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Preface

Imaging with atomic/nuclear radiation takes two forms: (1) a direct imprint as in radio-
graphy, or (2) a computed image as in computed tomography (CT) scans. Both forms
of imaging are an integral part of modern medical-diagnostic practice, and are utilized
in research and industrial imaging. Photons, in the form of x-rays or gamma-rays,
are typically employed in such imaging systems, but neutrons are also utilized when
photons cannot provide the needed indications. Radiography gives a direct imprint
of the radiation that succeeds in penetrating the interrogated object. Therefore, radio-
graphic imaging does not require much post-exposure numerical processing to extract
the image features. In the case of computed radiography (cr),1 some computations
are done to enhance the image quality and enable image manipulation, but such com-
putations are not essential for producing the raw image. In digital radiography (dr),2

x-rays are captured directly, providing a digital image (without intermediate storage)
that can also be numerically manipulated for optimum viewing.

Any numerical handling of a readily available image is an image enhancement
and/or manipulation process. Computed imaging refers here strictly to images pro-
duced only after numerical processing of measurements, because the detected radi-
ation, even when digitized, cannot give the required image features. For instance,
a tomograph3 can only be obtained by numerical reconstruction using many radia-
tion projections of radiation-transmitted through an object, while a radiograph gives
a single projection without numerical reconstruction. Therefore, one speaks of com-
puted tomography (ct) or computer-assisted tomography (cat) scans, which implies
that the image involves both computations and the acquisition of many projections
through a scan. Computed imaging is also involved in positron emission tomography
(pet), single photon emission tomography (spect), as well as scattering-based imag-
ing methods.

This book provides a framework for the computed imaging problem by presenting
it as a “forward” (direct) problem, and as an “inverse” problem. The forward problem
tackles the physical aspects of imaging via mathematical models that relate the to-
be-imaged physical parameters to the collected measurements. The inverse problem

1 Computed radiography (CR) employs a phosphorus plate that captures x-ray photons in gaps and stores
their energy in its crystal structure. The stored energy is later extracted, in the form of light, by a low-
energy laser, which is collected and converted into electrical signals, stored and processed for viewing.

2 Digital radiography (DR) involves the use of ccd (charged-coupled device) cameras or photodiodes to
capture light from a scintillation screen when exposed to x-rays, or a direct photoconductor material that
produces electric signals.

3 The word “tomo” is Greek for a slice or a section.
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reconstructs numerically the imaged parameters from the measurements. This cate-
gorization is not new and is used in the solution of the inverse problem of image
reconstruction. However, in addressing the inverse problem, the forward problem is
often taken as a fait accompli. This is in spite of the fact that the forward problem
inherently hides many of the physical simplifications of imaging methods, and con-
tributes to some of the artifacts in the reconstructed images that are not attributable to
measurement uncertainties. A good investigation of the forward problem of a particu-
lar imaging technique is necessary, not only to provide a foundation for understanding
the physics of the technique, but also to help in elucidating the often overlooked limi-
tations of imaging methods. Part I of this book covers the formulation of the forward
problem for various radiation imaging modalities. Part II presents a general formula-
tion of the inverse problem.

This book is directed toward graduate students and researchers. Therefore, it takes
a critical view of all material presented, so that readers become fully aware of the
inherent physical and numerical capabilities and limitations of the methods presented
for both the forward and inverse problems. This necessitates an in-depth discussion
of the founding physical and mathematical principles upon which the examined meth-
ods are based. Parts of this book can be adopted in senior undergraduate courses, by
selecting a few chapters of each part of the book, so that the essential fundamentals
are covered.

The book is written in a manner that makes it understandable by readers with a
background in physics, mathematics, computer science, or engineering. This is done
by avoiding, as much as possible, the use of specialized terminology without clear
introduction and definition. Mathematicians interested in the numerical aspects of the
inverse problem will be exposed to the physical foundations of the forward problem.
On the other hand, physicists and engineers should be able to follow the mathemati-
cal logic of the presented methods without being bewildered by the jargon of abstract
mathematics. By making the material readable by a wide variety of scientists, it is
hoped to encourage those outside the imaging research community to involve them-
selves in medical or industrial imaging, while providing those within the imaging field
with a thorough look at the physical and mathematical challenges of the problem.

The author expresses his gratitude to John Bowles of Inversa Systems Ltd. and
Esmaeil Enjilela of the University of New Brunswick for reading draft chapters of this
book, and providing valuable comments.

Esam M.A. Hussein
Fredericton, October 2010



HUSSEIN Ch01-9780123877772 2011/4/18 23:01 Page 1 #1

1 Radiation Imaging

1.1 Why Radiation?

The word “radiation” is utilized to cover electromagnetic (em) waves, as well as
nuclear particulate radiation (alpha, beta, positrons, and neutrons). The most rudimen-
tary form of imaging is that provided by natural vision, which relies on the deflection
of visible light to the eye. Thermal imaging is a form of visualization based on the
detection of infrared radiation that emanates from the surface of a hot body. Radar
(radio detection and ranging) can also be viewed as a crude imaging process of “see-
ing” far-away objects. Radar utilizes em waves in the microwave (above 1 GHz) range
and observes their reflection off surfaces. At the extreme end of the radiofrequency
band (a few 100 GHz), where the wavelength is in the order of millimeters, electro-
magnetic radiation can penetrate some organic materials, such as clothing. These
so-called millimeter waves are reflected, upon encountering material interfaces, due
to the change in the dielectric constant. The intensity of the reflected waves can be
used in surface imaging, as done in some body screening security systems.

Imaging with the above methods requires the occurrence of a discontinuity in spe-
cific “bulk” physical properties: light’s index of refraction for optical viewing, thermal
conductivity and emissivity for thermal imaging, and dielectric constant or electric
conductivity in the case of radar. This limits their visualization capabilities to certain
applications.

One imaging method that relies on microscopic (rather than bulk) properties is
magnetic resonance imaging (mri). In this method, a powerful magnetic field is
applied to align nuclei with non-zero spin1 (such as 1H, 3H, 13C, 19F, 23Na, 31P,
and 39K) in a particular direction. Some of these nuclei are then temporarily disori-
ented by radiofrequency (rf) pulses. As the disturbed nuclei realign, they emit rf sig-
nals that are used to determine their location and characterize the surrounding medium.
Obviously, if non-zero spin nuclei are present, no imaging information is obtainable.
The presence of a magnetic material also interferes with the operation of mri. As
such, mri is limited in use to certain materials. This restricts the visualization capabil-
ity of mri to certain applications. Therefore, mri can also be viewed as an em imaging
method that relies on microscopic (rather than bulk) properties.

1 A nucleus that has an odd number of nucleons has an intrinsic magnetic moment and angular momentum,
i.e. a spin > 0.

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00001-X
c© 2011 Elsevier Inc. All rights reserved.
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At the high frequency end of the em spectrum, the wavelength of radiation becomes
so low that it ceases to be sensitive to bulk properties and begins to be affected by
individual atoms. For soft (low energy) x-rays, the wavelength range (in the nanome-
ter range) becomes comparable to the spacing between atoms in a crystallized struc-
ture, and the phenomenon of x-ray diffraction begins to occur, providing a useful tool
for examining crystal formations. As the frequency increases farther (into the hard
x-ray and gamma-ray range), the wavelength becomes so small that the em radia-
tion resembles a “quantum” of radiation and possess corpuscular capabilities. Each
photon quantum becomes like a “bullet” that moves in the vast vacuum space between
atoms, until it encounters an atom with which it can interact. This corpuscular nature of
x- and gamma-rays gives them their penetrating properties, and makes them attractive
probes for “seeing” deep within matter. Since this high-frequency radiation interacts
with individual atoms, it is not affected by bulk optical, electrical, or thermal proper-
ties and can be used for imaging all types of materials.

Acoustic waves can also penetrate deep inside matter and can be used for imag-
ing purposes. Short-wavelength sound waves are, however, needed to capture minute
details within matter. Therefore, ultrasonic waves (>1 MHz) are employed for this
purpose. Sonic waves are reflected when they encounter an interface between two dif-
ferent materials, due to the change in acoustic impedance (which depends on the speed
of sound in the material and the material’s density). By sending pulses of ultrasonic
waves via a small probe and recording the time of travel and intensity of reflected sig-
nals, the position of the reflected surface and the change in acoustic impedance at the
surface can be determined. This information is used to construct an image of interfaces
as a probe scans an object. Ultrasonic imaging is, therefore, a method for visualizing
interfaces, but, when too many interfaces are present, its indications become quite dif-
ficult to decipher into an image. It also requires contact between the probe and the
surface of the inspected object to provide the acoustic coupling needed for efficient
transfer of the ultrasonic waves into and out of the medium. Imaging ocean floors
and submerged objects with sonic waves (known as sonar imaging) functions also by
monitoring the reflection of sound waves at interfaces.

Nuclear-particle radiation is capable of penetrating matter regardless of its bulk
properties. However, charged particles, such as alpha and beta particles, are limited in
their penetrability, though highly accelerated charged particles can reach some con-
siderable depth in certain materials. On the other extreme, there are the neutrinos and
cosmic rays that are so penetrating that they are not affected much by matter and
are difficult to detect. Neutrons, being neutral particles with some mass, are good
candidates for imaging, since they are affected by matter and are readily detectable.
Therefore, neutron imaging is used in some applications.

1.2 Imaging Modalities

The modality used in imaging with non-ionizing radiation (light and microwaves) and
sound (ultrasonic and sonar) is mainly that of scattering (reflection or refraction) of
waves bouncing off surfaces and interfaces. Magnetic resonance imaging relies on the
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emission modality of imaging, as it records emitted secondary rf waves. However,
the most common modality of imaging with x-rays, gamma-rays, and neutrons, relies
on the transmission modality, by measuring the radiation that succeeds in penetrat-
ing the imaged object, passing through it, without interacting with the intervening
medium. The dominance of the transmission modality in imaging with penetrating
radiation is due to the fact that this radiation interacts with matter at the microscopic
(the atomic/nucleus) level. Since most of the matter is made of empty space, with the
nuclei and atomic electrons occupying a very small portion of the overall space, most
of the radiation passes through matter without interaction. Therefore, the strength of
the non-interacting transmitted radiation is quite high, while the interacting radiation
that does not succeed in passing through carries information on the nature of the inter-
rogated object. As such, transmitted radiation provides a “negative” impression of the
material it passes through; the denser the material, the weaker the transmitted signal
and vice versa. This is the basis of radiography, schematically shown in Figure 1.1(a),

Source

Receiver

(a) Radiography

Detector
array

Source

(b) Transmission tomography

Detector array

(c) Emission tomography

Detector
array

Source

(d) Scatter tomography

Figure 1.1 Various radiation imaging modalities.
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where the internal details of an object are projected by the penetrating radiation on a
receiving plate (a film or a scintillating screen). The projected images can be directly
interpreted by the viewer in terms of relative material density (dark/light) and their
geometric mapping (projection) in the density distribution.

Radiography enables the projection of the internal details of an object on a screen.
However, like any other type of projection, it compresses the internal details in the
direction of projection, i.e. all material traversed by an incident radiation ray is pro-
jected as a single point on the receiving plate. In order to decipher the material infor-
mation along each ray, many intersecting projections must be taken. Then, with the
aid of numerical manipulations, the material attributes at each point (or more pre-
cisely, each elementary area) can be determined. This is the essence of transmission
tomography, schematically depicted in Figure 1.1(b); more widely know as computed
tomography (ct) or computer-assisted tomography (cat). The word “tomos” is Greek
for a section or a slice. Therefore, tomographic imaging is usually performed slice-
by-slice. The word “computed” in ct signifies the fact that an image is obtained after
performing certain computations. This also makes it necessary to acquire measure-
ments in a “digital” form, unlike in radiography where “analog” (e.g. film) recording
of the measurements is sufficient. We also speak of ct scans, since the source and the
detector assembly has to scan the object at various directions to provide the necessary
multiple and overlapping projections; although in some cases, the source and detectors
are kept fixed, and the object itself is rotated.

When distinct features are expected in the interrogated object, the effect of inter-
vening material around these features can be reduced by acquiring digital radiography
at different source orientations while fixing the receiver’s location. A series of image
slices, parallel to the imaging plane, can subsequently be numerically reconstructed
from the acquired radiographs to depict the distribution of these features at different
planes. This is due to the fact that features at different depths in the reflected object
are projected differently at various angles of source orientation. This imaging tech-
nique is known as digital tomosynthesis (Grant, 1972), or simply tomosynthesis. It is
quite attractive for use in mammography, where tumors may be masked by dense breast
tissue. The technique is also useful in angiography, chest diagnosis, dental imaging, and
orthopaedic imaging of joints (Dobbins III and Godfrey, 2003, Haaker et al., 1985). The
concept of tomosynthesis is a numerical form of earlier analog or geometric tomogra-
phy (also called laminography) systems, which involved a linear and opposing motion
of the an x-ray source and a radiographic screen around a pivot to generate an image
of the fulcrum plane parallel to the film. A point in the object on the fulcrum plane
appears on the same location of the film as the source-film assembly moves, while points
above and below this plane appear at different locations and as such their imprint on
the film is blurred. In tomosynthesis, this is accomplished numerically by performing
a shift-and-add operation of the logarithm of measurements (to linearize the response
of transmitted radiation). The shifting process aligns the imprints of distant features on
each tomographic plane. Features in the focal (fulcrum) plane then line up exactly
on top of each other, so that the addition of the projections enhances their presence.
On the other hand, features above or below the fulcrum plane are distributed in the
added image to different locations, and their imprints are blurred.
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Transmission imaging methods, as Figure 1.1(a) and (b) show, are global in nature;
i.e. they image everything in between the source and receiver with the same resolu-
tion. Sometimes, however, the resulting image does not portray well particular regions
in the object, due to their low density or similarity to the surroundings. If such feeble
regions are accessible, a contrast material with higher absorption ability can be intro-
duced into such regions to enhance their presence in the image; as done in the x-ray
imaging of the gastrointestinal tract by the introduction of barium liquid. In other
cases, particularly for examining physiological functions, a radiation source is intro-
duced as a pharmaceutical, and the emitted radiation is monitored. This modality of
emission imaging, schematically shown in Figure 1.1(c), can provide a radiogram by
direct viewing of the recorded emission at a particular direction. Alternatively, emis-
sions recorded in a digital form at different directions can be numerically manipu-
lated to provide a tomograph. Single photon emission tomography (spect) and double
photon emission tomography, better known as positron emission tomography (pet),
are the medical forms of this emission imaging modality. While photon (gamma-ray)
emitters, such as 99mT, 123I, and 133Xe, are used in spect; positron emitters, such as,
15O, 13N, 11C and 18O, are utilized in pet. Each emitted positron is combined with an
electron in the medium, with the two annihilating each other to produce two photons
that emanate in opposite directions; hence the “double” photon emission terminology.
The radioisotopes used in emission imaging have short half-lives to enable high decay
rate. In this imaging modality, the strength and spatial distribution of the embedded
source is deciphered. As radiation from the source travels toward the detector, it is
attenuated by the intervening material, which reduces the intensity of the recorded
radiation and, in turn, shadows the image. Such attenuation should be accounted for
using a priori anatomical information, obtained perhaps from a ct image. While emis-
sion tomography is compatible with medical imaging, it is not always easy to embed a
radioisotope within an industrial medium. However, if the medium is readily radioac-
tive, as in spent nuclear fuel, emission imaging can be utilized.

The scatter imaging modality is a good candidate for industrial imaging, particu-
larly when the inspected object is too thick or too dense to allow transmission imaging
and when emission imaging is not possible. Moreover, scatter imaging can also be
utilized when access to opposite sides of the object is not available. Though scatter
imaging is the modality of imaging surfaces and interfaces with light, microwaves
and ultrasonic waves, scatter imaging with penetrating radiation is much more com-
plex, because radiation experiences no abrupt change as it crosses from one medium
to another. The radiation scattering signal can also be quite convoluted, since source
radiation can scatter many times before leaving the object and reaching a detector.
Nevertheless, imaging based on once-scattered radiation (i.e. single scattering) have
emerged. Figure 1.1(d) shows a schematic of a scatter imaging modality. Notice in
this arrangement that radiation scattered to a particular direction from a unidirectional
source is shown to be detected. This can be done with the aid of a collimated detector
and is necessary in order to know from where the detected radiation emerges. Many
directions of scattering can be monitored, and various arrangements can be adopted.
Scatter imaging can be viewed as a form of emission imaging, with a virtual source
at the scattering point. Therefore, scatter imaging produces images of the intensity of
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scattering, hence material density. This is unlike transmission imaging, which provides
an indirect measure of density, since it detects radiation attenuation. The attenuation
coefficient is a function of the material density, but can also be affected by material
composition, while the scattering coefficient can be made, by proper choice of radi-
ation type and energy, to be a function of only material density. Therefore, a combi-
nation of scatter and transmission imaging can provide both density and composition
maps. In fact, the motivation for developing scatter imaging systems arose in medi-
cal imaging to obtain composition information, which is important for understanding
tumor histology, and density maps are needed for planning for radiotherapy, where
radiation deposition is strongly density dependent.

1.3 Direct and Reconstructed Imaging

Two types of images can be extracted from any of the imaging modalities shown in
Figure 1.1: direct and computed. Direct images are those depicted by the measure-
ments, as in the case of transmission radiography or the radiograms obtained from
emission imaging. Direct images obtained from the scattering modality are usually
quite convoluted, since in essence the obtained image is modulated by transmission,
from the source to the scattering point, and by emission, from the scattering point
to the detector. Direct images, when acquired in a digital form, can be supplemented
by numerical processing to enhance the image quality, manipulate the image display,
store an image in a digital form or render an image remotely accessible. For example,
in computed radiography (cr), the image is acquired in a digital form by extracting
light energy stored in a phosphorus plate as result of exposure to x-rays, which is then
converted to electrical signals for storage and viewing. On the other hand, in digital
radiography (dr), digital images are directly obtained by capturing light from a scin-
tillation screen with the aid of a ccd (charged-coupled device) camera, photodiodes or
a plate made of photoconductor material. In both cr and dr, the image attributes are
available in a numerical form, but they are representing “measurements” of radiation
intensity, rather than any physical property of the material in the imaged object. They
are still, therefore, direct imprints of the measurements, since any subsequent numer-
ical manipulation does not extract any parameters related to physical properties.

In transmission computed tomography (ct), measurements are gathered in a digi-
tal form then processed to reconstruct the radiation attenuation attributes within each
pixel of the section of the image. Then numerical manipulation is more than just sim-
ple manipulation of the measurements. Image reconstruction takes a set of measure-
ments and from them produces a set of physical parameters (attenuation coefficients).
A similar process occurs in computed emission tomography (spect and pet), where
radiation measurements are used to reconstruct images of the intensity (activity) of the
introduced radiation source. Though then, the source’s attributes are not direct physical
parameters; a source’s distribution in a medium depends on the physiological function
in the case of living beings, the permeability of soil and rocks, and the fluid flow rate in
gases and liquids. In scatter tomography, measurements are used to reconstruct images
of the density of the medium (or its scattering coefficient), the attenuation coefficient
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of the incident radiation, the attenuation coefficient of the scattered radiation or all
three physical attributes. Therefore, in all forms of reconstructed imaging, measure-
ments are converted into physical attributes. This requires the availability of a mea-
surement model that mathematically describes how a measurement value is related to
the sought physical attributes. Such a measurement model enables the calculation of
modeled “measurements” (synthetic data) corresponding to the actual measurements,
for a known set of physical attributes, via the so-called forward mapping. Determining
the physical attributes then involves the inversion of the forward model, i.e. inverse
mapping of actual measurements, so that modeled measurements match, as much as
possible, the actual measurements. These forward/inverse mapping processes are the
workhorses of image reconstruction and are examined in further detail in Sections 1.4
and 1.5.

1.4 The Forward and Inverse Problems

In order to decipher a parameter depicting the physical attributes of a medium from a
measurement, one must first establish the relationship between the two. For example,
in a mercury thermometer, the physical attribute is the temperature, T , of the medium
in which the thermometer is immersed, but what is measured is the height, h, of the
mercury in its capillary tube; see Figure 1.2. One must then establish a relationship
between T and h, in order to determine the value of T by measuring h. This can be
provided by developing a mathematical model that relates h to T based on the physical
principles that govern the expansion of a liquid like mercury. Upon further examina-
tion, one would realize that what measured is1h (the change in h), which is related to
the change in the volume of the mercury, and to 1T (the change in T) by the volume
expansion coefficient, β, for mercury:

βV1V =
1

V

dV

dT
(1.1)

One would then realize that the determined physical attribute is the change in temper-
ature, 1T , not the temperature, T , as originally thought. Then one can relate 1h to

d

Δh

V

Figure 1.2 A schematic of a mercury thermometer.
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1T by:

1h=
4V0β

πd2
1T (1.2)

where use was made of1V = π d2

4 1h, with V0 being the volume of the mercury in the
spherical reservoir (bulb) at the one end, and d is the diameter of the capillary tube.
The physical attribute is determined by inverting Eq. (1.2) to obtain:

1T =

(
4V0β

πd2

)−1

1h=

(
πd2

4V0β

)
1h (1.3)

The inverse problem of Eq. (1.3) is said to be well-posed, in accordance to Jacques
Hadamard (1923), because it has a solution that is (i) unique and (ii) continuously
depends on measurement; there is always a temperature change that uniquely depends
on the change in h and 1T changes continuously with 1h.

In the above simple example of the mercury thermometer, we have formulated the
forward problem by Eq. (1.2), which relates the observed, or measured, quantity, 1h,
to the physical attribute, 1T . To arrive at the forward model of Eq. (1.2), we have
relied on the physical theory that defines the volume expansion coefficient, Eq. (1.1),
of liquids (mercury in this case) and the geometric relationship between a tube’s vol-
ume and its height. The inverse problem was formulated by Eq. (1.3), which in this
case is a simple reciprocal of a fraction. We had in this process already made some
explicit and implicit assumptions that have implications on solving the inverse prob-
lem of determining temperature using the expansion of mercury. We realized that the
intended parameter, T , was not determined, rather its change,1T , was found. In order
to relate T to 1T , some calibration is needed, to know the value of T at 1h= 0. The
range of measurable temperatures is determined by finding the value of T at the maxi-
mum value of h, at the tip of the mercury tube. Then we know the space (domain) of T ,
or 1T . The space of 1h is known from the geometry of the thermometer. In develop-
ing the forward model of Eq. (1.2) from the physical statement of Eq. (1.1), we have
also made the assumption that dV

dT ≈
1V
1T , which is a valid approximation when the

change in V with T is linear. This is valid over a certain range of temperatures, before
mercury changes phase from liquid to gas or to solid. This also limits the space of
1T , as well as the applicability of the forward model of Eq. (1.2). In addition, instead
of using the total volume of the mercury, V , we used the volume in the reservoir, V0,
to arrive at Eq. (1.2), which also necessitates that the volume of the capillary column
be much smaller than that of the reservoir for the model to be valid. A physicist is
also likely to question the formulation of the forward model of Eq. (1.2) with the view
that temperature change also affects the volume of the glass body of the thermometer,
which has its own expansion coefficient, βg. Accordingly, a more accurate forward
model that accounts for the glass expansion takes the form:

1h=
4V0(β −βg)

πd2
1T (1.4)
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This model also illustrates that we will have a singular inverse problem, if β = βg,
since 1h will always be equal to zero, no matter what 1T is. When β is very close
in value to βg, the inverse problem becomes ill-posed, because then a small error in
observing 1h will lead to a larger error in the value of 1T . Fortunately, most liquids
have larger volume expansion coefficients than solids, by two orders of magnitude
or so. Therefore, this simple inverse problem is well conditioned. More sophisticated
physical models for the forward problem could have been derived, for instance by con-
sidering the actual volume V , instead of V0, or by writing a two-dimensional model
that takes into account the lateral expansion in the (radial) direction of the tube. In
this thermometer problem, the observed parameter, 1h, has a range that extends from
a minimum of zero to a maximum equal to the height of the capillary tube. Accord-
ingly, 1T and, consequently, T , have minimum and maximum values corresponding
to those of h. Therefore, we know the domain of the parameter1T , or T and that of the
measurements 1h. Therefore, both the forward mapping of 1h to 1T and the inverse
mapping of 1T to 1h should produce values within their respective domains.

The forward and inverse problems of the mercury thermometer, though used to
introduce useful concepts, are quite simple and are not solved in practice. The observer
does not see a value for 1h or 1T; a value of T is directly given. This is done via a
calibration process that establishes the forward model without explicitly expressing it
mathematically and solves the inverse problem without performing any computations.
In imaging problems, the situation is not that simple. The problem is multidimen-
sional, since an image consists of many pixels and the physical attribute has to be
obtained for each pixel/voxel. Moreover, many measurements need to be acquired,
and each measurement in almost all cases will depend on the physical attributes of the
material content of each element corresponding to a pixel/voxel in the image. Some-
times one can relate a set of physical parameters to associated measurements to pro-
duce a response matrix. Such a matrix can be applied to other sets of parameters in the
same imaging system, if the response is linear; i.e. the material in one image element
does not affect the measurements corresponding to any other element in the image.
Even then, such a measured response matrix will be limited to a particular configura-
tion, and its generation for a large-size image may prove to be tedious and impractical.
Then one has to rely on a mathematically formulated forward mapping that models the
physics of the problem. As the simple example of the thermometer indicated above,
the forward model is quite vital in correctly predicting the dependence of observed
measurements on physical parameters. Unfortunately, more attention is usually paid
to solving the inverse problem than to the formulation of the forward problem. In many
cases, the solution of the inverse problem demands simplification of the forward prob-
lem to enable efficient solution of the problem. Adding details of secondary effects to
the forward model, unless they have a significant impact on the observed (measured)
parameter, (1h in the thermometer’s example), become an unnecessary complication.
Nevertheless, one should be aware of the effect of simplification of the forward model
and should attempt as much as possible to have an accurate, but amenable to inversion,
modeling of the physical process. These are the reasons behind devoting Part I to the
formulation of the forward problem.
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1.5 Forward and Inverse Mapping

An image consists of a set of pixels (in two dimensions), or more generally a set of
voxels (in three dimensions). Associated with each voxel is an attribute or a parameter
reflecting a physical property. The magnitude of the parameter can be associated with
a gray or color level for visualization purposes. The latter association is a marginal
process and is not elaborated upon in this book. However, the association between
each parameter in the set of image attributes and the spatial position and size of its
pixel/voxel is implicitly assumed to be fixed in advance.

The forward problem is formulated by mapping a set of parameters, c, in the space
of physical parameters, C, into a set of measurements, e, in the space of measurements
E. This is schematically shown in Figure 1.3, which also depicts the inverse problem
as the inverse mapping of measurements in E to parameters in C. A set c in C (c ∈ C)
is shown in Figure 1.3 to correspond to a single set e in E (e ∈ E). Figure 1.3 shows
two forward mappings, m0 and m, to indicate that physical modeling can assume many
levels of sophistication. If the mapping m0 is exact, it produces an exact match with a
measurement e0. But when obtaining measurements, one would acquire a measurement,
ê, within some uncertainty,±δe, due to statistical fluctuations and instrument errors. If
the measuring device is functioning adequately, one should have: ê− δe ≤ e0 ≤ ê+ δe.
In almost all cases, an approximate mapping, m, is utilized. For a parameter, c, one
would calculate a measurement e; we will call this the measurement estimate, or the
modeled measurement. If the mapping is sufficiently representative of the physical

δc

ĉ
m

c

m−1

m0

C
Solution

(Physical parameters)
Space

E
Measurement

(Data)
Space

e~
ê

e

e0

δe

Figure 1.3 A schematic showing the mapping with m of a physical parameter, c, to a mea-
surement estimate e; with ê being an actual measurement with an uncertainty (δe), e0 is the
measurement determined by the exact mapping, m0 (if available), and ĉ is the result of inverse
mapping the measurement ê with m−1 (the inverse of m); δc is the uncertainty margin in ĉ, and
ẽ is the measurement estimate corresponding to ĉ.
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process, one should have e≈ e0, or at least e−1m ≤ e0 ≤ e+1m, where 1m is the
modeling error (inexactness), which is usually unknown, but can be approximated as:
1m =mc− ê.

Inverse mapping is applied to the available measurements to obtain: ĉ=m−1ê.
Since there is an uncertainty, δe, associated with ê and modeling error,1m, associated
with m, one would anticipate an uncertainty, δc, in the reconstructed value, c. One
would hope that δc < c, in order for c to give a realistic representation of c. The value
of δc can be controlled by bounding the values of e ∈ E and c ∈ C. For example, one
has: e≥ 0 and c≥ 0, since there are no negative absolute measurements, and in radia-
tion imaging c is almost always a non-negative physical attribute. The solution space,
C, can also be assigned an upper-bound from a priori knowledge of the nature of the
imaged object. One may also designate upper-bounds on the measurement space, E.
However, some inverse problems are ill-posed. An ill-posed problem does not meet
one of the conditions Hadamard assigned to a well-posed problem, see Section 1.4.
That is, an ill-posed problem may not have a unique solution, and the solution may
not continuously depend on the measurements. Then a small change in ê, such as that
caused by statistical fluctuations, can lead to large changes in c. One must then resort
to solution bounding and constraining measures, regularization and smoothing and/or
sharpening procedures to ensure that the reconstructed c values are physically and
numerically acceptable. These procedures are discussed in Part II of this book. Note
that, since in practice the inverse problem is discrete, in the sense that it relates a finite
number of measurements to a finite number of image pixels/voxels, it can be formu-
lated in a matrix form. An ill-posed problem produces an ill-conditioned matrix. Then
the matrix corresponding to the forward mapping will have a large condition number;
i.e. the ratio between its largest and smallest eigenvalues is high.

In summary, one can write the following mapping relationships:

c
m0
−→ e0; c ∈ C; e0 ∈ E (1.5)

c
m
−→ e; c ∈ C; e ∈ E (1.6)

ê
m−1

−→ ĉ; ê ∈ E; ĉ ∈ C (1.7)

ĉ
m
−→ ẽ; c̃ ∈ C; ẽ ∈ E (1.8)

In addition, one should have:

e0 ∈ [ê± δe]; e ∈ [ê± δe]; c ∈ [ĉ± δc]; ẽ ∈ [ê±1m] (1.9)

That is, within the interval [ê− δe, ê+ δe], one expects to find the true value, e0, of the
measurement, and hopes that the forward model produces a measurement estimate,
e, (for a given c) also within the same interval. In addition, one hopes that the true
solution, c, is within the interval [ĉ− δc, ĉ+ δc], and that the measurement estimate, ẽ,
corresponding to the obtained solution, ĉ, is also within [ê− δe, ê+ δe]. The measure-
ment, ê, is sometimes referred to as the set of observable parameters, while the results
of the inversion process, ĉ, its estimated error, δc, and the corresponding modeled
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measurement, ẽ, are called a posteriori information. Information that is known but is
independent of the measurement is called a priori information. Though the true value
of a measurement, e0, is never known, a good estimate can be obtained by accurate
measurements, with a small δe value.

It is appropriate at this stage to distinguish between inexactness, accuracy, preci-
sion, and uncertainty. We use inexactness to refer to the difference between a com-
puted modeled estimate of a measured value and its exact value, e− e0; caused by
neglecting some secondary aspects in the modeling process, to arrive at a numerically
manageable forward mapping. Accuracy is the difference between an actual measure-
ment and its true value, ê− e0, caused by systematic measurement errors that are, at
least in principle, correctable. Uncertainty refers to effects that are unintentional, typi-
cally statistical, that lead to variability in the value of a measurement not related to the
physical or laboratory setup. Due to uncertainty, one has: ê ∈ [ ˆ̄e± δē], where δē is the
measure of variability of ê around its mean value, ˆ̄e. The precession (reproducibility)
of a measurement can be estimated by the δē

−1. The less the fluctuations in a measure-
ment, the more precise it is. In other words, inexactness reflects systematic modeling
approximations, while accuracy, uncertainty, and precession are associated with the
measurement process. Of course, the exact value is never known; the “truth” is always
elusive. However, one can get e to approach e0 by more accurate and detailed mod-
eling and can have a value of ê that is closer to e0 by acquiring more accurate and
precise measurements.
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Part I

The Forward Problem

As far as the laws of mathematics refer to reality, they are not certain; and as far as
they are certain, they do not refer to reality.

Albert Einstein∗

In order to be able to correctly formulate a forward mapping, one must first be familiar
with the underlying physical processes that relate the image parameters of interest to
radiation measurements. For an image parameter to reveal its presence to a measure-
ment, it must be induced to do so by a source of radiation. Such a source is either an
external radiation source that bombards the surface of an object or an internal source
introduced into the object. In either case, the source radiation is transported through
the object, and some of that radiation must be able to escape from the object and reach
detectors placed outside the object. These detectors provide, in turn, the measurement
signal, after some electronic processing, to convert an analog signal to a digital sig-
nal suitable for numerical processing. In order to simulate these physical processes
and formulate them into a forward model, one first needs to be able to simulate the
transport of radiation through the object and its surroundings. Radiation transport the-
ory is governed by the Boltzmann particle-transport equation, which is presented in
Chapter 2. The issues related to the formulation of a generalized forward model in
radiation imaging are introduced in Chapter 3. The forward models for each of the
three radiation modalities of transmission, emission, and scattering are subsequently
discussed in Chapters 4, 5, and 6, respectively.

∗ In: Calaprice, A., Ed. (2005). The new quotable Einstein. Princeton University Press, p. 228.
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2 Radiation Transport

2.1 Introduction

Imaging with penetrating radiation involves mainly the use of x-ray and gamma-ray
photons, and to a lesser extent neutrons. Neutrons are particles, and as such their trans-
port is governed by the particle transport equation, which is discussed in this chapter.
However, low-energy neutrons exhibit wave-like behavior, enabling their use to exam-
ine lattice structures, in a manner similar to that of soft (low energy) x-ray diffraction.
Photons, on the other hand, are packets (or quanta) of electromagnetic energy, but
also possess both wave behavior (at low frequency, hence low energy) and corpuscu-
lar attributes at high energy. The latter behavior is what enables photons to penetrate
deep into matter and facilitates their use in imaging deep within objects. Therefore,
the word “particle,” is used here to refer to high-energy photons, as well as to neu-
trons; keeping in mind, though, that its use for photons is a metaphor. Therefore, the
particle transport equation, presented below, is equally applicable to photons and neu-
trons. It should be noted here that both photons and neutrons have no electric charge,
and as such are treated as neutral particles not affected by external electromagnetic
fields. The discussion below does not initially address the transport of charged parti-
cles, which are dealt with at the end of the chapter, in Section 2.8. In essence, we have
already made an implicit assumption in the radiation transport equation, presented in
Section 2.4: (I) only neutral particles are considered. These assumptions are marked
throughout this chapter, with uppercase Roman numerals, so that the reader can keep
track of them.

