.64 0.65

RMLP 0.67 0.76 0.83

Figure 1.11 Testing performance for three reaching movements.
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the difference is significantly better. All four models have poor resting CC values which

can be attributed to the output variability in the trajectory (i.e. there is not a strong linear

relationship between the output and desired trajectories).

1.6 PERFORMANCE DISCUSSION

With the performance results reported in these experiments we can now discuss practical

considerations when building BMIs. By far the easiest model to implement is the WF.

With its quick computation time and straightforward linear algebra mathematics it is

clearly an attractive choice for BMIs. We can also explain its function in terms of

simple weighted sums of delayed versions of the ensemble neuronal firing (i.e., it is cor-

relating neuronal activity with HP). However, from the trajectories in Figure 1.11, subplot

1, the output is noisy and does not accurately capture the details of the movement. These

errors may be attributed, first, to the solution obtained from inverting a poorly conditioned

autocorrelation matrix and, second, to the number of free parameters in the model top-

ology. While we may think that by adding nonlinearity to the WF topology as in the

TDNN we can obtain a more powerful tool, we found that the large increase in the

number of free parameters overshadowed the increase in performance. We have also

found that training the TDNN for this problem is slow and tedious and subject to

getting trapped in local minima. The next model studied, the Kalman filter, was the

most computationally complex to train and contained the largest number of free par-

ameters (see comparison in Tables 1.2 and 1.3), which resulted in noisy trajectories

similar to the linear model. Training this model involved the difficult mapping from a

lower dimensional kinematic state space to the neuronal output space as well as initial esti-

mates of the noise covariances, which are unknown to the operator. In contrast, many of

these training and performance issues can be overcome in the RMLP. With the choice of

moving the memory structure to the hidden layer, we immediately gain a reduction in the

number of free parameters. This change is not without a cost since the BPTT training

algorithm is more difficult to implement than, for example, the WF. Nevertheless, using

a combination of dynamics and nonlinearity in the hidden layer also allowed the model

to accurately capture the quick transitions in the movement as well as maintain the

peak hand positions at the mouth. Capturing these positions resulted in larger values in

the correlation coefficient. While the RMLP was able to outperform the other two topol-

ogies, it is not free from error; the output is still extremely noisy for applications of real

BMIs (imagine trying to grasp a glass of water). Additionally the negative sloping trajec-

tories for the reach to the food were not accurately captured. The search for the right mod-

eling tools and techniques to overcome the errors presented here is the subject of future

research for optimal signal processing for BMIs.

TABLE 1.5 Comparison of Reaching vs. Resting Movements

WF TDNN Kalman filter RMLP

Correlation coefficient (movement) 0.83+ 0.09 0.08+ 0.17 0.83+ 0.11 0.84+ 0.15

CC K–S test (movement) 0 1 1 1

Correlation coefficient (rest) 0.10+ 0.29 0.04+ 0.25 0.03+ 0.26 0.06+ 0.25

CC K–S test (rest) 0 1 1 1
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2.1 INTRODUCTION

The unique property of the brain to learn and remember is what makes the nervous system

different from any other. Its functional plasticity enables a large range of possible

responses to stimuli, allowing the nervous system to integrate high-resolution, multimodal

sensory information and to control extremely precise motor actions. These same properties

can be studied in ex vivo cultured networks of neurons, where, at a simplified level of

organization, the collective and functional electrophysiological properties emerge and

can be experimentally characterized, so contributing to a better understanding of how

the brain processes information [1, 2]. Consequently, cultured networks can be considered

as simplified neurobiological systems leading to the theoretical analysis of

neurodynamics.

2.2 MATERIALS AND METHODS

Nowadays, networks of dissociated neurons can be cultured and kept in healthy conditions

for a long time (from weeks up to months) as experimental preparations [3]. In such in

vitro neurobiological systems, the neuronal physiology and the efficacy of synaptic

connections between neurons can be quantitatively characterized, exploiting activity-

dependent network modifications and investigating the time-dependent interactions

among the nervous cells that might be used in the brain to represent information [4, 5].

In addition, such networks offer new assay and sensing systems that lie between biochem-

istry and whole-animal experiments and provide rapid and quantitative information

on neurophysiological responses to chemicals and toxins [6–9] or specific electrical

stimulating waveforms [10–12].
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In order to study neuronal dynamics at the network level, it is necessary to record

electrical activity at multiple sites simultaneously for long periods. Among the promising

electrophysiological experimental approaches, planar microelectrode arrays (MEAs)

appear the best choice for such measurements. After many pioneering studies started in

the 1980s [6, 13], MEAs have become a powerful tool in the framework of in vitro electro-

physiology, allowing multisite, long-term and noninvasive extracellular recordings from

tens of sites and simultaneous electrical stimulation from different regions of the array

[3, 8, 14].

By using multisite recording of extracellular signals with MEAs, we monitored the

patterns of neural activity arising from cultured cortical neurons of rat embryo in different

experimental conditions, studying the network moving in a variety of distinct behavioral

“states.”

2.2.1 General Procedure for Culturing Cortical Neurons

2.2.1.1 Preculture Preparation Microelectrode arrays are sterilized and pretreated

with adhesion factors, such as poly-D/L-lysine and laminin, in order to improve the

neuron–electrode coupling.

2.2.1.2 Dissection Cortical neurons are obtained from E-18/19 rat embryos, remov-

ing the whole uterus of a pregnant Wistar rat and placing it in a Petri dish with phosphate-

buffered saline (PBS) or Hank’s balanced salt solution (HBSS). Pups are then removed

from their own embryonic sac and decapitated. We isolate the cortical hemisphere,

remove the meninges and olfactory bulbs, cut off the hippocampus and basal ganglia,

and collect all cortical hemispheres in a Petri dish of 35 mm diameter with PBS on ice.

Afterward the cortices must be chopped into small pieces, adding trypsin solution,

and the tissue pieces are transferred, with a sylanized Pasteur pipette, to a 15-mL centri-

fuge tube containing 2–3 mL of trypsin solution for each cortex. The tube is placed into

the water bath and incubated for 25–30 min at 378C.

After removing the tube from the bath, it is necessary to take away as much trypsin

as possible with a pipette; the proteolytic digestion is blocked adding to the tissue 5 mL of

Dulbecco’s modified Eagles’s medium (DMEM)–F12 medium (or neurobasal medium)

containing 10% serum. This operation is repeated twice, drawing off the supernatant

and suspending the tissue in 3 mL of the same medium, tritrating 5–10 times with a

flame-narrowed pipette and continuing until no more clumps of tissue are visible. Cell

suspension is centrifuged for 5 min at 1000 rpm and the cells are suspended in 10 mL

of neurobasal medium supplemented with 2% B-27 and 1% glutamax-I.

The number of cells is counted by using a hemocytometer, and the cortical cell

suspension is diluted to a final concentration of 800,000 cells/mL; 100–150 mL of the

cell suspension solution is placed in each of the prepared microarray culture wells obtain-

ing a final concentration of 450,000 cells/mL (see Fig. 2.1). The total number of cell

plated on the MEA in a 6.5-mm � 6.5-mm region is about 1500 cells/mm2.

2.2.1.3 Cell Maintenance The MEAs are placed in a humidified incubator having an

atmosphere of 5% CO2 at 378C; part of the media is replaced with a fresh one each week.

At first, neurons and glial cells, living in coculture, improve the development of

synaptic connections of neuronal network, then glial cells continue to proliferate, so

four days after the cell plating, Ara-C, which acts as an inhibitor of replication and

overgrowth of nonneural cells, is added.
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During experimental sessions, measurements were carried out in physiological

“basal” medium, made up of the following components: NaCl 150 mM, CaCl2 1.3 mM,

MgCl2 0.7 mM, KCl 2.8 mM, glucose 10 mM, and N-(2-hydroxyethyl) piperazine-N0-

2-ethanesulfonic acid (HEPES) buffer 10 mM.

2.2.2 Experimental Setup

The experimental setup currently adopted in our laboratories is schematically represented

in Figure 2.2; it is based on the MEA60 system (Multichannel Systems—MCS Reutlingen,

Germany, http://www.multichannelsystems.com) and consists of the following:

. The microelectrode array (MEA1060), a planar array of 60 TiN electrodes (30 mm

diameter, 200 mm spaced) on glass substrate

. A mounting support with integrated 60-channel pre- and filter amplifier with a gain

of 1200�

. A personal computer equipped with the MC_Card, a personal computer interface

(PCI) analog-to-digital (A/D)/digital-to-analog (D/A) board with a maximum of

128 recording channels, 12 bits of resolution, and a maximum sampling frequency

of 50 kHz/channel (we use 10 kHz/channel)

Figure 2.1 Cultures of cortical neurons extracted from rat embryos coupled to MEAs after

15 DIV (days in vitro).

Figure 2.2 Experimental setup currently used in our laboratories, based on MEA60 system

(Multichannel Systems).
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. The software MCRack, used for real-time signal displaying and multichannel

acquisition

. Custom-made software neural signal manager (NSM) and MATLAB routines for

data analysis [15]

. The stimulus generator (STG) 1008 stimulus generator, capable of stimulating the

network through up to eight channels

. The software MCStimulus, used to drive the stimulus generator

. An inverted microscope (connected to a TV camera)

. An antivibration table and a Faraday cage

2.3 RESULTS

Networks of neurons extracted from the developing central nervous system (CNS) are

spontaneously active and show typical electrophysiological activity patterns ranging

from apparently random spiking to more organized and densely packed spike activity

called “bursts.” In order to represent these behaviors from a quantitative point of view,

we described the activity at both the burst and at spike levels, analyzing the electro-

physiological pattern in different experimental conditions employing custom-developed

algorithms of burst analysis and standard statistical procedures for spike analysis [15].

2.3.1 Network Activity Modulated by Chemical Agents

The aim of chemical stimulation experiments is to study how drugs affect the network

behavior on the basis of some simple parameters [e.g., spike rate, burst rate, interspike

interval (ISI), interburst interval (IBI), burst duration] and, therefore, to study how the

network can be driven to a more excited or inhibited state. One of the main objectives

is to control the excitability level of the network, thus increasing or decreasing the

sensitivity of neurons to external electrical stimuli. According to the experimental setup

currently in use, chemicals are not delivered in a localized way, to specific and identified

subpopulations of neurons, but they are added to the culture bath, so that the entire network

experiences the same concentration of the added chemical agents.

Focusing, in the present context, on glutamate, the most important excitatory neuro-

transmitter in the CNS, manipulations of the network were achieved through agonists and

antagonists of glutamatergic ionotropic N-methyl-D-aspartate and non-NMDA receptors

[9, 16, 17].

2.3.1.1 Experimental Protocols We investigated the effect of APV (D-2-amino-5-

phosphonopentanoic acid) and CNQX (6-cyano-7-nitroquinoxaline-2, 3-dione), competi-

tive antagonists respectively of NMDA and non-NMDA channels, on the electrical

activity in cultured networks.

At first, the two selected substances (i.e., APV and CNQX)were applied to our cultures

separately: DifferentMEAs were used for the two chemicals, delivered at increasing concen-

trations for studying a simple dose–response profile. By refining these procedures, we should

have been able to define the optimal concentration that allows us to keep the neuronal culture

in a certain reproducible state (e.g., with a defined mean firing rate).

In the following, the adopted experimental procedures are reported; they include

separated sessions for the concentrations of different drugs and some intermediate

“basal” (i.e., where no drugs were applied) phases, which show the reversibility of the
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process; that is, after the washout, we obtained a mean global behavior of the network

close to the one observed at the beginning of the experiment:

1. For CNQX:

. The MEA is positioned in the experimental setup, the medium is changed (i.e.,

from neurobasal to physiological—see Section 2.2.1.3), and the culture is

allowed to stabilize for 20 min.

. Basal condition: 20 min recording.

. CNQX1 (10 mM): 20 min recording.

. Basal 2: 5 min recording.

. CNQX2 (50 mM): 20 min recording.

. Basal 3: 5 min recording.

. CNQX3 (100 mM): 20 min recording.

. Basal 4: 5 min recording.

2. The same experimental procedure used for APV with concentrations of 25, 50, and

100 mM: It turned out that the application of APV has a remarkable effect on the

spontaneous firing activity, as could be expected and as is illustrated by looking

at the raw data (see Fig. 2.3a, where the most active sites before the application

of APV are highlighted) and at the ISI histograms (see Fig. 2.3b). Figure 2.3

shows a comparison between the control (i.e., physiological) condition and the

100 mM APV condition; as can be seen, the spontaneous activity in the network

is almost abolished.

In terms of the global behavior of the network, the effects of drugs can be better

observed by their dose–response curves, representing the relationship between the

mean firing rate (i.e., number of spikes per second) computed on the 60 channels and

drug concentration. The experimental findings are displayed in Figure 2.4 for CNQX

and APV application: The expected results of a decreasing activity in response to the

increasing concentration of the drug were obtained.

In particular, Figure 2.4a shows the results of two experiments performed on

22-DIV-old cultures treated with CNQX; they both follow the same trend.

In Figure 2.4b, the results of two experiments with APV are shown; in this case the

two examined cultures have the age of 15 DIV, and even if the initial spontaneous activity

is different, it reaches almost coinciding values for high concentrations of the drug

(50–100 mM).

These results are also confirmed by analyzing the bursting activity: The mean

number of bursts occurring in 5 min is calculated over the most active channels for

each experimental phase and reported in Figures 2.4c,d, respectively, for CNQX and

APV addition. The values decrease while the inhibitory drug concentration increases as

a further consequence of the reduced mean firing rate.

The two drugs act on different receptors (CNQX on non-NMDA channels, APV on

NMDA ones) and they affect the network through different pathways. However, in both

cases, CNQX and APV treatment reduces the global activity but the network is not

totally silent. Considering that in the network the two types of receptors coexist, to

have a silent network the application of both receptor blockers is needed.

Thus, considering the obtained dose–response curves, we performed some exper-

iments applying the two substances at a concentration of 50 mM for APV and 10 mM
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for CNQX to investigate the combined effect of the two blockers on the network

activity.

The utilized experimental protocol for CNQX and APV is as follows:

. The MEA is positioned in the experimental setup, the medium is changed (i.e., from

neurobasal to physiological—see Section 2.2.1.3), and the culture is allowed to

stabilize for 20 min.

. Basal condition: 20 min recording.

. MIX1 (10 mM CNQX, 50 mM APV): 20 min recording.

. Basal 2: 20 min recording.

. MIX2 (10 mM CNQX, 50 mM APV): 20 min recording.

. Basal 3: 20 min recording.

Figure 2.3 (a) Electrophysiological activity at 21 DIV recorded from 60 electrodes and

monitored in real time, in basal medium (left) and after addition of 100 mM APV (right): In

each window is shown 1 s of the recorded signals in a voltage range of +40 mV. Note that

some of the most active electrodes have been circled to highlight the different behaviors in the

two experimental conditions. (b) The same results can also be appreciated looking at the ISI

histogram representing the basal medium vs. 100 mM APV condition.
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The obtained results are summarized in Figure 2.5. The mean firing rate values

corresponding to the APV–CNQX treatment are now very close to zero for all 60

electrodes, while after a single washout the network shows a significant activity.

2.3.2 Network Activity Modulated by Electrical Stimulation

It is well known that in vitro neuronal network activity can be modulated by electrical

stimulation [10, 11]. It has also been shown that activity-dependent modifications in the

network reflect changes in the synaptic efficacy and that this fact is widely recognized

as a cellular basis of learning, memory, and developmental plasticity [11, 18–20]. As a

preliminary step toward the elucidations of simple and basic properties of neural adapta-

bility (i.e., plasticity), we started to characterize the electrophysiological activity of devel-

oping neuronal networks in response to applied electrical stimuli.

The objective is to find out pathways activated by external stimuli, exploring half of

the microelectrodes as stimulating channels, and to select some of them as possible input

for inducing synaptic weight changes in the network.

Our experimental protocols for electrical stimulation have been adapted from the

literature [10, 11, 18]. Stimuli consist of trains of bipolar pulses at low frequency

Figure 2.4 Mean firing rate calculated for different concentrations of (a) CNQX and (b) APV and (c, d )

number of bursts calculated for the same experiments.
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(about 0.2 Hz, +1.0 V, 250 ms); in the experiments presented here, 70 stimuli were

delivered in about 7 min through 20/30 stimulating sites over a total of 60 electrodes in

order to explore the whole network and to discover the existence of possible neural path-

ways embedded in the networks, where the signals propagate from not directly

connected nervous cells. Preliminary results show remarkable differences in the electro-

physiological activity of the network in different stimulation conditions that encourage

us to think that it might be possible to induce controlled plastic changes in the network

and to “force” the network to move toward particular behavioral states. This is an import-

ant experimental evidence attesting the feasibility of imposing a kind of “adaptive

learning” in a biological nonlinear system.

To quantify the response with respect to the delivered stimulus of a specific record-

ing site, we used the well-known representation called poststimulus time histogram

(PSTH) [21] and we noticed different shapes for different stimulation sites. The first

consideration is that it is possible to modulate the electrical responses of the cell by

only changing the stimulation site (see Fig. 2.6) and that there are also specific neural

pathways in the network.

By looking at the probability of firing after the stimulation, it is possible to identify

two principal shapes in the PSTH (see Figs. 2.6a,b): the “early response,” where first

spikes are evoked immediately after the stimulus (they overlap to the last part of the stimu-

lus artifact), and the “delayed response,” where spike activity is evoked 50–100 ms after

the stimulus and which consists of a bursting activity lasting about 300 ms. The distinction

between these two types of evoked response is also evident looking at the raw signals

recorded during a stimulation phase through different electrodes (see Figs. 2.6c,d ).

Very recently, it has been shown that, looking inside this delayed response, it is

possible to induce selective learning, activating path-specific plastic changes [18].

Several parameters were extracted to better characterize spontaneous network beha-

vior and to analyze changes induced by electrical stimulation. In particular we focused our

attention on the analysis of the mean firing rate, the IBI, and the duration of single bursts.

In each experimental condition, corresponding to a different stimulation site, the

mean firing rates were calculated for two groups of recording electrodes: the least

active and the most active ones during the basal condition (Figs. 2.7a,b), in order to

Figure 2.5 Mean firing rate calculated for different phases: basal 1, basal 2, basal 3

(physiological conditions) and MIX1, MIX2 (10 mM CNQX–50 mM APV treatment).
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underline the different evoked behaviors with respect to the spontaneous activity. As far as

the least active sites are concerned, an increase in firing activity can be noticed for all the

stimulation conditions. We obtained the opposite effect on the other group of electrodes,

for which the mean firing rate decreased as a consequence of the stimulation: This result

could be explained as a rupture of the high-frequency spontaneous activity and, at the same

time, as an adaptation to the stimulation pattern.

Besides, looking at the IBI histogram (Figs. 2.7c,d), we can see how externalstimuli

can tune the bursting spontaneous activity and lock it around the stimulus frequency (5–6 s).

Further experiments were performed by slightly changing the experimental protocol

(i.e., amplitude and duration of the biphasic stimulating signal, voltage-vs.-current stimu-

lation) and similar results were obtained (data not shown). Thus, in accordance with other

works [11, 22], it has been demonstrated that the electrophysiological activity is stimulus

dependent, showing a rich repertoire of evoked responses with a specific dependence on

the stimulating site.

Figure 2.6 Poststimulus time histograms for two recording sites (56 and 77): (a) an “early” response is clearly

visible; (b) by changing the stimulating site, a “delayed” response is obtained. The two types of responses can

be seen in the electrophysiological activity recorded from one of the two recording electrodes presented

above: During electrical stimulation from two different stimulating sites the burst following the stimulus

has a different pattern in terms of delay from the stimulus that is almost absent in (c), while it is about

50–100 ms in (d ).
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2.4 CONCLUSIONS

In the present work we showed that simple protocols of chemical and electrical stimulation

can induce, in neuronal networks, different patterns of activity that can be quantified by

looking at the firing rate on each recording channel and at the overall spiking activity. More-

over the analysis of the burst activity, in terms of burst duration, IBI, and temporal distri-

bution of evoked bursts, can meaningfully identify different states in the network dynamics.

Summarizing the obtained results, based on preliminary performed experimental

sessions, we can state that the network response is modulated by chemical agents that

are known to act as antagonist of glutamatergic synapses, thus demonstrating that the

network dynamics is dominated, as far as the excitatory connections are concerned, by

NMDA and non-NMDA receptors. Yet, the electrical stimulation is a spatially depen-

dent phenomenon, since different stimulating sites evoke different responses (distinct

“patterns” or “states”) on the same recording electrodes. Therefore, there are different

functional pathways in the network responsible for the signal activation and propagation

that can be identified by ad hoc algorithms (such as the presented PSTH). Further analysis

devoted to the identification of specific pathways of connections inside the networks could

be performed also by looking at the latency of the responses evoked by the stimulating site

on different recording electrodes.

From the experimental point of view, future steps will be devoted to identify a subset

of electrodes capable of tuning the transmission properties of the network and to

implement specific stimulation protocols aimed at modifying the synaptic connections

and at inducing long term-phenomena such as longterm potentiation (LTP) and longterm

depression (LTD).

Figure 2.7 Mean firing rate in different experimental conditions (basal medium and stimulation through

different electrodes) for (a) the least active sites and (b) the most active ones. Mean IBI in (c) spontaneous

conditions and (d ) during electrical stimulation.
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Taking advantage of the intrinsic plasticity of neural networks, our final goal is to

obtain desired “arbitrary” responses through a process of learning driven by external elec-

trical and chemical stimulation.

2.5 FUTURE TRENDS

In this work we addressed the problem of monitoring and modulating the collective

behavior (i.e., the electrophysiological activity) of large population of neurons cultured

in vitro and coupled to MEAs. Many mechanisms underlying the emerging changes in

the dynamics of such experimental preparations still need to be deeply investigated, but

we think that the widespread use of MEAs or, generally, multichannel microdevices

will be of great relevance for studying the spatiotemporal dynamics of living neurons

on a long-term basis. Moreover, as recently reported by Potter and co-workers [23, 24],

we are convinced that the possibility of studying ex vivo neuronal preparations coupled

to artificial systems (e.g., to a mobile robot), so providing to the neuronal system a kind

of “body,” can be considered a new experimental paradigm with many implications in

the field of neural engineering. As sketched in Figure 2.8, we can think of having a

neuronal network bidirectionally connected to a mobile robot. The robot is moving in a

controlled environment (i.e., a designed playground) and it gives the neuronal system

input stimuli as a function of its actual behavior (e.g., input coming from the infrared pos-

ition sensors). From the other side, the neuronal network responds to the input stimuli and

provides the robot (by means of an appropriate coding of the recorded electrophysiological

activity) with the motor commands for moving in the developed playground. This new

proposed experimental paradigm, where, in a sense, a neuronal system is “embodied”

and “situated,” could allow the study of the adaptive properties (i.e., plastic changes) of

a neurobiological system in a more realistic way by trying to train a neuronal network

to support and control a desired task that has to be accomplished by the robot.

Figure 2.8 Scheme for real-time closed-loop system between dissociated culture of cortical

neurons and small mobile robot.
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CHA P T E R3

ESTIMATION OF POSTERIOR

PROBABILITIES WITH NEURAL

NETWORKS: APPLICATION TO

MICROCALCIFICATION

DETECTION IN BREAST

CANCER DIAGNOSIS
Juan Ignacio Arribas, Jesús Cid-Sueiro, and

Carlos Alberola-López

3.1 INTRODUCTION

Neural networks (NNs) are customarily used as classifiers aimed at minimizing

classification error rates. However, it is known that the NN architectures that compute

soft decisions can be used to estimate posterior class probabilities; sometimes, it could

be useful to implement general decision rules other than the maximum a posteriori

(MAP) decision criterion. In addition, probabilities provide a confidence measure of the

classifier decisions, a fact that is essential in applications in which a high risk is involved.

This chapter is devoted to the general problem of estimating posterior class probabil-

ities using NNs. Two components of the estimation problem are discussed: Model selec-

tion, on one side, and parameter learning, on the other. The analysis assumes an NN model

called the generalized softmax perceptron (GSP), although most of the discussion can be

easily extended to other schemes, such as the hierarchical mixture of experts (HME) [1],

which has inspired part of our work, or even the well-known multilayer perceptron.

The use of posterior probability estimates is applied in this chapter to a medical

decision support system; the testbed used is the detection of microcalcifications

(MCCs) in mammograms, which is a key step in breast cancer early diagnosis.

The chapter is organized as follows: Section 3.2 discusses the estimation of posterior

class probabilities with NNs, with emphasis in a medical application; Section 3.3 discusses

learning and model selection algorithms for the GSP networks; Section 3.4 proposes a

system for MCC detection based on the GSP; Section 3.5 shows some simulation

results on detection performance using a mammogram database; and Section 3.6 provides

some conclusions and future trends.
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3.2 NEURAL NETWORKS AND ESTIMATION OF
A POSTERIORI PROBABILITIES IN
MEDICAL APPLICATIONS

3.2.1 Some Background Notes

A posteriori (or posterior) probabilities, or generally speaking, posterior density functions,

constitute a well-known and widely applied discipline in estimation and detection theory

[2, 3] and, more widely speaking, in pattern recognition. The concept underlying pos-

teriors is to update one’s prior knowledge about the state of nature (with the term

nature adapted to the specific problem one is dealing with) according to the observation

of reality that one may have.

Specifically, recall the problem of a binary decision, that is, the need of choosing

either hypothesis H0 or H1 having as information both our prior knowledge about the

probabilities of each hypothesis being the right one [say P(Hi), i ¼ 0, 1] and how the

observation x probabilistically behaves according to each of the two hypotheses [say

f (xjHi), i ¼ 0, 1]. In this case, it is well known that the optimum decision procedure is

to compare the likelihood ratio, that is, f (xjH1)/f (xjH0) with a threshold. The value of

the threshold is, from a Bayesian perspective, a function of the two prior probabilities

and a set of costs (set at designer needs) associated to the two decisions. Specifically

f (xjH1)

f (xjH0)
_

H1

H0

P(H0)(C10 � C00)

P(H1)(C01 � C11)
(3:1)

with Cij the cost of choosing Hi when Hj is correct.

A straightforward manipulation of this equation leads to

P(H1jx)

P(H0jx)
_

H1

H0

C10 � C00

C01 � C11

(3:2)

with P(Hijx) the a posteriori probability that hypothesis Hi is true, i ¼ 0, 1. For the case

Cij ¼ 12 dij, with dij the Kronecker delta function, the equation above leads to the

general MAP rule, which can be rewritten, now extended to the M-ary detection

problem, as

H� ¼ argmax
Hi

P(Hijx) i ¼ 1, . . . , M (3:3)

It is therefore clear that posterior probabilities are sufficient statistics for MAP

decision problems.

3.2.2 Posterior Probabilities as Aid to Medical Diagnosis

Physicians are used to working with concepts of sensitivity and specificity of a diagnosis

procedure [4, 5]. Considering H0 the absence of a pathology andH1 the presence of a path-

ology, the sensitivity1 of the test is defined as P(H1jH1) and the specificity of the test is

P(H0jH0). These quantities indicate the probabilities of a test doing fine. However, a

test may draw false positives (FPs), with probability P(H1jH0), and false negatives

(FNs), with probability P(H0jH1).

1In this case, probability P(HijHj) should be read as the probability of deciding Hi when Hj is correct.
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Clearly, the ideal test is that for which P(HijHj) ¼ dij. However, for real situations,

this is not possible. Sensitivity and specificity are not independent but are related by means

of a function known as receiver operating characteristics (ROCs). The physician should

therefore choose at which point of this curve to work, that is, how to trade FPs (also

known as 1-specificity) and FNs (also known as the sensitivity) according to the

problem at hand.

Two tests, generally speaking, will perform differently. The way to tell whether one

of them outperforms the other is to compare their ROCs. If one ROC is always above the

other, that is, if setting the specificity then the sensitivity of one test is always above that of

the other, then the former is better. Taking this as the optimality criterion, the key question

is the following: Is there a way to design an optimum test? The answer is also well known

[3, 6] and is called the Neyman–Pearson (NP) lemma, and a testing procedure that is built

upon this principle has been called the ideal observer elsewhere [7].

The NP lemma states that the optimum test is given by comparing the likelihood ratio

mentioned before with a threshold. Note that this is operationally similar to the procedure

described in Eq. (3.1). However, what changes now is the value of the threshold. This is

set by assuring that the specificity will take on a particular value, set at the physician’s will.

The reader may then wonder whether a testing procedure built upon a ratio of pos-

terior probabilities, as the one expressed in Eq. (3.2), is optimum in the sense stated in this

section. The answer is yes: The test described in Eq. (3.1) only differs in the point in the

optimum ROC on which it is operating; while a test built upon the NP lemma sets where to

work in the ROC, the test built upon posteriors does not fix where to work. Its motivation is

different: It changes prior knowledge into posterior knowledge by means of the obser-

vations and decides upon the costs given to each decision and each state of nature. This

assures that the overall risk (in a Bayesian sense) is minimum [2].

The question is therefore: Why should a physician use a procedure built upon pos-

teriors? Here are the answers:

. The test indicated in (3.2) also implements and ideal observer [7]. So, no loss of

optimality is committed.

. As we will point out in the chapter, it is simple to build NN architectures that esti-

mate posteriors out of training data. For nonparametric models, the estimation of

both posteriors and likelihood functions is essentially equivalent. However, for para-

metric models, the procedure to estimate posteriors reflects the objectives of the esti-

mation, which is not the case for the estimation of likelihood functions. Therefore, it

seems more natural to use this former approach.

. Working with posteriors, the designer is not only provided with a hard decision

about the presence or absence of a pathology but is also provided with a measure

of confidence about the decision itself. This is an important piece of additional infor-

mation that is also encoded in a natural range for human reasoning (i.e., within the

interval [0, 1]). This reminds us of well-known fuzzy logic procedures often used in

medical environments [8].

. As previously stated, posteriors indicate how our prior knowledge changes accord-

ing to the observations. The prior knowledge, in particular P(H1), is in fact the

prevalence [5] of an illness or pathology. Assume an NN is trained with data

from a region with some degree of prevalence but is then used with patients from

some other region where the prevalence of the pathology is known to be different.

In this case, accepting that symptoms (i.e., observations) are conditionally equally

distributed (CED) regardless of the region where the patient is from, it is simple

to adapt the posteriors from one region to the other without retraining the NN.
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Specifically, denote by Hi
j the hypothesis i(i ¼ 0, 1) in region j( j ¼ 1, 2). Then

P(H1
i jx) ¼

f (xjH1
i )P(H

1
i )

f 1(x)

P(H2
i jx) ¼

f (xjH2
i )P(H

2
i )

f 2(x)

(3:4)

Accepting that symptoms are CED, then f (xjH
j
i ) ¼ f (xjHi). Therefore

P(H2
0 jx) ¼

f 1(x)

f 2(x)

P(H1
0 jx)

P(H1
0)

P(H2
0) ¼ l

P(H1
0 jx)

P(H1
0)

P(H2
0)

P(H2
1 jx) ¼ l

P(H1
1 jx)

P(H1
1)

P(H2
1)

(3:5)

where l ¼ f 1(x)=f 2(x). Since

P(H2
0 jx)þ P(H2

1 jx) ¼ 1 (3:6)

then

l
P(H1

0 jx)

P(H1
0)

P(H2
0)þ

P(H1
1 jx)

P(H1
1)

P(H2
1)

� �
¼ 1 (3:7)

which leads to

P(H2
0 jx) ¼

½P(H1
0 jx)=P(H

1
0)�P(H

2
0)

½P(H1
0 jx)=P(H

1
0 )�P(H

2
0 )þ ½P(H1

1 jx)=P(H
1
1)�P(H

2
1)

(3:8)

which gives the procedure to update posteriors using as inputs the posteriors of the

originally trained NN and the information about the prevalences in the two regions,

information that is in the public domain.

The reader should notice that we have never stated that decisions based on posteriors are

preferable to those based on likelihood functions. Actually, the term natural has been used

twice in the reasons to back up the use of posteriors for decision making. This naturalness

should be balanced by the physician to make the final decision. In any case, the procedure

based on posteriors can be very easily forced to work, if needed, as the procedure based on

likelihoods: Simply tune the threshold on the right-hand side of Eq. (3.2) during the train-

ing phase so that some value of specificity is guaranteed.

3.2.3 Probability Estimation with NN

Consider a sample set S ¼ {(xk, dk), k ¼ 1, . . . , K}, where xk [ R
N is an observation

vector and dk [ UL ¼ {u0, . . . , uL�1} is an element in the set of possible target classes.

Class i label ui [ R
L has all components null but the one at the ith, row, which is unity

(i.e., classes are mutually exclusive).

In order to estimate posterior probabilities in an L-class problem, consider the struc-

ture shown in Figure 3.1, where the soft classifier is an NN computing a nonlinear mapping

gw : x ! P, with parameters w, x being the input feature space and P ¼ {y [ ½0,1�Lj0 �

yi � 1,
PL

i¼1 yi ¼ 1} a probability space, such that the soft decision satisfies the
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probability constraints

0 � yj � 1
XL

j¼1

yj ¼ 1 (3:9)

Assuming that soft decisions are posterior probability estimates, the hard decisionbd
should be computed according to the decision criterion previously established. For

instance, under the MAP criterion, the hard decision becomes a winner-takes-all

(WTA) function.

Training pursues the calculation of the appropriate weights to estimate probabilities. It

is carried out by minimizing some average, based on samples in S, of a cost function C(y, d).

The first attempts to estimate a posteriori probabilities [9–12] were based on the

application of the square error (SE) or Euclidean distance, that is,

CSE( y, d) ¼
XL

i¼1

(di � yi)
2 ¼ ky� dk2 (3:10)

It is not difficult to show that, over all nonlinear mappings y ¼ g(x), the one mini-

mizing EfCSE(y, d)g is given by g(x) ¼ Efdjxg. Since Efdijxg ¼ P(Hijx), it is clear that

minimizing any empirical estimate of EfCSEg based on samples in S, estimates of posterior

probabilities are obtained.

Also, the cross entropy (CE), given by

CCE(y, d) ¼ �
XL

i¼1

di log yi (3:11)

is known to provide class posterior probability estimates [13–15]. In fact, there is an infi-

nite number of cost functions satisfying this property: Extending previous results from

other authors, Miller et al. [9] derived the necessary and sufficient conditions for a cost

function to minimize to a probability, providing a closed-form expression for these

functions in binary problems. The analysis has been extended to the multiclass case in

[16–18], where it is shown that any cost function that provides posterior probability

estimates—generically called strict sense Bayesian (SSB)—can be written in the form

C(y, d) ¼ h(y)þ (d� y)Tryh(y) (3:12)

where h(y) is any strictly convex function in P which can be interpreted as an entropy

measure. As a matter of fact, this expression is also a sufficient condition: Any cost func-

tion expressed in this way provides probability estimates. In particular, if h is the Shannon

entropy, h(y) ¼ �
P

i yi log yi, then Eq. (3.12) becomes the CE, so it can be easily proved

by the reader that both CE and SE cost functions are SSB.

Figure 3.1 Soft-decision multiple output and WTA network.
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In order to choose an SSB cost function to estimate posterior probabilities, one may

wonder what is the best option for a given problem. Although the answer is not clear,

because there is not yet any published comparative analysis among general SSB cost func-

tions, there is some (theoretical and empirical) evidence that learning algorithms based on

CE tend to show better performance than those based on SE [10, 19, 20]. For this reason,

the CE has been used in our simulations shown later.

3.3 POSTERIOR PROBABILITY ESTIMATION BASED
ON GSP NETWORKS

This section discusses the problem of estimating posterior probability maps in multiple-

hypotheses classification with the particular type of architecture that has been used in

the experiments: the GSP. First, we present a functional description of the network.

Second, we discuss training algorithms for parameter estimation and, lastly we discuss

the model selection problem in GSP networks.

3.3.1 Neural Architecture

Consider the neural architecture that, for input feature vector x, produces output yi,

given by

yi ¼
XMi

j¼1

yij (3:13)

where yij are the outputs of a softmax nonlinear activation function given by

yij ¼
exp (oij)PL

k¼1

PMk

m¼1 exp (okm)
i ¼ 1, 2, . . . , L j ¼ 1, 2, . . . , Mi (3:14)

and oij ¼ wT
ijxþ bij, where wij and bij are the weight vectors and biases, respectively, L

is the number of classes, and Mi is the number of softmax outputs aggregated to

compute yi.
2

The network structure is illustrated in Figure 3.2. In [16, 17, 21], this network is

named the generalized softmax perceptron (GSP). It is easy to understand that Eqs.

(3.13) and (3.14) ensure that outputs yi satisfy probability constraints given in (3.9).

Since we are interested in the application of MCC detection, we have only con-

sidered binary networks (L ¼ 2) in the simulations. In spite of this, we discuss here the

general multiclass case.

The GSP is a universal posterior probability network, in the sense that, for values of

Mi sufficiently large, it can approximate any probability map with arbitrary precision. This

fact can be easily proved by noting that the GSP can compute exact posterior probabilities

when data come from a mixture model based on Gaussian kernels with the same variance

matrix. Since a Gaussian mixture can approximate any density function, the GSP can

approximate any posterior probability map.

In order to estimate class probabilities from samples in training set S, an SSB cost

function and a search method must be selected. In particular, the stochastic gradient

2Note that, when the number of inputs is equal to 2, the softmax is equivalent to a pair of sigmoidal activation

functions.
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learning rules to minimize the CE, Eq. (3.11), are given by

wkþ1
ij ¼ wk

ij � rk
ykij

yki
(dki � yki )x

k (3:15)

bkþ1
ij ¼ bkij � rk

ykij

yki
(dki � yki ) 1 � i � L 1 � j � Mi (3:16)

wherewk
ij and b

k
ij are the weight vectors and biases, respectively, y

k
ij are the softmax outputs

for input x k, di
k are the labels for sample xk, and rk is the learning step at iteration k.

In the following section we derive these rules from a different perspective, based on

maximum-likelihood (ML) estimation, which provides an interpretation for the softmax

outputs and some insight into the behavior of the GSP network and which suggests

some ways to design other estimation algorithms.

3.3.2 Probability Model Based on GSP

Since the GSP outputs satisfy the probability constraints, we can say that any GSP

implements a multinomial probability model of the form

P(djW, x) ¼
YL

i¼1

(yi)
di (3:17)

where matrix W encompasses all GSP parameters (weight vector and biases) and yi is

given by Eqs. (3.13) and (3.14). According to this, we arrive at yi ¼ P(uijW, x). This prob-

abilistic interpretation of the network outputs is useful for training: The model parameters

that best fit the data in S can be estimated by ML as

bW ¼ argmax
W

l(S, W) (3:18)

where

l(S, W) ¼
XK

k¼1

logP(dkjW, xk) (3:19)

Following an analysis similar to that of Jordan and Jacobs [1] for HME, this maximi-

zation can be done iteratively by means of the expectation maximization (EM) algorithm.

To do so, let us assume that each class is partitioned into several subclasses. Let Mi

be the number of subclasses inside class i. The subclass for a given sample x will be

Figure 3.2 The GSP neural architecture.
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represented by a subclass label vector z with components zij [ {0, 1}, i ¼ 1, . . . , L,

j ¼ 1, . . . , Mi, such that one and only one of them is equal to 1 and

di ¼
XMi

j¼1

zij 1 � i � L (3:20)

Also, let us assume that the joint probability model of d and z is given by

P(d, zjW, x) ¼ Id, z
YL

i¼1

YMi

j¼1

(yij)
zij (3:21)

where Id,z is an indicator function equal to 1 if d and z satisfy Eq. (3.20) and equal to 0

otherwise.

Note that the joint model equation (3.21) is consistent with that in Eq. (3.17), in the

sense that the latter results from the former by marginalization,

X

z

P(d, zjW, x) ¼ P(djW, x) (3:22)

Since there is no information about subclasses in S, learning can be supervised at the

class level but must be unsupervised at the subclass level. The EM algorithm based on

hidden variables z k to maximize log-likelihood l(S, W) in (3.19) provides us with a

way to proceed. Consider the complete data set Sc ¼ {(xk, dk, zk), k ¼ 1, . . . , K},

which extends S by including subclass labels. According to Eq. (3.21), the complete

data likelihood is

lc(Sc, W) ¼
XK

k¼1

logP(dk, zkjW, xk) ¼
XK

k¼1

XL

i¼1

XMi

j¼1

zkij log y
k
ij (3:23)

The EM algorithm for ML estimation of the GSP posterior model proceeds, at

iteration t, in two steps:

1. E-step: Compute Q(W, W t) ¼ E{lc(Sc, W)jS, Wt}.

2. M-step: Compute W tþ1
¼ arg maxW Q(W, W t).

In order to apply the E-step to lc, note that, given S and assuming that true par-

ameters are W t, the only unknown components in lc are the hidden variables. Therefore,

Q(W, Wt) ¼
XK

k¼1

XL

i¼1

XMi

j¼1

E{zkijjS, W
t} log ykij (3:24)

Let us use compact notation yij
kt to refer to the softmax output (relative to class i and

subclass j) for input x k at iteration t (and the same for zij
kt and yi

kt). Then

E{zkijjS, W
t} ¼ E{zkijjx

k, dk, Wt} ¼ dki
yktij

ykti
(3:25)

Substituting (3.25) in (3.24), we get

Q(W, Wt) ¼
XK

k¼1

XL

i¼1

dki

XMi

j¼1

yktij

ykti
log ykij (3:26)
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Therefore, the M-step reduces to

Wtþ1 ¼ argmax
W

XK

k¼1

XL

i¼1

dki

XMi

j¼1

yktij

ykti
log ykij (3:27)

Note that, during the M-step, only yij
k depends on W. Maximization can be done in

different ways. For the HME, the iteratively reweighted least squares algorithm [1] or the

Newton–Raphson algorithm [22] has been explored. A more simple solution (that is also

suggested in [1]) consists of replacing the M-step by a single iteration of a gradient

search rule,

Wtþ1 ¼ Wt � rt
XK

k¼1

XL

i¼1

dki

XMi

j¼1

1

ykti
rWykij

����
W¼Wt

(3:28)

which leads to

wtþ1
mn ¼ wt

mn � rt
XK

k¼1

XL

i¼1

dki

XMi

j¼1

yktij

ykti
(dm�idn�j � yktmn)x

k

¼ wt
mn � rt

XK

k¼1

yktmn
yktm

(dkm � yktm)x
k (3:29)

btþ1
mn ¼ btmn � rt

XK

k¼1

yktmn
yktm

(dkm � yktm) (3:30)

where rt is the learning step. A further simplification can be done by replacing the

gradient search rule by an incremental version. In doing so, rules (3.15) and (3.16)

result.

3.3.3 A Posteriori Probability Model Selection Algorithm

While the number of classes is fixed and assumed known, the number of subclasses inside

each class is unknown and must be estimated from samples during training: It is a well-

known fact that a high number of subclasses may lead to data overfitting, a situation in

which the cost averaged over the training set is small but the cost averaged over a test

set with new samples is high.

The problem of determining the optimal network size, also known as the model

selection problem, is as well known as, in general, difficult to solve; see [16, 17, 23].

The selected architecture must find a balance between the approximation power of

large networks and the usually higher generalization capabilities of small networks.

A review of model selection algorithms is beyond the scope of this chapter. The

algorithm we propose to determine the GSP configuration, which has been called the

a posteriori probability model selection (PPMS) algorithm [16, 17], belongs to the family

of growing and pruning algorithms [24]: Starting from a pre-defined architecture,

subclasses are added to or removed from the network during learning according to

needs. The PPMS algorithm determines the number of subclasses by seeking a balance

between generalization capability and learning toward minimal output errors.

Although PPMS could be easily extended to other networks, like the HME [1], the

formulation presented here assumes a GSP architecture. The PPMS algorithm combines

pruning, splitting, and merging operations in a similar way to other algorithms proposed

in the literature, mainly for estimating Gaussian mixtures (see [25] or [26] for instance). In
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particular, PPMS can be related to the model selection algorithm proposed in [25] where

an approach to automatically growing and pruning HME [1, 27] is proposed, obtaining

better generalization performance than traditional static and balanced hierarchies. We

observe several similarities between their procedure and the algorithm proposed here

because they also compute posterior probabilities in such a way that a path is pruned if

the instantaneous node probability of activation falls below a certain threshold.

The fundamental idea behind PPMS is the following: According to the GSP struc-

ture and its underlying probability model, the posterior probability of each class is a sum of

the subclass probabilities. The importance of a subclass in the sum can be measured by

means of its prior probability,

Pt
ij ¼ P{zij ¼ 1jWt} ¼

ð
P{zij ¼ 1jWt, x}p(x) dx ¼

ð
yijp(x) dx (3:31)

which can be approximated using samples in S as3

bPt
ij ¼

1

K

XK

k¼1

yktij (3:32)

A small value of bPt
ij is an indicator that only a few samples are being captured by

subclass j in class i, so its elimination should not affect the whole network performance

in a significant way, at least in average terms. On the contrary, a high subclass prior prob-

ability may indicate that the subclass captures too many input samples. The PPMS algor-

ithm explores this hypothesis by dividing the subclass into two halves in order to represent

this data distribution more accurately. Finally, it has also been observed that, under some

circumstances, certain weights in different subclasses of the same class tend to follow a

very similar time evolution to other weights within the same class. This fact suggests a

new action: merging similar subclasses into a unique subclass.

The PPMS algorithm implements these ideas via three actions, called prune, split,

and merge, as follows:

1. Prune Remove a subclass by eliminating its weight vector if its a priori probability

estimate is below a certain pruning threshold mprune. That is,

bPt
ij , mprune (3:33)

2. Split Add a newsubclass by splitting in two a subclass whose prior probability esti-

mate is greater than split threshold msplit. That is,

bPt
ij , msplit (3:34)

Splitting subclass (i, j ) is done by removing weight vector wij
t and constructing a

pair of new weight vectors wij
tþ1 and wij0

tþ1 such that, at least initially, the posterior

3SinceWt is computed based on samples in S, prior probability estimates based on the same sample set are biased.

Therefore, priors should be estimated by averaging from a validation set different from S. In spite of this, in order

to reduce the data demand, our simulations are based on only one sample set.
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probability map is approximately the same:

wtþ1
ij ¼ wt

ij þ D

wtþ1
ij0 ¼ wt

ij � D

btþ1
ij ¼ btþ1

ij � log 2

btþ1
ij0 ¼ btþ1

ij � log 2

(3:35)

It is not difficult to show that, for D ¼ 0, probability maps P(djx, Wt) and

P(djx, Wtþ1) are identical. In order that new weight vectors can evolve differently

during time, using a small nonzero value of D is advisable. The log 2 constant

has a halving effect.

3. Merge Mix or fuse two subclasses into a single one. That is, the respective weight

vectors of both subclasses are fused into a single one if they are close enough. Sub-

classes j and j0 in class i are merged if D(wij, wij0) , mmerge8i and 8j, j0, where D

represents a distance measure and mmerge is the merging threshold. In our simu-

lations, D was taken to be the Euclidean distance.

After merging subclasses j and j0, a new weight vector wij
tþ1 and bias bij

tþ1 are

constructed according to

wtþ1
ij ¼ 1

2
(wt

ij þ wt
ij0 )

btþ1
ij ¼ log½exp (btij)þ exp (btij0)�

(3:36)

3.3.4 Implementation of PPMS

An iteration of PPMS can be implemented after each M-step during learning or after

several iterations of the EM algorithm.

In our simulations, we have explored the implementation of PPMS after eachM-step,

where theM-step is reduced to a single iteration of rules (3.15) and (3.16). Also, to reduce

computational demands, prior probabilities are not estimated using Eq. (3.32) but

are updated iteratively as bP tþ1
ij ¼ (1� at)bP tþ1

ij þ atytij, where 0 � a t � 1. Note that, if

prior probabilities are initially nonzero and sum to 1, the updating rule preserves the sat-

isfaction of these probability constraints.

After each application of PPMS, the prior estimates must also be updated. This is

done as follows:

1. Pruning When a subclass is removed, the a priori probability estimates of the

remaining classes do not sum to 1. This inconsistency can be resolved by redistri-

buting the prior estimate of the removed subclass proportionally among the rest of

the subclasses. In particular, given that condition (3.33) is true, the new prior

probability estimates bPtþ1
ij0 are computed from bPt

ij0 , after pruning subclass j of

class i as follows:

bPtþ1
ij0 ¼bPt

ij0

PMi

n¼1
bPt
inPMi

n¼1,n=j
bPt
in

1 � i � L 1 � j0 � Mi j0 = j

(3:37)

2. Splitting The a priori probability of the split subclass is also divided into two equal

parts that will go to each of the descendants. That is, if subclass j in class i is split into
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subclasses j and j0, prior estimates are assigned to new subclasses as

bPtþ1
ij ¼ 1

2
bPt
ij

bPtþ1
ij0 ¼ 1

2
bPt
ij0 (3:38)

3. Merging Probability vectors are modified in accordance with probabilistic laws;

see (3.9). Formally speaking, if subclasses j and j0 in class i are merged into

subclass j,

bPtþ1
ij ¼bPt

ij þ
bPt
ij0 (3:39)

3.4 MICROCALCIFICATION DETECTION SYSTEM

3.4.1 Background Notes in Microcalcification
Automatic Detection

Breast cancer is a major public health problem. It is known that about 40–75 new cases per

100,000 women are diagnosed each year in Spain, [28]. Similar quantities have been

observed in the United States; see [4].

Mammography is the current clinical procedure followed to the early detection of

cancer but ultrasound imaging of the breast is gaining importance nowadays. Radio-

graphic findings in breast cancer can be divided into two categories: MCCs and masses

[4]. About the former, debris and necrotic cells tend to calcify, so they can be detected

by radiography. It has been shown that between 30 and 50% of breast carcinomas detected

radiographically showed clustered MCCs, while 80% revealed MCCs after microscopic

examination. About the latter, most cancers that present as masses are invasive cancers

(i.e., tumors that have extended beyond the duct lumen) and are usually harder to detect

due to the similarity of mass lesions with the surrounding normal parenchymal tissue.

Efforts in automatically detecting either of the two major symptoms of breast cancer

started in 1967 [29] and are numerous since then. Attention has been paid to image

enhancement, feature definition and extraction, and classifier design. The reader may

want to consult [4] for an interesting introduction to these topics and follow the numerous

references included there. What we would like to point out is that, to the best of our knowl-

edge, the idea of using posteriors to build a classifier and to provide the physician with a

confidence in the decision based on posterior probabilities has not been explored so far.

This is our goal in what follows.

3.4.2 System Description

In Figure 3.3, we show a general scheme of the system we propose in order to detect

MCCs; the system will be window oriented, and, for each window, the a posteriori prob-

ability that a MCC is present will be computed; to that end, we make use of the GSP and

the PPMS algorithm, introduced respectively in Sections 3.3.1 and 3.3.3. The NN will be

fed with features calculated from the pixel intensities within each window. A brief descrip-

tion of these features is given in the forthcoming section.

The tessellation of the image causes MCC detections to obey a window-oriented

pattern; in addition, since decisions are made independently in each window, no spatial

coherence is forced so, due to FNs, clustered MCCs may show up as a number of separated

positive decisions. In order to obtain realistic results about the MCC shapes we have

defined a MCC segmentation procedure; this is a regularization procedure consisting of

two stages: First, a minimum distance is defined between detected MCCs so as to consider
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that detected MCCs within this distance belong to the same cluster. Then an approxi-

mation to the convex hull of this cluster is found by drawing the minimum rectangle

(with sides parallel to the image borders) that encloses all the detected MCCs within

the cluster. The final stage is a pixel-level decision: A decision for each pixel within

the rectangle just drawn (and not only within the detected MCCs) to belong or not to the

cluster is made. This is done by testing whether the pixel intensity falls inside the range of

the intensities of the detected MCCs within the cluster.

3.4.3 Definition of Input Features

In [30], the authors define, on both the spatial and the frequency domains, a set of four

features as inputs to an NN for MCC detection. The two spatial features are the pixel inten-

sity variance and the pixel energy variance. Both are calculated as sample variances within

each processing window, and the pixel energy is defined as the square of the pixel inten-

sity. The two frequency features are the block activity and the spectral entropy. The former

is the summation of the absolute values of the coefficients of the discrete cosine transform

(DCT) of the pixels within the block (i.e., the window), with the direct-current coefficient

excluded. The latter is the classical definition of the entropy, calculated in this case on the

normalized DCT coefficients, where the normalization constant is the block activity.

This set of features constitute the four-dimensional input vector that we will use for

our neural GSP architecture. Needless to say, these features compute search for MCC

boundaries; MCC interiors, provided that they fit entirely within an inspection window,

are likely to be missed. However, the regularization procedure will eliminate these losses.

3.5 RESULTS

The original mammogram database images were in the Lumiscan75 scanner format.

Images had an optical spatial resolution of 150 dpi or, equivalently, about 3500 pixels/
cm2, which is a low resolution for today’s systems and close to the lower limit of the res-

olution needed to detect most MCCs to some authors’ judgment. We internally used all the

12 bits depth during computations. The database consisted of images of the whole breast

area and others of more detailed areas specified by expert radiologists.

Figure 3.3 The MCC system block diagram: an overview.
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The window size was set to 8 � 8 square pixels, obtaining the best MCC detection

and segmentation results with that value after some trial and error testing. We defined

both a training set and a test set. All the mammogram images shown here belong to the

test set. We made a double-windowed scan of the original mammograms with half-

window interleave in the detection process in order to increase the detection capacity of

the system.

During simulations, the number of subclasses per class is randomly initialized as

well as the weight matrix W of the GSP NN; the learning step rt was decreased to pro-

gressively freeze learning as the algorithm evolves. The PPMS parameters were empiri-

cally determined based on trial and error (no critical dependencies were observed in

these values, though), and the initial values were mprune
0

¼ 0.025, msplit
0

¼ 0.250, and

mmerge
0

¼ 0.1. After applying PPMS we obtained a GSP network complexity with one

subclass for the class MCC-present and seven subclasses for the class MCC-absent.

In Figure 3.4 a number of regions of interest (ROIs) have been drawn by an expert;

the result of the algorithm is shown on the right, in which detected MCCs have been

marked in white on the original mammogram background. Figure 3.5 shows details of

the ROI in the bottom-right corner of Figure 3.4; Figure 3.5a shows the original mammo-

gram, Figure 3.5b shows the detected MCCs in white, and Figure 3.5c shows the posterior

probabilities of a single pass indicated in each inspection window. As is clear from the

image, if an inspection window fits within a MCC, the posterior probability is fairly

small. However, this effect is removed by subsequent regularization.

Figure 3.4 (a) Original mammogram with four ROIs specified by the expert radiologist; (b) segmented

MCCs on the original image (necrosis grasa case).
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Figure 3.6 shows the results of the algorithm on a second example. In this case a

mammogram with a carcinoma is shown (original image in Fig. 3.6a); the results of the

first pass of the algorithm are shown in Figures 3.6b,c. Figure 3.6b shows the detected

MCCs superimposed on the original image and Figure 3.6c shows the posterior probabil-

ities on each inspection window. Figures 3.6d,e show the result of the second pass of the

algorithm with the same ordering as in the first pass. In this example, the sparsity of the

MCCs causes the MCCs to not fit entirely within each inspection window, so in those

inspection windows where MCCs are present, large variance values are observed,

leading to high posterior probabilities. Table 3.1 summarizes the performance of the pro-

posed MCC detection system by indicating both the FP and FN rates in our test set4 and

both including and excluding the borders of the mammogram images.5 Just as a rough

comparison we have taken the results reported in [30] as a reference. The comparison,

however, is not totally conclusive since the test images used in this chapter and in [30]

do not coincide. We have used this paper as benchmark since the features used in our

Figure 3.5 Details of ROI on bottom-left corner of Figure 3.4: (a) original portion of mammogram;

(b) segmented output (MCC in white on the original mammogram); (c) posterior probabilities of a single

pass of the algorithm on each inspection window (necrosis grasa case).

4When computing FP and FN in Table 3.1, we have considered the total number of windows, which is not always

a common way to compute those rates.
5We have not used any procedure to first locate the breast within the mammogram. So by “excluding borders”

we mean manually delineating the breast and running the algorithm within. Therefore, excluding borders means

excluding sources of errors such as the presence of letters within the field of inspection, the breast boundary, etc.
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Figure 3.6 Second example: (a) original image. Results of first pass: (b) detected MCCs on original image and (c) posterior probabilities on each inspection

window. Results of second pass: (d) detected MCCs on original image and (e) posterior probabilities on each inspection window; ( f ) final segmentation

(carcinoma case).

5
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work have been taken from it. Specifically, denoting by TN the true negatives and by TP the

true positives, we have, with border excluded, TN ¼ 19,3842 29 ¼ 19,355 windows and

TP ¼ 19,3842 217 ¼ 19,167 windows or, equivalently, TN ¼ 99.85% and TP ¼

98.88%. Consequently for our test set we have obtained TP ¼ 98.88% and FP ¼ 0.1%.

The best results reported in [30] TP ¼ 90.1%, FP ¼ 0.71%. The result, although not

conclusive, suggests that the system proposed here may constitute an approach worth taking.

3.6 FUTURE TRENDS

We have presented a neural methodology to make decisions by means of posterior prob-

abilities learned from data. In addition, a complexity selection algorithm has been pro-

posed, and the whole system has been applied to detect and segment MCCs in

mammograms. We show results on images from a hospital database, and we obtain pos-

terior probabilities for the presence of a MCC with the use of the PPMS algorithm. Our

understanding is that probability estimates are a valuable piece of information; in particu-

lar, they give an idea of the certainty in the decisions made by the computer, which can be

weighed by a physician to make the final diagnosis. As of today we are not aware of

similar approaches applied to this problem. In addition, the generation of ROC curves

are being carried out in order to compare with others, although the reader should take

into account that the images from the database considered here are private, so other stan-

dard public-domain mammogram databases should be considered. Needless to say, image

enhancement may dramatically improve the performance of any decision-making pro-

cedure. This constitutes part of our current effort, since various enhancement algorithms

are being tested, together with a validation of the system described here against standard

public mammogram databases and the application of the presented algorithm and NN

methodology in other medical problems of interest [31].

TABLE 3.1.1 Total Error and Error Rates in % (FP and FN) for the Full Mammograms and
Mammograms with Borders Excluded Borders of Mammograms in the Test Set Over a Population
of 21,648 and 19,384, Respectively, Windowed 8 3 8 Pixel Images

Case Total error windows % Total FP %FP FN % FN

Test, full 413 1.91 104 0.48 309 1.43

Test, no borders 246 1.27 29 0.15 217 1.12
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CHA P T E R4

IDENTIFICATION OF CENTRAL

AUDITORY PROCESSING

DISORDERS BY BINAURALLY

EVOKED BRAINSTEM

RESPONSES
Daniel J. Strauss, Wolfgang Delb, and Peter K. Plinkert

4.1 INTRODUCTION

Binaural interaction in auditory brainstem responses (ABRs) was demonstrated in animals

by Jewett [1], who compared the binaurally evoked response with the sum of the monau-

rally evoked responses on both ears and noted a decreased amplitude of the binaural wave-

form. Later, binaural interaction in ABRs was also shown to be present in humans by

Dobie and Berlin [2], Hosford et al. [3], and Dobie and Norton [4]. These authors intro-

duced the computation of the binaural interaction component (BIC) as the arithmetical

difference between the sum of the monaurally evoked ABRs and the binaurally evoked

ABR. According to Furst et al. [5] and Brantberg et al. [6, 7], the so-called b-wave is

the most consistent part of the BIC waveform. Furst et al. [5] showed that the b-wave

is related to directional hearing.

Possible applications of the b-wave analysis are the diagnosis of the central auditory

processing disorder (CAPD) and the objective examination of directional hearing in

bilateral cochlear implant users. In the latter mentioned application, it might be possible

to predict the clinical outcome preoperatively by using BIC measurements. So far,

mainly applications of BIC measurements in view of the CAPD have been reported in

the literature [8, 9].

The American Speech–Language and Hearing Association Task Force on Central

Auditory Processing Consensus Development defined the CAPD as a deficit in one or

more of the following central auditory processes: sound localization/lateralization, audi-
tory discrimination, auditory pattern recognition, temporal aspects of auditory processing,

and performance deficits when the auditory signal is embedded in competing acoustic

signals or when the auditory signal is degraded [10]. Deficits in binaural processing are

a part of this definition and also in [11–13] the importance of binaural testing in patients

with CAPDs is highlighted. Thus with the relation of the b-wave to directional hearing, it

may serve as an objective criterion in the CAPD diagnosis.

Handbook of Neural Engineering. Edited by Metin Akay
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However, the identification of this wave still remains a challenge due to a poor signal

quality which is affected by noise and a lack of objective detection criteria. As a conse-

quence of this, several detection criteria have been developed. Furst et al. [5] searched

for the largest positive peak in the time period between 1 ms before and 1 ms after the

wave in the monaural brainstem response. Brantberg et al. [6, 7] considered a b-wave as

being present if a reproducible peak could be observed during the downslope of the

waveV in the binaurally evoked brainstem response. Stollmann et al. [14] tried an objective

detection of BIC peaks using a templatemethod and did not show any advantages compared

to a method in which the detection of the BIC peaks is based on the signal-to-noise ratio.

It seems obvious that in many cases the peaks identified as b-waves would not be identical

comparing the citedmethods of detection. Furthermore, the signal features of the binaurally

evoked responses as well as of the sum of the monaurally evoked brainstem potentials that

result in the computation of a typical b-wave do not seem to be well defined. Brantberg

et al. [6, 7] reported on latency differences between the wave V of the monaural sum

and the binaurally evoked potentials that account for the formation of the b-wave while

others mainly found amplitude differences. A closer look at the signals of many subjects

shows that in reality amplitude differences as well as latency differences can be the

reason for the formation of a b-wave. Sometimes, even differences in the downslope of

wave V are accounted for its generation. It seems hard to believe that all these signal modi-

fications are caused by the same physiological process. Rather, one would suspect different

physiological processes or, in the case of amplitudes, even accidental signal fluctuations

underlying the formation of the BIC waveform.

All this along with the fact that expert knowledge is commonly used for the identi-

fication of the b-wave [5–7, 9] leads to a loss of objectivity and certainty in the evaluation

of ABRs in the diagnosis of the CAPD. Therefore, we investigate a different approach to

the examination of directional hearing and the objective detection of the CAPD using an

evaluation of the binaurally evoked brainstem response directly. In particular, we present

two fully objective detection methods which are based on adapted time-scale feature

extractions in these potentials. We show that such a direct approach is truly objective,

reduces measurement cost significantly, and provides at least comparable results as the

b-wave identification for the discrimination of patients being at risk for CAPD and

patients not being at risk for CAPD.

4.2 METHODS

4.2.1 Data

Auditory evoked potentials were recorded using a commercially available device (ZLE—

Systemtechnik, Munich, Germany) in a sound-proof chamber (filter 0.1–5 kHz, sampling

frequency 20 kHz, amplification factor 150,000). In each measurement, 4000 clicks of

alternating polarity were presented binaurally or monaurally at an intensity of 65 dB

hearing level (HL) with an interstimulus interval of 60 ms. The response to each first

click was written in memory 1 whereas the response to every second click was written

in memory 2. In the remainder of this chapter, we consider the averaged version of the

responses in memory 1 and memory 2 if the separation is not explicitly stated. The poten-

tials were obtained using electrodes placed at the neck, the vertex, and the upper forehead,

respectively. After averaging, data were processed using a personal computer system.

In the binaural measurements interaural time delay (ITD) (stimulus on the left side

being delayed) varied between 0.0 and 1.0 ms (0.0, 0.4, 0.6, 0.8, and 1.0 ms).
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4.2.2 Expert Analysis

The BIC is computed by subtracting the binaurally evoked response from the sum of the

monaurally evoked responses (see Fig. 4.1). Before the summation of the monaural

responses, the left monaural response is shifted in time according to the ITD; see

Brantberg et al. [7]. As usual, the analysis of the BIC in the time domain is based on a

visual analysis using expert knowledge. We use one of the detection criteria given in

Brantberg et al. [7]. Accordingly, a b-wave is considered to be present if a peak is

observed during the downslope of wave V. We explicitly impose the reproducibility of

this peak, that is, a high concurrence of its representation in memory 1 and memory 2.

4.2.3 MLDB: Feature Extraction Approach

Feature extraction by some linear or nonlinear transform of the data with subsequent

feature selection is an attractive tool for reducing the dimensionality of the problem to

tackle with the curse of dimensionality [15]. Recently, time–frequency analysis

methods using wavelets with no special focus on the data have been suggested for

feature extraction (e.g., see [16, 17]). Data-dependent schemes are also known which

mainly rely on an adjustment of the decomposition tree in wavelet packet decompositions;

see [18] for a recent review and comparison of several approaches.

Among these methods, the local discriminant basis (LDB) algorithm of Saito and

Coifman [19] is a well-accepted scheme which utilizes a tree adjustment and relies on

the best-basis paradigm known in signal compression [20]. This algorithm selects a

basis from a dictionary that illuminates the dissimilarities among classes and has very

recently shown its state-of-the-art performance for real-world pattern recognition tasks

Figure 4.1 The ABRs after binaural and monaural stimulation with computed BIC. The b-wave

arises during the downslope of wave V of the responses.
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in [18]. The objective of the LDB algorithm is to adjust the decomposition tree which

corresponds to a fixed two-channel filter bank building block.

The theory of signal-adapted filter banks has been developed in signal compression

in recent years (e.g., see [21–23]). Up to now, the underlying ideas mainly stick on this

restricted area although they may have merit in other application fields such as pattern

recognition. In recent papers, we have shown that an adaptation technique from signal

compression is an effective tool for real-world pattern recognition tasks when using

appropriate class separability criteria, that is, discrimination criteria instead of com-

pression conditions (e.g., see [24, 25]).

Recently, we have constructed shape-adapted LDBs, which we called morphologi-

cal LDBs (MLDBs), by using signal-adapted filter banks [26]. Compared to LDBs, our

MLDBs utilize additionally to the tree adjustment an adaptation of the shape of the analyz-

ing wavelet packets, that is, an adjustment of the two-channel filter bank building block. In

this way, much more discriminant information can be extracted among signal classes. We

used these MLDBs in Strauss et al. [27] to illuminate discriminant information between

the binaural waveforms of probands with normal binaural processing and children with

deficits in the binaural processing. Here we apply these MLDBs to capture discriminant

information between the sum of the monaural waveforms and the binaural waveform of

adults being not at risk for pathological binaural interaction. Our overall objective here

is the identification of features which correspond to binaural interaction in the binaurally

evoked waveforms which are not included in the sum of the monaural waveforms.

4.2.3.1 MLDB Algorithm The time-scale energy map of a set of M waveforms

xi [V0,0 ,R
d(i ¼ 1, . . . ,M) is defined by

Y( j, k, m) :¼
X

M

i¼1

y2i, j, k½m�kxi, lk�2
2 (4:1)

for j ¼ 0, . . . , J, k ¼ 0, . . . , 2 j
2 1, and m [ T j, where y2i, j, k½�� denote the wavelet

packet expansion coefficients and T j an appropriate index set; see Appendix A.

In our further discussions, we use overlined symbols to distinguish the quantities

corresponding to the sum of the monaural waveforms from the binaural waveform, that

is, we use �x, �yj, k, and Y( j, k, m) for denoting the waveform, the expansion coefficients

in Eq. (4.17), and the time-scale energy map in Eq. (4.1), respectively, for the sum of

the monaural waveforms.

We introduce the set Bj, k ¼ {qmj, k :m [ T j} which contains all translations of the

atom corresponding to Vj,k. Let Aj,k represent the LDB (see below) restricted to the

span of Bj,k and let Dj,k be a working array. We define D2(a, b) ¼ ka� bk22 and set AJ, k ¼
BJ,k and DJ,k ¼ D2(Y( j, k,m), Y( j, k,m)) for k ¼ 0, . . . , 2j� 1. Then the best subsets Aj, k

for j ¼ J � 1, . . . , 0, k ¼ 0, . . . , 2J� 1 are determined by the following rule:

Set Dj,k ¼
P

m[T j
D2(Y( j, k, m), Y( j, k, m))

If Dj, k � Djþ1, 2k þ Djþ1, 2kþ1

Then Aj, k ¼ Bj, k

Else Aj,k ¼ Ajþ1, 2k < Ajþ1, 2kþ1 and Dj,k ¼ Djþ1, 2k þ Djþ1, 2kþ1

By this selection rule, D0,0 becomes the largest possible discriminant value. The

morphology of the atoms qmj, k is defined via Eqs. (4.14) and (4.15), respectively, and

thus by the underlying two-channel paraunitary filter bank. The MLDB algorithm utilizes
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the lattice parameterization of such filter banks for a morphological adaptation of the

atoms. For this, the polyphase matrix of the analysis bank

Hpol(z) :¼
H00(z) H01(z)

H10(z) H11(z)

� �

with entries from the polyphase decomposition

Hi(z) ¼ Hi0(z
2)þ z�1Hi1(z

2) i ¼ 0, 1

is decomposed into

Hpol(z) ¼
Y

K�1

k¼0

cosqk sinqk

�sinqk cosqk

� �

1 0

0 z�1

� �

 !

cosqK sinqK

�sinqK cosqK

� �

(4:2)

where qK [ ½0, 2p) and qk [ ½0, p) (k ¼ 0, . . . ,K � 1) for FIR filters of order 2K þ 1.

Let qK be the residue of p=4�
PK�1

k¼0 qk modulo 2p in ½0, 2p). Then the space

PK
:¼ {q ¼ (q0, . . . ,qK�1) :qk [ ½0, p)}

can serve to parameterize all two-channel far infrared (FIR) paraunitary filter banks with at

least one vanishing moment of the high-pass filter, that is, a zero mean.

Now we have to solve the optimization problem

q̂ ¼ arg max
q[PK

D0, 0(q) (4:3)

by a genetic algorithm. The wavelet packet basis associated with q̂ in (4.3) is called the

MLDB. We use a 40-bit encoding for each angle in ½0, p ] where we set K ¼ 2 in (4.2). An

initial population of 100 is generated randomly. The probabilities for crossover and

mutation are set to pc ¼ 0.95 and pm ¼ 0.005, respectively. The MLDB algorithm is

summarized in Figure 4.2.

4.2.3.2 Study Group I The study group (study group I) considered for this feature

extraction study consists of 14 adults with normal hearing (threshold ,10 dB HL

between 500 and 6000 Hz), without any history of peripheral and central auditory

disorders and without intellectual deficit. The individuals exhibited normal directional

hearing as judged from a localization task in a setting where seven sound sources were

located in a half circle around the patient. Normal speech detection in noise was verified

by means of the binaural intelligibility difference using a commercially available test

(BIRD test, Starkey laboratories, Germany). In all subjects, wave V latencies in the mon-

aurally evoked brainstem responses of both ears did not show differences of more than

0.2 ms. All probands showed a reproducible b-wave in the BIC at an ITD of 0.4 ms by

the expert analysis described in Section 4.2.2.

4.2.4 Hybrid Wavelet: Machine Learning Approach

TheMLDB feature extraction approach which we have presented in Section 4.2.3 allows for

the extraction of discriminant features in the time-scale domain between the sum of the

monaural responses and the binaural response. The extracted features are clearly defined

signal properties, localized in time and frequency. They may be correlated with other

known representatives of binaural interaction in ABRs such as the b-wave. From a clinical

point of view, this is the major advantage of such a “white-box” feature extraction approach.
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The MLDB algorithm can easily be applied if signals to be analyzed exhibit a rela-

tively homogeneous morphology and a good reproducibility of the particular features in

time, such as the centered ABR waveforms of adults in Section 4.2.3. However, recent

studies have shown [28] that ABRs of children (mean age 8 years) exhibit a much

higher heterogeneity in the signal morphology as the ABRs of adults do (mean age 21

years). Therefore, we present a more robust scheme which takes this fact into account

for the discrimination of children being at risk for CAPD and children being not at risk

for CAPD which was first proposed by Strauss et al. [29] and thoroughly studied in

[30]. Moreover, the presented scheme is shift invariant such that a centering of ABRs

prior the analysis is not necessary.

In particular, we present a hybrid wavelet–machine learning scheme to the detec-

tion of the CAPD. This scheme consists of adapted wavelet decompositions and support

vector machine (SVM) classifiers. The adapted wavelet decomposition serves again for

the feature extraction, but in contrast to the MLDB algorithm, shift-invariant subband

features are used. This feature extraction procedure is optimized to provide a large

margin of the subsequent SVM classifier such that our whole hybrid scheme is

embedded in statistical learning theory by the large margin theorem. It is worth empha-

sizing that we do not restrict our interest to binaural interaction here, which reflects

only a part of the definition of the CAPD. Thus this “black-box” detection approach

also covers the heterogeneous definition of the CAPD which might be a further

advantage.

Figure 4.2 The MLDB algorithm for discrimination of sum of monaurally evoked response

from binaural waveform. The arrows denote the MLDB loop of the filter bank optimization.
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4.2.5 Basics of SVMs

The SVM is a novel type of learning machine and very promising for pattern recognition

[31]. Basically, the SVM relies on the well-known optimal hyperplane classification, that

is, the separation of two classes of points by a hyperplane such that the distance of distinct

points from the hyperplane, the so-called margin, is maximal. The SVMs utilize this

linear separation method in very high dimensional feature spaces induced by reproducing

kernels to obtain a nonlinear separation of original patterns. In contrast to many other

learning schemes, for example, feedforward backpropagation neural networks, training

a SVM yields a global solution as it is based on a quadratic programming (QP)

problem (see Appendix B). Moreover, the complexity of a SVM is automatically

adapted to the data. In general, there are only a few parameters to adjust; see [31, 32]

for detailed discussions.

Let X be a compact subset of Rd containing the data to be classified. We suppose

that there exists an underlying unknown function t, the so-called target function, which

maps X to the binary set f21, 1g. Given a training set

A :¼ {(xi, yi) [ X � {�1, 1} : i ¼ 1, . . . , M} (4:4)

of M associations, we are interested in the construction of a real-valued function f defined

on X such that sgn( f ) is a “good approximation” of t. If f classifies the training data

correctly, then we have that sgn( f (xi) ¼ t(xi) ¼ yi for all i ¼ 1, . . . , M [sgn( f (x)) :¼ 1,

if f (x) � 0, and 21 otherwise]. We will search for f in some reproducing kernel Hilbert

spaces (RKHSs) HK (see Appendix B) and a regularization problem in RKHSs arises.

For a given training set (4.4) we intend to construct a function f [ HK which minimizes

l
X

M

i¼1

½1� yi f (xi)�þ þ 1
2
k fk2HK

(4:5)

where (t)þ equals t if t � 0 and zero otherwise. This unconstrained optimization

problem can be rewritten as a constrained optimization problem in the SVM feature

space FK , ‘2 using the feature map F: X ! FK (see Appendix B) of the form: Find

w [ FK and ui(i ¼ 1, . . . ,M) to minimize

l
X

M

i¼1

ui

 !

þ 1
2
kwk2FK

(4:6)

subject to

yikw, F(xi)lFK
� 1� ui i ¼ 1, . . . ,M

ui � 0 i ¼ 1, . . . ,M
(4:7)

In general, the feature space FK is infinitely dimensional. For the sake of simplicity and

an easier illustration, we assume for a moment that FK, R
n. Then the function ~fw(v) :¼

kw, vlFK
defines a hyperplane Hw :¼ {v [ FK : ~fw(v) ¼ 0} in R

n through the origin and

an arbitrary point vi [ FK has the distance jkw, vilFK
j=kwkFK

from Hw. Note that
~fw(F(x)) ¼ fw(x). Thus, the constraints yikw, F(xi)lFK

=kwkFK
� 1=kwkFK

� ui=kwkFK

(i ¼ 1, . . . ,M) in (4.7) require that every F(xi) must at least have the distance

1=kwkFK
� ui=kwkFK

from Hw.

If there exists w [ FK so that (4.7) can be fulfilled with ui ¼ 0 (i ¼ 1, . . . ,M), then

we say that our training set is linearly separable in FK . In this case, the optimization
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problem (4.6) can be further simplified to: Find w [ FK to minimize

1
2
kwk2FK

(4:8)

subject to

yikw, F(xi)lFK
� 1 i ¼ 1, . . . ,M

Given HK and A, the optimization problem above has a unique solution fw� . In our hyper-

plane context Hw� is exactly the hyperplane which has maximal distance g from the train-

ing data, where

g :¼ 1

kw�kFK

¼ 1

kfw�kHK

¼ max
w[FK

min
i¼1,..., M

jkw, F(xi)lFK
j

kwkFK

� �

(4:9)

The value g is called the margin of fw� with respect to the training setA. See Figure 4.3 for

an illustration of the mapping and the separation procedure.

4.2.5.1 Adaptation in Feature Spaces Now we introduce our adaptation strategy for

feature spaces that is based on wavelets and filter banks that was originally proposed in

[25] and extended in [30] for the inclusion of morphological features.

The original wavelet-support vector classifier as proposed in [25] relies onmultilevel

concentrations j(�) ¼ k � kp‘p (1 � p , 1) of coefficient vectors of adapted wavelet or

frame decompositions as feature vectors, that is, scale features.

When using frame decompositions by nonsubsampled filter as suggested by Strauss

and Steidl [25], the decompositions becomes invariant to shifts of the signal. This is an

important fact here as we are interested in a shift-invariant decomposition which needs

no centering of the signals; see [33] for detailed discussions on the shift variance of

orthogonal decompositions. The implementation of frame decomposition is closely

Figure 4.3 The points are mapped by the feature map from the original space to the feature space where the

linear separation by the hyperplane takes plan with margin g.
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related to the orthogonal decompositions described in Appendix A. The only thing we

have to change is to drop the multirate sampling operations and slightly modify the

filter coefficients for generating the basis functions (see [25, 34] for details). As a conse-

quence of this, the lattice parameterization described in Section 4.2.3 can still be applied

when the filters are modified appropriately [25].

These feature vectors incorporate the information about local instabilities in time as

a priori information. For the classification of ABRs, we also include the morphological

information of the waveforms as a feature as the discriminant information which separates

the normal group from the CAPD group may also be reflected in the transient evolution of

ABRs.

Since we are interested in a shift-invariant classification scheme, we may only evalu-

ate the morphology of ABRs as a whole and not the exact latency of transient features. One

possible way to realize this is by the use of entropy which is already used to evaluate the

subbands of wavelet and wavelet packet decompositions for the purpose of signal

compression [20]. When using an appropriate entropy in connection with the tight

frame decomposition described above, it is invariant to shifts of the ABRs. We define

the entropy of a sequence x [ ‘2 by

E(x) ¼ �
X

n[Z

jx½n�j2

kxk2‘2
ln
jx½n�j2

kxk2‘2
(4:10)

Let dqj ¼ ~y
q
j, 1(J ¼ 1, . . . , J), where ~yj,1 are the coefficients of a parameterized octave-band

frame decomposition, that is, the coefficients of a subtree of the full binary tree

(see Appendix A) without sampling operations and parameterized by the lattice angle

vector q. For a fixed ABR waveform x we define the function

z x(q) ¼ (z1(q), . . . , z2J(q))

¼ kdq1 k‘1 , . . . , kdqJ k‘1 ,E(dq1 ), . . . ,E(dqJ )
� 	

set zi(q) :¼ zxi(q )(i ¼ 1, . . . ,M), and normalize z i in ‘1.

The number J is the decomposition depth, that is, the number of octave bands. We

restrict ourselves here to an octave-band decomposition as in [29] but, of course, any

binary tree can be used here. The first J elements of this feature vector carry multilevel

concentration of the subbands in ‘1, that is, a scale information. The second J elements

carry the morphological information reflected in the entropy as defined in (4.10). Note

that z i(q) is totally invariant against shifts of the ABRs. The shift invariance does not

deteriorate the analysis as the latency of wave V does not provide discriminant information

between the waveform groups (see [9, 35] and Section 4.3.2).

Now we intend to find q so that

A(q) ¼ {zi(q), yi) [ X , R
2J � {+1} : i ¼ 01, . . . ,M}

is a “good” training set for a SVM. Note that we restrict our interest to the hard-margin

SVM here, that is, l ¼ 1 in (4.5).

As we have described earlier, it is the fundamental concept of SVMs that we expect

a good generalization performance if they have a large margin defined by (4.9). Therefore,

our strategy is now to obtain feature vectors that are mapped to far-apart points in the SVM

feature space FK for the distinct classes and result in a large margin of the SVM in this
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space. Consequently, we try to find q̂ such that

q̂ ¼ arg max
q[P

min
i[Mþ , j[M�

kF(zi(q))�F(z j(q))k2FK

� �

where theF(�) denotes the SVM feature map, that is, the map from the original space X to

the feature space FK . For kernels arising from radial basis functions, this problem can be

transformed to an optimization problem in the original space [25] such that

q̂ ¼ arg max
q[P

min
i[Mþ , j[M�

kz i(q)� zj(q)k2
� �

(4:11)

To simplify the solution, the patterns belonging to different classes can be averaged such

that the distance between the centers is maximized; for details see [30]. Thus we have

transformed the problem from the feature space induced by the reproducing kernel to a

solvable problem in the original space where the octave-band features live. Equivalent

to Section 4.2.3, this optimization problem is again solved by a genetic algorithm.

4.2.5.2 Study Group II The study group (study group II) considered for this machine

learning study consisted of 60 children who were examined for a possible CAPD (aged

between 6 and 12 years). All the children showed normal peripheral hearing (pure-tone

threshold,15 dB between 500 and 6000 Hz) and normal monaural speech discrimination

for monosyllables (monosyllable test of the German speech intelligibility test Freiburger

Sprachtest .80% at 60 dB HL). Patients with diagnosed attention-deficit hyperactivity

disorder and low intellectual performance were excluded from the study.

These patients were divided into two groups according to the subjective testing

procedure described in [9]. By this separation, the normal group, that is, not at risk for

CAPD, consisted of 29 patients with a mean age of 8.8 years (standard deviation 1.5

years). All subjects in this group showed at least average intellectual performance as

judged from their reading and writing skills and their performance in school. The

CAPD group, that is, at risk for CAPD, consisted of 20 patients with a mean age of 8.9

years (standard deviation 1.5 years). There was no statistically significant age difference

in comparison to the normal group.

4.3 RESULTS

4.3.1 Study Group I: Feature Extraction Study

4.3.1.1 Time-Domain Analysis Typical BIC waveforms could be identified in all of

our 14 individuals for an ITD of 0.4 ms. As further calculations using the MLDB algor-

ithm are done with a test set of 10 subjects, the analysis in the time domain is also

done exclusively in these individuals. The number of subjects with clearly visible

b-peaks changed with the interaural delay of the binaurally applied stimuli. While

b-waves could be identified in 8 out of 10 cases using an ITD of 0.0 ms, a b-wave was

seen in every subject at an ITD of 0.4 ms. With higher ITDs the percentage of clearly

visible b-waves gradually decreased as shown in Figure 4.4a. The b-latencies increased

as ITDs increased by approximately ITD/2 in the range of 0–0.8 ms. With higher ITDs

the latency shift decreased (Fig. 4.4b).

4.3.1.2 MLDB Feature Extraction For determining the MLDB by (4.3), we used the

binaural waveforms and the sums of the monaural waveforms for an ITD of 0.0 ms of 10
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Figure 4.4 (a) Percentage of visible b-waves in BIC at different ITDs. (b) Latencies of BIC b-wave at increasing ITDs.
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individuals (i.e., M ¼ 10) and a decomposition depth of Jmax. To cope with shift variance

which may deteriorate an automated analysis by wavelet packets, we centered the binaural

waveforms by wave V of the binaural responses before the analysis.

The most discriminant MLDB feature which we call coefficient 1 is exclusively

considered for the further investigation. It corresponds to a particular cell in the time–

frequency domain and is specified by a triplet ( j, k, m) that we denote by ( j0, k0, m0) in
the following. For this time-scale cell, the mean of the induced energy by the binaural

waveform and the sum of the monaural waveforms differs significantly.

Furst et al. [5] demonstrated that the b-wave of the BIC provides information on the

binaural interaction and that the latencies increase with increasing ITD. With ITDs higher

than 1.2 ms, the b-wave of the BIC is rarely present [36]. Thus to show that the time-scale

feature of the binaural response represented by coefficient 1 reflects binaural interaction

similar to the b-wave of the BIC, we observed its behavior for increasing ITDs.

Figure 4.5 shows the difference d0 :¼ jyj 0, k 0 ½m0�j � j�yj 0, k 0 ½m0�j for the individual subject.

It is noticeable that this difference decreases significantly for ITDs larger than 0.6 ms.

However, the difference was positive in 6 out of 10 cases with an ITD of 0.8 ms. Note

that d0 is always positive for ITD , 0.8 ms. In other words, the magnitude of coefficient

1 for the binaural waveforms is larger than that of the sums of the monaural waveforms in

all subjects for ITD , 0.8 ms. Thus the condition jyj0, k 0 ½m 0�j � j�yj 0, k 0 ½m0�j . 0 can be

applied for detecting the binaural interaction for ITD , 0.8 ms in a machine analysis

without any utilization of expert knowledge and interference.

As we have identified a dissimilarity of the energy distribution in the time-scale

domain among the binaural waveform and the sum of the monaural waveforms, we can

use this feature for the detection of binaural hearing from binaural waveforms only

without any comparison to the sum of the monaural waveforms. It seems obvious that

Figure 4.5 Differences d0 of most discriminant MLDB coefficient for binaural waveform and

sum of monaural waveforms of individual subject. Negative differences (d0 , 0) are marked

by the down arrow.
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the information on binaural interaction is included in the binaural response itself as the

sum of the monaurally evoked responses does not contain any information on binaural

interaction. In Figure 4.6 we have shown a simple threshold classification of the binaural

and the sum of the monaural waveforms for ITD ¼ 0.4 ms, that is, the ITD where the

highest dissimilarity of these waveforms appears; see Figure 4.5. It is noticeable that

the binaural waveforms and the sums of the monaural waveforms are separated without

overlap with the exception of one subject.

4.3.2 Study Group II: Machine Learning Study

4.3.2.1 Time-Domain Analysis The analysis of the b-wave, as described in Section

4.2.2, allows for a discrimination of the normal from the CAPD group with 71% specificity

and 65% sensitivity in average. Additional to this conventional analysis technique, we

examined other easy-to-capture time-domain features involving the binaural waveform

only. The results of this analysis are given in Table 4.1. None of these parameters

showed a difference which is statistically significant between the normal and the CAPD

group.

4.3.2.2 Hybrid Classification Scheme For the described frame decompositions we

use a maximal decomposition depth of 7 and discard the first two levels as they contain

noise or very detailed features. In this way, we have an input dimension of 10 for the

Figure 4.6 Absolute value

of most discriminant MLDB

feature for (W) binaural and

(P) sum of monaural

waveforms.

TABLE 4.1 Time-domain Parameters of Wave V of Binaural ABR for
Normal and CAPD Groups

Parameter Amplitude (mV) Latency (ms) Slope (mV/ms)

Normal 1.32+ 0.3 5.90+ 0.25 0.86+ 0.62

CAPD 1.58+ 0.4 5.85+ 0.18 0.79+ 0.70

Note: Given as mean+ standard deviation.
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Figure 4.7 (a) Feature vectors of normal and CAPD groups for nonadapted angles (top) and for adapted angles (bottom). (b) Specificity and sensitivity in lattice

parameter space.
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SVM. For the adaptation, we parameterize filters of order 5, which leads to two free angles

q ¼ (q0,q1)(q0,q1 [ ½0, p�).
Let us start with some experiments and primarily examinations. In Figure 4.7a we

have shown the normalized feature vectors of the normal and the CAPD group, respect-

ively, for a nonadapted angle pair which performs worse (Fig. 4.7a) and in the adapted

case (Fig. 4.7b). The first five features represent the multilevel concentration whereas

the remaining five features represent the morphological information in terms of entropy.

It is noticeable that the feature vectors of the normal and the CAPD groups, respectively,

show a high degree of dissimilarity in the adapted case. Of course, here we expect a much

better performance of the classifier than in the nonadapted case.

Next we examine the feature extraction above in combination with a classifier. The

specificity and sensitivity of our hybrid approach in the lattice parameter space given by

{w0,w1} are shown in Figure 4.7b for a fixed test set. As clearly noticeable, many angle

pairs lead to a good performance of the SVM classifier (Gaussian kernel with standard

deviation 1), in the way that they separate the normal from the CAPD group.

In practice, we have to determine the free parameters a priori from the training set.

For the hybrid approach, we have an objective function motivated by statistical learning

theory to determine the optimal angles a priori by (4.11). When approaching (4.11) as

described in [30], we achieve an average specificity of 75% and a sensitivity of 80%

(Gaussian kernel with standard deviation 1). Even though there are angles in the parameter

space which perform better (see Fig. 4.7), we achieve a good performance by choosing the

angles by (4.11), that is, the large-margin criterion for the adaptation.

In view of the results expected from the subjective tests, the hybrid approach is at

least comparable in its performance to the b-wave detection. However, it has the major

advantage that it requires the binaurally evoked brainstem potential only and is fully

machine based and thus truly objective.

4.4 DISCUSSION

As the identification of a defined signal feature describing the dissimilarity between the

summed monaural brainstem evoked potentials and the binaurally evoked brainstem

responses was one aim of the present study, it has to be proved whether the analyzed

data are likely to contain information on binaural interaction and are in accordance to

the data regarding the BIC reported in the literature. The analysis of the BIC in the time

domain was restricted to the b-peak as it has been shown to be the most consistent part

of the BIC. The latencies of the b-wave at an ITD of 0.0 ms were in the same range as

reported by Brantberg et al. [6], who used the same detection criteria that were used

here. Also a gradual increase of b-latencies as reported by others [5, 7, 36] was observed.

The increase of b-latencies with increasing ITD was in the range of ITD/2 as

compared to the latencies obtained with an ITD of 0.0 ms. This finding is in accordance

with the assumption of a delay line coincidence detector as a basic mechanism for sound

localization as described by Jeffress [37]. His model served as a basis for a number of

succeeding models explaining binaural interaction [38–41]. In this model an array of

neurons is innervated by collaterals of second-order neurons which bring excitatory

input from each ear. The fibers from the two sides run in the opposite direction along

the array of neurons. Each neuron of the array fires only if the contralateral and ipsilateral

excitations coincide in time. This temporal coincidence is only possible if a certain popu-

lation of neurons is located in such a way that the combination of time delays connected
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with a given localization of a sound source leads to an excitation at approximately the

same time.

The model would predict that the b-wave of the binaural difference waveform is

delayed according to the ITD applied. The latency delay of the b-wave expected from a

given ITD would be exactly as high as ITD/2 as compared to an ITD of 0 ms. The data

of Jones and Van der Poel [36] as well as Brantberg et al. [6] and our own data support

this model as an increase of b-latencies on the order of ITD/2 was found. However,

even though there is some morphological evidence ([42] and the review in [43]), it still

remains unclear whether there is a true delay line coincidence detection mechanism

implemented in the medial superior olive of humans [44] as the majority of evidence

for this model is provided by using data of studies on the owl.

One of the major problems with the assumption of a pure coincidence detection

mechanism is the fact that the Jeffress [37] model does not include inhibitory input that

can explain the formation of the BIC. On the other hand, there is considerable morpho-

logical evidence [44–46] that there are inhibitory neurons involved in the processing of

ITDs within the medial superior olive. Furthermore, the calculation of the BIC is based

on inhibitory rather than excitatory mechanisms taking place during binaural signal

processing. However, as there is also considerable electrophysiological evidence for the

presence of some sort of a delay line mechanism, it seems likely that this type of signal

processing is at least a part of the detection mechanism for interaural time delays

taking place in the brainstem [40, 41, 47].

A major feature of the b-wave in the BIC connected with directional hearing is the

increase in latency with ITD. However, for ITDs exceeding 0.8 ms the increase in latency

was less pronounced. A closer look at data reported in the literature also shows that there

is a decrease in latency shift of the b-peak at high (.0.8-ms) ITDs [7]. As the temporo-

temporal diameter of a human head rarely exceeds 22 cm, the physiological range of ITDs

is from0 ms to approximately 0.7 ms,which explains thementioned decrease in latency shift.

One aim of the present study was to identify signal features that differentiate the

summed monaural signals from the binaurally evoked brainstem potentials. Using this

signal feature, it should be possible to judge whether a binaural interaction is present or

not by just analyzing the binaurally evoked potentials without calculating the difference

between the summed monaural potentials and the binaurally evoked potentials. We

tried to discover such features in the time-scale domain.

A major issue when employing time–frequency decompositions for signal discrimi-

nation is the choice of suitable features. To realize an automated and systematic detection

of such features, we applied the recently developed MLDB algorithm [26], which has

shown to be superior to other algorithms used before for waveform recognition. By means

of this algorithm,we extracted themost discriminant time-scale features that exhibit a dissim-

ilarity between the sum of the monaural waveforms and the binaural response, which we

called coefficient 1. As the magnitude of coefficient 1 differs in binaurally and monaurally

evoked potentials, the calculation of the difference in magnitude of coefficient 1 similar to

the calculation of the BIC can serve as a measure of binaural interaction. To prove this,

the resulting difference d0 should behave in the same way as described for the BIC.

In our settings this means that this difference should be positive up to an ITD of at

least 0.6 ms. As shown in Figure 4.5, the difference d0 is positive in every case up to an

ITD of 0.6 ms and in most cases when an ITD of 0.8 ms is used. This result principally

replicates the results obtained from the analysis of the b-wave in the time domain [28,

35]; see also Section 4.3.1.1. Thus the MLDB feature extraction approach which we

have presented in Section 4.2.3 allows for the extraction of discriminant features in the

time-scale domain between the sum of the monaural responses and the binaural response
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which is correlated with binaural interaction and might be used for the objective detection

of the CAPD. From a clinical point of view, this is the major advantage of such a “white-

box” feature extraction approach. However, the relation of the extracted MLDB features to

directional hearing has to be proved in further studies using patients with defects in the

brainstem that result in impaired directional hearing. The MLDB algorithm can easily

be applied if signals to be analyzed exhibit a relatively homogeneous morphology and a

good reproducibility of the particular features in time such as centered ABR waveforms

of adults in Section 4.2.3. However, recent studies have shown [28] that ABRs of children

(mean age 8 years) exhibit a much higher heterogeneity in the signal morphology than the

ABRs of adults do (mean age 21 years). Therefore, we presented a more robust scheme

which takes this fact into account for the discrimination of children being at risk for

CAPD and children being not at risk for CAPD, namely a hybrid wavelet–machine learn-

ing approach to the detection of the CAPD.

This scheme consisted of adapted wavelet decompositions and SVM classifiers. The

adapted wavelet decomposition again serves for the feature extraction, but in contrast to

the MLDB algorithm, shift-invariant subband features are used. This feature extraction

procedure was optimized to provide a large margin of the subsequent SVM classifier

such that our whole hybrid scheme was embedded in statistical learning theory by the

large-margin theorem. It is worth emphasizing that we do not restrict our interest to

binaural interaction here, which reflects only a part of the definition of the CAPD. Thus

this “black-box” detection approach also covered the heterogeneous definition of the

CAPD, which might be a further benefit.

The sensitivity and specificity of the hybrid approach were at least comparable to the

conventional b-wave detection in view of the results expected from subjective tests, at

least when using the group definition given in [9]. However, it has the major advantage

that it reduces the measurement cost by two-thirds and is truly objective, in the way

that it needs no expert interference for the evaluation.

A disadvantage in contrast to our white-box MLDB feature extraction approach is

that the features involved are hard to correlate with physiological processes. However,

it is more reliable due to the use of this more abstract but robust signal features.

4.5 CONCLUSION

We have summarized recent work that we have done to identify the CAPD by using the

binaurally evoked ABR directly. In particular, we presented an automated feature extraction

scheme in the time-scale domain and hybrid machine learning approach.We showed that the

direct use of the binaurally evoked response is truly objective, reduces measurement cost

significantly, and provides at least comparable results as the b-wave identification for the

discrimination of patients being at risk for CAPD and patients not being at risk for CAPD.

We conclude that the identification of the CAPD by binaurally evoked brainstem responses

is efficient and superior to the b-wave detection due to reasons of implementation.

APPENDIX A: WAVELET PACKET DECOMPOSITIONS

Let H0(z) :¼
P

k[Z
h0½k�z�k be the z-transform of the analysis low-pass filter and

H1(z) :¼
P

k[Z
h1½k�z�k the z-transform of the analysis high-pass filter of a two-channel

filter bank with real-valued filter coefficients. Throughout this chapter, we used a

capital letter to denote a function in the z-transform domain and the corresponding
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small letter to denote its time-domain version. We assume that the high-pass filter has a

zero mean, that is, we have that H1(1) ¼ 0. A two-channel filter bank with analysis

filters H0(z) and H1(z) is called paraunitary (sometimes also referred as orthogonal ) if

they satisfy

H0(z
�1)H0(z)þ H1(z

�1)H1(z) ¼ 2 (4:12)

H0(z
�1)H0(�z)þ H1(z

�1)H1(�z) ¼ 0 (4:13)

The corresponding synthesis filters are given by

G0(z) ¼ H0(z
�1) G1(z) ¼ H1(z

�1)

For the implementation of a wavelet packet decomposition, we arrange such two-channel

paraunitary filter banks in a binary tree of decomposition depth J. Binary trees can be

expressed by their equivalent parallel structure. Let us define Q0,0(z) :¼ 1 and

Q0,1(z) :¼ 1. Then the synthesis filters of the equivalent parallel structure are given by

the recursion

Q jþ1, 2k(z) ¼ G0(z
2 j

)Q j, k(z) (4:14)

Q jþ1, 2kþ1(z) ¼ G1(z
2 j

)Q j, k(z) (4:15)

for j ¼ 0, . . . , J, k ¼ 0, 1, . . . , 2j � 1. Let qmj,k ¼ (qj, k½n� 2jm�)n[Z denote the translation

of the impulse responses of these filters by 2jm samples and let ‘2 denote the Hilbert

space of all square summable sequences. Then the space V0,0 :¼ ‘2 is decomposed in

mutually orthogonal subspaces such that

V j, k ¼ V jþ1, 2k 	V jþ1, 2kþ1 (4:16)

where Vj, k ¼ span{qmj,k :m [ Z} ( j ¼ 1, . . . , J, k ¼ 0, 1, . . . , 2j � 1). We can define the

wavelet packet projection operator

Pj, k :V0,0 �! V j, k j ¼ 1, . . . , J k ¼ 0, . . . , 2j � 1

with

Pj, kx ¼
X

m[Z

y j, k½m�qmj, k

where the expansion coefficients are given by

y j, k½m� ¼ kx,qmj, kl‘2 (4:17)

For applying this concept to finite-length signals V0, 0 , R
d , we employ the wraparound

technique; see [48]. We will exclusively deal with signals with dimension d a power of

2. With respect to the downsamling operation, we a define a maximal decomposition

depth by Jmax ¼ log2 d. For a fixed level j and maximal decomposition depth Jmax, we

define the set of indices

T j ¼ {0, 1, . . . , 2Jmax�j � 1}

76 CHAPTER 4 IDENTIFICATION OF CENTRAL AUDITORY PROCESSING DISORDERS



APPENDIX B

Here we present some definitions used in the SVM context. First we define exactly the

feature space of a SVM and then we turn to the solution of the optimization problem

associated with the learning a SVM classifier.

B1 Feature Spaces of SVMs

Let K :X � X �! R (X is a compact subset of Rd) be a positive-definite symmetric func-

tion in L2(X � X ). For a given K, there exists a reproducing kernel Hilbert space

HK ¼ span{K(x̃, �) : ~x [ X}

of real-valued functions on X with inner product determined by

kK(~x, x),K(�x, x)lHK
¼ K(~x, �x)

which has the reproducing kernel K, that is, k f (�),K(x̃, �)lHK
¼ f (~x), f [ HK . By

Mercer’s theorem, the reproducing kernel K can be expanded in a uniformly convergent

series on X � X ,

K(x, y) ¼
X

1

j¼1

hjwj(x)wj(y) (4:18)

where hj � 0 are the eigenvalues of the integral operator TK : L2(X ) ! L2(X ) with

TK f (y) ¼
ð

X
K(x, y) f (x) dx

and where {wj}j[N are the corresponding L2(X )-orthonormalized eigenfunctions. We

restrict our interest to functions K that arise from a radial basis function (RBF). In other

words, we assume that there exists a real-valued function k on R such that

K(x, y) ¼ k(kx� yk2) (4:19)

where k � k2 denotes the Euclidean norm on R
d.

We introduce a so-called feature map F :X ! ‘2 by

F(�) ¼ ffiffiffiffiffi

hj

p

wj(�)
� �

j[N

Let ‘2 denote the Hilbert space of real-valued quadratic summable sequences a ¼ (ai)i[N

with inner product ka, bl‘2 ¼
P

i[N
aibi. By (4.18), we have that F(x), x [ X , is an

element in ‘2 with

kF(x)k2‘2 ¼
X

1

j¼1

hjw
2
j (x) ¼ K(x, x) ¼ k(0)

We define the feature space FK , ‘2 by the ‘2-closure of all finite linear combinations of

elements F(x) (x [ X ),

FK ¼ span{F(x) : x [ X}

Then FK is a Hilbert space withk � kFK
¼ k � k‘2 . The feature space FK and the reprodu-

cing kernel Hilbert space HK are isometrically isomorphic with isometry i :FK ! HK

defined by i(w) ¼ fw(x) ¼ kw,F(x)l‘2 ¼
P

1

j¼1 wj
ffiffiffiffiffi

hj
p

wj(x).
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B2 Solving the SVM Optimization Problem

By the representer theorem [32, 49], the minimizer of (4.6) has the form

f (x) ¼
X

M

j¼1

cjK(x, xj) (4:20)

Setting f :¼ ( f (x1), . . . , f (xM))
T, K :¼ (K(xi, xj))

M
i, j¼1, and c :¼ (c1, . . . , cM)

T, we obtain

that

f ¼ Kc

Note thatK is positive definite. Further, let Y :¼ diag( y1, . . . , yM) and u :¼ (u1, . . . , uM)
T.

By 0 and e we denote the vectors with M entries 0 and 1, respectively. Then the optimiz-

ation problem (4.6) can be rewritten as

min
u,c

leTuþ 1
2
cTKc (4:21)

subject to

u � e� YKc u � 0:

The dual problem with Lagrange multipliers a ¼ (a1, . . . ,aM)
T and b ¼ (b1, . . . ,bM)

T

reads

max
c,u,a,b

L(c,u,a,b)

where

L(c, u,a,b) :¼ leTuþ 1
2
cTKc� bTuþ aTe� aTYKc� aTu

subject to

@L

@c
¼ 0

@L

@u
¼ 0 a � 0 b � 0

Now 0 ¼ @L=@c ¼ Kc�KYa yields

c ¼ Ya (4:22)

Further we have by @L=@u ¼ 0 that b ¼ le� a. Thus, our optimization problem becomes

max
a

� 1
2
aTYKYaþ eTa

� 	

(4:23)

subject to

0 � a � le

This QP problem is usually solved in the SVM literature. The support vectors (SVs) are

those training patterns xi for which ai does not vanish. Let I denote the index set of

the support vectors I :¼ {i [ {1, . . . ,M} :ai= 0}; then by (4.20) and (4.22), the function

f has the sparse representation

f (x) ¼
X

i[I

ciK(xi, x) ¼
X

i[I

yiaiK(xi, x)
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which depends only on the SVs. With respect to the margin we obtain by (4.9) and that

g ¼ (k fkHK
)�1 ¼ (cTKc)�1=2 ¼

X

i[I

yiai f (xi)

 !�1=2

Due to the Kuhn–Tucker conditions [50] the solution f of the QP problem (4.21) has to

fulfill

ai(1� yi f (xi)� ui) ¼ 0 i ¼ 1, . . . ,M

In case of hard-margin classification with ui ¼ 0 this implies that yi f (xi) ¼ 1, i [ I, so that

we obtain the following simple expression for the margin:

g ¼
X

i[I

ai

 !�1=2

(4:24)

REFERENCES

1. D. L. JEWETT. Volume conducted potentials in response

to auditory stimuli as detected by averaging in the cat.

Electroenceph. Clin. Neurophysiol., 28:609–618, 1970.

2. R. A. DOBIE AND C. I. BERLIN. Binaural interaction in

brainstem evoked response. Arch. Otolaryngol.,

105:391–398, 1979.

3. H. L. HOSFORD, B. C. FULLERTON, AND R. A. LEVINE.

Binaural interaction in human and cat brainstem audi-

tory responses. Acoust. Soc. Am., 65(Suppl. 1):86, 1979.

4. R. A. DOBIE AND S. J. NORTON. Binaural interaction in

human auditory evoked potentials. Electroencephal.

Clin. Neurophysiol., 49:303–313, 1980.

5. M. FURST, R. A. LEVINE, AND P. M. MCGAFFIGAN.

Click lateralization is related to the b-component of the

dichotic brainstem auditory evoked potentials of human

subjects. J. Acoust. Soc. Am., 78:1644–1651, 1985.

6. K. BRANTBERG, H. HANSSON, P. A. FRANSSON, AND

U. ROSENHALL. The binaural interaction component

in human ABR is stable within the 0 to 1 ms range of

interaural time difference. Audiol. Neurootol., 4:8–94,

1997.

7. K. BRANTBERG, P. A. FRANSSON, H. HANSSON, AND

U. ROSENHALL. Measures of the binaural interaction

component in human auditory brainstem response

using objective detection criteria. Scand. Audiol.,

28:15–26, 1999.

8. V. K. GOPAL AND K. PIEREL. Binaural interaction com-

ponent in children at risk for central auditory processing

disorders. Scand. Audiol., 28:77–84, 1999.

9. W. DELB, D. J. STRAUSS, G. HOHENBERG, AND

K. P. PLINKERT. The binaural interaction component

in children with central auditory processing disorders.

Int. J. Audiol., 42:401–412, 2003.

10. American Speech–Language–Hearing Association.

Central auditory processing: Current status of research

and implications for clinical practice. Task force on

central auditory processing disorders consensus devel-

opment. Am. J. Audiol., 5:41–54, 1996.

11. J. JERGER, K. JOHNSON, S. JERGER, N. COKER,

F. PIROZZOLO, AND L. GRAY. Central auditory proces-

sing disorder: A case study. J. Am. Acad. Audiol.,

2:36–54, 1991.

12. J. JERGER, R. CHMIEL, R. TONINI, E. MURPHY, AND

M. KENT. Twin study of central auditory processing

disorder. J. Am. Acad. Audiol., 10:521–528, 1999.

13. American Academy of Audiology. Consensus

Conference on the Diagnosis of Auditory Processing

Disorders in School–Aged Children, Dallas, TX,

April 2000.

14. M. H. STOLLMANN, A. F. SNIK, G. C. HOMBERGEN, AND

R. NIEWENHUYS. Detection of binaural interaction com-

ponent in auditory brainstem responses. Br. J. Audiol.,

30:227–232, 1996.

15. R. E. BELLMAN. Adaptive Control Process. Princeton

University Press, Princeton, NJ, 1961.

16. L. J. TREJO AND M. J. SHENSA. Feature extraction of

event–related potentials using wavelets: An application

to human performance monitoring. Brain and

Language, 66:89–107, 1999.

17. K. ENGLEHART, B. HUDGINS, P. A. PARKER, AND

M. STEVENSON. Classification of the myoelec-tric

signal using time–frequency based representations.

Med. Eng. Phys., 21:431–438, 1999.

18. G. RUTLEDGE AND G. MCLEAN. Comparison of several

wavelet packet feature extraction algorithms. IEEE

Trans. Pattern Recognition Machine Intell., submitted

for publication.

19. N. SAITO AND R. R. COIFMAN. Local discriminant

bases. In A. F. LAINE AND M. A. UNSER, Ed.,

Wavelet Applications in Signal and Image Processing,

vol. II, A. F. LAINE and M. A. UNSER, eds.,

Proceedings of SPIE, San Diego, CA, 27–29, July

1994, vol. 2303.

20. R. R. COIFMAN AND M. V. WICKERHAUSER. Entropy

based algorithms for best basis selection. IEEE. Trans.

Inform. Theory, 32:712–718, 1992.

REFERENCES 79



21. P. H. DELSARTE, B. MACQ, AND D. T. M. SLOCK.

Signal adapted multiresolution transforms for image

coding. IEEE Trans. Inform. Theory, 38:897–903,

1992.

22. P. MOULIN AND K. MIHÇAK. Theory and design of
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CHA P T E R5

FUNCTIONAL

CHARACTERIZATION OF

ADAPTIVE VISUAL ENCODING
Nicholas A. Lesica and Garrett B. Stanley

5.1 INTRODUCTION

Our visual system receives, encodes, and transmits information about the outside world to

areas of our brain that process the information and govern our behavior. Despite decades

of research, the means by which these tasks are performed by the underlying neuronal cir-

cuitry remain a mystery. This lack of understanding is due in part to the overwhelming

complexity of the neuronal circuitry as well as to the elusive nature of the encoding

that results from adaptive mechanisms which constantly alter the function of the circuitry

based on current external conditions. The ubiquitous nature of adaptive mechanisms

throughout the nervous system leads one to infer that adaptive encoding may indeed be

a guiding principle of information transmission in the brain. Investigations of visual

encoding, therefore, must directly address these adaptive mechanisms to develop an

understanding of their basic neurobiological function as well as the implications of their

function on the design of engineered interfaces that seek to enhance or replace neuronal

function lost to trauma or disease [1, 2].

The functional characterization of encoding in the visual system was first outlined in

the pioneering work of Hartline, Barlow, and Kuffler [3–5], who described the relation-

ship between the intensity of the visual stimulus projected onto the photoreceptors of

the retina and the firing rate of downstream neurons within the retina. A systematic

approach to functional characterization was subsequently provided by Marmarelis and

Marmarelis [6], involving the determination of a series of filters (linear or nonlinear)

that describes the responses of visual neurons to a white-noise stimulus designed to effi-

ciently probe the system in question. This approach has been used extensively to charac-

terize the basic function of neurons in a variety of visual and nonvisual sensory areas

[7–9]. However, several assumptions are generally involved in this approach, namely

that the stimulus is stationary (drawn from a fixed statistical distribution) and the encoding

properties of the neuron are time invariant. While these assumptions may be valid under

artificial laboratory conditions, studies of visual responses under natural conditions have

revealed encoding strategies by which they are directly violated.

In a natural setting, the statistical distribution of the stimulus is constantly changing.

For example, the mean intensity of light incident upon the retina can vary over many

orders of magnitude as a result of changes in illumination or eye movements across the

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.

81



visual scene. However, over any short interval, the distribution of light intensities will only

occupy a small subset of this range. Because of this nonstationarity, the visual system must

employ adaptive encoding strategies to optimize the processing of any one subset of

stimuli without sacrificing the ability to process another. For example, retinal neurons

maintain a relatively small operating range which is shifted and scaled to maximize differ-

ential sensitivity over the current statistical distribution of the stimulus [10], enabling

maximal flow of visual information to downstream neurons [11, 12].

Initial reports of adaptive encoding focused primarily on the modulation of gain,

demonstrating changes in the sensitivity of the response to the intensity of the visual

stimulus. This adaptation was observed in response to changes in both the mean and var-

iance of the stimulus on both fast (millisecond) and slow (second) time scales [10, 13–15].

In addition to changes in gain, recent investigations have also revealed further effects of

adaptation, such as changes in spatial and temporal filtering properties [16, 17] and modu-

lation of the baseline membrane potential [18, 19], which are also thought to play import-

ant roles in visual processing under natural conditions. Models of visual encoding that are

based on responses to stationary stimuli are insufficient to characterize visual function

in the natural environment, as they do not reflect the function of these adaptive mechan-

isms and reflect only the average behavior of the system over the interval of investigation.

In this chapter, a new framework for the functional characterization of adaptive visual

encoding under nonstationary stimulus conditions via adaptive estimation is developed.

Within this framework, the function of multiple adaptive encoding mechanisms can be

isolated and uniquely characterized.

The remainder of the chapter is structured as follows: In Section 5.2, a simple model

of adaptive visual encoding consisting of a cascade of a time-varying receptive field (RF)

and a rectifying static nonlinearity is developed. In Section 5.3, a recursive least-squares

(RLS) approach to adaptively estimating the parameters of the time-varying RF from

stimulus/response data is presented. In Section 5.4, the shortcomings of RLS are identified

and an extended recursive least-squares (ERLS) approach with an adaptive learning rate is

developed to provide improved tracking of a rapidly changing RF. In Section 5.5, the

encoding model is expanded to include an adaptive offset before the static nonlinearity

that serves to modulate the operating point of the neuron with respect to the rectification

threshold, and the effects of changes in this operating point on the estimation of the

parameters of the RF are investigated. In Section 5.6, the results are summarized and

directions for future research are suggested.

5.2 MODEL OF VISUAL ENCODING

The framework for the analysis of adaptive encoding developed in this chapter is based on

the properties of neurons in the early visual pathway. However, the general nature of the

framework ensures that the concepts apply to later stages of processing in the visual

pathway as well as to other sensory systems. The mapping from stimulus light intensity

to firing rate response in a visual neuron can be represented by a cascade of a linear

filter and a rectifying static nonlinearity. Cascade encoding models have been shown to

provide accurate predictions of the responses of visual neurons under dynamic stimulation

[20–22]. A schematic diagram of a cascade encoding model is shown in Figure 5.1.

The components of the encoding model are intended to correspond to underlying

neural mechanisms. However, because the model is functional in nature and designed

to characterize firing rate responses to visual stimuli rather than modulations in membrane

potential due to synaptic input currents, the correspondence between model parameters

and intracellular quantities is indirect.
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The input to the cascade encoding model is the spatiotemporal signal s½p, n�. For
computer-driven visual stimuli discretized in space–time, p represents the grid index of

a pixel on the screen and n is the time sample. (Note that pixel refers not to the atomic

display units of the monitor but, for instance, to squares in a white-noise checkerboard.)

No assumptions are made about the statistics of the stimulus, as natural signals are often

nonstationary and correlated. To produce the intermediate signal y, which reflects the

stimulus-related modulations in the membrane potential of the neuron, the stimulus is

passed through the linear filter gn½ p,m� (convolution in time, integration in space) repre-

senting P (total pixels in stimulus) separate temporal filters each with M parameters.

This filter is known as the spatiotemporal RF and captures the spatial and temporal inte-

gration of the stimulus that occurs within the visual pathway. The subscript n denotes

the time-varying nature of the RF. If s and gn are organized appropriately, then this

discrete-time operation can be written as a dot product y½n� ¼ sTngn, where sn and gn are

the column vectors:

sn ¼ ½s½P, n�M þ 1�, s½P� 1, n�M þ 1�, . . . , s½1, n�M þ 1�,

s½P, n�M þ 2�, . . . , s½1, n��T

gn ¼ ½gn½P,M�, gn½P� 1,M�, . . . , gn½1,M�, gn½P,M � 1�, . . . , gn½1, 1��
T

and T denotes matrix transpose.

Before being passed through the static nonlinearity, the filtered stimulus y is com-

bined with additive noise v to yield z, which is known as the generating function. The

noise v represents spontaneous fluctuations in the membrane potential of the neuron,

which are reflected in the variability of firing rate responses to repeated presentations of

the same stimulus. These fluctuations have been shown to be uncorrelated over time

and independent of the membrane potential of the neuron, with a distribution that is

approximately Gaussian [23]. Thus, the noise v is assumed to be independent of the stimu-

lus, nonstationary, and Gaussian with zero mean N (0,s 2
v
½n�).

The generating function z is passed through a static nonlinearity f (�) to yield the non-
negative firing rate l. This static nonlinearity captures the rectifying properties of the

transformation from the membrane potential of the neuron to its observed firing rate.

The adaptive estimation framework presented below is developed for a general static non-

linearity f (�) and the specific form of the function should be chosen based on the properties

of the system under investigation. A common model for the static nonlinearity present in

visual neurons is linear half-wave rectification [24]:

f (z) ¼
z z � 0

0 z , 0

�

(5:1)

Figure 5.1 Simple cascade model of visual encoding. The spatiotemporal visual stimulus s is

passed through a time-varying linear filter g (the spatiotemporal RF) to yield the intermediate

signal y. This signal is then combined with additive, independent, Gaussian noise v to yield the

generating function z and passed through a rectifying static nonlinearity f to produce the nonnegative

firing rate l. (Adapted, with permission, from [33]. Copyright# 2005 by IEEE.)
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The linear rectifying static nonlinearity implies that the neuron is silent when the

membrane potential is below a threshold (in this case zero) and that modulations in the

membrane potential above that threshold are reflected as proportional modulations in

firing rate.

5.3 RECURSIVE LEAST-SQUARES ESTIMATION

Given the model structure described in the previous section, there are a variety of ways in

which observations of stimulus–response data can be used to identify the parameters of

the RF that provide the best functional characterization of a given neuron. The traditional

approach is to estimate a single time-invariant RF using linear least-squares estimation

(also known as reverse correlation). However, a time-invariant RF captures only the

average behavior of the neuron and is insufficient to describe the adaptive encoding of

nonstationary stimuli. Thus, to accurately characterize adaptive visual encoding in a

natural setting where the statistics of the stimulus are constantly changing, an adaptive

estimation approach must be employed.

The basic premise of adaptive estimation is that the estimate of the model par-

ameters at time nþ 1 is computed by combining the previous estimate from time n

with an update based on the observation of the response at time nþ 1 and prior knowl-

edge of the evolutionary dynamics of the parameters. One particular form of adaptive

estimation that has been used successfully to characterize the encoding properties of

visual neurons is RLS [25, 26]. In fact, RLS was designed to provide an on-line esti-

mate of time-invariant model parameters, but its design also allows for the tracking

of time-varying parameters [27]. The RLS algorithm is based on the minimization of

the prediction error, which is defined as the difference between the observed firing

rate in an interval and the expected firing rate in the interval given the current stimulus

and the estimated model parameters. A derivation of the RLS approach to estimating

the parameters of the RF based on the model shown in Figure 5.1 is given in the

Appendix.

We have previously detailed an RLS technique for estimating the RFs of visual

neurons [25]. Assuming the model structure shown in Figure 5.1, the RLS algorithm for

the estimation of the RF parameters can be written as follows:

e[n] ¼ l½n� � f (sTn ĝnjn�1) Prediction error

Gn ¼
g�1Knjn�1sn

g�1sTnKnjn�1sn þ 1
Update gain

ĝnþ1jn ¼ ĝnjn�1 þ Gne½n� Update parameter estimates

Knþ1jn ¼ g�1Knjn�1 � g�1Gns
T
nKnjn�1 Update inverse of stimulus autocovariance

where 0 
 g � 1 serves to downweight past information and is therefore often called

the forgetting factor. At each time step, the gain G is calculated based on the estimate

of the inverse of the stimulus autocovariance matrix, denoted as K, and combined with

the prediction error e to update the RF parameter estimate ĝ. Note, however, that the

recursive framework avoids the explicit inversion of the stimulus autocovariance

matrix. The subscript njn� 1 denotes an estimate at time n given all observations up to

and including time n2 1.
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The prediction error e is the difference between the observed and predicted

firing rates. Given the stimulus and the current estimate of the RF, the expected

firing rate is

E{l½n�jsn, ĝnjn�1} ¼

ð

l

l½n� p(l½n�jsn, ĝnjn�1) dl½n�

¼

ð

v

f (sTn ĝnjn�1 þ v½n�)p(v½n�) dv½n�

(5:2)

where p(l½n�jsn, ĝnjn�1) is the probability density function of the predicted response con-

ditioned on the current stimulus and estimated model parameters. For small v relative

to sTn ĝnjn�1, the expectation can be approximated as E{l½n�jsn, ĝnjn�1} � f (sTn ĝnjn�1)

through a series expansion about sTn ĝnjn�1. This approximation is valid when the

signal-to-noise ratio (SNR) is large, as is typically the case in visual neurons under

dynamic stimulation. In the event that this approximation is not valid, the integral

expression for the expected firing rate can be evaluated at each time step.

5.4 EXTENDED RECURSIVE LEAST-SQUARES
ESTIMATION

The dynamics of the system shown in Figure 5.1 can be represented by the following

state-space model:

gnþ1 ¼ Fngn þ qn (5:3)

l½n� ¼ f (sTngn þ v½n�) (5:4)

where Fn (known as the state evolution matrix) and qn (known as the state evolution noise)

specify the deterministic and stochastic components of the evolutionary dynamics of the

RF parameters, respectively. Investigation of the model underlying RLS reveals that the

technique is designed to estimate time-invariant RF parameters (Fn ¼ I and qn ¼ 0)

based on the assumption that the variance of the noise in the observed response decreases

exponentially over time (s2
v
½n�/ gn) [28]. This assumption causes the current obser-

vations to be weighted more heavily in the computation of the parameter estimates than

those in the past and provides RLS with the ability to track a slowly varying RF.

However, as the parameters change more quickly, the ability of RLS to track them

decreases. The tracking behavior of the RLS algorithm can be greatly improved by assum-

ing a model in which the RF parameters are time varying and their evolution is treated as a

more general stochastic process.

The optimal algorithm for tracking the time-varying parameters of a state-space

model, in terms of minimizing the mean-squared error (MSE) between the predicted

and observed responses, is the Kalman filter [29]. However, implementation of the

Kalman filter requires exact knowledge of the quantities Fn,Sq½n� (the covariance of the

state evolution noise), and s2
v
½n�, which are generally unknown during the experimental

investigation of neural systems, and noise properties that cannot be guaranteed for the

dynamics in question. Fortunately, some of the tracking ability of the Kalman filter can

be transferred to the RLS framework by replacing the deterministic model which underlies

RLS estimation with a stochastic one that approximates that which underlies the Kalman

filter. The result, known as the ERLS, was developed in [28] based on the correspondence

between RLS and the Kalman filter presented in [30]. Here, a particular form of ERLS is
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developed that is designed to track adaptation of visual encoding properties in response to

changes in the statistical properties of the stimulus.

The model underlying the Kalman filter assumes that the RF parameters evolve

according to the general model gnþ1 ¼ Fngn þ qn, where qn is a vector of nonstationary

Gaussian white-noise N (0,Sq½n�). To simplify the incorporation of this model into the

RLS framework, assume that the parameter evolution is completely stochastic (Fn ¼ I)

and that the parameters evolve independently and at equal rates (Sq½n� ¼ s2
q½n�I). In this

stochastic model, the evolution of the parameter estimates is constrained only by the

variance s2
q½n�, and this parameter can be used to control the tracking behavior of the

algorithm based on knowledge of the underlying system. When the prediction error is

likely to be the result of changing encoding properties (during adaptation to changes in

the statistics of the stimulus), a large value of s2
q½n� is used to allow the estimate to

track these changes. Conversely, if the parameters are not likely to be changing, a small

value of s2
q½n� is used to avoid tracking the noise in the observed response. Thus, s2

q½n�
functions as an adaptive learning rate.

The value of s2
q½n� is adjusted based on knowledge of how features of the stimulus

affect the parameters. For example, adaptation in the visual system generally occurs in the

interval directly following a change in a feature of the stimulus (mean, variance, etc.).

With this knowledge, s2
q½n� is increased following a stimulus transition, allowing the

parameter estimate to change quickly. Similarly, if the statistics of the stimulus have

been stationary for some time and the underlying parameters are not likely to be adapting,

s2
q½n� is decreased. The dynamics of the adaptive learning rate should be based on knowl-

edge of the adaptive properties of the system under investigation, reflecting the expected

rate of change (per estimation time step) of the parameters under the given stimulus con-

ditions. For a situation where the relevant stimulus feature or the adaptive properties are

not known a priori, s2
q½n� should be set to a relatively small constant value throughout the

trial. This gives the estimate some degree of adaptability (although very fast changes in

parameter values will likely be missed), while keeping the steady-state noise level in a

reasonable range. The initial estimate provides some information about the adaptive

behavior of the system, and the estimation can be performed again with a more appropriate

choice of s2
q½n�.

The ERLS algorithm for the model in Figure 5.1 is as follows:

e[n] ¼ l½n� � f (sTn ĝnjn�1) Prediction error

Gn ¼
Knjn�1sn

sTnKnjn�1sn þ 1
Update gain

ĝnþ1jn ¼ ĝnjn�1 þ Gne½n� Update parameter estimates

Knþ1jn ¼ Knjn�1 � Gns
T
nKnjn�1 þ s2

q½n�I Update inverse of stimulus

autocovariance

Again, the estimate is generated by solving the above equations sequentially at each

time step. To initialize the algorithm, the initial conditions ĝ0j�1 ¼ 0 and K0j�1 ¼ d� I

are used. The regularization parameter d affects the convergence properties and

steady-state error of the ERLS estimate by placing a smoothness constraint on the par-

ameter estimates, removing some of the error introduced by highly correlated natural

stimuli [31]. For estimation from responses to uncorrelated white-noise stimuli in

the examples below, d was set to 1024. For estimation from responses to correlated

naturalistic stimuli, d was set to 1022.
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5.4.1 Examples

In the following simulations, examples of adaptive encoding in retinal ganglion cells are

used to demonstrate the ability of ERLS to track changes in RF parameters during nonsta-

tionary stimulation. Ganglion cells are the output neurons of the retina and provide the

only pathway for the transmission of visual information from the retina to the brain.

Responses to nonstationary stimuli were simulated using the cascade encoding model

shown in Figure 5.1, which has been shown to provide accurate predictions of ganglion

cell responses [19]. In the first example, the tracking performance of ERLS is compared

to that of standard RLS during a contrast switching experiment. In the second example,

ERLS is used to track adaptive RF modulations from responses to a naturalistic stimulus

in which the contrast is constantly varying. Note that the examples presented here utilize

realistic simulations of retinal ganglion cells which provide carefully controlled scenarios

for the investigation of the adaptive estimation techniques. For examples of the application

of these techniques to experimentally recorded responses in the retina, thalamus, and

cortex, see our previously published findings [25, 32–34].

5.4.1.1 Comparison of RLS and ERLS A biphasic temporal RF typical of retinal

ganglion cells with a time course of 300 ms was used in the cascade encoding model

shown in Figure 5.1 to simulate responses to a contrast switching, spatially uniform

Gaussian white-noise stimulus. Note that this can be directly interpreted as the impulse

response of the system, mapping the visual stimulus intensity to the modulations in neur-

onal firing rate. A new luminance value for the stimulus was chosen every 10 ms and the

root-mean-square (RMS, ratio of standard deviation to mean) contrast was switched from

0.05 to 0.30 every 10 ms. Contrast gain control has been shown to modulate the RF gain of

visual neurons in response to changes in stimulus contrast, with a time course that is

approximately equal to the integration time of the neuron [13, 35]. To simulate the adap-

tive changes that have been observed experimentally, the gain of the RF (magnitude of

peak value) was increased by a factor of 2 following a decrease in contrast and decreased

by a factor of 2 following an increase in contrast. The variance of the noise v was adjusted

to produce responses with an SNR of 5. This value is consistent with those measured in the

experimental responses of retinal ganglion cells [33, 34]. ERLS and standard RLS were

used to track changes in the RF parameters from the simulated responses at a temporal

resolution of 30 ms. The results are shown in Figure 5.2.

Figure 5.2a shows the gain of the actual RF (gray) along with the gain of the RLS RF

estimate (black). The RLS estimate was generated with forgetting factor g ¼ 0.96 (which

corresponds to a memory time constant of approximately 7 s). This value was optimal in

the sense that it yielded the lowest MSE in the RF estimate (10.4% of the variance of the

actual RF) over the entire trial for all 0 
 g � 1. Figure 5.2b shows the gain of the actual

RF, along with the gain of the ERLS RF estimate, computed with a fixed learning rate

s2
q½n� ¼ 10�5. This value of s2

q½n�was also chosen to minimize the MSE in the RF estimate

over the entire trial. The MSE in the ERLS estimate with fixed learning rate (7.6%) is

lower than that of the optimal RLS estimate, illustrating the enhanced tracking ability

that results from incorporating the stochastic model of parameter evolution. The tracking

performance of the ERLS estimate can be further improved by using an adaptive learning

rate to exploit the relationship between the stimulus and the adaptive nature of the system.

Because contrast gain control only modulates the gain of the RF in the short interval fol-

lowing a change in contrast, the learning rate s2
q½n� is set to a large value in those intervals

to allow the estimate to adapt quickly and to a small value otherwise, so that noise in the

observed response is not attributed to changes in the encoding properties of the neuron.
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Accordingly, s2
q½n� was set to 1024 during the transient intervals (1 s following each con-

trast transition) and 1026 during steady-state intervals (all other times). The gain of the

resulting RF estimate is shown in Figure 5.2c. The adaptive learning rate allows the esti-

mate to closely track the fast changes in gain while maintaining a low steady-state error

between transitions. The MSE in the ERLS estimate with adaptive learning rate (5.1%)

is half of that in the standard RLS estimate. The values of s2
q½n� used to generate the

ERLS estimate with an adaptive learning rate were chosen based on the adaptive dynamics

of the simulated neuron but were not optimized. Similar results were obtained with a range

of values for s2
q½n� during the transient and steady-state intervals (not shown), indicating

the robust improvement in tracking provided by the adaptive learning rate.

Figure 5.2 Comparison of RLS and ERLS. (a) Gain of actual RF (gray) and gain of RLS

estimate (black) for 160-s segment of contrast switching white-noise stimulus. The value of the

forgetting factor g used to compute the RLS estimate was 0.96. The MSE in the RF estimate

over the entire trial was 10.4% of the variance of the actual RF. (b) Gains of actual RF and ERLS

estimate computed with s2
q½n� ¼ 10�5 for entire trial. The MSE in the RF estimate over the entire

trial was 7.6%. (c) Gains of actual RF and ERLS estimate computed with s2
q½n� ¼ 10�4 for 1 s

following each contrast transition and 1026 at all other times. The MSE in the RF estimate over

the entire trial was 5.1%. (Reproduced, with permission, from [33]. Copyright # 2005 by IEEE.)
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5.4.1.2 Tracking RF Changes during Natural Stimulation In a natural setting,

tracking RF changes is complicated by the lack of clear transitions in the relevant stimulus

features (as opposed to the contrast switching example above). The following contrast gain

control simulation demonstrates the ability of ERLS to track RF modulation from

responses to a stimulus which is continuously nonstationary. The stimulus was the tem-

poral intensity of one pixel of a gray-scale natural-scene movie recorded in the forest

with a home video camera, updated every 30 ms, as shown in Figure 5.3a.

For more details regarding the natural-scene movies, see [36]. For this example, a

stimulus was chosen in which the mean intensity was relatively constant over time

while the contrast was constantly changing. The response of a retinal ganglion cell was

simulated as above. The gain of the temporal RF was varied inversely with the contrast

of the stimulus and, thus, varied continuously throughout the trial. At each time step, the

contrast was defined as the RMS contrast of the previous 300-ms segment of the stimulus,

in accordance with the time course of contrast gain control (Fig. 5.3b), and the gain of the

Figure 5.3 Tracking RF modulation during natural stimulation with ERLS. (a) The stimulus

was spatially uniform and the luminance was modulated according to the intensity of a typical

pixel in a natural-scene movie, updated every 30 ms. (b) The RMS contrast of natural stimulus

throughout trial. (c) Value of learning rate s2
q½n� throughout trial. (d ) Gain of actual RF

during simulation (gray) and gain of ERLS RF estimate (black). (Reproduced, with permission,

from [33]. Copyright # 2005 by IEEE.)
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RF was set to twice the inverse of the contrast. Because the contrast of the stimulus was

constantly varying and transitions were not well defined, the value of the adaptive learning

rate s2
q½n� was proportional to the derivative of the stimulus contrast, as shown in

Figure 5.3c. At each time step, s2
q½n� was defined as 1024 times the absolute value of the

first-order difference in the contrast of the stimulus. Figure 5.3d shows the results of the

estimation. The gain of the ERLS RF estimate (black) closely tracks that of the actual

RF (gray). Aside from the error associated with the initial conditions and some of the

very fast transients, the ERLS RF estimate captures most of the gain changes in

the actual RF.

5.5 IDENTIFICATION OF MULTIPLE
ADAPTIVE MECHANISMS

As demonstrated in the previous section, ERLS provides accurate tracking of RF changes

during nonstationary stimulation. In addition to the RF, recent studies of adaptive function

in the visual system have demonstrated a second locus of adaptation. Intracellular record-

ings of retinal, thalamic, and cortical responses to nonstationary stimuli have revealed

modulation of the baseline membrane potential on both fast (millisecond) and slow

(second) time scales in responses to changes in features of the stimulus [18, 19, 37].

These changes have an important functional role, as the baseline membrane potential

determines the size of the stimulus that is necessary to evoke a spike response, thereby

setting the operating point of the neuron with respect to the spike threshold. For

example, the same stimulus and RF can result in a high firing rate if the membrane is

depolarized (and the potential is already close to the spike threshold), or no spikes at all

if the membrane is hyperpolarized.

To reflect these changes in baseline membrane potential, the cascade encoding

model must be expanded. In the cascade model shown in Figure 5.4, an offset u is

added to the filtered stimulus y before the static nonlinearity. This offset shifts the operat-

ing point of the model with respect to the rectification threshold, capturing the effects of

changes in the baseline membrane potential. It is important to note that the offset captures

only those changes in the membrane potential that are not accounted for by the filtering of

the visual stimulus in the RF. For example, although a decrease in the mean of the stimulus

would result in a direct decrease in the mean of the membrane potential, this change would

be reflected in the filtered stimulus y, not in the offset. However, if this decrease in the

Figure 5.4 Expanded model of visual encoding. The spatiotemporal visual stimulus s is passed

through a time-varying linear filter g (the spatiotemporal RF) to yield the intermediate signal y.

This signal is then combined with additive, independent, Gaussian noise v and and time-varying

offset u to yield the generating function z and passed through a rectifying static nonlinearity f

to produce the nonnegative firing rate l. (Adapted, with permission, from [33]. Copyright# 2005

by IEEE.)
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mean of the stimulus also causes a change in the baseline membrane potential via some

indirect adaptive mechanism, that change would be reflected in the offset.

To track adaptive changes in both the RF and the offset, the ERLS technique

described in the previous section must be expanded. If the offset is not included in the esti-

mation process, its interactions with the static nonlinearity can influence the estimation of

the RF. Because the RF and offset may be changing simultaneously, it is imperative that

the estimation technique be able to identify changes in model parameters uniquely. If the

model structure underlying the parameter estimation process is misspecified by neglecting

the offset (or assuming it to be zero), changes in the baseline membrane potential, or even

in the statistics of the input, can be reflected as changes in the gain of the RF.

Consider a reduced encoding model defined by the mapping from the stimulus s to

the generating function z (with zero offset) via a time-invariant RF g. Based on obser-

vations of s and z, the linear least-squares RF estimate ĝ1 that minimizes the MSE

between the predicted generating function ẑ and the actual generating function z is given

by ĝ1 ¼ F�1
ss fsz, where Fss is the Toeplitz matrix of the stimulus autocovariance at differ-

ent time lags and fsz is the cross covariance between the stimulus and response [6]. In the

absence of noise, the estimate ĝ1 will equal the actual RF g, and in the presence of noise, ĝ1
will converge to g as more data are observed. However, when the observed response is not

the generating function z but, for example, the rectified firing rate l, there is a mismatch

between the model assumed in linear least-squares estimation and the actual system.

The mapping from s to l consists of a cascade of two elements, the linear RF g and

the static nonlinearity f. Because the generating function z undergoes additional processing

in the static nonlinearity, the linear least-squares RF estimate from observations of s and l,
which is ĝ2 ¼ F�1

ss fsl, does not necessarily equal ĝ1, the RF estimate from observations of

s and z. In fact, according to the result of a theorem by Bussgang [38], ĝ2 is a scaled version

of ĝ1. Bussgang’s theorem states that the cross covariance between the input to a static non-

linearity and the output of a static nonlinearity, in this case fzl, is proportional to the auto-

covariance of the input to the static nonlinearity, in this case fzz. Thus, the linear

least-squares estimate of the mapping from z to l is a constant C ¼ fzl=fzz and the best

linear estimate of the two-element cascade mapping s to l is ĝ2 ¼ CF�1
ss fsz ¼ Cĝ1.

Consider ĝ1, the RF estimated using linear least-squares from observations of the

generating function z, and ĝ2, the RF estimated using linear least-squares from observations

of the rectified response l. As we have previously described [25], the scaling constant C

relating ĝ2 to ĝ1 is a function of the fraction of the distribution of z that is rectified. Assum-

ing that the distribution of y (before offset) is symmetric with zero mean, then the fraction

of the generating function z (after offset) that will be rectified is a function of the ratio of the

offset to the standard deviation of z, u=sz. For zero offset and a linear half-wave rectifying

static nonlinearity, half of the generating function is rectified and the scaling constant C is

equal to 0.5. Because the predicted response in the RLS and ERLS algorithms defined

above is also rectified, the scaling in the RF estimate with zero offset is accounted for

and the RF estimate matches the actual RF. However, because there is no offset in the

model underlying the RLS and ERLS algorithms as defined above, the RF estimate is vul-

nerable to effects that result from nonzero offsets. For positive offsets, the scaling constant

C approaches 1 as less of the signal is rectified, and for negative offsets, the scaling constant

C approaches zero as more of the signal is rectified. Thus, estimation of the RF using the

RLS or ERLS algorithms as defined above for nonzero offsets will yield a scaled version of

the actual RF. It should be noted that, although the scaled version of the RF that results from

estimating the RF without considering a nonzero offset minimizes the MSE between the

actual response and the predicted response of the encoding model without an offset,

the result is not functionally equivalent to the model containing the actual RF and offset.
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When using the RLS or ERLS technique as defined above to estimate the RF of the

neuron from observations of the rectified firing rate l, changes in the ratio of the mean of z

to its standard deviation will result in a change in the fraction of z that is rectified and

apparent changes in the gain of the RF. When the offset is zero and the stimulus is zero

mean, these effects are avoided as the ratio of the mean of z to its standard deviation is

always zero, even if the standard deviation of the stimulus or the gain of the RF is chan-

ging. However, when the offset or the mean of the stimulus is nonzero, changes in the gain

of the RF estimate can be induced by an actual change in the gain of the RF or by changes

in the offset u or the mean or standard deviation of the stimulus. This result has important

implications for the analysis of adaptive encoding, as the stimulus is nonstationary, and

changes in both the gain and offset of the neuron have been reported in experimental

observations.

The confounding effects on the estimation of the RF caused by changes in the oper-

ating point of the neuron can be avoided by including the offset in the estimation process.

The generating function (without noise) z½n� ¼ sTngn þ u½n� can be written as the dot

product z½n� ¼ sTngn ¼ ½sn 1�T½gn u½n��. Because the parameter vector gn is a linear func-

tion of the augmented stimulus vector sn, the RF and offset can be estimated simul-

taneously within the ERLS framework described above simply by substituting the

augmented stimulus and parameter vectors sn and gn for the original stimulus and par-

ameter vectors sn and gn.

5.5.1 Examples

In the following examples, simulated responses are used to understand the effects of

changes in the operating point of the neuron on the estimation of the RF parameters.

Both steady-state and adaptive responses are used to estimate RFs with and without sim-

ultaneous estimation of the offset. In both examples, estimation of the RFs without simul-

taneous estimation of the offset produces misleading results, while accurate estimates of

the RF and offset are obtained when the expanded ERLS technique is used to estimate

both simultaneously.

5.5.1.1 Effects of Operating Point on RF Estimation The response of a retinal

ganglion cell (RGC) to a single trial of spatially uniform, zero-mean, stationary white

noise was simulated as described in Section 5.4. The simulated responses were used to

estimate the parameters of the RF with and without simultaneous estimation of the

offset. During the estimation process, the distribution of the generating function z is

inferred, based on observations of the response and the structure of the underlying encod-

ing model, and the gain of the RF estimate is based on the spread of this inferred distri-

bution. For a given stimulus, a narrow distribution of z corresponds to an RF with a

small gain, while a wide distribution of z corresponds to an RF with a large gain. Compar-

ing the actual and inferred distributions of the generating function under various con-

ditions can provide some insight into the effects of the offset on the estimation of the

RF parameters. In Figure 5.5, the distributions of the actual generating function z of the

model neuron (with u=sz = 20.5) are compared to the distributions of the inferred gener-

ating function ẑ, generated from RFs estimated with and without simultaneous estimation

of the offset.