2.2 Variables

In order to simulate the radiation transport process, one must first introduce a quantity
that defines the intensity of the transported radiation. The most basic quantity in this
regard is the particle density, i.e. the number of particles, n, per unit volume. Since
radiation transport involves the “flow” of particles, a more commonly used quantity is
the particle flux, φ, which is the number of particles per unit area per unit time. The
latter definition of flux poses a problem though, since radiation intensity can vary with
the orientation of radiation with respect to the area on which it impinges. Therefore,
a more rigorous definition of flux is the number of radiation track-lengths per unit
volume per unit time, i.e., the track-length density (Hussein, 2007). This definition

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00002-1
c© 2011 Elsevier Inc. All rights reserved.
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avoids relating the neutron intensity to a particular area in the space and does not
require the definition of a certain shape of a volume. The flux and particle density are
related by:

φ = nv
(2.1)

where v is the particle velocity.
In addition to defining the dependent parameters, n or φ, which quantify the amount

of radiation transported, one must also define the independent variables of the transport
process, i.e., the parameters n and φ depend upon. Naturally, the position in space,
Er, and the time, t, are four basic parameters; keeping in mind that the vector Er is
measured from the point of origin and requires three parameters for its definition: one
for its length and the other two for its direction. These four independent variables are
sufficient to describe classical fluid flow, where the particles (molecules) of the flow
move collectively, not independent from each other, because the molecules are bound
to each other. Then, the flow velocity of fluids and the related quantities of momentum
and energy are also dependent variables. In the particle transport of radiation, the
particle density, n, (II) is assumed to be sufficiently large that its value is not affected
by statistical fluctuations, but is (III) small enough that particles do not interact with
each other. As such, a n= 1015 particles per m3 is not large given the fact that a mole
of material contains 6.022× 1023 atoms or molecules (Avogadro’s number). The fact
that radiation particles do not affect each other and do not move as a collective dictates
that the velocity, Ev, be designated as an additional independent variable. A vector, Ev, is
composed of three variables, one for magnitude and two for direction. Since photons
always move at the speed of light, the magnitude of the velocity, |v|, is replaced by
the particle energy, E, and the direction of motion is designated by the vector, E�.
Note that:

E = hν; for a photon
(2.2)

where h is Planck constant (6.626× 10−34 J s) and ν is the radiation’s frequency.
It is important to note here that the energy, E, refers to the energy of one radiation

particle, unlike fluid flow where energy refers to the total energy of the collective.
Similarly, in particle transport, the velocity, Ev, momentum, Ep, and direction, E�, are all
particle-related quantities.

There are other important differences between fluid flow and radiation transport:
fluid flow is confined within solid boundaries, while radiation penetrates boundaries.
The movement of fluids is, therefore, limited to within directions defined by solid
boundaries. Fluids do form interfaces between each other, producing clouds, droplets,
and clusters, which is not the case with radiation. Therefore, it is said that radiation
does not respect the impenetrability principle. The implication is that radiation can
move in any direction, and as such its flux has a distribution in direction, i.e. φ is a
function of E�. Radiation can also have a different energy at each direction, i.e. φ is
a function of E and E�. Therefore, the flux, φ, in general is expressed as φ(Er,E, E�, t),
with φ(Er,E, E�.t)dEd E� being the flux of particles at position Er, with energy within E
and E+ dE in a direction within E� and E�+ d�. Integrating over d E� gives φ(Er,E, t);
the flux at Er and t with energy in E and E+ dE in all directions. Accordingly, φ(Er, t) is
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the flux at Er at time t, incorporating all particle energies and directions. The quantity∫
φ(Er, t)dt is known as the particle fluence.
Neutral particles are (IV) not affected by external electromagnetic fields. Having

a very small mass or no mass at all in the case of photons, radiation particles are
also (V) not affected by gravity. Since the movement of radiation particles is nei-
ther confined by boundaries nor by interactions with other radiation particles, and is
(VI) not affected by external fields, they (VII) move in straight lines in the vast vac-
uum between target atoms/molecules. This straight-line movement continues until a
radiation particle is so close to the field of an atom or the short-range field of a nucleus
that its path is altered. As particles approach an atom/nucleus target, quantum mechan-
ics or electrodynamics, depending on the type of particle and the nature of the target,
govern the interaction process (Hussein, 2007), in terms of determining the nature
of the interaction and its probability of occurrence. The latter is quantified, in terms
of interaction cross sections, as explained in Section 2.3. A particle emerging from
an interaction will continue to travel in another straight line, until another interaction
takes place. An observer in the laboratory will only record straight-line movement of
radiation; though the change, from one straight line to another during the interaction
process, may not be an abrupt change. Therefore, (VIII) quantum mechanics and elec-
trodynamics are not considered directly in studying the transport process, but their
effect is incorporated into cross sections of the medium in which particles travel.

2.3 Cross Sections

Consider a radiation beam of I0 particles at distance x= 0 moving in the Ex direction.
Let 6 be the probability per unit distance that these radiation particles will interact,
one way or another, with one of the targets in the medium within which radiation trav-
els. The probability, q, that the radiation particles will not interact within a small dis-
tance interval 1x is then q= 1−61x. That is, qI0 particles will remain in the beam,
still moving in the direction Ex, while the rest, (1− q)I0, would have been removed
from the beam by some interaction (either absorbed by the target atom/nucleus or
changed direction by scattering). After traveling another distance,1x, only q2I0 parti-
cles will remain in the beam. As such, within a distance x= n1x, the number of radi-
ation particles remaining in the beam is I(x)= qnI0. If 1x was infinitesimally small,
i.e. 1x→ 0, then n→∞, and:

I(x)

I0
= lim

n→∞
qn
= lim

n→∞
(1−61x)n = lim

n→∞

(
1−6

x

n

)n
= e−6x (2.3)

When I0 = 1, 6 becomes the probability of interaction, per unit length, of one radia-
tion particle with the target atoms/nuclei of the medium. If there are N atoms per unit
volume (atomic density), then:

σ =
6

N
(2.4)
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is the probability of interaction per unit distance per target atomic density. Note that:

N =
ρ

Au
(2.5)

where ρ is the material density, A is its mass number, or atomic weight, and u is the
atomic mass unit ( 1

12× the mass of a 12C atom), u= 1.660565× 10−27kg. Since σ has
dimensions of area and is for interactions at the atomic/nucleus level, it is known as the
microscopic cross section. Accordingly, because 6 involves all target atoms/nuclei in
a medium, it is called the macroscopic cross section. The microscopic cross section,
σ , can be seen as the area of the field projected by an atom to incoming radiation,
though it is not necessarily equal to the geometric area; in fact, it can be much larger.
Then, 6 is the total area projected by atoms in a unit volume. Therefore, the value
of σ depends on the nature of the atom and the nature of the incident radiation and
its energy, while 6 depends on all the latter, in addition to the atomic density of the
material.

Equation (2.3) expresses the degree of attenuation of a beam of radiation as it tra-
vels a distance x within a material of a macroscopic cross section, 6. Accordingly,
6 is also known as the attenuation coefficient. Then, one can say that a change in
beam intensity, dI, within a distance, dx, is proportional to Idx, with 6 being the
proportionality constant. That is,

dI =−6I dx (2.6)

with the negative sign indicating that dI decreases with x. Integrating Eq. (2.6) from
x= 0 to I leads to:

I = I0 exp(−6x) (2.7)

with I = I0 at x= 0. Equation (2.7), derived also in Eq. (2.3), is known as the attenu-
ation law; equivalent to Lambert’s third law of optics. The total cross section is also a
relaxation distance, since it is the distance that results in a reduction in the initial flux
by 1

e = 0.368.
An interesting implication of Eq. (2.7) is that it can be used to determine the average

distance of travel between interactions, the so-called mean-free-path, λ as:

λ=

∫
∞

0 xexp(−6x)dx∫
∞

0 exp(−6x)dx
=

1

6
(2.8)

That is, 6 is the reciprocal of the mean-free-path.
Neither Eqs. (2.3) and (2.6) nor Eq. (2.7) identify the nature of radiation inter-

action. They simply stipulate that radiation is removed from a radiation beam, or
more precisely a narrow radiation beam. Radiation can be removed from such a beam
by absorption or scattering off the beam’s direction. Therefore, 6 is given the sub-
script “t,” for total, to indicate that it incorporates both absorption and scattering.
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Since the occurrence of one interaction is independent from the other, 6t and accord-
ingly σt, are further subdivided into cross sections for specific interactions. For exam-
ple, 6t =6a+6s, where 6a incorporates all interactions in which radiation is fully
absorbed and6s encompass all forms of scattering (elastic, inelastic, etc.). As such σa

and σs can also be separated into corresponding interaction types. To avoid deviating
from the main theme of the discussion in this chapter, interaction types are discussed
in Chapters 4 to 6, when formulating the forward mapping for each imaging modality.
Hussein (2007) provides a comprehensive compilation and classification of all radia-
tion interactions.

For the scattering cross section, a differential cross section is defined to determine
the probability of scattering to a specific energy and direction, so that:

6(E→ E′; E�→ E�′)=
d6(E, E�)

dEd�
(2.9)

expresses the cross section for scattering from energy E to energy E′, which is associated
with a change in direction from E� to E�′. Integrating Eq. (2.9) with solid angle leads to
6(E→ E′); the energy differential cross section. A similar expression can be devised
for an interaction that can generate new particles.

The attenuation coefficients for photons are usually designated by the Greek
symbol µ and tabulated in terms of the mass attenuation coefficient, µm =

µ
ρ

, where
ρ is the material density. The mass attenuation coefficients for elements, mixtures
and compounds at various photon energies are available on-line via xcom (Berger
et al., 1999; http://www.physics.nist.gov/PhysRefData/Xcom/Text/
XCOM.html). The cross sections for neutrons, on the other hand, are reported as
microscopic cross sections, expressed in a unit called barn (b) with 1 b = 10−28 m2.
Endfplot (Nuclear Data Evaluation Lab., 2000) tabulates the neutron cross sections
for various elements as a function of neutron energy (http://atom.kaeri.re.kr/
endfplot.shtml).

The definitions of the macroscopic cross section, 6, and the flux, φ, enable the
determination of the interaction rate per unit volume as:

Interaction Rate=6φ (2.10)

Recalling that6 is the interaction probability per unit length, and φ is the track-length
density, then 68 is the interaction density. Note that with the appropriate subscript
for 6 in Eq. (2.10), the interaction rate for a certain interaction can be obtained.

In discussing the interaction probability above, we implicitly assumed that (IX) the
nature of the target atoms/nuclei did not change from one interaction to the next, that
is, 6 remains constant as the radiation beam travels a distance x. This is a reasonable
assumption, since the number of radiation particles is much smaller than the number
of target atoms, as indicated above. Then, even if all radiation particles interact, their
overall effect on the macroscopic physical properties of the material they interact with
will be negligible.
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2.4 Boltzmann Transport Equation

The assumptions, marked in the above sections by uppercase Roman numerals, point
to a linear transport process of neutral particles that travel in straight lines until they
encounter a target atom/nucleus to interact with. The linearity of the transport process
is justified by the assumptions that radiation particles do not interact with each other
and that the medium with which radiation interacts does not change during the trans-
port process. The latter two assumptions enable the determination of the macroscopic
cross sections separately and independently of the transport process. Then, the inter-
action rate becomes only dependent on the particle flux, φ, and increases linearly with
φ, for a given interaction or a set of interactions defined by 6.

Let us consider a finite phase volume, 1Er 1E 1� 1t, in the seven-dimensional
space of radiation transport. Simple conservation principles dictate that the rate
of change in the number of particles per unit phase volume be equal to the amount
of generation and removal of radiation within the volume. A systematic cataloging of
these processes gives (Hussein, 2007):

−6t(Er,E, E�, t) φ(Er,E, E�, t)= the removal rate of radiation from the element, by absorption
or scattering, with6t being the macroscopic total cross section of the material of the element.∫
(6s(Er,E′, E� ′→ E, E�, t) φ(Er,E′, E� ′, t)dE′d E� ′ = the rate of scattering into the element,

of radiation with energy E in direction E�, from all other energies, E′ and directions E� ′,
with 6s(Er,E′, E� ′→ E, E�, t) being the differential scattering cross section at Er from the state
(E′, E� ′) to the state (E, E�).∫
ν6g(Er,E′, E� ′→ E, E�, t) φ(Er,E′, E� ′, t)dE′d E� ′ = thegeneration rate of new radiation par-

ticles by some interaction producing particles with energy E and direction E� within the ele-
ment, with 6g(Er,E′, E� ′→ E, E�, t) being the differential generation cross section, and ν is
the number of radiation particles produced per generation interaction.
Q(Er,E, E�, t)= the rate of introducing particles within the element by an external source.

The balance equation within the finite phase volume then becomes:

1

v

d

dt
φ(Er,E, E�, t)=−6t(Er,E, t)φ(Er,E, E�, t)

+

∫ (
6s(Er,E

′
→ E; E� ′→ E�, t)+ ν6g(Er,E

′
→ E; E� ′→ E�, t)

)
×φ(Er,E′, E� ′, t) dE′ d E� ′+Q(Er,E, E�, t) (2.11)

The left-hand-side of Eq. (2.11) is divided by the magnitude of the velocity, v, corres-
ponding to E, to produce the net rate of change of the number of particles per unit
volume. In addition, the left-hand-side of Eq. (2.11) is written as a total derivative, also
called the material derivative, because the balance portrayed by the equation is what
would be recorded by an observer moving with the radiation particles. An observer in
the laboratory would see a streaming of radiation through the volume element; i.e. a
spread of radiation in space, leading to:

1

v

d

dt
φ(Er,E, E�, t)=

1

v

∂

∂t
φ(Er,E, E�, t)+ E� · ∇φ(Er,E, E�, t) (2.12)



HUSSEIN Ch02-9780123877772 2011/4/18 23:30 Page 21 #7

Radiation Transport 21

The streaming term, Ev · ∇n(Er,Ev, t), accounts for the rate of particles entering the vol-
ume element minus those leaving it. That is, even in a vacant (material free) volume
element, the number of particles leaving the volume would be less than that entering
it, due to divergence (spread) of radiation particles. Therefore, the transport equation,
in the laboratory frame of reference, takes the form:

1

v

∂

∂t
φ(Er,E, E�, t)=−E� · ∇φ(Er,E, E�, t)−6t(Er,E, t)φ(Er,E, E�, t)

+

∫ (
6s(Er,E

′
→ E; E� ′→ E�, t)+ ν6g(Er,E

′
→ E; E� ′→ E�, t)

)
×φ(Er,E′, E� ′, t)dE′ d E� ′+Q(Er,E, E�, t) (2.13)

This is the Boltzmann particle transport equation, which was originally derived in
1872 for the kinetic theory of gases. It is the most comprehensive equation for describ-
ing radiation transport. The transport equation is, in many ways, quite complicated,
not only because of its many terms, but also because it has seven independent vari-
ables. Even at a steady state, with only six independent variables, the two variables
for direction, E�, are quite difficult to incorporate into computations. This is because,
for all other variables, one can establish points of reference from which the variable
is measured (point of origin in space, some zero reference time and a zero energy).
A particle’s direction, on the other hand, is measured with respect to the position
of the particle in space, which changes as the particle is transported. This makes it
quite difficult to determine a particle’s direction with respect to an absolute reference.
Although the spherical harmonics and discrete ordinates methods, see for example
Hussein (2007), are devised to overcome this problem, they are too complicated to be
implemented in formulating measurement models for the forward problem. Forward
mapping relies, therefore, on simplified forms of the transport equation. But it should
be kept in mind that we are simplifying an equation that itself is based on assumptions,
indicated in this chapter by the uppercase Roman numerals.

2.5 Source-Free Steady-State Problem

Let us solve the transport equation at (i) steady-state within a domain (ii) away from
any external sources of radiation. These conditions are easily satisfied in most imaging
problems, performed under steady-state conditions, with the radiation source outside
the object. The domain of the problem solution is that of the imaged object. The effect
of the external source can then be defined by a boundary condition that specifies the
flux at the surface of the object on which a source impinges. Even when dealing with
emission imaging, where sources are embedded within the object, one can define a
domain that excludes the regions containing radiation sources and assign appropriate
internal boundary conditions at the surface of the source-containing regions.

Let us further (iii) narrow the domain of radiation transport for imaging to the
domain seen by a detector. Since detectors used in imaging are usually collimated
to monitor a narrow field-of-view, further confinement of the transport domain is not
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unreasonable; yet it is a simplification. With a narrow domain, one can assume that (iv)
any radiation scattered within the domain leaves the beam and does not contribute to
the radiation flux within the domain. Let us assume that (v) radiation scattering into
the domain of interest from the outside has no significant effect on the radiation flux
within the domain. Moreover, let us assume that (vi) the absorbed radiation does not
result in the generation of more radiation that contributes to the flux within the studied
domain. With assumptions (i) to (vi), the last three terms (for scattering, generation,
and external source) in Eq. (2.13) can be dropped. In a steady-state problem, Eq. (2.13)
is reduced to:

−E� · ∇φ(Er,E, E�)−6t(Er,E)φ(Er,E, E�)= 0 (2.14)

where the time, t, was dropped, since the problem considered is at a steady state. Now
6t signifies complete removal of radiation from the domain, by absorption and/or
scattering to the outside of the domain. Then there is (vii) no reason for the source
radiation to change energy or direction, since the streaming term does not affect radia-
tion energy or direction, while absorption gets rid of radiation altogether and scattering
moves out of the domain of interest. This condition can be considered as an assumption
that removes the scattering term in Eq. (2.13), since radiation changes its energy and
direction only if there is scattering. With no change in direction, a radiation particle
moving in a particular direction will keep moving in that direction (in a straight line)
until it is fully absorbed. It is then possible to consider one direction at a time and
solve Eq. (2.14) in that direction. This reduces Eq. (2.14) in effect to a one-dimensional
problem in the direction of E�. Let us designate a distance along E� by R, then Eq. (2.14)
can be written as:

−
dφ(R,E, E�)

dR
=6t(R)φ(R)

dφ(R,E, E�)

φ(R,E, E�)
=−6t(R)dR (2.15)

Here the position vector, Er, is removed, since it is defined by R, assuming that R= 0
is at the surface of a detector within the domain of the radiation beam downstream of
the direction, E�. Integrating from R= 0 to some value R along E�, one obtains:

−

∫
dφ(R,E, E�)

φ(R,E, E�)
=−

R∫
0

6t(R)dR

− ln
φ(R,E, E�)

φ(0)
=−

R∫
0

6t(R)dR

φ(R,E, E�)= φ(0,E, E�)exp

− R∫
0

6t(R)dR

 (2.16)

φ(R,E, E�)= φ(0,E, E�)exp[−6tR] (2.17)
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The latter integration step is possible when (viii) the cross section, 6t, remains
constant within the domain, i.e. when the domain contains a single homogeneous
material.

Equations (2.16) and (2.17) are two different forms of the attenuation law of radia-
tion, previously derived from probabilistic principles in Eq. (2.7) and using a basic
attenuation principle in Eq. (2.3). However, the above thorough derivation from the
Boltzmann transport equation elucidates the many assumptions associated with its
derivation, indicated by the lowercase Roman numerals. This simple, and widely used,
radiation attenuation relationship should be applied with great caution. The flux in
Eqs. (2.16) and (2.17) is intentionally designated with E and E� to remind ourselves
that this attenuation relationship is applicable only to radiation beams in a particular
direction and when the radiation energy does not change. It is best suited, therefore, for
simulating the transmission of (ix) narrow radiation beams. The consideration of a sin-
gle direction in arriving at this law of attenuation (x) does not allow for the accounting
of radiation spread with distance.

Since radiation particles cannot be confined to a narrow beam for a long distance,
this attenuation law is (xi) not valid over a long distance of radiation travel. How-
ever, normalizing a measured transmitted flux to that recorded in the absence of the
actuating material (i.e. in void or in air, where 6t can be considered to be equal to
zero) eliminates the divergence effect. The reasons behind the presence of radiation
divergence becomes clear when we apply the transport equation in a voided domain,
as shown below.

2.6 Steady-State Problem in Void

In Section 2.5, external sources were considered to be outside the domain of the prob-
lem. When this is actually the case, the source would be located in air some distance
from the object. In many situations, the attenuation of radiation in air is so small that
it can be neglected, i.e. Eq. (2.17) will lead to no change in flux. Obviously, this is
not realistic, since we know that the intensity of a radiation source decreases with dis-
tance, even in void. To quantify this change in flux with distance, let us consider the
transport equation in void at steady state, in the presence of an external source. Then,
all terms in Eq. (2.13) disappear, since there are no interactions or transient changes,
except for the streaming and source terms, and one has:

E� · ∇φ(Er,E, E�)= Q(Er,E, E�) (2.18)

Let us consider, as done in Section 2.5, a distance R along E�. Then, one can express
E� · ∇φ(Er,E, E�) as a partial derivative with respect to R, which reduces Eq. (2.18) to:

∂

∂R
φ(Er, E�)= Q(Er, E�) (2.19)

Consider a point isotropic source of intensity Q0 positioned at Er0: Q(Er,E, E�)=
Q0(E)

4π δ(Er0), with the delta function indicating that the source exists only at one spatial
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point in space. With this point source, one can integrate both sides of Eq. (2.19) along
an entire infinite void space:

∞∫
−∞

∂

∂R
φ(Er,E, E�) dR= φ(Er,E, E�)=

Q0(E)

4π

∞∫
−∞

δ(Er−R0 E�)dR (2.20)

The argument of the delta function in the above formulation indicates that the integral
is from the source location along E� to the point Er at which the flux is determined. Since
the source is assumed to be isotropic, the flux should be the same in all directions, and
there is no need to express it explicitly in terms of E�. Integrating Eq. (2.20) over �
gives:

φ(Er,E)=
Q0(E)

4π

∞∫
−∞

∫
4π

δ(Er−R0 E�) dR d�

=
Q0(E)

4π

∫
δ(Er−R0 E�)

R2
dV

=
Q0(E)V

4πR2
0

(2.21)

since d�= dA
R2 and dV = dRdA, where dA and dV are infinitesimal intervals of area

and volume, respectively.
Equation (2.21) is identical to Lambert’s first law of optics, widely known as the

inverse-square law of radiation divergence. The derivation from the transport equation
indicates that this law is valid only for a point isotropic source in void. This law affirms
the basic fact that the total intensity of a radiation source, Q0(E)V , is constant, and as
such the flux, being intensity per unit area, decreases with the increase of its projected
area, consequently with R2

0, the distance from a point on the source to the location
where the flux is determined. Since the source energy does not change in void, the
flux will have the same energy as that of the source, as Eq. (2.21) shows. For a volume
source, one can integrate the flux evaluated for many non-overlapping points in the
source volume to obtain the total flux.

2.7 Point-Kernel Method

In a non-void medium, one can superimpose the attenuation law of Eqs. (2.16) or
(2.17) with the divergence law of Eq. (2.21), by accounting for the attenuation of one
direction at a time. Then one obtains the so-called uncollided flux, since the attenu-
ation law accounts only for particles that succeeded in surviving any interaction (all
other particles are considered to be outside the domain in which the flux is evaluated,
as discussed in Section 2.5). The combination of the two operations of attenuation and
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divergence gives the so-called flux point kernel, expressed as:

K(Er;Er0,E)=
exp[−6t(E)|Er−Er0|]

4π |Er−Er0|
2

(2.22)

for the contribution of a point isotropic source Er0 for the flux at Er. Then, the uncollided
flux for a point isotropic source of strength, Q0, is given by:

φuncollided(Er,E)= Q0(Er0,E)K(Er;Er0,E)=
Q0 exp[−6t(E)|Er−Er0|]

4π |Er−Er0|
2

(2.23)

To deal with the limitation of the attenuation law, discussed in Section 2.5, a buildup
factor (greater than one) can be introduced. This factor accounts for radiation scatter-
ing into the domain of radiation transport, which was ignored in the attenuation law.
Then the flux in Eq. (2.23) becomes:

φ(Er,E)= B(|Er−Er0|,E)
Q0 exp

[
−6t(E)|Er−Er0|

]
4π |Er−Er0|

2
(2.24)

To facilitate calculation of the buildup factor, it is often expressed as a series expansion
in the form:

B(R,E)= 1+ a1(E)(6tR)+ a2(E)(6tR)
2
+ ·· · (2.25)

with a’s being coefficients evaluated experimentally or obtained from detailed calcu-
lations using the entire transport equation for a given problem.

2.8 Charged Particles

The Boltzmann transport equation, Eq. (2.13), is not applicable to charged particles,
because of some of the assumptions upon which the equation is based. First, a charged
particle travels in a curved path, since it is continuously affected by the Coulomb
field of the atom and its nucleus. Therefore, charged particles violate the straight-line
assumption of the transport equation. The continuous influence of the Coulomb field
on charged particles results in a very large interaction cross section and no mean-free-
path. Instead, a range, R, is defined, in terms of the energy-loss per unit distance, the
so-called stopping power, S= dE

dr :

R(E0)=

R(E)∫
0

ds=

0∫
E

ds

dE
dE =

E∫
0

1
−dE

ds

dE =

E∫
0

dE

S
(2.26)

where E is the initial energy of the particle. The srim computer code (Ziegler, 1999)
gives values for the stopping power and range of positively charged particles (ions) in
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solids, liquids, and gases. The range is a straight-line (crow-flight) equivalent distance,
and as such can be used as an effective transport path from the start (source) point to
the end (full absorption) point of a charged particle. This straight-line approximation is
justified by the fact that charged-particle interactions tend to result in low momentum
transfer, and as such the change in direction is not drastic. One must keep in mind that
the range is only an estimate of the mean distance of travel, in the same direction as the
source radiation, and as such the end point is not a definite point. A charged particle
can stop either slightly before or after the distance dictated by the range value, due
to the straggling effect, i.e. the statistical fluctuations of the value of the actual travel
distance.

Another complicating effect of charged particles is that, as they move through the
atomic field, they transfer energy to atomic electrons. The received energy can be
sufficient to release atomic electrons from the shells they are bound to. The released
electrons, called “delta” rays, also travel within matter depositing energy. In addition,
the original charged particles, and the liberated secondary electrons, produce pho-
tons as they travel through the atomic electron field; these photons are known as the
bremsstrahlung (radiation produced by braking). The emitted photons, in turn, liberate
atomic electrons as they travel through matter. The newly liberated electrons release
photons by the bremsstrahlung process, and so on. Therefore, a single charged particle
produces in its wake a cascade of electrons, or a shower of electrons. This cascade of
electrons eventually collapses as the released electrons become so low in energy that
their associated bremsstrahlung photons cannot liberate more atomic electrons, and
energy loss becomes dominated by collisions between electrons. Therefore, detailed
analysis of the transport process can become so complex that it needs detailed Monte
Carlo calculations. In many situations, though, it is sufficient to employ the range as a
means for determining how far a charged particle would directly move.
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3 Measurement Models

3.1 Formulation

The forward problem provides a mathematical formulation (a forward mapping) that
produces an estimate of the value of a measurement, e ∈ E, given a set of physical
parameters, c ∈ C, as explained in Section 1.5. This mathematical formulation is some-
times referred to as a “physical model,” but this terminology is avoided here, because
it is also used to describe geometric or topological features. Instead, the term “mea-
surement model” is used in this book to refer to the mathematical formulation of the
forward mapping. In order to distinguish between a measurement obtained in the labo-
ratory and the corresponding value estimated by a measurement model, we will refer
to the latter as the modeled measurement.

3.2 Scaling

In formulating a measurement model one would aim at providing a best match with
measurements, keeping in mind that measurement uncertainties are always associated
with actual measurements. One must also keep in mind that the measurement model
is to be used in the inverse problem, to generate the inverse mapping. If the measure-
ment model is too complicated, so will the inversion process be. This will not only
increase computational demands and slow-down the solution of the inverse problem,
but it may make the generation of the inverse mapping quite difficult. A more com-
plex modeling may also involve second order parameters that may not have much
impact on the generated values. Very often it is not possible to numerically simulate
all aspects of a physical system, even when powerful simulation tools are available.
For instance, a radiation detector has a physical size and a response that depends on
the energy of the incident radiation, and even on the direction of incidence of radiation
on the detector. Moreover, when radiation deposits energy into a detector, it produces
charged particles or light signals that diffuse through the detection medium in a man-
ner that depends on the voltage applied on the detector, as well as on the detector’s
type and geometry. In addition, the source strength and size also affect the measured
values. Such detector and source characterization details are often accounted for via
calibration in the laboratory. In other words, to arrive at a measurement estimate that
is comparable to an actual measurement, one must introduce a scaling constant, k, via
calibration. Therefore, the forward mapping process of Figure 1.3 consists, in effect,

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00003-3
c© 2011 Elsevier Inc. All rights reserved.
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of two sequential mappings, so that the mapping of Eq. (1.6) becomes:

c
m0
−→ e0; c ∈ C; e0 ∈ E0 (3.1)

e0
k
−→ e; e0 ∈ E0; e ∈ E (3.2)

where C, E0 and E are, respectively, the spaces of physical parameters, modeled mea-
surements and actual measurements. We used the zero subscript to indicate that the
measurement model produces a numeric estimate of the measurement, via the m0
mapping, with the calibration process introducing another mapping, k. In essence, we
created an intermediate space, E0, for the numerical estimate, e0.

In order to facilitate numerical implementation of the forward model and its
subsequent inversion, a simplified model, via the m0 forward mapping, is usually
sought. This results in, as shown in subsequent chapters for various imaging modules,
idealized measurement models that ignore some of the secondary physical effects.
The scaling mapping, k, helps somewhat in retrieving the effect of those secondary
processes, by comparing the modeled measurement estimate, e0, to an actual measure-
ment, ê, obtained at high accuracy. However, calibration can only be done for certain
reference objects, with known size and material content. Imaging is done, however,
for an object that inevitably differs from calibration objects, and the scaling map-
ping, k, will not exactly account for the secondary physical effects incorporated in
idealized measurement models; though k would generally account well for source and
detector characteristics. In addition, no matter how accurate the calibration measure-
ments are, they are never error-free. Therefore, at the end a modeled measurement,
e= ke0 will carry within it some modeling inexactness; see Section 1.5 for definition
of inexactness.

The scaling parameter, k, is, in effect, a mapping of the incident radiation flux into
a measurable electronic signal. This mapping is a function of the energy of the radi-
ation incident on the detector and can also be affected by the direction and location
of incidence as it determines the radiation’s path length within the detector’s sensi-
tive volume. When the detected radiation is decomposed into components in energy
and the decomposed components are utilized as individual c values in the imaging
problem, the detector’s measured pulse-height distribution must be “unfolded” with
the detector’s response function. This forms another inverse sub-problem of radi-
ation detection that must be resolved before solving the inverse problem of image
reconstruction. This book does not directly address this unfolding problem, but all the
methods described in Part II for solving a linear inverse problem can be used for the
detector unfolding problem, provided that the detector’s response matrix is available
from prior measurements or calculations.

3.3 Measured Response

Measurement modeling to obtain the mapping, m0, can be avoided altogether by per-
forming measurements to determine the system response, i.e. to find m= m0k directly.
However, this is only doable in linear problems, where a change in a measurement, ei,
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due to a change in a parameter, cj, does not depend on changes in any other parameter,
cj′ . If an imaging problem is linear or is transformed to a linear problem, one can then
construct a response matrix, A, that relates a vector of measurement estimates, e, to a
vector c by:

e= Ac (3.3)

One can obtain a value for each element, Aij, by fixing all values of c and recording a
measurement, ei, then increasing the value of ci to ci+1cj and getting a measurement,
ei+1eij. The two measurements are then related by:

ei =
∑

n

Aincn

ei+1eij =
∑

n

Aincj+Aii1cj

Aij =
ei+1eij− ei

1cj
(3.4)

One can then construct the entire response matrix, A, by varying the physical parame-
ters one at a time, for each measurement. Obviously, this is a tedious process applica-
ble only to linear problems, but it provides a measured response matrix and bypasses
the mathematical modeling process. Detailed simulations, such as those involving
Monte Carlo simulations, can be used instead of measurements, to generate the
response matrix, A. For linear problems, the response matrix, and consequently the
forward mapping, do not change from one object to another and are not affected by
changes in the material content.

3.4 Sensitivity

A simple measurement model enables one to determine the sensitivity of a measure-
ment to changes in the physical parameters. For a measurement e ∈ E, the sensitivity
to a measurement c ∈ C defines sensitivity, S, as:

S=
∂e

∂c
(3.5)

For a linear system, as Eq. (3.4) indicates, an element Aij of the response matrix, A,
defines the sensitivity of a measurement, ei, to a system parameter, cj. The minimum
value of S gives the imaging system’s lowest sensitivity, and the maximum value is the
best sensitivity. An imaging system that is too sensitive to changes is quite susceptible
to measurement fluctuations resulting from random variations or spurious changes.
On the other hand, an imaging system whose measurements are not quite sensitive to
changes in physical parameters will not produce good quality images. Using a sim-
ple measurement model, one can develop an analytical formulation for the sensitivity
of an imaging system that can provide guidance on how sensitivity can be improved,
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e.g. by changing the source’s intensity, energy or even type. To arrive at such a simpli-
fied measurement model, some assumptions must be made. These assumptions may
impose some restrictions on the configuration of the imaging system and the method
of measurements. By understanding the measurement model’s inherent assumptions,
one can identify the optimal conditions under which the measurements are valid, and
strive to meet them. This can also help in diagnosing the reasons for obtaining poor
images.