Figure 5.5a shows the distribution of the actual generating function z (gray) and the

inferred generating function ẑ (black) when the offset is not included in the estimation

process. The fraction of the actual generating function that is present in the observed

response, after offset and rectification, is shaded. Because the offset is neglected during
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Figure 5.5 Effects of operating point on estimation of RF. The response of a RGC to spatially

uniform, zero-mean, stationary white noise was simulated and the responses were used to estimate

the RF of the simulated neuron, with and without simultaneous estimation of the offset.

(a) Probability distributions of actual generating function of simulated neuron z (gray) and inferred

generating function ẑ (black) generated by encoding model with RF estimated without

simultaneous estimation of offset. The fraction of the actual generating function that is present in

the observed response after offset and rectification is shaded. The mean of each distribution is

indicated by the vertical bars above each distribution. (b) RF estimates (black, thickness corresponds

to offset value, see legend) when RF is estimated without simultaneous estimation of offset for

variety of offset values. The actual RF is also shown (gray). (c) Distributions of actual

generating function and inferred generating function generated by encoding model with RF

estimated while simultaneously estimating offset. (d ) RF estimates when RF and offset are

estimated simultaneously for same range of offset values presented in (b). (Adapted, with

permission, from [34]. Copyright # 2006 by the Taylor and Francis Group.)
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the estimation process, the mean of the inferred generating function mẑ is constrained to be

zero (for a zero-mean stimulus). Thus, the distribution of ẑ is centered around zero, while

the distribution of z is centered around the negative offset. Because the offset is not

included in the estimation process and the generating function is assumed to be zero

mean, the RF estimate is scaled as if exactly half of the actual generating function was

rectified. When the actual offset is less than zero, as in this example, this results in an

RF estimate with a gain that is smaller than that of the actual RF, while, when the

actual offset is greater than zero, this results in an RF estimate with a gain that is larger

than that of the actual RF. This is evidenced by the RF estimates shown in Figure 5.5b.

The RFs estimated without simultaneous estimation of the offset are shown for a

variety of offset values (ratio of offset to standard deviation of generating function,

u=sz, between 20.5 and 0.5). The effects described above are visible in the scaling of

the RF estimates (black, thickness corresponds to offset value) relative to the actual RF

(gray). For zero offset, the gain of the RF estimate matches that of the actual RF. For

nonzero offsets the effects of the interaction between the offset and the static nonlinearity

are visible as a scaling of the RF estimate. When the RF and offset are estimated simul-

taneously, the distribution of the inferred generating function ẑ matches that of the

actual generating function z (Fig. 5.5c), and the RF estimates are accurate across the

entire range of offset values (Fig. 5.5d ).

5.5.1.2 Simultaneous Tracking of Changes in RF and Offset The interaction

between the offset and the static nonlinearity described in the previous example can

have a significant impact on the estimation of the parameters of the encoding model

during adaptive function, potentially masking, confounding, or creating the illusion of

adaptive function. In this example, the response of a RGC to spatially uniform white

noise was simulated as above. However, in this simulation, the contrast of the stimulus

was increased midway through the 60-s trial. Baccus and Meister [19] found that such

changes in stimulus contrast were followed by fast changes in gain and temporal dynamics

in RGCs (over the time course of approximately 100 ms) as well as changes in baseline

membrane potential with opposing fast and slow (over the time course of approximately

10 s) dynamics. To model these changes, simulations were conducted in which the RGC

responded to the contrast switch with corresponding changes in gain (defined as the peak

amplitude of the RF) and/or offset. Again, ERLS is used to estimate the parameters of the

RF and offset from stimulus–response data. As described above, if the RF and offset are

not estimated simultaneously, then changes in the offset or in the statistics of the stimulus

can be reflected as changes in the gain of the RF estimate.

In the first example, both gain and offset remained fixed while the stimulus was

increased from low to high contrast. The results of estimating the RF of the simulated

neuron with and without simultaneous estimation of the offset are shown in Figure 5.6a.

While the gain of the RF estimated with simultaneous estimation of the offset (solid

black) is similar to the actual gain (dashed black) and remains relatively constant through-

out the trial, the gain of the RF estimated without simultaneous estimation of the offset

(gray) decreases after the contrast switch. The increase in the standard deviation of the

stimulus results in a decrease in the ratio u=sz from 0.5 to 0.25, which affects

the scaling of the RF estimate when the offset is not estimated simultaneously. Because

the response of the neuron has been rectified and has a nonzero offset that is neglected

during the estimation process, changes in the standard deviation of the stimulus are

reflected as changes in the gain of the RF estimate. Although the encoding properties of

the neuron are completely stationary, the RF estimated without simultaneous estimation

of the offset appears to adapt due to the interaction between the offset and the static
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Figure 5.6 Simultaneous tracking of changes in RF and offset. The response of a RGC to

spatially uniform, contrast switching white noise was simulated and the responses were used to

estimate the RF and offset of the simulated neuron. The contrast switch in the stimulus was

accompanied by corresponding changes in the gain and offset of the simulated neuron. (a) RF

and offset estimates for simulated neuron with gain and offset held fixed throughout trial. The

RF estimates with (black) and without (gray) simultaneous estimation of the offset are shown in

the top plot, along with the offset estimate in the bottom plot. In both plots, the actual value of

the quantity to be estimated is also shown (dashed black). The contrast of the stimulus is

indicated under the time axis of the top plot. Similar plots are shown for examples in which the

simulated neuron responded to the contrast switch with a fast change in offset (b), fast changes

in gain and offset (c), as well as an additional slow change in offset (d ). (Reproduced, with

permission, from [34]. Copyright # 2006 by the Taylor and Francis Group.)
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nonlinearity. Note also the increased variability in the RF estimated without simultaneous

estimation of the offset.

In the second example, the gain remained fixed after the switch from low to high

contrast, while the offset u was increased from 0 to 10 over the 300 ms following the

switch (u=sz increased from 0 to 0.25). The results of estimating the RF of the simulated

neuron with and without simultaneous estimation of the offset are shown in Figure 5.6b.

While the gain of the RF estimated with simultaneous estimation of the offset (solid black)

is similar to the actual gain (dashed black) throughout the trial, the gain of the RF esti-

mated without simultaneous estimation of the offset (gray) increases after the contrast

switch. Because the response of the neuron has been rectified and the offset is neglected

during the estimation process, changes in the offset are mistaken for changes in gain. In

fact, in this case, this effect is mitigated somewhat by the effects of the change in the stan-

dard deviation of the stimulus contrast described above.

In the third example, the fast increase in offset following the switch from low to high

contrast was accompanied by a fast decrease in gain. This results in an increase of the ratio

u=sz from 0 to 0.5. The results of estimating the RF of the simulated neuron with and

without simultaneous estimation of the offset are shown in Figure 5.6c. While the gain

of the RF estimated with simultaneous estimation of the offset (solid black) tracks the

decrease in the actual gain (dashed black), the gain of the RF estimated without simul-

taneous estimation of the offset remains relatively constant following the contrast

switch. In this case, the actual decrease in gain is countered by the apparent increase in

gain that results from neglecting the offset during the estimation process. Thus, the inter-

action between the offset and the static nonlinearity causes the adaptive changes to be

completely masked.

Finally, in the fourth example, a slow decrease in offset is added to the fast changes

in gain and offset in the previous simulation, to more closely approximate experimental

observations. In this example, the offset decreases exponentially toward its original

value of zero in the 30 s following the change in contrast and corresponding fast increases

in gain and offset, reflecting the adaptive behavior observed in actual RGCs. The ratio

u=sz increases from 0 to 0.5 immediately following the switch and gradually returns to

zero. The results of estimating the RF of the simulated neuron with and without simul-

taneous estimation of the offset are shown in Figure 5.6d. While the gain of the RF esti-

mated with simultaneous estimation of the offset (solid black) tracks the fast decrease in

the actual gain (dashed black), the gain of the RF estimated without simultaneous esti-

mation of the offset decreases slowly after the contrast switch. In this case, the interaction

between the offset and the static nonlinearity results in the fast adaptive changes being

completely masked and the slow change in offset being reflected as a slow change in gain.

5.6 CONCLUSIONS

In this chapter, a new framework for the functional characterization of adaptive sensory

systems under nonstationary stimulus conditions via adaptive estimation was developed.

A simple nonlinear model of adaptive visual encoding with a time-varying RF was intro-

duced and an RLS approach to estimating the parameters of the RF from stimulus–response

data was presented. The RLS approach has several drawbacks that limit its ability to track

fast RF changes, namely the dynamics of its underlying state-space model and its fixed

learning rate. The ERLS approach was introduced to provide improved tracking of fast

RF changes by including a stochastic model of parameter evolution based on that which

underlies the Kalman filter and replacing the fixed learning rate with an adaptive one that
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is dependent upon changes in the features of the stimulus that elicit adaptive behavior. Based

on experimental observations of underlying subthreshold membrane properties during adap-

tation, the encoding model was extended to include an adaptive offset to capture changes in

the operating point of the neuron with respect to the rectification threshold and the ERLS

approach was modified to allow simultaneous tracking of adaptive changes in the RF and

the offset. By formulating the problem in this manner, the spatiotemporal integration prop-

erties of the RF can be decoupled from the intrinsic membrane properties of the neuron

captured by the offset and the static nonlinearity, and each adaptive component of the

model can be uniquely identified. It was demonstrated that, if not properly accounted for,

changes in the operating point of the neuron can have a significant impact on the estimation

of the parameters of the encoding model during adaptive function, potentially masking,

confounding, or creating the illusion of adaptive function.

The encoding models and parameter estimation techniques presented here provide

a framework for the investigation of adaptation under complex stimulus conditions, so

that comprehensive models of visual function in the natural environment can be devel-

oped. By observing adaptive visual function while systematically varying stimulus fea-

tures, the features that evoke adaptation and their effects on the encoding properties of

the pathway can be precisely characterized. Although the basic properties of adaptation

have been studied extensively at the level of the retina, thalamus, and primary visual

cortex, the interactions between different forms of adaptation have not been adequately

described. Finally, in addition to enhancing our understanding of the basic neurobiological

function provided by the early sensory pathways, adaptive mechanisms must be under-

stood and characterized for the design of engineering applications that seek to enhance

or replace neuronal function lost due to trauma or disease. Rudimentary gain control

mechanisms have been successfully implemented in cochlear prosthetics, and the

development of similar mechanisms is imperative for the success of analogous devices

for the visual pathway.

APPENDIX: DERIVATION OF THE RLS ALGORITHM

This Appendix provides a derivation of the RLS algorithm for estimation of the RF g from

observations of y (see Fig. 5.1). The derivation is based on that found in [27]. The goal of

RLS is to recursively generate ĝ, the RF estimate that minimizes the weighted MSE

between the observed response y and the predicted response of the model ŷ ¼ sTn ĝn. At

time n, the cost function J can be written as

J½n� ¼
X

n

i¼M

g n�ije½i�j2 (5:5)

where

e½i� ¼
4 y½i� � sTi ĝi (5:6)

and g is a positive constant between zero and 1, often referred to as the forgetting factor,

that determines the weight of each observation. The vectors si and ĝi are defined as

si ¼
4 s½P, i�M þ 1�, s½P� 1, i�M þ 1�, . . . , s½1, i�M þ 1�,½

s½P, i�M þ 2�, . . . , s½1, i��T

ĝi ¼
4 ĝi½P,M�, ĝi½P� 1,M�, . . . , ĝi½1,M�, ĝi½P,M � 1�, . . . , ĝi½1, 1�½ �T
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where T denotes matrix transpose and P and M are the number of spatial and temporal

elements in the RF, respectively. The value g ¼ 1 causes all observations to be weighted

equally, while g , 1 causes the current observation to be weighted the most heavily and

past observations to be successively downweighted.

The estimate of the RF that minimizes the cost function in Eq. (5.5) at time n is

ĝn ¼ F�1
snsn

fsny½n�, where Fsnsn is the Toeplitz matrix of the stimulus autocovariance at

different lags and fsny½n�
is the vector of the cross covariance between the stimulus and

response at different lags:

Fsnsn ¼
X

n

i¼M

gn�isis
T
i fsny½n� ¼

X

n

i¼M

g;n�isiy½i�

The terms corresponding to the current observation can be isolated to obtain recursive

expressions for Fsnsn and fsny½n�:

Fsnsn ¼ g
X

n�1

i¼M

gn�1�isis
T
i

" #

þ sns
T
n ¼ gFsn�1sn�1

þ sns
T
n

fsny½n� ¼ g
X

n�1

i¼M

g n�1�isiy½i�

" #

þ sny½n� ¼ gfsn�1y½n�1� þ sny½n�

(5:7)

These expressions can be used to form a recursive estimate of the RF. This requires a

recursive expression for F�1
snsn

, which can be obtained using the matrix inversion lemma.

The matrix inversion lemma states that if A ¼ B�1 þ CD�1CT, then

A�1 ¼ B� BC(Dþ CTBC)�1CTB. Applying the matrix inversion lemma to the recursive

expression for Fsnsn in Eq. (5.7) yields

F�1
snsn

¼ g�1F�1
sn�1sn�1

�
g�2F�1

sn�1sn�1
sns

T
nF

�1
sn�1sn�1

g�1sTnF
�1
sn�1sn�1

sn þ 1
(5:8)

Let Kn ¼
4 F�1

snsn
and

Gn ¼
4

g�1Kn�1sn

g�1sTnKn�1sn þ 1
(5:9)

Equation (5.8) can be simplified to obtain

Kn ¼ g�1Kn�1 � g�1Gns
T
nKn�1 (5:10)

Equation (5.9) can be rearranged to obtain a simplified expression for Gn:

Gn ¼ g�1Kn�1sn � g�1Gns
T
nKn�1sn ¼ Knsn

Now, a recursive expression for the RF estimate can be written as

ĝn ¼ Knfsny½n�
¼ gKnfsn�1y½n�1� þ Knsny½n�

¼ Kn�1fsn�1y½n�1� � Gns
T
nKn�1fsn�1y½n�1� þ Knsny½n�

¼ ĝn�1 � Gns
T
n ĝn�1 þ Knsny½n� ¼ ĝn�1 þ Gn½y½n� � sTn ĝn�1�

¼ ĝn�1 þ Gne½n� (5:11)
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Thus, the estimate of the RF can be computed recursively at each time step by solving

Eq. (5.6) and (5.9)–(5.11) in the following sequence:

e[n] ¼ y½n� � sTn ĝn�1 Prediction error

Gn ¼
g�1Kn�1sn

g�1sTnKn�1sn þ 1
Update gain

ĝn ¼ ĝn�1 þ Gne½n� Update parameter estimates

Kn ¼ g�1Kn�1 � g�1Gns
T
nKn�1 Update inverse of stimulus autocovariance

If, instead of observations of y, the estimation is being performed with observations of the

firing rate l, then the predicted response in Eq. (5.6), sTn ĝn�1, is replaced by f (sTn ĝn�1) to

avoid the scaling effects of the static nonlinearity as described in the text.
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CHA P T E R6

DECONVOLUTION OF

OVERLAPPING AUDITORY

BRAINSTEM RESPONSES

OBTAINED AT HIGH

STIMULUS RATES
O. Ozdamar, R. E. Delgado, E. Yavuz, and N. Acikgoz

6.1 INTRODUCTION

Auditory-evoked potentials (AEPs) are generally recorded at low stimulation rates to

prevent the overlap of the responses. The neurons in the auditory pathway, however,

have long been known to respond to stimuli at very high rates with little adaptation.

Rates up to 1000 Hz (corresponding to the refractory period of neurons) can be coded by

different populations of auditory neurons. Such high rate responses, however, cannot be

recorded with conventional evoked potential techniques due to the overlap of responses,

which may cover a long period after stimulus onset. The middle-latency response

(MLR) typically lasts up to about 50–80 ms, which limits the maximum recordable rates

to 12.5–20 Hz [1]. The auditory brainstem response (ABR) is an earlier response with a

duration of about 12–15 ms and is generally recorded at rates below 67–83 Hz.

Eysholdt and Schreiner [2] first offered a solution to this problem in 1982 using

special properties of the maximum-length sequences (MLSs) to deconvolve the overlap-

ping ABR responses obtained at rates higher than 100 Hz. Later, other special sequences

such as Legendre series were introduced to expand the choice of sequences [3–5]. One

major limitation of these special techniques has always been the limited set of available

stimulus sequences, which never exceeded a handful in number. In addition, the instan-

taneous rates of these sequences cover most of the frequencies with a heavy representation

in high frequencies (see Fig. 6.1, top left, for an MLS example). A new frequency-domain

method for deconvolution was recently introduced by Jewett and his colleagues [6], but

this technique was also limited to a small selection of specially designed sequences

which are generated on a trial-by-error basis.

Recently, we have developed a new time-domain method called continuous-loop

averaging deconvolution (CLAD) for high-stimulation-rate recording [7–9] which

enables the deconvolution of overlapping responses to a very large set of stimulus

sequences as long as such a deconvolution is mathematically possible and signal-to-noise

ratio (SNR) conditions are favorable. The CLAD method generalizes the deconvolution
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process in the time domain to most arbitrary sequences. In this study, we present CLAD

ABR recordings made with stimulation rates up to 800 Hz. An analysis of the responses

and comparison with previous studies are made.

6.2 METHODOLOGY

6.2.1 CLAD Method

The CLAD method requires data to be acquired using a continuous acquisition loop buffer

v[t] containing the arithmetic sum of all the individual responses starting at their respect-

ive triggering positions. It assumes that the individual responses a[t] to each stimuli are

independent of each other and that the measured complex response is the arithmetic

sum of the individual overlapping responses. Given these constraints, the proposed tech-

nique can deconvolve the resulting complex response acquired to provide the actual

response to each stimulus (or triggering event). Data in response to a desired stimulus pres-

entation sequence are continuously acquired throughout the sequence until the sequence

starts again. The time duration of the acquisition loop determines the duration of the

deconvolved response to the triggering event.

The convoluted measured response vector v[t] is related to the desired deconvoluted

response vector a[t] with the following simple matrix equation:

v½t� ¼ Ma½t� (6:1)

where M is a multidiagonal matrix with a sequence of 1’s and 0’s related to the stimulus

sequence. Deconvoluted response to individual stimuli can be obtained simply by solving

for a[t] as follows:

a½t� ¼ M
�1
v½t� (6:2)

Not all stimulation sequences will result in equations that generate unique solutions.

The existence of M21 determines if the deconvoluted response can be obtained. As

expected, the traditionally used uniform-rate stimulation (isochronous sequence

pattern) does not produce an invertable matrix. Unlike other methods, however,

CLAD allows the generation of sequences that are nearly isochronous by varying

only the position of the final stimulus. One very important property of the inverse

matrix is that it retains its multidiagonal property. All the coefficients repeat diagonally

across the entire matrix. This allows the computer to store only the first row of the

matrix [M21]r as a row vector m
21[t] for use during deconvolution resulting in a

considerable data storage savings [8].

6.2.2 Stimuli

The stimuli used consisted of rarefaction clicks (100 ms duration) presented at 11.1 Hz for

conventional averaging or seven CLAD sequences, shown in Table 6.1. These sequences

were designed to cover a range of mean stimulation rates from 58.6 to 800.8 Hz. The mean

rate for each sequence is calculated by averaging the instantaneous rates whose probability

distributions are displayed in Figure 6.1. As shown, CLAD sequences can be distributed

according to any arbitrary pattern. In the lower rate sequences used in this study (58.6–

156.3 Hz), instantaneous rates were concentrated near their mean rates, thus providing

near-isochronous stimulation patterns. The instantaneous rates for the higher frequency

sequence (195.3–800.8 Hz) instantaneous rates were distributed more broadly. They
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were, however, more centrally distributed as compared to the corresponding MLS

sequences.

6.2.3 Subjects and Recordings

Auditory brainstem response recordings from six young-adult subjects (four males, two

females, ages 21–30 years) with normal hearing were made using the Smart-EP (Intelli-

gent Hearing Systems, Miami) evoked potential system. All recordings were obtained with

the stimulus presented to the right ear using insert earphones (ER3A) while the subjects

were lying down on a bed in a sound-attenuated room. Conventional recording parameters

(gain 100,000; filters 10–1500 Hz, 6 dB/octave) and electrode placements (positive:

upper forehead; negative: right mastoid; ground: left mastoid) were used.

Each subject was first tested using the standard ABR averaging technique at a stimu-

lation rate of 11.1 Hz. The subjects were then tested using the seven CLAD sequences with

clicks at 60 dB HL. The order of sequence presentation was randomized. For two

additional sequences (97.7 and 195.3 Hz) eight click levels (from 0 to 70 dB HL in

10-dB steps) were used. Similar recordings were obtained using MLS and Legendre

sequences (LGSs) as well. At least two recordings were acquired for each stimulation

sequence and click level.

The CLAD buffer contained 2048 data points collected at 25 ms sampling time. This

sampling time provided a recording period of 51.2 ms. Each averaged recording consisted

of two buffers implemented in a split-sweep technique containing 512 stimulus sequence.

For deconvolution purposes, each buffer was downsampled to 256 points and the response

deconvolution calculated in real time as described by Delgado and Ozdamar [8]. Both

convolved and deconvolved recordings were stored for later analysis.

The ABR waves III and V were labeled in each recording and the amplitudes were

measured using the falling slope. Wave I was not measured since it was not present in all

recordings. The amplitudes, peak latencies, and interpeak intervals were plotted for analysis.

TABLE 6.1 Statistical Descriptors for the CLAD Sequences used in this Study

Mean

rate (Hz)

Stimuli

per

cycle N

Median

rate (Hz)

Min

rate (Hz)

Max

rate (Hz) Stimulus sequence (base 256)

58.6 3 56.18 55.56 64.94 1, 90, 180

97.7 5 100.00 87.72 102.04 1, 50, 100, 150, 200

156.3 8 151.52 151.52 192.31 1, 33, 66, 99, 132, 165, 198, 231

195.3 10 192.31 106.38 714.29 1, 25, 51, 98, 125, 152, 175, 202, 225,

250

293.0 15 312.50 192.31 454.55 1, 17, 33, 53, 67, 85, 9, 119, 139, 150,

171, 187, 200, 220, 231

507.8 26 454.55

(EST)

312.50 1666.67 1, 9, 12, 19, 32, 41, 52, 59, 70, 78, 91,

100, 111, 119, 131, 140, 153, 159,

171, 182, 190, 201, 209, 222, 230, 241

800.8 41 1000.0 292.12 1666.67 1, 6, 11, 19, 22, 31, 36, 40, 47, 52, 59, 67,

71, 80, 83, 91, 94, 100, 109, 113, 120,

125,133, 137, 141, 150, 155, 163,

168, 171, 181, 185, 191, 196, 200,

210, 213, 221, 228, 233, 240
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Figure 6.1 Distribution of MLS and CLAD instantaneous rates used in this study. Top left: rate

distribution of MLS sequence L ¼ 31. The remaining diagrams depict the instantaneous rates for each

CLAD sequence. The mean rates for all CLAD sequences are marked with arrows.
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6.3 RESULTS

6.3.1 Stimulation Rate Experiments

For the rate experiment, recordings to 60-dB HL rarefaction clicks at seven stimulation rates

(mean rates 58.6, 97.7, 156.3, 195.3, 293.0, 507.8, and 800.7 Hz) were acquired from five

ears. The ABR recordings obtained at all seven rates produced identifiable wave V com-

ponents at all high and moderate click levels. Examples of convolved and deconvolved

recordings using 60-dB HL clicks at different rates are shown in Figure 6.2. As can be

observed, waves I, III, and V are readily discernible in both convolved and deconvolved

recordings obtained at rates less than 100 Hz. For higher rates, ABR components start over-

lapping with each other, producing complex tracings. Deconvolved responses obtained with

CLAD shows wave V component clearly even at 507.8 and 800.7 Hz as observed. As

expected, at such high rates wave V is largely diminished in amplitude and prolonged in

latency. Earlier components I and III are less discernible at such rates.

Wave III and V latencies, amplitudes, and latency intervals for all five ears for

all recordings are plotted in Figure 6.3. The top-left portion of the diagram shows the

latencies of peaks III and V and below the interpeak III–V interval. As expected,

the latencies become prolonged with increasing stimulation rates. The interpeak III–V

latency also increases with increasing stimulation rate. The change in amplitude with

Figure 6.2 (a) Deconvolved and (b) nondeconvolved CLAD recordings for one subject

acquired at stimulation sound level of 60 dB HL using seven different rates. Waves III and V are

labeled accordingly. Two top-left recordings were acquired at rates of 11.1 and 21.1 Hz using

standard averaging.
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respect to stimulation rate for both waves III and V is shown on the right side. A large

reduction in amplitude can be observed for wave V as the stimulation rate is increased.

6.3.2 Click-Level Experiment

For click-level experiments, ABR data from five ears were recorded from 0 to 70 dB HL in

10-dB steps at rates of 97.7 and 195.3 Hz. Decreasing click levels also produced amplitude

attenuation and latency prolongation in both rates. An example set of recordings obtained

at 195.3 Hz to increasing click levels is shown in Figure 6.4. For this set of recordings,

wave V was observed down to 10 dB HL. Wave V was discernible down to 20 dB HL

in all five ears and at 10 dB HL in three ears.

Figure 6.5 shows the average latency and amplitude characteristics with respect to

click level for two stimulation rates (97.7 and 195.3 Hz). An increase in click level

shows a decrease in peak latency and an increase in peak amplitude. The mean III–V

interpeak interval shows a small increase (about 0.2 ms) with increasing stimulation level.

6.4 DISCUSSION

The data acquired in this study demonstrate that CLAD can be used for real-time acqui-

sition of clinical-quality ABR recordings at high stimulation rates up to 800.8 Hz. The

experiments also show that this technique can be utilized to obtain ABR responses at

Figure 6.3 (a) Latencies and (b) amplitudes of waves III and V and (c) III–V interpeak latencies as

function of stimulation rate. Data points correspond to individual subjects. The mean values obtained from

five ears are shown with open symbols and connected from one rate to another. The first rate value

(11.1 Hz) was obtained through conventional averaging while the others were obtained using CLAD.
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rates close to the absolute refractory period (about 1 kHz) of auditory brainstem fibers. As

expected, the ABR recordings displayed the typical pattern of increases in peak latency

and decreases in peak amplitude with both increasing stimulation rate and decreasing

stimulation intensity. All major ABR components were clearly discernible. Comparison

of the CLAD recordings with those acquired using MLS and LGS sequences showed

that the CLAD recordings were very similar with respect to overall morphology, further

validating this technique, and compared favorably with the previously reported latency

and amplitude measurements made using standard averaging and the MLS technique

[10–13]. The CLAD data reported in this study further expand the stimulation rates up

to 800 Hz, not reported in previous studies. Due to a wide selection of stimulus sequences,

CLAD provides a suitable methodology to study adaptation effects at very high stimulus

rates. Recently we have formulated the CLAD technique in the frequency domain which

provided a clearer insight on the SNR characteristics of the deconvolution process [14].

This new technique also provides additional insight as to ABR peak components and

generators. The trend in latencies, interpeak intervals, and amplitudes with respect to

stimulation rate was as expected. Wave III amplitudes did not show a very significant

change due to the manner in which they were measured (falling phase of the peak). As

rate increases, wave III and V amplitudes tend to change differently. These changes

could be due to the differential interactions in the fast and slow components of ABR as

a function of stimulation rate. Increasing the stimulation intensity and the averaging

count is expected to sufficiently increase the SNR level of the recording to also study

wave I characteristics in the future.

Figure 6.4 Representative ABR recordings from one subject obtained at decreasing click

levels. (a) Nondeconvolved ABR recordings obtained at rate of 195.3 Hz. (b) Corresponding

deconvolved ABR recordings obtained with CLAD.
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Unlike previously developed techniques, the ability to generate CLAD sequences that

are almost isochronous provides a method that can be more easily compared to standard

recordings acquired with traditional averaging methods at lower stimulation rates. The

CLAD method provides a wider range of stimulation sequences and better control of the

interstimulus intervals with less stimulus jitter. The ability to generate almost any arbitrary

stimulation sequence using CLAD greatly expands the clinical potential of ABRs for early

clinical evaluation of neurological conditions such as multiple sclerosis (MS) and other mye-

lination disorders. This study is only a demonstration of the possible applications of this tech-

nique. The ability to generate stimulation sequences that are nearly isochronous allows

researchers to study the auditory pathway in a more precise manner than previously possible

withMLS sequences. This could also have more direct influence on late evoked potentials in

which the stimulus sequence is commonly jittered. By contrast, MLS cannot provide the

necessary small constant jitter that is required to collect late evoked potentials but rather pro-

vides abrupt jumps in instantaneous rates. Since near isochronous rates can be achieved using

CLAD, different adaptation effects of the broadly distributed MLS rates can be avoided.

This study demonstrates that CLAD can be used for real-time acquisition of overlap-

ping ABRs obtained at high stimulation rates. This procedure can also be implemented for

Figure 6.5 Latencies of waves III and V (top) and III–V interpeak intervals (middle) and amplitudes of

waves III and V (bottom) as function of stimulation intensity for data acquired at presentation rates of

(a) 97.7 Hz and (b) 195.3 Hz from one representative ear.
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any evoked potential application or technique requiring synchronized time averaging. This

technique may enable us to study the early effects of demyelinating diseases on evoked

responses and differentiation of adaptation along the auditory pathway which may be

useful as a diagnostic and monitoring tool.
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CHA P T E R7

AUTONOMIC CARDIAC

MODULATION AT SINOATRIAL

AND ATRIOVENTRICULAR

NODES: OBSERVATIONS

AND MODELS
S. Ward, R. Shouldice, C. Heneghan,

P. Nolan, and G. McDarby

7.1 INTRODUCTION

The complete sequence of successive atrial and ventricular electromechanical events pro-

duced by the conduction of electrical impulses in the heart is known as the cardiac cycle.

Two main contributors to timing variations within the cardiac cycle are the spontaneous

firing rates of the sinoatrial (SA) pacemaker cells and the conduction time through the

atrioventricular (AV) node, both of which are primarily regulated by the autonomic

nervous system (ANS). The influence of the ANS on the SA node causes alterations in

the spontaneous firing rate of the primary pacemaker and will therefore have a direct influ-

ence on the overall heart rate as assessed by interbeat (PP or RR) interval measurements

obtained from the surface lead electrocardiogram (ECG). The study of this interbeat

variation is well established and is known as heart rate variability (HRV) analysis,

which has been traditionally used as a marker of cardiovascular dysfunction [1]. The

ANS also influences the conduction time through the AV node which may be assessed

through intrabeat (PR) interval measurements (under the assumption that the propagation

time from the SA node to the AV node is relatively fixed). Research into the area of ANS

effects on AV conduction time (AVCT) assessed through PR interval variation has

intensified recently due to both increased interest in noninvasive assessment of ANS

activity at the AV node and the development of more accurate and reliable PR interval

estimators [2–8]. The ANS affects the AV and SA nodes in a similar manner, though

neural interactions with intrinsic AV nodal properties can lead to highly complex

AVCT dynamics. The refractory period is one such property, which will slow down

conduction if the AV cells have recently conducted and hence tries to produce long PR

intervals in response to short PP cycles. The purpose of this chapter is to noninvasively

examine the relation between ANS activity at the SA node and AV node in normal subjects

in vivo and to provide a physiologically plausible model of how ANS activity modulates

both overall cardiac cycle and AVCT. Our experimental observations are based on
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the autonomic response generated by a simple supine-to-standing transition. We show that

an integrate and fire model can be used to account for variation in the observed PP and PR

intervals. Moreover, we wish to address a significant unresolved issue in the field, namely,

is autonomic activity at the AV node strongly coupled with autonomic activity at the SA

node? In this context “strong coupling” refers to the scenario where changes in parasym-

pathetic and sympathetic innervations at the SA node are faithfully repeated at the AV

node (i.e., if parasympathetic activity at the SA node goes up by 50%, then parasympa-

thetic activity at the AV node goes up by 50%). Conversely, we can postulate physiology

in which autonomic activity at the AV node is unrelated to that at the SA node (e.g., it will

be perfectly normal for parasympathetic outflow to increase at the SA node and decrease at

the AV node simultaneously). This is illustrated schematically in Figure 7.1, where we

Figure 7.1 Schematic representation of concept of “coupled” and “uncoupled” innervation of

the SA and AV nodes. In all plots, x axis units represent time in seconds and the y axis is in

arbitrary units, corresponding to “neural modulation strength.” (a) Time-varying neural activity

at SA node over period of 100 s. Here PSSA(t) is the time-varying component of the parasympathetic

system at the SA node, SSA(t) is the time-varying component of the sympathetic system at the

SA node, and ATSA(t) is the overall autonomic stimulation [expressed as ATSA(t)SSA(t)� PSSA(t)�.

(b) corresponding time-varying signals for autonomic modulation at AV node for two cases. For

the coupled case, the individual components and their sum are exactly proportional to

modulations at the SA node. For the uncoupled curves, there is no relation (other than chance)

between the signal at the SA node and the signal at the AV node.
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model parasympathetic and sympathetic innervations as time-varying signals and form an

overall autonomic signal as the sum of the sympathetic outflow and the negative of the

parasympathetic outflow. This figure shows that in the perfectly coupled case the

overall autonomic effects at the SA and AV nodes is highly correlated; in the uncoupled

case, these two signals can be totally uncorrelated. In the literature coupled behavior is

also referred to as “dependent” and uncoupled as “independent.” Pure-coupled or pure-

uncoupled behavior is unlikely to be seen in nature, but they are useful concepts to

broadly describe the potential behavior of autonomic neural activity. Indeed, our initial

experimental and modeling results indicate that in fact both types of behavior (or a

mixture) are observed and can be modeled by an integrate-and-fire model.

7.2 PHYSIOLOGICAL BACKROUND

Both efferent and afferent innervations interact with intracardiac innervations to maintain

adequate cardiac output [9]. The two main divisions of the ANS are the parasympathetic

and sympathetic branches, both of which innervate the heart. The parasympathetic nervous

system affects the heart through cholinergic neurotransmitters while the sympathetic

system alters the cardiac cycle through adrenergic neurotransmitters. They influence the

heart in a time-dependent manner with parasympathetic effects having a much shorter

latency period than sympathetic effects. The activity of both of these divisions is modu-

lated by external factors such as respiration and blood pressure. These modulatory

effects have periodic properties reflected in their spectra of interval variations where

high-frequency (HF) components (0.15–0.5 Hz) are ascribed solely to the modulation

of the parasympathetic system and low-frequency (LF) components (0.05–0.15 Hz) are

attributed to both parasympathetic and sympathetic modulatory effects [10, 11]. Shortened

cycle lengths or reduced conduction times are normally associated with a diminution of

parasympathetic and/or an increase in sympathetic activity. Increased cycle lengths

or conduction times are normally associated with opposing changes in neural activity.

The rate at which the heart beats in the absence of neurohumoral influences is referred

to as the intrinsic heart rate. However, in the normal healthy individual, the parasympa-

thetic influence, also referred to as vagal influence, predominates at the SA node, signifi-

cantly reducing the heart rate from its intrinsic rate to a slower rate. The exact effects of

neural influence on the AV node in relation to AVCT remain somewhat unclear [12–15].

The human AV node, like the SA node, possesses a high innervation density, but unlike the

SA node, which has an extremely dense cholinergic (parasympathetic-mediated) inner-

vation compared to other neural subpopulations, the compact region of the AV node

has been observed to possess similar densities of cholinergic and adrenergic (sympathetic-

mediated) neural subpopulations [9, 16]. In addition the behavior of preceding cycle

and conduction rates for many prior beats will affect the timings within the current

beat. These intrinsic nodal effects can be summarized as refractoriness, facilitation, and

fatigue. Refractory effects at the AV node provide a significant intrinsic source of variation

and determine the recovery time of the node (assessed using RP intervals). The AV node

has a relative refractory period after activation during which its conduction velocity is

reduced. Encroachment upon the relative refractory period of the AV node has the para-

doxical effect of lengthening AVCT even as cycle length shortens. Vagal stimulation of

the AV node slows nodal recovery while sympathetic stimulation accelerates recovery

and hence increases AV conduction velocity. More subtle effects relating to stimulation

history have also been seen in the AV node. Facilitation is the process that allows a

shorter than expected AV nodal conduction time to occur after a long AV conduction

period that was preceded by a short refractory period. Fatigue is the time-dependent
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prolongation in AV nodal conduction time during rapid, repetitive excitation. Although

facilitation and fatigue may not contribute as much to AV conduction variation as refrac-

tory effects, nonlinear interaction between these three intrinsic properties may result in

increasingly complex AV nodal conduction dynamics [17, 18].

As a result of this complex physiological system and the experimental difficulties in

accurately acquiring AVCT, relatively little work has been carried out on characterizing

and modeling AVCT. Moreover, to our knowledge there is no definitive answer as to

whether overall ANS activity at the SA and AV nodes is tightly coupled under normal

physiological circumstances or whether a high degree of uncoupled innervation takes

place at these two nodes. Indeed, the published literature in this area is somewhat in dis-

agreement. Leffler et al. concluded from their results that variation in cycle length and

AVCT is derived from a common origin [5]. In their work, they accounted for rate recov-

ery effects in the AV node in order to isolate the autonomic induced variability in RR and

PR intervals and hence concluded that in general the autonomic influence on the SA and

AV nodes is tightly coupled. In contrast, Kowallik and Meesmann concluded from their

studies, involving spontaneous changes in heart rate during sleep, that independent auto-

nomic innervation of the SA and AV nodes occur, even accounting for rate recovery

effects [7]. During sleep, they showed that major body movements were accompanied

by sudden decreases in PP interval. However, PR interval change was not consistent—

shortening, no change, and lengthening were observed. Furthermore, tonic changes in

the PR interval occurred over 15-min periods during which the range of PP intervals

was constant. Recovery-adjusted PR intervals and cycle lengths (RR intervals) were nega-

tively correlated for some periods, suggesting some form of independent autonomic modu-

lation of the SA and AV nodes. Finally, Forester et al. proposed a midway position in

which there is both coupled and decoupled activity; they postulated that standing

reduces the vagal outflow to the SA node and possibly increases the overall sympathetic

tone, while the vagal input to the AV node remains relatively unchanged [19].

7.3 EXPERIMENTAL METHODS AND MEASURES

One possible way of unraveling the parasympathetic and sympathetic effects present in

interbeat and intrabeat intervals is to analyze the interval variations as a result of postural

transitions [5, 6, 19]. For example, a supine-to-standing transition will produce an auto-

nomic response whose effect at the SA node is well understood. Therefore, we designed

a simple experimental procedure which included this postural transition and sufficient

time in both supine and standing positions to assess statistical variations in a “steady-state”

condition. The protocol also included sections of deep paced respiration, since this is

known to increase parasympathetic modulation, but the observations for paced respiration

are not discussed or modeled in this chapter.

7.3.1 Protocol

Data were collected from 20 normal healthy male subjects in sinus rhythm with a mean

age of 25 [standard deviation (SD) 3.28 years, range 22–34 years]. Subjects had no

history of cardiac or respiratory illness and were not taking medications with autonomic

effects. The protocol also stipulated no alcohol or caffeine for 8 h prior to the study, no

food 2 h prior, a normal night’s sleep prior to the study, and no unusual stressors. Informed

consent was obtained from all subjects prior to data collection and the laboratory was

closed to others for the duration of the experimental protocol with unobtrusive background
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music played. The data consist of standard bipolar leads I, II, and III and Lewis lead

ECG signals for 42 min duration. The Lewis lead (modified lead II) electrode configur-

ation is considered in this work due to the fact that it emphasizes atrial activity and

therefore simplifies the task of automated P-wave detection. Signals are amplified and

bandpass filtered in hardware at acquisition time (Grass P155, Astro-Med, Slough, UK),

with a passband between 0.01 and 100 Hz. They are digitized at a sampling rate of

1000 Hz using a CED m1401 interface and Spike 2 software (Cambridge Electronic

Design, Cambridge, UK). A 50-Hz digital notch filter is applied to attenuate power

line interference. Lung tidal volume is monitored simultaneously by uncalibrated

AC-coupled respiratory inductance plethysmography (Respitrace, Ambulatory Monitor-

ing, Ardsley, NY). Signals are recorded in both supine and standing positions, with two

sections of deep breathing. Table 7.1 outlines the onset times of the various experimental

interventions.

7.3.2 Results

The PP (P-wave onset to following P-wave onset), PR (P-wave onset to following QRS

onset), and RP (QRS onset to following P-wave onset) intervals were extracted using a

wavelet-based technique [20]. In [20], we showed that the accuracy of automated PP

and PR interval estimation was comparable to that of a human expert. To capture the

“average” changes provoked by the supine-to-standing transition, Figure 7.2a shows the

median PP and PR interval for all 20 subjects on a beat-by-beat basis in a 300-beat

window centered around the standing event. Figure 7.2b shows the mean PP and PR

intervals over a 40-beat window. To illustrate that the group median and mean responses

reflect individual subjects, Figure 7.2c shows the same response for subject number

RM170802P1, also over a 40-beat window. In general, immediately after the event,

a pronounced shortening of the PP interval is evident; in contrast the PR interval lengthens.

To illustrate the complexities of explaining variations in AVCT, consider that this

lengthening could be ascribed to either (a) refractory period effects (i.e., AV nodal recov-

ery period increased by previous short RP interval) or (b) a paradoxical transient increase

of parasympathetic activation of the AV node. After about 10 beats have elapsed, the PR

interval duration returns to near preevent baseline value; PP continues to shorten.

However, the temporal decoupling of the PP and PR intervals at the transition is indicative

of a difference in the underlying time constant of autonomic influence of the SA and AV

nodes and may suggest that the relative sympathovagal innervation of each node is differ-

ent. The effect is visible in the group mean, trimmed (at 10%) mean, and median of the

interval values on a beat-by-beat basis. From beat numbers 20–35 in Figure 7.2a the

TABLE 7.1 Experimental Protocol: Interventions and Onset Times

Time (min) Intervention

0 Supine acclimatization period

15 Supine paced deep breathing, 6 vital capacity breaths per minute

17 10 min supine rest

27 Standing rapidly and remaining as motionless as possible

37 Standing paced deep breathing, 6 vital capacity breaths per minute

39 Normal breathing

42 End
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PP value is observed to return to a pattern similar to that seen before the transient event,

albeit at a lower (i.e., higher rate) baseline value. The overall PR interval trend is similar to

that of PP, with the notable exception of the early 0–5 beat number index lengthening. An

interpretation of these results is that the transition from supine to standing causes (a) a

reduction in parasympathetic activation of the SA node, (b) no significant change in the

Figure 7.2 Plots of PP

and scaled PR (PR � 5)

interval variations:

(a) median PP and scaled

median PR interval for 20

subjects in 300-beat time

frame; (b) mean PP and

mean scaled PR interval for

20 subjects over a 40-beat

window; (c) PP and scaled

PR interval for subject

RM170802P1 over 40-beat

interval.
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parasympathetic activation of the AV node, and (c) an increase in sympathetic activation

of both the SA and AV nodes. This is consistent with the findings of [19]. In our later

modeling, we will show that such a scenario leads to model results similar to those

experimentally observed.

As a second experimental observation, we will consider values of PP, PR, and RP

in the steady-state supine and standing positions. If PR interval variability was purely

controlled by AV autonomic activity directly coupled to SA autonomic activity, then

plots of PP versus PR (or RP vs. PR) should be approximately linear. Conversely, if

the only effect on AVCT is refractoriness, then PR should be a hyperbolic function of

RP. In practice we can expect some mixture of these two behaviors. Figures 7.3a,b,c

show plots of recovery period, Rn�1Pn, versus intrabeat interval, PnRn, on a steady-state

posture basis for three subjects (YK020702P1, CH280602P1, and DM130702P1).

These plots are representative of the types of patterns seen. Figure 7.3a shows a

subject who can vary his PR and RP intervals over quite a large range. No significant

refractory influence is seen, even for quite short RP intervals (i.e., there is no increase

in PR for small RP). The standing and supine positions lead to quite distinct “operating”

points for PR. An interpretation of these clusters is that the overall autonomic

influence at the SA and AV nodes is tightly coupled (though it cannot answer the ques-

tion whether the individual parasympathetic and sympathetic components are also

tightly coupled). Figure 7.3b shows a subject who achieves a similar range of RP and

PR intervals, but in this case, there are not two distinct clusters of values. There is no

clear-cut refractory effect, though in general we see no very short PR intervals for the

shortest RP intervals. Since the RP and PR intervals are not clustered, an interpretation

is that the overall autonomic tone at the SA and AV nodes are not tightly coupled. Note

that the PR interval changes are not an artifact induced by P-wave morphology change as

there is no instantaneous change in PR interval after the transient event, for example, due

to electrode movement. The separation of the clusters in Figure 7.3c again shows a

subject who has distinct operating points in the supine and standing positions.

However, in this case refractory effects seem to dominate ANS effects with reduced

RP intervals resulting in an increase in PR intervals for both postural positions. To

give some idea of population distribution, 10 of the 20 subjects display clear clusters

as in Figure 7.3a; 5 of the subjects have totally overlapping RP versus PR plots (as

in Fig. 7.3b), while the remaining 5 cannot be easily classified. Our conclusion from

consideration of these plots is that coupled and uncoupled innervation of the SA and

AV nodes occurs, and the degree of influence of refractoriness is highly subject

dependent.

As an additional experimental observation, we show typical interval-based PP and

PR spectra produced for the steady-state data. These spectra differ widely in character

for different subjects. For instance, Figures 7.4a,b show a LF increase and HF decrease

when standing in PP but an overall decrease in PR power. The peak in the PP spectra at

0.1 Hz can probably be attributed to baroreceptor reflexes when standing; this peak is

not clearly defined in the PR spectrum. These spectra therefore would be consistent

with decoupled autonomic innervation of the SA and AV nodes, since it appears that

there is autonomic activity at the SA node which is absent at the AV node. These

spectra are consistent with those in [6] but not with those of [5]. However, other subjects

show spectra in which there are common changes in both the PP and PR spectra

which would be in agreement with [5] (see Figs. 1.4c,d. Our conclusion from consider-

ation of the spectra is that both coupled and uncoupled innervation of the SA and AV

nodes occurs.
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Figure 7.3 Recovery time

(RP) versus PR interval:

(a) subject YK020702P1,

showing large variation in

ANS activity between supine

and standing; (b) subject

CH280602P1, showing little

variation in ANS activity

between postures; (c) subject

DM130702P1, showing large

ANS variation between supine

and standing but with dominant

recovery effects over ANS

effects.
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7.4 MODELS

7.4.1 Integrate-and-Fire-Based Model

Given the complexity of observed changes in AVCT, we decided to develop a simple

physiologically plausible model to explore the range of behavior possible. An ultimate

motivation for this modeling is to be able to account for experimental observations seen

in both normal conditions and under various experimentally induced autonomic block-

ades. In this chapter, we will restrict ourselves to trying to account for the noninvasive

transient and steady-state in vivo observations induced by postural change from supine

to standing. Our modeling approach is based on the well-known integral pulse frequency

modulation (IPFM) model, also known as integrate-to-threshold (ITT) models. These are

physiologically plausible models for the transformation of a continuous input signal,

representing ANS activity at the SA node, into a series of cardiac events which represent

firings of the SA node pacemaker cells [21–25]. The model simulates the firing of pace-

maker action potentials at the SA node, therefore representing the P onset on the surface

ECG. Traditionally the IPFMmodel has been used in cardiac modeling to provide realistic

models of HRV with RR interval variability used as a surrogate for PP variability, as QRS

peaks are easier to detect. The upper section of Figure 7.5 shows a conventional IPFM

model for the firing of the SA node. The input signal consists of a positive steady-state

value (in our simulations we use the value 1) and a time-varying component mSA(t),

Figure 7.4 Parametric power spectral density using Burg’s method of model order 13 for

supine and standing positions: (a) PP interval of subject CB120602P1; (b) PR interval of subject

CB120602P1; (c) PP interval of subject AW130702P1; (d ) PR interval of subject AW130702P1.
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which can be interpreted as the overall autonomic outflow at the SA node, comprised of a

mixture of sympathetic–parasympathetic influences. The input signal is integrated until its

integrated value MSA(t) exceeds the reference threshold value TSA, at which point an

action potential is initiated and the integrator is reset to zero. Here, MSA(t) represents

the transmembrane potential of the cell and TSA is the threshold level of the cell. Sympath-

etic activity is prevalent when mSA(t) is positive, which increases the rate of rise ofMSA(t)

and therefore decreases the interfiring times of the node. A preponderance of parasympa-

thetic influences is represented by a negative mSA(t), which decreases the rate of rise of

MSA(t) and prolongs SA node firing times. The IPFMmodel has been widely used to inves-

tigate the dynamics of the ANS at the SA node. In order to investigate the relationship of

ANS activity at both the SA and AV nodes, we apply the conventional IPFM model to

generate spike trains representing the SA node firings (P-wave onsets) and then extend

the model with a second integrate-and-fire stage to generate a second spike train represent-

ing ventricular contraction and QRS onsets, as shown in the lower section of Figure 7.5.

The AV integrator does not commence until the SA node has fired and is effectively insen-

sitive to the input signal prior to the SA node firing and subsequent to the end of the PR

interval. When the SA node has fired, the input signal is integrated, and when the threshold

is reached, an event is generated to mark the end of the PR interval. In line with regression

models detailed in [5, 7] the PR interval representing AV conduction time is restricted to

being a function of ANS activity at the AV node and the refractory period of the conduc-

tion tissue and does not include more subtle effects such as facilitation and fatigue. The

refractory period is assessed using the previous RP interval which is measured as the

time elapsed from the previous QRS complex to the current P-wave. Therefore, if the pre-

vious RP interval is short, then this RP term will not contribute as significantly to the inte-

grator input and will slow down the time until the next firing. Therefore the overall

modulating signal mAV(t) to the second integrator represents both the influence of the

ANS and the intrinsic refractory effects of the node. The autonomic inputs to the model

integrators are mathematically expressed as

mSA(t) ¼ �k0VPSSA(t)þ k1VSSAðtÞ � APSSA þ ASSA

mAV(t) ¼ �k2VPSAV(t)þ k3VSAV(t)� APSAV þ ASAV þ k4RPn�1

Figure 7.5 Extended integrate-and-fire model. Top panel illustrates conventional IPFM model.
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where

VPSSA(t) ¼ time-varying parasympathetic influence at SA node

VSSA(t) ¼ time-varying sympathetic influence at SA node

APSSA ¼ tonic parasympathetic level at SA node

ASSA ¼ tonic sympathetic level at SA node

VPSAV(t) ¼ time-varying parasympathetic influence at AV node

VSAV(t) ¼ time-varying sympathetic influence at AV node

APSAV ¼ tonic parasympathetic level at AV node

ASAV ¼ tonic sympathetic level at AV node

RPn�1 ¼ previous QRS complex to P-wave interval

k0 ¼ weight of time-varying parasympathetic influence at SA node

k1 ¼ weight of time-varying sympathetic influence at SA node

k2 ¼ weight of time-varying parasympathetic influence at AV node

k3 ¼ weight of time-varying sympathetic influence at AV node

k4 ¼ weight of recovery effect

The overall parasympathetic and sympathetic effects at each node are therefore

defined as

PSSA(t) ¼ k0VPSSA(t)þ APSSA

SSA(t) ¼ k1VSSA(t)þ ASSA

PSAV(t) ¼ k2VPSAV(t)þ APSAV

SAV(t) ¼ k3VSAV(t)þ ASAV

Parameter reduction techniques could be applied to this model, but for the sake of

ease of physiological interpretation, we have presented an overparameterized model.

7.4.2 Simulation

Dependent and independent neural innervations are simulated to test the hypothesis that

(a) ANS activity at the SA and AV nodes comes from a common origin and (b) ANS

activity at the two nodes is independent. The paradoxical PP and PR interval behavior

during the transition from supine to standing, which is evident in Figure 7.2c for

subject RM170802P1, is examined along with data from subject PS190602P1 showing

minimal autonomic variation of AV conduction between the steady-state supine and

standing positions. For the transient analysis, 20 beats before and after the beginning of

the transition from supine to standing are generated. For the steady-state analysis 8 min

of data are generated for both the supine and standing positions.

Zero-mean unit-variance Gaussian random sequences are used to generate the

signals. In general the parasympathetic signals are obtained by filtering a sequence

using a unity-gain low-pass filter with a cutoff frequency at around 0.5 Hz. Respiratory

effects observed in the spectra of the experimental data are also added using a band-

pass-filtered Gaussian sequence at the required cutoff frequencies. Sympathetic signals

are generated by filtering random sequences using low-pass filters and a cutoff frequency

below 0.1 Hz to reflect the slower time dynamics of sympathetic innervation. For the

steady-state simulation of 8 min duration the low-pass filters have 1/f (spectra inversely

proportional to their frequency f ) frequency characteristics. The filter cutoff frequencies
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and model parameters are adjusted to obtain similar interval time series and spectra

to those obtained using experimental data. To examine scenario (a), we define coupled

innervation as follows:

PSAV(t) ¼ aPSSA(t) SAV(t) ¼ aSSA(t)

The autonomic inputs at the AV and SA nodes are therefore comparable except for

some gain factor a. This means we can remove k2, k3, APSAV, and ASAV from the model

equation above and add the gain parameter a so the input into the AV node looks as follows:

mAV(t) ¼ a½(�k0VPSSA(t)� APSSA)þ (k1VSSA(t)þ ASSA)� þ k4RPn�1

To simulate scenario (b), the autonomic signals at the SA node are generated indepen-

dently from the autonomic signals at the AV node. We define uncoupled innervation as

E½PSSA(t)PSAV(t)� ¼ E½PSSA(t)�E½PSAV(t)�

E½SSA(t)SAV(t)� ¼ E½SSA(t)�E½SAV(t)�

TABLE 7.2 Transient Analysis: TSA 5 0:893, TAV 5 0:225

Dependent Independent

Var Sup Std Sup Std

k0 0.20 0.10 0.20 0.05

k1 0.20 0.10 0.10 0.05

k2 — — 0.10 0.10

k3 — — 0.10 0.10

k4 0.40 0.40 0.05 0.05

APSSA 0.40 0.10 0.38 0.10

ASSA 0.20 0.50 0.20 0.50

APSAV — — 0.15 0.30

ASAV — — 0.50 0.60

a 0.10 0.10 — —

Note: Var, model input variables; Sup, supine position; Std, standing position.

TABLE 7.3 Steady-State Analysis: TSA 5 0:975, TAV 5 0:178

Dependent Independent

Var Sup Std Sup Std

k0 0.65 0.62 0.70 0.67

k1 0.40 0.40 0.35 0.35

k2 — — 0.29 0.29

k3 — — 0.10 0.14

k4 0.02 0.02 0.02 0.02

APSSA 0.43 0.25 0.43 0.25

ASSA 0.32 0.32 0.32 0.32

APSAV — — 0.20 0.20

ASAV — — 0.15 0.18

a 0.35 0.35 — —

Note: Var, model input variables; Sup, supine position; Std, standing position.
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The parameter values for the transient analysis simulation are shown in Table 7.2 and

values for the steady-state analysis are shown in Table 7.3.

7.4.3 Results

Figure 7.6a is the same plot as shown in Figure 7.2c and represents the PP and scaled PR

interval variations of subject RM170802P1 for 20 beats preceding and subsequent to the

transition from supine to standing. As described earlier, the PP and PR intervals show a

contrasting variation during the postural transition followed by the PR interval returning

to its pretransition value, varying in a similar manner to the PP interval. Figures 7.6b,c

show the results from the dependent and independent innervation simulations. These

simulation results seem to support the suggestion that the lengthening of the PR interval

in response to the pronounced shortening of the PP interval may be explained by either

refractory effects for the dependent case or the paradoxical increase in parasympathetic

activation of the AV node for the independent case. For dependent innervation, we simu-

late a subject with dominant refractory effects which can result in a paradoxical lengthen-

ing of the PR interval in response to a significant shortening of the PP interval. However, if

the refractory effect was indeed dominant for the subject, then we may expect the exper-

imental data to result in a similar plot to Figure 7.6b, where the PR interval does not return

to similar pretransition values and would continue to increase with the continued shorten-

ing of the PP intervals. This difference in the model results and experimental data may be

due to the fact that for the model the refractory period is not a function of parasympathetic

or sympathetic stimulation, which seems to be the case physiologically. For the indepen-

dent innervation model, the contrasting PP and PR interval variations immediately during

the transition followed by the return of the PR interval to pretransition levels and vari-

ations are due solely to independently different tonic and modulatory innervations at

the AV node with refractory effects playing a less significant role.

Figure 7.7a shows the plot of recovery period, previous RP interval, versus the PR

interval taken from a subject in steady-state supine and standing positions. It depicts the

case for a subject who exhibits very little autonomic variation between supine and standing

positions; this is evident from the overlapping data clusters. The subject in the supine pos-

ition shows little reduction in PR interval for reduced RP intervals, which suggests some

sort of balance between autonomic and refractory effects, although there is a large variation

in the PR interval range for any given RP value. The steady-state standing position,

however, shows increased autonomic activity over refractory effects as shorter RP intervals

result in more significant decreases in PR intervals. The results shown in Figure 7.7b indi-

cate that the closely coupled approach will result in an approximately linear relationship

between the RP and PR intervals and similar PP and PR interval spectra, which is

evident from Figures 7.8f,h. Although the experimental data did show an increased

linear RP-versus-PR relationship for the standing position, the dependent innervation PP

and PR spectra do not agree with those of the experimental data (Figs 7.8b,d), which do

not show similar spectra for the PP and PR interval variations. Also, in this closely

coupled simulation case, where autonomic effects are dominant, parallel changes in PP

and PR intervals are evident in both the supine and standing positions as shown in

Figures 7.8e,g. In contrast, the ECG interval time series in Figures 7.8a,c show no defini-

tive dependency of PR on PP for the supine position, which may indicate either indepen-

dent autonomic activity at the AV node, especially in relation to the parasympathetic

outflow, or a more complex relationship between autonomic inputs, cycle length, and

nodal refractory effects. Independent innervation can result in similar RP-versus-PR distri-

butions and spectra, as shown in Figures 7.7c and 7.8j,l, but the time series in this case show

no significant parallel or inverse changes for either position. The correlation coefficients for
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Figure 7.6 Plots of

PP interval and scaled

PR interval (PR � 5)

over 40-beat interval

centered around

supine-to-standing

transition: (a) ECG

data for subject

RM170802P1;

(b) simulation of

dependent innervation

with dominant

refractory effects;

(c) simulation of

independent

innervation with less

significant refractory

effects.
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Figure 7.7 Plots of

preceding recovery

period RP versus PR

interval for 8 min

steady-state

supine and 8 min

steady-state standing:

(a) ECG data of subject

PS190602P1;

(b) simulation of

dependent innervation;

(c) independent

innervation.
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Figure 7.8 PP and PR interval time series and spectra for 8 min steady-state supine and standing for

ECG data of subject PS190602P1 in (a), (b), (c), and (d ); simulation results using dependent innervation

in (e), ( f ), (g), and (h); and independent innervation results in (i), ( j), (k), and (l).
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the PP and PR intervals for subject PS190602P1 and for the dependent and independent

innervation simulations are shown in Table 7.4. The correlation results for this subject

suggest there may be a combination of dependent and independent effects taking place.

Similar to the spectral results outlined earlier the correlation coefficients vary widely for

each subject. Although some subjects show either a strong inverse or parallel dependency

between intervals, this relationship is not uniform across subjects with others showing

weak interval correlations in either or both postural positions.

7.5 DISCUSSION

The argument as to whether independent modulation effects occur at the AV node or

whether neural influence at both nodes comes from a common origin is still unresolved.

The fact that the SA node is primarily innervated by the right vagus and the AV node by

the left vagus suggests that independent modulation is a plausible hypothesis. However,

the complicated interaction between neural innervation, heart rate, and intrinsic nodal prop-

erties makes assessment of this behavior in a noninvasive manner quite difficult. Leffler et al.

[5] concluded that cycle length and conduction time may be related in either a parallel or an

inverse manner. A parallel relationship was presumed to indicate predominant ANS over

recovery effects whereas an inverse relationship was associated with predominant refractory

over ANS effects. In Leffler’s study all standing and 5 of 11 supine subjects showed a sig-

nificant parallel relation and only 4 of 11 supine subjects showed a significant inverse

relation. These results are supported by Donnerstein et al. [4], who suggest a more signifi-

cant inverse relation occurs with increased vagal activity. However, their results do differ

somewhat from both the results obtained in our study and those in [7] which show some

cases of high interval dependence but also show cases which suggest little dependence of

PR on PP in either a parallel or inverse manner. One possible explanation is the complex

intrinsic nodal dynamics at the AV node. As already mentioned, autonomic stimulation

will alter intrinsic nodal effects, which may result in the dependent and independent

effects seen in previous studies and account for the intersubject variations. However, as

suggested in [7] these independent effects may not be apparent under circumstances in

which vagal tone is reduced. Another explanation is that independent autonomic outflow

occurs at the AV node which becomes more evident with increased vagal outflow or

during a transient change in vagal activity, as shown in Figure 7.2. Further studies of PP

and PR interval variation in situations of reduced vagal activity (e.g., exercise) and increased

vagal activity (e.g., sleep) would be beneficial.

When assessing ANS behavior at the AV node noninvasively the limitations

inherent in PR interval measurements should be considered. Physiologically the measure-

ment is only an estimation of AVCT and assumes relatively constant atrial, His-Purkinje,

and ventricular activation times. It has been suggested that these activation times

TABLE 7.4 Correlation Coefficients for PP and PR Intervals
for Subject PS190602P1

Supine Standing

ECG: subject data 0.138 0.547

Simulation

Dependent innervation 0.932 0.968

Independent innervation 20.040 20.091
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may increase due to premature beats and may introduce an important source of error in

assessing AV nodal function [17]. Quantification and assessment of these errors would

also be beneficial.

7.6 FUTURE TRENDS

Assessment of ANS behavior in humans using pharmacological intervention has provided

some useful insights [2, 5]. Further detailed studies of pharmacological intervention

effects on the SA and AV nodes and on intrinsic functional nodal properties could be of

interest. Also, further immunohistochemical and histochemical studies may provide

more detailed information about the variation and distribution of neural subpopulations

in the human heart. The importance of the intrinsic nervous system in the heart is becom-

ing evident. Further investigations into the anatomy and electrophysiological properties of

intracardiac neurons and their contribution to cardiac innervation would also be beneficial.

Models describing conduction through the AV node and heart rate simulation at the SA

node have been well established with improvements being made continually. The

integrate-and-fire model outlined in this chapter provides a physiologically plausible

model for examining possible neural and nodal functional interactions at both the SA

and AV node and may provide useful insights which could be beneficial to pacemaker

design where it is not clear what the optimal AV conduction delay should be set at. To

further elucidate neural behavior at both nodes and further develop the model, it would

be beneficial to model PR interval variations during pharmacological interventions, exer-

cise, and sleep. It is envisaged that future gains made in the understanding of the anatomy

and electrophysiological properties of the heart will be accompanied by more accurate and

representative models. A greater understanding of the physiology of the heart, develop-

ment and assessment of noninvasive experimental methods, and improved mathematical

modeling of the heart are needed. Such development could result in improved assessment

and diagnosis of cardiac dysfunction and pathology and provide a greater understanding of

both physiological and emotional responses.

REFERENCES

1. Task Force of the European Society ofCardiology and the

NorthAmericanSocietyofPacing andElectrophysiology,

“Heart rate variability—Standards ofmeasurement, phys-

iological interpretation and clinical use,”European Heart

Journal, vol. 17, pp. 354–381, 1996.

2. S. G. CARRUTHERS, B. MCCALL, B. A. CORDELL, AND

R. WU, “Relationships between heart rate and PR

interval during physiological and pharmacological

interventions,” British Journal of Clinical Pharma-

cology, vol. 23, pp. 259–265, 1987.

3. J. M. RAWLES, G. R. PAI, AND S. R. REID, “A method of

quantifying sinus arrhythmia: Parallel effect of respir-

ation on P-P and P-R intervals,” Clinical Science,

vol. 76, pp. 103–108, 1989.

4. R. L. DONNERSTEIN, W. A. SCOTT, AND T. R. LLOYD,

“Spontaneous beat-to-beat variation of PR interval in

normal children,” American Journal of Cardiology,

vol. 66, pp. 753–754, 1990.

5. C. T. LEFFLER, J. P. SAUL, AND R. J. COHEN, “Rate-

related and autonomic effects on atrioventricular

conduction assessed through beat-to-beat PR interval

and cycle length variability,” Journal of Cardiovascular

Electrophysiology, vol. 5, pp. 2–15, 1994.

6. G. NOLLO, M. D. GRECO, F. RAVELLI, AND

M. DISERTORI, “Evidence of low- and high-frequency

oscillations in human AV interval variability:

Evaluation and spectral analysis,” American Journal

of Physiology, vol. 267, no. 4, pp. 1410–1418, 1994.

7. P. KOWALLIK AND M. MEESMANN, “Independent auto-

nomic modulation of the human sinus and AV nodes:

Evidence from beat-to-beat measurements of PR and

PP intervals during sleep,” Journal of Cardiovascular

Electrophysiology, vol. 6, pp. 993–1003, 1995.

8. R. SHOULDICE, C. HENEGHAN, AND P. NOLAN,

“Methods of quantifying respiratory modulation in

human PR electrocardiographic intervals,” Proceedings

128 CHAPTER 7 AUTONOMIC CARDIAC MODULATION AT SINO ATRIAL AND ATRIO VENTRICULAR NODES



of the 24th Annual International Conference on

Engineering in Medicine and Biology, vol. 2, pp.

1622–1623, 2002.

9. G. J. T. HORST, The Nervous System and the Heart,

1st ed., New Jersey, Humana Press, 2000.

10. S. AKSELROD, D. GORDON, F. A. UBEL, D. C.

SHANNON, A. C. BARGER, AND R. J. COHEN, “Power

spectrum analysis of heart rate fiuctuation: A quantitat-

ive probe of beat-to-beat cardiovascular control,”

Science, vol. 213, pp. 220–222, 1981.

11. A. MALLIANI, M. PAGANI, F. LOMBARDI, AND

S. CERUTTI, “Cardiovascular neural regulation explored

in the frequency domain,” Circulation, vol. 84, pp.

482–492, 1991.

12. P. MARTIN, “The infiuence of the parasympathetic

nervous system on atrioventricular conduction,” Circu-

lation Research, vol. 41, pp. 593–599, 1977.

13. D. W. WALLICK, P. J. MARTIN, Y. MASUDA, AND M. N.

LEVY, “Effects of autonomic activity and changes in

heart rate on atrioventricular conduction,” American

Journal of Physiology, vol. 243, pp. H523–527, 1982.

14. F. URTHALER, B. H. NEELY, G. R. HAGEMAN,

AND L. R. SMITH, “Differential sympathetic-

parasympathetic interactions in sinus node and AV

junction,” American Journal of Physiology, vol. 250,

pp. H43–H51, 1986.

15. Y. FURUKAWA, M. TAKEI, M. NARITA, Y. KARASAWA,

A. TADA, H. ZENDA, AND S. CHIBA, “Different

sympathetic-parasympathetic interactions on sinus node

and atrioventricular conduction in dog hearts,” European

Journal of Pharmacology, vol. 334, pp. 191–200, 1997.

16. S. J. CRICK, J. WHARTON, M. N. SHEPPARD,

D. ROYSTON, M. H. YACOUB, R. H. ANDERSON, AND

J. M. POLAK, “Innervation of the human cardiac con-

duction system: Aquantitative immunohistochemical

and histochemical study,” Circulation, vol. 89,

pp. 1697–1708, 1994.

17. J. BILLETTE AND S. NATTEL, “Dynamic behavior of the

atrioventricular node: A functional model of interaction

between recovery facilitation and fatigue,” Journal

of Cardiovascular Electrophysiology, vol. 5,

pp. 90–102, 1994.

18. D. J. CHRISITINI, K. M. STEIN, S. M. MARKOWITZ,

S. MITTAL, D. J. SLOTWINER, S. IWAI, AND B. B.

LERMAN, “Complex AV nodal dynamics during

ventricular-triggered atrial pacing in humans,” Ameri-

can Journal of Physiology (Heart Circulation and

Physiology), vol. 281, pp. H865–H872, 2001.

19. J. FORESTER, H. BO, J. W. SLEIGH, AND J. D.

HENDERSON, “Variability of R-R, P-wave-to-R-wave,

and R wave-to-T wave intervals,” American Journal

of Physiology, vol. 273, no. 6, pp. 2857–2860, 1997.

20. R. SHOULDICE, C. HENEGHAN, P. NOLAN, P. G. NOLAN,

AND W. MCNICHOLAS, “Modulating effect of respiration

on atrioventricular conduction time assessed using PR

interval variation,” Medical and Biological Engineering

and Computing, vol. 40, pp. 609–617, 2002.

21. E. J. BAYLY, “Spectral analysis of pulse frequency

modulation in the nervous systems,” IEEE Transactions

on Biomedical Engineering, vol. 15, pp. 257–265, 1968.

22. R. W. DE BOER, J. M. KAREMAKER, and J. STRACKEE,

“Description of heart rate variability data in accordance

with a physiological model for the genesis of

heartbeats,” Psychophysiology, vol. 22, no. 2, pp.

147–155, 1985.

23. R. G. TURCOTT AND M. C. TEICH, “Fractal character of

the electrocardiogram: Distinguishing heart-failure and

normal patients,” Annals of Biomedical Engineering,

vol. 24, pp. 269–293, 1996.

24. G. B. STANLEY, K. POOLLA, AND R. A. SIEGAL,

“Threshold modeling of autonomic control of heart

rate variability,” IEEE Transactions on Biomedical

Engineering, vol. 47, pp. 1147–1153, 2000.

25. J. MATEO AND P. LAGUNA, “Improved heart rate varia-

bility signal analysis from the beat occurrence times

according to the IPFM model,” IEEE Transactions

on Biomedical Engineering, vol. 47, pp. 985–996,

2000.

REFERENCES 129



CHA P T E R8

NEURAL NETWORKS AND

TIME–FREQUENCY ANALYSIS OF

SURFACE ELECTROMYOGRAPHIC

SIGNALS FOR MUSCLE

CEREBRAL CONTROL
Bruno Azzerboni, Maurizio Ipsale,

Fabio La Foresta, and Francesco Carlo Morabito

8.1 INTRODUCTION

Control of motor units (MUs) is one of the most complex tasks of the brain. The involved

signal, which starts from some neurons of the brain and arrives at the muscle, is managed

by a very complicated control system. Usually, the path of this signal is crossed through

the body, that is, a signal starting from the left brain lobe controls muscles located on the

right side of the body, whereas a signal starting from the right brain lobe controls muscles

located on the left. Because of this process, if a stroke appears in one brain lobe, the patho-

logical patient cannot control the opposite side of the body [1]. However, this behavior

does not work in some type of muscle, such as the postural ones, since a stroke in one

lobe side does not imply the inhibition of these muscles and the pathological patient

still assumes a right posture [1]. This experimental observation suggests that a common

drive could start at both brain lobes and affect muscles located in both body sides. The

main concept proposed here, aimed at validating the last sentence, exploits the correlation

techniques to show that they can be used to investigate dependencies between neurophy-

siological signals and to determine signal pathways in the central nervous system.

In recent years, there has been a resurgence in the use of spectral methods, such as

Fourier transform to process biomedical signals [1–3]; a spectral-based approach can have

advantages over the time-domain approach since it extends the information that can be

extracted from experimental readings by permitting the study of interactions between

two simultaneously recorded signals. A useful parameter for characterizing the linear

interaction in the frequency domain is the coherence function [3], whose estimate, typi-

cally carried out on digital experimental data, is able to provide a bounded measure of

the linear dependency between two processes. The coherence function shows two advan-

tages with respect to time-domain measures of association: (a) it is a bounded measure,

constrained within the range (0,1), where zero is attained in the case of signal
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independence while the maximum value is achieved in the case of a perfect linear relation-

ship; (b) it is a measure that does not depend on the units of measurement [3].

Thus, the coherence spectral analysis carried out on two myoelectric signals simul-

taneously recorded [without electroencephalographic (EEG) acquisition] can be per-

formed to investigate the existence of a control common drive of muscular activity [1].

The main disadvantage of this approach is that the presence of some artifacts in the myo-

electric signal recordings can strongly corrupt coherence analysis; to overcome this prac-

tical problem, some advanced techniques, such independent-component analysis (ICA)

[4], wavelet transform [5], and a combination of them, are here proposed.

In this work, we show that the preprocessing artifact removal step and the coherence

analysis reveal the presence of the underlying common drive only in the axial muscles. In

particular, in Section 8.2, we will describe the preliminary step of data acquisition by

means of a surface electromyography (sEMG) [6] analysis; in Section 8.3 we will

discuss the method used in order to perform coherence analysis. In Sections 8.4 and

8.5, we will explain in detail the artifact removal procedure based on neural networks

and time-frequency analysis. Finally, in Section 8.6, we will report and comment on the

achieved results that seem in full agreement with some physiological studies, which

assume the existence of this common drive only for axial muscles, in order to help the pos-

tural task. As previously mentioned, the distal muscles do not need this kind of control;

accordingly, the coherence analysis shows a low value for all frequencies when applied

on two first dorsal interosseous muscles.

8.2 DATA ACQUISITION: SURFACE
ELECTROMYOGRAPHY

Electrical muscle activity monitoring can be employed to study neuroscience problems,

such as motor control by the brain. From the clinical point of view, classical needle elec-

tromyography is commonly used to make a diagnosis in muscles and in peripheral nerves.

Since the nervous system controls simultaneously a set of muscles, a detailed study must

consider multichannel recordings of muscle activity. For these reasons, sEMG is more

adequate to monitor the muscle activity. Unfortunately, it suffers by various drawbacks,

one being the cross-talk phenomenon that is a part of the EMG signal acquired on a

muscle which is generated by another one. A solution to this problem is ICA, a technique

proposed in recent years to overcome the latter problem [7].

Here, seven active electrodes performing a sEMG were attached to the body of a

healthy cooperating human subject. The aim was to investigate the common drive (a

signal starting from the brain) by processing only the reading, that is, the myoelectric

signal, recorded by some surface electrodes attached to the muscles. In our application,

we attached four electrodes to the pectoral muscles and three electrodes to intrinsic

hand muscles, such as the first dorsal interosseous (FDI). Finally, we attached two electro-

des to the right muscle and the other electrode to the left one. In Figure 8.1 the electrode

mapping and the sEMG recordings of the pectoral muscles are shown, while in Figure 8.2

we show the electrode mapping and the surface sEMG recordings of the FDI muscles.

Electrode mapping is designed to properly carry out the task of the coherence analy-

sis. In the FDI muscles we attached three electrodes (two to the right muscle and the other

to the left one) in order to perform the calculation of two kinds of coherence: the ipsilateral

one (intrinsic coherence between one muscle and itself) and the bilateral one (coherence

between two opposite muscles). For the pectoral muscles we must use at least four elec-

trodes because the coherence analysis must be preceded by the artifact removal

132 CHAPTER 8 NEURAL NETWORKS AND TIME–FREQUENCY ANALYSIS



processing. Actually, the signals read by the electrodes on the pectoral muscles are highly

corrupted by the cardiac artifact. Since this kind of artifact has a repetition frequency

centerd on the same spectral range where we investigate for the presence of the

common drive, the coherence analysis could be highly corrupted by the artifact. In particu-

lar, it could be possible to find coherence in this spectral range caused by the artifact pre-

sence, rather than by the common drive that we are investigating [8].

By using the proposed pattern of electrodes, we can perform different kinds of

coherence measures in order to validate the existence of the common drive, as we

would like to infer. Various cycles of simultaneous muscle contraction (both side

muscles are contracted synchronously) are recorded by the electrode mapping.

During the registration session a 50-Hz notch filter and a low-pass filter (cutoff fre-

quency 500 Hz) were applied; throughout the experiments the sampling frequency

fs ¼ 1 kHz.

8.3 METHODS EMPLOYED: SPECTRAL AND
COHERENCE ANALYSIS

In this section we present the technique employed to perform the spectral and coherence

analysis. Figure 8.3 shows the multistep procedure used to estimate the existence of the

Figure 8.2 First dorsal interosseous: electrode mapping and example of sEMG recordings.

Figure 8.1 Pectoral muscles: electrode mapping and example of sEMG recordings.
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common drive. The first step of signal processing, carried out only on the pectoral muscle

recordings, is artifact removal, since the recorded signals are corrupted by cardiac activity.

This extra signal can invalidate the conclusions that we can carry out from the results of

the proposed approach. We will describe the artifact removal process in the next section.

Thus, the filtered signals, which contain only meaningful information about muscle

activity, are processed by coherence analysis in order to investigate the presence of a

common drive.

Six different experiments were performed, three for each muscle type. Ipsilateral or

bilateral coherence in both muscle types were investigated. Two electrodes are attached on

the right side (R1 and R2) and only one electrode on the left side (L1): The fourth record-

ing in the pectoral muscles was rejected by the artifact removal stage. We conjecture that

the common drive exists only in postural muscles, such as pectoral ones, whereas its pre-

sence could not be found in counterlateral muscles, such as the FDI. Obviously, in FDI

coherence, the three calculated functions (R1–R2, R1–L1, R2–L1) need to be almost

similar to each other, whereas this similarity could not be found in the three calculated

coherence functions for the pectoral muscles.

The coherence analysis was demonstrated to be very meaningful in studying the pre-

sence of the common drive. The coherence algorithm is a spectral analysis that allows us to

determine how much two different signals are correlated in spectral information. The

magnitude-squared coherence between two signals x(n) and y(n) is the following:

Cxy(v) ¼
jSxy(v)j2

Sxx(v)Syy(v)
(8:1)

where SxxðvÞ and SyyðvÞ are respectively the power spectra of xðnÞ and yðnÞ, and SxyðvÞ is
the cross-spectral density function. The coherence measures the correlation between xðnÞ
and yðnÞ at the angular frequency v. Particular attention must be paid when computing

this function. First, the signals that we study (the myoelectric signals) cannot be

Figure 8.3 Proposed method block scheme; it executes the procedure employed to investigate

the existence of a common drive.
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considered stationary and then a simple spectral estimation cannot be applied without

incurring failing results. Actually, the nonstationarity can create a cross-interference

phenomenon that can artificially raise the coherence value. This high value is not mean-

ingful, because it is not related to the brain activity. In order to minimize these effects, we

estimate the spectra (cross-correlation spectrum and self-correlation spectrum or power

spectrum density) by using the Welch method, which consists in windowing the signal

before the fast Fourier transform (FFT) calculus and calculating a mean spectrum over

all these (overlapped) windows [9].

8.4 ARTIFACT REMOVAL: NEURAL NETWORKS AND
TIME–FREQUENCY ANALYSIS

A key topic in biomedical signal processing is artifact removal. The artifact is a superim-

posed signal that can hide some useful information in a measured signal. It is usual to

classify the artifacts according to their features in both the time and frequency domains.

Some artifacts are well localized in frequency, whereas their influence is spread over all

the time axis of the original signal. Others typologies of artifacts, instead, are confined

to a small temporal area, while their spectral components cover almost all the frequency

spectrum of the original signal. The easiest to filter are those artifacts that are well loca-

lized in the frequency domain and their spectral components do not overlap with the spec-

tral content of the original signal.

Neglecting the last condition, in which artifact removal is performed by a simple

finite impulse response (FIR) or infinite impulse response (IIR) digital filter (stop band),

implemented by classical filtering techniques, our attention was on the other categories

of artifacts, in which it is not possible to remove the artifact influence by a simple

filter. This can mainly occur for two reasons: (i) the artifact and the signal are overlapped

in the frequency domain; (ii) the artifact could distort the entire signal frequency represen-

tation. In these cases the use of a stop-band filter could remove some meaningful

components of the original signal or it would not be able to remove the artifact.

In this section we present three methods of artifact removal: using (a) a wavelet

filter, (b) a neural ICA filter, and (c) the mixed wavelet–ICA filter; the last method is

the main contribution of this work. We describe in detail the methodologies, and in the

last section numerous simulations are proposed to substantiate the work.

8.4.1 Time–Frequency Analysis: Wavelet Filter

Wavelet analysis is a special time–frequency representation [10] that was introduced in

order to overcome the limitations of both time and frequency resolution of the classical

Fourier techniques, unavoidable also in their proposed evolutions, such as the short-

time Fourier transform (STFT). The classical Fourier transform (FT) allows us to represent

a signal in two different domains: the time and spectral domains. However, while in the

former all the frequency information is hidden by the time content, in the latter the tem-

poral information is lost in order to extract all the frequency content. This results from the

choice of the basis Fourier functions, the exponential functions, which are nonzero in

the entire time axis. In the STFT, the original signal is windowed in a time interval

before the decomposition over the same basis functions. This method allows a time–

frequency representation. However, a new problem arises using this method: How wide

should the window be selected? If we select a very narrow window, we can optimize
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the time resolution but we lose frequency resolution and vice versa when we choose a very

large window, coming back to the classical FT.

A possible solution to this problem is yielded by the wavelet transform (WT), which

allows us to obtain better time resolution for the highest frequency components and poorer

time resolution (with better frequency resolution) for the lowest frequency components.

Most of the signals that we will meet are basically in agreement with this simple analysis:

Their lowest frequencies last for long time intervals, while their highest frequencies last

for short time intervals. Actually, most biomedical signals are in agreement with this prac-

tical rule. The wavelet transform is a multiresolution analysis (MRA). Here, a scaling

function w(t) is used to create a series of approximations of a signal, each differing by a

factor 2 (or by another fixed factor) from its nearest-neighbor approximations. Additional

functions c(t), called wavelets, are then used to encode the difference between adjacent

approximations.

In its discrete version, the WT is implemented by a bank of bandpass filters each

having a frequency band and a central frequency half that of the previous one [10, 11].

First the original signal s(t) is passed through two filters, a low-pass one and a high-pass

one. From the low-pass filter an approximation signal is extracted, A(t), whereas from the

high-pass signal a detail signal, D(t), is taken out. In the standard tree of decomposition

only the approximation signal is passed again through the second stage of filters, and so

on until the last level of the decomposition. For each level the frequency band of the

signal and the sampling frequency are halved. The wavelet series expansion of a signal

s(t) [ L
2(R), where L

2(R) denotes the set of all measurable square-integrable functions,

can be expressed as

s(t) ¼
X

k

c j0kw j0k
(t)þ

X

1

j¼j0

X

k

d jkc jk(t) (8:2)

where j0 is an arbitrary starting scale,

d jk ¼
ð

x(t)c�
jk(t) dt (8:3)

are called the detail or wavelet coefficients, and

c jk(t) ¼
1
ffiffiffiffiffi

2 j
p c

t � k2j

2j

� �

(8:4)

are the wavelet functions. The approximation or scaling coefficients are

cjk ¼
ð

x(t)w�
jk(t) dt (8:5)

where

w jk(t) ¼
1
ffiffiffiffi

2j
p w

t � k2j

2 j

� �

(8:6)

are the scaling functions. The details and the approximations are defined as

Dj(t) ¼
X

k

d jk � c jk(t)

Aj(t) ¼
X

k

c jk � w jk(t)
(8:7)
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and the final reconstruction of the original signal can be computed by the details and the

approximations and it can be described by the following equation for fixed N:

s(t) ¼ AN(t)þ D1(t)þ D2(t)þ � � � þ DN(t) (8:8)

The wavelet analysis can be used to perform artifact removal [5]. Its practical application

is based on the spectral separation between the original signal and the artifact: A good

removal is possible only if the artifact spectral content is well localized (compactly

supported).

In the case of multichannel recordings artifact removal must be performed separ-

ately, channel by channel, by applying the same algorithm for each channel recording.

The process of artifact removal by using the WT can be resumed as follows:

1. Wavelet decomposition of single channel recording. From an original corrupted signal

s, we obtain the approximation and the detail signals, s(t) ¼ AN(t)þD1(t)þ
D2(t)þ � � � þDN(t).

2. Identification of the detail signals that represent the artifact, for instance Di(t), Dj(t),

Dk(t), . . . .

3. Thresholding of the detail signals that represent the artifact, yielding Ďi(t), Ďj(t),

Ďk(t), . . . .

4. Wavelet reconstruction of the cleaned data: š(t) ¼ AN(t)þ Ď1(t)þ Ď2(t)þ � � � þ
ĎN (t), where Ďi(t) ¼ Di(t) if the detail Di(t) does not contain any artifact

contributions.

8.4.2 Independent Component Analysis: Neural ICA Filter

The ICA [12] is a method for solving the blind source separation (BSS) problem: to

recover N independent source signals, s ¼ {s1(t), s2(t), . . . , sN(t)} fromM linear mixtures,

x ¼ {x1(t), x2(t), . . . , xM(t)}, modeled as the result of multiplying the matrix of source

activity waveforms by an unknown matrix A:

x ¼ As (8:9)

The basic blind signal processing techniques do not use any training data and do not

assume any a priori knowledge about the parameters of the mixing systems (i.e.,

absence of knowledge about the matrix A). The ICA resolves the BSS problem under

the hypothesis that the sources are statistically independent of each other. In the last 10

years many algorithms have been proposed to perform the ICA. We use here the simple

Bell–Sejnowski Infomax algorithm, developed in 1995, which can be described by the

block scheme depicted in Figure 8.4. In this algorithm, maximizing the joint entropy

H(y), of the output of a neural processor is equivalent to minimizing the mutual infor-

mation among the output components, yi ¼ w(ui), where w(ui) is an invertible bounded

nonlinearity [12–14]. In particular the algorithm estimates a matrix W such that

s ¼ Wx (8:10)

Recently, Lee et al. [15] extended the ability of the Infomax algorithm to perform BSS on

linear mixtures of sources having either sub- or super-Gaussian distributions. The Infomax

principle applied to the source separation problem consists of maximizing the information

transfer through a system of the general type

I(y,u) ¼ H(y)� H(y ju) (8:11)
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where H(y) is the entropy of the output nonlinearities and H(y j u) is the residual entropy
that did not come from the input and has the lowest possible value.

It can be viewed that the maximization of the information transfer is equivalent to

the maximization of the entropy of the sigmoid outputs, which is the reason the

Infomax algorithm is also interpreted as a variant of the well-known maximum-entropy

method (MEM). The output nonlinearity is defined as

w( u) ¼ � 1

p(u)

@p(u)

@u
(8:12)

where p(u) is the estimated probability density function of the independent sources. The

learning rule is

DW/ ½ I� w(u) uT�W (8:13)

where the nonlinearity is often selected as the hyperbolic tangent (only for super-Gaussian

sources):

w(u) ¼ tanh(u) (8:14)

The algorithm ends revealing the independent sources u and the unmixing matrixW.

To reconstruct the mixed signals, it is necessary to compute the matrix A (that is the

pseudoinverse of W): x ¼ Au. The application of ICA on the artifact removal has been

successfully proposed in biomedical signal analysis [7, 16–19], particularly on brain

signals [4]. This technique allowed, for instance, separation of the unwanted contribution

of electrooculography (EOG) and electrocardiography (ECG) in raw electroencephalo-

graphic (EEG) signal and in sEMG recordings [17, 18].

Unlike wavelet analysis, the ICA approach can be applied only to multichannel

recordings. Consider some M-channel recordings xi, i ¼ 1, . . . , M. Artifact removal by

ICA is done as follows:

1. The ICA over all channels of multichannel recordings: We obtain N independent

components u1, . . . , uN and a mixing matrix A.

2. Identification of the artifact sources, for instance, ui, uj, . . . , uk.

Figure 8.4 Infomax algorithm: block scheme. It uses an unsupervised learning procedure

under the constraint of entropy maximization of the nonlinear outputs.
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3. Elimination of the artifact sources. It is sufficient to set to zero the columns i, j, k of

the matrix A, obtaining the new mixing matrix Â.

4. Artifact component removal and data reconstruction, xrec ¼ Â � u:

The ICA can often be simplified by means of the principal-component analysis (PCA)

preprocessing [20] in such a way that the computational burden can be reduced, thus redu-

cing the computational time. The PCA is a well-known method of extracting from a signal

mixing some uncorrelated but not independent sources, since two signals can be uncorre-

lated without being independent; conversely, if two signals are independent, they are also

uncorrelated. The PCA can be used to reduce the data dimensionality and/or to perform

whitening to obtain some unit variance components.

8.4.3 Proposed Mixed Wavelet–ICA Filter

The proposed algorithm, described by the block scheme shown in Figure 8.5, encompasses

the properties of the wavelet filter with those of the neural ICA filter. In a wavelet–ICA

filter a preprocessing step based on a discrete wavelet transform (DWT) is applied. We

perform the wavelet decomposition at a fixed level for each channel. Details that

concern the spectral range where the artifact is localized are selected. Then, the ICA

block minimizes a measure of statistical independence of the new data set by determining

the minima of a suitable objective function. This new algorithm works as follows:

1. Wavelet decomposition of every channel of multichannel recordings.

2. Selection of the details that contain some artifact component:

a. PCA and/or whitening to lighten the computational charge.

b. ICA by means of the above introduced Infomax algorithm.

Figure 8.5 Block scheme of proposed wavelet–ICA filter.
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c. Artifact removal by ICA as described in the previous section.

d. ICA reconstruction to obtain cleaned details.

3. Inverse discrete wavelet analysis (wavelet reconstruction) using the cleaned details

revealed in step 2d and the unselected details obtained in step 1. The output of this

last step is the cleaned signal mapping.

8.5 SIMULATIONS: FILTER PERFORMANCE

The simulations of the artifact removal by means of wavelet, ICA, and wavelet–ICA

filters are shown in this section. We test the performances of the above-mentioned algor-

ithms by means of some simulations designed on specially synthesized signals. The arti-

facts are also synthesized in order to test the quality of the different approaches. A 120-s

sEMG signal was generated. Each signal was first subtracted by its mean value; thus each

processed signal is at zero mean. Then, for each one of the above-described approaches, a

signal is mixed with a different artifact signal and finally the outputs of the three pro-

cedures are investigated.

In order to give a quantitative measure of the goodness of the algorithm, we use the

covariance matrix (i.e., for zero-mean signals, the correlation matrix). The entries of this

matrix (given in percentage), which represent a comparison between the original signal

(when the artifact is not yet added) and the reconstructed signal after artifact removal,

are the cross-correlation coefficients. A similar performance parameter is calculated com-

puting the covariance matrix between the spectrum of the original signal and that of the

reconstructed sEMG after artifact removal. To avoid any possible misunderstanding, we

call the first parameter the time cross-correlation coefficient and the second the spectral

cross-correlation coefficient.

8.5.1 Wavelet Filter Performance

We synthesizes a sEMG signal corrupted by an artifact signal. The artifact is a periodic high-

frequency burst. This kind of artifact can be viewed as a stimulus signal that replicates itself

with an established time period. Moreover, its frequency content is well localized and it is

almost entirely separated by the frequency content of the original signal. The mean fre-

quency of the artifact spectral content is around 30% higher than the maximum frequency

present in the original signal. This is a kind of signal quite identifiable by the WT algorithm.

In Figure 8.6 we show the original synthesized sEMG signal, the synthesized artifact signal,

and the corrupted sEMG signal (original signal mixed with the artifact).

In Figure 8.7 the complete wavelet decomposition (performed by the DWT algorithm)

is shown. This figure confirms the high ability of this filter to separate the sEMG signal by

the artifact, which is almost all included in the first detail (which includes the highest

frequencies). The kind of wavelet function used in this application and the respective

scaling function are called Daubechies 4; these two functions are shown in Figures 8.7b,c.

Figure 8.8 shows the wavelet artifact removal application by comparing the original

signal with the reconstructed one after artifact removal. The time cross-correlation coeffi-

cient calculated by means of the covariance matrix is very high (96.4%), showing that this

algorithm works very well with this kind of artifact. Figure 8.9 shows the coherence func-

tion (as it was defined in Section 8.4) for these two signals (the original one and the filtered

one); this figure also shows the high performance of the algorithm, revealing a value that is

unity almost everywhere.
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Finally, Table 8.1 resumes the performances of this approach to artifact removal,

showing also the spectral cross-correlation coefficient (95.9%), which reveals again the

goodness of the algorithm.

8.5.2 Neural ICA Filter Performance

In this application the original sEMG recording is made of three channel recordings. The

artifact signal is a similar ECG signal. This kind of artifact is more difficult to deal with.

Figure 8.6 (a) Original synthesized sEMG signal. (b) Synthesized artifact. (c) Corrupted sEMG

signal obtained by mixing (a) and (b).

Figure 8.7 (a) Wavelet decomposition (details) of synthesized corrupted sEMG signal. The

first detail (associated by the higher frequency content) contains almost all the artifact contributions.

(b) Scaling Daubechies 4 function. (c) Wavelet Daubechies 4 function.
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Figure 8.8 (a) Original synthesized sEMG signal and (b) reconstructed signal after artifact

removal. The cross-correlation between the two signals is very high (96.4%).

Figure 8.9 Coherence function (defined in Section 8.3) between signals shown in Figure 8.8.

This value is 1 almost everywhere, showing the high performance of the wavelet approach

for this kind of artifact removal.

TABLE 8.1 Artifact Removal: Correlation

Channel of

sEMG

Wavelet filter

Tcorr Fcorr

CH1 0.964 0.959

Note: Tcorr is the time cross-correlation between original channel and reconstructed

channel. Fcorr is the spectral cross-correlation between original channel and

reconstructed channel.
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First, its spectral content is not compactly supported, but it is nonzero in almost all the

frequency axis. Moreover, its time shape is different for each recording channel. This is

the most suitable kind of signal identifiable by an ICA approach. Figure 8.10 shows

the synthesis of a corrupted sEMG. In Figure 8.10a, three sEMG synthesized signals

are shown (1, 2, 3) together with a similar ECG synthesized artifact (4). In

Figure 8.10b each sEMG signal is mixed with the artifact, thus generating the corrupted

sEMG signal.

Figure 8.10 (a) Original synthesized sEMG signal. The fourth signal is the synthesized artifact,

a similar ECG signal. (b) Corrupted sEMG signal obtained by mixing recordings 1, 2, and 3 of

(a) with artifact 4 of (a).
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Figure 8.11 shows the independent components extracted by means of the neural

ICA algorithm. We can see that this approach is able to separate the artifact from the

recordings. In this figure the artifact is at the first channel, while in the original synthesized

signals it was at the fourth channel. This is caused by one of the two ambiguities of

ICA: We cannot determine the order of the independent components (the other ambiguity

is represented by the inability to determine the variances and then the energies of the

independent components).

Figure 8.11 Independent components: results of ICA application to signals shown in

Figure 8.10b. The algorithm was able to separate the artifact from the corrupted signals.

Figure 8.12 Performance of different approaches to artifact removal showing the third recording

and the reconstructed signals after artifact removal: (a) wavelet filter; (b) neural ICA filter; (c)

wavelet–ICA filter.
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To test the performance of the implemented filters, we selected the least favorable

recording channel (in this case, channel 3), and we computed the cross-correlation coeffi-

cient after the application of the three different approaches presented in this chapter.

Figure 8.12 resumes this performance test. The first raw signal represents the original

recording of the third channel. The second raw signal is the reconstructed signal after the

artifact removal by the wavelet filter described Section 8.4.1: The performance is not

good (the cross-correlation coefficient is 57.1%), according to our previous choice of the

artifact signal. The third raw signal is the reconstructed signal after artifact removal by

the neural ICA filter described in Section 8.4.2: The performance is very good

(the cross-correlation coefficient is 99.7%), revealing the high quality of this approach.

Finally, the fourth raw signal is the reconstructed signal after artifact removal by

means of the wavelet–ICA filter described in Section 8.4.3: Its performance is good (the

cross-correlation coefficient is 94.9%), even if it is not as good as the neural ICA approach.

It is important to observe that the ICA filter works very well because in the corrupted signals

we include also the artifact signal and thus separation by the algorithm becomes very easy.

Figure 8.13 shows the coherence functions for the three approaches in the described

application. Here we can confirm the high quality of the two last approaches (unitary

coherence almost everywhere) and the low performance of the wavelet approach.

Table 8.2 presents the results shown in the figures, showing the quality parameters

(time and spectral cross-correlation coefficients) also in the other two recordings.

8.5.3 Wavelet–ICA Filter Performance

In this application, the same original sEMG recordings are corrupted by a new kind of

artifact that encompasses the characteristics of the artifacts shown respectively in

Figure 8.13 Coherence between original signal and reconstructed one after artifact removal: (a) wavelet

filter; (b) neural ICA filter; (c) wavelet–ICA filter.

TABLE 8.2 Artifact Removal: Correlation

Channel of

sEMG

Wavelet filter Neural ICA filter Wavelet–ICA filter

Tcorr Fcorr Tcorr Fcorr Tcorr Fcorr

CH1 0.833 0.797 0.999 0.999 0.997 0.995

CH2 0.877 0.801 0.999 0.999 0.997 0.993

CH3 0.571 0.556 0.997 0.995 0.949 0.991

Note: Tcorr is time cross-correlation between original channel and reconstructed channel. Fcorr is spectral cross-correlation

between original channel and reconstructed channel.
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Figures 8.6 and 8.10a. In effect, this artifact is composed by a similar ECG signal mixed

with some muscle activity bursts. For these corrupted signals the new approach has

revealed the best ability to separate the original signal by the artifact.

Figure 8.14 shows the synthesis of a corrupted sEMG. In Figure 8.14a three sEMG

synthesized signals are shown (1, 2, 3), together with a synthesized artifact (4). In

Figure 8.14 (a) Original synthesized sEMG signals. The fourth signal is the synthesized

artifact. (b) Corrupted sEMG signals obtained by mixing recordings 1, 2, and 3 of (a) with

artifact 4 of (a).
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Figure 8.14b each sEMG signal is mixed with the artifact, generating the corrupted sEMG

signal.

Figure 8.15a shows the synthesised artifact compared with its identification by the

wavelet–ICA filter, while in Figure 8.15b all the removed artifacts for each channel of

Figure 8.14b are shown. To test the performance of the implemented filters, we selected

Figure 8.15 (a) Synthesized artifact and removed one using wavelet–ICA filter. (b) Removed

artifacts for each recording channel.
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the least favorable recording channel (in this case, channel 3), and we computed the cross-

correlation coefficient after the application of the three different approaches presented in

this chapter.

Figure 8.16 resumes this performance test. The first raw signal represents the

original recording of the third channel.

The second raw signal is the reconstructed signal after artifact removal by the

wavelet filter described in Section 8.4.1: The performance is not so good (the cross-

correlation coefficient is 57.1%), but we already knew that this kind of artifact was not

suitable for a wavelet approach.

The third raw signal is the reconstructed signal after artifact removal by the neural

ICA filter described in Section 8.4.2: The performance is very poor (the cross-correlation

coefficient is 47.7%), revealing the poor reliability of this approach to remove such

Figure 8.16 Performance of different approach to artifact removal. Shown are the third

recording and the reconstructed signals after artifact removal: (a) by wavelet filter; (b) by neural

ICA filter; (c) by wavelet–ICA filter.

Figure 8.17 Coherence between original signal and reconstructed one after artifact removal: (a) by

wavelet filter; (b) by neural ICA filter; (c) by wavelet–ICA filter.
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artifacts. Finally, the fourth raw signal is the reconstructed signal after artifact removal by

the wavelet–ICA filter described in Section 8.4.3: Its performance is very good (the cross-

correlation coefficient is 85.9%), showing that this is the best approach to remove such

artifacts.

Figure 8.17 shows the coherence functions for the three described approaches in

the same application. Here, we can confirm both the high quality of the last approach

(unitary coherence almost everywhere) and the bad performance of the first two

approaches. Table 8.3 presents the results shown in the figures, showing the quality

parameters (time and spectral cross-correlation coefficients) also in the others two

recordings.

8.6 APPLICATION: COMMON DRIVE DETECTION

In this section, we present the coherence analysis applied on the contractions cycles

acquired as described in Section 8.2 and the related implications in the medical task

that we described in the first section: the common drive detection. We first perform artifact

removal by means of the wavelet–ICA filter on the sEMG recordings related to the

pectoral muscles activity.

8.6.1 Wavelet–ICA Filter Preprocessing: Artifact Removal

Figure 8.18 shows the recordings of the sEMG signals acquired on the pectoral muscles. It

is now evident that an ECG artifact strongly affects the acquisition of the true sEMG

signal. This artifact is present in all recording channels. Artifact removal is a required pre-

processing analysis in order to make meaningful the results of the medical task. The fea-

tures of this artifact are comparable with the peculiarities of the synthesized artifact shown

in Figure 8.15a. Thus, based on the considerations carried out in the previous section, we

perform the artifact removal using the wavelet–ICA filter, computing the filtered sEMG

signals shown in Figure 8.19. To test the performance of this approach for the artifact

removal in these real sEMG signals, we compare the ECG reduction performed by the

three different approaches presented in the previous section. The results are shown in

Figure 8.20 for the most corrupted electrode, and they are presented in Table 8.4. Yet,

the best approach is the wavelet–ICA filter, revealing a 98% ECG reduction, with

respect to the 90% for the neural ICA filter and the 73% of the wavelet filter (for the

third channel).

TABLE 8.3 Artifact Removal: Correlation

Channel of

sEMG

Wavelet filter Neural ICA filter Wavelet–ICA filter

Tcorr Fcorr Tcorr Fcorr Tcorr Fcorr

CH1 0.833 0.785 0.974 0.951 0.985 0.979

CH2 0.877 0.813 0.972 0.951 0.985 0.979

CH3 0.571 0.553 0.477 0.455 0.859 0.851

Note: Tcorr is time cross-correlation between original channel and reconstructed channel. Fcorr is spectral cross-correlation

between original channel and reconstructed channel.
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8.6.2 Common Drive Detection: Coherence Analysis

In Figure 8.21 (respectively, Fig. 8.21a for the pectoral muscles and Fig. 8.21b for

the FDI muscles) we show the coherence between two electrodes attached to the same

Figure 8.18 Surface EMG recordings of pectoral muscles. The location of the electrodes is

shown in Figure 8.1.

Figure 8.19 Reconstructed sEMG signals after artifact removal by wavelet–ICA filter.
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Figure 8.20 Comparison between ECG reduction in three approaches of artifact removal

presented in this chapter.

TABLE 8.4 Artifact Removal: ECG Reduction

Channel of

sEMG

ECG reduction (%)

Wavelet filter Neural ICA filter Wavelet–ICA filter

CH1 80 93 90

CH2 78 90 99

CH3 73 90 98

CH4 78 85 98

Figure 8.21 Ipsilateral coherence: (a) pectoral muscles; (b) FDI muscles.
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muscle (ipsilateral coherence). As conjectured, we found that there is a high coherence value

for almost all frequencies of the spectrum. This condition is true for both muscle types.

In Figure 8.22 the coherence between electrodes attached to different sides (bilateral

coherence) is shown. The analysis was performed for both muscle types. In Figure 8.22a,

we investigate the coherence between pectoral muscles. There is a meaningful high

coherence value for low frequencies (,4 Hz). Figure 8.22b shows the same analysis

performed for the signals recorded by FDI muscles. We can observe that there is not a

high coherence value for the whole frequency axis.

The comparison between calculated functions for the two different kinds of muscles

is the result we were searching for: The high coherence value for low frequencies in

Figure 8.22 Bilateral coherence: (a) pectoral muscles; (b) FDI muscles.

Figure 8.23 Pectoral muscles: ipsilateral coherence. Continuous line: after artifact removal

preprocessing. Dashed line: without artifact removal preprocessing.
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pectoral muscles is exactly the common drive that starts from both brain lobes. The

absence of this coherence peak in the FDI muscles is in agreement with physiological

studies. A low-frequency zoom of coherence analysis is shown in Figures 8.23, 8.24

(continuous line), and 8.25.

Figure 8.24 Pectoral muscles: bilateral coherence. Continuous line: after artifact removal

preprocessing. Dashed line: without artifact removal preprocessing.

Figure 8.25 FDI muscles: coherence analysis. Continuous line: bilateral coherence. Dashed line:

ipsilateral coherence.
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We have shown the need for artifact removal preprocessing in Figures 8.23 and 8.24.

If we analyze the coherence function between two electrodes attached to both pectoral

muscles, we find a high coherence value for almost all the low frequencies. This result

is not meaningful, as we can demonstrate by analyzing Figure 8.24, where the spectrum

of the contraction for low frequencies is shown. We can observe that there are two domi-

nant peaks, the first at 1.62 Hz and the second at 3.12 Hz. It seems obvious to identify the

first peak with the cardiac activity. The high value of the coherence is due to the presence

of these two activities in both muscles. But this is not what we are searching for. Our aim

was to investigate the presence of a common drive starting from the brain.

Table 8.5 presents the most important results achieved in the present work, that is,

the presence of a common drive, starting from the brain, only for the pectoral muscles

(and not for the FDI ones), revealed by a high value of the coherence function located

at the frequency of 3.09 Hz.

8.7 CONCLUSIONS

This chapter presented a method of detecting common drives for axial muscle control. The

coherence analysis has been shown to be fully adaptable in order to achieve these results.

A novel procedure for processing sEMG data has been proposed that encompasses ICA,

wavelet transform, and coherence analysis. It allows us to extract the information

needed for the task. The wavelet–ICA filter was used to properly clean the raw signals

from the artifacts that unavoidably corrupt the real signals.

The comparison between coherence analysis in axial muscles and in distal ones

reveals the presence of the searched common drive only in the first category of muscles,

as supposed by previous clinical studies.
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CHA P T E R9

MULTIRESOLUTION FRACTAL

ANALYSIS OF MEDICAL IMAGES
Khan M. Iftekharuddin and Carlos Parra

9.1 INTRODUCTION

The fractal concept developed by Mandelbrot [1, 2], who coined the term fractal from the

Latin fractus, provides a useful tool to explain a variety of naturally occurring phenomena.

A fractal is an irregular geometric object with an infinite nesting of structure at all

scales. Fractal objects can be found everywhere in nature, such as coastlines, fern trees,

snowflakes, clouds, mountains, and bacteria. Some of the most important properties of

fractals are self-similarity, chaos, and noninteger fractal dimension (FD). Fractals are self-

similar, which means that structures are repeated at different scales of size. The FD offers a

quantitative measure of self-similarity and scaling of texture [3]. The texture represents

important characteristic of an image such as ruggedness and underlying structural self-

similarity patterns. For medical image processing, texture may be fundamental to differ-

entiate tissues as well as to detect and analyze pathologies or lesions [4]. The factors

contributing to image texture include the random nature of the object itself (tissues

and body structures), noise, imaging modality, imaging limitations, and a variety of

measurement parameters. Thus, texture analysis offers a promising approach to robust

differentiation of healthy tissues and tumor.

The fundamental fractal theory that models texture [1, 2] also provides the frame-

work for the modeling of different kinds of fractal motion. One of the most useful appli-

cations of this theory is the generation of fractional Brownian motion (fBm), which is

appropriate for the visual simulation of fractal structures and processes frequently

found in nature [5] as well as in biomedical imaging. In addition to fractal theory, stochas-

tic signal processing may play a vital role for the spectrum computation and parameter

estimation of nonstationary processes. Extensive research [6–8] related to time–

frequency description of fractal processes has been pursued successfully.

The fBm analysis of natural texture scenes is immensely enhanced with the devel-

opment of both wavelet analysis and Mallat’s multiresolution analysis (MRA) [9, 10]. The

MRA offers a common signal processing framework wherein the statistical and spectral

properties of the fBms may be exploited to estimate FD and hence the texture content

of an image. Heneghan et al. [11] propose an important formulation of a 2D model that

exploits both the spectral properties and correlation function of an fBm and estimates

FD using the statistical properties of the continuous wavelet transform (CWT) of an

fBm. Wornell [12] describes a detailed demonstration on how 1/f processes may be opti-

mally represented in orthonormal wavelet bases, which may be useful for discrete wavelet
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formulations of the fBm. Considering the nonstationary charactereristics, alternative

techniques have been proposed to estimate the spectral density of both 1D [13] and 2D

[14–16] models of the fBm processes. Although the spectral estimation of fBm using

Wigner–Ville distribution (WVD) suggests better performance over that of the traditional

fast Fourier transform (FFT) estimation, the high computational cost of WVD may be

prohibitive.

The fundamental goals of this work are the formal development of theoretical fBm

models, formulation of corresponding algorithms, and evaluation of algorithms for robust

identification of brain tumors in tomographic images. For the verification of our algorith-

mic framework, we generate and use synthetic fractal as well real computerized tomogra-

phy (CT) images. The formal development of the 2D models for the statistical and spectral

estimation of FD of these images is pursued and compared.

9.2 BACKGROUND REVIEW

The fBms are a part of the set of 1/f processes, corresponding to a generalization of the

ordinary Brownian motion BH(s). They are nonstationary zero-mean Gaussian random

functions, defined as [1, 2]

BH(t)� BH(s) ¼
1

G(H þ 0:5)

ð0

�1

(t� s)H�0:5 � sH�0:5
 �

dB(s)

�

þ

ð

1

0

(t � s)H�0:5dB(s)

�

(9:1)

where the Hurst coefficient H, restricted to 0 , H , 1, is the parameter that characterizes

fBm, t and s correspond to different observation times of the process BH , G is Euler’s

gamma function, and BH(0) ¼ 0. Despite the nonstationary characteristic of fBm pro-

cesses, their increments are stationary and self-similar [8]. This observation suggests

that the time–frequency signal decomposition techniques such as MRA or WVD [6]

are well suited for the fBm signal analysis. Thus, the MRA and WVD may be exploited

to obtain a framework for the efficient spectral computation of H and hence the FD of the

corresponding fractal process [5] as follows:

FD ¼ Eu þ 1� H (9:2)

where Eu is the Euclidean dimension that contains the fBm (i.e., the position of each point

of the process is described with the vector ~x ¼ (x1, . . . , xE)

In general, fBms are nonstationary processes, given that the associated correlation

function is not exclusively a function of the difference of observation times but is

defined as [6]

rBH
(t, s) ¼ E½BH(t)BH(s)� ¼

VH

2
jtj2H þ jsj2H � jt � sj2H
� 	

0 , H , 1 (9:3)

with

VH ¼ G 1� 2Hð Þ
cos (pH)

pH
(9:4)

which is a function only of the Hurst coefficient H. The nonstationary property suggests

that spectral estimation of fBm may not be obtained by exploiting the standard spectral
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density and, hence, alternative techniques are needed to estimate the power content of

these signals. However, the increments of the fBm processes are stationary, as can be

seen in their variance function, which depends only on the time interval between the

observations [7],

E jBH(t)� BH(s)j
2

 �

¼ VH(t � s)2H (9:5)

with VH defined as in (9.4). The fBm increments are also self-similar, as shown in the

following equality of probability distributions at any scale a [7]:

BH(t þ at)� BH(t) ¼ aHBH(t) (9:6)

The previous properties can be extended to any dimension. For the 2D case, let B(~u) be
an fBm, where ~u corresponds to the position (ux, uy) of a point in a 2D process satisfying

the following conditions [11]:

(i) The process is nonstationary given that its correlation is not simply a function of

j~u� ~vj,

rBH
(~u, ~v) ¼ E BH(~u)BH(~v)

 �

¼
VH

2
j~uj

2H
þ j~vj

2H
� j~u� ~vj

2H
� �

(9:7)

(ii) The increments of the process DB(~u) ¼ B(~uþ D~u)� B(~u) form a stationary,

zero-mean Gaussian process.

(iii) The variance of the increments DB(~u) depends only on the distance

Du ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Du2x þ Du2y

q

such that

E jDBH(~u)j
2

h i

/ DuH (9:8)

In the Fourier domain, it is known that some of the most frequently observed structures in

fractal geometry, generally known as 1=f processes, show a power spectrum following the

power law relationship,

S(v)/
k

jvjg
(9:9)

where v corresponds to the spatial frequency and g ¼ 2H þ 1. This type of spectrum is

associated to statistical properties that are reflected in a scaling behavior (self-similarity),

in which the process is statistically invariant to dilations or contractions, as described in

the equation

S(v) ¼ jajg SX(av) (9:10)

where a is a constant.

9.3 PROPOSED ANALYTICAL MODELS

Our proposed models are broadly grouped into two types such as the statistical variance

method and the power spectrum method. For the power spectrum method, we implement

both FFT and WVD approaches.
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9.3.1 Statistical Variance Method

In this section, we define statistical properties of the fBm and consider its implications for

signal analysis. We present the description of 1D and 2D models as well as an algorithm

for the estimation of the H coefficients.

9.3.1.1 One-Dimensional Case The essential characteristic of nonstationarity in

fBm is manifested in its low-frequency components [6]. When the fBm is decomposed

using a MRA, the low- and high-frequency components may be separated into a non-

stationary approximation and a stationary detail part, given the low-pass and bandpass

character of the respective analyzing wavelets. For a specific approximation resolution

2J , the multiresolution representation of an fBm process is given by [9]

BH(t) ¼ 2�J=2
X

n

aJ ½n�f(2
�J t � n) þ

X

j

2�j=2
X

n

ndj½n�c(2
�jt � n) (9:11)

with j ¼ �J, . . . ,1 and n ¼ �1, . . . ,1 and the basic wavelet satisfying the admissibility

condition [7]

ð

1

�1

c(t) dt ¼ 0 (9:12)

The orthonormal wavelet decomposition (details) of the fBm at resolution j is [7]

dj½n� ¼ 2�j=2

ð

1

�1

BH(t)c(2
�jt � n) dt (9:13)

From (9.3) and (9.13), the variance of the detail wavelet coefficients is related to the

specific analyzing wavelet and the H coefficient of the fBm processes as [7]

E jdj½n�j
2

 �

¼
VH

2
Vc(H)(2 j)2Hþ1 (9:14)

where Vc(H) is a scale-independent constant that depends only on the inner product of the

selected mother wavelet c (t) and the value of H [6] such that

Vc(H) ¼ �

ð

1

�1

c(t)c(s) dt jtj2Hdt (9:15)

with t ¼ t � s. By applying the logarithm on both sides of Eq. (9.14), the resulting

equation is linear [18] and given as

log2 E jdj½n�j
2

 �

¼ (2H þ 1)jþ C1 (9:16)

with the constant C1 defined as

C1 ¼ log2
VH

2
Vc(H) (9:17)

The Hurst coefficient H (and the dimension) of a fBm process can be calculated from the

slope of this variance and plotted as a function of the resolution in a log-log plot.

9.3.1.2 Two-Dimensional Case The wavelet filter used to obtain the equation for

the high-frequency components at a specific resolution j is described in [9]. From
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(9.13), it may be shown that the 2D extension of the detail coefficients, at resolution j and

(n,m) [ Z2, is given as

D3
2 j ½~h� ¼ 2�j

ð

1

�1

BH(~u) �C3
2 j(~u� 2�j~h) d~u

� �

(h[Z2)

(9:18)

where h corresponds to the position ½n,m� and C3
2 j satisfies the admissibility condition of

(9.12). The variance of the detail coefficients in Eq. (9.19) is obtained similar to the

continuous-wavelet-based approach [11]. In 2D, the expression for the variance is

E jD3
2 j ½~h�j

2
h i

¼ 2�2j

ð

~u

ð

~v

C3�
2 j (~u� 2�j~h

�

) �C3
2 j (~v� 2�j~h)E B(~u)B(~v)

 �	

d~ud~v (9:19)

Considering the definition of the covariance function of a process in (9.7), the previous

equation can be expanded as,

E jD3
2 j ½~h�j2

 �

¼
VH

2
2�2j

�

ð

~u

C3
2 j(~v� 2�j ~h) d~v �

ð

~v

C3�
2 j (~u� 2�j~h) � j~uj2Hd~u d~v

þ

ð

~u

C3�
2 j (~u� 2�j~h) d~u �

ð

~v

C3
2 j(~v� 2�j~h)j~vj

2H
d~u d~v

þ

ð

~u

ð

~v

C3�
2 j (~u� 2�j~h) �C3

2 j(~v� 2�j~h)j~u� ~vj
2H
d~u d~v (9:20)

Given that C3
2 j satisfies the admissibility condition (9.12), it is possible to show that

ð

~v

C3
2 j(~v� 2�j~h) d~v ¼

ð

~u

C3�
2 j (~u� 2�j~h) d~u ¼ 0 (9:21)

Thus, (9.19) can be written as

E jD3
2 j ½~h�j2

 �

¼
VH

2
2�2j � C3�

2 j (~u� 2�j~h) �
ð

~u

ð

~v

C3
2 j (~v� 2�j ~h)j~u� ~vj2H d~u d~v

� �

(9:22)

By substituting ~p ¼ ~u� ~v and ~q ¼ ~v� 2�j~h, we may rewrite Eq. (9.19) as [11]

VC3

2 j
¼

ð

~p

ð

~q

C3�
2 j (~pþ ~q) �C3

2 j (~q)j~pj
2H

d ~p d~q (9:23)

Then, the integral in q is the wavelet transform of the wavelet itself, at a resolution j,

similar to the scale-independent constant derived in (9.15). The variance of the 2D

detail signal D3
2 j ½n,m� can be considered as a power law of the scale 2 j and can be used

to calculate H in a similar way to (9.16) as

log2 E jD3
2 j ½n,m�j

2
h i

¼ (2H þ 2) jþ C2 (9:24)

with

C2 ¼ log2
VH

2
VC3

2 j
(H) (9:25)

The FD value of the 2D fBm process can be extracted from the slope of the variance in

(9.25) plotted as a function of the resolution j in a log-log plot.
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9.3.2 Power Spectrum Method

A complimentary approach to compute FD of an fBm uses the wavelet representation of its

power spectrum. In [6], Flandrin shows that the spectrum of an fBm follows the power law

of fractional order shown in (9.9) using either a time–frequency description or a time-

scale description. Similar to the development of the statistical method, we describe a

general 1D case and its formal extension to 2D.

9.3.2.1 One-Dimensional Case If the frequency signal S(v) is filtered with a

wavelet filter c(u), the resulting spectrum at the specific resolution is [9]

S2 j (v) ¼ S(v) c 2�jv
� 	�

�

�

�

2
(9:26)

where

c vð Þ ¼ e�ivĥ(vþ p) (9:27)

where H(v) corresponds to the discrete-time fourier transform of the corresponding

scaling function f(x) and defined in terms of its coefficients h(n):

ĥ(v) ¼
X

1

n¼�1

h(n)e�inv (9:28)

Using the sampling for the discrete detail description of a function f in [9],

D2 j ¼ f (u) � c2 j(�u)
� 	

2�jn
� 	� 	

(9:29)

which contains the coefficients of the high-frequency details of the function. The spectrum

of the discrete detail signal can be written as [7]

Sd2 j(v) ¼ 2 j
X

1

k¼�1

S2 j(vþ 2 j2kp) (9:30)

The energy of the detail function at a specific resolution j is defined as [9]

s2
2 j ¼

2�j

2p

ð2 jp

�2 jp

Sd2 j (v) dv (9:31)

This equation describes the support of the wavelet in the frequency domain [10] for a

specific resolution j. Finally, it can be shown that the solution of the integral leads to

an expression that relates the energy content in two consecutive resolution filtering

operations [9],

s2
2 j ¼ 22Hs2

2 jþ1 (9:32)

From this expression, the Hurst coefficient H can be derived as

H ¼
1

2
log2

s2
2 j

s2
2 jþ1

 !

(9:33)

9.3.2.2 Two-Dimensional Case We follow the same steps of the previous section

to extend the analysis to the 2D case. For a 2D fBm, the power spectral density
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is defined as [11]

S(~v) ¼ S(vx,vy)/
K

(v2
x þ v2

y)
(2Hþ2)=2

(9:34)

where K is a constant and ~v is a vector describing frequency, whose components are vx

and vy, which in turn correspond to frequency in channels x and y, respectively. For

this part of the study, S(~v) is computed as the power spectral density of a stationary

signal, which may not apply strictly to our 2D fBm, which is a nonstationary process.

However, this approach leads to good results. The 2D spectrum is given as

S(vx,vy) ¼ jFFT(image)j2 (9:35)

If the frequency-domain signal is filtered with a wavelet filter, the resulting spectrum at the

specific resolution is [9]

S2 j (~v) ¼ S(~v) �C
3

2 j 2
�j(vx,vy)

� 	

�

�

�

�

�

�

2

(9:36)
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�

�

�

2
(9:37)

The discrete version of this spectrum is given as [9]

Sd2 j(vx,vy) ¼ 22j
X

1

l¼�1

X

1

k¼�1

S2 j vx þ 2 j2 kp,vy þ 2 j2lp
� 	

(9:38)

The energy of the detail function at a specific resolution jmay be computed by integration

of the support vector �C
3

j (v) of a chosen wavelet filter [10, 17], as shown in Figure 9.1.

Figure 9.1 Fourier transform of the high frequency 2D wavelet, Ĉ3(vx,vy) for Daubechies 6.
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This is described by the equation

s2
2 j ¼

2�2j

4p2

ð2 jp

�2 jp

ð2 jp

�2 jp

Sd2 j(vx,vy) dvx dvy (9:39)

After an appropriate change of variable in the previous equation, we may obtain [9]

s2
2 j ¼ 22Hs2

2 jþ1 (9:40)

Thus, in the case of 2D signals, the ratio of the energy corresponding to the detail signals

at successive resolutions provides a solution for the computation of H similar to the 1D

derivation presented in (9.33),

H ¼
1

2
log2

s2
2 j

s2
2 jþ1

 !

(9:41)

9.3.3 Wigner–Ville Distribution Method

Previous work related to the modeling and estimation of fBm parameters shows that the

WVD is a valid method for the analysis of 1/f processes. In the particular case of a 1D

process, f, its WVD is given by [13, 18]

Wf (t,v) ¼

ð

1

�1

f t þ
t0

2

� �

f � t �
t0

2

� �

exp (�jvt0) dv0 (9:42)

where t corresponds to time or space and v to frequency. The corresponding equation in

the frequency domain is [13]

WF(t,v) ¼

ð

1

�1

F vþ
v0

2

� �

F� v�
v0

2

� �

exp (�jv0t) dt0 (9:43)

where F(v) corresponds to the Fourier transform of f (t) and Wf (t,v) ¼ WF(t,v). There

is a complete description of the properties of this time–frequency distribution in [14].

The extension to 2D is described with the equation [15]

Wf (x, y, u, v) ¼

ð

R2

f xþ
a

2
, yþ

b

2

� �

f � x�
a

2
, y�

b

2

� �

� exp (�2pj(uaþ vb)) da db (9:44)

where x and y are time (or space) variables; u and v are their respective frequency com-

ponents and a and b are the corresponding dummy integration variables that describe

the shifting in each direction. For an image of size NX � NY , the discrete time–frequency

version of the 2D WVD is given as [16]

W(n1, n2,m1,m2) ¼
1

4NXNY

X

NX�1

l1¼0

X

NY�1

l2¼0

f (l1, l2)f
�(n1 � l1, n2 � l2)

� exp �pj
m1

NX

(2l1 � n1)þ
m2

NY

(2l2 � n2)

� �� �

(9:45)

where n1 and n2 are time (or space) discrete variables, m1 and m2 are their respective

frequency components, and l1 and l2 are the variables that describe the shifting, in each

direction, of the conjugate function. Let �f be the original image sampled in both the
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time (space) and frequency domains. The WVD for this signal is defined as [16]

W �f (x, y, u, v) ¼
1

XY

X

n1, n2,m1,m2

W(n1, n2,m1,m2)d x� n1
X

2

� �

d y� n2
Y

2

� �

� d u�
m1

2NxX

� �

d v�
m2

2NyY

� �

(9:46)

For a given fBm process, the local power spectrum is computed directly from its WVD

as [13]

PBH
(t,v) ¼ jWBH

(t,v)j (9:47)

To compute FD in the image, we propose similar steps as described in Eqs. (9.18)–(9.25)

and (9.34)–(9.39) for the 2D case.

9.4 RESULTS

We test our proposed models for computing H, and hence FD, using both synthetic and

real images. For the synthetic-image case, we generate fractal images using two different

algorithms, while for the real image, we use a CT image.

9.4.1 Synthetic Image

We generate synthetic fBm input images with a known FD values. We implement two pro-

cedures to synthesize 2D fBm images [5]. The first image generation method explores the

midpoint displacement algorithm while the second method uses the spectral properties of

the fBm. The statistics derived from each of the fBm generation algorithms suggest that

the power spectrum method offers FD values closer to the theoretical values that are

used to generate each fBm image.

9.4.1.1 Variance Method We use synthetic images obtained using two fBm

synthesis algorithms as described above. For each experiment using our proposed FD

estimation models, we specify the synthetic fBm images as the input. The average of

these measurements is computed for each of the 20 uniformly distributed values of H,

with 0 , H , 1. The results are summarized in Figures 9.2a,b respectively. Figure 9.3

Figure 9.2 FD results for images synthesized using (a) the spectral method and (b) the

difference of actual and theoretical estimation values.
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shows an average difference of 0.24 between the theoretical and the estimated FD.

However, the estimated values show a linear trend wherein an appropriate shift and

slope corrections obtained from the statistical characterization of each method may be

exploited to obtain the actual FD values.

9.4.1.2 Spectral Method Our proposed spectral method offers far more consistent FD

estimation results when compared to the variance method. Further, the estimated FD values

are also similar to the theoretical values and more coherent in all the detail scales. Figures

9.4a,b present the worst and best cases for this approach, respectively. The lines, from lower

to upper, describe the ratio of energy content [see Eq. (9.44)] between resolutions 1–2, 2–3,

3–4, and 4–5. The analysis with the Daubechies 2 wavelet offers relatively poor results.

However, the rest of the Daubechies family and the other families of wavelets show

consistent results similar to the ones shown in Figure 9.4b.

Figure 9.3 FD results for images synthesized using (a) the midpoint approach and (b) the

spectral method.

Figure 9.4 Spectral estimation of FD using a (a) Daubechies 2 and (b) biorthogonal wavelets.
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9.4.2 Real Medical Image

We apply our three estimation models to a brain CT image in Figure 9.5. For this study,

16 and 32 pixel grids are used to analyze the CT image.

9.4.2.1 Variance Method We apply our variance algorithm to the input CT

image to identify tumor tissue. The FD results for 32- and 16-pixel grids are shown in

Figures 9.6a,b, respectively. In the 32-pixel-grid case, positions (3,4) and (4,3) correspond

to high values of FD. This trend is observed with almost all the wavelets in the family. A

similar observation is noticed for the other tumor locations in position (6,3) or (7,5). When

a finer grid is considered, it is possible to observe more tissue details corresponding to FD

estimation.

Figure 9.5 CT image used to estimate

FD.

Figure 9.6 Estimation of D using variance method for using the wavelet Daubechies 5 for a grid of

(a) 32 pixels; and (b) 16 pixels.
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Although the localization of certain areas of the image associated to tumor tissue is

consistent, the results for this method depend, to an important extent, on the analyzing

wavelet. Another drawback of this method is seen in the relationship between observations

of different grain. There is not a direct correspondence between different grid sizes and

tumor locations, as can be seen in Figures 9.6a,b. The variance method is efficient

in terms of time of execution since wavelet decomposition and the computation of the

variance of the detail coefficients are relatively faster.

9.4.2.2 Spectral Method We also apply our FFT-based spectral method to the CT

image as shown in Figure 9.5. These results are shown in Figures 9.7a,b, respectively.

In this experiment, the position (4,3) of Figure 9.7a shows the highest FD estimate

in the CT image. This can be clearly associated to positions (7,5) and (8,5) in

Figure 9.7b. Similar results are observed in position (7,5) for the 32-pixel grid and the cor-

responding low values in (13,10) and (13,11) for the 16-pixel grid of Figures 9.8a,b,

respectively. Contrary to the variance method, the spectral method shows a relative

independence from the selected analyzing wavelet wherein almost the same features are

identified with any wavelet that is used to perform the filtering. Further, spectral

method results are independent of the grid size. It is also observed that the computation

times are considerably higher for the spectral FFT algorithm compared to that of the

variance method.

9.4.2.3 WVD Method Our last experiment shows the FD results using the spectral

WVD method. The results clearly show that for the 32-pixel grid in Figure 9.8a, the

pixel location (4,3) corresponds to a high FD value. For the 16-pixel-grid analysis in

Figure 9.8b, all three algorithms correctly identify the low H location such as (13,10).

The FD measurement values obtained using all three algorithms, specifically for the

32-pixel-grid position (3,4), are summarized in Table 9.1. The graphical results for the

32-pixel grid are very similar to the ones obtained in the previous methods. The FD

Figure 9.7 FFT Power Spectrum estimation of local D values using the wavelet Daubechies 5

for a grid of (a) 32 pixels; and (b) 16 pixels.

168 CHAPTER 9 MULTIRESOLUTION FRACTAL ANALYSIS OF MEDICAL IMAGES



values obtained from the variance method analysis are, on the average, 0.4 higher than the

theoretical values. On the other hand, the estimated fractal dimension from the FFT

method tends to be below the nominal FD. The WVD results are, in general, closer to

the theoretical results. Despite this relative difference, all three models are robust and

may be used to obtain FD values from fBm images. However, appropriate correction

factors (shift and slope corrections) to estimated FD values may render the analysis of

the images more accurate. This can be exploited in the differentiation of tissues and

hence to the location of abnormal processes identifiable in a tomographic image.

9.5 CONCLUSION

We propose three formal mathematical models to compute the Hurst coefficient, and hence

the FD, of synthetic fBm and real CT images, respectively. Our first model is based on the

ratio of statistical variance of the diagonal detail wavelet coefficients at different scales of

the multiresolution decomposition of the analyzed image. The other two models involve

the ratio of energy content at subsequent resolutions, derived from the wavelet-filtered

spectra of the image. The two frequency-domain processing models are obtained via

Blackman–Tukey spectral estimation and WVD methods, respectively. Experimental

TABLE 9.1 Comparison of FD Estimates at Position (4,3) Using the
Three Analysis Models

General Daubechies Biorthogonal Coiflet

Variance 3.08 3.09 3.13 3.03

FFT spectrum 2.52 2.53 2.49 2.54

WVD spectrum 2.50 2.57 2.42 2.55

Figure 9.8 WVD spectral estimation of FD values using the Daubechies 5 wavelet for a grid of

(a) 32 pixels; (b) 16 pixels.
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results suggest that the lesions in the CT image may be effectively localized using high or

low values of the FD. Further, the spectral fBm analysis of tomographic images provides a

more consistent framework for the multiresolution analysis when compared to the var-

iance method. However, the spectral analysis of fBm is more computationally involved

than that of the variance for an image.

9.6 FUTURE TRENDS

The algorithm for tumor location identification has been an area of intense research. The

multiresolution-fractal-based approach offers a promising direction in this effort. Our

work in this chapter represents preliminary results in multiresolution-fractal analysis of

medical images. We are interested in developing classification algorithms based on the

three techniques proposed in this chapter. We also plan to further validate our results

using additional synthetic as well as real medical images with different brain pathologies.

We expect to develop a more generalized fBm model known as multifractional Brownian

motion (mBm) wherein the Hurst coefficientH is modeled as a function of time or position

for more detailed tissue recognition. Finally, we plan to optimize the structure of the

algorithms to obtain the minimum processing times such that these procedures may be

used in a clinical setting.
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CHA P T E R10

METHODS FOR

NEURAL-NETWORK-BASED

SEGMENTATION OF MAGNETIC

RESONANCE IMAGES
Lia Morra, Silvia Delsanto, and Fabrizio Lamberti

10.1 INTRODUCTION

The introduction of advanced medical imaging techniques, such as magnetic resonance

imaging (MRI), computer-assisted tomography (CAT), functional magnetic resonance

imaging (fMRI), and positron emission tomography (PET), has dramatically improved

the quality of brain pathology diagnosis and treatment. In particular, MRI allows the

acquisition of three-dimensional, high-resolution, and highly detailed images of the

brain anatomy, with unparalleled soft-tissue contrast with respect to other medical

imaging modalities. However, the introduction of such imaging techniques has also

increased the quantity and complexity of available image information, thus entailing the

adoption of automated tools and techniques for image management (i.e., storage and trans-

mission), analysis, and interpretation. In this chapter, we will focus on the segmentation

and classification techniques, which, combined, allow the identification of specific

tissue classes and anatomical structures. We will begin by introducing MRI medical appli-

cations and successively describe the different MRI segmentation and classification tech-

niques, concentrating in particular on neural-network-based approaches. An example

illustrating automatic, single-channel segmentation and classification will conclude the

overview.

10.2 APPLICATIONS OF MRI SEGMENTATION

Medical image segmentation has been the subject of extensive research activity in the last

years. The segmentation task consists in subdividing an image into a number of homo-

geneous regions and is closely related to the classification task, which classifies each

segmented region as belonging to a specific tissue class or anatomical structure.

Medical image segmentation and classification are a daunting task, due to the wide

range of possible image types and acquisition protocols, to the inherent complexity of

most anatomical structures and to the many sources of artifacts and noise [1, 2]. Image

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.

173



segmentation is in fact important both as a basis for further processing and independently

for diagnosis, treatment, and follow-up of brain pathologies, since it allows the identifi-

cation and quantitative evaluation of the extension, location, and volume of brain struc-

tures and lesions in a noninvasive manner. This can aid in the initial diagnosis as well

as treatment and surgical intervention planning (e.g., in radiation treatment planning) of

various brain pathologies, such as tumors and multiple sclerosis. Moreover, volumetric

analysis is important in the evaluation of various neurological conditions, such as cerebral

atrophy, edemas, and brain hematomas, related to several pathologies and neurodegenera-

tive diseases, such as the Alzeihmer and Parkinson syndromes. The measured volume of

brain structures and pathologies can thus be correlated with clinical and neurological signs

of the disease and used in determining appropriate treatment. Volumetric analysis is also

of fundamental importance in patient follow-up, assisting medical doctors in assessing

lesion progression or regression and response to therapy.

Magnetic resonance imaging segmentation can also be viewed as a preliminary

step for performing 3D volumetric reconstruction. Three-dimensional reconstruction

can be of invaluable help to medical doctors, since it enables efficient visualization of

tumors and other brain pathologies and/or structures. Furthermore, it allows not only

the planning of surgical procedures and in surgery simulation and “rehearsal” but also

the assistance of medical experts during actual brain surgery in the operating suite.

Finally, volumetric reconstruction can be useful in the analysis of functional parameters,

such as the electroencephalographic (EEG) signal; for instance, EEG brain-mapping

algorithms allow the correlation of EEG potentials and electrode locations with high-

resolution anatomical information, while the availability of segmented MRI images

allows the construction of piecewise homogeneous head models which can be used in

forming conductivity models to help in simulating and analyzing brain electrical activity

[2]. Finally, MRI segmentation constitutes a preprocessing step for many registration

algorithms. Basically, image registration consists in transforming the coordinates of

each point in one image in order to match it with the physically corresponding point

in the other image. Multimodality image registration allows medical doctors to

perform the joint analysis of images acquired with different (often complementary)

imaging modalities, thus enabling extremely complex clinical examinations which cor-

relate anatomical regions with functional metrics. Monomodality image registration is

also useful in studies conducted over a period of time (e.g., treatment evaluation) or

on a patient population.

The MRI segmentation techniques have been widely applied in assisting

medical experts in brain tumor diagnosis and treatment. Hence, MRI segmentation

applications in the oncological field are a notable example, which can help understand

better both the advantages that arise from the adoption of such techniques and the

main requisites imposed by real clinical applications on segmentation technique

accuracy and performance. Current clinical protocols employed by various radiation

oncology groups, such as the RTOG (Radiation Treatment Oncology Group, www.

rtog.org) and the ECOG (Eastern Cooperative Oncology Group, www.ecog.org), use

visual metrics (usually assessed by the radiologist on hard-film copy) in order to

estimate tumor volume and reduce operator variability in tumor response rating [3].

A widely adopted criterion for measuring tumor response is based on the measurement

of the two largest perpendicular diameters; the radiologist selects the slice with the

largest tumor cross section and measures the greatest diameter and its largest perpen-

dicular diameter. An estimate of tumor volume is then calculated by multiplying the

lengths of the two diameters (areas are summed in case of multiple lesions). In order

to track tumor changes during therapy, tumor volumes are estimated from patient
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scans taken at different time intervals. According to this protocol, tumor response is

classified as follows:

. Complete response is defined as the disappearance of all evidence of active tumor.

. Partial response is defined as at least a 50% decrease in the tumor volume estimate

(product of the largest diameters).

. Stable disease is defined as less than 50% decrease or more than 25% increase in

tumor volume.

. Progressive disease is defined as more than 25% increase in the tumor volume esti-

mate or appearance of new lesions.

This visual metric suffers from a high variability in the determination of tumor

volume estimate; a great interrate variability of the results (16%) has been reported in

the published literature. The high variability is due to the difficulties in selecting the

best slice and in locating the actual tumor boundary, since both operations are highly

operator dependent. Furthermore, this metric is intrinsically approximate and may fail

in tracking tumor response over a period of time. In fact, there is no clear evidence that

area estimates are actually correlated with tumor volume; for instance, there may be a

global decrease in tumor volume, despite local enlargement in one or more slices, or

vice versa. The hypothesis on which this protocol is based may sometimes be unrealistic,

thus leading in some cases to wrong conclusions.

The MRI segmentation technique may be a precious tool in oncological practice

both for diagnosis and treatment planning, as in brain tumor diagnosis, brain surgery,

and radiation treatment planning (RTP), and for monitoring, as in tumor response

measurement during patient follow-up [3–7]. To support brain tumor diagnosis and

RTP, there is a strong need for accurate segmentation techniques. Not only should a seg-

mentation algorithm be able to accurately quantify tumor size and location, but it should

also be capable of discriminating the various tissue types within the tumor bed (tumor,

necrosis, cyst, and vascular edema) in order to identify active tumor margins. Correct

identification of active tumor margins is of paramount importance in RTP, since it

allows an accurate selection of the areas to be irradiated. In some cases, selective

irradiation, as opposed to whole-brain irradiation, may be of help in limiting therapy coun-

tereffects, especially in the long period, while preserving therapy effectiveness [6].

On the contrary, during patient follow-up, it is necessary to specifically track

changes in tumor volume by quantifying the relative changes in tumor volume over a

period of time to determine tumor response to therapy. In this case, result reproducibility,

rather than accuracy, is of paramount importance, and therefore unsupervised segmenta-

tion techniques are better suited to this task. However, tumor response measurement is a

daunting segmentation task, much more critical than the segmentation of normal volun-

teers’ images. In particular, tumor size, type, stage, and vascularity may hinder the

ability of a segmentation technique to differentiate the various tissue types and alter the

degree of magnetic resonance contrast enhancement over time. Furthermore, antitumor

therapies, such as chemotherapy and radiation treatment, may affect magnetic resonance

relaxation parameters of both pathological and normal tissues, potentially altering seg-

mentation results, while surgical resection of the tumor may cause problems related to

the presence of edemas and alterations of normal brain anatomy.

Brain tumor diagnosis, treatment and follow-up thus constitutes an excellent

example of the wide range of applications of MRI segmentation, illustrating both the

potential impact on current clinical procedures and the inherent difficulty in deriving

methods capable of obtaining accurate and reproducible results.
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10.3 INTRODUCTION TO MRI SEGMENTATION

10.3.1 Overview of MRI Segmentation Techniques

Though the usefulness of segmentation techniques is established, correct segmentation of

magnetic resonance images poses many problems. In particular, before examining the

different methods employed, a few words on the principal kinds of artifacts are necessary

to understand some critical aspects of MRI segmentation. Magnetic resonance images are

subject to a number of possible artifacts, besides thermal noise generated by imaging hard-

ware. More specifically, two types of artifacts, that is, gray-level intensity inhomogeneity

and the partial-volume artifact, need to be considered, since they can be found, in varying

degrees, in all images acquired in this modality and moreover can greatly affect segmenta-

tion results. A detailed description of the physics of MRI and of magnetic resonance image

characteristics is beyond the scope of this section; for a deeper insight on the fundamentals

of MRI, see [8–10].

Thermal or electronic noise is random, mostly Gaussian, white, and additive, and in

general tissue dependent, since tissue constituents and their composition vary according to

the tissue type. Moreover, the gray-level intensity of pixels associated with voxels of the

same tissue class is generally not uniform across different slices of a magnetic resonance

data set, even within the same slice; this phenomenon is generally referred to as gray-level

intensity inhomogeneity (or simply intensity inhomogeneity). A variety of factors contrib-

ute to this artifact, mainly the intrinsic inhomogeneity of biological tissues, the irregula-

rities in the static and radio-frequency (RF) magnetic fields, and nonuniformities in the

sensitivity of RF receiver coils. So far, various techniques have been proposed in the

literature to correct intensity inhomogeneities [11, 12]. Among these, it is worth mention-

ing low-pass and homomorphic filtering techniques, which however may corrupt the edges

and other high-frequency details of the image. Other techniques are based on the use of

phantoms to measure magnetic field profiles of the magnetic resonance scanner;

however, in order to reliably correct the effects of inhomogeneities, they require the acqui-

sition of one phantom scan for each subject being imaged and are thus not feasible in

everyday practice. The adoption of segmentation techniques able of coping, to some

extent, with the presence of such inhomogeneities, thus emerges as a possible alternative

to such preprocessing filters [12]. Finally, partial-volume effects arise from the fact that,

since each slice being imaged has a finite thickness, the voxel associated to each image

pixel may contain more than one tissue type. The gray-level intensity of the related

pixel is then determined by the weighted sum of the intensities of the signals generated

by each tissue type. Partial-volume artifacts are thus dependent on the slice thickness

and result in image blurring (if slice thickness is too high, small brain structures such

as nerves may not even be visible in the image). An obvious countermeasure is to

acquire images with higher resolution (i.e., smaller slice thickness).

The MRI segmentation techniques can be roughly classified in two main categories:

supervised and unsupervised (or automatic) [1]. Supervised segmentation and classifi-

cation techniques require an experienced radiologist to select a set of pixels or regions

of interest for each tissue class in order to train the classifier. The main drawback of

these techniques is that the final result depends on the initial choice of the training set,

which is operator dependent. Therefore, the results are usually subject to a high interrater

(i.e., they depend on the user who selected the training set) and intrarater variability (i.e.,

the results can vary in time, as the same user selects different training sets), thus limiting

the applicability of these algorithms in those cases when result reproducibility is a

substantial requisite (e.g., brain tumor patient follow-up). Furthermore, since user input
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is usually required for each slice to be segmented, this approach can be quite time

consuming and consequently impractical in large, multitrial imaging centers. On the

contrary, unsupervised segmentation techniques do not require manual selection of a train-

ing set. Most of these segmentation techniques are based on clustering algorithms, which

subdivide the image in homogenous regions. However, since these regions have no

meaning from an anatomical viewpoint, they need to be further classified according to

the tissue type (or brain structure). The final classification step can be manual (in this

case, the needed manual intervention is limited to assigning a label to each segmented

region), automatic, or semiautomatic. Unsupervised segmentation techniques ensure a

higher stability and reproducibility of results, since they are independent of the operator.

However, some authors report that unsupervised techniques may yield longer execution

times than supervised techniques and in some cases may not achieve a meaningful seg-

mentation due to the difficulty in properly initializing clustering algorithms. Investigators

have tried to overcome these potential problems by exploiting heuristics based on anatom-

ical properties (knowledge-based approach) [13, 14]. In some cases, semisupervised

segmentation techniques, with minimal requisites in terms of operator time and skills,

have also been proposed.

Many image processing techniques have been applied to solve various problems

related to MRI segmentation (e.g., tissue classification, lesion segmentation). Among

those, pattern recognition techniques are generally acknowledged as the most promising

methods for performing brain tissue segmentation and/or classification, while other

classic image processing techniques, such as thresholding, edge detection methods, and

region growing, have been scarcely employed, due to the difficulty in selecting proper

thresholds and to their inability to cope with the presence of noise, intensity inhomogene-

ities, and partial-volume artifacts [1, 15].

Before analyzing the different pattern recognition techniques, a brief discussion

about the process of extracting features from magnetic resonance images is needed. Mag-

netic resonance imaging is an intrinsically multispectral imaging technique, allowing the

acquisition of (almost) simultaneous images, with different soft-tissue contrast charac-

teristics, of the same anatomical location (multichannel data sets) by varying acquisition

protocols and/or parameter setting. This difference in the contrast is basically due to the

fact that different tissue characteristics are responsible for the formation of the resonance

image in the different acquisition protocols. Specifically, an image in which contrast is

determined predominantly by one of the tissue parameters sensible to MRI, that is, T1

and T2 relaxation time and proton density (PD), is generally referred to as a T1-, T2-,

or PD-weighted image. Most published works have relied on this unique characteristic

of MRI, exploiting the availability of more information at each pixel site in order to

achieve better segmentation results. However, since single-channel images usually yield

smaller voxel sizes, they are more suited for precise volumetric analysis of brain struc-

tures. Despite this fact, only a few algorithms for single-channel magnetic resonance

images have been proposed [16, 18].

Feature extraction is essential in MRI segmentation and classification since it

reduces the segmentation task to the grouping of vectors in the feature space. The

choice of good features is thus essential in order to ensure an accurate and reliable segmen-

tation [1]. Most published segmentation techniques rely only on gray-level intensities

associated with each pixel to perform segmentation, which may be extracted from a

single image or from a multichannel image. Useful information may also be extracted

by images acquired in modalities different than MRI, provided that the images can be suc-

cessfully coregistered. To reduce the effects of random noise and enhance segmentation

results, many authors have combined gray-level intensities with features extracted from

10.3 INTRODUCTION TO MRI SEGMENTATION 177



the neighborhood of each pixel (such as the mean intensity) and from a combination of the

various channels of the data set [19].

The use of derived features, such as edge detection and texture features, has also

been proposed in the literature. However, edge detection is seldom used and is unlikely

to achieve good results on magnetic resonance images because of its high sensitivity to

noise and its inability to cope with intensity inhomogeneities and other common artifacts.

On the contrary, statistical texture features have been exploited in various proposed tech-

niques but are more suited to the classification of image regions than individual pixels

(pixel-based classification) since they are necessarily extracted from a large number of

pixels [20].

Various pattern recognition methods have been applied in both supervised and

unsupervised MRI segmentation techniques. As far as supervised MRI segmentation

techniques are concerned, the pattern recognition paradigms can be distinguished in para-

metric (or statistical) and nonparametric methods. Parametric methods make a hypothesis

on the underlying distribution of image features (e.g., gray-level intensities). Usually,

Gaussian distributions (either unidimensional or multivariate) are assumed for gray-level

intensities of each brain tissue class. The most commonly used parametric method is

maximum likelihood (ML): The parameters of the distribution are estimated on the

basis of the training set selected by the radiologist, while the remaining pixels are classi-

fied as belonging to the most probable class according to the estimated distribution. On the

contrary, nonparametric methods such as k-nearest neighbors (kNNs) are not based on any

assumption on feature theoretical statistical distribution; on the contrary, they take into

account the actual distribution of features, as they are usually based on the distance

between points (i.e., pixels) in the feature space. In the k-nearest-neighbor algorithm,

the Euclidean distance in the feature space between the pixel to be classified and the train-

ing set pixels is considered. The probability of a pixel belonging to a given class is then

estimated as the frequency of that class within the pixel’s k-nearest neighbors in the

feature space [21]. Supervised-learning neural networks (such as multilayer perceptron

and radial basis function networks) can be included in the class of nonparametric

pattern recognition paradigms. Generally, published results suggest that nonparametric

methods achieve higher performances than parametric methods; this may be due to the

difficulty in determining the real distribution of features.

Unsupervised pattern recognition techniques, also known as clustering techniques,

aim instead at autonomously finding the underlying structure of data in the feature

space by grouping into clusters points that are close in the feature space according to

some distance measure. From a qualitative point of view, a cluster can be defined as a

high-density area in the feature space; various mathematical models have been formulated

to achieve this goal. Among clustering techniques, the most widely used in image segmen-

tation are the K-means algorithm, along with its fuzzy equivalent C-means, and unsuper-

vised learning neural networks [22–24]. For instance, the K-means algorithm assigns

each input pattern to a given cluster by means of a membership function whose values

reflect the degree of similarity between the pattern itself and the cluster prototype (i.e.,

the centroid). The clustering problem can then be formulated as a minimization

problem, with argument equal to the sum of the distances from each input pattern to the

relative cluster centroid. The number of clusters is a predefined parameter of the algor-

ithm; a variant of this algorithm, known as ISODATA, allows the dynamic modification

of the number of clusters. Another interesting version is the semisupervised fuzzy

C-means algorithm, in which an operator “guides” the clustering procedure by selecting

a few pixels for each tissue class [25]. In the literature, a number of works have been

devoted to the evaluation and comparison of the performances of the various clustering
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techniques, in both normal and pathological images [5]. Some of the reported results will

be analyzed later in this section.

10.3.2 Use of Neural Networks in MRI Segmentation

Among segmentation techniques applied to brain tissue segmentation, a notable position is

reserved to neural networks. Neural networks have always been extensively applied to

image processing tasks. More details on the various neural network architectures and

their applications to image processing may be found in [26, 29]. In general, published

results suggest that neural networks can be very effective in accomplishing pixel-based

segmentation and classification of magnetic resonance images, achieving high perform-

ances, in many cases superior to those of other pattern recognition techniques (such as stat-

istical parametric algorithms or clustering algorithms like K-means and fuzzy C-means)

[24]. Some methods are based solely on the gray-level intensity, while others exploit

locally calculated features, such as texture: In any case, the vast majority rely on the

use of multispectral images. Moreover, the employment of different network architectures

has been proposed and compared, suggesting a possible advantage in the use of unsuper-

vised versus supervised training.

Segmentation techniques proposed in the literature generally exploit multispectral

images with acquisition channels usually equal to two or three but ranging in some cases

up to five [for example, with one inversion recovery and four spin-echo images acquired

with different time of echo (TE)] [30]. The most common input features are pixel

gray-scale intensity levels in the different images, though features extracted from the

combination of the different images and from the pixel neighborhood have also been

investigated. Specifically, the mean intensity of the pixel neighborhood permits the

reduction of noise, while the use of relative intensity values obtained by the use of

two images allows the reduction of additive errors deriving from the spatial nonhomo-

geneity of the intensities themselves [19, 30, 31]. Contrary to multichannel segmenta-

tion, single-channel neural network segmentation has been rare. However, the

enhanced resolution offered when comparing with equal acquisition time renders

these algorithms clinically significant and advocates their further development. The

most significant proposed approach is based on multiresolution analysis: Each pixel is

associated with a pattern of features which consists in a scaled family of geometric fea-

tures. Specifically, this family is derived by the convolution of the image and its deriva-

tives with a Gaussian kernel at different scales, so that each image represents a different

level of smoothing with respect to the original; the Gaussian kernel family has been

chosen due to its invariance to roto-translations.

Another distinction in the employed neural network architecture depends on

whether the applied learning algorithm is supervised or unsupervised. The network

architecture most used for supervised segmentation is the multilayer perceptron

(MLP). This network is usually trained with a small number of pixels (50/100) for

each class selected by a trained radiologist; training set selection is a critical task in

both supervised and unsupervised methods, since no established criterion exists to

guide the selection itself. The training is generally repeated for each slice, and a study

has in fact shown that this architecture is relatively not robust to interslice segmentation,

that is, segmentation of a slice based on the use of training sets derived from other slices

[19]. Though this aspect is highly desirable in supervised techniques, permitting the

reduction of operator interaction, it is difficult to achieve, due to the gray-scale inhom-

ogeneity and to the presence of artifacts; attempts have been made to propagate the

training set to adjacent slices [1].
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Themost established unsupervised approaches adopt the self-organizing map (SOM)

and Hopfield network architecture. In the latter case, image segmentation can here be seen

as the assignment of N pixels, associated to P features, to M classes, in order to minimize

the sum of the distances (generally defined as the Euclidean or Mahalanobis distance) from

the kth pixel and the centroid of the associated class (clustering). Since the Hopfield

network is designed to iteratively minimize an objective function, whose parameters

depend on the network weights, this objective function can be mapped on a M � N

Hopfield network: Once the final state is reached, the neuron outputs represent the

degree of membership of each pixel to each class [32–36].

Different architectures have been proposed for the SOM maps. In some configur-

ations, the number of neurons, and consequently the number of the classes in which

the image is subdivided, is approximately equal to the number of the final classes

(usually slightly larger in order to avoid undersegmentation, that is, the inclusion of

different tissues in the same class). In other cases, the size of the network is much

larger and is used as a preprocessing stage in the segmentation process in order to

reduce the dimensionality of the feature space. The use of adaptive resonance theory

(ART) networks, which are capable of dynamically changing the number of neurons

when the distance between the pattern itself and the existing neurons is greater than a vig-

ilance parameter, does not require a priori knowledge of the number of different tissues (an

issue which may be critical in pathological images). However, preliminary results indicate

that the obtained segmentation is strongly dependent on the training algorithm parameters

and specifically on the vigilance as well as on the order with which the patterns are con-

sidered [30].

As already observed, unsupervised segmentation techniques in general, and cluster-

ing in particular, do not accomplish pixel classification. Some proposed architectures thus

include also a classification stage which is usually subject to supervised training. For

example, investigators have proposed a two-stage architecture constituted by a clustering

stage (3 � 3 SOM) followed by a three-layer MLP network for quantitative evaluation of

the degree of cerebral atrophy induced by radiotherapy and chemotherapy in medulloblas-

toma patients [5, 37].

Another study has evaluated the performance of a radial basis function (RBF)

network with an unsupervised-trained first layer for clustering followed by a supervised-

trained second layer for classification. It is worth remarking that the classification network

architectures can be substantially simplified, since the second-layer inputs are constituted

by the cluster prototypes instead of the pixel gray levels, thus reducing the sensitivity to

noise and gray-level inhomogeneities. The classifier can thus be trained once on a

representative ensemble of images, instead of on every image, ultimately yielding an

unsupervised segmentation technique.

10.3.3 Result Validation Techniques

Validation and quantitative evaluation of the results obtained by MRI segmentation tech-

niques are essential to their introduction in diagnostic, therapeutic, and surgical simulation

clinical protocols. However, segmentation result evaluation still remains an open issue, as

the determination of the actual ground truth is not feasible. Two core aspects have to be

considered while validating a segmentation algorithm: result accuracy and reproducibility.

The most obvious assessment of result accuracy is obtained by visual inspection

by an experienced radiologist, but many other validation strategies have been proposed

in the literature. In the following, the most common and promising ones will be briefly

introduced [1, 38].
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The validation technique closest to the determination of ground truth is the

employment of phantom scans to test segmentation algorithms. A phantom is usually

subdivided in a few compartments containing known volumes of different substances

sensible to MRI (usually paramagnetic liquids or gels doped with paramagnetic

agents), and so phantom scans consist of images with a few, highly contrasting

classes, representing the various biological tissues, on a homogeneous background.

However, phantoms do not exhibit many of the characteristics that make segmentation

of human tissues so difficult (i.e., a high geometric complexity and multiple tissue

classes). Furthermore, they are incapable of truly mimicking the real distribution of

MRI parameters in biological tissues and human RF coil loading. As a consequence,

reported accuracy obtained using phantoms is usually very high, especially for large

volumes, but can only provide a limited degree of confidence in the reliability of seg-

mentation methods.

A surely more promising validation technique consists of computer-simulated

magnetic resonance images; in this case, a reproducible and known ground truth is

readily available, as it consists of the anatomical model used to generate the simulated

images. Several magnetic resonance signal simulation techniques, along with image

reconstruction methods, can be found in the literature. Simulated magnetic resonance

images are particularly attractive since they allow the introduction of various sources of

noise and artifacts in the generated images. Moreover, such sources can be separately con-

trolled in order to assess the robustness of segmentation methods against the various

sources and determine their effects on segmentation results in a quantifiable manner.

However, the effectiveness of this validation technique relies on the availability of truly

realistic MRI simulation methods.

Finally, a very common approach to MRI segmentation result evaluation requires an

experienced radiologist to manually classify MRI study results in order to compare seg-

mentation results with the manual labeling. Since manual labeling is very time consuming,

the use of software packages to assist the radiologist in accomplishing this task can be

useful in this context to reduce operator intervention. This technique has a major advan-

tage in that it attempts to emulate the radiologist’s interpretation, which is the only realistic

“valid truth” available for in vivo experiments. Notwithstanding, this technique also has a

major drawback, that is, the intrinsic variability of manual segmentation results. To aid in

the evaluation and comparison of different segmentation techniques, common databases of

manually labeled MRI studies, such as the Internet Brain Segmentation Repository

(IBSR), could be very useful for the scientific community.

Accuracy is not the only important parameter in MRI segmentation evaluation;

reproducibility is also a key aspect for many clinical applications involving segmentation

algorithms. Result reproducibility may be measured in various operating conditions. For

instance, in the case of supervised or semisupervised segmentation algorithms, result

reproducibility can be quantitatively assessed by having the same radiologist select differ-

ent training sets on different occasions for the same data set (intrarater variability) or by

having different radiologists select different training sets on the same data set (interrater

variability). In most cases, the stability of supervised algorithms against operator depen-

dency in the choice of the training set has been evaluated using healthy volunteer scans.

This is certainly useful and more indicative of the reliability of the segmentation methods

than other validation techniques, such as those based on phantom scans. However, results

obtained using MRI studies of normal volunteers may be dramatically different from those

of patients, especially after radiation treatment and/or chemotherapy. Once more, this

entails the adoption of unsupervised segmentation techniques to eliminate operator depen-

dency on the results.
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10.4 SINGLE-CHANNEL UNSUPERVISED
SEGMENTATION: CASE STUDY

In this section, we will provide an example of a fully unsupervised neural-network-based

approach to MRI segmentation [39]. This example will allow us to concretely illustrate the

various steps that constitute a typical unsupervised MRI segmentation technique. In fact,

most techniques proposed in the published literature follow the general schema shown in

Figure 10.1, which comprises four steps: preprocessing, feature extraction, clustering, and

classification. In this case, the preprocessing step consists in extracting the intracranial

boundary, but other image enhancing techniques (e.g., noise removal) can also be applied.

The proposed segmentation technique focuses on the use of single-channel images.

As previously mentioned, single-channel images usually yield smaller voxel sizes and are

therefore useful for performing precise volumetric analysis. Single-channel image seg-

mentation is a difficult task due to the relative lack of information when compared with

multispectral images, and only a few authors have dealt with this issue. However, it is

worth noting that this approach is quite general and can be easily extended to cover multi-

spectral images and/or other image types by modifying the feature extraction step; in fact,

similar approaches have been attempted in the literature to perform segmentation of

multichannel images [37].

Finally, in order to perform clustering, a SOM neural network was used; clusters

then have to be classified according to the tissue type they represent. This can be done

either manually or using a classifier; in this case, a MLP neural network was used.

10.4.1 Preprocessing

Intracranial boundary detection is a preprocessing step that consists in determining the

boundary of the intracranial cavity and removing extrameningeal tissues, which are

usually irrelevant in the diagnosis and treatment of many brain pathologies. This effec-

tively limits both the number of pixels to be classified, thus reducing the overall processing

time, and the number of tissue classes to be considered, simplifying consequently the seg-

mentation task, especially in the case of single-channel images where there is a significant

Figure 10.1 Stages of MRI

segmentation technique.
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overlap in the gray-level intensity distribution of the various tissue classes. To detect the

intracranial cavity boundary, a fully automatic technique, proposed in [40], was

implemented and adapted to segment T1-weighted images in both the axial and coronal

orientations. The procedure is based on three steps.

In the first step, a head mask is determined by removing background noise. First, a

rough head mask is generated by histogram thresholding; the threshold is determined by

fitting the lower bins of the histogram to a Rayleigh distribution under the assumption that

background noise obeys a Rayleigh distribution [41]. Then, the head mask is refined by

means of morphological operations.

In the second step, an initial brain mask is generated by using histogram threshold-

ing and morphological operations. Thresholds are again automatically generated by fitting

a Gaussian distribution to the central peak of the histogram and then selecting the upper

and lower thresholds by half the standard deviation above and below the mean, respect-

ively. These thresholds are usually successful in eliminating most extracranial tissues

but may still need manual refinement in some cases. However, a single thresholding

step is not sufficient to eliminate all extracranial tissues; therefore a series of morphologi-

cal operators are applied to the thresholded image. In this step, high-level knowledge on

brain anatomy and spatial information generated by the previous head segmentation step

are exploited.

Finally, in the third step, the head mask is refined using an active contour model

algorithm [42]. In active contour paradigms, the task of segmenting an object from the

background is modeled as an energy minimization problem. The energy is calculated as

the sum of an external energy, which attracts the contour toward features of interest in

the image (such as edges), and an internal energy, which poses smoothness constraints

on the final contour. Anisotropic diffusion filtering is used to enhance edges and

perform intraregion smoothing in order to obtain better results.

10.4.2 Feature Extraction

Feature selection and extraction comprise a fundamental step in order to ensure accurate

and reliable segmentation. Many features have been proposed in the literature and most

methods rely on gray-level intensities only in order to classify pixels according to the

tissue type. However, in the case of single-channel magnetic resonance images, gray-level

intensity is generally not sufficient to obtain satisfactory results. Alternative features have

been proposed, such as those extracted by multiscale analysis and image texture (it has to

be remarked, though, that statistical texture features, such as those based on the

co-occurrence matrix, are not suitable for pixel-based classification and hence are not

applicable in this case). In this case, we have employed a nine-dimensional feature

vector extracted from each pixel neighborhood. Among various possible combinations,

the normalized intensities of the pixel and of its eight nearest neighbors have been selected

on an experimental basis. The use of neighbors’ gray-level intensity is useful in compen-

sating the effects of random noise while minimizing the loss of resolution. Moreover,

introducing the spatial distribution of gray levels in the segmentation process can also

be helpful in obtaining more accurate results.

10.4.3 Clustering

Unsupervised clustering is performed by means of a Kohonen SOM [43]. As shown in

Figure 10.2, the SOM consists of a single layer of neurons arranged in a bidimensional

topology during the learning phase. Each output neuron is associated with a cluster,
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and the associated weights represent the cluster centroid (i.e., the prototype) in the feature

space. In this case, nine neurons arranged in a 3 � 3 topology have been used; the number

of neurons has been selected in order to allow for sufficient capacity to define correct pixel

clusters, without undersegmenting tissue regions, before collapsing to the final number of

expected tissue classes. Since the intracranial boundary has been previously extracted in

the preprocessing step, the number of tissue classes being considered can be limited to

3 for normal brain parenchyma (i.e., white matter, gray matter, and cerebrospinal fluid).

In order to account for intensity inhomogeneities across different slices, the SOM is sep-

arately trained for each input slice. After training, each pattern is presented to the network

to perform clustering.

Self-organizing maps are trained using a competitive learning algorithm. Each

neuron is associated with a vector of weights wi ¼ {wi1, wi2, . . . , wij} which, as pre-

viously mentioned, represents the prototype of the cluster associated with that neuron.

Each input pattern is associated with the neuron whose prototype is closest to the

pattern itself according to some distance measure (usually the Euclidean distance).

The training algorithm seeks to minimize an error function, given by the sum of the dis-

tances between each input pattern in the training set and the relative winning neuron. In

order to do so, a competitive learning rule (also known as the Kohonen learning rule) is

employed which iteratively adjusts weight vectors starting from their initial values. At

each iteration, all the input patterns in the training set are presented to the network

and the winning neuron is recorded. Winning neuron weights are adjusted according

to the following rule:

Dvij ¼ h(xij � wij)

Furthermore, the weights of the neighboring neurons are adjusted; in particular,

weight updates

Dvij ¼ h fneigh(xij � wij)

are scaled by a neighborhood function (the most commonly used functions are the

Gaussian function and its first derivative, the “mexican hat” function). In this way, the

input space topology is preserved in the SOM output space topology (i.e., clusters

which are close in the input feature space are associated with neighboring neurons).

Figure 10.2 SOM architecture.

All inputs are connected to

each output neuron, even if only

a few interconnections are

shown for clarity.
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As previously mentioned, the SOM is separately trained for each input slice to

account for intensity inhomogeneities across different slices. The training set is constituted

by 500 randomly selected pixels, where the training set size has been determined exper-

imentally. The training set should not be too small, in order to provide sufficient general-

ization capabilities, and not too large, in order to preserve the network from the effects of

random noise. Moreover, random selection ensures that the choice of the training set is

fully unsupervised and operator independent, while the network stability against

random initialization has been assessed to guarantee that the final result is substantially

independent of the initial choice of the training set.

The training procedure, being iterative, requires initialization of weight vectors. In

this case, weights initialization is performed randomly for the first slice, while sub-

sequently final weight vectors are propagated for initialization from each slice to the

adjacent. In this way, 3D connectivity of brain structures is exploited to reduce overall

computation times and obtain a more accurate segmentation.

Finally, the definition of the training procedure requires the selection of appropriate

values for various parameters, namely the neighborhood function and the learning rate. In

this case, a Gaussian neighborhood function has been used:

fneigh(iter) ¼ exp
�(x2 þ y2)

2s 2

� �

where x2þ y2 is the relative distance between the winning neuron and the updated neuron

and x and y are the coordinate differences in the two dimensions of the output plane. The

size of the neighborhood should decrease in time, pursuing network plasticity in the first

phase of learning versus selectivity in the final phases.

In this study, the size of the neighborhood is decreased monotonically at each

iteration by updating the neighborhood function according to

s ¼ 3(0:4iter=itermax )

where itermax is the predetermined total number of iterations. The decreasing form of the

neighborhood ensures that the weight vectors will converge to a final set of anatomically

meaningful prototypical vectors [5]. The number of iterations performed is 2000 for the

first slice and 300 for subsequent slices. These parameters were selected experimentally

in order to ensure reliable convergence of weight vectors.

Finally, an adaptive learning rate h has been used; the initial value is set to 0.01 and

is then dynamically adjusted at each iteration. In particular, if the total error significantly

increases, the learning rate is decreased in order to avoid network instability, whereas if

the error significantly decreases, the learning rate is increased in order to go deeper into

the energy landscape.

10.4.4 Classification

In the final classification step, pixel clusters generated by the SOM are mapped into

predefined tissue classes by means of a MLP, or feedforward, neural network. The

network was trained on one set of manually labeled images, while another set of

labeled images was used as a test set to assess the performances of the segmentation pro-

cedure on previously unseen cases.

More specifically, the network was separately trained for simulated and real

magnetic resonance images to account for the different distributions of gray-level intensi-

ties in the two types of input images. Three slices for each data set were selected as
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representative slices for this purpose, and a preselected number of pixels were randomly

selected from each slice to form the training set. More details on the characteristics of the

data sets employed for this study will be given in the results section.

It is worth observing that, since classification is performed on the set of prototypical

vectors determined by the previous unsupervised clustering procedure, rather than on

raw image data, the classification procedure is more robust against noise and has better

generalization capabilities, compared to other procedures that directly employ gray-level

intensities to perform pixel classification.

As shown in Figure 10.3, the employed MLP has three levels: an input layer, a

hidden layer, and an output layer. The input layer consists of nine neurons, one for

each component of the feature vectors associated with the pixels in the input image.

The vector input is thus constituted by the centroid of the winning neuron associated

with each input pixel. The hidden layer and the output layer consist of seven and four

neurons, respectively, with sigmoid transfer function. Each neuron in the output layer is

associated with a predetermined tissue class (white matter, gray matter, cerebrospinal

fluid, and other); each input pattern is therefore associated with the class of the neuron

which gives the greatest output; that is, a crisp classification is performed. The initial

weights were determined randomly using a random-number generator with Gaussian dis-

tribution, zero mean, and variance 0.5.

Finally, the network was trained with error backpropagation using the delta rule for

training. Again, the training procedure seeks to minimize an error function which is given

by the sum of the distances between the network output and the target (i.e., the desired

network output) for each pattern in the training set. When using the delta rule, connection

Figure 10.3 MLP architec-

ture. All neurons in adjacent

layers are fully interconnected,

but only a few interconnections

are shown for simplicity.
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weights are updated at each iteration according to

Dw ji(t) ¼ �h
X

p

d
p
j F

0(zj)x
p
i

where p denotes the patterns in the training set, F0(zj) is the first derivative of the transfer

function, and d
p
j is the difference between the actual output and the target of each

network layer.

For the output layer, the error is known and can be calculated as

d
p
j ¼ y

p
j � t

p
j

while for hidden layers, the error needs to be backpropagated. In particular, for layers s and

s� 1, the following relationship applies:

d
(s�1)p
j ¼

X

j

d
sp
j Fs0(z

p
j )w

s
ji

Appropriate values for the network parameters were determined experimentally; in

particular, the learning rate for the network was set to 0.0001, and the network was trained

for 5000 epochs.

10.4.5 Results

In this section, we will report the results obtained while testing the segmentation technique

discussed in the previous sections on simulated and real magnetic resonance images. The

performance of the clustering procedure has been analyzed in greater detail in [39]. In this

section we will evaluate the entire segmentation process.

10.4.5.1 Simulated Magnetic Resonance Images As discussed in Section 10.2,

the use of simulated images facilitates validation of MRI segmentation methods since a

reproducible ground truth is known a priori. Furthermore, the effects of various noise

sources can be separately investigated [44].

The simulated data sets used in this study were made available by the Brainweb

institution (available on-line at http://www.bic.mni.mcgill.ca/brainweb/). A description

of the simulation techniques used to generate these data sets can be found in [45, 46]. A

number of parameters can be freely set to determine the characteristics of the final images;

in this study, all data sets used are T1-weighted images in the axial orientation with a slice

thickness of 1.0 mm. In order to assess the effects of random noise and intensity inhomo-

geneities, 14 data sets with random noise varying in the range from 0 to 9% and level of

intensity inhomogeneity varying in the range from 0 to 40% were used. For the purposes of

this study, three reference slices were selected for each data set.

The training set was extracted from the reference slices of three preselected data sets

and consisted in 2000 randomly chosen pixels for each reference slice. The remaining data

sets were instead employed as test sets.

In order to train the classifier, three data sets were chosen to extract the training set,

which consisted of 2000 randomly selected pixels for each reference slice, while the others

were employed as test sets. In Figure 10.4 a few representative slices are shown, along

with the results of the clustering and classification steps. Classification labels are

mapped to a color scheme similar to the one used for PET to display color images.
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In particular, gray- and white-matter tissues are colored red and green, respectively, while

cerebrospinal fluid (CSF) is colored blue.

Segmentation results have also been quantitatively compared with the ground truth

(i.e., the model used to generate the simulated images). Such quantitative evaluation of

results was performed by classifying each reference slice in both the training and test

sets and by determining the percentage of correctly classified pixels in every slice. Percen-

tage values have also been separately calculated for each tissue class. Finally, the mean

and standard deviation over the entire set of slices of the percentage of correctly classified

pixels were calculated. Quantitative results are reported in Table 10.1. The high partial-

volume effect at the sharp boundary between the ventricular CSF and the surrounding

gray-matter tissue accounts for the relatively low percentage of correctly classified

tissue for the CSF class.

In order to deeper evaluate the effects of random noise and gray-level intensity

inhomogeneity on final segmentation results, in Figure 10.5 segmentation results are com-

pared against the level of random noise and intensity inhomogeneity, respectively.

Numerical results were obtained by varying the percentage of random noise (intensity

inhomogeneity) while keeping the value of the other parameter fixed and by calculating

the mean percentage of correctly classified pixels over all slices with the same degree

of random noise (intensity inhomogeneity).

Figure 10.4 Segmentation

results for three representa-

tive slices. From left to right:

simulated T1-weighted

magnetic resonance image,

gray-scale representation of

the clustering step,

pseudocolor display of

classification results, and

ground truth.

TABLE 10.1 Mean and Variance of Correctly Classified Pixels Per Slice

White matter

(WM)

Gray matter

(GM)

Cerebrospinal

fluid (CSF) Total

Mean 92.77 92.40 77.94 90.41

Standard deviations 3.74 6.40 8.21 2.55
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10.4.5.2 Volunteer MR Scans Simulated magnetic resonance images are useful in

evaluating the performance of segmentation methods but usually cannot encompass all

the characteristics of real magnetic resonance images that hinder the capability of segmen-

tation algorithms to accurately segment tissue classes. All the data sets utilized in this

study were made available by the IBSR. In this study, 20 volunteer magnetic resonance

brain data sets were considered; the data sets and their manual segmentations were

provided by the Center for Morphometric Analysis at Massachussetts General Hospital

(available online at http://neuro-www.mgh.harvard.edu/cma/ibsr).
All data sets are T1-weighted images in the coronal orientation; in particular, 10

volunteer scans were performed on a 1.5T Siemens Magnetom MR system [repetition

time (TR) 40 ms, TE 8 ms, flip angle 508, field of view (FOV) 30 cm, thk (slice)

3.1 mm, number of excitations (nex) 1], while 10 scans were performed on a 1.5T

General Electric Signa MR system [TR 50 ms, TE 9 ms, flip angle 508, FOV 24 cm, thk

3.0 mm, nex 1). Manual segmentation was performed on the positionally normalized

scan by trained investigators using a semiautomated intensity contour mapping algorithm

and signal intensity histograms [47]. Once the external border was determined by intensity

contour mapping, gray–white matter borders were demarcated using signal intensity his-

tograms. Using this technique, borders are defined as the midpoint between the peaks of the

bimodal histogram for a given structure and its adjacent tissue. Other neuroanatomical

structures were segmented similarly [48].

For the purposes of this study, 10 volunteer scans were considered and three refer-

ence slices per data set were selected. The training set was extracted from three preselected

data sets by randomly choosing 1500 pixels for each reference slice, lending great atten-

tion to the selection of the training set, in order to ensure that all tissue classes are well

represented (i.e., guarantee that the number of training patterns per tissue class does not

fall below a certain threshold).

Some representative slices of the volunteer scans, along with the results of the

clustering and classification procedures, are shown in Figure 10.6.

As for simulated images, the accuracy of the segmentation algorithm was quantitat-

ively assessed by comparing segmentation results with the ground truth (i.e., the manual

segmentation) on a pixel basis; the obtained results are reported in Table 10.2. All the

reference slices in the training and test sets were classified and the percentage of correctly

classified pixels per slice was determined. The mean and standard deviation over the entire

set of slices were then calculated. Since only one manual segmentation was available, it

could not be possible to account for inter- and intraobserver variability in result evaluation.

Figure 10.5 Percentage of correctly classified pixels per tissue class with varying level of random noise

and intensity inhomogeneity.
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However, this source of error, which could possibly cause some variations in the results

reported in this section, is common to all validation techniques based on the use of manu-

ally labeled studies. As expected, segmentation results are slightly worse when compared

to simulated magnetic resonance images due to the greater inherent complexity of real

images. Furthermore, the increased slice thickness results in higher partial-volume arti-

facts, which obviously affect the accuracy of the segmentation algorithm, especially at

the boundary between CSF and gray matter.

10.5 FUTURE TRENDS

In this chapter, we have provided an introduction to MRI segmentation techniques, with

particular emphasis on a neural-network-based approach. Moreover, we have outlined

some of the most interesting applications of segmentation techniques as well as those

critical aspects that make MRI segmentation so difficult.

Brain imaging plays a significant role in the diagnosis and treatment of brain

pathologies and neurological disorders. Image processing and analysis tools are

strongly needed to take full advantage of the advances in imaging modalities and could

potentially have a remarkable impact on the efficiency and efficacy of clinical proce-

dures, ultimately leading to a more cost-effective, higher quality health care delivery.

Therefore, it is not surprising that a large amount of past and ongoing research

activities have been devoted to MRI segmentation, which is a major task in medical

image processing and analysis. However, the introduction of segmentation methods in

Figure 10.6 Segmentation

results for three representa-

tive slices. Left to right: raw

MRI, gray-scale represen-

tation of clustering step,

pseudocolor display of

classification results, and

manual segmentation. All

pixels classified as

background in the manual

segmentation were manually

removed in order to enable

the comparison of manual

and automatic segmentation.

TABLE 10.2 Mean and Variance of Correctly Classified Pixels Per Slice

White matter

(WM)

Gray matter

(GM)

Cerebrospinal

fluid (CSF) Total

Mean 83.20 75.09 61.08 77.92

Standard deviation 7.62 11.30 20.26 7.49
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everyday practice will not be feasible until established techniques, satisfying clinical

requirements in terms of result reliability, accuracy, reproducibility, and operator indepen-

dence, are available.
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CHA P T E R11

HIGH-RESOLUTION EEG AND

ESTIMATION OF CORTICAL

ACTIVITY FOR BRAIN–COMPUTER

INTERFACE APPLICATIONS
F. Cincotti, M. Mattiocco, D. Mattia,

F. Babiloni, and L. Astolfi

11.1 INTRODUCTION

In the last decade, high-resolution electroencephalography (EEG) technologies were

developed to enhance the spatial information of EEG activity [1, 2]. Furthermore, since

the ultimate goal of any EEG recording is to provide useful information about the brain

activity, mathematical techniques, known as inverse procedures, have been developed

to estimate the cortical activity from the raw EEG recordings. Examples of these

inverse procedures are dipole localization, the distributed source, and cortical imaging

techniques [1, 3, 4]. Inverse procedures can use linear and nonlinear techniques to localize

putative cortical sources from EEG data by using mathematical models of the head as a

volume conductor.

Nowadays, it has been shown that the imagery of upper limb movements produced

stable EEG patterns on the scalp surface and that such patterns can be used in the buildup

of a brain–computer interface (BCI) system between a human and a computer [5–7]. The

EEG patterns related to motor imagery are generally located in the centroparietal scalp

areas, roughly overlying the primary sensory and motor cortical areas [8–10]. However,

several published papers have also underlined the usefulness of collecting brain information

related to motor imagery by intracranial recordings in both humans [11–14] and monkeys

[15–19]. Such intracortical recordings, often performed on the primary motor cortical

areas, provided signals that allow the user to control virtual or physical devices. Despite

these successes, the use of intracranial recordings in humans is obviously limited for

ethical reasons to those patients that have undergone brain surgery or are severely disabled

[11, 13]. However, a question has arosing about the possibility of avoiding such invasive

procedures without renouncing the high-quality signals recorded at the cortical level.

More recently, it has been suggested that with the use of modern high-resolution EEG

technologies [19–21] it may be possible with estimate the cortical activity associated with

the mental imagery of upper limb movements in humans [22, 23]. However, verification

of such a statement on a group of normal subjects has not been performed. The scientific

question at the base of the present work is whether the estimated cortical activity related
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to the mental imagery of the upper limbs provides more useful features with respect to those

obtained using scalp EEG recordings. To address this, high-resolution EEG recordings were

taken on six healthy subjects during the imaging of upper limbmovements.Waveforms from

scalp electrodes and those from the estimated cortical activity in particular regions of interest

(ROIs) were then compared. Such comparisons returned information about the usefulness of

cortical activity for the recognition of mental states with respect to scalp recorded data.

11.2 METHODOLOGY

11.2.1 Data Collection

Six healthy subjects participated in the experiments and were asked to perform the

imaging of right-finger movements after a visual stimulus appeared on a screen placed

in front of them. The EEG was recorded by a high-resolution EEG cap with 64 electrodes

disposed accordingly to an extension of the 10–20 international system. The EEG data

sampling frequency was 256 Hz, and the signal was bandpass filtered between 0.1 and

100 Hz before digitization. Electromyographic (EMG) signals were also recorded from

the extensor digitoris communis muscle on both arms to check for any small movements

of the finger during the mental imagery. Each single EEG trial occurred from 2 s before the

arrival of the visual trigger to 1 s after.

11.2.2 Head Model

For all subjects analyzed in this study, sequential magnetic resonance images were

acquired and realistic head models were generated. Figure 11.1 shows the realistic head

models generated for the experimental subjects analyzed in this study together with the

high-resolution electrode array used. Scalp, skull, dura mater, and cortical surfaces of

the realistic and averaged head models were obtained with segmentation and countouring

algorithms. The surfaces of the realistic head models were then used to build the boundary

element model of the head as the volume conductor employed in the study. Conductivity

values for scalp, skull, and dura mater were those reported by Oostendorp et al. [24].

Figure 11.1 Realistic head models generated for the six subjects analyzed in this study, together

with their high resolution electrode array used for the EEG recordings.
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A cortical surface reconstruction was accomplished for each subject’s head with a

tessellation of about 5000 triangles on average.

11.2.3 Estimation of Cortical Source Activity

Cortical activity during the mental imagery task was estimated in each subject using the

depth-weighted minimum-norm algorithm [25–27]. Such estimation returns a current

density estimate for each of the thousand dipoles constituting the modeled cortical source

space. Each dipole returns a time-varying amplitude representing the brain activity of a

restricted patch of cerebral cortex during the entire task time course. This rather large

amount of data can be synthesized by computing the ensemble average of all the dipole mag-

nitudes belonging to the same cortical ROI. Each ROI was defined on each subject’s cortical

model in accordance with its Brodmann areas (BAs). Such areas are regions of the cerebral

cortex whose neurons share the same anatomical (and often also functional) properties.

During a decade of neuroimaging studies different BAs were assigned a precise role in

the reception and the analysis of sensory and motor commands as well as memory proces-

sing. Actually, such areas are largely used in neuroscience as a coordinate system for sharing

cortical activation patterns found with different neuroimaging techniques. In the present

study, the activity in the following ROI was taken into account: the primary left and right

motor areas, related to BA 4, the left and right primary somatosensory and supplementary

Figure 11.2 The ROIs employed in a particular subject over the realistic cortical and head model

reconstructions. Note as each particular ROI is surrounded with a thick line. The lines marked

the primary motor, supplementary motor, and somatosensory cortical areas of both hemispheres.

In dark gray are represented the other parts of the cortical surface that were used for the estimation

of the current density distribution.
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motor areas. Figure 11.2 shows the ROIs employed for a particular subject (4) over the rea-

listic cortical and head model reconstructions.

11.2.4 Data Analysis

Artifact correction was performed on each single EEG trial recorded, and the trials

contaminated by electrooculogram (EOG) and/or EMG activity at the resting arms

were discarded. Artifact-free single trials were then averaged. Each artifact-free single

trial was then subjected to the linear inverse procedure, and the associated time-varying

cortical distributions were estimated. The procedure of spatial averaging in each ROI

explained in the previous paragraph then applied to retrieve the cortical waveforms

related to each particular ROI analyzed.

11.3 RESULTS

The average activity observed at the scalp electrodes and those estimated in the cortical

ROIs showed consistent spatiotemporal patterns across all subjects of the experimental

group analyzed. Such patterns involve the presence of a consistent negative activity

over the centroparietal scalp regions, with a variable time delay from the visual trigger

onset between 240 and 280 ms and a peak of activity between 290 and 320 ms.

Figure 11.3 shows, for subject 6, the average waveforms gathered from the scalp

electrodes C3 and C4 as well as the waveforms obtained from the primary motor areas

on the left and right hemispheres (waveforms A4L and A4R, respectively). It is worth

noting that the negative deflections of the C3 and C4 waveforms after the visual trigger

onset are more balanced with respect to the analogous waveforms obtained in the

Figure 11.3 Average waveforms for subject 6 gathered from the scalp C3 and C4 leads and the

waveforms obtained from the primary motor areas on left and right hemispheres (waveforms

represented with the A4L and A4R labels, respectively).
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primary motor areas in both hemispheres. In fact, the waveforms related to the primary

motor areas of the left hemisphere present more pronounced negative deflections with

respect to those observed in the right motor areas. This phenomenon is mainly present

on the primary motor area, while the activity from the primary sensory motor areas is

present but less unbalanced with respect to those obtained from the motor areas.

Figure 11.4, first row, shows a sequence of time-varying potential distributions gen-

erated over the scalp surface in subject 4. A clear negative potential distribution over the

centroparietal scalp area is observed during the time period between 260 and 340 ms. Such

a potential distribution is similar to the occurrence of the motor potential during normal

limb movements [9, 27]. Of particular interest are the peaks of negative activity generated

over the vertex and the left lateral scalp areas. It is worth noting that no relevant activity is

observed on the scalp areas ipsilateral to the imaged finger movements. The second row of

the figure shows the time course of the estimated cortical activity during the mental

imagery from 260 to 340 ms after the visual trigger onset. In this figure, the negative cor-

tical values are depicted in red hues while the positive cortical ones are represented with

blue hues.

Depth-weighted minimum-norm estimates showed a concentration over the left

primary motor areas of the mental activity related to the imaging of the right arm move-

ment during the time period analyzed. No relevant cortical activity is present in the right

motor and primary sensory areas, while frontal activity is present. Furthermore, the

presence of bilateral negative activity over the cortical regions can be observed relative

to the proper supplementary motor area. Also, the cortical patterns are consistent with

those recorded from the scalp surface in the same subject (see first row). However, the

cortical estimated patterns present higher spatial details than those observed on the

scalp surface.

Figure 11.4 TOP row: sequence of the time-varying potential distributions generated over the

scalp surface in the subject 4. A clear negative potential distribution over the centro parietal scalp

areas is observed during the time period between 260 to 340 ms, after the presentation of the

visual trigger starting the imagery of the right middle finger extension. Bottom row: time course

of the estimated cortical activity during the mental imagery of the right finger movement from 260

to 340 ms after the visual trigger onset. In this row, the negative cortical values are depicted in

red hues, while the positive cortical ones are represented with the blue hues.
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11.4 DISCUSSION

The data reported here suggest that it is possible to retrieve the cortical activity related to

mental imagery by using sophisticated high-resolution EEG techniques, obtained by

solving the linear inverse problem with the use of realistic head models. Of course, the

analysis of the distribution of the potential fields associated with the motor imagery in

humans have been already described [8, 9]. However, in the context of the BCI, it

becomes important if the activity related to the imagination of arm movement can be

unbalanced between the two hemispheres. In fact, the greater this imbalance between

the activity gathered in scalp electrodes C3 and C4, the easier is the task of recognizing

it by a classifier [9]. The relevant finding here is that the group analysis of the cortical

waveforms associated with the mental imagery suggested the presence of a more

pronounced imbalance between the cortical activity estimated in the primary motor

areas of the right and left hemispheres and that gathered from scalp electrodes.

Several EEG ormagnetoencephalographic studies have shown that the cortical activity

related to the motor imagery can be retrieved using the single equivalent dipole approxi-

mation [28–30]. However, it must be noted that the use of a single dipole is a rather

crude approximation of the distributed cortical activation occurring during the mental

imagery. Furthermore, the dipole localization technique is a nonlinear methodology, that

involves the use of iterative algorithms for the search of the minimum of the cost functional

associated with the optimal dipole position in the head model. This last aspect makes dipole

approximation an unsuitable tool for the on-line processing of the EEG data needed in a BCI

device that results in useful feedback to the user [6, 7]. On the other hand, it is worth noting

that the cortical estimation methodology illustrated above is suitable for the on-line appli-

cation needed for the BCI device. In fact, despite the use of sophisticated realistic head

models for scalp, skull, dura mater, and cortical surface, estimation of the instantaneous cor-

tical distribution from acquired potential measures required a limited amount of time necess-

ary for a matrix multiplication. Such multiplication occurs between the data vector gathered

and the pseudoinverse matrix that is stored off-line before the start of the EEG acquisition

process. The complexity of the pseudoinverse matrix is illustrated by the geometric head

modeling (obtained with the boundary element or the finite element modeling techniques)

as well as by the a priori constraints used for the minimum-norm solutions.

There is a trend in the modern neuroscience field toward using invasive electrode

implants to record cortical activity in both animals and humans for the realization of an

efficient BCI device [12, 15, 18]. In this chapter we have presented evidence that suggests

an alternative methodology for the estimation of such cortical activity in a noninvasive

way by using accurate modeling of the principal head structures involved in the trans-

mission of the cortical potential from the brain surface to the scalp electrodes.
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CHA P T E R12

ESTIMATION OF CORTICAL

SOURCES RELATED TO

SHORT-TERM MEMORY

IN HUMANS WITH

HIGH-RESOLUTION EEG

RECORDINGS AND STATISTICAL

PROBABILITY MAPPING
L. Astolfi, D. Mattia, F. Babiloni, and F. Cincotti

12.1 INTRODUCTION

It is well known that high-resolution electroencephalography (HREEG) recording presents

a very good temporal resolution (millisecond scale) and a moderate spatial resolution (on

the order of 2–3 cm). The spatiotemporal resolution of HREEG is adequate to follow the

complex temporal dynamics of brain phenomena [1]. Furthermore, the wide availability of

magnetic resonance (MR) images of subjects’ heads has made possible the use of realistic

models for the head and for the cortical surface in procedures involving the estimation of

cortical current activity. It has been demonstrated that the use of realistic head models

increases the accuracy of the cortical current reconstruction from HREEG data. Pointlike

models of cortical sources (such as the current dipole) are largely used in the analysis of

primary evoked potentials/fields or epileptic spikes [2–4]. However, such source models

are inefficient at representing extended cortical activations due to cerebral engagement in

motor or cognitive tasks [5, 6]. In the distributed source approach, thousands of equivalent

current dipoles covering the cortical surface modeled have been used and their strengths

estimated by using linear and nonlinear inverse procedures [7–11]. The solution space

(i.e., the set of all possible combinations of the cortical dipoles strengths) is generally

reduced by using geometric constraints. For example, the dipoles can be disposed along

the reconstruction of cortical surface with a direction perpendicular to the local surface.

An additional constraint involves forcing the dipoles to explain the recorded data with a

minimum or a low amount of energy (minimum-norm solutions [7]). However, statistical

characterization of the estimated cortical current densities is also needed to understand if

the observed changes in brain activity are due to chance alone or are induced by the
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experimental task. However, in the study of cognitive processes with EEG recordings

frequency-related instead of temporal analysis is often used [12]. This is because many

cognitive processes produced marked variations of EEG spectral contents while temporal

variations of the electromagnetic field could be less informative, due to the jitter of the

time components of the event-related potentials/fields [13]. Hence, an interest arose in

the extension of statistical parametric mapping (SPM) to the analysis of EEG data com-

puted in the frequency domain. Also of interest for a possible extension of SPM techniques

to the frequency domain is related to the fact that often the experimental design requires

that the subjects perform different tasks. This occurs when a cognitive paradigm such as

go/no go or working/not working memory is investigated [14–17]. The comparison

between these different tasks in the framework of SPM can be conveniently addressed

by the same approach used by the neuroscientific community for functional magnetic

resonance imaging (fMRI) studies. In fact, by using the properties of the z-score it is

possible to derive a contrast technique that extends the comparisons usually employed

by SPM between the task and the baseline periods to the frequency domain.

In this chapter we present a methodology that allows the use of spectral data in the

framework of SPM for the analysis of complex behavioral tasks. An application of the pro-

posed approach is provided on data related a short-term memory (STM) and no-short-term

memory (NSTM) paradigm recorded by HREEG in a group of healthy subjects. Results

obtained with EEG showed active participation of cortical prefrontal and parietal areas

during the task phase in which an image had to be held in the memory by the subjects.

Such participation was not visible using previously adopted conventional mapping pro-

cedures while it was highlighted by the proposed statistical approach.

12.2 MATERIALS AND METHODS

12.2.1 Tasks

For the EEG recordings, the subjects were seated in a comfortable reclining armchair

placed in a dimly lit, sound-damped, and electrically shielded room (magnetic insulated

room). They kept their forearms resting on armchairs, with right index finger resting

between two buttons spaced 6 cm apart. A computer monitor was placed in front of the

subjects (about 100 cm). Subjects were exposed to cue visual stimuli on the computer

screen. These stimuli consisted of several vertical bar that were first presented (trigger

time) and then hidden for a few seconds (delay time) in the STM condition, while in

the NSTM condition the vertical bars remained on the screen. Hence, subjects were

asked to hold the images in memory (delay period) only during the STM task. In both

the STM and NSTM tasks, when the go stimulus appeared on the computer screen, sub-

jects were asked to produce a motor performance in accordance to the image. In particular,

subjects had to push the left button if the left bar on the screen was higher than the right

vertical bar, or vice versa. A brief on-line feedback on the performance was automatically

provided. The timing of the STM task was the following: pretrigger time duration 1 s;

warning visual stimulus (trigger time) duration 1 s; cue stimulus duration 5.5–7.5 s;

visual go stimulus duration 1 s; and intertrial interval duration 5 s. The control condition

in which the spatial bar remained on the screen for the duration of the task was also

developed and this was used in the NSTM condition. The experiment included two trial

blocks for the NSTM task and two trial blocks for the STM task (each block had 50

trials). The NSTM and STM blocks were intermingled according to a predefined sequence

(pseudorandom order). The interblock interval was about 2 min. Subjects were told in

advance if the block comprised NSTM or STM trials. Before the recording session,
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training of about 10 min familiarized subjects with the experimental apparatus and

NSTM–STM tasks. Subjects were free to use any memorization strategy, including

“visuospatial imagery,” somatomotor preparation, and covert verbal coding and rehearsal.

12.2.2 Subjects and EEG Recordings

All subjects involved in the EEG experiments gave informed written consent according to

the Helsinki declaration. General recording procedures were approved by the local insti-

tutional ethics committees. Nine healthy subjects were considered in this study. Each EEG

recording was made using 43 scalp electrodes that were positioned according to an exten-

sion of the international 10–20 system. The EEG data were recorded with a 0.3–70-Hz

bandpass and linked-earlobe reference. Electrooculographic (0.3–70-Hz bandpass) and

surface-rectified electromyographic activity of bilateral extensor digitorum muscles

(1–70 Hz bandpass) was also collected. Artifact-free EEG activity from 3.5 s before to

4 s after the onset of the visual go stimulus (zero time) was then considered for the

EEG linear inverse procedures. The EEG segments contaminated by blinking, eye move-

ments, mirror movements, and/or other artifacts were rejected off-line. In EEG record-

ings, frequency bands of interest were theta, alpha 1, alpha 2, and alpha 3 whose band

limits were computed according to a standard procedure based on the peak individual

alpha frequency (IAF [13]). The IAF was defined as the frequency showing the

maximum power density peak within a large frequency range lasting from 4 to 14 Hz.

It was calculated at the baseline period (1-s epoch preceding the onset of the warning

stimulus, 22000 to 21000 ms). With respect to the IAF, these frequency bands were

defined as follows: (i) theta as the IAF2 7 Hz to IAF2 4 Hz, (ii) alpha 1 or “lower-1

alpha band” as the IAF2 4 Hz to IAF2 2 Hz, (iii) alpha 2 or “lower-2 alpha band” as

IAF2 2 Hz to IAF, and (iv) alpha 3 or “upper alpha” as IAF to IAFþ 2 Hz. The power

spectrum analysis was based on a fast Fourier transform (FFT) using the Welch technique

and the Hanning windowing function. To quantify the event-related percentage reduction

of alpha oscillations, we followed the widely used procedure for the computation of

event-related desynchronization/synchronization (ERD/ERS [12, 18]). The ERD/ERS
was computed for theta, alpha 1, alpha 2, and alpha 3 bands based on the individual

determination of the IAF.

12.2.3 Cortical Source Estimation

In this study, MR-constructed subjects’ realistic head models and an averaged one were

used to compute individual cortical current density estimates and to visualize population

data, respectively. The averaged head model was constructed using a set of averaged MR

images of 152 normal subjects from the Montreal Neurological Institute. Scalp, skull, dura

mater, and cortical surfaces of the realistic and averaged head models were obtained with

segmentation and countouring algorithms. The surfaces of the realistic head models were

then used to build the boundary element model of the head as the volume conductor

employed in the present study. A cortical surface reconstruction was accomplished with

a tessellation of about 3000 triangles. A current dipole was placed at the center of each

triangle. The orientation of each dipole was placed perpendicular to the triangle surface

to model the alignment of the cortical neurons with respect to the cerebral cortex

surface. Figure 12.1 presents the averaged head model adopted for the visualization of

the population data.

When the EEG activity is mainly generated by circumscribed cortical sources

(i.e., short-latency evoked potentials/magnetic fields), the location and strength of these
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sources can be reliably estimated by the dipole localization technique [19, 20]. In

contrast, when EEG activity is generated by extended cortical sources (i.e., event-related

potentials/magnetic fields), the underlying cortical sources can be described by using a

distributed source model with spherical or realistic head models [7, 21, 22]. With this

approach, typically thousands of equivalent current dipoles covering the cortical surface

modeled and located at the triangle center were used, and their strength was estimated

by using linear and nonlinear inverse procedures [7, 11]. Taking into account the measure-

ment noise n supposed to be normally distributed, an estimate of the dipole source density

magnitudes x that generated a measured potential b at a particular time instant t can be

obtained by solving the linear system

Axþ n ¼ b (12:1)

where A is a m � n matrix with number of rows equal to the number of sensors and

number of columns equal to the number of modeled sources. We denote by A�j the poten-

tial distribution over the m sensors due to each unitary jth cortical dipole. The collection of

all m-dimensional vectors A�j ( j ¼ 1, . . . , n) describes how each dipole generates the

potential distribution over the head model, and this collection is called the lead field

matrix A. This is a strongly underdetermined linear system in which the number of

unknowns, dimension of the vector x, is greater than the number of measurements b by

about one order of magnitude. Estimation of the current density vector x has been per-

formed by using the weighted minimum-norm solution [21–23].

12.2.4 Spectral Estimation of Current Densities

According to Eq. (12.1), let x(t) be the source estimates for each time instant t of the

recorded event-related potentials/fields b(t). By computing the Fourier transform of the

Figure 12.1 The averaged

head model as obtained by

segmenting the MRIs

available from the Montreal

Neurologic Institute.
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obtained solution x(t), we have

x(t) ¼ G � b(t) ) X( f ) ¼ G �B( f ) (12:2)

where X( f ) and B( f ) are the Fourier transforms of the time-varying sources and poten-

tials, respectively, andG is the pseudoinverse matrix that maps the recorded potentials b to

the estimated current density vector x. To estimate the spectral contents of the obtained

solutions X( f ), the cross-spectral density matrix xCSD( f ) was computed according to

the following formula, where the H indicates the Hermitian condition and the apex the

transposition:

xCSD( f ) ¼ X( f ) �X( f )H (12:3)

From the positions above it follows that

xCSD( f ) ¼ G �B( f ) �B( f )H �G0 ¼ G � bCSD( f ) �G0 (12:4)

where bCSD( f ) is the spectral covariance matrix of the recorded data. The ith entry of the

xCSD( f ) matrix [xCSDii( f )] is relative to the power spectra of the ith current dipole.

After the spectral computations, the logarithmic transform was applied to make the

spectral data more Gaussian than the untransformed ones.

12.2.5 Estimation of Cortical Activity in Region of Interest

Estimation of the cortical activity results in a current density estimate for each of the

about 3000 dipoles constituting the modeled cortical source space. Each dipole presents

a time-varying magnitude representing the spectral power variations generated during

the task time course. This rather large amount of data can be synthesized by computing

the ensemble average of all the dipole magnitudes belonging to the same cortical

region of interest (ROI). Each ROI was defined using the cortical model adopted in

accordance with the Brodmann areas (BAs). Such areas are regions of the cerebral

cortex whose neurons share the same anatomical (and often also functional) properties.

A decade of neuroimaging studies have assigned to different BAs a precise role in the

reception and analysis of sensory and motor commands as well as memory processing.

Actually, such areas are largely used in neuroscience as a coordinate system for sharing

cortical activation patterns found with different neuroimaging techniques. As a result of

this anatomical-guided data reduction, we pass from the analysis of about 3000 time

series to the evaluation of less than 100 (the BAs located in both cerebral hemispheres).

These BA waveforms, related to the increase or decrease of the spectral power of the

cortical current density in the investigated frequency band, can be successively aver-

aged across the studied population. The generated grand-average waveforms describe

the time behavior of the spectral power increase or decrease of the current density

in the population during the task examined.

12.2.6 Statistical Analysis

What is often missing in EEG linear inverse solutions is the level of reliability of the

solution. Not all modeled sources have the same degree of sensitivity to measurement

noise, so we cannot say whether a source has a high strength because it is the most

probable source of that potential distribution or because that source well accounts for

the noise superimposed on the potential. Even in the ideal case of absence of noise,

some sources seem more inclined to explain a large set of data, just because their
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geometric properties (i.e., sources positioned on a cortical gyrus rather than deep in

a sulcus). A statistical approach to the problem and a measure of the signal-to-noise

ratio in the modeled cortical activity are then required. The level of noise in the EEG

linear inverse solutions can be addressed by estimating the “projection” of the EEG

noise n(t) onto the cortical surface by means of the computed pseudoinverse operator

G; the standard error of the noise on the estimated source strength jj is given by

kGj�n(t)l ¼ Gj�C(Gj�)
0, where Gj� is the jth row of the pseudoinverse matrix and C is the

EEG noise covariance matrix (Cij ¼ kni(t), nj(t)l). This allows us to quantitatively

assess the ratio between the estimated cortical activity x and the amount of noise at the

cortical level, quantified through the standard deviation of its estimate. It can be demon-

strated that under the hypothesis of a normal estimate for the noise n(t) obtained with more

than 50 time points, the following normally distributed z-score estimator can be obtained

for each jth cortical location and for each time point t considered:

zj(t) ¼
G j� � b(t)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

G j�C(G j�)
0

p (12:5)

where C is the estimated noise covariance matrix. The uncorrected threshold for the

z-score level at 5% is 1.96. Values of z exceeding such a threshold represent levels of

estimated cortical activity that are unlikely due to chance alone but are related to the

task performed by the experimental subject. However, to avoid the effects of the increase

of the type I error due to the multiple z-tests performed, the results will be presented after

application of the Bonferroni correction [24].

Here, we extend the SPM approach to the analysis of the power spectra variations

during the experimental task. Computation of the z-score level in the spectral case is per-

formed according to the formula

s 2
Noisei

¼ Var(bCSDii( f )) Zi( f ) ¼
½G � bCSDii( f )G

0�i

sNoisei

(12:6)

where Var(bCSDii( f )) indicates the variance of the estimate of the log-transformed spec-

tral density of the EEG measurements during the baseline period at the considered fre-

quency f and Zi( f ) is the z-score for the ith current dipole for the frequency f. The

Zi( f ) was used to construct z-scores that are identical to those introduced in the time

domain by Dale and colleagues [25], while the inverse operator G is identical to those

computed for the temporal case.

The z-score for each brain region investigated, whether as a result of time- or

frequency-domain processing, provides information about the significance of the increase

or decrease of the variable considered in the analyzed period with respect to the baseline

chosen. Due to the additive properties of the z-estimator, the z-scores obtained for all the

dipoles belonging to a particular ROI can be averaged together. Furthermore, such average

z-scores for each particular ROI can be averaged across the subject’s population by return-

ing a grand-average z-score level for each ROI investigated. These values can be con-

sidered as an estimate of the statistical behavior of the variable analyzed (in the time or

frequency domain) for the entire population in each considered ROI. In particular, the

computation of the population z-score for the ith BA is performed as

Zi1 ¼

PN
j¼1 Zij1

N
(12:7)

where zij1 is the average z-score level for the ith ROIs for the jth subject performing task 1.
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12.3 RESULTS

Subjects were exposed to the STM and NSTM tasks while they were under the EEG

recording device. All the data in this section are relative to the time-varying spectral

changes in different frequency bands during the delay period.

Figure 12.2 presents two estimated cortical distributions obtained by solution of the

linear inverse problem in the spectral domain associated with the gathered EEG data. The

figure presents the grand-average data of the EEG-recorded population relative to the vari-

ation of cortical current density power in the theta frequency band. Increasing values of

spectral power with respect to the baseline period (ERS) are represented with yellow to

red hues and the decreasing values of spectral power (ERD) with dark to light blue.

The left cortical distribution is relative to the STM task while the right one presents

data estimated during the NSTM task. Spectral maps are relative to the time period of

1.5 s from the beginning of the delay period. The head is seen from above, nose down,

left ear at the right of the visualized head.

It is worth noting that during the STM task there is a large ERS in the theta band in

the right and left parietal cortical areas, together a synchronization occurring over the

mesial and right premotor cortical areas. Furthermore, a large bilateral frontal reduction

of spectral power (ERD) also occurred, as indicated by the blue regions over the cortical

map. The NSTM task presents a different pattern of ERD and ERS with respect to the

STM task. The grand-average EEG data returned a modest ERS phenomenon in the

right parietal area, together with a large bilateral ERD in frontomesial cortical areas.

An interesting question is if such variations of spectral power with respect to the baseline

period (the ERS and ERD) in the theta band are statistically significant or are only due to

noise fluctuations. The answer to this question is presented in Figure 12.3, which shows the

distribution of the statistical z-scores associated with variations of the cortical spectral

power in each ROI analyzed. In particular, if the power spectrum during the delay

period is superior to the power spectrum computed during the baseline for the analyzed

Figure 12.2 The figure presents two maps, obtained by the solution of the linear inverse problem

in the spectral domain associated with the gathered EEG data. The head is seen from above,

nose down, left ear right. The maps on the figure presents the grand average data of the EEG

recorded population relative to the variation of cortical current density power (event-related

desynchronization and synchronization; ERD and ERS) in the theta frequency band in the STM

and NSTM tasks. Increase of spectral power with respect to the baseline period (ERS) are

represented from yellow to red hues, while the decrement of spectral power (ERD) are coded

from the dark to the light blue.
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ROI, a positive z-score is obtained. Furthermore, if the z-score exceeds the threshold for

the statistical significance required, the ROI analyzed was coded with a hue from yellow to

red (in the present case up to a value of z ¼ 5; that is, it is associated with a statistical

significance of p , 1025). Instead, a decrease in spectral power in a particular ROI is stat-

istically significant if the associated negative value of z is lower than the required

threshold. In that case, the ROI was coded with a hue from dark to light blue (z ¼ 25).

If the spectral power increase or decrease in the analyzed ROI does not reach the threshold

of the statistical significance, the ROI is shown in gray.

Figure 12.3 shows the grand-average significance probability map for the STM task

on the left. It is worth noting the presence of a large statistical significant increase in the

power spectra of the right premotor and the mesial cortical areas, coded in red. Of interest

also is the statistical significant decrease of spectral power in the theta band for the left

frontal areas, coded in blue. The SPM associated with the grand-average data for the

NSTM task in the same frequency band is presented on the right in Figure 12.3. In this

map few cortical areas present variations of spectral power not due to chance alone.

In particular, the left frontal cortical areas show a significant decrease of spectral power

in the theta band during the NSTM task.

12.4 DISCUSSION

The interest in the approach presented here has to do with the extension of the SPM

techniques proposed by Dale and co-workers [25] to the frequency domain and in the possi-

bility to further exploit this approach by applying contrast statistical techniques normally

used in fMRI. It is already accepted that estimation of current densities with the weighted

minimum-norm procedure from EEG recordings can provide an accurate picture of the

underlying cortical activation at a moderate spatial scale [7, 21, 26]. In this context, the

use of SPM provided useful insights on the phenomena under study, going beyond

the analysis of topographic distribution of ERD and ERS at the cortical level.

Animal studies and human neuroimaging studies indicate that tasks requiring STM

activate a functional network linking regions of the prefrontal cortex with posterior associ-

ation cortices [27–29]. Activation of this network can also be characterized by

Figure 12.3 The figure shows the distribution of the z-scores associated to the variations of

the cortical spectral power in each one of the ROIs analyzed. A statistical significant decrease

of spectral power in the theta band for is coded in blue, while a statistical significant increase is

coded in yellow.
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measurement of neuroelectric activity recorded on the scalp. Interestingly, recent studies

have indicated an enhancement in the power spectra in the theta frequency band of the

EEG signal over the midline frontal region during STM tasks [16, 17]. Enhancement of

the frontal midline theta rhythm has been noted in a variety of tasks that require sustained,

focused attention [16, 17]. Current evidence suggests that this signal is generated in the

anterior cingulated cortex [17], an important component of an anterior attentional

network critical to the performance of complex cognitive tasks [30–36]. The results we

obtained with SPM extended to the frequency domain can be framed in the previously

described context. The centromesial activation related to the power spectral increase in

theta frequency bands has been obtained, in contrast with the same experimental paradigm

but without the memory task. This increase in spectral activity only holds during the delay

period, while in the remaining time periods there are no significant differences between

memory and NSTM tasks.

In conclusion, the present study highlights the benefit of spectral estimation of

cortical current density within the framework of SPM for the study of cortical sources

of human brain activity related to STM tasks.
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CHA P T E R13

EXPLORING SEMANTIC MEMORY

AREAS BY FUNCTIONAL MRI
G. Rizzo, P. Vitali, G. Baselli, M. Tettamanti,

P. Scifo, S. Cerutti, D. Perani, and F. Fazio

13.1 INTRODUCTION

Functional magnetic resonance imaging (fMRI) investigates the neural activation in

cerebral areas involved in the execution of a task by measuring the related hemodynamic

response. Functional activation of a cerebral area causes a local increase in blood flow,

leading to an augmented local concentration of oxygenated blood; due to the diamagnetic

behavior of oxygenated blood with respect to the paramagnetic deoxygenated blood, the

cerebral areas involved in activation present a decrease in the local susceptibility effect

and thus an increase in the signal intensity as observed in T2�-weighted MRI [the so-called

blood oxygenation-level-dependent (BOLD) effect] [1].

In the 1990s, fMRI has provided invaluable data of cortical activity in a time

resolution range that was inconceivable with previous methods based on radioactive

tracers with an in-depth anatomical specificity never reached by noninvasive EEG

analysis.

In the study of brain function, currently a major issue is in the analysis of cortical

activation during the process of speech production involving semantic memory. Several

studies have begun to investigate the localization of specific areas in the left posterior

temporal cortex which are concerned with the retrieval of specific word categories such

as “tools” or “animals” in either fMRI [2] or positron emission tomography (PET)

studies [3]. Here the specific role played by the left medial fusiform gyrus (MFG) and

left lateral fusiform gyrus (LFG) is investigated [2, 3].

The introduction of suitable protocols in fMRI, with alternate activation and deac-

tivation, permits investigation of the links between the semantic memory regions and

language production area [Broca’s (BR) area]. For the analysis of these data the methodo-

logical approach and the design of appropriate models exploring the correlations between

the activities of the addressed regions are crucial. Functional and effective connectivity

models [4, 5] provide a general framework which can be applied to group analysis;

however, the use of simple parametric models may furnish significant subject-by-subject

indexes. In this perspective, the present work will compare these different methods and

model structures.
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13.2 ORGANIZATION OF SEMANTIC MEMORY
IN BRAIN

Memory is usually defined as a sort of “virtual space” where souvenirs are located in

specific addresses; within this well-organized system it is possible to plan and

execute, intentionally or automatically, research and retrieval procedures of stored infor-

mation. It is now well recognized that memory is not a single, all-purpose, monolithic

system but rather is composed of multiple systems. A first basic division characterizing

memory is between short- and long-term memory, the former responsible for holding

information for a matter of seconds, the latter able to retain it indefinitely [6].

Data from neuropathology has revealed that both storage systems do not form a

unitary structure but can be divided into different subcomponents. Tulving [7] first

proposed separation of the long-term system into episodic and semantic memory. Episo-

dic (or autobiographical) memory consists of singular events that a person recalls; it is a

neurocognitive (i.e., a thinking) system that enables human beings to remember past per-

sonal experiences centerd on the person himself or herself and characterized by a

specific spatial and temporal context. Knowledge about the world—all knowledge that

is not autobiographical—is referred to by Tulving as semantic memory and includes

knowledge of historical events and figures, concepts, and beliefs. It includes the

ability to recognize family, friends, and acquaintances. It also includes information

learned at school, such as specialized vocabularies and reading, writing, and mathemat-

ics. In comparison to episodic memory, it consists of memories that are shared by

members of a culture rather than those which are unique to an individual and are tied

to a specific time and place.

Clinical observations on patients with brain disorders have revealed the existence of

both selective but global (i.e., non-material-specific) impairments of semantic memory

with preservation of episodic retrieval [8], thus providing neuropsychological evidence

for Tulving’s model of a multiple organization of the memory system, and modality-

specific semantic impairments [9]. The former condition, which usually follows damage

to the left temporal lobe, produces an indiscriminate degradation of the concepts them-

selves, detectable under a variety of retrieval circumstances, whereas the latter is charac-

terized by an impaired object naming with preserved recognition, limited to a specific

sensory modality of stimulus delivery (visual, tactile, or acoustic). This is possible assum-

ing the existence of multiple semantic systems characterized by a modality-specific access

(visual, tactile, acoustic, and verbal): For a given modality-specific impairment, the rela-

tive semantic system remains fairly intact but disconnected from the others, particularly

from the verbal system, thus avoiding name production

With the development of modern techniques of visualization of brain activity in

vivo, such as PET and fMRI, cognitive psychologists have become more interested in

the neural correlates of the semantic memory and its organization in the brain. Consistent

with the clinical literature [10], functional neuroimaging studies of object naming suggest

that semantic processing may be critically dependent on the left temporal lobe [11].

Indeed, direct comparisons between brain activities associated with object naming and

viewing nonsense objects have revealed those cerebral areas which are more significantly

involved in semantic, lexical, and phonological processes (specifically engaged by real

object naming and not by viewing nonsense pictures).

There is additional evidence from linguistic fluency tasks that posterior regions of

the left temporal lobe mediate lexical and/or semantic processing; in particular, a more

predominant involvement of the left prefrontal regions was found for lexical/phonological
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processing, whereas the ventral part of the left posterior temporal lobe was found to be

more activate during semantic elaboration [12].

Disorders of identification and/or naming, which display selectivity for a specific

category of entities, such as animals or tools, have been repeatedly described in patients

with brain damage and have led to the claim that semantic memory presents a category-

specific organization. The most compelling evidence of a cognitive segregation of the

semantic information into distinctive categories comes from the double dissociation

between the living and nonliving categories, the living domain being more frequently

impaired than the nonliving one.

At a neurological level of analysis, a direct method to investigate the correlates of

categorical semantic knowledge has been provided by functional neuroimaging of

normal subjects. Different locations of brain activation according to the semantic category

(usually animals vs. tools) were shown for the first time by Perani and co-workers [13]

using a visual picture-matching task. Animal identification was associated with activations

in the inferior temporo-occipital visual areas, bilaterally. On the other hand, the identifi-

cation of nonliving entities (man-made objects) engaged the activation of a predominantly

left-hemispheric network involving the left dorsolateral frontal cortex and the left middle

temporal gyrus [13, 14]. Similar findings have been successively obtained during the

naming of pictures of animals and tools [11, 15]. It has been suggested that these

“category-specific” effects reflect the retrieval of category-specific features and attributes

[16]. If the main characteristics defining an object are stored in the sensitive and motor

areas, activated when we first learned about that object and automatically accessed when

it is identified, then the greater activity observed in occipital visual areas for living entities

would be consequent to the processing of high-order visual features and attributes defining

them; on the contrary, the repeatedly observed activation in the left middle temporal gyrus

(close to regions which are active when motion is perceived) and in the left inferior frontal

cortex (a region with a motor function) for tools might reflect the retrieval of action knowl-

edge related to tool motion and/or manipulation [17, 18].

All previously reported studies were largely consistent in indicating the posterior

part of the left temporal lobe as a major correlate of the semantic processing. The

higher spatial resolution of fMRI with respect to PET has led to the demonstration that

this region, in particular the fusiform gyrus, is also the site of a category-related difference.

The present study was aimed at investigating the functional specialization of the fusiform

gyrus in a semantic fluency task and the connections between semantic regions and the

speech production system (BR area). In particular, the specific role played by the MFG

and the LFG in semantic access was studied.

13.3 METHODOLOGY

13.3.1 Neuropsychological Protocol

The experimental subjects were 10 right-handed male volunteers who gave written

informed consent to the study.

During the block-designed fMRI session study, each subject alternated three times

between a rest condition where he was instructed to empty his mind and avoid inner speech

and one of the following semantic verbal fluency conditions:

Animal category (AN): Subjects were instructed to generate covertly as many

common nouns belonging to the animal category as possible throughout the

task (30 s times 3).
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Tool category (TO): Subjects were instructed to generate covertly as many

common nouns belonging to the tool category as possible throughout the task

(30 s times 3).

The activation design was the following:

AN: rest–animals1–rest–animals2–rest–animals3

TO: rest–tools1–rest–tools2–rest–tools3

A total of 12 epochs were performed.

Subjects were trained in the different tasks before positioning on the magnet cradle.

Instructions were then recalled by the examiner at the beginning of each task epoch by

saying aloud a fixed cue (e.g., “animals” for task A, “tools” for task B). After total scan

acquisition, subjects were asked to recall the list of words generated during each scan

epoch and items were recorded by the examiner. The total number of words generated

and the category consistency were thus monitored.

13.3.2 MRI Acquisition

The MRI scans were performed using a 1.5-T scanner (General Electric Medical Systems,

Milwaukee, WI) equipped with echo-speed gradient coils and amplifier hardware and a

standard quadrature head coil. Before the fMRI session, an anatomical T1 scan acquisition

was performed in the same location of the functional images. Field homogeneity was

adjusted by means of “global shimming” for each subject to reduce susceptibility artifacts.

The acquisition of theMRI images (T2� weighted) was performed with single-shot gra-

dient echo echo-planar pulse sequence [echo time (TE) ¼ 60 ms, repetition time

(TR) ¼ 3000 ms]. Nineteen slices volumes [field of view (FOV) 280 � 280 mm, matrix

64 � 64], 4 mm thick were acquired resulting in a final voxel size of 4.375�

4.375 � 4 mm. The fMRI acquisition session included the whole activation protocol

described above, producing a single data set of 120 volumes (12 activation epochs, 10

scans/epoch lasting 3 s) for each subject.

13.3.3 Image Processing

The first 3 s of each epoch were discarded from analysis in order to eliminate the acoustic

stimulation at the beginning of each epoch.

Image processing was performed with SPM99 software (Wellcome Department of

Cognitive Neurology, London). First, the image volumes of each subject were realigned

to reduce the occurrence of motion artifacts during each scan acquisition. Images were

then normalized into the Talairach’s stereotactic space [19] to allow intersubject data aver-

aging and comparison across tasks. Stereotactic normalization was also performed for the

morphological MRI volume. At this stage images were interpolated into volumes with

voxel size of 2 � 2 � 4 mm. After stereotactic normalization, the common stereotactic

space for the experimental subjects covered planes from 220 to þ56 mm according to

the bicommisural plane. All the scans were then spatially smoothed through a Gaussian

filter of 10 � 10 � 10 mm to reduce residual anatomical differences among subjects and

to improve signal-to-noise ratio.

13.3.4 Analysis of Functional Connectivity

Functional connectivity is used to study the temporal correlations between voxel activity

in a sequence of fMRI image volumes and the task the subject is executing in order to
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verify if this correlation is significant. The analysis is performed using a model (known as

the general linear model [20]), in which the activity of each voxel is described as linearly

dependent on the experimental conditions (in our case rest condition, AN condition, or TO

condition) and estimated with a least-squares method; for each voxel of the image volume

sampling the brain, the significance of activity variation during different tasks is then cal-

culated in terms of F-test or t-test values. Starting from this result, a three-dimensional

spatial map represented in the Talairach stereotactic space is composed in which a

voxel gray value is associated with the statistical significance of that voxel’s involvement

in an activation task. This map, called the statistical parametric map (SPM), allows a direct

spatial identification of cerebral areas involved in a specific activation task, represented by

voxels with high gray value.

For functional connectivity analysis, we used implementation of the general linear

model for fMRI data devised for SPM99. The experiment was treated as a block design

(types of fluency and rest). Comparisons of means were made for each voxel by using

the t-statistic, thus generating statistical parametric maps of the t-values SPMftg. Simple

main effects of the different fluencies (animals and tools) in comparison with their time-

matched resting scans were calculated. The threshold applied to the statistical maps was

p , 0.05 (corrected for multiple comparisons).

Functional connectivity was carried out over the entire group (pretending all the

MRI data came from the same subject) and subject-by-subject, depending on the sub-

sequent modeling procedure. The central coordinates of BR area, MFG, and LFG were

fixed either over the entire group or subject by subject. In subject analyses these coordi-

nates were optimized for each subject by building activation maps based on the correlation

of the time series of each voxel with a time series representing the task (i.e., with a dummy

signal set to 1 during the stimulus and to 0 elsewhere): correlation was calculated with AN,

TO, and both tasks in order to localize the MFG, LFG, and BR area, respectively.

The temporal sequence of activity of BR area, MFG, and LFG was extracted as an

average in a spherical volume of 5 mm radius around the region coordinates, thus obtain-

ing three temporal series: br(t), mfg(t), lfg(t). Each temporal sequence was also low-pass

filtered in the time domain considering the standard hemodynamic response function and

was high-pass filtered at 0.0083 Hz (i.e., half of the RE task switching frequency).

13.3.5 Models and Analysis of Effective Connectivity

Effective connectivity is used to study the influence one brain region has upon another and

the task-related changes in the coupling between the two cerebral areas [5]. Here the inter-

est is in the study of influence between semantic regions (MFG and LFG) and BR area

during language production, whose interactions can be schematized according to the

model presented in Figure 13.1. To build this model, we adopted a hypothesis-led theor-

etical perspective to constrain the connectivity model to principal anatomic and cognitive

elements. Thus, our model include the following: (1) anatomical regions of interest in the

left hemisphere which represent the neural substrate involved in the common network for

both semantic fluency tasks (AN and TO) as derived by functional connectivity analysis;

this neural system is consistent with previous reports in the literature on functional corre-

lates of semantic processing; (2) the cognitive modulations between their connections by

the two semantic tasks. In particular, in Figure 13.1, C represents the connection strength

between semantic and speech production systems and can be thought of as modulated by

the specific semantic task (TO or AN). Direct connections between regions within the

model were unidirectional to ensure robust estimates.
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Two different models were derived from that of Figure 13.1 for the effective

connectivity analysis:

1. The interaction model shown in Figure 13.2 was used to explore the sequence of

AN and TO tasks simultaneously as to the effective connectivity between either MFG or

LFG and BR area and the modulation given by the task type. In this model, it is supposed

that BR area activity is influenced by the fusiform gyrus area (through the b coefficient,

depending on the task S) and directly by the task (through the b2 coefficient)

(Fig. 13.2a). The nonlinear relationship between BR area and the fusiform gyrus expressed

by b is linearized by assuming b(S) to be the sum of two terms: b0, not dependent on the

task, and b1, proportional to it (Fig. 13.2b). Thus the model can be described by the

equation

y(t) ¼ b0u(t)þ b1u(t) s(t)þ b2s(t)þ e(t) (13:1)

where y(t) is the signal br(t) normalized [i.e., the mean subtracted and equalized by the

Standard deviation (SD)] over the entire AN and TO task sequence; u(t) is the normalized

mfg(t) or lfg(t); s(t) is a dummy signal (describing the task) with s(t) ¼ 21 during the first

half of the acquisition (i.e., 3 AN tasks preceded by 3 REs) and s(t) ¼ þ1 in the second

part of the experiment with TO tasks); e(t) is a random residual noise.

Figure 13.1 Connectivity model for studying influence of semantic areas (LFG and MFG) to

BR language production area.

Figure 13.2 Interaction model described by Eq. (12.1).
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2. The AN and TO data were also separately analyzed with simpler parametric

models (Fig. 13.3):

yA(t) ¼ CAuA(t)þ eA(t) (13:2)

and

yT (t) ¼ CTuT (t)þ eT (t) (13:3)

where yA(t) and yT(t) are the br(t) sequence during the AN part (Fig. 13.3a) and the TO

part (Fig. 13.3b) of the experiment, respectively; both were normalized within the respect-

ive time period. Analogously uA(t) and uT (t) are taken and normalized in the AN and TO

period and derived from either the mfg(t) or the lfg(t) series. As a consequence of normal-

ization, the regression parameters CA and CT directly yield the linear correlation between

the input and the output signals.

13.4 RESULTS

13.4.1 Functional Connectivity

The SPMftg maps relative to the group analysis of AN and TO tasks with respect to the

corresponding rest conditions are shown in Figures 13.4 and 13.5, respectively. Among

the cerebral areas activated during the tasks, it is possible to identify the MFG and BR

area regions (Fig. 13.4) and the LFG and BR area regions (Fig. 13.5) as regions of high

statistical significance.

These activated areas are visualized in Figure 13.6 on registered morphological MRI

images, remapped into the Talairach space, for direct anatomical localization. From this

analysis the central coordinates of BR area, MFG, and LFG in the group analysis were

derived: 248, 28, 16 (mm in x, y, z directions) for BR area; 224, 248, 216 for MFG;

and 246, 256, 212 for LFG.

For a subject-by-subject analysis the coordinates were found for each individual by

means of the respective activation maps. In Figure 13.7, an example activation map

relevant to the TO task for the detection of the LFG is shown. The map represents the

correlation with the TO dummy signal plus the difference of this correlation and that

with the AN dummy signal during the AN task. The region of increased activity in the

left posterior temporal region can be appreciated by means of this image.

In single-subject analysis, BR area was localized in the same position in seven

subjects, while the LFG and MFG presented a more accentuated variation, with respect

to the area position estimated by group analysis. These effects were probably due to

residual errors in the anatomical spatial normalization of each brain to the Talairach

Figure 13.3 Interaction model described by Eqs. (12.2) and (12.3).
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space, but they could also derive from intersubject variability of the functional activation

site within the specific specialized cerebral area.

13.4.2 Effective Connectivity

13.4.2.1 Group Analysis The application of the interaction model [Eq. (12.1)] to the

whole sequence, built by attaching the sequences of subjects, gave significant values of b0
and b1; parameter values were b0 ¼ 0.087, b1 ¼ 20.039, and b2 ¼ 20.002 with mfg(t)

as input and b0 ¼ 0.241, b1 ¼ þ0.096, and b2 ¼ 20.052 with lfg(t) as input. Coefficient

b1 changed significantly according to the different input: the positive sign when the input

is lfg(t) indicates that the connection from the LFG to BR areas is more active during TO

tasks [when the dummy signal s(t) ¼ þ1] while the link between the MFG and BR area is

augmented by the AN task.

Figure 13.4 T-statistical map (corrected at p , 0.05) of brain regions activated during covert

generation of nouns belonging to animal category. The black arrow indicates the left medial

fusiform gyrus (stereotactic coordinates: x ¼ 224; y ¼ 248; z ¼ 216), whereas the black circle

represents BR area (stereotactic coordinates: x ¼ 248; y ¼ 28; z ¼ 16). Other foci of cerebral

activity were significantly activated during the task, but they are not relevant to the present

discussion.
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Similar results were found by the parametric models [Eqs. (12.2) and (12.3)]. In fact,

CA ¼ 0.162 and CT ¼ 0.040 with mfg(t) as input, and CA ¼ 0.134 and CT ¼ 0.345 with

lfg(t) as input, thus indicating a larger linear correlation between BR area and LFG

during TO tasks.

13.4.2.2 Subject-by-Subject Analysis Results relevant to the subject-by-subject

application of the interaction model and the linear correlation model of BR area with

mfg(t) and lfg(t) input, respectively, are shown in Table 13.1. Here, b0 and b2 (not

shown) did not present significant changes. With mfg(t) as input b1 was not able to repro-

duce the result of the group analysis as in only one subject it displayed a value significantly

different from zero, given the degrees of freedom of the least squares estimate. With lfg(t),

a slightly better performance was obtained with eight significant figures, seven of which

were in the expected direction.

The analysis with the simple correlation model gave more robust indications as with

mfg(t) eight significant values (seven in the expected direction) were found as to the

Figure 13.5 T-statistical map (corrected at p , 0.05) of brain regions activated during covert

generation of nouns belonging to tool category. The black arrow indicates the left lateral

fusiform gyrus (stereotactic coordinates: x ¼ 246; y ¼ 256; z ¼ 212), whereas the black circle

represents BR area (stereotactic coordinates: x ¼ 248; y ¼ 28; z ¼ 16). Other foci of cerebral

activity were significantly activated during the task, but they are not relevant to the present

discussion.
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Figure 13.7 Activation map relative to TO task. Activated regions correspond to white color

level; note the activation in the lateral posterior temporal region.

Figure 13.6 Top row: cerebral activity (white areas) in left medial (to left) and left lateral (to

right) fusiform gyrus overlaid onto coronal view of standardized T1-weighted MRI brain scan as

implemented in SPM99. The two regions of interest are indicated by the crossing point of the

white lines. Bottom row: same regions displayed onto transversal view of standardized MRI

brain scan.
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difference between the two stimuli (CT2 CA). An even clearer behavior was noticed with

lfg(t), as all values were significant and only with subject 6 was performance in the unex-

pected direction. An analysis of variance (AVOVA) analysis on the 10 subjects indicates a

significant contrast of CT and (CT2 CA) between the activity of MFG and LFG.

13.5 DISCUSSION

In the past years, functional neuroimaging techniques (PET, fMRI) have been used to

investigate the functional specialization of cerebral areas: for a given cognitive function

(memory, language, etc.), the main aim was to discover which brain regions were involved

in the execution of related mental tasks (learning paradigms, naming tasks, etc.) and thus

provide evidence about their functional role.

In the case of language, and in particular with respect to semantic memory, there is a

body of evidence that the left inferior frontal gyrus, including BR area, and left posterior

temporal regions are implicated in semantic elaboration. Indeed, a large number of neu-

roimaging studies, using a range of different tasks, have implicated the left inferior

frontal gyrus and left ventrotemporal areas in the retrieval of semantic knowledge [15].

The present study confirms that a common activation of the left inferior frontal gyrus

(BR area, Ba45) is associated with both living and nonliving semantic fluency, providing

further evidence that this area is involved in lexical retrieval based on meaning. Concern-

ing the category effects in the fusiform gyrus, results from the present functional connec-

tivity analysis appear to be in contrast with a series of fMRI investigations by Martin and

co-workers which have indicated that activations associated with living entities (animals,

faces) cluster in the more lateral aspects of the fusiform gyrus while activations associated

with man-made objects cluster in the more medial aspects (see [2] for a review). The

advantage of using the effective connectivity analysis with respect to the functional analy-

sis is represented by the ensuing possibility to investigate how distinctive functionally

TABLE 13.1 Subject by Subject Analysis: Coefficients of the Connectivity
Models Shown in Figs 3 and 4

MFG LFG

subj b1 CA CT CT2 CA b1 CA CT CT2 CA

1 0.057 0.779 0.743 2 0.036 0.037 0.469 0.698 0.229

2 0.063 0.249 0.384 0.135 20.009 0.517 0.618 0.101

3 20.015 0.390 0.116 2 0.274 0.155 0.559 0.816 0.257

4 0.004 0.242 0.183 2 0.059 0.092 0.680 0.894 0.214

5 2 0.177 0.457 0.015 2 0.442 0.080 0.442 0.748 0.306

6 0.036 0.174 0.224 0.050 2 0.176 0.485 0.046 2 0.439

7 0.052 0.399 0.363 20.036 0.180 0.560 0.824 0.264

8 20.190 0.205 20.140 2 0.345 0.388 0.106 0.750 0.644

9 20.044 0.388 0.188 2 0.200 0.092 0.415 0.574 0.159

10 20.014 0.831 0.593 2 0.238 0.430 20.138 0.853 0.991

avg 20.023 0.411 0.267 20.145 0.127 0.410 �0.682 �0.273

std 0.092 0.228 0.263 0.184 0.178 0.243 0.245 0.367

�Significant contrast of LFG from MFG.

bold values of b1 and (CT2 CA) indicate significant difference from 0.

13.5 DISCUSSION 221



specialized areas interact between them during the execution of cognitive tasks; this refers

to the concept of functional integration [21].

A major goal of the present study was to investigate the pattern of functional inte-

gration related to lexical retrieval for different semantic categories. The results provided

further evidence for the existence of selective patterns of functional integration related to

different semantic categories; in particular, animal fluency was associated with increased

connectivity between the MFG and BR area, whereas tool fluency showed an enhanced

coupling among the lateral posterior fusiform gyrus and BR area. The present, apparently

discordant findings, compared to those of Martin and co-workers, could be explained if we

speculate that during the semantic fluency task the left Ba45 (BA area) operates a choice

between different competing responses belonging to distinct semantic categories.

Two different theories try to account for the role of the left inferior frontal

gyrus (Ba45) in language production. The first claims that this area is especially involved

in lexical and/or phonological retrieval during attentive verbal processing [22], whereas

the second proposes that it may not be implicated in retrieval per se but in the selection

of relevant responses and suppression of alternative competing responses [23].

Our study supports this second view. Indeed, we discovered a common activation of

the left Ba45 in both fluency tasks, but the effective connectivity analysis has revealed that

it is alternatively more connected with the lateral part of the fusiform gyrus during tool

production and with its medial part during animal production. If during the semantic

fluency tasks the left inferior frontal gyrus Ba45 mediates a choice between competing

responses, belonging to distinct semantic categories, we suggest that the left Ba45 actively

inhibits the brain areas subserving the opposite semantic category’s concepts and that this

inhibitor mechanism results in a stronger coupling between the left Ba45 and the inhibited

areas. In fact, an enhancement in connectivity between two cerebral regions simply means

that the two areas have coherently increased their neural activity but it is not possible to

point out if this greater coupling indicates, at the synaptic level, an excitatory or an inhibi-

tory influence of one area upon the other.

The limited sampling rate of the acquisition protocol used in this study prevents the

introduction of true causal models to address the questions that are the main goal of effec-

tive connectivity; that is, the models cannot usefully introduce correlations between time

lags and are constrained to analyze zero-lag correlations at a varying t. So, correlated is in

this context used as a synonym for causal, provided that an a priori knowledge of func-

tional connections with a specific direction can be exploited, as it is in the case of the path-

ways from the posterior temporal semantic memory areas to the inferior frontal language

production area (BR).

On the other hand, the fMRI technique permits us to analyze responses to tasks that

can be at least an order-of-magnitude shorter than those that could be considered with

nuclear medicine imaging. So, as in the present protocol, a quite rapid switching

between activity and rest and between different task types can be performed; conse-

quently, the information content of the data sequences can be considered sufficient for a

subject-by-subject analysis provided appropriate models are applied.

The interaction model tested in this work is typical of effective connectivity analysis

and, therefore, was conceived for the analysis of ensemble data. The number of parameters

estimated by this model is probably too large for consistent performance with single sub-

jects. Conversely, the second simpler correlation model adopts a more appropriate seg-

mentation of the data sequence of the single subject and, probably, for this reason is

capable of reproducing the results of the group analysis in single subjects.

The reasons for moving in the direction of an analysis of single subjects are obvious

if the aim is an extension of functional imaging of the cerebral cortex from pure
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physiological studies to clinical analysis. Concerning language production pathologies,

the cases of lesions in semantic memory and in language production areas can be con-

sidered, as well as specific language disturbances, such as dyslexia.

13.6 FUTURE TRENDS

An appropriate modeling of fMRI protocols relevant to language production mental tasks

permits a subject-by-subject identification of the activation of specific working memory

areas and of their correlation with language production areas. To this regard, further

improvements in data analysis should be obtained by adopting event-related designs in

fMRI acquisition protocols, in which stimuli of different types can be intermixed,

unlike the block design adopted here, where stimuli of the same type are presented in

blocks. This new approach allows the introduction of dynamic connectivity models

taking into account hemodynamic responses more accurately.

Additional benefits in the study of complex cerebral functions may also be reached

by merging fMRI images to signals describing electrical cortical activity as recorded by

multichannel EEG. An EEG-fMRI coupled analysis should permit us to better describe

multifocal fast phenomena with optimized spatial and temporal resolutions.

The analysis of effective connectivity we have performed was based on an a priori

postulated anatomical model, in which anatomical constraints were derived from previous

functional studies and research on monkeys. A possible future development of such a tech-

nique may be represented by the adoption of a graph of connectivity comprising not only

previously reported regions of interest but also a network of areas derived from the analy-

sis itself of global cerebral activity; all connections between points on the graph will be

tested and only significant paths retained. This would allow investigation of the functional

integration among brain regions on an individual basis and highlight the organization of

the neural substrate of mental activity specific to a single subject. The importance of

such an approach is evident if we consider the study of mechanisms of functional recovery

after brain damage, which generally involve a cerebral reorganization with distinctive

features from patient to patient.

The method presented here and its extension can widen the application field of func-

tional imaging from pure physiological studies to clinical analysis in pathologies involving

language impairment.
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P A R TII

NEURO-

NANOTECHNOLOGY:

ARTIFICIAL IMPLANTS

AND NEURAL

PROTHESES

TH I S P A R T focuses on the design of multielectrode arrays to study how

the neurons of humans and animals encode stimuli, the evaluation of functional

changes in neural networks after the stroke and spinal cord injuries, and

improvements of therapeutic applications using the neural prosthesis.
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CHA P T E R14

RESTORATION OF MOVEMENT

BY IMPLANTABLE NEURAL

MOTOR PROSTHESES
Thomas Sinkjær and Dejan B. Popovic

14.1 INTRODUCTION

Neural engineering seeks to interface directly with the nervous system to obtain sensory or

command and control signals, to activate specific outgoing neural signals, or to influence

processing within the central nervous system (CNS) [1]. These interfaces are mechanical

(e.g., cuff electrodes) or biological (e.g., cultured neuronal electrodes) and range from

macroscopic to nanoscopic in size. The class of devices used to restore impaired motor

functions by functional electrical stimulation (FES) is often called neural motor prosthesis

(Fig. 14.1). A neural prosthesis (NP) is an assistive system that replaces or augments a

function which is lost or diminished because of injury or disease of the nervous system.

The method most frequently applied in NPs is electrical activation of the appropriate

impaired sensorimotor systems, that is, use of FES. Functional electrical stimulation

elicits the desired neural activation by delivering a controlled amount of electrical charge

patterned as bursts of electrical charge pulses. In principle, it is possible to apply a time-

varying magnetic field, thereby inducing electrical currents within the selected parts of

the neural pathways; however, this technique is not yet efficient enough for functional

activation of the sensorimotor systems. A detailed presentation of most aspects of a NP

can be found in [2]. Neural prostheses can be divided into external and implantable systems.

Neural prostheses were suggested for movement control nearly 50 years ago [3].

This original work, termed functional electrical therapy, used a surface electrode

applied over a single muscle group with the aim of eliminating footdrop and producing

carry-over effects. Many NPs with surface electrodes were introduced later and tested

in humans with paralysis. In some applications the carry-over effects were substantial

[4], yet in most cases the effects were only immediate or short lasting. The life-long

use of NPs with surface electrodes is very often not appropriate because of the complexity

of daily donning and doffing, cosmesis, insufficient selectivity, fatigue, and overall cos-

metic appearance. Thereby, the need for effective implantable NPs became a priority

when designing and developing assistive systems for sensorimotor rehabilitation.

For example devices currently in use can improve walking in CNS-injured patients by

preventing “footdrop” by FES of the muscles that dorsiflex the foot [5]. Other implantable

sensorimotor NPs currently in use can produce grasping movements in a paralyzed hand

though FES of forearm muscles, and yet other devices can control bladder function [6].

Handbook of Neural Engineering. Edited by Metin Akay
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To make neural motor prostheses viable assistive systems for a broad range of patients with

injury or disease of the nervous system, we need devices that are easy to implement and

operate, that have sufficient complexity to restore important lost motor skills, and that

are cosmetically attractive with a long reliable lifespan. Neural engineering research

plays an essential role in being able to reach these goals. In this chapter we will focus

on implantable neural motor prostheses that interface to the peripheral nerves for sensing

and activation and to the CNS for creating command signals.

A peripheral nerve contains thousands of nerve fibers, each of them transmitting

information, either from the periphery to the CNS or from the CNS to the periphery.

The efferent fibers transmit information to actuators, mainly muscles, whereas afferent

fibers transmit sensory information about the state of organs and events such as muscle

length, touch, skin temperature, joint angles, nociception, and several other modalities

of sensory information. Most of the peripheral nerves contain both afferent and efferent

fibers, and the peripheral nerve can thus be seen as a bidirectional information channel.

The myelinated nerve fibers range in diameter from approximately 2 to 15 mm. Since

nerve fibers are excitable by electric stimuli, this gives the possibility of influencing the

neuromuscular system by activating muscles using FES of nerves. Today FES is available

as a tool in muscle activation used in picking up objects, in standing and walking, in

Figure 14.1 General schemes of a motor NP. Components of the NP are controller, electronic stimulator,

sensory feedback, and electrodes. The NP acts as a bypass for the diminished or missing transmission of neural

signals from and to the CNS. Adapted from [2].
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controlling bladder emptying, and for breathing. Despite substantial progress over nearly

four decades of development, many challenges remain to provide a more efficient func-

tionality of FES systems. The forces generated in muscles activated by FES can be

graded by varying the stimulus pulses, but the relationship of the force to the stimulus

pulse varies in a complex manner which depends on, for example, muscle length, elec-

trode–nerve coupling, and activation history. Several studies have shown that the appli-

cation of closed-loop control techniques can improve the regulation of muscle

activation. Here we review recent advances in

interfacing the nervous system for stimulation and sensing purposes,

electronic stimulators, and

creating commands signals.

Furthermore, we will outline the clinical applications used today and in the future.

14.2 NEUROELECTRONIC INTERFACE

A neuroelectronic interface connects the electronic world with the living world of nerve

cells. The neuroelectronic interface is a large family of devices described based on,

among others, the following:

The anatomic position of the electrode (extraneural, intraneural, epidural, intradural,

intraspinal, cortical, deep brain, etc.)

Its purpose (stimulation, recording, or both)

Its material

Its selectivity (in terms of anatomic structures or size of the nerve cells and fibers or

direction of the neural activity)

The number of contacts

The level of integration (e.g., with or without integrated electronics, wireless, etc.)

New production techniques, packaging, and interconnections are other important topics to

considered when choosing a neuroelectronic interface. Cultured neuron electrodes, such as

nerve cells as sensors on a semiconductor or other substrate, are potential new interface

methods that ultimately aim at true synaptic connections. Below follows a short descrip-

tion of electrodes for peripheral nerve interfaces. An extensive review can be found in [7].

14.2.1 Intraneural Electrodes

Intraneural electrodes such as the needle microelectrodes [8] and the 25-mm-diameter

longitudinal intrafascicular electrode (LIFE) penetrate the nerve fascicle and place their

active site in the peripheral nerve endoneurium or, in the case of the dorsal root ganglion,

within the neuropil. They inherently have higher recording selectivity and better

signal-to-noise ratio as compared to extraneural electrodes. The key development has

been to extend their recording stability, biocompatibility, and robustness [7]. Intraneural

penetrating electrodes have not yet made their way into clinical FES systems.

14.2.2 Extraneural Electrodes

Extraneural electrodes, such as whole nerve-cuff electrodes, have their active site placed

on the surface of the peripheral nerve (the epineurium). The electrode activates or records
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from a large number of nerve fibers. Extraneural techniques are the least invasive and are

the first to be used in human subjects as an interface to provide feedback from natural

sensors to a fully implantable closed-loop FES system [9, 10]. The advantages of the

electrodes are their stability, durability, and ease of implementation. Figure 14.2

shows a silicon cuff electrode and a polyamide–silicone hybrid cuff electrode. For the

polyamide–silicone hybrid cuff electrode both the shape of the polyamide substrate and

metalization traces are easily realized by standard microfabrication techniques so that arbi-

trary designs can be formed with high precision and repeatability [11]. Different variations

exist of the cuff electrode. For example, to access nerve fascicles that are located deep

within the nerve trunk, Tyler and Durand [12] designed “spring-loaded” slowly

penetrating intrafascicular electrodes (SPINEs) that insinuated themselves into the nerve.

14.2.3 Sieve Electrodes

Peripheral nerves that have been transected (e.g., when a limb is amputated) can often

regenerate if there is a target to be reached. If such a regenerating nerve is provided

with a biocompatible structure that outgrowing nerve fibers can grow into or through,

an electronic interface can be established. A sieve electrode consists of a matrix of

holes that is positioned at the end of a transected nerve. Ideally the axons of the nerve

will grow through the holes. In principle the holes could be addressable electrode contacts

for recording and/or for electrical stimulation [7]. Sieve devices can be made by micro-

fabrication techniques where the holes are produced through a silicon disk [13]. A

feature of silicon is that the circuitry to process recorded signals and apply multiplexing

can be made as an integral part of the device.

An example where sieves having 30-mm-holes and 30% transparency (ratio of open

space versus closed area of the sieve) yielded to the best nerve regeneration [38% of

functional gastrocnemeus electromyography (EMG) in a rat sciatic model] was presented

by Ceballos et al. [14]. Sieve electrodes have not yet been tested in human applications.

Figure 14.2 Representation of cuff (around nerve) electrodes (left) and newly designed

12-contact circular cuff electrode (with longitudinal slit) for selective stimulation with

four-channel stimulator. To minimize contamination of the neural signal from the surrounding

biological signals, the electrodes must fit tightly around the nerve and be well closed. An electrode

can be closed with the flap covering the longitudinal slip and kept in position by means of the

surgical threads around the cuff (left side), and it can be closed by using a “zipper” method where

the ends of the cuff have little holes and the plastic baton can be pulled through the holes (right side).

The novel self-wrapping polyamide multipolar electrode for selective recording/stimulation of

the whole nerve (C). (Courtesy of T. Stieglitz, Fraunhofer Institute, St. Ingbert, Germany, 2000.)
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14.2.4 Cultured Neuron Electrodes

In this approach an electronic interface is achieved by growing neural cells onto an elec-

trode structure. The cells are captured in small wells or they are adherent to a substrate

having an array of electrode contacts [15]. So-called neurochips are then formed. The

idea is then to implant the neurochips into the neural tissue where the neural interface

is desired. It is then expected that the cells on the chip will grow collaterals into the

host tissue. To guide and/or promote neuronal attachment and axon outgrowth, bioactive

substances can be employed.

14.3 ELECTRONIC NERVE STIMULATORS

Coordination of movements by FES requires electronic stimulators that are self-contained

with a low power consumption, small, and light and must have the simplest possible

interface [e.g., 16–24]. The stimulator should be programmable. The stimulator needs a

setup mode—mode of programming when communicating with the host computer.

Once the programming is finished, the stimulator should be turned to the autonomous

mode. Implantable stimulators for FES may be divided into single- and multichannel

devices. Single-channel implants, which have been fabricated, are all radio-frequency

(RF) powered and controlled devices. They use relatively few discrete components and

have a receiving antenna which is integrated into the circuitry. Two alternative schemes

have been considered for multimuscle excitation. It is possible, in principle, to use

several one-channel units that are controlled from one controller [19, 23] or to use a

single implantable stimulator that will connect with multiple electrodes [20, 25–27].

The single-channel devices have been developed originally for footdrop correction and

implanted in many subjects with positive experience, yet the development was continued

in a different direction, that is toward multichannel stimulators [26, 28]. The wireless

single-channel stimulator, termed BION, has been developed for extensive use in restoring

motor functions, and up to now animal experiments show great promise [19]. The BION

single-channel wireless stimulator is sealed with glass beads and uses an anodized tanta-

lum and surface-activated iridium electrodes to minimize tissue damage. The diameter of

the glass tube is 2 mm, and the length of the whole device is 13 mm. The BION is powered

by inductive coupling from an external coil at 2 MHz. A total of 256 units can be driven

from a single control based on the Motorola 68HC11 microcomputer. The stimulator deli-

vers charge-balanced monophasic pulses, allowing for the selection of a square of expo-

nential discharge tail.

The problem with all implantable devices without batteries, which require a lot of

power to drive the motor systems, is low efficiency of RF transmission. In order to transmit

energy, the emitting and receiving antenna must be close and aligned; this is very difficult

if a stimulator is injected into a deep muscle. The alternative solution, accepted by most

other research teams developing electronic stimulators, is a miniature, implantable, multi-

channel device that will excite as many muscles as needed. The difficulty is that such a

stimulator will be remote from the stimulation points; therefore, connectors and leads

have to be used between the stimulator and stimulation points. The use of long leads

should be eliminated after the technique of selective nerve stimulation, including potential

stimulation of the spinal cord directly or the spinal roots, is perfected. The experiments

conducted at Aalborg University with two- and four-channel fully implanted RF-driven

stimulators [29] integrated in the cuff electrode suggest that this is a viable technique.
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Selective activation of different muscle groups has been achieved in a sitting and walking

subject.

The stimulation-telemetry system described by Smith et al. [30] is an example of the

state of the art of technology. The device can be configured with the following functions:

1. Up to 32 independent channels of stimulation for the activation of muscles (or

sensory feedback), with independent control of stimulus pulse interval, pulse dur-

ation, pulse amplitude, interphase delay (for biphasic stimulus waveform), and

recharge phase duration (for biphasic stimulus waveform)

2. Up to eight independent telemetry channels for sensors, with independent control of

sampling rate and pulse powering parameters of the sensor (power amplitude and

duration)

3. Up to eight independent telemetry channels for processed (rectified and integrated)

signals measured from muscles or nerves (EMG or ENG), with independent control

of the sampling rate and provisions for stimulus artifact blanking and processing control

4. Up to eight independent telemetry channels for unprocessed myoelectric signal

(MES) channels, with independent control of sampling rate

5. Up to eight independent telemetry channels for system functions, providing control

or sampling of internal system parameters, such as internal voltage levels

Due to the overall timing constraints, implant circuit size, implant capsule size, number of

lead wires, circuit and sensor power consumption, and external control and processing

requirements, it is not practical to realize a single device having the maximal capabilities

outlined above. However, the intent of the stimulator–telemeter system is to provide the

means of realizing an optimal implantable device having all the necessary circuitry

and packaging to meet the anticipated clinical applications without requiring design or

engineering effort beyond that of fabricating the device itself. For example, a basic

upper extremity application would require, minimally, eight channels of stimulation

for providing palmar and lateral grasp and sensory feedback, along with one joint angle

transducer as a command control source. The stimulation–telemetry implant device

comprises an electronic circuit that is hermetically sealed in a titanium capsule with

feedthrough. A single internal RF coil provides transcutaneous reception of power and

bidirectional communication. The lead wires connected to the feedthrough holes extend

to the stimulating electrodes, to the implanted sensors, or to the recording electrodes.

The later two connections are used as control input. The circuit capsule, coil, and lead-wire

exits are conformably coated in epoxy and silicone elastomer to provide physical support

for the feedthroughs and RF coil and stress relief to the leads making it suitable for long-

term implantation. The functional elements required to realize the system include the fol-

lowing: (1) an RF receiver for recovering power and functional commands transmitted

from an external control unit; (2) control logic circuitry to interpret the recovered

signals, to execute the command function, and to supervise functional circuit blocks;

(3) multichannel stimulation circuitry for generating the stimulus pulses that are sent to

the stimulating electrodes; (4) multichannel signal conditioning circuitry which provides

amplification, filtering, and processing for the signals to be acquired (MES and sensor

signals); (5) data acquisition circuitry for sampling and digitizing these signals; (6)

modulation circuitry for telemetering the acquired data through the RF link; (7) power

regulation and switching circuitry for selectively powering the included functional

blocks of the circuitry, as needed, to minimize the power consumption of the device;

and (8) system control circuitry to allow interrogation or configuration of the operation

of the device.
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One of the technical limitations in FES is the size of the electronic devices and

power consumption. Sufficient miniaturization could be reached within a decade accord-

ing to “Moore’s law,” predicting that transistor density on integrated circuits will double

every 1–1.5 years. However, a complication of increasing the density is susceptibility,

especially of digital systems, to electromagnetic interference. In fully implantable

neural motor prostheses, the battery energy density and recharging issues will become

limited, especially as the FES devices gain functionality and demand more power. The

design of the practical RF coupling system for continuous use is at this time not resolved.

A method attracting attention is to apply miniature rechargeable batteries that will be

charged during no-use periods (e.g., over night) and exploited during the functional

tasks. Maximal energy density of implantable batteries is about 1.1 Wh/cm3 (lithium

ion) [31], and it needs to be improved. This topic remains an open area of research.

14.4 CREATING FES COMMAND SIGNALS FROM
BIOPOTENTIALS

The control of current FES systems is mainly based on a variety of hand-operated switches

and external transducers [2] which contain no information that is feasible for a feedfor-

ward control system or requires too much conscious activity. More recently, the integrated

sensors packaged in the biocompatible materials were introduced [32]. In this chapter we

are addressing the increased interest in using biopotentials from muscle or brain to control

FES systems (for a review see [33]).

14.4.1 Muscle Biopotentials

The use of the EMG recordings to control neuroprostheses is benefiting from both the

hardware development dealing with the stimulation artifacts and sophisticated signal

processing techniques being applied today in real time due to high-performance digital

signal processors. The EMG recordings allow the analysis of the fatigue of the stimulated

muscle (e.g., [34]), which is an important feature for FES systems that require prolonged

stimulation of muscles such as leg extensors during standing. Recording from multiple

muscles around the shoulder is most likely the only method to generate control signals

for future neuromotor prostheses controlling reaching and grasping. The implantable

sensors that can potentially be applied instead of surface electrodes for EMG recordings

offer new horizons, yet these techniques have not been evaluated in practical neuroprosthesis.

14.4.2 Brain Biopotentials

The possible use of brain–computer interface (BCI) technologies through recordings from

higher cortical structures has received increasing attention from many researchers as a way

to create useful command signals [35]. One possible method is to utilize the focal record-

ings using EEG instrumentation [36–38]. Another source of control signals is to provide

direct access through implantable electrodes to the neural structures that are directly

involved in sensorimotor functions (e.g., [39–41]). The implantable systems require

insertion of special electrode(s) into the human cortex. The recorded signals can then

be transmitted to the external units and processed to extract relevant control signals.

For a review on this topic see [43].
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Recently FES researchers have begun to explore the BCI technology as a new way to

create a command signal for FES systems to control hand grasp [44] and foot control [45].

One of the major challengers in EEG-based FES command signals is the low information

transfer rates of maximum 5–25 b/min. [35]. Achievement of greater speed and accuracy

depends on improvements in signal processing, translation algorithms, and user training.

These improvements depend on increased interdisciplinary cooperation between neuros-

cientists, engineers, computer programmers, psychologists and rehabilitation specialists

and on adoption and widespread application of objective methods for evaluating alterna-

tive methods. For a recent review see [35]. For a FES system, a control signal extracted

from cortical signals seems attractive, particularly based on our recent understanding of

the information coded in a population of cortical cells [46]. The most fundamental

finding is that the discharge rate is a broad tuning function covering all directions of move-

ment. Each cell is generally active for all movements. In a population of cells, all cells can

be active for most movements, but they may each have different firing related to preferred

movement directions and thus slightly different tuning functions. For example, cells in the

motor cortex have different preferred directions (detailed by their tuning functions). In a

computer-based process, a “population vector” can be calculated and shown to match the

movement direction with length corresponding to the movement speed. Animal studies

have shown the possibility of recording instantaneous population vectors from many

units simultaneously and process them through a computer to extract trajectory infor-

mation [42]. Tests in animals operating a robotic arm to reach food have demonstrated

the potential strengths of such an approach [43]. Ultimately, these methods may be

applicable to the control of FES systems in human subjects.

14.5 CLINICAL APPLICATIONS: EXAMPLES

In [2] we discuss clinical areas where FES is already important or where it holds great

potential if the adequate technology is developed.

Examples from current research at Aalborg University of the use of interfaces onto

the peripheral nervous system to restore motor functions in patients with CNS injuries

are given below. See [2] for an extensive review of clinical applications within movement

restoration by FES.

Several studies have shown that the application of closed-loop control techniques can

improve the regulation of FESmuscle activation. Natural sensors such as those found in the

skin, muscles, tendons, and joints present an attractive alternative to artificial sensors for

FES purposes because they are present throughout the body and contain information

useful for feedback control. Moreover, the peripheral sensory apparatus is still viable

after brain and spinal cord injuries. Electrical signals can be recorded through one of the

neuroelectronic interfaces described above. Here wewill limit the focus on using long-term

implanted nerve cuff electrodes in the human peripheral nerves. Reliable detection of

sensory nerve signals is essential if such signals are to be of use in sensory-based FES

neural prosthetics as a replacement for artificial sensors (switches, strain gauges, etc.).

For an extensive review on the properties of the signals in long-term implants see [46],

and on its application in automatic adjustment in neural prosthetic devices see [48, 49].

14.5.1 Natural Sensory Information Used Drop
Foot Prosthesis

Electrical stimulation of the peroneal nerve used for correction of gait has proven to be

potentially useful for enhancing dorsiflexion in the swing phase of walking in lower
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extremities of hemiplegic patients. The stimulation is applied during the swing phase of

the affected leg and prevents drop foot. This makes the patient walk faster and more

securely. The stimulator is often located distally to the knee on the lateral part of the

tibia. The stimulator can be either external or partly implantable. In both cases, the stimu-

lator is triggered by an external heel switch linked to the stimulator through a wire running

from the switch under the heel up to the stimulator.

A large clinical impact of an application could be obtained if the external heel switch

is replaced with a cuff electrode that records the neural activity from the skin of the foot

and uses this as a trigger to turn on and off the electrical stimulation, which enhances the

dorsiflexion in the swing phase of walking. The rationale for implanting a cuff electrode on

a cutaneous nerve innervating the foot is to remove the external heel switch used in exist-

ing systems for footdrop correction and thereby making it possible to use such systems

without footwear and preparing it to be a totally implantable system.

By percutaneous lead wires, the nerve cuff electrode was connected in a tripolar con-

figuration to an external amplifier providing an overall gain of approximately 110,000.

The output from the system was fed to a microprocessor-controlled stimulator that acti-

vated the ankle dorsiflexor muscles through a bipolar surface stimulation of the peroneal

nerve. During walking, the nerve signal modulated strongly and gave a clearly detectable

response at foot contact and a silent period when the foot was in the air through the swing

phase of the walking cycle (Fig. 14.3). After processing the signal, heel contacts could be

detected using the afferent nerve signal information alone. One of the most significant

problems in correlating the nerve signal activity to the actual heel contact during

walking is noise originating from nearby muscle activity.

14.5.2 Natural Sensory Information Used in Hand Prosthesis

A very interesting application of signals from cutaneous receptors is the hand neuroprosth-

esis. In healthy subjects, the skin receptors play an important role in the control

Figure 14.3 Footdrop correction system using natural sensory information picked up either from sural

nerve above ankle joint or peroneal nerve above the knee for determination of foot-to-floor contact. The

nerve signals were processed by means of an adaptive logic network (ALN), and the output from here was

passed through a set of restriction rules (not shown) that decided when to stimulate. The stimulation could

then be applied on the peroneal nerve through the same multipolar cuff electrode as used for recording the

sensory signal on the Peroneal nerve. (Adapted from Fig. 4 in [33].)
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mechanisms when, for example, lifting an object in a precision grip. The fingers of the

human hand are subserved by an estimated 200–300 touch-sensing receptors per square

centimeter within the skin. Such tactile sensors are required to signal the amount of

grasp effort needed to secure an object with sufficient force to prevent slippage but with

an economy of effort to avoid undue muscle fatigue. If the initial muscle activity in a

hand grasping an object only leaves a minute of safety margin against slips, small fric-

tional slips might elicit brief burst responses in the sensing receptors. These afferent

volleys trigger an upgrading of the grip force about 70 ms after the onset of the slip.

Healthy subjects are able to control the grip force when holding a given object, indepen-

dent of the weight and surface texture of the object. This is possible because the cutaneous

receptors give information about small slips and skin deformation.

We have implemented an algorithm that makes an FES system able to mimic this

function based on the compound information from the cutaneous receptors as recorded

by a nerve cuff electrode. Initially, the algorithm was developed in an animal preparation,

and later we implemented it in two spinal-cord-injured subjects [48].

Results from a 27-year-old tetraplegic male with a complete C5 spinal cord injury

(two years postinjury) are presented here. The patient had no voluntary elbow extension,

no wrist function, and no finger function. He used a splint for keeping the wrist stiff. He

had partial sensation in the thumb but no sensation in the second to fifth fingers. During

general anesthesia, the patient was implanted with a tripolar nerve cuff electrode on the

palmar interdigital nerve to the radial side of the index finger branching off the median

nerve. The cuff was 2 cm long and had an inner diameter of 2.6 mm. Eight intramuscular

wire electrodes were placed in the following muscles: extensor pollicis brevis (EPB),

flexor pollicis brevis (FPB), adductor pollicis (AdP), and flexor digitorum longus

(FDL). See Figure 14.4.

Figure 14.4 Schematic of system for restoration of lateral key grip in spinal-cord-injured

volunteer subject, including natural sensory feedback from cutaneous digital nerve. The

stimulation system is called “FreeHand” and has been developed at Case Western Reserve

University, OH. (Adapted from [10] in Fig. 1.)
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The stimulator was controlled by a computer, which also sampled the nerve signals

and performed the signal analysis. When stimulation was turned on, the object could be

held in a lateral grasp (key grip) by the stimulated thumb. If the object slipped, either

because of decreasing muscle force or increasing load, the computer detected this from

the processed nerve signal and increased the stimulation intensity with a fixed amount

so that the slip was arrested and the object again was held in a firm grip [48].

When comparing the performance of the system to healthy subjects doing the same

task, it was shown that the FES-generated force could automatically adjust to levels close

to healthy subjects’ levels. When extra weight was added, the slipped distance was also

comparable to the performance of healthy subjects.

Today this system is developed to an extent where the subject can use it during func-

tional tasks [10]. During an eating session, where the subject has a fork in his or her instru-

mented hand (grasped between the thumb and index finger), the control system is designed

to decrease the stimulation of the finger muscles until the feedback signal from the skin

sensors detects a slip between the index finger and the fork. When a slip is detected,

the stimulation to the thumb increases automatically proportional to the strength of the

sensory feedback, and if no further slips are detected, the controller starts to decrease

the stimulation. This continuous tracking of the minimally necessarily needed stimulation

means that the hand muscles are only loosely stimulated when the subject decides to rest

his or her arm (which typically happens when he or she has a conversation with one or

more persons at a dinner table). The stimulation will automatically increase when he or

she starts to eat again by placing the fork in the food. A typically eating session will

last 20–30 min. A large fraction of this time is dedicated to “noneating” activities.

During such times, the stimulation is at a minimum (keeping the fork in the hand with

a loose grasp) and thereby preventing the hand muscles from being fatigued. When the

feedback is taken away, the subject will typically leave the stimulation on at high stimu-

lation intensity for the full eating session. This will fatigue the stimulated muscles, and the

subject will try to eat dinner faster or will rest the muscles at intervals by manually

decreasing the stimulation—an effort that requires more attention from the subject than

the automatic adjustment of the stimulation intensity.

14.5.3 Natural Sensory Information Used in Control of
Neurogenic Bladder

In the case of neurogenic bladder, the elevated intravesicular pressure can force urine to

travel back up to the kidneys and produce upper urinary tract infection. Equally

common are infections of the lower urinary tract caused by insufficient voiding which

leaves a persistent high volume of residual urine. In addition to these problems, overfilling

of the bladder can lead to a condition of autonomic dysreflexia, which can also be life

threatening.

These problems could be reduced if it would be possible to provide spinal-injured

individuals with information about the state of fullness of the bladder. This requires

some sensors that can monitor the bladder volume and bladder pressure. An artificial

sensor such as a strain gauge device or an ultrasound device attached to the bladder

wall might seem like a solution; however, it is difficult to maintain an enduring fixation

to the bladder wall. An insertable catheter with integral pressure sensor might be

another approach, but the risk of introducing infections from external organisms,

especially with regard to chronic devices, is substantial.

Work in an anesthetized cat preparation has shown a good correlation between

recorded activity from the S2 sacral root and the intravesical pressure associated with
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fullness of the bladder [50]. The monotonic increase in the rate of discharge of the

recorded, isolated bladder afferent clearly parallels the increase of intravesical pressure.

Recently, it has also been demonstrated that a nerve cuff applied around the S2 sacral

root or the pelvic nerve innervating the bladder in anesthetized pigs can record activity

that correlates with the fullness status of the bladder [51]. But perhaps more importantly,

if sensory information from the bladder can be reliably recorded by cuff electrodes placed

on suitable nerves without bigger risks, patients with a hyperreflexive bladder (SCI, some

incontinence patients) could, when needed, get a closed-loop controlled FES implant that

uses this recorded sensory input. Present solutions for such patients are suppression of

reflex contractions by drugs and bladder emptying by catheterization, which needs to be

done many times during the day and night and is not always pleasant for a patient. In

some cases, drugs do not work—then surgical intervention is needed where the detrusor

is deafferented by cutting the dorsal sacral roots to prevent reflex contractions, and the

bladder can be emptied by use of a sacral root stimulator that has electrodes on the

sacral ventral roots. Dorsal rhizotomy increases the bladder capacity, but reflex erection

in male patients is lost. To prevent cutting dorsal sacral roots, one could detect fast

pressure rises and detrusor activation with nerve cuff recordings from bladder nerves,

and the controller could then take appropriate actions, as, for example, inhibit detrusor

contractions by stimulating pudendal or penile nerves or block efferent or afferent

pelvic nerve transmission to prevent reflex detrusor contractions [51, 52]. In this way con-

tinence could be reestablished, low-pressure voiding achieved, and bladder functional

capacity increased, and beside medical status improvement, the patients would become

more independent as well and could socialize more easily.

14.5.4 Functional Electrical Therapy for Cortical Reorganizing

The adult mammalian nervous system has an ability to reorganize itself in an activity-

dependent manner in response to increased or decreased sensory inflow. Manipulating per-

ipheral sensory nerve activity by electrical stimulation, one can modulate in healthy

human subjects the magnitude of cortical response and modulate motor pathway excit-

ability, which can produce a mixture of excitation and inhibition at supraspinal levels.

Long-term reorganization, as defined by an effect that outlasts the stimulation, of the

motor cortex has been reported for repetitive electrical stimulation of peripheral nerves

(e.g., [53]). Based on such findings we designed a treatment protocol termed functional

electrical therapy (FET)—a new method of treating the more affected arm in humans

after a stroke by applying electrical nerve stimulation in an activity-dependent manner

to the affected arm. It is an exercise that comprises simultaneous, voluntarily and exter-

nally assisted reaching and grasping. Functional electrical stimulation assists the grasp

based on control that mimics the patterns typically found in able-bodied subjects.

The treatment is intensive exercise of daily functions (e.g., drinking, eating, writing) by

the more affected arm/hand. Results from a randomized, blinded, clinical study with 28

patients show that there is a highly significant improvement in performing typical daily

activities in all FET-treated patients leading to a better quality of life [54].

The study suggests that systematic electrical stimulation of peripheral nerves in a

way that generates lifelike movement timed with the voluntary activity and integrated

into a functional scheme leads to faster and greater reorganization of the CNS after

stroke and thereby speeds up and promotes the recovery of reaching and grasping in

acute stroke subjects. A future challenge is to develop FET systems that can easily and

reliably generate lifelike movements for other segments of the body such as elbow and

shoulder movements of the arm and ankle and knee and hip movements of the leg.
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Future technology will make it possible to interface to the body at a micro- and

nanoscale level opening up many new treatments to restore sensorimotor functions in

individuals with injuries in the CNS. Howeve, this should not stop us from moving into

clinical investigations of FES systems that already have potentials in improving

CNS-injured individuals’ quality of life.
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CHA P T E R15

HYBRID OLFACTORY BIOSENSOR

USING MULTICHANNEL

ELECTROANTENNOGRAM:

DESIGN AND APPLICATION
John R. Hetling, Andrew J. Myrick, Kye-Chung Park, and

Thomas C. Baker

15.1 INCORPORATING NEURAL CELLS AND TISSUE
IN HYBRID DEVICE DESIGNS

The term biosensor is used to describe a sensing system comprised in part of living matter

or of materials derived from living matter (e.g., enzymes, antibodies, nucleic acids).

Generally, the actual sensing element (i.e., front end) in the system is living, and the

response of the living component is transduced by a second conventional sensor (e.g.,

an electrode) and the signal is measured and stored electronically [1]. Living organisms

can be quite robust in terms of their ability to maintain homeostasis in a wide range of

environments, but isolated cells, tissues, and organs require special consideration to

keep alive when isolated from the parent organism. However, it is primarily single cells

that are targeted for inclusion in biosensors. A reasonable conclusion is that biosensors

are bulky given the significant amount of instrumentation required to keep isolated cells

alive and quite fragile under field conditions where a sensor might be used. So what motiv-

ates the development of biosensors? The answer includes high sensitivity, high specificity,

and speed. The same exquisite sensitivity to individual species of molecules in the

surrounding milieu which allows a cell to play its particular role in the physiology of

an organism can be exploited to detect those molecules in the parts-per-billion range,

and this can often be accomplished on a millisecond time scale.

All cells are sensitive to environmental parameters such as pH, temperature, and

toxins (any element or compound becomes a toxin at sufficiently high concentration) as

well as basic metabolic compounds (e.g., glucose, oxygen, carbon dioxide). However,

many cells are specifically sensitive to certain chemicals for which they express

membrane-bound receptors (e.g., glutamate receptors expressed by cortical neurons) or

certain types of energy (e.g., light sensitivity of retinal photoreceptor cells, stretch sensi-

tivity of muscle spindle cells). A principal design feature of a sensor is its specificity, or the

degree to which its output can be influenced by inputs other than the desired measurand. In

other words, if you are building a biosensor to measure glucose, you would not want the
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sensor to also be sensitive to oxygen concentration unless you could absolutely control for

oxygen concentration in your system. The specificity of membrane-bound receptor pro-

teins is another advantage of cell-based biosensors.

The choice to use a biosensor depends on whether the sensitivity, specificity, and

speed offset the fragility, bulky nature, and expense inherent to their use. A primary motiv-

ation in biosensor research is to improve durability and reduce size and cost. The specific

type of biosensor to be described here is designed to measure airborne chemicals, or odors.

The approach is slightly different from most biosensor development in that the living

component is the entire olfactory organ of an insect, the antenna. The biological response

to an odor is a change in membrane potential of olfactory neurons contained within the

antenna, and this biopotential can be recorded with electrodes. The system for recording

the electroantennogram (EAG) as well as an EAG analysis approach allowing discrimi-

nation between different analytes (airborne volatile compounds) will be described in

detail below.

15.2 APPLICATIONS FOR OLFACTORY SENSORS

Olfaction is the sensing of airborne molecules; an olfactory sensor is distinguished from a

taste sensor in that it does not need to contact the solid or liquid source of the detected

molecule. As many compounds of interest exhibit some degree of volatility, an olfactory

biosensor can be thought of as a remote sensor. Potential applications of olfactory

biosensors include and surpass applications of artificial sensors, assuming their inherent

disadvantages can be overcome (there are theoretical and technical limitations on the

size, sensitivity, specificity, and speed of artificial sensors). Industrial uses include

quality control of aromatic products (e.g., perfume, wine) and environmental safety (a

more refined approach to the canary in the coal mine). Airports routinely use an artificial

olfactory biosensor in screening luggage for explosives and drugs (your bag is swabbed

with a small white pad, which is then scanned for the illicit substance). Olfactory biosen-

sors are sensitive to a long list of anthropogenic compounds of interest to security and

defense, including drugs, explosives, and chemical warfare agents. For many insects, the

ability to locate specific species of plants, or even individual plants in a certain state of

health or maturity, is important for food or in their reproductive cycle; this is often accom-

plished by sensing airborne volatiles. Similarly, the body gives off specific odors depend-

ing on the state of health (e.g., ketones on the breath of diabetics). Olfactory biosensors

may find use in the clinic either for rapid screening or as a high-level diagnostic tool.

15.3 STRATEGIES FOR ARTIFICIAL NOSE DESIGN

The artificial nose, as presently conceived, can be distinguished from other chemical

detectors (such as pH or NO electrodes) by the promise of detecting an arbitrary

number of different compounds with the same device. Where single-chemical detectors

often rely on a semipermeable membrane specific to the molecule to be detected, artificial

noses generally consist of an array of semiselective, cross-reactive sensors which demon-

strate distributed specificity. There are a number of different artificial nose technologies

currently being developed (see Table 15.1) [2–5]. An array of different classes of

sensors yields a set of response vectors representing the sensor output, which must then

be interpreted by a pattern recognition scheme. This has been done by using pattern rec-

ognition methods based on statistical and computational neural network approaches [5].
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Current trends in artificial nose development include the use of temporal features in the

detector response and the development of neural networks which can learn new odors

on-line, without the need to retrain the entire odor library [5].

However, as noted in Table 15.1, there are three important limitations of artificial nose

technology. First, the long response times (tens of seconds to minutes) of most approaches

limit them to steady-state measurements, where the steady state may take impractically long

times to reach. Steady state is not often attained under many field conditions where an arti-

ficial nose might find application (e.g., a turbulent wind stream). Second, the number of

sensor classes comprising the array is limited to about three in present designs. This

limits the number of compounds which can be distinguished and generally requires

advanced knowledge of the compounds to be detected. Third, all artificial nose technologies

exhibit low sensitivity as compared to most biological olfactory sensors.

15.4 BIOLOGY OF INSECT OLFACTORY SYSTEM

As stated above, the olfactory biosensor described here uses an insect olfactory organ, or

antenna, as the sensing element. A brief description of the anatomy and physiology of

this system will be helpful. The principal arrangement of the biological olfactory system

is quite well conserved across phyla, from insects to mammals. Olfactory receptor

neurons (ORNs) exhibit a response when airborne molecules bind to metabotropic

membrane receptors and activate G-protein cascades, providing amplification and even-

tually leading to membrane potential changes and characteristic trains of action potentials

TABLE 15.1 Signal Transduction Technologies in Use or Under Development for an Artificial Nose
[5]. Each Approach Incorporates Multiple Sensor Classes with Differing Sensitivity Spectra Based on
Variations in the Sensor Component which Interacts Directly with the Analyte (i.e., Odor)

Signal transduction

technology Principal of operation Primary limitations

Metal-oxide and MOSFET Electrical resistance of

semiconductor changes

when analyte molecules

are adsorbed onto surface

High power levels required

damaged by sulfur-

containing compounds

and weak acids

Low sensitivity

Conducting polymers Electrical conductance of film

changes with reversible

adsorption of analyte

molecules

Long response times

Drift

Poor reproducibility

Expensive

Piezoelectric-based (accoustic

wave devices)

Analyte molecules adsorbed by

thin films on crystals, altering

RF resonance frequency

Drift

Low sensitivity

Poor reproducibility

Fiber-optic/solvatochromic

fluorescent dye

Analyte molecules alter polarity

of dye’s surroundings,

affecting fluorescence

Low sensitivity

Long response times

Limited lifetime

(photobleaching)

Note: For example, attachment of various functional groups to the backbone of conducting polymers to create unique polymers

with differing affinity for a given analyte. Each class of sensor within a given approach requires individual fabrication; individual

sensors then need to be combined into one device. This labor-intensive process imposes a practical limit of about three sensor

classes within a given device. This in turn limits discrimination across brad categories of analytes.
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[6–8]. The antenna is comprised of a cuticle layer, contiguous with the rest of the insect

exoskeleton, which contains the dendrites of the ORNs. Contact with the environment is

made through a large number of fenestrations or pores in the cuticle; airborne compounds

diffuse through the pores and to the dendrites. If the receptor protein expressed by an

individual ORN binds to the odorant molecule, a G-protein-mediated transduction

cascade, very similar to the phototransduction cascade in photoreceptor cells, results. A

single activated G-protein acts on many (hundreds to thousands) substrate molecules,

thereby providing a level of molecular amplification to the odor signal; this amplification

is one reason a biosensor is inherently very sensitive. If the stimulus is strong enough,

that is, enough receptor proteins were bound, threshold is reached and an action

potential results.

These sensory neurons synapse onto a variety of interneurons in the antennal lobe

(AL), the output of which appears on mitral cells which lead to higher processing struc-

tures in the brain [9]. Sensory cells, numbering in the hundreds of thousands, have over-

lapping, semiselective, yet broad response spectra. The result of the transduction-level

coding and the olfactory bulb processing is a system that exhibits a remarkably high

sensitivity with broadband detection and discrimination. These are desirable features in

any detector system and represent active areas of research in many areas of information

technology.

15.5 BIOLOGICAL OLFACTORY SIGNAL PROCESSING

The ORNs, numbering around a few hundred thousand, may be divided into a smaller

number of groups defined by the receptor protein expressed by each cell. There are

about a hundred individual receptor proteins for the average insect. Each ORN expressing

a given receptor protein projects axons to a specific glomerulus in the AL. These glomeruli

are the first synaptic relay in the insect olfactory system and are analogous to the olfactory

bulb in mammals. Each glomerulus is therefore “tuned” to the sensitivity spectrum of a

particular receptor protein. Projection neurons carry the olfactory information from the

AL to the mushroom body, where, through a set of feedback mechanisms, the represen-

tation of the odor in the neural coding space is refined before being passed on to higher

perceptual levels.

This refinement of the neural representation of an odor, well described in a

review by Laurent [9], is necessary because organisms are in general capable of

discriminating between a number of odors that greatly exceeds the number of different

receptor proteins. That is, each odor does not have a “hard-wired” connection to a

perceptual center. This is possible because each receptor protein does not bind to only

one specific molecule but has a finite sensitivity spectrum. A single receptor protein

can bind to a family of compounds which differ slightly in molecular shape and

charge distribution; these differences define the parameter space of odorant molecules.

The parameter space of odors (i.e., the molecular properties of odorants to which sensory

neurons are sensitive) is not precisely defined. However, structure–activity studies

(chain elongation, double-bond position, functionality) performed on noctuid olfactory

neurons in vivo have been particularly enlightening in understanding that ligand–

receptor interactions can behave according to conformational energy and electron

distribution models and not merely to space filling [10–12]. In short, some compounds

bind more strongly than others, and a plot of binding efficiency versus variation in

specific molecular parameters results in the sensitivity spectrum of a given receptor
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protein. By interpreting the relative responses of several ORNs, each expressing differ-

ent receptor proteins, a specific odor can be identified as unique.

15.6 PROOF OF CONCEPT FOR MULTICHANNEL
EAG: DIFFERENTIAL SENSITIVITY BETWEEN SPECIES

The potential utility of using insect antennae as sensitive and discriminating biosensors for

known agents in the environment stems from the successful use of the single-antenna

EAGs that have been used to monitor the relative concentrations and even plume struc-

tures of high concentrations of known pheromone odorants (to which the selected EAG

detector was tuned) [13–16]. An EAG response is thought to result from the summed

generator (DC) potentials of individual olfactory receptor neurons that have been depolar-

ized by exposure to an odorant, with the depolarizations of those receptor neurons closest

to the recording electrode contributing more to the amplitude than those further away [17].

It has long been known, however, that EAG responses to any series of compounds form a

graded series and are not compound specific. Even for sex pheromone components, the

most specific of behaviorally active odors for insects, anthropogenic analogs differing sig-

nificantly by chain length or functional group have been shown to be capable of generating

significant EAG responses having amplitudes that are only 50–25% reduced from the

natural pheromone compound itself [18].

Previous studies have hinted that EAG response spectra to a range of odorants can

be at least a little species specific [19–21]. However, the concept of creating a discrimi-

nating EAG biosensor system by using an array of antennae that compares response

amplitudes across the array had only very recently been suggested and attempted [22].

A discriminating EAG formed by antennae from multiple species would require exploit-

ing only very slight species-to-species differences in the EAG response. Obviously, a

single EAG signal from a very broadly tuned antenna responding in graded fashion to

a wide variety of odorants cannot be used to discriminate one volatile compound from

another.

Park et al. [22] created a discriminating EAG biosensor by utilizing differences in

the EAG responses of several antennae from different species of insects monitored simul-

taneously. Their system made optimal use of the ability of the EAG to respond to sharp

peaks in concentration such as those generated by the flux from individual odor strands

in an odor plume passing over the antennae [13]; two or three depolarizations (i.e., odor

strands) per second were registered. As shown by Baker and Haynes [13], the ability of

an insect antenna to respond quickly to peak concentration in the strands in a plume

makes it a much more sensitive system than slower responding artificial sensors whose

polymers can only take a reading of time-averaged mean concentrations [23, 24].

The proof of the insect antennal array concept came when Park et al. [22] were able

to discriminate most of the 20 different compounds they tested by comparing EAG

response spectra across only five different species. The 20 compounds were presented

as single puffs to individual antennae (Fig. 15.1), and the mean amplitudes of response

to each compound over several replicates were calculated and normalized with respect

to EAGs from a standard compound. The histograms developed from this process resulted

in clear patterns of relative EAG amplitudes across the five species’ antennae used. Most

of these were discriminable by eye (Fig. 15.2).

Park et al. [22] then used simple clustering algorithms on the EAG amplitude

information alone and confirmed what was apparent by eye. The cluster analysis
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clearly demonstrated that compounds from similar classes (such as medium-chain-length

aliphatic alcohols and longer chain length aliphatic alcohols) clustered together

(Fig. 15.3). They also showed that compounds within classes were distinguishable

based on characteristics such as chain length (Fig. 15.3).

Thus the proof of concept for using a multichannel EAG to discriminate between an

arbitrary number of odors had been established. However, several technological issues

needed to be addressed to make the EAG biosensor practical. Principal among these

were the design of a multichannel electrode array and preamplifier optimized for field

condition recording of the EAG and the automation of the odor discrimination analysis.