3.5 Variability

A measurement model enables the assessment of the susceptibility of an imaging sys-
tem to fluctuations in measurements that are not caused by changes in physical para-
meters. Such changes could be due to random statistical variability, system
instabilities, motion of imaged object, or even systematic errors caused by inaccurate
assignment of model parameters. The variance, σ 2

e , in a measurement, e ∈ E, affects
the variance, σ 2

c , in a parameter, c ∈ C, through the relationship:

σ 2
c =

(
∂c

∂e

)2

σ 2
e =

1

S2
σ 2

e (3.6)

where S, the sensitivity defined by Eq. (3.5), is assumed to be finite in value.
Equation (3.6) shows that a system with poor sensitivity will also propagate measure-
ment “error” into the reconstructed value of a physical parameter. The word “error”
is used here with caution, since it does not indicate erroneous measurements. For
instance, statistical fluctuations, which are inherent in any radiation measurement, are
a genuine physical variability that are not caused by flaws in the measurement method.
Therefore, measurement noise often refers to random fluctuations.

3.6 Components

Imaging with radiation involves three basic components:

Source: that sends radiation into an object in the case of transmission, induced emission
and scatter imaging or is emanated from within the object in case of embedded-emission
imaging.
Transport: of radiation from the source through the object. During this transport process,
the radiation must interact, in order for it to be able to convey information about the object
after it leaves it.
Detector: measures the intensity of radiation that succeeds in leaving the object and reaches
pre-designated locations.

Therefore, in order to construct a measurement model, one must be able to characterize
the radiation source(s), model the transport process and simulate the response of the
detector(s) employed in the imaging system.
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3.6.1 Source

In order for a measurement to exist, a source of radiation must be present. This is usu-
ally an active source, i.e. a source introduced for the purpose of inducing a measure-
ment; though measurements from passive (natural or artificial radioactive materials)
sources are also possible. The source is external to the object in the case of trans-
mission, induced emission and scatter imaging, but is internal (within the object) in
embedded-emission imaging. The discussion in Chapter 2 indicates that, for a source,
one needs not only to know its intensity, Q, (particles emitted per unit time), but also
its position in space, Er, its energy, E, and direction, E�. Each of these parameters can
vary: Q with time; Er according to the source size and shape, E as determined by the
intrinsic energy spectrum of the radiation source; and E� by the angular distribution of
the emitted radiation.

For an external source, volume and shape are dictated by the type of source used.
The intensity of photons from an x-ray source and neutrons from a neutron generator
(both produce radiation by accelerating charge particles that bombard a fixed target)
can be controlled by the magnitude of the current (number of particles per second) of
charged particles. A pulsed source of radiation can be obtained from an accelerator-
based generator by pulsing the accelerated particles at a certain rate. The intensity of
a pulsed source depends on the strength of each pulse and on the pulsing rate. The
intensity of a radioisotopic source is a function of its activity in becquerels (Bq); with
1 Bq being one disintegration per second, but can decrease with time as the source
decays, at a rate determined by its half-life. It should be kept in mind that the intensity
of a source, whether accelerator-based or isotopic, is statistically variant, due to the
random nature of nuclear interactions and the decay process; see Section 15.4.3.

In the case of an x-ray machine, the applied voltage determines the maximum
energy of the emitted photons, while in a neutron generator, the neutron energy is
governed by the nuclear reaction that takes place when the accelerated charged parti-
cles bombard the target. Radiation (photons or neutrons) emanating from a radioiso-
tope, on the other hand, have an energy determined by the nature of the isotope and
cannot be altered.

The angular distribution from a radioisotope is isotropic, since there is no reason
for radioactive decay to prefer one direction over another. The distribution of neutrons
from a neutron generator tend to be, however, biased in the forward direction, i.e. the
direction of charged particle that bombard the target. The angular distribution from
photons produced from an x-ray machine also has a favored direction that depends on
the thickness, shape and material of the target and on the energy and angle of inci-
dence of the electrons bombarding the target. Laboratory measurements can be per-
formed to determine the distribution of an accelerator-based source. The field-of-view
of a source can, however, be confined with the aid of a collimator. Since penetrat-
ing radiation, as indicated in Chapter 2, possesses corpuscular properties, it cannot be
collimated with the aid of a lens, as is the case with radiation that has wave proper-
ties. Therefore, collimation of particle radiation is accomplished by elimination, that
is, by a material that absorbs radiation and removes it from all directions except the
desired direction. Simple ray-tracing from the source location through the hollow part



HUSSEIN Ch03-9780123877772 2011/4/19 1:10 Page 32 #6

32 Computed Radiation Imaging

of the collimator body can then be employed to determine the source’s field-of-view.
However, the collimator walls also scatter radiation, and some of that radiation may
contaminate the collimated (unabsorbed) radiation.

The above discussion indicates that even the simulation of a radiation source, and
associated collimation, is not as straightforward as it may appear at first glance. In
simplifying the modeling of the radiation source in an imaging problem, one must be
aware of the above discussed factors and their influence on the measurement model.
Details on the nature of various radiation sources can be found in Hussein (2003a),
and the design and characterization of collimators is given in Hussein (2003b).

Based on the above discussion, one can conclude that modeling a source may
require discretization or integration of source parameters in time, space, energy and
angle. A discretization process involves the lumping of a continuous parameter into
definite intervals and considering one value within each interval (typically the mean
value) as representative of the interval. For example, a volume source can be rep-
resented by a number of contiguous small elementary volumes, with each volume
element simulated as a point source located at the center of the element. Similarly, the
energy spectrum of a source (if not monoenergetic) can be represented by a number of
energy groups spanning the entire spectrum. A fan/cone-beam can also be simulated as
a set of rays, each at a distinct direction. The intensity of a source, with time-varying
intensity, can be taken as the time averaged intensity within the measurement time.
While these discretization processes enable more inclusive representation of source
parameters, care must be taken in selecting the proper intervals, so that source para-
meters are reasonably represented. Taking a small number of wide intervals simpli-
fies the formulation of a measurement model, but an averaging process within a wide
interval smoothes out abrupt changes. On the other hand, too many fine intervals can
be computationally demanding, not only for the forward mapping, but also for the
subsequent inverse mapping.

3.6.2 Detector

The transport process is quite complicated, as discussed in Chapter 2. However, this
process can be simplified using the point-kernel method of Section 2.7; keeping in
mind the many idealizations involved in arriving at such models. This method is
applied to the different models of imaging, as discussed in the ensuing chapters. The
simulation of the transport process, whether simple or sophisticated, determines the
flux at a certain location, particle energy and direction at a given time. The value of
the flux at the position of a detector is used to indicate the intensity of radiation. How-
ever, a detector has its own intrinsic response function that determines the amplitude
of its response to an incident radiation of a certain energy. The direction with which
radiation impinges on a detector is not usually a major factor, since a radiation parti-
cle “forgets” its initial direction after encountering a few collisions, within a detector,
before being fully absorbed. The response function of a detector depends on its nature,
i.e. the physical process it relies on to convert an absorbed neutral radiation particle
into a measurable electronic signal, as well as on the shape and size of the detector.
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In addition, not every radiation particle incident on a detector will be absorbed, and,
hence, a detector also has an efficiency. A collimator is usually employed to “focus”
the field-of-view of a detector. This field-of-view tends, however, to widen with dis-
tance due to the nature of collimation-by-elimination, which can affect the amount of
radiation reaching a detector. Moreover, the internal walls of a collimator can redi-
rect radiation, by scattering, toward the detector. Detectors may also produce spurious
signals due to random exposure to cosmic radiation, thermal effects or microphonic
effects. The electronic components used to amplify, shape and acquire a detector’s sig-
nal can also introduce noise that can affect the detector’s response. In addition, back-
ground radiation can contribute to a detector’s response. Background radiation can
result from natural radioactivity, scattering of source radiation on surrounding walls
and floors and adjacent detectors (in the case of detector arrays), and even from direct
leakage from the source to the detector. It is obvious from the above discussion that
using the flux, produced even from a detailed modeling of radiation transport, may not
be a direct measure of a detector’s response. Therefore, one should be aware of the
role a detector plays in arriving at a measurement model.

Similar to source parameters, detector parameters can also be discretized. The vol-
ume of a detector can be represented by a set of point detectors, and a detector response
can be calculated within a number of energy groups and within angular intervals.
Moreover, in problems where time variation is monitored, the detector response can
be recorded within discrete time periods. As in source discretization, the number of
selected intervals should be large enough to give proper representation of the detector
response, but not too large to be computationally cumbersome.

3.7 Image Grid

A digital image consists of a number of small contiguous elements, with each element
having a numerical value directly representing a physical parameter, c ∈ C. These ele-
ments usually form a cuboid grid and cover the entire imaged object; elements outside
the object are considered to be empty (air filled). An image element is known as a pixel
(picture element) in a two-dimensional (sectional or a slice) image and is called a voxel
in a three-dimensional (volume) image. A sectional image is known as a tomograph.
Since penetrating radiation is not affected by surfaces, it requires a volume element; as
shown in the formulation of the radiation transport equation in Chapter 2. Therefore, a
pixel in an image must have a thickness that defines an associated volume. This thick-
ness is that of the section for which a tomograph is reconstructed. Square pixels are
typically employed in imaging, but a corresponding voxel is not necessarily a cube,
since a slice’s depth may not be equal to the width of a pixel. A set of contiguous
tomographs form a volume image. The size of a voxel (or pixel) defines the spatial
resolution of an image.

The discretization of a volume into small elements for the purpose of generating an
image necessitates the application of the forward model over discrete values: cj ∈ C.
Each value cj corresponds to a voxel j in the image. This implies that each voxel, j, is
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considered to contain a single material with a physical property defined by cj such that:

cj =

∫ Vj
0 c dV

Vj
(3.7)

where Vj is the volume of voxel j. Obviously, if voxel j contains a homogeneous
material, then cj is an accurate indicator of the physical property of the material within
the voxel. On the other hand, if a voxel happens to contain more than one material,
then cj will represent a volume-averaged value of the physical property. For instance,
if a voxel exists at the interface between two materials, partially covering part of each,
the averaging (or homogenization) produces a cj value weighted by the volume of
each material in the voxel. The result is a loss of image sharpness, with the interface
between the two materials appearing blurred (less distinct). An extreme case occurs at
the external surface of an object, where a voxel may be partially filled with the object
material with the rest being air. Since air is quite low in density, its effect on a material
property induced by penetrating radiation is practically nil. Then a voxel, partially
covered with air, will have a cj value less than that of the material present within the
rest of the voxel.

Naturally, it is desirable to obtain a sharp image with good spatial resolution. There-
fore, the voxel size should be as small as practically possible. The smaller the voxel’s
volume, the more voxels one would have in the reconstructed image, the more rep-
resentative the c value of the voxel’s contents is, and the better the image quality is.
There is, however, a limit on how small the voxel volume can be. A larger number of
voxels in an image requires a correspondingly large number of measurements. A very
small voxel also has a very feeble effect on measurements, which in turn requires the
acquisition of more accurate measurements, by using a more intense source and/or
a long counting period. The forward mapping of c to e via a measurement model
also becomes susceptible to the accumulation of numerical (truncation and round-off)
errors, as the voxel size decreases. Such errors can then diffuse to the reconstructed
images, reducing its quality. There is no need in practice to provide an image with a
resolution better than the size of the smallest details one is interested in.

3.8 Idealization

It is obvious from the above discussion that developing a measurement model that
simulates physical reality is an arduous task. The best simulation models have their
own physical limitations, and, even when used, incorporating accurately all physi-
cal details can be cumbersome and often not possible. It is also desirable to have
a simple measurement model for the forward problem, since it has to be inverted to
reconstruct an image. Therefore, measurement models are usually idealized for simple
conditions that reflect the parameter of primary interest (the image attribute), as shown
in Chapters 4 to 6. The simplicity of a measurement model can be compensated for
by a calibration process, as indicated in Section 3.2. Since imaging involves objects
of different attributes, the calibration process should be performed using a reference
image that is not very different from the imaged object.
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3.9 Computer Coding

For use in image reconstruction, an analytical measurement model has to be formu-
lated as a numerical algorithm, and subsequently coded into a computer program.
This associated numerical implementation involves discretization or lumping of con-
tinuous variables. For example, a source with a small volume may be lumped into a
single point at its centroid; source and/or detector continuous radiation energies may
be represented as a set of discrete energy groups; an entire source/detector energy
spectrum may be represented by an equivalent or an average energy; a narrow cone-
beam of radiation may be treated as a pencil (parallel-ray) beam, etc. Such averaging
and lumping numerical processes introduce further approximations that can affect the
value of modeled measurements. Also, misunderstanding or misinterpretation of ana-
lytical formulations may lead to errors in their numerical implementation. The coding
of the computer program itself is subject to human error. Therefore, one must ensure
that a computer code for a measurement model is programmed as analytically and
numerical intended. This process is known in computer simulation as code verifica-
tion, as opposed to code validation, which is the process of demonstrating that the
measurement model and its computer code reflect physical reality.1 Roache (1998)
provides detailed analysis for code validation and verification.

3.9.1 Verification

The purpose of code verification is to ensure that the computer code is not only free of
model-implementation errors and logic errors in the model’s specification and imple-
mentation, but also that the code is free of data errors; i.e. it uses the proper source
and detector parameters and the correct geometry and material properties. The veri-
fication process does not end with the completion of computer coding, as one must
ensure every time the code is used that there are no input errors; i.e. the input data
is as intended. Comparing the simulation code results against hand (or spreadsheet)
calculations for simple problems and testing it under bounding (extreme) conditions,
as those of maximum or minimum response, are among the methods used in code
verification.

3.9.2 Validation

The validation process examines how close the modeled measurements are to actual
corresponding measurements. After introducing the proper calibration parameters that
adjust the model’s predictions to match those obtained experimentally for a reference
setup, one must test the model’s results against measurements obtained for a number
of configurations different from those used in the reference setup. Validation is a con-
tinual process, as one must always ensure that the results of the model are reasonable
and are within the expected space; i.e. e ∈ E.

1 These definitions of verification and validation are along the same lines as those of the American Insti-
tute of Aeronautics and Astronautics: Guide for the Verification and Validation of Computational Fluid
Dynamics Simulations, AIAA G-077-1998, 1998.
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4 Transmission

4.1 Basic Model

The forward mapping of a radiation imaging technique that relies on transmission
employs a measurement model based on the exponential attenuation law, Eq. (2.17).
For a pencil-beam source, the intensity (particles per unit time), I(x), of radiation
that succeeds in penetrating a material of thickness x along the beam’s direction, see
Figure 4.1, is given by:

I(x)= I0 exp

− x∫
0

6(s) ds

 (4.1)

p(x)=− ln
I(x)

I0
=

x∫
0

6(s) ds (4.2)

where I0 is the intensity of the incident beam, 6(s) is the total cross section (attenua-
tion coefficient) of the material at position s along the beam; 0≤ s≤ x.

The ratio I(x)
I0

is sometimes called the transmittance, and the negative of its natural
logarithm, p, is known as the ray-sum, or the projection. It signifies the integration of
the physical parameter of interest here, 6, with distance along the line of integration.
Mathematically, the integral in the right-hand-side of Eq. (4.2) is the Radon transform
of the projection of 6(s). Since the measured intensity, I(x), determines the value
of p, with I0 known, then p can be considered to be directly the measurement, e, in
the forward mapping: c→ e with c≡6 and e≡ p. One advantage of the projection
formulation of Eq. (4.2) is that the normalization by I0 eliminates detector effects
(size and geometry), when the same detector is used to measure both I and I0. This is
because both I and I0 have the same energy, hence same detection efficiency, and are
in the same direction (as defined by the source and detector collimation), and as such
have the same source and detector fields-of-view.

Recall from Chapter 2 that the attenuation law, as presented by Eq. (4.1), is bur-
dened with many assumptions, the most important of which is that it is only applica-
ble to a narrow parallel (non-diverging) beam of radiation; hence the use of the word
“pencil” beam, so that any radiation that scatters off the beam does not contribute to
the value of I(x), hence to p. One may claim that this narrow beam assumption can

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00004-5
c© 2011 Elsevier Inc. All rights reserved.
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Figure 4.1 A schematic for the transmission of a pencil beam of radiation.

Source Detector

Source collimator Detector collimator

Figure 4.2 A schematic of a collimated source seen by a collimated detector.

be satisfied by collimating the source radiation into a pencil beam and confining the
detector’s field-of-view into a pencil-shaped configuration that matches that of the
source. However, this is not practically possible, since radiation is not naturally emit-
ted as a pencil beam and penetrating radiation collimation is accomplished by elimina-
tion, i.e. absorption of radiation. Therefore, as schematically shown in Figure 4.2, even
with a narrow parallel collimator, the detected radiation will not appear to the detector
as a parallel beam. Deviation from parallel collimation is more pronounced at shorter
length of collimation, smaller source-to-detector distance and larger source size. On
the other hand, a long collimator and a larger source-to-detector distance reduce the
intensity of the detected radiation, due to the reduction in intensity by divergence,
Eq. (2.21). The result is that the distance x in Eqs. (4.1) and (4.2) is underestimated if
the pencil-beam distance is used. Therefore, it is desirable to perform the integration
in these two equations over a set of pencil beams covering the field-of-view of the
detector. This complicates, however, the solution of the inverse problem of solving for
6, by making the measurement model of Eq. (4.2), and, in turn, its inversion more
convoluted.

When the object exposed to radiation is viewed as consisting of small voxels,
source divergence exposes more voxels to radiation as the beam travels through the
object, due to the expansion of the source radiation field-of-view, as Figure 4.2 shows.
Therefore, voxels downstream of the source beam appear to contribute more to the
projection, p in Eq. (4.2). However, this apparent increase in contribution is dampened
by the decrease in source intensity per unit area (flux) with divergence, in accordance
to Eq. (2.21) for a point source. Moreover, by exposing the object to radiation from
two opposite directions, i.e. by exchanging the source and detector positions, the effect
of divergence on image voxels reverses its trend, providing a form of averaging that
dampens the effect of divergence. Therefore, though opposite exposures to radiation
may appear to be redundant, they in effect improve the quality of measurements by
smoothing out the effect of divergence.
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Before leaving the discussion on radiation divergence, one should consider incor-
porating it directly into Eq. (4.1). The latter equation was deduced from Eq. (2.17),
which is in terms of flux, φ, rather than intensity, I, as in Eq. (4.1). Let us consider
the flux and the point-kernel model of Eq. (2.23) and replace Q0 in the latter equation
with I0 to be consistent with Eq. (4.1). Then the flux at some distance x from a source
of intensity I0 can be expressed as:

φ(x)=
I0

4πx2
exp

− x∫
0

6(s)ds

 (4.3)

= φ(x)|6=0 exp

− x∫
0

6(s)ds

 (4.4)

where φ|6=0 is the flux at distance x, if the intervening material were to have a zero
attenuation coefficient. Then integrating the flux over the detector’s sensitive area
gives:

I(x)= I(x)|6=0 exp

− x∫
0

6(s)ds

 (4.5)

Comparing Eq. (4.5) to Eq. (4.1) indicates that the source strength, I0, in the latter is
equal to the intensity of radiation after traveling a distance x in a medium with 6 = 0
(a condition usually satisfied for penetrating radiation in air). If the attenuation in air
is not to be ignored, Eq. (4.4) would have to be written as:

φ(x)= φ(x)|6=6air exp

− x∫
0

(6(s)−6air) ds

 (4.6)

where6air is the attenuation coefficient of air (a constant value for the incident source
radiation). Then:

I(x)= I(x)|6=6air exp

− x∫
0

(6(s)−6air) ds

 (4.7)

Therefore, if the projection of Eq. (4.2) is to be obtained by normalizing the detected
intensity at x to that at the same location, but in air, one would be evaluating the
material’s attenuation coefficient relative to that of air. The practical implication of
this is that the source intensity, I0, need not be known, and, if 6air is known, its value
should be added to that obtained from the projection of Eq. (4.2) evaluated with respect
to that measured in air, if a precise value of 6 is desired.
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Another implication of Eq. (4.7) is that the distance of integration, x, must be
known. In computed tomography, this is achieved by setting a spatial domain of fixed
dimensions within which the attenuation coefficients are determined at pre-designated
pixels (small picture elements). If the imaged object is smaller than the imaging
domain, then the unfilled space will produce a zero attenuation coefficient. On the
other hand, if the object happens to be larger than the imaging domain, the additional
attenuation caused by the excess material will be added to those within the imaging
domain, which will produce an image artifact with overestimated attenuation coeffi-
cients. It is, therefore, important to ensure that the entire imaged object resides within
the pre-defined imaging domain.

4.2 Physical Relevance

Equations (4.1) and (4.2) provide the physical model for relating a measurement, and
its projection, to the attenuation coefficient, 6. For proper physical interpretation of
the attributes of an image based on such measurement, one must understand the phys-
ical significance of 6. As stated in Section 2.5, 6 is the total macroscopic cross sec-
tion of the incident radiation for the material of the imaged object. The totality of
6 implies that it includes all interaction types that cause radiation removal from the
incident beam, i.e. 6 encompasses both absorption and scattering. The macroscopic
cross section, 6, is related to the microscopic cross section per atom, σ , by the atomic
density N, as Eq. (2.4) shows. Therefore, one must understand the nature of radiation
interactions and how they affect σ , while keeping in mind that N is related to the den-
sity, ρ, and mass number of the material, A, by N = ρ

Au , where u is the atomic mass
unit, see Eq. (2.5). That is,

6(E)= Nσ =
ρ

Au
σ(E) (4.8)

where the source energy, E, is included to emphasize that the microscopic cross section
is also dependent on E. Equation (4.8) directly indicates that 6 is not only indicative
of the material density, but is also affected by the nature of the material via A and σ .
In other words, two materials of the same density can have two different values of 6.
To further understand the physical significance of 6, we will consider the two types
of radiation employed in imaging: photons and neutrons.

4.2.1 Photons

Photon interactions in the domain of x-rays and gamma-rays are governed by three
main dominant interactions: (1) photoabsorption, (2) Compton scattering, and (3) pair
production. Tabulated values for the photon cross sections for various reactions and
different elements, compounds, and mixtures, at different energies, are provided by
the XCOM: Photon Cross Sections Database http://www.physics.nist.gov/
PhysRefData/Xcom/Text/XCOM.html (Berger et al., 1999).
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In photoabsorption, also called the photoelectric effect, a photon is fully absorbed
by the atom, liberating an orbital (bound) atomic electron. The microscopic cross sec-
tion for this interaction, σa, can be approximately expressed as (Hussein, 2003):

σpe(E)≈ 12.1
Z4.6

E3.15
× 10−24 cm2 (4.9)

where E is the photon energy in keV and Z is the atomic number of the atom absorbing
the photon. It is obvious that σpe is highest at low energy and for heavy (high Z) metals
and is strongly dependent on both the atomic-number and the incident energy of the
photon. The photoabsorption cross section also exhibits sharp edges when the photon
energy approaches the binding energy of an atomic orbit, in particular the electron
rich K and L shells. When E is below the binding energy of an electron shell, σpe

declines sharply, since the electron cannot be ejected from the shell, producing the so-
called “absorption edges.” These absorption edges, being electron-level dependent,
are unique (characteristic) for each element.

The other dominant photon interaction mechanism is Compton scattering, in which
the photon in a particle-like collision is scattered by a free electron in the atom, losing
some energy and changing its direction in the process. The macroscopic cross section,
σcs, is approximately given by (Hussein, 2003):

σcs(E)≈ 0.665Z
1+ 2E

mec2

1+ 2
(

E
mec2

)2
× 10−24 cm2 (4.10)

where mec2
= 511 keV is the rest-mass energy of an electron. Therefore, the micro-

scopic cross section for photons tends to decrease with increasing energy and atomic
number, i.e. is roughly proportional to Z

E .
The third common mode of photon interaction is that of pair production, in which

a photon is annihilated in the presence of the strong electromagnetic field of a high
atomic-number atom, leading to the generation of an electron-positron pair. This
requires a photon energy of at least 1.022 MeV (= rest mass of the pair = 2mec2).
The microscopic cross sections for pair production, σpp, is approximately given
by (Hussein, 2003):

σpp(E)= 0.579Z2
× 10−27 cm2

; E > 1.022 MeV (4.11)

Therefore, this interaction is only relevant in industrial imaging where accelerator-
generated high-energy x-rays are used to image high Z materials.

Now focusing on the photoelectric effect and Compton scattering, which are the
two most likely encountered photon interactions, the total interaction cross section,
6, using Eqs. (4.8), (4.9) and (4.10), becomes:

6(E)≈
ρ(g/cm3)

1.6606

(
Z

A

)12.1
Z3.6

E3.15
+ 0.665

1+ 2E
mec2

1+ 2
(

E
mec2

)2

cm−1 (4.12)
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with ρ expressed in g/cm3, and u in grams, u= 1.660565× 10−24 g. Since Z
A ≈ 0.5,

for most materials except hydrogen, Eq. (4.12) shows that at not-too-low photon
energy, when Compton scattering dominates,6 becomes proportional to ρ for a given
source energy, E. However, at low photon energy, the material composition, via the
atomic number Z, has an effect on the value of 6, and the cross section ceases to be
entirely dependent on ρ, at a given source energy.

4.2.2 Neutrons

The total macroscopic cross section for neutrons is also dependent on material density,
through the atomic density, N, in Eq. (4.8). However, it is strongly dependent on the
nature of the medium via the mass number, N, and the microscopic cross section, σ .
The latter cross section is more difficult to relate to material composition than that for
photons. In fact, when employing neutron transmission imaging, one must look for a
material with cross sections that are distinctly different from those of its surrounding.
For example, one can examine the presence of hydrogen, or a hydrogen-rich material,
within a metallic structure, since hydrogen has a much higher neutron removal cross
section than most metals. A good source for neutron microscopic cross sections can be
found in the Nuclide Table of the Nuclear Data Evaluation Laboratory, Korea Atomic
Energy Research Institute (http://atom.kaeri.re.kr/).

4.3 Discretization

When numerically implementing any of Eqs. (4.1) to (4.7), one must deal with the
integrals they contain. The image reconstruction process is a discrete process in which
the value of 6 is evaluated at small pixels or voxels of fixed area or volume. It is
essential, therefore, to write the above equation in a discrete form, by replacing the
integrations with summations. For example, Eq. (4.1) has to be expressed as:

I(x)= I0 exp

[
−

N∑
i

6i1xi

]
(4.13)

where 1xi is the distance traveled by the incident radiation in voxel i, with N being
the number of voxels encountered by the incident radiation before leaving the atten-
uating object. The formulation of Eq. (4.13) implicitly assumes that 6i in voxel i has
a constant value, i.e. the material within the voxel is uniform, or homogenized, to
provide a constant value if more than one material exists within the voxel. This is, in
effect, a process of “lumping” the contents of a voxel into a point. One then would
desire to have as small a voxel as possible, so that the effect of lumping is minimized.
In practice, however, there is a limit on the size of the voxel one can choose. The
more voxels one has, the more measurements are required, since the content of each
voxel presents an unknown parameter for which at least one measurement is to be pro-
vided. A large number of measurements is not only demanding in terms of acquiring
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the measurements themselves, but also increases the computational difficulty in terms
of computer storage and manipulation. In addition, to resolve the contents of a small
voxel from other voxels in the same projection, the contribution of that voxel to the
projection must exceed the statistical variability in the recorded value of the projec-
tion. A low statistical variability requires either an intense radiation source or a long
exposure time, conditions which are not always easy to achieve in practice.

Another inherent limitation of the discretization in Eq. (4.13) is that the value of
1xi must be known. This value may be found by ray-tracing the radiation passage
from the source position to the detector position for a given projection. However, in
order to trace a ray, its point of origin at the source position and its end point at the
detector must be well defined. A source of radiation in never a single point, neither
is a detector, but each can be considered to consist of many contiguous points. This
by itself is another discretization process for the source and the detector and demands
that all source points be connected to all detector points. The result is that, in each
voxel, i, many values of 1xi can exist, each corresponding to a different source-point
to detector-point trace. Using the average value is a sensible solution, provided that
the source is isotropic (same intensity for all traced rays) and the detector efficiency is
not directionally dependent (for each incident ray). These conditions are not difficult
to meet in practice, but one must keep in mind that the averaging process is only
meaningful if the variance of the averaged values is small in comparison to the mean
value, i.e. if the intersection values for each ray crossing a certain voxel are not too
different from each other. If the latter condition is not satisfied, the average value
would not be representative of the distances of radiation travel within a pixel.

4.4 Nature of Radiation Source

So far, we have not mentioned the radiation type and its effect on the measure-
ment model for transmission. The exponential relationships associated with the mod-
els of Eqs. (4.1) to (4.7) are applicable only to neutral radiation,1 and they inherit
the assumptions implicit in the application of the attenuation law, as discussed in
Section 2.5. Direct application of those equations, to obtain a value of 6, requires that
the incident radiation be monoenergetic, so that 6 assumes a fixed value determined
by the source’s single energy. However, radiation employed in transmission imaging
is not always monoenergetic, as explained below for various types of radiation.

4.4.1 Gamma Rays

Gamma radiation is employed in industrial applications because of the higher energy,
hence the higher penetrability, it provides. Gamma-rays are emitted from unstable
nuclei as they decay from excited nuclear levels to more stable ones. Therefore,

1 The exponential attenuation relationship is also empirically applicable to beta-rays because of their con-
tinuous energy spectrum, which results in them stopping in matter gradually at different distances.
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Table 4.1 Properties of Typical Gamma Radioisotopes Used in Transmission
Imaging (Periodic Table of the Isotopes: http://ie.lbl.gov/education/
isotopes.htm and XCOM: Photon Cross Sections Database:
http://www.physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html).

Isotope Half- Photon Intensity Attenuation coefficient in:
Life Energy H2O Al Fe

(keV) (%) (cm−1)

169Yb 32.03 d 63.12 44.2 1.89E-01 6.33E-01 7.76
109.78 17.47 1.62E-01 4.11E-01 2.31
177.21 22.16 1.41E-01 3.37E-01 1.18
197.96 35.80 1.36E-01 3.23E-01 1.05

75Se 119.78 d 121.12 17.20 1.58E-01 3.95E-01 2.04
136.00 58.30 1.53E-01 3.75E-01 1.69
264.66 58.90 1.24E-01 2.93E-01 0.88
279.54 24.99 1.22E-01 2.87E-01 0.85

192Ir 73.83 d 295.96 28.68 1.19E-01 2.79E-01 0.81
308.46 30.00 1.14E-01 2.76E-01 0.79
316.51 82.81 1.10E-02 2.73E-01 0.78
468.07 47.83 9.89E-02 2.33E-01 0.65
604.41 8.23 8.91E-02 2.09E-01 0.57
612.47 5.31 8.87E-02 2.08E-01 0.57

137Cs 30.07 y 661.66 85.10 8.61E-02 2.02E-01 0.54

60Co 5.27 y 1173.24 99.97 6.55E-02 1.54E-01 0.42
1332.50 99.96 6.13E-02 1.44E-01 0.39

gamma sources are characterized by discrete energy levels that vary in intensity,
depending on the decay probability of each nuclear level. The common sources
currently in use, in order of ascending photon energy, are: ytterbium-169, selenium-75,
iridium-192, cesium-137 and cobalt-60. Table 4.1 gives their most dominant photon
energy levels and their corresponding attenuation coefficients in water, aluminum and
iron, with nominal densities of 1,000, 2,700, and 7,600 kg/m3, respectively. It is obvi-
ous from this table that the attenuation coefficient for a given source can vary con-
siderably for the same material, particularly for low-energy sources. It is, therefore,
important to formulate a measurement model that accounts for the changes in source
energy and the relative intensity of the radiation emitted at a given energy. Note that
in Table 4.1 the relative intensities can exceed 100%, since the radiation intensity
is per one distintegration, not per photon. For example, 60Co emits two photons per
disintegration.

Let 6(Ei,s) be the attenuation coefficient for the material at position s, of photons
emitted from a radioisotope at a relative intensity χi per photon, so that

∑
iχi = 1.
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Then the attenuation relationship of (4.1) can be expressed as:

I(x)= I0

∑
i

χi exp

− x∫
0

6(Ei,s)ds

=∑
i

I(Ei,x) (4.14)

p(x)=− ln
I(x)

I0
=− ln

∑
i

χi exp

− x∫
0

6(Ei,s)ds

 (4.15)

p(Ei,x)=− ln
I(Ei,x)

χiI0
=

x∫
0

6(Ei,s)ds; p(x) 6=
∑

i

p(Ei,x) (4.16)

where p(Ei,x) is the projection along x, if the transmitted radiation is monitored at
each individual energy, Ei. The variation of 6 with energy makes it difficult to recon-
struct unique values of6 from p(x) without energy discrimination. On the other hand,
energy discrimination offers the opportunity to extract more than one value for 6 for
the same material, a feature that can be utilized for material identification. For exam-
ple, if one monitors the projections of the lowest and highest source energies of 169Yb,
reported in Table 4.1, and reconstructs the corresponding 6 values, one would obtain
lowest-energy values that are about 1.4, 2.8 and 7.4 times higher than the correspond-
ing highest-energy values, for H2O, Al and Fe, respectively. These ratio values can be
used as indicators of the nature of the material involved. This is the essence of dual
(or multiple) energy tomographic systems.

For a multienergetic source, one cannot claim that a projection p(x), obtained over
all energies, is representative of the mean value of the attenuation coefficient averaged
over energy. In other words, 6̄ =

∑
iχi6(Ei) is not directly obtainable from p(x) due

to the complicated nature of Eq. (4.15). Neither can one obtain the value6(Ē) directly
from p(x), where Ē =

∑
iχiEi is the average source energy. What one obtains from

p(x) is a value of 6 that is representative of the radiation properties for the source
used. In other words, the reconstructed 6 values would not directly correspond to
tabulated values for a particular material, such as those obtainable from Berger et al.
(1999), unless the source is monoenergetic, such as 137Cs, or can be considered to be
nearly monoenergetic, as in the case of 60Co.