Electronic optimization of the preamplifier will assure that the extreme sensitivity of

the antenna can be exploited [i.e., maximize the signal-to-noise (SNR)]. Colocalization

of antennae will assure that an odor strand in a turbulent air stream is sensed by each

antenna at approximately the same time. Minimizing the size of the preamplifier will mini-

mize perturbations to the air stream. Automation is important in order to take advantage of

the inherent speed of the hybrid system and to fulfill many potential applications requiring

Figure 15.1 Differential EAG response

amplitudes when either cyclohexanone or

ocimene was puffed over antennae of

Microplitis croceipes (MC; parasitic wasp),

Heliothis virescens (HV; moth), Ostrinia

nubilalis (ON; moth), or Helicoverpa zea

(HZ; moth). Each horizontal division is

5 mV, and each vertical division is 10 s.

Figure 15.2 EAG response amplitudes from five different insect species’ male antennae

when presented with four different straight-chain alcohols: DM ¼ Drosophila melanogaster,

HV ¼ Heliothis virescens (moth), HZ ¼ Helicoverpa zea (moth), ON ¼ Ostrinia nubilalis

(moth), and MC ¼ Microplitis croceipes (parasitic wasp).
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autonomous operation (e.g., roving robots searching for land mines). Early answers to

each of these challenges are described in the following sections.

15.7 DESIGN OF MULTICHANNEL EAG SYSTEM

In the design of an EAG acquisition system, it is desirable to maximize the SNR obtained.

It is also desirable to eliminate or limit as many sources of interference as possible.

Minimization of noise and interference allows maximal information to be extracted

from the signal during postacquisition processing. The source of noise is in the physical

components that take part in processing the input signal, while interference originates

outside the signal path. Sources of interference include 60-Hz power-line radiation, radio-

frequency radiation, electronic changes due to temperature drift, mechanical agitation, and

power supply ripple. Noise sources are numerous but often include thermal (Johnson)

noise, 1/f or flicker noise, shot noise, and quantization noise.

A further source of interference arises from inside the “sensor” (i.e., the antenna),

which contains not only chemoreceptors but also mechanical receptors. As air is swept

across the antenna, mechanoreceptors are stimulated, giving rise to a source of interfer-

ence in this application that cannot be eliminated. A source of signal noise is likely to

be related to the origin of the signal. The EAG voltage changes are caused by ensembles

of individual action potentials. The number of neurons involved appears to be on the order

of 105, probably an order of magnitude less for any individual response (referred to below,

by convention, as a depolarization). Together, the number of neurons and their firing rate

Figure 15.3 Cluster analysis of five-species EAG response profiles to 20 different volatile

compounds. Decanol (10:OH) and nonanol (9:OH) cluster together but separate from octanol

(8:OH) and heptanol (7:OH). Visually this should be apparent in Figure 15.2. Compounds 8–11

and 13 are all monoterpenes, sitting in a separate cluster of EAG antennal array response

patterns than the aliphatic alcohols.
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present a fundamental limit to the amount of information that can be obtained from the

signal. Despite the inherent sources of distortion in the sensor, it is still desirable for

research purposes to provide the most accurate EAG measurements possible by limiting

electrical sources of interference and noise.

Biopotential amplifiers are traditionally located remotely from the signal source,

which is connected via shielded cables to a differential amplifier. A long cable has a ten-

dency to pick up interference, or generate interference as a result of mechanical agitation,

known as the triboelectric effect. Further, a differential amplifier (two amplifiers per

channel) is needed to reduce power line interference. In the EAG application, a single

ended active probe can amplify the signal very close to its source, which is also physically

small, and send a much higher power signal through a cable for further amplification and

filtering. The power gain is high enough to overpower interference sources. For instance,

the power gain of the EAG active probe described here, with 500 kV input resistance, is

2 � 107. Another advantage to this approach is that only one preamplifier per channel is

needed. Further, amplifier bias current is provided through the antenna itself without the

need for biasing circuitry.

A good way to begin a design is to first draw a general block diagram (Fig. 15.4).

The hardware component to be described here is the “amplify-and-filter” section. The

PC-based converter is readily available from many vendors. The amplifier interfaces

with the antennae at its inputs and the data converter at its outputs. To begin designing,

it is first necessary to characterize both the antennae and the data converter.

Figure 15.5 shows a Thevenin equivalent circuit for a typical insect antenna. The

antenna acts as a voltage source, VA, in series with a source resistance, RA. The Thevenin

equivalent resistance can be expected to vary from approximately 100 to 10 MV. This

value also varies as the preparation becomes less viable through dehydration and so

cannot be easily predicted. Noise that is present across any source of real, finite impedance

is termed Johnson noise, which is created by thermal motion of charge carriers. This noise

cannot be avoided without reducing the temperature of the source. Johnson noise has equal

power density at all frequencies (up to the terahertz range) equal to 4kT watts per hertz.

Figure 15.4 EAG acquisition system block diagram.

Figure 15.5 Thevenin equivalent circuit for insect antenna.
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The root-mean-square (RMS) value of the Johnson noise voltage spectral density across

any resistor can be calculated using

VJ fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi

4kTR
p

V=
ffiffiffiffiffiffi

Hz
p

where k ¼ 1.38 � 10223 is Boltzmann’s constant and T is temperature in kelvin. For

example, the noise level of the resistor value RA ¼ 500 kV from 0.1 to 10 Hz at 298 K is

VJ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4ð Þ 1:38� 10�23ð Þ 298ð Þ 500� 103ð Þ 10� 0:1ð Þ
p

¼ 285 nV RMS

The voltage VA may also be further characterized. The EAG signal has an approximate

“active” level of 400 mV RMS and occupies the frequency range of about 0.1–10 Hz.

The maximum signal swing expected is approximately 10 mV peak to peak (p-p). In

addition, a large DC offset on the order of 100 mV is typically present on the EAG signal.

A useful comparison between the signal and the noise is the SNR, often expressed in

decibels:

SNR ¼ 10 log10
S

N

� �

¼ 20 log10
VS

VN

� �

where S represents the signal power, N represents the noise power, and VS and VN are the

signal and noise voltages, respectively. Here, for example,

SNR ¼ 20 log10
400� 10�6

285� 10�9

� �

¼ 63 dB

Now the input characteristics of the data converter can be summarized. A simplified analy-

sis can be divided into two parts: the amplifier and the digitizer. Although it is difficult to

know the exact analog signal input chain to the analog-to-digital converter (ADC) within a

proprietary digitizer design, a good model may be constructed by treating each analog

channel as an independent amplifier followed by a first-order low-pass filter (LPF), with

negligible noise above the corner frequency of the LPF. Because the floating-point

digital output of the digitizer software driver is scaled to the input voltage, the gain of

the amplifier is unknown and does not need to be determined. If necessary, it would be

possible to determine the gain by measuring the quantization levels and opening the

digitizer case to find the ADC part number to determine its input range.

The greatest concern in designing the amplifier is the noise it adds to the input signal.

Generally, the input noise voltage VN and sometimes the input noise current IN of an ampli-

fier are specified as functions of frequency. Often VN consists of so-called flicker noise and

white-noise components. For input source impedances that are very high IN is a concern. In

this case, it is expected that the input of the digitizer amplifier will be driven by a low-

impedance amplifier output from the “amplify-and-filter” stage. Flicker noise density

can be approximated with the equation.

VNf fð Þ ffi K

ffiffiffi

1

f

s

White noise, by definition, has a flat spectral density, as in the relation

VNW fð Þ ffi NW

The RMS values of two independent noise sources in series can be represented as a single

noise source with an RMS value equal to the sum of their squares. Therefore, the total
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equivalent input noise density is given by the formula

VN fð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

K2
1

f
þ N2

W

s

Further, the bandwidth of any real amplifier is limited. A simple way to model this band-

width limitation is to place a first-order LPF on the output of the amplifier (gain 1). The

“output” noise spectral density curve shown in Figure 15.6 is an estimate of the amplifier

noise present at the scaled output of the digitizer with the amplifier input grounded. Such a

curve is plotted in the figure. Parameters of the input amplifier and multiplexer chain are as

follows:

Input referred white-noise spectral density 250 nV/
ffiffiffiffiffiffi

Hz
p

Input referred flicker noise coefficient 3.75 � 1026 W

Amplifier bandwidth 413 kHz

Input impedance 100 GV/100 pF

Bipolar input voltage ranges +50 mV,+0.5 V, +5 V,+10 V

Parameters of the digitizer are as follows:

Analog input channels 16

Maximum sample rate (total for all channels) 200,000 samples/s
Sampling resolution 16 bits

Accuracy +3 LSBs (least significant bits)

Typically, the signal power and the noise power are compared within a specified band-

width, where the signal power exists. A noise voltage spectral density may be integrated

across a frequency range using the equation

VNBW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð

BW

VN
2(f ) df

s

Fortunately, in this application, quantization noise is not a problem. At a sample rate of

12,500 samples/s, 67 aliased segments of the amplifier white noise integrate from 0.1

Figure 15.6 Spectral

density estimate of digitizer

output noise.
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to 10 Hz, resulting in 6.4 mV RMS. The 1/f noise integrates to 8.0 mV RMS. The total

noise is

VN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

6:4� 10�6ð Þ2 þ 8:0� 10�6ð Þ2
q

¼ 10:2mV RMS

Without precise knowledge of the source impedance of the antenna, an amplifier with very

high input impedance is desirable to measure the EAG voltage accurately. Illustrated in

Figure 15.7 is a model of an antenna connected to a noninverting high-input-impedance

amplifier. The performance of this amplifier construct is highly dependent on the perform-

ance of the operational amplifier (op amp). The performance of an op amp can be

evaluated by examining parameters assigned to its nonideal behavior.

Every op amp requires bias current to operate its input amplifiers. This is usually

specified on manufacturer’s specifications as “input bias current.” Further, each individual

amplifier has an impedance to ground and an impedance between itself and other amplifier

inputs on the same device. These are known as “common-mode input impedance,” and

“differential-mode input impedance,’” respectively. The degree of power supply ripple

and noise feedthrough to the op amp output is usually specified as the power supply rejec-

tion ratio (PSRR). Other parameters critical to this application include “input current

noise” and “input voltage noise.” These will be explained in further detail below.

Before selecting an amplifier, it is a good idea to list the few critical specifications,

which will aid in generating a list of candidate devices. Specifications of major concern are

listed below. A point should be made that datasheet noise data are representative of a

typical amplifier and are only approximate. Thus, consideration should be made for

variability between individual parts.

Parts per package 4 in this application

Input bias current �1 nA

RCM �1 GV

In-band current noise �40 fA RMS

Voltage noise Evaluate

PSRR Maximize

Noise sources in the noninverting amplifier configuration (excluding thermal noise in the

antenna) (Fig. 15.7) include the resistors and the amplifier. Amplifier noise is measured

and usually published in the op amp specifications. Measured amplifier noise includes

input referred noise voltage and input referred noise current. In this application, the

Figure 15.7 Preamplifier

connected to antenna

equivalent circuit.
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noise at the amplifier output can be approximated using the equation

Vo ffi 1þ Rf

Ri

� �

VNBW

This equation applies only because the component values and amplifier specifications have

been chosen properly. For more details on op amp noise analysis see Clayton [25] and the

application note by Bob Clark [26] listed in the references.

Two particular op amps considered for this design were the AD8608 and the

LMC6084. Integration of the noise from 0.1 to 10 Hz results in the following noise

specifications (data shown for the LF147, used in a circuit second stage, will become

relevant below):

Op amp PSRR, dB IN , fA=
ffiffiffiffiffiffi

Hz
p

K, nW VNBW, nV RMS

AD8608 77 10 91.7 197

LMC6084 72 0.2 285 611

LF147 10 164 353

The SNR at the output of each amplifier has been calculated for an “active” signal input of

400 mV RMS in the preamplifier for Ri ¼ 10 kV and Rf ¼ 100 kV and plotted in

Figure 15.8 as a function of the input resistance. The SNR is a decreasing function of

the input resistance because the available signal power is inversely proportional to the

input resistance but the noise power is constant.

A figure of merit for an amplifier is its noise figure. The noise figure is expressed in

decibels as

NF ¼ 10 log10
Si=Ni

So=No

� �

where Si/Ni is the signal-to-thermal-noise ratio at the input of the amplifier. The

noise figure is a measure of how much noise the amplifier adds to the signal over the

thermal noise present at the input. The lower the noise figure, the better the amplifier.

A perfect amplifier has a noise figure of 0 dB. In this case, the NF can be calculated

Figure 15.8 Preamplifer

SNR as function of

antenna resistance: B,

AD8608; O, LMC6084.
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using the equation

NF ffi 10 log10
V2
NBW

4kTRABW

� �

The noise figure of each amplifier considering input current noise and resistor network

noise (i.e., not the equation above) as a function of the input resistance is plotted in

Figure 15.9a. The noise figures for the AD8608 and LMC6084 are decreasing functions

of the input resistance. There are two main contributors to noise for these two amplifiers:

VN and the Johnson noise of the antenna. As the resistance of the antenna increases, so

does the Johnson noise voltage, which eventually dominates the noise at the output of

the op amp. This means that the op amp does not add much significant power to the

noise signal, resulting in a near 0-dB noise figure at 10 MV. Conversely, at

RA ¼ 100 kV, the Johnson noise voltage of the antenna is reduced by a factor of 10,

and the amplifier input voltage noise dominates.

It is now appropriate to determine the necessary amount of preamplifier gain.

Following the law of superposition, the system noise figure can be calculated by

summing the noise sources at the output of the acquisition system and comparing it to

the component at the output due to thermal noise at the antenna. The system output

noise voltage VNS can be calculated using the equation

VNS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ve0A2A1ð Þ2 þ Ve1A2ð Þ2þV2
e2

q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

A2
1A

2
24kTRABWþ A2

1A
2
2V

2
NBW þ V2

e2

q

where

Ve0 ¼ antenna input thermal noise voltage

Ve1 ¼ equivalent output noise of preamplifier

Figure 15.9 (a) Preamplifier noise figure

as function of antenna resistance and (b)

system noise figure as a function of pre-

amp gain (RA ¼ 100 kV): B, AD8608;

O, LMC6084.
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Ve2 ¼ equivalent output noise of digitizer

A1 ¼ preamplifier gain

A2 ¼ digitizer gain ¼ 1

We have already calculated Ve2, the equivalent output noise of the digitizer. This is

10.2 mV. Since the output of the digitizer in the software is equal to the measured

input, the gain of the digitizer, A2, is 1. The system noise figure can be calculated using

the formula

NF ¼ 10 log10
V2
NS

A2
1A

2
24kTRABW

� �

¼ 10 log10 1þ 2:41þ 80:0

A1

� �2
" #

where the worst-case antenna resistance value RA ¼ 100 kV has been selected. The first of

the three terms is the thermal noise; the second is the added preamplifier noise, which has

been minimized through selection of the amplifier; and the third contribution to the noise

figure is the digitizer noise. To approach a perfect amplifier, effort must be made to

minimize the second two terms. The second term is minimized by selecting the appropriate

preamplifier part. The third term is minimized by selecting the gain. Intuitively, A1 needs

to be increased until the noise due to the digitizer becomes insignificant compared to

preamplifier and thermal noise.

When the gain is adjusted by varying Ri, the NF varies as in Figure 15.9b. It can be

seen that the noise figure asymptotically approaches its minimum value as the gain is

increased. But unfortunately, the DC voltage offset at the input can be expected to be

up to 100 mV. The better device, the AD8608, can only operate at up to +3 V. So the

maximum gain possible is approximately 20 V/V. Without the ability to use a high-pass

filter (HPF) in this configuration with a reasonable capacitance value, the addition of a

second amplification stage is needed. So the first-stage amplifier design is finalized with

a gain of 21.

To squeeze out another 7 dB from the system, another gain stage is needed. But to

eliminate the large DC offset, it is necessary to use a HPF. A 0.1-Hz first-order HPF will

remove the DC offset and has a manageable settling time (t ¼ 1.6 s) but distorts frequen-

cies of interest in both magnitude and phase from 0.1 to �1 Hz. Even though component

tolerances for a HPF are on the order of +10%, it is possible to remove most of the

distortion in a software-implemented compensation filter [finite impulse response (FIR)

described below]. The SNR measurements are subject to variation. Thus, a safe margin

should be created in case the digitizer noise is higher or the preamplifier noise is lower

than expected. Also, digitizer flicker noise is higher at lower frequencies, but the signal

is attenuated more by the HPF. Using a gain of 11 V/V in the second stage results in

an overall gain of 231 V/V and a maximum peak-to-peak signal range of 2.31 V,

which is just outside the 2-V range of the digitizer. A HPF with a corner frequency of

0.1 Hz and a LPF of 20 Hz is used to help reject 60 Hz as well as an antialiasing filter

that removes high-frequency preamplifier noise and other high-frequency interference

that could alias into the 0.1–10-Hz band. To deal with all types of interference sources,

it is desirable to attenuate as much as possible signal frequencies above fs/2, where fs is

the sampling frequency. For instance, in our laboratory, a large (�10-mV) troublesome,

wide-bandwidth 50-kHz interference signal is present that must be highly attenuated to

avoid being aliased into the 0.1–10-Hz band when sampled at 12,500 samples/s. To
preserve simplicity, we use a first-order filter (Fig. 15.10).
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The general-purpose junction fielf-effect transister (JFET) quad op amp, the LF147,

is used for the second stage. Using the worst-case antenna resistance RA ¼ 100 kV, the

equations for the two-stage system output noise and noise figure are as follows:

VNS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ve0A3A2A1ð Þ2 þ Ve1A3A2ð Þ2þ Ve2A3ð Þ2 þV2
e3

q

¼ 55:3mV

NF ¼ 10 log10 1þ Ve1

Ve0A1

� �2

þ Ve2

Ve0A1A2

� �2

þ Ve3

Ve0A3A2A1

� �2
" #

¼ 10 log10 1þ 2:41þ 0:018þ 0:121ð Þ ¼ 5:50 dB

Variable Ve0 A1 Ve1 A2 Ve2 A3 Ve3

Equation

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kTRABW1

q

A1VNBW1 A2VNBW2

Value 0.127 mV 21 4.14 mV 11 3.9 mV 1 10.2 mV

There are four terms involved in the above equations: antenna thermal noise, amplifier 1,

amplifier 2, and the digitizer. It can be seen that most of the noise is due to the thermal

noise and the stage 1 amplifier. For higher values of RA, the noise performance of stage

1 will increase substantially.

Care is also taken to isolate the preamplifier from the power supply. Much of the

power supply noise is removed by a voltage regulator and the PSRR of the amplifier.

Fortunately, power supply ripple is �60 Hz and will be entirely removed by digital

filtering after acquisition. The final EAG amplifier has the block diagram shown in

Figure 15.11. The hardware design is complete; however, some signal processing is

performed in the software. A block diagram of the signal chain connected to the EAG

amplifier output is shown in Figure 15.12.

Figure 15.10 Second-stage amplifier

schematic; first-order bandpass filter with

gain.
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Because we have more than adequate processing power in the average PC, a very

sharp infinite-impulse-response (IIR) Butterworth LPF is employed (characteristics

shown in Fig. 15.13). This filter will reduce any 60-Hz signal to well below the

in-band amplifier noise level. After decimation, a FIR compensation filter removes dis-

tortion introduced by the 0.1-Hz HPF and the 20-Hz LPF in the second-stage amplifier.

Nonuniform phase delay in the FIR filter is also compensated for. Compensation is

applied from 0.1 to 30 Hz. It is after the compensation filter that the data are considered

properly acquired and are recorded to disk for future review. The final design, after

assembly on a printed circuit board, is shown in Figure 15.14. The circuit is contained

in a slim aluminum case, and four antennae make electrical contact with the four ampli-

fier input electrodes and the common ground electrode via conductive gel (as used with

clinical electrocardiogram electrodes). The amplifier is connected via a seven-conductor

cable (Vþ, V2, ground, and four single-ended data channels) to the data acquisition card

in a laptop computer for digital signal processing (Fig. 15.13) and execution of the algor-

ithm which discriminates between odors based on the four-channel EAG data, as

described in the following section.

Figure 15.11 EAG amplifier block

diagram: RA, source impedance of

antenna; HPF, high-pass filter; LPF,

low-pass filter; fc, cutoff frequency;

G, gain.

Figure 15.12 Data acquisition and processing system block diagram: FIR, finite-impulse-response

filter.
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Figure 15.13 A 25-Hz Butterworth LPF, 20th-order frequency response.

2
5
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15.8 SIGNAL PROCESSING OF MULTICHANNEL EAG:
AUTOMATED ODOR DISCRIMINATION

After the data are acquired, they are further processed to discriminate between odors. This

is accomplished by identifying and measuring features of each response (depolarization)

and then applying a relatively common pattern recognition technique. It should be noted

that several strategies could be employed to discriminate odors based on EAG data,

and the methods described below are only one solution. Other approaches are being

investigated in our laboratory in an effort to maximize robustness, speed, and ease of

implementation.

The objective of the signal processing level of the system is to identify EAG

depolarizations, measure their amplitude, and group time-correlated depolarizations

recorded from the four antennae. The time-correlated depolarizations correspond to a

single odor strand passing the array of antennae. The correlated groupings of depolariz-

ations are termed events. In order to associate the responses of the antennae with a particu-

lar odor, the system must first be trained. Training is accomplished by collecting data

while subjecting the antennae to various known odor sources. After training has been com-

pleted, a classifier uses the training data to identify the odor that gave rise to the recorded

event. The classification is performed on-line within 1 s after the data have been acquired.

The 0.3–8-Hz filter is noncausal and has approximately the frequency response

depicted in Figure 15.15. The filter was constructed empirically and assists in peak-to-trough

Figure 15.14 Final circuit design executed on custom printed circuit board using surface-mount

components to minimize outside dimensions of entire package. The top of the case is removed;

shown next to a U.S. dime for size comparison. When assembled, the case is less than 5 mm thick.

Figure 15.15 The 0.3–8-Hz bandpass

filter frequency response.
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detection by creating troughs that precede the peaks (purposeful distortion of the signal) and

by smoothing the waveform. Most bandpass functions would accomplish these tasks.

A peak detection algorithm finds maxima and minima of polynomials fit to the data;

the result is identification of the locations and values of the depolarizations. An example

of this step is shown in Figure 15.16. The data are greatly reduced as only the

peak-to-nearest-preceding-trough amplitude is retained, along with the time of the peak.

These data are then compared to a threshold. Peak–trough events with an amplitude

larger than a user-adjustable threshold are kept, while those smaller are considered to

be unreliable and ignored.

Recall that events are comprised of the responses of the four antennae to a single

strand of odor, which passes transiently across the array. Because the antennae cannot

occupy the same point in space, the time of arrival of the odor strand and therefore the

time of the four EAG response peaks are not coincident but depend on the air speed

and the spacing of the antennae relative to the wind direction (and possibly, to a lesser

degree, on species). Event identification is accomplished by associating peak–trough

events that are close in time. The user may adjust this correlation time. The largest

depolarization within a presumed event is then evaluated by another threshold to retain

only events containing significant energy on at least one channel. Figure 15.17 depicts

the result of evaluating the four EAG signals for “near-simultaneous” EAG responses

which would comprise an event. Only the trough-to-peak amplitudes for the four channels

are plotted (filled symbols), along with markers to denote the time of detected events (open

circles). Note that in this example the event time window is 16 ms, and the event markers

are plotted 16 ms following the last depolarization which is a component of each detected

event. That is, depolarizations recorded more than 16 ms apart would not be considered to

arise from the same odor strand. The choice of time window is influenced by wind speed

and the distance between the most upwind and downwind antennae in the array.

Classification techniques utilize “features” and “classes,” where it is hoped to clas-

sify an event based on its features. In this application, the features used to describe the odor

are the depolarization (peak-to-trough) amplitudes of the four preconditioned EAG

signals. Thus, each event is described by four features. Each feature can be considered

one dimension in a multidimensional feature space. Odors that can be discriminated

have high probability density in different regions of the feature space. Bayes’s theorem

can be used for classification if the probability distributions of each class are known.

Ideally, during training, a four-dimensional histogram could be produced. Unfortunately,

Figure 15.16 Segment from typical one-channel EAG recording. Light trace is the raw signal,

dark trace is after filtering. Filled circles indicate times and trough-to-peak magnitudes of

responses which were above the user-defined threshold (100 mV in this case).
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the number of data points required to create an accurate four-dimensional histogram (or up

to 16 dimensions) is prohibitive. Thus, alternate classification techniques are available.

One such technique, known as the “k-nearest-neighbor” technique, was employed here.

The measured features of each event are plotted in four-dimensional space, where

each dimension represents one channel (i.e., antenna). The training data are collected

first, which involves exposing the sensor to known odors, sequentially, until a requisite

number of training events have been collected. In the example presented here, 100 training

events were recorded for each odor, which took 1–2 min per odor; any number of odors

can be contained in the training set.

The classification technique uses the weighting function Xd1-d10 ¼ 1/(dþ 20 mV),

where d is the “city block” distance of the point to be classified to training data points

in the four-dimensional feature space. The city block distance between two points is the

sum of the absolute value of the difference between every dimension. For instance, in

just two dimensions, d ¼ jx22 x1j þ jy22 y1j, which is the distance you would have to

travel in most places in Chicago to get from p1 to p2. Ten values of X are calculated for

each odor in the training data. These 10 values are summed for each training odor, and

the unknown point is classified as being the training odor associated with the maximum

sum. Presently, the classifier assumes equal prior probabilities, and the training data are

not normalized. Also, the coefficient in the weighting function is chosen manually. Auto-

mating these aspects of the algorithm is a future goal.

The results of a simple classification experiment are shown in Figure 15.18. Here,

the system was trained with three odors. The odor stream was created by placing a drop

of one of three volatile liquids on each of three pieces of filter paper that were placed,

in turn, about 5 ft upwind in an indoor wind tunnel, giving rise to odor A, odor B, and

odor AB. Exhaust from the wind tunnel was vented to the outside, preventing an odor

from recirculating in the air stream. Due to turbulent flow, at times the antennae are stimu-

lated by the introduced odor strands, while at others, the array is detecting only com-

ponents of the room air. As a result, the training data are not pure and represent

mixtures of room air and the intended odorant. This presents a problem, because an

Figure 15.17 Trough-to-peak values (filled symbols) and event time markers (open circles)

obtained with a 16-ms correlation time. Events markers are located 16 ms after the last

trough-to-peak value contained in that event.
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unknown portion of the events in the training set contain events due to room air only. The

classification scheme described here is a forced-choice algorithm, and with three training

sets, any event will be classified as one of those three odors, even if the stimulus is actually

a component of the background room air. By adding a fourth training set comprised of

responses to room air (RA) only, it is more probable that RA will be correctly classified.

The results of Figure 15.17 are typical when this technique is applied. It can be seen that

odor A is correctly classified 95% of the time, odor B is correctly classified 83% of the

time, and odor AB is correctly classified 64% of the time. Odor AB was a mixture of

odor A and odor B, and while the pure mixture should give rise to a novel EAG response,

the presumed classification mistakes occurring when odor AB was introduced were

components odor A or odor B, as opposed to RA.

It is important to remember that each classification event takes less than 1 s. Unfor-

tunately, even if the odors are highly distinguishable from RA, it is still possible for RA to

be incorrectly classified as one of the training odors. One way to address this problem is to

remove the clean-air events from the known odor training sets by reclassifying each train-

ing event as either clean air or the intended odor and then using these “verified” training

data to classify unknown events. This represents just one possible refinement to this inter-

esting pattern recognition problem.

15.9 FUTURE TRENDS

We have described the advantages, applications, technology, and methodology for

incorporating a living olfactory organ into a hybrid-device biosensor. Fast, sensitive,

and discriminating are all words that can be used to describe this sensor, but there is

much yet to be done. Work is ongoing to refine the algorithm used to classify odors in

order to increase accuracy. This includes the evaluation of features of the EAG signal

other than peak amplitude and more robust pattern recognition strategies. Automating

selection of thresholds and filter parameters and providing statistics describing the

Figure 15.18 Classification results when system was trained on three odors (A, B, and AB) as

well as ambient room air that carries odors in wind tunnel (RA). The four-antenna array was then

exposed to each of the four conditions until approximately 100 events had been detected for

each condition. Every event was classified as A, B, AB, or RA.
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confidence of a given classification are also being pursued. One fundamental challenge is

the absence of a “gold standard” for odor strand composition under most field and labora-

tory conditions; that is, it is very difficult to know what the true odor is in a packet of air

that elicits a response from the four-channel EAG biosensor. One method employed by

Park et al. [22] was to bifurcate the air stream, passing half to an antenna and the other

half to the flame ionization detector (FID) of a gas chromatograph. The arrival of a

packet of air to each sensor (antenna and FID) was time locked, allowing unambiguous

identification of the odor eliciting each antenna response. However, this arrangement is

cumbersome and not easily translated to other settings.

Another aspect under development is the inclusion of wind direction and wind speed

sensors. For an array of static sensors, for example, spaced 10 m apart along the edge of a

field, wind information and triangulation can be used to locate the distant source of an

odor. Incorporated into a single sensor, wind information could be used to guide a

robotic mobile autonomous odor seeker (MAOS) in situations where approaching the

odor source would present a high risk to people or trained dogs, for example, locating

land mines or toxic chemical spills. Using Global Positioning System (GPS) technology,

telemetry, and cameras, such a roving sensor could be deployed in military reconnaissance

and search-and-rescue missions or to gather information near natural disaster areas. The

extreme sensitivity could provide unexpected diagnostic benefits. The applications of

olfactory biosensors are potentially quite broad, and it will likely be some time before

artificial olfactory sensors can compare in performance. Perhaps the greatest limitation

on this approach is the short-lived nature of the antennae (less than 1 h when removed

from the insect); increasing the useful life of the hybrid sensor is also being pursued.

Potential strategies include leaving the antenna attached to the insect, which increases

the lifespan to several days, or using a supported olfactory receptor neuron culture

system. The bioengineering challenges of this last approach are significant.
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16.1 INTRODUCTION

Most of the sensory information we perceive comes from our eyes. We rely on this sense to

perform almost every daily task, such as driving, walking, grasping objects, and so on.

Blindness deprives millions of individuals of receiving an enormous amount of precious

information on color, distances, shapes, motion, textures, and so on. A number of research

groups around the world aim to reach a remedy and restore vision to blind people. The

developments of intracortical arrays of electrodes pave the way for direct electrical stimu-

lation of the visual areas of the brain. This chapter presents an approach to feed these

electrodes with visual information and to automatically translate image sequences into

the neural language of the primary visual cortex.

16.2 HUMAN VISUAL PATHWAY AND BLINDNESS

The human visual system is a complex structure composed of several processing stages

that lead from the reception of light at the eye to the production of visual sensations

at the brain. This chain of processing steps is known as the “visual pathway.” This path

includes the eyeball with the retina, the optic nerve, the lateral geniculate nucleus, and

the cortical primary and higher visual areas in the brain.

The human eye acts as a camera, regulating the amount of light and focusing to get a

sharp projection of the image on the retina. The retina transduces light into electrochemi-

cal neural signals but also performs additional processing and information compression of

the images before sending them to the visual centers of the brain. The retina, as described

first by Ramón y Cajal, is organized into layers of specialized neurons.

The first layer corresponds to the photoreceptors (rods and cones), responsible for

translating luminance and color into electrochemical potentials. Several layers of retinal

horizontal, bipolar and ganglion cells, among others, collect the output of photoreceptors.

The output of neighboring groups of photoreceptors, called the receptive field, is
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connected to a ganglion cell. The number of photoreceptors converging into a ganglion

cell varies from just one at the fovea to a large number at the periphery of the

retina. This leads to high resolution of the perceived image at its center. Most of these

cells respond to the contrast of activity between the center and the surround of its

receptive field.

So the retina not only functions in the simple transduction from light and color into

neural signals but also performs different spatiotemporal locally computed functions and

information compression before sending the signals to the brain through the optic nerve.

This processing includes color contrast enhancing, motion detection, and edge highlight-

ing. The retina cells convey the signals obtained at about 125 million photoreceptors into

about one million fibers of the optic nerve.

Finally, the nerve converges with the brain at the lateral geniculate nucleus and then

reaches the primary visual area located at the occipital region of the brain cortex. This is

the starting point for further high-level processing in other areas, such as the recognition of

shapes, faces, evaluation of motion, and so on.

A detailed explanation of the organization of the visual pathways can be found, for

example, in [1, 2].

There are a huge number of causes of dysfunction in sight, provoked by illnesses

or by accidents. The number of totally blind individuals rises to about 45 million

people worldwide. The amount grows to 180 million persons with some other vision

impairments [3].

16.3 APPROACHES FOR SIGHT RESTORATION:
CURRENT RESEARCH ON VISUAL PROSTHESES

At the writing of this chapter, a number of research groups worldwide are facing the

problem of blindness. The variety of proposed solutions corresponds with the multiplicity

of causes of this illness.

Not every proposed solution is suitable for each patient. Blindness is the result of

damage or malfunction of at least one of the stages comprised by the visual pathway,

ranging from the cornea to the visual areas of the occipital lobe of the brain.

Some of these prosthetic approaches, as mentioned in [4], are the following:

. Retinal Implants: Inserting a device over (epiretinal) or under (subretinal) the retina

that would provide electrical stimulation of the retina cells. These prostheses require

a good functioning of, at least, the optic nerve.

. Optic Nerve Implants: Again requires functional optic nerve and is still in the early

developmental stage. Difficult surgical access and very limited image resolution

with the available electrodes are two important drawbacks of this approach.

. Cortical Implants: Direct electrical stimulation of the visual areas of the brain, by

external planar electrodes or by penetrating intracortical electrodes. This is the

only solution for patients with unrecoverable retinas or optic nerves.

Some other attempts are biological studies on gene therapy [4] or translation of visual

information into some other good working sense, such as the “Seeing with Sound”

project [5].

The decision on which approach is the most adequate is controversial, especially due

to the still primitive knowledge about the coding of information by the brain and to the

difficulties of ensuring long-term functioning with useful image resolution.
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16.4 ELECTRICAL STIMULATION OF BRAIN

With some precedents, Luigi Galvani carried out the first neural electrical stimulation

experiment in 1781. He attached the leg of a frog to an electrical machine, and the injec-

tion of electrical current caused violent muscular contractions. After a number of other

discoveries on bioelectromagnetism, some researchers, such as Hubel [1] and Brindley

and Lewin [6], contributed to the development of electrical stimulation and registering

of cortical visual neurons, helping to extend the application of electricity not only to

motor tissues but also to sensory perception.

The success of artificial cochleas encouraged research groups worldwide to use

these devices for visual prostheses, although the amount of information handled by the

eyes is far more complex and extensive. This way, the first experiments on direct electrical

stimulation of the visual cortex led to the perception of phosphenes by blind individuals.

William Dobelle [7] created a prosthesis that stimulates the cortex with a set of planar,

wired surface electrodes. This is the only known experience with long-term implantation

of cortical prostheses in humans. Although it produced some rudimentary vision, it pre-

sented important disadvantages: low spatial resolution between phosphenes and the

need for high currents with undesirable effects.

The Utah Electrode Array, another prosthetic device developed by the research team

led by Richard Normann [4], is able to simultaneously register or stimulate 100 electrodes

in a small surface. In this case, the electrodes are penetrating the cortex, so less current is

needed to elicit phosphene perception, making this option safer. However, this device has

not been tested in chronic human implants.

In [4], Norman exposes as disadvantages of the cortical approach the absence of

retinal processing, a poor visuotopic organization, and problems in representing multiple

features in the primary visual cortex (color, ocular dominance, motion, lines).

In this chapter, we describe an architecture for a system that complements the cor-

tical approach, aiming to overcome some of the above-mentioned problems. Such a

system makes the cortical approach one of the most attractive for sight restoration.

The Utah Electrode Array is showing to be a promising solution for delivering elec-

trical signals to the cortex of the brain, but a higher level of abstraction is also needed to

decide how, when, and where these signals should be delivered to the proper electrode.

This way, the approach is extended beyond just a problem of biocompatible interfaces

between electrical devices and the cerebral tissue, extending the problem to an information

and coding level. This device is intended to provide the translation between the visual

expression of the world in terms of color and brightness and the neural language of

spikes for complex stimuli, beyond the phosphene.

16.5 COMPUTATIONAL MODEL OF RETINA AND
SYSTEM REQUIREMENTS

From a computational point of view, the retina is regarded in our model as a set of

parametric filters, each one highlighting a specific feature of the image, such as color

contrast, illumination intensity, and so on. This set of filters corresponds to the represen-

tation of different functionalities of the cell layers of the retina, as described in [8, 9]

(see Fig. 16.1).

Most of the filters in our retina model operate with different color channels as its

input. The opponent-color theory is based on the investigations by Jameson and
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Hurvich (10). They proposed a model in which the opponent mechanism receives input

from a linear combination of the three classes of cone receptor, channels L (red),

M (green), and S (blue) in our model. This model combination can be mathematically

expressed as a set of difference-of-Gaussian (DoG) filters. The most important filters

are the red–green and yellow–blue processes [11].

The output resulting from the use of every filter on the original image is then

combined into a single “saliency map” or perceptual image with enhanced features.

This way, no explicit color channels are maintained, but their relative contribution is

taken into account. The contribution of every filter to the weighted sum must also be

configurable. With the resulting camera resolution image, an assignment of groups of

pixels to its corresponding electrode must be performed, achieving what we call an

activity matrix. The group of pixels assigned to one electrode resembles the concept

of the receptive field.

This first representation of the activity of the retina is encoded in amplitude.

However, the neural tissue of the visual cortex must receive signals in the form of

trains of spikes whose frequency should vary according to the intensity of the stimulus.

So another stage for intensity to frequency is needed. This stage is called neuromorphic

coding. This last step must include a possible remapping of the electrodes to achieve a

good visuotopic organization.

Finally, the signals for every electrode are sent to the microelectrode array through a

radio-frequency (RF) link.

Figure 16.1 Schematic organization of retina-like processing model.
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16.6 ARCHITECTURE

16.6.1 Sensor and Photoreceptors

When our choice is the cortical approach, which is suitable for patients with damage to the

eye, the retina or even the optic nerve, a device must perform the functions of that segment

of the visual pathway.

The entry point is a light sensor that will translate light level and color intensities into

electronic format to allow digital automated processing. Any charge-coupled devide (CCD)

or complementary metal–oxide–semiconductor (CMOS) sensor with its corresponding

optics would be fine for the case. However, the system must be able to face scenes with

high contrast and lighting levels. In these cases, the linear response of these devices leads

to saturation and the consequent loss of information at the first stage of the prosthesis. A

better result is obtained when employing logarithmic response cameras, which are able to

register very dark and bright objects in the same frame, saving that information for later pro-

cessing, as the human eye does. So the first point is that a system conceived to send visual

information to the brain cortex should start by using a logarithmic sensor.

The output of these sensors offers three color planes for every image frame. These

channels would correspond to every kind of cone, sensible to long, medium, and short

wavelengths, here referred to as red, green, and blue channels. The intensity channel can

be computed as the normalized sum of every color channel for every pixel of the image.

Some studies have been carried out to determine the minimum resolution in terms of

pixels (or phosphenes or electrode tips in the array) in order to have a functional prosthesis

which would allow us to navigate or read big characters [12]. If we want to make good use

of the limited number of electrodes in current arrays, it is not adequate to dedicate specific

electrodes for different channels, but we must put as much useful information as possible

in each electrode.

16.6.2 Filtering and Receptive Fields

The second stage is the set of color-opponent filters resembling the bipolar cell receptive

fields, along with a temporal filter with a contrast gain control mechanism that highlights

motion information. Taking into account the available data on the different channels at a

human retina [11, 13], we can consider an adequate basic model of the retina consisting of

the following filters:

. ML versus S: Yellow versus blue color channels, computed by using a DoG

. LS versus M: Red versus green, again with a DoG

. LMS: Achromatic luminance filter, computed by a Laplacian

. Temporal bandpass filter

To compute the color-opponent channels, a Gaussian weighting function or “mask” is

employed. The mask is centered on the pixel that is currently under processing, and it

covers the pixels included in its neighborhood, for a given radius. As a temporal filter,

we can consider the one based on the retina ganglion cell model presented in [14], which

implements a nonlinear temporal contrast gain control scheme (e.g., the one proposed in

[15]). This model is indeed a complete approximation of the spatiotemporal receptive

field features of biological retinal ganglion cells, as described below. Thus it can be used

as the only visual processing module in the future visual prosthesis if we want to better

approximate the function of a biological retina. However, as shown in Figure 16.1, we
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combine the output of the temporal filter with those produced by the spatial-only ones. In

this way, temporal changes as those produced bymotion onsets are highlighted in the result-

ing feature map (the “perceptual image”), but we avoid having the output vanish for static

visual stimulus as it occurs in an actual retina.

According to the description in [15], the temporal filtering module computes the

temporal-enhanced (TE) images as the product, for each point r ¼ (x, y) in the image, of

a modulation factor g(r, t) by the convolution of the stimulus s and a kernel function K(r, t):

TE(r, t) ¼ g(r, t)½K(r, t) � s(r, t � d(t))� (16:1)

where d(t) . 0 is the response latency.

The model assumes space–time separability in such a way that the kernel function

K(r, t) can be decomposed into different spatial (KS) and temporal (Kt) functions as

follows [14, 15]:

K(r, t) ¼ KS(r)Kt(t) (16:2)

KS(r) ¼
gþ

2ps2
þ

e�r2=(2s2
þ) �

g�

2ps2
�e

�r2=(2s2
�)

(16:3)

Kt(t) ¼ d(t)� aH(t)e�at (16:4)

The spatial kernel is modeled as a DoG, with gþ and g2 determining the relative weights

of center and surround, respectively; sþ and bsþ (with b . 1) are their diameters. In the

temporal function, Eq. (16.4), H denotes the Heaviside step function and a21 is the decay

time constant of the response.

The modulation factor in Eq. (16.1) implements a contrast gain control feedback

loop, since it is obtained as a nonlinear function of a low-pass temporal filtered version

of TE [14, 15].

Once all the filters are applied and combined into a single perceptual image, the

system proceeds to a reduction in spatial resolution, grouping the values of neighboring

pixels to obtain the activity level at each electrode. The size of the receptive field

varies depending on the location at the retina. Usually, the value for the electrode is the

average of the pixels on its receptive field.

16.6.3 Neural Pulse Coding and Visuotopic Remapping

The activity matrix representing remarkable perceptual features of the input image is

encoded in amplitude. Before sending this information to the cortex, a translation into

the neural language expected by the brain is required.

Neurons represent activity values in the form of spike trains, in which the amount of

spikes and its frequency encode the level of activity incoming to the neuron. A known

model of this cell is the leaky integrate-and-fire spiking neuron. Further references on

these models can be found in [16].

In the digital implementation we have proposed for this model [8], the activity level

incoming to the neuron is accumulated until a threshold is reached. In that moment, a spike

is issued and the neuron potential returns to a resting value. Additionally, the accumulated

potential drops slowly due to a leakage, so that in the absence of inputs the activity of the

neuron decays. For simplicity in digital implementation, we have adopted a linear decay

for the leakage term.

The expected response is shown in Figure 16.2, in which high-sustained stimuli give

out a longer spike train and low stimuli may not get the neuron to reach its threshold and no

spike is issued to the corresponding electrode.
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Each time a spike is produced, the corresponding electrode address is sent over to the

array. This communication scheme is known as address-event representation (AER)

[17, 18]. In our case, no arbitration mechanism is employed, as the addresses are sent seri-

ally, multiplexed in time. This representation has been tested on bioinspired very large

scale integrated (VLSI) vision systems, such as those described in [19, 20].

This working model for one electrode can be extended to any number of electrodes,

either serially (computing the electrodes one by one) or in parallel. Either method is right

if it is able to deliver signals with a temporal resolution of 1 ms or better, as this time is

lower than the time a neuron needs to be able to fire again after a spike.

In any case, the correspondence between points stimulated at the retina and the

neurons that respond to it on the cortex does not follow a visuotopic organization. It

was believed that the projection of an image on the retina would elicit electrical activity

on the brain with a similar shape. At a macroscopical level, close points stimulated in the

retina give activity in close points in the brain cortex. But when we deal with implants such

as the Utah Electrode Array, in which the distance between electrodes corresponds to the

width of cortical columns, this mapping loses its organization, and a strong remapping is

required [21], mainly due to the irregularities of the surface of the cortex.

This remapping can be achieved with a look-up table of the correspondence between

the stimulated point and the perceived position in the prosthesis. The contents of this table

must be determined for every implanted patient on an acute clinical process in which indi-

vidual electrodes would be activated in pairs and the patient describes the relative position

of the phosphenes. Then, the table stores the electrode that would give the right spatial

Figure 16.2 Neuromorphic pulse coding. Schematic model of integrate-and-fire neuron (upper);

simulation example for different stimuli.
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position with respect to the reference electrode, thus providing a translation from retina

pulse addresses to electrode addresses.

16.6.4 Wireless Link

The train of events is sent to the electrode matrix implanted on the cerebral cortex.

Commonly, percutaneous connectors have been employed to gain electrical access to

the prosthesis. However, this connection is not desirable for chronic implants due to the

risks of infections and a possible psychological rejection.

Ideally, the bond to send data and energy to the prosthesis should be made through a

wireless RF link. This link would send energy through induction coils and the data follow-

ing a protocol able to indicate the electrode to which an event must be sent and some other

information related to the waveform. This information should be transmitted in real time

so that even serial scanning of the electrodes would result in simultaneous perception in

terms of biological response times.

This RF link would be useful not only for stimulation but also for registering the

activity on the visual cortex and would relate that activity recordings to controlled

stimuli, which will help in understanding the encoding of complex images on the brain.

Efforts on the development of RF links for electrode arrays are being carried out by

several researchers [22–24].

16.6.5 Electrode Stimulation

The final interface with the cortical visual area of the brain is an array of penetrating

microelectrodes. Previous approaches, such as Dobelle’s prosthesis, used planar platinum

electrodes. However, it has been demonstrated that the current needed to elicit the percep-

tion of phosphenes through a single electrode is 10 times smaller when using penetrating

electrodes than with planar surface contacts. This fact reduces power consumption, heat

dissipation, and some undesirable effects of having relatively high currents injected on

the brain.

The Utah Electrode Array, developed by the research team of Richard Normann, is

one of the best options for a cortical implant. It is a silicon base with 100 penetrating

electrodes. A detailed description of the array has been made in [4].

These kinds of devices, in which a limited bandwidth channel must deliver

information to a large number of electrodes, require demultiplexation and a number of

digital-to-analog converters (DACs) to stimulate every point in time.

There are some other devices, such as the electrode arrays fabricated at Michigan

[22]. The number of electrodes in the array is only 64, but a wireless communication

system is integrated on it.

16.7 CORTIVIS PROJECT

The architecture described here is being applied to a prosthetic device under development

in a European project. This initiative, named CORTIVIS [25] (Cortical Visual Neuro-

prosthesis for the Blind, ref. QLK6-CT2001-00279), has as its main goal to produce a

wireless, portable device to stimulate the visual cortex by using an array of penetrating

implanted microelectrodes. Its main architecture, depicted in Figure 16.3, is conceptually

similar to those adopted by other initiatives [26, 27]. One of the advantages of the system
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being developed by the CORTIVIS consortium is that every stage of the prosthesis is

reconfigurable in every parameter. The goal of CORTIVIS is to obtain:

. A tunning workbench to adjust and refine retina models in acute and chronic

implants, for both stimulation and registering

. A wireless reconfigurable device with a configuration that can be altered even after

implantation, avoiding further surgery

. A higher computational layer able to automatically translate a continuous stream of

video into a set of spike events and electrode addresses in order to feed the wireless

implanted array of microelectrodes

. Additional knowledge on suitability of patients, implant adjustment and training

procedures, long-term chronic implant studies, and so on

To ease and accelerate the development, we are progressively moving from a full

software implementation model to a fully hardware real-time portable chip. We are imple-

menting the retina model on field-programmable gate array (FPGA) circuits, which makes

the development of prototypes less expensive and faster, allowing reprogramming of the

circuit. The FPGA circuits allow the implementation and testing of complex digital

designs without the fabrication process and costs of other technologies such as a

custom ASIC chip (application-specific integrated circuit).

At the current development stage, the software model is able to accept as input either

continuous video streams from a web cam (optionally, these streams can be saved), video

files, or static image files. The gain of each color plane, corresponding to the photo-

receptor, can be adjusted.

This software allows building and testing very different retina models, as the user is

able to add new filters and vary multiple parameters.

The filters (Gaussians and DoGs, Laplacian of Gaussians, and so on) can be defined

over the incoming color and intensity channels or even over the output of previously

designed filters. This way, a chain of filters can be specified.

The system also allows any mathematical expression taking already defined filters as

operands. This high degree of flexibility makes this platform a useful tool to test and

compare retina models.

With respect to the definition of receptive fields, the user can select fixed and

variable size and shape to determine which neighboring pixels contribute to a specific

electrode, as can be seen in Figure 16.4. The options offered are:

. Circular (fixed or variable radius)

. Elliptical

. Square

. Rectangular

Figure 16.3 Main blocks of CORTIVIS Project prosthesis, including a camera, a retina-like fil-

tering and encoding block, a radio frequency transmitter (tx), the corresponding receiver (rx) and

D/A converter, and the microelectric array to interface the neural tissue of the visual cortex.
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This tool is useful to model a variable spatial resolution, as it occurs in the human retina, in

which the fovea has high resolution in contrast with the periphery.

The last stage in the model translates the array of activity values produced by pre-

vious stages into a stream of pulses. These pulses represent spike events to be applied to

the microelectrode array for stimulation. The software is designed to work with different

Figure 16.4 CORTIVIS tool to select sizes and shapes of ganglion receptive fields.

Figure 16.5 Example snapshot of retinal processing on live video stream. Original frame (1),

retina-like filtering (2), mapping to receptive field of every electrode (3), activity matrix (4), and

spiking for each electrode (5).
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array dimensions. A leaky integrate-and-fire spiking neuron model has been implemented

to determine the production of events at the prosthesis. The user can select different values

for this model:

. Firing threshold

. Resting potential

. Leakage factor

The effects of changing these parameters over the firing of electrodes can be displayed in

real time even with live image capture, and a detailed register of the spiking is also avail-

able once the processing is over.

Thus, this software platform is a test bench for the refinement of retina models and a

prototype for later implementation on a single-chip portable device. Currently, the visuo-

topic remapping module is not included, as it is under development. Two examples show

the processing performed by the system in Figures 16.5 and 16.6.

16.8 FUTURE TRENDS

Cortical prostheses for the profoundly blind are in the early stage of development. Intense

research is been carried out to achieve interfaces with the brain that can be employed for

long-term stimulation. We know few cases of human implantation of such devices in

which some form of rudimentary vision is produced, but it has not been shown to be

fully functional and better than classical aids to the blind, such as canes or guide dogs.

Figure 16.6 Example spike event sequence generated from natural scene for 10 � 10

microelectrode array. First, a complex image is registered, then the camera’s objective is

covered, so there is no activity, and last, the sudden exposure to light tends to produce an initial

stimulus-locked synchronized response at most of the output channels.
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In the future the level of study should be raised not only to electrically interface with

the neural tissue but also to automatically feed this interfaces, going beyond the production

of single phosphenes for simple stimuli.

For the research groups working on this, the development of a full prosthetic device,

from a camera to the implanted stimulator, must be the objective. Ideally, this device will

be wireless and portable, have low power consumption, be reconfigurable without surgery,

and have high quantity (resolution) and quality (including color) of information.

Some other issues remain open for researchers, such as providing with stereovision

not only by duplicating the prosthesis but also by connecting the information flowing

through each one to obtain information on perspective and distances, including automatic

local gain control on camera sensors to allow the use of these devices indoors and out-

doors, out of controlled laboratory environments; automatically compensating the

motion of the eyeball to allow the patient to move it, by changing the camera orientation

through neural motor signals; enhancing the resolution achieved by electrode arrays [22];

studying the effects and solutions for long-term usage of electrical stimulators of the brain;

and developing faster and more comfortable procedures for the tunning and visuotopic

remapping of the prostheses.

This is an encouraging research field for neuroscientists, engineers, and computer

scientists in which significant advances still need to be made.
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CHA P T E R17

BIOMIMETIC INTEGRATION OF

NEURAL AND ACOUSTIC SIGNAL

PROCESSING
Rolf Müller and Herbert Peremans

17.1 INTRODUCTION

Despite an ever-increasing speed of technological achievements, biological systems still

outperform technical systems in many ways, but not in every respect. In fact, for many

isolated, well-defined tasks, man-made technology has already outperformed biological

systems. For example, manufacturing robots can replace and even outperform humans

in repetitive tasks comprising a fixed sequence of actions. Such robots cannot, however,

reproduce the versatility of human skill in performing tasks which require adopting a strat-

egy on the fly. Part of the explanation why biological systems have retained superiority in

these more involved tasks may lie in nature’s ability to create well-integrated systems

comprising many components, each of which contains evolutionarily embedded knowl-

edge about the particular tasks it performs and the control loops to which it belongs. In

order to be successful, neural engineering strategies should take this into account and

avoid the fallacy of thinking of nervous systems as isolated collections of neurons. In

doing so, it can readily make connections to trends in technology which shift intelligence

into peripheral parts. For instance, the interfaces through whichmany computer peripherals

are attached have been made progressively smarter, which makes accessing the peripherals

simpler (e.g., hard-drive interfaces, plug-and-play protocols). This chapter reviews the

design process for building a piece of biomimetic, intelligent periphery. The biological

system it seeks to reproduce—at a functional level—is the biosonar system found in

bats. Biosonar outperforms manmade sonar technology in its ability to support versatile,

fully autonomous navigation as well as a variety of other tasks in often demanding

natural environments as a sufficient far sense. In order to provide a robotic platform

capable of reproducing these skills, the biomimetic system couples sensing with actuation

and integrates peripheral with neural processing by feedback loops spanning all stages.

17.2 BIOMIMETIC SONAR HEADS: STATE OF THE ART

The biosonar system of bats uses intertwined acoustic and neural signal processing with

various feedback control loops spanning both domains to achieve an unparalleled perform-

ance. Although the ways in which the animals achieve this performance remain largely

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.

281



unknown, some basic system specifications have been determined and are given in

Table 17.1. The animals have high power ultrasonic emission systems combined with

very sensitive reception. The sites of emission (mouth or nostrils) and reception (ears)

are often surrounded with elaborate baffle shapes (auricles, “nose leafs” and “horse

shoes”). Many species of bats have, to a varying extent, control over both orientation

and shape of these structures. These shapes and behaviors are most likely serving sophis-

ticated, adaptive signal processing schemes which operate in the acoustic domain on the

outgoing and incoming wave fields. Similarly, numerous specializations exist in both the

peripheral [1] and the central stages of the auditory system [2].

Biosonar systems have long been recognized as exceptional examples of powerful

yet parsimonious natural perception/sensorimotor systems by engineers. Consequently,

there is some prior art in terms of robotic models, which is briefly reviewed here and

compared to the known specifications of biosonar systems in Table 17.1.

While each of the various systems which have been developed over the last 10 years

has been successful in reproducing some of the interesting aspects to biosonar function, so

far none of them has integrated all known functional features of a bat head. In terms of

size, most robotic sonar systems have been out of scale by a factor of at least 4–5

[3–5] or evenmore [6]. Being much larger than natural biosonar systems renders these

models incapable of duplicating the diffraction effects around the head which facilitate

sonar sensing in their biological counterparts. Those model systems which have been

approximately to scale [7] have achieved this at the expense of crucial functional features

such as ear mobility. In terms of transducers, all existing systems have been using

standard, commercially available technology [3–6], either narrow-band piezoelectric

TABLE 17.1 Specifications of a Current State-of-the-Art RoboticModels (S1 [8], S2 [5], S3 [9], S4 [16],
S5 [11], S4, and S5 are shown in Fig. 1.1), the CIRCE Prototype (Under Development) and The Bat
Sonar System

S1 S2 S3 S4 S5 CIRCE Bats

Scale1 �10 �1–2 �4 �4–5 �4–5 �1 1.0

N rot. DF for ears2 0 0 1 2 2 2 2

Variable chirp3 No No No Yes Yes Yes Yes

Pinnae No Yes4 No No No Yes Yes

Var. directivitywidth5 No No No No No Yes Yes

F-dep. directivity-axis6 No No No No No Yes Yes

Max. BW7 [kHz] 
10 
10 �100 �100 �100 160 160

SNR8 [dB] ? ? �30 �60 .60 �60 ?

Output SPL9 [dB] ? ? ? ? �110 �120 �130

Number of IHC10 1 Few 1 Software Software �1000 700–2000

Number of SGC11 0 Few 0 Software Software �10,000 13,000–55,000

1A natural bat head is assumed here to have a diameter of 4 cm.
2Number of rotational degrees of freedom.
3Bandwidth and instantaneous frequency as a function of time.
4Applies to one version of the system.
5Directivity pattern can be made wider or narrower.
6Central axis of the directivity pattern depends on frequency [26].
7Total non-zero frequency band (union of all species in case of bats).
8Signal-to-noise ratio as level difference between an echo from a plane in 1 m distance and the noise floor.
9Sound pressure level in 1 m distance straight ahead.
10Inner hair cells, see text (data from [25]).
11Spiral ganglion cells, see text (data from [25]).
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transducers [6, 7] or comparatively more wide-band capacitive transducers [3–5].

However, no transducer is known to be commercially available and hence none of these

systems is capable of covering the full band over which the biosonar chirps emitted by

different bat species extend (�20–200 kHz). Ear mobility with either one or two

rotational degrees of freedom has been realized in several systems [3–5] but is lacking

in others, where the transducers are statically mounted [6, 7]. The same is true for neuro-

mimetic signal representations, which have been used in [5, 7], but not in any of the other

systems. Even where present, the generated spike codes have not come close to being a

quantitatively correct reproduction of what propagates in the auditory nerve of bats.

Only one of the static systems is equipped with pinnae [7]. For a technical reproduction

of the mobile, non–rigidly deforming, beam-shaping antennae present in nature, no

prior art exists.

It is evident from the specifications summarized in Table 17.1 that there is a wide

gap between the current robotic models (Fig. 17.1) and natural sonar heads and that realiz-

ing a more realistic functional reproduction of the biological system requires several chal-

lenges to be addressed:

Biomimetic Antennae Shapes In bats, sonar emitters (mouth or nose) and receivers

(ears) are surrounded by often elaborate baffle shapes. These shapes are hypoth-

esized to serve as beam-forming aperture tapers. Both, the beam-forming mech-

anisms and the resulting beam properties need to be understood in order to be able

to mimic the acoustic signal processing that is performed by biosonar systems

before the signals are transformed into a neural representation.

Transducer Technology Bats are able to produce high-energy sonar pulses appar-

ently in a very efficient manner. This results in good signal-to-noise ratios even

for otherwise unfavorable target ranges and target strengths. On the receiver side,

bats can rely on the superb sensitivity of the mammalian hearing system. Coming

close to these specifications requires careful design of electromechanical

Figure 17.1 Examples of current state-of-the-art robotic models for biomimetic heads:

(a) system built by the Institute of Perception, Action, and Behaviour, University of

Edinburgh [4, 8] (system S4 in Table 17.1); (b) system built by the Biosonar Lab, University

of Tübingen [5] (system S5 in Table 17.1).
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transducers systems which uses an integrated approach for designing the transdu-

cers proper and matched driver electronics.

Actuation Many bat species possess several degrees of freedom in orienting their

outer ears (pinna) as well as controlling the shape of the baffle structures sur-

rounding the sites of sound emission. This enables them to perform adaptive

sensing in a configuration space which is made up not only by the position and

orientation of their sonar heads but also by the orientation and shape parameters

for the sensors.

Neuromorphic Signal Processing Ultrasonic signal processing poses a special chal-

lenge for neural systems because the high bandwidth of the signals has to be

adapted to the comparatively low rates at which neural signals (action potentials,

or “spikes”) can be generated. The principal mechanism to achieve this is a filter

bank representation, where each channel codes for the portion of the signal band-

width which falls into the passband of a bandpass filter, which is much narrower

than the entire signal bandwidth. However, the number of primary receptors

(inner hair cells) and nerve fibers making up the auditory nerve in bats (approxi-

mately 700–2200 and 15,000–55,000, respectively; see [9]) are still in reach of

what digital neuromimetic hardware can match quantitatively.

17.3 BIOMIMETIC ANTENNA SHAPES

The approximately 1000 species of bats [10] harbor a large variety of baffle shapes associ-

ated with ultrasonic emission and reception. For designing biomimetic aperture tapers it is

essential to understand what effects these shapes have on the system properties, in particu-

lar the directivity patterns and what the underlying mechanisms are. For these purposes,

geometric data on the biological shapes have been collected and used as a basis for

numerical simulations of the diffraction phenomena.

Samples of ears and other facial structures were obtained from bat carcasses belong-

ing to the following species: Eptesicus fuscus (big brown bat),Myotis nattereri (Natterer’s

bat), Nyctalus noctula (noctule bat), Plecotus auritus (brown long-eared bat), Pipistrellus

nathusii (Nathusius’ pipistrelle), Pipistrellus pipistrellus (pipistrelle), Rhinolophus ferru-

mequinum (greater horseshoe bat), Rhinolophus rouxi (Rufous horseshoe bat), and

Tadarida sp. (free-tailed bat). The material was either fresh or had been kept in a freezer

for various amounts of time. The samples were mounted in lifelike postures using

photographs of live animals and subjected to fanbeam scanning with X rays using a micro-

computer-tomography system (SkyScan 1072) equipped with a 1024 � 1024-pixel, 12-bit

charge-coupled device (CCD) chip. In the obtained shadow images the tissue–air

boundaries as well as inhomogeneities in the tissue are clearly visible (Fig. 17.2a).

Shadow images were obtained with an angular resolution of 0.98 over an arc span-

ning slightly more than 1808. Transverse cross sections were estimated using the Feldkamp

cone-beam reconstruction algorithm (implementation provided by Skyscan). Depending

on the magnification used, cross-sectional pixel size ranged between 10 and 19 mm.

Image postprocessing was performed using the Visualization Toolkit (VTK) [11]:

Images were segmented based on the gray-scale value with the threshold being manually

adjusted to the properties (brightness, signal-to-noise ratio) of the individual data sets.

Where necessary, manual image postprocessing was carried out to remove noise and recon-

struction artifacts. From the stacks of segmented cross sections (Fig. 17.2b) trigonal mesh
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representations of the ear surfaces were estimated using image blurring with a 2D Gaussian

filter mask and the marching cubes algorithm [12]. The meshes were decimated [13] and

smoothed with a windowed sinc function interpolation kernel [14]. Renderings of the

resulting ear meshes (Fig 17.3) show some typical features of bat ears, for instance, appen-

dages partially occluding the frontal access to the concha and washboard patterns on the

inner side of the pinna.

The acoustic wave diffraction phenomena caused by the pinna can be predicted

numerically using a finite-element simulation model. Because of numerical error consider-

ations, elements with aspect ratios close to 1 as well as equal sizes between elements are

desirable. Meshes with these properties can be generated directly froma stack of recon-

structed computed tomography (CT) cross sections, where the voxel centers define a rec-

tangular grid already. Elements for the air volume surrounding the pinna can therefore be

created by checking a simple rule for the voxels on the element corners falling inside or

outside the pinna. For example, a new air volume element is added if all eight corners are

outside the pinna, that is, the gray values of the respective pixels exceed a chosen

threshold. Smoothing with a low-pass convolution mask can be applied to the stack of

images prior to meshing in order to reduce the bias of such a conservative rule. This

meshing procedure generates an estimate of the surrounding air volume with staircase

boundaries (Figs. 17.4a,b).

If the element size is chosen not to exceed the resolution requirements of the simu-

lation (e.g., 10–20 elements per wavelength as a rule of thumb), the discontinuous nature

of the approximation should not affect the numerical results. Because of these resolution

requirements and the three-dimensional nature of the problem (the pinna are not sym-

metric), the number of elements increases rapidly with the space to be filled. For

example, for a frequency of 50 kHz with �6.8 mm wavelength, an element edge length

of �0.5 mm is appropriate. This corresponds to a density of 8000 elements/cm3, or

8 � 109 elements/m3. Therefore, the use of finite-element simulations is restricted to

the immediate vicinity of the pinna surface (Figs. 17.4c,d). The CFSþþ program, cur-

rently under development at the Department of Sensor Technology of the University of

Erlangen Nürnberg, was used to carry out the finite-element simulations. Beyond the

Figure 17.2 Examples of tomography data: (a) shadow images; (b) segmented cross sections. In

the cross-sectional images, ear tissue is shown in black, the surrounding air in white. The images

show a right-ear sample taken from a horseshoe bat (R. ferrumequinum); the cross sections shown in

(b) are reconstructed from the shadow image data set to which the examples shown in (a) belong.
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region immediately bordering the pinna, the finite-element results need to be forward

propagated into free space in order to estimate far-field system properties such as the

directivity pattern.

Mesh representations of the pinna shapes offer the advantage that a fairly wide range

of experimental shape manipulations can be carried out with relative ease. Experimental

manipulations can be used to assess the effect of structural pinna features on the system-

properties and to understand the mechanisms that link structural features to system prop-

erties. Appendages such as a tragus or an antitragus can be removed by devising a Boolean

combination of implicit functions to cover exclusively the parts of the pinna to be

removed. The Boolean combination of implicit functions can then be used as a clipping

mask to remove the appendages in question, as shown in Figures 17.5a,b,c.

Washboard patterns on the inner pinna surface can be found to varying extent in

several bat species (Fig. 17.3). At present, it is not clear yet whether these structures

Figure 17.3 Example of pinna shapes estimated from CT data sets: (a) R. rouxi (Rufous horseshoe

bat); (b) R. ferrumequinum (greater horseshoe bat), shown are the two ears and the appendages

(“horseshoe”) around the nostrils; (c) P. auritus (brown long-eared bat); (d ) E. fuscus (big brown

bat); (e) P. nathusii (Nathusius’ pipistrelle); ( f ) M. nattereri (Natterer’s bat); (g) N. noctula

(noctule bat); (h) Tadarida sp. Physical prototypes made from stainless steel grains in a bronze

matrix for two of these shapes: (i) R. rouxi (s.a.), magnified 4 times; ( j) R. rouxi natural size (for

comparison); (k) E. fuscus (s.d.).
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serve an acoustic purpose, either exclusively or in addition to some other function.

However, once a mesh representation of the pinna surface is obtained, acoustic effects

of these washboard patterns can be tested readily by using a low-pass filter to smooth

the ear surface and hence remove the washboard patterns (Figs. 17.5c,d).

Besides studying the properties of natural pinna shapes, interesting baffle shapes can

be searched via an optimization process with starts from simple primitives [15]. The latter

approach provides an opportunity to optimize a shape for performance of a specific sonar

task, contrary to natural shapes that can be expected to represent compromises between the

possibly conflicting requirements of all the sonar tasks which the animal has to perform.

However, both approaches can be combined by using meshes representing natural shapes

as a starting point for the optimization process. In this way, it can be determined if the

antenna performance of a natural pinna shape in a particular task is being limited by

Figure 17.4 Example of finite-element sound field simulations: (a) approximation of ear

surface using cubic elements; (b) air volume surrounding ear meshed by cubic elements.

(c,d ) Example visualizations of numerical wave field predictions for excitation by 50-kHz

sine wave in ear canal: (c) cut through wave field (gray level encodes power relative to

excitation on decibel scale); (d ) field contours for power level 232 dB below source level

in ear canal. The ear sample shown is from E. fuscus; (Fig. 17.3d).
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other constraints and how this compromise differs from the optimum that could be reached

starting from this natural configuration.

It is a reasonable precaution to compare numerical predictions to experimental

results even if the numerical methodology can be considered mature, because comparing

a few reference cases allows us to confirm that the choices made, for example, in terms of

sampling are valid. Physical prototypes can be generated from polygonal mesh represen-

tations via various rapid prototyping methods such as selective laser sintering (Figs.

17.3i, j,k). Since the ratio of wavelength and object dimensions is the main factor

which determines scattering and diffraction, the prototypes can be scaled up in order to

facilitate the measuring process. Magnified versions of the pinna shapes allow the usage

of standard (e.g., 1
8
-in.) measuring microphones and lower frequencies. Rapid prototyping

methods allow the use of various materials; however, since the impedance mismatch

between air and any biological tissue is about four orders of magnitude, the material of

the prototype is not a significant factor for acoustic measurements.

Figure 17.5 Example of experimental pinna manipulations. (a–c) Removal of ear appendages via

“Boolean surgery”: (a) mesh representation of original pinna; (b) pinna with superimposed

Boolean combination of implicit functions (a cone and two planes); (c) pinna with tragus removed by

clipping with implicit function; the ear sample is from E. fuscus (Fig. 17.3d ). (d,e) Example of

washboard surface smoothing via low-pass filtering: (d ) mesh representation of original pinna; (e)

pinna smoothed with windowed sinc function interpolation kernel; the ear sample is from

P. auritus (Fig. 17.3c).
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17.4 ULTRASONIC TRANSDUCER TECHNOLOGY

Faithfully mimicking the sonar system of different bat species requires the ultrasonic

transducer to meet a demanding set of specifications. The transducer design goals of the

Chiroptera Inspired Robotic Cephaloid (CIRCE) system are given in Table 17.2.

Commercially available broadband ultrasonic transducers (e.g., [16]) are too large to

fit on a biomimetic bat head with realistic dimensions and furthermore lack adequate band-

width. Hence, new transducer technology is required to meet these specifications.

A literature search complemented with measurements and finite-element simulations

was conducted to compare different candidate transducer technologies. For capacitive

transducers, conventional designs with taut metallic polymer over a counter electrode

were investigated as well as an array comprising several capacitive micromachined trans-

ducers (CMUTs). For piezoelectric transducers, both bending mode resonators [i.e., piezo-

electric ceramic (PZT) ceramic and polyvinylidene fluoride (PVDF) foil] and thickness

mode resonators [i.e., multilayer stack actuator and electromechanical film (EMFi)]

were evaluated in more detail. Based on a thorough assessment of the pros and cons of

the various approaches, detailed in [17], EMFi-based transducers were selected because

they matched best the specifications given in Table 17.2.

The EMFi is a polypropylene film; its thickness for sensor and actuator applications

is typically 30–70 mm. The film has a cellular structure which results from its manufactur-

ing process [18]. Charge is injected into the polypropylene film by a corona method

making use of a strong electric field with Epolarization ’ 10 kV/cm. The resulting

buildup of internal charge at the surfaces of the cavities turns the latter into macroscopic

dipoles (see Fig. 17.6a) which retain their dipole moments after the polymer cools to room

temperature. The cellular structure and the macroscopic dipoles result in relatively high

piezo constants d33 ¼ 1302 450 pC/N.
A simple prototype comprising a patch of EMFi (10 � 10 mm) mounted on a copper

plate (2 mm thick) (see Fig. 17.6b) as backing was used for investigating the properties of

the EMFi material. The polymer was fixed on one side using conductive adhesive so that

the piezo material can oscillate in the thickness mode. Actuated with an AC voltage of up

to 600 V peak to peak (pp), the deflection of the polymer was measured as a function of

frequency (see Fig. 17.6c). The measurement shows a pronounced dependence of the

amplitude of the displacement on the applied driving voltage. Higher sound pressure

levels (SPLs) are therefore achieved at higher driving voltages. As a result of discharges

occurring at the boundary of the polymer, the maximal SPL is, however, limited by a

maximum driving voltage of 1000 Vpp. In addition, the relatively constant displacement

of the polymer surface in the frequency range between 20 and 200 kHz together with the

reciprocal nature of the transduction mechanism indicates that EMFi can also be used as

broadband receiver material.

TABLE 17.2 Specifications for Ultrasonic Transducers

Emitter Receiver

Size 15 � 15 mm ,10 � 10 mm

Frequency band 20–200 kHz 20–200 kHz

Sound pressure level (SPL) 80–100 dB at 1 m

Sensitivity .1 mV/Pa

Dynamic range .80 dB

Equivalent SPL at noise floor ,40 dB
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The properties exhibited by the EMFi material which are of direct relevance for

sonar applications are summarized in Table 17.3. Because of their very good mechanical

properties, EMFi-based receivers can be placed directly in the biomimetic bat head’s ears

without impairing their freedom of movement. Furthermore, the polymer’s flexibility

allows changing the shape of the transmitter surface during operation. This makes possible

Figure 17.6 The EMFi transducer technology: (a) presence of permanent dipoles in polymer

film gives EMFi its electrical properties; (b) test setup for evaluation of EMFi transducer technology;

(c) frequency response for displacement of EMFi transmitter surface.
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the use of adaptive beam-shaping/steering techniques that are of great importance to

active sensing applications. The relatively low temperature at which the material loses

its electret properties complicates contacting the material somewhat, forcing the use of

conductive glue instead of soldering, but has no important impact on its use as the operat-

ing temperature range can be kept below Tmax in this application. The results summarized

in Table 17.3 support the conclusion that only the transduction efficiency of the material,

both as a sensor and an actuator, may prove to fall short of the requirements. Therefore

further testing is currently under way in order to determine precisely to what extent

optimized prototypes of sonar systems with both EMFi-based receivers and transmitters

can comply with the specifications given above.

17.5 ACTUATION

The actuation subsystem of the biomimetic sonar head needs to provide the actuation

mechanisms required for duplicating the essential degrees of freedom of a real bat

head. In particular, independent panning and tilting of each of the two ear structures as

well as shape deformation in a tightly constrained space has to be achieved. This is poss-

ible only through innovative ways for mechanically driving the biomimetic bat head.

The mechanical design of the biomimetic sonar head is to a large extent determined

by the actuator technology. An overall comparison of the different candidate microactuator

technologies—electromagnetic, piezoelectric, electrostatic, pneumatic, shape memory

alloy, and hydraulic small-size actuators—has been conducted. It strongly indicates that

the most suitable actuators for the ear rotations of the biomimetic sonar head are electro-

magnetic motors. For ear shape changes, electroactive polymer (EAP) actuators are cur-

rently considered the most promising technology. Electromagnetic rotary motors offer

the advantage of moderate driving voltages (5–10V). Furthermore, the use of harmonic

gears makes it possible to attain the required speeds and torques in conjunction with a

high repeatability while at the same time staying within the geometric constraints (size

motors�15 mm). Currently the most suitable electromagnetic motor that is commercially

available is the EC6 motor of the Maxonmotor Company. This is a BLDC-type motor that

can be combined with a microharmonic drive to provide the necessary reduction and accu-

racy. The whole group (motor, reduction, and 100-pulse encoder) has a size of

L ¼ 8 � 35 mm (for comparison this is about the size of an AAA battery) and provides

an accuracy of 10 in. and 10 mNm torque. This will be adequate to meet the requirements

on speed, small size, and acceleration.

An overview of state-of-the-art mechanical systems (e.g., sonar heads, vision

systems with requirements similar to our design, and micromanipulation systems),

TABLE 17.3 Properties of Electromechanical Film

Pros Cons

Mechanical behavior: Light, thin and flexible Sensitive surface

Easy to process Temperature-sensitive,

Tmax , 908C

Acoustic behavior: � Constant deflection

for [20–200] kHz

SPL ,80 dB at 1 m, used

as thickness vibrator

Electrical behavior: Low power consumption High actuation voltage,

[200–1000] Vpp
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detailed in [19], has led to the conclusion that parallel architectures like the Agile Eye [20]

and differential architectures are the most promising configurations. The adopted design is

a differential architecture, illustrated in Figures 17.7a,b. The choice has been based on

considering compactness, number of joints, complexity, control issues, and requirements

as to manufacturing precision. As illustrated in Figures 17.7a,b, the differential configur-

ation combines the movements of two gears to move a third gear with the required two

rotational degrees of freedom. If both motors have the same sense of rotation, the ear

makes a pan movement (Fig. 17.7b). If both motors have opposite rotation senses, a tilt

movement is executed (Fig. 17.7a). The differential, apart from being very compact,

Figure 17.7 Sonar head actuation: Differential configuration of two rotary motors allows both (a) tilt and

(b) pan movements of each ear in a small footprint. For tilt movements, the driving wheels are moved in

opposite directions; for pan movements, they are moved in synchrony. (c–e) Details of the actuation system:

(c) differential pulley; (d ) motor suspension with provisions to pretension the cable; (e) test setup. The

dimensions of the complete structure are indicated in the design of the biomimetic bat head shown in ( f ).

In (a), (b), and ( f ), the ears and the emitter are not represented by their final shapes, which are still being

worked on at the time of writing.

292 CHAPTER 17 BIOMIMETIC INTEGRATION OF NEURAL AND ACOUSTIC SIGNAL PROCESSING



has the added bonus of sharing the much larger inertia of the tilt movement between the

two motors. However, the absence of end-effector position information (only the motors

are fitted with encoders) combined with the occurrence of backlash makes it difficult for a

gear-based differential system to guarantee the required accuracy. Hence, a new differen-

tial mechanism was designed where forces and motion are transmitted through cables and

pulleys. In this setup, a miniature stainless steel cable is woven through the differential

pulleys to obtain a backlash-free motion of the third pulley. The price paid for this gain

in accuracy is increased complexity: The cables have to be pretensioned. This complicates

the motor suspension mechanism, as is clearly seen in Figures 17.7c,d,e. The complete

biomimetic head, shown in Figure 17.7f, provides independent pan and tilt capabilities

for both ears, that is, one differential pulley and two motors/suspensions for each ear,

while still fitting inside a 55 � 55 � 55-mm cube. This arrangement keeps the volume

filled by the parts which are expected to interact significantly with the acoustic wave

fields, similar to the head sizes of the larger bat species.

17.6 NEUROMORPHIC SIGNAL PROCESSING

Very little is known about the functional significance of many features of the mammalian

hearing system in the context of biosonar. Furthermore, data from bats are unavailable for

choosing the parameters of detailed neuronal models. Therefore, a parsimonious, efficient

model was adopted which selectively reproduces functionally significant features of the

neural code and generates a quantitatively correct representation of the code in the audi-

tory nerve with respect to these features. The model (Fig. 17.8a) consists of linear

Figure 17.8 Neuromimetic signal processing system. (a) Block diagram of effective signal processing model

in context of entire biosonar system description; the low-pass filtering stage (with time constant t) can be

thought of as being shared between the demodulation and the spike generation stage. (b) Summary of data flow

specifications for digital implementation; the numbers given are for a single echo data stream from one ear.

The complete neuromorphic system will duplicate the processing stages and data streams between them in

order to support a binaural system.
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bandpass filtering followed by a demodulation operation implemented as a half-wave rec-

tification and subsequent low-pass filtering. These stages correspond to well established

models of periphery of the mammalian hearing system [21]. This is followed by a

simple spike generation, where spikes are caused by the signal amplitude exceeding a

threshold. Together with the low-pass filtering in the demodulation stage, the thresholding

operation forms an integrate-and-fire neuron model, which in turn can be regarded as an

approximation of the Hodgkin–Huxley equations [22]. Since there are no data on the

refractory behavior of the neurons making up the auditory nerve in bats, only the first

spike triggered by an echo for every bandpass channel and firing threshold will be con-

sidered. This restricts the spike code generated by the model to a subset of the information

available to natural biosonar systems, but it avoids dependencies on speculative

re-creations of poorly understood system properties. The model provides for an optional

automatic gain control step implemented as a normalization prior to spike generation.

This stage can be viewed to mimic the natural facilities for automatic gain control

present at several stages and levels of the auditory system. This normalization prior to

thresholding offers the additional advantage that the spike time representation is a

vector of constant length (one spike time per threshold). Therefore, all echoes share a

code space of the same dimensionality, which allows for a straightforward analysis of

the code statistical features and their information content with regard to certain tasks [23].

The digital implementation of the model is an extension of previous work on digital

cochlea modeling of human hearing [24, 25]. The extension poses a worthy challenge

because the ultrasonic frequency range of biosonar requires the system to cope with

much higher data rates. In addition, a quantitatively correct representation of the auditory

nerve is attempted in order to study code properties on a neural population level. For this

purpose, the digital model of the auditory periphery should not only generate the spike

code but also generate statistics of second and maybe higher order across bandpass chan-

nels and firing thresholds on the fly. The later capability is important in order to assess

what influence different natural habitats have on the statistical dependence of spiking

times in the auditory nerve.

The key advantages of a digital model are a flexible design process aided by advanced

synthesis tools and the availability of mature, million-gate reprogrammable field-

programmable gate array (FPGA) technology [25]. For an experimental system, where the

model in conjunction with the statistical tools to characterize it is the major research

objective, these advantages offset the disadvantage of greater power consumption.

The Xilinx Virtex II FPGAwas chosen as a hardware platform for implementation of

the model. The FPGAs are integrated into a host PC system via a peripheral component

interconnect (PCI) board. Digital-to-analog conversion for the creation of arbitrary wave-

form, biomimetic sonar pulses and analog-to-digital conversion for echo acquisition are

performed via commercial multifunction data acquisition boards (National Instruments

NI 611X series). Data transfer between data acquisition and FPGA boards is performed

under direct memory access (DMA) control to themainmemory of the host PC. The incom-

ing echo waveform data are digitized for each receiver (ear) at a rate of 1 megasample/ps
and with 12-bit resolution (Fig. 17.8b). In order to maintain numerical stability, 16-bit res-

olution is used for the auditory bandpass filtering stages. After low-pass filtering, the resol-

ution is decreased back to 12 bits for normalization and thresholding. Finally, spike times

are reported with 16-bit word length allowing to address spike times in 2
16 ¼ 65,536

sampling intervals, that is, over a range of 65.5 ms corresponding to approximately 11 m

in target range. Since the FPGAs can run at clock speeds much higher than the input data

rate, the computations on the different bandpass channels can be multiplexed. This

enables us to model at least the lower number of bandpass channels (inner hair cells) and
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firing thresholds (spiral ganglion cells) found in bats ([9], Table 17.1). Because the system

introduced here provides a biomimetic representation of the input and matches the numbers

of its natural paragon, it provides a unique experimental platform to study quantitative

aspects of the spike representation formed in the auditory nerve. This allows us to investi-

gate, for example, how neural sample sizes affect the estimator performance of the brain.

17.7 FUTURE TRENDS

The primary objective for the biomimetic system described here is to serve as a platform for

experiments intended to provide hypotheses for biological function. The use of a robotic

system suitable for operation in the real, physical world ensures that the explanatory

power of any such hypothesis is automatically proven by virtue of a working implementation.

The obtained results can then be used in experimental work performed with animals with the

goal of testing the applicability of hypotheses. The investigation of echo features generated

by active pinna movements is but one example of the kind of research that would benefit

greatly from the availability of a small, actuated, biomimetic bat head. Irrespective of

whether they mirror the actual functional significance to biological systems, principles dis-

covered by considering the properties of such biomimetic systems can be used to augment

technology. The shapes of ultrasonic transducers and indeed all technical antennae do not

display the amount of sophistication seen in the pinna, nose leafs, and horseshoes of bats

around the world. However, the continuing spread of devices communicating with electro-

magnetic wavelengths not too far from the wavelengths employed by biosonar systems

opens large application areas for smart antennas. Future designs of such antennas could

benefit from functional principles discovered in the study of acoustic signal processing

performed by structural features on the heads of bats.
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5. R. MÜLLER. A synthetic biosonar-observer. In

N. ELSNER and G. W. KREUTZBERG, Eds, Proceedings

of the 4th Meeting of the German Neuroscience Society

2001; 28th Göttingen Neurobiology Conference, Vol.

II. Thieme, Stuttgart, 2001, p. 1040.

6. R. KUC. Three dimensional tracking using qualitative

sonar. Roboti. Autonomous Syst., 11:213–219, 1993.

7. T. HORIUCHI AND K. HYNNA. Spike-based modeling of

the ILD system in the echolocating bat. Neural

Networks, 14:755–762, 2001.
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CHA P T E R18

RETINAL IMAGE AND

PHOSPHENE IMAGE:

AN ANALOGY
Luke E. Hallum, Spencer C. Chen, Gregg J. Suaning,

and Nigel H. Lovell

In passing conversation (at parties and in the tearoom), a thumbnail description of the

prosthetic vision problem often elicits the response from the informed layperson, “You

need to implement the function of the photoreceptors!” An excellent first approxi-

mation—we agree that the task at hand, to some extent, is to mimic the neural processing

implemented by the visual system (although the analogy goes much deeper than the

retina—to the visual cortex and beyond). The aim of this chapter, however, is to ask a

question that is, perhaps, easily overlooked: What can be gleaned from the optics, as

opposed to the neural processing, of the eye in our work toward designing a prosthetic

retina? That is, to what extent are the retinal and phosphene images analogous?

18.1 PROSTHETIC VISION PROBLEM

It has been demonstrated that stimulation via an electrode array implanted at the retina,

optic nerve, or visual cortex may evoke the perception of spots of light—so-called

phosphenes—in the visual field of a profoundly blind person [1–3]. Consequently,

there is work afoot to provide a prosthesis in a similar vein to the cochlear implant. Notion-

ally, the implanted array would be coupled to a photosensor (e.g., a digital video camera

worn on spectacles) and processor, which acquire successive scenes and actuate electrodes

accordingly. Thus, the problem at hand is to represent scenes via relatively few

phosphenes—few by comparison to the abundance of neurons which form the substrate

for early vision.

Indeed, the operativeword is “few.” Given the state of the art of interfacing electrodes

and visual tissue, any prosthesis realized in the foreseeable future will comprise tens of elec-

trodes, or a couple hundred at best. While this maymake a profound difference to quality of

life, it is a meager approximation of the native system. For the sake of comparison, take the

cochlear implant: First made available as a therapeutic device in 1982, the implant typically

involves an array of 22 electrodes which interface to spiral ganglia [4]. Under normal,

biological circumstances, the front line of the auditory sensory epithelium—the hair

cells—number some 16,000. The few data available from stimulation trials in human

retina demonstrate irregularly shaped phosphenes subtending a visual arc on the order of

Handbook of Neural Engineering. Edited by Metin Akay
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18 [5]. Phosphenes are typically disordered across the visual field and separated by several

degrees. Figure 18.1 depicts the problem.

How was the phosphene image in Figure 18.1 formed? Note that the image

comprises 23 phosphenes (2 of which are not activated and therefore only 21 are

visible). First, the 23 phosphene locations are mapped on to the scene. Then, at each

location in the scene, a spatial filter is applied which yields a scalar output. This scalar

indicates the level of activation of the phosphene in question, and the phosphene’s size

is set accordingly.1 Prior to setting phosphene size, the scalar output is quantized for

the following reason: Since phosphenes are actuated by discrete implanted electronics,

the number of phosphene sizes that can be rendered in the visual field is likely finite.

With a little consideration, the analogy with early vision neurons (such as retinal ganglion

cells) and their receptive fields will become readily obvious to the reader; we may think of

each spatial filter as an effective artifical receptive field.

The filtering process may be conceptualized in a second way—as the operation of a

single spatial filter that varies as it is shifted about the scene. A shift-variant filter like this

one could be readily designed so that, when it conincided with a phosphene location, it

implemented the desired artificial receptive field. Via this second conceptualization, the

analogy with the eye’s optics becomes apparent (keep in mind that a ray of light originat-

ing from a point on the eye’s optical axis—a paraxial ray—is affected differently by the

eye’s optics than is an oblique ray en route to more eccentric areas of the retina (e.g.,

[7]). Our (shift-variant) filtered scene is then sampled at the pertinent phosphene locations.

Figure 18.2 frames the problem.

Two approaches, of intuitive appeal, to forming the phosphene image come to mind:

impulsive sampling and regional averaging. The latter, for each phosphene, averages the

Figure 18.1 Prosthetic vision problem. The aim is to represent the scene (left) by way of relatively

few phosphenes (white blobs, right). Note that here the sizes of high-contrast phosphenes are

modulated; a device may ultimately effect the modulation of phosphene intensity or perhaps

even both size and intensity. With further research into electrode fabrication, implantation, and

interfacing to neural tissue, one may envisage the evolution of this picture: more phosphenes, smaller

phosphenes, less irregularly shaped phosphenes, and a more ordered arrangement of phosphenes.

(Left image source [6].)

1Once the size of a phosphene is determined, the phosphene profile is generated. The profile (a synthesis

parameter) has perceptual consequences, but given the scope of this chapter, it is the analysis side

(determination of phosphene size) to which we will restrict our attention.
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intensity of the scene in the region local to the phosphene, and the phosphene is actuated

accordingly. That is, h(x; x) (as per Fig. 18.2) is a window of uniform intensity. The former

simply samples the scene at phosphene locations. That is, filtering, h(x; x), is done away

with. These intuitive approaches form the basis for early attempts at simulating prosthetic

vision in the literature [8, 9]. We will return to impulsive sampling and regional averaging

in Section 18.5 and examine their efficacy.

The crux of this chapter is to draw an analogy between the formation of the retinal

image (sometimes referred to as the receptoral image) and that of the phosphene image.

Both images are discrete signals which differ, perhaps most notably, in the spatial scale

by several orders of magnitude. Human vision is indeed remarkable; we are presented

with such a seemingly clear “picture” of the world. This would seem at times to belie the

fact that a discrete (retinal) image lies at the heart of vision. Can we use to our end in the

prosthetic vision problem an understanding of the retinal image discretization process?

18.2 FORMATION OF RETINAL IMAGE

En route to the retina, a ray of light passes the eye’s optical media: the cornea, aqueous and

vitreous humors, and the lens. The cornea has the most marked dioptric effect—indeed,

two-thirds of the bending of light occurs at the air–cornea interface—followed by the

lens. The curvature of the lens, and therefore its dioptric effect, is under voluntary

control; the contraction of the intraocular ciliary muscle, resulting in increased curvature

of the surface of the lens, is referred to as accommodation. By this means, rays emanating

from points of interest can be converged to a focal point on the retina. Here, photoreceptors

form a mosaic that samples incident light intensity, thus forming the retinal image [10].

The dioptrics work in conjunction with the pupil (serving as the aperture) and iris

(acting as the aperture stop). The diameter of the natural pupil ranges between approxi-

mately 2 and 8 mm [11], allowing for a 16-fold change in area and therefore a 16-fold

change in the amount of light admitted to the eye. Two antagonistic muscles, controlled

via reflex, determine pupil size: the sphincter and dilator pupillae. The former is “hardwired”

to the sympathetic nervous system and the latter to the parasympathetic nervous system [12,

pp. 207–227]. Therefore stress, for example, will likely cause pupillary dilation, and drugs

that act on the parasympathetic system (muscarinic agonists) cause pupillary constriction.

Since light is a field, the finite aperture that is the pupil makes for diffraction patterns

impressed on the retina. In many applications, a geometric description (light as ray) is

sufficiently accurate. However, in the eye the scales of the fringes of the diffraction

patterns formed are of the same order as the photoreceptor diameter [10, p. 32]. Therefore,

diffraction effects are present in the retinal image, and a deeper understanding of

the formation of the retinal image requires a physical description (light as a field).

Figure 18.2 In one dimension, formation of the phosphene image. Our original scene, I(x), is to

be sampled so as to form the phosphene image, I0(x). The locations of phosphenes in the visual

field of the implantee are used to form the sampling function f(x); the sampling function

comprises an array of impulses for multiplication with the filtered scene. Prior to sampling, we filter

via h (x; x)—a linear filter that varies as it is shifted about the scene.
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A diffraction pattern is shown in Figure 18.3: A point of light in object space, which we

may think of as a detail in the scene, is in fact spread so as to activate numerous

photoreceptors. This phenomenon is referred to as point spread and described mathemat-

ically by the point spread function [7].

18.3 SPATIAL SENSITIVITY OF RETINAL IMAGE

Since a point source of light is, in fact, spread by diffraction, it follows that diffraction

poses the upper limit on the retina’s sensitivity to spatial detail [13, p. 472]. For

example, consider a pair of car headlights viewed at nighttime. Each light forms an

Airy pattern in the retinal image. As the distance at which the headlights are viewed

increases (imagine that we are in a second car that overtakes and accelerates away from

the first), the Airy patterns approach each other on the retina. Once the patterns overlap

to the extent that they cannot be distinguished, the spatial sensitivity of the retina has

been surpassed: The two points cannot be resolved and the car headlights appear as

one. Consider now the convergence of two broad Airy patterns on the retina as opposed

to two narrow patterns; the broad patterns will form a homogeneous-looking lump

sooner than the narrow patterns.

Our headlight example is, in fact, a lay description of Rayleigh’s criterion for resol-

ution: If two points are to be resolved, they need subtend uc radians of visual arc, where

uc ¼
1:22l

D

where l is the wavelength of light involved and D is the pupil diameter. This so-called

angular limit of resolution is the separation for which the global maximum of one Airy

pattern coincides with the first zero of the other (see arrows, Fig. 18.3), allowing for

discrimination of the two maxima.

Figure 18.3 Diffraction pattern formed on retina for 2-mm pupil. A narrow ray of light

(geometric pattern shown via dotted line) is in fact spread, forming an Airy intensity pattern.

An Airy pattern comprises a central lobe (containing 84% of incident light energy) surrounded

by progressively faint concentric rings (only one of which is shown). The intensity pattern

excites photoreceptors (at the fovea, spaced by approximately 3 mm) which collectively comprise

the retinal image. Arrows show the positions of the first minimum of the Airy pattern.
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As described by the previous equation the pupil diameter and angular limit of

resolution, uc, are inversely related. Accordingly, it would seem that the 8-mm pupil is

favorable for acuity tasks such as reading and other near work: That a larger pupil

makes for a more spatially sensitive retinal image. This is, however, not the case. For

pupil sizes above, typically, 3 mm, aberrations in the eye’s optical media make for

more point spread [14]. That is, for pupil diameters beyond 3 mm, a diffraction-limited

description of the eye’s optics is no longer accurate. To fix ideas, it is useful to envisage

the two competing mechanisms at work: The diffraction effect of pupil dilation serves to

narrow the point spread function, but pupil dilation incorporates the effects of aberrations,

which serve to further spread the point spread function. Clearly, the task at hand for the

eye, in the case of near work, is to find some “happy medium” in the interest of retinal

image quality.

18.4 PUPILLARY NEAR REFLEX

When an object is brought near for focusing—an index finger, for example, moved along

the midline, from arm’s length to near the nose—the near reflex is elicited in the viewer.

Much of the literature reports the reflex as a three-way synkinesis:2 The eyes converge,

lenses accommodate, and the pupils constrict. The reflex makes for good viewing of the

near object (finger), but not only because of accommodation (rays emanating from the

near finger require more bending if they are to be brought to a focal point on the retina)

and convergence (which improves depth perception). The reflex also mitigates the deleter-

ious effect of increased point spread on the sensitivity of the retinal image, constricting to a

diameter so as to exclude the effect of the eye’s aberrated optical media. The assumed

diameter is typically between 2 and 3 mm [14]—a diameter proven in numerous

studies to suit acuity tasks [e.g., 11]. In assuming this diameter, the eye has found the

aforementioned happy medium.

It is theorized that the density of foveal cones and the diffraction-limited optics of the

eye have coevolved. That is, were cone packing more or less dense, the quality of the retinal

image would be adversely affected. The converse of this—if the eye’s diffraction-limited

optics were to effect a filter of less or more spread, retinal image quality would be adversely

affected—holds implications for the prosthetic vision problem. Specifically, we now have

some clues as to how to design filter h(x; x) as per Figure 18.2.

To summarize so far: Impulsively sampling the scene at each phosphene location

and averaging the scene over the apertures of each phosphene have intuitive appeal in

approaching the prosthetic vision problem. Eye optics, however, over and above impulsive

sampling and averaging, implement point spread, which makes for a better quality retinal

image. If the pupil were to constrict further, what would be the effect on the retinal image?

What if the pupil had constricted less? These questions are brought to bear in the following

section, where the connection is made with the prosthetic vision problem: When acuity is

paramount, the filter h(x; x) needs to take a specific form.

18.5 NUMERICAL EXPERIMENT

To demonstrate the effect of the eye’s optics on retinal sensitivity, consider the following

short numerical experiment. We array 100 simulated photoreceptors in one dimension,

2A synkinesis involves a voluntary movement effecting an involuntary movement, such as the movement of an

unpatched eye in sympathy with its patched fellow.
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equally spaced. To this array of receptors we present a randomly generated battery of

(one-dimensional) stimulus images. Each image is analyzed by our receptor array;

taken together, receptor outputs form the simulated retinal image. What is of interest is

the number of unique retinal images our array generates in response to the battery, indi-

cating its fitness to reconstruct the (unexpected) visual world—its sensitivity to detail.

The implementation is depicted in Figure 18.4.

This experiment borrows from Snyder, Laughlin, and Stavenga [15]. Those authors

used images of circles of randomly generated sizes and intensities as an input battery to an

array of receptors. Therefore, the spatial-frequency content of stimulus images spanned

the spectrum, and the battery may be thought of as epitomizing the unexpected. Circles

also simulate the tendency of matter to cohere: An aspect of the physical world to

which the visual system is attuned [16].

Accordingly, our present one-dimensional images are rectangular windows of

various height, width, and horizontal offset. Since sensitivity is our present interest,

parameter w varied uniformly between 1 and 10 (the spacing of receptors); o varied

between 25 and 5; and i varied between 0.001 and 1.0 in increments of 0.001. Thus,

our present battery may be thought of as the “epitome of the high-frequency unexpected.”

We set quantization levels Q ¼ 16 so as to simulate implanted electronics capable of

delivering 16 different stimulation levels.

We can use this numerical setup to explore the two intuitive approaches to the

prosthetic vision problem, as mentioned in Section 18.1—impulsive sampling and aver-

aging. For the former, consider the setup where there exists no filter in B (as

per Fig. 18.4, s ! 0)—that is, the passed image is a replica of the stimulus image,

Figure 18.4 Implementation of numerical experiment. Each “continuous,” one-dimensional

stimulus image (example shown in A) comprises 1000 pixels. The stimulus is first analyzed by the

filter shown in B—an Airy pattern simulating the blurring effect of the eye’s (diffraction-limited)

optics—forming the “passed image.” Each receptor (the 100 receptors are shown in D, equally

spaced by 10 pixels) then responds according to the passed image. Specifically, as shown in C, the

average intensity in the neighborhood of a receptor determines the activation level; this simulates

averaging over the aperture of cone inner segments [17]. Finally, the simulated retinal image is

quantized to some number of levels, Q, and normalized—a crude simulation of the light-adaptive

retina. Lowercase letters indicate experiment variables: w, stimulus width; i, stimulus intensity; o,

stimulus offset from central receptor; s, point spread of simulated optics; a, aperture of receptor

averaging.
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simulating diffraction-free optics (an unlikely event)—and the aperture of receptors is

minimal (a ¼ 1; i.e., receptors do not average but simply sample the passed image).

From a battery of 100 stimulus images, our receptor array can only construct two

unique images. Increasing the apertures to a ¼ 9 examines the second intuitive

approach—averaging. Our receptor array can now construct 17 unique images. In the

case of impulsive sampling, the simulated retinal image is aliasing heavily. For the

purpose of this chapter, it is convenient to think of aliasing as changes in the original

signal (in this case, the one-dimensional image; in the case of Fig. 18.1, the scene) that

produce no change in the sampled signal (in this case, the simulated retinal image; in

the case of Fig. 18.1, the phosphene image). The effect of averaging is to dealias the

simulated retinal image to some extent, thus making for the reconstruction of more

unique images.

Returning to our experiment, supposing we implement, as filter at B, an Airy pattern

with point spread s ¼ 20 (i.e., a point spread of twice the receptor spacing, which, as

shown in Fig. 18.3, simulates fringes formed by the 2-mm pupil on a mosaic of receptors

spaced by 3 mm). In this case, 35 unique images are reconstructed. What if the point spread

of the Airy pattern is doubled, simulating a pupil that constricts further into the diffraction-

limited region (beyond the “happy medium”—a concept introduced in the previous

section)? The number of unique images falls to 24; our receptor mosaic has become

less spatially sensitive.

It follows from the above results that neither impulsive sampling nor averaging

make for an optimally spatially sensitive phosphene image. With reference again to

Figures 18.1 and 18.2, the above results suggest that, if the scene were filtered with

h(x; x) equal to an Airy pattern, the spatial sensitivity of the phosphene image would be

increased.

18.6 INTO THE PERIPHERY

In the previous section, we showed that spatial filtering is of particular importance to the

prosthetic vision problem. Specifically, we demonstrated that a filter combining spatial

averaging and an Airy pattern of particular spread make for a more sensitive simulated

retinal image and may likely make for a more sensitive phosphene image. Our analogy

between retinal and phosphene images thus far has concentrated on central vision:

diffraction-limited optics and light incident on the all-cone retina where receptors are

tightly packed. We now turn our attention to some aspects of peripheral vision.

As mentioned in Section 18.1, paraxial rays of light are affected differently by the

eye’s optics as compared with oblique rays. To illustrate, in this section we examine

the effect of optical aberrations on off-axis light entering the eye under natural viewing

conditions. In the peripheral retina, the density of receptors declines [10]. Therefore,

increasingly, the eye is met with the challenge of analyzing visual stimuli that it cannot

resolve. Nonetheless, the peripheral retina remains an excellent detector, if not resolver,

of spatial detail and movement [18]. It so happens that the blurring effect of optical aberra-

tions on oblique rays serves to limit, but not eliminate, aliasing from peripheral vision [19].

While neural processing (such as motion sensitivity of ganglion cells [20]) plays an

important role in detection, it is nonetheless instructive to examine the eccentric point

spread function and its relationship to receptor density. Again, we do so with a mind to

informing the design of our shift-variant filter h(x; x) as per Figure 18.2 for implemen-

tation in a prosthesis.
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In the 4-mm pupil of subjects allowed free accommodation, Navaro and colleagues

[7] measured aerial images3 of a laser shone through the pupil at various oblique angles.

Since light forming the aerial image has passed the eye’s optics twice, it is related to the

point spread function via a deconvolution (effectively removing the blurring effect of the

light’s second pass). The modulation transfer function, describing the effect of the optics at

various spatial frequencies, is related to the Fourier transform of the aerial image. The

retreival of the point spread function from the aerial image is somewhat problematic.4

However, to a first approximation, we can retreive the point spread function using

Fourier theory.5 Navarro and colleagues fitted the following biexponential to the modu-

lation transfer function:

MTF( f ) ¼ (1� C) exp (�Af )þ C exp (�Bf )

Here, A, B, and C are fitting parameters, fitted at each eccentricity of interest (the fovea, 58,

108, 208, 308, 408, 508, 608), and f is frequency in cycles per degree.6

From the equation for the modulation transfer function, we can derive the expression

for the point spread function using (inverse) Fourier theory:

PSF(x) ¼
A

1þ ½2p (x=A)�2
�

AC

1þ ½2p (x=A)�2
þ

BC

1þ ½2p (x=B)�2

where x is degrees of visual arc. The derived functions for 58 and 408 are shown in

Figure 18.5.

Following the eye’s biological lead, filtering [h(x; x) as per Fig. 18.2] that accounts for

local phosphene density could be readily implemented. For example, the top, rightmost

phosphene in Figure 18.1 has fewer near neighbors than do the more central phosphenes.

Accordingly, in forming the retinal image, filtering at this phosphene location could have

Figure 18.5 Point spread and spacing of

retinal receptors. The faint line depicts the

point spread function for light incident on

the retina at 408 eccentricity; the solid line

for 58. Squares depict cone photoreceptor

density at 408 eccentricity. (Density data

from [23].)

3The aerial image is taken by a charge-coupled display (CCD) camera placed in front of the eye which images

light reflected from the ocular fundus—the posterior portion of the eye’s interior.
4The aerial image contains no phase information.
5Navarro et al. [7] and Pearson [21] indicate that there’s likely little phase information for the 4-mm pupil.
6It is assumed that the point spread function is approximately circularly symmetric.
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implemented a broad artificial receptive field like that depicted in Figure 18.5. Doing so

would better incorporate information from the top, right-hand region of the original scene

(and therefore limit aliasing). In a previous paper, the present authors suggested artificial

receptive field profiles geometrically transformed in accordance with the local geometry

of the phosphene mosaic [22]. So, too, we can readily envisage a scenario where a prosthesis

primarily serves as a detector of movement in the scene: for example, an implantee using a

prosthesis in conjunction with a cane when crossing the road.

18.7 DISORDER IN CONE MOSAIC

Hitherto, we have paid little attention to the mosaic of photoreceptors per se—the neural

substrate that effectively forms the sampling function. It so happens that photoreceptors on

the retina are not arranged in a regular mosaic, with regular center-to-center spacing.

Rather, photoreceptors are slightly disordered [28]; it is thought that photoreceptor dis-

order makes for better quality spatial vision.

Photoreceptor disorder exchanges aliasing for broadband noise in the retinal image.

That is, frequencies from the original signal for sampling (in our case the scene) that are

beyond the Nyquist limit will not appear in the subsampled image (the phosphene image)

as spurious low frequencies; instead, the subsampled image is affected by broadband

noise. The visual system is more robust when faced with broadband noise as compared

with aliasing, which effectively introduces “blind spots.” It is beyond the scope of this

chapter to provide a full elaboration, using Fourier theory as reasoning, as to the mechan-

ism of disordered sampling; the interested reader may refer to [24]. Figure 18.6 demon-

strates the phenomenon on a small scale in space.

In engineering circles, the reconstruction of signals sampled in a disordered fashion

is known as Yen interpolation [25]. The reconstructed signal we yield from disordered

sampling is equivalent to that of the ordered if (1) the average density of the disordered

sampling function is at least equal to that of the ordered and (2) the positions at which

disordered samples were taken is known to the reconstruction process. For this reason,

the notion that photoreceptor mosaic disorder is a “feature” of the visual system was

met with opposition [26]; for this to be true, visual centers downstream of the retina,

where the elaboration of the visual world begins, would need know the locations of

Figure 18.6 Effect of disordered sampling. In both images, a stub of the underlying stimulus is

shown at the top: a cosinusoid that varies in the x direction. On the left, the stimulus is sampled by a

regular, rectangular mosaic. The frequency of the cosinusoid is twice that of sampling; aliasing

makes for samples of uniform intensity. On the right, jitter has been added to each sample location.

The result is to mitigate aliasing in exchange for broadband noise in the sampled image. (After [24].)
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photoreceptors; otherwise, visual information would be lost. This sounds like a reasonably

complicated developmental process.

At first glance, the disorder of phosphenes seems to have a deleterious effect on the

phosphene image (see Fig. 18.1). However, when we consider the following character-

istics of the phosphene image, it stands to reason that disorder in the retinal mosaic

may inform design and make for better quality prosthetic vision: (1) phosphenes are

loosely packed in the visual space and therefore there is ample room for the deleterious

effect of aliasing and (2) the positions of phosphenes (i.e., of disordered sample locations)

are known to the observer of the phosphene image (who effectively serves as the

reconstruction process). Therefore, should the design criterion of many, closely packed

phosphenes, likely arranged in a regular hexagonal mosaic [27], be closely followed

by ensuring that phosphene locations are slightly disordered? If so, this holds implica-

tions for the manufacture of implantable arrays. This question, among others, will be

borne out by continuing psychophysics experiments.

18.8 CONCLUSION

A concise, holistic description of human vision is elusive. So, too, a definitive solution to

the prosthetic vision problem—that is, how to render phosphenes in the visual field so as to

best convey vision—is unlikely. Work toward the former is a composite of numerous

fields of endeavor. So, too, work toward the latter will benefit from points of view phys-

iological, anatomical, physical, engineeringwise, and psychological. In this chapter, we

have presented some aspects of the formation of the retinal image—dealiasing by lens–

cornea, point spread as a function of eccentricity, and disorder in the photoreceptor

mosaic—and suggested means of their informing a solution to the prosthetic vision

problem. Such approaches will be borne out, in simulations and in human trials, by

psychophysical experiments—an ongoing endeavor of our laboratory, as is the development

of ideas and preliminary experiments put forward in this chapter.
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19.1 INTRODUCTION

One of the frontiers in the biomedical sciences is developing prostheses for the central

nervous system (CNS) to replace higher thought processes that have been lost due to

damage or disease. Prosthetic systems that interact with the CNS are currently being

developed by several groups [1], though virtually all other CNS prostheses focus on

sensory or motor system dysfunction and not on restoring cognitive loss resulting from

damage to central brain regions. Systems designed to compensate for loss of sensory

input attempt to replace the transduction of physical energy from the environment into

electrical stimulation of sensory nerve fibers (e.g., cochlear implant or artificial retina)

or sensory cortex [2–4]. Systems designed to compensate for loss of motor control do

so through functional electrical stimulation (FES), in which preprogrammed stimulation

protocols are used to activate muscular movement [5, 6], or by “decoding” premotor/
motor cortical commands for control of robotic systems [7–9].

The type of neural prosthesis that performs or assists a cognitive function is qualita-

tively different than the cochlear implant, artificial retina, or FES. We consider here a pros-

thetic device that functions in a biomimetic manner to replace information transmission

between cortical brain regions [10, 11]. In such a prosthesis, damaged CNS neurons

would be replaced with a biomimetic system comprised of silicon neurons. The replacement

silicon neurons would have functional properties specific to those of the damaged neurons

and would both receive as inputs and send as outputs electrical activity to regions of the

brain with which the damaged region previously communicated (Fig. 19.1). Thus, the

class of prosthesis being proposed is one that would replace the computational function

of damaged brain and restore the transmission of that computational result to other
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regions of the nervous system. Such a new generation of neural prostheses would have a

profound impact on the quality of life throughout society, as it would offer a biomedical

remedy for the cognitive and memory loss that accompanies Alzheimer’s disease, the

speech and language deficits that result from stroke, and the impaired ability to execute

skilled movements following trauma to brain regions responsible for motor control.

19.2 THE SYSTEM: HIPPOCAMPUS

We are in the process of developing such a cognitive prosthesis for the hippocampus, a

region of the brain involved in the formation of new long-term memories. The hippo-

campus lies beneath the phylogenetically more recent neocortex and is comprised of

several different subsystems that form a closed feedback loop (Fig. 19.2), with input

from the neocortex entering via the entorhinal cortex, propagating through the intrinsic

subregions of hippocampus, and then returning to neocortex. The intrinsic pathways

consist of a cascade of excitatory connections organized roughly transverse to the longi-

tudinal axis of the hippocampus. As such, the hippocampus can be conceived of as a set of

interconnected, parallel circuits [12, 13]. The significance of this organizational feature is

that, after removing the hippocampus from the brain, transverse “slices” (approximately

500 mm thick) of the structure may be maintained in vitro that preserve a substantial

portion of the intrinsic circuitry, and thus allow detailed experimental study of its principal

neurons in their open-loop condition [14, 15].

The hippocampus is responsible for what have been termed long-term “declarative”

or “recognition” memories [16, 17]: the formation of mnemonic labels that identify a

unifying collection of features (e.g., those comprising a person’s face) and to form

relations between multiple collections of features (e.g., associating the visual features

of a face with the auditory features of the name for that face). In lower species not

having verbal capacity, an analogous hippocampal function is evidenced by an ability,

for example, to learn and remember a sequence of environmentally cued motor move-

ments [18–22]. Major inputs to the hippocampus arise from virtually all other cortical

brain regions and transmit to the hippocampus high-level features extracted by each of

Figure 19.1 Schematic diagram for general case of replacing damaged central brain region

with VLSI (very large scale integrated) system implementation of biomimetic model and

connecting inputs of VLSI-based model to afferents of damaged region and outputs of

VLSI-based model to efferents of damaged region.
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the sensory systems subserved by these cortical areas. Thus, the hippocampus processes

both unimodal and multimodal features for virtually all classes of sensory input and mod-

ifies these neural representations so that they can be associated (e.g., forming a link

between a face and a name) and stored in long-term memory in a manner that allows

appropriate additional associations with previously learned information (the same face

may have context-dependent names, e.g., first-name basis in an informal, social setting

vs. position title in a formal, business setting) and that minimizes interference (the

same name may be associated with several faces). After processing by the hippocampal

system, new representations for important patterns are transmitted back to other cortical

regions for long-term storage; thus, long-term memories are not stored in the hippo-

campus, but propagation of neural representations through its intrinsic circuitry and the

transformations in those representations consequent to that propagation are required for

a reencoding essential for long-term memory.

It is well established that damage to the hippocampus results in a loss of ability to

form new long-term memories [16, 17]. It is the degeneration and malformation of hippo-

campal neurons that are the underlying cause of the memory disorders associated with

Alzheimer’s disease. Similarly, hippocampal pyramidal cells, particularly those in

region CA1, are highly susceptible to even brief periods of anoxia, such as those that

accompany stroke. Even blunt head trauma has been shown to be associated with prefer-

ential loss of hippocampal neurons in the hilus of the dentate gyrus. Finally, there is a long

history of association between hippocampal dysfunction (particularly in region CA3)

Figure 19.2 (a) Diagrammatic representation of rat brain (lower left) showing relative location of

hippocampal formation on left side of brain (white); diagrammatic representation of left

hippocampus after isolation from brain (center) and slices of hippocampus for sections transverse to

longitudinal axis. (b) Diagrammatic representation of transverse slice hippocampus illustrating its

intrinsic organization: fibers from entorhinal cortex (ENTO) project through perforant path (pp) to

dentate gyrus (DG); granule cells of dentate gyrus project to CA3 region, which in turn projects

to CA1 region; CA1 cells project to subiculum (SUB), which in intact brain then projects back to

entorhinal cortex. In a slice preparation, return connections from CA1 and the subiculum are

transected, creating an open-loop condition for experimental study of hippocampal neurons.
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and epileptiform activity. Thus, there are is a wide array of neural damage and neurode-

generative disease conditions for which a hippocampal prosthesis would be clinically

relevant.

19.3 GENERAL STRATEGY AND SYSTEM
REQUIREMENTS

Our strategy for achieving a hippocampal neural prosthesis is based on several system

requirements for replacing any CNS region with a biomimetic device that interacts bidir-

ectionally with the rest of the undamaged brain (i.e., sensing and communicating input to

the biomimetic device from afferents of the damaged region; communicating and electri-

cally stimulating outputs from the biomimetic device to efferents of the damaged region)

[10, 11]. First and foremost is the nature of the biomimetic model that constitutes the core

of the prosthetic system. Information in the hippocampus and all other parts of the brain is

coded in terms of variation in the sequence of all-or-none, point process (spike) events, or

temporal pattern (for multiple neurons, variation in the spatiotemporal pattern). The essen-

tial signal processing capability of a neuron is derived from its capacity to change an input

sequence of interspike intervals into a different, output sequence of interspike intervals. In

all brain areas, the resulting input/output transformations are strongly nonlinear, due to the

nonlinear dynamics inherent in the cellular/molecular mechanisms comprising neurons

and their synaptic connections [15, 23–28]. As a consequence, the output of virtually all

neurons in the brain is highly dependent on temporal properties of the input. The spatiotem-

poral patterns of activity expressed by neurons in the hippocampus are the only “features”

that the neocortex has to work in constructing representations for long-termmemory. Thus,

identifying the nonlinear input/output properties of hippocampal neurons, and the compo-

site input/output transformations of hippocampal circuitry, is essential to mimicking the

short-term to long-term memory reencoding process of the hippocampal system. It is

this fundamental functionality of hippocampal neurons that must be captured by any

mathematical model designed to replace damaged hippocampal tissue.

Attempting to accomplish this modeling goal with compartmental neuron models

[29, 30] based on cable theory is simply not feasible. The number of parameters required

to represent complex dendritic structures and the number and variety of ligand- and

voltage-dependent conductances common to hippocampal neurons is simply too large

to include in a multineuron network model that is sufficiently compact for a microchip

or even a multichip module. Although simplifications of compartmental neuron models

are an option, the trade-offs between complexity of the model and representation of

neuron and network dynamics are not yet fully understood [25]. For this reason, we are

using a nonlinear systems analytic approach to modeling hippocampal neurons [14, 15,

31–34]. In this approach, neurons and circuits or networks to be modeled are first charac-

terized experimentally using a “broadband” stimulus, for example, a series of impulses

(typically 1000–2000 total) in which the interimpulse intervals vary according to a

random (Poisson) process. Because the distribution of interimpulse intervals is exponen-

tial, the mean frequency can remain relatively low (2 Hz), and thus be physiological, yet

the range of intervals can be wide (10–5000 ms). Such a stimulation protocol ensures that

the majority, if not all, of synaptic and cellular mechanisms are activated and, as a conse-

quence, contribute to neuron, circuit, or network output which is measured (e.g., electro-

physiologically). The modeling effort then becomes focused on estimating linear and

nonlinear components of the mapping of the known input to the experimentally measured
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output. Given accurate estimation methods [35–37], the result is a model that is

“compact” (many fewer terms than a compartmental neuron network model), predictive

for virtually any temporal pattern, and incorporates at least the majority of known and

unknown mechanisms (thus, not requiring modification and optimization for each new

discovery in the future).

A biomimetic model of a hippocampal network of neurons must be reduced to a

hardware implementation in microcircuitry (VLSI system) for at least three reasons.

First, for a neural prosthetic device used clinically, it will be necessary to simulate mul-

tiple neurons and neural circuits in parallel; hardware implementations provide the most

efficient means for realizing parallel processing. Second, by definition the device in ques-

tion will be required to interact with the intact brain in realtime if it is to substitute for lost

neural function and at least partially reinstate normal levels of cognition and behavior.

Again, the rapid operational rates of modern VLSI technology provide the best means

for achieving the goal of real-time signal processing and sufficient computational speed

to support on-going interaction of a patient with the environment. Finally, there is the prac-

tical consideration of integration of the prosthetic system with the patient, that is, it must

be miniaturized sufficiently that it easily can be carried “on board” with the patient.

A biomimetic device for central brain regions must interact bidirectionally with the

undamaged brain to support cognitive function and influence behavior. As discussed

above, one of the indisputable characteristics of the mammalian brain is that information

(a recognized object, object relations, a motor target or plan, etc.) is represented in the

activity of multiple neurons, that is, population or “ensemble” coding. Anatomic connec-

tions between multiple neurons in one brain region and multiple neurons in a second brain

region are not random—there is typically an identifiable topography in which neurons

from one subregion of a given brain region project primarily to a localized subset of

neurons in the target structure. Moreover, virtually all brain areas have region-specific

cytoarchitectures, for example, varying degrees of cellular and/or dendritic layering

and geometries of curvature, within which topographical connections are embedded. As

a consequence of these considerations, bidirectional communication between a biomi-

metic device and the brain must be accomplished with one or more multisite electrode

arrays, with the spatial distribution and density of recording/stimulating electrodes

designed to match (be “conformal” with) the cytoarchitecture and topography density

of the brain regions providing the inputs and outputs of the device.

Issues of power and data transmission can be substantial given that, at present, it is

not known how many neuron models or what level of network complexity are required to

achieve a clinically significant improvement in quality of life when attempting to restore

cognitive brain function. In-depth treatment of these issues must await results of preclini-

cal studies in behaving animal models (which we have scheduled as the next step in the

development of a hippocampal prosthesis). Issues of long-term biocompatibility also

are relevant to chronic use of implanted recording/stimulating electrodes used to interface

with the brain. Although we will not discuss those issues here, we have dealt with them

elsewhere and continue to research this fundamental problem [38].

19.4 PROOF OF CONCEPT: REPLACEMENT OF CA3
REGION OF HIPPOCAMPAL SLICE WITH BIOMIMETIC
DEVICE

We have developed a multistage plan for achieving a neural prosthesis for the hippo-

campus. The first stage will be described in this chapter and involves a “proof of
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concept” in which we develop a replacement biomimetic model of the CA3 subregion of

hippocampal in vitro slice. We have chosen to realize our first-generation prosthesis in the

context of a hippocampal slice for several reasons. Among them is that the 500-mm

Figure 19.3 Strategy for replacing CA3 region of hippocampus with VLSI model of its nonlinear

dynamics and interfacing VLSI biomimetic device with the remaining, active slice through

conformal, multisite electrode array, thus restoring whole-circuit dynamics. (a) Diagrammatic

representation of trisynaptic circuit of hippocampus. (b) Conceptual representation of replacing

CA3 field with VLSI-based model. (c) Hippocampal slice in which CA3 field has been removed.

Overlaid is an integrated system in which impulse stimulation from an external source is used

to activate dentate granule cells and is delivered through one component of a multisite electrode

array. A second component of the electrode array senses the responses of dentate granule cells

and transmits the responses to the VLSI-based model. The VLSI device performs the same

nonlinear input/output transformations as biological CA3 neurons and transmits the output

through the multisite electrode array to the dendrites of CA1 neurons, thus activating the last

component of the trisynaptic pathway.
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thickness of the slice allows us essentially to reduce the problems of modeling the three-

dimensional function of the hippocampus, and of interfacing with its complex, three-

dimensional structure, to a more tractable two dimensions. This allows us to develop

the initial stages of experimental strategies, modeling methodologies, hardware designs,

and interfacing technologies within the context of a more simplified and controlled set

of conditions.

The major intrinsic circuitry of the hippocampus consists of an excitatory cascade of

the dentate, CA3, and CA1 subregions (dentate ! CA3 ! CA1; Fig. 19.3a) and is main-

tained in a slice preparation. Our stage 1 prosthesis demonstration consists of (i) surgically

eliminating dentate input to the CA3 subregion, (ii) replacing the biological CA3 with a

VLSI-based model of the nonlinear dynamics of CA3 (Figs. 19.3b,c), and (iii) through

a specially designed multisite electrode array, transmitting dentate output to the VLSI

model and VLSI model output to the inputs of CA1 (Fig. 19.3c). The definition of a suc-

cessful implementation of the prosthesis is the propagation of spatiotemporal patterns of

activity from dentate ! VLSI model ! CA1 reproduces that observed experimentally in

the biological dentate ! CA3 ! CA1 circuit.

19.5 EXPERIMENTAL CHARACTERIZATION OF
NONLINEAR PROPERTIES OF THE HIPPOCAMPAL
TRISYNAPTIC PATHWAY

The first step in achieving the defined proof of concept is to experimentally characterize

the nonlinear input/output properties both of field CA3 and of the entire trisynaptic

pathway, that is, the combined nonlinearities due to propagation through the

dentate ! CA3 ! CA1 subfields. The model of CA3 will be used to develop the biomi-

metic replacement device to substitute for CA3 dynamics after the biological CA3 has

been removed from the slice. The input/output properties of the trisynaptic pathway

will be used to evaluate the extent to which hippocampal circuit dynamics have been

restored after substituting the biomimetic device for field CA3.

Completing such an experimental characterization requires a stable in vitro slice

preparation in which trisynaptic responses (simultaneous recordings from dentate

granule cells, CA3 pyramidal neurons, and CA1 pyramidal neurons) to random impulse

train stimulation of perforant path afferents to the dentate gyrus can be recorded reprodu-

cibly, thus providing the data required for the modeling effort. After experimenting with

slices prepared from several different points along the septotemporal axis of the hippo-

campus, varying the concentration of the chloride channel blocker picrotoxin, which

was used to facilitate transsynaptic propagation through the trisynaptic circuit, and

systematically sampling from different subregions of the dentate, CA3, and CA1 fields,

we successfully defined an optimal preparation for characterizing hippocampal nonlinea-

rities. Studies have been conducted using both conventional glass electrode, extracellular

recording (three different electrodes in the three fields) and silicon-based multisite

electrode arrays (see Section 19.8).

It is important to note that input in the form of random impulse train stimulation is

applied only to the perforant path afferents to dentate. The nonlinearities of the dentate

then determine the actual input to CA3; in turn, the nonlinearities of CA3 determine the

input to CA1. In this stage 1 prosthesis development, field potentials are used as the

measure of output from each of the three hippocampal regions: population spikes of

dentate granule cells, population spikes of CA3 pyramidal cells, and population EPSPs

(excitatory postsynaptic potentials) of CA1 pyramidal cells. This is important because it
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means that for both fields CA3 and CA1, not only does the continuous input of the random

train vary in terms of interimpulse interval but also, because of nonlinearities “upstream,”

the input also varies in terms of the number of active afferents. As will become clear

below, this places a major constraint on modeling CA3 input/output properties; that is,
the model must be capable of predicting CA3 output as a function of both the temporal

pattern and the amplitude of dentate input.

Figure 19.4 Top: diagrammatic representation of hippocampal slice (from Andersen). First

trace: segment of series of impulses with randomly varying interimpulse intervals delivered in one in

vitro hippocampal slice experiment to perforant path (pp) fibers originating from entorhinal

cortex (ENTO) and terminating in dentate gyrus (DG). Second trace: Field potential responses

recorded from DG. The narrow, biphasic deflections preceding the field potential responses are

stimulation artifacts and thus correspond to the occurrence of stimulation impulses in the first trace.

The large negative-going deflection in each response is the “population spike.” Amplitude of the

population spike correlates positively with the number of granule cells reaching threshold

and generating an action potential. It is the amplitude of the population spike that is used as the

measure of output from both DG and CA3. Third trace: Field potential responses recorded from

CA3. The stimulation artifacts are much smaller in amplitude. Note the occurrence of multiple

population spikes, which is presumed to be due to excitatory, recurrent collaterals unique to the

CA3 field. Bottom trace: Field potential responses recorded from CA1. These responses are

recorded from the dendritic region of CA1 and thus reflect population EPSP responses of CA1

neurons rather than population action potentials (“population spikes”). Note the progressively

longer delay in the onset of response following the stimulation artifact for fields DG, CA3, and CA1,

reflecting the propagation of activity through the hippocampal trisynaptic circuit.
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A small segment of one random train and the evoked dentate, CA3, and CA1 field

potential responses is shown in Figure 19.4. The top trace represents the impulse

stimulations used to activate perforant path afferents to dentate. The strong nonlinearities

of the dentate are evident in the second trace; The amplitude of the negative-going popu-

lation spike varies considerably as a function of interimpulse interval. Likewise, CA3

population spikes and CA1 population EPSPs also exhibit strong variation in amplitude

as a function of the temporal intervals of the train. It is the dependence of CA3 output on

interimpulse interval and dentate population amplitude that must be captured by the model.

19.6 NONLINEAR DYNAMIC MODELING OF CA3
INPUT/OUTPUT PROPERTIES

Replacement of the CA3 hippocampal region requires that a sufficiently accurate

quantitative representation of the CA3 functional mapping be developed, leading to a scal-

able implementation with reduced complexity. Considering that such quantitative

representation should be developed solely relying on the input/output data sets generated
experimentally, the Volterra–Poisson modeling approach was chosen and appropriately

adapted to our problem. The Volterra modeling approach is a mathematically rigorous,

scalable method [39, 40] with predictive capabilities that models nonlinear dynamics

with an arbitrarily chosen level of accuracy, based on input/output data, and has been

successfully applied in modeling biological systems [41]. The nonlinear dynamic input/
output characteristics of the modeled system are quantitatively captured by the Volterra

kernels. Volterra kernels are system descriptors that remain invariant irrespective of the

type or the power of the stimulus.

The experimental data sets used to estimate the Volterra–Poisson model of CA3

were population spike sequences recorded at the granule cell layer (input) and the corre-

sponding population spike sequences recorded at the pyramidal cell layer of CA3 (output).

These population spike sequences were evoked by fixed-amplitude, Poisson-distributed

(2 Hz mean rate) random impulse train (RIT) stimulation applied at the perforant path.

The model estimation was carried out using only the amplitude and the interspike intervals

of the population spikes in the input and output sequences (Fig. 19.5). Given the sequence

of events in the input and the output data sets, quantitative determination of the nonlinear

dynamic properties of CA3 was achieved by computing the Volterra–Poisson kernels.

One of the key advantages of Volterra–Poisson kernels is their invariance with respect

to the variability of the amplitude of the spikes in the stimulus sequence.

Figure 19.5 The nonlinear dynamic model of the CA3 hippocampal region receives input x(n) from dentate,

a Poisson point process with events (electrical impulses) of variable amplitude (Ai) and randomly

varying interimpulse intervals and generates a series y(n) of variable-amplitude point process events

synchronous to the input.
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The computation of Wiener–Poisson kernels [32, 42] and Volterra–Poisson kernels

[37] has been addressed in the literature before, when the amplitude of the impulses in

the input sequence was fixed. However, in our case, besides variability of the interimpulse

interval there was variability in the amplitude of the impulses at the input sequence.

As a result, the equation representing the single-input/single-output, third-order Vol-

terra–Poisson model employed to capture the CA3 nonlinear dynamic properties was

adapted as follows:

y(ni) ¼ Aik1 þ Ai

X

ni�m,nj,ni

Ajk2(ni � nj)

þ Ai

X

ni�m,n j1
,ni

X

ni�m,n j2
,ni

A j1A j2k3(ni � n j1 , ni � n j2) (19:1)

where Ai, Aj represent the varying amplitudes of the population spikes recorded at the

granule cell layer (input); y(ni) represents the amplitude of the population spikes recorded

at CA3 (output); k1, k2, and k3 are the first-, second-, and third-order kernels, respectively;

ni is the time of occurrence of the current impulse in the input/output sequence; and nj is

the time of occurrence of the jth impulse prior to the present impulse within the kernel’s

memory window m.

The estimation of the kernels was facilitated by expanding them on the orthonormal

basis of the associated Laguerre functions Ll(n)g [35] as follows:

k2(ni � nj) ¼
X
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X

L�1
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Combining Eq. (19.1) and (19.2), we obtain
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which can be solved via least squares to yield estimates of the expansion coefficients al,

bl1l2. The computed expansion coefficients are used to reconstruct the kernel estimates

and are the quantities entered in the field-programmable gate array (FPGA) along with

k1 to implement the model on the chip for the functional replacement of CA3.

The accuracy of the model and the reliability of the kernels were evaluated using

the prediction normalized mean-square error (NMSE), mathematically defined by the

equation

NMSE ¼
P

i ymodel(ni)� ydata(ni)½ �2
P

i ydata(ni)½ �2
(19:4)

where ymodel is the model response obtained by substituting the computed kernels into

Eq. SC.1 and ydata is the sequence of amplitudes of the population spikes recorded at

CA3. Small NMSE values indicate that the kernels reliably capture the nonlinear dynamics
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of the system they model. Larger NMSE values suggest that higher order terms are needed

or that the data are noisy.

Data collected from several hippocampal slices were analyzed and the associated

Volterra–Poisson kernels were computed. A third-order model was selected as it provided

a consistent improvement in NMSE between 4 and 9% compared to a second-order model.

The class of computed kernelswith consistently lowNMSE in the neighborhoodof 6%exhib-

ited behavior similar to the representative case shown in Figure. 19.6. In particular, the

second-order kernels exhibited a fast depressive phase in the beginning followed by a brief

facilitatory phase and a slow, shallow depressive phase before returning to the zero line.

The third-order kernels exhibited a fast facilitatory phase in the beginning followed by

slower and shallower depressive and facilitatory phases before returning to the zero plane.

One of the most important properties of a Volterra–Poisson model is its predictive

capability to arbitrary input patterns. It is a property that is necessary for the CA3 model to

function as a CA3 replacement, since it is not bound to a specific input sequence. Each

Figure 19.6 Representative second-order kernel (a) and third-order kernel (b) of CA3 nonlinear

dynamic mapping.
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value predicted by the Volterra–Poisson model is the resultant of the nonlinear functional

terms of the corresponding Volterra–Poisson series. The nth term of the series contributes

to the computation of the predicted output with the effect of nth-order interactions among

the input impulses weighed by the nth-order kernel across its memory window. Thus, the

second-order term represents the effect on the predicted output of the interaction between

Figure 19.7 Example of model prediction. (a) Bottom waveform (measured CA3 input): three

consecutive dentate population spikes and corresponding population spike amplitudes (gray); top

waveform (measured CA3 output): three consecutive CA3 population spikes and corresponding

population spike amplitudes (black arrows). (b) Detail of third population spike of top waveform in

(a) recorded at CA3, its measured amplitude (positive, black arrow starting the peak of the

population spike), and its model predicted counterpart (positive, black arrow to the right of the

measured amplitude), which is sum of component attributed to first-order interactions (rightmost,

positive, black arrow), component attributed to second-order interactions (negative, gray arrow to

left of first-order term), and component attributed to third-order interactions (positive, gray arrow

to left of second-order term). (c) Second-order kernel with gray dots marking its weight to

contribution of second-order interactions of input population spike amplitudes shown on bottom

waveform in (a). (d ) Third-order kernel with gray dots marking its weight to contribution of

third-order interactions among input population spike amplitudes shown on bottom waveform in (a).
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pairs of input impulses weighed by the second-order kernel across the memory window of

about 1000 ms. Similarly, the third-order term represents the effect on the predicted output

of the interaction among triplets of input impulses weighed by the third-order kernel across

the memory window of the kernel. An example of how each term of the Volterra–Poisson

model of the CA3 contributes to the computation of predicted output of the model is shown

in Figure. 19.7.

The amplitude of the third spike of the CA3 response (Fig. 19.7a, top waveform) is

predicted using the computed Volterra–Poisson model of CA3. The amplitudes of the

three population spikes (Fig. 19.7a, bottom waveform) measured at the dentate (CA3

input) are processed by the model of Eq. (19.1) to produce the model response for the

third CA3 spike amplitude. In this case, Eq. (19.1) gives

y(ni) ¼ Aik1 þ first–order term (rightmost positive gray arrow)

þ Ai½Ai�1k2(Dn1)þ Ai�2k2(Dn2)�
þ second–order term (right negative black arrow)

þ Ai½Ai�1Ai�1k3(Dn1,Dn1)þ Ai�2Ai�2k3(Dn2,Dn2)þ 2Ai�1Ai�2k3(Dn1,Dn2)�
þ third–order term (gray arrow left of 2nd-order term) (19:5)

Figure 19.8 The CA3 model prediction (NMSE ¼ 8.21%). (a) Predicted population spike amplitudes

(black) and their differences from corresponding measured population spike amplitudes (gray). (b) Segment

of CA3 model prediction. (c) Corresponding segment of measured CA3 population spike amplitudes. The

shaded rectangles highlight two areas for comparison between model-predicted values and recorded values.

19.6 NONLINEAR DYNAMIC MODELING OF CA3 INPUT/OUTPUT PROPERTIES 321



The term of each order in Eq. (19.5) contributes to the value predicted by the model with

the effect of input interactions of the same order weighed by the corresponding kernel.

The predictive capability of the Volterra–Poisson model enabled us to evaluate

quantitatively the accuracy of the model representing the CA3 functional mapping and

the reliability of the computed kernels that reflect the nonlinear dynamic input/output
properties of CA3. The measure we used for this evaluation was the prediction NMSE

defined by Eq. (19.4). The small NMSE values (on the order of 6%) observed during

the analysis for the selected class of models indicate that the kernels computed from the

experimental data sets reliably captured the CA3 nonlinear dynamics and that the predic-

tion accuracy of the resulting CA3 model is high. An example of model prediction using

the Volterra–Poisson model developed for CA3 using the slice experimental data is shown

in Figure 19.8.

19.7 MICROCIRCUITRY IMPLEMENTATION OF CA3
INPUT/OUTPUT MODEL

19.7.1 System Overview

The goal of the hardware implementation phase of the hippocampal prosthesis project is to

build a highly efficient, low-power system-on-a-chip for replacing damaged portions of the

hippocampus. The system, as depicted in Figure 19.9 accepts analog signals from the

biological tissue, buffers and amplifies the signals, and then performs an analog-to-digital

conversion (ADC). The sequence of processing is controlled by a finite-state machine

(FSM), and automatic gain control (AGC) circuitry adjusts the amplitude of the input

signal. Once the signals are in binary form, other circuitry identifies and calculates the

amplitude of the population spike (“spike detect” in Fig. 19.9) and transmits the result

to the circuitry that performs the nonlinear modeling function (“response generator” in

Fig. 19.9). Each digital nonlinear response prediction is converted to a biphasic represen-

tation compatible with electrical stimulation of neuronal tissue (“output waveform

Figure 19.9 Top-level system diagram showing major functional blocks and signal flow, including

relationship of real-time spike detection, response generator, and output waveform generator,

which are all in digital domain.
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generator” in Fig. 19.9). The result is converted from digital to analog (digital-to-analog

conversion, DAC) and is transmitted to the biological tissue through a conformal multisite

electrode array (described in Section 19.8).

19.7.2 Real-Time Population Spike Amplitude Extraction

Real-time population spike amplitude identification and measurement are performed in the

digital domain. Digital circuitry implemented on an FPGA is used to determine the popu-

lation spike amplitude by a process of filtering, differentiation, and intelligent integration.

The algorithm for real-time population spike extraction was written in C language. The C

programs were converted to VHSIC Hardware Description Language (VHDL) code. The

VHDL description can be used to program the FPGA and to synthesize the VLSI

implementation.

By using the FPGA, we have an opportunity to validate our algorithm and the VHDL

in an experimental setting before we proceed with fabrication of an integrated circuit. This

provides a significant level of risk reduction when we design and fabricate the integrated

circuit. The FPGA we selected is configured as a plug-in card for a conventional Intel/
AMD-style personal computer. The computer is used to compile the VHDL and then to

download the VHDL into the FPGA. The computer also allows data logging while the

FPGA is operating. In this fashion, we recorded all data samples from our ADC as well

as the population spike amplitudes generated by the FPGA. This allows us to verify the

accuracy and precision of the population spike identification and amplitude measurement.

We designed and built a chassis for the interface electronics that includes an instru-

mentation amplifier providing very high input impedance, a variable-gain amplifier (used

to set the operating range of our analog-to-digital converter), a high-pass filter at 0.5 Hz, a

low-pass filter at 30 kHz, and a level shifter. The filtered signal is then applied to the ADC.

The converter is a 16-bit device with an input range from 0 to 5 V. The converter is

clocked at 10 kHz, controlled by the FPGA. Communications between the interface elec-

tronics and the FPGA are handled by low-voltage differential signaling (LVDS).

The population spike identification and amplitude measurement algorithm

consists of filtering, differentiation, and integration of signals above threshold. Spectral

analysis of excitatory postsynaptic potential (EPSP) waveforms showed little energy

above 500 Hz, so it was chosen as the upper cutoff, frequency. We then worked to opti-

mize the filter design to use the smallest number of gates. The optimum choice was to

use a single-section, infinite-impulse-response (IIR) low-pass filter, with a 3-dB frequency

of 452 Hz. This filter is described by the recursive equation

yiþ1 ¼ yi þ
xi � yi

22

and shows that the filter can be implemented with one subtraction, one addition, and a right

shift of 2 bits (which is just a wiring connection). Differentiation is performed using first-

order differences

d

dt
xi � xi � xi�1

The integration algorithm consists of accumulating the absolute value of the derivatives as

long as they exceed a predetermined threshold.

In Figure 19.10, we show the dentate population spike (detector input signal) and the

filtered difference values used to compute the size of the spike. The integration begins and

ends when the difference value crosses software-settable thresholds (shown here as y ¼ 0).
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We have determined threshold values that deliver good accuracy but are relatively

insensitive to the noise amplified by the differencing operation. Future implementations

of this logic will retain the capability to adjust threshold values for greater experimental

flexibility.

The population spike amplitude measurement procedures operate with very high

accuracy. Figure 19.11 depicts the comparison of spike data from three experiments.

The first two panels show near-perfect agreement between the floating-point software

models and fixed-integer software models computed using hardware. The third panel

shows a higher NMSE due to the loss of a single sample in the logging file: Because

the values do not correlate in time, the point appears as an off-axis error. The detected

spike agrees with the software model when the sample logging is padded by one time step.

We have completed initial design and construction of the interface electronics chassis

as described earlier in this section. The interface electronics receive analog population spike

Figure 19.10 Input waveforms. Dentate gyrus response and DG population spike and results

of intermediate processing: first difference and integration areas that are gated by stimulus artifact.

Figure 19.11 Results of three separate experiments showing close agreement of actual

experimental measurements to software and hardware models. The higher error in the third

panel was caused by an input sample that was not detected correctly.
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waveforms from the existing experimental apparatus, which is either a multielement array

built by Multi Channel Systems [57] or a multi-microelectrode plate systems built by

Gunter Gros. The complete system has been repeatedly tested with live slices of

hippocampal tissue to verify the algorithms and hardware implementation.

19.7.3 Hardware Implementation of Nonlinear Modeling

We have previously explored several different hybrid analog/digital designs for hardware
implementation of hippocampal nonlinear input/output properties [43–47]. Due to

difficulties in controlling offset currents and the lack of scalability of capacitors,

however, we have opted for totally digital designs [48, 49]. As described in the previous

section, nonlinearities of the hippocampal system are to be expressed by Volterra kernel

functions. Each kernel function is expressed as a summation of basis functions which are

chosen to be generalized Laguerre functions. By appropriate choice of the Laguerre

parameter a, we obtain an excellent fit to experimental data with a small set of basis

functions.