4.4.2 X-Rays

X-ray generators produce a continuous energy spectrum extending from an energy cor-
responding to the potential (voltage) applied on the x-ray tube down to zero energy,
as schematically shown in Figure 4.3. This spectrum continuum is caused by the radi-
ation emitted as bombarding electrons slow-down within the target of the x-ray tube
(bremsstrahlung effect). Superimposed on the x-ray continuum are peaks correspond-
ing to the characteristic transitions between deep electronic shells of the target. For
a target of atomic-number Z, the continuum portion of the energy spectrum takes
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Photon energy (E ) Emax

Kα

Kβ
χ(E)

Figure 4.3 A typical x-ray spectrum, showing the bremsstrahlung continuum and characteristic
peaks.

approximately the form (Lachance and Claisse, 1995):

χ(E)= CZE2
(

Emax

E
− 1

)
+BZ2E (4.17)

where χ(E) is the fraction of photons emitted at energy E, B, and C are constants,
and Emax = eVp, with e being the electron’s charge and Vp being the applied (peak)
voltage. These jumps in the intensity of the characteristic peaks are given by jump
ratios that also depend on the material of the target, see (Hussein, 2003).

The shape of the energy spectrum of x-rays has two implications on the mea-
surement model of transmitted radiation. The first implication is similar to that for
a gamma-ray source of multiple energy levels, i.e. the attenuation coefficient varies
with energy. This effect is, however, more pronounced in x-rays, because the spec-
trum is a continuum, it has imposed peaks, and it continues down to the zero energy.
Therefore, the summations in Eqs. (4.14) and (4.16) for gamma-rays are replaced with
integrals when dealing with the continuum portion of the x-ray spectrum, so that:

I(x)= I0


Emax∫
0

χ(E)exp

− x∫
0

6(E,s)ds


+

∑
i

(ξi−χ(Ei))exp

− x∫
0

6(Ei,s)ds

 (4.18)

p(x)=− ln
I(x)

I0
=− ln


Emax∫
0

χ(E)exp

− x∫
0

6(E,s)ds


+

∑
i

(ξχ(Ei))exp

− x∫
0

6(Ei,s)ds

 (4.19)
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with χ(E) expressed by Eq. (4.17) or another suitable function, and ξi being the jump
ratio for a characteristic peak at energy Ei, with the summation being over these peaks.
Therefore, a value for 6 obtained from an x-ray projection, Eq. (4.19), is far more
convoluted in relation to any particular photon energy in the spectrum than the case
of gamma-rays. Nevertheless, a value of 6 extracted from an x-ray projection is still
indicative of the material content, due to the dependence of all 6(E) values on the
material density and atomic number.

The second implication of the complex form of the x-ray spectrum is far more serious.
If one is to monitor the energy spectrum of a beam of x-rays after it passes through a
fixed thickness of some uniform material, one would find that the energy spectrum is
“hardened,” i.e. has a median energy larger than of the incident radiation. This so-called
beam-hardening effect is due to the fact that the low-energy component of the spectrum
is subdued, as x-rays travel through matter. The attenuation coefficient increases with
decreasing photon energy, with the rate of increase becoming much more pronounced
as the energy becomes so low that the photoabsorption (photoelectric effect) dominates
over Compton scattering, see Hussein (2007). Therefore, the low energy component
of the x-ray spectrum is continually eliminated by photoabsorption as x-rays penetrate
matter. This beam hardening effect is further enhanced by the fact that the lower energy
portion of an x-ray spectrum tends to contribute more to the overall beam intensity than
the higher energy part, as depicted in Figure 4.3 and indicated by the 1

E dependence of
χ(E) in Eq. (4.17) (note that the second term in the right-hand-side of Eq. (4.17) is small
compared to the first term). Further, radiation detectors are typically more absorbing
of low-energy photons because of the same photoelectric effect. As such, low-energy
photons tend to contribute more to a detected signal than a higher-energy component
of the same intensity. Therefore, usually the very low energy component of the x-ray
spectrum is eliminated with the aid of a filter consisting of an aluminum sheet several
millimeters thick, placed in front of the emitted x-ray beam. This helps maintain a higher
effective photon energy and reduces beam hardening, so that the obtained projection is
more reflective of the density of the encountered material. Note that the beam hardening
effect is not of much concern with gamma sources, since they do not have a continuous
low-energy component, but still exists to some extend when a source has a significant
low-energy level, as in the case of 169Yb (see Table 4.1).

The x-ray bremsstrahlung is not isotropic, and, subsequently, the intensity, I0, of
the x-ray continuum varies with direction (angle) of emission. The angular distribution
should, therefore, be measured and utilized in modeling transmission in various direc-
tions. In practice, this is not a very difficult task, since attenuation in air is negligible,
and as such I0 can be replaced by the intensity in air measured with a particular detector.
Therefore, the change in x-ray intensity for detectors located at various directions from
the vector normal to the target in an x-ray tube can be accounted for by normalizing the
transmission measurements to a detector-specific intensity-in-air measurement.

4.4.3 Neutrons

Sources used to generate neutrons are either passive (isotopic sources) or active (elec-
tronically triggered), see (Hussein, 2003). The latter generate mainly monoenergetic
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neutrons. Radioisotopic sources produce, however, neutrons with a continuous energy
spectrum. For example, californium-252, a common source of neutrons, produces neu-
trons with an energy spectrum that can be expressed by the Watt formula (Watt, 1952):

χ(E)= cexp(−aE)sinh
√

bE = c′
√

E exp(−aE) (4.20)

where a and b, c and c′ are constants. This spectrum extends over a wide energy
range within which the attenuation coefficient (total cross section) for neutrons in a
given material can vary significantly. The obtained transmission projections will still,
however, be indicative of the overall change in the total cross section, but not to a
particular neutron energy. The representative measurement model is then given by:

I(x)= I0


∫
χ(E)exp

− x∫
0

6(E,s)ds

 (4.21)

p(x)=− ln
I(x)

I0
=− ln


∫
χ(E)exp

− x∫
0

6(E,s)ds

 (4.22)

where the integration over energy extends over the entire energy range of the spectrum.
Neutron transmission measurements are typically conducted with thermal (slow)

neutrons extracted either from a nuclear reactor or a thermalization facility driven by
an isotopic source. This is because of the ease and efficiency of detecting thermal
neutrons. Thermal neutrons also have an energy spectrum governed by the Maxwell-
Boltzmann distribution (Glasstone and Sesonske, 1981):

χ(E)=
2π
√

E

(πkT)
3
2

exp

(
−

E

kT

)
(4.23)

where k is the Boltzmann constant and T is the absolute temperature of the medium in
which neutrons are thermalized.

4.5 Secondary Radiation

The essence of transmission imaging is the reconstruction of an attenuation-coefficient
image, with the aid of the transmission measurement model of Eq. (4.1). This model
is based on the attenuation law of Eq. (2.17), which stipulates, see Section 2.5, that
the attenuated radiation is removed completely (by absorption and scattering) from
the incident beam. However, complete removal is not assured even in the case of
absorption; though one may tend to assume that absorbed radiation leaves no trace
behind it. In fact, absorbed photons produce electrons via the photoelectric effect,
and the emerging electrons lose energy as they travel through matter producing sec-
ondary photons via the bremsstrahlung effect. The latter photons are subsequently
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absorbed via the photoelectric effect, producing secondary electrons, which further
generate more bremsstrahlung, and so on. In effect, a single photon absorption creates
a “shower” of secondary photons of lower energy. Some of these photons can reach
detectors monitoring transmitted radiation. This in turn will affect the value of the
projection derived from the affected transmission imaging, somewhat subduing the
effect of radiation attenuation. Most of the secondary photons of the bremsstrahlung
effect tend, however, to be of much lower energy than those of the incident radiation
and can be removed from the detector by setting a low-energy window to electroni-
cally cutoff the effect of these photons. A filter consisting of a thin sheet or a metal,
e.g. aluminum, can also be placed in front of the detector to remove these secondary
lower-energy photons. Such a filter, however, also absorbs part of the primary beam’s
radiation, producing its secondary bremsstrahlung photons. The secondary photons are
not only produced in the material of the examined object, and within a detector’s filter
if present, but also in the walls of a collimator placed around and in front of a detector
to confine its field-of-view. The resulting secondary photons are typically absorbed
within the material of the collimator’s body, and only those produced near the internal
surface of the collimator’s walls are likely to leak out. Most of these photons are most
likely to reach the opposite side of the collimator walls and be absorbed within these
walls.

The bremsstrahlung effect is stronger in elements with high atomic number
(Hussein, 2007). Therefore, it is typically neglected in medical imaging, since biolog-
ical material have a relatively low atomic number. In imaging industrial objects, this
effect may be present and may produce photons that can reach transmission detec-
tors. Typically, however, the contribution of this secondary radiation is very small in
comparison to the intense recorded signal of transmitted radiation. This is because
secondary radiation tends to be emitted in all directions, and a small portion of which
is directed toward any particular transmission detector. Moreover, the latter portion of
radiation is further attenuated by the intervening material between the point of origin
of the secondary radiation and the detector.

In the case of neutrons, secondary-neutron production is only likely to occur when
imaging fissionable materials. The most likely form of secondary radiation produc-
tion will be gamma-ray photons produced by neutron capture or inelastic scattering
(Hussein, 2007), in the material of the object, collimators and/or surrounding shield-
ing. Such photons are emitted isotropically and can reach transmission detectors.
Some neutron detectors are also sensitive to photons, and the recorded transmission
signal can be accordingly enhanced. Therefore, the effect of these secondary photons
should be assessed and effort be made to ensure that the employed detector is not too
sensitive to photons, or that their presence in the detected signal can be discriminated
against.

4.6 Scattering

Like secondary radiation, scattered radiation can contaminate the idealistic formula-
tion of the forward model for transmission, which assumes that all interacting radiation
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is removed from the transmission signal. In fact, a considerable amount of effort in the
design of transmission-based imaging systems is devoted to eliminating the effect of
scattered radiation, by collimation and/or by placing transmission detectors away from
the object so that scattered radiation is widely spread and only a small portion is seen
by the detector. One can also use energy discrimination to eliminate scattered radiation
from the detected signal, taking advantage of the fact that the scattered radiation has
an energy lower than that of the source, since it has to interact before it scatters. How-
ever, when the source is multienergetic, as in the case of x-rays and isotopic neutron
sources, energy discrimination against scattered radiation from a higher source energy
can also lead to the elimination of transmitted (uncollided) source radiation from a
lower-energy source component.

The reason scattered radiation is more problematic than secondary radiation, dis-
cussed in Section 4.5, is that the probability of scattering tends to be higher than that of
absorption. Moreover, scattered radiation is likely to have an energy higher than that of
secondary radiation, and as such has a better chance of penetrating intervening mate-
rial to reach transmission detectors. In addition, no matter how much effort is made to
prevent scattered radiation from reaching a transmission detector, it is inevitable that
some scattered radiation still reaches transmission detectors. Utilizing transmission
projections contaminated with scattered radiation will lead to an overestimation of the
attenuation coefficient, due to the increase in the strength of the detected signal. The
detected scattered radiation tends to carry information from regions outside the field-
of-view of a transmission detector, since that radiation could have suffered a collision
or more somewhere outside the detector’s field-of-view before reaching the detector.
Therefore, scattered radiation in a transmission projection, if not properly removed,
blurs the sharpness of a transmission-based image, due to the non-localized nature of
its origin.

4.7 Sensitivity

Using the definition of sensitivity, S, of Eq. (3.5), along with Eq. (4.2), one obtains:

S=
∂p(x)

∂6(s)
=1s (4.24)

where 1s is the width, in the direction the incident radiation, of the voxel within
which the value of 6 is evaluated. Here we defined sensitivity with respect to the
projection, p(x), rather than the measured intensity, I(x), since it is the projection that
is used to reconstruct the physical parameter, 6. It is obvious from Eq. (4.24) that the
sensitivity of a transmission tomography system is defined by its spatial resolution. In
other words, as one would expect, the smaller the voxel size, the more difficult it would
be to discern changes in 6, since the influence of that 6 on the value of the projection
would be quite weak. A coarser image would be more sensitive to changes in the value
of 6, but would have a poor resolution, i.e. the spatial variation in 6 would not be
sharply depicted in the image. Therefore, in order to have good sensitivity to changes
in 6, and maintain a good resolution, one must increase the influence of each voxel in
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the measurement domain as a whole, not in a single projection. This is done by having
many projections across each voxel.

4.8 Variability

The susceptibility of a transmission system to “error” in measurements is determined
by the variance of a projection, σp, which, with the aid of Eq. (4.1) and (4.2), is as
follows:

σ 2
p(x) =

[
∂p(x)

∂I(x)

]2

σ 2
I +

[
∂p(x)

∂I0(x)

]2

σ 2
I0

(4.25)

=
σ 2

I

I2(x)
+

σ 2
I0

I2
0(x)

(4.26)

where σ 2
I(x) is the variance in the measured transmission measurement, I(x), and σ 2

I0
is

the variance in the corresponding measurement in air, i.e. the latter is the variance in
the scaling parameter. Radiation counting is governed by radiation statistics in which
σ 2

I = I(x) (Hussein, 2003). Therefore, σ 2
p(x) is inversely proportional to I(x), i.e. the

higher the value of I(x), the less its statistical variability is, as one would expect.
A measurement in the absence of the object is considered a system constant, since
its value depends on the source and detector configuration, in terms of intensity of
source, efficiency of detector and the distance between the two. Therefore, this nor-
malizing value of I0(x) should be recorded with care over a longer counting time, then
adjusted to the same counting period used to acquire I(x), so that the statistical vari-
ability of I0(x) is negligible. However, a long counting period makes the variability
of I0(x) dependent on the stability of the source and whether it provides a constant
mean value. The stability of an x-ray source depends on the stability of the applied
voltage and that of the current bombarding its target. For a radioisotope, the counting
period for I0(x) has to be much lower than its half-life, so that the source intensity
does not significantly drop during the measurement time. If the normalization values
for I0(x) are recorded at a time significantly in advance of using an isotopic source
for imaging, the imaging measurements should be adjusted for the source decay. For
radiation extracted from the core of an experimental nuclear reactor, changes in the
reactor power during measurements may also affect the recorded values of I0(x) and
I(x), and corrections may be needed to ensure that the measurements used in image
reconstruction are related to the image and not external parameters related to reactor
operation.

Another time-varying effect is the object motion. Such motion could be due to
inadvertent effects, and as such it is not possible to determine in advance and will
appear as an artifact upon image reconstruction. In some cases, motion is inherent in
the imaged object. In medical imaging, cardiac, respiratory and muscle motion are
unavoidable. Motion in industrial objects can be due to fluid motion or turbulence,
vibration, or because the object itself is in motion or rotation. The effect of motion
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can be smoothed out by acquiring multiple transmission measurements for the same
transmission trajectory at different time intervals.
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5 Emission

We will distinguish here between two forms of radiation emission: one resulting from
internal sources embedded within an object (by injection, precipitation, or nature)
and another is induced by an external radiation source. When the emitted radiation
is induced by an external radiation source, the intensity of the secondary source emit-
ting the monitored radiation would depend on the nature of the external source, as well
as on the macroscopic cross section of that radiation in the investigated material.

5.1 Embedded Radiation

Let us consider an internal source embedded within an object, so that its has an inten-
sity per unit volume (concentration), I(Er), at a point at position, Er, measured from some
fixed origin, as shown in Figure 5.1. This source would result in a count rate, C(ER), at
a detector located at position ER, external to the object, that can be estimated by:

C(ER)= K
∫

VD

I(Er)

|ER−Er|2
exp

− |ER−Er|∫
0

6(Er′) dr′

 dVD (5.1)

where K is a system (normalization) constant that accounts for detector efficiency and

geometry, 6(Er′) is the total cross section of the material at Er′ along the radiation path
from the source to the detector, and the integration is over the volume of the detector’s
field-of-view, VD.

In the model of Eq. (5.1), both the attenuation and divergence effects, discussed
in Chapter 2, are taken into account. In Eq. (5.1), the physical parameter to be recon-
structed is the source intensity, I(Er), within the voxels of an image frame fictitiously
laid over the examined object. The cross section, 6, of the material within the object
may not be known. However, unlike in transmission imaging, the objective here is
not to reconstruct the value of 6, but to find the spatial distribution of I. It is, there-
fore, reasonable to assume that 6 is known everywhere in the object, at the source
energy. Nominal average values of 6 can be used, assuming that the nature of the
material containing the embedded source is known. However, any error in estimating
6 will lead to erroneous values of I. A separate, transmission-based imaging can be
used to determine the distribution of 6 within the object, but then one must ensure
that the source energy used in transmission imaging is the same as that of the internal

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00005-7
c© 2011 Elsevier Inc. All rights reserved.



HUSSEIN Ch05-9780123877772 2011/4/19 0:53 Page 54 #2

54 Computed Radiation Imaging

C(R)(0, 0, 0)

dVD

R
→ →

I(r)
→ r ′

→

r
→

Figure 5.1 A schematic for embedded radiation emission.

source. If the latter condition is not met, the transmission-image value of 6 should
be corrected to provide values at the energy of the internal source. When independent
transmission imaging is used to determine 6, care must be taken to ensure that it is
conducted on the same object (in terms of material and geometry) for which emission
imaging is to performed; changes due to object instability or motion while conduct-
ing either form of imaging will introduce image artifacts. One may ignore radiation
attenuation altogether, by equating the exponential term in Eq. (5.1) to unity. Also, tak-
ing the average of emission measurements at two opposite sides of the object would
reduce the effect of attenuation, since an internal source in the proximity of one detec-
tor would be farther away from the opposite detector. However, due to the exponential
nature of the attenuation process, such averaging will not entirely eliminate the spatial
dependence of attenuation, even in a uniform object.

The system constant, K, in Eq. (5.1) can be determined with the aid of a source, of
the same type as the internal source, of known total intensity (activity), I0, positioned
in air at some location, Er0, with the detector positioned at some distance, ER0, giving a
count rate, CAir(ER0). Then according to Eq. (5.1):

C0(ER0)= K
I0(Er)

|ER0−Er0|
2

exp
[
−|ER0−Er0)|6air

]
(5.2)

where6air is the attenuation coefficient for air (usually considered to be equal to zero)
and the integration over the volume is incorporated in the value of I0.

The model of Eq. (5.1) assumes that the emitted radiation that succeeds in reach-
ing a detector is “uncollided,” i.e. has not been removed by absorption or scattering
interactions. Although, generally, the absorbed radiation can be considered to have
been fully removed from the system, in some cases it can produce secondary radia-
tion that may contribute to the detector, as discussed in Section 4.5. Such radiation
is likely to have an energy that is different from that of the original source, and as
such can be removed by energy discrimination, if its contribution is found to be sig-
nificant. Scattered radiation can be removed in a similar manner, since it also has an
energy different (lower) than that of the internal source, due to the energy loss caused
by collisions. Removing secondary and scattered radiation is necessary to satisfy the
measurement model of Eq. (5.1), so that it can be used in the inverse problem of image
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reconstruction and to avoid image blurring caused by recording radiation originating
from positions unrelated to the location of the internal source radiation.

5.2 Induced Emission

Images can also be reconstructed by monitoring one type of radiation induced by
another type. Positron emission tomography is based on such induced emission, where
the positrons of an internal source combine with the electrons of the matter, causing
mutual annihilation and the production of two 511 keV photons at opposite directions.
Then, the emitted photons, on which image reconstructions is based, are induced by
positrons. However, since the positrons are charged particles, they do not travel very
far from their point of origin before being annihilated by the electrons of the sur-
rounding medium. Then, the point of radiation emission and the source that induced it
can be considered, for all practical purposes, to coincide with each other. The source
in positron emission tomography can be considered to be an internal source, and the
model of Eq. (5.1) can be used, with the assumption that there is an inherent error in
determining the location of the source of emitted photons equal to the range of the
positrons in the imaged medium. Emission induced by charged particles can be pro-
duced by exposing an object to a beam of charged particles, e.g. protons, alpha parti-
cles, or accelerated ions (Hussein, 2003). Such particles do not penetrate deep within
the object, and as such the associated radiation emission is from near the surface and
its attenuation is negligible. Characteristic fluorescent x-rays, i.e. those induced by the
excitation of atomic levels, can also be used to image the concentration of certain ele-
ments by induced emission imaging, see Cesareo and Mascarenhas (1989) and Takeda
et al. (2000).

When one type of penetrating radiation is used to induce another type of pene-
trating radiation, the attenuation of both types of radiation must be accounted for.
Examples of such emissions include: gamma-ray emission by neutron activation or
inelastic scattering and photoneutron production. Hussein (2003) compiled the var-
ious means for producing such emissions. We will consider here a generic emission
process, schematically shown in Figure 5.2, in which a primary radiation of energy, Ep,

(0, 0, 0)

dVD

R
→

r0
→

r ′
→

r ′′
→

I0(r0)
→

r
→

C(R)
→

Figure 5.2 A schematic for induced radiation emission.
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induces a secondary radiation with energy, Es. For an emission to emerge from a point
at Er within an object, the primary radiation, produced by an external source, has first
to penetrate the object, to reach Er. An external source at Er0, with an intensity I0(Er0),
reaches Er with a flux, φp(Er), given by:

φp(Er)=
I0(Er0)

4π |Er−Er0|
2

exp

− |Er−Er0|∫
0

6p(Er′)dr′

 (5.3)

assuming that the external source is isotropic and 6p(Er′) is the attenuation coefficient
of the primary radiation for the material present at Er′. Equation (5.3) takes into con-
sideration both the attenuation and divergence of the primary radiation. The emission
rate per unit volume, E , of the secondary radiation, in accordance to Eq. (2.10), is
determined by:

E(Er)= σp→s(Er)N(Er)φp(Er) (5.4)

where σp→s(Er) is the microscopic cross section at Er for producing emitted radiation of
type s, from a primary radiation of type p, N(Er) is the atomic density of the element
with which radiation interacts. The emitted radiation has to exit the object for detection
by a detector at ER. The flux, φD(ER), at the detector (assuming isotropic emission)
is then:

φD(ER)=
E(Er)

4π |ER−Er|2
exp

− |
ER−Er|∫
0

6s(Er′)dr′

 (5.5)

Using Eqs. (5.3) to (5.5), the detector’s count rate can be expressed as:

C(ER)= K
∫

VD

I0(Er0)

4π |Er−Er0|
2

exp

− |Er−Er0|∫
0

6p(Er′)dr′


×
σp→s(Er)N(Er)

4π |ER−Er|2
exp

− |ER−Er|∫
0

6s( Er′′)dr′′

 dVD (5.6)

where again K is a system constant and VD is the volume seen by the detector. In the
measurement model of Eq. (5.6), the physical parameter that an emission imaging pro-
cess will aim at determining is N(Er). The microscopic cross, σp→s(Er), contains infor-
mation on the elemental composition of the material. However, in emission imaging,
if a particular element is identifiable by means other than the image reconstruction
process, then its macroscopic cross section, σp→s, can be determined in advance.
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The presence of a particular element can usually be characterized by the energy of
the radiation it emits. This is because nuclear emissions are either the result of the
de-excitation from characteristic nuclear levels or are caused by a particular interac-
tion that releases a specific energy, see Hussein (2007). Similarly, atomic emissions
are the result of de-excitations of electrons from one level in the atom to a lower level,
at energies characteristic of the element.

Like the case with internal sources, the attenuation of the emitted radiation through
the inspected object needs to be accounted for. In induced imaging, the attenuation of
the primary radiation should also be taken into account. The problem is complicated
in induced imaging by the fact that it aims, directly or indirectly, at reconstructing
elemental densities, which also determine the attenuation coefficients of the primary
and secondary radiation. That is, if the latter microscopic cross sections are assumed
to be predetermined to correct for radiation attenuation, then one may argue that
6p→s = Nσp→s can also be predetermined, and there is no need to utilize emission
imaging at all. However, emission imaging is typically used to detect the presence of
one or a few elements, not all elements, while the attenuation coefficient incorporates
all present elements and their corresponding densities. Therefore, using estimated or
independently determined attenuation coefficients will enable the determination of the
atomic density of the element(s) of interest, while accounting for the overall attenua-
tion of all present elements.

The intensity of the external source, I0 in Eq. (5.6), can be determined using trans-
mission measurements in air, as explained in Section 4.1. The system constant, K
in Eq. (5.6), is more difficult to determine for induced emission than in the case of
internal sources, since in the latter case an internal source can be placed in air and
used to calibrate the system. However, a standard calibration object of known com-
position and density can be employed as a reference to calibrate an induced emis-
sion source/detector arrangement, to determine K, or even KI0(ER) as a single system
constant. The system constant is then evaluated as the ratio between a recorded mea-
surement for the reference object and the corresponding measurement-model value
determined using Eq. (5.6) with K, or KI0(ER), set equal to unity.

An inherent assumption in the measurement model of Eq. (5.6) is that the emit-
ted radiation is generated promptly, without delay, as the primary radiation interacts
with matter. In some interactions, however, the emission is delayed, if the interac-
tion product is a transmuted nucleus that continues to decay, with a certain half-life,
after exposure to the external source of radiation ceases. Measuring delayed emis-
sion has the advantage of allowing the acquisition of measurements in the absence
of the external source, which reduces the radiation background normally associated
with the primary radiation source. In delayed emission imaging, the emitted radiation
should be allowed to fully decay before further exposure of the object to the primary
source, unless the intensity of a residual precursor element from a previous solution is
accounted for.

When monitoring delayed emission, a number of time-dependent factors must be
introduced to correct for radiation decay. While the object is being exposed to radi-
ation, it produces the precursor element that emits radiation, but that element also
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decays while the irradiation process is ongoing. Therefore, the rate of production of
the precursor is such that:

dN̂(Er, t)

dt
= σp→s(Er)N(Er)φp(r)− λN(Er, t) (5.7)

where N̂(Er, t) is the atomic density of the precursor element at time, t, which will result
in emission with a decay constant, λ (characteristic of the precursor). Recall that N(Er)
is the atomic density of the element that is to be monitored by emission imaging,
i.e. the element that produces the precursor as a result of being exposed to a flux of
primary radiation, φp(r) in Eq. (5.7). Assuming constant flux of the primary source,
one has the general solution:

N̂(Er, t)=
σp→s(Er)N(Er)φp(r)

λ
[1− exp(−λt)]+ N̂0(Er, t)exp(−λt) (5.8)

where N̂0(Er, t) is the atomic density of the precursor element at time zero, if present
from a previous exposure without being allowed to fully decay. Therefore, after expo-
sure to the primary radiation for a time, tp, there will be N̂(Er, tp) atoms of the radiation
emitting element. If the emission rate is recorded after another period, td, the emitting
element would have decayed to an atomic density of N(Er, tp)exp(−λtd). Image recon-
struction aims at determining the spatial distribution of N(Er), not of the delayed emis-
sion measurements, N̂(Er, tp+ td). However, one obtains measurements corresponding
to N̂(Er, tp+ td), not N̂(Er). But, one can reconstruct an image for N̂(Er), then restore the
original value, N(Er), with the aid of Eq. (5.8):

N(Er)=
λ
[
N̂(Er, tp+ td)exp(λtd)− N̂0(Er, t)exp(−λtp)

]
σp→s(Er)φp(r)

[
1− exp(−λtp)

] (5.9)

where N̂(Er, tp+ td) is the image reconstructed value after exposing an object to radia-
tion of a time, tp, and performing measurements after a delay time, td.

As in the case of internal sources, the models for induced emission do not account
for the fact that secondary emissions can be produced by radiation absorption, and
that scattering can contribute to the detected signal. However, like internal emission,
such additional contributions produce radiation with an energy different from that of
the emission of interest, and energy discrimination can be used to remove the effect of
secondary emissions.

5.3 Discretization

As with transmission modeling, image reconstruction with emission requires dis-
cretization of the forward model. This necessitates approximating the volume integra-
tions in Eq. (5.1) and (5.6) by summations over small voxels. Within each voxel, it is
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assumed that each of the parameters that appear in these models has a constant value,
i.e. the reconstructed image parameter has a value averaged over the voxel’s volume.
Consequently, the smaller the voxel’s size, the better the spatial resolution of the recon-
structed image. However, obtaining a high resolution image requires the gathering of
a large number of measurements, with at least one measurement per voxel.

5.4 Sensitivity

With integration replaced with summation for discretization purposes, the definition
of Eq. (3.5) for sensitivity applied to Eq. (5.1) gives the following sensitivity, Sinternal,
for embedded emission:

Sinternal =
∂C(ERj)

∂i(Eri)
= K

∑
i

1

|ERj−Eri|
2

exp

[
−

∑
k

6(r′k) 1rk

]
1Vi (5.10)

where the subscripts i and k refer to voxels within the field-of-view of detector j, 1rk

is the distance traveled by the emitted radiation, and 1Vi is the volume of voxel i.
It is obvious from Eq. (5.10) that the sensitivity of an internal emission imaging sys-
tem is reduced by the weakening of the recorded signal by radiation attenuation and
divergence, but is enhanced with increased voxel size. The latter comes, however, at
the expense of reduced spatial resolution. Detector efficiency and size also affect the
sensitivity, via the factor K in Eq. (5.10).

Similarly, the sensitivity for induced emission, Sinduced, is expressed with the aid of
Eq. (5.6) as:

Sinduced =
∂C(ERj)

∂N(Eri)
= K

∑
i

I0(Er0)

4π |Eri−Er0|
2

exp

[
−

∑
k

6p(Er′k)1r′k

]

×

[
σp→s(Eri)

]
4π |ERj−Eri|

2
exp

[
−

∑
k′

6s(Er′k′)1r′k′

]
1Vi (5.11)

The sensitivity for induced emission imaging is also reduced by increased attenuation
and divergence of primary and secondary radiation, but can be enhanced by increas-
ing the voxel size, the intensity of the primary source, and/or the detector size and
efficiency. Having a large interaction cross section also enhances the sensitivity.

5.5 Sources

Sources that can be used in embedded emission must be in a physical and chemical
form suitable for inclusion within the medium in which it is introduced. The embedded
source should have a short half-life, so that a small amount produces an easily mea-
surable high source activity. A short-lived source also decays rapidly, returning the
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Table 5.1 Some Radioisotopes Suitable for use in
Embedded Emission Imaging.

Isotope Half-Life Energy (keV) Comment

24Na 14.96 h 1369, 2754 (a)
41Ar 109.34 m 1294 (b)
67Ga 3.26 d 93, 185, 300 (c)
82Br 35.30 h 777 (a)
85mKr 4.48 h 151 (b)
99mTc 6.01 h 141 (c)
111In 2.80 d 245 (c)
123I 13.27 h 159 (c)
131I 8.02 d 365 (c)
201Tl 72.91 h 167 (c)

Half-lives and dominant gamma energies are obtained from:
http://ie.lbl.gov/education/isotopes.htm, which also gives the rel-
ative intensities of emitted photons.
(a) Suitable for aqueous or organic liquids (Hussein, 2003).
(b) Available as gases (Hussein, 2003).
(c) Used in medical imaging.

Table 5.2 Some Positron Sources.

Source 11C 13N 14O 15O 44Sc 68Ga
Half-life 20.39 m 9.965 m 70.606 s 122.24 s 3.927 h 67.629 m

Half-lives obtained from http://ie.lbl.gov/education/isotopes.htm.

examined object to its original state quickly. However, a source with a very short half-
life may not allow sufficient time for acquiring meaningful measurements. Table 5.1
lists some of the sources that can be used in emission imaging, along with their half-
lives and gamma-energy of emission. Note that only gamma-ray sources are listed,
because their penetrability makes them viable for use in emission imaging.

Positron sources can also be used in induced emission imaging to produce 511 keV
photons by annihilation. Short-lived positron sources are listed in Table 5.2. Such
sources are to be incorporated into a chemical and a physical form (pharmaceuticals
in case of medical applications) that can be embedded within the inspected medium in
a manner that labels the desired imaging feature.

In order to induce secondary emissions, a radiation source (other than positron
sources) must be able to disturb the nuclear or atomic structure, causing excitation of
the nucleus or the atom. Atomic excitation causes electrons to rise to a higher orbit,
with subsequent prompt (in less than a picosecond) emission of x-ray photons as the
electrons return to more stable orbits. However, this process, known as x-ray fluores-
cence (xrf), produces low energy (a few to tens of keV (Hussein, 2003)) photons,
which makes them only useful for shallow imaging of materials. Higher energy, more
penetrating photons, can be produced by nuclear excitation using neutron sources,
or highly energetic photons. The emission can be prompt, with an excited nucleus
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immediately emitting its excitation energy in the form of photons, or delayed as the
product nucleus decays at a slower rate to a more stable state. Prompt emission has the
advantage of providing an instantaneous emission signal, but the simultaneous pres-
ence of the inducing source radiation can interfere with the detection of the emitted
radiation, since most detectors are sensitive to both types of radiation and the discrim-
ination between the emitted and the incident radiation can be difficult.

Prompt emission induced by neutrons sources is typically via an inelastic scattering
process that causes excitation of the target nucleus. This excitation requires, however,
a relatively high neutron energy above a threshold energy that differs from one nuclide
to another. Such threshold energy is typically in the MeV range, requiring the use of
accelerator-produced neutrons. Delayed emission can, however, be produced by low-
energy (thermal) neutrons. Such neutrons can be extracted from a research reactor
or from an isotopic neutron source embedded within a moderating (neutron slowing-
down) material, since isotopic sources produce high-energy neutrons.

Nuclear radiation emission can also be induced by high-energy photons. However,
such photonuclear activation is only possible at very high photon energy and requires
high-intensity photon sources produced by high-voltage electron accelerators.