Laguerre functions can be evaluated either directly by summing a power series or

indirectly by a recursive tableau. We have written computer programs implementing

both methods to evaluate complexity. The recursive form of the Laguerre calculations

is shown below:

Li(n) ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

a n(1� a)
p

i ¼ 0, n � 0
ffiffiffi

a
p
Li�1(0) i . 0, n ¼ 0

ffiffiffi

a
p

½Li(n� 1)þLi�1� �Li�1(n� 1) i . 0, n . 0

8

<

:

Recursion is desirable for hardware implementation for several reasons. First, only

one time step of memory is required. We can overwrite each memory location as “stale”

results are no longer needed. Second, the operating speed of the circuit can be greatly

reduced: Only values required for the current time step need be calculated. Finally, the

calculation never changes: Hardware required for direct computation is much less compli-

cated than a full programmable processor. The three cases of the calculation (initialization

or time-step zero, polynomial order zero, and all others) are handled by multiplexing the

boundary values into the circuit. The tableau in Figure 19.12 shows the calculation of three

orders of Laguerre polynomial over three time steps.

A major concern in calculation is numerical accuracy. The general requirement that

implants use minimal power forces calculation with fixed-point integer arithmetic.

Numerical experimentation determined that 20-bit fixed-point calculation is adequate

for the Laguerre recurrence. We use signed integers and round all calculations to the

closest integer. It is not necessary to use a full 20-bit multiplier; by factoring the recurrence

Figure 19.12 Tableau showing calculation of three orders of Laguerre polynomial over

three time steps and how values are reused across time steps.
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relation, we find we can subtract quantities of nearly equal magnitude obtaining a much

smaller magnitude which significantly reduces the multiplier size.

It is possible to compute the Laguerre polynomials one time only and store the

values for all orders and all important time lags. The remainder of the calculations

could be based on table lookup. Typical values are orders 0,1, . . . , 8 and time lags

0, 1000. As a consequence, a new Laguerre recursion can be initiated each time a pulse

arrives, and (instead of saving all values) the recursion relation can be used to obtain

the current values of the Laguerre functions. Thus, we plan to have 10 (or fewer) recur-

sions running simultaneously, with each recursion requiring storage of only approximately

16 numbers (the current values of the Laguerre functions of order 0–7 as well as the values

of the Laguerre functions at the previous time step). Each recursion will terminate

when the Laguerre functions approach zero. Figure 19.13 depicts the block diagram of

the recursive hardware showing the “compactness” of this implementation.

The logic for the CA3 response calculation can be implemented in approximately

1000 gates, a small fraction of an FPGA on a commercial board available from Dini

Group in San Diego, California. To ensure real-time response, on every sample, the

state of the Laguerre polynomials must be updated, the presence of a CA3 population

spike detected, and a response generated if a spike is detected. Figure 19.14 shows a

Figure 19.13 “Register transfer” level diagram of recursive function used to compute Laguerre

polynomials. Note that only two adders and one multiplier are required in this “compact”

implementation.

Figure 19.14 “Timing diagram” showing time sequence within 10-ms sample period of calculations

performed after spike is detected.
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“timing diagram” illustrating how these functions are related in time. In addition, a C

program was written to demonstrate the computation when performed with integer arith-

metic. Integer arithmetic is highly desirable for hardware implementations as it is very

compact when compared to floating-point processors. The results of the C program

were compared to values derived by the mathematical modeling group to ensure accuracy

and consistency.

The C program was also used as a platform for studying the numerical accuracy

required for the recurrent computation of the Laguerre polynomials used as the basis func-

tion in the mathematical model. It was determined that 16-bit signed arithmetic would

produce stable and accurate results over a recursion of 1000 iterations. Figure 19.15

shows, for several inputs of a random impulse train applied to the perforant path,

results of the FPGA-based CA3 model prediction compared to biological CA3 responses

recorded from a hippocampal slice. It is evident that the correspondence between the hard-

ware model and the biological system is high.

The elements were modeled using FPGA design tools which provide an integrated

design management interface for the user. An example of this design method is shown in

Figure 19.16, which depicts the main state machine controlling the update and response

calculations. Once specified, all elements were described with the VHDL and simulated.

The results of the simulation were compared to the results of the C program executions

to verify the circuit would function correctly. Once the simulation was verified,

the VHDL description was used to generate a configuration file for the FPGA. The

configured FPGA was evaluated in several ways to determine proper operation. A

data file captured during a brain-slice experiment was used to generate an input

waveform.

Figure 19.15 Comparison of FPGA-based nonlinear model predictions of hippocampal

CA3 output with biological CA3 output as function of dentate population spike input for

segment of random impulse train stimulation of perforant path. Predicted (light gray

bars) and electrophysiologically recorded (dark bars) CA3 population spike amplitudes

are shown for a segment of random interval train stimulation. Recorded dentate population

spike amplitudes for impulses within the random interval train were used as model input.
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19.7.4 Output Waveform Generation

Finally, the output amplitude as calculated from the Laguerre nonlinear model is divided

into two roughly equivalent pulses in time and amplitude. These two digital pulses, one

positive and one negative, are input to the DAC, which produces a biphasic analog

pulse to stimulate the tissue.

19.8 CONFORMAL, MULTISITE ELECTRODE ARRAY
INTERFACE

In this section, we describe in detail the design, fabrication, and testing of novel planar con-

formal multielectrode arrays (cMEAs) that comprise topographically mapped, spatially-

distributed electrodes that conform to the local cytoarchitecture of the brain regions

stimulated and recorded in a given experiment. These conformally mapped arrays allow

the spatiotemporal relationships of neuronal activity to be recorded without the need for

external electrodes. Such site-specific electrical simulation and recording enable efficient

data collection for complete nonlinear systems modeling of the hippocampal trisynaptic

pathway, as described above.

Two specific types of cMEAs have been implemented: (1) a multisite stimulation/
recording MEA capable of sampling the entire trisynaptic pathway, including the dentate

gyrus, CA1, and CA3 regions of rat hippocampus, and (2) a similar stimulation/recording
MEA capable of stimulating at the input to the dentate, recording the output from dentate,

interfacing with an external electronic or computer system that is capable of simulating the

nonlinear input/output characteristics of the CA3 hippocampal region, stimulating at the

Figure 19.16 Finite-state machine that controls all update and response calculation sequencing.
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input to CA1, recording the output from CA1, and interfacing once again with an external

electronic or computer system. The CA3 replacement demonstration experiments to date

have been based on both computer and FPGA interfaces, pointing toward full integration

with an application-specific integrated circuit (ASIC) implemented in a silicon-based

VLSI circuit.

Electrode pad layouts were devised to provide full coverage of the three critical

regions of rat hippocampal slices for use in extracting nonlinear dynamical models and

also to provide an interface between the neural tissue and the FPGA/VLSI hardware

during acute hippocampal slice testing. In order to find the optimal electrode pad place-

ment, we conducted numerous experiments with conventional sharp glass electrodes

designed to locate regions of high neuronal density, both for stimulation and recording.

Based on the exact coordinates provided by these external probe experiments, we

designed two sets of cMEAs, one for full coverage of the trisynaptic pathway (so-called

trisynaptic cMEAs) and one for the CA3 replacement experiments (so-called CA3 replace-

ment cMEAs). The latter arrays incorporate optimally placed sets of recording pads in the

CA3 region and also have optimally placed stimulating and recording electrodes in both den-

trate and CA1. As such, these cMEAs have allowed for direct interfacing with the FPGA/
VLSI hardware that implements the functional nonlinear dynamical model of CA3.

The trisynaptic cMEA design, as shown in Figure 19.17, includes nine sets of seven

linearly spaced 28-mm-diameter pads with 50 mm center-to-center spacing, each set

spanning one of the key input/output regions of the dentate, CA3, and CA1 regions of

rat hippocampus, thereby allowing for a complete diagnostic assessment of the nonlinear

dynamics of the trisynaptic hippocampal circuitry.

The CA3 replacement cMEA design, as shown in Figure 19.18, includes two differ-

ent circular pad sizes: (1) 28-mm-diameter pads with 50 mm center-to-center spacing are

grouped in series to form sets of stimulating pads in dentate gyrus (three at a time) and

CA1 (two at a time) and (2) 36-mm-diameter pads also with 50 mm center-to-center

spacing are used for recording in dentate, CA3, and CA1. By grouping sets of stimulating

pads in series, we are able to achieve significantly larger pad surface areas and correspond-

ingly larger total stimulating currents than are achievable with single pads, while still

maintaining essential conformality to cytoarchitecturally relevant features. These stimu-

lating pads have been placed only in dentate and CA1 in order to interface with the

FPGA/VLSI hardware that replaces the CA3 region entirely and to thereby support the

Figure 19.17 Optical

photomicrograph of cMEA

incorporating trisynaptic

electrode pad

layout proximity coupled to

rat hippocampal slice. The

nine sets of seven linearly

spaced 28-mm-diameter

pads conform to DG, CA3,

and CA1 regions.

19.8 CONFORMAL, MULTISITE ELECTRODE ARRAY INTERFACE 329



Figure 19.18 Optical photomicrograph of central region of new conformal multielectrode array

specifically designed for CA3 replacement demonstration. Stimulating and recording electrodes

are arranged in both the DG (lower left) and CA1 (upper middle) regions, while two sets of recording

electrodes are provided in the CA3 (lower right) region for prereplacement characterization. The

array pin-out is designed to be compatible with the Multi Channel Systems MEA-60 apparatus.

Figure 19.19 Conformal multielectrode array microfabrication process. The three-photomask

lithographic fabrication procedure allows for submicrometer resolution to be achieved and allows

for the design of many different electrode pad layouts based on the photomask design.
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envisioned CA3 replacement experiment protocol. These cMEAs have provided a durable

electrical interface between the neural tissue and the FPGA/VLSI hardware in initial CA3
replacement experiments, as described in more detail in other sections.

The general microfabrication procedure employed for these cMEAs is as

follows (see Fig. 19.19). A set of indium tin oxide (ITO) electrical leads is defined on

an ITO-coated glass substrate [50] of dimensions 49 mm � 49 mm � 1.1 mm by the

first photomask exposure and subsequent acid-bath etching. A silicon nitride insulation

layer is then deposited by means of plasma-enhanced chemical vapor deposition

(PECVD). This layer electrically insulates individual ITO lines from each other and

from the saline solution that the cMEA will be exposed to during acute slice testing. A

second photomask is then used to define the vias that will form the conformal metal

(Cr/Au) electrode tips. The Cr/Au metal layer is deposited by electron beam evaporation.

After deposition of a second insulating layer composed of SU-8 photoresist, a final photo-

lithographic exposure is performed to pattern vias through the insulation layer to the pre-

viously deposited gold electrodes. The thick (1.5-mm) epoxy-based SU-8 photoresist

provides for decreased shunt capacitance of the cMEA as a whole, thereby enabling

higher amplitude neural recordings. The array pinout includes 60 signal channels and is

designed to be compatible with the Multi Channel Systems MEA-60 apparatus.

The development of such high-density cMEAs enables not only the CA3 replacement

experiment described herein as a specific example but also the high-precision extraction of

nonlinear dynamical models from other brain regions. The combination of high-density elec-

trode arrays with conformal mapping also anticipates the development of functional cortical

neural prosthetic devices. By way of comparison, it should be noted that many research

groups have employed conventional MEAs (based on geometrically regular grid patterns)

for purposes of neurophysiological characterization [51–55]. Currently, several such

conventional arrays are commercially available (e.g., Multi Channel Systems [56] and the

Center for Network Neuroscience at the University of North Texas [57]). These arrays typi-

cally feature large pad sizes (on the order of 150–250 mm) as well as electrode placements

that allow for large area coverage but not for conformal topological mapping with high-

density electrode placements in the region(s) of interest. The electrode array pads we have

employed herein are considerably smaller in size, allowing for higher density placement,

and have been accurately placed so that they conform to the specific cytoarchitecture of

the brain region of interest (e.g., hippocampus).

19.9 SYSTEM INTEGRATION: RESTORATION OF
HIPPOCAMPAL TRISYNAPTIC CIRCUIT DYNAMICS
WITH CA3 PROSTHESIS

Recall that the goal of this multidisciplinary effort is to achieve the stage 1 prosthetic

system for the hippocampal slice by integrating the components described above. More

specifically, we seek to functionally replace the biological CA3 subregion of the hippocam-

pal slice with an FPGA/VLSI-based model of the nonlinear dynamics of CA3, such that

the propagation of temporal patterns of activity from dentate ! VLSI model ! CA1

reproduces that observed experimentally in the biological dentate ! CA3 ! CA1

circuit. We have successfully performed the first integration of an FPGA-based nonlinear

model of the CA3 hippocampal region with the hippocampal slice by interconnecting the

FPGA and the living slice through a conformal, planar, multisite electrode array. At the

time of this review, we have succeeded in supporting real-time communication of
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stimulation-induced responses of dentate granule cells from the slice to the FPGA, gener-

ation of CA3-like outputs from the FPGA device, FPGA-triggered stimulation of CA1,

and recording of electrophysiological output from CA1.

The preparation we are using to test our stage 1 prosthetic system is a hippocampal

slice with severed CA3 afferents (Fig. 19.20; the transection cannot be seen visually).

Electrical stimulation of inputs to the dentate gyrus still evokes excitatory responses

from dentate granule cells in this preparation, but excitation cannot propagate through

the remainder of the trisynaptic pathway, that is, to CA3 and from CA3 to CA1. To

reinstate the function of CA3 and thus reinstate propagation through the trisynaptic, we

have interconnected our FPGA model of CA3 through the specially designed, conformal

multisite electrode array (black dots in the slice photomicrograph) described in the pre-

vious section, which allows recording electrical activity from and stimulating electrical

activity in the slice.

A demonstration of the integration of all components of our hippocampal slice pros-

thesis is shown in Figure 19.20. In this example, we have used as inputs to a transected

slice only a subset of possible stimulation patterns and, more specifically, four-impulse

trains with variable interimpulse intervals. Although limited in terms of number of

impulses, the interimpulse intervals were chosen to evoke large-magnitude nonlinearities

in the responses of dentate granule cells. Thus, stimulation of inputs to the dentate with a

variable-interval four-impulse train (Fig. 19.20, panel 1) generates variable-amplitude

output from dentate granule cells (panel 2). The output is recorded by the multisite

array and transmitted to the FPGA model of CA3 (panel 3). The FPGA model A/D

Figure 19.20 System integration of FPGA-based nonlinear model of CA3 hippocampal region

with hippocampal slice in which output from dentate gyrus (mossy fibers in the hilus) has been

transected, thus eliminating normal propagation of activity from dentate ! CA3 ! CA1. The

FPGA-based model bidirectionally communicates with the living slice through a conformal, planar,

multisite electrode array. This system supports real-time communication of stimulation-induced

responses of dentate granule cells from the slice to the FPGA, generation of CA3-like outputs from

the FPGA device, FPGA-triggered stimulation of CA1, and recording of electrophysiological output

from CA1.
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converts the extracellular population waveform, identifies the population spike component

of that waveform, and calculates its amplitude. Based on the amplitude and history of

interimpulse intervals, the FPGA-based nonlinear model of CA3 computes the appropriate

CA3 output in terms of biphasic stimulation pulses (panel 4), the magnitudes of which are

equivalent to the population spike amplitudes that would have been generated in the CA3

by that particular output. The biphasic output pulses generated by the FPGA are trans-

mitted through the multisite array and used to electrically stimulate inputs to CA1

(panel 5). The resulting variable-amplitude output (population EPSP) is recorded from

CA1 (panel 6), demonstrating the functional reinstatement of the dentate ! CA3 ! CA1

circuit. These above results demonstrate that the various components we have proposed

for our prosthesis can be developed and effectively integrated into a working system.

Figure 19.21 Comparison of hippocampal CA1 output in response to FPGA model of CA3 with

output of CA1 in response to biological CA3. Examples of results from two random impulse train

experiments are shown in the two panels, respectively: amplitudes of population EPSPs recorded

from the CA1 region are shown as a function of 50 impulses chosen from among 2400 impulses of

the random trains (1200 administered before transecting inputs to CA3; 1200 administered after

transection). Time intervals between impulses are not represented; only “input event” number

(sequence of sample impulses) is shown to “collapse” the x axis. Data for the intact slice (CA1

trisynaptic) are shown by gray boxes; data for the “hybrid” slice with the substituted FPGA model of

CA3 (CA1 replacement) are shown by black diamonds. For what is a wide range of intervals

captured in this 50-impulse sequence and what is a three- to fivefold difference in population EPSP

amplitude, note that CA1 output from the hybrid slice matches extremely well the CA1 output from

the intact slice.
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We are currently in the process of fully evaluating the output generated in the

CA1 region by our CA3 prosthesis system, that is, comparing CA1 output in response

to the FPGA model of CA3 with the output of CA1 in response to the biological CA3.

For these tests, we are using random impulse train stimulation of the perforant path

(rather than four-impulse trains with variable interimpulse intervals as described for

Fig. 19.20). Examples of results from two random impulse train experiments are shown

in Figure 19.21. Each panel illustrates results from one experiment: Amplitudes of popu-

lation EPSPs recorded from the CA1 region are shown as a function of 50 impulses chosen

from among 2400 impulses of the random trains (1200 administered before transecting

inputs to CA3; 1200 administered after transection). Time intervals between impulses

are not represented in the figures; only “input event” number (sequence of sample

impulses) is shown to “collapse” the x axis. Data for the intact slice (CA1 trisynaptic)

are shown in gray boxes; data for the “hybrid” slice with the substituted FPGA

model of CA3 (CA1 replacement) are shown in black diamonds. For what is a wide

range of intervals captured in this 50-impulse sequence and what is a three- to fivefold

difference in population EPSP amplitude, CA1 output from the “hybrid” slice matches

extremely well the CA1 output from the intact slice. Further quantification studies are

in progress.
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NEUROPROSTHETICS
Nigel H. Lovell, Luke E. Hallum, Spencer C. Chen, Socrates Dokos,

Philip Byrnes-Preston, Rylie Green, Laura Poole-Warren,

Torsten Lehmann, and Gregg J. Suaning

20.1 INTRODUCTION

It is indeed a lofty goal to engineer a vision prosthesis that would provide patterned vision

to sufferers of profound blindness. At the time of writing, no commercial device exists that

performs this function at even the most rudimentary level. There is however considerable

research activity in the area. One of the most investigated approaches has been an electri-

cal neurostimulation device comprising multiple individually addressable electrodes.

Certain aspects of the technology are proven due to the long-term success of recipients

of cochlear implants—devices that are used for hearing restoration in people suffering

from profound deafness and severe hearing impairment. However, in terms of complexity

of design, processing, and difficulties in neural interfacing and implantation, there is an

order-of-magnitude increase in difficulty. Despite the inherent complexity of the task,

progress in this research area has been rapid and exciting.

In this chapter, we will present a review of the state of art with regards vision

neuroprostheses, with an emphasis on retinal prostheses. Through an examination of the

neurobiology and biophysics at the electrode–tissue interface and by drawing heavily on

biologically inspired designs, we discuss critical areas that require concentrated research

and development. Briefly covered are topics relating to application-specific integrated cir-

cuits (ASICs), appropriate image processing for prosthetic vision, the psychophysics of pros-

thetic vision, and models of parallel stimulation at multiple electrode sites. As a means of

highlighting the need for greater understanding of parallel current injection in the retina,

we present modeling results from a hexagonal electrode array. This array has been designed

to maximize packing density and to form guard (current return paths) to reduce leakage cur-

rents when stimulating simultaneously using parallel current sources. In two companion

chapters, we present, first, a detailed discussion of design criteria for such devices with a

focus on electrode array fabrication, ASIC design, and more detailed modeling of parallel

stimulation using hexagonal electrode constructs [1]. Second, we conceptualize the prosthe-

tic vision problemwith regards the optics of the visual pathway and the relationship of this to

the formation of a retinal image [2].

In broad terms, the retinal neuroprosthesis field has spawned from experiences

gained in neurostimulation of the heart and of the cochlea. However, just as the stimulation

requirements, when moving from myocardium to cochlea, were magnitudes more
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sophisticated in terms of both encoding and stimulation rates, so too are there magnitudes

of difference when moving from the cochlea to the retina. Many research efforts in the

vision prosthetics area have simply adapted existing neurostimulation designs employed

in other organ systems. However, we advocate that significantly different approaches

will be necessary in order to realize a truly efficacious retinal implant. Some of these

approaches are detailed in the latter sections of this chapter.

20.2 RETINAL NEUROPROSTHESIS REVIEW

In terms of vision prosthetics, an approach that has gained much favor in recent years, and

indeed looks likely to realize a device analogous to the cochlear implant, is that of a neuro-

stimulator and electrode array implanted within the ocular anatomy. We review the field of

retinal prosthesis from a bioengineering standpoint.

In general terms, a vision prosthesis (or bionic eye as it is commonly called) will

capture an image (usually by way of an external camera), process this image into a

sequence of commands, and broadcast these commands to an implantable device using

a radio-frequency (RF) or laser source. Electronics in the implantable device will

decode the broadcast signal and use the incipient energy of the transmitter (as recovered

by the implant electronics) to inject charge into various locations of the neural retina via an

electrode array implanted epiretinally (see Fig. 20.1). A variant of this approach is where

Figure 20.1 A Schematic depiction of vision prosthesis system based on epiretinal implant.

An image acquired using a digital camera located on a glass frame is sent to a belt-worn processing

unit. Signals from this unit are sent to an RF coil located on the lens of the glasses. An ASIC

in the implanted part decodes the RF signals and uses the RF energy as a power source to direct

stimulus currents to various predetermined electrodes implanted epiretinally.
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the phototransduction is performed in situ by a subretinal implant. Typically such implants

have much larger number of electrodes (thousands as opposed to tens or hundreds) but in

many instances are unproven in terms of biocompatibility and capacity to inject sufficient

charge to elicit localized visual percepts.

In a retinal prosthesis, electrical stimulation of surviving neurons is performed by an

implantable device in order to elicit perception—that is, prosthetic vision. There have been

a number of excellent reviews of vision prosthesis approaches, including that of Zrenner of

University Eye Hospital, Tübingen [3], and Humayun’s group of the University of

Southern California [4–6], who addressed the issue from an ophthalmologic standpoint.

Humayun also reviewed the area with an emphasis on psychophysical phenomena [7].

Hetling and Baig-Silva [8] reviewed approaches but focused on the functional interface

with the retina.

20.2.1 Phosphene Phenomenon

It was the pioneering effort of Brindley and Lewin in 1968 [9] who instigated the current,

concerted effort by the scientific community to provide an electronic vision prosthesis.

However, the recorded phenomenon of the phosphene, the perception of light brought

on by electrical stimulation, and therefore the cornerstone of all electronic vision pros-

theses date back to 1755. At this time, LeRoy, in investigating the application of electricity

to “heal various illnesses,” noted that an electrical pulse delivered to the eye produced the

sensation of light [10]. In 1929, Foerster went further, applying stimulation to the occipital

cortex and reporting on the perception of spots of light. In so doing, he coined the term

phosphene [11].

Despite Foerster’s cortical approach, the Australian inventor and radio engineer

Graham Tassicker patented a retinal stimulator in 1953 based on the Becquerel effect

(the voltage produced by the unequal illumination of two electrodes placed in an electro-

lyte) and the photosensitive material selenium [12]. His device was implanted in a female

subject, suffering from a large central scotoma, between the choroid and sclera. After an

apparent event-free recovery, the subject reported seeing uniform white light in the region

of the implant and an increased confidence in mobility. Tassicker’s paper indicated that

further findings would be reported. These, however, were not forthcoming to the best of

the authors’ knowledge, and Tassicker’s efforts became obscured over time, the retinal

prosthesis remaining in its infancy.

In the late 1960s, Brindley and Lewin devised a helmet comprising 80 transmitters

which communicated to 80 receivers, implanted at the cortical surface, by way of

transcutaneous electrical induction [9]. Their subject was a 52-year-old female volunteer

suffering from bilateral glaucoma whose visual impairment comprised limited perception

of light in one eye and the detection of only some movement in its fellow. “Like a star in

the sky”—the subject’s description of a phosphene—heralded the success of phosphene

vision; the simultaneous perception of some 35 phosphenes could be elicited by the appar-

atus, 16 of which were within 108 of the subject’s point of regard. Furthermore, underlying

the complex interactions in the cortex, the phosphenes moved with eye movements.

A subsequent patient was able to read Braille characters using the device alone.

Subsequent to Brindley’s experiments, the question arose as to where to place the

implantable stimulation apparatus: at the brain itself, the optic nerve, or indeed the

retina? The former attracted much early attention, and in the last 10 years focus has mark-

edly shifted to the latter. As Brindley himself admitted, for a retinally placed prosthesis,

surgical approaches are less invasive, obviating the risks of intracranial neurosurgery

in otherwise healthy patients. Further, the spatial mapping of the retina, maintained
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between its outer and inner neuronal layers [13], is simpler and more functionally

accessible than the retinotopic mapping of the visual cortex; focal stimulation has been

proven in humans and animal models [14–17]; and it has been found that the inner

layer retinal neurons survive in the face of outer retinal degeneration [18]. That said,

the changes in the neural retina (neural deafferentation and remodeling) and in degenera-

tive conditions such as age-related macular degeneration (AMD) and retinitis pigmentosa

(RP) result in substantial loss of neural tissue [19]. These changes are progressive with the

loss of the sensory retina effectively causing deafferentation of the neural retina. As a

response there can be large-scale reorganization of the retina with substantial gliosis.

The question as to whether degeneration of this nature invalidates a retinal approach is

vexatious. While the degeneration certainly makes the interfacing to the neural retina

more difficult, there is enough evidence to demonstrate that crude phosphene vision is

achievable in humans with advanced retinal degeneration [14, 15, 18, 20, 21]. What is

also unknown is whether a neurostimulation device chronically implanted will have a

rescue effect on the neural retina and possibly arrest further degeneration.

20.2.2 Electronic Vision Prosthesis

The retinal neuroprosthesis approach proposes electrical stimulation at the retina, making

use of an intact optic nerve, to restore vision for sufferers of photoreceptor degeneration,

such as AMD and RP. However, for patients suffering from diseases such as glaucoma,

which affects the retinal ganglion cells (RGCs) and hence the optic nerve, an electronic

vision prosthesis would need to directly stimulate more central sites of the human

visual system (HVS), such as the geniculocalcarine tract [22], the superior colliculus

[23], or the visual cortex itself. Out of these three, by way of the pioneering work of

Brindley, Donaldson, Marg, Dobelle, and Henderson [9, 22, 24–26], the latter has

shown the most promise. The Dobelle group has attracted much coverage from the

popular media for their implanted array of cortical surface electrodes [27]. The patient

is provided phosphenized vision by way of 64 cortical surface electrodes, the phosphenes

being highly disarrayed in the visual field. With training, the subject, despite making little

use of the device overall, is reported to be able to see Snellen letters and count fingers,

although follow-up scientific reports of this work have not appeared in recent literature.

Surface stimulation of the cortex, however, requires charge injections substantially

greater than those required at the retina if it is to elicit visual response ([28], cf. [15]).

Further to the possibly deleterious effects hereof, the electrotonicity of the cortex, given

these relatively large charge injections, indicates that electrode densities high enough to

elicit useful multifocal vision are not achievable. Several groups are in pursuit of intracor-

tical approaches in answer to the shortcomings of surface stimulation [29–31]. Notable

recent progress has been made by Bradley et al. [32] with the use of 152 iridium electrodes

layered with an activated iridium oxide film, implanted in the primary visual cortex of a

rhesus monkey. Open questions remain: How does one deliver meaningful perception in

the face of the complex retinotopic mapping of the visual cortex? How does one mitigate

the risk of intracortical neurosurgery for largely developmental work?

Alternately, a stimulator at the optic nerve would draw on less invasive surgical

techniques and on procedures in related electroneurophysiological fields, such as

functional electrical stimulation of afferent nerve fibers for muscle control using “cuff”

electrodes [33]. Furthermore, sieve electrodes for intrafascicular recording and stimulation

such as those being developed by Stieglitz and co-workers [34], in combination with

promising results in optic nerve regeneration [35], may eventuate in an optic nerve stimu-

lator with profound restorative capabilities. Belgian researchers, led by Veraart, by way of
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a percutaneous connector and a “self-sizing spiral-cuff” electrode with four contacts

[36, 37], have chronically tested and modeled [37] an implant in a totally blind RP

sufferer. The device is reported to deliver phosphenized perception, with phosphenes

typically occurring in clusters of up to 30, subtending between 8 and 42 min of arc.

While the “optic nerve” approach exhibits shortcomings similar to the visual cortical

approach in terms of retinotopic mapping, given the small number of electrodes, the

manner in which stimulation parameters have been demonstrated to modulate phosphene

location, size, and luminosity is most encouraging for the future of optic nerve stimulation.

Indeed after extensive training, the subject has demonstrated the ability to recognize

patterns.

20.2.3 Electronic Retinal Vision Prosthesis

The approach to retinal prosthesis is twofold: subretinal and epiretinal. The former proposes

a single device implanted in the subretinal space [38, 39], between the outer retina and the

retinal pigment epithelium, powered by ambient light incident on an array of photodiodes

integral to the device. Hypothetically, the device stimulates remaining intact neurons of

the degenerate retina—predominantly, surviving bipolar cells. Herein lies an important

advantage of the subretinal approach: Hypothetically any intact middle layers of the

retina, and their ability to encode information, are utilized. The whole implantation of a

single device would make use of the eye’s existing optics and its motility and obviate the

need for external, supporting electronic equipment, factors which may prove advantageous.

The epiretinal approach proposes a two-unit device [40–42] wherein an extraocular

and intraocular device communicate by way of transcutaneous RF telemetry or transcor-

neal laser. Here, the extraocular device comprises a camera and microelectronic circuitry

for encoding and transmitting stimulation patterns. The intra-ocular device receives the

transmission and, by way of an electrode array leading to the vitreoretinal interface,

provides controllable charge injection to intact neurons at the inner retina. Whereas the

subretinal approach proposes the transduction of light and retinal stimulation in situ (at

each site there is situated a photodiode and a stimulating electrode), the epiretinal

approach offers configurability. Analog and digital electronics that lie functionally inter-

mediate to the image capture and the stimulating electrodes mean that optimal stimulation

parameters may be devised and then implemented without the patient undergoing further

surgery (for further discussion, see [43]).

One of the issues with both subretinal and epiretinal approaches is the implantation

surgery. As a possible alternate approach, our group demonstrated the efficacy of transret-

inal stimulation in the instance of a damaged R-membrane in the sheep [44]. Subsequently,

Japanese researchers [45] have reported on successful transchoroidal stimulation in rats.

However, the ability to localize phosphenes in human subjects is as yet unproven with

this approach.

20.2.4 Subretinal Prosthesis

Two principal groups, one American and one German, propose a subretinal prosthesis: the

American commercial entity Optobionics and a collaboration of numerous German

universities, led by Eberhart Zrenner of University Eye Hospital, Tübingen. Both “subret-

inal” groups face the problem of photodiodes being insufficient light transducers when

implanted in the subretinal space. That is, for little incident light, small photodiodes

generate small charge injection which has ultimately proven insufficient in eliciting

retinal neural responses. The early work (1997, 1999) of Chow et al. reported that this
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elicitation could, in fact, be achieved [46, 47]. These findings were inconsistent with those

of Zrenner and co-workers [48], who now argue for the need for an additional power

source that is gated by the photodiode response to light.

In the acute study of Chow et al. [46], relatively large, external photodiodes (with

photosensitive areas of up to 5 mm by 5 mm) were coupled to bipolar electrodes implanted

subretinally in the rabbit. The photodiodes were illuminated by a flash stimulator. Cortical

potentials were observed; however, the experimental setup—the flash stimulator and

requisite size of the photodiodes—effectively foreshadowed problems with the design’s

scalability. The success of a scaled device was reported two years later [47] but was

subsequently discounted [49] as the rabbit retina was shown to be indeed sensitive to

infrared light. Further animal studies demonstrated that, over the course of long-term

implantation, the device indeed stayed fixed in the subretinal space, and, despite its

inability to stimulate the visual system, was electrically functional [50]—important find-

ings for the subretinal approach. Postexplantation histological studies, however, showed

photoreceptor loss at the site of the device’s implantation (electroretinograms with the

device in situ revealed a 10–15% decline). Corrosion of electrodes was observed, and

accordingly electrical functionality declined markedly after five months of implantation.

Chow and co-workers hypothesize that increasing the ratio of photodiode area to electrode

area will overcome the device’s subthreshold charge injection and that the development of

a chip with fenestrations, thus allowing fluid communication between the choroid and the

retina, will overcome adverse effects on the retina [39].

Nonetheless, Optobionics has proceeded to human trials [51], having reported

months-long implantation in 10 subjects causing no significant “migration, degradation,

rejection, infection, inflammation, erosion, or retinal detachment.” Here, the device,

2 mm in diameter and 25 mm thick, consists of 3500 photodiodes and was implanted 208

superior and temporal to the macula. Improved vision across, surprisingly, the whole

visual field in patients up to 18 months postoperative has been reported. This improvement,

as Optobionics concedes, is due to some secondary effect of the surgical procedure or a poss-

ible generalized neurotrophic-type rescue effect caused by the presence of the device rather

than the device’s functioning as specified. No subject in the study was profoundly blind and

a number of subjects also underwent cataract surgery at the same time.

Gekeler and co-workers have proposed a 7600-photodiode device, likewise for

implantation wholly within the subretinal space [38]. Achieving sufficient charge injection

for Zrenner and co-workers, too, has proven problematic, despite their having shown the

chronic acceptance of the device in animal models [52]. This has evolved into a two-unit

device by way of an external unit for the provision of power [3]. At this point, one would

expect that not only power but also data relating to stimulation strategies would be trans-

mitted between the two devices, allowing the image processing strategy some additional

configurability, though it is still unlikely to be as flexible as an epiretinal approach.

The German team has also developed an in vitro “sandwich” technique for hypothe-

tical proof of their concept. Here, a 60-photodiode device is positioned subretinally and an

array of recording electrodes epiretinally [53]. Light at 30 klx, 100 times that of

recommended office space illumination, incident on the device has been found to generate

charge injection levels capable of eliciting a retinal neural response. This approach has

also proven that spatial mapping persists between outer and inner layers of the retina.

Of further interest is the group’s foray into optical imaging [17]. Here, microelectrode

arrays were acutely implanted in cats both sub- and epiretinally. Currents of between 4

and 78 mA drove individual electrodes, and retinotopic excitation was observed at the

visual cortex. The results indicate that these electrode sizes (750 mm for epiretinal;

330 mm for subretinal) could make for multifocal artificial vision with a resolution of
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better than 28 of arc. The group has devoted much effort to developing ab externo and

ab interno surgical means of accessing the subretinal space [38, 54].

For the subretinal approach, the device, being hypothetically wholly contained

within the eye and fixed in the subretinal space, is coupled to eye movements. If an

implant recipient’s eye motility functions normally, this would serve as markedly advan-

tageous. For the normally sighted, in regarding a scene, the eye constantly saccades in order

to obtain a fixed visual image independent of head movement; in the case of an externally

mounted camera serving a retinal prosthesis, head movements would be the only means of

the recipient’s changing their point of regard. Indeed, in the psychophysical studies of Cha

et al., adverse effects of head movements on balance and therefore on scene cognition were

reported [55]. However, a device implanted within the subretinal space that seeks to mimic

photoreceptor function would require some “hard-coded” stimulation strategy, there exist-

ing limited means for adjusting this strategy in situ. As a comparison, rudimentary analog

electronic signal processing exists in most digital cameras, despite its being, at best, a poor

approximation of the retina’s function (e.g., see Joseph’s approach to designing a comp-

lementary metal–oxide–semiconductor, or CMOS, pixel with logarithmic dynamic

range [56]). This processing, to a large extent, is dependent on the initial electromechanical

design and supporting electronics of the photodetector array—that is, it is decided at the

design stage and apart from features such as dynamic range adjustment and pixel

binning—remain relatively inflexible in comparison with software-based image processing

approaches, as would be the case for an epiretinal device.

20.2.5 Epiretinal Prosthesis

The epiretinal approach, as compared with the subretinal, has accrued more data surround-

ing human trials and accordingly faces problems “downstream” in the evolution of a clini-

cal device. Charge injection at the vitreoretinal interface remains little understood, as does

electrically interfacing to visual mechanisms that underlie the site or sites of stimulation.

In acute human trials, Rizzo and co-workers report varied success [57]. Eliciting the

perception of reproducible geometric patterns remains problematic. Rizzo et al. posit

that interference between so-called direct and indirect stimulation (indirect being that

by way of synaptic interface with more outer layer retinal neurons) of ganglion cells con-

tributes to smaller than expected perceived phosphenes. Modeling electrode behavior with

both near and distant return electrodes at the vitreoretinal interface [58] and creative

means of minimizing the invasivity of requisite surgery by way of polymeric, nanofabri-

cated electrode arrays [59] are also under pursuit by Rizzo, Wyatt, and co-workers.

Findings by Rizzo et al. regarding biological variability and the approach of Eckmiller

et al. [43] make for interesting reconciliation. Eckmiller proposes that the implant recipient

is provided a user interface to a so-called learning retina encoder and can tune stimulation

parameters so as to achieve perceived stimulus that well approximates visual stimulus.

Hornig and Eckmiller have simulated charge injection by very small, epiretinally

positioned electrodes at idealized, small regions of the inner retina [60]. Current steering,

a technique applied to functional electrical stimulation in its use of cuff electrodes in

stimulating nerve fascicles [61], involves manipulating parallel bipolar stimulations so

as to shift current density maxima. Said simulations indicate the efficacy of this approach

in increasing information channels by increasing the number of effective sites of stimu-

lation. It follows that central to the work by Hornig and co-workers is an eight-channel

CMOS stimulator with on-chip memory, each channel being capable of delivering four

different stimulation profiles [62]. Acute trials in humans of a flexible, epiretinal electrode

are reported [63], subsequent to chronic experimentation in primates [64]. Here, a novel
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foil electrode was mounted at the vitreoretinal interface in conformal contact with

ganglion cell layers and connected to supporting external electronics. Stimulation ampli-

tudes of approximately 100 mA elicited perception. An interesting by-product of this study

is the inner layer’s apparent robustness in the face of repeated contact with electrodes.

Regarding charge injection, Greenberg et al. have applied computer modeling to the

vitreoretinal interface [65]. At any point on the inner layer of the retina, axons from

ganglion cells at farther eccentricities overlie ganglion cell somas. It is thus reasonable

to assume that charge injected should innervate said axons, leading to more diffuse percep-

tions. Results, however, in in vivo human studies are to the contrary [15]. In seeking to

explain this focal perception, Greenberg et al. find that excitation thresholds are indeed

lower, but not significantly so, at or near a retinal ganglion cell soma, as compared with

sites farther along its axon, for extracellular stimulation by disk electrode. Regardless,

it is Humayun and co-worker’s empirical data that lend much weight to the epiretinal

approach over other approaches with a number of reports from human trials [66] in

which chronic trials of a 16-channel epiretinal implant were conducted using a modified

cochlear implant neurostimulator (Advanced Bionics). Prior to this, the six-month-long

implantation of an electrically inactive platinum electrode array, affixed by way of

retinal tacks, into dogs suggested feasible surgical approaches and biocompatibility [40].

The authors’ team has developed a 100-channel RF stimulator for and intraocular

situation [42], delivering data and power by an external, portable Linux environment

[67]. Our electrode and stimulation approaches are proven to evoke cortical potentials

in animal models [68]. The requisite ophthalmic surgery proves feasible on acute implan-

tation of a nonfunctioning prototype [69]. The requisite intimate contact of epiretinal elec-

trodes so as to achieve the elicitation of multifocal perception is subject to on-going work,

as is the investigation of transretinal stimulation, which would obviate the need for sub-

stantial ocular invasion, allowing the placement of the implanted electrode array and its

associated electronics in the retrobulbular space [44]. In the case that an implant recipient

is only partially blind, this approach leaves open the possibility that light incident on the

partially surviving retina is not obscured.

If low electrode densities prevail, as indeed seems likely in clinical trials and early

generations for both epiretinal and subretinal devices, it follows that supporting platforms

become all the more important. Lower electrode densities, in that individual elements of

the retina likely cannot be selectively stimulated, make for less use of the HVS’s innate

processing—processing that will therefore befall external hardware and software should

prosthetic vision be rendered optimally useful. Trialing early devices will call for the

assessment of various stimulation strategies—strategies that will need to be repro-

grammed without additional surgery.

While many ASICs exist for neurostimulation, only a few have been reported for elec-

trical stimulation of the neural retinal [42, 62, 70], all of which propose RF communication

to an intraocularly implanted device. Our 100-channel device [42], at its present iteration, is

divided into two functional blocks of 50 electrodes each—a “stimulating” block and a

“reference” block. One or more electrodes from the stimulating block are driven with

respect to one or more reference electrodes; polarity is reversible in that blocks can be

switched. A single current source is multiplexed to the blocks, allowing the delivery of

parallel stimuli, limited only by the capacity of the current source (1860 mA). Balancing

the current division across electrodes, however, is problematic, requiring prior knowledge

of the electrode–tissue impedances: These cannot be assumed equal since, in practice,

there exist inevitable inequalities in contact with neural tissue, insulation, and microscopic

electrode surface characteristics (all of which may change over the course of device implan-

tation). Our ASIC is bidirectional, featuring means of measuring, with moderate-accuracy
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electrode–tissue impedances (for a discussion on this topic, see [71]). In an updated

approach by Lui et al. [72], multiple current sources are postulated along the same lines

as that of Hornig [62]. However, in vitro or in vivo testing of multiple current injection

sites has not been reported. This will be discussed in more detail in subsequent sections.

20.3 BIOLOGY INSPIRES DESIGN

It is readily apparent from the review of work presented that there is much research and

development activity in the vision prosthesis area. It is also equally apparent that many

skills and research findings need to coalesce in order to create a final solution. In the

following sections, we briefly detail our design approach and then discuss some of the

necessary experiments and developments that we believe will be necessary to realize a

functioning device.

Interfacing electrodes with the neural retina is likely the biggest challenge in

creating a vision prosthesis. Without a functional low-impedance electrode–tissue inter-

face, it is not possible to depolarize the neural retina with a focal injection of charge

within biologically safe limits. One of our research aims is to modify our epiretinal

electrode for improved stability of stimulation at the neural tissue interface. This involves

the development of bioactive electrodes that are surface modified or have drug-releasing

capabilities for biological tissue in-growth and which will provide an environment condu-

cive to cellular attachment at the microelectrode sites. This approach to neural prostheses

provides biological factors, such as neurotrophins, to direct neuron growth onto the

electrodes and extracellular matrix proteins to encourage adhesion. By developing more

intimate contact between neural cells and electrodes, a more effective method of charge

transfer to the excitable tissue is theoretically possible. Studies of neural in-growth in

cortical electrodes have shown that this approach effectively stabilizes the tissue–

electrode interface, dramatically improves the signal-to-noise ratio (SNR), and enhances

long-term performance of the neural implant [73–76].

As implied in the introductory remarks, a vision prosthesis will likely require a

generational advancement in current technology in order to be effective. The primary

issues are the number of electrodes that can be mechanically packaged and surgical

implanted in close proximity to neural tissue and a means of electrically communicating

with same. Based on current neurostimulator designs, we would multiplex a single constant

current source, scanning electrodes from top to bottom, to create a rasterized image in much

the same way a television screen forms a picture. We have demonstrated that this is possible

for typical scenes with 10 � 10 electrodes, communicating using a 2.5-MHz RF link.

However, should we wish to increase the number of electrodes, it would not be possible

to refresh all electrodes fast enough so as not to create a flicker effect. In a related

fashion, we would be constrained by the bandwidth of the communications link.

We postulate that answers may lie in the underlying biology of the eye, whereby

parallel signals are processed from over 100 million photoreceptors, synapsing with

over 1 million RGCs. In order to adopt a parallel processing scheme, however, a

number of electrode design and stimulus paradigm issues must be overcome. Before inves-

tigating these issues, a further examination of comparative retinal biology is valuable.

In 1940, L. Fejes Toth showed that the hexagonal lattice is indeed the densest packing

generally, periodic or otherwise [77]. Mother Nature however predated Toth. By way of

example, consider the near-perfect hexagonal arrangement of unit eyes comprising the

compound eye of Drosophila (fly), as shown in Figure 20.2. Each fly retina is composed

of approximately 750 identical unit eyes, or ommatidia. In a self-assembling manufacturing
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process the Drosophila eye undergoes developmentally regulated programmed cell death

(apoptosis). The complex patterning stems from cell–cell interactions and is vital for sculpt-

ing tissues and deleting unnecessary cells and structures. As a final step in patterned self-

assembly, unpatterned interommatidial cells are organized into an interweaving hexagonal

lattice of nine secondary and tertiary pigment cells (Fig. 20.3). Indeed, approximately

one-third of interommatidial cells are removed by apotosois.

20.4 PARALLEL CONCURRENT STIMULATION
IN RETINA

The biology informs us of an optimal hexagonal electrode packing. It also belies the

concept of parallelism. From the tightly packed retinal pigment epithelium to the myeli-

nated fibers comprising the optic nerve, each nerve impulse is communicated in a way that

does not produce crosstalk with its neighbors (except by design in the intermediate

processing layers of the retina). Engineering an electrode array to achieve such selective

communication in the presence of a conducting physiological saline medium is a major

challenge. Fortunately, the hexagonal packing also allows the natural capture of an

injected current by the surrounding six return electrodes (much like the surrounding

interommatidial lattice in Drosophila) connected in parallel to form a guard ring.

To investigate this phenomenon, simulations were performed using a simplified 2D

computational model, and the distribution of voltage arising from multiple parallel current

sources connected to an electrode array was visualized. The model was formulated using a

hexagonal lattice of 98 cylindrical electrodes of radius 0.2 mm and height 0.2 mm

immersed in a thin volume of physiological saline measuring 20 � 20 � 0.2 mm. Note

Figure 20.2 Scanning electron

micrograph of adult Drosophila

(fly) eye. Notice the near-

perfect rows of ommatidia, or

unit eyes, arrayed hexagonally.

(Courtesy of Jamie C. Rusconi,

University at Albany, State

University of New York).
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that this geometric arrangement is symmetric in the third z-dimension, reducing the

problem to solving a 2D system. The Poisson governing equation for the voltage

distribution, V, throughout the saline region was

�r � (s rV) ¼ I (20:1)

where s is the conductivity of the medium and I is the volume current density injected into

the medium at the given location [78]. For physiological saline, s was taken to be 1 S/m
[79]. Using cylindrical electrodes and constant s, Eq. (20.1) reduces to the 2D partial

differential system

@2V(x, y)

@x2
þ
@2V(x, y)

@y2
¼

�ins
spr2h

within the nth stimulus electrode (20:2)

@2V(x, y)

@x2
þ
@2V(x, y)

@y2
¼

�imr
spr2h

within the mth return electrode (20:3)

@2V(x, y)

@x2
þ
@2V(x, y)

@y2
¼ 0 outside all electrodes (20:4)

V(xc, yc) ¼ 0 at all return electrode center coordinates (xc, yc) (20:5)

where ins is the absolute value of current injected into the nth stimulus electrode, imr is the

absolute value of current returned from the mth return electrode, and r, h are the radius and

height of the electrode cylinders. In general, the ins currents injected are given, whereas the

return currents imr are unknown when there is more than one return electrode. These return

currents can be determined from the additional constraint given by Eq. (20.5). Zero-flux

boundary conditions @V=@x ¼ 0, @V=@y ¼ 0 were imposed on the x and y edges of the

domain, respectively.

Figure 20.3 Fluorescent

images of Drosophila (fly) retina

42 h after pupal development

stained with an antibody to

Drosophila b-catenin. Each

ommatidial core is surrounded

by an interommatidial lattice of

secondary and tertiary pigment

cells. (Courtesy of Jamie

C. Rusconi, University at

Albany, State University of

New York.)
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Equations (20.1)–(20.5) were solved using a custom spectral collocation method

implemented in MATLAB (MathWorks). In brief, the 2D domain was segmented into a

number of smaller rectangular regions enclosing each circular electrode as well as the

spaces between electrodes and between electrodes and the domain boundary. Within

each segment, a nonuniform x–y mesh was generated using Chebyshev node spacing

[80]. This resulted in a more dense packing of nodes near each segment boundary

compared with the centers of each segment. First-order derivative continuity in voltage

was enforced at each segment boundary. The resulting system of differentiation matrices

generated was then inverted to solve for the voltage at each node. Spectral differentiation

allowed for more accurate derivatives with fewer nodes than the more traditional finite-

difference approach [81]. For the simulations presented here, 7 nodes were placed in

each x, y direction within all electrodes, 9 nodes in the interelectrode spaces, and

23 nodes between the outermost electrodes and the boundary of the domain. That is, a

total of 219 � 331 nodes in x, y respectively. This modest number of nodes allowed the

models to be solved within 10 min using a Pentium 4 desktop workstation.

Figure 20.4 models the situation whereby all 14 current sources are injecting 1 mA

each through an electrode (not drawn) at the center of each hexagon. Surrounding each

injection point are six return electrodes all connected to zero potential. There is an

obvious concentration of current achieved by the guard electrodes. Figure 20.5 demon-

strates the situation of bipolar stimulation with one electrode per source only (that to

the immediate right of the injecting electrode) acting as a return electrode. Looking at

the individual currents returned in each guard, with the six distributed guards, the

average current in each “hexagon” is 0.99+ 0.06 mA [mean+ standard deviation

(SD)]. In the case of the single guard, the average current is 1.00+ 0.22 mA. The

much higher standard deviation reflects the imbalance of currents as a result of leakage

from neighboring current sources. The greatest return current is the bottom left return

Figure 20.4 Simulated 2D voltage distribution derived from 14 parallel current sources, injecting

1 mA each into a 20 mm � 20 mm � 2 mm physiological saline region (s ¼ 1.0 S/m) by way of

400-mm-diameter cylindrical electrodes. Each injection electrode is surrounded by six guard

electrodes arranged in a hexagonal pattern (depicted as open circles), each guard tied to zero

potential. The vertical colorbar indicates the simulated potential in volts. The guard electrodes

effectively focus current in the region of each hexagon and reduce current leakage in other regions.
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electrode, returning 1.39 mA, while the return which is second from the top on the right

only received 0.68 mA. These current imbalances are obviously of considerable import-

ance when trying to accurately inject and recover charge from various regions of the

neural retina.

20.5 CRITICAL AREAS FOR RESEARCH AND
DEVELOPMENT

In this section a number of fundamental research tasks, which are in the critical path for

realizing a functioning retinal neuroprosthesis, are outlined. For the purpose of this discus-

sion the differentiator for a fundamental research need has been based on the fact that

it relates intimately to the underlying retinal neurophysiology and is not merely an

adaptation of similar neurostimulation approaches in other target tissue.

20.5.1 Application-Specific Integrated Circuit Design

Connected to each electrode within the hexagonally arranged electrode array is a requisite

electronic circuit. These circuits serve to deliver precise stimuli in accordance with

instructions from an external controller. The external controller acquires a digital

representation of the visual scene and subsequently generates a phosphene representation

of this scene by way of processing strategies. Each phosphene is mapped to an electrode

interfaced with the surviving neurons of the epiretinal surface. Once the phosphene

representation of the visual scene is established, instructions are conveyed by way of

Figure 20.5 Simulated 2D voltage distribution as per Figure 20.4 but with only one return electrode

(immediately to the right of each current-injecting electrode). The remaining five guard electrodes

(depicted as open black circles) are effectively floating. With the higher current density between

injecting and return electrodes, the overall voltage in the medium increases, as does the leakage of

current between adjacent return electrodes (even in this instance where current injection was

identical at 1 mA for each current source).
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wireless telemetry [82] to the implanted electronics for subsequent delivery of electrical

stimulations.

Critical flicker fusion (CFF) in sighted individuals is such that a flickering light

incident upon the retina appears continuous and of constant intensity. In the intact

retina CFF is intensity dependent, in accordance with the Ferry–Porter law. The associ-

ation of a “fusion frequency” with retinal prostheses has been debated for some time

and indeed has been explored by Humayun et al. [20], who found the fusion frequency

in the diseased retina to be of the order of two to three times that of a healthy retina

stimulated by light of moderate intensity.

In the degenerated retina, intraretinal processing is dysfunctional and what mechan-

isms that may remain are likely bypassed via the way in which the bipolar and retinal

ganglion cells may be preferentially stimulated over other surviving neurons [65, 83].

The apparent result of this is a reduction in the duration of the perceived phosphenes

and thus an increase in the fusion frequency.

Implications in visual prosthesis include the need to deliver stimuli at a rate substan-

tially higher than would be necessary for stimulation of the intact retina with light. Further

exacerbating the difficulties for the neuroprosthesis designer is the fact that as the quantity

of stimulation sites increase so as to improve image and information resolution, the

complexity of maintaining sufficient stimulation to avoid flicker increases accordingly.

From the foregoing, it is apparent that stimulation must take place at multiple sites

simultaneously. The authors have published, and further describe in an adjacent chapter

[1], a novel addressing and multiplexing scheme that substantially decreases the requisite

data (instruction) throughput to facilitate simultaneous stimulations with focused charge

distributions [84].

In employing this methodology, we illustrate how as many as 14 electrodes of 98

within an array may be stimulated simultaneously. Furthermore, this methodology is

scalable to arrays of much larger dimensions. We note, however, that there exists a

limit to the quantity of electrodes that may be stimulated at any one time owing to

power supply considerations. There further exist rate-limiting constraints from residual

charge recovery following stimulation (e.g., via shorting of electrodes after stimulation).

Finally there are critical matters associated with the charge distribution and exchange

between electrodes stimulated in unison (the topic of a separate section within this

chapter and further explored in an adjacent chapter [1]). These factors combine to estab-

lish practical boundaries that will dictate the form of the next generation of retinal

prostheses.

20.5.2 Biohybrid High-Density Electrode Arrays

Platinum is one of the most commonly used materials for biomedical electrode appli-

cations. It has shown excellent biological performance over almost three decades in

sensory stimulating electrodes such as in the cochlear implant and is considered biocom-

patible in such applications. Examining the electrode design and function in applications

such as the cochlear implant is instructive, and many of the issues are similar to those in

the vision implant.

In the cochlea, there are on the order of 30,000 spiral ganglion cells (SGCs), the

equivalent sensory cells in the hearing pathway to the RGCs in the visual pathway.

With the loss of hair cells (equivalent to the photoreceptors), the cochlear implant’s

electrode array stimulates these cells with an electric impulse which is then converted

to an ionic current that propagates the signal to the hearing centers in the brain via the

cochlear nerve.
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Of the tens of thousands of functional SGCs theoretically available for specific

stimulation, the cochlear implant electrode stimulates approximately 20 nerve bundles,

each likely to be made up of many hundreds of cell bodies and associated axons.

Speech recognition is good in the state-of-the-art cochlear devices, although there is a

dramatic decrease in speech recognition in people with cochlear implants when the

noise approaches similar levels to the signal. The combination of large electrode size (rela-

tive to SGC size), lack of direct electrode-to-cell contact, and limited electrode numbers

result in limitations in the quality of hearing and definition of complex sound such as

music or speech in a crowded room.

In contrast with the hearing system the visual system has over a million RGCs

forming a network of axons that converge in the optic nerve. The ideal number and size

of electrodes for functional visual perception are not known; however, it does appear

that current electrode arrays for epiretinal prostheses are a limiting component of the

device design. Design criteria for future devices should address the need for higher

density, encapsulated electrodes, a greater number of channels for stimulation, bioactive

materials for close contact with neurons, and maintaining neural cell viability and function

and finally should consider increasing the surface area of electrodes via porous or

surface-roughened electrodes.

The latter is a strategy for reducing electrode impedance as well as enhancing the

surface area available for cell contact, thereby enhancing adhesion [75, 76, 85]. It is

proposed that in-growth of the neurons into the electrode surface could adequately

reduce the current magnitude required for stimulation and consequently reduce diffu-

sion of the current to adjacent neurons, effectively increasing spatial selectivity.

In addition, formation of this intimate connection may prevent or minimize the

growth of the nonfunctional and nonconductive encapsulation layer [75], while the

use of softer and more compliant materials for electrode coating has the potential to

reduce inflammation caused by strain mismatch at the tissue–electrode interface

[86]. These stringent criteria are unlikely to be attainable by platinum alone, and

there is a need for novel approaches to material design and electrode fabrication for

these high-demand applications.

In terms of bioactivity, there are three broad approaches that have been proposed.

These can be summarized as surface modification or coating of existing electrode

materials [75, 76], development of novel bioactive electrode materials [87], and incorpor-

ation of cultured cells which are then encouraged to extend neurites to make the synaptic

connections with neurons in the host tissue [88]. For all approaches, bioactivity may be

conferred by controlled release or presentation of neurotrophic factors, by modification

with extracellular matrix proteins or more specifically neural cell adhesion sequences

derived from these proteins, and by release of other active agents, including essential nutri-

ents, anti-inflammatory drugs, or even chemical signaling agents.

Of critical importance is the electrode material or surface coating which must be

conductive, biocompatible in an active and passive state, and easily manufactured to

produce the uniform layer necessary for effective charge transfer. More challenging is

the requirement that the material must be capable of retaining the aforementioned

biological factors in matrices over an extended period of time with constantly varying

electrical stimulation. Additionally it must possess the ability to be modified in vivo

to release certain factors while maintaining others. These constraints have prompted

research into novel conducting polymers, carbon–polymer-based composites, and

enzyme-coated metals and glassy carbons [87]. Thus, in the near future we expect the

emergence of a new generation of smarter vision prostheses with a variety of biological

functions.
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20.5.3 Validated Models of Electrical Stimulation in Retina

Very little has been published on mathematical models of retinal tissue stimulation (either

from the viewpoint of passive resistive and capacitive tissue models or models that incor-

porate Hodgkin–Huxley kinetics of membrane processes). There is an obvious need for

greater understanding of the underlying activation processes in the neural retina in

order to optimize both ASIC and electrode design. Indeed we will model the electrical

charge distribution under circumstances of multiple current injection sites. Passive and

active properties of retinal tissue will be considered.

It is important to be able to predict the effects of electrode geometry and material

composition, electrode proximity, and electrical parameters on the biological environ-

ment. Significant peripheral nerve models exist for a variety of electrode interfaces,

configurations and states of activity. Some elementary models of the retina are also in

existence [89–91]. One model by Hornig and Eckmiller models all cells of the inner

retina, including the horizontal, bipolar, amacrine, and retinal ganglion cells [60]. This

model will prove useful if the amacrine cells are used for in-growth and attachment to

the electrode surface. An alternate model by Greenberg et al. explores the stimulation

of RGCs by extracellular fields with active ion channels and realistic cell morphology

derived directly from a neuronal tracing with three membrane states individually

applied: a linear passive model, a Hodgkin–Huxley model with passive dendrites, and

a model composed of all active compartments with five nonlinear ion channels [90].

With considerable enhancement, these models could be used as a basis for modeling

the neural interface.

20.5.4 Image Processing and Psychophysics of Prosthetic
Vision

There in only a small handful of literature on the psychophysics of prosthetic vision [55,

92–96]. Should work in the above-mentioned critical areas make for the realization of a

device in coming years analogous to the cochlear implant, the question remains, “How

should phosphenes be rendered in the visual field of the implantee so as to best convey

vision?” In cochlear prosthetics, improvement in recent years on standardized tests such

as monosyllabic word recognition is one-third attributed to improved speech processing

strategies [97]. Clearly, there is work to be done on the prosthetic vision problem—the

psychophysics and the image processing.

Due to the fact that human trials of retinal prosthetics are few to date, the prosthetic

vision problem is broached by way of Simulations. Again, this is not unlike research in the

“cochlear” domain: Simulated, low-channel signals are played to the normally hearing on

loudspeakers. These simulations follow work by Cha and colleagues, where sighted

subjects were presented simple acuity and mobility tasks while viewing the world

through, effectively, a mask of pinholes. More recent simulations have made use of

technology—immersive displays, head tracking, and more computationally expensive

image processing algorithms [98]. The development of simulations that track the eye so

as to stabilize the phosphene image on the retina, and therefore better approximate

prosthetic vision, is a topic on-going in the authors’ laboratory and presumably in other

labs. We have hypothesized the notion of movement-adaptive filtering [99]; likely

developments also include moves away from linear, spatiotemporal strategies toward

connectionist networks, error minimization algorithms, and “intelligent” algorithms

such as region-of-interest approaches [100].
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20.6 CONCLUSIONS

From the conspectus of work detailed in this review of retinal neuroprosthestics, it is

apparent that significant advances have been achieved, particularly in the last half

decade. In spite of this, however, there is still considerable ground to be covered. Detailed

understanding of neural activation in parallel concurrent stimulation is notably lacking,

with a paucity of literature on the effects of current leakage in general and models of

the neural retina specifically. Up until recent times, there has been no major need for

such research, but as we strive for denser electrode grids with larger quantities of electro-

des, the need becomes more pressing. This is by no means the only issue that needs

concerted research; there are still major advances to be made in our understanding of

phosphene generation, the complexity of the neural–tissue interface, and the long-term

biocompatibility of visual prostheses. Until these and other issues are more fully under-

stood, restoration of vision to the profoundly visually impaired in a manner that the

everyday person would consider as “acceptable” remains a “science fiction”. However,

the “science fact” is that sufficient evidence exists to suggest that the provision of some

degree of visual perception will occur in the near to medium future.
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CHA P T E R21

TOWARDS A CULTURED NEURAL

PROBE: PATTERNING OF

NETWORKS AND THEIR

ELECTRICAL ACTIVITY
W. L. C. Rutten, T. G. Ruardij, E. Marani, and B. H. Roelofsen

21.1 INTRODUCTION

Efficient and selective electrical stimulation and recording of neural activity in peripheral,

spinal, or central neural pathways require microelectrode arrays (MEAs) at micrometer or

nanometer scale. At present, wire arrays in brain, flexible linear arrays in the cochlea, and

cuff arrays around nerve trunks are in experimental and/or clinical use. Two- and three-

dimensional brushlike microarrays and “sieves,” with around a hundred electrode sites,

have been proposed, fabricated in microtechnology, and/or tested in a number of

laboratories.

As there are no “blueprints” for the exact positions of fibers in a peripheral nerve or

motor neurons in a ventral root region, an insertable multielectrode has to be designed in a

redundant way. Even then, the efficiency of a multielectrode will be less than 100%, as not

every electrode will contact one neural axon or soma.

Therefore, “cultured probe” devices are being developed based on cell-cultured planar

MEAs (Figs. 21.1 and 21.2). They may enhance efficiency and selectivity because neural

cells have been grown over and around each electrode site as electrode-specific local net-

works. If, after implantation, collateral sprouts branch from a motor fiber (ventral horn

area) and if they can each be guided and contacted to one specific “host” island network,

a one-to-one (i.e., very selective and efficient) stimulatory interface will result.

The islands perform the function of a biofriendly surrounding for the sprouts, produ-

cing neuroattractive proteins to guide the sprouts toward them.

A number of aspects relevant to the successful development of a cultured probe have

been studied in our group intensively during recent years. Among them are the electrical

behavior of the neuron–electrode contact [1–3], the capability to record and stimulate

neuron activity of cells positioned on top of MEA electrodes or closely beside them [4],

and the chemical surface modification of flat substrates into neurophilic and neurophobic

regions [5, 6]. In summary, these studies resulted in understanding the neuron–electrode

contact and the wave shapes of recorded action potentials, the discovery of a stimulation

current “window,” and the discovery of chemical coatings suited for patterning of

host islands.
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As stated, the local island networks serve only to provide a biofriendly surrounding

for the sprouts. However, it is well established that (large) developing cortical neuron net-

works will start to exhibit spontaneous activity after about one week in vitro. It has been

shown that the patterns resemble those seen in vivo [7]. Recording of the firing activity of

Figure 21.1 Schematic impression of “cultured probe”-type of neural information transducer/
prosthetic device. The black circular “stand-alone-islands” are cultured neuronal networks,

separated from each other, at and around each electrode, acting as biofriendly hosts/attractors
for the sprouts. The primary goal is selective stimulation of neuronal sprouts (motor fibers).

The series of stars stand for information flow from one electronic stimulus channel to one

neural fiber via one electrode site.

Figure 21.2 Multielectrode array device with culture dish (diameter 30 mm) on top.

The MEA is based on a glass substrate (5 � 5 cm); it has 61 embedded electrodes. The 61

electrode tips (tip diameter 10 mm) lie in the center of the chamber (magnified in right-top figure).

The figure below shows a detail of one tip surrounded by a 4-DIV (days in vitro) old developing

cortical cell culture.
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individual neurons has become established, since the pioneering work of Gross and Pine

[8, 9], as a useful technique, as is also shown by Jimbo et al. [10] in a study of activity-

dependent plasticity at the synaptic level.

The question is whether smaller networks, such as our islands, will become

spontaneously active also. Is there a minimal network size?

In this chapter we report the latest progress regarding two of the aforementioned

aspects: (1) enhanced neurophilic/neurophobic contrast and (2) spontaneous and synchro-
nized activity of patterned host islands.

21.1.1 Enhanced Neurophobic/Neurophilic Contrast

Essential properties of the probe are that cells must adhere to the surface of the substrate

and develop into networks of somata and outgrowing neurites/axonal fascicles within a

predefined area around the electrodes. The goal should also be to keep the networks flat

and confined as long as possible, so as to delay the natural tendency of neurons to

aggregate or island networks to become connected by “neural cables.” For that, chemical

modification of the substrate and electrode areas with various coatings, such as neurophilic

polyethyleneimine (PEI) and neurophobic fluorocarbon (FC) monolayers is applied to

promote or inhibit adhesion of cells.

Then, one of the key problems in long-term neuronal patterning studies on MEAs is

the biofouling of the background material with cell-adhesive proteins, which in turn

promote the random overgrowth with neuronal tissue [11]. Polyethylene oxide (PEO)–

coated surfaces are known for their ability to inhibit the adsorption of proteins and are

promising alternatives as neurophobic background surfaces. The methods to fabricate

PEO-coated surfaces can be divided in two different subgroups: covalent bonding of

relatively short polyethylene oxide chains (PEO; also termed polyethylene glycol, PEG)

and adsorption of polyethylene oxide–polypropylene oxide (PEO–PPO) block copoly-

mers onto hydrophobic materials [12]. The advantages of covalent coupling of PEO

chains to surfaces are the initial stability of the layer and the prohibited displacement of

PEO by proteins in solution. However, the physiological environment in time could dis-

sociate the chemical bonds between the PEO chains and the underlying substratum.

Another important point is the fact that the chemistry involved should be transferable

onto MEAs, which are usually vulnerable to more laborious chemistry. For instance,

cleaning of MEAs with aggressive acids before chemical modification is prohibited

because the conductive metal leads would be dissolved. Therefore, it is relevant to test

more simple modification routes as potential methods to be used onMEAs. Thus, adsorbed

layers of PEO–PPO block copolymers on hydrophobic surfaces were investigated as

potential neurophobic background surfaces in patterning studies over a time period of

30 days (commercially available PEO–PPO–PEO triblock copolymers, called Synpero-

nics F108 and F127, were tried).

Background adhesion results are shown over a period of 30 days for neurophobic

PI- and FC-coated surfaces, each supplemented by F108 or F127 Synperonics.

21.1.2 Spontaneous Activity of Patterned Islands

It is well known that large unpatterned (“random”) cultured networks of cortical neurons

start to fire spontaneously after about a week in vitro. The implications of such firing for

the proper functioning as host has to be considered. First, the cultured probe is meant for

stimulation purposes. In that case, electrodes deliver stimuli directly to the sprouts

(antidromic propagation) and the activity of the network itself is of no importance
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(antidromic stimulation of sprouts by natural synaptic connections between axonal sprout

and network is impossible). Second, if one would consider, for future two-way interface

applications, the use of the cultured probe for recording purposes, the spontaneous activity

of networks may seriously distort the information from the sprouts.

For smaller networks, such as the patterned islands of the cultured probe, it is not

known yet what the minimum network size and cell density conditions are for the occurrence

of spontaneous activity. It may be that small-diameter islands show no activity at all.

Therefore, it is very interesting to investigate whether the patterned islands of a

cultured probe indeed show spontaneous activity. Part of this chapter is devoted to that

topic, to answer questions such as: Do islands also become spontaneously active after a

week? With the same characteristics as unpatterned (random) networks? Is there a

minimum diameter above which networks become spontaneously active? If stand-alone

networks become interconnected, do firing patterns synchronize?

21.2 MATERIALS AND METHODS

21.2.1 Cortical Neuron Isolation/Culturing and
MEA Fabrication

Dissociated trypsin/ethylenediaminetetraacetic acid (EDTA) cortical neurons (1-day

postnatal rats) were seeded onto patterned structures with a plating density of 5000

living cells/mm2. Cells were allowed to adhere onto the surfaces during a time period

of 4 h. Samples were rinsed with NaCl (0.9%) solution to remove nonadherent cells.

Neurons were cultured in chemically defined R12 medium [Dulbecco’s modified

Eagle’s medium (DMEM)/Ham’s F12, Gibco] without serum. The cultures were stored

in a CO2 incubator with a constant temperature of 378C and a constant CO2 level of

5%. The culture medium was refreshed half, 3 times a week.

In short, MEAs were fabricated from 5 � 5-cm glass plates with gold-deposited tracks

leading to 61 hexagonal ordered electrodes. The MEAs were isolated with a sandwich layer

of SiO2–Si3N4–SiO2 (ONO) using a plasma-enhanced chemical vapor deposition (PECVD)

process. Electrode tips were deinsulated with a SF6 reactive ion etching (RIE) technique and

platinized to reduce the electrode impedance down to 200 kV at 1 kHz.

Neurophilic islands were created by PEI microstamping of circular patterns.

21.2.2 Recording of Action Potentials

Electrode signals were amplified, filtered between 0.3 and 6 kHz (first order), and captured

by a 16-channel 12-bit National Instruments PCI-6023E data acquisition PC card. The

input range as well as the sampling frequency was software controlled by a Labview

program. The real-time data processing software reduced the data stream by rejection of

data which did not contain bioelectrical activity. Artifact rejection was severe: If activity

is measured at the same time in different channels, the waveforms are rejected. In each

channel, the root-mean-square (RMS) noise level was constantly monitored and deter-

mines the setting of a level detector to detect spike activity. The threshold was set at

6 times the noise level (typically 7 mV RMS). Each time bin of 10 ms with recorded

activity was stored and analyzed with MATLAB computer software. Before further

processing, wave shapes were classified to distinguish multiunit form single-unit

activity [13].
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21.2.3 Fabrication of Neurophobic Background Materials

1. Polyimide Polyimide (PI, Probimide 7510w, Arch Chemicals N.V.,

Zwijndrecht, Belgium) was spin coated (4000 rpm, 30 s) onto 25-cm2 glass plates

(Glaverbel, Belgium). The PI was diluted in n-methyl pyrolidon (1 : 1 v/v), dried on a

hot plate (1208C, 5 min), exposed to UV light, and baked (3008C, 90 min). Then plates

were cut into square pieces of approximately 2.6 cm2.

2. Plasma-Coated Fluorocarbon (FC) In a RIE system, spin-coated PI samples

were treated with an etching CHF3/O2 plasma (25 sccm CHF3, 5 sccm O2, 150 mTorr

and 2.1 � 1021 W/cm2) for 20 s, a depositing CHF3 plasma (25 sccm CHF3,

150 mTorr, and 2.1 � 1021 W/cm2) for 40 s, and a final depositing CHF3 plasma treat-

ment at 1.2 � 1021 W/cm2 for 8 min.

3. Synperonics F108 and F127 The triblock copolymers Synperonics F108

(EO127–PO48–EO127; ICI, Holland BV, Rozenburg) and F127 (EO95–PO62–EO95; ICI,

Holland BV, Rozenburg) were dissolved in 0.1 M phosphate-buffered saline (1% w/w)
and adsorbed onto PI- and plasma-coated FC samples over a time period of 24 h.

Subsequently, samples were rinsed twice with sterile water (Aqua Purificata, Bufa BV,

Uitgeest, The Netherlands). Surfaces were dried by aspiration of residual water with a

glass pipette connected to a vacuum pump.

21.2.4 Preparation of Polydimethylsiloxane (PDMS)
Microstamps

Sylgard 184 silicone (Mavom bv, The Netherlands) was mixed with the curing agent in a

10 : 1 ratio. Air bubbles were removed from the mixture by evacuation with a water jet

pump. Collapse of air bubbles was promoted by following a cycle of evacuation and

pressure release for 6 times. A metal ring with an inner diameter of 4.3 mm (height

0.8 mm) was placed around the central area of a PI mould containing three different

regions of 20 microwells (12 mm deep) with diameters of 50, 100, and 150 mm at the

bottom. The spacing distance between the wells was fixed at 90 mm for all three

regions. The ring was filled with the mixed silicone, covered with a 76-mm microscope

slide, and crosslinked at room temperature in the mold for four days. Finally, stamps

were carefully removed from the mold and stored in plastic tubes until use.

21.2.5 Quantification of Background Adhesion

Microphotographs were taken on two separate subsections of each pattern after 1, 4, 8, 15,

and 30 days with a digital photo camera (AxioCam HR, Carl Zeiss, Germany) attached to

an inverted phase contrast microscope (Nikon Diaphot-TMD, Tokyo, Japan). The images

were first corrected for nonuniform illumination. Then, they were converted into

black-and-white images by a threshold operation: white pixels for the cell areas, black

for the background material.

The calculated fraction F of white pixels in the image now represented a quantitative

measure for the adhesion on the background material only:

F ¼
number of white pixels

number of white pixels þ black pixels
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21.3 RESULTS

21.3.1 Improved Neurophobic/Neurophilic Contrast

Figure 21.3 shows the results of cell adhesion in the neurophobic (called “background”)

areas. It can be clearly observed that adhesion in the neurophobic regions decreases

with time for PI only (first column) but remains equal or varies a bit for all other

Figure 21.3 Quantified background adhesion fraction F (see Section 21.2.4) of neuronal tissue

on six different background surfaces (neurophobic part) after 1, 8, and 30 days. Mean+ S.D.

(n ¼ 6). PI: polyimide coating only; F108-PI: superonics F108 coating on top of PI layer; F127-PI:

superonics F127 coating on top of PI layer; FC: fluorocarbon coating only; F108-FC: superonics

F108 coating on top of FC layer; F127-FC: superonics F127 coating on top of FC layer.
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coating conditions. Except for the F108-FC coating, which shows an increase of cells in

the neurophobic parts. The conclusion from Figure 21.3 is that FC coating is better than

PI coating, also after 30 DIV. Additional coating of PI or FC layers with triblock-

copolymers Synperonics F108 or F127 repels cells even better, as well for PI as for FC,

but not after 30 days in the F108-FC case. Best results are obtained for the two coatings

on the PI basic layer, with only a few percent of neurophobic layer area taken by cells after

30 days; see Figure 21.3 (full report is in [12]).

21.3.2 Spontaneous Activity of Patterned Islands

On one MEA, with unconnected islands, spike rates in a particular island were observed

after 22 DIV. Neurons fired at a rate of 8 spikes/s at 22 DIV and 4–5 spikes/s at 28 DIV.

A second, more systematic search for spontaneous activity in patterned but con-

nected islands was done on 2 MEAs, each with 60 stamped circles of PEI, diameters 50,

100, and 150 mm (20 each). Activity started at normal age, 8 DIV, and could last until

the last observation day, 35 DIV. Almost no activity was seen for the 50-mm-diameter

islands. Five percent of the 100-mm-diameter islands showed spontaneous activity and

10% of the 150-mm-diameter islands. Spike rates were much higher than in the uncon-

nected island, ranging from averages (+1 SD) of 17 (12), 302 (199), 229 (192), 95 (—),

and 248 (—) at 8, 12, 14, 19, and 35 DIV, respectively (number of active electrodes per

islands were 5, 3, 4, 1, and 1, respectively).

The experimental results are summarized in Table 21.1. On 150-mm PEI circles,

the neuronal connectivity NC between neuronal clusters (defined as the average number

of surrounding electrodes, connected to a single PEI-coated island through neurite fas-

cicles) was only slightly higher for NC-active than for NC -nonactive electrodes.

However, on 100-mm circles the connectivity was significantly higher on the active

electrodes.

An example of connected clusters is given in Figure 21.4. It shows the result of out-

growing neuronal tissue as observed after 30 days on a microprinted pattern of PEI circles

onto FC. Cells initially migrated toward the center of the circles (not shown) and allowed

free space for the outgrowth of neurites around the aggregates and within the borders of

the PEI circles. The tissue on the two circles were interconnected by a bundle of neurites

and/or axons.

TABLE 21.1 Number of Neurons N Adhering on Microprinted PEI Circles with Diameters
of 50, 100, and 150 mm After 1 Day

50 mm 100 mm 150 mm

N (—), 1 day 16.4+ 2.7 (n ¼ 20) 45.6+ 5.0 (n ¼ 20) 81.2+ 15.1 (n ¼ 20)

PAC-EL (%), 8 days 0.7+ 1.9 (n ¼ 7) 2.8+ 3.9 (n ¼ 7) 10.7+ 12.7 (n ¼ 7)

PCOV-EL (%), 8 days 70.0+ 23.3 (n ¼ 6) 93.6+ 8.0 (n ¼ 6) 93.6+ 9.0 (n ¼ 6)

NC (—), active, 8 days — (n ¼ 0) 6.0+ 0.0 (n ¼ 3) 3.5+ 2.6 (n ¼ 7)

NC (—), nonactive, 8 days 2.0+ 2.1 (n ¼ 36) 2.9+ 2.4 (n ¼ 34) 2.7+ 2.5 (n ¼ 31)

PAC-EL (%), 15 days 0.8+ 2.0 (n ¼ 6) 5.0+ 7.7 (n ¼ 6) 10.0+ 13.8 (n ¼ 6)

PCOV-EL (%), 15 days 64.2+ 23.8 (n ¼ 6) 93.3+ 8.8 (n ¼ 6) 95.8+ 5.9 (n ¼ 6)

NC (—), active, 15 days — (n ¼ 0) 6.0 (n ¼ 1) 3.3+ 2.2 (n ¼ 4)

NC (—), nonactive, 15 days 2.0+ 2.0 (n ¼ 36) 2.7+ 2.4 (n ¼ 35) 2.4+ 2.3 (n ¼ 33)

Abbreviations: PAC-EL: percentage of corresponding electrically active electrodes on MEAs after 8 and 15 days; PCOV-EL:

percentage of electrodes covered with neuronal cells on MEAs after 8 and 15 days; NC : number of neuronal connections

with surrounding electrodes for electrically active electrodes and nonactive electrodes after 8 and 15 days.
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21.3.3 Synchronized Activity of Patterned Islands

Figure 21.5 gives a typical example of two connected islands at 12 DIV. They fired

synchronously during periods of typically 120 s, with regular silent intervals between

these 120-s epochs. Figure 21.6 presents the spike rates of these islands, first as a spike

Figure 21.4 Scanning electron micrograph of cortical neuronal tissue (30 days) present on

pattern of PEI circles microprinted onto FC. Diameter of circular islands is 150 mm. Spacing

distance between circles is 90 mm. Scaling bar ¼ 50 mm. The micrograph shows a

connected pair of islands in detail.

Figure 21.5 Example of spontaneous bioelectrical activity from cortical neurons seeded onto

PEI-microprinted MEA (12 DIV). Two islands at electrodes 34 and 40 were spontaneously active

after a week. Electrode separation is 190 mm. Islands became interconnected later and showed

synchronized behavior (Fig. 21.6). Details on the right show the two clusters and the derived

averaged spike waveform (top: electrode 40, 4198 spikes, bottom: electrode 34, 1276 spikes).
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Figure 21.6 Analysis of spike activity of two connected islands at electrodes 34 and 40 of

Figure 21.5. (a) Spikes per second during 120 s of bursting period. Vertical scale: spikes/second.
The two curves are for electrode 34 (upper, dark gray curve) and 40 (light gray). The two

curves clearly resemble the same oscillating pattern of bursts, pointing at synchronization

between the two networks. Spearman correlation coefficient r ¼ 0.61. (b) Interelectrode

(electrodes 34 and 40) interval time (Tint) histogram, bin width 1 ms. This representation of the

data also clearly illustrates synchronization between the firing patterns of the two island networks.
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rate plot over a time interval of 120 s, then as a interelectrode interval histogram. It is

clearly observed that the two clusters fire in a highly synchronized way with periodic

bursting. In the peaks, spike rates go up to 30 spikes/s in one channel and about 20

spikes/s in the other.

21.4 DISCUSSION

Activity in patterned MEAs will be briefly compared to unpatterned (random) network

activity, as reported in [14]. In the latter, activity starts around one week after seeding,

that is, 7 DIV. Spike rate, summed over all 61 electrodes, develops gradually from zero

to 32 spikes/s between 9 and 42 DIV. This implies a maximum of about 0.5 spikes/s
per electrode at 42 DIV.

However, in time, and per electrode, spike rate may differ considerably; for

example, 22 spikes/s was observed maximally in one electrode (lasting a few days). Com-

paring unpatterned networks with patterned islands, activity seems to start at the same age,

7–8 DIV. The variability in the random networks and absence of statistics so far in the

unconnected island case make it hard to draw a comparison. A cautious observation

may be that the spike rate in unconnected islands is in the same range as in the random

network, that is, 4–8 spikes/s at 22–28 DIV.

It is however clear that the connected clusters fire at a very high spike rate, much

higher than observed in the unpatterned network [14].

Another comparison can be made with regard to the probability that spontaneous

firing develops in unpatterned large networks and in patterned ones. In unpatterned net-

works it was found [14] that 16 out of 24 experiments [each consisting of 7 cultured

MEAs) were selected (on several grounds, but not presence/absence of activity)] for

longitudinal measurements. Of this set of 112 cultures (i.e., 112 MEAs with 60 electro-

des each), 47 (40%) exhibited spontaneous activity at 7 and 8 DIV, of which 16 had four

or more active electrode sites. This means that 60% had no active electrodes at all, 26%

(n ¼ 31) showed activity at less than four electrodes, and 14% (n ¼ 16) at four or more

electrodes. So, one can estimate conservatively that the average probability that an elec-

trode is active is on the order of 1% (under the assumption that the electrodes behave

“independently,” so we do not consider the bursting periods, in which many of the avail-

able electrodes show activity). Clearly, this percentage is of the same order or lower as

found for the patterned islands, as we saw in Table 21.1, that is, 2.8% and 10.7% for the

100- and 150-mm islands, respectively, at 8 DIV. However, as the number of elements in

each sample is only 7 and the standard deviations are considerable (Table 21.1), these

figures are only indicative.

The start of activity at diameter 100 mm and onward in circular islands probably

indicates a minimum number of neurons needed to develop spontaneous activity.

However, also other variables will play an essential role in that process, such as

number and density of synaptic connections and density of cells.

Control of local density was done by Chang et al. [15] on hippocampal neurons

showing that alternating line patterning (40-mm-wide lines) of substrates gave control

over local density of neurons, 100–500 cells/mm2, and did enhance the activity compared

to randomly plated networks with about the same density.

The data give some indication that small islands, diameter 50 mm, develop hardly

any spontaneous activity. This may be advantageous for the use of a cultured probe as

a recording device. As stated in the introduction, for the stimulatory use of a cultured

probe, spontaneous activity is unimportant as long as axonal sprouts grow from the host
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tissue toward the implant. Other types of cultured probes may do the reverse, that is, “send

out” axons to the host tissue. In that case, spontaneous activity of the intermediate cultured

networks is undesirable.
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CHA P T E R22

SPIKE SUPERPOSITION

RESOLUTION IN MULTICHANNEL

EXTRACELLULAR NEURAL

RECORDINGS: A NOVEL

APPROACH
Karim Oweiss and David Anderson

22.1 INTRODUCTION

Since the late 1950s, techniques for recording single-unit activity have dominated the

analysis of brain activity at the microscale due to perfection in isolating and characterizing

individual neurons’ physiological and anatomical characteristics [1–3]. It was not until the

early 1980s that techniques for recording multiple units became feasible [4]. The advent of

microprobe fabrication technology greatly accelerated the ability to simultaneously record

from ensembles of neurons with minimal tissue damage [5–7]. Because of the ability to

integrate a large number of recording electrodes on a single probe, the technology pro-

vided neuroscientists with tools to monitor the spontaneous and stimulus-driven behavior

of large populations of cells [8]. This has dramatically increased the ability to understand

the general computational principles of neuronal populations acting in concert and how

they respond individually and collectively to independent stimuli [9].

In a typical neurophysiological experiment using a microelectrode array, the activity

of a population of neurons is recorded in response to a certain stimulus. The outcome is

multiple time series expressing the extracellular voltage potentials resulting from the

population response to the stimulus parameter vector. Each time series contains the

activity of an unknown number of neurons in the form of spike trains. Spike sorting has

to take place to segregate the response from each single unit. Extraction of the temporal

relations among multiple spike trains is subsequently performed to assess functional inter-

dependency among local neural circuit elements and characterize their dynamic properties

over long periods of time. A good review for spike-sorting methods is provided in [10].

There remain, however, many challenges that encumber multiunit multielectrode

ensemble recording data analysis. Nonstationarity of the spike waveform shape, variabil-

ity in the total number of neurons in the recorded population among replicas of the same

experimental conditions, and the multivariate nature of the data are common problems

faced by many investigators. Variability in spike waveform shape requires an astounding

amount of human intervention that scales up exponentially with the number of neurons

Handbook of Neural Engineering. Edited by Metin Akay
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recorded due to the lack of automated spike sortingwith negligiblemargin of error [11–13].

In the simplest case, neurons fire independently from each other. In the more complex case,

two or more neurons can fire simultaneously. The probability of more than two neural

sources firing simultaneously in a spontaneous activity is usually negligible. However, in

stimulus-driven activity or in some brain regions with increased synchrony, this coinci-

dence probability can be significant [14]. In either case, the result is a complex waveform

that often does not resemble any of the simple spike waveforms elicited by the

individual neural sources. Such waveforms constitute a significant challenge as they

cause a well-known phenomenon of decreased cross correlation at zero offset [15].

To date, the most commonly used techniques to resolve spike superposition is tem-

plate matching [16]. It relies on comparing the putative superposition waveforms to a

dense grid of possible combinations of each pair of templates with all possible delays

in the range of 21 to þ1 ms between the two templates. While this may seem feasible

in single-channel recording and a considerably small number of spike templates, it is

clearly impractical and cumbersome when a large population is recorded by an electrode

array with high channel count. Possibilities for economical resolution of overlap improve

greatly for arrays of electrodes because unique spatial distribution information is added to

the time series that characterizes the spike waveform, thereby enabling an additional

degree of freedom to resolve the ambiguity.

The algorithm reported in this chapter is a new approach to resolve spike overlap

based on an augmented representation of the observation space to incorporate the spectral

and spatial information of the spike waveforms. It also comprises a natural extension to the

robust spike-sorting technique initially proposed in [17] and detailed in [18]. The approach

relies on an elegant intermix between the theory of multiscale decomposition by means of

the discrete wavelet transform (DWT) and classical eigendecomposition commonly used

in array signal processing theory.

22.2 THEORY

22.2.1 Mathematical Preliminaries

It is assumed that the activity of P neural sources is recorded within the discrete time

interval [t1, . . . , tN] by an M-electrode array. The result is a matrix Y [ <
M�N that can

be expressed as

Y ¼ ASþ Z (22:1)

where S [ <
P�N denotes the signal matrix, A [ <

M�P denotes the mixing matrix whose

columns express the array response to each source, and Z [ <
M�N denotes a zero-mean

additive noise component with arbitrary spatial and temporal covariance modeling the

background neural activity and the thermal and electrical noises from the conditioning

electronics. The objective is to recover the matrix S and determine the parameter P to

be able to segregate the individual signal components in the rows of S.

One way to recover the signal matrix S from the observed mixture stems from linear

systems theory, which relies on prior knowledge of the mixing matrix A [19]. One

approach is to use the best linear unbiased estimator (BLUE) using the pseudoinverse

of A, which is expressed as

~S ¼ ðAT
R

�1
Z AÞ�1

A
T
R

�1
Z Y (22:2)

where RZ [ <
M�M

denotes the noise spatial covariance matrix. The term that
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premultiplies the observation matrix Y is used to cancel out all the interference and corre-

lated noise components. If RZ is diagonal (spatially uncorrelated noise), then

Eq. (22.2) amounts to applying appropriate weights to every channel to maximize the

signal-to-noise ratio (SNR). If the noise is spatially correlated, then the inverse of the

noise covariance acts as a spatial filter for all nonprincipal components in Y. However,

the signal estimate using this method is contingent upon knowledge of the noise kernel

RZ and the mixing matrix A. Besides, this method has some limitations as the number

of nonprincipal sources becomes large because the cancellation process increases the

noise on channels where sources are not present. Other approaches for recovering the

signal matrix use independent-component analysis (ICA), which relies on the statistical

independence between sources [20]. This approach does not require prior knowledge of

A or the noise kernel RZ and may have a substantial amount of success provided the inde-

pendence assumption holds. However, it requires precise knowledge of P—the number of

sources present in the complex waveform—and at most one of the sources is required to be

Gaussian distributed. In highly synchronized neuronal activity, there is no guarantee that

these assumptions always hold.

An important observation is that one needs only to use columns of A that express the

array response to the principal neural sources making up the complex spike waveform. This

may become feasible if a reliable estimation of the signal subspace is feasible. There is a

vast amount of literature dealing with this problem and we will not attempt to review

them. It is only sufficient to mention that estimating the signal subspace becomes very

complex when the sources have correlated waveform shapes, which is typically the case

for neuronal spikes. An alternative in such a case is to project the complex waveform

onto a nested set of subspaces using an orthogonal basis set, hoping that some sources

may have a “large” correlationwith a subset of these bases and thereforemay not be strongly

present in the corresponding subspacesmay lead to a sparser representation of these sources

in the corresponding subbands, while they may be very close to zero in other subbands

where the correction is “small”. The sparseness of neural spikes in time helps this approach

to a large extent, because it implies that the probability of compound events in those sub-

spaces will be low but not zero. If knowledge of this subset is known for single sources

from their simple spike waveforms, then A can be effectively reduced to fewer columns,

thus increasing the SNR. Estimation of the A matrix for simple spike waveforms has

been the subject of previous work [21, 22]. We briefly overview in the next section how

the single-source case is characterized before we embark on the complex multisource case.

22.2.2 Single-Source Characterization

When the spike waveform is a result of a single neuron firing, the observation model in

(22.1) takes the form

Y ¼ as
T þ Z (22:3)

where now the matrix A becomes the M � 1 column vector a and the simple spike is

expressed by the N � 1 column vector s. The covariance of Y is expressed as

RY ¼ E{YYT} ¼ as
T
sa

T þ RZ (22:4)

assuming the noise to be uncorrelated with the spike waveform. Using singular-value

decomposition (SVD), RY is spectrally factored as

RY ¼
X

P

i¼1

diuiu
T
i þ

X

M

i¼Pþ1

ziuiu
T
i (22:5)
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where di denotes the ith eigenvalue corresponding to the ith signal source, zi denotes the

eigenvalue corresponding to the ith noise source, and the M � 1 vectors ui are the

eigenvectors spanning the column space of Y. In the single-source case, the parameter

P ¼ 1, and therefore it is sufficient to examine the dominant eigenvalue/eigenvector
pair fd1, u1g to characterize the source in terms of the spike’s temporal energy content

expressed by d1 and spatial distribution expressed by u1. In the multisource case, the par-

ameter P is unknown, and it becomes nontrivial to determine the number of dominant

modes in Eq. (22.5) due to the mutual correlation of spike waveforms from distinct

neurons [18].

22.2.3 Orthogonal Transformation

As discussed previously, projecting the simple spike waveform s onto a nested set of sub-

spaces using an orthogonal basis set yields variable degrees of correlation that can be used

to identify a subset of bases that best characterize the spike waveform. This can be con-

veniently achieved using orthogonal wavelet bases due to their excellent properties in

approximating a wide variety of signals, especially transient ones that are spike-alike

[23]. For the lack of space, we omit the mathematical details of the theory of wavelet

decomposition and the interested reader is referred to [24].

The overcomplete representation of signal projection using the two-band discrete

wavelet packet transform (DWPT) offers an augmented set of subspaces from which

one obtains a dictionary of bases from which to choose. The binary tree representation

illustrated in Figure 22.1 is a conventional way of representing a multilevel DWPT. For

an L-level DWPT, there is a total of J ¼ 2Lþ1
21 nodes in the tree. To identify a charac-

teristic best-basis tree for a given signal, one needs to “prune” the tree based on an objec-

tive function to obtain an admissible binary tree. An admissible binary tree is a binary tree

where each node has either zero or two children.1 In [24], Mallat showed that the number

BL of bases in a full DWPT binary tree of depth L leading to admissible binary trees is

bounded by 22
L�1

� BL� 2
5
4
2L�1

. High-amplitude wavelet coefficients in a certain node indi-

cate the presence of the corresponding basis in the signal and measure its contribution. On

Figure 22.1 Discrete wavelet packet transform binary tree representation for three resolution

levels. Node indexing starts at node 0 (time domain) and increases linearly following a

top–bottom left–right order. The total number of nodes in the DWT tree (thick lines) is 2Lþ 1

and in the DWPT tree is 2Lþ1
2 1. W is an orthonormal transformation matrix.

1For a Q-band DWPT, there are Q children nodes for a given parent node [27].
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the other hand, they evaluate the content of the signal inside the related frequency

subband, as illustrated in Figure 22.2. Better frequency resolutions are obtained as

we proceed from tree top to bottom at the expense of time-domain resolution and

vice versa.

To obtain a best-basis binary tree for a given signal, multiple criteria have been

proposed in the literature depending on the application [25, 26]. Obviously in our case,

one would choose the bases that have the “highest” correlation with the spike waveform

since these will best represent the spike waveform. The definition of the highest corre-

lation becomes nontrivial in the presence of strongly correlated neural noise. This is

because most of the neural noise consists of spike waveforms from similar neurons.

The only information in the noise-free term as
T in Eq. (22.3) that is minimally shared

by the noise components in Z is the column vector a, which expresses the array response

to the single source. Accordingly, this vector can be considered a footprint characterizing

the source energy at the array.

To be more precise, denote by Yj [ <
M�N

the orthogonal transformation of Y (row

wise) in the jth node of a DWPT binary tree up to L levels. By linearity of the transform,

we can express Yj as

Yj ¼ as
T
j þ Zj (22:6)

Note that the column vector a is independent of the node index j. This is a valid assumption

because there is a very negligible probability that the array responds differently to every

time sample in the spike waveform, which implies that a is “stationary in time” over the

Figure 22.2 Hypothetical spectral representation of an arbitrary signal superimposed on

frequency tiling obtained by DWPT at every level. Black squares indicate the relative

correlation of the signal with the corresponding wavelet basis and illustrated also on the binary

tree. The size of each square is directly proportional to the dominant eigenvalue in that subband.

[Node numbers are not shown (on the right) for the last scale level in (c) for clarity].
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length of the spike interval. Similar to the analysis in Eqs. (22.4) and (22.5), the covariance

of Yj can be spectrally factored with SVD as

R
j
Y ¼

X

P

i¼1

d
j
i u

j
i u

jT

i þ
X

M

i¼Pþ1

z
j
iu

j
i u

jT

i j ¼ 0, 1, K, J (22:7)

The eigenvalue/eigenvector pair fd1
0, u1

0g is equivalent to fd1, u1g because node 0 is the

time-domain signal and therefore u1
0 is always similar to a up to a scale factor.

For a single source indexed by p, the best-basis selection process can be formulated

using a top-down search algorithm that searches the dictionary of bases, starting from node

0, and selects the nodes for which the dominant mode fd1
j, u1

jg has an eigenvector u1
j that is

invariant, that is, resembles the column vector a. Specifically, the invariance property can

be formulated in terms of a distance metric between u1
0 and u1

j in a Euclidean norm sense

[18]. A cost is thus defined for splitting a given parent node to obtain its children. Specifi-

cally, the cost of each node in the DWPT binary tree of source p is compared to the cost of

its children and a decision is made to split the parent node if

Cost( j, p) ¼ min
j[=p

u
Parent
p � u

Child
p

�

�

�

�

�

�

2

(22:8)

where =p{ j} denotes the set of best bases satisfying the inclusion criterion for nodes with

indices less than j (i.e., higher in the tree). The outcome is a characteristic binary tree

representing source p along with the feature set fd1
j, u1

ig for all j [ =p{J}.

Figures 22.3 and 22.4 demonstrate the applicability of this approach to two different

cases of simple noisy spike waveforms extracted from our experimental data archives

along with their “cleaned” versions using a wavelet-based denoising algorithm [28].

These spikes were recorded on a subarray of four channels (labeled in different colors

in Figs 22.3a and 22.4a). The characteristic features of each spike waveform are shown

in (b)–(d ) of each figure. These are the characteristic best-basis wavelet packet tree

=1{J}, the dominant eigenvalue profile across best tree nodes {d
j
1}, j [ =1{J}, and the

principal eigenvector {u
j
1}, j [ =1{J}.

22.2.4 Multisource Characterization

When the observation matrix contains a complex spike resulting from two or more sources

(i.e., P . 1), the resolution problem has two levels of complexity. First, estimating P and,

second, characterizing each source with features similar to the ones illustrated in Figures

22.3 and 22.4. Consider the specific case of P ¼ 2 for simplicity, so we have two

sources: source A and source B. We start with the easier scenario in which the two

sources elicit spike waveforms with different spatial distribution across channels. This

means each source appears on a principal channel with high SNR. It is important to note

that it is not necessary for each source to be “detectable” on other non-principal channels.

Denote the principal channel for A bymA and for B bymB. Accordingly, the case considered

is one for whichmA= mB. ThemixingmatrixA thus has two linearly independent columns

[a1 a2]. It is required to apply the best-basis approach described in Eqs. (22.7) and (22.8) to

obtain a characteristic best-basis tree and feature set for each of the two sources. This case is

relatively simple, because we only need to examine the two dominant modes {d j
m, u

j
m}, m ¼

1, 2 for all j, to identify the two best-basis sets =A{J}, and =B{J}. This situation is illustrated

in Figure 22.5 for two different overlap scenarios: when the spikes partially overlap

(Fig. 22.5c) and when they fully overlap (Fig. 22.5d ). The overlap reference point is
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Figure 22.3 (a) Single-source waveform along a four-channel array before and after denoising [28].

(b) Characteristic best-basis wavelet packet tree =1 Jf g. (c) Sample mean of dominant eigenvalue

profile {d
j
1} for =1 Jf g across 200 realizations of spike occurrences from the same single unit.

(d) Sample mean of dominant eigenvector {u
j
1} for =1 Jf g.

Figure 22.4 (a) Neural source waveform along four-channel array before and after denoising. (b)

Characteristic best-basis wavelet packet tree =1 Jf g. (c) Sample mean of dominant eigenvalue profile

{d
j
1} in =1 Jf g for 200 realizations of spike occurrences of the same single unit in (a). (d ) Sample

mean of dominant eigenvector {u
j
1} across =1 Jf g.
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Figure 22.5 (a) Source A across four channels. (b) Source B across four channels. (c) Complex

waveform from partially overlapping sources A and B. (d ) Fully overlapped sources A and B. (e)

First eigenvalue profile for the fully coherent waveform case. ( f ) First eigenvector profile for fully

coherent waveform case. Partial-overlap case (not shown) was very similar. (g) Second eigenvalue

profile for fully coherent waveform case. (h) Second eigenvector profile for fully coherent waveform

case. Partial-overlap case (not shown) was very similar.
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taken at the zero crossing of the first source spike waveform. The features for the two domi-

nant modes {d j
m, u

j
m}, m ¼ 1, 2, are illustrated in Figures 22.5e–5h for the full-overlap

case. The partial-overlap case was very similar and therefore is not shown.

The second scenario we consider is more complex. The two sources now elicit spike

waveforms with identical spatial distribution across channels. This means that mA ¼ mB.

Accordingly, the two columns [a1 a2] of the mixing matrix A may be linearly dependent

and A will be rank deficient. Therefore, examining the second dominant mode in the

wavelet tree of the complex waveform will not resolve the overlap due to the so-called

array ambiguity [29]. Nevertheless, the advantage of the orthogonal transformation

plays an important role in this context. Recall from Section 22.2.3 that the dominant

mode of the best-basis set =1{J} is always associated with the wavelet bases that have

the highest correlation with the spike waveform. In the case of more than one source,

each of the simple spike waveforms S ¼ ½sTA s
T
B�

T forming the complex spike will have

distinct correlation with the wavelet basis at any given node j. Accordingly, the best-basis

subset =1{J} obtained from the dominant-mode analysis can be further split into two

subsets: The first, =A
1{J} , =1{J}, will include those nodes in which the correlation of

the source A waveform with the wavelet basis wj “dominates” that of source B. This can

be expressed using the following criterion: For all j [ =1{J},

Decide j [ =A
1{J} if ksA, wjl . ksB, wjl

Decide j [ =B
1{J} if ksB, wjl . ksA, wjl

(22:9)

where k � l denotes a dot product. The second subset, =B
1{J} , =1{J} on the other hand,

will contain those nodes for which the source B spike waveform has a higher correlation

with wj than that of source A. Note that it is easy to see that both sets are disjoint, that

is, =A
1{J}> =B

1{J} ¼ {}. Figure 22.6 demonstrates an example of this complex scenario

for noise-free spike templates for clarity.

The generalization of the approach to more than two sources making up the complex

spike is straightforward. For an arbitrary number of sources within the complex spike

window, it can be easily shown that in an arbitrary node j that belongs to the set =1{J}

the sources can be rank ordered depending on the strength of their correlation with the

wavelet basis wj. It is thus evident that the larger the cardinality of the set =1{J}, more

resolution power can be achieved. This can be achieved by either implementing a

Q-band wavelet transform [27] or increasing the number of decomposition levels L. It

is also clear that increasing the number of channels in the array contributes to the

robustness of the cost function evaluation as it reduces the variance of the Euclidean

distance metric.

Generally speaking, the probability of more than three neurons spiking simul-

taneously may be neglected. In our approach, we do not assume prior knowledge of the

number of sources contributing to the complex spike. We have proposed elsewhere a

criterion to determine the number of sources within the analysis window [30]. This is for-

mulated in terms of a sphericity test to determine the equality of the smallest eigenvalues

(presumably the noise eigenvalues) or equivalently how spherical the noise subspace is

[31]. The test takes the form of a likelihood ratio in an arbitrary node j that calculates

the ratio of the geometric mean to the arithmetic mean of the noise eigenvalues as

gj ¼

�
QM

n¼i d
j
m

	1=(M�iþ1Þ

½1=(M � iþ 1)�
PM

n¼i

i ¼ 1, . . . , M � 1 (22:10)
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This test can be used to determine how many sources Pj � P have the strongest

representation in the jth node and accordingly decide how many sources to consider

within the first mode if the array is ambiguous or how many eigen modes to consider if

it is not. In practice, an augmented matrix A can be formed by concatenating all the eigen-

vectors from all the sphericity tests in (22.10) for j [ =1{J} in the columns of A as follows

A ¼ ½u01 u
0
2 � � � u

0
P0

u
1
1 u

1
2 � � � u

1
P1
� � � uJ1 u

J
2 � � � u

J
PJ
� (22:11)

where u i
j denotes the ith dominant eigenvector in the jth node. Then, the matrix A is

projected onto a feature space determined by its first two principal components to allow

visualization of the number of clusters corresponding to the number of sources in the

complex spike. It is clear that the algorithm can resolve up to M different sources

within the complex event window.

Figure 22.6 (a) Noise-free spike waveforms from two sources with near-identical spatial distri-

bution [source A was scaled on channel 3 to enable distinction of features in (c)]. (b) Complex spike

waveform across four channels resulting from superimposing both templates in (a). (c) Top:

Dominant-mode best-basis tree =1 Jf g. Bottom: Dominant eigenvectors of set =1 Jf g illustrating two

subsets =A
1 Jf g and =B

1 Jf g. Nodes 8, 18, 33, and 68 show stronger responses to source B and therefore

are included in =B
1 Jf g. Others respond stronger to source A.
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22.3 PERFORMANCE

Besides the results presented in Figures 22.3–22.6, we demonstrate in this section through

simulations the capability of the approach in resolving multiple spikes with variable

degrees of overlap. We let r denote the ratio of temporal overlap between the spikes

such that 0 , jrj , 1. When spike waveforms fully overlap in time (i.e., their zero cross-

ings coincide), r ¼ 0, and when they do not overlap, jrj ¼ 1. The absolute value implies

we will not distinguish between the case when spike 1 precedes or trails spike 2; that is, the

order of the spikes is not important, and in either case r will be the same. Three overlap

scenarios were simulated as illustrated in Figure 22.7a corresponding to r values of20.5,

0, and þ0.5 overlap. Accordingly, source A was fixed within the window, while source B

was added to A at three different time instants corresponding to two partial overlaps [left

(r ¼ 20.5) and right (r ¼ 0.5)] and one full overlap (r ¼ 0) in the middle panel.

Figure 22.7b illustrates the feature space obtained by projecting the matrix A onto the

subspace of its first two principal components. It is clear that the clusters indicate the

presence of two sources and are independent of the lag within the window for the data

in Figure 22.7a. This performance strengthens the validity of the proposed approach for

precisely resolving the number of sources within the complex event as well as its robust-

ness to shifts within the analysis window. The latter property is essential to cope with non-

stationarity of the neural signal environment.

22.4 FUTURE TRENDS

Spike superposition resolution is a classical problem that has received significant atten-

tion in neuroscience research for a long time. The complexity of the problem dictated an

intrinsic level of complexity of the approach. All the methods proposed to date are

innately classical in the sense that the underlying theory is governed by exhaustive

search approaches. In contrast, the methodology we described was capable of resolving

the overlap with no constraints on the time window in which the superposition occurs or

the amount of overlap between spike waveforms. Furthermore, the methodology

is capable of determining the number of sources involved in a detected event

(without actually separating the waveforms). In addition, it segregates the individual

waveforms and identifies the exact spectral and spatial characteristics of the

corresponding sources.

With the advent of continuous advances in microfabrication of high-density elec-

tronic interfaces to the nervous system, it is clear that the resulting neural yield renders

exhaustive search techniques very inefficient and time consuming. Nevertheless, the

advent of this technology incorporates additional information in the space domain that

can be efficiently utilized to provide smarter techniques for resolving complex overlaps.

The information provided by sampling the space surrounding the microelectrode arrays

coupled with the powerful theory of wavelets enabled us to integrate the temporal, spec-

tral, and spatial information to resolve substantially complex situations of spike overlap.

It is noteworthy that the choice of the wavelet basis plays an important role in improving

the resolution power of the technique.

The outcome of the proposed technique will potentially aid studies focusing on

neurons in small volumes that are highly synchronized and/or are participating in

local circuits. The bias inflicted on correlation calculations due to nearly simultaneous

events can be largely removed by fully identifying each event recorded by an array
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whether it is a single spike or an overlapped complex. The methodology is part of a

suite of algorithms that facilitate development of a fully automated, near-optimal

system to enhance the signal processing technology of implanted devices for recording

and stimulating neural cells at the microscale. In experiments where information

is being extracted from cortical neuron signals for adaptive control of external

devices such as neuroprosthetic arms, it is well known that multiple single-neuron

recordings outperform unresolved clusters of neurons. Closely spaced arrays and the

signal processing methods that accompany them may well be worth the added

complexity.

Figure 22.7 (a) Sample complex spike waveform created by superimposing two templates in

Figures 22.5a,b and (b) feature space obtained by projecting matrix A onto subspace of first two

principal components: top: 50% lead; middle: 0% lag; bottom: 50% lag.
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CHA P T E R23

TOWARD A BUTTON-SIZED

1024-SITE WIRELESS CORTICAL

MICROSTIMULATING ARRAY
Maysam Ghovanloo and Khalil Najafi

23.1 INTRODUCTION

Neuroscientists have shown that there is a topographic representation of each sensory

modality over the appropriate region of sensory cortex. This suggests that by implanting

an array of electrodes in an individual with a sensory deficit and stimulating specific sites

on sensory cortex we can restore a limited sensation [1]. A cortical neural prosthesis must

apply electrical stimulations in a well-controlled temporal–spatial pattern similar to the

natural cognitive neural activity in order to be effective [2]. This approach has been

highly successful in auditory cortex with tens of stimulating sites [3]. Nevertheless, it is

significantly more challenging in visual restoration and needs hundreds of stimulating

sites at least to afford a minimum functional resolution [4–10].

The University of Michigan (UM) micromachined (microelectro-mechanical-systems

or MEMs) silicon microelectrode array technology has been developed during the past two

decades with more than 50 passive and active recording and stimulating designs. It can

provide an appropriate medium for the above applications by taking advantage of the features

available from thin-film, integrated circuits (ICs) andmicromachining technologies on silicon

wafers. These advantages include precise definition of probe shanks and site geometrieswith a

high level of consistency, which helps in reproducing biological experiments as well as inte-

grationof active circuitryon theprobes,which easesmanyof the interconnectionproblemsand

shrinks the device size [11]. These micromachined silicon probes are now being widely dis-

tributed throughout the world to the medical community. They are being utilized by neuros-

cientists in an increasing number of experiments to advance both theoretical and clinical

aspects of this promising technology [12]. In the clinical phase, though, when these microp-

robes are considered to be used in humans, safety plays a major role. Safety issues cover a

wide range from short- and long-term tissue reactions to the device packaging. However,

they can be categorized into patient and device safety. There is one requirement that signifi-

cantly assists both categories: wireless operation of the implantable microelectronic

devices. Elimination of the wires that otherwise would breach through the skin will reduce

the risk of infection and patient discomfort. On the device side, the untethered implantable

device is physically more robust and easier to be hermetically packaged [10].

In our laboratory, research on developing a wireless intracortical stimulating

microprobe started by designing a wireless interface chip, called Interestim-1 [13], for
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STIM-2, a hardwired active 64-site multishank microstimulator probe [14], and gained

experience from prior research on several peripheral-nerve wireless microstimulators

[15–17]. Interestim-1 mounts on a flat micromachined platform that supports the receiver

coil and vertical STIM-2 probes, as shown in Figure 23.1. It is designed to generate dual

regulated +5-V supplies capable of providing the microstimulating probes with up to

50 mW of power. It also regenerates a 4-MHz internal clock and extracts data bit

streams of up to 100 kbps from the amplitude shift keying (ASK) 4-MHz radio-frequency

(RF) carrier. The internal clock is stepped down by a user-selectable ratio to be synchro-

nized with the recovered data and sent to the STIM-2 probes along with synchronizing

strobe pulses [13].

Interestim-2, a four-channel stand-alone wireless stimulating chip, was designed by

transferring all active circuitry, including the stimulation and site selection circuits from

the active probes to a wireless microstimulating chip, while still using the same micro-

assembly structure of Figure 23.1 [18]. This new circuit allocation has two advantages.

First, the wireless chip can stimulate tissue through passive micromachined probes (or

even microwires), which are more prevalent and have simpler and lower cost processing.

Second, the back-end height of the cortical implant, which was constrained by the vertical

active probe circuitry, can be reduced. This is critical in providing enough clearance for

the implant in the very limited space between the cortical surface and the skull. A more

recent version of Interestim-2 is developed in a foundry-based standard complementary

metal–oxide–semiconductor process, which has a modular architecture and addresses

32 stimulating sites per module [19].

When the number of stimulating sites increases, interconnections between the wire-

less microstimulating chip and passive probes in Interestim-2 architecture become so elab-

orate that integration of some sort of site selection circuitry on the probe in order to reduce

the number of interconnects is inevitable [20]. Reducing the number of interconnects

becomes even more crucial when the goal is a 1024-site stimulating system, because it

is shown that interconnects are the major cause of failure in cortical implants with large

number of stimulating or recording sites [10, 21]. To solve the interconnection

problem, all the active circuitry, including wireless interfacing, site selection, and stimu-

lation circuits, were transferred to the probe back end in a modular architecture, which was

called Interestim-3. Every Interestim-3 probe is a stand-alone module that addresses 16

stimulating sites and only needs a pair of connections to a receiver LC-tank circuit,

which is the only hybrid component in the Interestim-3 wireless cortical microstimulating

Figure 23.1 Wireless microstimulator

array with hybrid coil and interface

chip mounted on micromachined

platform [13, 18].
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system. The rest of this chapter is dedicated to a description of the Interestim-3 architec-

ture. Section 23.2 also includes a brief depiction of some circuit blocks down to the

transistor level. The microassembly of the planar micromachined Interestim-3 probes

into a three-dimensional (3D) microstructure is shown in Section 23.3. Section 23.4

shows some of the measured results, followed by concluding remarks in Section 23.5.

23.2 SYSTEM OVERVIEW

The Interestim-3 block diagram is shown in Figure 23.2a [22]. Each individual probe, as a

module, has all the necessary components to operate as a 16-site stand-alone wireless

microstimulator such as RF power conditioning, wireless receiver, digital controller, and

site-manipulating circuits. The only inputs to this probe, called coil 1 and coil 2, are the

Figure 23.2 (a) Overall block diagram of Interestim-3. (b) Shank driver block diagram. (c) Shank

digital controller block diagram. (d ) Receiver block diagram. (e) Power supply block diagram [14].
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nodes of an implantable miniature hybrid LC-tank circuit, which are shared between

all probes that are connected in parallel to form a 3D microstimulating array (see

Fig. 23.8 below).

Each Interestim-3 probe has four shanks and each shank has 4 stimulating sites on it,

which are controlled by an individual shank driver block. These 16 sites are arranged in a

4 � 4, 1-mm2 square array with 250 mm center-to-center spacing in the X and Y directions

(see Fig. 23.7 below). A more detailed block diagram of the shank driver is shown in

Figure 23.2b. There are two 8-bit registers in every shank driver. One of them is the

command register that keeps the electrical configuration of its four associated sites by

assigning 2 bits to each site. These 2 bits (A, B), as shown in Figure 23.3a and summarized

in Table 23.1, define whether each site is at high impedance (inactive), involved in a

TABLE 23.1 Interestim-3 Site Status and Functions

State Bit A Bit B Function

0 0 0 High impedance

1 0 1 VDD

2 1 0 Current sink

3 1 1 Common analog

Figure 23.3 (a) Site manipulation strategy. (b) Site driver simplified schematic diagram.

(c) Interestim-3 data frame protocol.
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biphasic-bipolar stimulation, or connected to the common analog line (CAL). The CAL is

simply an electrical connection that passes through all site driver blocks for charge balan-

cing. Every stimulating site has an individual site driver circuit, shown in Figure 23.3b,

with a single nMOS nonlinear current sink [18]. In the first phase of a biphasic-bipolar

stimulation between two sites, one site is connected to VDD (state 1), while the other

one is connected to the nMOS current sink (state 2). The amplitude information of the

resulting stimulus current that passes through the excitable neural tissue is stored in the

data register, which is the second 8-bit register in each shank driver block and controls

the nMOS current sink gate voltage by means of a voltage-mode 7-bit digital-to-analog

converter (DAC). In the second phase of stimulation, the site states are switched by a

new command and, therefore, the direction of stimulus current reverses in the tissue.

This simple current-steering strategy works as long as the implant circuitry is totally iso-

lated from the tissue, which is the case in bipolar stimulation with an electrically floated

biomedical implant. For monopolar stimulation, where each site needs source and sink

current versus a common ground (usually the same as the circuit ground) a dual-supply

stimulating circuit would be needed [14, 23].

The digital controller block is shown in Figure 23.2c. The serial data bit stream out

of the wireless receiver block is initially converted to a parallel data frame by an 18-bit

shift register (Fig. 23.3c). The shift register content is latched once it is filled by a data

frame and then a parity-checking circuit is activated to look for an even parity. In case

of a correct parity, the data frame gets decoded. Otherwise, a reset line is activated and

the entire probe resets without taking any further steps.

Each Interestim-3 data frame, shown in Figure 23.3c, has 1 byte of either stimulation

amplitude data or site configuration command (D0–D7), 3 bits for internal register addres-

sing (D8–D10), 6 bits for probe addressing (D11–D16), and 1 bit for parity checking

(D17). Each Interestim-3 probe has a 6-bit hard-wired user-selectable address, which is

initially set to 0 when all of the links are shorted to ground. Cutting each link with

laser changes the associated address bit from 0 to 1. Therefore, up to 64 (26) probes can

be individually addressed in order to achieve a 1024-site 3D microstimulator array.

After decoding the data frame, if the data frame address matches with the probe

address, the 3-bit internal register address is used to send the configuration command or

amplitude data byte to one of the eight internal registers in each probe (two in every

shank driver, as shown in Fig. 23.2b). Using separate addresses for data and command

registers in every shank driver can save the amount of data transfer across the limited-

bandwidth wireless link in those situations where the stimulation amplitude is constant

and only the active site configuration or timing of stimulation pulses would change.

High data rate is one of the key requirements of a wireless 1024-site stimulating

microsystem. In broadband wireless communications such as the IEEE 802.11 standard

for wireless local-area networks (LANs), data rates as high as 54 Mbps have been

achieved at the expense of increasing the carrier frequency to 5.8 GHz, resulting in a

data rate–carrier frequency ratio of only 0.93%. In other words, each data bit is carried

by 107.4 carrier cycles. However, the maximum carrier frequency for biomedical

implant applications is limited to a few tens of megahertz due to the coupled coil self-

resonant frequency, more power loss in power transfer circuitry at higher frequency,

and excessive power dissipation in the tissue, which increases as the square of the

carrier frequency [24]. Therefore, the goal is to transfer each data bit with a minimum

number of carrier cycles to maximize the data rate–frequency ratio and minimize the

amount of power consumption.

So far, the ASK modulation scheme is commonly used in biomedical implants

because of its fairly simple modulation and demodulation circuitry [10, 13, 15–18].
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This method, however, faces major limitations for high-bandwidth data transfer, because

high-bandwidth ASK demodulator circuits need high-order filters with sharp cutoff

frequencies, whose large capacitors cannot be easily integrated in this low-frequency

range of RF applications. A remedy that is proposed in the so-called suspended carrier

modulation boosts the modulation index up to 100% to achieve high data rates with low-

order integrated filters at the expense of an average 50% reduction in the transferred power

[10]. Therefore, the frequency shift keying (FSK) data modulation technique was utilized

for wirelessly operating Interestim-3, which simply means sending binary data with two

frequencies f0 and f1, as shown in Figure 23.4. Frequency shift keying is more robust

than ASK in noisy environments and against coil misalignments due to motion artifacts,

which is a common problem in inductively operated biomedical implants. Yet, another

excellent characteristic of FSK modulation for wireless implants is that, unlike ASK,

the transmitted power is always constant at its maximum level irrespective of f0 and f1
or the data contents.

The Interestim-3 receiver block consists of data recovery, clock recovery, and

synchronization circuits, as shown in Figure 23.2d. The received sinusoidal carrier

across the receiver LC-tank circuit is used in this block to recover the clock and serial

data bit stream for the rest of the chip. The clock recovery block is a cross-coupled

differential pair which squares up the sinusoidal FSK carrier into a similar square wave-

form called CKin. In order to achieve data rates above 1 Mbps, while keeping the carrier

frequency below 10 MHz, a particular FSK modulation protocol was utilized. In this

protocol, a logic 1 bit is transmitted by a single cycle of the carrier at f1, a logic 0 bit is

transmitted by two cycles of the carrier at f0, and f0 is chosen twice as f1, as shown in

Figure 23.4 ( f0 ¼ 2f1). The transmitter frequency switches at a small fraction of a cycle

and only at negative-going zero crossings. This technique is generally known as phase-

coherent FSK and leads to a consistent data transfer rate of f1 bits per second. As a

result, if we consider the average carrier frequency to be ( f0þ f1)/2, then the data

rate–carrier frequency ratio can be as high as 67%. It is also useful to notice that any

odd number of consecutive f0 cycles in this protocol is an indication of data transfer

error [25].

The FSK demodulation in data recovery block is based on measuring the period of

each received carrier cycle, which is the information-carrying entity in FSK modulation

scheme. If the period is higher than a certain value, a logic 1 bit is detected and otherwise

Figure 23.4 The FSK data transfer

protocol [25]: (a) time domain; (b)

frequency domain.
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a logic 0 bit is received. A simple method for time measurement in analog circuits is

charging a capacitor with a constant current source and monitoring its voltage. Charging

and discharging of this capacitor should be synchronized with the FSK carrier signal. If the

capacitor voltage is higher than a certain value, a logic 1 bit is detected and otherwise a

logic 0 bit is received. In order to make the data recovery block more robust against

noise and process parameter variation, the circuit was designed fully differential by char-

ging two unequal capacitors (CL . CH) with different currents (IH . IL) and comparing

their voltages with a hysteresis comparator, as shown in Figure 23.5a [25]. The output

Figure 23.5 (a) Digital block of data recovery circuit. (b) Simulation waveforms with f0 ¼ 5 MHz

and f1 ¼ 2.5 MHz [25].
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of the hysteresis comparator is a series of square pulses which discriminate between the

carrier long and short cycles. These pulses along with CKin are fed into the digital

block of Figure 23.5b to generate a serial data bit stream (Data-Out) as well as a constant-

frequency clock (Clock-Out). We have also developed two other demodulator circuits

based on the same FSK protocol, which are discussed in [26–28].

The performance of the FSK demodulator circuit is simulated in Figure 23.5c. When

CKin (trace 1) is low, SL and SH switches are open and SLC and SHC are closed. Therefore,

the current sources IL and IH linearly charge CL and CH up to VL (3) and VH (2), respect-

ively. During a logic 1 long cycle, VL1 and VH1 are twice VL0 and VH0 when a logic 0 short

cycle is being received, because in our FSK protocol in Figure 23.4a, f0 is twice f1. A

hysteresis comparator, with hysteresis window width (Whyst) set somewhere between

VH1–VL1 and VH0–VL0, compares the capacitor voltages. The comparator output, called

FSK (4), switches to high during a logic 1 long cycle but not during a logic 0 short

cycle. The SL and SH switches discharge the capacitors in a fraction of the FSK carrier

second half cycle, when CKin is high. Meanwhile, SLC and SHC switches open to reduce

power consumption. The train of pulses at the output of the hysteresis comparator (4),

which discriminates between short and long carrier pulses, is applied to the digital

block, shown in Figure 23.5b, which turns them into a serial data bit stream (5) and a

constant-frequency clock (6). This circuit is also capable of detecting any odd number

of successive short pulses, which is an indication of error due to our FSK modulation

protocol (7).

Supplying a 1024-site wireless microstimulator in an efficient way is another

challenge in this design, especially because everything except the receiver coil should

be integrated for size reduction. The distributed power supply scheme which is

adopted here by including a fully integrated power supply block on every probe has

Figure 23.5 Continued.
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several advantages over a central power supply for the entire 1024-site wireless

stimulator system:

1. Each Interestim-3 probe is a self-sufficient planar stimulating array and can be used

either individually or in parallel with other similar probes in a 3D array.

2. The output current capacity of the power supply scales by the number of probes that

are used in the 3D stimulating microsystem without any unutilized capacity.

3. Less leakage current flows into the substrate due to lower current levels through each

power supply rectifier block [29].

4. Better heat dissipation is achieved by distributing the high-current components, such

as rectifiers and regulators, across all probes in a larger area.

Figure 23.2e shows the Interestim-3 power supply block diagram, which generates

regulated 5- and 10-V supplies for the probe internal circuitry and stimulating site

drivers, respectively. A CMOS full-wave rectifier [29, 30], shown in Figure 23.6a, uses

Figure 23.6 (a) Full-wave CMOS rectifier bridge. (b) Cross section of CMOS rectifier bridge with

its parasitic transistors in UM-BiCMOS process [29].
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diode-connected MOS transistors (Mp1, Mp2, Mn1, Mn2), which are controlled by the

receiver coil voltage (coil 1 and coil 2). Since the coil voltages are higher than the

other internal nodes, the rectifier should be implemented in separated N-Epi and P-well

regions to be always isolated from the rest of the chip by reverse-biased diodes. To

eliminate latch-up and substrate leakage problems, two auxiliary MOS transistors are

added to each rectifying MOS to dynamically control the potentials of these separated

regions (Mp3–Mp6, Mn3–Mn6). The effect of the auxiliary transistor switching is

that the N-Epi potential always follows max(Coil, Vout) and the P-well potential follows

min(Coil, GND). Therefore, none of the parasitic vertical bipolar junction transistors

(BJTs) that are shown in cross section in Figure 23.6b can turn on. The power supply

block also includes a 400-pF capacitive low-pass filter for ripple rejection and a

power-on reset block, which activates the reset line at startup and releases it after 15 ms

when all transient voltages are suppressed.

Figure 23.7 shows photomicrographs of two versions of the Interestim-3 probes,

fabricated in the 3-mm, one-metal, two-poly, N-Epi, UM-bipolar CMOS (BiCMOS)

process. Having only one metal layer in this MEMS-oriented, large-feature-size process

has made the 21.2-mm2 full-custom IC layout more challenging and larger than what is

achievable in today’s state-of-the-art submicrometer processes. An order-of-magnitude

reduction in the back-end area is expected by implementing the probe in a 0.5-mm, three-

metal process. To reduce the back-end height of the probe from 5 to only 1.5 mm above

the cortical surface in the current process, probe 2 in Figure 23.7b, was designed with a

Figure 23.7 (a) Floor plan of Interestim-3, 16-site wireless addressable microstimulating probe, with

micromachining features such as spacer notches and bending electroplated gold beams for 3D microassembly

[22]. (b) Second version of Interestim-3 with bending back end to reduce height of probe back end from 5 to

1.5 mm [20].
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bending back end. The shank drivers are located at the middle of the probe, surrounded by

digital controller, receiver, and power supply blocks, to have direct access to the four sites

on each shank. A functional probe only needs coil 1 and coil 2, the two large input pads on

either side of the probe. Twelve test pads are added on the upper edge in addition to several

internal cutting links and test points to test each Interestim-3 block individually as well as

the entire probe.

23.3 THREE-DIMENSIONAL ARRAY MICROASSEMBLY

Interestim-3 is a planar probe that is designed with all the features required for typical

microassembly of micromachined probes on a platform, as shown in Figure 23.7 and

described in [21]. The body of each probe is defined by deep boron diffusion followed

by standard CMOS processing steps in a dissolved-wafer micromachining process,

which is described in [11, 14]. Two wide electroplated gold beams, each with seven

100 mm � 300 mm fingers, are added to each side of the probe to provide probe–platform

interconnects. All of the gold beams on each side of the probe are electrically connected to

the large pad on that side, which represent coil 1 and coil 2 input nodes in the Interestim-3

block diagram of Figure 23.2.

Figure 23.8 Conceptual drawing of

Interestim-3 microassembly components

with assembled 3D probe [22].
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Bai mentions in [21, p. 284] that, “the most time consuming step in the 3-D

microassembly process is that of placing spacers. The greater the number of probes

the more difficult this is because the probes inserted into the platform are not initially

parallel to each other and tend to stick back to back before the spacer is put in.” In

order to solve this problem, two new sets of spacer notches were added to the lower

edges of the probe back end (see Fig. 23.7) to insert probes after the two spacers

are installed on the platform. This procedure is easier than keeping 16 or more

probes in parallel and orthogonal to the platform while inserting two vertical

spacers. When spacers are installed first, each probe should be placed between only

two vertical spacers and it will be kept upright parallel to previously installed probes

by the spacers. After inserting and ultrasonically bonding the last probe gold beams

to the platform, a cylindrical coil, which is the only hybrid component of this structure,

is mounted on the platform while encompassing the entire back-end volume of the 3D

array. In acute experiments, the coil and the entire back end are potted by epoxy or

silicone to fix all the components before implantation. For chronic usage, however,

the probe back end should be hermetically sealed using MEMS packaging techniques.

A rendering of an Interestim-3 3D array and its building blocks are shown in

Figure 23.8 [22].

23.4 MEASUREMENT RESULTS

The entire Interestim-3 probe has not been wirelessly operated yet. However, since the

individual blocks can be isolated from the rest of the chip by cutting links, we were

able to achieve promising results from individual block measurements. In the setup, a

graphical user interface (GUI) in the LabView environment runs on an IBM PC and gen-

erates a serial data bit stream at a user-defined rate using a high-speed digital input–output

card (National Instruments DIO-6534). This signal is used as an external modulating

source for a function generator (Agilent 33250A), which generates an FSK-modulated

sinusoidal waveform based on the FSK protocol that was described in Section 23.2

(Figure 23.4). The FSK sine wave is passed through a wide-band isolation transformer

(North Hills 0904) and applied to the probes at wafer and die levels.

In Figure 23.9a the stimulation amplitude register value is swept from 0 to 127,

while monitoring the 7-bit DAC output voltage and the nMOS current sink. The DAC

output is the gate voltage for the single transistor current sink in Figure 23.3b and

controls the nonlinear stimulus current that is shown on the right axis in

Figure 23.9a. The nMOS nonlinearity offers finer resolution over the smaller stimulus

currents and coarser resolution over the larger stimulus currents. This is generally what

is needed in a neurophysiological setup, where smaller stimulus currents are used to

interact with only one or a small group of neurons. In contrast, large stimulus currents

are used to stimulate large populations or bundles of neurons, where small variations of

the stimulating current do not make much of a difference. Figure 23.9b shows sample

bipolar-biphasic stimulation waveforms between two sites, A and B, with a 50-kV

resistive load connected between them, resembling the tissue. Every biphasic pulse is

a result of four consecutive commands as described in Section 23.2 [18]. In a more

practical in vitro experiment, when the probe shanks are immersed in saline, up to

10% of the stimulus current can leak into the grounded, deep boron diffused, probe

substrate, which is loosely isolated from the surrounding saline solution by its super-

ficial native oxide. To cancel out the charge imbalance caused by this leakage
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current, all the sites can be shorted to ground through the CAL after several stimulation

pulses. A better solution is to coat the back side of each probe with Parylene-C in order

to isolate the grounded substrate from tissue or saline.

The receiver block measurements are shown in Figure 23.10. A comparison between

these waveforms and the simulated traces (1–5) in Figure 23.5c shows that the circuit is

working precisely as expected. The power consumption of this block was 0.55 mW at

200 kbps [25].

Figure 23.11 shows the measurement results on the power supply block.

Figure 23.11a shows the CMOS full-wave rectifier waveforms at 100 kHz. It can be

seen that the output voltage (Vout) is a full-wave rectified sine wave and the N-Epi potential

follows max (coil 1, Vout) waveforms, as expected from auxiliary transistor switching

(see Fig. 23.6). Figure 23.11b shows the regulator input (Vin) and outputs (5 and 10 V)

when the rectifier is receiving a 4-MHz carrier. Each regulator output is supplying

5 mA in this measurement. The internal current consumption of the regulator is measured

as 340 mA at 15 V DC input [29, 30].

Figure 23.9 (a) Output character-

istics of voltage-mode 7-bit DAC

and nonlinear nMOS current sink

versus digital input commands.

(b) Sample bipolar-biphasic

stimulation waveforms. From top:

site A voltage, stimulation current

passing through 50-kV load, site B

voltage [18].
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Figure 23.10 Fully differential FSK test chip measured waveforms with f1 and f0 equal to 1 and 2 MHz,

respectively: (a) larger and smaller capacitor voltages (1 ms/div); (b) comparator output pulses (2 ms/div);
(c) demodulated serial data bit stream (5 ms/div) [25].

Figure 23.11 (a) Measured CMOS rectifier waveforms at 100 kHz from top: coil input, separated N-Epi, and

output voltages. (b) Full-wave rectified carrier input to regulators with 8-MHz ripple along with regulated

5 and 10 outputs, each supplying 5 mA [29].
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23.5 CONCLUSION

The goal is to develop a 1024-site intracortical wireless stimulating 3D array for visual or

auditory prostheses based on the University of Michigan micromachined silicon micro-

probe technology. The research was started with a wireless interface chip for the existing

hard-wired stimulating probes (Interestim-1) and was carried on by a four-channel

stand-alone wireless stimulator chip (Interestim-2). Interestim-3 is a stand-alone 16-site

wireless active microstimulating probe with a modular architecture. A 6-bit user-

selectable internal address allows using up to 64 probes in parallel with only two connec-

tions per probe to a mutual receiver LC-tank circuit to achieve a 1024-site wireless

microstimulating 3D array. Interestim-3 is fabricated in a 3-mm, one-metal, two-poly,

N-Epi, UM-BiCMOS process with micromachining features for 3D microassembly. It

has four 60 mm � 3.1 mm shanks with 250 mm center to center spacing. Each shank

has four 1810-mm2 sites that are 250 mm spaced. Interestim-3 circuitry has 4200 transis-

tors that occupy 65% of the 32.5-mm2 probe back end. A summary of Interestim-3

specifications is provided in Table 23.2.

TABLE 23.2 Interestim-3 Specifications

Parameter Value

Process technology UM-BiCMOS 3-mm

Probe size 8.1 mm � 6.5 mm

Back-end size 6.5 mm � 5.0 mm

Shank size 3.1 mm � 60 mm

Shank and site spacing 250 mm

Stimulation site area 1810 mm2

Circuit area 21.2 mm2

Inputs nodes Coil 1 and coil 2

Number of sites (outputs) 16

Maximum stimulation current 100 mA

Carrier frequency ( f0 and f1) 2 and 4 MHz

Maximum internal clock frequency 2 MHz

Maximum simulated data rate 2 Mbps

Maximum measured data rate 625 kbps

Data rate–carrier frequency ratio 67%

Supply voltage 5 and 10 V

Maximum supply current 5 mA

Number of transistors 4200

Estimated power consumption 15 mW
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CHA P T E R24

PRACTICAL CONSIDERATIONS

IN RETINAL NEUROPROSTHESIS

DESIGN
Gregg J. Suaning, Luke E. Hallum, Spencer Chen,

Philip Preston, Socrates Dokos, and Nigel H. Lovell

24.1 INTRODUCTION

In our collective anxiety toward providing a useful visual prosthesis for the blind, we may

be overlooking some important clues that exist within the natural world and indeed within

mammalian biology itself that may lead to substantial benefits for the future of prosthetic

vision. In terms of electrical and mechanical design, retinal neuroprostheses have largely

evolved from their auditory forbearers, such as the cochlear implant, which itself evolved

from the cardiac pacemaker. As a result of this evolutionary process, substantial simi-

larities exist between current retinal neuroprostheses and the devices from which they

were derived. This chapter explores the virtues and drawbacks of this evolutionary

approach toward neuroprosthesis design and combines our knowledge of neurostimulation

and modelling approaches focused on a deeper understanding of current injection to

suggest and justify particular attributes of visual neuroprosthesis design.

Specific areas that are addressed include the geometry of electrode arrays used for

epiretinal stimulation, anticipated electrode numbers, and the relationship between

numbers and rates of stimulation; approaches toward electrode fabrication; the psycho-

physics of electrical stimulation in the retina; implantation issues; implant electronics;

and models of current injection given the aforementioned electrode and electronic

designs. The multidisciplinary skills needed to address these issues are representative

of the broad skill base necessary to design and construct a functional retinal

neuroprosthesis.

24.2 ELECTRODE ORGANIZATION AND
PHOSPHENIZED VISION

Cha and colleagues [1–3] pioneered the simulation of prosthetic vision. In short, subjects

viewed the world through a mask of pinholes. Pinholes (and therefore phosphenes) were

arranged in a regular, rectangular fashion in the visual field—a so-called Manhattan geo-

metry in reference to the ordered street arrangements of the Borough of Manhattan in

New York City. The density of the Manhattan arrangements of phosphenes and the

Handbook of Neural Engineering. Edited by Metin Akay
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overall number of phosphenes were varied, and the effects on subjects’ mobility, reading

ability, and other tasks were assessed.

The Manhattan geometry has intuitive appeal—television and computer displays,

for example, are based on a regular, rectangular arrangement of pixels. Further, implanta-

ble arrays being manufactured at the time featured electrodes arranged in a rectangular

pattern [4]. Figure 24.1 illustrates an early square electrode array manufactured in our

laboratory and used for epiretinal implantation in animals.

Had Cha et al. varied the geometry of phosphene layout, as opposed to simply

density and quantity, improved results would have likely been demonstrated. As an

alternative to the Manhattan geometry, consider a hexagonal mosaic. The two-

dimensional (2D) variant of the seventeenth-century conundrum known as Kepler’s

conjecture involves the dense packing of circles on a plane. That the densest packing

is, in fact, a hexagonal mosaic was not demonstrated until three centuries later by

Féjes-Toth [5].

Scribner et al. (2001) [6, 7] reported the manufacture of an electrode wherein micro-

channels carrying conductors were arranged in a hexagonal mosaic; they likely realized

that the most efficient means of arranging their circular conduits on a glass substrate

was by way of a hexagonal mosaic. Hallum et al. (2004) [8] suggested hexagonal arrange-

ments of electrodes be adopted for larger scales, citing the benefits of hexagonal arrange-

ments on concentrating charge injected into the retina which should lead to a more dense

packing of discrete phosphenes in the visual field. Indeed, simulations of prosthetic vision

at the authors’ laboratory indicate hexagonal packing effects improved acuity [9, 10].

Further, it so happens that the hexagonal arrangement of electrodes makes for more

efficient multiplexing in implantable microelectronics [11].

24.3 ELECTRODE QUANTITIES AND
STIMULATION RATES

The cardiac pacemaker requires only a single stimulation channel (electrode) with the

return path for the neurostimulation via the pacemaker capsule itself. For the cochlear

implant, substantial benefit can be achieved with as few as 16 stimulation channels and

associated electrodes. In contrast, little visual information can be conveyed with any

Figure 24.1 Populated

electrode array containing

100 platinum spheres of

450 mm diameter within

cast polydimethylsiloxane

(silicone elastomer)

substrate. Electrodes are

placed in a square grid with a

10-cent Australian coin

shown for reference.
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number of phosphenes fewer than 64 [3], with hundreds or indeed thousands of

phosphenes necessary to approximate the rich sense of vision that sighted people enjoy.

The mean stimulation frequency for each of the above examples differs markedly.

Assuming a single source of stimuli, said source must supply approximately two stimulus

pulses per second for the cardiac pacemaker so as to maintain a heart rate of 120 beats per

minute and up to approximately 15,000 pulses per second for the cochlear implant in order

to take advantage of modern speech processing techniques [12].

In the case of a visual prosthesis stimulating the retina, the optimal stimulation rate

is not yet established and is likely to be the topic of intense debate well into the future. The

practical lower limit of the stimulation rate is the visual prosthesis variant of the so-called

critical flicker fusion (CFF) frequency, below which phosphenes conveyed by way of a

visual prosthesis will appear pulsatile. The CFF is further dependent upon the site of

stimulation, for example, the retinal neurons owing to inhibitory effects that may be eli-

cited by way of stimulation of neurons other than the retinal ganglion cells (RGCs).

The authors posit that frequency modulation above the CFF will play a substantial role

conveying safe and effective phosphene information in image processing and stimulation

strategies.

In anticipation of such implementation of frequency modulation techniques, any

visual prosthesis for the retina should possess stimulation rate capabilities well above

the CFF with an upper limit of the signal-carrying capacity of individual optic nerve

fibres which is of the order of 150–250 signals per second [13]. In instances where

large numbers of electrodes are employed, the stimulation rate is a linear multiple of

the electrode quantity.

The CFF of the intact retina is dependent upon light intensity (Ferry–Porter law). In

an illustrative example of a television powered by 50-Hz electricity, no flicker is observed

at a screen refresh rate of 25 Hz (interleaved wherein every second line of pixels is updated

with each pass at 50 Hz) at moderate brightness. A different situation applies in electrical

stimulation applied to the diseased retina. In these instances, intraretinal processing is dys-

functional as a result of the disease, and what mechanisms that remain are bypassed by the

way in which the bipolar and RGCs are preferentially stimulated over other surviving

neurons [14, 15]. The apparent result of this is a reduction in the duration of the perceived

phosphenes. In testing on human subjects, flicker fusion occurs at two to three times the

frequency in electrical stimulation when compared with visual flicker fusion of normal

eyes [16].

Ignoring the differential CFF thresholds for electrical versus light stimulation, to

avoid the perception of flicker, a single stimulation source must be capable of stimulating

once every 20 ms. For pulse widths of the order of 1 ms each (2 ms with a charge recov-

ery phase), as few as 10 electrodes may be driven in series from a single source. For elec-

trical stimulation the number of electrodes that may be driven in series is likely to be

fewer still.

To achieve and facilitate going beyond the frequency of stimulation necessary for

even the most rudimentary conveyance of vision through a neuroprosthesis, parallelization

of stimuli is the only practical means of delivery.

Consider a simplified example of two separate electrode pairs through which simul-

taneous stimulation is occurring. Assume that electrons traveling between the first pair of

electrodes are colored red, and electrons traveling between the second pair are colored

blue. Some red electrons passing between the first pair will be diverted toward the

second pair in the event that any path of less than infinite impedance exists between

the first and second pairs through the tissue or body fluids within which the electrodes

are harbored. The same applies to the blue electrons. If the objective is to physiologically

24.3 ELECTRODE QUANTITIES AND STIMULATION RATES 403



stimulate excitable tissue between the respective electrode pairs, additional or different

sites may be stimulated as a result of the red electrons passing toward the blue and vice

versa. This problem is exacerbated when the currents delivered between electrode pairs

differ from one another.

Thus, there exist two factors: a need for high quantities of electrodes to facilitate the

conveyance of complex patterns and images and a need for high stimulation rates through

each of the stimulation channels to avoid flicker and take advantage of any psychophysical

benefits that may be frequency encoded above the flicker frequency.

24.4 ELECTRODE FABRICATION

As the center-to-center spacing of electrodes fabricated in the hexagonal geometry need

not differ from that of the Manhattan geometry, the advantages of the hexagonal geometry

are achieved without cost to the technology used in their fabrication. However, fabrication

of organized arrangements of multiple electrode arrays is, in general, a complex subject in

itself.

It is universally accepted that more phosphenes will contribute to improved perform-

ance of a visual prosthesis. As electrode quantities increase with the requirement for

additional stimulation sites, traditional hand fabrication methods such as those used in

the manufacture of exquisite cochlear arrays are becoming, or are already, obsolete in

terms of visual prosthesis. Thus strategies must be derived to achieve increased

numbers of phosphenes.

Polyimide-based arrays, capable of automated fabrication using traditional photo

lithographic techniques, offer the possibility of packing dense patterns of electrodes

upon a flexible substrate. Figure 24.2 illustrates the authors’ first attempt at such an

array, initiated prior to the realization of the advantages to hexagonal geometry.

Other centers have developed complex designs that perform well in acute in vivo

trials [17]. However, questions over water uptake and subsequent delamination of metallic

conductors plague the polyimide approach.

When considering regulatory approval processes, researchers are inherently reluc-

tant to propose unproven or new materials in the fabrication of implantable devices. An

illustrative example of this is benzocyclobutene (BCB), a material likened to polyimide

but with substantially lower water uptake. Despite promising in vivo results [18], materials

that require biocompatibility verification are all but universally avoided in the develop-

ment of a device intended for immediate or near-term clinical application. On the one

Figure 24.2 Early attempt at

manufacture of polyimide-based

electrode with rectangular-arrayed

electrodes illustrated on right.

Connection pads are shown on

the left.
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hand, this stifles progress on the pursuit of new materials but, on the other hand, creates a

degree of conservatism that is consistent with maximization of safety when it comes to

trial of new devices.

It is a common misconception that there is a specific and concise list or directory of

“approved” biomaterials. While it is true that some materials are more widely accepted as

being more biocompatible over others—silicone, alumina oxide ceramic, titanium, and

platinum, to name a few—regulatory bodies almost universally require characterization

of materials on a “target tissue” basis. For example, materials appropriate for intramuscu-

lar implantation may not be appropriate for intraocular use and vice versa. This said, the

overriding factor is the track record of a material that is used in determining its forward

potential for compatibility with another particular tissue type.

Consistent with this conservative approach, the epiretinal devices in clinical trial at

the time of writing employ electrode arrays consisting of platinum and silicone rubber only

[19]. The electrode array design itself is substantially influenced by the auditory brainstem

implant that has been used in clinical application for more than a decade.

For the next generation of epiretinal devices, additional stimulation sites will

be employed. In order to remain consistent with the aforementioned design conserva-

tism, electrodes that will be used in the foreseeable future are likely to take a more

advanced form of the auditory brainstem implant but maintain the same material

composition.

Difficulties in deposition and electroplating of platinum have led the authors’

research team to devise a methodology of laser ablation that allows for the use of the tra-

ditional biomaterials of platinum and silicone rubber in the fabrication of complex arrays

[20]. This technique is a substantially simplified variant to methods introduced originally

by Mortimer [21]. In this technique a Nd:YAG laser is used to ablate platinum foil that is

adhered to a spun layer of silicone rubber atop a rigid substrate. Following ablation and

excess foil removal (Fig. 24.3), a second layer of silicone rubber is deposited by way of

spin coating, effectively locking the foil into position between the two layers of silicone

rubber. The final steps include opening of electrode and interconnect contacts (either

by ablation or plasma etching) prior to removal of the finished device from the rigid

Figure 24.3 A 19-channel

prototype electrode

fabricated using laser

ablation methodology.

Subsequent spin coating of a

thin layer of silicone rubber

will lock each of the

conductors in place while

at the same time filling

any imperfections in the

layer beneath.
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substrate. Work is underway to extend this technique to devise multilayer devices for

increased electrode numbers.

24.5 PSYCHOPHYSICS OF ELECTRICAL STIMULATION

In order to evoke the most meaningful visual percepts, the sequence and parameters of

electrical impulses to be delivered to retinal tissue remain open questions. Indeed, the

most substantial advancements in cochlear neuroprosthesis in recent years have involved

new stimulation strategies, not improved electronics or mechanical implant design [22].

With retinal prosthesis having recently begun clinical trials, it is therefore timely to

consider stimulation strategies.

For the epiretinal approach, increased phosphene quantities correspond with

increased stimulation sites. However, it should be noted that a one-to-one relationship

between electrode quantities and phosphenes is not necessarily the case in all areas of

vision prosthetics. Researchers in Belgium have shown that discrete phosphenes exceed-

ing 100 in quantity can be elicited with a four-electrode cuff about the optic nerve [23]. In

addition, Rizzo and colleagues [24] showed that a single electrode may elicit the percep-

tion of a cluster of phosphenes. Therefore, it we are to arrange phosphenes effectively in

the visual field, it is crucial that electrodes comprising an implanted array are likewise

driven efficaciously.

Electrical stimulation provides very simplistic input to the visual pathway when

compared with a constant influx of ambient light from the visual scene. In other words,

the rich stream of visual data carried by the optic nerve in response to ambient light is

fundamentally different from the data carried in response to electrical stimuli.

The information conveyed by the optic nerve is arranged in rich spatial (the nerve com-

prises some 1.2millionfibers) and temporal [conduction velocities differ fromfiber to fiber en

route to the lateral geniculate nucleus (LGN)] patterns. To draw an analogy with physical

optics, we may think of the information as “coherent”—it is readily interpreted by visual

areas downstream of the retina.

In stark contrast, when electrical stimulus is applied to the RGCs (assuming these

are the cells directly stimulated in response to electrical stimuli [25]), only one action

potential may be elicited from any one cell and indeed action potentials from all cells

physiologically excited by the stimulation event are prone to be elicited almost simul-

taneously. It is unlikely that such signals are readily interpreted by any rule-based meth-

odology within the cognitive centers and thus any interpretation of said signals may be as a

result of mere statistical chance. In other words, because the signals resulting from elec-

trical stimulus likely constitute “incoherent” information within a rule-based interpret-

ation, the interpretation of such signals as being a phosphene is arguably unlikely

unless some features of the data stream mimic features consistent with fundamental

rules or these rules are in some way overruled or overwhelmed.

There exists growing evidence that even though very small (tens-of-micrometer-

diameter) electrodes can indeed yield physiological excitation of RGCs [26], psychophysi-

cal phosphene perception from electrodes of similar size may not eventuate. Studies

employing small, epiretinal electrodes have not elicited phosphenes despite attempts

being made to obtain them [27]. The reasons for this remain unclear, but if indeed

action potentials are being evoked, these signals do not equate to perception of a phos-

phene. Stimuli from larger (hundreds-of-micrometer-diameter) electrodes consistently

evoke psychophysical perceptions of phosphenes [19].
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The absence of observed phosphenes could be a simple case of insufficient coupling

between electrode and tissue. Indeed Grumet’s work [26] was conducted in vitro whereas

the psychophysical testing has the requisite of being performed in vivo, thus introducing a

fundamental variation in the methodologies, but there may be alternative explanations

such as the importance of eye movements and the physical size of the area of excitation

that contribute to the psychophysics of perception.

For purposes of illustration only, let us explore a rudimentary rule-based interpret-

ation methodology. This methodology is not meant to strictly adhere to the known neuro-

physiology within the retinal layers but serves more as an insight into how electrode and

cell geometries can interact. Assume that within the complex processes facilitating the

psychophysical recognition of a phosphene a form of “weighted voting” occurs at the cog-

nitive centers such that the combination of excitatory or inhibitory signals from the RGCs

determine whether or not a phosphene is to be perceived as such or simply ignored as

being extraneous or incoherent. In reference to the hexagon arrangement of the RGCs

in Figure 24.4, we refer the reader to Figure 15 of Dacey [28], which shows RGCs approxi-

mating a hexagonal mosaic—implying that mother nature had discovered this efficiency

long before Kepler and Féjes-Toth. Let us further assume that at the site of excitation

all RGCs with sufficiently large voltage gradients across their membranes elicit action

potentials indiscriminately but upon arrival at their destination the first to arrive is inter-

preted as the center of the hexagon (activated) and the remainder of the cells within the

hexagon considered inhibited.

As the size of the electrode increases, it logically follows that increasing numbers of

RGCs (hexagon clusters thereof) contribute to the physiological data being sent to the

cognitive centers. As this quantity increases, the ratio of excited to inhibited cells asymp-

totically approaches a ratio of 1 : 2.

With the overtly simplified configuration of Figure 24.5, as the radius of the elec-

trode (and thus the stimulated area) increases, RGCs counted at the cognitive centers as

being “activated” sum according to the formula

RGCA ¼ 6b b . 0 (24:1)

Figure 24.4 Layout of

RGCs.
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where b is the “band” of hexagonal clusters as labeled in Figure 24.5. At the same time,

RGCs counted as being “inhibited” are added according to the formula

RGCI ¼ 6(2bþ 1) (24:2)

For small areas of excitation, the ratio of activated to inhibited RGCs is substan-

tially less than 1 : 2. This progression of the ratio of excited to inhibited cells as a func-

tion of the electrode radius is shown in Figure 24.6. If the aforementioned

RGC-weighted voting occurs, phosphene perceptions from small electrodes are substan-

tially less likely to occur.

While the authors do not suggest such a simplified rule-based methodology exists in

this form, this example, specifically the nexus between the electrode radius and its

relationship to the size of the hexagonal RGC clusters, illustrates the plausibility of cog-

nitive processing precluding perceptions from being elicited from small electrodes even

though action potentials are elicited from the RGCs either directly or indirectly by way

of bipolar or other surviving retinal neurons.

Microsaccades may also have implications toward the geometric size of the electro-

des, particularly where the edge of the perceived phosphene is concerned. For a sighted

individual viewing an object with ambient light, microsaccades are essential for continued

viewing of an object [29]. For small electrodes (tens of micrometers in diameter), an

elicited phosphene can be said to be comprised primarily of its edge alone whereas phos-

phenes derived from larger electrodes would have large central regions that may not be as

sensitive to the absence of microsaccades in terms of perception, as small movements

would simply move the perceived image to a different location within the same phosphene.

Figure 24.5 One-sixth of a

hexagonal mosaic. When

arrayed six times about the

center marked 0, the complete

mosaic is formed.
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In some of the epiretinal devices being proposed [30, 31] a camera acquires an

image from the visual scene. This image is subsequently processed and used to deter-

mine the electrical stimulation instructions that will be used to convey a phosphene rep-

resentation of the original image. Movement of a sighted eye affects a corresponding

movement of the image relative to the retina. This is not the case in the camera/phos-
phene interaction as any movement of the eye will not affect the phosphene image upon

the retina unless coordination of eye movements is made with the image acquired by the

camera.

The virtues of accurate eye tracking may not be limited to that of image move-

ment coordination alone. Huang and Tsay are credited with being the first to propose

the super resolution restoration concept wherein several low-resolution images acquired

from a rudimentary detector are combined to derive an image of substantially higher

spatial resolution by way of the spatial aliasing effect [32]. Simply put, multiple

images, each acquired with a shift of the detector by a known or determinable pro-

portion of the detector diameter, may be combined to significantly improve resolution.

The vision prosthesis analogue of the detector in this context is the resolved phosphene

upon the topographically mapped retina. In development of an image processing strat-

egy, ideally, it will not only be the captured image that is conveyed on a frame-by-frame

basis, but additional information describing the spatial changes from the previous captured

image will be further incorporated into an overall perception of the underlying scene. With

knowledge of the degree of movement between images, the implant recipient may learn to

combine said images in a way similar to that proposed by Huang and Tsay, thereby improv-

ing cognitive resolution without increasing stimulation site numbers. Indeed a rudimentary

form of this movement–image correlation has been established in patients fitted with

visual neuroprostheses—head movements give rise to multiple images in concert with

vestibular feedback that may be combined to affect pattern recognition with clear

benefit [23, 33].

Figure 24.6 Ratio of excited to inhibited RGCs plotted as function of electrode radius.
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24.6 IMPLANTATION AND PROSTHESIS DESIGN

Majji and co-workers have consistently demonstrated an ability to fixate electrode arrays

comprised of platinum contacts within a silicone elastomer substrate using retinal tacks

[34]. Others pursuing the subretinal approach have proposed and indeed demonstrated

implantation of electrode arrays in the subretinal space [35, 36]. While not yet routine

operations, both approaches show promise for long-term implantation of prosthetic

devices interfaced with retinal tissue.

Beyond the promising ability to interface with the retina, the need arises for implan-

tation and support of other components of a stimulating device, the electronics in particu-

lar. Epiretinal device proposals invariably possess some form of power supply, whether it

be by way of rectification of radio-frequency instructions [37–39] or by way of laser light

[40]. Chow et al.’s elegant but otherwise unproven subretinal photodiode devices incor-

porate both stimulator and electrodes in one device [41]. However, both clinical testing

and the laws of physics indicate that these subretinal devices fail in terms of their

ability to evoke physiological excitation of retinal neurons consistent with vision.

Zrenner and co-workers have recognized that such subretinal devices require supplemen-

tary power supplies in order to be made efficacious and, as a result, have employed such

features in their devices [42]. Thus, at least some portion of any visual prosthesis must deal

with power. Further, without some form of intrinsic image processing (e.g., as is present in

subretinal devices), a receiver of some nature is also required so as to receive stimulation

instructions. Finally, control and delivery of electrical current are integral requirements of

a stimulating retinal prosthesis. Thus, researchers are presented with a problem adjunct to

their electrode-positioning efforts of where to fixate the receiver, stimulator, and power

supply.

The only functioning retinal device being used in chronic clinical trial at the time of

writing is a modified cochlear implant undergoing evaluation by Weiland and colleages at

Doheny Eye Institute at the University of Southern California [43]. Their approach to

implantation of the whole of the device is to place the receiver/stimulator in a location

consistent with cochlear devices, with a flexible cable routed to and around the eye

prior to transscleral insertion into the globe. While efficacious for low electrode quantities

owing to a cable of moderate diameter (millimeters), extrapolation of this approach to

larger quantities of electrodes will undoubtedly be limited by the capacity of the globe

to accommodate the transscleral cable of increasing signal quantities. Were these

signals to be multiplexed, an additional requirement of demultiplexing would be intro-

duced within the globe, thereby defeating much of the advantage gained by placing the

receiver/stimulator elsewhere.

Proposed subretinal devices by Schwahn and co-workers [36] draw upon a similar

approach wherein transscleral cables feed implanted electrodes in the subretinal space.

Here again the technology is limited to the physical size of the cable and the globe’s

capacity to tolerate it. However, given the proximity of the electronics to the globe,

the cable itself need not be comparatively as robust as the cable used by Weiland and

colleagues.

Other proposals such as those of the authors’ laboratories [44] include the incorpor-

ation of the whole of the implanted electronics within the globe itself. The basic advantage

of this approach is the avoidance of a breach in the scleral wall that is a potential source of

complications. This further facilitates an increase in electrode quantities as the transcleral

cable is eliminated and thus the mechanical requirements of the cable linking the elec-

tronics to the electrodes are substantially relaxed. This approach, however, increases the
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difficulties associated with implantation owing to the increased size and volume of

the intraocular components involved. This said, fixation of the stimulating electronics to

the pars plana has been demonstrated to be a plausible methodology [45], as is the

widely used method of phacoemulsification [46] conceivably facilitating placement of

at least some of the stimulating body within the lens capsule, both lending weight to

the all-inclusive, intraocular approach.

24.7 IMPLANT ELECTRONICS

The importance of implant electronics is often diminished by some researchers who may

not appreciate the complexities involved with the delivery of electrical stimuli. It is well

known that inappropriate stimuli can lead to damage to both electrodes and the tissue with

which they interface.

There exist two basic caveats in this area. First, the net charge delivered to the site of

stimulation must be neutral. Second, the charge injection must stop prior to gas formation

from electrolysis of water and hydrogen reduction reactions. If either of these occur, the

probability of tissue damage or electrode dissolution is increased.

The electrochemical reactions that can take place include (assuming a platinum

electrode) electrolysis of water that can cause gas production and changes in pH at the

electrode site; oxidation of saline; oxidation of platinum that is likely to lead to electrode

dissolution; oxidation of organics (e.g., glucose) that potentially leads to toxic

by-products; and hydrogen reduction reactions. In order to avoid some of these reactions,

Lilly et al. [47] proposed a balanced, biphasic pulse which, theoretically, reverses the

reactions through the addition of a second phase of equal charge but opposite polarity.

This, however, does not facilitate unlimited injection of charge.

Figure 24.7 shows a typical voltage waveform resulting from biphasic, constant

current injection from platinum electrodes in a saline electrolyte. While the current wave-

form may itself be symmetric through careful design and control, the voltage waveform

may be substantially asymmetric due to the capacitive and resistive coupling with the

tissue and surrounding media. This alone indicates that the chemical processes are not

entirely reversible. Provided, however, that gas formation is not initiated (as in the elec-

trolysis of water and hydrogen reduction reactions described above), the reactions are

in fact reversible.

Avoidance of gas formation has been investigated in detail by Robblee and Rose

[48]. Detailed analysis of the physics and chemistry involved in the avoidance of gas

formation is beyond the scope of this text, but as a general summary, a limit on the

charge per unit area of electrode surface may be derived as a function of the electrode

material, the electrolyte composition, and the stimulus waveform parameters. By rever-

sing the charge prior to reaching the charge density limit, it is generally accepted that long-

term delivery of electrical stimuli is safe. It is noted that the so-called safe limit for platinum

electrodes is generally accepted as being of the order of 100 mC/cm2with several variants of

this quantity described within the literature, illustrating the “black art” behind the charge

density issue.

Even though safe charge injection limits are maintained and biphasic waveforms are

applied, slow kinetics within the oxidative–reductive reactions that store electrical charge

on electrodes allow for a small amount of charge to remain [49]. In some applications, sub-

sequent shorting together of all of the electrodes dissipates residual charge to the same

electrical potential prior to the next delivery of stimulus [50]. The second method

employs capacitors in series with each electrode which prevent the passage of net direct
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current (DC) into the tissue, thus injecting no net charge. It is noted that the former

requires time, thereby affecting the stimulation rate (see Fig. 24.8 for further details)

and the latter requires electronic components that collectively become impractically

large for devices with a large number of electrodes.

The charge balance issue is again raised with the introduction of parallel stimulation.

Crosstalk between stimulating electrode pairs and their return path (guard) counterparts is

a source of DC flow. Such net DC has been found to produce significant damage to neur-

onal tissue with as little as 1 mA [51]. Safe DC flows are generally accepted as being of the

order of 100 nA.

A distant, common return electrode, as is present in the modified cochlear implant—

cum visual prosthesis—in clinical trials by Humayun and colleagues [19] affords an

elegant solution to the crosstalk problem described above. However, substantial limit-

ations exist in the employment of such a methodology in order for high numbers of elec-

trodes to be employed and stimulated in unison. First, unless the current from each of the

simultaneous stimulus sites is uniform, a difference in the electrical potential between

adjacent stimulating electrodes is established, thereby promoting current flow from one

stimulating electrode toward another. Second, given that the collective current flow

to/from the stimulating electrodes is additive, the current-carrying capacity (and hence

the surface area) of the distant return electrode must be appropriately large. Further, the

additive effects of the simultaneous current may indeed cause unwanted muscle contrac-

tions or other deleterious effects at the site of the common return electrode. Finally, to

facilitate the electrode being distant to the desired localized stimuli, it is requisite that

an electrical conductor breach the scleral wall.

In terms of current distribution and localization, a particular advantage is achieved

with the hexagonal electrode arrangement—that is, the ability to “guard” a stimulating

Figure 24.7 Typical voltage waveform resulting from balanced, biphasic, constant current

stimulus pulse. In this instance the electrodes are platinum spheres, 400 mm in diameter,

immersed within physiological saline. Stimulus parameters are 0.96 mA current, 1.1 ms

pulse width, 330 ms interphase gap.
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electrode with six surrounding electrodes. The aim of this approach is to capture the charge

within a given hexagon and preclude crosstalk between neighboring pairs of hexagons

from occurring. By introduction of a multiplexing methodology that provides for the

center of each hexagon to be redefined, any electrode within the array is capable of

being a stimulating electrode, with each of its immediate neighbors serving as “guards.”

In order to better understand the requirements for parallel stimulation and how this

relates to electrode design, we present in the next section a number of numerical simu-

lations employing different electrode placements and configurations.

24.8 MODELS OF ELECTRODES AND
CURRENT INJECTION

For the purposes of the simulations in this section we use the approach that is described in

more detail in [52]. In brief, we solve the Poisson governing equation 2r . (s rV ) ¼ I

for the voltage distribution V throughout a 20 � 20 � 0.2-mm region of physiological

saline using a custom spectral collocation method [53, 54] implemented in MATLAB

(MathWorks). The conductivity of the medium s was taken to be 1 S/m [55] and I was

the volume current density injected into the medium at a number of predetermined

Figure 24.8 Shorting of electrode pair between phases of charge-balanced, biphasic

stimulation pulse. Cathodic phase concludes at A with shorting of electrodes to ground at

B. Shorting is held during C and subsequently released at D. Note the abrupt return to a

nonzero voltage at D prior to the resistive voltage rise at the onset of the anodic phase resulting

from the purely resistive properties of the electrolyte—only some of the residual charge has

been dissipated during C. Note also that charge dissipation shorting normally occurs after the

completion of both phases as opposed to interphase. Interphase shorting is shown here as an

illustration of the residual charge phenomenon.
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locations determined by our interest in parallel current injection from hexagonally config-

ured electrode arrays. For the sake of simulation ease, cylindrical electrodes of 0.2 mm and

height 0.2 mm are used as this geometric arrangement reduces the problem to solving a 2D

system.

Figure 24.9a describes the situation whereby 14 parallel current sources are con-

nected to 14 separate active electrodes at the center of each of 14 hexagons in a

98-electrode array. Owing to the hexagon cluster layout, each of the specified stimulating

electrodes is surrounded by six equally spaced guard electrodes that may be used as the

electrical return path for stimulus delivered to the center of each hexagon cluster. Thus,

surrounding each injection point are six return electrodes all connected to zero potential.

Redefining the central electrode of each hexagon (Fig. 24.9b) introduces “edge effects” as

six guard electrodes do not exist at the edges of the array but in the worst case only three

electrodes serve as guards.

In this instance the active electrode has moved down and to the right but there are

seven unique locations to which an active electrode can be translated. This redefinition is a

very useful feature that arises out of the electrode multiplexing and addressing that are

performed by the application-specific integrated circuit (ASIC) [11].

Through modeling we can visualize the guarding afforded by these electrode con-

figurations (Fig. 24.10). In this instance 1 mA is injected through the central electrodes

of each of the 14 hexagonal clusters. There is an obvious concentration of current

achieved by the guard electrodes (Fig. 24.10a). On a translation of the central injecting

electrodes downward and to the right (Fig. 24.10b)—with the resultant absence of some

guard electrodes surrounding injection sites—there is a generalized depolarization of the

Figure 24.9 Hexagonal electrode array lattice comprising 98 electrodes and 14 individual current sources

that may be activated in parallel. (a) Active electrode is in a position such that all surrounding guard

electrodes completely encompass the active (shown pictorially by the solid lines connecting each

guard ring). (b) One of the other six scenarios whereby the active electrode position has been translated

downward and to the right. In this configuration not all active electrodes are completely surrounded

by six guard electrodes. While this could be fixed by including extra electrodes at the periphery, this

would necessitate a larger electrode array with additional interconnects and support electronics on

the ASIC.

414 CHAPTER 24 PRACTICAL CONSIDERATIONS IN RETINAL NEUROPROSTHESIS DESIGN



tissue. However, on examination of the crosstalk between surrounding injection sites and

their corresponding guards, there is only a slight degree of current exchange. In the con-

figuration of Figures 24.9a and 24.10a, the sum of the individual currents returned in

each guard ranges from 0.83 mA in hexagon 8 to 1.07 mA in hexagons 2 and 9. The

average current in each “hexagon” is 0.99+ 0.06 mA (mean+ SD).

In the case of the translated configuration as in Figures 24.9 and 24.10b, the average

summed current in each hexagon is 0.98+ 0.09 mA. The slightly higher variance in the

Figure 24.10 Simulated 2D voltage distribution derived from 14 parallel current sources,

injecting 1 mA each into 20 mm � 20 mm � 2 mm physiological saline region (s ¼ 1.0 S/m)

by way of 400-mm-diameter cylindrical electrodes. The X and Y axes are distances in

millimeters. (a) Each injection electrode is surrounded by six guard electrodes arranged

in a hexagonal pattern (depicted as open circles), each guard tied to zero potential. The

vertical colorbar indicates the simulated potential in volts. The guard electrodes effectively

focus current in the region of each hexagon and reduce return current interaction with

other regions. (b) The central electrode for each current source has been translated downward

and to the right. In this configuration, a number of the current sources are not totally

surrounded by guards. These electrodes (depicted as open black circles) are effectively at a

floating potential. Note the generalized depolarization of the tissue in the lower right of the

simulated saline region due to the lack of return electrodes effectively anchoring the tissue

at zero potential.
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currents is associated with larger leakage in the peripheral hexagons with minimum return

currents of 0.81 mA in hexagon 13 and 1.12 mA in hexagon 12.

These current imbalances are obviously of considerable importance when trying to

accurately inject and recover charge from various electrodes interfaced to the neural

retina. In general terms, the guards effectively attenuate crosstalk between hexagons,

even in the case where the central injecting electrode is not entirely guarded by six

return electrodes. Naturally more detailed simulations and experimental data are needed

to fully characterize the effectiveness of the hexagonal guarding approach. This includes

data where current injections are not equal across all hexagons. It will also be necessary to

compare the usefulness of this method of bipolar stimulation versus monopolar stimu-

lation using a large distant return as the indifferent electrode. While the latter approach

has some possible advantages associated with inherently reducing crosstalk between adja-

cent electrodes, it also has a number of practical barriers, including the need to place a

separate return electrode exterior to the globe in the case of an intraocular implant.

Owing to the nature of electrical stimuli and the complexities of the electrode–tissue

interface, no single stimulation profile entirely eliminates differential charge from occur-

ring between electrodes within the array. Therefore, supplementary means are required

after stimulation occurs so as to return the electrodes to equal potential. This charge

balance must occur in a regional sense. With the residual charge imbalances on the elec-

trodes clearly being substantially smaller when using the hexagon–guard arrangement

over other methods, shorting between stimulation events need only be brief in order to

achieve the necessary outcomes. This eliminates the need for high numbers of capacitors

in series with the electrodes.

24.9 CONCLUSION

In a progression through various practical aspects of vision prosthesis design and by

introducing a number of conjectural ideas, we have presented our approaches toward

the realization of a functioning epiretinal neuroprosthesis. A particular focus has been

on a hexagonal electrode array construct and how this design impacts electrode size, elec-

trode fabrication, interfacing, and implant electronics. Rudimentary modeling of the elec-

trode array has highlighted the inherent advantages of the proposed design, indicating that

hexagonal electrode array geometries have advantages in terms of parallelization of

current sources and associated minimization of leakage currents between adjacent

sources. On-going testing, both on the bench and in vivo, will further inform the design

process.
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P A R TIII

NEUROROBOTICS

AND NEURAL

REHABILITATION

ENGINEERING

TH I S P A R T focuses on the recent developments in the areas of the biorobotic

system, biosonar head, limb kinematics, and robot-assisted activity to improve the

treatment of elderly subjects at the hospital and home. It also focuses on the

interactions of the neuron chip, neural information processing, perception and

neural dynamics, learning memory and behavior, biological neural networks, and

neural control.
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CHA P T E R25

INTERFACING NEURAL AND

ARTIFICIAL SYSTEMS: FROM

NEUROENGINEERING TO

NEUROROBOTICS
P. Dario, C. Laschi, A. Menciassi, E. Guglielmelli,

M. C. Carrozza, and S. Micera

25.1 INTRODUCTION

For many scientists and engineers, including robotics researchers, nature and biology have

always represented an ideal source of inspiration for the development of artificial

machines and, more recently, of biomimetic components and robotic platforms. In fact,

for millennia, the dream of developing truly effective biomimetic machines remained

remote for humans. Today, the progress of mechatronics and robotics technology in

such components as sensors, actuators, processors, control, and human–machine inter-

faces is making possible the development of biomimetic platforms usable as tools for neuro-

scientists, neurophysiologists, physiologists, and psychologists, for validating biological

models, and for carrying on experiments that may be difficult or impossible using

human beings or animals.

The interaction between biological sciences and robotics is twofold [1], as illustrated

in Figure 25.1. On the one hand, biology provides knowledge on the human system needed

to build humanoid robots (or humanlike components); on the other hand, anthropomorphic

robots represent a helpful platform for experimental validation of theories and hypotheses

formulated by scientists [2]. The first line of research has been pursued in robotics in order

to develop robots that can better interact with real-world environments by imitating the

solutions implemented by nature. This approach has received further impetus with the

growth of “embodied” artificial intelligence (AI), based on the consideration that intelli-

gence can only be developed along with a physical body [3]. The second line of research

began quite recently to be defined, and in this chapter we refer to it as “neurorobotics.”

According to this approach, robots or robotic parts can be built by implementing a

model of the corresponding biological system under observation; focused experiments

on such robotic systems help verify/falsify the starting hypothesis on the biological

model and even formulate new ones. For instance, the idea that biologically inspired

robots can be used as experimental platforms to test the inspiring models has been

applied to confirm some scientific hypotheses in ethology [4].
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In the following, we discuss two case studies of the implementation of this

concept of the twofold interaction between neuroscience and robotics. The first is

aimed at developing a robotic manipulation platform which mimics human mechanisms

of perception and action and can implement neurophysiological models of sensorimotor

coordination and learning for their experimental validation. A close interaction between

roboticists and neuroscientists is the starting point for the realization of the robotic

components.

The second case study consists of the design and development of a cybernetic hand

prosthesis, intended as a humanlike robotic hand with a neural interface allowing the

patient to wear, feel, and control it in a natural way by his or her nervous system. In par-

ticular, the mechanical structure of the prosthesis, its sensorization, and its control scheme

together with the first experimental results are described.

25.2 NEUROROBOTIC PLATFORM FOR
EXPERIMENTAL VALIDATION OF SENSORIMOTOR
COORDINATION AND LEARNING IN GRASPING

Development of the anthropomorphic robotic platform for manipulation presented here is

motivated by the need for validating some hypotheses on the mechanisms of human learn-

ing formulated in neuroscience in the context of the sensorimotor coordination functions

that are needed in grasping actions. Taking into account such neuroscientific findings,

which hypothesize a stepwise progressive learning process in humans [5], development

of the robotic components is aimed at mimicking as much as possible the corresponding

biological systems.

Figure 25.1 Scheme of twofold relation between biological science and robotics. In the study

of a biological system, a computational model is formulated on the mechanisms/functions under
observation; the model can be validated by a computer simulation or a physical model can be

built, directly from the computational model or from the simulation. This physical model

consists of a robotic artifact that can be used for validating the starting model (neurorobot) or

for development of biologically inspired robots and body parts.
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In neurorobotics, the goal of reproducing humanlike features and replicating bio-

logical models has the priority of achieving good robot performance; solutions that are

more similar to those adopted by nature are preferred even when more “artificial”

robotic solutions can provide better performances, in terms of, for instance, action accu-

racy and speed or sensory sensitiveness and resolution, in order to follow as closely as

possible the model to be validated.

The robotic platform presented here is composed of sensors and actuators replicating

some levels of anthropomorphism in the physical structure and/or functionality [6], and

their specifications were defined starting from:

1. On the neuroscience side, the definition of the functionality that the robotic platform

should possess, in terms of sensory modalities, features to be perceived, motor capa-

bilities, control schemes, and ideal tasks to be performed;

2. on the robotics side, the best available anthropomorphic robotic components,

described in terms of sensors, actuators, control schemes, and technology for new

improvements; this description includes demonstrations and tests on available

devices, when relevant and feasible.

The basic arrangement of the robotic humanlike manipulation system consists of a

robotic arm with a hand and a head. The hand is equipped with tactile sensors and the head

supports a binocular vision system. Software modules implement basic humanlike sensory

data processing. The platform is conceived so as to be modular and to be rearranged as

largely and easily as possible and thus to provide different tools for different experiments.

25.2.1 Robotic Limbs

The robotic arm is the 8-degree-of-freedom (DOF) “Dexter” arm [7] whose physical struc-

ture is somehow anthropomorphic (see Fig. 25.2a), with the link arrangement reproducing

the human body from trunk to wrist, so as to mimic human movements. The mechanical

structure is light and flexible, due to steel cable transmission: the six distal motors are

located on the first link, which represents the trunk. This solution increases the anthropo-

morphism of the distal part, even though reducing accuracy, with respect to traditional

robotic solutions. The kinematic structure redundancy allows dexterous manipulation.

The arm can provide proprioceptive data for all the eight joints and it can be controlled

by a traditional PID (proportional–integrative–derivative) control scheme as well as by

compliant and impedance control schemes in either the Cartesian or the joint space [8].

Figure 25.2 (a) Dexter robot arm (Scienzia Machinale srl, Pisa). (b) View of biomechatronic

hand as designed. (c) Fabricated finger integrating three-component force sensor in fingertip and

three-joint angle sensors.
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A robotic hand is under development according to a biomechatronic design, that is,

by integrating sensors, actuators, and smart mechanisms in order to obtain a structure and a

functional behavior comparable as much as possible to those of the human hand. The

design is based on the experience we gained in developing prosthetic hands for restoring

grasping ability and cosmetic appearance in amputees [9, 10].

The hand design is based on the concept of underactuation, meaning that even if only

four motors are present, the hand has 9 DOFs, some active and some passive. The fingers

can self-adapt to the object shape by using the passive DOFs and a differential mechanism

integrated in the transmission system. The flexion/extension movements can be achieved

independently by the three fingers, and the thumb can also abduct and adduct. Finally,

the robotic hand can also be considered anthropomorphic in terms of mass and size (see

Figs 25.2b,c).

The robotic humanlike head was designed in order to provide both neck and eyes

movements to the cameras (see Fig. 25.3). The neck movements are implemented by a

4-DOF mechanism that reproduces the humanlike movements of lateral flexion, rotation,

and ventral and dorsal flexions at different heights. The eye movements are reproduced by

a common tilt and by two different pans (3 DOFs). The ranges of motion, the speeds, and

the acceleration of the seven movements are very close to those of humans and thus allow

to reproduce accurately the human eye movements of saccades and smooth pursuing.

25.2.2 Artificial Perception

The perceptual part of the platform includes visual and haptic (proprioceptive and tactile)

sensory systems.

The proprioception on the robotic hand is based on eight joint position sensors (Hall

effect sensor based) embedded in all the joints of each finger (see Fig. 25.2c) and an

incremental encoder at each motor. As in humans the Golgi tendon organs provide

information on the tendon strain, and three strain-gauge-based sensors measure the

tension on the cables controlling the fingers flexion. Finally, contact of the hand and the

Figure 25.3 View of robotic head (Okino Industries Ltd., Japan) with indications of 6 DOFs

and corresponding ranges of motion and speeds.

424 CHAPTER 25 INTERFACING NEURAL AND ARTIFICIAL SYSTEMS



hand-held object with the environment is detected by means of an accelerometer inte-

grated in the palm.

The somatosensory information is essentially tactile information.

On–off touch sensors are placed on the internal and lateral surface of the phalanges

and on the palm of the hand in order to sense the contact with the whole hand and to sense

the contact area. More sensitive on–off touch sensors are placed on the hand dorsum in

order to detect accidental contact with the environment. As for the sensor design, the

on–off sensors are deposited on a flexible matrix in order to allow uniform sensor distri-

bution and easy arrangement of the sensors on the phalanges (see Figs. 25.4a,b).

Three-component force sensors are mounted at the fingertips to measure the force

vector at the contact point. A first version is a sensor based on a cross disposition of the

strain gauges and located at the base of the fingertip so as to make the whole fingertip a

three-component force sensor (see Figs 25.4c,d ). In a second version, the quantitative

information (intensity and direction) about the force is provided by an array of microfab-

ricated force sensors, as those depicted in Figure 25.5.

Each microsensor cell has been designed to measure a maximum force of 7 N

and to measure normal and tangential working forces in the range of 200–300 mN

[11–13]. The theoretical values of the gauge factor and sensitivity are 162.8 and

Figure 25.4 (a) Prototype of finger on–off touch sensor and (b) example of its application on

human finger. The mechanical structure of three-component force sensors integrating strain

gauges sensors (c) and model of fingertip (d ).

Figure 25.5 (a) Fingertip sensorization with flexible sensor array. (b) Scanning electron

micrograph of cross section of three-component force sensor microfabricated in silicon (in

collaboration with IMM Mainz, D).
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6.1 � 1023 mV/kPa, respectively, for the normal force, while they are 63.8 and 0.013 mV/
kPa, respectively, for the tangential force.

The silicon microsensor is based on the piezoresistive effect and it exploits four

piezoresistors that are ion implanted in a silicon membrane and that are used as indepen-

dent strain gauges. The sensing element consists of a circular membrane with four tethers

and a cylindrical mesa located in the center of the membrane. The particular 3D mechan-

ical structure is obtained starting from a silicon on insulator (SOI) wafer and exploiting a

technological process of 52 steps that treat the wafer from both sides by applying the

advanced silicon etching (ASE) technology [14].

As regards the vision system, a retinalike vision system is integrated in the robotic

head. The system is based on a space-variant image whose space resolution is higher in the

center (fovea) and degrades toward the periphery, thus imitating the structure of the human

retina (see Fig. 25.6) [15, 16].

The main advantage of retinalike cameras is that they drastically reduce the amount

of data to be processed while still providing significant information on the scene. As the

amount of data is much smaller, the computational cost and consequently time are also

reduced significantly. This allows us to include some visual processing in the control

loop of the head and eye movements. On the other hand, retinalike vision is inherently

active and very fast, and accurate camera movements are needed in order to focus the

points of interest and to allow the extraction of good visual data. Therefore, it is crucial

that the retinalike sensors are mounted on a robotic head able to move them quickly

and precisely.

25.3 CYBERNETIC HAND PROSTHESIS

25.3.1 Three-Fingered Anthropomorphic Hand

A three-fingered anthropomorphic robotic hand has been developed as a human prosthesis

and to be ultimately interfaced with the amputee’s nervous system. The hand incorporates

the tactile and joint angle sensors described in the previous section. Four motors are

employed, one to activate the adduction/abduction of the thumb and the others for the

Figure 25.6 Example of retinalike image: (a) in retinalike image, pixel resolution is higher in

center and degrades toward periphery, still providing meaningful indication of image content;

(b) log-polar transformation, as an imitation of image projection on brain cortex, gives actual amount

of data; (c) standard image of same scene provided as reference.
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opening and closing of the three fingers. Emphasis is on a device that is lightweight,

reliable, cosmetic, energy efficient, and highly functional and that will ultimately be com-

mercially viable. The development of the new hand is based on the experience acquired

with a previous prototype [the so-called RTR (formerly Centre of Research in Technol-

ogies for Rehabilitation) II hand [17], in which the solution proposed by Shigeo Hirose

in his Soft Gripper design [18] was applied to the case of the two fingers and the thumb].

Underactuated mechanisms allow obtaining self-adaptive grasping capabilities due

to a large number of DOFs controlled with a limited number of actuators and differential

mechanisms. This approach allows reproducing most of the grasping behaviors of the

human hand without augmenting the mechanical and control complexity. This feature is

particularly important in prosthetics, when only a few control signals are usually available

from the electromyography (EMG) control interface, and therefore it is difficult for the

amputee to control in a natural way more than two actuators [19].

The hand is based on a tendon transmission system. The tension of the tendons gen-

erates a flexing torque around each joint by means of small pulleys and allows the flexion

movement; this transmission structure works in the same way as the flexor digitorum pro-

fundus in the human hand. The extension movement is realized by torsion springs. The

adduction and abduction movements of the thumb are realized by means of a four-bar

link mechanism.

An adaptive grasp system has been designed based on compression springs: Both

finger wires are connected to a linear slider through two compression springs (see

Fig. 25.7).

During a general grasp, index and middle fingers may not come in contact with the

grasped object at the same time; one of the fingers and the thumb will usually come contact

with the object first. When the first finger (e.g., the middle finger) comes in contact with

the object, the relative spring starts to compress, the slider is now free to continue its

Figure 25.7 Adaptive grasp

mechanism scheme.
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motion, and the second finger (e.g., index finger) can flex, reaching the object. When high

forces are required, compression springs behave as a rigid link and the entire force is trans-

mitted from the slider to the fingers; this is the main advantage of using compression

springs instead of extension springs.

The hand is equipped with an advanced artificial sensory system which is the core

of the hand control system and has a twofold function: First, it provides input signals for

the low-level control loop of the grasping phase, thus enabling local and autonomous

control of the grasp without requiring the user’s attention and reaction to incipient slip-

page. Second, it generates sensory signals to be transmitted to the amputee through an

appropriate neural interface (such as the implantable one described in [20, 21]). The bio-

mimetic sensors are the same as those used in the robotic hand described in the previous

section.

25.3.2 Control of Prosthesis

An efficient and natural control of a sensorized multi-DOF prosthetic hand requires

addressing the following problems: (1) the development of algorithms for extracting infor-

mation on the user’s intentions by processing the natural efferent neural signals, called

high-level pattern recognition module (HLPRM); (2) the development of algorithms for

closed-loop control of the artificial prosthesis according to the commands coming from

the HLPRM and the sensory information obtained from the biomimetic sensors embedded

in the prosthesis, called low-level controller (LLC); and (3) the development of a strategy

for the stimulation of the afferent nerves in order to provide some sensory feedback to the

user. The development of the HLPRM is a typical pattern recognition problem. The

HLPRM should be able to correctly identify what is the task t� the user would like to

perform among the different possible tasks. In order to achieve this result the HLPRM

is composed of the following subsystems:

1. A system to increase the signal-to-noise ratio of the efferent neural signals recorded

by the regeneration-type neural electrodes [22, 23]. It is worth noting that in this case

we must consider as “noise” not only the interference due to the thermal or electrical

noise but also the presence of other neural signals which are not related to the task

we would like to discriminate. For this reason we consider specific algorithms, such

as “blind deconvolution” algorithms, principal-component analysis, or cross-time–

frequency representations, in order to decompose the neural signals and “erase” the

noise components.

2. A system for the extraction of different time and frequency parameters (“neural

features”) from the neural signals. These features are used for pattern

recognition.

3. A system for the discrimination of the task desired. Different architectures have been

designed and tested. In particular, the applicability of soft-computing techniques

(neural networks, fuzzy systems, genetic algorithms) is analyzed. Different architec-

tures based on statistical and soft-computing algorithms have been preliminarily

investigated [24, 25].

These systems have been tested using some neural signals recorded by microneurography

(see Fig. 25.8).

The LLC should control by closed loop the actuation of the prosthesis according

to the task t� selected by the HLPRM (and the information provided by the biomimetic

sensors). Even in this case several algorithms based on soft-computing techniques will
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be implemented. In preliminary experiments, the LLC was implemented as a fuzzy

logic controller (FLC) in order to drive the prosthetic hand according to the information

extracted by the high-level controller (HLC) in a closed-loop way. An FLC does not

require an accurate model of the plant, and this can be very useful in motor drive appli-

cations where the mechanical load can be nonlinear or partially unknown or time

varying. In these preliminary experiments the HLC was simply a random function

selecting among the different possible choices. If the command chosen by the HLC

was “open the hand,” the system read the present position of the hand and provided

the necessary commands to the motor in order to reach the desired position (which

was selected to be the maximum opening of the hand). If the command was “grasp

an object,” the system acquired force information from the hand by communicating

with a microcontroller, through the parallel port, and provided the command to

motors depending on the desired grip force. The hand was then closed until the

contact was reached.

After this event, the thumb was stopped and the index and middle fingers were

closed by the FLC commands until the difference between the actual and desired force

levels was less than a tolerance threshold. The inputs to the FLC were the position

error (or the force error, depending on the implemented action) and the change in position

error (force); the output was the variation of motor voltage. The control increased or

decreased the motor voltage according to the position (force) error amplitude. The rule

base implements a PID controller as described in [25].

The FLC was compared with a classical PID controller in the implementation of the

different tasks (opening and closing the hand). The FLC outperformed the PID controller

in both tasks, obtaining rise times compatible with real-time applications.

Finally, in order to implement sensory feedback, afferent neural signals should be

characterized [26, 27].

Figure 25.8 Example of neural signal used to test HLPRM.
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25.4 CONCLUSIONS

This chapter has briefly analyzed the status and perspectives of interactions between

neuroscience and robotics and presented two case studies.

The first case is the application of robotics to the study of neuroscientific models.

The hypothesis is that a robot can ultimately become a sort of artificial “guinea pig” for

neuroscience experimental investigation. The authors developed an anthropomorphic

robotic platform for the validation of neurophysiological models of learning sensorimotor

coordination in human grasping. The interaction between roboticists and neuroscientists

allowed us to formulate the requirements for the robotic platform, especially in terms of

tactile sensing, grasping capability, and vision processing, so as to replicate the features

of interest for implementing and testing the proposed model for learning and sensorimotor

coordination.

The second case study concerns the development of a new prosthesis, intended to be

interfaced with the human nervous system. Preliminary results on the sensory system are

quite promising, both for the implementation of the low-level control loop of the grasping

phase and for the generation of sensory signals to be transmitted to the user through an

appropriate neural interface. This system is the current base for the realization of a new

prosthesis which could be felt by the amputee as the lost natural limb delivering a

natural sensory feedback (by means of the stimulation of some specific afferent nerves)

and could be controlled in a very natural way by processing the efferent neural signals

coming from the central nervous system (thus increasing the responsiveness and function-

ality of the current EMG-based control prosthesis).

Considerations and results presented in this chapter are quite preliminary, but they

clearly indicate that there is a very promising future (and lots of research to be done) for

the new field of neurorobotics.
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NEUROCONTROLLER FOR ROBOT

ARMS BASED ON BIOLOGICALLY

INSPIRED VISUOMOTOR

COORDINATION NEURAL MODELS
E. Guglielmelli, G. Asuni, F. Leoni, A. Starita, and P. Dario

26.1 INTRODUCTION

Children from a very early age attempt to reach objects which capture their attention. It

can be observed how, by making endogenous movements and correlating the resulting

arm and hand spatial locations, they allow an autoassociation to be created between

visual and proprioceptive sensing. During the growing phase children improve their capa-

bility to reach objects more quickly and accurately by an appropriate trajectory. The result

of this learning process consists in the production of a set of motor programs that become

linked, with the aim of the selected desired task. Furthermore, these motor programs can

autonomously adapt themselves during the execution of the task according to the current

perception of the environment. This scheme has been identified from a psychological point

of view by Piaget [1] as the circular reaction to explain visuomotor associations. Neuro-

controllers for robotic artifacts can be devised taking inspiration from such understanding

in neuroscience. In this chapter a case study of the design and the development of a

general, biologically inspired, artificial neural controller able to manipulate sensorial

data coming from visual and proprioceptive artificial sensors and to control two different

robotic arms for the execution of simple reaching tasks is presented.

26.2 BIOLOGICAL FRAMEWORK OF
MOTOR CONTROL

In humans, sensorimotor behaviors are generated by neural interactions occurring in

different parts of the brain and connected to different sensorimotor structures, not fully

known yet. Experimental data that relate electrical activity in the brain to limb movements

are fairly abundant providing the essential data on which a top-down modeling approach

can be based. However, these models are still far from providing accurate models describ-

ing in quantitative terms the internal functionality of the sensorimotor cortex areas

involved in motor control. The generation and control of limb movements come out as

the result of information processing in a complex hierarchy of motor centers within the

Handbook of Neural Engineering. Edited by Metin Akay
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nervous system, including the motor cortex, the brainstem, and the spinal cord [2].

Neurophysiological studies that provide the essential data on which a top-down modeling

of these phenomena is based could be used as a reference also in robotics, which seeks to

design more and more robust and adaptable systems. For instance, the challenges posed by

the development of humanoid robots cannot be faced with a “standard” engineering

robotic approach to the problem of control [3]. Humanoid robots are required to have a

complex mechanical structure including a lot of active degrees of freedom actuating

their artificial limbs, and they are also required to interact and to communicate with

humans in their living space in a natural, possibly anthropomorphic manner [4, 5]. To

achieve these functions humanoid robots are endowed with a lot of different sensors

(e.g., tactile, force, vision) enabling them to perceive the surrounding environment. The

amount of concurrent data incoming from the sensors may be so large that it is necessary

to develop complex processing subsystems able to handle and integrate such data success-

fully providing appropriate inputs to the control systems. Biological control systems suc-

cessfully solve the problem of translating sensory data into appropriate motor behaviors by

using optimized selection and fusion techniques. The objective of this work is to take

inspiration from biology for the development of novel visuomotor coordination control

schemes able to capture in an autonomous way all the mechanical, kinematic, and

dynamic parameters of real robots. From a functional point of view, the voluntary

execution of an arm movement toward a visual target involves the selection of suitable

kinematic and dynamic parameters. Kinematic parameters are related to the perception

of the target in the extrapersonal space, the elaboration of a path that the hand should

follow (starting from the current position) to reach the target, and, consequently, the plan-

ning of the limb joint trajectories in time. Dynamic parameters concern the selection of the

appropriate muscle contractions required in order to produce the right joint torques so that

they are able to follow the imposed trajectory. These parameters could vary dynamically

according to unpredictable changes that may appear during the execution of the move-

ment. Examples of these changes are external payloads or mechanical constraints such

as obstacles and impairments or may be “soft” in the sense that they could be represented

also by handled tools that may change their references as to the hand in an unpredictable

way (e.g., a hammer slipping in the hand). Moreover, humans are able to reach a target

with an unknown tool which is grasped by the hand without any preliminary learning

phase. The human reaching movements show straight paths and bell-shaped velocity pro-

files of the hand, as observed by several researchers [6]. To explain the reasons for this fact

a number of hypotheses have been made; for example Flash and Hogan [7] described this

behavior in terms of the minimization of joint acceleration changes (jerk model), and

others explained it observing that the straight path followed by the hand corresponds to

the minimum distance between the hand and the target. An important finding, also

useful from a modeling point of view, is that such a motor behavior is due to the arm

dynamics and is not related to some particular neural state [8]. At the level of the

central nervous system (CNS) it is well known that sensory and motor areas show topo-

graphic organization of the body area to which they are related. Muscle surfaces and

receptors have a corresponding point on the cortical surface and the resolution of

sensory acuity and motor dexterity of body segments is directly proportional to the size

of the cortical areas to which they correspond. Besides, adjacent muscles are mapped

onto adjacent cortical sites. A sketch of a plausible connecting model of the cortical

area involved in motor functionality is drawn in Figure 26.1.

Movement planning and control in the brain exploits complex pathways involving

many cortical areas such as association, motor, somatosensory, and visual areas. The

aim of these areas and pathways is to create a chain of coordinate transformations from
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the outworld frames to the internal ones providing multimodal sensorial integration tools

for proprioceptive and exteroceptive sensitivity. Moreover, Tanji and Evarts [9] provided

findings about specific functions of cortical neurons such as the coding of movement kin-

ematic properties of neurons in the primary motor cortex (MI) and the correspondence

between the direction of the arm movements and the distribution and entity of the dis-

charge of the neurons [10]. It is also shown that genetic information by itself does not

permit the formation a correct model of connections between cortical areas able to

provide a functional scheme for a proper controller [11]. Therefore, taking into account

that many physical parameters are time dependent, such as muscle length, muscle strength,

and body mass, the continuous adaptation of the connectivity patterns with other physio-

logical parameters is required. To date, however, there is still no general consensus about

how biological neural networks actually generate voluntary movement. There are exper-

imental evidences that motor neurons encode both hand paths (movement direction—

kinematics) and muscle activity in single- and multijoint movements (dynamics) [12].

Also, there are experimental findings showing that the emerging kinematic movement

properties are not dependent on the dynamics of the muscle system [13]. To explain

this different behavior it was suggested that the motor cortical activity could encode

both visual and motor aspects over time allowing visuomotor transformation [14]. In

this way visual feedback can provide kinematics data which can be related to the actuation

properties of the muscles through the learning. The result of the learning may appear as a

coding of the muscle dynamics. There is also evidence that the nonlinear properties of the

muscles related to their viscoelastic nature allow the development of a simple feedforward

scheme control requiring a few parameters to perform the whole hand trajectory [15]. This

scheme could take advantage of the direction-coding properties of the motor neurons that,

in this case, are required to activate only a limited number of motor parameters. These

speculations may have a proper match with the results of Mussa-Ivaldi et al. concerning

Figure 26.1 Rough diagram and connections of cortical areas devoted to generation

of motor commands.
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the hypothesis that the CNS may coordinate complex movements “through the vectorial

superposition of a few motor primitives stored within the neural circuits in the spinal

cord” [16, p. 7534]. In conclusion, even though complete understanding of how humans

can effectively develop and apply sensorimotor coordination schemes is still not at

hand, neuroscientists are providing more and more advanced hypotheses and accurate

models which represent a powerful source of inspiration for designing innovative super-

vision and control schemes for robotic artifacts. At the same time, such robots, where a

bioinspired control scheme has been instantiated, could represent a candidate physical

model with an application potential as a tool made available to neuroscientists for validat-

ing their hypotheses and models. In the following a specific case study on the development

of a novel neurocontroller for robotic manipulators based on neurophysiological models is

presented in detail, including simulation and experimental results.

26.3 MODELING AND ROBOTIC APPROACHES

Robotics, which aims at designing more and more robust and adaptable systems working

in the real, unstructured world, is looking with increasing interest at biomimetic and bioin-

spired solutions directly derived from the observation of nature. From this perspective,

neurophysiological models can offer a different point of view allowing the development

of biologically inspired models to control in a “natural way” anthropomorphic robotic bio-

logically inspired sensors and actuators. This approach can potentially offer a deeper

insight in the comprehension of the biology itself providing platforms to evaluate the

models of brain functions. From another point of view, psychological approaches can

help in the comprehension of the neuropsychological mechanism behind these abilities.

For example, the circular reaction mechanism proposed by Piaget [1] represents a well-

known traditional psychological approach to the problem of visuomotor coordination.

In particular we are interested in understanding what mechanisms are established and

allow a person to learn stable transformations between two separate sensorial systems,

such as the visual and motor sensorial systems. It could be noted that during visuomotor

tasks the ocular movements tend to bring the projection of the image of the hand onto the

retina (visual target) such that it corresponds at the level of ocular fovea in order to

improve the vision of the hand. If these movements do not conform to a correct foveation,

the actual ocular position causes a visual error. Grossberg and Kuperstein [17] described a

model showing how these error signals can be used by the cerebellum to learn those values

of the parameters needed to control a correct foveation. Burnod and co-workers [18] pro-

posed a distributed neural network architecture showing how motor commands for reach-

ing tasks occur at the same time in different cortical areas. The proposed architecture

shows similar results to those found in an experimental way by Georgopoulos [10] regard-

ing the coding of the direction of movement in 3D space exhibited by a neuronal popu-

lation in primates. The DIRECT (direction-to-rotation effector control transform) model

proposed in [19] includes descriptions of the role of sensorimotor cortex in the learning

of visuomotor coordination correlating proprioceptive and visual feedback to the gener-

ation of joint movements. The model shows successful reaching of targets located in

the workspace of the simulated 3-degree-of-freedom (DOF) arm taking into account the

redundancy of the arm. The DIRECT model represents a very interesting biologically

inspired motor control behavior emphasizing some peculiar humanlike characteristics,

such as the successful reaching of targets despite the different operative conditions

from those taken into account during the learning phase (normal reaching). Typical modi-

fication of operative conditions for which a robust behavior can be obtained by the
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DIRECT model are adding a tool of variable length at the end of last link, the execution

with a clamped joint, with distortions of the vision due to the use of a prism and blind

reaching. All of these limitations are executed without a specific learning phase; the

system learns to move the joints in “normal” conditions (i.e., with correct visual input

and allowing free motion of all the joints); then it is able to successfully perform the reach-

ing task in the “modified” conditions. Inverse kinematics is one of the crucial problems in

developing robot controllers. Traditionally, solutions to the inverse kinematics problem

are obtained by different techniques based on mathematical computational models, such

as inverse transform or iterative methods. Sometimes, these methods may suffer from

drawbacks, especially when the number of degrees of freedom increases: Inverse trans-

form does not always guarantee a closed-form solution, while iterative methods may

not converge and may be computationally expensive. Neural network approaches,

which provide robustness and adaptability, represent an alternative solution to the

inverse kinematics problem, especially when the number of DOFs to be controlled is

high, for example, in the case of redundant and/or modular reconfigurable kinematic

chains, or the external spatial reference system is not easy to be modeled, such as in visuo-

motor coordination tasks. Two main approaches have been proposed for the use of neural

networks to solve the problem of inverse kinematics. The first, based on mathematical

models, considers the artificial neural networks as a tool to solve nonlinear mappings

without, or in some cases with a limited or partial, knowledge of the robotic structure

[20, 21]. The second approach builds the mapping between motor commands and

sensory input on the basis of repeated sensorimotor loops; the final map is then used to

generate appropriate motor commands to drive the robot toward the target sensory

input. These latter methods make use of self-organizing maps [22] to build the internal

mapping: Their self-organization and topological preservation features make them well

suited for capturing mechanical constraints; moreover, they show a good capability of pro-

cessing artificial sensory signals, according to the analogous mapping features of the

somatosensory cortex by which they are inspired. These abilities could be useful in

closed-loop control systems which have to deal with somatosensory signals coming

from anthropomorphic artificial sensors, such as proprioceptive and tactile, in order to

allow the generation of proper sensorial inputs toward the motor areas [23]. In the past,

visuomotor coordination problems have been extensively and quite successfully

approached using Kohonen’s maps [24, 25]. Nevertheless, this type of network may

suffer from the necessity of a priori knowledge of the probability distribution of the

input domain in order to choose a proper cardinality and structure of the net, so as to

avoid over- or underfitting problems. Furthermore, they are not suitable to approach

dynamic environments or continuous learning [26]. In general, approaches involving self-

organizing techniques assign a subarea of the input domain (e.g., joint space) to a single

neuron, according to a specified resolution. This methodology divides the whole space in a

set of equally probabilistic subspaces, disregarding the correlations between the task space

and the sensory domain in which they are performed. Growing neural gas (GNG), pro-

posed by Bernd Fritzke [27], is an incremental neural model able to learn the topological

relation of input patterns. Unlike other methods, this model avoids the need to prespecify

the network size. On the contrary, from a minimal network size, a growth process takes

place which is continued until a condition is satisfied. The objective of the reported

case study is to provide a computational model that embodies a solution of the inverse kin-

ematic problem capturing the kinematic proprieties of real robots by learning and improv-

ing some aspect of the DIRECT model. The proposed neural model will be evaluated by

two sets of experimental trials: first, a comparative analysis of the simulation results

obtained considering the same planar manipulator used by the DIRECT model will be
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presented and discussed; second, results in the application to two different real robotic

arms will be reported, thus demonstrating the feasibility and the portability of the proposed

model, including its learning capabilities.

26.4 STRUCTURE AND FUNCTIONALITY OF
PROPOSED NEURAL MODEL

Looking at the overall block diagram of the DIRECT model in Figure 26.2 and having in

mind its transposition into a control scheme for a robotic arm, we can outline at least two

main “weak” characteristics. The first concerns the method adopted to realize the inte-

gration of the proprioceptive and visual sensorial modalities. This integration is realized

by the spatiomotor present position vector (PPVsm) combining the current proprioceptive

perception of the arm posture (motor present position map) and the current perception of

the hand (spatial present position vector) on the retinic frame. Then, the desired motion

direction is computed by the spatial direction vector (DV) stage as the difference

between the spatial target position vector (TPV) and the PPVsm; consequently, the dimen-

sion of the output of the PPVsm must be equal to the dimension of the TPV.

Indeed, objects and, in general, real images are represented in a topographic fashion

onto the retina and in the brain at the level of the temporal and parietal cortex association

areas. Here, other sensorial modalities, such as proprioception and touch, are integrated

together; in these areas we find a distributed and integrated perception of the same

“scene” acquired by all the sensors available [23]. Our approach consists in using self-

organizing growing neural maps for realizing the mapping of proprioception and vision

perception and of their integration. The second novelty consists in the use of the motor

present position map (PPMm) and of the position direction map (PDMms). The dimen-

sions of these maps are initially decided based on a priori and empirical assumptions.

Also in this case we will release this constraint using the same type of neural maps

described before. Hence, we will not distinguish between maps or vectors, thus simplify-

ing the model. Besides, we will use neural maps able to grow in accordance with the com-

plexity of the input space to which they are connected (e.g., visual, proprioception,

associative, and motor domains). These neural maps, called GNG, and their equations

are in accordance with those introduced by Fritzke [27]. As mentioned, GNG is an incre-

mental neural model capable of learning the topological relation of input patterns by

means of “Hebbian” learning, similar to other self-organizing networks. Unlike other

methods, however, this model avoids the need to previously specify the network size.

On the contrary, from an initial minimal network size, a growth process takes place

which is continued until an ending condition is fulfilled. Also, learning parameters are con-

stant over time, in contrast to other models which heavily rely on decaying parameters. In

the original algorithm proposed by Fritzke [27] the insertion of a new cell is driven by a

constant parameter. More precisely, one new cell is added everytime that l input signals

are presented, so that the total number of cells that compose the network results in about

bjAj=lc, where jAj is the cardinality of the training set. A different approach to control the

growing process in such networks is described in [28]. In this work the insertion occurs

only when the cumulated local error is greater than a proper threshold. This algorithm

has been used by the author to learn an inverse kinematic model in the context of sensor-

imotor coordination. Winter et al. [29] used the same approach with some modifications in

the case of function estimation. The modification is a heuristic function that moves the

neurons toward regions in the input space where the error is large. As a result, the
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neurons are concentrated in regions where the function that should be approximated is

more complicated. In our approach, we use the l parameter as the insertion frequency

counter. The goal is to add cells proportionally to the magnitude of the quantization

error of the net over the time. The error is greater and more frequently new units are

added to the net. In this case, when the input patterns remain quasi-stationary (e.g., if

the input patterns do not differ from each other more than a given threshold), we expect

that the system could feature a linear reduction of the quantization error. The error

Figure 26.2 Overall block diagram of DIRECT model. (Redrawn from [19].)
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decrement is assured by the “insertion law.” The new unit is connected through weighted

connections between the two units with the largest errors belonging to the same neighbor.

The new connections are weighted by a portion of the original connection between the

oldest units, guaranteeing that the new local error is less than the previous one. In this

way the insertion of cells could be virtually never stopped: A low quantization error

means that a new cell will be inserted after a long, long time. However, we do not

insert new units if the quantization error is below a specified threshold. Furthermore,

this mechanism allows us to deal with unbound training sets. If at a certain time a

never-seen-before input pattern is generated, then a consistent quantization error will be

calculated and so the insertion procedure starts again. In detail

l ¼
K

Err qnt
(26:1)

where K is an appropriate constant and Err qnt is the mean quantization error computed by

the formula

Err qnt ¼

P

j[A kj� ws1k
2

jAj
(26:2)

whereA is the training set, j is the pattern in input, and ws1 is the reference vector associ-

ated to winner unit s1.

Using these maps to control different kinematic chains, that is, different robots, we

will expect to not modify neither the architecture (number of maps, connections schemes,

etc.) of the neural controller nor the learning procedures nor the learning equations. The

only change we expect from robot to robot is the different way the growing process of

the map will be performed according to the kinematic and mechanical parameters of

the controlled robots. The output of these maps is given by the equation

F(j ) ¼
mws1 þ

P

i[Ns1
(nwi)=jNs1 j

kj� ws1k
2

(26:3)

where j is the input pattern to the map, m and n are appropriate constants, ws1 is the weight

vector associated with the winner unit, and Ns1 is the set of direct topological neighbors of

the winner unit.

Finally, Figure 26.3 illustrates the overall picture of the neural model that we

propose. The vision map (VM) receives an appropriate visual coding concerning the

target and the end-effector positions. Then, according to the Eq. (26.3), a winner popu-

lation (the winner unit and its neighbors) representing the target and a winner population

for the end effector will be activated.

Defining ce as the coding for the end-effector position and ct for the target, the VM

output is defined as

v ¼ ½F(ce), F(ct)�F(ce)� (26:4)

whereF(ct)�F(ce) is the neural representation in the VM of the desired direction vector

that starts from the end-effector position and points to the target position . The output of

the proprioceptive map (PM) is computed in the same way and it produces an appropriate

proprioceptive end-effector representation. Then, the sensorimotor map (SMM) receives

as input both the vision and proprioceptive representation of the end effector and the direc-

tion vector, producing as output the set of weights belonging to the winner unit for that

input according to Eq. (26.3). Regarding generation and learning of the arm movements,

we use almost the same computational method proposed by the DIRECT model. In this
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respect, r is a population of units devoted to the generation of the joint movements; their

number is equal to the DOF of the manipulator multiplied by 2 according to the use of a

pair of muscle (agonist and antagonist) for each joint. Each unit of r receives connections

from all the SMM units. Only the weights of the winner unit and those of its neighbors are

allowed to learn in order to move the end effector toward the target. The adaptive weights

between SMM cell k and the unit i are modified according to the following learning

equation (Grossberg’s [30] “outstar” law):

d

dt
zki ¼ gck(�dzki þ ri) (26:5)

where g is a small learning rate parameter and d is a decay rate parameter, while the output

of the units of r is given by the equation

ri ¼ xi þ
X

k

ckzki i ¼ 1, . . . , n (26:6)

where xi is the ERG activation (only present during the learning phase) and zki is the adap-

tive weights from cell k in SMM to unit i of r; ck is 1 if the cell k in SMM is activated and 0

if it is not.

The ai cell has the task of calculating the joint rotation displacement according to the

activation of the r units that are connected them. The updating rule used is

d

dt
ai ¼ e(r Ei � r Ii )g(r

E
i , r

I
i ,ci) (26:7)

Figure 26.3 The proposed neural model. During the learning phase a random activation of the

muscles is generated by the endogenous random generator (ERG) similarly to the approach proposed

by the DIRECT model [19].

26.4 STRUCTURE AND FUNCTIONALITY OF PROPOSED NEURAL MODEL 441



where ai is the angle command for joint i, r Ei and r Ii are the corresponding excitatory and

inhibitory r cell activities, respectively, and e is an integration rate parameter, while the g

function is defined as

g(e, i,ci) ¼
cmax � ci if (e� i) � 0

ci if (e� i) , 0

�

(26:8)

where ci is the angle of the joint corresponding to ai and cmax is the maximum angle of this

joint.

This rule regards the “length” of the muscles [2] as well as their viscoelastic charac-

teristic. Learning in our model is achieved through autonomously generated repetition of

an action–perception cycle, which produces the associative information needed to learn

coordination visuomotor during a motor babbling phase; in fact, the model, by r cell activi-

ties, endogenously generates movement commands that activate the correlate visual, pro-

prioceptive, and motor information used to learn its internal coordinate transformations.

26.5 EXPERIMENTAL RESULTS

The implemented system was tested and evaluated through experimental trials aiming at

verifying the learning capabilities and motor coordination functionality. The experimental

scenario includes:

1. A simulator of a pan-tilt vision system

2. A 2D robot arm simulator

3. The 6-DOF PUMA 560 (Unimation, Sewickley, PA) and the 8-DOF DEXTER (SM

Scienzia Machinale srl, Pisa, Italy) robot arms.

26.5.1 Simulator of Pan-Tilt Vision System

The vision system is required to focus both the target and the end effector by providing the

vision feedback as the input for the VM. According to the results described in [31] the

human vision system has a double functionality. The first consists in recognition tasks

and the other is involved in visuomotor tasks. In particular, inside the inferior temporal

cortex the middle temporal (MT) area contains a column organization of neurons

devoted to represent the binocular disparity. Starting from these results, we simulate a

pan-tilt vision system composed of two cameras able to move independently. The task

of the vision system is to focus both well-defined relevant points of the end effector and

the target (avoiding ambiguities) and after that to provide as its output the angular pos-

itions of the pan-tilt system of each camera. This is in accordance with the well-known

triangulation method used to compute the distance between such vision systems and a

target. To better simulate the encountered problems using a real vision system, we add

a Gaussian noise to the sensed positions simulating shadows or environmental illumina-

tion changes.

26.5.2 Two-Dimensional Robot Simulator

The 2D robot simulator consists of a cinematic chain of three links as Figure 26.4 shows.

The lengths of the links and the joint ranges are L1 ¼ 280 mm, L2 ¼ 280 mm,

L3 ¼ 160 mm and 308 � u1 � 2408, 308 � u2 � 1808, 308 � u3 � 1908, respectively.
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The performance of the proposed model is fully comparable with those pointed out by

Bullock et al. [19] in all the same experimental scenarios (normal reaching, clamped

joint, visual shift, and tool and blind reaching). Two graphs, showing the behavior of

the error distance and the trajectory of the joints during a normal reaching trial, have

been plotted using simulation output. The monotonic trend shown by the graph in

Figure 26.5a is a general behavior found in all the trials.

Figure 26.4 Planar 2D simulated

robot arm with three links.

Figure 26.5 Two-dimensional simulator: (a) distance in normal reaching task; (b) joint

trajectories in normal reaching task (3 DOFs); (c) comparison between graph of distance

between end effector and target and graph of distance from straight-line trajectory

during normal reaching task.
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We can underline how the monotonic trend and the absence of notable oscillations

ensure a linear movement (straight-line trajectory) of the end effector toward the target,

which corresponds to a minimal waste of energy according to the findings in [32].

Figure 26.5c shows the graph of the distance between the end effector and the target in

comparison with the graph of the distance from the straight-line trajectory which links

the initial and the target positions.

In Table 26.1 we report a comparison between the cardinality of the DIRECT maps

and the proposed neural model.

Note that the VM is not present in the DIRECT model and the SMM corresponds,

with some differences, to the DIRECT PDM. Looking at Table 26.1 it is evident that the

number of network units created when the growing approach is used is reduced with

respect to the case of a priori cardinality imposed by the DIRECT model.

26.5.3 PUMA 560 and DEXTER Robot Arms

The PUMA 560 robot arm is an industrial robot with 6 DOFs equipped with motors

mounted on the joint rotation axes, while the DEXTER arm is an anthropomorphic

8-DOF robot arm in which the joints are cable actuated by motors located on the

first link of the robot (for a complete description of the DEXTER arm see [33]).

Due to the strong differences in the mechanical transmission systems in the elasticity

of the actuation systems and in their internal friction the two robots clearly need differ-

ent control strategies. Applying the same proposed model described here we expect

different map cardinalities in order to reflect the differences between the two robots.

Figures 26.6a,b show the performance of the system in terms of the graph of the

error distance from the target and the joint trajectories in a reaching with a tool task

involving the PUMA arm. Figure 26.6c shows the trend of the distance between the

end effector and the target in comparison with the trend of the distance from the

straight-line trajectory.

Moreover, Figure 26.7a highlights a monotonic trend behavior during a normal

reaching task with the DEXTER manipulator and Figure 26.7c shows the graph of the dis-

tance between the end effector and the target in comparison with the trend of the distance

from the straight-line trajectory. Table 26.2 shows the number of units created for the two

robots.

Focusing on Table 26.2 it is possible to note a number of units in the case of the

DEXTER robot greater than in the case of the PUMA robot. The difference consists in

the wider workspace of the DEXTER arm with respect to that of the PUMA arm. Compar-

ing also Tables 26.1 and 26.2 we can point out that the model always requires less units for

the learning in the 3D space than in the case of the DIRECTmodel, where only the 2D case

was present (3 DOFs). Figures 26.8a,b,c show some pictures of the PUMA robot during

attempts to reach targets using a tool, while Figures 26.8d,e, f show some pictures of

the DEXTER robot during the attempts to reach targets in normal reaching tasks. As illus-

trated in Figures 26.8c, f, the final reached positions differ from the initial ones in terms of

TABLE 26.1 Cardinalty of Maps: 2D Simulator

Vision map Proprioceptive map Sensorimotor map

Proposed model 2,369 1,333 3,357

DIRECT model — 15,625 10,290

444 CHAPTER 26 NEUROCONTROLLER FOR ROBOT ARMS



Figure 26.6 PUMA manipulator: (a) distance in reaching with tool; (b) joint trajectories in

reaching with tool (6 DOFs); (c) comparison between graph of distance between end effector

and target and graph of distance from straight-line trajectory during reaching with tool.

Figure 26.7 DEXTER manipulator: (a) distance in normal reaching; (b) joint trajectories in

normal reaching (8 DOFs); (c) comparison between graph of distance between end effector

and target and graph of distance from straight-line trajectory during normal reaching task.
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orientation (not considered in this work) due to the redundancy of the manipulators with

respect to the reaching task in 3D space.

26.6 CONCLUSION

In this chapter, the current state of the art in the field of sensorimotor coordination models

inspired from neuroscience findings in primates and humans has been analyzed. A case

study of the design and development of a novel neurocontroller, inspired by the

DIRECT model, has been proposed by the authors. The main improvement introduced

with respect to the DIRECT model is the integration of the visual and proprioceptive infor-

mation using a GNG approach. This has permitted us to simplify the model architecture

adopting the same computational structure in manipulating different sensory modalities;

it has also permitted a drastic reduction in the number of required units compared to

the number of nodes obtained by using the DIRECT model. These neural maps are able

to grow, preserving topological relations, in accordance with the kinematic proprieties

of the robot arm during the motor babbling phase. Experimental results obtained by simu-

lation and trials on two different types of robotic arms show the effectiveness of the pro-

posed model, pointing out the importance of using growing neural network topological

preservation paradigms in developing sensorimotor coordination in robotic systems.

Particularly, the cardinalities of each map have been demonstrated to be lower, both in

TABLE 26.2 Cardinalty of Maps: Real Robot

Vision map Proprioceptive map Sensorimotor map

PUMA 560 (6 DOFs) 10,970 6,063 9,708

DEXTER (8 DOFs) 15,004 6,580 11,018

Figure 26.8 Real robot. (a) Required final position, (b) starting point posture, and (c) final

reached position with PUMA manipulator (Unimation, PA). (d ) Required final position,

(e) starting point posture, and ( f ) final reached position with DEXTER manipulator

(SM Scienzia Machinale srl, Pisa, Sewickley, Italy).
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3D space and 2D space, when compared to those proposed by the DIRECT model consid-

ering the 2D case only. The neural model has been shown to control real different complex

robotic systems with a comparable performance producing no modifications neither in the

model nor in the learning equations. Future developments will be aimed at using the same

model to learn and perform other, more complex robotic tasks, such as explorative

complex procedures for manipulative tasks which require the integration of tactile and

force feedback. Finally, the model will be refined so to take into account hand orientation

constraints and dynamic aspects, such as nonlinear muscle models and direct control of the

joint torques involving feedforward control schemes.
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CHA P T E R27

MUSCLE SYNERGIES FOR

MOTOR CONTROL
Andrea d’Avella and Matthew Tresch

27.1 INTRODUCTION

Biological motor control is an extraordinary achievement of evolution, yet it is still a

largely unexplained phenomenon. Movements that we perform efficiently and effortlessly

require controlling and coordinating a large number of interacting degrees of freedom.

Even a simple movement like reaching for an object involves activating tens of different

muscles, with specific amplitudes and timings, to generate the appropriate torque profiles

at the shoulder, elbow, and wrist joints. Given the complexity of the dynamics of an

articulated mechanical system like the arm, specifying the proper torque profiles and

selecting the suitable muscle activation patterns are a challenging computational

problem. How the central nervous system (CNS) solves this problem is a central question

in the study of the neural control of movement [1] and a possible source of inspiration for

neurorobotic design.

A long-standing hypothesis is that the CNS simplifies the control of movement

through a hierarchical and modular architecture [2–6]. At the lowest level of the hier-

archy, muscle recruitment might be controlled by a few functional units, thereby reducing

the dimensionality of the output space. Higher levels in the hierarchy might recruit

and flexibly combine these output modules to control a variety of different movements.

In this chapter we will consider a specific model for the organization of a set of

output modules. According to this model, groups of muscles are recruited coherently in

space or time, that is, as muscle synergies. We will review here a number of methods to

identify muscle synergies from a collection of muscle activity patterns observed over a

variety of different movements. Using simulations, we will characterize the performance

of these methods. Finally, we will show the results of the analysis of experimental data.

27.2 MUSCLE SYNERGIES

One way in which the CNS might simplify the task of controlling many degrees of

freedom is by organizing muscle synergies. The basic idea (Fig. 27.1a) is that of reducing

the dimensionality of the output space by grouping control signals into a set of output

modules. The output signals for a biological controller are muscle activations and an

output module corresponds to a muscle synergy—the coherent activation in space or in

time of a group of muscles. Such a modular architecture would produce an adequate con-

troller if the combinations of the output modules can generate all the output patterns

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.

449



necessary to control the movement repertoire of the system under consideration. Since the

patterns associated with different movements might share a substantial amount of structure

and since the movement repertoire might be limited, it seems realistic that a small number

of modules might act as a basis for movement generation. Output patterns might share

structure because different movements are constructed by similar components and

because they are generated by the same biomechanical apparatus. The movement reper-

toire of a species might be limited because only a subset of all the movements that its bio-

mechanical apparatus can produce might be actually behaviorally relevant. Finally, a

modular architecture would represent an efficient implementation of a controller

because it uses the same modules for different movements and has just enough modules

for the movement repertoire that it has to control.

We introduce here two different models of muscle synergies to capture different types

of structure in themuscle patterns thatmight be shared acrossmovements: spatial structure—

across muscles—and spatiotemporal structure—across both muscles and time.

Figure 27.1 Synergy-based models for generation of muscle patterns. (a) A set of independent

modules (synergies) recruits different combinations of output channels (muscles). The actual

value of each output channel (mi) is given by the sum of the contributions of each module for

that channel, each scaled by a coefficient (cj). (b) Simulated example of two different patterns

with five muscles constructed by the combinations of three synchronous synergies. The profiles

below each pattern correspond to the time course of the amplitude coefficients [cj(t)] for each

synergy. (c) Example of combination of three time-varying synergies to construct two distinct

muscle patterns. The height of the rectangles below the muscle patterns is proportional to the

amplitude coefficient (cj) of each synergy; the horizontal position of the rectangles corresponds

to the time interval spanned by each synergy resulting from the shifting of the synergy onset

time by the onset delay (tj) of each synergy. The profile within each rectangle shows the average

time course of the muscles for the corresponding synergy.
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27.2.1 Synchronous Synergies

A synchronous synergy represents an output module that activates a group of muscles

with a fixed balance in their activation levels. We model the generation of a muscle

pattern by the recruitment of N synchronous synergies as the linear combination of N

vectors {wi}, i ¼ 1, . . . ,N,

m(t) ¼
X

N

i¼1

ci(t)wi (27:1)

wherem(t) is aM-dimensional vector representing the activations ofM muscles at time t;

ci(t) a coefficient scaling the amplitude of the ith synergy at time t, and wi the ith muscle

synergy. Since muscle activation is a nonnegative quantity,1 it is convenient to constrain

both synergies and amplitude coefficients to nonnegative values.

Given a set of synergies, different muscle patterns are generated by choosing

different temporal profiles for the amplitude coefficients of each synergy. Figure 27.1b

illustrates this model with an example of the generation of two different patterns with

the same three synergies. By construction, the synchronous synergies capture the under-

lying relationship, at each moment in time, among the amplitude of the various muscles

across all the patterns.

If we sample the muscle patterns at discrete time intervals, the relationship between

the muscle activations defined by this model can also be expressed as the existence of a

factorization of the matrix of the muscle patterns as a product of a synergy matrix

times a matrix of activation coefficients:

M ¼WC (27:2)

where M has M rows and K columns (K total number of samples), W has M rows and N

columns (N number of synergies), and C has N columns and K rows.

27.2.2 Time-Varying Synergies

A time-varying synergy represents an output module that activates a group of muscles with

a specific and fixed spatiotemporal profile. The activation time course can be different

across muscles and thus a time-varying synergy can represent an asynchronous as well

as a synchronous activation profile. As with synchronous synergies, we model the

generation of a muscle pattern by the recruitment of N time-varying synergies as the

linear combination of the elements of each synergy. Since the muscle activation described

by a time-varying synergy spans a certain time interval, we can shift in time the onset of

each synergy before summing their elements at each point in time:

m(t) ¼
X

N

i¼1

ciwi(t � ti) (27:3)

where wi(t) is the M-dimensional vector representing the activations of M muscles in the

ith synergy at the time t after the synergy onset, ti is the onset delay for the ith synergy, and

all other symbols are as in Eq. (27.1). Thus the generative model for time-varying syner-

gies includes both an amplitude parameter and a temporal parameter. Comparing Eqs.

(27.1) and (27.3), we notice that the temporal dependence in the muscle patterns

1In fact, muscles can only generate active force in one direction, shortening their contractile elements.

Analogously, the neural drive to the muscles, represented by action potentials traveling along the axons of moto-

neurons from the spinal cord to the neuromuscular junction, can be quantified as a nonnegative firing rate.
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derives from the scaling coefficients [ci(t)] in the case of synchronous synergies while

it derives from the time course of the synergies [wi(t2 ti)] in the case of time-varying

synergies. Hence any regularity in the temporal structure of the muscle patterns has to

be captured by a regularity in the scaling coefficients in the synchronous synergies

model whereas it is captured by the structure of the synergies in the time-varying

model. Moreover, given a set of synergies, to describe one muscle pattern, the synchro-

nous model requires as many parameters [ci(t)] as the number of synergies times

the number of time points while in the time-varying model the number of parameters

(ci and ti) is equal to twice the number of synergies.

By shifting in time and scaling in amplitude a given set of time-varying synergies,

we can generate a variety of muscle patterns with different time courses in the activation

of each muscle. Figure 27.1c shows an example of two muscle patterns generated by com-

bining the same three time-varying synergies with different recruitment parameters.

In discrete time, the ith time-varying synergy of duration T can be expressed as a

matrix W
i with M rows and J columns, each representing the synergy activation vector

at time tj, 0 � tj , T ( j ¼ 1, . . . , J ). We use the matrix W ¼ [W1
W

2 � � �WN] with M

rows and J � N columns to compactly represent a set of N synergies. If we introduce a

time-shifting matrix Qi[k, K ] to align, by matrix multiplication of W with Qi, the first

sample of the ith synergy with the kth sample (22 J � k � K ) of a muscle pattern

(K samples long) and to truncate the synergy’s samples shifted before the beginning or

after the end of the pattern, we can rewrite Eq. (27.3) as

M ¼W
X

N

i¼1

ciQi½ki, K�

 !

¼WH (27:4)

27.3 METHODS TO IDENTIFY SYNERGIES

When trying to reverse engineer the design of a biological controller, we can tackle

the problem using two complementary approaches. We can extract information about

the controller’s design from the regularities of its behavior and its observable output or

we can gain information on the controller’s architecture from knowledge of its internal

structure. The latter approach may lead to stronger inferences on the controller’s design

than the former approach, especially when it allows testing causal models through the

study of the effect of external interventions on the controller’s components. This structural

approach, however, requires accessing the physical substrate that implements the controller

and understanding its mechanisms. For a biological system this means gaining access to

the neural circuitry and decoding the neural representation of the relevant control variables

and algorithms. Both these requirements are often quite difficult to meet in practice,

and they often restrict the range and the naturalness of conditions in which the system

can be studied. The behavioral approach, on the contrary, does not require direct access

to the controller’s implementation, only to the controller’s output. This approach not

only simplifies the testing of a large range of conditions but also directly benefits from

this range. In fact, any inference based on the existence of invariant characteristics

will be stronger if the set of conditions over which the invariance is observed is large.

The approach we advocate in the study of the neural control of movement is to

characterize the regularities in the motor output by identifying a set of muscle synergies

that can generate the muscle patterns observed during natural motor behaviors. The

existence of a small set of generators for the entire muscle pattern repertoire of a
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species supports the hypothesis of a modular architecture of the controller. Moreover, the

identification of muscle synergies from the regularities of the observed behavior can be

instrumental in guiding a more systematic structural approach.

27.3.1 Decomposition Methods for Synchronous Synergies

One simple approach to identify synchronous synergies is to study the pairwise corre-

lations among muscle activations. If two muscles are recruited with a fixed balance, we

expect their activations to be correlated, and thus the observation of pairwise correlations

indicates a synergistic activation. More generally, the recruitment of one synergy will gen-

erate muscle activities that lie on a one-dimensional subspace of the muscle activation

space. The single vector that generates this subspace corresponds to a synchronous

synergy. The problem with this correlation-based approach is that it will only work if

the synergies are recruited one at a time, that is, only if one of the scaling coefficients

[ci(t) in Eq. (27.1)] are nonzero at any one time. When different synergies activate

the same muscles and several synergies are recruited simultaneously, the underlying

correlations may be masked by the synergy combinations.

A more general approach for the identification of synchronous synergies consists in

determining the generators of the subspace spanned by the synergy combinations. Any

method that can factorize the muscle pattern matrix M as a product of a matrix W

made by N synergy vectors times a coefficient matrix C [see Eq. (27.2)] provides a set

of generators. Different methods can identify different generators since any invertible

transformation of the generators will still span the same subspace. Classical methods

like principal-component analysis (PCA) [7], factor analysis (FA) [8], or more recent

methods like independent-component analysis (ICA) [9] differ on the assumptions

about the nature of the noise in the pattern generation process, and they can all be used

to obtain a linear decomposition. In case of nonnegative synergies and combination

coefficients, we can use one of the recently introduced nonnegative matrix factorization

(NMF) methods [10–12].

The NMF methods use an iterative algorithm to find a factorization of the

muscle pattern matrix that minimizes a given cost function. We briefly present here the

algorithm introduced by Lee and Seung [12] to minimize the cost function given by

the reconstruction error E:

E2 ¼ trace{(M�WC)T(M�WC)} (27:5)

that is, the Euclidean distance between observed data and reconstructed data. The algor-

ithm starts by initializing synergies (W) and coefficients (C) with random nonnegative

values and proceeds by iterating two steps until convergence:

1. Given the synergies W, update the coefficients C decreasing the error E, according

to the rule

Cij ¼ Cij

(WTM)ij

(WTWC)ij
(27:6)

2. Given the coefficients C, update the synergies W decreasing the error E, according

to the rule

Wij ¼ Wij

(MCT)ij

(WCCT)ij
(27:7)
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These multiplicative update rules allow for faster convergence than a gradient descent

rule,2 they automatically constraint synergies and coefficients to nonnegative values,

and they do not require adjusting any convergence parameter.

Since the number of synergies N is a free parameter of the model, we need to

determine its optimal value. Such a process of model order selection can be approached

using many different approaches. One approach is to examine the amount of reconstruc-

tion error E(N ) as a function of the number of synergies N used in the extraction algorithm.

The reconstruction error will decrease as the number of synergies increases and, ideally, in

the absence of noise the actual number of synergies used to generate the data N� could be

easily determined as the smallest N for which E(N ) ¼ 0. In presence of noise, the

reconstruction error for N , N� synergies has two components: one due to the noise

and one due to the fact that we are reconstructing the data with less synergies than the

number used to generate the data. Since for N � N� only the noise contributes to the recon-

struction error, we expect a change in slope in the E(N ) curve at N�. Thus, in principle we

can use a change in slope of the E(N ) curve as a criterion for the choice of the optimal

number of synergies.

27.3.2 Time-Varying Synergies Decomposition

The construction of muscle patterns by combinations of time-varying synergies is

achieved using two operations: scaling in amplitude and shifting in time each synergy

[see Eq. (27.3)]. Because of the time shift operation, the time-varying synergies used to

construct the patterns are not the linear generators of a subspace in the muscle activation

space as with synchronous synergies.3 We cannot therefore use the same factorization

methods described above to decompose the muscle pattern matrix.

We have recently introduced a novel algorithm to factorize a muscle pattern

matrix into a nonnegative matrix representing a set of time-varying synergies and a

matrix representing a set of recruitment parameters [see Eq. (27.4)] [13, 14]. Similar

to the algorithm presented above for synchronous synergies, this algorithm uses the

reconstruction error as a cost function and a multiplicative rule for updating scaling coef-

ficients and synergies. Because of the additional time shift operation, at each iteration the

time-varying algorithm updates not only synergies and amplitude scaling coefficients but

also the onset delay times. After initializing N time-varying synergies with random

nonnegative values, the algorithm is applied to a set of S muscle patterns, each

pattern composed by Ks samples, and it iterates through the following steps until

convergence:

(i) For each pattern Ms, given the synergies W, find N synergy onset times tis using the

following matching procedure:

(a) Set R
(0)
¼Ms and n ¼ 0; compute C[i, j] ¼WQi[ j, Ks], that is, the

synergyW i with the onset shifted at the sample j, for every i [ [1, N] and every

j [ [22 J, Ks]; and normalize eachC[i, j] using the norm kCk2 ¼ trace(CT
C).

2
W W2 mrWE2, where m is an adjustable learning rate parameter.

3If we consider all possible M-muscle, K-sample patterns, they form a space of M � K dimensions. The patterns

generated by the combinations of N synchronous synergies constitute an (N � K)-dimensional subspace of the

muscle patterns space; that is, at each point in time we have an independent N-dimensional space. Once a

J-sample long time-varying synergy is shifted at a particular onset time, it can be seen as an (M � K)-dimensional

vector. Such a vector will have at mostM � J nonzero elements and the Kþ J2 1 vectors obtained with all poss-

ible onset time shifts of the same synergy will be in general linearly independent. Thus a single time-varying

synergy corresponds to a set of Kþ J2 1 basis vectors.
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(b) Compute the scalar products between R
(n) and C[i, j ],

F(n)
ij ¼ trace(MT

s C½i, j�) (27:8)

(c) Select the synergy (in) and the onset sample ( jn) with the maximum scalar

product and set the onset delay coefficient (tis) for the selected synergy

accordingly.

(d) Set n nþ 1: If n , N, update the residual R(nþ1)
¼ R

(n)
2C[in, jn] and set

C[in, j ] ¼ 0 for every j and return to (b); stop otherwise.

(ii) For each patternMs, given the synergiesW and the onset times tis, update the scaling

coefficients cis using

cis  � cis
trace(MT

s WQi(tis))

trace(H T
s W

TWQi(tis))
(27:9)

(iii) Compute H [see Eq. (27.4)] and update the synergies using

Wij  � Wij

bMHTcij

½WHHT�ij
(27:10)

In step (i) the algorithm determines the onset delays (ti) for each synergy and for each

pattern using a nested matching procedure based on the cross correlation between the

synergies and the data. In step (ii) the nonnegative scaling coefficients for each synergy

and for each pattern (cis) are updated using a multiplicative rule similar to the one used

in the NMF algorithm [Eq. (27.6)] but taking into account the synergies’ time shifting

(through the matrix Qi). Finally in step (iii) the nonnegative time-varying synergies

(Wij) are updated with a multiplicative rule again similar to the corresponding NMF

rule [Eq. (27.7)] but modified for the time shifting.

27.4 SIMULATIONS

We tested the extraction algorithms presented above on simulated data. For both synchro-

nous and time-varying algorithms we constructed a data set combining four randomly

generated synergies composed of random coefficients. We then extracted a set of four

synergies from the simulated data set and tested the capability of the algorithms to

recover the synergies and coefficients used to generate the data. We also characterized

the performance of the algorithms when the simulated data were corrupted by noise and

when the number of extracted synergies was different from the number of generating

synergies.

27.4.1 Synchronous Synergies

Simulated data were generated by randomly selecting a set of four synergies, each synergy

defining the activation levels of 12 muscles. These four synergies were weighted by

activation coefficients drawn from an exponential distribution, and a predicted muscle

activation pattern was determined according to Eq. (27.2). Gaussian noise was then

added to each muscle, with the noise variance for each muscle set to be a fraction (0, 5,

10, 15, 20, 50%) of the variance of that muscle’s activation. Data sets consisting of

1000 data points were used.

The NMF synergy extraction method described above was able to correctly identify

the synergies which generated the simulated data set, even in the presence of relatively
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high levels of corrupting noise. In Figure 27.2a, we show the synergies identified using the

NMF synergy extraction algorithm applied to a simulated data set corrupted by noise

levels equal to 20% of the variance of individual muscle activations. As can be seen in

the figure, the identified synergies were very similar to the generating synergies.

Table 27.1 summarizes the similarity between synergies identified by NMF and those

actually used to generate simulated data sets in the presence of different amounts of cor-

rupting noise. As can be seen in the table, even with substantial amounts of noise, the

extraction algorithm identified the correct synergies well, with a mean similarity greater

than 0.9 (an average similarity of 0.84 in the worst case). The correlation between ident-

ified and generating activation coefficients was also greater than 0.9 for all noise levels but

Figure 27.2 Synchronous synergies simulation. (a) Example of set of synergies identified by

NMF algorithm (in grey) from 12-dimensional (m1–12) data set generated by four muscle

synergies (shown in block) corrupted by Gaussian noise with variance equal to 20% of each

muscle’s individual variance. (b) Amount of explained variance (R2) as function of number of

synergies used in synergy extraction method for differing amounts of noise (separate lines).

For all but the highest amount of noise, the slope of each curve changes abruptly at four

synergies, correctly identifying the number of synergies used to generate the data set.

TABLE 27.1 Comparison of Extracted and Generating Synergies for Four Synchronous Synergies�

Noise level (%) R2 smean smin smax rcmean rcmin rcmax

0 1.000 0.991 0.978 0.998 0.983 0.967 0.996

5 0.982 0.989 0.973 0.998 0.962 0.938 0.978

10 0.967 0.986 0.969 0.997 0.939 0.915 0.960

20 0.950 0.977 0.945 0.995 0.913 0.869 0.945

50 0.879 0.917 0.844 0.966 0.771 0.677 0.845

�Simulated data sets were generated from a combination of four randomly generated non-negative synergies. Each synergy was

weighted by a non-negative activation coefficient and corrupted by Gaussian Noise. The noise level was manipulated to be a

fraction of the variance of each muscle’s final activation coefficient. Similarity between synergies was calculated as the scalar

product between each synergy. Similarity between activation coefficients was taken as the correlation between the activation

coefficients. Mean, maximum, and minimum values for each similarity measure are also shown.
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the highest: With noise equal to 50% of the variance of each recorded muscle, the mean

correlation coefficient fell to 0.77. This low correlation with high noise likely reflects the

fact that activation coefficients for synchronous synergies can be used by the algorithm to

fit the noise in individual data samples. In contrast, the synergy is held constant across

different data samples and so might be expected to be more robust to noise. These

results suggest that the NMF algorithm is capable of extracting the correct set of synergies

and activation coefficients used to generate a simulated data set, even in the presence of

substantial noise.

We also examined the results of the extraction algorithm using different numbers

of synergies. In all cases for this analysis, the number of synergies used to generate the

data was maintained at 4, while the number of synergies used in the extraction algorithm

was varied. As seen in Figure 27.2b, as the number of synergies used in the extraction was

increased, the average R
2 value also increased. When four synergies were used in the

extraction, the same number used to generate the data, the slope of the R
2 curve

changed abruptly for the first four levels of noise. As mentioned above, in these cases

this change in slope in the R2 plot could be used to determine the correct number of syner-

gies to use in the extraction algorithm. In the case with the largest noise (50% of variance),

however, there was no discernible change in the R
2 slope for any particular number

of synergies. Thus, only at these high levels of corrupting noise was it impossible to

determine the correct number of synergies in these simultated data sets.

27.4.2 Time-Varying Synergies

We tested the time-varying extraction algorithm using two different types of generating

synergies. We generated a set of four synergies, each composed of 20 samples for

12 muscles, either directly sampling from a uniform distribution in the interval [0 1] or

using Gaussian functions with centers and widths randomly chosen from uniform

distributions and with exponentially distributed amplitudes. We constructed a simulated

data set composed of 25 sections, each 40 samples long, by combining the four synergies

with random exponentially distributed amplitude coefficients and random uniformly

distributed onset delays. Finally, we added to each data sample, independently for each

muscle, Gaussian noise with a variance equal to a fraction of the data variance for that

muscle ranging from 0 to 50%.

When we extracted a set of four synergies from the simulated data set we found that

even in the presence of a substantial amount of noise the algorithm was able to recover

both synergies and coefficients used in the data generation. Figure 27.3a shows an

example of generating and extracted synergies obtained in one simulation run with

noise added to the data (20% of data variance). The extracted synergies (dashed line in

Fig. 27.3a) were essentially identical to the generating synergies (solid line). In fact,

the mean similarity between the best matching pairs of synergies in the two sets was

0.99.
4 Table 27.2 summarizes the results of the comparison between generating and

extracted synergies in 10 simulation runs with different amount of noise for either

Gaussian or uniform random synergies. For each level of noise added to the simulated

data we evaluated a number of indicators for the quality of the reconstruction of synergies

and coefficients averaging the results of the 10 runs. This table shows that even when 50%

of noise is added to the generated data, lowering the R
2 to 86%, the extracted synergies

4We quantified the degree of similarity between two time-varying synergies by computing the maximum of the

scalar products of one synergy with a time-shifted version of the other synergy over all possible relative delays.

We compared two synergy sets by matching the synergies in pairs, starting from the pair with the highest

similarity, removing that pair, and continuing by matching the remaining synergies.
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are very similar to the generating ones (in the worst case the similarity is on average above

0.9 with Gaussian synergies and above 0.98 with uniform synergies), the respective ampli-

tude coefficients are highly correlated (average correlation coefficient above 0.9 in the

worst case with Gaussian synergies and above 0.96 with uniform synergies), and the

Figure 27.3 Time-varying synergy simulation (Gaussian synergies). (a) Example of comparison

of four generating synergies (solid line) and extracted synergies (broken line) in case of data

generated by combinations of Gaussian synergies with 20% noise added. (b) The R2 for

reconstruction of data generated by four synergies with variable number of extracted synergies

for different amounts of added noise (separate lines).

TABLE 27.2 Comparison of Extracted and Generating Synergies for Four Time-Varying Synergies

Noise level (%) R2 smean smin smax rcmean rcmin rcmax DTmean DTmax DTmin

Gaussian Synergies

0 0.991 0.997 0.993 0.999 0.955 0.907 0.999 1.215 2.202 0.225

5 0.990 0.992 0.975 0.999 0.985 0.963 0.999 0.976 1.585 0.457

10 0.988 0.997 0.994 0.999 0.995 0.987 0.999 0.883 1.480 0.280

20 0.967 0.987 0.963 0.998 0.992 0.980 0.998 1.575 2.582 0.794

50 0.863 0.962 0.908 0.993 0.964 0.906 0.994 3.186 5.074 1.698

Uniform Synergies

0 0.996 0.998 0.996 1.000 0.986 0.955 0.998 0.823 1.652 0.293

5 0.990 0.998 0.995 0.999 0.988 0.977 0.995 1.003 1.761 0.448

10 0.989 0.999 0.998 0.999 0.994 0.986 0.999 0.816 1.281 0.311

20 0.964 0.996 0.992 0.998 0.987 0.964 0.997 1.370 2.365 0.646

50 0.840 0.987 0.981 0.991 0.979 0.964 0.990 2.242 3.248 1.369

Four synergies were extracted from data generated with four gaussian or uniform synergies. Averages over 10 simulation runs

were computed for: The fraction of data variation explained by the extracted synergies (R2), the mean similarity between the four

pairs of generating and extracted synergies (smean), the similarity between the least similar pair (smin), the similarity between the

most similar pair (smax), the mean correlation coefficient between the generating and extracted amplitude coefficients for the four

synergies (rcmean), the correlation coefficient for the pair of generating and extracting synergies with the minimum correlation

(rcmin), the correlation coefficient for the pair with the maximum correlation (rcmax), the mean time difference between the onset

each pair of generating and extracted synergies (DTmean), the time difference for the pair with the maximum difference (DTmax)

and for the pair with the minimum difference (DTmin).
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difference in the onset delay coefficient is small (5 time samples at most with Gaussian

synergies and 3 at most with uniform synergies). These results clearly indicate that

the extraction algorithm is capable of recovering the synergies and the coefficients used

to generate the data even in the presence of substantial amounts of noise.

In the case of the extraction of a set of synergies with a number of elements different

from the number of synergies used to generate the data, we found that when up to 20% of

noise was added to the data, the slope of the curve representing R
2 as a function of the

number of extracted synergies showed a sharp change in slope at four, corresponding to

the number of generating synergies. Only with the highest level of noise (noise variance

equal to 50% of the data variance) was the inflection on the R
2 curve not clearly

distinguishable.

27.5 SYNERGY EXTRACTION FROM MUSCLE
ACTIVITY PATTERNS

We applied the two extraction algorithms discussed above to the study of the modular

organization of the motor output in the vertebrate motor system. First, we considered

withdrawal reflexes of frogs with the spinal cord surgically isolated from the rest of the

CNS. As in most vertebrates, the isolated frog spinal cord can generate a rich variety of

reflexive behaviors. Thus the spinal frog is an ideal preparation to investigate the

role of the spinal cord circuitry in the construction of the motor output. The aim of

this study was to characterize the spatial structure of the muscle patterns and we used

the synchronous extraction algorithm for this analysis. We then examined a natural

behavior of the intact frog, defensive kicking. Since the muscle patterns observed in

intact frogs appeared to have specific temporal characteristics, in this second study we

investigated the spatiotemporal structure of the patters using the time-varying extraction

algorithm.

27.5.1 Synchronous Synergies Extracted from Spinal Frogs

Withdrawal reflexes were evoked in the spinalized frog from scratching different

regions of the hind-limb skin surface [10]. Stimuli were applied systematically at

cutaneous sites ranging from the back of the calf to the back of the foot to the front of

the foot and the front of the knee. This variation in stimulation site evoked a range of

different muscle activation patterns, recorded in the EMG activity of a set of 9 hind-limb

muscles.

We examined whether this range of EMG activity could be explained as the

combination of a small number of muscle synergies using the synchronous synergy extrac-

tion method (NMF) described above. Figure 27.4 shows the R
2 value as a function of

differing numbers of synergies used in the extraction algorithm for data obtained from

one frog. As can be seen in the figure, there was a sharp change in the slope of the

curve at four synergies, at which point the extraction algorithm explained more than

90% of the variance in the recorded data set. This observation suggested that this behavior

might have been produced through the combination of four muscle synergies. Figure 27.5a

shows the four synergies identified by the extraction algorithm, showing the balance

of muscles for each of the nine muscles recorded. These synergies were very similar

across different frogs, with a mean similarity greater than 0.9 between the extracted

synergies. Figure 27.5b shows, for two frogs, the mean activation coefficient for each of

the four extracted synergies used to reconstruct the muscle activation patterns measured
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across different regions of the skin surface. For all synergies, there was a very similar

variation in the activation levels of each synergy across the skin surface, especially for

the first three synergies. Taken together, these results suggest that withdrawal reflexes

in the spinalized frog might be well described as the flexible combination of a small

number of muscle synergies.

Figure 27.5 Synchronous synergies extracted from EMG patterns recorded in spinalized frogs. (a) Four

synergies extracted from EMG patterns using NMF with four synergies. (b) Variation across skin surface

of activation coefficients for four synergies extracted in two different frogs. The x axis indicates the

surface of the hind limb moving from the back of the calf, down the heel to the back of the calf, up the

front of the calf, and to the knee [10]. Reproduced with permission.

Figure 27.4 Amount of explained

variance as function of number of

synergies extracted using NMF

for set of muscle activation patterns

observed during withdrawal

reflexes in spinalized frog. There

was a clear change in slope at

four synergies.
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27.5.2 Time-Varying Synergies Extracted from Intact Frogs

We investigated the spatiotemporal structure of a large set of muscle patterns observed

during kicking in intact frogs [14]. We recorded the EMG activity simultaneously from

13 hind-limb muscles during a total of 239 kicks elicited by cutaneous stimulation of

the foot in four frogs. Depending on the location of the stimulation, the frogs performed

kicks in different directions: At the point of maximum extension of the limb the ankle

reached a range of different positions (medial, caudal, or lateral of the starting position).

We extracted sets of time-varying synergies with a number of elements ranging from

1 to 10 (Fig. 27.6) from the rectified, filtered (20-Hz low-pass), and integrated (10-ms

interval) EMGs. Each synergy was chosen to be 30 samples long for a total duration of

300 ms. Based on the change in slope of the R
2 curve,5 we selected three as the optimal

number of synergies. Each of the three extracted synergies (Fig. 27.7) showed specific

spatiotemporal characteristics. Extensor muscles were the most active muscles in the

first two synergies (W1 and W2 in Fig. 27.7) while flexor muscles were the most active

muscles in the third synergy (W3). The first synergy showed a short and almost

synchronous burst of activation of hip extensor muscles (RI and SM). Knee extensor

muscles (VI and VE) were recruited in the second synergy with short and slightly

delayed bursts. The bursts of the flexor muscles in the third synergy had substantially

longer durations than the bursts in the first two synergies.

Muscle patterns corresponding to kicks in different directions were reconstructed

by scaling in amplitude and shifting in time the three extracted synergies. In particular,

the amplitude and the onset time of the two extension synergies were modulated

systematically with the direction of kick. For example, in a medially directed kick

(Fig. 27.8a, i), involving mainly hip extension, the muscle pattern (thin line and shaded

area) was reconstructed (thick line) by the combination of the first and third synergies.

In contrast, the muscle pattern of a laterally directed kick (Fig. 27.8a, iii), involving

mainly knee extension, was reconstructed by the activation of the second and third

Figure 27.6 Fraction of frog’s

kicking data variation

explained as function of

number of synergies extracted

by time-varying algorithm [14].

Adapted with permission.

5We computed the R2 of the reconstruction of 20% of the kicks, randomly selected, using the synergies extracted

from the remaining 80%. Such a cross-validation procedure provides a better estimate of the capability of the

model to explain data not used to the model estimation, that is, its generalization performance.
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synergies. Interestingly, the pattern for a caudal kick, obtained by a combination of hip and

knee extension, was reconstructed by a simultaneous activation of the first two synergies.

When we examined the entire set of kicks, we found that there was a gradual and systema-

tic modulation of the ratio of the activation amplitude of the first two synergies (as in the

examples of Fig. 27.8b) as well as a gradual shifting of their onset time [14]. Thus the

different synergies appear to have specific functional roles in the control of limb move-

ments. The fact that combinations of the same few elements, properly modulated, could

reconstruct muscle patterns observed during movements in different directions supports

the idea of a modular organization of the lowest level in the control hierarchy of the ver-

tebrate motor system.

27.6 MUSCLE SYNERGIES FOR MOTOR CONTROL

We have introduced a model for the generation of muscle patterns through the combi-

nation of muscle synergies. Muscle synergies—coherent activations in space or time of

a group of muscles—might be organized by the CNS to simplify the task of mapping

a motor goal into the muscle pattern that can achieve it, that is, the process of

motor control. Such a modular organization might in fact provide the CNS with a

low-dimensional representation of the motor output and allow us to perform high-level

planning and optimization on a reduced set of variables. The set of synergies would

Figure 27.7 Three time-varying synergies extracted from entire set of EMG patterns recorded

in four intact frogs during kicking in different directions [14]. Each synergy has a duration of

300 ms. Adapted with permission.
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thereby constitute a basic vocabulary whose elements can be composed to generate many

useful motor behaviors. The structure of the synergies should then capture the invariant

characteristics of the muscle patterns shared in the control of different movements. We

thus considered two different muscle synergy models that capture different types of

structure in the muscle patterns: synchronous synergies expressing spatial relationships

among muscles’ activations and time-varying synergies expressing spatiotemporal

relationships. We presented two algorithms for the identification of a set of muscle

synergies from the regularities in the motor patterns observed in a variety of conditions.

We have shown through simulations that these algorithms are capable of recovering the

synergies and the combination coefficients used in the generation of the data even when

the data are corrupted by a substantial amount of noise. Finally, we have applied the

extraction algorithms to the analysis of experimental data obtained from spinalized and

intact frogs. We have found that the muscle patterns observed during the performance

Figure 27.8 Reconstruction of EMG patterns during frog kicking as combinations of three

time-varying synergies [14]. (a) Three different EMG patterns (thin lines and shaded area) are

reconstructed by scaling in amplitude, shifting in time, and combining the three synergies of

Figure 27.7 (thick line). (b) Amplitude and onset delay coefficients for three patterns shown in

(a) and three more patterns are indicated by the height and the horizontal position of three

rectangles. Going from patterns 1 to 6 the direction of the kicks gradually shifts from medial

to caudal to lateral. Reproduced with permission.
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of natural motor behaviors can be reconstructed by the combinations of a small number of

synergies and that the synergies are systematically modulated to control different move-

ments. These results support the idea of a modular organization of the output of the

motor controller in the vertebrate CNS and provide a framework to better guide a direct

physiological investigation of the controller’s implementation.

27.7 FUTURE TRENDS

It will be interesting to extend the approach we presented to the study of a larger range of

behaviors and vertebrate systems. In particular, the muscle patterns used by primates to

control arm movements have been studied extensively, but the synergy decomposition

approach might provide novel insights into the processes underlying the pattern

generation. To study vertebrate systems with a very rich repertoire of movements and a

high degree of sophistication in their control, we might need to make the model more

sophisticated as well. One natural extension of the time-varying synergy model would

be to allow for time scaling, that is, adding a third parameter for each synergy correspond-

ing to the total duration of the muscle activation time course described by the synergy.

Biomechanical simulations could be employed to address the issue of whether a

synergy-based controller is capable of generating the muscle patterns necessary for a

natural movement repertoire. The use of a realistic biomechanical model of a vertebrate

limb might both allow the testing of the synergy model on a realistic system and

provide insights on the biomechanical characteristics and requirements for the synergy

structure.

Finally, an approach based on combinations of muscle synergies could be used to

implement a controller in a system using FES of peripheral nerves for motor recovery

in patients with spinal cord injuries. Mimicking the hypothetical organization of the

neural controller, an artificial controller could optimize a set of synergies and learn move-

ment control though a low-dimensional synergy representation. Beyond the computational

benefits of this approach, the input signal for such a controller might naturally match

a synergy-based cortical representation of movement that could be obtained with a

brain–machine interface system.

ACKNOWLEDGMENTS

We thank E. Bizzi for constant support and P. Saltiel

for many helpful discussions. This work was

supported by National Institutes of Heath grants

NIH NS09343 and NIH NS39865.

REFERENCES

1. N. BERNSTEIN, The Co-ordination and Regulation of

Movement, Oxford: Pergamon, 1967.

2. T. G. BROWN, “The intrinsic factors in the act of pro-

gression in the mammal,” Proceedings of the Royal

Society of London. Series B: Biological Sciences, vol.

84, pp. 308–319, 1911.

3. W. A. LEE, “Neuromotor synergies as a basis for

coordinated intentional action,” Journal of Motor Beha-

vior, vol. 16, pp. 135–170, 1984.

4. P. S. G. STEIN AND J. L. SMITH, “Neural and bio-

mechanical control strategies for different strategies

of vertebrate hindlimb motor tasks,” in Neurons,

464 CHAPTER 27 MUSCLE SYNERGIES FOR MOTOR CONTROL



Networks, and Motor Behavior, P. S. G. STEIN, Ed.,

Cambridge, MA: MIT Press, 1997.

5. E. BIZZI, A. D’AVELLA, P. SALTIEL, and M. TRESCH,

“Modular organization of spinal motor systems,”

Neuroscientist, vol. 8, pp. 437–442, 2002.

6. M. C. TRESCH, P. SALTIEL, A. D’AVELLA, AND

E. BIZZI, “Coordination and localization in spinal

motor systems,” Brain Research and Brain Research

Review, vol. 40, pp. 66–79, 2002.

7. I. T. JOLLIFFE, Principal Component Analysis, 2nd ed.,

New York: Springer, 2002.

8. A. BASILEVSKY, Statistical Factor Analysis and Related

Methods: Theory and Applications, New York: Wiley,

1994.

9. A. HYVARINEN, J. KARHUNEN, AND E. OJA, Indepen-

dent Component Analysis, New York: Wiley, 2001.

10. M. C. TRESCH, P. SALTIEL, AND E. BIZZI, “The

construction of movement by the spinal cord,” Nature

Neuroscience, vol. 2, pp. 162–167, 1999.

11. D. D. LEE AND H. S. SEUNG, “Learning the parts of

objects by nonnegative matrix factorization,” Nature,

vol. 401, pp. 788–791, 1999.

12. D. D. LEE AND H. S. SEUNG, “Algorithms for non-

negative matrix factorization,” in Advances in Neural

Information Processing Systems, vol. 13, T. K. LEEN,

T. G. DIETTERICH, AND V. TRESP, Eds., Cambridge,

MA: MIT Press, 2001, pp. 556–562.

13. A. D’AVELLA AND M. C. TRESCH, “Modularity in

the motor system: Decomposition of muscle patterns

as combinations of time-varying synergies,” in

Advances in Neural Information Processing Systems,

vol. 14, T. G. DIETTERICH, S. BECKER, AND

Z. GHAHRAMANI, Eds., Cambridge, MA: MIT Press,

2002, pp. 141–148.

14. A. D’AVELLA, P. SALTIEL, AND E. BIZZI, “Combi-

nations of muscle synergies in the construction of a

natural motor behavior,” Nature Neuroscience, vol. 6,

pp. 300–308, 2003.

REFERENCES 465



CHA P T E R28

ROBOTS WITH NEURAL BUILDING

BLOCKS
Henrik Hautop Lund and Jacob Nielsen

28.1 INTRODUCTION

In this chapter, we will show how artificial neural networks can be constructed in a phys-

ical manner and how a user may be able to utilize this new concept to construct robotic

systems. To this end, intelligent building blocks (I-BLOCKS) are used. I-BLOCKS are

a collection of physical building blocks that each contains processing and communication

capabilities. By attaching a number of building blocks together, it is possible to make a

system that obtains specific behaviors. Differences in physical structures imply differences

in the overall processing and communication. These differences can be explored, and so a

user may be allowed to “program by building” [1].

In this work, we can view each building block as a neuron with synapses in the con-

nectors. When connecting building blocks together, the user will be connecting “neurons”

together to form an artificial neural network. Imagine the building blocks being cubes and

then connectors being in each of the six sides of the cube. The connectors could be either

one way (input or output) or both ways (input and output). When two cubes (neurons) are

attached together, they will form a connection (one-way or two-way connection, depend-

ing on the physical implementation of the building blocks) and information can be passed

from one building block (neuron) to another. If processing in the individual building block

is (on some abstract level) modeling the functionality of a neuron and the communication

on the connections is modeling the functionality of synapses, we can create artificial neural

networks through building physical structures with the building blocks.

It is interesting and challenging to construct such physical artificial neural networks

because it allows us to investigate:

. The 3D property of the neural networks

. The relationship between morphology and control

. New educational principles

. New entertainment tools

Indeed, the strong relationship between morphology and control is explicit in these

intelligent artifacts. The physical structure has a defining role for the overall behavior of

the constructed artifact (e.g., robot). In contrast, much research in traditional artificial

intelligence has suggested that the physical aspects can be abstracted away and that it is

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.
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possible to work on a purely abstract level (e.g., a symbol system) in order to understand

intelligence. The intelligent artifacts constructed from the neural building blocks are

exemplifying our opposing view that, at least on some levels, the physical aspects play

a crucial role in defining the “intelligence” of the overall system. In the present study,

this is shown with the morphology having a defining role for the overall behavior,

whereas in other studies it may be possible also to include other physical aspects such

as material, elasticity, and energy use, for example, as exemplified with our humanoid

robots, Viki, which won the RoboCup Humanoids Free Style World Championship in

2002 [2].

Apart from the interesting aspect of allowing us to study some physical aspects of

neural networks, the implementation of neural networks in I-BLOCKS also allows us to

develop a new methodology in edutainment. With a neural network implementation in

I-BLOCKS it becomes possible to investigate an edutainment scenario where the user

first builds a construction of I-BLOCKS and afterward trains the construction to express

a behavior. We can imagine both supervised learning and unsupervised learning

methods for the training of the I-BLOCKS. Hence, in such a scenario, the user is

simply building and training—a simple process which may allow many different users

to be able to work with the system.

28.2 I-BLOCKS

We constructed a number of hardware building blocks with individual processing power

and communication capabilities. In order to exemplify in a clear manner how these func-

tion as building blocks, we chose to implement them in LEGO DUPLO1 housing. Other

housing can easily be used, and the LEGO DUPLO housing simply functions as an

example. Most building blocks are in 4 � 2 DUPLO bricks (and a few in 2 � 2

DUPLO and in 4 � 2 DUPLO of double height). Hence, they are not cubes, and connec-

tions are put in the center of each 2 � 2 area on the top and on the bottom of the DUPLO

bricks. So each building block has two connectors on the top (one on the left and one on the

right) and two connectors on the bottom (see Figs. 28.1 and 28.2).

Each building block contains a PIC microcontroller, in this case a PIC16F876

40-pin, 8-bit complementary metal–oxide–semiconductor Flash microcontroller (see

Fig. 28.2). Further, in the case of rectangular LEGO DUPLO, each brick contains four

serial two-way connections, two connections on the top and two connections on the

bottom of each building block. We developed a number of standard electronic building

blocks that allow processing and serial communication and some specialized building

blocks that include sensors or actuators. The standard building block only needs few com-

ponents (e.g., a PIC, a few diodes, some capacitors and resistors, four connections, a

crystal, and a latch), and therefore, in the future, it can be produced fairly inexpensively.

A series of such building blocks were designed. All include the standard function-

ality of being able to process and communicate, but some include additional hardware,

so among others, there exist input and output building blocks as indicated in

Table 28.1. Further, there exists a rechargeable battery building block and a battery build-

ing block for standard 9-V batteries. Also, some standard building blocks contain small

backup batteries that allow a construction to function for a period of time (up to 5 min

if no actuator building blocks are included) when detached from the centralized battery

building block. It is possible to construct a number of other building blocks not included

1LEGO and DUPLO are trademarks of LEGO System A/S.
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in the list of currently available building blocks, for example, building blocks with digital

compass, sonar, and accelerometer.

With these building blocks, it is possible to construct a huge variety of physical

objects with various functionalities. The processing in the physical construction is distrib-

uted among all the building blocks, and there is no central control opposed to traditional

computerized systems (e.g., traditional robots). The distribution of control is obtained by

allowing processing within each individual building block.

28.3 NEURAL NETWORK BUILDING BLOCKS

The building blocks become neural building blocks by the specific implementation of arti-

ficial neural network processing in the PIC microcontroller of each building block. In the

simplest form, the individual processor reads the input (activation) on each input channel

(connector), sums up the activation, applies a function (e.g., sigmoid or threshold) and

Figure 28.1 Neural building block implemented in LEGO DUPLO. In this implementation,

there are two connectors on the top and two on the bottom of each neural building block. On each

stud, there is connection for power transfer. (Copyright # H. H. Lund, 2002.)

Figure 28.2 Neural building block implemented in LEGO DUPLO that contains PIC

microcontroller (center), crystal (upper right), and communication channels (center of two

round connectors). (Copyright # H. H. Lund, 2002.)
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sends the result to the output channels (connectors). So, the individual building block

works as a simple artificial neuron, and the connection of a number of building blocks

can work as a traditional artificial neural network with input, processing, and output.

It is also possible to implement spiking neural networks in the neural building

blocks. In this case, in a neural building block, action potentials build up toward an acti-

vation threshold, and when they reach the threshold, the neural building block may be able

to fire the action potential to other connected neural building blocks. Afterward the neural

building block enters into a repolarization phase and after-hyperpolarization phase (see

further details below).

Initially, in order to exemplify the potential of neural building blocks, let us concen-

trate on the simplest form with a traditional artificial neural network. For the individual

building blocks, the activation function is chosen to be a sigmoid function

Output ¼
1

1þ e�sum(input)

Each building block operates with activation in the range of 0–255, so 0–127 is

inhibition and 127–255 is excitation (by subtracting 127 from the activation value). So

sum(input) becomes

Sum(input) ¼ bias þ
XN

i¼1

xi � 127

2N

where N is number of inputs. The number 2 in the denominator represents a general weight

of 1
2
(times number of inputs to the neuron). This weighting can be changed in an adaptive

manner in learning neural building blocks.

The bias of each building block can be set by attaching a “set level” building block

with touch sensors or a potentiometer that allows a user to set a specific value, which is

written into the neural building block before the user again detaches the set level building

block (Fig. 28.3).

TABLE 28.1 Classification of Different Hardware Types of Building Blocks and their
Corresponding, Possible Functionality

General type Specific type Functionality

Standard building blocks Standard Processing & communication

Back-up battery As standard, but functions with

own battery

Input building blocks LDR sensor Light level

Two LDR sensors Light level, light direction

Two microphones Sound level, direction of sound

IR sensor Infra red light level and patterns

Output building blocks Touch sensor Pressed or not

Potentiometer Turn level

Double motor brick Turn þ/2 458

Motor brick Axe turn 3608

Eight LEDs Light in patterns

Sound generator Sounds

IR emitter Wireless communication

Display Displays messages
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28.3.1 Results

Initially, a number of basic tests were performed to verify that feedforward inhibition and

excitation and recurrent inhibition and excitation could be performed. With a positive

result on these basic tests, a number of tests regarding system behavior were performed.

These tests included performing simple math, creating sound melodies, performing as a

light-searching mobile robot, performing as an exploring mobile robot, and performing

as a curtain controller. Here, only the exploration robot will be described (due to lack

of space).

Figure 28.3 Example of intelligent building blocks implemented in LEGO DUPLO. Left:

sensor building block that contains two microphones. Right: motor building block that contains

servomotor that allows the top element to turn. (Copyright # H. H. Lund, 2002.)

Figure 28.4 Neuronal circuit for exploring mobile robot. White neurons (N2 and N3) are

excitatory neurons and black neurons (N1 and N4) are inhibitory neurons. C1 and C2 are

combinational neurons in the sense that they integrate the inhibition and excitation.

(Copyright# H. H. Lund and J. Nielsen, 2002.)
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The exploration task consists of driving around in an area on the floor and covering

the area without crossing the boundaries of the area. The area could be confined with black

stripes on a white floor, but in our case, we allow the user to interactively confine the area

by clapping with his or her hands when the boundary is met.

The neuronal structure in Figure 28.4 shows how a solution may look. The two excit-

atory neurons, N2 and N3, are fed by a value, which makes the vehicle go forward when-

ever these neurons are producing an action potential. The line detect sensor is directly

connected to two inhibitory neurons, N1 and N4, that can inhibit the two excitatory

neurons. The inhibitory neurons are to be considered two feedforward networks of differ-

ent size and with inhibitory neurons at the end. This results in two different time constants

for the inhibitory neurons that make them send their action potential at a given duration no

matter how long the input signal from the line detector is. To start, both inhibitory neurons

inhibit the excitatory neurons while controlling the combinational neurons that thereby

make the vehicle go backward until the one inhibitory neuron stops inhibiting. Now the

vehicle turns until the other inhibitory neuron stops sending its action potential, and

then the vehicle starts moving forward again.

The brick structure shown in Figure 28.5 does the same thing as described for the

neuronal circuit. Two of the “function building blocks” have been programmed to be

inhibitory neurons. The timers of these inhibitory neurons have been set to 3 and 5 s,

Figure 28.5 Building blocks

to make neuronal circuit for

exploring mobile robot from

Figure 28.4. (Copyright#

H. H. Lund and J. Nielsen,

2002.)

Figure 28.6 Robot built

from neural building blocks

for exploration task.

(Copyright # H. H. Lund

and J. Nielsen, 2002.)
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which makes the vehicle back up for 3 s and turn for 2 s whenever the clap sensor is acti-

vated. The excitatory neurons are fed with a value of 255 to ensure that they are activated

as long as they receive no inhibitory input. The actual structure that has been built can be

seen in Figure 28.6. It is connected to LEGO motors and LEGO wheels and thereby

becomes a mobile robot for the exploration task.

28.4 SPIKING NEURAL NETWORK BUILDING BLOCKS

It is also possible to implement spiking neural network control in the building blocks so

that each block represents a neuron that fires through the connections when a threshold

is reached. After firing, there will be a refractory period. The physical stimuli intensity

is frequency modulated via the rate of the action potentials. However, the generator

potential has to be higher than the activation threshold for action potentials to be

generated at all.

Another issue in the neurosensors is adaptation, which is related to the generator

potential of the sensor. With no adaptation, the generator potential remains the same

when a constant stimulus is applied. With adaptation the generator potential declines

over time either slowly or rapidly depending on the type of sensor nerve. Adaptation is

used in the central nervous system to avoid “sensory overload” and it allows less important

or unchanging environmental stimuli to be partially ignored. Rapid adaptation is also

important in sensory systems, where the rate of change is important. When a change

occurs in the sensor stimulus, the phasic response will occur again, reproducing the gen-

erator potential curves, just at other potential values.

We used Hebbian learning [4], which is an adaptation rule where a synapse is

strengthened if pre- and postsynaptic neurons are active at the same time. When speaking

of spiking neural networks, the meaning of “the same time” must however be specified.

Due to the time it takes for a neuron to build up toward its threshold level, one has to

introduce a time window to find out which presynaptic neurons take part in firing this

neuron [3].

Hebbian learning is an unsupervised learning method, and when formulated as a

spike-learning method, the process of learning is driven by the temporal correlations

between presynaptic spike arrival and postsynaptic firing.

28.4.1 Implementation Issues

The implementation of spiking neurons in the intelligent artifacts uses hardware (a

PIC16F876 processor) where the action potentials emitted are digital pulses. In order to

support both excitatory and inhibitory signals, these are coded to be of different

lengths. The generation of action potentials is based on the input of the neurons via a

leaky integrator, which sums up the amount of input while decaying at a certain rate:

A(t) ¼ a� A(t � 1)þ I(t) 0 , a , 1

where A(t) is the activation function, I(t) is the input, and a is the decay rate. The acti-

vation function is a simple threshold function which sends an action potential when the

summed input reaches above a given threshold.

An implementation of absolute and relative refractory periods has also been inves-

tigated, where the absolute refractory period decides the maximum action potential

frequency of a neuron while the relative refractory period demands higher input in

order for the neuron to generate action potentials. The current implementation has an
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absolute refractory period of about 10 ms, which reflects the refractory period of biologi-

cal neurons well.

Another thing that has been investigated and implemented is adaptation in the

sensors. Here the adaptation is made so that when adapting to high levels of sensory

input the steady-state level of the adaptation will be higher than when adapting to lower

level sensory input. In this way sensory inputs of different values can still be distinguished

although adaptation has taken place. The current values for adaptation have been preset to

take around 2 s for adapting from a change from total darkness into daylight. The curves

for adaptation are exponential.

Given the limitations of only four communication channels per intelligent building

block, the threshold values have been preprogrammed at a fairly high level so that input

from only one building block is enough to generate output action potentials given that the

input frequency is high enough to allow for temporal summation.

Hebbian learning has been implemented in the CPU blocks to stimulate connections

at a certain learning rate. This rate has been set fairly high (connection strengths updated

every 2 s) in order to speed up the learning process. Besides, whenever an action potential

is fired, the input activity of the last 10 ms is traced back to the actual input port to deter-

mine which connections to strengthen.

28.4.2 Experiments

In order to verify that the spiking neural building blocks can be used to make robotic

systems, we performed an experiment where the structure has to learn to control a

mobile robot to perform a light-seeking task. Learning happened by allowing a user to

show light (e.g., with a flashlight) to the robot construction over a period of approximately

3–5 min while the building blocks would perform sensor adaptation and Hebbian learning.

The scenario for the testing of the building blocks has been selected so as to demon-

strate some of the capabilities of the intelligent artifacts implemented as spiking neurons.

The testing takes place within a 150 � 150-cm no-walls-area where a mobile robot is to

trace and approach a light source using a structure of assembled spiking neural building

blocks. The light source is placed in the middle of the field 10 cm away from the borderline

furthest away from a camera.

The blocks used for solving the light-tracing task are the battery block, the light

dependant resistor (LDR) sensor block, the CPU block, and the LEGO motor controller

block. The battery block supplies the final structure through the individual power-sharing

capabilities of the blocks. The LDR sensor block is a light-sensitive sensor block that uses

the above-mentioned theory to modulate light levels into frequency-based pulse trains

while adapting to light levels over time. It should be mentioned that even though there

are two LDR sensors on this block, only input from the one is used to generate the

output spike trains. The CPU block implements the spiking neural model described

above, including stimulation of connection weights due to output resultant input over

time using the rules of Hebbian learning. Finally, the LEGO motor controller block con-

verts the input spike trains into motor pulse wave modulation (PWM) signals used to

control standard LEGO motors.

The actual assembly of the blocks models a Braitenberg vehicle [5], where the left

light sensor ends up controlling the right motor and vice versa. Two schematics of the con-

nection can be seen in Figure 28.7, where the first is a neural connection diagram that

shows how the sensory input ends up controlling the motor due to the spike trains traveling

through the structure. The second part of Figure 28.7 shows how all the blocks are con-

nected to form the control structure for the vehicle.
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28.4.3 Results

The results of the tests are described here considering both the built structure and the

functionality of the single block. Figure 28.8 shows results of eight test runs in the

same scenario. In each test run, the vehicle has been placed at an angle less than or

equal to 458 toward the light. Each test of Figure 28.8 will be described in the following

starting with the top leftmost figure. The vehicle has been fully trained before starting

the test session, which means that it is just about unable to generate enough spikes

for the motors to drive under the present ambient lighting conditions. This means that

it has to have a brighter light source within its field of vision in order to drive the

motors forward.

In the first test the vehicle starts at angle zero to the light source driving straight

toward the goal, and due to little differences in the lightning conditions as well as the

motor forces, the vehicle slides off to the right slowly until the right light sensor goes

outside of the light cone slowing down the left motor and finally making the vehicle

Figure 28.7 Built structure in two schematic views and as photo.
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Figure 28.8 Eight different runs in test scenario with results recorded by camera and

processed with vision system.
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reach its destination. Because of the adaptation in the light sensors, the vehicle reacts fast

over a short period time, and through a longer period of time the reaction flattens out.

Because of this, in the next test the vehicle does not reach its goal. Here the vehicle is

started at an angle approximately 458 to the light source, and because the vehicle is a

little to the right as in the previous test, it ends up crossing the light cone so far away

from the light source that the edge between the light cone and the surroundings is just

blurry enough to make the vehicle drive through it without adjusting the vehicle direction

enough to keep one light sensor inside the light cone. As can be seen, the result in the next

figure is almost identical to this result. In the rest of the figures the vehicle reaches the goal,

but in two of the cases it has to go through a loop to get there. The loops are possible

because of the before-mentioned different powers of the motors, meaning that one

motor might just be able to drive forward under the ambient lighting conditions while

the other motor is standing still. These results in loops are made even though the light

source is not within the line of sight of either sensor. It can also be seen that it is the

vehicle’s right motor that drives under ambient lighting conditions because both loops

are going counter clockwise.

The next series of test results, shown in Figure 28.9, displays the output of the LDR

sensor block with the built-in adaptive spiking neuron. Figures 28.9a, b, c show how the

sensor adapts to normal office ambient light brightness. In Figure 28.9a the block has been

kept under total darkness for a while and then suddenly put into the light, resulting in a

maximum frequency spike train. After a short time (Fig. 28.9b), the sensor has adapted

further to the brightness of the ambient light, and finally, in Figure 28.9c the adaptation

has reached its steady state, resulting in a somewhat lower frequency spike train than

those in (a) and (b). Now, in Figure 28.9d a bright flashlight is being held in front of

the light sensor resulting in a maximum frequency spike train which immediately starts

Figure 28.9 Visualization of sensor adaptation.
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adapting toward its steady state in Figure 28.9f. It should be noted that the steady states of

the ambient light (Fig. 28.9c) and the bright flashlight (Fig. 28.9f ) are not the same and

that brighter light still results in a higher spike frequency, although adaptation has been

introduced.

The last measurement taken is the learning capability of the CPU block. In these

measurements the CPU block gets its input from the LDR block just as in the vehicle

described above. The outputs of both of these blocks are displayed in the picture sequence

of Figure 28.10. Here the upper channel of the oscilloscope pictures shows the output of

the sensory neuron and the lower shows the output of the learning neuron. The learning

starts at point zero (Fig. 28.10a), where the sensor is kept under normal office lighting con-

ditions. To start the learning a bright light source is introduced to the light sensor, and this

in turn generates a fast series of spikes which just overcomes the threshold of the learning

neuron, making it send out spikes, although at a lower frequency (Fig. 28.10b). During this

process the connection to the light sensor is strengthened, which, after the light is turned

off and on several times, results in the learning neuron sending out spikes at increasingly

higher frequencies (Figs. 28.10c, d ). However, in Figure 28.10e it can be seen that the

Figure 28.10 Visualization of learning process.
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learning has not been going on long enough for the learning neuron to send out spikes

when the sensory neuron is exposed just to ambient light so the learning process continues.

In Figure 28.10g the learning neuron starts to react to light brightness just a little above

ambient conditions, and being exposed to this kind of light for some time it starts to

reflect the frequencies of the light sensor neuron with just a slight delay. This can be

seen in Figures 28.10h,i.

28.5 DISCUSSION AND CONCLUSION

In this chapter, we have described how it is possible to develop physical neural networks

with neural building blocks. The topology of the neural network is implied directly from

the morphology of the robot constructed by the user, and so the functionality of the robot

and the neural network is decided by the physical structure designed by the user. Different

physical structures will result in different behaviors.

The first example shown here is simple but illustrative. It shows that the simple

implementation of neural building blocks is enough to obtain a system that allows the

user to develop robots similar to those known from most entertainment scenarios (e.g., fol-

lowing, searching, exploring, avoiding tasks).

Learning was not shown with the first example, but one implementation is shown

with the second example. Indeed, it may be easy to implement learning, since feedback

can be achieved through the input building blocks described in Table 28.1. For instance,

the simple touch sensors may be used to provide good/bad feedback, while potentiometers

can give further detailed feedback for supervised learning. The learning can then take

place as backpropagation of error or with a similar supervised learning method. Also,

unsupervised learning such as Hebbian learning is a possibility, as shown with the

second example in this chapter. In these cases, the learning may act upon the weights

of the synapses in the connectors of the neural building blocks.

In general, the neural building blocks allow us to explore the topology of neural

networks in a novel manner and allows users to develop their own neural network by

constructing a physical artifact with functionality. Indeed, the user will be “programming

by building” [1]. This means that programming of a specific behavior simply consists of

building physical structures known to express that specific behavior. To allow everyday

users to develop functionality of artifacts, it is important to make the process of function-

ality creation accessible. We believe that for everyday users it is important to find simpler

ways for creating technological artifacts. Especially, it is wrong to believe that everyday

users should be able to program prebuilt physical robotic structures in a traditional pro-

gramming language. The programming in a traditional programming language demands

that the everyday user learn both syntax and semantics of the programming language,

and this is a long and tedious process. Hence, such an approach will exclude most every-

day users from becoming creative with the new technology. If we want to achieve ambient

intelligence with integration of technology into our environment, so that people can freely

and interactively utilize it, we need to find another approach. Therefore, we have

suggested moving away from programming the artifacts with traditional programming

languages and instead provide methods that allow people to program by building

without the need for any a priori knowledge about programming languages. Indeed, we

even suggest completely removing the traditional host computer (e.g., a personal compu-

ter) from the creative process. The I-BLOCKS are the tool that supports investigation of

this innovative way of manipulating conceptual structures. Interaction with the surround-

ing environment happens through I-BLOCKS that obtain sensory input or produces
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actuation output. So the overall behavior of an “intelligent artifact” created by the user

with the I-BLOCKS depends on the physical shape of the creation, the processing in

the I-BLOCKS, and the interaction between the creation and the surrounding environment

(e.g., the users themselves).

Further, the general research focus allows us to explore and understand the relation-

ship between morphology and control. The work presented here should make it evident

that the morphology plays a crucial role in defining the overall behavior of the system.

On longer term, we are interested in researching how such building blocks may be

expanded to have the possibility to do self-reconfiguration. This option is explored in

the HYDRA project (http://www.hydra-robot.com).
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CHA P T E R29

DECODING SENSORY STIMULI

FROM POPULATIONS OF

NEURONS: METHODS FOR

LONG-TERM LONGITUDINAL

STUDIES
Guglielmo Foffani, Banu Tutunculer, Steven C. Leiser, and

Karen A. Moxon

29.1 INTRODUCTION

Information in the cortex is coded not simply by small numbers of highly tuned neurons

but through the combined actions of large populations of widely tuned neurons. Tradition-

ally, however, investigations into the nature of neural codes have utilized data from seri-

ally recorded single neurons averaged over repeated trials [1] and therefore were unable to

demonstrate the coding of brain information at the population level. During the past

30 years, there has been a remarkable development of techniques for simultaneous

(parallel) neuronal population recording [2–5]. Randomly sampled neuronal populations

can be used to demonstrate a surprisingly rich encoding of information in the brain, in both

the sensory [6–10] and motor [11–15] systems.

We are particularly interested in studying the plasticity of neural systems in response

to behavioral modification or injury. Because of the stability and large information yield of

multineuron recording techniques, it has now become possible to measure changes in the

function of populations of neurons to study specific issues related to plasticity in intact

animals. However, two main problems arise when one attempts to perform these types

of long-term longitudinal studies. The first problem is long-term population recording

and the second is population analysis with large data sets.

To address these problems, the first part of this chapter will review our established

techniques for chronically recording from large populations of neurons through electrode

arrays implanted in sensorimotor regions of the brain, including cortex, thalamus, and

brainstem structures (Section 29.2; Fig. 29.1). These techniques are well suited for

measuring long-term (i.e., from days to months) functional changes in neuronal ensem-

bles, and we extend them to longitudinal studies that examine the plasticity of the

system in response to injury. The second part of the chapter will describe the efficient

data analysis method we developed for decoding stimulus location using populations of
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single neuron (Section 29.3). Long-term longitudinal studies generate large amounts of

data, for which linear or nonlinear multivariate techniques can easily become computa-

tionally prohibitive. Our approach overcomes this limitation, maximizing both compu-

tational efficiency and the amount of information that can be extracted from the neural

code. The last part of the chapter will provide directions for future work (Section 29.4).

29.2 RECORDING POPULATIONS OF
SINGLE NEURONS

29.2.1 Extracellular Electrophysiology In Vivo

Chronic single-neuron electrophysiology provides a stable technique for monitoring the

activity of neurons, not only on the single-unit level but also on a population level in

both anesthetized and awake animals [4, 16]. In its most simple form, extracellular record-

ings can be performed by placing the exposed tip of a single insulated wire near a neuron

in the brain. This wire acts as an electrode and can pick up voltage fluctuations due to

action potentials from neurons near the electrode (generally within 50 mm). Recording

this signal provides a means to quantitatively assess when a neuron fires an action poten-

tial, often called a “spike” due to its appearance when viewed on an oscilloscope. By using

multiple-wire electrodes in this manner, it is possible to record from a large number of

neurons (100 or more) simultaneously.