5.6 Interfering Effects

Radiation emission can be viewed as a radiation-transmission process from the posi-
tion of the internal source of emission to the detector site, in which the intensity of
the radiation source is attenuated. The modeling formulations of Sections 5.1 and 5.2
aim at accounting for the modulating effect of attenuation. However, similar to the
modeling of the transmission process in Section 4.1, one must keep in mind that radia-
tion scattering and secondary radiation emissions during the transmission process can
influence the quantity and energy of the detected radiation. Therefore, the factors dis-
cussed in Sections 4.5 and 4.6, for the transmission of external radiation, should also
be considered for the transmission process of internally emitted radiation. The statisti-
cal variability of the detected signal discussed in Section 4.8 is also applicable, when
measuring the intensity of emitted radiation.
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6 Scattering

6.1 Introduction

Radiation scattering can either be particle-like or wave-like. The latter occurs at low
radiation energy, where the radiation wavelength becomes comparable in value to the
spacing between atoms in a lattice structure. Then, it is possible to examine crys-
tal structures by the optical-like process of Bragg diffraction, with either low-energy
(soft) x-rays, cold neutrons (with energy below the 0.025 eV, the thermal neutron
energy at room temperature), or fast electrons. Crystallography, being concerned with
the arrangement of atoms in a crystallized material, is not among the imaging pro-
cesses at the macroscopic level considered in this book. Similarly, other neutron scat-
tering methods that take advantage of the wave properties of cold neutrons to probe
matter are not addressed here. Instead, we focus on imaging methods that rely on the
corpuscular nature of the Compton scattering of photons and the elastic scattering of
neutrons, as they provide macroscopic properties similar to those of transmission and
emission imaging.

Scatter imaging resembles induced-emission imaging in the sense that the radia-
tion path within the imaged medium is not well-defined by a straight-line from the
source of radiation to its detector. Like induced emission, the source’s radiation trav-
els within the imaged object for some distance until it interacts. In the case of emis-
sion, the interaction of interest produces a secondary radiation that differs in nature
from the radiation of the primary source. In scattering, the radiation emerging from
the interaction is of the same type as that of the source, but with an altered direction
and energy. The scattered radiation can itself scatter again and again, producing sig-
nals that are often difficult to trace back. Therefore, scatter imaging limits itself to the
detection of once-scattered radiation: the so called single scattering process, where
the radiation path from the source to the detector is identifiable. Then, multi-scattered
radiation is considered undesirable, interfering radiation that needs to be eliminated,
which is not difficult due to its much reduced energy and its lack of directionality.
The other extreme that allows imaging with scattered radiation is the use of highly
scattered radiation, so that the detected scattered radiation loses completely any rela-
tionship to the source radiation. Modeling the transport of multi-scattered radiation is
quite complex, making its inversion to extract imaging information quite difficult, due
to the multiple folding of radiation transport information carried by multi-scattered
radiation. Nevertheless, multiple scattering can provide an overall global information

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00006-9
c© 2011 Elsevier Inc. All rights reserved.
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on the nature of the object from which it emerges. Our focus here is on once-scattered
radiation.

6.2 Single-Scattering Model

Let us trace the passage of a radiation beam of intensity I0(Er0), emanating from a
source at Er0 that travels some distance within an object until experiencing a collision
at position Er within the object, which makes it scatter toward a detector at position ER
outside the object, contributing to a detector count rate of C(ER), see Figure 6.1.

Before reaching point Er, the incident beam’s intensity will be reduced by attenuation
by the traversed material. Therefore, when it reaches point Er, the radiation flux will be:

φ(Er,E)=
I0(Er0)

4π |Er−Er0|
2

f (Er0,Er;E) (6.1)

f (Er0,Er;E)= exp

− |Er−Er0|∫
0

6(Er′,E)dr′

 (6.2)

where it is assumed that the incident radiation emerges from an isotropic source at
an energy E, with 6(r′,E) being the attenuation coefficient (total cross section) at

position Er′ along the incident beam, at the source energy, E. The factor f in Eq. (6.2)
is the attenuation factor of the incident radiation.

Within a volume, 1V , around the point at Er, radiation will scatter at a rate deter-
mined according to Eq. (2.10):

S = σs(Er,E)N(Er)φ(Er,E)1V (6.3)

where σs(Er,E) is the microscopic scattering cross section at the designated indices,
and N(Er) is the atomic density at Er.

(0, 0, 0)
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R
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→

r ′
→
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→
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→

r
→

CS (R, E′)
→

Figure 6.1 A schematic for scattered radiation emission.
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Radiation scattered at Er can scatter to any direction. Let p(µ,E→ E′) be the prob-
ability of radiation scattering by an angle cos−1µ, with µ= (Er−Er0) · (ER−Er), to reach
a detector at ER, and in the process change its energy to E′ < E. Assuming that scat-
tering in the azimuthal direction is isotropic, as it is usually the case for unploarized
radiation, the scattering probability per solid angle is then p(µ,E→E)

2π . The scattering
rate, S�, within solid angle 1� per unit area for a detector at Er is:

S�
1�

1Ad
= S

p(µ,E→ E′)

2π |ER−Er|2
(6.4)

where1Ad is an area on the detector’s surface; recall that1�= 1As

|ER−Er|2
. In Eq. (6.4), it

is assumed that the solid angle is sufficiently small so that the probability of scattering
remains constant.

After scattering, radiation will be attenuated by the intervening material before
reaching the detector at ER. The attenuation factor of the outgoing radiation can be
expressed as:

g(Er, ER;E;E′)= exp

− |
ER−Er|∫
0

6( Er′′,E′)dr′′

 (6.5)

where 6(r′,E′) is the attenuation coefficient at position Er′ along the direction of the
scattered radiation, at the scattering energy, E′.

Combining Eqs. (6.1) to (6.5), the count rate at detector, positioned at ER to measure
scattered radiation, is:

CS(ER,E
′)= K

∫
VD

I0(Er0,E)

4π |Er−Er0|
2

exp

− |Er−Er0|∫
0

6(Er′,E)dr′

σs(Er,E)N(Er)

×
p(µ,E→ E′)

2π |ER−Er|2
exp

− |
ER−Er|∫
0

6( Er′′,E′)dr′′

 dVD (6.6)

where K is a system constant that incorporates the detector’s properties (size and effi-
ciency), and VD is the scattering volume seen by the detector.

6.3 Multiple Scattering

Obviously, there is nothing that can stop radiation from encountering more than one
collision. Therefore, when applying the single-scattering equation of Eq. (6.6) to
model a measurement, one must ensure that only once-scattered radiation is detected.
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This can be achieved by collimating both the source and detectors to confine their
path, since multiple scattering, unlike single scattering, does not have a well-defined
path. The finer (narrower) the collimator, the lower the probability that multi-scattered
radiation reaches the detector. Energy discrimination can also be used to eliminate
the contribution of multiple scattering, since the energy of once-scattered radiation is
uniquely related to the angle of scattering, as shown below for the Compton scatter-
ing of photons and the elastic scattering of neutrons. In essence, energy discrimina-
tion acts as a “soft” collimator, which can supplement the “hard” collimation process
that employs physical collimators, allowing the use of wider collimators and eliminat-
ing the contribution of radiation scattered on the inner walls of such collimators. Li-
miting the size of the imaged object to within the range of one-mean-free path (mfp)
of the incident radiation also reduces the probability of multiple scattering, since, on
average, radiation interacts once within a mfp; recall that one mfp is equal to 1

6
, see

Eq. (2.8). The contribution of multiple-scattering may also be compensated for within
the image reconstruction process.

While multiple-scattered radiation may be dealt with using one or more of the above
mentioned methods, radiation that suffers only two subsequent collisions, one of them
at a small angle, is difficult to eliminate. This is because a small-angle scattering hardly
changes the direction or energy of radiation, making it appear to be almost identical to
once-scattered radiation. However, such a small-angle scattering carries information
that relates to regions in the imaged object that can differ significantly from those of
the monitored single scattering, particularly if the small-angle scattering takes place
downstream of the path of incident or second-scattered (larger angle) radiation.

Analogous to the measurement model of induced emission, Eq. (5.6), one can
deduce that the model of Eq. (6.6) maps the atomic density, N(Er), to the measured
scattering counts, CS(ER,E′). However, in induced emission, the energy of the emit-
ted radiation is defined by the type of interaction that induces the emission, hence the
value of the interaction cross section, σp→s. In scattering, both the scattering cross sec-
tion, σs, and the angular probability of scattering, p(µ,E→ E′), depend on the nature
of the scattering atoms. As such, one must know the nature of the scattering medium
to determine the type of atoms to which N(Er) refers. In order to elaborate further, let
us consider the scattering of photons and neutrons.

6.4 Compton Scattering

Photons with energy from about 300 keV to 2 MeV interact predominantly in most
materials via Compton scattering, in which a photon possessing corpuscular proper-
ties is scattered by the “free” electrons of the atom. The target electrons are considered
to be free and at rest, since their binding energy is much lower than that of the bom-
barding photons. Therefore, the atomic cross section for scattering, σs, in Eq. (6.6),
can be expressed in terms of the electron scattering, σe, as:

σs = σeZ (6.7)
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where Z is the number of electrons per atom. Using the expression for the atomic
density, N in Eq. (2.5), then:

σsN = σe
Zρ

Au
= σe

ρe

Au
≈

1

2
σe
ρ

u
(6.8)

where ρ is the mass density, A is the mass number of the scattering material, ρe = ZN
is the electron density, and the approximation is due to the fact that, for most elements,
Z
A ≈ 0.5.

Replacing σsN(Er) in Eq. (6.6) by the expression of Eq. (6.8), one can say that
the measurement model maps a material’s electron density, or approximately its mass
density, to a scattering measurement, irrespective of the type of atom present in
the scattering material. This conclusion is aided by the fact that σe is determined
by the energy, E, of the incident photons, while the angular scattering probability,
p(µ,E→ E′), is determined by the angular scattering probability of the electron as
given by the well-known Klein-Nishina relationship, which is determined by the inci-
dent photon energy and the energy of the scattered photon and is not material depen-
dent, see for example Hussein (2003).

The kinematics of Compton scattering dictates a unique relationship between the
energy of incident photon, E, and that of the scattered photon, E′, for a given scattering
angle:

E′ =
E

1+ E
mec2 (1−µ)

(6.9)

where mec2
= 511 keV is the rest-mass energy of the electron, and µ, as indicated ear-

lier, is the cosine of the angle of scattering. Equation (6.9) explains why it is sufficient
to know E and E′ to determine p(µ,E→ E′) using the Klein-Nishina relationship, as
stated above. In practice, if a parallel (collimated) monoenergetic beam of incident
photons is used, the direction of scattered photons can be determined without colli-
mation by measuring the photon energy and applying Eq. (6.9) to find µ. Even if the
incident beam is not collimated, but is still monoenergetic, the energy of the photon
can be used to draw an equi-angle (isogonic) curve at which incident photons scatter
by the same angle, determined from Eq. (6.9), to a detector at a given location.

Employing a monoenergetic source of photons facilitates the formulation of the
single-scattering model of Eq. (6.6), since the cross sections (per unit electron den-
sity) required by the model can be easily found from cross section libraries, such as
xcom (Berger et al., 1999). Fortunately, many of gamma sources are monoenergetic,
or contain distinct gamma energies that can be individually monitored, since each
source energy will lead to a different scattering energy at a given scattering angle,
as Eq. (6.9) indicates. When using x-rays, which have a continuum energy spectrum,
the cross section has to be integrated over the energy spectrum of the incident pho-
tons for the incoming radiation and over the spectrum of the scattered photons for
the scattered radiation. The latter spectrum is quite convoluted, as it involves shifting
the spectrum of incident photons according to Eq. (6.9) and adjusting its magnitude
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by the probability of scattering. Alternatively, one can divide the energy spectrum of
incident x-rays into energy bands (groups) and use the average energy of each band
along with the corresponding scattering energy dictated by Eq. (6.9).

One should keep in mind, though, when applying the single-scattering model, that
the attenuation coefficients in the arguments of the exponential attenuation factors are
total cross sections, i.e. they include the cross section for photoabsorption, Rayleigh
(coherent) scattering, Compton scattering and, when present, pair production. All
these cross sections, except for Compton scattering, have a strong (nonlinear) depen-
dence on the atomic number, Z, of the material, which is usually not known in advance
in an imaging exercise. The problem is further complicated by the presence of many
elements, hence different Z values. Fortunately, however, Compton scattering domi-
nates over a wide range of energy, and, consequently, the error made in approximating
the other cross sections, iterating for their values, or ignoring them altogether, is not
significant. The competing reactions can, however, interfere with a measurement that
is assumed to be based on Compton scattering. Rayleigh scattering does not change
the photon energy and is dominant at small scattering angles and at low energy. There-
fore, Rayleigh scattering can produce a scattering signal at small angles, but its effect
can be removed by energy discrimination, unless the angle of Compton scattering is
so small that its corresponding scatter energy is not very different from that of the
source. The energy lost in photon absorption is given to an atomic electron (via the
photoelectric effect). This causes atomic ionization or excitation. In the latter case,
secondary photons are emitted as the excited atoms return to their original state. The
resulting fluoroscopic photons are, however, low in energy (in the energy range of
the electron’s binding energy) and can be easily discriminated against by their low
energy. In many cases, if the source energy, E, is sufficiently high, fluoroscopic pho-
tons do not even interfere with Compton scattered photons, since the minimum energy
of a scattered photon, according to Eq. (6.9), E′min =

E
1+ 2E

mec2
, becomes larger than that

of the secondary photons. The third competing interaction, pair production, occurs
only when the energy of the incident photon is greater than, 2mec2

= 1.022 MeV, the
minimum energy required to convert the photon energy into the mass of an electron-
positron pair. The resulting positron readily absorbs an electron in its proximity, and
the two particles annihilate each other, producing two 511 keV photons, emanating at
two opposite directions. Such photons can interfere with Compton-scattered photons
of the same energy.

6.5 Neutron Elastic Scattering

The elastic scattering of neutrons results in, like in Compton scattering, an angle-
dependent change in energy. Unlike Compton scattering, however, neutrons interact
with the nucleus. Therefore, in Eq. (6.6), both the neutrons scattering microscopic
cross section, σs, and the angular scattering probability, p(µ,E→ E′), depend on the
nature of the nuclide encountered by the incoming neutrons. Therefore, in a medium
containing more than one type of nuclide, relating the detected scattering signal to
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the atomic number of all nuclides or that of any particular nuclide is not that straight-
forward. However, some information on the nature of the scattering nuclide can be
retrieved from the kinematics of neutron scattering.

In the single scattering of a neutron of energy, E, by a nucleus of mass number, A,
the energy of the scattered neutron is determined (considering the target nucleus to be
at rest) by (Hussein, 2003):

E′ = E

[
µ+ (µ2

+A2
− 1)

1
2

(A+ 1)

]2

(6.10)

with cos−1µ being the angle of scattering. For heavy nuclides, A>> 1, E′ ≈ E, and
not much change in energy is observed at any angle. Therefore, if one detects scattered
neutrons with an energy almost equal to that of the source, one can conclude that
the scattering is caused by heavy nuclides. Since neutron scattering by such heavy
nuclides tends to be isotropic, i.e. p(µ,E→ E′)= 1

2 , then one can determine from the
intensity of the scattering signal, at an energy close to E′, the number density, N(Er), of
heavy nuclides. This can be useful for imaging heavy nuclides in the presence of light
nuclides. One will not, however, be able to determine the nature of scattering nuclides
or distinguish between them.

For hydrogen, A= 1, Eq. (6.10) gives E′ = Eµ2, showing a drastic change in
energy with angle. At cos−1µ= π

2 , a neutron scattered by the proton nucleus
of hydrogen loses its entire energy, since E′ = 0. In addition, no backscattering,
cos−1µ > π

2 , can take place when a neutron is scattered once by a hydrogen nucleus,
and the same value of E′ cannot be attained at two different angles. This makes neu-
tron scattering a natural candidate for imaging hydrogenous materials, by monitoring
the forward scattering of neutrons. Then N(Er) in Eq. (6.6) will refer to the number
density of hydrogen nuclei. The values of σs of p(µ,E→ E′) in the same equation
can be determined in advance from the cross section of hydrogen at the considered
energies.

Eq. (6.10) also indicates that the energy of the scattered photon is at minimum
equal to:

Emin = E

(
A− 1

A+ 1

)2

(6.11)

For nuclides of intermediate mass number, and with a detector with a good energy
resolution, one can utilize Emin to discriminate between different nuclides. For exam-
ple, in a mixture containing hydrogen (A= 1), carbon (A= 12) and oxygen (A= 16),
single scattering with hydrogen gives rise to neutrons within the entire energy range,
i.e. with E′ ≥ 0, while carbon (A= 12) will scatter neutrons to E′ ≥

( 11
13

)2
E = 0.72E,

and oxygen produces neutrons within energy range E′ ≥
( 15

17

)2
E = 0.78E. Therefore,

neutron scattering in the energy range 0< E′ ≤ 0.72E will only be indicative of the
hydrogen content, while detecting neutrons within 0.72E < E′ < 0.78E will provide
a measure of the hydrogen plus carbon content, and at 0.78E < E′ ≤ E all three
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elements are detected. Therefore, the individual atomic density of each element can be
determined by energy-selective detection of the scattered neutrons. However, this is
complicated by the fact that the attenuation of the incident neutrons before scattering
depends on all elements present, while that of the scattered neutrons is affected only by
the elements that contribute to scattering in the considered energy range. This requires
an iterative solution of the problem, but such an iterative process is required anyway,
even in a monoatomic medium, due to the nonlinearity of the forward problem of
Eq. (6.6).

Monoenergetic neutrons produced by neutron generators enable direct use of the
single-scattering model of Eq. (6.6), along with the neutron kinematics of Eq. (6.10).
In addition, neutron generators also produce intense beams that can give rise to a
strong scattering signal. On the other hand, isotopic neutron sources, such as 252Cf
and 241Am/Be, possess a wide energy spectrum and a relatively low intensity, unless
large sources are employed. Neutron production is typically accompanied with the
release of gamma rays. In addition, incident neutrons may also produce gamma rays
by inelastic scattering or radiative capture. Such gamma rays may affect detectors used
to measure the scattered neutrons, and precautions must be taken to electronically dis-
criminate their contribution. The produced gamma rays can, in some cases, persist for
a while, leaving residual radioactivity even after the termination of radiation exposure,
which is not only a safety concern, but it can also affect subsequent measurements
unless adequate gamma discrimination is applied to the detected signal. Inelastically
scattered neutrons can also interfere with the desired elastic scattering signal, but the
probability of inelastic scattering is much lower than that of the elastic one, and the
former is isotropically produced, so that the inelastic neutron scattering component
is typically negligible. In fissionable materials, the neutron generated by fission will
obviously interfere with the scattering signal. However, fissile nuclides all have a high
mass number, and the energy of scattered neutrons hardly changes, while the energy
of fission neutrons spans a wide range.

6.6 Discretization

Numerical implementation of Eq. (6.6) requires lumping some of the parameters into
corresponding equivalent average values. If the source is not monoenergetic and has a
wide energy spectrum, one can divide the spectrum into a number of discrete energy
groups, with each group assigned a single mean energy. A source that is not mono-
directional can also be divided into a number of contiguous solid angles, each given
a unique direction. The model of Eq. (6.6) can then be applied to a particular direc-
tion with a given source energy, to obtain the detector response at a given location
and direction of scattering. Scattering can be assumed to occur at a point at the cen-
ter of a voxel, or at a number of points, or within smaller subvoxels within the voxel
in the direction of the incident beam. The scattering direction may also be divided
into a number of discrete directions to cover the field-of-view of a detector of a given
surface area. Applying such discretization processes implies that a single averaged
value is utilized for the cross section and the scattering probability of Eq. (6.6). In
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addition, an average value is used for the atomic density within each voxel. Like all
discretization processes, excessive discretization can lead to accumulation of numeri-
cal error, while crude discretization may lead to in accurate values. Model validation
against Monte Carlo simulations can, therefore, be beneficial. Such simulations should
be first performed against simulations that include only single scattering, ignoring
multiple scattering and any other interfering interactions. Once the single-scattering
model is verified, multiple scattering and the other interfering interactions, discussed
in this chapter, can be included in the simulations, to determine their effect. Monte
Carlo simulations can also incorporate the detector’s response function, i.e. the change
in its efficiency with radiation energy. This model of Eq. (6.6) can then be modified to
include the detector efficiency, as a factor within the system constant, K.

6.7 Sensitivity

The physical parameter of interest in scatter imaging is N(Er), the density of the atoms
that causes scattering at some point within the imaged object. Then, discretization and
replacing integrals with summations, applying the definition of sensitivity, Eq. (3.5),
to the single-scatter model of Eq. (6.6), leads to:

SS =
∂CS( ER,E)

∂N(Er)
= K

I0(Er0)

4π |Er−Er0|
2

exp

[
−

∑
k

6(Er′k,E)1r′k

]

×
σs( Er,E)p(µ,E→ E′)

2π |ER−Er|2
exp

[
−

∑
k′

6s( Er′′k′ ,E
′)1r′′k′

]
1VD (6.12)

The sensitivity for imaging with scattered radiation is governed by the scattering
probability, the σs( Er,E)p(µ,E→ E′) term in Eq. (6.12). However, the sensitivity is
hampered by the attenuation and divergence of incident and scattered radiation. The
sensitivity is, however, improved by increasing the voxel size, 1V , increasing the
intensity of the radiation source, I0(Er0), and increasing the detector size and efficiency,
which affect the value of K in Eq. (6.12).
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Part II

The Inverse Problem

“[A]esthetics” derives from a Greek verb meaning “to perceive with the senses.” It
is a scientist’s prerogative to introduce–and to be governed a little by–aesthetics in
his [or her] work. This implies things like restraint, nonexaggeration, nonreliance on
innumerable assumptions, criteria or data banks, and so on.

[S]ometimes we tend to resort to inversion techniques too blindly, without using
our judgment or “feel” about handling a given problem, which may lead to “anti-
aesthetic” excesses.

Diran Deirmendjian (1976)∗

∗ In: Deepak, A., Ed. (1977). Inversion methods in atmospheric remote sounding, p. 138, Academic Press,
New York.
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7 Features

Before reading this and subsequent chapters, the reader may like to consult
Appendix 7.A for a brief reminder of the basics of functional analysis, which are
useful in many of the presented formulations.

7.1 Discretization

As the discussion of the forward problem in Part I of this book indicated, the for-
ward problem provides an approximate mapping, m, of a set of physical parameters,
c ∈ C, into a set of modeled measurements, e ∈ E, with C and E being, respectively,
the spaces of c and e, see Section 1.5. The mapping, m, is approximate due to the
inevitable simplifications of the measurement modeling process, the various interfer-
ing effects that are not taken into account, and the errors associated with the discretiza-
tion process required for a numerical solution. The availability of a forward mapping
is necessary to solve the inverse problem. Since an image consists of a number of
discrete pixels or voxels within which the physical attributes are estimated, it is neces-
sary to discretize the forward models, as indicated in Chapters 4 to 6. The imaging
process itself requires the acquisition of a finite, though usually large, number of mea-
surements. Therefore, it is also necessary to have a discrete mapping formulation that
relates discrete values of c to discrete values of e.

The discrete form of the forward model can be a matrix or a set of functions that
accept discrete image parameters. In radiation imaging, measurements typically cor-
respond to counts, and the image parameters are attenuation coefficients (cross sec-
tions), source intensities, or material densities, depending on the image modality, as
explained in Part I of this book. Then, the image parameters and the measurements
must be non-negative real-valued numbers, otherwise they are meaningless. The mea-
surements and image parameters can, therefore, be presented in a discrete form as
vectors, in Euclidean space.1 The two can be then related in a matrix form:

e= Ac (7.1)

or a functional form:

e= f (c) (7.2)

1 An n-dimensional Euclidean space is the space of all n-dimensional sets of real numbers.

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00007-0
c© 2011 Elsevier Inc. All rights reserved.
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where e is a vector whose elements are individual modeled measurements, c is a vector
containing the imaging parameters, A is a matrix relating e to c, and f is a vector that
includes functions of c. Both A and f incorporate the fact that a single measurement
can be influenced by many parameters. The matrix A is called the system matrix.

The difference between the formulation of Eq. (7.2) and that of Eq. (7.1) is that
in the former the image parameters vector, c, is not explicitly expressed as a separate
vector, but rather its elements appear in each function formulation that relates one
modeled measurement to many elements of c. We will use:

e=mc (7.3)

to indicate either the matrix form of Eq. (7.1) or the functional form of Eq. (7.2).
Recall that a Euclidean space is a space of real numbers. In this space, the trans-

lation (or a rotation) of a point results in a shifting (or turning) of every point in the
same direction and by the same displacement (or angle). In the Euclidean space, one
can define the following norms that measure the “length” of the physical parameters
vector, c, and the measurement vector, e:

‖c‖ =

√√√√ N∑
i=1

c2
i ; ‖e‖ =

√√√√ M∑
i=1

e2
i (7.4)

where ci designates the ith parameter in an image of N voxels, and ei is the ith mea-
surement in a set of M measurements. With this definition one can measure how close
an image, ĉ, is to the actual one, c0, (if known, e.g., when testing or calibrating), via
the norm ‖ĉ− c‖, and for an iterative process one can determine how the estimated
vector, ĉk, at iteration k differs from that at a preceding iteration k− 1 through the
norm ‖ĉk− ĉk−1‖. Similarly, one can measure how a modeled measurement, ê=mĉ,
corresponding to an estimated image, ĉ, differs from the actual measurement, e using
the norm ‖ê− e‖.

The Euclidean norm for the mapping, m, that relates c to e, is defined as:

‖m‖ = sup
‖mc‖
‖c‖
; c 6= 0 (7.5)

where sup (supremum, least upper bound) is used here so that a value for ‖m‖ can
still be found even if the maximum is not attainable with a non-zero vector c. The
ratio ‖mc‖

‖c‖ can be seen as a factor that measures the extent with which the mapping,
m “stretches” c. The norm ‖m‖ is then the largest stretching factor of all non-zero
vectors, c. For the inverse mapping, m−1, the Euclidean norm is:

‖m−1
‖ = sup

‖m−1e‖
‖e‖

; e 6= 0 (7.6)

with m−1e being equal to the sought solution, c.
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Images are usually discretized into square pixels or cubic voxels, with a con-
stant image attribute value inside each pixel/voxel. In other words, with each voxel,
associated is a basis rectangular function that has a value of unity inside the voxel
and zero outside it. Lewitt (1992) suggested a spherically symmetric volume element,
called a “blob,” with a radially symmetric basis function that smoothly and monotoni-
cally decrease from unity at the center to zero at the edge of the blob. Lewitt (1992)
proposed a modified from of the Kaiser-Bessel window, b(r), used in digital signal
processing:

b(r)=

(1−
( r

a

)2)m
2

Im

(
α

√
1−( r

a )
2
)

Im(α)
for r ≥ 0

0 for r ≥ 0
(7.7)

where Im is a modified Bessel function of the first kind2 of order m, a is the radius of
the blob, r is a radial distance from the center of the blob, and α is tapering parameter
that determines the overall shape of the blob (a small α value gives a wide blob and
a large value produces a narrowly peaked blob with long tails). While a step basis
function averages image features within a voxel, a radially symmetric basis function
preserves peaks and valley features within a voxel, and as such is better at depicting
the characteristics of an image, which would have otherwise been smoothed out in
the usual step basis function (Matej and Lewitt, 1996). However, the use of blobs is
computationally demanding, and needs to be optimized for the problem at hand, see
Gardun̈o and Herman (2004).

7.2 Well-Posed Problem

The inverse problem of the forward mapping e=mc is well-posed3 (according to
Hadamard, 1923) if:

1. There exists a solution for any measurement subset in the possible set of measurements, E,
i.e., ê ∈ E.

2. The obtained solution, ĉ, is in the permitted set of image parameters, i.e. ĉ ∈ C, and is unique.

3. The inverse mapping, ê
m−1

−→ ĉ, is continuous.

where ê is a measurement with some uncertainty, and ĉ is the corresponding recon-
structed image parameter. The first two conditions require m to have an inverse that
produces realistic image parameters, while the third condition indicates that there has
to be a continuous change in the image parameters with the continuous change in

2 Im(r)=
1

2π i

∮
exp

[( r
2

)(
t+ 1

t

)]
t−n−1dt; with the contour traversed in a counterclockwise direction enclos-

ing the origin (Weisstein, Eric W., “Modified Bessel Function of the First Kind”, From MathWorld–A
Wolfram Web Resource. http://mathworld.wolfram.com/ModifiedBesselFunctionoftheFirst
Kind.html).

3 Discussion in this section is guided in part by that given by Bertero and Boccacci (1998).
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measurements. The latter condition, obviously, controls the amount of error propaga-
tion from measurements to system parameters. Continuity is, therefore, indicative of
solution stability.4

An ill-posed inverse problem is accordingly a problem in which the inverse of m
produces a solution that is not in C (ĉ /∈ C), or is not unique (i.e. more than one ĉ cor-
respond to same ê), or when a small change in the value of ê results in a large change
in the reconstructed image parameters, ĉ. Note that since in radiation imaging one
usually seeks a nonnegative solution (a solution c ∈ C of nonnegative real numbers),
while having a set of measurements e ∈ E contaminated by random uncertainties, there
is no assurance that the solution of ĉ=m−1ê will not produce negative members that
do not belong to C. This nonnegative constraint can by itself make the problem an
ill-posed one.

7.3 Existence

The discrete forms of Eqs. (7.1) and (7.2) should be definite, and repeatable in their
structure for the same measurement configuration. As such, their inverse is likely to
exist. This is easier to ascertain for the matrix form, Eq. (7.1), as long as its inverse can
be numerically constructed. Although a functional form for the inverse of Eq. (7.2) is
not usually explicitly possible, one can argue that the inverse function exists as long
as the functional form of the forward mapping is definite. Therefore, the existence
condition of well-posedness is usually satisfied. If not, the system’s physical layout
and design should be altered to ensure the existence of solution, otherwise the entire
exercise of solving the inverse problem is not worth pursuing.

7.4 Uniqueness

For a linear system, the uniqueness of solution can be ascertained by the argument that
if the system has two solutions, c1 and c2, corresponding to the same measurement, e,
then both must satisfy Eq. (7.3), leading to:

e=mc1 =mc2 (7.8)

m(c1− c2)= 0 (7.9)

which necessitates that c1 = c2 and the solution must be unique. Also, Eq. (7.9)
indicates that c1,2 = c1− c2 is a non-trivial solution of the homogeneous equation:
mc= 0. If such solution exists, then for a linear problem, the linear combination
c2 = c1,2+ c1 must also be a solution of Eq. (7.3), but Eq. (7.8) indicates that
mc1 =mc2. Therefore, one has:

mc2 =m(c1,2+ c1)=mc1,2+mc1 =mc1

4 Stability refers to the insensitivity of solution to small random errors in data (measurements). Robust-
ness, on the other hand, is the solution’s insensitivity to a small number of large errors (outliers) in the
measurement set.
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Then c1 = c2, and again Eq. (7.3) has a unique solution. Therefore, Eq. (7.3) has a
unique solution if and only if the only solution for the homogeneous equation mc= 0
is c= 0. The discrete form of Eq. (7.3) satisfies this condition, since if c= 0 it will
produce e= 0.

The above discussion indicates that the uniqueness of solution can be assessed for a
linear problem by examining the homogeneous problem: mc= 0. If the homogeneous
problem has a solution other than the trivial solution, c= 0, then the problem does not
have a unique solution. If mc= 0 has a non-travail solution, then there are “invisible”
images, c 6= 0, that cannot be observed because they do not produce any corresponding
measurements. Such invisible images exist in the so-called null space, and because
they have nil corresponding measurements they can be added to a real (visible) image
without affecting the recorded measurements; hence one cannot be assured of the pre-
sence of a unique solution corresponding to a certain set of measurements.

For nonlinear problems, the homogeneous problem can have more than one observ-
able image (solution) corresponding to the same set of measurements. A nonlinear
problem, by definition, does not have a single unique solution, but may have a set of
unique solutions. Nevertheless, under some restrictions, a unique solution can exist
within some bounds, as shown in Section 10.7.

7.5 Continuity

The third condition for the well-posedness of a problem, continuity of solution, fol-
lows naturally from the fact that the forward mapping, e=mc, and its discretized
form, represent an observable natural process in which a change in c produces a cor-
responding change in e. If such change is not observable, it is usually an indication
of a poor measurement arrangement, in terms of design, sensitivity of observation or
physical layout, or poor counting statistics that needs improvement by increasing the
source strength, counting period and/or detector efficiency. A continuous parameter is
differentiable, i.e. ∂ei

∂cj
exists, at least in the neighborhood of the value of cj, where the

subscripts refer to individual values.

7.6 Ill-Posed Problem

From the above discussion, one may conclude that the discrete form of the forward
problem of Eq. (7.3), is well-posed. This conclusion is, however, based on a strict
mathematical analysis. In practice, the discrete formulation is an approximation of the
continuous general form of e=mc, which is generally ill-posed. The measurements
used in the solution of the inverse problem are always contaminated with uncertainties,
and the forward mapping itself is an approximation, as shown in Part I of this book.
That is, if the true image is represented by c0, then the recorded measurement, ê,
corresponding to c0, can be expressed as:

ê=mc0+ δe (7.10)
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where δe is the difference between the measured e and the computed modeled
measurement corresponding to the true solution, if known. Then, the inverse prob-
lem produces a solution:

ĉ=m−1ê= c0+m−1δe (7.11)

That is, the obtained solution differs from the true solution by m−1δe. Then m−1

δe 6= 0, even for the trivial image, c0 = 0. The homogeneous problem, mc0 = 0, does
not exist even if c0 = 0, because of the ever present measurement error, δe 6= 0. One
cannot then address the uniqueness question. However, if there exists a trivial solu-
tion ĉ= 0 for which mĉ= 0, then according to Eq. (7.11) c0 =−m−1δe, and the true
image corresponding to the trivial solution ĉ= 0 will vanish only if m−1δe = 0. With
the measurement error being a definite measurable quantity, the condition m−1δe = 0
will require an indefinite inverse mapping, and accordingly the solution of Eq. (7.11)
will not exist, while the uniqueness condition mĉ= 0 with ĉ= 0 is still satisfied.

Moreover, since δe can be independent of the solution and usually contains a
random component (due to statistical fluctuations), the solution ĉ may no longer
continually depend on the measurement ê. In other words, ê can change due to mea-
surement uncertainties and not because of genuine changes in the imaged object.
A true image, c0, can, therefore, have different measurements, ê, producing a solu-
tion (when it exists) that is not exactly unique; though may approximately resemble
the true image. Therefore, the image reconstruction problem is in effect an ill-posed
problem.