The action potential results when the cell’s membrane reaches a threshold potential

for transiently opening voltage-gated sodium channels, allowing positively charged

Figure 29.1 Recording system setup. Signals from the brain are preamplified (gain 100,

bandpass 150 Hz–15 kHz) and sent to a multineuron acquisition processor (MNAP; Plexon,

Inc.), which performs further conditioning (amplification and filtering). This system enables

on-line neuronal spike sorting and simultaneous recordings from every microwire electrode.
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sodium ions to flow down their concentration gradient into the cell. This creates a fluctu-

ation in voltage between the immediate area (position of electrode) and distant locations

(position of the referencing wire). The spike represents this transient change in the mem-

brane potential, which is generally several times the amplitude of the background signals

recorded from the electrode. It should be noted that the potential difference between the

electrode and the reference is directly related to the input impedance of the electrode.

Because larger input impedances result in greater voltage output, a better signal-to-noise

ratio is reached with high-impedance electrodes.

In order to improve the signal-to-noise ratio, proper signal conditioning (i.e., ampli-

fication and filtering) should occur as close to the source (animal’s head) as possible.

However, since the goal is to be able to record from a freely moving animal, the connec-

tion at the animal’s head must be as small as possible. Therefore, the current being

recorded from each electrode that is chronically implanted is amplified using small junc-

tion field-effect transistors (JFETs) that can fit directly on the animal’s head (i.e., head-

sets). The output of the headset is then carried over relatively short wires (0.5–1 m)

into a preamplifying box, which supplies preamplifier gain and filtering for spike detec-

tion. The signal is typically bandpass filtered around the frequency content of an action

potential (e.g., 150 Hz–15 KHz). The output of the preamplifier sends the neural

signals to an acquisition computer for further amplification and spike analysis. Spike

analysis includes discriminating individual cells from each other and from the background

noise [17] and monitoring the times at which each cell fired an action potential for further

analyses.

29.2.2 Choice of Microelectrode Arrays

There are several different types of multiple-site recording electrodes designed to effec-

tively increase the yield of recorded neurons [16]. In most instances these electrodes

are easy to use. However, they are designed to work optimally under certain conditions,

and this must be considered when selecting the appropriate electrode for the application.

Moreover, successful recordings are dependent on proper handling of the electrode. Gen-

erally, special care must be used when the electrodes are implanted. Successful use of

these electrodes requires skill acquired through practice.

Multiple-wire electrode arrays have been in use in varied configurations since the

1960s. It is only recently that sufficient hardware and software have been developed so

that large numbers (.32) of neurons can routinely be recorded simultaneously from

these electrodes. The characteristics of the individual wires used remains the same. The

wire must have a small diameter while still maintaining adequate stiffness and tip shape

to penetrate the dura and traverse the tissue with minimal bending and mechanical disturb-

ance to surrounding tissue. The wire must be sufficiently insulated with a material that is

biologically inert in order to minimize the reactivity with the tissue. If the impedance of

the electrodes is relatively low, with minimal noise, it is likely to record multiple neurons

per wire, thus greatly increasing the yield of these electrode arrays. These electrodes have

generally been produced within the laboratory by paying particular attention to the tips.

In addition to microwire arrays, several laboratories have employed standard thin-

film technologies from the semiconductor industry to manufacture multisite recording

probes on a silicon substrate [18–24]. However, the yield for single-unit recordings

from silicon probes has been very low [25] compared with microwires [26]. These

results were initially thought to suggest that multiple recording sites along the shaft of

the electrode would not be feasible for chronic recording because these recording sites

would be in contact with neural tissue that was severely damaged during the insertion
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of the electrode and would, therefore, not support chronic recordings. The solution for

silicon thin-film electrodes has been to insert it into the neural tissue immediately

before recording [27].

We developed a novel thin-film electrode based on inert ceramic [28] and demon-

strated that these ceramic-based thin-film microelectrodes can record single-neuron

action potentials for several weeks. These microelectrode arrays are about the size of a

single microwire (approximately 50–100 mm) and have multiple recording sites precisely

spaced along its length, generating more recording sites for the same volume of electrode

compared to microwires. Our initial studies showed that the yield from ceramic-based

multisite electrodes (CBMSEs) is comparable to the recording capabilities of microwires.

We have been able to consistently record from these thin-film microelectrode arrays for

several weeks. This discounted the conclusion that multisite thin-film electrodes were

inadequate for chronic recording and opened the possibility that multiple-site thin-film

electrodes may be a viable alternative to traditional, single-site electrodes.

29.2.3 General Method for Chronic Implantation of
Microelectrode Arrays

Rats are chronically implanted with microelectrode arrays into the target region of the

brain [9, 16, 28]. The animal is initially anesthetized and maintained throughout the

surgery by intraperitoneal injections of sodium pentobarbital. The animal is then placed

on a sterile pad where the scalp and facial hair adjacent to the whisker pad are shaven.

The area is cleaned with 70% isopropyl alcohol and 10% povidone–iodine solution is

applied. The animal is placed on a heating pad and secured in a stereotaxic apparatus

by ear bars and a tooth plate. A nose clamp is used to further hold the head firmly in

place. A head-mounting tool on the stereotax is adjusted to ensure the rat’s skull is

planar both dorsoventrally and mediolaterally.

An incision is made in the skin overlying the scalp. The skull is kept exposed by

clamping the skin with four Kelly forceps, hemostats with box-lock joints. The periosteal

surface is rinsed with saline solution to clear it of blood and debris. A hand-held dental

drill is then used to make several small craniotomies in the skull. Up to four microsurgical

screws are inlayed into these skull cavities. These screws serve not only as an anchor for

the acrylic electrodecap but also as a ground for the electrodes. Other small craniotomies

are created over specific brain regions targeted for the electrode. To perform the cranio-

tomies, the bone circumnavigating the specific coordinates is drilled through to the under-

lying dura. The severed core of bone can then be removed with microsurgical forceps.

Using this method the dura is often left undamaged. The exposed area of brain is continu-

ously kept moist with saline solution. Any hemorrhaging can be controlled locally with

small saline-doused cotton balls. The animal is now ready to be implanted.

An electrode is connected to a headset and mounted vertically in a stereotaxic arm.

The ground wire of the electrode array is connected to a screw on the skull and the ground-

ing pin on the headset. The electrode is aligned to bregma and digital measurements

(lateral and posterior) are taken from bregma to ensure accurate implantation. The pre-

cision stereotaxic apparatus provides digital measurements in 10-mm increments. An elec-

trode is held vertical in a stereotaxic arm, positioned directly above the craniotomy, and

lowered to the surface of the brain. The digital measurement for depth is set to zero.

The electrode is gradually lowered through the dura and into the brain (Fig. 29.2). Depend-

ing on the electrode design, the dura can be removed if the tip of the electrode is not sharp

enough to penetrate the dura. Neural signals and depth measurements are monitored while

the electrode is lowered into the brain to reach the desired location.
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If characteristic neuronal responses are observed (Fig. 29.3), the electrode is affixed

in place. After a recording site is identified for the electrode, the skull is dried and methyl

methacrylate (dental cement) is slowly applied to the skull area surrounding the electrode

crest. The acrylic cement is applied up and around any exposed surface of the electrode

shank and around the skull grounding screw. Once dry, this skull cap chronically

Figure 29.2 Chronically implanted rat. This photograph illustrates the acrylic cap used to hold

the electrodes chronically in place, the head stages used to connect the implanted electrodes

with the MNAP system (Fig. 29.1), and a CBMSE being lowered into the brain through a

trephination in the skull (insert).

Figure 29.3 Single-neuron action

potentials recorded from CBMSE.

The electrode had four recording

sites. The left column shows

continuous waveform simultaneously

recorded. The right column shows

enlargement of action potential

waveform.
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secures the electrode in place and any secondary implant can be performed. After the final

electrode is implanted, a uniform coating of cement is applied. To prevent infection, baci-

tracin ointment is applied to all opened skin flaps and the wound is sutured. All procedures

are always performed in accordance with local animal welfare committee regulations and

National Institutes of Health (NIH) guidelines.

29.2.4 Sensory Maps

After the animals are implanted, recording sessions can be performed under various exper-

imental conditions. Many techniques exist for single-neuron discrimination [17], and,

hence, these will not be discussed further. As a common procedure, a template-matching

algorithm provides the timing of the action potentials for all discriminated neurons that are

recorded during the experiments.

Sensory maps are employed to study the receptive fields and the coding strategies

used by populations of sensory neurons. The animals are anesthetized and several

locations ideally covering the entire receptive field of the neurons are stimulated. A

common paradigm largely used in neurophysiology is to deliver “ramp-and-hold” (i.e.,

step) stimuli. For each stimulus, transistor–transistor–logic (TTL) pulses are saved

together with the neural data to provide a precise temporal reference for the analyses.

Step stimuli are given at a sufficiently low frequency (typically 0.5 Hz) and long duration

(typically 100 ms) to allow the system to reach steady state. During these passive

cutaneous stimulations, the activity of the single neurons discriminated is recorded and

stored for further analyses.

29.3 PSTH-BASED CLASSIFICATION OF
SENSORY STIMULI

29.3.1 Decoding Neural Code

One of the biggest challenges of neuroscience is to understand how neurons code sensory

information. Scientists have been trying to answer this question for many years, but

despite recent progresses, the neural code is still a largely unsolved problem. From an

experimental point of view, the neural code can be studied by recording activity of popu-

lations of neurons in vivo [4, 5, 29] in response to known events or stimuli; the perform-

ance of a specific algorithm in decoding information from the neural response allows

inferences to be made about the coding strategies actually employed by the recorded

neurons [1, 30–39]. In the somatosensory system, this decoding problem has been

recently defined as a classification problem [10, 40, 41]: Given the response of a

population of neurons to a set of stimuli, which stimulus generated the response on a

single-trial basis?

In the literature, the above classification problem for studying the neural code has

been approached with multivariate techniques [42] such as linear discriminant analysis

(LDA) [10, 40, 41, 43–45] and artificial neural networks (ANNs), specifically backpropa-

gation (BP) [41, 46] and linear vector quantization (LVQ) [10, 41]. Also different types of

preprocessing stages, such as principal-component analysis (PCA) [47, 48] and

independent-component analysis (ICA) [49, 50], have been tried in order to improve

the classification performance by reducing the dimensionality of the data [41].

Somewhat surprisingly, the classification performance seems to be almost indepen-

dent of the method or the preprocessing step employed [41]. The ANN approach has often
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been preferred over LDA because the former does not require dimension reduction and

does not impose particular assumptions (e.g., normality) on the data [51]. However, to

our knowledge, significantly greater performance of ANNs over LDA on neural data

has not been demonstrated. Because of this performance invariance, it is reasonable to

develop new methods to maximize computational efficiency rather than classification

performance.

In has long been known that the peristimulus time histogram (PSTH; Fig. 29.4) pro-

vides an efficient way to describe the dynamics of a neuron’s response to a stimulus [52]. It

has been recently shown with a rigorous theoretic approach that the average neural

responses (i.e., the PSTHs) describe more than 80% of the information about stimulus

location carried by somatosensory cortical neurons [53]. We therefore developed a

PSTH-based method to solve the above classification problem [54].

29.3.2 Method Definition

Like other classification methods, the PSTH-based method consists of two stages: training

and testing. Similarly to LDA analysis [42], in the training stage a weight is assigned to

every variable in correspondence to every stimulus (i.e., possible output of the classifi-

cation). In LDA, this weighting process aims to minimize intrastimulus variance and

maximize interstimulus variance, hence maximizing discriminability. This minimiz-

ation–maximization procedure is optimal if the variables in the data set have Gaussian

distributions, but it becomes unsatisfactory and computationally unstable when the

number of trials is not large enough (e.g., smaller than the number of variables) to

allow reliable estimation of the covariance matrix, as is often the case when using

neural data. We therefore propose to avoid this minimization–maximization procedure

by employing not a more complex method (e.g., artificial neural networks) but a

simpler one by using directly the neurons’ PSTHs as weights. For every stimulus, a

weight vector is defined by calculating the average of the B � N variables over the training

Figure 29.4 Examples of PSTH (bottom,

5 ms bin size) and corresponding perievent

rasters (top, 100 trials) of cortical

somatosensory neuron responding to

ramp-and-hold skin contact (time 0).
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set trials corresponding to that stimulus, where B corresponds to the number of bins per

neuron and N is the number of neurons in the population. Each weight vector is essentially

a population PSTH.

As in LDA, these weights can be seen as S templates (S ¼ number of stimuli) with

B � N dimensions. The testing stage of the classification then consists of assigning every

single trial in the testing set to one of the templates obtained in the training stage. Here we

use the sum of the square differences, that is, the Euclidean distance, as a measure of how

“close” a single trial is to the templates. A single-trial response of the neural population is

then classified as being generated by a given stimulus if the distance between the single

trial and the template corresponding to that stimulus is minimal compared to all the

other distances.

29.3.3 Computational Efficiency

Due to its simplicity, the PSTH-based classification method is computationally more

efficient than either LDA or methods based on ANNs, and it is particularly effective in

a complete cross-validation design. In fact, as the templates are constructed with

average responses (the PSTHs), the training stage can be run just once on the entire

data set, and in the testing stage a single trial can be excluded from the training set by

simply subtracting it from the template average, with negligible increase of computational

time. In other words, in complete cross validation the complexity of PSTH-based method

is proportional to the total number of trials (ST ).

On the other hand, using an ANN classifier such as LVQ—or even the simple

LDA—in complete cross validation the network would have to be retrained at every

trial using all the other trials. More precisely, in the classification of S stimuli with T

trials per stimulus (ST total trials), the ANN learning algorithm (i.e., a sequence of

scalar products, additions and subtractions) has to be run ST (ST-1) times (assuming

that the network would converge with only one iteration). In other words, the complexity

of ANN classification in complete cross validation is proportional to the square of the total

number of trials. For example, in the classification of 20 whiskers, with 100 trials per

whisker in complete cross validation, the PSTH-based method is (at least) 2000 times

faster than an ANN classifier.

To avoid the “squared” computational cost, when using the neural network approach

complete cross validation is usually not used. Instead, the number of available trials is

increased to 300–400 [10]. This procedure ensures two nonoverlapping groups of trials,

one for the training set and the other for the testing set, but it considerably increases

the time to perform the experiments. The PSTH-based method minimizes both the exper-

imental and the processing times.

29.3.4 PSTH-Based Classification on Raw Neural Data

Since the rat trigeminal somatosensory system has received the greatest amount of atten-

tion, the PSTH-based method was validated by applying it to populations of neurons from

the rat trigeminal somatosensory barrel field cortex (whiskers). However, this method is

suitable for many types of sensorimotor stimuli. The objective was to classify which

whisker was contacted on a single-trial basis, knowing the exact contact time (,1 ms pre-

cision) and the single-trial response of the neural population. The rat whisker system was

chosen, because its discrete topological organization represents an elegant animal

model which has previously been used to study coding strategies of tactile stimulus

location [7, 55–57].
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Even though the method was designed to optimize computational efficiency, the

PSTH-based classification performance is surprisingly high. For example, with a popu-

lation of 24 cortical somatosensory neurons it was possible to correctly classify 20 stimu-

lus locations in the rat whisker pad in 52.1% of the trials (Fig. 29.5). These results are

comparable to the LVQ approach [10]. In addition, the performance degradation observed

with the PSTH-based method when increasing the bin size is in agreement with the LVQ

results [10] and with recent results obtained with information theory [53], supporting the

role of action potential timing for stimulus representation [58, 59] in the primary somato-

sensory cortex.

Interestingly, another way to interpret the PSTH-based classification method is to

see the PSTHs of the neurons as the weights of a trained LVQ-like fully connected

neural network with only one layer of S artificial neurons (S ¼ number of stimuli to be

discriminated) whose transfer function is the Euclidean distance between the input and

the weights. A single trial is then classified in a competitive way to the neuron (i.e., the

stimulus) at the minimum distance to the input.

29.3.5 Comparison Between PSTH-Based Classification
and LDA

The PSTH-based classification method was directly compared with LDA [54]. Here we

present an example from one population of cortical neurons (Fig. 29.6). Linear discrimi-

nant analysis has been chosen as a reference method because it is the classification most

commonly employed in the neuroscience literature [10, 40, 41, 43–45]. A three-way

repeated-measure analysis of variance (ANOVA) was used, obtaining three major results.

The first result is that, although overall the two methods are not significantly differ-

ent, the PSTH-based classification method performs significantly better than LDA when

the bin size is reduced down to 1 ms. At all the other bin sizes tested the performances

of the two methods were not significantly different (Fig. 29.6b,c). This result is due to

Figure 29.5 PSTH-based classification on raw neural data. The performance of the method is

presented as a function of the bin size used in the classification (x-axes) and the number of

whiskers to be discriminated ( y-axes). Every element of the three matrices is the average

classification performance (% correct) respectively of three populations of 24 (left), 22 (center),

and 17 (right) cortical neurons recorded from the barrel field somatosensory cortex of three

different rats. Colors are light-graded from minimal performance (black) to maximal

performance (white). In general classification performance decreases by increasing either the

bin size or the number of whiskers to be discriminated [54].
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Figure 29.6 Example of comparison between PSTH-based classification method and LDA in

one population of 24 neurons recorded from the rat barrel field somatosensory cortex.

(a) Two-way interaction between classification method employed (PSTH, blue line with circles;

LDA, red line with squares) and level of PCA dimension reduction, namely retaining 90% of variance

(PCA90, left column), 50% of variance (PCA50, middle column), or 20% of variance (PCA20, right

column). (b) Two-way interaction between classification method (PSTH, blue line; LDA red line) and time

resolution (i.e., the bin size used to divide the poststimulus time window, ranging from 1 to 40 ms on the

x axis). (c) Three-way interaction between the method (PSTH, blue line with circles; LDA, red line with

squares), the dimension reduction (PCA90 left, PCA50 middle, PCA20 right), and the bin size (from

1 to 40 ms on the x axis). (d ) Different visualization of three-way interaction: This time the colors

represent different levels of dimension reduction (PCA90 in blue with circles, PCA50 in red with

squares and PCA20 in green with diagonal squares), the methods are separated in the two plots (PSTH

left, LDA right), and the bin size is always on the x axis (1–40). (e) Comparison between

PSTH-based classification method applied on raw data (blue line with circles) and after PCA dimension

reduction, retaining 90% of the variance (red line with squares) for all the binsizes (from 1 to 40 on the

x axis).
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the fact that when the bin size is decreased, the number of variables increases and the esti-

mation of the covariance matrices in LDA deteriorates.

The second major result is that the PSTH-based classification performance increases

as the percentage of variance retained after PCA dimension reduction increases (i.e., with

the number of principal components; Fig. 29.6d ). On the other hand, LDA performance as

a function of the retained variance is apparently less predictable (Fig. 29.6d): For example,

90% of the variance provides the bests results at the maximum bin size (40 ms) and the

poorest results at the minimum bin size (1 ms). These observations can be interpreted

in terms of a trade-off between increasing the amount of information employable for

the classification and deteriorating the covariance estimate, increasing the number of vari-

ables. This trade-off renders LDA less suitable for studying fine differences of temporal

resolution (i.e., different bin sizes) in the neural code, which is instead feasible using

the PSTH-based classification method.

Finally, the third major result is that there is no difference in the performance of

the PSTH-based method applied after 90% of the variance is retained or on raw neural

data (Fig. 29.6e). Importantly, dimension reduction was a necessary step for LDA. This

means that the PSTH-based method, in contrast with LDA, can be optimally applied on

the raw neural data.

29.4 CONCLUSIONS AND FUTURE DIRECTIONS

We described methods to simultaneously record ensembles of single neurons for longi-

tudinal studies of population activity. Experimentally induced changes in parameters

can be assessed by recording through electrode arrays chronically implanted in the

neural tissue. Arrays with 32–64 electrodes yield 50–100 relatively stable single units

that can be recorded over long time periods in both anesthetized and awake conditions,

including behaving tasks. Such data can now be routinely obtained from the same

animals before and after injury, pharmacological manipulations, and other interventions.

Deficits and recovery can be assessed through behavior testing and monitoring changes in

the firing patterns of these cells over time.

These longitudinal studies necessarily generate large data sets for which nonlinear

analysis techniques such as nonlinear regression and neural networks are too computation-

ally intensive to be practically applied. The PSTH-based method for classifying neuronal

responses presented here is one of the simplest—and most computationally efficient—

classifiers that can be designed; nevertheless the performance obtained by applying it

on highly dimensional and sparse neural data is surprisingly high. We therefore suggest

that the PSTH-based method is an efficient alternative to more sophisticated methods

such as LDA and ANNs to study the neural code as a classification problem, especially

when large data sets are used and when the time resolution of the neural code is one of

the factors of interest.

A long-term goal of this work is to apply the methods presented here to the plastic

changes after spinal injury. A spinal cord injury is also a brain injury. The neurons in the

motor cortex send their axons down the spinal cord. These axons will be severed or injured

after a spinal injury, thereby creating changes in the neural circuits used to code for

sensory and motor events. While it has been well established that an adult brain undergoes

reorganization in response to changes in inputs from the periphery, surprisingly little infor-

mation exists on the kind of changes that take place in the brain after spinal injury. For

example, previous studies have shown that after lesions to the dorsal columns there is

either no change, a reduction, elimination, or even increase in the response properties
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of neurons in different cortical areas and to different stimulus paradigms [60–63]. The

classical justification for these conflicting observations was based on the difference in

the lesions, which is indeed a great source of variability. However, technological limit-

ations (i.e., the restriction to record very few neurons at a time in multiple acute pen-

etrations) confined most of the cited works to the study of anatomy or passive response

properties after the lesion. To assess changes in brain circuitry, neurons must be recorded

before and after the spinal injury, hence chronic recording of single neurons is essential. A

further advantage to chronic neural recordings is that we can not only study reorganization

after the injury but also measure how these ensembles of neurons respond functionally to

therapeutic intervention. We suggest that the methods outlined here are ideally suited to

study how ensembles of neurons code for sensori motor events, the role of plasticity in

these circuits, and most importantly how these circuits in the brain are modified in patho-

logical conditions, in particular after spinal cord injury.
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CHA P T E R30

MODEL OF MAMMALIAN VISUAL

SYSTEM WITH OPTICAL

LOGIC CELLS
J. A. Martı́n-Pereda and A. González Marcos

30.1 INTRODUCTION

The retina of the vertebrates has been, from the pioneering work by Cajal [1] at the end of

nineteenth century, a main topic for biologists, physiologists, neurologists, physicists, and

engineers. The reason for this interest was due to several factors. The first one is related to

the importance of the vision processes in the relationship between the living beings and

their environment. The second one is the large number of functions carried out by the

retina. Besides the above facts, the retina possesses other characteristics that justify its

study. These reasons are those derived from the previously mentioned great amount of

information that is processed and the way it is done. The form of processing images in

parallel is superior to the way in which it is done by most of the present artificial vision

systems. Lessons obtained from the way the retina works can be a very good source of

new ideas. These lessons could be adopted and implemented in other systems. This is

the aim of this chapter.

30.2 PREVIOUS WORKS

Many works have been carried out this way in the last years following the above indicated

lines. Detailed journal articles describing a variety of neurovision system architectures for

preattentive vision, visual perception, object recognition, color vision, stereovision, and

image restoration are included in [2]. One of the more interesting results was obtained

by Mead [3] in his work on a silicon retina. He built a configuration that was modeled

on the distal portion of the vertebrate retina. The resulting chip generates, in real time,

outputs that correspond directly to signals observed in the corresponding levels of biologi-

cal retinas. Moreover, it shows a tolerance for device imperfections that is characteristic of

a collective system. Many other works are related with to very large scale integrated

(VLSI) technologies. In this way, a compact VLSI neuroprocessor which includes

neurons and synapse cells, able to estimate the motion of each pixel of a system with

25 different velocities, has been reported [4]. Image detection and smoothing have been

obtained with an active resistive mesh containing both positive and negative resistors to

implement a Gaussian convolution in two dimensions [5]. Image processors that are
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based on charge-coupled devices (CCDs) have been reported in several works [6]. In

general, three broad areas of neural network implementation are present: computer-based

software, electronic hardware, and optical/optoelectronic hardware. Information about

them is given in [2].

Most of the operations handled by the biological retina are performed with very

sophisticated hardware, with no software present. The architectures are based on a

high number of neural circuits with same basic, the neuron. Each neuron presents its

own behavior according to its working conditions. Two similar neurons can give rise to

different outputs depending on the way their synapses are arranged. These outputs will

determine the processes in the following stages.

The present work will present an emulation of the vertebrate retina. The main block

for this emulation is an optical logic cell, employed by the authors to perform some parts

of an optical computer [7–10]. As will be shown, this simple configuration allows emula-

tion of many possible outputs of ganglion cells and to process information about light

motion in front of the retina. The information obtained from this model is based on differ-

ent characteristics of the output pulses. These characteristics determine the properties of

the impinging light.

An important point needs to be considered. Our model of the retina is a photonic

model. It is true that many of the functions to be implemented can be carried out by elec-

tronic methods. This kind of implementation should be easier, in some aspects, than the

optoelectronic one. As a matter of fact, the previously reported retina model by Mead

[3] is able to perform most of the needed functions with an electronic chip. Microelec-

tronics is currently much more developed than photonics and gives a higher versatility

than optical systems. But some particular aspects are very difficult to develop with elec-

tronic circuits. The visual system is, as was indicated, a highly parallel system. The quan-

tity of information carried out from retina to brain is huge. Living beings do it by a large

number of channels running along the visual track. This number is much higher than the

larger interconnection channels in supercomputers. To try to emulate this architecture is

almost impossible with present-day electronic technology. But optical methods, as for

example wavelength domain multiplexing (WDM), allow carrying a large number of

channels through the same physical link without any possible crosstalk. A certain

number of parallel physical links are equivalent to the same number of logical links,

each with different wavelength, and go through the same physical space. This is one of

the possible advantages of working with light instead of electrons. Some others will

appear in this work.

30.3 NEUROPHYSIOLOGICAL BASIS OF MODEL

The retina is quite different from any of other mammalian sense organ in that a good deal

of the neural processing of the afferent information has already occurred before it reaches

the fibers of the optic nerve. The fibers of the optic nerve are in fact two synapses removed

from the retinal receptors, and particularly as far as the rods and cones in the periphery are

concerned, there is considerable convergence of information from large groups of recep-

tors. What happens is that receptors synapse with bipolar cells, and these in turn synapse

with the million or so ganglion cells whose axons form the optic nerve. These two types of

neurons form consecutive layers on top of the receptor layer and are mingled with two

other types of interneurons that make predominantly sideways connections. These are

the horizontal cells at the bipolar/receptor level and the amacrine cells at the ganglion

cell/bipolar level.
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The way neurons work also needs to be pointed out. First, three of them, namely

photoreceptor, horizontal, and bipolar cells, respond to light by means of hyperpolariz-

ation. These neurons do not produce action potentials. The cells in the second group, ama-

crine and ganglion cells, show a large variety of responses. They are action potentials in

every case as well as depolarizing. Different types are reported in the literature [11, 12].

The amacrine cells show transient depolarizing responses, including what are apparently

all-or-nothing action potentials, at the onset or cessation of light. Finally, ganglion cells

can be divided into three types according to their response to illumination. “On” units

respond to the onset of illumination, “off” units to the cessation of illumination, and

on–off units to both onset and cessation. Another classification is made on the basis of

the action potentials produced in response to stimuli. Most cells produce “transient”

responses, with just a few action potentials immediately after a change in illumination.

Several retina models appear in the literature following these lines [13, 14]. The

studied configuration in this chapter appears in Figure 30.1 and it was partially reported

Figure 30.1 Intracellular responses of various retinal cells and their connections with each

other. The receptor of the left is illuminated with a brief flash of light. R, receptors; H,

horizontal cell; B, bipolar cells; A, amacrine cell; G, ganglion cells.
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by us [15–19]. Just two photoreceptors have been taken. This configuration is similar the

one proposed by Dowling [13] to summarize the activity of the various retinal cells. As can

be seen, the receptor on the left is illuminated with a brief flash of light imposed on a dim

background that illuminates both receptors, R1 and R2. A large response is observed in the

stimulated receptor whereas the adjacent receptor that is not illuminated (right receptor)

shows only a small response that probably reflects mainly the electrical coupling

between the photoreceptor cells. Bipolar and horizontal cells are both activated by the

receptors. The scheme of Figure 30.1 shows that bipolar cell B1 is polarized strongly in

a graded and sustained fashion by direct contacts with receptor R1. Moreover, this

bipolar cell potential is antagonized by horizontal–bipolar cell B2 interaction. Bipolar

cell B2 responds to indirect (surround) illuminations by depolarizing. As can be seen,

the switch from hyperpolarizing to depolarizing potentials along the surrounding illumina-

tion pathway occurs at the horizontal–bipolar junction.

Amacrine cell, A, responds to light mainly with transient depolarizing potentials at

the onset and cessation of spot illumination. The responses of the two basic types of

ganglion cells found in the vertebrate retinas appear to be closely related to the responses

of the input neurones to the ganglion cells. The G1 ganglion cell has a receptive field

organization very similar to that of bipolar cells. Central illumination hyperpolarizes

both the bipolar and ganglion cells, B1 and G1, in a sustained fashion, and surrounding

illumination depolarizes the bipolar B3 and ganglion G3 cell in a sustained fashion.

This type of ganglion cell appears to receive most of its synaptic input directly from

the bipolar cell terminals through excitatory synapses. The ganglion cells illustrated in

Figure 30.1 are off-center cells but there are some other types present in the vertebrate

retinas. Ganglion cell G2 responds transiently to retinal illumination, much as the transient

amacrine cells do. This type of response is the one adopted in our model.

Although this model is a very simple one, it is very useful to implement most of the

functions performed at the mammalian retina. More complicated models can be obtained

directly from this one.

30.4 STRUCTURE OF FUNDAMENTAL

BUILDING BLOCK

As has been pointed out before, a simple cell has been the basis for the architecture of the

proposed system. This cell has been employed by us as the main block for some structures

in optical computing [7–10]. Its characteristics have been presented in several places and

they may be synthesized as follows. Figure 30.2 shows the real internal configuration of

the optically programmable logic cell (OPLC) with its two basic nonlinear optical

devices. The main characteristics of these nonlinear devices are also shown. Device Q cor-

responds to a thresholding or switching device. Device P response is similar to that

achieved by a self-electro-optic-effect device (SEED), a very common device in optical

computing.

Additional details, ampler than those presented here as well as its physical

implementation, can be found in [7]. Their characteristics are shown in the insets of

Figure 30.2. It has two signal inputs, I1 and I2, as well as two signal outputs, O1 and

O2, and two control signals, h and g. Because the cell works with optical signals, it

allows an internal multilevel processing. In this way, input and output data signals are

binary but the control is performed by multilevel signals. Table 30.1 lists the different pro-

gramming combinations available from our OPLC. At least in one of the outputs, the eight
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Boolean functions—AND, OR, XOR, ON and the negative NAND, NOR, XNOR and

OFF—can be obtained. When some feedback is added, for instance connecting a part of

the output from O1 as control signal to the P device, as well as a multilevel periodic

input, some nonlinear behavior is obtained. Under certain conditions and with a certain

value of the feedback time delay, it is possible to obtain even a chaotic signal. Moreover,

with no input, the frequency of the periodic signal is a function of the feedback delay time.

A detail of each block in Figure 30.2 appears in Figure 30.3. The study reported here

was performed by computer simulation of the OPLC with the Simulink application from

MATLAB. It has been considered the ideal response for the nonlinear devices. This fact

relates to the output level but not to the possible hysteresis. The hysteresis appears in any

real behavior of a nonlinear device and should be the origin of noncontrolling responses

when the signal level is beyond the tolerance range. An example of the logic behavior

of this cell appears in Table 30.1.

Figure 30.2 Basic configuration of the OPLC: I, input signals; O, output signals; h, g, control

signals. Q, on-off device; P, SEED.

TABLE 30.1

Control signal to Q

���������!

Output from Q–O2:

AND 0–0.4

Output from Q–O2: OR

0.5–0.9

Output from Q–O2: ON

1.0–2.0

Control signal to P

-----

#

Output from

P–O1

Output from

P–O1

Output from

P–O1

0–0.4 XOR XOR NAND

0.5 NAND NOR NOR

0.6–0.9 ON XNOR XNOR

1.0 XNOR XNOR AND

1.1–1.4 XNOR ON OR

1.5 AND OR OR

1.6–2.0 OR OR ON

2.0–2.5 ON ON ON
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Some comments are needed to justify the employed cell. Several approaches have

been adopted with respect to the behavior of the neural units. The most common has

been assigning them a single logic function. Moreover, some nonlinear activation oper-

ation is added in order to provide a bounded scalar neural output. These operators range

from linear to Gaussian. The most common are unipolar and bipolar sigmoidal functions.

These two operations perform the two key elements for signal processing in the biological

neuron, synapse, and soma. They are the basis for most of the present neural networks

systems. The McCulloch-Pitts and Fukushima models follow these lines. The adaptive

linear neuron, Adaline, has nþ 1 inputs and two outputs: an analog one and a binary

one. Logic gates such as NOT, OR, AND, and MAJ can be realized with a single

Adaline. But the simplest nonlinearly separable binary logic functions, the exclusive-or

(XOR) logic function, needs two Adaline “neurons.” An artificial neural network

composed of many Adalines is more flexible than a standard logic circuit employing

logic gates since such a network can be trained to realize different logic functions. But

this use of two cells should be improved to another with just a single unit.

As we have indicated, our present approach adopts a different point of view. The

basic unit employed is a logic unit with two signal inputs, two outputs, and two more

inputs for control signals. This configuration allows, as we have indicated previously,

any logic Boolean function from the input signals. The unit cell is more complex than pre-

vious units for simple logic gates, but its main advantage is that only a single cell needs to

be employed for any logic function. Moreover, the presence of two control inputs gave the

possibility of implementing different functions and working operations at both outputs.

Figure 30.3 Computer simulation of OPLC cell. Internal details of every block are shown.
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Electronic and optoelectronic implementations are possible because, as will be shown,

they are based on photonic devices. This fact gives a new possible working philosophy:

to carry different signals through the same physical channel if these signals have different

optical wavelengths.

30.5 RETINA MODEL SIMULATION

The adopted architecture has the configuration shown in Figure 30.4. Each blackbox has

the internal structure of Figure 30.2. In most cases, only one or two inputs receive signals

from previous layers. Other inputs get no signals. With respect to outputs, just one of the

two that are possible is connected to the following cell. This situation gives the opportunity

to employ the nonoperative inputs and outputs in other possible processes. We report here

the simplest structure and maintain other possibilities for further work.

Figure 30.4 Computer simulation of retinal structure shown in Figure 30.1. Fundamental

blocks are OPLCs (Figs. 30.2 and 30.3).
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We have adopted in most of the cases, according to the way photoreceptors work,

the level of a logic 1 as the resting potential when there is no light impinging onto the

photoreceptors and a logic 0 when an optical signal is present. Because of the binary char-

acter of our model, there is no possibility to register different light levels. This point will

be considered in future work.

The above situation means that the receptor cells must operate with a NAND func-

tion. And so the OPLC was programmed for this task. In our model, when there is some

light acting on receptor R1, it switches from 1 to 0. No light in receptor R2 implies keeping

the 1 level.

The photoreceptor response goes then to the horizontal and bipolar cells. A NAND

function is performed by the horizontal cell. In bipolar cells B1 and B2, the situation is

somehow different in both. Dowling’s model gives a hyperpolarization response for B1

and a depolarization for B2. This response is obtained with AND and NAND functions

on cells B1 and B2, respectively. This behavior can be achieved with two different con-

figurations of the OPLC. These configurations correspond not to changes in the internal

structure but to the way the connections are taken. This means adopting a particular

arrangement for how data and control signals reach the inputs of the OPLC.

There are several possible outputs obtained from amacrine and ganglion cells. The

case reported here corresponds to a nonsymmetrical way of working. Namely, light on

receptor R1 and no light on R2 give outputs at ganglion cells G1, G2, and G3 different

from the case when there is no light at R1 and light at R2.

30.6 RESULTS

The results obtained for the above-indicated configuration correspond to the behavior of

the ganglion cells in the Dowling model. They are shown in Figure 30.5. Amacrine

cells must give a different output signal than the ones appearing at receptor, horizontal,

and bipolar cells. Its resting state is, in our case, a logic 1 and switches to a logic 0 at

the beginning and the end of light pulses. This switch is in the form of a brief impulse.

After this peak, it returns to the resting state. Hence, its behavior is in the form of

action potentials with a burst of just one pulse.

An important point to be said here is that, with this arrangement, the amacrine is in

charge of detecting the illumination time on receptors. This aspect is not considered in the

literature. The more important function customarily assigned to amacrine cells corre-

sponds to spatial aspects of visual signals. We believe that this proposed temporal

aspect needs to be considered in future work.

The composite signals from bipolar and amacrine cells reach the ganglion cells.

There are several possible responses from these ganglion cells. Three of them appear in

Figure 30.5. They have been obtained with our present computer simulation. The first

result corresponds to ganglion G1; its resting state is a logic 1. It shows pulses, going

to 0, at the beginning and at the end of the input flash. The resting state of ganglion

G3 is again a logic 1, but this resting state changes to 0 during the whole light flash inter-

val; moreover, a new pulse appears now in the transition from light to darkness. Finally,

ganglion G2 has a resting state of logic a 0 when no light is present and changes to a 1

when light appears, with pulses at the beginning and end of the light interval.

The above-indicated behavior corresponds, in a certain way, to hyperpolarizing

bipolar cells and off-center ganglion cells (G1 and G3) that respond to direct central illu-

mination (left side in Figure 30.4) by hyperpolarizing and to indirect (surround) illumina-

tion (right side) by depolarizing. The switch from hyperpolarizing to depolarizing
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potentials along the surrounding illumination pathway occurs at the horizontal–bipolar

junction. The on–off ganglion cell (G2) receives strong inhibitory input from amacrine

cells; these cells receive their excitatory input from both amacrine and bipolar cells. In

the reported simulation, just single pulses appear in the final signals. No pulses are

present as in Dowling’s model. But this result may be easily obtained with the possibility

offered by the OPLC to respond with a periodic signal when adequate feedback is added.

This possibility has been reported by us and it may be easily implemented. It has not been

applied in this case in order to obtain a clearer result.

This structure has the characteristic of being nonsymmetric. This means that the

behavior of the total retina layer is not the same if the light is coming from the right

path or from the left path.

30.7 EXTENSION TO HIGHER PROCESSING LEVELS

Although some invertebrates process most of the information they get in their retinal

layers, most higher order living beings process this information in different layers of

Figure 30.5 Results obtained from computer simulation of retinal structure (Fig. 36.4).
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their visual cortex. Hence, the visual data have to be transferred to a different region to be

analyzed. This is the case in mammal and the one presented here.

Once details from a certain image have been processed at the retina, the next step is

to transfer the obtained information to the primary visual cortex, V1. This transferrence is

done, in mammals, via the lateral geniculate nucleus (LGN) in an organized, retinopic

fashion. The visual cortex analyzes information in several ways, and one possible

model is provided by Hubel and Wiesel [21]. The most interesting part of this model

conceives pattern analysis as being a process that breaks down the visual scene into

line segments, with different populations of neurons responsible for reacting to the

different orientations of these external contours. This process is the result of the many

information channels coming from the ganglion cells through the optic nerve to the

visual cortex. A possible model to implement this transferrence of information should

have as many physical channels as conducting nerves going from the retina to the V1

zone. Each channel would carry the response of each ganglion cell. This situation, from

a theoretical point of view, is straightforward to establish but, from an experimental

configuration, is very difficult to implement. The main problem arises from the huge

number of channels going between these two regions.

A possible solution to this problem has been developed by us as a possible way to

transfer simple images between two distant areas [20]. A technique based on WDM can be

implemented. A simple scheme appears in Figure 30.6. This scheme shows a simple way

to carry information from ganglion cells to the visual cortex through a limited number of

physical channels. This model is not the way living beings perform this task, but it offers a

possible way to implement an equivalent behavior in an artificial system. It is based on the

transmission through the same physical channel of the signals to be processed with differ-

ent optical wavelengths. This allows the use of just one physical channel, namely an

Figure 30.6 Signals transmission from ganglion cells to first layers of visual cortex. Signals

generated at the same type of ganglions are multiplexed into a single channel with different

wavelengths.
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optical fiber, to transmit a large number of different signals. Figure 30.6 shows an example

corresponding to the case of sending the responses of different equivalent blocks from the

retina to the cortex. Each signal from the same type of ganglion cells is carried out by a

different optical frequency. In this way, the responses overlapped without crosstalk. A

simple wavelength multiplexer can be employed in this step. A demultiplexer will

perform the inverse operation in the region corresponding to the cortex.

To apply this method, we have implemented a way to analyze a characteristic not

usually analyzed in common artificial pattern recognition systems. This system analyzes

possible symmetries in linear configurations. Moreover, in order to simplify the result,

data are light pulse inputs similar to the ones employed in the previous retina model.

This model may be easily enlarged to obtain more complex results.

A linear configuration has been adopted for the first layer of the model. It corre-

sponds to the possible signals coming out from ganglion cells and transmitted to a

region of the cortex through a transmission channel. These signals are, as we have

shown, the final result of the input data impinging on the receptors. They give information

about the time length of the input light pulse and, in our linear case, number of excited

receptors. This number has a close correspondence with the spatial length of the signal.

These signals are compared at a second layer, in the way shown in Figure 30.7. Boxes

correspond to the previously mentioned OPLCs. Output data are compared at the third

and following layers in the same way as before. The process keeps going until it

reaches layer 6, where there is just a single output.

The possibilities from this architecture are as many as possible logic functions are

able to perform the OPLCs. This situation gives the possibility of implementing any

type of synapses between neurons, both excitatory and inhibitory, as well as oscillatory

behaviors. The reported architecture is just a two-dimensional configuration without

lateral branches corresponding to other possible functions. Because the whole information

corresponding to the input image is transferred to a train of pulses in each type of ganglion

cells, a different type of architecture will have to be implemented for each of the input data

to analyze (for example, colors, shapes, motion, and edges).

Figure 30.7 Simplified model for first layers of visual cortex.
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We have considered just one of the two possible outputs from the OPLCs. Moreover,

just one type of logic function was adopted, namely, XOR. With these boundary con-

ditions, our structure is able to recognize symmetries or asymmetries in the input

signals. If some type of symmetry is present on the signal going onto the first layer of

cells, a 0 will be obtained at the output. On the contrary, asymmetries will give rise to

Figure 30.8 Signals generated at different layers of proposed model in Figure 30.7 when there

is symmetry in initial linear image.

Figure 30.9 Signals generated at different layers of proposed model in Figure 30.7 when there

is an asymmetry in initial linear image.
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a 1 at the final cell. Some other features could be implemented with similar configurations.

Some examples appear in Figures 30.8 and 30.9. Figure 30.8 corresponds to symmetry and

Figure 30.9 to asymmetry.

30.8 FUTURE TRENDS

Amodel of the mammalian retina and some zones of the visual cortex has been reported in

this work. It is based on optically programmable logic cell as basic units for the five differ-

ent types of retinal neurons, namely photoreceptor, horizontal, bipolar, amacrine, and

ganglion cells, and for the neurons at the V1 region. Every one has been modeled with

the same elemental unit. Just some minor changes in the internal or external connections,

as well as different weight functions, have allowed the simulation of different behaviors.

This possibility provides a new method to model neural networks with just a single type of

logic cell. Moreover, it allows easy implementation, with both electronic and optoelectro-

nic methods. The reported structure is able to emulate almost any possible output signal

from ganglion cells or any processing at higher levels of the visual cortex.

Although the presented retina model is composed of just two receptors, one horizon-

tal, two bipolars, one amacrine, and three ganglion cells, it could be extended to larger

configurations. The main advantage of this structure is the possibility of building

almost any retinal architecture with the use of a single basic structure as well as the possi-

bility of obtaining different ganglion outputs from a very simple structure. A further

remark needs to be pointed out. According to the reported model, amacrine cells are in

charge of detecting the illumination time on receptors. This fact has not been taken into

account in any previous emulation and deserves further study.

With respect to the processing signals in the visual cortex, the reported example is

just a very simple one. This model needs to be extended to more complex concepts than

the one analyzed here. A possibility is using methods similar to the one employed by us in

optical communications [20] to study some image characteristics as lines or shapes.
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CHA P T E R31

CNS REORGANIZATION DURING

SENSORY-SUPPORTED

TREADMILL TRAINING
I. Cikajlo, Z. Matjac̆ić, and T. Bajd

31.1 INTRODUCTION

Within the last 10 years novel methods of neurological rehabilitation were developed

which take into account the plasticity of the injured central nervous system (CNS). Numer-

ous studies [1] have demonstrated that when the impaired CNS is subject to repeated

practice in repeatable conditions a major functional improvement of the practiced task

is achieved. A general methodological framework was developed which emphasizes

that the level of sensory and motor augmentation should be set at the level that enables

execution of the practiced task, thus facilitating the reorganization of the injured CNS,

leading to functional improvement. When the functional task is walking, treadmill training

with partial body weight support (BWS) is the method that matured over the years and is

today used in most of the rehabilitation environments. The method meets the above-

mentioned demands regarding the necessary conditions facilitating neurological recovery

by supporting part of the body weight according to current sensory motor abilities of the

training subject and is at the same time simple enough to be used in everyday clinical prac-

tice. Several large-scale controlled clinical studies [2, 3] have proven the efficacy of the

approach in acute as well as chronic conditions. Unfortunately, the major deficiency of

the proposed method is that it requires a therapist to assist the walking subject. The thera-

pist sits alongside the treadmill assisting the stepping movements of the paretic leg, which

is strenuous work in ergonomically unfavorable conditions. Additionally, the assistance

provided by the therapist is rather variable and is even more pronounced with the

elapsed time of training and increased fatigue of both the therapist and the walking

subject. Functional electrical stimulation (FES) has a long tradition as an orthotic and

therapeutic aid in the rehabilitation of walking after paraparesis [4].1 Direct stimulation

of motoneurons (artificial activation of spinal neural circuits) has been successfully

employed to artificially augment the movement of the affected lower extremity, most

frequently during the swing phase. Years of clinical practice have shown that a single-

channel peroneal stimulation is an adequate aid to assist the flexion of the hip, knee,

and ankle in the population of incomplete spinal cord injury (SCI) persons. Consequently

1In the 1970s and 1980s the FES emerged as a new hope for patients with spinal cord injury. The nerve

stimulation restored the movement of the extremities and a significant contribution to the standing and

walking after spinal cord injury has been presented [5, 6].
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most research combined the method of treadmill BWS training with single-channel FES.

Therefore the physiotherapist is relieved of manually assisting the movement. The weight

bearing of paretic extremity during the stance phase is assisted by BWS. Hesse et al. [3]

and Field-Fote [2] have successfully demonstrated that the combined approach is much

more effective than classical treadmill plus BWS walking. The effectiveness takes place

when the physiotherapist manually controls the timing and intensity of the stimulation,

visually estimates the quality of the performed swings, and provides verbal feedback to

the walking subjects. According to these findings we have been motivated to develop a

system [7] that consists of several sensors for walking parameter assessment and provides

cognitive feedback. The goal was to make the training process repeatable. The system

comprises two two-axial accelerometers and a gyroscope. As supplemental sensors

knee and ankle goniometers were used. A computer algorithm [8] integrates all the

assessed signals and estimates the performed swing quality that is provided as three

state audio feedback. The patient was taught to maximize his efforts according to the feed-

back. The timing and intensity of the FES were crucial to assure repeatability that is

needed for neurorehabilitation. Therefore we presented a fully automated sensory-driven

FES augmentation system [9] that would also determine the proper timing of triggering

and intensity of the electrical stimulation. The neurorehabilitation training with an auto-

mated FES augmentation where patients’ effort plays an important role could improve

the efficacy of the treadmill training.

31.2 METHODOLOGY

An incomplete SCI patient’s walking disturbances or mobility deficiencies can be

overcome by FES assistance. In our case we have used single-channel surface peroneal

nerve stimulation that provokes flexion response and enables the patient to walk. The

walking cycle has been divided into stance phase and swing phase. The swing phase of

the right lower extremity during walking on a treadmill is presented in Figure 31.2.

His/her lower extremity movement has been monitored by a multisensor device attached

to the front of the shank and goniometers in ankle and knee joint. Using the efficient

algorithm [8] we were able to estimate the swing phase. It is based on correlation with

the reference or desired swing phase time course and represents a swing-phase quality,

which is provided as an audio cognitive feedback to the patient at the end of the performed

swing phase. The patient, aware of the quality of the performed swing phase, can improve

the following swing-phase performance by voluntary action. Depending on the success of

the voluntary action, the FES assistance intensity is adjusted. If the swing phase was

performed successfully, the FES assistance was decreased; in the opposite event it was

increased. To avoid continuous changing of stimulation intensity after every swing

phase, the counter was implemented to assure adjustment after several performed steps

[9]. A treadmill allows the patient a repeatable training of walking that leads to the reor-

ganization of the CNS [10].

31.2.1 Gait Reeducation System Design

Gait reeducation system consists of a sensor, a process unit, a stimulator with electrodes,

and audio cognitive feedback Figure 31.1. All these units form two control loops which

also involve a patient walking on a treadmill.

One of the control loops handles the FES assistance. Data obtained from the sensor

were used to estimate the swing-phase quality and to determine the shank angle.
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Considering that the preswing phase (second photo in Fig. 31.2) can be determined by the

shank angle, this information was used to trigger the FES. The duration of FES was with

reference to the duration of the swing phase. From another processing block the swing-

phase quality coefficient was provided and classified as “good,” “sufficient,” and “poor”

to be provided as cognitive feedback. The swing quality counter has been implemented

to supervise the FES assistance adjustment. It counted the number of consecutive good

and consecutive poor swing phases. When a certain number of consecutive swing

phases were performed, the intensity of the FES was adjusted. In a case of good swings

the intensity was decreased and vice versa.

The other control loop involved the patient voluntary action. Data assessed from

lower extremity during treadmill walking were used for the swing-phase quality esti-

mation (Section 31.2.1.1, [8]). On basis of the estimated quality the cognitive feedback

(Section 31.2.1.2) was formed. The patient was focused on feedback only and was

trying to improve the swing-phase quality by voluntary action.

Figure 31.1 Block diagram. The process unit provides cognitive feedback to the patient and con-

trols the needed electrical stimulation according to the assessed data. The patients’ voluntary activity

is gained by the cognitive feedback.

Figure 31.2 The picture presents the swing phase performance with FES support. FES was

decreased due to the marked improvement in swing phase performance.
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31.2.1.1 Swing-Phase Estimation The swing-phase estimation algorithm was a key

for both control loops described in the previous section. Data needed for estimation were

assessed by the multisensor device (Fig. 31.5) placed at the front of the shank. The angular

velocity v of the shank was used in combination with the neural network to identify the

swing phase during walking. When the swing-phase presence was detected, the time

course of the absolute value of the shank acceleration jamj was being stored into buffer.

The reference acceleration jarj time course was assessed during treadmill walking of

the healthy person or from the less affected extremity of the incomplete SCI patient

that will participate in the training or measurement process. After the swing phase, also

detected by the same neural network algorithm, was completed, the correlation between

the actual buffered acceleration time course and the stored reference took place:

wm,r(t,t) ¼
1

n

X

n

k¼1

am(t) � ar(t þ t) ¼ E½am(t) � ar(t þ t)� (31:1)

where t is a time delay and n a number of samples included in the computation. The

correlation coefficient rm,r is derived as

rm,r ¼
E½(am(t)� mm(t)) � (ar(t þ t)� mr(t þ t))�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E½(am(t)� mm(t))
2 � (ar(t þ t)� mr(t þ t))2�

p (31:2)

and presents the quantitative estimation of swing-phase quality (0 for poor, 1 for perfect).

Here m represents the mean of the signal.

The estimated swing-phase quality was available for the analysis of treadmill

walking and was classified for the purpose of cognitive feedback.

31.2.1.2 Cognitive Feedback The cognitive feedback was based on information

from the swing-phase estimation algorithm. While the swing phase was evaluated quanti-

tatively, it was not suitable for representation in real time because of its complexity. The

comprehension of the cognitive feedback is usually a cause for diverting the patient’s

attention from walking [11]. Regarding our research [8] the patient was able to distinguish

between three or two different levels of cognitive feedback depending on treadmill speed

during walking. Those levels were determined from the swing-phase quality using a

threshold classification algorithm:

cognitive_feedback algorithm

{

if (swing phase quality > 0 and < 0.1) ¼) swing phase ’poor’

if (swing phase quality > 0.1 and < 0.6) ¼) swing phase

’sufficient’

if (swing phase quality > 0.6) ¼) swing phase ’good’

}

The threshold levels were variable, depending on the patient’s deficit and the

physiotherapist’s decision, allowing settings to be preset before the training process

takes place.

As presented in Figure 31.3 the algorithm classifies the swing-phase quality into three

levels: good, sufficient, and poor. Also the thresholds are presented. Each classified cogni-

tive feedback level was provided to the patient during treadmill walking as a different sound.
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31.2.1.3 Computer-Controlled FES After the cognitive feedback has been provided

to the patient and enabled him or her to take voluntary action, the counter made a note of it.

If the swing phase was good, the counter counted upward until the following swing phases

were good. If a poor or sufficient swing phase took place, the counter was reset. On the

other hand the counter was counting poor swing phases until a good or sufficient swing

phase appeared and reset the counter. When the counter had reached the preset number

of phases, the FES intensity was adjusted and the counter reset. The consecutive good

swing phases decreased the stimulation intensity for 10% and poor swing phases increased

the stimulation intensity for 10%.

The FES assistance was provided to the patient during the swing-phase performance.

The stimulation had to be present before the swing phase; otherwise the swing phase might

not have taken place due to the patient deficit. In our previous research [8] the knee angle

was used to determine the moment of FES triggering. Due to problems with reliability and

attachment, the goniometer was replaced by an algorithm that provided the shank angle

according to the vertical plane. This parameter turned out to eliminate these problems

and goniometer was not needed anymore. The obtained parameter determined the

preswing phase (second photo in Fig. 31.2), and considering the user preset time delay

and stimulation time, the computer was able to determine the moment of triggering.

31.2.2 Instrumentation

The developed system (Fig. 31.4) is intended to be used with incomplete SCI patients.

Therefore it was applied and tested at the rehabilitation center. The data assessment

was done with the sensory device (Fig. 31.5). It is equipped with a microcontroller that

deals with assessment, processing, and serial communication with a PC (Pentium III,

500 MHz, 256 Mb RAM). The device comprises two two-axial accelerometers (Analog

Devices ADXL, Horwood, MA, USA) and a gyroscope (Murata ENC, Japan). Addition-

ally knee and ankle goniometes (Biometrics, Ltd.) were used. The user interface, as for all

other process and control software, is written in MATLAB/Simulink (MathWorks Inc.,

Hatick, MA, USA) and Cþþ. The user interface enables the parameter change, setting

the number of consecutive swings required for stimulation intensity control and many

other stimulation parameters. Clinically well-accepted single-channel surface peroneal

nerve stimulation with the following parameters was used: stimulation frequency 20 Hz,

pulse width 200 ms, and current 35 mA.

31.2.3 Measurement Procedure

In the case study an incomplete SCI patient (Table 31.1) was involved. His major deficit

was a lack of foot dorsiflexion and lower extremity swing. Therefore he was a regular FES

time [s]

s
w

in
g

 p
h

a
s
e

 q
u

a
lit

y
good

sufficient

poor

terminal swing phase

Figure 31.3 The cognitive feedback provides the quality of the swing phase in discrete levels:

poor, sufficient, and good. The criterion for the swing quality classification is adjustable.
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Figure 31.4 The FES swing reeducation set-up. Sensor assesses data from the affected extremity and sends it

to the process unit (PC). The process unit controls the electrical stimulator and provides the cognitive feedback.

Figure 31.5 The new multisensor device consists of 2 two-axial accelerometers and a single-axial

gyroscope. Assessed information (sampling frequency is 100 Hz) is processed by microcontroller

that provides data to PC via RS232.
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user for 1 month using MicroFESTM (The Jozef Stefan Institute, Slovenia) peroneal nerve

stimulator to provoke flexion response. The MicroFES is a single-channel electrical

stimulator triggered by the shoe insole with a pair of electrodes applied over the

common peroneal nerve. Development, testing, and validation of our approach took

place at the rehabilitation center.

TABLE 31.1 Patient Medical Dataa

Parameter Patient BK male

Age 30 y

Weight 84 kg

Height 175 cm

Injury type C4-5b

aInstitute for Rehabilitation, R. Slovenia.
bAmerican Spinal Injury Association (ASIA) classification C.

Figure 31.6 The upper diagram shows the presence and the intensity (in mA) of electrical stimulation. The

middle diagram shows all the assessed signals. “Swing on” presents the swing phase detection which is based

on gyroscope signal (“ang.vel”) that assesses the angular velocity of the shank. The diagram shows both

goniograms, the “knee” and the “ankle”, and the acceleration (“ja0j”) signal. In the lower diagram the swing

quality is presented. After pre-set number-5-of consecutive good swings the stimulation intensity was

decreased.
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Goniometers were placed at knee and ankle joints to measure knee flexion and ankle

dorsiflexion, respectively. The multisensor device was attached with Velcro to the shank

in the orientation, where tangential and radial acceleration of the movement in the sagittal

plane could be assessed. Also the shank angular velocity was recorded in the plane of pro-

gression. The patient was walking on a treadmill with FES support on both lower extre-

mities. Using the algorithm [8], the swing phase was detected, and during the phase the

time course of the absolute value of the ankle joint acceleration was recorded. The time

course presented the reference swing phase, which we wanted to be performed by the

patient during the training process.

As expected, the repeatable training process during which the patient has an

important active role by voluntary activity of lower extremities might influence on

reorganization of the CNS. The MicroFES was replaced by a computer-controlled

electrical stimulator assisting the movement of the right lower extremity. The assistance

provided by this stimulator was minimized according to the patient’s effort and success

in swing-phase performance. We asked the patient to focus only on cognitive feedback

that notified us about the quality of the performed swing phase. The performed swing

phase was considered good when the time course of the assessed ankle joint acceleration

was adequate to the reference swing phase. If the patient was able to perform five consecu-

tive good swings, the assistance provided by FES was decreased for 10% (Fig. 31.6). In

the case of poor consecutive swings the FES support was increased, while the alternation

of good, poor, or sufficient swings had no effect on FES intensity.

The training process lasted 4 min and was performed twice in one day.

31.3 RESULTS

The results of the repeatable training process are expected to show a higher level the

patient’s voluntary activity. According to the described method, the patient’s voluntary

activity consequently provokes a decrease of the needed FES assistance. Figure 31.6

presents the FES intensity retrenchment after the patient had performed five consecutive

good swing phases. The patient was aware of the quality of every swing-phase he had

performed via cognitive feedback. The cognitive feedback was the classified output of the

swing-phase quality estimation that is presented on the lower diagram. The user-defined

states are presented: The swing phase was considered poor when the swing-phase quality

was bellow 0.1 and over 0.6 when good. Between the defined states it was deemed sufficient.

The diagram also presents the swing-phase detection from the gyroscope signal.

In the beginning the patient was not able to walk or even perform the swing on the

treadmill without electrical stimulation; therefore he was an FES user. After the computer-

controlled electrical stimulator had been used to provoke flexion response, the patient was

asked to focus on cognitive feedback and his swing-phase performance during treadmill

walking. The swing-phase quality was better the less FES assistance was provided or,

on the other hand, with all emphasis on the patient’s voluntary activity. Figure 31.7

presents the patient’s treadmill walking during a 4 min-session. The physiotherapist

preset the stimulation parameters (stimulation frequency 20 Hz, pulse width 200 ms,

and output current 35 mA and time delays) in a graphical user interface on a PC to the

level that provides enough FES assistance. During walking the patient was able to

perform five consecutive good swing phases (lower diagram) and therefore the assistance

has been decreased for 10% (upper diagram). There were also several good swings

between 100 and 150 s and no FES intensity alteration, since the algorithm demands

five consecutively performed swing phases, either good or poor to change the stimulation
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intensity. Between 170 and 180 s the patient performed five consecutive poor swing

phases and the FES assistance was consequently increased for 10%. After 4 min we

were able to notice that the patient’s voluntary activity had increased as compared

to the beginning of the session as the FES assistance was decreased for 35%.

31.4 FUTURE TRENDS

In our earlier development of a gait reeducation system for use in incomplete paraplegia

the basic idea was to involve the patient in the rehabilitation process [4] by using cognitive

feedback supported by an artificial multisensor system. Triggering of the single-channel

FES system augmenting the swing phase was left to either the patient or the therapist.

Our earlier work [7] and the experiences of Hesse et al. [3] and Field-Fote [2]

exposed the need for automated triggering and intensity adjustment of the FES system

augmenting the swing for reasons of improving the repeatability of the training conditions

where the level of FES support is adjusted at a suitable level in accordance with the

walking subject’s performance. Therefore the main focus of the work presented in this

chapter was to develop the sensory-driven automated FES augmentation system and

explore the functioning of such a system in a clinical setting involving a neurologically

impaired subject.
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Figure 31.7 The effect of the good/poor swings on the stimulation intensity. When the patients’ swing

phase became good/poor the need of FES assistance was decreased/increased.
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The results of our case study clearly show that the proposed approach of sensory-driven

automated FES augmentation of the swinging extremity can be successfully incorporated into

gait treadmill training. The recordings presented in Figure 31.7 clearly demonstrate the inter-

action of the walking subject and the state of the sensory-driven FES augmentation system.

From the gait performance it appears that thewalking subject was indeed an active participant

of the gait reeducation process as in the first phase of the training session the level of FES

augmentation was reduced and thereafter varied around the level that appeared to be

needed. The main achievement of such training is that the walking subject receives not

only the cognitive feedback information, which is needed to improve performance on a

conscious level, but also relevant sensory feedback that is input to the spinal neural circuits

at the spinal level as the level of FES support is related to the gait performance. All together

rather comprehensive and repeatable gait-training conditions are achieved, which should

have impact on the increased quality and shortened duration of needed gait reeducation

treatment. By developing and testing the described gait reeducation system we are in a

position to evaluate the presumed effectiveness of the approach in the controlled clinical

trials, which is the objective of our further work.

REFERENCES

1. FIELD-FOTE, E. C. (2000). Spinal Cord Control of Move-

ment: Implication for Locomotor Rehabilitation Follow-

ing Spinal Cord Injury. Phys. Therapy, 80:477–484.

2. FIELD-FOTE, E. C. (2001). Combined Use of Body

Weight Support, Functional Electric Stimulation, and

Treadmill Training to Improve Walking Ability in

Individuals with Chronic Incomplete Spinal Cord

Injury. Arch. Phys. Med. Rehabil., 82:818–824.
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CHA P T E R32

INDEPENDENT COMPONENT

ANALYSIS OF SURFACE EMG

FOR DETECTION OF SINGLE

MOTONEURONS FIRING IN

VOLUNTARY ISOMETRIC

CONTRACTION
Gonzalo A. Garcı́a, Ryuhei Okuno, and Kenzo Akazawa

The study of the electrical signal generated by contracting muscle fibers (electromyogram,

EMG) is relevant to the diagnosis of motoneuron diseases and to neurophysiological

research. In general, clinical diagnosis methods for measuring EMGmake use of invasive,

painful needle electrodes. In this chapter, we describe a noninvasive alternative to these

methods, a newly developed algorithm consisting of three major steps: (i) signal

preprocessing; (ii) independent component analysis (ICA); and (iii) template-matching,

that decompose surface EMG (s-EMG) recorded by an electrode array.

32.1 ORIGIN, MEASUREMENT, AND ANALYSIS OF
EMG SIGNALS

The central nervous system (CNS) conveys commands to the muscles by trains of electri-

cal impulses through alpha-motoneurons (a-MN), whose bodies (soma) are located in the

spinal cord. The a-MN axons terminate in the motor endplate, where they make contact

with a group of muscle fibers. A motor unit (MU) consists of an a-MN and the muscle

fibers it innervates (see Fig. 32.1a).

When an a-MN fires and its electrical impulse reaches the end plate, it propagates

along the muscle fibers eliciting their mechanical contraction (twitch). The electrical

activity of a firing MU (motor unit action potential, MUAP) can be detected by intramus-

cular or surface electrodes, and the obtained signal is called an electromyogram [1].

The CNS regulates the force exerted by the muscle using two mechanisms: recruit-

ment of inactive MUs [2] and modulation of their firing rate [1]. As the firing rate

increases, more twitch contractions are added and thus greater contraction is achieved.

The study of the firing pattern of single a-MNs and some features of their MUAP

waveform such as shape or amplitude is relevant to both neurophysiological basic
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studies (e.g., CNS motor control strategies) and diagnosis of motoneuron diseases [3]. In

general, these investigations have been carried out with EMG obtained using needle elec-

trodes placed inside the muscle (intramuscular recordings). The MUAP waveform of

needle EMG recordings is generally sharp enough to identify single MUs. However,

this technique is painful for patients, time consuming for physicians, and a possible

cause of infections and tissue damaging.

Figure 32.1 (a) Alpha-montneurons (a-MNs) convey the commands from the CNS to the muscles.

A motor unit (MU) consists of an a-MN and the muscle fibers it innervates. (b) An example of signal

obtained with surface electrodes showing the superposed activity of several MUs.
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A noninvasive, painless alternative is to study surface EMG picked up by electrodes

placed on the skin over the target muscle. The acquisition and processing of s-EMG

signals are well-founded techniques [4–6]; however, as shown in Figure 32.1b, the

obtained signal is a time and spatial summation of several MUAPs that overlap (the

so-called interference pattern). For this reason, classical techniques used for intramuscular

recordings [7] cannot guarantee an effective decomposition of the s-EMG. In addition,

s-EMG has a very low signal-to-noise ratio (SNR) due to the filtering effect of the

tissues crossed by the signals before arriving at the measurement system [8–10] and

the high-level noise picked up by the electrodes [11].

There are several reports on automatic decomposition of s-EMG. Xu et al. [12]

developed an artificial neural network that worked up to 5% of subjects’ maximal volun-

tary contraction (MVC). Sun et al. [13] made use of a decomposition algorithm for MU

size estimation, but reliable firing rate calculation seems to be impossible due to numerous

misses in identifying MUAPs. Bonato et al. [14] proposed to decompose s-EMG in the

time–frequency domain. Maekawa et al. [15] applied blind deconvolution to decompose

s-EMG at very weak levels of contraction. Hogrel [16] developed a semi-automatic

algorithm for MU recruitment study, focusing only on the first 12 firings of each newly

recruited MU.

The above-mentioned methods are applicable to s-EMGs recorded at low force

levels, but they are not suitable when s-EMGs are recorded at high force levels. There

are other alternative approaches that estimate the MU firing rate at higher contraction

levels [17–20], but their goal is to give a MU general activity approximation, not a full

s-EMG decomposition.

Reucher et al. developed a high-spatial-resolution s-EMG (HSR-EMG) electrode

array based on a Laplacian spatial filter that allows the detection of single MU activity

in a noninvasive way [21].

The purpose of our studies was to reliably decompose s-EMG into their constitutive

MUAP trains (MUAPTs) at higher levels of contraction. To this end, we developed an

algorithm that uses signal conditioning filters, ICA [22–24], and a template-matching

technique [25, 26]. As has been shown previously [27–29], ICA can be used successfully

for solving spike overlaps. In each iteration of the algorithm, the action potentials of one

MU could generally be separated from the others. After that, using the template-matching

technique, we were able to identify the action potential trains of the target MU.

The algorithm decomposed satisfactory s-EMG into their constitutive MUAPTs up

to 30%, 50%, and even 60% MVC for six of the nine experimental subjects. The obtained

results were in agreement with the generally accepted behavior of MU firing rate.

For a detailed treatment of ICA, see [30] and [31]; for general blind source separ-

ation (BSS) techniques, see [32]. A complete study of pattern recognition and classifi-

cation can be found in [33, 34].

32.2 METHOD

32.2.1 Data Acquisition

Surface EMG signals were acquired from nine healthy, right-handed subjects (eight males,

one female) aged between 22 and 35 who gave their informed consent.

Figure 32.2 shows the experimental setting. Each subject sat comfortably on a chair

and was strapped to it with nylon belts. His or her forearm was put in a cast fixed to the

table with a shoulder angle of approximately 308. A strain gauge was placed between

forearm cast and the table fixation to measure the torque exerted by the subject.
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An electrode array was placed on the biceps short head muscle belly, out of the

innervation zone [35, 36], transversal to the muscle fiber direction after cleaning the

skin with alcohol and SkinPure (Nihon Kohden Corp., Tokyo, Japan). The electrode

array [37] (inset in Fig. 32.2) consisted of 16 stainless steel electrodes of 1 mm diameter,

3 mm height, 2.54 mm spaced in both plane directions attached to an acrylic rigid base.

The eight-channel, bipolar, simple differential EMG signal was measured [input impe-

dance above 1012 V, common-mode rejection ratio (CMRR) 110 dB], filtered with a first-

order, band-pass Butterworth filter (cutoff frequencies 70 Hz and 1 Hz), and then ampli-

fied (gain 80 dB). To reduce the impedance electrode-skin, Gelaid electrode paste

(Nihon Kohden Corp.) was applied at the tip of the electrodes.

In addition, a pair of bipolar, surface electrodes (Ag–AgCl, 1 cm in diameter) were

placed with a center-to-center distance of about 2 cm between one another along the

muscle fiber direction of the antagonist muscle (triceps lateral head) to check whether

there was involuntary co-contraction during the recordings. This signal was amplified

(gain 58.8 dB, CMRR 110 dB) to the range +10 V, full-wave rectified, and smoothed

with a second-order low-pass filter (cutoff frequency 2.7 Hz).

The target torque, set by a personal computer (PC), was displayed in an oscilloscope

as a thick line and the measured torque was displayed as a thin line. The subject was

asked to match both lines by watching the oscilloscope, trying to avoid co-contraction.

If co-contraction occurs, the force measure will not be accurate because it is defined

with respect to the MVC of only one muscle.

Figure 32.2 Experimental setting. Eleven biomechanical channels were recorded during constant-

force isometric contractions; eight-channel s-EMG, one channel of mass-EMG from the antagonist

muscle, the target elbow torque and its measured value. The inset shows the s-EMG electrode array

consisting of 16 stainless steel electrodes. Eight-channel EMG bipolar signals (CH 1 to CH 8) were

measured in simple differential mode.
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Eight channels from the s-EMG, one from the antagonist muscle’s EMG, and two

related to the elbow torque (target torque and measured torque) were sampled at a fre-

quency of 10 Hz, 12 bits per sample by a PCI-MIO-16E-1 analog-to-digital (A/D) conver-
ter card (National Instruments, Austin, TX) installed in the PC. These sampled signals

were sent to a recorder (8826 Memory HiRecorder, Hioki, Ueda, Japan) for real-time dis-

playing and also to a PC equipped with LabView Version 5 (National Instruments), which

controlled the experiments.

At the beginning of each experiment, the subjects were asked to exert for 3 s their

maximal contraction, trying to avoid co-contraction. Subject’s MVC was calculated as the

average around the peak of the maximum detected value. Recordings at 0% MVC were

carried out as well to estimate the noise level of the measurement system. Both initial

recordings were performed three times by each subject.

We recorded the EMG from the surface electrode array and the elbow torque during

5 s of isometric, constant contractions [38] at different levels between 5 and 60% of each

subject’s MVC. These measurements were repeated five times at each contraction level

allowing a pause between recordings to avoid fatigue.

32.2.2 Signal Processing

Data were transferred from the PC to a more powerful workstation where we applied an

algorithm consisting of several independent modules implemented using MATLAB (The

MathWorks Inc., Natwick, MA). Figure 32.3. shows the flowchart of this algorithm.

1. The raw EMG signal was preprocessed using a modified dead-zone filter (MDZF)

developed by us. This filter removed both the noise and the low-amplitude EMG

signals that did not reach a threshold set with the aid of a graphical user interface.

An example of the MDZF performance is shown in Figure 32.4. In this example,

the upper threshold was set at 20% of the channel maximal value, and the lower

threshold was set at 15% of the channel minimum value. The waveform between

the consecutive zero crossings A and B had a peak P1 that lied under the lower

threshold; therefore, it passed the MDZF, preserving its original features. The

same was applicable to the waveform between B and C because its peak P2 was

above the upper threshold. However, the waveforms contained between C andD dis-

appeared from the signal because their respective peaks did not reach the thresholds.

Only when the SNR of the raw EMG was too low, we applied a digital weighted

low-pass differential (WLPD) filter [39] defined by

y½n� ¼
X

N

i¼1

w i½ � x½nþ i� � x½n� i�ð Þ (32:1)

where x corresponds to the digitalized input signal, y to the output of the filter, andw

to the window function whose weights are given by w i½ � ¼ sin ip=Nð Þ, 0 , i � N, N

being the width (expressed in number of samples) of the window function. Since the

estimated average length of the MUAP central waveform was 4 ms, we used N ¼ 10

so that the central frequency of the filter was 253 Hz, and its cutoff frequencies (at

23 dB) were 164 and 349 Hz. The WLPD filter was designed by Xu and Xiao

specifically for enhancing the MUAP waveform of s-EMG [39]. This filter is the

weighted version of the simple LPD widely used for needle electrodes [40].

2. The blind-identification algorithm by joint approximate diagonalization of eigen-

matrices (JADE) developed by Cardoso and Souloumiac [41] was applied to

solve the overlaps and cancellations between action potentials of different MUs.
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Figure 32.3 Flowchart of the s-EMG decomposition algorithm. The main steps are: signal

preprocessing (1), decomposition (2), template matching (3 to 5), and post-processing (6 to 8).
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This algorithm takes as input a vector v containing the signals picked up by m detec-

tors (v1, v2, . . . , vm)
T, which are the linear combination of n unknown independent

components (ICs) s1, s2, . . . , sn. Denoting by s the n � 1 vector containing the ICs

and by A the m � n mixing matrix, the linear relationship between original sources

and recorded signals is given by v ¼ As. Thus, the problem of recovering the orig-

inal signals s is limited to finding the matrix A so that s ¼ A�1v, A21 being the

inverse of A.

The output of JADE is a matrix ~s containing the estimated original signals. Like

for other ICA algorithms, the JADE requirements that enable us to estimate s are the

following: (a) the original signals has to be stationary and statistically independent,

(b) their number has to be lower or equal to the number of detectors, and (c) the

mixing process has to be stationary and without any time delay.

In our case, the original signals were the MUAPTs generated by each MU

during a sustained contraction (see Section 32.4 for more details about the applica-

bility of the ICA model to s-EMG). After examining the performance of three ICA

algorithms (including FastICA [42]) as a preprocessing tool for s-EMG decompo-

sition, we decided to use JADE.

3. We selected the IC where one of the MUAPTs appeared clearest. Then we applied to

this IC the MDZF to obtain a list of MUAP candidates.

Figure 32.4 Modified Dead-Zone Filter (MDZF) performance over one s-EMG channel recorded at

30%MVC. Waveforms between points A and B, and between B and C passed the filter because their

respective peaks P1 and P2 were above the acceptance thresholds; whereas waveforms between C

and D did not pass the filter.
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4. The most representative and clearest MUAP waveform of the MUAPT was selected

as initial template T by visual inspection.

5. A scanning of the selected IC was carried out shifting T over each candidate C of the

list. They were compared using the following matching-error metric:

1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 gi � Ti � Cið Þ2

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PN
i¼1 gi � T

2
i

q (32:2)

which gave a normalized weighted measurement of the area left between the wave-

forms of the template T and the candidate C. Here, Ti and Ci are the ith elements of

vectors T and C respectively. The length of the template, N, is given in number of

samples, its value in our case was between 60 and 80, that is, a duration between 6

and 8 ms. We found that the most representative feature of a MUAP waveform is its

curve between the negative peak point in and the positive peak point ip; we therefore

set the weight value gi ¼ 2 for the samples between in and ip, being gi ¼ 1 otherwise.

The upper threshold for the matching-error 1 was set generally to approxi-

mately 0.3 (minimum similarity of 70%). If 1 was below the toleration threshold,

the candidate was accepted and annotated in a MUAP list; then, template T was

updated by the following weighted average:

Tnew
i ¼

v � Told
i þ 1� 1ð Þ � Ci

vþ 1� 1ð Þ
i ¼ 1, . . . , N (32:3)

The parameter v was set to 2 so that the current template T (obtained by aver-

aging previous MUAPs) had more weight than each newly accepted MUAP. Since 1

is lower bounded by 0, we can use (12 1) as an upper-bounded coefficient of simi-

larity between C and T.

6. With the MUAP list obtained in the previous step, the instantaneous firing rate (FR)

was calculated as the inverse of the inter-peak interval (IPI) between every consecu-

tive pair of identified MUAPs. The maximal coefficient of FR variation during iso-

metric contractions is generally reported to be up to 0.3 [43, 44]. From this

information, we calculated the upper and lower FR acceptance thresholds. Firing

rates outside those thresholds were considered unusual.

7. The candidates accepted as MUAPs were detected in the original EMG signal and

the MUAPT fading ratio was calculated as the interchannel quotient of the

median MUAP amplitude. If a candidate already accepted showed an FR above

the upper threshold, a low similarity measure, and a different fading ratio from

the rest of the MUAPs, we eliminated it from the list. In order to solve the FRs

below the lower threshold we performed a second IC scanning only around the

points of a supposedly missed MUAP.

8. The candidates finally accepted as MUAPs were eliminated from the original EMG

signal.

9. To estimate the power of a signal we used its root-mean-squared (RMS) value [45],

defined as

RMS ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

n¼1

x2½n�

v

u

u

t (32:4)
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where x is the signal and N is its length measured in number of samples. We defined

the SNR of an s-EMG recording as the quotient of this signal RMS and the RMS of

the signal recorded at 0% MVC (noise),

SNR ¼
RMSsignal

RMSnoise
(32:5)

If the SNR of the cleaned EMG signal was above 2 and if by visual inspection we

decided that there were further MUAPTs to be identified, the process was iterated,

using in each loop the signal cleaned by the former iteration (peel-off approach).

32.3 RESULTS

We examined the quality of the s-EMG recordings obtained from nine subjects performing

different contraction levels, ranking from 5 or 10% MVC to 30, 40, 50, or 60% MVC. The

recordings of six subjects were further investigated. The recordings of the remaining three

subjects were discarded: in two cases (Subjects 5 and 9) because the recordings had a SNR

below 2, in the other (Subject 2) because there were too many active MUs even at low

levels of contraction, producing too many MUAP overlaps to be solved by JADE (in

other words, there were more source signals than electrode pairs).

A total of 29 decompositions of s-EMGs into their constitutive MUAPTs were

carried out successfully using our algorithm.

An example of the performance of the ICA algorithm used in this study (JADE) is

shown in Figure 32.5. Figure 32.5a shows a WLPD filtered s-EMG signal recorded with

the electrode array at 30% MVC contraction level. Six active MUs were found. We

focused on the four major MUs (MU 1 to MU 4), whose action potentials appeared

clear over the noise. The MUAPs of MU 3 (A in the figure) and MU 4 (4) were identifi-

able in channels 1–4, those corresponding to MU 1(�) and MU 2 (W) in channels 5–8. It

was straightforward to visually distinguish them and measure their IPI to estimate their

average FR. However, at approximately t ¼ 30 ms and t ¼ 75 ms, overlaps of actions

potentials (MU 2 with MU 3 and MU 1 with MU 3, respectively) occurred. At

t ¼ 140 ms, there was a destructive summation of MUAPs that seemed to correspond to

MU 1, MU 2, and MU 4. In these conditions, neither visual inspection nor a template-

matching program would be able to identify correctly the MUAPs.

After applying the JADE algorithm to these signals, we obtained the five indepen-

dent components (IC 1 to IC 5) shown in Figure 32.5b. MU 1 activity appeared as the

main component in IC 1, with medium and little power in IC 2 and IC 3, respectively.

MU 2 power decreased from IC 3 to IC 1. The action potentials of MU 3 appeared inde-

pendently in IC 4. In this way, the overlaps at t ¼ 30 ms and t ¼ 75 ms could be solved.

Since MU 4 was detected separately in IC 5, the cancellation observed in the raw data at

t ¼ 140 ms was also clarified.

Figure 32.6 shows a decomposition example of a 30% MVC recording; Figure 32.6a

shows the final templates and Figure 32.6b the original raw s-EMG (only odd channels are

shown). This signal was composed of two major MUs (MU 1 and MU 2). Circles indicate

where aMU1 firingwas detected; crosses indicate the firings ofMU 2.MU1 appeared clear-

est in channel 3 and then faded through the other channels. MU 2 showed stronger action

potentials in channel 7. This fading is characteristic of all our electrode array s-EMG record-

ings; for this reason we applied JADE only to the group of channels where the target

MUAPT appeared stronger.

Figure 32.7 shows the histogram of the instantaneous FR calculated in step 6 of the

algorithm for a 30% MVC recording. Since the median FR was 21.4 firings/s, the
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Figure 32.5 JADE performance. (a) Eight-channel (Chan 1 to Chan 8) raw EMG signal obtained

at 30% of MVC isometric contraction level. The activity of four major MUs (MU 1 to MU 4) is

highlighted. Approximately at t ¼ 30 ms and t ¼ 75 ms an overlapping of two action potentials

occurred (MU 2 with MU 3, and MU 1 with MU 3 respectively). At t ¼ 140 ms, there was a

destructive summation of MUAPs (possibly, MU 1, MU 2, and MU 4). (b) Output of JADE

algorithm for the above signal after WLPD filtering. The action potentials of MU 1, MU 2,

MU 3, and MU 4 appeared nearly alone in different independent components (ICs), solving the

overlaps and cancellation observed in the raw data.
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Figure 32.6 An example of s-EMG decomposition; (a) Final templates for each s-EMG channel.

(b) Identified MUAPTs marked over the original s-EMG.

Figure 32.7 Instantaneous MU firing rate histogram for a recording performed at 30% MVC.

Median frequency was 21.4 firings/s. Vertical dashed lines mark the upper and lower acceptance

thresholds.
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acceptance FR upper threshold was set to 27.8 firings/s and the lower to 15.0 firings/s
(marked with vertical dashed lines). From this graph, we calculated that the average

number of outliers for all of the 29 decompositions in the first scanning was 12.8, with

standard deviation (SD) 5.3, which means a 12.5% (SD 3.6) of the total MUAPs.

After the second scanning of the IC, the median of the instantaneous FR was

calculated for each contraction level for each of the six subjects. In Figure 32.8 the

final results are plotted. Vertical thin lines indicate the SD associated to each point

(mean of the standard deviations: 2.5, SD 1.0). In subjects 4 and 8, it was possible to

decompose two MUAPTs. As reported previously [17, 46–48], as the isometric

Figure 32.8 Median firing rate at different levels of isometric contraction for six healthy subjects.

Vertical thin lines indicate the standard deviation (s.d.) associated to each point (mean SD: 2.45). In

the cases of Subject 4 and Subject 8, two MUAPTs were decomposed at each contraction level.
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contraction level increased, the FR of individual MU also increased. The recruitment

threshold of all the identified MUs was between 5 and 10% MVC. Therefore, we can

assume that all of them were of small size [2]. The FR evolution as the force level

increases could be different for bigger MUs.

32.4 DISCUSSION

In order to solve MUAP overlaps, we have used the ICA algorithm JADE. Ideally, in each

independent component given as output by this algorithm we should have obtained the

MUAPT corresponding to one, and only one, MU. However, this was not achieved in

all cases. The possible causes are the following: (a) the non statistical independence

between the original source signals (MUAPTs), (b) the number of source signals is

greater than the number of electrodes, and (c) nonlinearities and time delays of the

mixing process.

Generally, we applied JADE to a group of between two and four s-EMG channels.

When JADE was applied to a higher number of s-EMG channels, it was necessary to

correct the delay existing between consecutive channels using an alignment module

based on least mean-squared error.

In order to confirm whether an identified MU in a new contraction level was the

same as the one decomposed in the previous level, we compared their templates using

the similarity metric given in Eq. (32.2). We also compared their respective fading

ratios calculated in step 7 of the algorithm. The final decision was taken after visual

inspection of the original raw s-EMG.

The algorithm we developed is not fully automatic; it was necessary to set the

thresholds of the MDZF and of the scanning module. In addition, visual inspection was

necessary to decide to which channels to apply the ICA algorithm as well as to interpret

its output. The initial template decision was, in fact, manual. Optionally, the scanning

process can be graphically supervised in real time, so that the operator is allowed to

accept candidates that are below the similarity threshold. We now aim at supplementing

the algorithm with a specific module that will set such parameters.

32.5 FUTURE TRENDS

As s-EMG acquisition and processing techniques evolve, more reliable s-EMG decompo-

sition algorithms will be developed, making possible noninvasive neurological basic

investigations as well as diagnosis and follow-up of motoneuron diseases. However, it

will still be necessary to use needle electrodes for deep-muscle evaluation and for defini-

tive assessments.
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CHA P T E R33

RECENT ADVANCES IN

COMPOSITE AEP/EEG INDICES

FOR ESTIMATING HYPNOTIC

DEPTH DURING GENERAL

ANESTHESIA
Erik Weber Jensen, Pablo Martinez, Hector Litvan, Hugo Vereecke,

Bernardo Rodriguez, and Michel M. R. F. Struys

33.1 INTRODUCTION

The objective of this chapter is to provide an overview of the most recent advances in the

development of auditory-evoked potentials (AEPs) and electroencephalographic (EEG)

based indices for estimating the hypnotic depth during general anesthesia. In order to

accomplish this objective a comprehensive description of both AEP and EEG is included

as well as a section explaining different methods for rapid extraction of the AEP.

33.2 DEPTH OF ANESTHESIA

In order to ensure patient safety and well-being during surgery, general anesthesia aims to

produce three effects: hypnosis (sleep), analgesia (decreased responses to pain), and mus-

cular relaxation (reduced muscular tone, lack of movement). Accordingly, anesthetic

drugs are administered to the patient in order to achieve each effect. For example, hypnotic

drugs such as thiopental and propofol may produce sleep without suppressing movement

whereas opioids produce analgesia with only small hypnotic effect. Neuromuscular

blocking agents (NMBAs) are administered to achieve muscular relaxation.

Nevertheless, the variety of stimuli exerted during surgery as well as NMBA use

may obscure the signs of inadequate anesthesia. Of particular importance is the need to

prevent episodes of awareness, where the patient is awake during part of the operation

without it being noticed by the anesthesiologist due to the effect of muscular relaxants.

The patient may look totally comfortable; however, in the worst case situation he or

she is able to follow the action of the surgery.

A number of case reports describe patients experiencing psychological problems,

such as difficulties to sleep or nightmares, derived from explicit or implicit recall

caused by awareness during anesthesia [1, 2].
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Depth of anesthesia can be defined as the measure of the balance between the anes-

thetic, which causes depression of the central nervous system, and the surgical stimulation

that can cause increased level of arousal. The effects of these two factors, one decreasing

and the other increasing the arousal level, exhibit large interindividual variation, and hence

the actual depth of anesthesia is difficult to predict from administered dose and the surgical

stimulation.

Classical indicators such as blood pressure or movement do not necessarily indicate

the need for analgesics or hypnotics nor are they good indicators of depth of anesthesia,

and hence the need for a system to measure the effects of anesthetic drugs on-line

without the influence of muscular relaxants. This will contribute not only to predict the

onset of awareness but also to allow the medical practitioner to titrate anesthetic drugs

and prevent oversedation of patients, allowing a faster and better recovery.

Jones and Koniezko [3] categorized four levels of anesthetic depth and introduced

the term awareness:

Level 1: conscious awareness without amnesia

Level 2: conscious awareness with amnesia

Level 3: subconscious awareness with amnesia

Level 4: no awareness

The first level is also termed spontaneous recall or explicit memory, and it is the

level which is most easy to detect as it corresponds to “fully awake.” Levels 2 and 3 represent

levels of consciousness where there is no spontaneous recall but where the patient will

respond to verbal instructions given during the anesthesia either immediately (level 2) or at

a later time (level 3). A number of psychological methods are described to detect levels

2 and 3; however, the results have been ambiguous and hence their clinical value remains

uncertain [4]. Therefore only levels 1 and 4 are well defined in Jones and Konieczko’s scale.

33.3 AUDITORY-EVOKED POTENTIALS

The AEP is defined as the passage of electrical activity from the cochlea to the cortex,

which produces a waveform consisting of 11 waves in the EEG. These can be divided

into three parts: brainstem auditory-evoked potential (BAEP), middle-latency

auditory-evoked potential (MLAEP), and long-latency auditory-evoked potential

(LLAEP). These parts indicate the sites in the brain from which the various waves are

thought to originate (Fig. 33.1). The BAEP is represented by the Roman numerals I–VI

and extends from 0 to 10 ms after the stimulus. These waves represent the process of

stimulus transduction in the brainstem: acoustic nerve (I), cochlea nucleus (II), superior

olivary complex (III), ventral nucleus of the lateral lemniscus and preolivary region

(IV), inferior colliculus (V), and medial geniculate body (VI) [5–7]. The early cortical

or middle-latency auditory-evoked potentials, marked by the waves N0, P0, Na, Pa, and

Nb, are thought to originate from the medial geniculate body and the primary auditory

cortex [8]. These waves occur from 10 to 100 ms after the stimulus. The third part,

more than 100 ms after the stimulus, is a LLAEP and reflects the neural activity of the

frontal cortex and association areas.

Factors known to affect the BAEP are the age and sex of the subject; the rate, ampli-

tude, and polarity of the stimulus; the filter settings used; and the dose of certain adminis-

tered anesthetic agents and other drugs. Studies have shown that the BAEP peaks change

during anesthesia with volatile agents [9–13] but not during anesthesia maintained with
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intravenous agents [14–18]. The LLAEPs show great intra- and interindividual variations

because these signals, which arise in the association cortex, are heavily influenced by the

drugs of choice and the subject’s individual emotional state and alertness [19, 20].

The MLAEPs, on the other hand, show graded changes in their latencies and ampli-

tudes for a variety of anesthetic agents and less intra- and interindividual variations than

LLAEPs [16–18]. Therefore, MLAEPs have been widely examined as a measure of depth

of anesthesia.

The AEP is clinically useful in detecting and localizing lesions in the auditory

pathway and in the investigation of hearing loss in infants and in other noncommunicative

subjects. The AEP is present in the first days of life. In the infant, the latencies of the peaks

are prolonged and the amplitudes diminished. With advancing age, the peaks will change

toward latencies and amplitudes found in a normal adult. There is good evidence that the

AEP is useful in the evaluation of the state of maturation in newborn infants [21].

The first evoked potential measurement systems were based on the superposition of

ink-written or photographic traces, and electronic and later digital averagers were applied

to AEP-averaging processes.

The signal-to-noise ratio (SNR) of AEPs is often very poor, and hence they are more

difficult to extract than, for example, visual-evoked potentials. This is a problem,

especially in the operating theatre, due to the use of other electric equipment producing

vast amounts of noise. Modern instrumentation amplifiers with a high common-mode

rejection ratio (CMRR) can overcome the problems of a moderate level of electrical

noise; however, that arising from electrical surgery (diathermy), which produces a

strong electrical field, renders AEP monitoring impossible. Research applying AEP for

monitoring depth of anesthesia was initiated in the beginning of the 1980s [9, 10].

Since then a vast number of papers have been published in this field of interest [10–18].

Figure 33.2 shows the changes of amplitudes and latencies in the AEP with

increased doses of propofol.

The values shown above are examples of changes of AEP when administering differ-

ent doses of volatile agents; however, they are not general values as there is a big interindi-

vidual variability of the AEP response to anesthetics. In this study it was concluded that

thiopentone, propofol, etomidate, enflurane, and isoflurane all showed a dose–response

suppression of the AEP, whereas receptor-specific agents such as midazolam, diazepam,

Figure 33.1 Schematic of BAEP, MLAEP, and LLAEP.
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and flunitrazepamhave very little effect on theAEP. Finally it was concluded that isoflurane

and isoflurane þ 50 N2O (nitrous oxide) had identical effect on the AEP.

Schwender et al. [22] also correlated end-tidal concentrations of desflurane with

changes in various peaks of the AEP. A tendency toward increased latency of Pa, P1,

and Nb waves and decreased Na/Pa amplitude was noticed when the end-tidal concen-

tration of desflurane was increased; however, it is not statistically significant. The study

also showed that the latency of peak V of the BAEP changed very little through the

entire period of anesthesia. It was concluded that an end-expiratory concentration

greater than 4.5% significantly suppresses the different MLAEP components. Therefore

the risk of awareness phenomena (e.g., auditory perception and intraoperative awareness)

was diminished as well.

A variant of AEP monitoring is the 40-Hz auditory steady-state response (ASSR)

described by Plourde [23]. TheASSR is elicitedwith a stimulus frequency of approximately

40 Hz. This high stimulus frequency causes overlapping of the responses to the successive

stimuli. Both inhalational agents and intravenously administered drugs cause a profound

attenuation of the amplitude of the 40-Hz ASSR. The author concludes that the 40-Hz

ASSR depends on the level of consciousness; however, further validation is needed.

33.4 EXTRACTION OF AEP

33.4.1 Introduction

Throughout the last two decades a number of methods have been explored in order to

facilitate a single-sweep or a few-sweeps extraction of the AEP. The main focus of this

section is to review a series of methods with particular emphasis on the autoregressive

model with exogenous input (ARX model) to extract the AEP. The performance of this

Figure 33.2 MLAEP during

increased propofol concentrations.
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method is examined extensively whereas other methods for single-sweep analysis are

briefly described.

33.4.2 Wavelets

Wavelets have found use in a number of signal processing applications in biomedical

engineering. The wavelet approach is often termed a “mathematical microscope”

because it is able to detect transient changes in a signal with various degrees of detail.

The wavelet transformation (WT) is a signal decomposition into a set of basis functions,

called wavelets. These are obtained from a single standard wavelet by dilation and con-

traction (scaling) and time shifts. Consequently, a WT scale can be viewed as an alterna-

tive to time–frequency representation, leading to a time-scale representation.

Bartnik et al. [24] applied the WT to the AEP and concluded that an AEP from a

single sweep could be extracted even though the AEP and the EEG are in the same fre-

quency range, provided that their temporal positions differ. However, the SNR of the

AEP would be improved if some preaveraging had been carried out. The WTs have

been applied to visual-evoked potentials (VEPs) by Geva et al. [25]. The wavelet approach

is a promising tool for single-sweep analysis of evoked potentials and it should be explored

further. Recently Kochs et al. [26] have applied wavelet analysis to extraction of AEPs in

clinical studies.

33.4.3 Wiener Filtering

TheWiener filter is the optimal solution in a least-mean-square (LMS) sense of the follow-

ing problem:

s(t) ¼ d(t)þ n(t)

where s(t) is the measured data, d(t) the desired signal, and n(t) the noise sequence.

The exercise is to find a filter that produces the optimal estimate of d, described in the

frequency domain as

~D( f ) ¼ F( f ) � S( f )

It can be shown that the optimal filter is obtained by

F( f ) ¼
jD( f )j2

jD( f )j2 þ jN( f )j2

The signal and noise have to be additive, statistically independent, and in a wide

sense stationary process. This requirement can be difficult to accomplish if d is the AEP

and n the background EEG activity. A poor SNR also makes it difficult to calculate a

proper estimate of D( f ) and N( f ). In its classical form a Wiener filter is only able to

optimally weigh the relative power spectral density of the signal and the noise at each

frequency; hence the phase of the desired signal is not properly recovered.

33.4.4 Optimal Vector Quantization

Haig et al. [27] suggest the use of global optimal vector quantization to classify single-trial

event-related responses (ERPs). Vector quantization represents the signal vectors by a

small number of pattern or code book vectors. Each signal vector is classified on the

basis of which codebook vector it is nearest, for example, by calculating the Euclidean

distance. It was concluded that only a small subset of the ERPs correlated well to the
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averaged ERP waveform, and so this method facilitates a more detailed analysis of the

ERPs as compared with moving time average (MTA).

33.4.5 Nonlinear System Identification by
m-Pulse Sequences

In 1982 Eysholdt and Schreiner reported on the use of m-pulse sequences to extract the

BAEP from the ongoing EEG activity [28]. The BAEP was considered as the impulse

response of the auditory pathway. The BAEP was obtained by the cross-correlation func-

tion of the overlapped response with a stimulus-related sequence. The method allows a

faster stimulus rate compared with that allowed by moving time averaging and therefore

decreases the processing time necessary to extract the AEP. The method was further

refined by Shi and Hecox [29]. The trade-off is that the morphology of the AEP might

be changed by nonlinearities in the response due to the increased stimulus rates. An exam-

ination of the effects of increased stimulus rate is found in [30]. However, as pointed out

by Shi and Hecox [29], an application of the m-pulse sequence is that one data record sim-

ultaneously contains information about the BAEP (or MLAEP if the window is increased)

as a response to a variety of stimulus rates.

33.4.6 Autoregressive with Exogenous Input (ARX) Model

33.4.6.1 Introduction The ARX model, also termed single-input, single-output

(SISO) model [31], is applied in several distinct fields. The application of ARX models

to VEPs was originally described by Cerutti [32, 33] and later by Liberati and Cerutti

[34] and applied by Magni [35]. The SNR of the VEP is considerably larger than that

of the AEP; hence single-sweep analysis was possible. For AEP extraction, a preaverage

of 15–50 sweeps improves the SNR before applying the ARX model [36]. The concept of

the ARX model is that the preaveraged sweeps contain a stochastic part (the preaveraged

EEG) and a deterministic part (the AEP). Both are then modeled by calculating the coeffi-

cients of the ARX model.

33.4.6.2 Definition Several publications suggest that an EEG segment can bemodeled

by an autoregressive (AR) process [37, 38]. The ARX model is then obtained by adding an

exogenous input to the AR model; hence the ARX model is defined by the equation

y(t)þ a1 � y(t � 1)þ � � � þ an � y(t � n) ¼ b1 � u(t)þ � � � þ bm � u(t � mþ 1)þ e

where n is the order of the backward coefficients (a1, . . . , an) and m the order of the forward

coefficients (b1, . . . , bm). The output is y, u the exogenous input, and e the error.

The exogenous input u is an AEP produced by averaging the latest 256 sweeps. The

output y is an average of the 18 latest collected sweeps consisting of averaged EEG back-

ground activity and the AEP. When the coefficients of the model are determined, the

ARX–AEP is obtained by infinite impulse response (IIR) filtering of the exogenous

input u. Figure 33.3 shows a diagram of the ARX model.

33.4.6.3 Model Order The model order is determined by considering the error

function defined by

L ¼
1

N

X

N

i¼1

e(i)2

where e(i) ¼ y(i)� ŷ(i) and N is the number of samples in one sweep.
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The variables y(i) and ŷ(i) are the real and predicted preaverage of 18 sweeps,

respectively. The identification is tested by the Andersons test on whiteness of the predic-

tion error e. If the prediction error is white at a confidence level of 95%, the identification

is accepted. The optimal values of n and m are selected by minimizing the final prediction

error (FPE) function defined by Akaike [39]:

FPE ¼
N þ nþ 1

N � n� 1
L

where n is the total number of coefficients of the ARX model. The FPE represents the need

of minimizing the error function and the need of limiting the number of parameters of the

ARX model.

The order of the ARX model should ideally be calculated for each sweep. This is a

very time consuming process; hence to comply with the need of fast processing time, a

fixed ARX model order for both backward and forward coefficients is chosen. The Jury

criterion is applied to decide whether the poles are inside the unit circle. In the opposite

case the AEP was rejected.

33.4.6.4 Estimation of Signal-to-Noise Ratio In situations where the SNR is extre-

mely low, more than 18 sweeps are necessary in order to produce a reliable output of the

ARX model. Hence an estimation of the SNR is needed. The SNR can be assessed by cal-

culating the ratio between the amplitude of a synchronous and an asynchronous average of

N sweeps. If a response to the stimulus is present in the sweeps, then the synchronized

average will enhance the peak amplitudes of the response. On the other hand, the

asynchronous average will not enhance peak amplitudes of the response; therefore the

maximal amplitude is an estimate of the noise in the averaged signal. Hence the SNR

estimator is defined as

SNR �
max amp(synchronized average)

max amp(asynchronous average)

The asynchronous average process is an estimation of the background noise. The SNR can

be based on a single asynchronous average process or a set of several asynchronous

averages using its values to have a better estimation of the noise and obtain useful statisti-

cal inferences about the estimated SNR.

A closed-loop control system, using a proportional–integral–differential (PID) con-

troller, is applied to control the SNR of the averaging processes. A desired SNR is defined

Figure 33.3 Generalized ARX model. White noise is driving the autoregressive part, defined by

the averaged EEG activity. Preaveraging was done using 18 sweeps.
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and reflects the adequate AEP extraction. The controller acts on the averaging processes in

the following manner: If the estimated SNR of the extracted AEP is low (less than the

desired AEP), the number of averages is increased in order to improve the SNR. This

has the disadvantage of reducing the system’s ability to track fast changes on the AEP.

In contrast, if the estimated SNR is higher than desired, the number of averages of the

averaging processes is reduced to improve the detection of fast changes of the AEP.

This control system balances the quality of the extraction with the speed of the averages

and is applied to the averaging processes of the ARX model.

33.4.6.5 Control of Click Volume Most studies done with the AEP have used a

fixed click intensity in the range 60–80 dB hearing limit (HL). However, the hearing

threshold has large interindividual variations; therefore a fixed volume level has two

disadvantages. If the click intensity is too high, the patient can produce a startle response,

which is a muscular peak time locked to the acoustic stimulus that superimposes itself on

the peak of neurological origin, the AEP. If the click intensity is too low, the patient will be

incapable of eliciting a reliable AEP. A click volume controller will then be ideal in order

to provide each patient with the proper stimulation. In the case of overstimulation, the

muscular peak produced by the startle effect is of much larger amplitude than the AEP;

therefore the SNR increases to approximately 4–10. The controller should then decrease

the volume until the SNR has reached the target considered as an adequate stimulation.

The minimum volume is 45 dB. On the other hand, a very low SNR could be caused by

a hearing deficiency. In this case the click intensity should be raised, but with the constraint

that the intensity should not exceed the maximum level (e.g., 70 dB HL).

A proposed volume controller that follows these guidelines is shown in Figure 33.4.

This control system is similar to the control system described in the previous section,

based on an estimated and a desired SNR value (one which is considered to correspond

to an adequate stimulation volume). A fuzzy subsystem is incorporated into the control

system in order to modify the desired SNR (SNRd). The fuzzy inference system combines

the information about how the different parts of the AEP are modified by click intensity

(BAEP, MLAEP) and also may describe the situations where the AEP is affected in a

different way by the volume depending on patient state. For example, when the suppres-

sion of the EEG is high (long periods with amplitude less than around 5 mV, burst suppres-

sion) related sometimes with a very deep anesthesia, the AEP physiologically is almost

completely suppressed, so the desired SNR must be reduced to avoid an unnecessary

increase of the volume. At this point the fuzzy model also modifies the global SNR to

Figure 33.4 Volume of

acoustic stimulus regulated

by SNR. An SNR target

value has been applied and

shown to be adequate for

extraction of the AEP.
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incorporate this feature into the control system. The EMG is also an important parameter

included into the fuzzy system (the startle effect is stronger when the EMG is high), so the

system must give the adequate SNR estimation to carry out the volume control under this

situation.

Both control systems based on the SNR, to control the number of averages and to

control the stimulation volume, can be used alone or together in order to give the adequate

stimulation and the optimum number of averages to extract an AEP that better describes

the patient’s hypnotic state.

33.5 EEG-BASED INDICES

33.5.1 Clustering Analysis

Clustering analysis of EEG segments was described by Thomsen et al. [40, 41]. Initially,

11 features were extracted, 10 normalized autocorrelation coefficients and the root-mean-

square (RMS) amplitude of segments with 2 s duration. The features were transformed to

power spectra by AR modeling using the Durbin algorithm and stored in a feature vector.

Unsupervised learning based on hierarchical clustering of representative sets of segments

was performed, with the aim of establishing a taxonomy where a group of EEG segments

could correlate to a certain depth of anesthesia. It was concluded that the clustering of EEG

segments correlated better with the clinical signs of depth of anesthesia than did single

parameters such as spectral edge frequency (SEF), median frequency (MF), and power

ratio.

A classification by neural networks was attempted by Eckert et al. [42]. A number of

EEG epochs (channel C3 P3, duration 30 s segments) yielded patterns which were used as

the training input of a self-organizing neural network. A total number of 25549 EEG

epochs recorded in 196 patients in the period beginning 5 min before induction of anesthe-

sia until extubation were used for the training. In comparison with the SEF and MF of the

EEG, neural discriminant analysis achieved better discrimination between awake and

deeply anesthetized stages (reclassification of 96% vs. 70%). According to the authors

both hierarchical clustering and neural discriminant analysis produce better results than

do single parametric methods. It should be remembered, though, that none of these

methods have been reproduced by any other research groups, partly because the complex-

ity of these algorithms is higher than in single parametric methods.

33.5.2 Bispectral Analysis of EEG (BIS)

Bispectral analysis is a double-frequency analysis. It is defined as the double fast Fourier

transform (FFT) of the third-order cumulant of a signal in the time domain. Conventional

power spectral analysis assumes that all sine waves present in the signal are independent,

whereas bispectral analysis quantifies the degree of phase coupling between every pair of

frequencies. The degree of phase coupling at each frequency pair is represented with the

bicoherence index (normalized bispectrum), which is a continuous variable. The triple

correlation (third-order cumulant) of a zero-mean time signal is defined as the integral

R(a, b) :¼

ð

1

�1

f (t)f (t þ a)f (t þ b) dt

where f (t) is a time signal.
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The bispectrum can now be calculated as the two-dimensional Fourier transform of

the triple correlation

B(u, v) :¼

ð

1

�1

ð

1

�1

R(a, b)e�2pj(uaþvb) da db

The amplitude of the bispectrum is dependent not only on the phase coupling but

also on the amplitude of the analyzed signal. The amplitude influence is omitted by nor-

malizing the bispectrum and the result is termed the bicoherence.

Bispectral analysis is implemented in a commercially available monitor, the A-2000

BIS monitor, (Aspect Medical Systems, Inc., Newton, MA). The A-2000 calculates an

index based on the bicoherence, called the BIS. The BIS index is an interval from 0 to

100 where increasing value is assumed to correspond to a higher probability of conscious-

ness. The exact algorithm is not published and this makes it impossible to describe phys-

iological relationship of the BIS to depth of anesthesia. The clinical relevance of BIS is a

database, including a very high number of patients undergoing general anesthesia. The

BIS index version 4.0 is a weighted sum of four subparameters: beta ratio, bispectral

analysis, quasi-burst suppression, and burst suppression [43].

Flaishon et al. [44] used BIS to predict the recovery time from a thiopentone or a

propofol bolus. They concluded that a patient with a BIS value of less than 55 would

have an extremely small probability of consciousness. Doi et al. [45] reported recovery

of consciousness at bispectral values from 50 to 85 with an increasing probability at a

higher value of the index. The BIS values before and after eye opening were not signifi-

cantly different, and in this particular study it was concluded that BIS could not detect the

transition from unconsciousness to consciousness, where consciousness was defined as a

response to a well-defined command.

33.5.3 Patient State Index (PSI)

The patient state analyzer (PSA 4000) is a four-channel processed EEG monitor (Physio-

metrix, Hospira, Inc., Lake Forest, IL). The PSI algorithm was constructed by using

gradual discriminant analysis based upon multivariate combinations of quantified EEG

(qEEG) variables found to be sensitive to changes in the level of anesthesia but insensitive

to the specific substances producing such changes. It includes changes in power in various

EEG frequency bands, changes in symmetry, and synchronization between critical brain

regions and the inhibition of regions of the frontal cortex. The PSI is computed from con-

tinuously monitored changes in the qEEG during surgery using statistical analysis to esti-

mate the likelihood that the patient is anesthetized. The computed PSI is displayed in

numeric form on a 0–100 scale. The PSA performance during propofol, alfentanil, and

nitrous oxide anesthesia was described by Drover et al. [46]. The number of publications

and the prevalence of this device are low compared to that of the BIS monitor.

33.5.4 Entropy

A number of techniques have been applied to analyze the “irregularity” or “disorder” of

the EEG signal in order to determine depth of anesthesia. The rationale behind this

concept lies in the notion that the EEG changes from irregular to more regular patterns

as the anesthetic level increases.

To this effect, a variety of parameters have been studied. These include the spectral

and approximate entropies, fractal spectrum, and hierarchic Lempel–Ziv complexity

[47–49].
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Possibly the most developed of these methods is the one applied by Viertiö-Oja et al.

[47]. The system, based on spectral entropy calculations, uses a set of time windows of

different lengths which are selected according to the corresponding frequencies in the

EEG in order to shorten the response time, which could be excessive for real-time appli-

cations. Two spectral entropy values are then calculated in the frequency bands 0–32 Hz

(EEEG) and 0–47 Hz (EEEGþEMG). The EEEG entropy evaluates the frequencies where the

EEG has most of its energy, while the EEEGþEMG analyzes also the frequencies where

EMG is present in order to detect muscular activity that could interfere with the EEG

measurements. This technology has been implemented in the M-module from Datex-

Ohmeda, Finland.

33.5.5 Cerebral State Index

A new index, the cerebral state index (CSI, Danmeter A/S, Odense, Denmark) is using

four subparameters from the EEG: beta ratio, alpha ratio, difference between those two,

and burst suppression, defining an index from 0 to 100 as a fuzzy weighted sum of

those. The beta and alpha ratios were defined as

b-ratio ¼ log
E30�42:5Hz

E11�21Hz

a-ratio ¼ log
E30�42:5Hz

E6�12Hz

where E indicates the energy in the specific frequency band.

During burst suppression (BS) the alpha and beta ratios are no longer monotonously

decreasing as a function of the anesthetic depth and therefore cannot be used in the calcu-

lation of the final index. The novelty of the CSI is that a fuzzy inference system was used

to define the index. The particular method used was the adaptive neuro fuzzy inference

system (ANFIS) [50]. Figure 33.5 shows the structure of ANFIS, with N inputs and one

output, the CSI. The therapeutic window for adequate surgical anesthesia was defined

as 40–60, lower than 40 indicating deep anesthesia and above 90 being awake.

The CSI was validated in a number of studies; one of these will be highlighted here.

The data used for this study was originally published in Anesthesiology [51], where data

was obtained from 20 ASA I (American Society of Anesthesiologists State I) female patients

aged 18–60 years and scheduled for ambulatory gynecologic surgery and monitored with

EEG and AEP. The clinical signs were assessed every 4 min using the Observers Assessment

of Alertness and Sedation (OAAS) scale, which ranges from 5 to 0, where 5 is awake and 0

Figure 33.5 Structure of ANFIS system for calculation of CSI.
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corresponds to anesthesia with no response to painful stimuli. Figure 33.6 shows that a high

correlation between the CSI and the OAAS existed. This is also reflected by the prediction

probability (PK value) which was 0.92 [standard error (SE) ¼ 0.01]. The CSI has also been

tested during target-controlled infusion of propofol [52].

33.6 AEP-BASED INDICES

33.6.1 Introduction

The AEP contains several peaks; hence it is necessary to conclude on which of these

values to base clinical inference. In 1988 McGee et al. published a paper illustrating the

use of different strategies (e.g., area of a peak and trough complex) for mapping the

AEP waveform into a single number [53]. One of the conclusions of the study is that detec-

tion of amplitude and latency of a single peak is subject to a high degree of variability.

Single peak latency (Nb) as a measure of loss of consciousness has been described

by Schwender et al. [54]. Mantzaridis suggested an index based on the sum of square roots

of differences between samples in a sweep [55].

Jensen et al. [36] have proposed an index, the A-line ARX index (AAI) that includes

only the middle-latency part of the AEP to achieve increased robustness. A didactic study

and statistical analysis describing how the measured depth of anesthesia and the actual

depth of anesthesia should correlate was published by Smith et al. [56, 57].

33.6.2 Requirements

The requirements of an AEP index for detection of depth of anesthesia are outlined below:

1. Least possible delay in order to show rapid transitions from asleep to awake.

2. Independent of patient conditions such as skin surface resistance, sex, and age.

Figure 33.6 The OAAS

versus CSI during propofol

anesthesia.
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3. Drug independence. The index should remain unchanged when administering an

equipotent dose of all common anesthetic drugs used in clinical practice.

4. Sufficient SNR to distinguish index changes from noise.

The first requirement is accomplished if the delay in the extraction of the AEP is

minimal, for example, by using the ARX model.

The second requirement contains several parts. The change in skin resistance can

alter the energy (amplitude) of the collected sweeps. The skin resistance should be

below 5 kV, and ideally this parameter should be measured frequently with an impedance

meter. Increasing skin impedance will in general increase the noise in each sweep; there-

fore the energy will increase as well. The influence of age was described by Hegerl et al.

[58] to increase the peak latency of the P300 with 0.92 ms/year (mean peak latency was

280 ms in subjects aged 20 years) whereas the P200 (160 ms in subjects aged 20 years)

was not influenced by age. Amenedo and Diaz [59] found that age correlated positively

with Na, Na–Pa, and Nb–Pb amplitude; also they did not find any gender differences.

A study by Philips et al. [60] concluded that Pa and Pb amplitudes and latencies did not

differ between healthy male and female subjects.

The third requirement is related to the use of different anesthetics. Volatile and intra-

venous anesthetic agents are known to produce different effects on the BAEP, whereas

both types of anesthetics produce a dose–response influence on the MLAEP.

The fourth requirement mostly depends on the quality of the extracted AEP. A high

SNR (within an adequate range, a very high SNR could be a symptom of overstimulation,

not related to the state of the patient) makes inference on the AEP more reliable. It is

desirable that the ratio between index values while awake and while asleep be as large

as possible. This can also be expressed by requiring the minimum index value while

awake to be larger than the maximum index value while asleep. This is the ideal perform-

ance characteristic, meaning that the sensitivity and specificity are both 100%. However,

this has not been obtained by any depth of anesthesia parameter so far.

33.6.3 AEPex Index

Mapping of the two-dimensional AEP into a scalar was described by Mantzaridis and

Kenny [61]. The index was defined in such way that a decrease in amplitude or an increase

in the latency of the AEP, as it is observed when the patient is anesthetized, results in a

decrease in the index. The AEP used for the calculation of the index had a latency of

144 ms, containing 256 samples. It was extracted by averaging 256 sweeps, resulting in

an update delay of approximately 30 s.

The formula of the index is shown below:

AEPidx ¼ k �
X

N�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jxi � xiþ1j
p

33.6.4 AEP-Derived A-Line ARX Index: AEP Index with
Correction for BAEP, LLAEP, and Muscular Response

The AEPex described in the previous section weighs all parts of the AEP, with latency

0–144 ms, equally. Like the AEPex, the AAI is also based on the assumption that the

peak amplitude decreases and the peak latency increases when anesthetizing the

subject. In order to fulfill requirement 3 it was proposed to exclude the BAEP part of

the AEP to obtain an index behavior with less variation in the response to an equipotent
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dose of different anesthetic drugs. The acoustic stimulus may produce a muscular

response, which can be detected in the latency interval 10–20 ms [5].

Figure 33.7 shows the AEP from three different awake subjects. Figure 33.7a has a

very dominating muscular artifact with amplitude much larger than the rest of the AEP,

whereas the subjects in Figure 33.7b,c present an AEP with less muscular artifact. This

phenomenon was described by Picton [5], who showed that tension in the scalp

musculature profoundly altered the early part of the MLAEP recording. Furthermore,

the muscular response is suppressed by administration of NMBA; hence NMBA interferes

with the changes occurring due to the hypnotic effect of the anesthetics.

The LLAEP is known to have larger interindividual variability than the MLAEP.

During physiological sleep (stages 3 and 4) it has been reported that the amplitudes of

the P2 peak (with latency 168 to 248 ms in that particular study) and the P3 peak

(252–408 ms) were larger than while the subjects were awake [62]. Similar results

were obtained by Van Hoof et al. during anesthesia [63]. Furthermore, that study also

showed amplitude increases for the P1–N1 complex during anesthesia. The P1–N1

complex has latency down to 100 ms. Therefore the AAI has been designed to incorporate

only the MLAEP in a window from 20 to 80 ms in order to exclude BAEP, LLAEP, and

muscular artifacts. The BAEP and LLAEP are effectively excluded but the startle response

(muscular artifact) can in some occasions surpass 20 ms if the volume of the acoustic

stimulation is not attenuated. The formula is

AEPindex ¼ K
X

N�1

i¼k

xi � xiþ1

�

�

�

�

where xi is the ith sample (the value of xi is the amplitude of the AEP at the time equal to i

multiplied by the sampling period) of the AEP and N the number of samples in one sweep.

Figure 33.7 Examples of

AEP from awake subjects

with different amplitudes of

muscular response.
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The parameter K is used for normalization such that the AEP index equals 100 when the

patient is awake. With the applied sampling frequency fs ¼ 900 Hz, the values of k and N

were 18 and 72, respectively, in order to achieve the 20–80-ms window for the AAI. The

AAI index is currently in use and implemented on the A-line monitor (Danmeter A/S,
Odense, Denmark).

33.7 COMPOSITE AEP AND EEG INDEX

The objective of this new approach is to define a hybrid index (HI) derived from AEPs and

EEG parameter(s). The index should reliably differentiate awake and asleep states in a

graduated manner.

In order to test the method, 120 patients from our database scheduled for elective

surgery were included in the analysis. Seventy patients underwent cardiac surgery and

were anesthetized with propofol using a target-controlled infusion (TCI) Diprifusor

pump (target 5 mg/mL blood propofol concentration during 5 min, steps 1 mg/mL

every 4 min). Propofol was administered until loss of response to noxious stimuli,

defined as loss of a meaningful response to a verbal command. The remaining 45

patient data set was recorded at Gent University Hospital for two previous studies

[51, 64]. These were scheduled for elective gynecological surgery. Three groups were

then defined: group A only receiving propofol, group B receiving first 2-ng/mL effect

site concentration of remifentanil, and group C receiving 4 ng/mL effect site con-

centration of remifentanil before the start of propofol infusion. The AEP and EEG

were collected using the AEP monitor (Danmeter A/S, Odense, Denmark). During the

anesthesia clinical signs were recorded and the state of the patient was defined based on

an expert’s evaluation using the OAAS.

33.7.1 EEG Parameter

The EEG is recorded from the same electrodes as the AEP. During anesthesia the energy

in the EEG typically shifts from higher to lower frequencies; therefore indices based on

the ratio between the energy in two frequency bands should carry information about the

level of consciousness during anesthesia. The particular component of the EEG used

here was the beta ratio, that is, the logarithm to the ratio of energies in the 30–47-Hz

band and that of the 10–20 Hz.

33.7.2 Hybrid Index

The HI is defined as a linear weighting of the AAI and the EEG index (EI). The SNR of the

AEP is calculated. If the SNR value is less than 1.5, then the weight on the EI was

increased and vice versa. The AAI version 4.1 implemented in the AEP monitor/2 is a

hybrid index combining the AEP, EEG, and BS.

The obtained indices were compared to the OAAS scale values. The ability of the

different indicators to describe the level of consciousness was evaluated using prediction

probability (PK), which compares the performance of indicators having different units of

measurements, as developed by Smith et al. Then, a PK of 1 for the BIS or AAI indicator

would mean that the BIS or AAI always increases (decreases) as the patient gets lighter

(deeper) according to the “gold standard” depth measure. Such an indicator can perfectly

predict anesthetic depth. Alternatively, a PK value of 0.5 would mean that the indicator is

not better than tossing a fair coin for predicting anesthetic depth.
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The results of the PK analysis are shown in Table 33.1. A t-test showed that the PK

of the HI was significantly larger than the AAI and EI ( p , 0.05). Figure 33.8 shows an

example of the behavior of the HI during induction of propofol.

The results show that there is significant difference between HI while awake and

while anesthetized. The AEP is in general abolished during very deep anesthesia while

there still are changes in the complexity of the EEG. But the AEP has in general a

better performance than the EEG in the lighter levels of anesthesia. In conclusion,

an index combining information from both the AEP and EEG seems to have a better

prediction of the level of consciousness at all ranges of the scale.

TABLE 33.1 The Prediction Probability (PK ) Values for the Three Indices

AAI (ver 4.0) EI (EEG) HI (AAI ver 4.1)

PK (SE) 0.89 (0.01) 0.88 (0.01) 0.92 (0.01)

Figure 33.8 The HI

values (solid curve)

during increased target

effect site concentration

of propofol (dashed

curve). The OAAS 0,

the deepest level

of anesthesia,

corresponded to a HI

of 18 at 1900 s after start

of infusion.
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CHA P T E R34

ENG RECORDING AMPLIFIER

CONFIGURATIONS FOR

TRIPOLAR CUFF ELECTRODES
I. F. Triantis, A. Demosthenous, M. S. Rahal, and N. Donaldson

34.1 INTRODUCTION

Cuff electrodes are appropriate for recording electroneurogram (ENG) signals chronically

after implantation [1]. Because the amplitude of the neural signal inside the cuff is usually

only a few microvolts, it may easily be overwhelmed by interference or noise. A major

source of interference is the myoelectric activity of nearby muscles (the electromyogram,

or EMG) [2]. The cuff is an insulating tube that serves to increase the signal amplitude

and, if perfectly symmetrical, prevents pick-up of signals from unwanted potentials

outside the cuff. Tripolar cuff amplifier configurations include the quasi-tripole (QT),

the true tripole (TT) [3], and the recently introduced adaptive tripole (AT). The latter

was developed to compensate for actual asymmetry in the cuff which introduces

interference [4, 5]. We expect that neural signals will be used as feedback and

command sources in future neuroprosthetic systems, such as muscle stimulators for

correcting gait, providing hand-grasp or controlling the urinary bladder after spinal cord

injury [6–8]. This chapter offers an insight into recording cuff electrodes and amplifier

configurations used with tripolar cuffs.

34.2 CUFF ELECTRODE DESCRIPTION AND
SIGNAL CHARACTERISTICS

The ENG recording techniques for peripheral nerves using cuff electrodes were introduced

by Hoffer et al. [9] and Stein et al. [2]. The increase in signal amplitude due to the cuff in

recording the ENG extraneurally was shown in [10] to be the result of the local restriction

of the extracellular space which, in effect, increases the resistance of the extracellular

return path of the fiber’s action currents. The optimum cuff length was shown experimen-

tally in [2, 11] to be between 20 and 30 mm with the signal amplitude decreasing when

the length is smaller than 15 mm. The amplitude of the signal was also shown in [12]

to decrease with the square of the cuff diameter for diameters up to 4 mm, indicating

that the effectiveness of cuff electrodes improves for tighter fitting cuffs, as shown exper-

imentally in [1, 9, 11] where single fiber action potentials ranging from 3 to 20 mV were

recorded using cuffs with inner diameters of 2.6 and 0.3 mm, respectively.
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Typical cuffs consist of silicone tubes with ring electrodes made of platinum–

iridium or stainless steel attached to the inside wall, covering most of the circumference

but leaving a gap for a longitudinal opening so that the nerve may be inserted into the cuff

(Fig. 34.1c). Originally, closure of the slit along the cuff was achieved by tying threads

around [13]. Later methods include injecting a liquid polymer into the cuff to fill

the space between the nerve and the cuff to make the fitting tighter [14]. Naples et al.

introduced the “spiral cuff” in [15], which curls up to fit the nerve tightly but is still

able to expand if the nerve swells, perhaps due to inflammation. This design has been

used for stimulation and recording and is made to curl by gluing an unstretched sheet

onto a prestretched sheet of rubber. A cuff made by dip coating a mandrel and pre

formed platinum electrodes was presented in [16], where the cuff closure mechanism

was implemented using interdigitating cubes. Typically, the slit along the tube is glued

or covered by a silicone flap attached to the cuff [17].

The placement of the cuff around the nerve causes some changes in the nerve after a

period of implantation, as connective tissue covers and invaginates the cuff. The nerve

may also change shape to adapt to the internal space [18]. To avoid compression neuro-

pathy, the cuff diameter has to be at least 20% larger than that of the nerve bundle [11],

and its length must be at least 10 times larger than its inner diameter [19]. Increasing

the length significantly reduces interference; however, there are limitations depending

on the location of implantation.

The dimensions of the cuff affect the spectrum of the recorded ENG and therefore

the cuff acts as a spatial filter [20]. The characteristics of this linear filter depend on the

number and position of the electrodes inside the cuff and are affected by the tissue

impedances and the cuff length but not so much by its diameter. The spatial filter has a

broad-bandpass characteristic with a peak in the spectrum for each conduction velocity

and, therefore, fiber diameter [20]. As pointed out by Upshaw [21], this means that the

signal-to-noise ratio should be improved by using narrow-bandpass filters, centered on

the spectral peak corresponding to the propagation velocity for the fibers from which

one wishes to record.

In general neural frequencies (ENG), seen at the tripolar electrodes, lie in the

frequency range of 500 Hz–10 kHz, usually with maximum power between 1 and

3 kHz. Frequencies at the low end are often difficult to record due to electrical interference

from the surrounding muscles. Their myoelectric (EMG) potentials are of millivolt

Figure 34.1 (a,b) Ideal monopolar and bipolar cuffs. (c) Tripolar cuff placement around nerve.

The remaining slit is usually glued or covered by a flap to ensure that the tube is closed along

its length.
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amplitudes with a frequency range of 1 Hz–3 kHz, peaking at approximately 250 Hz [22].

There is also interference from thermal noise, generated from the electrodes and the

amplifiers, which, with a good amplifier, can be about 0.7 mV root-mean-square (RMS)

[1, 23]. With signals of such low level, interference is also likely to appear at power

line frequencies and possibly from radio sources if care is not taken to prevent rectification

before the high-gain stages of the amplifiers.

If the nerve is stimulated, the neural signal recorded has greater amplitude (few

tenths of a millivolt), as the neurons conduct a synchronous volley of action potentials

or compound action potential (CAP). The reaction of the muscles activated by the stimu-

lated nerves is an M-wave, which may be two or three times larger than the naturally

occurring EMG and peaks at higher frequencies. There is then also an additional source

of interference, the stimulus artifact, due to the field from the pulse current. This

appears at the electrodes as a spike that may reach several millivolts [22, 24]. Typical

stimulation-induced signals are shown in Figure 34.2.

Figure 34.3 Example of bladder stimulation implant [39].

Figure 34.2 Typical stimulus artifact, CAP, and M-wave signals recorded from tripolar cuff [25].
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There are three main application areas for recording cuffs [13]. They can be used in

chronic studies of physiology and pathology of the neuromuscular system by measuring

naturally occurring signals in animals, as in [26–28]. They can also be used for studying

the regeneration of axotomized nerve fibers and the status of the nerves after damage [29,

30]. Finally, sensory signals recorded using cuff electrodes can be used for feedback in

neuroprostheses, as shown by animal studies in [22, 31–34] and in humans, where

recorded signals have been used for control of foot-drop stimulation in hemiplegics [6,

35], and in hand-grasp applications in tetraplegics [36–38]. An example for the latter is

shown in Figure 34.3, which shows the block diagram of an implant for ENG recording

and for stimulation of the sacral nerve roots [39].

34.3 INTERFERENCE REDUCTION AND
CUFF ELECTRODE PARAMETERS

In monopolar cuffs (Fig. 34.1a), the recording is carried out between a ring electrode

inside the cuff and a reference electrode outside: The inner electrode has to be close to

the center of the cuff to maximize the amplitude of the measured ENG. In bipolar cuffs

(Fig. 34.1b), where the measurement is taken differentially between the two electrodes,

the amplitude of the measured signal is proportional to the separation between the

electrodes; however, as the electrodes approach the edges of the cuff, the amplitude

drops, as the low-resistivity area of the fluid outside the cuff comes into effect. In tripolar

cuffs measurements are taken between the middle and the two end electrodes. In order to

maximize the amplitude of the signal, the end electrodes have to be placed close to the

ends of the cuff. However, the main factor affecting measurements in tripolar cuffs is

the spacing between the electrodes and not their actual position or the length of the

cuff. The monopolar and tripolar cuffs have similar frequency responses and their

lengths affect their properties as spatial filters. Overall the tripolar cuff gives higher

signal amplitudes than the monopolar and bipolar counterparts, and measurements are

less sensitive to the cuff length, as the most significant parameter is the electrode pitch.

A screened tripolar cuff has two extra electrodes nearer the ends than the outer electrodes

of the tripole and shorted together. This arrangement further decreases the amplitude of

EMG interference, but for best effect, the additional electrodes should not be placed

right at the ends of the cuff, and so this tends to increase the overall length. However,

considering interference from external fields, using a screened tripole has the same

effect as increasing the length of the cuff as it effectively decreases the gradient of the

interfering field inside it [4].

According to [40] the tissue inside the cuff approximates an ideal distributed

resistance, and therefore, there are no significant phase variations between interfering

potentials caused by a single external source. This is of great significance: The linearizing

property of the cuff [41] makes it appear like a potential divider, and the constant phase

means that the equivalent model has no capacitors (though the electrode models do

have capacitance). However, end effects reduce the linearity of the interference field

inside the cuff [4]. Longer cuffs result in greater interference reduction, as the resistance

of the tissue inside the cuff becomes higher and therefore less current flows through the

cuff due to external fields. In practice, the cuff length is likely to be determined by

anatomical and surgical considerations such as the unbranched length of the nerve that

can be exposed, the amount of movement that is expected in the tissue, the blood

supply, and so on. For a given length of cuff, the interference from an unscreened
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tripole will be minimized when the outer electrodes are near but not right at the end of the

cuff. The interference will then depend on the impedance balance for the two halves of the

tripole.

34.4 TRIPOLE CUFF AMPLIFIERS

34.4.1 General Requirements

The designer of ENG amplifiers to be used with cuff electrodes should consider several

requirements that are shared with other biomedical amplifiers. The differential gain

must be high, usually to raise the signal level from microvolts to the appropriate range

for analog-to-digital conversion, but lower gains may be necessary if the same system

is to be used for stimulation-induced signals. The front-end noise of the amplifiers must

be very low, and care must be taken to choose the optimal technology [42]. Although

transformer-coupled ENG recordings have been reported in the literature (e.g., in [22])

for scaling up the signal before introducing amplifier noise from subsequent stages, the

use of transformers in implants is completely impractical [34] and is not necessary.

Minimal noise will be achieved if the so-called noise resistance of the amplifier equals

(or, in practice, approximates) the source resistance [43]. Low-power integrated circuit

design is desirable for a recording system that is to be integrated into an implant [22].

If the reference electrode for the differential amplifier is not close to the cuff, there

will be common-mode voltages (perhaps from the ECG). These will produce differential

voltages at the inputs, which will then be amplified with the signal, due to two effects:

1. If capacitors are used in series with the electrodes, to prevent direct current flow,

differences between the impedances of the capacitors (due to tolerances) will

cause interference. This effect is greater at low frequencies.

2. The source resistances of the electrodes in the cuff are not equal (see below), and if

there is a cable from the cuff to the amplifier, the capacitances from signal wires to

the body are likely to be unequal. These resistances and capacitances will generally

make unequal time constants that produce interference at high frequencies [23].

Both effects are reduced by increasing the common-mode impedance of the amplifier.

When testing ENG amplifiers, the effects cause a reduction in common-mode rejection

ratio to values that may be much lower than will be possible for the amplifier when

operating with low source impedances [23].

The differential input impedance need not be very high. The common-mode

impedance should be .106 V but the differential need only be high compared to the

source impedances (102–103 V) for the attenuation to not be important (i.e., �104 V).

34.4.2 Amplifier Configurations

Figure 34.4 shows the interface impedances [4, 22] of the cuff and the internal potential

fields of the ENG and interference sources due to its linearizing property [41]. This

schematic diagram allows an analysis of the voltages appearing between the electrodes

in terms of the currents of the nerve and muscle sources and the tissue and electrode

impedances. The tissue impedance outside the cuff is Zo and inside it is separated

into Zt1 and Zt2 between the middle and each of the end electrodes, resulting in

Zt1þ Zt2 ¼ Zt. The electrode impedances are Ze1, Ze2, and Ze3 and it is assumed here
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that Ze1 ¼ Ze2 ¼ Ze3 ¼ Ze. The current source IEMG produces the interference signal from

its field outside and inside the cuff and the ENG is shown as an equivalent voltage source

in series with the middle electrode. The interfering voltages across points AB and BC

appear as antiphase while the respective ENG signals appear in phase.

The QT (Fig. 34.5a) and the TT (Fig. 34.5b) are the two main amplifier

configurations used with tripolar cuffs for ENG recordings. In the QT the short-circuited

Figure 34.4 Basic cuff interface impedances and linearized ENG and interference fields (not

to scale). The ENG is shown as an equivalent voltage source. Typical values: Zo ¼ 200 V,

Zt ¼ 2.5 kV, Ze ¼ 1 kV, IEMG ¼ 1 mA, VENG ¼ 3 mV [4, 13, 22].

Figure 34.5 (a) The QT and its cuff connectivity (based on Fig. 34.4). (b) The TT [3].

(c) The AT. Gains G1 and G2 are controlled by feedback signals Va and 2Va. The input stage

is preceded by low-noise preamplifiers, not shown.
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end electrodes give their average voltage provided their impedances are equal. If the cuff is

perfectly sealed along the slit and the central electrode is exactly in the middle of the outer

electrodes and the tissue impedances of its two halves are equal, the potential recorded by

the middle electrode [41] is the same as the average potential recorded by the shorted end

electrodes. Therefore, when a differential amplifier is connected across the middle elec-

trode and this virtual terminal, as in the QT, the interference potentials at the two

inputs are equal and cancel out at the output. In the TT the two outer cuff electrodes

are connected to two separate differential amplifiers and the middle electrode to the

other input of both amplifiers. The outputs from the two amplifiers are then summed in

a third amplifier where ideally the two EMG potentials are of opposite polarity and will

cancel out [3]. One benefit of the TT is that the ENG amplitude recorded is about twice

that in the QT.

Analysis of the thermal noise for the QT and the TT (unpublished results) must take

account of the voltage and current noise from the amplifiers but also the Johnson noise

from the electrode impedances Ze1–Ze3 and from the tissue in the cuff Zt1 and Zt2.

Assume that the external resistance (Zo) is negligible and the input impedance of the

amplifiers is infinite. The relative amplitudes for the four sources are shown in

Table 34.1. Given that the signal amplitude ratio is 2 : 1, this shows that the signal-

to-noise ratio of the TT will be better than the QT if amplifier voltage noise or cuff

noise dominates, similar if amplifier current noise dominates, and inferior if electrode

noise dominates.

Despite the use of tripole electrodes, significant artifacts are still present in the

recorded signal for three main reasons [44]:

1. Inhomogeneous tissue growth inside the cuff causes the impedances Zt1 and Zt2 to

change unevenly with time [21] varying the imbalance inside the cuff.

2. Tripolar electrode structures require a high degree of symmetry. Manufacturing

tolerances of perhaps+0.5 mm in the electrode positions will destroy the symmetry

required and result in large artifacts.

3. The linearization of the EMG field inside the cuff is not ideal due to end effects.

The performance of the QT and the TT can be compared in terms of interference

reduction and cuff imbalance sensitivity. Using the parameters of Figure 34.4, the residual

EMG at the output of the QT and the TT can be expressed in terms of tissue and electrode

impedances, ignoring any cuff end effects [4]. If the gain of the QT amplifier is unity

(i.e., G ¼ 1), the residual EMG at its output is [44]

VQT ¼ IEMG

Zo(Zt2 � Zt1)

2Zo þ 2Zt þ ZtZo=Ze
(34:1)

For interference elimination VQT should be zero; therefore Zt1 and Zt2 should be

equal. If there is an imbalance so that Zt1=Zt2, the QT does not provide any means of

TABLE 34.1 Main Noise Sources in QT and TT Amplifier

Noise source Relative amplitude, T T : QT

Amplifier voltage noise
p

2 : 1

Amplifier current noise 2 : 1

Thermal noise from electrodes Ze 5 : 1

Thermal noise from cuff Zt 1 : 1
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correcting this imbalance externally. However, it achieves interference reduction due to

the screening provided by short circuiting the outer electrodes [41].

The TT doubles the ENG amplitude (Vi1 is added to Vi2) but reduces EMG interfer-

ence using only the linearizing property of the cuff [4]. Ideally, EMG signals would still be

eliminated because their two inputs Vi1 and Vi2 are equal and opposite, while the respective

ENG signals, appearing at the same points, are in phase. Hence, the ideal TT amplifies the

ENG while completely eliminating the interference. Generally, assuming unity gain for

Gout, the residual EMG at its output is [44]

VTT ¼ IEMG

Zo(G1Zt1 � G2Zt2)

Zo þ Zt
(34:2)

Therefore, if G1 ¼ G2 ¼ 1, VTT � 2VQT. So the doubling of the ENG output of

the TT is less than the increase in interference for a given imbalance (proportional to

value of (Zt12 Zt2), defined in [25] and later re-defined in [39] and [51]). This shows

that the TT is more sensitive to imbalance than the QT.

However, a modification of the TT may provide externally controlled imbalance

correction using adjustable-gain amplifiers for G1 and G2. The AT shown in

Figure 34.5c was developed to automatically compensate for the cuff imbalance and mini-

mize EMG interference [4, 5, 45]. The input amplifiers have variable gain controlled by

the differential feedback signals Va and 2Va. The control stage performs a comparison

of the amplitudes from the two channels by first rectifying the signals and then amplifying

the difference of their absolute values using amplifier G3. The output of G3 is applied to a

long-time-constant integrator, which produces the feedback signals Va and 2Va. The

variable-gain amplifiers counterbalance the cuff imbalance by equalizing the amplitudes

of the composite signal at the outputs of the two channels that are applied to summing

amplifier Gout, similar to the TT. As a result the equal and antiphase interfering signals

from the two channels are eliminated and in-phase ENG signals are added and amplified.

34.5 COMPARISON OF CONFIGURATIONS

34.5.1 In Vitro

In order to test a tripolar amplifier configuration in the laboratory a saline bath can be used

to provide realistic conditions [46, 47]. In the configuration illustrated in Figure 34.6, the

EMG field is generated by two electrodes in various positions inside the bath and the ENG

signal is injected by a transformer in series with the middle electrode. Cuff asymmetry

is present, indeed it is difficult to avoid, and an obstacle is moved inside the cuff [48]

to introduce further imbalance, similar to that introduced by tissue growth. This allows

a comparison of the performance of the amplifier configurations for various positions of

the obstacle inside the cuff. Other saline bath experiments can be performed with an

insulated wire through the cuff, with a very thin strip of insulation removed [46, 49], repre-

senting one node of Ranvier. Such experiments can be performed for evaluating both cuff

and amplifier designs.

Figure 34.7 shows the results from an experiment performed in [48] using the saline

bath setup of Figure 34.6. Comparative measurements were taken from a discrete-

component amplifier system allowing the use of both the TT and the AT. The EMG

was represented by a random signal band limited from 50 to 300 Hz, with a maximum

amplitude of approximately 1.5 mV peak superimposed to a 2-mV, 1-kHz sinusoidal

signal representing the ENG. The waveform at the top (Fig. 34.7a) illustrates a recording
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of the system output for 20 s. The TT was employed for the first 10 s of the recording and

then the AT was switched on, reducing the interference substantially. The imbalance

applied by the obstacle was approximately 12% (imbalance definition in [25]) and the

outputs of the two configurations are magnified over 40 ms at the bottom of

Figure 34.7, with the TT output (Fig. 34.7b), having a signal-to-interference (S/I) ratio

Figure 34.7 (a) System output for 12% imbalance. Obstacle position: 15 mm inside cuff.

System operates for 10 s as TT, then is switched to AT. (b,c) The 40-ms snapshots of

TT and AT, respectively.

Figure 34.6 Saline bath

experimental setup.
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of approximately 1 : 44 and the AT in Figure 34.7cwith S/I ratio of 1 : 3, where the higher

frequency sinusoidal ENG is visible.

34.5.2 In Vivo

A comparison of all the three tripolar cuff amplifier configurations was performed

through in vivo experiments on rabbits described in [45]. The recording system used

was configured to enable manual selection between the QT, TT, and AT configurations.

The signals were produced by bipolar stimulation applied to the sciatic nerve and the

recording cuff was fitted around the tibial nerve. Figure 34.8 illustrates the responses of

the three tripolar configurations for one of the sessions of the experiment, scaled to

have the same CAP amplitude to allow a visual comparison of the output waveforms.

In this case the QT has the largest and the AT the smallest stimulus artifact peak, while

the M wave is smallest for the AT and largest for the TT, measured between 3 and

5 ms. The main parts of a typical input waveform to the system during this experiment

are pointed out in Figure 34.2b. The performance of the recording systems in this

experiment was measured in terms of S/I ratios considering only the M wave as inter-

ference in the calculations. The presence of the stimulus artifact degraded somewhat

the performance of the AT, which was nonetheless found to be statistically better than

both the QT and the TT.

34.6 FUTURE TRENDS

It is not at all easy to get satisfactory neural signals from electrodes in nerve cuffs due to

their small amplitude relative to thermal noise and to interference from outside the cuff.

However, it has been shown to be possible to obtain satisfactory signals chronically

from a tripolar cuff in a patient using the QT configuration with a cable connecting the

cuff to a commercial instrumentation amplifier [23, 50]. Compared to the QT, the TT

should be slightly better in signal-to-noise ratio (SNR) and, if made adaptive (i.e., AT),

should be better at rejecting interference despite the unpredictability of the impedances

in the cuff. We expect that these are significant advantages. From a technical point of

Figure 34.8 The QT, TT, and AT outputs scaled to the same CAP amplitude.
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view, the implementation of an AT requires that low-noise amplifiers and the feedback

system shown in Figure 34.5c must be integrated to make them small enough to be

included in an implant and yet draw little current from the power supply. Based

on these requirements, an integrated AT has been fabricated and tested and was shown

in [51] to achieve up to about to 300 higher SNR than the TT and the QT for high imbal-

ance values. At present, the challenge is to incorporate it into the implantable system

shown in Figure 34.3, which can monitor ENG from recording cuffs and stimulate at

the same or other cuffs. Such implanted devices, with inputs from nerve and outputs to

nerves, should be able to perform neuroprosthetic functions that have not been possible

in the past.

However, until such devices are available for use with patients, discussing the

viability of using neural signals for feedback or command inputs is speculative. We

expect to see trials of various neuroprosthetic systems that have ENG inputs and anticipate

seeing improvements to the cuff design (e.g., mounting the amplifiers on the cuff [52]),

improved electronic design, and new ways to enhance the signal (e.g., [53]), which will

make it possible to extract more information without resorting to electrodes that penetrate

the nerve.
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CHA P T E R35

CABLE EQUATION MODEL FOR

MYELINATED NERVE FIBER
P. D. Einziger, L. M. Livshitz, and J. Mizrahi

35.1 INTRODUCTION

The cable equation is a simple and elegant one-dimensional (1-D) tool capable of handling

analytically linear and nonlinear nonmyelinated axon models [1–4]. It relies on two fun-

damental physical concepts, namely Kirchhoff’s current and voltage laws, leading to a

transmission line model. This model has been shown, for nonmyelinated axons surrounded

by fluid of infinite conductivity, to be the dominant mode of the exact solution of a 3-D

potential problem [5, 6]. Recently, it has been shown that this solution is still dominant

even in the case where the outer conductivity is finite [7].

Unfortunately, the cable equation has not yet been extended analytically for

myelinated axon model, which is crucially important for applications involving vertebrates.

In attempting to extend the nonmyelinated axon model, we start here again with Kirchhoff’s

laws while imposing periodicity on the membrane conductivity. The resultant modified

transmission line problem leads to a linear second-order ordinary differential equation

with periodic coefficients, known as Hill’s equation [8–10]. Interesting applications of the

theory of Hill’s equation can be found in many branches of mathematical physics. Hence,

the features and characteristics of our novel excitation model are well studied and tabulated.

The general internal source response, expressed via repeated convolutions,

uniformly converges provided that the periodic membrane is passive. The solution can

be interpreted as an extended source response in an equivalent nonmyelinated axon

(i.e., the response is governed by the classical cable equation). The extended source

consists of the original source and a novel activation function, replacing the periodic mem-

brane in the myelinated axon model. Furthermore, the conductivity of the equivalent axon

is the precise average of the periodic myelinated axon conductivity. Hill’s formulation is

further reduced into Mathieu’s equation [8–10] for the specific choice of sinusoidal con-

ductivity, thereby resulting in an explicit closed-form expression for the transmembrane

potential (TMP). Floquet’s modes, recognized as the nerve fiber activation modes, can

also be incorporated in our excitation model, provided that the periodic membrane point-

wise passivity constraint is properly modified. Indeed, the modified condition, enforcing

the periodic membrane passivity constraint on the average conductivity only, leads to

the inclusion of the nerve fiber activation modes in our linear model [11–13].

The validity of the generalized cable equation model, presented herein for

myelinated nerve fibers, is verified through rigorous Green’s function formulation for

TMP induced in 3-D myelinated cylindrical cells. As previously [5–7], it is shown that
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the dominant pole contribution of the exact modal expansion is the TMP solution of our

myelinated model.

35.2 CABLE EQUATION MODEL

35.2.1 Myelinated Nerve Fiber

The myelinated axon model, depicted in Figure 35.1, consists of two cylindrical regions,

the axoplasmic core and the surrounding fluid, separated by a thin myelinated membrane

of radius a. Assuming that the core and the outer fluid are homogeneous, isotropic, ohmic

conductors, their electrical parameters are denoted by si and se ! 1, respectively.

The myelinated membrane is characterized by periodic conductivity Gm(z).

Let the distance between two adjacent nodes of Ranvier be denoted by Lp; then

Gm(z) ¼ Gm(zþ Lp) (35:1)

The membrane conductivity Gm(z) is most effectively represented as

Gm(z) ¼ G½1þ aG(z)� . 0 (35:2)

where G denotes the average conductance

G ¼
1

Lp

ðLp

0

Gm(z) dz (35:3)

and a is a dimensionless parameter. Obviously G(z) is a dimensionless and periodic

function

G(z) ¼ G(zþ Lp) (35:4)

with zero mean

ðLp

0

G(z) dz ¼ 0 (35:5)

Without loss of generality, assuming that G(z) is also symmetric,

G(z) ¼ G(�z) (35:6)

then it can be represented by a Fourier series expansion

G(z) ¼
X

1

n¼1

An cos(nkpz) kp ¼
2p

Lp
(35:7)

Figure 35.1 Myelinated axon model.
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or alternatively via Fourier integral transform

G(z) ¼
1

2p

ð

1

�1

g(k) exp( jkz) dk (35:8)

where

g(k) ¼ p
X

1

�1

And(k � nkp) An ¼ A�n A0 ¼ 0 (35:9)

Similarly, the membrane conductivity Gm(z) in (35.2) has to be symmetric, that is,

Gm(z) ¼ Gm(�z) (35:10)

and thus can also be represented by the Fourier series expansion

Gm(z) ¼ G 1þ a
X

1

n¼1

An cos(nkpz)

" #

(35:11)

or alternatively via the Fourier integral transform

Gm(z) ¼
1

2p

ð

1

�1

G(k) exp( jkz) dk (35:12)

where

G(k) ¼ G½2pd(k)þ ag(k)� (35:13)

As a ! 0 our model reduces into the conventional nonmyelinated model. However, in

the reverse limit as a ! 1, the passivity condition in (35.2) may be violated, that is,

Gm(z) , 0 for some z, and then it corresponds to an activated fiber (negative conductance

corresponds to inward Naþ current).

35.2.2 Hill’s Equation

Since se ! 1, the outer potential is identically zero and the transmembrane voltage

coincides with the internal voltage. The steady-state internal voltage and current

differential relations along the axon are given via Kirchhoff’s voltage and current laws

[1, 3, 4],

dV(z)

dz
¼ �RsI(z) (35:14)

and

dI(z)

dz
¼ �G p(z)V(z)þ is(z) (35:15)

respectively, where is(z) represents an internal current source distribution. A resistive

transmission line model for the myelinated axon in (35.14) and (35.15) is depicted in

Figure 35.2.

The distributed elements Rs and Gp(z) denoting the series (axoplasmic

core) resistance and the parallel (myelinated membrane) conductance distributions

are given by

Rs ¼
1

pa2si

(35:16)
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and

Gp(z) ¼ 2paGm(z) ¼ 2paG½1þ aG(z)� (35:17)

respectively. The first-order system of differential equations (35.14) and (35.15) can be

represented alternatively by an equivalent single second-order differential equation,

also known as the cable equation,

d 2V(z)

dz2
� RsG p(z)V(z) ¼ �v0(z) (35:18)

The voltage source distribution v0(z) and the periodic function RsGp(z) are given by

v0(z) ¼ Rsis(z) (35:19)

and

RsG p(z) ¼
1þ aG(z)

L2c
(35:20)

respectively, where Lc denotes the characteristic length constant

Lc ¼

ffiffiffiffiffiffiffi

sia

2G

r

(35:21)

Equation (35.18) is a nonhomogeneous Hill equation which is well-known in

mathematical physics [9, 10].

In attempting to solve Hill’s equation for all a’s in (35.20), we assume solutions of

the form

V(z) ¼
X

1

i¼0

aiVi(z) (35:22)

I(z) ¼
X

1

i¼0

aiIi(z) (35:23)

Substituting (35.22) into (35.18) results in recursive differential equations for Vi(z),

d2Vi(z)

dz2
�
Vi(z)

L2c
¼ �vi(z) (35:24)

where

vi(z) ¼ �
G(z)Vi�1(z)

L2c
i � 1 (35:25)

Figure 35.2 Resistive transmission line model for myelinated axon.
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The current Ii(z) is readily obtained via (35.14),

Ii(z) ¼ �
1

Rs

dVi(z)

dz
(35:26)

Utilizing (35.22) and (35.24), Hill’s equation (35.18) can be replaced with a simpler

but equivalent equation, namely the conventional cable equation

d 2V(z)

dz2
�
V(z)

L2c
¼ �v(z) (35:27)

but with modified source

v(z) ¼
X

1

i¼0

ai
vi(z) ¼ v0(z)�

aG(z)V(z)

L2c
(35:28)

This source is composed of the original source function v0(z) and an additional

distributed source corresponding to the summation over i � 1 and accounting for the

replacement of the periodic membrane conductance Gm(z) with its average conductance

G [Eq. (35.3)]. Equation (35.27) could be obtained from a first-order system of differential

equations, equivalent to Eqs. (35.14) and (35.15), namely (Fig. 35.3)

dV(z)

dz
¼ �RsI(z) (35:29)

dI(z)

dz
¼ �GeV(z)þ is(z)þ ie(z) (35:30)

where

Ge ¼ 2paG (35:31)

and

ie(z) ¼ �aGeG(z)V(z) (35:32)

Note that the voltage sources v0 and �aG(z)V(z)=L2c on the right-hand side (RHS) of

(35.28) could be obtained directly via the RHS of (35.30) as Rsis(z) and Rsie(z),

respectively.

The solution of (35.24) is facilitated with Green’s function,

g(z) ¼
Lc exp (�jzj=Lc)

2
(35:33)

Figure 35.3 Equivalent conventional transmission line model, but with modified source ie(z).
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satisfying

d 2g(z)

dz2
�
g(z)

L2c
¼ �d(z) (35:34)

leading to

Vi(z) ¼ vi(z) g(z) (35:35)

where  denotes the convolution operation. Substituting (35.19) and (35.25) into

(35.35) leads to a recursive closed-form expression for Vi(z), containing iþ 1 convolutions,

Vi(z) ¼
LcRs

2

�1

2Lc

� �i

is(z) exp �
jzj

Lc

� �� �

G(z)

� ���

 exp �
jzj

Lc

� ��

G(z) � � � G(z)

�

 exp �
jzj

Lc

� �

(35:36)

The recursive structure of (35.36) aids in obtaining an explicit bound on jVi(z)j,

jVi(z)j � L2cRsIM
i (35:37)

where I and M are bounds on is(z) and G(z), respectively,

jis(z)j � I and jG(z)j � M (35:38)

It should be noted that (35.37) guarantees a uniform convergence of (35.22) and

(35.23) if

jaMj , 1 (35:39)

Note that condition (35.39) is identical with the passivity constraint Gm(z) . 0

[i.e., jaG(z)j , 1] in (35.2).

35.2.3 Point Source Response

The impulse response of Hill’s equation (35.18) is now obtained by setting

is(z) ¼ Isd(z) (35:40)

Substituting (35.40) into (35.36) and utilizing (35.26) result in

V0(z) ¼
LcIsRs

2
exp �

jzj

Lc

� �

(35:41)

and

I0(z) ¼
Is

2
exp �

jzj

Lc

� �

(35:42)

respectively. Expressions (35.41) and (35.42) are the impulse responses of conventional

nonmyelinated fiber. The number of convolutions contained in (35.36) is reduced here
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to i, that is,

Vi(z) ¼
LcRsIs

2

�1

2Lc

� �i

exp �
jzj

Lc

� �

G(z)

� ���

 exp �
jzj

Lc

� ��

G(z) � � � G(z)

�

 exp �
jzj

Lc

� �

(35:43)

35.2.4 Mathieu’s Equation

The periodic function G(z) can generally be expanded into a Fourier series expansion, as

outline in (35.7). Thus, a single sinusoidal function is the most elementary choice for G(z).

Selecting A1 ¼ 1 and An ¼ 0, n � 2, in (35.7), results in

G(z) ¼ cos(kpz) (35:44)

Hill’s equation in (35.18) is reduced to Mathieu’s equation [9, 10],

d2V(z)

dz2
�
1þ a cos(kpz)

L2c
V(z) ¼ �v0(z) (35:45)

Explicit evaluation of V1(z) can be carried out by substituting (35.44) into (35.43),

leading to

V1(z) ¼ �V0(z)
1þ cos(2pz=Lp)þ ½Lp=(pLc)� sin(2pjzj=Lp)

4½1þ (pLc=Lp)
2�

(35:46)

The function V1(z) is a myelinated axon correction of order a for the conventional

nonmyelinated point source response V0(z) in (35.41). Additional terms Vi(z) (i . 1)

can usually be neglected for realistic axon parameters. Thus, v1(z) in (35.25),

v1(z) ¼ �
G(z)V0(z)

L2c
¼ �

RsIs

2Lc
cos

2pz

Lp

� �

exp �
jzj

Lc

� �

(35:47)

may be regarded as an explicit activation function [3], accounting for myelin contribution.

Normalized transmembrane voltages, namely, V0(z)=Vs and V1(z)=Vs (Vs ¼ LcRsIs=2)

corresponding to the conventional cable equation distribution and to the myelinated

axon correction, respectively, are depicted in Figure 35.4. Since the correction term

V1(z)=Vs is negligibly small for Lp=Lc ! 0, the myelinated axon performs as a con-

ventional nonmyelinated axon with average membrane conductivity Ge. However, for

Lp=Lc ! 1 the correction term significantly increases, since the average membrane

conductivity is now approaching either Ge(1� jaj) or Ge(1þ jaj) depending on

whether the point source location is under a myelinated sector or a Ranvier node, respect-

ively. In this case the inclusion of higher order terms (i . 1) in (35.22) may be required,

depending on a values.

35.2.5 Floquet’s Modes

As indicated at the end of Section 35.2.2, the uniform convergence of the series expansions

in (35.22) and (35.23) is guaranteed by (35.39) or equivalently by the passivity constraint

in (35.2). This constraint will be shown subsequently, in Section 35.3.2, to be also a

sufficient condition for the existence of a unique 3-D Green’s function.

Herein, we explore solutions of a source-free version of the cable equation in

(35.18), under less restricted constraint, by allowing the passivity condition to be violated,
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that is, Gm(z) , 0, for some z, corresponding to an activated fiber (negative conductance

corresponds to inward Naþ current). Solutions of the homogeneous and symmetric Hill’s

equation

d 2V(z)

dz2
�
1þ aG(z)

L2c
V(z) ¼ 0 (35:48)

obtained by setting v0(z) ¼ 0 in (35.18), are governed by the Floquet theorem [9, 10]

Floquet’s theorem states: (i) There exists a solution of the form

Vb(z) ¼ exp( jbz)Pb(z) (35:49)

where b, known as the characteristic exponent or the propagation constant, is not

zero or integral multiple of p=Lp ¼ kp=2 and depends on Lp=Lc and a. The

function Pb(z) is a periodic function with the same period as G(z) in (35.48), namely

Lp. Similarly

Vb(�z) ¼ exp(�jbz)Pb(�z) (35:50)

satisfies (35.48) whenever (35.49) does. (ii) In the special case where b is zero or

an integral muliple of p=Lp ¼ kp=2, Pb(z) is proportional to Pb(�z) and has Lp or 2Lp
periodicity depending on whether the integral multiplicity of kp=2 is even or odd,

respectively.

Equations (35.49) and (35.50), termed the Floquet solutions or alternatively

Floquet modes, are capable of activating the undamped and quasi-periodic TMP along

a myelinated axon provided that

=½b� ¼ 0 (35:51)

Note that the myelinated axon supports transient TMP propagation in addition to the

steady-state direct-current response considered herein if condition (35.51) holds for a

broader frequency range. The modes are damped away from their sources for

=½b�= 0 (35:52)

Figure 35.4 Normalized

transmembrane voltages:

conventional cable equation

distribution V0ðzÞ=Vs and

myelinated axon correction

V1ðzÞ=Vs (Vs ¼ LcRsIs=2), for

three different Lp=Lc values

(Lp=Lc ¼ 1=2, 1, 2Þ.
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The above discussion is well illustrated and demonstrated via the well-tabulated

Mathieu functions [11–13]. Indeed, setting

a ¼ �
Lp

pLc

� �2

q ¼ �
aa

2
n ¼

2b

kp
v ¼

pz

Lp
(35:53)

one obtains an activation region map [11–13] as depicted in Figure 35.5 for n ¼ 0, 1, 2.

Note that the straight line a ¼ �2q determines the subregion I0 in which the passivity con-

straint in (35.2) is satisfied. This line establishes an asymptote for all the characteristic

lines enclosing the activation regions in the lower a , 0 plane. In this plane, the

average membrane conductivity is always passive [i.e., G . 0 in (35.21) and (35.53)].

Figure 35.5 Regions in the a–q plane for Floquet modes associated with Mathieu’s equation.

Activation regions II and IV are associated with undamped and quasi periodic TMP (Eq. 35.51).

Regions I, III, and V are associated with Floquet modes that damped away from their sources

(Eq. 35.52). Subregion I0 and the lower half plane a , 0 are associated with point-wise passive and

average passive membranes Eq. 35.2 and Eqs. 35.21, 35.53, respectively.

Figure 35.6 Even and odd periodic Mathieu functions of order 0 and 1, respectively.
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Finally, the periodic functions Pb(z) associated with the second part (ii) of the

Floquet theorem, namely

P0(z) ¼ ce0(v, q) Pkp=2(z) ¼ se1(v, q) (35:54)

corresponding to n ¼ 0 and the lower n ¼ 1 boundaries (Fig. 35.5), respectively, are

depicted in Figure 35.6. As expected, the even and odd periodic Mathieu functions

ce0(v, q) and se1(v, q) have periods p and 2p, respectively [11–13]. It should be noted

that the recently proposed piecewise constant conductivity profile [14], opposing to the

smooth sin profile in (35.44), leads to an explicit integration of Hill’s equation in terms

of trigonometric functions.

35.3 TMP INDUCED ALONG 3-D MYELINATED
NERVE FIBER

35.3.1 Formulation

The 3-D myelinated nerve fiber configuration, depicted in Figure 35.7, consists of an

internal source point S, an observation point P (located on the membrane surface), and

two cylindrical regions, the axoplasmic core and the surrounding fluid, separated by a

thin myelinated membrane of radius a. Assuming that the core and the outer fluid are

homogeneous, isotropic, ohmic conductors, their electrical parameters are denoted by

si and se ! 1, respectively. The myelinated membrane conductivity Gm(z) is defined

and characterized in Section 35.2.1.

35.3.2 Integral Representation for TMP

The evaluation of the electrode current distributions and potentials is carried out within

the quasi-static (low-frequency) regimen. The TMP, that is, the difference between

the internal and external potentials on the membrane surface, is given for a point source

excitation as

V(f, z, r0) ¼
Is

si

G(ra, r
0) (35:55)

where G(ra, r
0) denotes the point source response (Green’s function). The coordinates

r
0 ¼ (r0, 0, 0) and ra ¼ (a,f, z) correspond to locations of the source point S and the

observation point P, respectively. The subscript a represents the quantity evaluated at

Figure 35.7 Physical configuration.
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the inner surface of the membrane, and Is denotes the point source current in (35.40). The

Green’s function in (35.55) can be expressed in terms of cylindrical harmonics [15],

leading to

G(r, r0) ¼
1

2p2

X

1

n¼0

en cos(nf)

ð

1

0

gn(r, r
0, k) cos(kz) dk (35:56)

where e0 ¼ 1 and en ¼ 2, n . 0. Both G(r, r0) and gn(r, r
0, k) in (35.56) are symmetric

with respect to z and k, respectively, due to (35.10), and satisfy 3-D and 1-D Poisson

equations and appropriate constraints as summarized in Table 35.1.

The membrane condition, in the last row of Table 35.1, establishes a generalization

of the conventional membrane condition (e.g., [5–7]); that is, multiplication with periodic

function Gm(z) in (35.2) results in convolution with its Fourier transform G(k) in (35.13).

Furthermore, it guarantees the uniqueness of G(r, r0) if Gm(z) . 0, consistently with the

passivity requirement in (35.2). Substitution of G(r, r0) in (35.56) into (35.55) results in

an integral representation for the TMP,

V(f, z, r0) ¼
Is

2psi

X

1

n¼0

enVn(z, r
0) cos(nf) (35:57)

where Vn(z, r
0), the TMP (Fourier’s) coefficient, is expressed as

Vn(z, r
0) ¼

1

p

ð

1

0

vn(r
0, k) cos(kz) dk (35:58)

and vn(r
0, k), the TMP spectral coefficient, is given via

vn(r
0, k) ¼ gn(a, r

0, k) (35:59)

The characteristic Green’s function gn(r, r
0, k) is given via [15]

gn(r, r
0, k) ¼ In(kr,)½An(k)In(kr.)þ Kn(kr.)� r , a (35:60)

TABLE 35.1 Poisson Equations and Boundary Conditions for G(r, r0) and gn(r, r0, k)

G(r, r0) gn(r, r
0)

Differential

equation

r2G(r, r0) ¼ �d(r� r
0)

1

r

d

dr
r
d

dr
� k2 �

n2

r2

� �

gn(r, r
0, k)

¼ �
1

r
d(r� r0)

Source

conditions

Ð

V!0
r2G(r, r0) dV ¼

Þ

A!0
rG(r, r0) dA ¼ �1

dgn(r
0þ, r0, k)

dr
�
dgn(r

0�, r0, k)

dr
¼ �

1

r0

Decay at

infinity

zG(r, r0)
�

�

�

r,a, z!1
, 1, G(r, r0)

�

�

�

r.a
¼ 0 gn(r, r

0, k)
�

�

�

r.a
¼ 0

Membrane

condition

Gm(z)G(ra, r
0) ¼ �si@G

(ra , r
0)

@r
, Gm(z) . 0

1

2p
G(k) gn(a, r

0, k) ¼ �si

dgn(a, r
0, k)

dr
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where r
.
; max(r, r0) and r

,
; min(r, r0). The coefficient An(k) can be found by

applying the membrane condition, in the last row of Table 35.1, leading to

1

2p
G(k) ½An(k)In(ka)þ Kn(ka)� ¼ �sik½An(k)I

0
n(ka)þ K 0

n(ka)� (35:61)

Here In and Kn are the modified Bessel functions of order n and the prime means differ-

entiation with respect to the argument. The coefficient An(k), solution of (35.61), can be

obtained by successively shifting k in (35.61) through an infinite number of shifts

k ! k � nkp, n ¼ 0, + 1, + 2, . . . (e.g., [9, 10]). Alternatively, it can be solved itera-

tively as outlined in (35.22). Indeed, assume representations of the form

G(r, r0) ¼
X

1

i¼0

aiGi(r, r
0) (35:62)

gn(r, r
0, k) ¼

X

1

i¼0

aign, i(r, r
0, k) (35:63)

and

An(k) ¼
X

1

i¼0

aiAn, i(k) (35:64)

where

Gi(r, r
0) ¼

1

2p2

X

1

n¼0

en cos(nf)

ð

1

0

gn, i(r, r
0, k) cos(kz) dk (35:65)

and

gn, 0(r, r
0, k) ¼ In(kr,)½An, 0(k)In(kr.)þ Kn(kr.)�

gn, i(r, r
0, k) ¼ An, i(k)In(kr

0)In(kr) i . 0
(35:66)

Substituting G(r, r0) [Eq. (35.62)] and gn(r, r
0, k) [Eq. (35.63)] in the first row of

Table 35.1 results in

r2G0(r, r
0) ¼ �d(r� r

0) r2Gi(r, r
0) ¼ 0 i . 0 (35:67)

and

1

r

d

dr
r
d

dr
� k2 �

n2

r2

� �

gn, 0(r, r
0, k) ¼ �

1

r
d(r� r0)

1

r

d

dr
r
d

dr
� k2 �

n2

r2

� �

gn, i(r, r
0, k) ¼ 0 i . 0

(35:68)
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respectively. Similarly, the membrane condition in the last row of Table 35.1, can be

expressed as

Ggn, 0(a, r
0, k) ¼ �si

dgn, 0(a, r
0, k)

dr

Ggn, i(a, r
0, k)þ

1

2p
Gg (k) gn, i�1(a, r

0, k) ¼ �si

dgn, i(a, r
0, k)

dr
i . 0 (35:69)

Next, substituting (35.66) into (35.69) results in

G½An, 0(k)In(ka)þ Kn(ka)� ¼ �sik½An, 0(k)I
0
n(ka)þ K 0

n(ka)�

GAn, i(k)In(ka)þ
1

2p
Gg(k) gn, i�1(a, r

0, k) ¼ �sikAn, i(k)I
0
n(ka) i . 0

(35:70)

The coefficients An, i(k) can now be expressed explicitly as

An, 0(k) ¼ �
Ga

si

Kn(ka)

In(ka)
þ ka

K 0
n(ka)

In(ka)

� �

,

qn(k)

An, i(k) ¼ �
1

2p

Ga

si

g(k) gn, i�1(a, r
0, k)

In(ka)qn(k)
i . 0

(35:71)

where

qn(k) ¼
Ga

si

þ ka
I0n(ka)

In(ka)
(35:72)

Finally, substituting (35.71) into (35.66) leads to a recursive closed-form expression

gn, i(a, r
0, k) containing i convolutions,

gn, 0(a, r
0, k) ¼

In(kr
0)

In(ka)qn(k)

gn, i(a, r
0, k) ¼

�Ga

2psi

� �i
In(kr

0)

In(ka)qn(k)
 g(k)

� �

In(kr
0)

qn(k)

� ��

g(k) � � �  g(k)

�

In(kr
0)

qn(k)
(35:73)

The TMP (Fourier’s) coefficients in (35.58) can now be expressed as

Vn(z, r
0) ¼

X

1

i¼0

aiVn, i(z, r
0) (35:74)

where, utilizing (35.58) and (35.59),

Vn, i(z, r
0) ¼

1

p

ð

1

0

vn, i(r
0, k) cos(kz) dk (35:75)

and

vn, i(r
0, k) ¼ gn, i(a, r

0, k) (35:76)
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respectively. It should be noted that qn(k) in (35.72) depends on the intrinsic character-

istics of the axon only, namely, its geometry and the associated conductivities (radius a

and si, G, respectively). Therefore, the zeros of (35.72), which are essential for the

alternative representation of TMP to be carried out next, are independent of the source

strength and location.

35.3.3 Alternative Representation: TMP Evaluation

The integral in (35.58) representing a continuous summation over each spectral com-

ponent of the TMP spectrum [the slow convergence is of O(1/ka), since vn, 0(r
0, k) ¼

O(1=ka), in (35.76), as ka ! 1 and r0 ! a] can be expressed alternatively via an equiv-

alent but discrete spectrum which converges much faster (of exponential order for z . 0).

The alternative representation utilizes f–r eigenfunction expansion guided along the z

direction rather than f–z expansion guided along the r direction. This is definitely

more appropriate for axon propagation problems [5–7].

When the alternative representation is performed via contour deformation in the

complex k plane, as depicted in Figure 35.8, it is preferable to represent Vn, 0(z, r
0) in

(35.75) as

Vn, 0(z, r
0) ¼

1

p
R

ð

1

0

vn, 0(r
0, k)e jkjzj dk

� �

(35:77)

The continuous spectrum representation (in k space) can be converted into an

alternative representation containing discrete eigenvalues contributions,

Vn, 0(z, r
0) ¼ j

X

1

m¼1

Jn(ln, 0,mr
0)

Jn(ln, 0,ma)

e�ln, 0,mjzj

q0n( jln, 0,m)
(35:78)

where Jn is a Bessel function of the first kind and order n. The terms in (35.78) correspond-

ing to the pole (residue) contribution at qn(k ¼ jln, 0,m) ¼ 0 in (35.72), explicitly

qn( jln, 0,m) ¼
Ga

si

þ ln, 0,ma
J0n(ln, 0,ma)

Jn(ln, 0,ma)
¼ 0 (35:79)

Figure 35.8 Contour deformation in the complex k-plane.
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are given via the residue theorem, where ln, 0,m, the complex roots of (35.78), lie along the

real l axes (Fig. 35.8), leading to

q0n( jln, 0,m) ¼
(Gma=si)

2 þ (ln, 0,ma)
2 � n2

ln, 0,m
(35:80)

The eigenvalue expansion can be well approximated by its dominant contribution, namely

the lowermost eigenvalue, which corresponds to the dominant pole, lying in close vicinity

to the origin k ! 0, as (Ga=si) ! 0, that is,

k0, 0, 1a ¼ jl0, 0, 1a ¼ j

ffiffiffiffiffiffiffiffiffi

2Ga

si

r

¼
ja

Lc
(35:81)

Hence, the residue expansion in (35.78) is well approximated, as l0, 0, 1a ! 0, by

V0, 0(z, r
0) �

e�l0, 0, 1jzj

l0, 0, 1a2
¼

Lce
�jzj=Lc

a2
¼

2g(z)

a2
(35:82)

where g(z) is given in (35.33).

Note that when substituting gn, i(a, r
0, k) in (35.73) into the cosine transform (35.75),

via (35.76), the i multiplications and i convolutions in k space are interchanged into i

convolutions and i multiplications in z space, respectively. Utilizing (35.57), (35.58),

(35.74), and (35.75) in conjunction with the complex contour deformation depicted in

Figure 35.8, and the setting n ¼ 0 and m ¼ 1, results in the point source response

in (35.43), thereby verifying the myelinated cable equation contribution (35.43) as the

dominant pole (residue) contribution of the exact modal expansion (35.57).

35.4 SUMMARY

The novel cable equation model for myelinated nerve fiber presented herein assumes

periodic membrane conductivity. The resultant cable equation is represented by Hill’s

and Mathieu’s equations. The general internal source response, expressed via repeated

convolutions, uniformly converges provided that the periodic membrane is passive. The

solution can be interpreted as an extended source response in an equivalent nonmyelinated

axon. The extended source consists of the original source and a novel activation function

[3], replacing the periodic membrane in the myelinated axon model.

Rigorous Green’s function formulation for TMP induced in 3-D myelinated nerve

fiber verifies that the dominant pole contribution of the exact modal expansion is the

TMP of the myelinated nerve fiber.

The complete modal expansion of Hill’s and Mathieu’s equations, governed by

Floquet’s theorem, is well known and extensively discussed in mathematical physics

[9, 10]. It can be utilized for linear and nonlinear myelinated axon models.

Floquet’s modes, recognized as the nerve fiber activation modes, can also be incor-

porated in our excitation model, provided that the periodic membrane pointwise passivity

constraint is properly modified [14]. Thus, the modified condition, enforcing the periodic

membrane passivity constraint on the average conductivity only, leads to the inclusion of

the nerve fiber activation modes in our linear model.
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CHA P T E R36

BAYESIAN NETWORKS FOR

MODELING CORTICAL

INTEGRATION
Paul Sajda, Kyungim Baek, and Leif Finkel

36.1 INTRODUCTION

Much of our perceptual experience is constructed by the visual cortex. Architecturally, the

visual cortex appears to be designed for integrating multiple sources of information that

come through top-down, bottom-up, and horizontal connections, yet the computational

mechanisms by which the integration and resulting inferences occur remain mostly

unexplained. A challenge in neural engineering is to reverse engineer the visual cortex

to reveal the essence of the computation within this distributed neural network.

Researchers from multiple fields of study have been developing theoretical models

to describe the computational mechanisms underlying visual perception. Such efforts date

back to the 1850s when Helmholtz described perception as “unconscious inference,” a

process by which the perceiver progresses from experiencing sensations evoked by an

object to recognizing its properties. The information present in the images formed on

the retina is incomplete and ambiguous and therefore the visual cortex must integrate

previous or independently available knowledge about the environment to perform inferen-

tial reasoning and construct a scene. This process is made automatically and uncon-

sciously, and eventually one does not even notice the sensations on which it is based

[15, 19, 26].

Recently, much focus has been on developing probabilistic frameworks for under-

standing the neural mechanisms and computational principles underlying inference within

the brain. Information present in raw sensory data is inherently complex and noisy and the

challenge is to find models capable of dealing with “complex uncertainty.” One particular

framework which appears promising uses graphical models for representing, learning, and

computing multivariate probability distributions. These “Bayesian” graphical models, also

termed Bayesian networks, represent a marriage between probability theory and graph

theory and provide a network architecture for dealing with uncertainty and complexity. In

Bayesian networks, evidence is accumulated by discrete nodes and “passed” between

nodes within the network, resulting in a representation of the joint distribution of the constitu-

ent variables. These network models provide the computational means for developing

probabilistic representations and associated algorithms for inference and learning [22, 35].

Together with their network architecture, Bayesian networks provide a natural theoretical

framework for developing distributed computational models of perceptual inference.

Handbook of Neural Engineering. Edited by Metin Akay
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Though attractive as a mathematical framework, an open question is whether

neurons in the brain are organized to form Bayesian networks. To address this question

one must consider the specifics of the anatomy and physiology in visual cortex. A

strong vertical organization is one of architectural features of the cortex, an organiz-

ation principle uncovered by Mountcastle’s discovery of the cortical columns [31].

This columnar structure exists for neurons tuned to different stimulus dimensions

with the result being ocular dominance, orientation, and position columns. These find-

ings suggest that columns might form a fundamental functional unit for a variety of

visual processes. The sets of columns referred to as cortical “hypercolumns” by

Hubel and Wiesel [21] appear to include circuitry necessary to process information

from a particular location of visual space across a variety of stimulus dimensions.

Hypercolumns are connected via long-range horizontal connections [8, 16, 17, 40]

which typically span several hypercolumn lengths, enabling communication between

nearby hypercolumns. The span of these connections suggests a locally connected

network. In addition, there are extensive feedback projections from extrastriate areas,

terminating in multiple layers of V1 [6, 44]. Integration of the bottom-up, horizontal,

and top-down inputs into a V1 hypercolumn is therefore likely mediated by geniculate,

cortico-cortical, and extrastriate feedback connections which are rather sparse and local

in nature.

We argue for the view that the cortical hypercolumn serves as a fundamental

functional module for integration and inference in the visual system. Furthermore,

we propose that the activity of populations of neurons in cortical hypercolumns expli-

citly represents probability distributions of attributes presented in the visual stimuli and

that the anatomical connections between hypercolumns communicate these probability

distributions. This leads to the hypothesis that inference in the cortical network is per-

formed based on the Bayesian network framework. Advantages of the Bayesian

network framework in the context of cortical integration include:

1. An explicit representation of uncertainty in the stimulus

2. A common language of probability for integration across cue and modality

3. A sparse, locally connected network architecture

In this chapter we describe a Bayesian network for integrating spatial cues and

streams (form and motion) for inferring intermediate-level representations for con-

structing the visual scene. We show, through simulations, that the Bayesian

network leads to results consistent with human perception. In its current form, our

model does not attempt to be biophysically realistic, instead focusing on the network-

level computation and isomorphisms with cortical networks. For example, nodes in

our Bayesian network are not composed of spiking neurons; instead they represent

the presumed collective response of a population of neurons, likely in specific cortical

layers.

In the following section we describe the integration problem in more detail. We then

briefly describe the cortical circuitry in which the problem arises in order to more clearly

demonstrate isomorphisms between Bayesian and cortical networks. We then describe a

Bayesian network model consisting of Bayesian hypercolumns, collections of nodes pro-

cessing a local aperture of the visual input space, computing probability distributions for

local scene features and integrating these local features via message passing “beliefs” to

neighboring hypercolumns. Following the model description, we present simulation

results for several simple example problems related to the construction of intermediate-

level visual representations.
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36.2 PROBLEM OF CORTICAL INTEGRATION

The classical view of information processing in visual cortex is that of a bottom-up process

in a feedforward hierarchy. However, the bottom-up information that encodes physical

properties of sensory input is often insufficient, uncertain, and even ambiguous for

visual processing (e.g., the picture of a Dalmatian dog [48] and Rubin’s vase [42]).

Psychophysical, anatomical, and physiological evidence suggests that bottom-up factors

interact with top-down effects which play a crucial role in the processing of input

stimuli. The top-down factors can modulate the expected output of the visual system.

In addition to the bottom-up and top-down inputs, information flows horizontally

between sets of cortical neurons—that is, the hypercolumns. This is due to the fundamen-

tal aperture problem that the visual system must deal with; Each hypercolumn “sees” a

small patch of the visual field decomposed over the input space (orientation, color,

motion etc.). The hypercolumns capture information locally in the input space, which is

too small to cover visual objects at a global scale. To form coherent representations of

objects, nonlocal dependencies in the image space must be captured and exploited. This

implies the need for hypercolumns to communicate information about the local visual

field to other hypercolumns distributed throughout the cortex. Communication of such

nonlocal dependencies can be thought of as a form of contextual integration.

One model for visual processing assumes three stages—early, intermediate-, and

high-level vision—involving different types of visual representations. When we see the

world, the visual system decomposes the scene into surfaces using various cues. This

implies that there exist neural representations of surfaces, and it has been thought to be

developed at intermediate-level processing [14]. Previous studies suggest that such

intermediate-level representations play an important role in integration [32, 47, 52]. For

example, Sajda and Finkel focus on the construction of the neural representations of

surfaces in the intermediate-level cortical process and present a network-based model

[43]. They propose forming surface representations through ownership of contours and

argue that such intermediate-level representations serve as a medium for integration.

The different types of information that flow through these bottom-up, top-down, and

horizontal connections must be easily and effectively integrated. Anatomical studies

indicate that the architecture of the visual cortex is designed for the integration task;

however, the computational mechanisms continue to remain largely unknown. In our

current model, we assume that the intermediate-level visual representations such as own-

ership (or direction of figure [43]) might be a substrate for the integration process and

focus on developing a computational model for integration.

36.3 CORTICAL CIRCUITRY

The organization of columnar circuitry in the visual system has been extensively studied.

For example, Callaway has proposed a generic model of vertical connectivity connecting

layers within columns in primary visual cortex of cats and monkey [8]. Although the

majority of connections are within columns, physiological and simulation results indicate

that there exist horizontal, long-range connections between sets of columns and that these

connections give rise to complex, modulatory neuronal responses.

Since the term hypercolumn was coined by Hubel and Wiesel [21], it has been used

to describe the neural machinery necessary to process a discrete region of the visual

field. Typically, a hypercolumn occupies a cortical area of �1 mm2 and contains
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between 105 and 106 neurons. Current experimental and physiological studies have

revealed substantial complexity in neuronal response to multiple, simultaneous inputs,

including contextual influence, as early as V1 [17, 24, 25]. Such contextual influences,

considered to be mediated by modulatory influences of the extraclassical receptive

field, are presumed to arise from the horizontal inputs from neighboring hypercolumns

and/or from feedback from extrastriate areas [7, 10, 36, 37, 46].

It appears that in the visual system information computed locally across the input

space by individual hypercolumns is propagated within the network and integrated,

perhaps in a modulatory way, to influence neural responses which ultimately directly

correlate with perception. In the next section we describe how such integration could

be done within a probabilistic framework, leading to what we term Bayesian

hypercolumns.

36.4 BAYESIAN INFERENCE IN NETWORKS

36.4.1 Bayesian Hypercolumns

The Bayesian hypercolumn framework provides a structure for integrating top-down,

bottom-up, and horizontally transmitted information and results in a neural analog of

Bayesian inference. In the brain, information is most likely encoded by populations of

neurons rather than by a single neuron. Since the initial studies on the statistical properties

of population codes that first used Bayesian techniques to analyze them [34], researchers

have suggested that it might be probability distributions instead of single values that the

population codes actually represent [1, 39, 54]. A computational model proposed by

Deneve et al. [11] uses a biologically plausible recurrent network to decode population

codes by maximum-likelihood estimation. Therefore the network essentially implements

optimal inference and the simulation results suggest that cortical areas may functions as

ideal observers. If it is true that information is represented as probability distributions

in cortical areas, it means that the brain may perform Bayesian inference that effectively

deals with uncertainty commonly arising in visual tasks.

We argue that the pattern of activity distributed across each hypercolumn instanti-

ates a conditional probability density function (PDF) of some random variables

(feature, object, etc.). In striate visual cortex, for example, the PDF might specify an esti-

mate of local orientation as well as the uncertainty in this estimate. Horizontal and

top-down inputs modulate this activity, thus expressing the conditional probability of

the output given the current links to the population. Anatomical connections communicate

the PDFs between hypercolumns. The connection weights are learned through training but

capture statistical regularities in the image domain. In visible-domain spatial imagery,

these statistical regularities would correspond to the Gestalt laws of perceptual

organization.

As Zemel et al. [54] have observed, “a population of neurons is a terrible thing

to waste representing a scalar.” Accordingly, the PDF representation endows the

hypercolumn with computational power far surpassing an equivalent number of

“grandmother cells.” As environmental conditions change, due to noise or novelty,

each hypercolumn recalculates the likelihood of its own distribution based on the

state of other hypercolumns. This represents a form of inference, analogous to that

carried out in formal Bayesian networks. Recognition and classification are carried

out by projecting the current stimulus onto the prior probabilities stored in the cortical

architecture.
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36.4.2 Bayesian Networks as Model for Cortical Architecture

Bayesian networks are directed graphs in which the nodes represent variables of interest

(e.g., stimulus features, target classes) and the links represent conditional probability dis-

tributions between possible values of these variables. Bayesian networks are “deliberative”

rather than passive reactive agents; thus, unlike traditional artificial neural networks, they

respond to novel or changing stimulus conditions instantaneously without relearning [35].

If the environment changes or an input channel is lost, the joint PDF of features and targets

is simply recomputed based on the new inputs and stored a priori knowledge. Two features

of Bayesian networks account for this advantage over traditional neural networks: The

messages passed are probability distributions and message passing is multithreaded so

that the influence from different streams is not corrupted. Figure 36.1 illustrates the

isomorphism between cortical hypercolumns and the Bayesian network architecture

which we propose.

Bayesian networks enable a direct way to integrate different data types (top down,

bottom up), since all variables are all mapped to the same probability space. Use of a prob-

abilistic format provides a measure of the degree of confidence together with the most

likely classification. Most importantly, Bayesian networks are inference engines, and

they can be used to detect relationships among variables as well as a description of

these relationships upon discovery.

Over the last several years, substantial progress has been made in Bayesian network

theory, probabilistic learning rules, and their application to image analysis [38, 41, 45, 49].

Recent work by Hinton and Brown [20] has been directed at trying to understand the

relationship between Bayesian and neural processing. Application of this neuro-Bayesian

Figure 36.1 Simplified diagram of cortical connections focusing on laminar structure of a

hypercolumn (left) and isomorphic architecture of proposed Bayesian network model (right).

The lateral geniculate nucleus (LGN) provides bottom-up input via strong connections to layer

IV and indirect connections passing through layer VI. The top-down feedback signals from

extrastriate cortex pass indirectly into layer VI, then are projected onto layer IV. The feedforward

connections from layer IV subsequently provide activation to layer II/III, which forms intrinsic

horizontal, long-range connections between hypercolumns. In our network model images

correspond to the bottom-up LGN input, from which a set of features are extracted (nodes ci).

Those features are combined and also with the top-down, prior knowledge represented by node

z to form PDFs for observations (node y). Then the observations are passed into hidden nodes x,

corresponding to layer II/III in the hypercolumn structure. The contextual integration is

performed by passing PDFs between neighboring hidden nodes.
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approach to image processing has been significantly advanced by Weiss [50], who has

demonstrated that when applied to difficult image processing problems, Bayesian networks

converge orders of magnitude more rapidly than current relaxation-based algorithms. Pro-

cessing time is only limited by the time (iterations) required for information to propagate

between all units focused on the target. This is consistent with Marr’s dictum [29] that

visual processing should only take as long as required for all relevant information about

the image to be transmitted across cortex, and no further iterations should be necessary

once the information has arrived at the appropriate hypercolumn. In contrast, most

current algorithms, which are based on relaxation and regularization methods, do not con-

verge at multiple times this number of iterations. Thus Bayesian methods offer the hope of

matching the time constraints posed by human visual recognition.

Weiss has also demonstrated the ability of Bayesian networks to infer intermediate-

level representations, for example, to integrate local and more global shape information to

determine the direction of figure (DOF) [50]. Weiss points out that the updating rules used

in Bayesian networks require three building blocks: a distributed representation, weighted

linear summation of probabilities, and normalization [51]. These processes have clear

ties to cortical networks [18], and such processes have been implemented in retino-

morphic and cortex-based chips [4] and in multichip systems with field-programmable

connections [5].

36.4.3 Belief Propagation

As mentioned previously, in graphical models (or Bayesian networks, in particular) a node

represents a random variable and links specify the dependency relationships between these

variables [22]. The states of the random variables can be hidden in the sense that they are

not directly observable, but it is assumed that they may have observations related to the

state values. The states of hidden variables are inferred from the available observations,

and the belief propagation (BP) algorithm solves inference problems based on local

message passing. In this section, a BP algorithm is described on undirected graphical

models with pairwise potentials. It has been shown that most graphical models can be

converted into this general form [53].

Let x be a set of hidden variables and y a set of observed variables. The joint prob-

ability distribution of x given y is given by

P(x1, . . . , xn j y) ¼ c
Y
i, j

Tij(xi, xj)
Y
i

Ei(xi, yi)

where c is a normalizing constant, xi represents the state of node i, Tij(xi, xj) captures the

compatibility between neighboring nodes xi and xj, and Ei(xi, yi) is the local interaction

between the hidden and observed variables at location i. An approximate marginal prob-

ability of this joint probability at node xi over all xj other than xi is called the local belief b(xi).

The BP algorithm iterates a local message computation and belief updates [55]. The

message Mij(xj) passed from a hidden node xi to its neighboring hidden node xj represents

the probability distribution over the state of xj. In each iteration, messages and beliefs are

updated as follows:

Mij(xj) ¼ c

ð
xi

dxi Tij(xi, xj)Ei(xi, yi)
Y

xk[Ni=xj

Mki(xi)

b(xi) ¼ cEi(xi, yi)
Y
xk[Ni

Mki(xi)
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where Ni=xj denotes a set of neighboring nodes of xi except xj. Here, Mij is computed by

combining all messages received by xi from all neighbors except xj in the previous

iteration and marginalizing over all possible states of xi (Fig. 36.2). The current local

belief is estimated by combining all incoming messages and the local observations.

It has been shown that, for singly connected graphs, BP converges to exact marginal

probabilities [53]. Although how it works for general graphs is not well understood, exper-

imental results on some vision problems, such as motion analysis, also show that BP works

well for graphs with loops [13].

36.5 SIMULATION RESULTS

We demonstrate the application of a Bayesian network model, having locally connected

nodes each computing a distribution over multiple stimulus dimensions (i.e., cues), for

two example problems involving intermediate-level surface representations: computing

DOF and integrating form and motion cues. For the DOF example, multiple spatial cues

are combined to infer the relative figure–ground relationships. The nodes corresponding

to hidden variables represent the beliefs (or probabilities) for the DOF. These beliefs

are constructed by integrating probabilities based on the observed cues and beliefs at

neighboring nodes which are integrated via the network of horizontal connections.

The model for computing DOF (form stream) is then extended by adding a second

stream for motion processing. Each node in the motion stream computes probability distri-

butions for local direction of motion in the same way as the DOF is estimated, except that it

takes into account the influence of the local DOF estimated in the form stream. Simulations

show the two network streams can interact, through Bayesian mechanisms, to qualitatively

account for motion coherence phenomena uncovered via psychophysical experiments.

Additional details can be found in [58].

36.5.1 Inferring Direction of Figure

“Direction of figure” represents the contour ownership of an object’s occluding boundary

to a region which represents the object’s surface [43]. Therefore DOF specifies a figure–

ground relationship directly for occluding contours. In studies on visual perception, the

contour ownership is hypothesized to be assigned in early stages of visual processing,

which received support from recent neurophysiological findings reported by Zhou et al.

[55], showing that more than half of the neurons in extrastriate cortex (areas V2 and

V4) are selective to contour ownership. One can consider the assignment of DOF as

Figure 36.2 Illustration of local message passing from node xi to node xj. Open circles are

hidden variables, while shaded circles represent observed variables. The local belief at node xj is

computed by combining the incoming messages from all its neighbors and the local interaction Ej.
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essentially a problem in probabilistic inference, with DOF being a hidden variable that is

not directly observed but can potentially be inferred from local observations and some

form of message passing via horizontal dependencies.

As shown in many perceptual studies, various cues are used in the figure–ground

discrimination [23, 33, 43]. In our model [3] local figure convexity and similarity/proxi-
mity cues are combined to form initial observations. The local interaction Ei,cvx between

hidden variable xdofi and observed variable yi,cvx specified by the convexity at point i is

determined by the local angle of the contour at the location. At the same time, the local

interaction Ei,sim between xdofi and yi,sim is computed from the similarity/proximity cue

by looking for points having similar local tangent angle (i.e., orientation) that lie in a direc-

tion orthogonal to the contour at point i. The interaction Ei,cvx prefers smaller angles and

Ei,sim favors shorter distances with similar orientations.

The two local interactions are combined based on a weak fusion model [9]. The weak

fusion model is a simple scheme which suggests that a property of the environment is esti-

mated separately by each independent cue and then combined in a weighted linear fashion

to compute the overall effect. Following the weak fusion scheme, the total local interaction

Ei(x
dof
i , ydofi ) is computed by the weighted average of the interactions made by two separ-

ate observations yi,cvx and yi,sim:

Ei(x
dof
i , ydofi ) ¼ wcvxEi,cvx þ wsimEi,sim

There are several classic examples in which the discriminating figure from the back-

ground is not immediately clear. The first two square spiral figures of Figure 36.3a are

Figure 36.3 (a) Left: spiral figure in which figure–ground discrimination is ambiguous unless

serially tracing the contour. Middle: increasing spiral width as it winds around toward center

generates incorrect perception of figure surface. Right: figure in which correct decision of figure

surface can be made immediately. All figures are reproduced from [43]. (b) DOF estimate by the

model for the three spiral images shown on top. Resulting DOF is represented by small bars

with varying intensity, showing the degree of certainty for the corresponding direction. Note the

low certainty (light shading) for the central part of the first spiral, indicating ambiguity of DOF,

consistent with human perception. The high certainty (dark shading) for the central part of the second

spiral shows an incorrect percept, which is also consistent with human interpretation.
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such examples [43]. Discrimination of the figure’s surface in the first spiral is difficult,

with difficulty increasing for regions close to the center of the spiral.1 On the other

hand, discriminating the figure surface in the second spiral seems to be straightforward.

Immediately, we tend to perceive the thin strip in the center as the figure, but this is in

fact incorrect. In this case, the width of the spiral increases as it winds around toward

the center, generating an incorrect perception of the figure–ground. Unlike the first two

figures, figure–ground can be correctly inferred almost instantly for the third spiral.

Figure 36.3b shows that the network model predicts DOF very close to human per-

ception. The DOF figures illustrate increasing ambiguity and/or incorrect interpretation
for the center region of the first two spirals and perfect figure segmentation for the last

spiral. Although they are not shown here, results indicate that it takes longer for the

network model to converge for the first two spirals, with more oscillations in the DOF

assignment, as compared to the third example. The results are slightly different, especially

near the periphery of the spirals, from those obtained by the neural computational models

described in [43]. This is likely due to the fact that the current model does not exploit

observations from closure cues.

Certain figures are perceptually ambiguous in that figure and ground can shift or

even oscillate. One of the most famous figures that demonstrates this perceptual ambiguity

is Rubin’s vase, shown in Figure 36.4a. In Figure 36.4, one can perceive either faces or a

vase (never both simultaneously), and whenever the perceived object is shifted, the

contour ownership is also changed accordingly.

One can bias the interpretation of the ambiguous figures by providing prior infor-

mation. For example, prior cues might emerge from recognition of distinct visual features

(e.g., nose, eyes, chin). In our probabilistic network model, prior information can be

considered as another cue for DOF and therefore combined in the same way as described

above. In this case, the network model integrates bottom-up (convexity), horizontal

(similarity/proximity), and top-down (prior information) cues using a simple combination

mechanism.

Figure 36.4b shows the DOF estimation for the Rubin’s vase image without using

prior information. The network assigns the contour to faces mainly because of the influ-

ence from the convexity cue; however, the confidence level is low throughout the entire

contour. Prior information is added by explicitly specifying figure direction at several

locations on the contour (Fig. 36.4c). The results of combining prior cues are shown on

the right. Even if a small weight is assigned for the prior cue,2 it strongly biases the DOF.

36.5.2 Integrating Form and Motion Streams

The motion of a homogeneous contour is perceptually ambiguous because a neuron

responding to the moving contour sees only a limited extent of the visual scene. Due to

this “aperture problem,” a single local measurement along the contour cannot determine

the object’s motion, and therefore motion integration across space is required. There are

also several features that may provide unambiguous local motion and dominate the

motion integration. Examples of such features are line terminators and junctions.

The degree of certainty in DOF at junctions inferred in the form stream can be used

to distinguish between intrinsic terminators, which are due to the natural end of a line of an

1Note that all DOF relationships can be determined if one traces the contours of the spiral

and “propagates” high-confidence DOF assignments to low-confidence regions. However, in this discussion

we ignore such “tracing,” though it could be integrated as another form of prior information/cue.
2The ratio of wprior over (wcvx þ wsim) is 1 : 8.
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object, and extrinsic terminators, which are not created by the end of the line itself but

rather are caused by occlusion by another surface. Intrinsic terminators provide an unam-

biguous signal for the true velocity of the line, while extrinsic terminators provide a locally

ambiguous signal which must be suppressed for accurate motion computation [32]. The

DOF is an explicit surface representation, and therefore the degree of certainty (i.e.,

belief) in DOF at junctions can be used to represent the strength of the evidence for

surface occlusion, which determines the terminator type.

The hidden node in the motion stream represents a velocity of corresponding location

along the contour. We assume that both the pairwise compatibility Tij(x
mot
i , xmot

j ) and the

local interaction Ei(x
mot
i , ymot

i ) that models the velocity likelihood at apertures are Gaussian.

Also, Tij is set manually and Ei is defined by a mean of the normal velocity at point i and a

local covariance matrix Covi. Before the BP algorithm starts, the variance at junction

points is modulated by a function of DOF belief b(xdofi ) as follows:

Covi ¼ ea{b(x
dof
i

)�0:5} � Covi

Figure 36.4 (a) Rubin’s vase (from [2]). (b) DOF prediction without using prior information.

(c) Prior cues for vase features. (d ) DOF estimate of network model integrating prior

information. Figure shows the bias of DOF toward the vase, reflecting strong influence of the

prior cue.
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Initially, the covariance matrices of hidden variables are set to represent infinite

uncertainty, and mean vectors are set to zero. When the BP algorithm converges, the

motion integration is performed by computing the mixture of Gaussians:

p(v) ¼
X
i

p(v j i)p(i)

where p(v j i) is the probability of velocity v from the resulting Gaussian of hidden variable

xmot
i and p(i)’s are the mixing coefficients.

Figure 36.5a shows the two stimuli used for the experiments. They are 908 rotated

versions of the diamond stimuli described in McDermott et al. [30], but the perceptual

Figure 36.5 (a) Stimuli generated from four line segments that move sinusoidally, 908 out of

phase, in vertical and horizontal directions. The line segments are presented with L-shaped

occluders (stimulus A) and closed square occluders (stimulus B). The presence of the occluding

surface alters the motion perception. (b) Velocity estimation results for stimulus A (first three

figures) and stimulus B (last three figures). First and fourth: Estimation at location b. Second

and fifth: Estimation at location c. Third and last: Velocity computed by combining the two

estimations using mixture of Gaussian. (c,d ) A sequence of resulting velocity estimation for six

successive frames sampled from a period of sinusoidal motion with a regular interval. (c) Two

separate motions oscillating in the direction normal to the line segment for stimulus A. The

sequence in (d ), on the other hand, shows a coherent motion forming a circular trajectory.
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effect is basically the same. The motion of moving line segments is identical between the

two stimuli. A pair of vertical line segments move together sinusoidally in a horizontal

direction while the two horizontal lines move simultaneously in a vertical direction.

The vertical and horizontal motions are 908 out of phase. The difference between the

two stimuli is the shape of the occluders, which alters the perceived motion. A single

coherent rotation is perceived for stimulus B, while we are more likely to see two separate

motions of the line segments for stimulus A [30].

Figure 36.5b shows the resulting velocity estimated by the network model for stimu-

lus A (first three figures) and stimulus B (last three figures). Since the estimated motions

along the line segments that move simultaneously are almost identical after convergence,

the first two figures for each stimulus show only the motions at locations b and c (shown in

Fig. 36.5a in the velocity space). In the third and last figures in Figure 36.5b, which display

the integrated motion, we clearly see the bimodal distribution for stimulus A, while a

single peak is formed at the intersection of two distributions for stimulus B. This

implies that we perceive two separate motions for stimulus A and a single coherent

motion for stimulus B. Figures 36.5c,d illustrate the resulting velocity estimation for six

successive frames sampled from a period of the sinusoidal motion. The maximum a pos-

terior in each frame follows a circular trajectory for stimulus B, which is consistent with

perceiving rotation.

A prior cue can easily be added for inferring DOF in stimulus A. Psychophysically,

this might simulate priming subjects or integrating disparity information to add stereo-

scopic depth so that the subjects are biased to see the occlusion of L-shaped figures

more strongly or weakly. Adding priors for stronger occluders strengthens the belief for

DOF in the indicated direction, and consequently more coherent motion would be

expected. Although not shown here, as the weights on the prior cue are increased, the

solution becomes more unimodal and with a strong prior it produces a single peak at

the intersection similar to stimulus B.

36.6 CONCLUSION

In this chapter we have attempted to demonstrate how Bayesian networks might represent

an appropriate theoretical framework for understanding the computation performed by

cortical hypercolumns for inferring intermediate-level visual representations and integrat-

ing cues across form and stream. The hypercolumn architecture is prevalent at all levels of

cortical visual processing, not just in primary visual cortex. Thus one would expect the

framework for Bayesian integration might also occur at other levels of processing, such

as object recognition, occurring in the hypercolumn networks of inferotemporal cortex.

We have not addressed the issue of learning and adaptation, which is critical in cor-

tical networks. The parameters for our model are fixed. We are now exploring methods for

learning the emission and transition probabilities in the network given an ensemble of

natural spatiotemporal imagery. If the Bayesian network framework is consistent with cor-

tical network processing, we would expect this to provide insight into the organization of

receptive fields and contextual interactions seen in the biological networks.

We have only demonstrated the use of Bayesian networks in the inference mode.

However, since they represent a generative model, such networks have a much broader

utility. For example, one can use the model to synthesize novel “scenes.” In the context

of cortical networks, this is consistent with the ideas that early visual cortical areas are

involved in generating visual mental imagery [27, 28]. The ability to use the framework
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to, for example, infer, discriminate, synthesize, and compress makes it attractive as a

model of general-purpose visual processing.

The implementations we have presented are not meant to be complete models,

instead providing the skeleton of a framework suggesting how spatial cues from multiple

streams might be integrated using a common framework to construct a scene. Others have

attempted to develop more biologically realistic models of form and motion integration,

with mechanisms that are perhaps more neural. However such models are difficult to

analyze, particularly in terms of understanding the general role/effect of uncertainty in

the observations and reversal or ambiguity in perception. Although we do not claim

that our current implementation is a biologically realistic model, it is worth noting that

it is constructed as a network model, with no requirements for global connectivity or

consistency. Further work by our group is aimed at developing biophysically realistic

models of cortical hypercolumns and the cortico-cortical connectivity to investigate

what specific neural machinery could be used to locally construct distributions of obser-

vations and integrate these via local message passing. Ultimately our goal is a “reverse

neuroengineering” of these hypercolumn networks.
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CHA P T E R37

NORMAL AND ABNORMAL

AUDITORY INFORMATION

PROCESSING REVEALED BY

NONSTATIONARY SIGNAL

ANALYSIS OF EEG
Ben H. Jansen, Anant Hegde, Jacob Ruben, and Nashaat N. Boutros

37.1 INTRODUCTION

The spontaneous electrical activity generated by the brain can be recorded from the scalp

using macroelectrodes of about 1.0 cm in diameter. The resulting signal is referred to as

the electroencephalogram (EEG). The EEG amplitude is typically between 10 mV and

several hundred microvolts and has a bandwidth of 0–80 Hz, with most of the activity

below 30 Hz. The EEG is thought to reflect the postsynaptic potentials, summed over

hundreds of millions of neurons [1]. Due to volume conduction effects, the spatial resol-

ution of the EEG is rather poor, but it provides perfect time resolution. Multichannel EEGs

are routinely recorded in clinical practice using 16–32 electrode placed on the scalp

according to the 10–20 system of electrode placement [2], which ensures replicability.

The EEG reflects activity related to internal processes and to events occurring in the

external world. The latter activity is referred to as an event-related potential (ERP). For

example, visual or auditory stimulation would result in EEG changes. Some EEG

changes may occur without external stimulation, but they are related to some event. For

example, EEG changes may be seen when a stimulus is missing from a long series of

regularly presented stimuli. The event-related changes in the spontaneous EEG are typi-

cally very small, and signal enhancement procedures need to be used to retrieve the

ERPs from the spontaneous EEG. The method of choice is ensemble averaging. This

involves repeatedly applying the stimulus and recording the EEG over the interval of inter-

est, starting from some point before the stimulus application through the actual response.

The responses to all stimuli are then summed and divided by the number of stimuli (N ).

Assuming that each stimulus produces an identical, time-locked response which is

additive to and independent of the spontaneous EEG, a signal-to-noise improvement by

a factor of
ffiffiffiffi

N
p

may be obtained. The resulting ensemble-averaged evoked potentials

(EPs) are generally characterized by a sequence of positive and negative waves, which

are identified by their polarity (P for positive, N for negative) and their latency (e.g.,

P300 is a positive wave occurring 300 ms poststimulus) or the order in which they were

Handbook of Neural Engineering. Edited by Metin Akay
Copyright# 2007 The Institute of Electrical and Electronics Engineers, Inc.

601



generated following stimulus delivery (e.g., N2 is the second negative wave). The ampli-

tudes and latencies of the various components are the primary quantitative measures

derived from EPs. Components can be classified as exogenous, that is, due to the

primary processing of the stimulus-related activity in the brainstem, thalamus, and

primary sensory cortex, or endogenous, that is, resulting from higher level or cognitive

processing. The latter have a latency of 250 ms or more, while the former occur within

50 ms of stimulus presentation. The characteristics of the exogenous components

correlate with stimulus characteristics such as loudness and pitch, while the latency and

amplitude of the exogenous components covary with the degree of cognitive processing

required. Components between 50 and 250 ms have both exogenous and endogenous

characteristics.

The ensemble-averaging method for EP enhancement is plagued by several

problems. First, there is mounting evidence that the EEG and EPs are not two independent

processes. Specifically, a relationship between prestimulus EEG activity and visual-

evoked response morphology has been demonstrated in [3, 4]. Başar and colleagues

[5–8] were able to show that the prestimulus EEG within a given bandwidth is directly

related to the poststimulus activity filtered in the same band. Second, the stimulus-related

afferent activity may not be additive to the ongoing activity. Rather, the event-related

activity may cause a phase change in all or some of the frequency components of the spon-

taneous EEG. This hypothesis was first raised by Sayers et al. [9]. Recently, evidence of

stimulus-induced phase synchronization has been reported by several groups, using a

variety of EP analysis methods [10–14]. Using the piecewise Prony method [10], we

have recently presented evidence that phase reordering plays an important role in the gen-

eration of the N100 and P200 components of the auditory EP [15]. In this context, the term

“phase synchronization” denotes that the phase of the spontaneous EEG activity is

changed to a specific value upon stimulus presentation. Consequently, poststimulus

EEG is aligned (“in phase”) across trials. The instances at which maximal intertrial

phase synchronization occurs correspond to the latencies of the components seen in the

averaged EP.

Advanced signal analysis tools designed to track the stimulus-induced EEG

changes on a single-trial basis can shed light on the mechanism underlying EP generation.

In the present study, we show how one such method (the piecewise Prony method [10]) can

be used to uncover phase reordering abnormalities in a population of schizophrenia

patients, as compared to a normal control group. Schizophrenia is a disorder of the brain

characterized by a variety of symptoms (delusions, hallucinations, disorganized thinking,

catatonia, social withdrawal, absence of emotion). We also show, that these phase abnorm-

alities explain the decreased amplitude of the P50, N100, and P200 components observed in

schizophrenia [16, 17] and the decreased ability to attenuate the amplitude of the responses

with stimulus repetition (sensory gating) [18, 19]. Utilizing a paired-click paradigm, where

two identical stimuli (S1 and S2) separated by a brief interval are repeatedly presented,

sensory gating can be operationally defined by an amplitude ratio. Stronger attenuation

of irrelevant input and thus better gating capability are reflected by a lower ratio of the

amplitude of averaged EPs to S2 stimuli to the amplitude of the S1 responses.

37.2 METHODS

Twenty patients with chronic schizophrenia who were diagnosed based on the

Structured Clinical Interview for DSM-IIIR (�SCID) were recruited for the study.
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All patients were on stable doses of atypical antipsychotic agents (except clozaril).

Patients with a history of substance abuse had at least one month of verified absti-

nence and a negative urine test for drugs of abuse within 24 hours from the time of

the study. None of the subjects had a history of head injury leading to any length

of loss of consciousness. Twenty healthy control subjects were recruited from hospital

personnel or from newspaper ads. Healthy control subjects were age and gender

matched to the schizophrenia group in general and not on one-to-one bases. Specifi-

cally, the normal subjects had an average age of 43 years (range 25–55 years) and

comprised 14 males and 6 females. The schizophrenia subjects’ average age was

42.5 years (range 32–56 years), with 15 males and 5 females. Subjects with a

history of hearing problems were excluded.

Auditory-evoked potentials (AEPs) were recorded from the scalp of the normal

subjects and the schizophrenia patients using a double-stimulus paradigm, where two iden-

tical stimuli are presented. Tone bursts of 1000 Hz, with a duration of 4 ms plus a 1-ms rise

and fall time and 85 dB sound pressure level, as measured at the ear using a

measure-and-hold digital sound meter (Tandy Corp, Ft. Worth, TX), were produced by

a Grass auditory stimulator. Sounds were delivered using ear inserts (Etymotic Research,

Elkgrove, IL) in pairs, with 400–600 ms between the first and second tone bursts. The

interstimulus intervals were randomized by the computer. Sixty to 100 pairs of tone

bursts, separated by at least 8 s (subject to a 100-ms computer-imposed jitter), were

presented. The subjects were instructed to reduce movement, relax, stay awake, and

avoid eye movement. No cognitive task was given. Monopolar recordings were made

from gold-disk electrodes affixed to the Fz, Cz, Pz, F1, F2, T3, and T4 locations, refer-

enced to linked ears, but only the Cz lead was analyzed. In addition, eye movements

were recorded with a bipolar lead connecting one electrode placed 1 cm above and

lateral to the right outer canthus to a second electrode placed 1 cm below and lateral to

the left outer canthus. Electrical signals were amplified 20,000 times by Grass amplifiers

with band pass filters set at 0.05 and 300 Hz.

All data were inspected for artifacts, and trials were rejected when activity

in any channel exceeded 75 mV. A large number of the trials obtained from the

schizophrenia subjects did not meet this criterion. However, 19 of the 20 patients

produced at least 25 artifact-free trials, which we considered the minimal number of

trials for meaningful data analysis, and hence we ended up with 20 normal and 19

schizophrenia subjects. A sampling rate of 1000 Hz was used for digitization, but all

data were downsampled to 250 Hz before computer analysis. This downsampling was

required for the proper functioning of the piecewise Prony method (PPM) algorithm

(see below).

Averages for the S1 and S2 responses were computed for each subject as well as

grand averages for each population and the amplitudes of the P50, N100, and P200 com-

ponents were measured for each subject.

The PPM [10] was applied to single AEPs. This method decomposes single trials

into exponentially increasing and/or decreasing sinusoidal components (“Prony com-

ponents”). The decomposition is done iteratively, modeling lower frequencies first,

which are then removed from the signal. The effect of the stimulus on the ongoing

EEG can be observed directly by graphing the components found in a number of trials

in a specific frequency band.

The PPM was applied from 500 ms prestimulus to 500 ms poststimulus for S1 and S2
separately. The single trials were decomposed to obtain components in the 0–2, 2–4, 4–8,

8–12, and 12–16-Hz bands.
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The degree of synchronization was assessed by means of histograms of the instan-

taneous phase of the components across an ensemble of trials. The phase histograms of the

components found in a particular frequency band in 25 trials were generated once every

20 ms. In the absence of phase alignment, the histograms resemble uniform density func-

tions, becoming less so if a phase preference develops. The Kuiper statistic k [20] was

used to quantify the degree with which the phase histograms resembled a uniform

density function. Kuiper’s statistic is defined as

k ¼ ln 2
X

1

j¼1

(4j2V2 � 1)e�2j2V2

 !

(37:1)

with

V ¼
ffiffiffiffi

N
p

þ 0:155þ 0:24
ffiffiffiffi

N
p

� �

� max
i¼1,..., L

½SN(xi)� F0(xi)�

þ max
i¼1, ... ,L

½F0(xi)� SN(xi)� (37:2)

where N is the sample size, L is the number of bins in the histogram, xi is the upper bound

of bin i, and F0(xi) and SN (xi) are the theoretical and actually observed cumulative distri-

bution functions, respectively. Because of the natural log function, kwill be negative only,

with values close to zero indicating that SN (xi) matches F0(xi).

The procedure is explained graphically in Figure 37.1. Shown are the decompo-

sitions in the 4–8-Hz band of 25 trials (S1 responses) from one normal subject.

The phase histograms computed at 20-ms intervals starting 60 ms prestimulus and

Figure 37.1 Top left: PPM components in 4–8-Hz band derived from 25 trials of one healthy

subject. Arrow indicates moment of stimulation. Vertical axis is in arbitrary units. Right:

Phase histograms for these components. Histograms are computed at 20-ms intervals. Horizontal

axis ranges from 2p through p. Time proceeds from top of column to bottom of column.

S denotes stimulus presentation. Bottom left: Kuiper statistic k at 20-ms intervals from 60 ms

prestimulus through 200 ms poststimulus.
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continuing through 200 ms poststimulus are shown as well. As one may observe, the rela-

tively random phase organization seen prestimulus is reflected in the almost perfectly

uniform phase histograms seen from 60 ms prestimulus through the moment of stimulus

presentation. Poststimulus, a preferred phase becomes evident, as seen in the unimodal

phase distributions, and also is readily seen from the single-trial decompositions. The k

values undergo a big change, starting from essentially zero before stimulus presentation

to large negative values poststimulus, indicating that the phase histograms no longer

resemble uniform distributions.

Amplitude and degree of phase synchronization differences between populations

and/or stimuli were assessed for statistical significance using t-tests for the sample

mean. Significant differences were indicated if p , 0.05. When evaluating phase synchro-

nization differences, 14 t-tests (one for each 20-ms interval) were conducted. Because the

k values for adjacent time intervals will be correlated and following the advice given by

Perneger [21], no Bonferroni adjustments of the critical value for p were made. However,

where feasible, we provide both the t and p values, together with the actual data input to

the statistical procedure.

The relationship between EP amplitude and degree of phase synchronization

was assessed by means of multiple linear regression analysis (least-squares method).

Specifically, k40, that is, the degree of phase synchronization at 40 ms poststimulus for

the 0–2, 2–4, 4–8, and 8–12-Hz frequency bands was used as an independent measure

to predict the P50 amplitude. The corresponding k100 and k200 values were used to

predict the N100 and P200 amplitudes, respectively. These k values were selected

because they correspond to the latency of the three components being studied. Multiple

linear regression analysis returns the residual variance R2, which is the sum of squared

differences between actual and predicted amplitudes. The F-tests on R2 were conducted

to assess the significance of the correlation between degree of phase synchronization

and EP amplitude. In case a significant correlation was found ( p , 0.05), the regression

coefficients were checked to determine if they differed significantly from zero, and the

regression analysis was repeated using these coefficients only.

37.3 RESULTS

The grand averages of the S1 and S2 responses for the normal and schizophrenia population

were computed. In both populations, the P50, N100, and P200 components had signifi-

cantly larger amplitudes for the S1 than for the S2 responses ( p , 0.008). The amplitude

differences between the two populations were not significant with the exception that

the normal population had a larger S1 response than the schizophrenia group ( p , 0.03)

for N100.

The gating index, defined as the ratio of the S2 amplitude over the S1 amplitude, was

computed for the P50, N100, and P200 components. Significant differences between the

two subject populations were observed for the N100 ( p , 0.02) and the P200 components

( p , 0.01), with the normal controls showing more gating (i.e., smaller ratios) than the

patient population. A relatively large number of subjects have a P50 gating ratio greater

than 1, suggesting that the S2 response is larger than the S1 response. This may in part

be due to the difficulty identifying P50, as all but one of the normal subjects had a

ratio smaller than 1 for N100, and no normal control exceeded a ratio of 1 for P200.

The latter two components are readily identified in the ensemble-averaged ERP. Interest-

ingly, five schizophrenia subjects had ratios greater than 1 for both N100 and P200, with
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two patients having a ratio greater than 1 for N100 or P200. A detailed view of the S1
and S2 amplitudes is provided in Figure 37.2. It appears that the normal subjects are

more “consistent” gaters than the schizophrenia group, but it is also evident that substan-

tial gating takes place among the schizophrenia population.

For the normal population, it was generally observed that phase synchronization

occurs in the delta and theta bands. Specifically only four subjects did not show any

phase resetting at all in these bands. This phase synchronization was much more pro-

nounced for the S1 stimulus than for S2. While some of the schizophrenia patients

behaved much like normal subjects, in general, schizophrenia patients displayed

much less phase synchronization than normal subjects; only eight subjects phase syn-

chronized in response to S1 in the delta/theta bands. The schizophrenia patients

showed much more variation in their responses and six showed more phase resetting

for the S2 stimulus than for S1, something which was not seen in any of the normal

subjects.

We present graphs of the components found in the various frequency bands for

representative subjects. The first case shows phase synchronization in the 0–2, 2–4,

and 4–8-Hz bands (see Fig. 37.3) in a normal subject. The 0–2-Hz synchronization

starts around 150 ms poststimulus and continues beyond 500 ms. The 2–4-Hz band

synchronization starts quite early comparatively, but its effect dies out much sooner.

Stimulus S2 has very little or no effect on the phase. A certain amount of variability is

also observed among the different trials in the same band. For example, in the theta

band (4–8 Hz), there are some trials which seem unaffected by the S1 stimulus.

A second normal subject displayed strong S1 phase synchronization in all but the

0–2- and 12–16-Hz bands (see Fig. 37.4). Also S2 had a phase synchronizing effect,

but to a lesser degree and primarily confined to the 4–12-Hz range.

One subset of the schizophrenia subjects did not show phase synchronization in

response to either stimulus. See, for example, the overlay plots for schizophrenia

subject B shown in Figure 37.5.

Figure 37.2 The S1 and S2 amplitudes for each of the normal control subjects (top) and

schizophrenia patients (bottom) for P50 (left), N100 (middle), and P200 (right).
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Figure 37.3 Components from 25 trials of normal subject A for all frequency bands. Upper left

panel is 0–2-Hz band, upper right is 2–4 Hz. Second from top is 4–8 Hz, next to bottom is 8–12 Hz,

and 12–16 Hz is at the bottom. Left: stimulus S1; Right: stimulus S2. Stimulus is presented at

0 ms, and 500 ms pre- and poststimulus activity is presented in each frequency band.

Figure 37.4 Components from 25 trials of normal subject C for all frequency bands. Upper left

panel is 0–2-Hz band, upper right is 2–4 Hz. Second from top is 4–8 Hz, next to bottom is 8–12 Hz,

and 12–16 Hz is at the bottom. Left: stimulus S1; Right: stimulus S2. Stimulus is presented at 0 ms,

and 500 ms pre- and poststimulus activity is presented in each frequency band.
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On the other hand, some of the schizophrenia patients behaved much like normal

subjects. For example, schizophrenia subject D showed much more phase synchronization

for S1 than for S2, as one can see from Figure 37.6.

The temporal evolution of the population averages of the Kuiper statistic k for the S1
and S2 stimuli in the 2–4- and 4–8-Hz frequency bands is shown in Figure 37.7. As one

can see, pre-S1 values are close to zero in all frequency bands, indicating uniform

(random) phase. The kmeasure decreases in these frequency bands following presentation

of S1 stimuli, which is a sign of phase synchronization. Repeating stimuli produced k

values that were consistently larger than for S1 stimuli. Also, the post-S2 k values remained

close to their prestimulus values. This suggests that S2 stimuli induced less phase synchro-

nization. The differences between the S1 and S2 k values were evaluated using t-tests. It

was found that, in the normal population, the differences were significant ( p , 0.05)

from 0 through 200 ms in the 2–4-Hz band and from 40 through 200 ms in the 4–8-Hz

band. The t-test results for the schizophrenia population were similar, in the sense that

most differences were seen in the 2–4-Hz band (from 40 through 180 ms) and in the

4–8-Hz band (140–200 ms). It appears that the schizophrenia subjects reach maximum

synchronization in response to S1 later than the normal subjects and at a lower level.

Figure 37.8 shows that large differences in the S1 response exist between the normal

and schizophrenia population. Significant differences, as determined by a t-test, in the

2–4-Hz band were obtained between 0 and 180 ms ( p , 0.05) and between 20 and

160 ms in the 4–8-Hz band. The healthy individuals and schizophrenia patients had

very similar k values for the S2 responses; significant differences were seen only

between 60 and 100 ms in the 4–8-Hz band.

Figure 37.5 Components from 25 trials of schizophrenia subject B for all frequency bands.

Upper left panel is 0–2-Hz band, upper right is 2–4 Hz. Second from top is 4–8 Hz, next to

bottom is 8–12 Hz, and 12–16 Hz is at the bottom. Left: stimulus S1; Right: stimulus S2.

Stimulus is presented at 0 ms, and 500 ms pre- and poststimulus activity is presented in each

frequency band.
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The multiple linear regression analysis conducted to investigate the relationship

between EP amplitude and degree of phase synchronization indicated that P50 amplitude

and k40 were not correlated. However, a significant correlation between k100 and N100

was found for the normal population (R2
¼ 0.58, p , 0.008). The correlation between

Figure 37.7 Temporal evolution of average Kuiper statistic for normal control group (NC, top)

and schizophrenia patients (SZ, bottom) for S1 and S2 responses in 2–4-Hz (left) and 4–8-Hz

(right) bands.

Figure 37.6 Components from 25 trials of schizophrenia subject D for all frequency bands. Upper

left panel is 0–2-Hz band, upper right is 2–4 Hz. Second from top is 4–8 Hz, next to bottom is

8–12 Hz, and 12–16 Hz is at the bottom. Left: stimulus S1; Right: stimulus S2. Stimulus is presented

at 0 ms, and 500 ms pre- and poststimulus activity is presented in each frequency band.
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k200 and P200 was significant for the normal group (R2
¼ 0.55, p , 0.01) and the patient

population (R2
¼ 0.52, p , 0.03).

37.4 FUTURE TRENDS

Using a signal analysis tool specifically designed for single trial evoked potential analysis,

we have been able to show that phase synchronization is a primary mechanism by which

EP components with a latency between 50 and 250 ms are generated. We have also

demonstrated that novel (S1) stimuli produce less phase synchronization of the ongoing

EEG in schizophrenia subjects than in normal subjects. No, or much smaller, population

differences in the ability to phase synchronize the ongoing EEG in response to repeating

(S2) stimuli were found. These results are in concordance with earlier reports, using differ-

ent methods, that the capability to phase reorganize is deficient in certain groups of

psychiatric subjects as compared to normal subjects [14, 22]. Our observation that most

of the phase synchronization differences are seen for S1 responses matches prior work,

suggesting that a significant part of the sensory gating abnormality can be attributed the

aberrations seen in the response to S1 stimuli [23–25]. However, while our data show

that the major abnormality in schizophrenia patients is in the response to S1 stimuli,

additional deviations can also be detected in response to S2 stimuli in the 4–12-Hz

frequency range.

Recently, Makeig et al. [13] reported evidence for visual stimulus-induced phase

resetting in all scalp channels and EEG frequencies below 20 Hz. Combined with our find-

ings for auditory responses, one may conclude that the EP generation mechanism is similar

across the various sensory modalities.

The mostly exogenous components accessed using the auditory double-click

paradigm utilized here differ from the endogenous components such as the P300.

The latter can be observed using an “oddball” paradigm which entails the presentation

Figure 37.8 Same data as in Figure 37.7 but ordered to show population differences.
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of a sequence of frequently and less frequently occurring stimuli (“targets”). If the subject

is asked to attend to the target stimuli by, for example, pushing a button, a positive com-

ponent with a 300–400-ms latency may be observed in the ensemble average of the

responses to the targets. This component is not present in the nontarget stimuli. We

have recently presented preliminary results, obtained using the PPM, indicating that the

P300 component arises from an increase in power in the 0–4-Hz band [26]. This

finding is in partial agreement with the results for visual ERPs reported in [27], where

it is shown that endogenous components are generated by a different mechanism than

exogenous EP components.

Future work will have to focus on identifying the neural mechanisms by which

stimulus-induced phase synchronization of the spontaneous EEG is effected and why

less phase resetting occurs for the repeating stimuli. Several hypotheses have been

proposed. For example, an elementary neuronal mechanism within the hippocampus

was proposed in [28]. This model comprises an inhibitory neuron which forms a synaptic

loop between a sensory neuron and a major output neuron. The initial sensory stimulus

excites both the major output neuron (pyramidal cell) and the inhibitory interneuron.

Subsequent sensory stimulation would produce a diminished response if the inhibitory

neuron is still active from the initial stimulation. This model was further elaborated in

[29], where it was shown that recurrent activity within the CA3 region of the hippo-

campus could be one mechanism to cause suppression of the second response. We

have recently proposed that the interaction between thalamic and cortical excitatory

feedback loops and the inhibitory effect of the thalamic reticular formation is, at least

in part, responsible for the smaller response to the repeating stimulus [30]. Under this

scenario, specific afferent activity, associated with the novel stimulus, excites the

primary sensory thalamic relay nucleus, which in turn provides excitation of the

primary sensory cortex. This activity is fed back to the thalamus. The mutual excitation

of thalamus and cortex results in oscillatory activity, the amplitude of which is gradually

decreased by the inhibitory action of the thalamic reticular formation, which receives

excitatory collaterals from the thalamocortical and corticothalamic cells. Consequently,

the thalamic relay nuclei will be in a hyperpolarized state following the novel stimulus,

and therefore, the gain of the thalamic relay nuclei will be reduced when the repeating

stimulus arrives shortly after the first, effectively blocking the transfer of specific

sensory afferent activity to the cortex.

Identifying the exact neural mechanism of stimulus-induced phase synchronization

will require matching the predictions made by the various models with actual obser-

vations. Nonstationary signal analysis tools such as the one used here will be indispensable

for this task.

37.5 SUMMARY

The results of a detailed investigation of the changes in the brain’s electrical activity

following auditory stimulation have been presented. The detailed study of single-trial

responses was made possible by a newly designed signal analysis tool, the PPM. The

PPM decomposes single-trial AEPs into sinusoidal, exponentially decaying/increasing
components employing a curve-fitting method. The AEPs from 20 normal subjects and

19 schizophrenia patients were obtained using a double-click paradigm, in which two

identical stimuli were delivered with an interstimulus interval of 500 ms and an interpair

interval of 8 s. Pre- and poststimulus phase histograms were compared to determine the

degree of phase synchronization produced by auditory stimulation in the two populations.
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The results show that auditory stimulation results in a phase synchronization of the spon-

taneous EEG. Much less phase synchronization occurs to repeating stimuli than to novel

ones. It was found that schizophrenia patients have a phase synchronization deficiency, as

compared to a normal control group, especially in the 4–12-Hz frequency range. Several

hypotheses for the neural mechanism that would give rise to stimulus-induced phase syn-

chronization are presented as well.
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CHA P T E R38

PROBING OSCILLATORY

VISUAL DYNAMICS AT

THE PERCEPTUAL LEVEL
H. Fotowat, H. Öğmen, H. E. Bedell, and B. G. Breitmeyer

38.1 INTRODUCTION

The goals of neuroengineering are twofold. First, it aims to develop and apply engineering

know-how to problems in neuroscience, that is, a “forward-engineering” approach tailored

to neuroscience. Second, it aims to “reverse engineer” nervous systems in order to develop

novel engineering concepts and techniques. These concepts and techniques can, in turn, be

used in forward neuroengineering as well as in the design of biomimetic systems. In this

chapter we present research aimed at reverse engineering the human visual system. Light

impinging on the photoreceptors is transformed into neural activity which propagates

to various parts of the nervous system. The nervous activity in turn gives rise to our sub-

jective experience, that is, our perception of the environment. Studies of brain and mind

are conducted at different levels. At the neurophysiological level, the focus is on the

relationship between stimuli and neural activity. At the outer psychophysical level, the

focus is on the relationship between stimuli and percepts. To complete the loop, a relation-

ship between neural activity and percepts needs to be established; this is the goal of inner

psychophysics (see Fig. 38.1). While there have been extensive studies of the primate

visual system at the neurophysiological and at the outer psychophysical levels, our under-

standing of the relationship between neural activities and percepts has been very limited.

For example, high-frequency oscillatory neural activities have been observed in the visual

system of several species for about a hundred years [e.g., 1, 2], but their functional role in

vision, if any, remains one of the fundamental questions in cognitive neuroscience.

It has been theorized that high-frequency oscillatory activity can form the neural

basis of visual awareness, focused arousal, attention, and feature binding [e.g., 3–10].

The validation of these proposals requires evidence from the perceptual level so as to

establish a causal relationship between neurophysiological oscillations and perceptual

states. However, psychophysical tests of these proposals produced discrepant results

[11–17]. These studies examined the effect of adding high-frequency components to

the stimulus itself. It was reasoned that neural oscillations entrained by these high-

frequency input components would enhance the functional role played by the oscillatory

activity at the corresponding frequency. A tacit assumption behind this rationale is a func-

tional equivalence between externally driven, that is, entrained, oscillations and intrinsic

oscillations. However, as early as the beginning of the twentieth century, a distinction

Handbook of Neural Engineering. Edited by Metin Akay
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between rhythmic responses to nonrhythmic stimuli (intrinsic oscillations) and rhythmic

responses to rhythmic stimuli (entrained oscillations) was made (Fröhlich, cited in

[18]). More recent research showed that the visual system possesses parallel pathways

that differ in their sensitivity to stimulus characteristics. For example, the magnocellular

(or M) pathway responds more strongly to stimuli of lower spatial frequencies and higher

temporal frequencies and the parvocellular (or P) pathway exhibits a complementary

behavior [19]. Accordingly, the intrinsic oscillations generated by cortical cells will be

accompanied by a different pattern of activity in the afferent pathways depending on

whether one uses a rhythmic or nonrhythmic stimulus. It is therefore highly desirable to

measure perceptual correlates of intrinsic oscillations generated by nonrhythmic stimuli.

The human visual system integrates signals over space and time [20] and thus acts as a

“low-pass filter,” making it highly challenging to observe high-frequency activities at

the psychophysical level. Recently, based on an analysis of a computational model of

retino-cortical dynamics (RECOD) [21], we designed psychophysical experiments that

provided evidence for perceptual correlates of oscillatory neural activity [22, 23]. In

this chapter, we will introduce our approach and use it to examine how the perceptually

measured oscillatory dynamics depend on stimulus and background luminance. Overall,

this research provides an outer psychophysical technique which, when combined with

neurophysiological recordings, can serve as a basis for inner psychophysical studies.

38.2 THEORETICAL BASIS OF STUDY

The general structure of the RECOD model is shown in Figure 38.2. The lower two

ellipses represent retinal ganglion cells with fast-phasic (transient) responses and those

with slower tonic (sustained) responses [24–27]. These populations of retinal ganglion

cells project to distinct layers of the lateral geniculate nucleus (LGN) forming two parallel

afferent pathways, called the magnocellular and parvocellular pathways.

The M and P pathways form the primary inputs of different cortical visual areas sub-

serving various functions such as the computation of motion, form, and brightness [19,

28]. The model uses a lumped representation for the cortical targets of M and P pathways.

The main cortical targets of the M pathway represent the areas that play a major role in the

computation of motion and temporal change. The main cortical targets of the P pathway

Figure 38.1 Different levels of investigation in probing workings of perceptual systems.
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represent the areas that play a major role in the computation of dynamic form and bright-

ness (upper ellipses in Fig. 38.2). In terms of cortical interactions between these pathways,

the model postulates reciprocal inhibition, as shown by the connections between the upper

ellipses in the figure. The lumped representation for the areas involved in the computation

of dynamic form and brightness contains recurrent connections (not shown in Fig. 38.2)

to represent the extensive feedback observed in postretinal areas. This recurrent circuit

produces oscillatory responses (denoted by P in the figure) that represent the neuro-

physiologically observed oscillations [e.g., 29–35]. To link neural responses to visual

perception, the model postulates that the oscillatory activity is temporally integrated

(SP in Fig. 38.2) according to the psychophysically determined temporal integration

characteristics of the human visual system and that this temporally integrated activity

underlies the perception of brightness and form. The mathematical equations of the

model can be found in [22].

In the metacontrast masking paradigm [36–38], the visibility of a target stimulus is

measured in the presence of a spatially nonoverlapping mask stimulus. The mask stimulus

is turned on after the target stimulus with a delay between the onset of mask and target,

called the stimulus onset asynchrony (SOA). An analysis of the RECOD model in the

context of metacontrast masking produced a novel prediction, namely that spatiotem-

porally localized suprathreshold stimuli (briefly flashed dots) should produce a new

type of metacontrast masking function that exhibits oscillations [22].

The prediction of the model is illustrated in Figure 38.3. The plots at the top of

Figure 38.3 depict the postretinal activities that the target (T) and mask (M) would gen-

erate if they were presented in isolation. The filled triangle depicts the fast transient

response in postretinal areas driven by the M pathway and the sawtooth shaped activity

depicts the oscillatory response in postretinal areas driven by the P pathway. The

arrows between the transient and oscillatory activities depict the mutual inhibition

between transient and sustained postretinal neural populations. When the SOA is such

that the mask-generated transient activity overlaps in time with the bursting phase of

the target-generated oscillatory activity (SOA1 on the top left), this burst of activity will

be suppressed due to the inhibition exerted by the transient activity. This in turn will

cause a decrease in the integrated activity generated by the target. As a result, the visibility

Figure 38.2 General architecture of RECOD model. Filled and open synaptic symbols

represent inhibitory and excitatory connections, respectively.
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of the target will decrease for SOA1, as shown in the metacontrast function at the bottom of

Figure 38.3. When the SOA is such that the mask-generated transient activity occurs

between two bursting phases of the target-generated oscillatory activity (SOA2 on the

top right), inhibition will not significantly suppress the oscillatory activity in the sustained

channel. This will result in a relatively high level of perceived target brightness, as shown

in the metacontrast function at the bottom of Figure 38.3. When a range of SOA values is

considered, one can see that the shape of the metacontrast function will reflect the shape of

the oscillatory activity. Psychophysical experiments and model simulations provided

support for this prediction [22, 23]. Earlier observations [39, 40] suggested that oscillatory

activities should be prominent when the stimulus detectability is high. In this chapter, we

extend our previous study to examine the dependence of oscillatory metacontrast functions

on stimulus and background luminance.

38.3 METHODS

38.3.1 Materials and Procedures

Stimuli consisted of three horizontally aligned dots on a uniform background field. The dot

stimuli were generated by ultrabright light-emitting diodes (LEDs) and were viewed

Figure 38.3 Predictions of RECOD model for spatiotemporally localized stimuli in

metacontrast masking. The top two panels depict the postretinal activities that the target (T)

and mask (M) stimuli would generate if they were presented in isolation. The arrows between

transient (filled triangle) and sustained oscillatory (sawtooth-shaped activity) activities illustrate

mutual inhibition between transient and sustained oscillatory activities. The bottom panel depicts

the metacontrast masking function.
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through an optical apparatus designed to superimpose a uniform background on the

light emitted by the LEDs and to optically reduce the retinal size of the LEDs to

1 arcmin diameter. The horizontal separation between adjacent LEDs was 9 arcmin.

The luminance of each LED was calibrated by a Minolta LS-110 photometer. The

central LED served as the fixation stimulus. It was briefly turned off (200 ms) before

the presentation of the target–mask pair in each experimental trial to prevent its inter-

actions with the target–mask stimuli. The other two LEDs served as the target and

mask stimuli. They were turned on sequentially for a duration of 10 ms each and separated

by the SOA value. To prevent predictive eye movements, for each trial the target LED was

randomly selected to be either the left or the right LED. After this target–mask sequence,

the central LED was turned on as a match stimulus. The task of the observer was to

indicate which of the two, the target or the match stimulus, appeared brighter. The lumi-

nance of the match stimulus was modified during the experiment using a double-staircase

procedure to converge to the point of subjective equality (PSE). All experimental methods

were identical to those in [22] with the following exceptions: The sampling period of the

SOA was 1 ms. Seven overlapping SOA intervals (,30,40.; ,35,50.; ,45,60.;

,55,70.; ,65,80.; ,75,90.; ,85,100.) were run in different sessions. There

were four experimental conditions corresponding to target and background luminance

pairs of: C1: 2.5 log units (LU) above detection threshold, 13.5 cd/m2; C2: 2.5 LU,

0.5 cd/m2; C3: 0.5 LU, 0.5 cd/m2; C4: 0.5 LU, 13.5 cd/m2. One of the authors and

two naı̈ve observers participated in the experiments.

38.3.2 Data Processing

The metacontrast function spanning the SOA values from 30 to 100 ms was constructed by

combining the data from the seven intervals. The overlapping portions of the intervals

were used to estimate the intrinsic variations in neural response timing. To compensate

for these intrinsic variations, the different SOA segments were shifted in time until the

overlapping portions of the data produced a minimal normalized-squared-error, GoSF,

across all test intervals. The error function was computed as

GoSFk ¼
1

N

XN

i¼1

(dp1i � dp2i)
2

where N is the number of overlapping peaks and dips through the full range of the meta-

contrast masking function, dp1i and dp2i are the values of the ith dip or peak within over-

lapping intervals, and the index k corresponds to the kth shift combination. In order to test

that this compensation process did not create artifactual structure in the metacontrast func-

tion, we calculated the normalized squared difference of the overlapping metacontrast

masking data points,

GoFF ¼

1

Nt

XNt

i¼1

(m1i � m2i)
2

where GoFF stands for goodness-of-fit factor, Nt is the total number of overlapping meta-

contrast data points, and m1i and m2i are the values of the metacontrast function at each

point i in the overlapping intervals. The comparison of this value to the distribution

of goodness-of-fit factors obtained from the randomly scrambled versions of the data
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showed that the result produced by our compensation procedure was statistically signifi-

cant. Finally, the resulting metacontrast function was filtered by a zero-phase low-pass

filter with a cutoff frequency of 200 Hz.

38.4 RESULTS

As in our previous study [22], for a given experimental condition, the magnitude of the

masking function was variable across observers but consistent within each observer.

The observed frequency of oscillations was higher in this study than our previous

study [22], which is attributable to higher temporal sampling. Examples of a relatively

strong and a relatively weak masking function are shown in Figures 38.4 and 38.5.

In Figure 38.4, the magnitude of masking is about 1 LU. In Figure 38.5, the magni-

tude of masking is about 0.1 LU. Because different observers and experimental conditions

Figure 38.4 Masking function for observer HF, C1 (2.5-LU target on 13.5-cd/m2 background).

The dips are indicated by arrows.

Figure 38.5 Masking function for observer JR, C3 (0.5-LU target on 0.5-cd/m2 background).

The dips are indicated by arrows.
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produced different magnitudes of the masking functions, in order to compare the pattern

of oscillations across observers and conditions, we plotted the timing of the dips in the

masking function as a function of the dip number.

Figure 38.6 shows the dip timings for C1. The plot shows a very good agreement

across the observers in the locations of early dips (1–3). As the dip number increases,

the locations of the dips become more variable across the observers. An inspection of

Figure 38.7 reveals a similar finding for C2. However, the variability in this case is slightly

higher than that for C1.

The location and distribution of the dips in C3 (Fig. 38.8) are similar to C2,

suggesting that under mesopic viewing conditions target visibility does not considerably

affect the patterning of the dips. However, comparing C1 and C4 (Figs. 38.6 and 38.9)

shows that under photopic viewing conditions target visibility plays a major role in the

patterning of dips. As can be seen in Figure 38.9, the timing of the dips is highly scattered

among the three observers in C4.

Figure 38.6 Timing of dips in masking function for three observers for C1 (2.5-LU target on

13.5-cd/m2 background).

Figure 38.7 Timing of dips in masking function for three observers for C2 (2.5-LU target on

0.5-cd/m2 background).
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38.5 DISCUSSION

Without the occurrence of a contrast polarity reversal in the perception of the target, the

maximum possible masking magnitude is equal to the visibility of the target, namely, 2.5

LU in C1 and C2 and 0.5 LU in C3 and C4. As a result, the dynamic range to observe oscil-

latory masking functions becomes more limited as the target luminance decreases. Indeed,

previous observations suggest that oscillatory perceptual phenomena are more salient at

high luminance levels [39, 40]. Our results show that while the patterning of oscillations

is more stable across observers when target visibility is high, one can observe a similar

patterning for targets of relatively lower visibility provided that the background is dim.

We also found that the locations of early dips are more consistent across observers

than the locations of later dips. A possible interpretation of this finding is that the early

cortical response components arise mainly from feedforward signaling and relate more

directly to exogenous variables. On the other hand, late-response components are likely

to carry information conveyed by feedback signaling and thus are more likely to represent

endogenous variables, such as attention.

Figure 38.8 Timing of dips in masking function for three observers for C3 (0.5-LU target on

0.5-cd/m2 background).

Figure 38.9 Timing of dips in masking function for three observers for C4 (0.5-LU target on

13.5-cd/m2 background).
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38.6 FUTURE TRENDS

Understanding the internal codes used by the nervous system is one of the most fundamen-

tal aspects of neuroscience and neuroengineering. As illustrated in Figure 38.1, this

requires investigations at different levels so as to establish causal relationships between

stimuli, neural responses, and perceptual and cognitive states. An ubiquitous aspect of

neural dynamics is the oscillatory character of neuronal activity. The oscillations are par-

ticularly prominent in recordings at a large population level, such as those obtained by

electroencephalograms (EEGs) [1, 2]. Understanding whether and how the oscillatory

dynamics relate to perceptual/cognitive states has been a challenging puzzle in neuro-

science. Are synchronized oscillatory firings used as a code to bind different aspects,

such as color, motion, and shape, of the same object [e.g., 3, 4, 6, 7]? Or, are they

simply a byproduct of the combined positive- and negative-feedback loops found in the

cortical neurocircuitry? From the engineering perspective, positive feedback is generally

avoided in analog systems; however, the complexity of information processing carried out

by the nervous systems seems to necessitate extensive positive-feedback signaling. Given

the observation that signal timing varies significantly among different cortical areas

[41–43], a combination of positive feedback and delays is likely to generate oscillatory

activities.

Accordingly, one hypothesis is that the oscillatory responses are a byproduct of the

cortical circuitry and are “filtered” through a temporal integration process at later stages,

as illustrated in Figure 38.2. Given the outer psychophysical results presented in this

chapter and previous work [22, 23], insights at the inner psychophysical level can be

gained by combining the psychophysical method outlined here with neurophysiological

recordings. For example, changes in perceived brightness of the target in metacontrast

have been shown to have correlated changes in EEG waves [44, 45]. Thus, oscillatory

metacontrast masking functions may be probed by a combination of perceptual and

EEG techniques. Previous studies also reported a correlation between neuronal firing

and psychophysically determined metacontrast functions in monkeys [46]. Accordingly,

a complementary approach would be to combine perceptual and intracerebral recordings

in the monkey visual system. Finally, EEG and masking data provide converging evidence

that schizophrenic patients show deficits in generating or maintaining oscillatory neural

responses [47]. Thus, the technique discussed in this chapter may also be useful in clinical

applications.
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21. ÖĞMEN, H. (1993). A neural theory of retino-cortical

dynamics. Neural Networks, 6, 245–273.
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CHA P T E R39

NONLINEAR APPROACHES TO

LEARNING AND MEMORY
Klaus Lehnertz

39.1 INTRODUCTION

The electroencephalogram (EEG) reflects brain electrical activity owing to both intrinsic

dynamics and responses to external or internal stimuli. To examine pathways and time

courses of information processing under specific conditions, several experiments have

been developed controlling sensory inputs and/or higher cognitive functions. Depending
on the applied paradigm, EEG time series recorded during these experiments can be

classified as triggered and nontriggered (cf. Fig. 39.1).

In order to detect and extract relevant information from these EEG time series, a

variety of analysis techniques that operate in the time or frequency domain are usually

applied [1]. With the advent of the theory of nonlinear deterministic dynamics [2] new

concepts and powerful algorithms were developed to analyze complex behavior, a distinc-

tive feature of the EEG. When applied to EEG signals these nonlinear time-series analysis

techniques [3] were shown to allow reliable characterization of normal and pathological

brain function [4–7]. Moreover, findings presented here indicate that nonlinear

approaches may also improve understanding of neuronal processes underlying learning

and memory in the human brain.

39.2 NONLINEAR ANALYSES OF TRIGGERED EEG

Repeated presentation of well-defined stimuli is assumed to induce synchronized neural

activity in specific regions of the brain, occurring as voltage changes in the EEG. These

evoked potentials (EPs) often exhibit multiphasic peak amplitudes within the first

hundred milliseconds after stimulus onset. They are specific for different stages of

information processing, thus giving access to both temporal and spatial aspects of

neural processes. Other classes of experimental setups are used to investigate higher

cognitive functions. For example, subjects are required to remember words or they are

asked to respond to specific target stimuli, for example, by pressing a button upon their

occurrence. The neural activity induced by this kind of stimulation also leads to potential

changes in the EEG. These event-related potentials (ERPs) can extend over a few seconds,

exhibiting peak amplitudes mostly later than EPs (for an overview on event-related

synchronization and desynchronization see [8]).

When compared to the ongoing EEG, EP and ERP possess very low peak amplitudes

which, in most cases, are not recognizable by visual inspection. Thus, to improve their low

Handbook of Neural Engineering. Edited by Metin Akay
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signal-to-noise ratio, EPs/ERPs are commonly averaged, assuming synchronous, time-

locked responses not correlated with the ongoing EEG. Let si(t), i ¼ 1, . . . , N (where N

denotes the number of presented stimuli), be the measured stationary EEG time series con-

sisting of an additive superposition of the a priori unknown EP/ERP [denoted as xi(t)]

and some background activity hi(t). Averaging will reduce the amplitude of hi(t) by N

while the amplitude of xi(t) will be reduced by
ffiffiffiffiffiffiffi

ðNÞ
p

only. Apart from the fact that a

large number of trials N might be necessary, these assumptions may be inaccurate and,

as a result of averaging, variations of EP/ERP latencies and amplitudes are not accessed.

In particular, short-lasting alterations which may provide relevant information about

cognitive functions are probably smoothed or even masked by the averaging process.

Therefore, investigators are interested in a single-trial analysis that allows extraction of

reliable signal characteristics out of single EP/ERP sequences.

Various signal processing techniques have been developed to perform single-trial

analyses (see [9] for an overview). Among these, wavelet-based methods are particularly

suitable because the wavelet transform provides several useful properties for the analysis

of transient and time-variant signals [10, 11]:

. Wavelets are local, which makes most coefficient-based algorithms naturally adapted

to inhomogeneities.

. They can represent smooth signals as well as singularities.

. They can represent a variety of functions.

For these reasons, wavelets have become a popular tool for the analysis of brain

electrical activity [12], especially for denoising and classification of single-trial ERPs

[13–18].

We have recently exploited geometrical properties of short and transient signals

like ERP in state space for nonlinear de-noising by wavelets [19, 20]. This method com-

bines the wavelet transform with noise reduction techniques originally developed for a

characterization of nonlinear deterministic systems [21]. With the latter techniques it is

assumed that the dynamics of the clean signal is confined to some low-dimensional mani-

fold in state space (cf. Fig. 39.2a) which is blurred due to the noise. A reconstruction of

this manifold from scalar time series fstg, where t ¼ 1, . . . , T, can be achieved by

means of delay coordinates ~si ¼ (si,si2t, . . . , si2(m 2 1)t) with i ¼ 1, . . . , M ¼ T2mt,

where f~sig defines the reconstructed state space trajectory (cf. [3] for details). Here t is

Figure 39.1 External or internal stimuli induce characteristic changes in the EEG that can be

divided into the classes triggered (timelocked to each stimulus) and nontriggered (related to a

given task).
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a time delay and m is the embedding dimension which, according to Whitney’s theorem,

must be chosen as m � 2dþ 1 (where d is the dimension of the manifold formed by the

genuine trajectory in state space) if any exact determinism present in the original

system is to be preserved. Denoising can be achieved by a local projection onto this mani-

fold using singular-value decomposition (SVD). However, estimating relevant signal

components using the inflexion of ordered eigenvalues is not always applicable to EEG

because eigenvalues may decay almost linearly. In this case, an a priori restriction to a

fixed embedding dimension m is in need, running the risk either to discard important

signal components or to remain noise of considerable amplitude if only little is known

about the signal. In addition, SVD stresses the direction of highest variances, so that tran-

sient signal components may be smoothed by projection. Finally, the number of signal-

related directions in state space may alter locally, which is also not concerned by SVD.

To circumvent these problems we calculate wavelet transforms of delay vectors f~sig

instead and determine signal-related components by estimating variances separately for

each state space direction. Scaling properties of wavelet bases allow very fast calculation

as well as focusing on specific frequency bands. We applied our method to ERP-like test

signals contaminated with white and isospectral noise [19] as well as to ERPs that were

recorded intra- and extracranially in epilepsy patients during a number of different

paradigms investigating higher cognitive functions [19, 20, 22] and achieved convincing

results (cf. Fig. 39.2b).

39.3 NONLINEAR ANALYSES OF NONTRIGGERED EEG

Another approach consists of analyzing the ongoing, nontriggered EEG recorded during

specific neuropsychological tasks that control sensory inputs and/or higher cognitive

Figure 39.2 (a) Similarity in state space: three exemplary artificial signals using time-domain

representation (left) and corresponding two-dimensional state space plots (right) reconstructed by

time delay embedding. The last row depicts the respective average. (b) Nonlinear denoising in state

space: raw and denoised single trials of P300 potentials recorded simultaneously from within

the hippocampal formation and from the scalp from an epilepsy patient undergoing presurgical

evaluation. The last row depicts the respective averages. (Modified from [20].)
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functions [23]. In this case EEG time series comprise both potentials that are and others

that are not time locked to the events of a task. No further differentiation between these

potentials is intended since a task is usually considered as an entity and any time resolution

within a task is waived. Characterizing measures are extracted for the whole task and

eventually compared between different tasks/conditions and/or between different

locations in case of multichannel EEG recordings.

A number of studies have found power spectral changes predominantly in the alpha

(8–13-Hz), theta (4–7-Hz) and more recently gamma (around 40-Hz) bands as well as

changing topographical EEG structure to be related to learning and memory processes

[e.g., 23–29]. Since the early 1990s these studies are complemented by new approaches

invoking nonlinear time-series analysis techniques. Among others particularly estimates of

an effective correlation dimension [30] have been used to characterize changes in brain

electrical activity recorded from healthy subjects performing neuropsychological tasks

[31–38]. These studies have shown an increased dimensional complexity of the

Figure 39.3 (a) Example of a neuropsychological test schedule: During the fluency task (F)

patients are required to produce as many words as possible starting with the predefined letter;

during the learning task (L) patients are required to learn 15 highly frequent words that are orally

presented five times in randomized order; during the retrieval task (R) patients are required to freely

recall words memorized during L. The number of correctly retrieved words during R and the

absolute number of words minus perseverations produced during F serve as measures of verbal

memory and fluency, respectively. Numbers denote duration (in minutes) of each task. (b)

Schematic view of intrahippocampally placed depth electrodes. (c) Exemplary time course of an

effective correlation dimension D� estimated from depth EEG signals recorded from the left

entorhinal cortex [marked by an arrow in (b)] of an epilepsy patient performing the test schedule

with a high performance rate (fluency task 25 words; recall task 12 words). (d ) Alterations of the

neuronal complexity loss L� (cf. [44] for details) during each phase of the test schedule. Low values

of L� indicate higher degrees of freedom in the competitive interactions between neuronal

assemblies.
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ongoing surface EEG during memory tasks, reflecting higher degrees of freedom in

the competitive interactions among neuronal assemblies. However, due to a missing or

only weak correlation with task performance nonlinear EEG measures are currently

considered to be relatively nonspecific. This shortcoming can in part be attributed to the

poor spatial resolution of surface EEG recordings to resemble electrical signals from

deeper layers. This holds true particularly for mesial temporal structures that are signifi-

cantly involved in declarative (episodic/semantic) memory processing [39, 40].

Intracranial EEG recordings in patients with temporal lobe epilepsy, in whom inva-

sive recordings are indicated for medical reasons, offer a unique opportunity to circumvent

this problem. Depth electrodes have to be placed in structures relevant for memory

processes in both hemispheres (cf. Fig. 39.3b) and the high signal-to-noise ratio of intra-

cranial recordings makes it possible to correlate nonlinear EEG measures during

memory-related paradigms with the graded memory deficits of temporal lobe epilepsy

patients [41].

We analyzed stereo-electroencephalographic data recorded intrahippocampally

in patients with temporal lobe epilepsy who participated in a neuropsychological test

schedule (cf. Fig. 39.3a). The schedule consisted of tasks mainly involving verbal-

memory-related processes [42, 43]. Specific changes in time of the dimensional complex-

ity (neuronal complexity loss L� [44], cf. Figs 39.3c,d) proved a valuable parameter

reflecting spatially distributed neuronal activity during verbal learning and memory

processes. In line with current neurobiological models of declarative memory [39, 40],

L� allowed to reliably predict recall performance of both intentionally [45] and inciden-

tally [46] learned verbal material. In addition, when analyzing interdependencies [47]

between different brain areas, we observed specific regions of mesial temporal structures

to participate in specific cognitive tasks. Particularly interhippocampal interactions

turned out to be of high relevance for verbal learning and memory processes [48].

39.4 CONCLUSION

Although nonlinear time-series analysis of brain electrical activity is still at its beginning,

these approaches generate new ways of viewing brain function. Results obtained so far

emphasize the high value of nonlinear EEG analysis techniques to characterize neuronal

activity during learning and memory processes. Recent developments including tech-

niques taking into consideration the highly nonstationary character of brain electrical

activity [49] as well as techniques disentangling subtle spatially distributed neuronal

synchronization phenomena [29, 50–53] may further improve understanding of brain

dynamics. Thus, nonlinear EEG analyses are expected to offer supplementary information

about the integrated, coordinated activity of multiple neuronal systems underlying higher

cognitive processes.

ACKNOWLEDGMENT

I gratefully acknowledge valuable discussions with

and contributions of Ralph G. Andrzejak, Jochen

Arnhold, Wieland Burr, Peter David, Arndt Effern,

Christian E. Elger, Jürgen Fell, Guillen Fernandez,

Peter Grassberger, Thomas Grunwald, Christoph

Helmstaedter, Peter Klaver, Thomas Kreuz, Fer-

nando Lopes da Silva, Florian Mormann, Christoph

Rieke, Thomas Schreiber, Bruno Weber, Guido

Widman, and Heinz-Gregor Wieser. This work was

supported by the Deutsche Forschungsgemeinschaft.

ACKNOWLEDGMENT 631



REFERENCES

1. F. H. LOPES DA SILVA, W. STORM VAN LEEUWEN, AND
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CHA P T E R40

SINGLE-TRIAL ANALYSIS OF

EEG FOR ENABLING

COGNITIVE USER INTERFACES
Adam D. Gerson, Lucas C. Parra, and Paul Sajda

40.1 INTRODUCTION

Establishment of robust direct brain–machine communication channels has enhanced the

function and performance of both impaired and normal nervous systems. The creation

of direct links between brain and machine has been most strongly motivated by the

need to provide a mode of communication for those silenced by conditions such as

amyotrophic lateral sclerosis (ALS). Such brain–computer interfaces (BCIs) [1] translate

cortical activity involved with motor planning and motor response to select letters and

words on a computer display or control a robotic prosthesis. Perhaps the most striking

results have been demonstrated through invasive systems based on multiunit micro-

electrode implants. Microelectrode arrays implanted in motor cortex have enabled

monkeys to reach and grasp in three dimensions using a robotic arm and gripper

without using their hands [2]. In fact, invasive systems have already allowed humans

with ALS or high-level spinal injury to communicate [3].

Invasive brain–machine interfaces need not be limited to monitoring cortical

activity. Representing an astonishing paradigm shift, neuroscientists in Brooklyn have

assumed the role of animal trainer, wirelessly guiding rats using cortical microstimulation

[4]. Rats were implanted with microelectrodes in left and right somatosensory (barrel)

cortex and the medial forebrain bundle (MFB). Rats following navigational cues provided

by stimulating somatosensory cortex were subsequently rewarded through stimulation

of MFB. Both navigational and reward stimuli were controlled by the rat trainers;

however, one can envisage a system in which motor cortex is monitored so reward

centers are automatically stimulated if navigational cues are correctly executed. Clinically

motivated cortical stimulation systems have successfully treated those suffering with

Parkinson’s disease [5] and epilepsy [6] by stimulating the subthalamic nucleus and

vagus nerve, respectively. Cochlear implants have restored hearing by stimulating the

auditory nerve [7], and visual cortical implants promise to restore vision [8].

Invasive brain–machine interfaces are clearly well motivated, improving quality

of life by restoring communication, motor control, hearing, and possibly vision to a

sizable segment of the population. Brain–machine communication channels also

enable cognitive user interfaces (CUIs) designed to enhance healthy nervous system

function, augmenting user performance during cognitively demanding tasks by boosting

Handbook of Neural Engineering. Edited by Metin Akay
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information processing capacity and reducing stress-induced deficiencies of executive

control functions.1 Widespread adoption of invasive cognitive interfaces is highly unli-

kely; as such, any CUI must rely on noninvasive neuroimaging modalities. Functional

magnetic resonance (fMRI) imaging has revolutionized neuroscience by delineating

the anatomical origin of scores of cognitive processes. While fMRI studies are critical

to the design of any CUI, the size, cost, and more importantly temporal resolution of

scanners prohibit their use in any practical application. Millisecond temporal resolution

and low cost make electroencephalography (EEG) the most viable modality for

cognitive interface design.

Robust classification algorithms are critical in order to realize practical benefits of

EEG. Sensitivity to environmental noise is of obvious concern; however, recent advances

in sensor technology2 suggest classifier development should focus on identifying neural

sources. Traditionally, electrophysiological research relies on averaging across hundreds

of stimulus or response-locked trials to uncover the dynamics of neural activity from

EEG. The underlying assumption has been that by averaging across trials the contribution

of background EEG activity is minimized relative to neural activity correlated with a

stimulus. Such event-related potential (ERP) analysis, however, masks variability

between trials that may be of critical importance when striving to understand underlying

cortical interactions. For example, one study describes an alpha-phase distribution across

trials that comprises averaged visual stimulus-evoked ERPs [9]. The authors of this study

suggest that visual stimuli in fact reset the phase of dynamic neural activity resulting in

variability of alpha phase across stimulus-locked trials. Any practical EEG-based interface

must account for intertrial variability.

Immediate applications for cognitive user interfaces can be derived by teasing apart

processing stages between sensory stimuli and motor response as outlined in Figure 40.1.

Contemporary models indicate that sensory information is decomposed into discrete

fundamental features that are subsequently integrated under constraints imposed by adja-

cent features and higher order areas associated with memory and reward. The process of

sensorimotor integration is still subject to debate; however, one hypothesis proposes that

perceptual evidence accumulates lending weight to competing neuronal populations

poised to execute motor plans for distinct postures. Motor responses are subsequently

monitored and the outcome influences reward centers which feed back to influence

subsequent decisions. Monitoring neural populations associated with perception, sensori-

motor integration, and reward immediately suggests CUI interfaces for high-throughput

object recognition and error correction. After reviewing linear classification methods,

Figure 40.1 Stimulus response processing stages for CUI design.

1Visit DARPA’s vision for Cognitive User Interfaces: http://www.darpa.mil/ipto/programs/augcog/.
2For example, noncontact bioelectrodes: http://www.quasarusa.com.
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we present two examples of CUIs designed expressly to augment cognition by enhancing

throughput during an object recognition task and correcting response errors during stress-

ful motor-intensive tasks.

40.2 MACHINE LEARNING: LINEAR METHODS

The merits of linear and nonlinear methods were the subject of a debate held during the

Second International Meeting on BCIs [10]. This discussion reviewed important factors

to consider when fitting a learning algorithm to the problem of classifying EEG such

as the degree of prior information, nature of data distributions, amount of training data,

and computational costs [11] for online real-time cognitive interfaces. At the present

time we prefer linear methods for EEG classification since a principled approach defining

the origin of nonlinearities in EEG has yet to be clearly defined. Compared with nonlinear

methods, linear methods are consistent with the linearity of volume conduction, are less

likely to overfit noise, and have a significantly lower computational cost.

Linear methods for analyzing multichannel EEG can be categorized as supervised or

unsupervised. Traditionally implemented as an unsupervised method, independent-

component analysis (ICA) [12] decomposes signals into several independent components

with time series that are viewed and analyzed separately. Unsupervised methods do not

leverage truth labels associated with experimental events such as stimulus type. Super-

vised methods, on the other hand, exploit training labels given knowledge of the

task and/or subject responses. The method of common spatial pattern (CSP) [13] is an

example of supervised source recovery widely used in EEG. This method weights electro-

des according to the power captured for two classes of data. It finds orientations in the

sensor space in which the power is simultaneously maximized for one class and minimized

for the other. An alternative to maximizing power is to maximize the discrimination

between two classes. Parra et al. [14] proposed a linear discrimination method that

spatially integrates sensor values in well-defined temporal windows to recover sources

that maximally discriminate two classes given labeled EEG.

All three methods linearly transform the original signals as Y ¼ WX, where X are

the observations (the original EEG signal matrix), W is the transform matrix (or vector)

that is calculated using the different linear approaches, and Y is the resulting source

matrix (or vector) representing the recovered sources. Note the recovery of sources Y

given an underlying linear mixture of observations in X.

40.2.1 Independent Component Analysis

Independent-component analysis is a method of finding a linear transformation of input

vectors X that maximizes the statistical independence of output source vectors Y such

that Y ¼ WX. Principal-component analysis (PCA) finds a transformation that decorrelates

input vectors by finding a linear transformation resulting in orthogonal output vectors such

that the inner product of the vectors is zero. Traditionally, the PCA transformation matrix

consists of the normalized eigenvectors of the input vectors’ covariance matrix. In contrast,

ICA finds a transformation such that the mutual information between output vectors tends to

zero. The ICA transformations account for higher order statistical properties of sources as

opposed to PCA, which is based on second-order statistics.

Electroencephalography is well suited for ICA analysis [12]. The application of ICA

to any problem requires compliance with several assumptions. Most importantly, the
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underlying sources responsible for generating a set of observations must be statistically

independent. Applying ICA to EEG generates a set of statistically independent hypothe-

tical neural or artifactual sources from sensor observations. The ICA places no restrictions

on the spatial structure of such sources, which might be widely distributed or spatially iso-

lated. For example, a widely distributed source could correspond to 60-Hz environmental

noise affecting all sensors, while an ideal isolated source might correspond to activity

in the somatosensory homunculus associated with tactile stimulation of the right index

finger. However, ICA will not generate sources corresponding to different neural

processes that share the same underlying statistics. This limitation can most likely be over-

come only by incorporating prior information concerning the functional significance of

neural anatomy.

The information maximization algorithm [15] commonly used to apply ICA to EEG

imposes two additional assumptions, namely that the probability density distributions of

sources closely resemble the gradient of a generalized logistic sigmoid and that the

number of independent sources is equal to the number of sensors. In [15], the gradient

of a generalized logistic regression function is shown to be a probability density function

with high kurtosis. The statistics of EEG, as is the case of most natural signals, do in fact

resemble a highly kurtotic Gaussian distribution so this assumption is approximately sat-

isfied. The dimension of neural sources is unknown and so one of the key challenges in

ICA of EEG lies in determination of the optimal number sensors and source channels.

40.2.2 Common Spatial Patterns

The CSP approach [13] finds an optimal set of spatial filters that produce features ideal for

binary classification. Essentially, optimal spatial filters are determined through joint diag-

onalization of two covariance matrices derived from each task-related class. The normal-

ized covariance matrix of each single-trial N � T matrix X, where N is the number of

channels and T is the number of samples, is determined as C ¼ XX
0/trace(XX0). The

average of covariance matrices from class 1 (C1) and class 2 (C2) trials are then

summed to produce a composite covariance matrix Cc ¼ C1þC2. The eigenvectors and

eigenvalues of this spatial covariance matrix yield a whitening transformation

P ¼ (lc)
21/2U0

c, where Cc ¼ UclcU
0
c. Transforming the average covariance matrices

corresponding to the two classes S1 ¼ PC1P
0 and S2 ¼ PC2P

0, assures that S1 and S2

share common eigenvectors such that S1 ¼ Bl1B
0 and S2 ¼ Bl2B

0, where l1þ l2 ¼ I.

The first and last eigenvectors of B then represent optimal projections associated with

class 1 and class 2, respectively. In other words projecting whitened EEG data along

the vectors defined by the first and last eigenvectors of B will yield feature vectors

ideal for discrimination between EEG data associated with the two classes. The projection

matrix is then defined as W ¼ (B0
P
0) and an EEG trial is transformed as Y ¼ WX. The

columns ofW21 are the common spatial patterns and can be interpreted as time-invariant

EEG source distribution vectors.

40.2.3 Linear Discrimination

Linear discrimination is also a supervised method and can be used to compute the optimal

spatial integration of a large array of sensors for discrimination between two classes [14].

As with ICA and CSP, linear discrimination finds a transformation Y ¼ WX, where X is a

two-dimensional (2-D) N � (M � T) matrix representing M trials (M ¼ Iþ J, I trials for

class 1 and J trials for class 2) of EEG data at T time points and N recording electrodes.
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Determined with logistic regression, W is a spatial weighting coefficient vector defining a

hyperplane maximally separating two classes. Timing information is exploited by

discriminating and averaging within a short time window relative to a known external

event such as stimulus presentation or motor response. Discrimination accuracy can be

assessed via receiver operating characteristic (ROC) analysis.

40.3 COGNITIVE USER INTERFACE FOR
ERROR CORRECTION

Error-related negativity (ERN) in EEG has been linked to perceived response errors and

conflicts in decision making. Single-trial detection of the ERN has been proposed as a

means of correcting communication errors in a BCI system [16]. We have developed

single-trial ERN detection to predict task-related errors. The system can be used as an

automated real-time decision checker for time-sensitive control tasks. This open-loop

error correction paradigm represents the first application of real-time cognitive event

detection and demonstrates the utility of real-time EEG brain monitoring.

There has been a recent spike in studies of cortical regions associated with

conflict monitoring during motor response. Functional MRI and EEG studies of

Figure 40.2 ERN detection using linear discrimination combining the time intervals 0–100 ms

and 100–200 ms after response. (left) Discriminating component and (center) scalp projection

graphs results were obtained with off-line linear classification. Similar results are obtained with

on-line adaptation (right). Single-trial ROC results compare Az for off-line (LOO), on-line, and

using only Fcz electrode. Note that on-line and off-line are comparable.
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interference tasks report significant increases in anterior cingulate cortex (ACC) activity

preceding [17] and following [18] response selection that is believed to be associated

with conflict monitoring [19] and emotional evaluation of errors [20]. Referred to as error-

related negativity or medial frontal negativity (MFN) in EEG studies, such electrical

activity is observed during flanker [19], Stroop [21], rapid serial visual presentation

(RSVP) [17, 22], and gambling [20] tasks. During an Eriksen flanker task [23] subjects

are instructed to indicate by button-press the class of a central character flanked by

distractor characters (e.g., “ , , , , , ” or “ , , . ,,”). Errors in motor response

are readily generated during this task and are accompanied by ERN [24] associated

with ACC.

Using a linear classifier, we have reported up to 79% correct detection of the ERN

within 100 ms of the erroneous response [14]. More interestingly, we have described a set

of adaptive, linear algorithms for artifact removal and ERN detection optimized for high-

throughput real-time single-trial correction of human errors during an Eriksen flanker task

[25]. The results obtained for a typical subject with 90% correct detection are shown in

Figure 40.2. The previously described frontocentral ERN is observed within 100 ms fol-

lowing the response. In addition, a more prolonged bilateral posterior positivity is

observed for correct trials, which further improves discrimination. This system is

capable of significant improvement in human–machine performance as summarized in

Table 40.1.

40.4 COGNITIVE USER INTERFACE FOR
IMAGE SEARCH

The appearance of a target image during a RSVP task elicits an EEG response associated

with target recognition. We have demonstrated that the detection of these EEG signals on a

single-trial basis can be used to replace the slow manual response of a human operator,

thereby significantly increasing the throughput of image search tasks [26]. This paradigm

has the potential to improve the performance of image analysts and radiologists who need

to routinely survey large volumes of aerial imagery or medical images

(e.g., mammograms) within short periods of time. In addition, the approach looks to

measure the “bottleneck” between constant-delay perceptual processing and more variable

delay cognitive processing. Thus the detected signatures can be used to “gauge” if

TABLE 40.1 Summary of On-Line Error Correction for Each of
Seven Subjects

Subject ID

Original

error rate (%)

Error

reduction (%)a

1 6 23

2 10 26

3 15 21

4 15 49

5 13 27

6 14 47

7 18 12

aNegative values indicate degradation in performance.
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cognitive systems are capable/incapable of assimilating perceptual input for fast decision

making.

40.4.1 Rapid Object Recognition

Current models of visual object recognition propose information flows through a series of

feedforward processing stages in which low-level features are extracted from a visual

scene, then integrated under constraints imposed by adjacent and top-down connections

[27]. The true nature of cortical circuits responsible for perception and recognition

remains a mystery. In fact there is much debate as to whether recognition relies on

information flow through corticocortical feedback loops or rather one feedforward

sweep through the visual system [28].

While direct functional imaging of cortical circuits is not yet feasible, indirect

evidence from single-unit recordings, ERPs, and psychophysical studies describes

macroscopic cortical regions comprising the visual system in terms of both anatomical

spatial constraints and functional temporal constraints. The challenge in any such study

is designing experiments that tease apart cortical processing stages involved with object

recognition and delineate the spatial extent and temporal order, latency, duration, and

influence of each stage in response to specific classes [29] of visual stimuli.

One experimental task that simulates natural saccadic scene acquisition is RSVP

[29]. During an RSVP task a continuous sequence of images is presented in a static

location. Electrophysiological studies of macaque monkey cortical cell response to

RSVP stimuli indicate processing required for object recognition is completed within

150 ms of stimulus onset [30]. Face-selective neurons in superior temporal sulcus

(STSa) were monitored while an image sequence of seven differently oriented faces was

presented (14–222 ms/image). Neurons consistently responded selectively to target face

images of a specific orientation approximately 108 ms following target onset, regardless

of presentation rate. Response duration was proportional to stimulus duration.

This study does not necessarily reflect visual processing time required for all

classes of natural images. Face-selective neuronal activity reflects responses of highly

specialized cortical pathways that may not participate in processing particular subsets

of natural scenes. Neuronal response times may also be related to early stages of the

visual processing pathway dedicated to low-level feature extraction. In addition, since cor-

tical response latencies are shorter in macaque than humans [31], these findings do not

directly translate to visual object recognition processing time of humans. A seminal EEG-

based RSVP study [32] established a significant difference between trial-averaged frontal

electrode ERPs approximately 150 ms following presentation of target versus distractor

images. Lateral motor-response-related activity was observed approximately 375 ms

after stimulus onset. Target images contained an animal in a random location within a

natural scene while distractor images were natural scenes. More recently, a similar

experiment reported EEG activity correlated with image categorization begins within

80 ms of image presentation [33]. These results demonstrate that EEG signatures of

rapid object recognition/categorization can be seen, with a very short latency following

stimulus presentation, by averaging across multiple trials.

While the early onset of differential ERP activity noted in these studies suggests

recognition is achieved following a single feedforward sweep through the visual system

[34], another study reports this activity is due to low-level feature recognition rather

than object categorization [28]. A cued-target paradigm was designed to test for differ-

ences in ERPs resulting from target and nontarget visual stimuli with contextual rather

than featural differences. Target categories (e.g., animal, furniture, dog) were presented
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about half a second before each image. Target and nontarget image sets were identical

ensuring no differences in low-level features. Event-related potentials for the cued-target

task are markedly different than the original single-category go/no-go task. A

presentation-locked ERP difference similar to that previously reported is only present

when there are low-level featural differences between targets and nontargets. There is a

later differential component about 150–300 ms following image presentation arising

from contextual differences, the latency of which is correlated with reaction time. If

this component is in fact associated with object recognition, its latency does permit

inclusion, albeit brief, flow of information through corticocortical feedback loops. Of

course this task requires interaction between visual stimulus response and verbal

memory, which may add an additional processing stage. One hypothesis of interest is

that the variable latency results from integration of ambiguous signals to reach a decision

in posterior parietal cortex [35].

We have reported single-trial detection of spatial signatures in EEG related to visual

target recognition within 200 ms of image onset during an RSVP task [36]. This RSVP

task differed from Thorpe’s original experiment in that subjects were asked to detect

target images within sequences (barrages) of 100 images [37] that had a 50% chance of

containing a single target image. Target images consisted of a person/people comprising

no more than 25% of a natural scene while distractor images were natural scenes. Subjects

were instructed to press a button at the beginning of a sequence and release it if a target

appeared. Electroencephalography from target and distractor trials was compared on a

single-trial basis using linear discriminant analysis [14, 38] and a forward linear model

was used to determine sensor projections of the discriminating source activity [14]. As

shown in Figure 40.3, this forward model indicated that discriminating activity began

approximately 200 ms following image presentation moving anteriorly over sensory

motor areas 300–400 ms following image presentation. Since these signatures are

learned/detected single trials, it is possible to analyze variability between trials as well

as determine classification performance on new trials.

This experiment required that subjects make a motor response immediately after

detecting the target. In order to decouple motor response from EEG activity related to

target recognition, we revised our experimental protocol and instructed subjects to indicate

target appearance by pressing a button after all images in the sequence were presented.

Using the same linear discrimination method and forward model, optimal linear spatial

EEG signatures were computed at multiple time windows of 50 ms duration reflecting cor-

tical activity related to target recognition in the absence of motor activity. Figure 40.4

shows an example of applying optimal spatial linear discriminators learned at the peaks

of a temporal classification performance curve. In Figure 40.4b we see the result of

applying a discriminator learned at a 190-ms time window to all 60 EEG channels 1 s

before and after the stimulus presentation. As would be expected, we see a peak in the

trial-averaged value near 190 ms, indicating the detection of the target. In addition we

see a strong negative peak near 330 ms. A strong negative peak represents high negative

correlation between the discriminator and sensors and indicates identical spatial activity

but opposite sign. Since the mean value for distractor trials is approximately zero, a

high negative correlation would correspond to a peak on the plots of Figure 40.4a; that

is, the fluctuation periods we see in Figures 40.4b,c,d should be roughly twice that seen

in Figure 40.4a. Figure 40.4d shows the results when using a discriminator learned at

490 ms. As expected, a positive peak occurs near 490 ms and, in addition, a small negative

peak is present near 330 ms. However, there is no positive peak at 190 ms, which might be

expected if the signature were simple fluctuations of the same spatially localized areas.

Likewise there is no strong positive peak in Figure 40.4b at 490 ms. Thus these signatures
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appear to be significantly different, though they share some negative correlation with the

activity near 330 ms. Figure 40.4c is a discriminator learned at 330 ms. It has a small

negative peak at 220 ms but no significant peak at 490 ms. Figure 40.4 also shows the

scalp projections of the learned signatures. Here we see a sign reversal between the

signatures at 190 and 330 ms.

Figure 40.3 Area under ROC curve (Az) for leave-one-out test of optimal linear discriminating source as

a function of the center of a 100-ms discrimination window, together with scalp plots showing sensor

projections of discriminating sources, for both subjects at each image presentation rate. By sliding the

window used to train a linear discriminator, we are able to study the temporal sequence of neuronal

responses evoked by visual stimuli. Due to the high temporal resolution afforded by EEG this method

provides an intuitive description of communication between visual and sensorimotor cortex. Results

show multiple loci for discriminating activity (e.g., motor and visual). Left: subject 1 for images presented

at 200, 100, and 50 ms per image. Right: subject 2.
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These studies indicate significant differential activity associated with object categ-

orization arising as early as 190 ms after image presentation within a barrage of

images. Single-trial analysis of spatial activity in high-density EEG leads to fluctuations

in discriminating performance with a period that is independent of stimulus presentation

rate. Further analysis decoupling motor response seems to suggest that optimal discrimi-

nating components learned at different times are often negatively correlated with activity

Figure 40.4 Optimal discriminating activity related to object recognition in the absence of motor activity.

(a) ROC performance results (Az). Shown are leave-one-out discrimination results for the optimal linear

discriminator learned within a 50-ms window and applied within the same window. Results are computed 1 s

before and after stimulus-locked presentation. Note that this RSVP task includes a barrage of images and

therefore multiple images are presented during this 2-s interval. The dashed horizontal line indicates maximum

value before stimulus-locked image presentation and therefore all values less than this value are considered

noise. (b–d ) Results of applying the optimal spatial linear discriminator learned at three different times—

(b) 190 ms, (c) 330 ms, and (d ) 490 ms—to the EEG data. Shown are scalp projections for the discriminator,

single-trial results of applying the discriminator across the 2-s interval, and the trial-averaged response of the

discriminator. Vertical dotted lines indicate time interval in which each discriminator was trained. In the scalp

plots, dark indicates strong positive coupling to the sensors and light strong negative coupling. In

the single-trial plots, dark indicates large positive values when the signals are projected onto the discriminator

(i.e., high probability of target) and light large negative values (i.e., low probability of target).
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at other times, indicating a strong spatially overlapped fluctuation or oscillation of EEG

activity, while other discriminating components have signatures with little correlation

with such activity. This appears to indicate that different signatures are present at different

times for discriminating target from distractor.

Such reports provide evidence that object recognition is achieved through a series

of activations in distinct cortical regions and places temporal limits on processing time

in the absence of motor response. As yet studies do not indicate the degree of interaction

between these processing stages, the spatial extent of each region, or the nature of the

underlying cortical circuits. Our current exploration with simultaneous EEG/fMRI

should provide additional clues; however, it is clear that more sophisticated experimental

designs and imaging modalities are necessary to clarify the nature of neural activity

responsible for human object recognition.

40.4.2 Image Reprioritization Interface

These findings affect the design of an interface to increase search speeds of image

analysts. The EEG signatures of object recognition detected via the linear discriminator

can be used to reprioritize an image sequence, placing detected targets in the front

of an image stack, as shown in Figure 40.5. Image sequences are reordered based on

single-trial classification of EEG. Images with classifier output exceeding a threshold

are classified as targets and moved to the beginning of the sequence.

The onset of the temporal window selected to train the linear classifier has a signifi-

cant impact on resequencing performance. Figure 40.6 shows reprioritization performance

across three presentation rates resulting from 100-ms discrimination training windows

centered 250 ms, 300 ms, and 400 ms following stimulus onset. For comparison,

sequences were reordered according to button releases. For this case, target images

were classified as targets if they preceded button releases by the mean latency between

stimulus onset and button release. Mean button release latencies were determined

across trials for each frame duration. Also plotted is the optimal resequence, which

Figure 40.5 Image reprioritization interface. During sequence reprioritization, images are moved

to the beginning of the image deck if classifier output associated with a robust EEG signature is

greater than an optimal threshold.
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Figure 40.6 Resequencing performance (measured by the fraction of target images presented as a function of sequence index) using detected EEG signatures

and button release. Top: subject 1 for images presented at 200, 100, and 50 ms per image. Bottom: subject 2.
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would place all targets before distractors. For subject 1, the best performance was for using

a discrimination window centered at 400 ms (200 ms before the mean button press).

Windows at earlier times, for example at 250 ms, were often worse than the button

release results. The late response, together with the scalp plots of Figure 40.3, suggest

the most robust signature for subject 1 to be generated via motor planning

activity. Subject 2 results were more consistent across the three time windows, with effi-

cient reprioritization for 250, 300, and 400 ms. Together with Figure 40.3, this suggests

that both a visual and motor component provide robust signatures for detection of

targets and reprioritization of the image sequence. In most cases, the detected EEG signa-

tures result in a reprioritization for more efficient image search compared to the overt

response. Additional details and results can be found in [26].

40.5 CONCLUSION

Cognitive user interfaces are redefining the limits of human prowess by enriching

perception, cognition, and action. From the perspective of neuroscience, intertrial varia-

bility in EEG derived from CUI design may explain the source of psychophysical obser-

vations such as response time variability and provide clues describing interaction of

processing stages between stimulus and motor response within the context of ongoing

EEG activity. Understanding factors that contribute to differences between trials

suggests robust classification schemes that enable development of a myriad of next-

generation interfaces.

Immediate applications stem from our understanding of motor and visual systems.

While suffering from low bit rate, BCIs for communication and control provide an

outlet for those battling motor neuron diseases such as ALS. In fact, communication

interfaces based on attentional modulation of a well-studied ERP known as the P300

have demonstrated significant improvements in classification accuracy resulting in

higher throughput3 [39, 40]. Modulation of P300 latency and amplitude provides a

means to assess perceptual load [41] and processing capacity for a subset of tasks [42].

The ERN-based interfaces designed for error correction may help prevent disasters

during crisis situations that require quick decisions during motor-intensive tasks in

stressful environments such as military cockpits. The ability to monitor human object

recognition leads to the development of interfaces designed to improve search speeds of

imagery analysts or assess the impact of visual stimuli [43]. In fact, the timing of visual

stimulus presentation with respect to the phase of ongoing alpha observed in EEG can

alter perception and affect stimulus salience [44–46].

Realization of clinically motivated EEG-based interfaces will very soon become

accessible. Electroencephalography has proven effective in detection and characteriz-

ation of neurological disorders such as epilepsy, schizophrenia [47], depression, and

Parkinson’s and Alzheimer’s diseases [48]. Discovery of changes in EEG up to

several hours prior to epileptic seizure onset [49] has motivated development of

seizure prediction algorithms [50] that could permit the implementation of devices

capable of preventing seizures from occurring [51]. Detection of motor planning in

premotor cortex will permit development of thought-enabled robotic prostheses and

muscle stimulators for amputees or patients with spinal cord injury [52]. The

interfaces illustrated here only hint at the possibilities.

3For a description of the P300 speller visit: http://ida.first.fraunhofer.de/projects/bci/competition_ii/
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