In the discrete form of Eq. (7.3), if the inverse mapping m−1 exists, a solution
m−1e will exist. The homogeneous equation, mc= 0, has only a trivial solution, c= 0,
since m is definite. Therefore, the uniqueness of a linear problem is also assured. Any
solution ĉ=m−1ê will also continuously depends on ê, irrespective of the measure-
ment error. Therefore, one arrives at the interesting conclusion that although the con-
tinuous inverse problem is, in general, an ill-posed problem, its discrete form satisfies
the conditions of a well-posed problem. However, the solution provided by the dis-
crete form is approximate because: (1) discretization itself is an approximation with
its own truncation error, (2) the forward model it applies is an approximation of reality
(as indicated in Part I of this book), (3) the employed measurements carry their own
uncertainties, and (4) the inversion process introduces its own numerical round-off
error. The next logical question is then how good is the obtained approximate solu-
tion, or in other words, how much error is propagated through the solution process.

7.7 Ill-Conditioning

Let us first consider the propagation of measurement error through the inversion pro-
cess. For measurements with an error δe, the inverse mapping produces an error in the
image parameter, δc such that:

δc =m−1δe (7.12)
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Therefore,

‖δc‖ ≤ ‖m−1
‖ ‖δe‖ (7.13)

but we have,

‖e‖ ≤ ‖m‖ ‖c‖ (7.14)

If the mapping is linear, one can estimate ‖m−1
‖ as:

‖m−1
‖ =

1

inf ‖mc‖
‖c‖

; c 6= 0 (7.15)

where inf is the greatest lower bound (infimum) of the forward mapping, m. Using the
above relationships, one can state that:

‖δc‖

‖c‖
≤N
‖δe‖

‖e‖
(7.16)

with

N =
sup ‖mc‖

‖c‖

inf ‖mc‖
‖c‖

; c 6= 0 (7.17)

The quantity N is known as the condition number. As evident from Eq. (7.16), N
controls error propagation from the measurements to the solution (reconstructed image
parameters). It is obvious that a low condition number is desired for control of error
propagation. A well-conditioned problem has a condition number of nearly unity, i.e.
with no significant magnification of measurement error through the inversion process.
An ill-conditioned problem, on the other hand, has a large condition number, leading
to magnification of error propagation during the solution of the inverse problem. The
condition number is a measure of the “elasticity” of the problem, with a fully elastic
problem having no error growth.

Based on the condition number, Demmel (1987, 1988) redefined the ill-posed prob-
lem as an infinitely-conditioned problem. This is a more practical definition than that
of Hadamard, as it provides a measure of the difficulty in the numerical solution of an
inverse problem.

In practice, discretization produces a high condition number; the finer the dis-
cretization, the higher the condition number. The resulting discrete inverse problem
then exhibits many of the features of the continuous inverse problem. Therefore, one
can speak, according to Hansen (1998), of a discrete ill-posed problem. The discrete
problem may also be rank deficient. Recall that the rank of a matrix is the maximum
number of its linearly independent rows or columns. A matrix that has a full rank will
have its rows and columns all linearly independent; if not the matrix is rank deficient.
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The number of distinct eigenvalues of a full rank matrix is equal to its rank, since lin-
ear dependence produces repeated eigenvalues. Therefore, computed measurements in
the forward mapping of a system that has a full-rank matrix are all independent. How-
ever, the presence of uncertainties in a practical discrete inverse problem interferes
with measurement independence. That is, two measurements which are too close in
value that they are not practically distinguishable (given measurement uncertainties)
are in effect not independent measurements. Therefore, while an idealized (error-free)
discrete inverse problem is well-posed, its practical counterpart is ill-posed. One other
way of viewing a discrete inverse problem is to consider the fact that a zero value is
in practice hardly achievable. For example, the difference between two conceptually
identical measurements recorded at different times is not likely in practice to be equal
to zero, but is rather a small definite value within the level of measurement uncer-
tainty. In other words, for any two parameters to be distinguishable from each other,
the difference between them must be larger than the lowest level of uncertainty. Recall-
ing that a matrix is singular if it has a zero eigenvalue, then while an ideal problem
may have a non-zero eigenvalue, a “practical” zero value could exist due to problem
uncertainties.

7.A Basics of Functional Analysis

The forward problem maps a set of physical attributes (parameters) into the mea-
surement space. These parameters depend on the position in the object, and in some
cases the radiation energy, and are compiled together as an N-dimensional vector,
where N is the number of parameters. In the limit, N −→∞, the space of the phys-
ical parameters is a continuous space. The parameters space consists of all possible
mutations of vectors representing physical attributes. The inverse problem maps a
set of measurements into the parameters space. The measurements are also formu-
lated into an M-dimensional vector, where M is the number of measurements, whose
values are functions of the position, direction and/or energy at which the measure-
ments are acquired. The measurement functions on the limit can approach an infinite-
dimensional space. The measurement space encompasses all possible measurement
vectors. Both the physical parameters and measurements are real numbers, and the
mapping process are operators on the functions. The branch of mathematics that deals
with these functions and their mapping is called functional analysis. The objective of
this appendix is to summarize the basics of functional analysis necessary for Part II of
this book. For more details, the reader can consult many of the available textbooks on
functional analysis. For definitions, the Wolfram MathWorld (http://mathworld
.wolfram.com) is quite useful.

7.A.1 Within a Space

We will start by considering a vector space (a set of vectors), representing either the
parameters space or the measurements space.
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Inner-Product

In a vector space, one can take any two vectors u and v, and multiply them to obtain
a scalar quantity, 〈u,v〉, called the inner product, (a generalization of the dot product),
and the space then is called an inner-product space. The inner product has the follow-
ing properties:

〈u,v〉 ≥ 0 (7.18a)

〈u,v〉 = 0 if and only if u= 0 or v (empty vector) (7.18b)

〈u,v〉 = 〈v,u〉 (commutive) (7.18c)

〈u,v+w〉 = 〈u,v〉+ 〈u,w〉 (7.18d)

〈au,v〉 = a 〈u,v〉 (7.18e)

〈u,v〉 ≤ 〈u,u〉 〈v,v〉 (Schwarz inequality) (7.18f)

where w is also a vector and a is a scalar.

Euclidean Space

This is an inner-product space in which the inner product is the same as the dot product
so that:

〈u,v〉 = u · v=
∑

i

uivi (7.19)

where ui and vi are the ith elements in the vectors.

Vector Norm

The length of a vector u is defined by the norm, ‖u‖ in a number of ways:

‖u‖1 =
∑

i

|ui| L1 norm (7.20a)

‖u‖2 =

(∑
i

|ui|
2

) 1
2

L2 norm (Euclidean) (7.20b)

‖u‖p =

(∑
i

|ui|
p

) 1
p

Lp norm (7.20c)

‖u‖∞ = lim
p→∞

(∑
i

|ui|
p

) 1
p

= max
i
|ui| L∞ norm (7.20d)
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where p≥ 1 is an integer. Each norm is such that:

‖u‖ ≥ 0 (7.21a)

‖u‖ = 0 if and only if u= 0 (7.21b)

‖au‖ = a‖u‖ (7.21c)

‖u+ v‖ ≤ ‖u‖+‖v‖ (triangle inequality) (7.21d)

With a norm, one can formulate mathematical structures (topology) to study conver-
gence, continuity, etc., of sequences and functions.

Metric Space

This is an inner-product space in which a metric is constructed to measure the distance,
d(u− v), between any two vectors, u and v:

d(u− v)= 〈u− v,u− v〉
1
2 = ‖u− v‖ (7.22)

This metric has the following properties:

‖u− v‖ ≥ 0 (7.23a)

‖u− v‖ = 0 if and only if u= v (7.23b)

‖u− v‖ = ‖v−u‖ (7.23c)

‖u− v‖ ≤ ‖u−w‖+‖w− v‖ for any w (triangle inequality) (7.23d)

When the distance is defined in terms of the L1 norm, one has the largest distance
possible between two vectors, or the so-called taxicab or Manhattan distance. The
distance defined by the Euclidean norm, L2 norm, is a generalization of the geomet-
ric shortest distance between two points. The L∞ norm defines a distance known as
the Chebyshev distance (largest differences among any two elements of the vectors),
which in a plane is the distance a king travels between two squares on a chessboard.
The distance L1 reflects the worst deviation between the two entities it measures.
The L2 is the most probable deviation, since random deviations for the same physical
phenomenon tend to obey normal (Gaussian) statistics (if the deviations were inde-
pendent from each other).

Sequences
In an iterative process, one obtains a sequence, u0,u2, . . . ,un, . . ., of vectors that
should be all within the space. If this process results in a complete metric space (see
below), it is called a Hilbert space. This sequence forms a Cauchy sequence if:

lim
m,n→∞

‖un−um‖ = 0 (7.24)

One then hopes that the iterative process converges to a solution, u. The condition for
such convergence is:

lim
n→∞
‖un−u‖ = 0 (7.25)
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From the triangle inequality Eq. (7.23d): ‖un−u‖ ≤ ‖un−um‖+‖um−u‖. There-
fore, a convergent sequence of vectors is also a Cauchy sequence.

Complete Spaces
A metric space in which every Cauchy sequence is a convergent sequence is a com-
plete space. If a complete metric space has a norm defined by an inner product (such
as in a Euclidean space), it is called a Hilbert space. Recall that in a Euclidean space
the scalar product is defined by Eq. (7.19). Therefore, with the L2-norm of Eq. (7.20b),
the distance metric is given as:

d(u− v)= ‖u− v‖ =

(∑
i

|ui− vi|
2

) 1
2

= 〈u− v〉
1
2 (7.26)

Note that a complete vector space with a norm is called a Banach space. A Hilbert
space is, therefore, a Banach space with a norm defined by the inner product.

7.A.2 Mapping between Spaces

In the discussion below, it is assumed that the parameters space, C, and the measure-
ments space, E, are both Banach spaces.

Mapping Operator: Domain and Range

The forward problem, Eq. (7.3), in a vector form, is:

e=mc (7.27)

where m designates an operator which maps a subset in the parameters space, C, rep-
resented by the vector c, to a subset in the measurement space, E, expressed by the
vector e. The subset, c, is the domain of m, while e is its range.

Boundedness

The operator m is bounded if:

‖mc‖ ≤ Bc (7.28)

where B is a constant irrespective of c. The least upper bound (smallest B) defines the
operator’s norm:

‖m‖ = sup
c∈C

‖mc‖
c

(7.29)
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Continuity

If a sequence cn,n= 1,2,3, . . . converges to c as n→∞ in C, and the corresponding
mapped sequence mcn,n= 1,2,3, . . . also converges to mc, then m is a continuous
operator. A continuous operator also maps a null element, c= 0, in C, to a null vector,
mc= 0, in E, and as such is bounded. All bound operators map a null vector to a
null vector, since then the inequality of (7.28) is always satisfied, and are therefore
continuous.
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8 Formulation

The solution of an inverse problem can be tackled via the matrix or functional
formulations of the forward problem, Eqs. (7.1) and (7.2), or by analytic methods.
The forms of solution are discussed broadly in this chapter and in more details in
subsequent chapters.

8.1 Matrix

The direct inverse of the forward problem of the matrix formulation of Eq. (7.1) is:

c= A−1ê (8.1)

We used here ê, instead of e, to emphasize that actual measurements, with their associ-
ated errors, are employed. Direct inversion of Eq. (8.1) may not be practical, due to the
large size of the matrix. Nevertheless, matrix analysis of the inverse problem provides
insight into its nature. If the number of measurements, M, hence the length of the vec-
tor ê, is not equal to the number of image parameters, N (length of vector, c),1 one has
a non-square matrix that cannot be directly inverted. However, a matrix solution can
be found if one solves the equation2: ATAc= ATê, instead of Ac= ê, and inverts the
square matrix ATA to obtain the solution: c= (ATA)−1ATê, where AT is the transpose
matrix of A. This solution happens also to be an optimal solution that minimizes the
least-squares objective function:

χ2
= [ê−Ac]T[ê−Ac)] (8.2)

which defines the square of the difference (residual) between the given measurements
and those modeled using the forward model. The use of the squares signifies that
the differences between measured and modeled values are likely to follow a normal

1 The image parameters are all included into a single vector, c, though a section image is formed by two-
dimensional pixels, and a volume image is composed of three-dimensional voxels. Therefore, elements of
c are allocated to the corresponding pixels and voxels, in accordance to a pre-designated order determined
by the spatial grid over which the image is to be reconstructed.

2 One can also solve: Ac= (AAT)(AAT)−1ê, to obtain: c= AT(AAT)−1ê.

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00008-2
c© 2011 Elsevier Inc. All rights reserved.
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distribution with a zero mean, see Appendix 8.A. Therefore, the minimization of χ2

of Eq. (8.2) leads to a physically meaningful estimate of c given by:

ĉ= [ATWA]−1ATWê (8.3)

where W is an M×M weighting diagonal matrix, introduced here to favor measure-
ments with lower uncertainties, as explained in Appendix 8.A. Given the uncertainties
associated with ê, and the approximation of the forward model that determines A, the
inversion of Eq. (8.1) produces an estimate, ĉ, of the image parameters. Note that the
solution of Eq. (8.3) is equally applicable to an overdetermined problem, M > N, an
underdetermined one, M < N, and a well-determined problem, M = N, since in all
cases the matrix [ATWA] is a square N×N matrix. In imaging problems, one strives
to have an overdetermined problem, in order to better accommodate measurement
uncertainties.

If an imaging system is properly designed, the matrix [ATWA] will not be singular,
and its inverse will exist, enabling the least-square solution of Eq. (8.3). However, in
some cases the matrix [ATWA] can be nearly singular, i.e. has an eigenvalue that is
about equal to zero. The condition number of the matrix will then be quite large, and
a very small error in the measurement vector, ê, can greatly affect the estimated value
of ĉ. One must then resort to some form of so-called regularization to allow a solution
that gives a near-minimum value of χ2, while avoiding the singularity problem, see
Section 10.4.

When the problem is linear, as is the case in transmission imaging, the matrix inver-
sion process of Eq. (8.3) can directly lead to a solution of the inverse problem. Such
solution is not necessarily unique due to the influence of measurement uncertainties.
However, if the condition number is not very high, error propagation can be controlled,
and the obtained solutions (for different measurement noise levels) will be close to
each other, within the range of error propagation. For the nonlinear problem of scat-
ter imaging, one can construct an estimate of the matrix A based on some guess of the
solution, and use Eq. (8.3) to obtain a new approximate estimate of the solution, which
is used to update the matrix A, and so on. Such successive approximation process can
lead to an acceptable solution under certain conditions, discussed in Section 10.7.

The matrix formulation of Eq. (7.1) is easily accommodated in transmission imag-
ing, using measurement projections instead of the measurements themselves, by dis-
cretizing Eq. (4.2). However, in a realistic imaging system, the size of matrix A is too
large to readily manipulate or directly invert. For scatter imaging, the matrix A will
contain the exponential attenuation factor that appears in the measurement model of
Eq. (6.6). This produces a nonlinear system matrix that inhibits direct solution of the
inverse problem, since the system matrix is not fully known.

8.2 Functional

The function formulation of Eq. (7.2) is a convenient way to express each single mea-
surement as a function of the corresponding image parameters. Such formulation also
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avoids the need to explicitly segregate the image parameter vector, c, from the forward
mapping operation. For a linear problem, a unique solution will exist if and only if
c= c0 is the only solution for f (c)= 0, since the difference between two solutions (if
they exist) corresponding to the same e has to be zero, i.e. the two solutions have to
be identical. For nonlinear problems, uniqueness of solutions is only assured under
certain conditions.

For the function formulation: f (c)= ê, the least-squares objective function
becomes:

χ2
= [ê− f (c)]T[ê− f (c)] (8.4)

One cannot directly obtain an explicit solution for c by minimizing χ2 of Eq. (8.4), in
the manner the solution of Eq. (8.3) was obtained by minimizing Eq. (8.2). One must
then resort to optimization methods that aim at finding an optimal value for c that
minimizes the objective function of Eq. (8.4). Chapter 11 presents some of the opti-
mization methods that can be used in radiation imaging, for both linear and nonlinear
inverse problems.

The functional formulation of Eq. (7.2) and Eq. (8.4) do not lead to a matrix, the
condition number of which can be determined to assess the system’s susceptibility to
error caused by measurement uncertainties and model approximations. Therefore, one
may need to rely on numerical experimentation to examine the extent of error propaga-
tion. Regularization can also be applied to control error propagation, see Section 10.4.

8.3 Analytic

The analytic approach solves an integral analytical form of the forward problem.
Fourier series expansions and integral forms amenable to backprojection are two of
such analytic formulations.

8.3.1 Fourier Transform

Instead of attempting to obtain a direct solution for the image parameter, ĉ, at each
voxel, let us assume that the parameters of an image constitute some analytical func-
tion, ĉ(Er), where Er is the vector that determines the position of a voxel in the image
domain. One can attempt to compose this function from its modal components (har-
monics), or its spatial frequencies. This can be done with the aid of the Fourier integral:

ĉ(Er)=

∞∫
−∞

C(Ek)exp[2π i(Ek · Er)] dEk =

∞∫
−∞

C(Ek)[cos(2π i(Ek · Er))

+ isin(2π i(Ek · Er))] dEk (8.5)

where Ek is a spatial frequency (cycles per unit length), with dimensions of inverse
distance, and C(k) is the coefficient of expansion (or the amplitude of the partial wave)
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at frequency Ek, with i being the imaginary value
√
−1. The infinite limits in Eq. (8.5)

allow for all frequencies.
In order to determine the function ĉ(Er), the values of each C(k), at different frequen-

cies, are to be found. These expansion coefficients can be determined by the Fourier
transform:

C(Ek)=
∞∫
−∞

c(Er)exp[−2π i(Ek · Er)] dEr (8.6)

However, c(Er) is not known; it is the function one is trying to find. But the forward
model can be used to relate c(Er) to the measurement function, ê(Er). The integral
over dEr is equivalent to integrating over volume, dV . If that volume is the volume
seen by a detector recording a measurement, e, then the forward model that maps
c(Er)−→ e will contain the integral:

∫
c dV . The forward model for transmission,

Eq. (4.2), directly contains an integral,
∫

c ds, along the direction of the incident radi-
ation, with c=6, e= p, dV = dAds, and dA being the detector area, which is a con-
stant value. Therefore, for transmission image reconstruction, the inverse transform of
Eq. (8.6) can be rewritten as:

C(Ek)=
∞∫
−∞

∞∫
−∞

c(s)exp[−2π i(Ek · Er)] ds dA

=

∞∫
−∞


∞∫
−∞

c(s)ds

exp[−2π i(Ek · Er)] dA

=

∞∫
−∞

e(x)exp[−2π i(Ek · Er)] dA

= E(Ek) (8.7)

where E(Ek) is a Fourier coefficient of the measurement. Equation (8.7) indicates that a

Fourier transform of a function of the image parameter, C(Ek), is equal to a Fourier coef-

ficient of a corresponding measurement, E(Ek). This is the essence of the Fourier-based
solution of the inverse problem of image reconstruction: utilize the Fourier coefficients
of a function representing measurements to obtain those of the image parameters,
and in turn reconstruct the parameter’s function via Eq. (8.5). The main advantage
of the use of the modal solution via the Fourier transform is its computational effi-
ciency, via the use of readily available digital fast-Fourier transforms (fft’s), which
enable approximate but quick computation of discrete Fourier transform and their
inverses.

More detailed analysis of this method for transmission imaging is given in
Section 12.2. The procedure of Eq. (8.7) can also be applied to the inverse problem
of emission imaging, using their corresponding forward models given by Eqs. (5.1)
and (5.6), when the response of a detector is viewed as the summation of the source
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activity within its field-of-view. For scatter imaging, applying the Fourier transforms
to the model of Eq. (6.6) is not as straightforward, due to the presence of the nonlinear
(exponential) terms that cannot be taken out of the integral. However, if such terms are
evaluated based on some guessed value of c, to render a linear problem, the Fourier
inverse transforms of the linear terms can be used to determine a new estimate of c,
which in turn can be utilized to update the value of the nonlinear terms, and the solu-
tion process can be repeated in an iterative manner.

8.3.2 Backprojection

Each measurement, e, is an integral of many values of c, as all measurement models
discussed in Part I of this book show. One can then express a function representing the
measurements, e(ER), by the generalized integral equation:

e( ER)=

∞∫
−∞

G(ER;Er) c(Er)dEr
(8.8)

where G(ER;Er) is some integration kernel that represents the response of the measure-
ment recorded at ER to the physical attribute at the point at Er. This kernel can be deduced
from the forward model of the problem. Now taking the opposite view that each voxel
in an image claims a share in each measurement it contributes to, one can estimate an
image parameter as:

ĉ(Er)=

4π∫
0

F(Er; E�) e( E�)d E� (8.9)

where E� is a direction emanating from a voxel at Er toward a measurement e( E�), and
F(Er; ER) is some “filtering” function that relates a measurement, e(ER), to a physical
parameter, c(Er). The integration in Eq. (8.9) is over all directions at which measure-
ments stimulated by c(Er) are acquired. The operation within the integral of Eq. (8.9)
performed over a single direction, E�, takes a measurement in that direction, filtered
with F(Er; ER), and spreads it (project it back) over the direction E�. Therefore, the oper-
ation of Eq. (8.9) defines the so-called filtered backprojection. In the inverse-problem
sense, the function F(Er; ER) is an inverse filter, i.e. a filter that leads to a solution of
the inverse problem. At a first glance, the filtering function F(Er; ER)e(ER) appears to
be the inverse, or the adjoint, of the kernel G(ER;Er), but the inversion process is not
always that straightforward. Therefore, some reasonable estimates are utilized. Note
that if F(Er; ER) is taken as a constant value, the operation of Eq. (8.9) results in a uni-
form backprojection, which is the simplest form of backprojection. Backprojection
methods are discussed in Section 12.3.

Comparing Eq. (8.8) to the forward model for transmission imaging, Eq. (4.2),
one can deduce that the Kernel function G(ER;Er)= 1; when ER−Er = (|R| − |r|)r̂ and
|R|> |r|, with r̂ being a unit vector in the direction Er, and G(ER;Er)= 0 otherwise.
That is, when the vectors ER and Er overlap in the same direction, with the former
surpassing the latter, G(ER;Er) exists and becomes equal to unity. In this case, the
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integral of Eq. (8.8) is the classical Radon transform (Radon, 1907) of c on the line
(|R| − |r|)r̂. Inverse radon transform methods can then be used to solve the inverse
problem of transmission imaging, as discussed in Section 12.3. The observation that,
in the forward model of transmission imaging, the existence of the kernel G(ER;Er)
depends on ER−Er makes it possible to express this kernel as G(ER−Er), then the inte-
gral of Eq. (8.8) represents a convolution process. Equation (8.9) can then be resolved
through deconvolution, see Section 12.3.

The forward models of emission, Eqs. (5.1) and (5.6), can lend themselves directly
to the integral formulation of Eq. (8.8), if an emission measurement is viewed as a
summation of the source activity within its field-of-view. In the case of scatter imag-
ing, the forward model of Eq. (6.6) is nonlinear. However, if the nonlinear terms are
ignored, assumed to be known in advance, or iteratively dealt with, the associated for-
ward models become equivalent to linear integrals, and the backprotection methods
can be applied.

The backprojection approach of Eq. (8.9) does not allow direct assessment of the
overall susceptibility of the inverse problem to error. However, this can be accom-
plished by the application of some level of uncertainty to the measurements and find-
ing numerically how the error is propagated to the solution. As Eq. (8.9) indicates, an
error, δe(ER), is directly backprojected as an error, δc(Er), in the solution, such that:

δc(Er)=

4π∫
0

F(Er; E�) δe( E�) d E� (8.10)

Therefore, the obtained solution contains the same error features as the measure-
ments, unless of course the filter function, F(Er; E�), is chosen to dampen the effect
of error, while still maintaining its backprojection capability. Additional separate fil-
tering may be applied to the measurements prior to subjecting them to backprojection,
see Chapter 9. However, no constraints can be imposed on the solution via the back-
projection process, making it difficult to control error propagation.

Like the Fourier method of Section 8.3.1, the backprojection method is an analyti-
cal method and enjoys the advantage of computational efficiency. The backprojection
process can also be directly applied once a measurement is acquired, without await-
ing for the recording of subsequent measurements. It can, therefore, be applied online
while subsequent measurements are being acquired.

8.4 Probabilistic

All the above methods aim at reconstructing an image that is consistent with the
provided measurements, often supplemented with constrains based on some a pri-
ori knowledge about the nature of the sought solution. The probabilistic approach
to the solution of image reconstructions incorporates probability distributions into
the solution of the inverse problem. This, in turn, introduces into the supplemen-
tary solution features that are not provided explicitly by the measurements. In such



HUSSEIN Ch08-9780123877772 2011/4/19 2:13 Page 93 #7

Formulation 93

approach, an estimate of the to-be-reconstructed image parameters vector, c, is viewed
as a “hypothesis” that is to be retrieved from a “datum” given by the measurement
vector,e. The conditional probability theorem of Bayes (1763) relates the hypothesis
and datum by:

P(c|e)=
P(e|c)P(c)

P(e)
(8.11)

where both c and e are assumed to have probability distributions, P(c) and P(e),
respectively. When the hypothesis probability is not known in advance, an estimate
of this a priori probability, P(c), is made, and Eq. (8.11) is referred to as the Bayes’
postulate. The forward mapping c→ e, when properly normalized, represents a con-
ditional probability, P(e|c); also called the “likelihood,” as it indicates how likely e
would have been arrived at if the value of c was given. The inverse mapping then
corresponds to a posteriori probability, P(c|e).

If P(c) and P(e) are known, designated some presumed distributions, or proclaimed
to be equi-probable (uniform) distributions (which amounts to complete ignorance of
their statistical nature), then the a posteriori probability, P(c|e), can be determined
from P(e|c) using the Bayesian relationship of Eq. (8.11). The likelihood, P(e|c), can
be deduced from the forward mapping, since both relate e to given values of c. The
application of the Bayes’ hypothesis provides a means to estimate the inverse map-
ping, which is directly related to the a posteriori probability, P(c|e).

Another approach is to maximize the likelihood, P(e|c). This produces the most
likely solution. By relating e to c using the forward mapping, i.e. ê=mĉ, one can
redefine the likelihood, P(e|mĉ), which relates a measurement, e, to a modeled mea-
surement, mĉ. This makes it possible to define a distribution for P(e|ê), since both e
and mĉ are members of the same population of measurements. With ê being a ran-
dom variable with a corresponding mean, e, the likelihood, P(e|ê), becomes in effect
a probability distribution of the departure of ê from the mean value. Minimizing this
difference (variance), or equivalently maximizing P(e|ê), leads to the most likely solu-
tion (called in statistics the “mode”). If a normal (Gaussian) distribution of the depar-
ture from the mean is assumed, then the solution is equivalent to the matrix-based
least-squares method, as shown in Appendix 8.A.

One other approach is that of the maximum a posteriori method (map). As the
name indicates, it maximizes P(c|e). Maximizing this probability leads to the mean,
or expected, solution. Using the Bayes’ postulate of Eq. (8.11) and considering P(e)
to be a constant probability distribution, one can focus on:

maxP(c|e)=max[P(e|c)P(c)] (8.12)

As mentioned above, maximizing P(e|c) leads to the most likely solution. Therefore,
maximizing P(c|e) involves the maximization of the likelihood plus the solution prob-
ability, P(c). In effect, the maximum a posteriori amounts to a regularized solution of
the most maximum-likelihood solution, with P(c) acting as the regularization term,
see Section 10.4. This becomes more obvious if the logarithm of P(c|e) is minimized,
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which is equivalent to maximizing P(c|e):

min lnP(c|e)=min[lnP(e|c)+ lnP(c)] (8.13)

where lnP(c) acts as a regularization term.
The Markov chain Monte Carlo method is the ultimate utilization of these prob-

abilistic estimates in a stochastic sampling process. The optimization method of
simulated annealing, discussed in Section 11.7, is a realization of this probabilistic
approach. The optimization method of genetic evaluation, Section 11.6, also contains
an element of randomness. Other methods that rely on random sampling to image
reconstruction are discussed in Section 13.5.

8.A Probabilistic Basis of Maximum-Likelihood and
Least-Squares Methods

Consider an experiment in which a quantity, e, is measured n times, each time with
a different instrument. Each measurement gives a value, êi, with an error, σi, with
i= 1,2, . . .N. Assuming that the errors are normally distributed around a zero mean
value, so that each measurement is a realization of sampling a value from a normal
distribution of a mean, ei, and a variance σ 2

i . Therefore, the frequency (probability) of
obtaining a value, êi, in the ith measurement can be estimated according to its normal
distribution as:

P(êi)=
1

σi
√

2π
exp

[
(êi− ēi)

2

2σ 2
i

]
(8.14)

where ēi is the expected (mean) value of ei.
The frequency of obtaining the N measured values can then be estimated as:

P(êi, i= 1,2, . . .N)=
1
√

2π

N∏
i=1

1

σi
exp

[
(êi− ēi)

2

2σ 2
i

]
(8.15)

The logarithmic frequency of obtaining the N values together is:

lnP(êi, i= 1,2, . . .N)=− ln
√

2π −
N∑

i=1

lnσi+

N∑
i=1

(êi− ēi)
2

2σ 2
i

(8.16)

The value of ēi that maximizes ln P(êi, i= 1,2, . . .N) is the best estimate of the true
value of ei. This is the essence of the Maximum Likelihood method.

The value that minimizes:

χ2
=

N∑
i=1

(êi− ēi)
2

σ 2
i

(8.17)
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also maximizes lnP(êi, i= 1,2, . . .N). Equation (8.17) provides the cost (objective)
function for the least-squares method.

In imaging, one attempts to match the modeled value of ei with the measured value.
The value that provides the best match becomes then the best estimate, or the “true”
(as true as one can get) value of ei. Then ēi in Eq. (8.17) can be replaced with the
modeled value of ei in each measurement, leading to:

χ2
=

N∑
i=1

(êi− ei)
2

σ 2
i

(8.18)

which measures the difference between the measured and modeled values of e,
weighted by the error in each measurement σi, see Section 15.4.3. Minimizing χ2

of Eq. (8.18) gives then the best estimate of the true value of e. Equation (8.18), when
it replaces the last term in the right-hand-side of Eq. (8.16), provides the maximum-
likelihood formulation.

Reference

T. Bayes, “Essay towards solving a problem in the doctrine of chances,” The Philosophical
Transaction, vol. 53, pp. 370–418, 1763, published posthumously. Available on: http://
www.stat.ucla.edu/history/essay.pdf, accessed October, 2008.
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9 Preprocessing of Measurements

The purpose of imaging is to determine the value of some physical parameter, c, within
designated voxels. The larger the number of voxels within an image the better is its
depiction of the distribution of c, but practicality dictates the imposition of a finite
number of voxels. No matter how small the voxels are, their number is still finite.
Moreover, the smaller a voxel, the less it contributes to measurements, the more dif-
ficult to decipher its presence and determine its content. What is required then is to
sample a sufficient number measurements so that the reconstructed parameters, c, rep-
resent as faithfully as possible the distribution of c, among the image voxels. The
discretization into voxels, as discussed in Section 7.1, imposes a limit on the spatial
resolution of the image.

Image parameters are reconstructed from measurements, which are recorded at
discrete points with detectors that have a finite size and produce noisy (statistically
fluctuating) readings. The number and measurements and the manner with which they
are sampled affect the quality of the reconstructed image. However, measurements
can be preprocessed to reduce the effect of the above mentioned factors. In imaging,
measurements are sampled in groups along a line, an arc, or a surface. A measurement
and its neighbors tend typically to exhibit a certain trend of change with the spatial
location of the detectors. Measurement filters discussed in this chapter take advan-
tage of these spatial trends to smooth the measurements, in an attempt to extract, as
much as possible, genuine information from measurements contaminated by noise and
sampled at discrete locations.

The aspects associated with sampling with finite-size detectors that produce noisy
measurements are discussed in the following sections, followed by a discussion of
the methods that can be used to preprocess (filter) measurement data before utilizing
them in image reconstruction. It should be cautioned though that filtering measure-
ments ahead of using them in image reconstruction can smooth out, along with noise,
fine details in the structure of the image profile, which can in turn affect the quality of
the reconstructed images. It is often desirable to deal with noise and measurement
fluctuations during the image reconstruction process, as discussed for example in
Section 10.4, and/or after reconstructing the image by post-processing, as discussed
in Chapter 16. Nevertheless, methods for preprocessing measurements are included
here as they may be useful in some cases. Filtering methods in both the frequency
and the spatial domains are presented, in Section 9.2 and 9.3, respectively. Filtering
comes, however, at the expense of altering the magnitudes of measurements, which is

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00009-4
c© 2011 Elsevier Inc. All rights reserved.
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undesirable in image reconstruction. Methods to overcome this problem are discussed
in Section 9.4. We begin, however, by addressing a simple but a fundamental practi-
cal question: if one needs to reconstruct an image consisting of N voxels, how many
measurements, M, should one acquire?

9.1 Number of Measurements

The number of measurements, M, required to reconstruct an image, should be suf-
ficiently large to produce an image at the desired spatial resolution; with the latter
dictated by the number, N, of image voxels/pixels. When collecting measurements,
one must ensure that each voxel contributes at least to one measurement, so that each
voxel has a “say” in the image reconstruction process. One also should devise a sam-
pling strategy so that each measurement differs from all other measurements by cov-
ering at least one voxel not covered by the others, or being affected by at least one
voxel in manner different from that of other measurements, so that each measure-
ment provides some new information about the interrogated object. Since statistical
fluctuations (noise) are almost always associated with measurements, and given that
the forward problem may not accurately model physical reality, as discussed in Part I
of this book, one should aim at overdetermining the inverse problem, by acquiring
a total number of measurements, M, greater than the number of image voxels (i.e.
unknown parameters), N. In the presence of noise, a number of measurements exactly
equal to the number of unknowns, M = N, can in effect render an underdetermined
problem, as some measurements may not differ from others by statistically significant
margin to be recognized as distinct measurements. In some cases, it is impractical
to overdetermine the problem. When the problem is underdetermined, the problem
is incomplete, and one must rely on some supplementary a priori information to
solve the inverse problem, as discussed in Chapter 14. However, when it is possi-
ble to overdetermine the problem, a practical question arises: by how much should the
number of measurements, M, exceed the number of unknowns, N. We attempt below
to provide some guidance based on two perspectives: (1) the desire to obtain a set
of measurements that is responsive as much as possible to the changes in the physical
attributes of the imaged object, and (2) to obtain upon image reconstruction an as accu-
rate image as possible. The first aspect is addressed by the sampling theorem, while a
framework for the second point is introduced based on minimizing the error in image
reconstruction.

9.1.1 Sampling

Typically in radiation imaging, a number of contiguous measurements are acquired
to formulate a measurement profile. The measurements are along a line, an arc, or
a surface, at some equally spaced intervals. Let r be a distance along the acquisi-
tion direction, Er, which we will consider here to be a line, but the discussion can
be easily extended to a curve or a surface. We will assume that measurements are
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acquired at detector positions separated by a distance,1r. Though each detector has a
finite volume, we will initially attribute a detector measurement to a point at the mid-
dle of the intersection of the detector’s sensitive surface with the line along Er. Then
one speaks of sampling M measurements at a spatial frequency of 1

1r . Measurements
then lend themselves to frequency analysis, discussed in Section 9.2, but the interest
here is in determining the optimal sampling frequency.

An obvious sampling frequency is 1
1r , which is accomplished by choosing1r such

that it is equal to the smallest voxel width projected on the direction of acquisition of
measurements along Er. Such arrangement amounts to discretization of the measure-
ment profile, in a manner similar to the discretization of image pixels/voxels. How-
ever, the optimal situation is to obtain a measurement profile that is continuous and
is independent of the discretization process that created the voxels. Assuming for the
moment that the measurements are noise-free, or that statistical fluctuations are neg-
ligible, then the sampling theorem provides some guidance on selecting the sampling
frequency.

The well-known Nyquist-Shannon (1928–1949) sampling theorem states that
a continuous function containing no frequencies higher than a certain maximum
frequency, fmax, is completely determined (i.e. fully reconstructed as a continuous
function) from function points sampled at a frequency of 2fmax. The latter frequency
is known as the Nyquist frequency. The opposite is also true: if measurements are
sampled at the Nyquist frequency, or higher, the underlying continuous function
that describes the measurement trend can be reconstructed. This is articulated by
Whittaker-Shannon (1935–1949) sampling theorem, which states that when the sam-
pling frequency is greater than or equal to the Nyquist frequency, one can estimate an
unmeasured value of e(Er) between the sampling points using:

e(r)=
M−1∑
m=0

e(m1r) sinc

(
r−m1r

1r

)
(9.1)

where

sinc(x)=
sin(πx)

πx
(9.2)

with m= 0,1, . . .M− 1. In other words, in theory, from a measurement sequence sam-
pled at the Nyquist frequency, one rebuilds a corresponding continuous function.

By constructing an image with a voxel/pixel width of 1r, one is implicitly assum-
ing that the reconstructed images would reflect changes in the image features at a
maximum rate (frequency): fmax =

1
1r . Then by sampling at a frequency of 2fmax, one

acquires a measurement trend that reflects continuous changes in the image features.
Abrupt and edge changes which occur at higher frequencies would not be retrieved,
but edge preserving regularization or image enhancement methods can be employed
for this purpose, as discussed in Section 10.4 and Chapter 16, respectively.

As an example, let us consider a square tomograph of
√

N×
√

N = N square pixels.
To fully-determine the problem, one must acquire M = N error-free independent
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measurements. If at each line projection
√

N measurements are acquired, then one
needs

√
N projections to fully determine the problem. Let us retain the number of

projections as
√

N, but sample measurements at the Nyquist frequency along each pro-
jection. A sampling line will see at most 2

√
2N pixels (along the diagonal of the tomo-

graph) and at least 2
√

N (along one of the tomograph’s sides). Therefore, if the number
of measurements along each projection line, Mp, is such that Mp ≥ 2

√
2N = 2.83

√
N,

the conditions for the sampling theorem will be satisfied at each projection. With
√

N
projections sampled at or above the Nyquist frequency, the total number of measure-
ments M would be: M ≥

√
NMp = 2.83N. In other words, the problem needs to be

overdetermined by a factor or 2.83. A modern transmission tomography system recon-
structing a N = 512× 512= 262,144 pixels acquires 1000 projections, each with 750
measurements, so that M = 750,100, providing M

N = 2.86 degree of overdetermina-
tion (Goldman, 2007), which is in close agreement with the above analysis in terms of
the overall degree of overdetermination.

It should be noted though that even if the Nyquist condition is theoretically
satisfied, in practice its use to regenerate a continuous profile is hampered by the
approximation of the sinc function, for digital implementation, as it introduces inter-
polation errors. Moreover, noise associated with measured values add uncertainties to
the measurement profile reconstructed from sampled measurements. In imaging, the
objective is not to reproduce exact continuous measurement profiles, but to acquire
measurements that reflect changes in the imaged object. Therefore, the conditions of
the sampling theorem function are only a guide on how to overcome the effect of
the discretization process. However, the Nyquist condition overdetermines the inverse
problem by at least a factor of two, which helps with controlling error propagation in
the image reconstruction process, as discussed below.

9.1.2 Error Minimization

The ultimate goal of imaging is to obtain values for the image parameters, represented
by c, from measurements, e, by inverting the forward mapping, which when repre-
sented by a matrix, A, gives: Ac= e, where c is an N× 1 vector, e is an M× 1 vector,
and A is an M×N matrix. The error, δc, associated with c depends on the error, δe,
in e and the error, 1, in A, with the latter being present due to the modeling approx-
imations discussed in Part I of this book. Let c0 and e0 and A0 be the exact (but not
known) image parameters, measurements and forward mapping, respectively. Then
the associated errors can be expressed as:

δc = c− c0 (9.3)

δe = e− e0 (9.4)

1= A−A0 (9.5)

Given that δc is determined by δe and 1, let us introduce the error:

δ = δe−1c0 (9.6)



HUSSEIN Ch09-9780123877772 2011/4/19 2:33 Page 101 #5

Preprocessing of Measurements 101

Image reconstruction aims at matching e with Ac, or equivalently minimizing e−Ac.
In terms of the above errors:

e−Ac= e0+ δe−A(c0+ δc)= e0+ δe−A0c0−1c0−Aδc

= (δe−1c0)−Aδc = δ−Aδc

where use is made of A0c0 = e0. Therefore, minimizing e−Ac is equivalent to mini-
mizing δ−Aδc:

min
c
‖e−Ac‖ =min

δc
‖δ−Aδc‖ (9.7)

With the norm defined as a Euclidean norm, the problem of Eq. (9.7) is a least-squares
minimization problem, discussed in Sections 8.1 and 10.3, whose solution for δc is

δc =
(
ATA

)−1
ATδ. Therefore,

‖δc‖ =

∥∥∥∥(ATA
)−1

ATδ

∥∥∥∥≥ ∥∥∥∥(ATA
)−1

∥∥∥∥ ∥∥∥ATδ

∥∥∥ (9.8)

Given that the Euclidean norm of a matrix is equal to its largest singular value (square
root of eigenvalue) and that the smallest singular value of a matrix is equal to the
largest singular value of its inverse1, δc depends on the singularity of the system
matrix, which in turn depends on the structure of the forward model. Effort should be
made, therefore, to decrease the singularity of the forward model, by using regulariza-
tion (see Section 10.4), to reduce error propagation. Once the matrix A is formulated,
increasing its size to accommodate additional measurements should be done in such a
way that its does not make the expanded ATA matrix more singular, by ensuring that
the added measurements are independent from already available measurements. The
error1 in A, can be estimated by comparing the model with experiments that produce
low measuring uncertainties (e.g. with long counting periods) to overcome statistical
fluctuations. Even if 1 is not known, one can assume it to be equal to zero, and deter-
mine the term in the right-hand side of the inequality of (9.8) to ensure that the added
measurements do not increase δc, indeed they should reduce it.

The above analysis does not provide a specific value for the desired degree of
overdetermination. This is because of the nature of the Euclidean norm, which pro-
vides the most probable solution, as discussed in Appendix 8.A. The most probable
solution will naturally change as more measurements are added, and will depend on
the quality of such measurements. A more specific answer, yet an upper-bound, can be
obtained using the maximum absolute column sum norm, ‖.‖1; nicknamed the taxicab
norm because it is a measure of the worst error. If overdetermination reduces the worst
error, it will also reduce the most probable error. The analysis given here is a modified
version of that given by Ben Rosen et al. (2000).

1 Weisstein, E. W. Matrix Norm. From MathWorld–A Wolfram Web Resource. http://mathworld

.wolfram.com/MatrixNorm.html.
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By combining the matrix, A, and the measurement vector, e, into a single
M× (N+ 1) matrix, [A:e], one can assess the modeling error and measurement error
together, using the δ error defined by Eq. (9.6). In practice, only some rows of [A:e]
are likely to contain large errors. If all rows have a large error, then the design of the
imaging system is poor, and should be improved by better forward modeling and/or
more accurate measurements. Consider K <M rows of [A:e] that have large absolute
errors, with a maximum value of δmax. Other rows of [A:e] would then have a small
absolute error. Let, δmin > 0 be the smallest error, in the rows of [A:e], of practical
relevance, i.e. error less than δmin is considered to be insignificant.

From the M×N matrix, A, one can select a basis (non-singular) N×N matrix, B.
The remaining portion of A forms a supplementary (M−N)×N matrix, Â. Similarly,
one can partition δ and δe so that:

A=
[

B
Â

]
, δ =

[
δB

δNB

]
, δe =

[
δeB

δeNB

]
(9.9)

A possible minimizer of Eq. (9.7) is δ = Aδc, which gives: δc = B−1δB, along with:
Âδc = δNB. Hopefully, there is more than one basis N×N matrix that one can select
from the rows of A. Let B be the set of these basis matrices. Therefore, Eq. (9.7) can
now be expressed using the L1 norm as:

min
δc
‖δ−Aδc‖1 = min

Â∈B

∥∥∥δNB− ÂB−1δB

∥∥∥
1

(9.10)

Let q be a positive integer that defines the required degree of overdetermination,
such that q= M−N

N , or M = (q+ 1)N. Then, one has q rows, Â1, Â2, . . . Âq, of the

supplementary matrix, Â. Each row multiplied by the inverse of the basis matrix, B−1,
gives an N×N matrix, Fj = ÂjB−1.

Let us now assert the following norm bounds:

‖δ‖1 ≤ Kδmax (9.11)

‖δB‖2 ≥
√

Nδmin (9.12)

‖δNB‖1 ≤ (K− 1)δmax (9.13)

‖FjδB‖1 ≥ ‖FjδB‖2 ≥ sj
√

Nδmin ≥ smax
δmin

δmax

√
Nδmin (9.14)

with sj being the minimum singular value (square of eigenvalue) of Fj, and smin is the
minimum singular value of all Fj’s. The inequality of (9.11) gives an upper-bound for
‖δ‖1, defined by the maximum value of the K large errors. The inequalities of (9.12)
and (9.13) indicate that at least one of the K measurements with large error is included
in δB, otherwise no large errors are involved in the solution. In arriving at (9.14), lower
bounds of the norms are employed with ‖Fj‖2 ≤ si.

Let δL be the error, as defined by Eq. (9.6), associated with the large errors, parti-
tioned as in Eq. (9.9) to δLB and δLNB components. Then, for large errors, one wants
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to minimize
∥∥∥δeNB − ÂB−1δLB

∥∥∥
1

with δLB = 0, and accordingly ‖δL‖1 = ‖δLNB‖1 and

‖δc‖ = 0. When this minimization is not attained, i.e. for δLB 6= 0, a subset, BL ∈ B
would exist, within the minimum of (9.10), such that:

β = min
B∈BL

∥∥∥δNB− ÂB−1δB

∥∥∥
1

(9.15)

Then β must be greater than ‖δ‖1, since the latter is the minimum of (9.10), with
δc = 0, over the entire set, B, not only the subset, BL. Therefore, a sufficient condition
to obtain a solution not affected by large errors, i.e. with δB = 0, and accordingly,
δc = 0, is β > ‖δ‖1. However, a necessary condition is β ≥ ‖δ|1, because if β = ‖δ|1
minimizes (9.10) within the subset BL, one must ensure that the same value minimizes
it outside the subset, to ensure that δ = 0.

One can estimate a lower-bound for β as:

β = min
B∈BL

∥∥∥δNB− ÂB−1δB

∥∥∥
1
= min

B∈BL

∥∥δNB−FδLB

∥∥
1

= min
B∈BL

∥∥FδLB − δNB
∥∥

1 ≥ min
B∈BL

‖FδLB‖1− max
B∈BL

‖δNB‖1

≥

q∑
j=1

‖FjδB‖1− (K− 1)δmax > qsmin
δmin

δmax

√
Nδmin−Kδmax

β > q
δ2

min

δmax
smin
√

N−Kδmax
(9.16)

where use is made of (9.12), and F= ÂB−1, with FT
=

[
FT

1 F2
T
· · ·FT

q

]T
. Given that

‖δ‖1 ≤ Kδmax, from (9.11), to ensure satisfaction of the sufficient condition β > ‖δ‖1,
one must have:

q
δ2

min

δmax
smin
√

N ≥ 2Kδmax

q≥
2K

smin

(
δmax

δmin

)2

(9.17)

Keeping in mind that the requirement of (9.17) is derived for significant errors,
such that δmin > 0, it automatically accommodates smaller errors less than δmin. The
condition of (9.17) is an upper-bound, and requires some knowledge of the margin
of both measurement and modeling errors, and the minimum singular value of the
matrix ÂB−1. The existence of a non-singular basis matrix, B, ensures that smin 6= 0.

However, an M×N supplementary matrix, Â, can only be determined if q= M−N
N is

known.
The inequality of Eq. (9.17) can be used to assess how far a given level of determi-

nation is from this ideal condition, which assures a zero error in the reconstructed value
of c. As one would expect, the closer smin to zero, the closer ÂB−1 is to singularity, the
higher the required degree of overdetermination, as (9.17) indicates. It is interesting
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though to notice that the degree of overdetermination is affected by the relative margin
of error, ratio of maximum error to minimum error, not by the value of the error
itself. As inequality (9.17) indicates, the higher the maximum-to-minimum error ratio,
the higher the degree of overdetermination. Obviously, the higher the number, K, of
measurements with larger error, the more measurements are needed. Note though for
K = 0, the condition (9.17) simply states that q≥ 0, or equivalently, M ≥ N, which is
not very informative. However, no matter how small the error is, one should be able to
identify a number of measurements as having a relatively large error, and define a K
value. One can also rely on the inequalities of (9.12) and (9.13) to, respectively, define
δmin and δmax.

9.2 Frequency Analysis

If a measurement set, e(m1r), m= 0,1, . . .M− 1, is subjected to a discrete Fourier
transform (dft),2 one gets:

Fk {e(r)} =
M−1∑
m=0

e(m1r)exp
[
−2π ik

m

M

]
, −

M

2
≤ k ≤

M

2
, F−k =F ?

k

(9.18)

where k is the wavenumber and F ?
k is the complex conjugate of Fk. The Fourier

coefficient, Fk, consists of real and imaginary components. The amplitude (modulus)
of this coefficient determines the strength of the frequency component, while little
attention is typically given to its phase shift because it does not provide useful infor-
mation. Owing to the second condition associated with Eq. (9.18), −k indicates a
spatial revolution in a direction opposite to that of k, i.e. a phase shift of π . Therefore,
negative frequencies are not considered, and attention is given to the zero and the M

2
positive frequencies. The first condition of Eq. (9.18) indicates a maximum frequency
that is half the sampling frequency. Both these conditions arise from the fact that one
cannot deduce variations in data at a frequency higher than the rate of sampling of
two successive measurements (to observe change). The Fourier transform at k = 0, as
Eq. (9.18) indicates, gives the summation of all measurements, and does not reflect
any change, as one would expect. Therefore, scaling F0 by M

2 produces the datum
of the measurements, while scaling a higher order coefficient with the same scaling
factor gives the amplitude of the considered frequency component. The fundamental
frequency, at k = 1, is equal to 1

M1r , i.e. one cycle for the entire spatial range of the
acquired measurements. This is the lowest frequency for observing change in mea-
surement data.

Frequency analysis provides some useful information about the measurements, and
indirectly the imaged object. First, noise in the measurements will typical appear as
an uncorrelated low-amplitude background component. The signal-to-noise ratio of

2 Discrete Fourier numerical algorithms requires that M = 2n, where n is an integer; if it is not, it can be
trimmed back to the nearest value or expanded by adding zeros to the end of a data set to satisfy this
requirement. For a free software see: http://www.fftw.org/
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measurements can then be assessed. Though radiation counting fluctuations can be
estimated by Poisson statistics (see Section 15.2), frequency analysis can reveal other
sources of noise, such as those produced by electronics, and external vibrations or
electromagnetic fields.

Low amplitudes at the high frequency components of the Fourier transform of mea-
surements indicate that the measurements are monotonic, i.e. do not contain strong
periodic variations. On the other hand, steep measurement variation are reflected by
strong high-frequency components. However, such strong changes may not be cap-
tured at the rate at which the measurements are sampled. Then, changes that occur at
a rate higher than half the sampling rate, will appear at lower frequencies, producing
the phenomenon of aliasing. The maximum spatial frequency corresponding to a par-
ticular imaging system can be determined by its impulse response, see Section 9.2.2.
However, once the voxel size is preset, one would have had decided to measure change
in an image at a frequency not higher than 1

1rv
, where 1rv is the voxel’s width pro-

jected on the measurement acquisition line along Er. Therefore, to avoid aliasing one
should set the resolution frequency equal to or greater than the Nyquist frequency,
so that the sampling frequency is such that: 1

1r ≥
2
1rv

. Changes occurring at a fre-

quency greater than 1
21r will appear as aliasing that strengthens the low frequency

components of the measurements, and in turn dampens the effect of high frequen-
cies. Such finer changes may, however, be recovered in image reconstruction with
the aid of a priori information, constraints, or regularization in image reconstruction
(see Section 10.4), or by image post-processing to enhance edges (as discussed in
Section 16.3).

Another cause of aliasing is due to the fact that measurements for image recon-
struction are always recorded over a finite support (a width) that typically corresponds
to the width of the imaged object. The outside edges of an image inevitability produce
an abrupt (high frequency) change in corresponding measurements, which in turn pro-
duces aliasing. The finite sampling width, since finite number of measurements, is
equivalent to imposing on an infinite set of measurements a window that sets mea-
surements outside the support to zero. This results in a spreading or leakage of the
frequency components beyond the Nyquist frequency.

When examining the frequency spectrum generated by the discrete Fourier trans-
form of Eq. (9.18), the effect of discretization should be kept in mind. The frequencies
(harmonics) produced by the dft are multiples of the fundamental frequency, 1

M1r . If
the measurements happen to contain a frequency in between these discrete frequen-
cies, its amplitude will be distributed between the adjacent harmonics, giving the illu-
sion of two frequencies of dampened amplitudes. This effect is sometimes referred to
as the “picket-fence” effect, but can be overcome by artificially changing the period
over which dft is performed by padding the original set of measurements with zeros
until the number of measurements reaches the next 2n power. This will produce finer
spectral lines without affecting the form of the original spectrum.

9.2.1 Frequency Filtering

Aside from the frequency information deduced from the Fourier transform of a mea-
surement profile, one can also filter out undesirable frequency components and use
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inverse dft to regenerate the filtered measurements, for subsequent use in image
reconstruction. For instance, one may want to filter out high frequencies if they appear
to contain low-amplitude noise. For this purpose, one may apply a low-pass digital
filter in the form of a step function with a unity amplitude below a cut-off frequency,
kc, and a zero amplitude above this frequency. However, the inverse Fourier transform
of a step function is a sinc function, Eq. (9.2). The sinc function has an endless rip-
pling effect that extends indefinitely into the spatial domain. Since one always has a
finite set of measurements, these ripples are in effect terminated at both ends of the
sampling interval. Therefore, the sharpness of the step function becomes less steep
and rippling appears at both ends of the altered step function, which in turn allows the
higher frequency one intended to eliminate to reappear, see Smith (2003, Chap. 16).
This problem is overcome by the use of a windowed-sinc filter in the spatial domain
that produces, upon transformation, a good approximation of the step function in the
frequency domain. Two common filters can be used for this purpose (Smith, 2003):

Hamming window : w(l)=
1

2

[
1.08− 0.92cos

(
2π

l

L

)]
(9.19)

Blackman window : w(l)=
1

2

[
0.84− 2cos

(
2π

l

L

)
+0.16cos

(
4π

l

L

)]
(9.20)

where L is the number of measurements covered by the window, an even number.
These windows, when multiplied by the truncated-sinc filter, reduce the ripple effect
on both the spatial and frequency domains, and produce a reasonably sharp passband
in the frequency domain. The two filters of Eqs. (9.19) and (9.20) are quite simi-
lar, but the Blackman window provides better damping of the filtered-out frequencies,
while the Hamming window generates a sharper cut-off. Other windows are also avail-
able, but the Blackman and Hamming filters have better filtering characteristics. The
Blackman windows is usually preferred because of its superior damping characteris-
tics (Smith, 2003).

A low-pass filter with a window of length L (an even number) can, therefore, be
applied directly to measurements (in the spatial domain) by the convolution3:

ẽ(m1r)=
L−1∑
l=0

e(m1r− l1r)×
sin
[
2π fc

(
l− L

2

)](
l− L

2

) ×
w(l)

K

with
sin
[
2π fc

(
l− L

2

)](
l− L

2

) = 2π fc, when l=
L

2

and K =
L−1∑
l=0

sin
[
2π fc

(
l− L

2

)](
l− L

2

) (9.21)

3 Convolution involves reversing a function, shifting it, and multiplying it by another function, then
integrating.
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where ẽ(r) designates a filtered measurement at r = m1r,
sin2π fc

(
l− L

2

)
2π fc

(
l− L

2

) is the inverse

dft of a rectangular function in the frequency domain that extends from zero to a cut-
off frequency, kc, defined by fc which is a fraction (less than half) of the sampling rate,
and w(l) is one of the windows of Eqs. (9.19) or (9.20). The restriction on fc is due to
the limitations on the dft frequency dictated by the sampling theorem, see Eq. (9.18).
While fc is determined by the upper frequency one needs to filter out, the length of the
window, L, determines the sharpness of the cut-off (how close to a step function); the
larger L, the steeper the cut-off.

A more sophisticated filter in the frequency domain is the Wiener filter, which is
based on the signal-to-noise ratio at each frequency. Its frequency response, H(k), is
expressed as (Smith, 2003, Chap. 17):

H(k)=
[Fke(m1r)]2

[Fke(m1r)]2+ [N (k)]2
(9.22)

where N is the Fourier transform of the noise. The squaring of the components of the
kernel of Eq. (9.22), indicates that the filter relies on the powers of signal and noise.
The filter is implemented by multiplying the kernel by Fk, adding the contribution of
all frequencies, and applying inverse Fourier transform to obtain the filtered values.
The noise level can be assumed to be constant at all frequencies, in the case of white
noise, or be estimated based on some a priori knowledge of the nature of the noise. The
Wiener filter is quite effective in producing a high signal-to-noise power (amplitude
squared) ratio, and as such is a good low-pass filter in the presence of high-frequency
noise. In the spatial domain, the filter is equivalent to minimizing the mean-squared-
difference between the filtered and measured values, and can be implemented as a
least-squares regression (curve fitting). One disadvantage of such approach is that the
least-squares methods are not robust, i.e. they are not tolerant of large errors (Proakis
and Manolakis, 2007).

The above discussion considered a low-pass filter, but a high-pass filter can be
composed by inverting the sign of the kernel of the low-pass filter, and adding one
to its center (Smith, 2003, Chap. 14 & 16). This has the effect of flipping the step
function of the low-pass filter in the frequency domain, so that it becomes a high-pass
filter. A band-pass filter can be created by cascading. i.e. applying a low-pass filter
then a high-pass filter, or by forming a combined filter by the convolution of low-pass
and high-pass filters. Adding a low-pass filter to a high-pass filter creates a band-reject
filter.

9.2.2 Impulse Response

One can gain insight into the response function of an imaging system by examin-
ing its impulse response in the frequency domain. An impulse response is defined
here as the measurement profile produced when a Dirac delta function is introduced
into the imaged object. This can be physically done by introducing a tiny intrusion,
such as a thin wire, of physical attributes that are considerably different from those
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of the contents of the imaged object. The corresponding measurements provide the
point spread function (psf) for the system. Note that the psf concept is also used to
measure the spread in the reconstructed image to determine the image quality (see
Section 15.5), and also in image enhancement (Section 16.1) to examine the degree
of image degradation. Here, we focus on examining the response of measurements to
an impulse change in the physical attributes. Such response in the frequency domain
will provide a direct indication of the system’s highest frequency, since an impulse
change is the most abrupt change one can introduce into a system. The magnitude of
the resulting frequency response compared to that of the surrounding noise will give
direct indication of the signal-to-noise ratio of the imaging system. Shifting the posi-
tion of the introduced impulse will result in a phase shift in the frequency response.
If spatial shifting produces a linear phase-shift response, then one would be able to
conclude that the point spread function is symmetric (Smith, 2003, Chap. 10). If the
psf is spatially invariant, i.e. independent of position, then the magnitude of the result-
ing frequency response would not change with the position of the introduced impulse
change. The nature of the psf characterizes, therefore, the nature of measurements.
When applying dft for analyzing the impulse response, one should keep in mind that
the frequency resolution depends on the length of the measurement sample, but the
latter can be expanded by padding the sampled measurements with zeros before per-
forming the dft, as discussed at the beginning of this section.

9.2.3 Detector Aperture

The frequency analysis presented is Section 9.1.1 considered point-localized measure-
ments. A physical detector has a size, hence an aperture of a finite area. One must,
therefore, account for the detector size. A simple solution is to assign a detector mea-
surement to a point representative of the detector, say at the center of its aperture.
This, however, does not reflect the spatial width of the detector and its effect on the
spatial profile of recorded measurements. Continuing with the analysis for a measure-
ment acquisition line along Er, one could then attempt to deconvolve the effect of the
detector aperture along Er, while compacting the detector size in the direction normal
to Er into points on Er. Let the width of the detector aperture be D, and assume that all
detectors are of the same size, and that the detector efficiency is constant along D.
The observed detector measurement, em, for the mth measurement, with m= 1 to M,
is then the convolution of the unknown spatial resolution of e(r) along D with a rect-
angular function representing the detector aperture:

em =
1

D

D∫
0

e(Er− Er′) rect

(
r′

D

)
dr′ = e(r) ∗ rect

(
r

D

)
; m= 0,1, . . . ,M− 1

(9.23)

where rect
( r

D

)
= 1 when

∣∣ r
D

∣∣≤ 1
2 , and is zero otherwise, and “∗” designates con-

volution. Equation (9.23) represents a linear filtering of measurements by the
detector aperture. A convolution in the spatial domain becomes a summation in
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the Fourier frequency domain, and Fk
{
rect

( r
D

)}
= D sinc(kD) for frequency k,

where sinc(kD)= sinπkD
πkD and sinc(0)= 1. Therefore, transforming Eq. (9.23) and

re-arranging the results leads to:

Fk {e(r)} =
Fk {em)}

sinc(kD)
(9.24)

This indicates that the Fourier coefficients of continuous measurements over a
detector can be found from the Fourier transform of discrete measurements. These
Fourier transforms can then be analyzed and processed, as discussed in Sections 9.1.1
and 9.3. Note that the singularity, caused by the zero value of the sinc function in
the denominator of Eq. (9.24) when kD= 1, is avoided by the fact that |k| ≤ 1

21r ,
i.e. is less than the Nyquist frequency (half of the sampling frequency), as indi-
cated in Section 9.2, where 1r is the distance between two adjacent measurements.
Also, D≤1r, unless detector measurements overlap each other. Therefore, kD≤ 1

2 ,

and sinc(kD)≤
sin( π2 )

π
2
= 0.6366< 1, and the singularity at kD= 1 and the multiple

integer values of kD are never reached. With the view that 1
sinc(kD) acts as a fil-

ter to the acquired discrete measurements, em, any noise in measurements is ampli-
fied by less than 1/0.6366= 1.571, which is not an appreciable magnification factor
(Barrett, 1981).

9.3 Spatial Filtering of Noise

Statistical variations and electronic noise inevitably contaminate measurements; see
Section 15.4.3 for discussion on the sources of measurement fluctuations. A high
signal-to-noise ratio can be attained in radiation systems by increasing the strength of
the radiation source, prolonging the measurement time, using high-efficiency detec-
tors and having good quality electronic components. However, a measurement profile
recorded along a line, a curved segment, or a detection plane, is likely to exhibit some
fluctuations. Such fluctuations should be smoothed out or eliminated to avoid their
proliferation into the image reconstruction process.

As indicated in Section 9.2.1, one can filter out, in the frequency domain, high fre-
quencies if they only contain low-amplitude noise. Noise would still, however, exist at
lower frequencies. One can take advantage of the fact that measurement profiles tend
generally to be continuous in the spatial domain, and even abrupt changes do not tend
to produce steep changes in measurements because of the finite volume of a detector.
Oscillations in measurements that cause deviation from this continuity are most likely
caused by noise, and can be smoothed out by a filter that restores continuity. Some of
these filters are discussed below.

9.3.1 Moving-Average Filter

A simple and powerful filter that can be applied directly to a measured profile, along
some distance r, is the moving average filter. In its simplest form, a moving average of
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order L replaces a measurement, em, by the average of this measurement and its L− 1
neighbors:

ēm =
1

L

L−1
2∑
−

L−1
2

em (9.25)

ēm = ēm−1+ em+ L−1
2
− em−1− L−1

2
(9.26)

where ēm is the filtered value, and L is the number of measurements over which
the moving average is conducted. For measurements at the edge, i.e. for m= 0 and
M− 1, where M is the total number of measurements, averaging should be taken over
the available measurements only. The recursive form of the filter, Eq. (9.26), greatly
simplifies its implementation. This basic moving-average process reduces the fluctu-
ations introduced by noise by a factor of 1

L (Smith, 2003, Chap. 15). The filter also
retains abrupt changes, though with reduced sharpness. Obviously, this filter treats all
measurements within its range equally, which is the reason behind its effectiveness in
reducing noise, but it can also significantly alter the value of individual measurements,
and may lead to distorted reconstructed images. A moving-average filter with a short
range can overcome this problem, but then it is not quite effective in removing noise.

The moving average of Eq. (9.25) is equivalent to convolving measurements with
a rectangular window filter of length, L, and amplitude, 1

L . Since the Fourier trans-

form or a rectangular function is a sinc function
(
=

sin(π fM)
π f , where 0≤ f < 1

2

)
, the

moving average filter is a low-pass filter in the frequency domain, but with no clear
cut-off frequency. However, repeated application of the moving average, i.e. averag-
ing the moving average, can improve the performance of this filter as a low-pass filter.
A double application of this filter (two passes), i.e. the convolution of a rectangular fil-
ter with itself, and consequently the multiplication of the frequency response by itself,
is equivalent to the application of a triangle filter. The double filter is preferable to a
single rectangular filter, as it gives a measurement a higher weight than its neighbor.
Multiple applications of the moving average, four times or more, becomes equivalent
to the application of a Gaussian filter (Smith, 2003, Chap. 15).

9.3.2 Gaussian Filter

A Gaussian filter has the advantage that its Fourier transform is also a Gaussian dis-
tribution centered around the zero frequency (with positive and negative frequencies
at both sides). One can then control the effectiveness of the low-pass nature of the
filter by adjusting its width. Also, the attenuation of higher frequency components,
hence their relative removal, is more effective with a Gaussian filter than with moving-
average filters. The Gaussian filter may also reflect the inherent statistical nature of
fluctuations in many acquired measurement distributions. The Blackman window of
Eq. (9.20) also provides a shape that resembles that of a Gaussian distribution, and
as such can be utilized as a filter, in place of the Gaussian filter, for computational
convenience.
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9.3.3 Recursive Weighted Moving Average Filter

A recursive moving filter that weights a certain measurement with the moving aver-
age of a neighboring measurement enables not only the suppression of noise but also
the smoothing and some shaping of a measurement profile. A simple form of such
weighted filter is given by:

ēu
m = wem+ (1−w)ēu

m−1, m= 0,1, . . .M− 1; ēu
0 = e0 (9.27)

ēd
m = wem+ (1−w)ēd

m+1, m=M− 1,M− 2, . . .0; ēd
M−1 = eM−1 (9.28)

ēm =
1

2

[
ēu

m+ ēd
m

]
(9.29)

where 0< w< 1. This filter is performed into steps: one upstream of the mth mea-
surement and the other downstream of it, to ensure that the overall trend of the profile
is incorporated into the filtering process (in time-series filtering, only earlier measure-
ments are considered). To gain insight into the nature of this recursive filter, let us
reformulate ēu

m as (Smith, 2003, Chap. 19):

w
(
em− ēu

m

)
= (1−w)[ēm− ēm−1]

em− ēu
m =1r

(
1−w

w

)(
ēm− ēm−1

1r

)
e(r)− ēu(r)= τ

dē

dr
, τ =1r

(
1−w

w

)
(9.30)

where 1r is the distance between two successive measurements. Equation (9.30) is
analogous to an RC electric circuit with resistance, R, capacitance, C, and time con-
stant, τ = RC ≡1r 1−w

w , with an input voltage equivalent to em and an output voltage4

ēu(r). Here instead of time, the change is with respect to the distance from the point
of measurement to a measurement point upstream or downstream of it. Therefore, a
recursive moving average of the form of Eq. (9.30) assigns a full weight to a measure-
ment at em and an exponentially decreasing weight to measurements upstream and
downstream of it. The degree and extent (duration) of the weighting is determined
by w for a given 1r. When w→ 0, τ =→∞ and ēu

m→ ēu
m−1→ ēu

0 = e0, the length
of the moving average covers the entire sampling range while giving a zero weight
for the measurement for which a moving average is to be calculated. On the other
hand, when w→ 1, τ → 0 and ēu

m→ em, and very little moving averaging (if any) is
accomplished. With w= 0.5. τ =1r, and the moving average weight attenuates the
signal by a factor of e−1

= 0.368 every 1r. Therefore, one can state that the filter of

Eq. (9.29) is equivalent to a weight of exp
[
−
|r−r′|
τ

]
applied to both sides of r, with r′

extending from r to the end of the measurement profile at either ends.

4 Recall that the drop in voltage, Vin−Vout in an RC circuit is equal iR, where i is the current and i= C Vout
dt

with Vout and Vin being, respectively, the output (across C) voltage and input (across R and C) voltage.
Then Vout = Vin

[
1− exp

(
−

t
τ

)]
.
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The moving average filter of Eq. (9.29) is a low-pass (first-order) filter of a cutoff
frequency, kc =

1
2πτ . The analog equivalent of the filter of Eq. (9.29) is an electric

resistance-capacitance (RC) circuit with a time constant τ = RC. The capacitor, C, has
a reactance of 1

2πkC , which decreases with frequency, reducing the output voltage
across R. Note that when radiation measurements are acquired in the current mode,
i.e. using a count-rate meter, they would have been already subjected to an RC filter-
ing by the electric circuit of counting. The cutoff frequency, kc is not a sharp cutoff, but
it is the frequency at which the filter attenuates the amplitude by half and consequently
the power of the signal by a factor of one quarter5 (−6 dB).

Higher order recursive digital filters can also be created by incorporating weighted
values of neighboring measurements, as well as weighted values of their own moving
averages. For upstream filtering, one can formulate the following general recursive
filter:

ēu
m = wmem +wm−1em−1 + ·· · · · · · · · +w1e1 +w0e0

+ w̄m−1ēu
m−1 + w̄m−2ēu

m−2 + ·· · + w̄1m̄1
(9.31)

where the w’s and w̄’s are filtering coefficients. There is no w̄m value in Eq. (9.31),
since ēu

m is being calculated, and there is no w̄0 coefficient since ēu
0 = e0 has been

already given a coefficient w0.

9.3.4 Matched Filter

The above filters introduce certain weighting functions, either explicitly or implicitly.
None of these functions directly reflect the actual distribution of the considered mea-
surement profile. A filter that employs the distribution of the measurement profile is
called a matched filter, and can be implemented via a correlation operation. Convolu-
tion involves shifting a function and multiplying it by another function, then integrat-
ing it; recall that convolution requires first reversing the function before the shifting
and performing of other subsequent operations. In matched filtering, one is corre-
lating a function with itself, i.e. performing an autocorrelation. This filter requires,
therefore, a functional formulation of the measurements (which can be obtained via
function fitting). Correlation can also be accomplished via convolution, by convolv-
ing a function with its mirror-image flipped function. Convolution in the frequency
domain becomes multiplication, which facilitates the application of the matched filter.
This filter is quite effective in attenuating high-frequency noise, and in turn in accen-
tuating the presence of discontinuities in a measurement profile to levels well above
the noise level. However, the matched filter does not necessarily preserve the shape
of the profile, and can cause shifting in the position of discontinuities (Smith, 2003,
Chap. 17). It is best used to detect the presence of subtle continuities in a measurement
profile.

5 The power reduction in decibel (dB) is calculated using the 10 log rule: 10× log (power reduction
factor).
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9.3.5 Multipole Filters

The recursive filter of Eq. (9.29) is also known as a single-pole filter. This is because
its kernel, exp[−−r

τ
], as obtained from its analog form, Eq. (9.30), has a Laplace

transform6: Ls{exp[−−r
τ

]} = 1
s+τ , and consequently a single pole located at: s= 1

τ
.

A multipole filter with poles lying on a circle is the Butterworth filter (a low-pass filter
with an analog form that contains capacitances, resistances, and inductances). Recur-
sive multipole filters can also be designed using Chebyshev polynomials, see (Smith,
2003, Chap. 20) for an algorithm. A Chebyshev filter has poles that lie on an ellipse,
and provides a sharp frequency cutoff at the expense of some ripple in the pass or stop
bands. A Butterworth filter, on the other hand, has a more gradual frequency cutoff
but exhibits no ripples.

9.4 Consistency and Smoothing

The filtering processes of Sections 9.2.1 and 9.3 aim at removing noise, essentially by
smoothing measurements with a kernel that relates one measurement to its neighbors.
This can come, however, at the expense of changing the magnitude of measurements,
which in turn affects the magnitude of the image parameters produced in image recon-
struction. Curve fitting can preserve the magnitude of measurements while smoothing
their profile. Since measurement profiles and their slope tend generally to be continu-
ous in the spatial domain, common curve fitting methods, such as polynomial regres-
sion or least squares, can be applied. This also has the added effect of estimating
measurement values between sampled points, to fill missing data. The danger of this
approach is that it can conceal any fine (small scale) genuine changes in a measured
profile. On the other hand, any outliers (measurements with unusually high noise con-
tent) can also bias considerably the curve fitting process, as indicated for the Wiener
filter of Eq. (9.22), which is a least-square filter. However, one can place some restric-
tions, from previous experience or knowledge of the expected experimental trend, on
the curve fitting process.

One can combine the tasks of both preserving the signal magnitude and smoothing
the measurement noise via an optimization process that aims at minimizing the cost
function:

χ2
=

M−1∑
m=0

w2
m(em− ēm)

2
+ α2

‖Gē2
‖2 (9.32)

where w2
m is a weight factor and α2 is a smoothing (regularizing) parameter7, G is

a smoothing operator, and ‖.‖2 denotes a Euclidean norm. The weight factor can be
taken as the inverse variance of em, so that measurements with higher variance are
given a weight lower than measurements with low variance. In radiation counting,

6 The Laplace transform, L, of a function, f (x) is: Ls =
∫
∞

0 f (x)exp[−sx] dx.
7 A squared parameter, α2, is used to ensure a positive number.
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the variance is determined from Poisson statistics, see Section 15.2, and is equal to
the measurement itself. The first term in Eq. (9.32) is a consistency metric that mea-
sures the difference between filtered and actual measurements. The second term is the
regularization term, introduced to relax the minimization of the first term and allow
smoothing (stability) of measurements, so that a small error in the measurements will
not result in a large change in the filtered value. The smoothing operator, G, can be
simply taken as the identity operator, e, a first spatial derivative operator, the sec-
ond spatial derivative (Laplacian) operator, or some other regularization function, see
Section 10.4 for more regularization functions. With G= I, one is using Tikhonov reg-
ularization, which imposes minimum constraint on the smoothing process. With the
first derivative as the regularization operator, one aims at a nearly uniform smoothed
measurement profile, while the Laplacian imposes minimum curvature in the distri-
bution of the smoothed measurements. Higher-order derivatives can also be utilized.
The degree such smoothing constraints impose on the final filtered profile depends on
the value of the regularization parameter, α2, which can be optimized using the cross
validation method discussed in Section 10.5.5. The optimization problem of Eq. (9.32)
can be solved by one of the methods given in the ensuing sections.

9.4.1 Regularized Least-Squares

The optimization problem of Eq. (9.32) can be made equivalent to an ordinary least-
squares problem via the following substitutions (RSICC, 1978):

χ2
=

2M∑
i=1

v2
i

yi−

M∑
j=1

Aijēj

2

(9.33)

y=



e0
·

·

eM−1
0
·

·

0


, v=



w0
·

·

wM−1
G00
·

·

GM−1,M−1


, A=



1 0 0 0 · · ·
0 1 0 0 · · ·
· · · · · · ·

· · · · 1
α 0 0 0 · · ·
0 α 0 0 · · ·
· · · · · · ·

0 0 0 0 α


(9.34)

where y and v are 2M× 1 vectors, A is an 2M×M matrix, ē is an M× 1 vector of the
sought measurements, and Gii represents the smoothing operation performed over ēi.
The minimization of Eq. (9.33) results in the solution:

ē=
[
ATWA

]−1
ATWy (9.35)

where T denotes matrix transpose and W is a diagonal 2M× 2M matrix whose diago-
nal elements are the elements of v.



HUSSEIN Ch09-9780123877772 2011/4/19 2:33 Page 115 #19

Preprocessing of Measurements 115

9.4.2 Dynamic Programming

When the number of measurements is large, the matrix method of Eq. (9.35) becomes
computationally demanding, in terms of computer storage. Dynamic programming
enables the minimization of the cost function of Eq. (9.32) through a set of sequential
suboptimized problems, without performing matrix inversion. The concept of dynamic
programming is explained in optimization textbooks, such as Rao (1996), but the solu-
tion given below is guided by that reported in Trujillo and Busby (1997).

Dynamic programming requires, as its name indicates, the establishment of a
dynamic relationship that relates the to-be-optimized (state) variables to each other.
For the problem at hand, the state variables are ēm,m= 0, . . . ,M− 1. The smoothing
operator in the second term of Eq. (9.32) can be used to establish this dynamic rela-
tionship if the smoothing operator, G, is taken as a derivative. For the first derivative,
one has:

gm = ēm− ēm−1

ēm+1 = ēm+ gm, m= 0, . . . ,M− 1 (9.36)

This is a first-order dynamic function, in which gm is the mth element of the vector,
Gē is a “forcing” variable that moves state i to state i+ 1. In dynamic programming,
gi is called the decision or design variable. For now, we will develop the optimiza-
tion problem using Eq. (9.36), then expand the concept to higher order dynamic
functions.

Dynamic programming starts at one of the ends of the set of state variables, say
the far end point, M− 1, by optimizing the force function, gM−1. This is done by
treating state M− 1 as an isolated subproblem. Once this subproblem is optimized,
the problem is expanded to include two points: M− 1 and M− 2, and so on, until
point m= 0 is reached. A forward suboptimization is then performed over the state
parameters starting from m= 0 and ending at m=M− 1.

Backward suboptimization starts at some initial state h= ēM−1. This initial state
value is simply to facilitate derivation of the dynamic programming process, and need
not be designated a specific value. Considering this subproblem in isolation of all other
points, the minimum of the cost function of Eq. (9.32), assuming equal unit weight for
all measurements, reduces to:

fM−1(h)= min
gM−1

[
(eM−1− h)2+α2g2

M−1

]
= (eM−1− h)2 (9.37)

= h2
− 2heM−1+ e2

M−1 = aM−1h2
+ bM−1h+ qM−1

aM−1 = 1, bM−1 =−2eM−1, qM−1 = e2
M−1 (9.38)

with gM−1 = 0 being the value that minimizes the state subobjective function. In
other words, if the system consisted of one state variable, ēM−1, the only inconsis-
tency would have been related to the one measurement, eM−1. The quadratic form of
Eq. (9.38) is to facilitate deriving a recursive relationship.
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If we now consider a subproblem consisting of states M− 1 and M− 2, and start
with the initial state h assigned to ēM−2, then one has the suboptimization problem:

fM−2(h)= min
gM−2

[
(eM−2− h)2+α2g2

M−2+ fM−1(h+ gM−2)
]

= min
gM−2

[
(eM−2− h)2+α2g2

M−2+ (ēM−1− [(h+ gM−2)]
2
]

(9.39)

= (eM−2− h)2
[

1+
α2

(α+ 1)2
+

(
1−

1

α2+ 1

)2
]

(9.40)

= aM−2h2
+ bM−2h+ qM−2 (9.41)

where the cost function is expanded to include the cost function associated with state
M− 2 and the optimized cost function of the previous state M− 1. For the latter state:
fM−1(ēM−1 = ēM−2+ gM−2 = h+ gM−2)= ēM−1− (h+ gM−1), where use is made of
Eqs. (9.36) and (9.37). Equation (9.40) is arrived at by finding the value of gM−2
that minimizes the cost function of Eq. (9.39), which can be easily found to be:
gM−2 =

eM−1−h
α2+1

.
The above process continues for m=M− 3, m=M− 4, and so on until reaching

state m= 0. At each step, one determines fm and gm. However, the quadratic formula-
tions of Eq. (9.38) and (9.41) enables the establishment of the recursive relationships:

am−1 =

[
1+

α2am

α2+ am

]
(9.42)

bm−1 =−2em−1+
α2bm

α2+ am
(9.43)

qm−1 = qm+ e2
m−1−

b2
m

4(α2+ am)
(9.44)

gm−1 =−
2amh+ bm

2(α2+ am)
(9.45)

These relationships enable backward suboptimization, starting with state m=M− 1
for which Eq. (9.38) applies. Note that aM = bM = qM = 0.

Forward suboptimization is performed with respect to h, staring with state m= 0,
for which the cost function is:

f0(h)= a0h2
+ b0h+ q0 (9.46)

where the parameters a0, b0 and q0 are determined from the relationships of Eqs. (9.42)
to (9.44). The optimal initial state which minimizes f0(h) with respect to h is:
h1 =−

b1
2a1
= ē0. The optimal forcing term, g0, can be updated using Eq. (9.45), and

the dynamic Eq. (9.36) is used to determine ē1 = ē0+ g0. Since all the recursive
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coefficients can now be determined, calculations can progress using Eq. (9.36) to
obtain the rest of the state variables: ē1, . . . , ēM−1, with the recursive relationship:

ēm+1 = ēm−
2am+1ēm+ bm+1

2(α2+ am+1)
(9.47)

where use is made of Eq. (9.36) and (9.45), with h replaced in the latter equation
with ēm. Note that in calculating ēm using Eq. (9.47), there is no need to know the
value of qm, and as such there is no need to determine it.

Dynamic programing can be considered as a multistage two-sweep (backward and
forward) filter. To facilitate examination of the frequency response, one needs to for-
mulate an equivalent filter with a certain kernel. The only parameter in the recursive
relationships that affects the minimized staged cost function, fm, is am. Therefore, to
arrive at an overall equivalent filter, one should find a unified value for a (in prac-
tice, am tends to approach a stable value). This can be done by setting am−1 = am in
Eq. (9.42) and solving for, a, which gives:

a2
− a−α2

= 0 (9.48)

with the positive value of a giving the desired solution, since f ≥ 0. Now, let us rep-
resent the kth frequency component of a unit measurement em as exp(ikm1r), with
1r being the sampling interval. The corresponding frequency component for bm is
b exp(ikm1r) and that for ēm is ē exp(ikm1r). From Eq. (9.43), one has:

b=
2(α2
+ a)

α2 exp(ik1r)−α2− a
=

2a2

α2[exp(ik1r)− 1]− a
(9.49)

where use is made of Eq. (9.49) in arriving at the last step in the equation. From
Eq. (9.47), and with the aid of Eqs. (9.48) and (9.49), one gets:

ēexp(ik1r)= ē−
bexp(ik1r)

2(α2+ a)
−

aē

α2+ a
= ē−

exp(ik1r)

α2[exp(ik1r)− 1]− a
−

ē

a

Therefore,

ē

(
[exp(ik1r)− 1]+

1

a

)(
α2[exp(ik1r)− 1]− a

)
=−exp(ik1r)

and

ē

[
α2[exp(ik1r)− 1]2

− 1− [exp(ik1r)− 1]

(
a2
−α2

a

)]
=−exp(ik1r)

which leads to:

ē=
1

1−α2 [exp(ik1r)−1]2

exp(ik1r)

=
1

1+ 2α2(1− cosk1r)
(9.50)
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Since we assumed a unit measurement, then Eq. (9.50) represents the amplification of
the kth frequency component of the measurements by the filtering process. It is obvi-
ous from Eq. (9.50) that when α2

= 0, there is no smoothing and all frequencies will
be permitted. The same happens for the zero-frequency (mean value) of a measure-
ment profile. The presence of a frequency, k, decreases as α2 increases. Therefore, the
value of the regularization parameters, α2, can be used to control the cutoff frequency.
Dynamic programming is, therefore, equivalent to a low-pass filter.

Laplacian smoothing can be introduced into dynamic programming as a second-
order system by expecting ē to assume the form:

ēm+1 = ēm+ ē′(r−m1r)+
1

2
ē′′(r−m1r)2; ē′ =

dēm

dr
, ē′′ =

dē′

dr
(9.51)

which gives:

{
ēm+1

ē′m+1

}
=

[
1 1r
0 1

]{
ēm

ē′m

}
+

{
(1r)2

2
1r

}
gm (9.52)

ēm+1 =Hēm+Pgm (9.53)

where ēm+1 and ēm are 2× 1 vectors associated with ēm+1 and ēm, respectively, H is a
2× 2 matrix for the dynamic system, P is a 2× 1 vector relating the sought variable,
ēm to the controlling Laplacian parameter, gm. The cost function of Eq. (9.32) is then
expressed as:

χ2
=

M−1∑
m=0

[ēm− em, (ēm− em)]
2
+α2gm (9.54)

where (., .) denotes inner product8, em is a 2× 1 vector whose first element is em

and its second element is e′m (evaluated as a difference), and an equal unit weight-
ing of measurements is assumed. In analogy with Eq. (9.41), one expresses the step-
optimized functional, fm(h), as:

fm(h)= (h,amc)+ (h,bm)+ qm (9.55)

where h is an initial estimate of ēm, am is a 2× 2 matrix, bm is an 2× 1 vector, and qm

is a scalar. Following a process similar to the first-order dynamic system, the following
recursive relationships are arrived at (Trujillo and Busby, 1997):

am−1 = I+HT
(

am−
amPPTam

α2+PTamP

)
H (9.56)

8 The inner product, (x,y), of two vectors x and y is generally defined as: (x,y)=
∑

xiy∗i , where y∗i is the
complex conjugate of yi, see also Appendix 7.A.
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bm−1 =−2em−1+HT
(

I−
amPT

α2+PTamP

)
bm (9.57)

gm−1 =−
PTbm+ 2PTamHh

α2+PTamP
(9.58)

where I is a 2× 2 identity matrix. Note that qm is not included here since it is
not needed in the calculations. The matrices involved are small in size and can be
easily numerically manipulated. The backward sweep starts at measurement M− 1
with the coefficients: aM−1 = I, and bM−1 =−2ēM−1, which enables calculation of
coefficients am and bm for m=M− 2,M− 3, . . . ,0. The forward sweep then starts
by calculating an optimal estimate h by minimizing: f1(h)= (h,a0h)+ (h,b0)+ q0,
which gives h=− 1

2 a−1
0 b1 = ē0. The value of g0 is calculated using Eq. (9.58), and

e1 =Hē0+P0g0, and so on for ē2, . . . ēM−1.

9.4.3 Spline Smoothing

The first and second order dynamic programming procedures can also be expanded
to third and higher order formulations, to incorporate higher order derivatives in the
smoothing term or Eq. (9.32). Moreover, the minimized functional, fm(c), can be
expanded in the form of splines, to take advantage of the piecewise nature of splines
as an effective data smoothing tool (Craven and Wahba, 1979, Wahba, 1990). A spline
is defined by an nth order polynomial that passes through k control points (knots), so
that in the smoothing term, gm, in the cost function of Eq. (9.54), can be replaced by:

gm =

n−1∑
j=0

θjt
j
+

k∑
i=1

ηi(t− k)n−1, t =
m1r

R
(9.59)

where R is the total length of the measurement profile, 1R is the interval between
measurements, and θ ’s and η’s are the spline coefficients. Equation (9.59) reflects the
definition of a spline as pieces of polynomials, each starting with a zero value at a
knot, combined linearly so that the derivatives at each knot are continuous up to order
n− 2. With the spline formation, the cost function of Eq. (9.32) can be expressed as:

χ2
=

M−1∑
m=0

[
ēm− em, (ēm− em)

]2
+α2

 1∫
0

dm

dt

2

dt (9.60)

The dynamic step-optimized functional f (h) can now be expressed as a combination
of n+ 2 basis function (Trujillo and Busby, 1997):

f (r)=
n+2∑
i=1

fiai(r) (9.61)
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with r = m1r, m= 0,1, . . .m− 1. The coefficients fi are determined by the backward
sweep process of dynamic programming, and for a cubic spline are given by:

a1(r)= 1

a2(r)= (r− r0)

a3(h)=
(r− r1)

2

2

ai(r)=


0
(r−ri−1)

3

6
(1r)3

6 +
(1r)2(r−ri)

2 +
1r(r−ri)

2

r

for

r < ri−1
ri−1 ≤ r < ri

r ≥ ri

, i> 3

Matrix algebra can also be used to solve the above problem, see Buja et al. (1989) and
de Hoog and Hutchinson (1987).

9.4.4 Cross Validation

The value of the smoothing parameter, α2, obviously affects the value of ē obtained
by minimizing the cost function of Eq. (9.32). One can find the optimum value of α2

empirically by attempting different values and observing the trend of the results, either
directly or after using them in image reconstruction. However, one can employ the
cross validation method, originally introduced by Allen (1974) and Wahba and Wold
(1975). The essence of this method is that if a random element of a measurement set, e,
is missing, then the regularized (smoothed) solution should be able to predict its value.
Therefore, for a certain value of α2, if one leaves a measurement em and smooth the
remaining M− 1 measurements, one can find an estimate êm of ēm using the dynamic
programming equations, Eq. (9.36) or Eq. (9.52). Repeating the above process for M
different missing elements, one at a time, then one has the cross validation function:

V(α2)=
1

M

M−1∑
k=0

(êk− ek)
2 (9.62)

The value of α2 that minimizes V(α2) is the optimum value. The function of Eq. (9.62)
represents ordinary cross validation, in contrast with the generalized cross validation
method discussed in Section 10.5.5.

9.4.5 Mollification

The optimization of Eq. (9.32) can also be viewed as the act of finding a mollifier,
Iα , (an approximation to the identity) that transforms a given measurement profile,
e(r), into a profile, ē(r)= Iαe(r), which minimizes a certain cost function (Murio,
1993). The subscript α in the mollifier Iα signifies the introduction of smoothing by a
parameter, α2. Keeping in mind that the objective of filtering a measurement profile
is to find the exact, but unknown, value, e(0)(r), from measurements, e(r)= e(δ)(r)
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contaminated with some error signified by δ, then one should be aiming at minimizing
a cost function of the from:

χ2
=

∥∥∥e(0)(r)− Iαe(δ)(r)
∥∥∥≤ ∥∥∥e(0)(r)− Iαe(0)(r)

∥∥∥+ ∥∥∥Iαe(0)(r)− Iαe(δ)(r)
∥∥∥
(9.63)

where use is made of the triangle inequality, with ‖.‖ indicating a Euclidean norm.
Murio (2003) proposed mollification by a convolution operation with a Gaussian

kernel:

Iαe(r)= (gα,p ∗ e)(r)=

r+qα∫
r−qα

gα,p(r− r′)e(r′) dr′ (9.64)

gα,q =

{
Aq
α

exp
[
−

r2

α2

]
, |r| ≤ qα

0, |r|> qα
(9.65)

Aq =
1

q∫
−q

exp[−r′2] dr′
;

qα∫
−qα

gq,α(r) dr = 1 (9.66)

with α (called the Mollification radius) defining the width of the Gaussian kernel and
qα specifies the range over which it is applied, α > 0 and q> 0. Recalling that the
Fourier transform of a Gaussian distribution is also a Gaussian distribution, the width
of the distribution determines the frequency cutoff of such kernel, if it were applied in
the frequency domain. One can argue, therefore, that a Gaussian mollifier is no more
that a Gaussian low-pass (due to its frequency cut off) filter with optimized width.

Murio (2003) proved that:

‖Iαe(0)(r)− e(0)(r)‖ ≤ Kα (9.67)

‖Iαe(0)(r)− Iαe(δ)(r)‖ ≤ δ (9.68)

‖Iαe(δ)(r)− e(0)(r)‖ ≤ Kα+ δ (9.69)

with K being a constant. The first condition ensures that the mollified function con-
verges to error-free data as α→ 0. The second condition shows that mollified noisy
measurements approach mollified error-free measurements as δ→ 0. According to
the third condition, the mollified noisy measurements converge uniformly to the exact
measurements, as α→ 0 and δ→ 0. Without smoothing at all, α = 0, the mollifier
becomes a Dirac delta function, and the measurements would stay as they were with-
out any filtering. Therefore, mollification converts the optimization of Eq. (9.63) into
a well-posed problem that does not propagate error.

The optimization of the cost function of Eq. (9.63) amounts to finding the best
α value for a given set of measurements. The generalized cross validation method
can be used for this purpose. It is an extension of the ordinary validation method of
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Section 9.4.4, and is discussed in Section 10.5.5. It amounts in this situation to the
minimization of the functional (Murio, 2003):

V(α)=
eT

ext(Jα −Gα)2eext

trace[(Jα −Gα)2]
(9.70)

where trace denotes the trace of matrix (the sum of its diagonals) eext is the measure-
ment vector extended from a length of M to a length of M+ 2Me, to cover intervals
[−qαR,0] and [R,R(1+ qα)] to accommodate the width of the Gaussian distribution
at the two ends of the data stream (e sampled originally over the distance interval
[0,R]), J is an M× (M+ 2Mr) matrix whose element Jij = 1 for i, j≤M, and other-
wise is zero, and Gα is a circulant kernel matrix with an element, Gα1,j , in its first row
such that:

Gα1,j =


rj∫

rj−1

gα,p(−r′) dr, j≤M

0 j>M

(9.71)

The value q is taken typically to be equal to three (q= 3), since larger values do not
introduce much difference in results (Murio, 2003). The values added to create the
extended measurement set are constant values that minimize ‖Iαeext− e‖ in the near-
boundary intervals: [0,qαR,0] and [1− qαR,1]. Murio (2003) provided a matlab
program that shows how α is obtained by minimizing Eq. (9.70), and how the mollified
values, r̄ are arrived at.
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10 Matrix-Based Methods

When the inverse problem is in the matrix form presented in Section 8.1, direct or
indirect (iterative) inversion of the system’s forward-mapping matrix provides a solu-
tion for the inverse problem, as Eq. (8.1) shows. If the forward model generates
a linear matrix, direct inversion guarantees the existence and uniqueness of image
reconstruction, when the matrix is nonsingular i.e. invertible. However, as indicated
in Section 7.6, the image reconstruction problem is always ill-posed. It is, therefore,
essential to analyze the susceptibility of the system’s matrix to error propagation by
determining its rank and condition number. The design of an imaging system can be
revisited, if it is found that the resulting matrix is too ill-conditioned. Even with the
best system design, the problem will still be ill-posed because of the discretization
process associated with creating a matrix from what is physically a continuous for-
ward model. Therefore, a modified (by regularization) matrix needs to be inverted.
Direct inversion is, however, computationally demanding (in terms of computer stor-
age and floating-point operations), and an iterative solution is usually implemented,
as discussed in Section 10.6. Iteration is also required when the image reconstruction
problem is nonlinear, as in scatter imaging. These aspects of solution of a matrix-based
system are presented here, starting with linear problems.

10.1 Error Propagation

The norm, ‖A‖, of a linear (solution-independent) matrix, A, defined according to
Eq. (7.6), provides a measure of the magnification of c, as it is mapped to e by Ac= e.
Therefore, ‖A‖ also measures the magnification of a change, δc, in c in the compu-
tation: A δc= δe. Similarly, the magnification of, hence susceptibility to, error of the
matrix-inversion problem of Eq. (8.1): A−1e= c, is measured by:

‖A−1
‖ = sup

‖A−1δe‖
‖δe‖

; δe 6= 0 (10.1)

Accordingly,

N = ‖A−1
‖‖A‖ = sup

‖A−1δe‖
‖δe‖

× sup
‖Ac‖
‖c‖
; c 6= 0; δe 6= 0, (10.2)

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00010-0
c© 2011 Elsevier Inc. All rights reserved.
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is a measure of the maximum amount a relative error,
∣∣ δe

e

∣∣, in e, is magnified into a
relative error,

∣∣ δc
c

∣∣, in c. Note here that vector division implies element-by-element
division.

The norm of matrix A is related to its eigenvalues, λ’s, obtained from Av= λv,
where v’s are eigenvectors, by the fact that:

‖A‖ ≥ sup
‖Av‖
‖v‖
= sup

|λ| ‖v‖
‖v‖

=max |λ| = ρ(A); v 6= 0 (10.3)

where ρ(A), being the largest value of |λ|, is known as the spectral radius. The maxi-
mum of the absolute of the eigenvalues of A is equal to the minimum of the absolute
of the eigenvalues of A−1, and vice versa. Therefore, N in Eq. (10.2), as defined by
Eq. (7.17), is the condition number of the system matrix, A. In other words, error prop-
agation in a matrix-based system is determined by the ratio between the largest and
smallest magnitudes of the eigenvalues of the system matrix. A large value ofN indi-
cates an ill-conditioned matrix. If the smallest magnitude of the eigenvalue is zero, the
matrix is singular and error will propagate uncontrollably. Singularity can be avoided
by having A as a full-rank matrix, which can be accomplished by avoiding duplicate
or parallel (providing essentially same information) measurements, and by ensuring
that all measurements are independent from each other. However, even a strictly full-
rank matrix can appear to be rank-deficient, if noise causes measurements to overlap
in magnitude. On the other hand, small changes introduced by noise can make other-
wise parallel measurements appear to be independent, leading to singularity. Adding
additional measurements, even though they may not be completely independent from
previously acquired ones, can overcome the effect of noise, and help bring the matrix
to a rank-sufficient status by the additional and affirmative information they bring.
Round-off error also has a similar effect on the rank of a matrix. Therefore, in assess-
ing a matrix vulnerability to noise and error, one should rely on the condition number
of the matrix, not its rank.

10.2 Singular Value Decomposition

The singular value decomposition (svd) of a linear matrix is a useful tool, not only in
analyzing the basic features of a matrix, but also in inverting a matrix since the calcu-
lation of the singular values1 is highly conditioned. This is accomplished by position-
ing the singular values, si’s, of AAT, arranged in a nonincreasing magnitude, into the
diagonal of a matrix S. Then, A is decomposed to:

A= USVT (10.4)

1 Singular values are the square roots of the eigenvalues of the square matrix AAT, where AT is the transpose
of matrix A. Note that ATA has also the same singular values as AAT. The number of singular values is
determined by the rank of the matrix, which is the same for the two square matrices AAT and ATA.
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where U is an orthogonal matrix whose columns are formed by the eigenvectors, ui’s
of AAT, and V is an orthogonal matrix consisting of the eigenvectors, vi’s, of ATA. The
matrices U and V, being orthogonal (also orthonormal), have the properties:

uT
i uj = δij, vT

i vj = δij,

UUT
= I, VVT

= I,

Avi = siui, ATui = sivi (10.5)

where I is the identity matrix, and δij is the Kronecker delta (= 1 when i= j, other-
wise = 0). With A being an M×N matrix, then when M ≥ N, U is an M×M matrix,
S is M×M, and V is N×M (VT is M×N), while when M < N, U becomes an M×N
matrix, S: N×N, and V: N×N. Note that there are other ways for formulating a svd,
but they all aim at the same goal of decomposing the original matrix in terms of its
singular values.

With the aid of the formulation of Eqs. (10.4) and (10.5), the solution of Ac= e can
be expressed as:

ĉ= A†ê= VS†UTê (10.6)

where S† is a diagonal matrix whose elements are the reciprocal of the correspond-
ing diagonal elements of S; except when the elements of the latter are zero or very
close to zero where the elements of S† are equated to those of S. When A is not a
square matrix, then the inversion, A†, given Eq. (10.6), is a pseudoinverse (also called
a generalized or Moore-Penrose inverse), but it assures that AA†A= A, A†AA†

= A†,
(AA†)T = AA†, and (A†A)T = A†A. Note that with Eq. (10.6), a solution for the inverse
problem is found, even when the problem is underdetermined (i.e. N <M), also called
an incomplete problem, see Chapter 14. The matrix A† is sometimes referred to as the
influence matrix (Trujillo and Busby, 1997); but AA† is also called the influence matrix
(Vogel, 2002).

If the relationship between ê and c remains consistent, in spite of the noise, then the
solution of Eq. (10.6) will satisfy the inverse mapping. If there is no consistency, then
the solution given by Eq. (10.6) is the solution that provides a minimum residual error,
i.e. when substituted back into the forward problem produces the closest matching to
the measurements, i.e. min(Aĉ− ê). For a rank-deficient matrix of rank, k, one can
obtain an approximate solution by considering only k singular values.

The main benefit of svd is that it always produces a solution (never fails). It also
provides direct calculation of all the eigenvalues, hence the condition number of AAT.
This enables direct assessment of system design, and allows examination of the effect
of design changes on the conditioning of the system. Also, svd enables direct control
of the error in the measurements, e, by setting a cutoff value for the smallest eigen-
values in S that will not be inverted when calculating S†. This, therefore, constitutes a
form of solution regularization. The cutoff value is determined empirically, depending
on the nature of the imaging system and the quality of recorded measurements. By
trying different values, one can determine the appropriate cutoff value. Singular value
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decomposition is also useful in analyzing other regularization methods, as discussed
in Section 10.4.

10.3 Least Squares

The solution ĉ= A†e that minimizes the residual error when expressed by the
Euclidean distance (norm), ‖Ac− ê‖2, is the least-squares solution of Ac= ê, since
the minimizing the residual norm becomes equivalent to minimizing χ2 of Eq. (8.2).
The generalized inverse of the matrix A is then given by:

A†
= [ATA]−1AT (10.7)

This solution can also be arrived at using probability theory with the maximum-
likelihood principle, see Appendix 8.A. The least-squares solution of Eq. (8.3) is a
weighted form of the solution provided by A†ê. The least-squares solution is a special
case of that obtained with singular-value decomposition, but it is numerically eas-
ier to formulate. The effect of low singular values on increasing error propagation is
also observed in the least-squares solution. While, the pseudoinversion by svd enables
direct elimination of low singular values, the same explicit control is not possible in
the least-squares solution. This is achieved, however, by regularization as discussed
below.

10.4 Regularization Methods

10.4.1 Approach

One approach to control the propagation of error in an ill-posed inverse problem is to
replace the original problem, A−1ê, with a problem that constrains error propagation,
leading to a stable solution. This process is known as regularization and is accom-
plished by tolerating some residual error in the solution.2 Regularization assists, there-
fore, in establishing a continuous relationship between ê and c. It enables a solution to
exist, and hopefully be unique for a given regularization arrangement.

Regularization aims at reaching a minimal (but not necessarily the absolute mini-
mum) error measured by the residual norm (also known as the data fidelity norm):

χ(c)= ‖Ac− ê‖2 (10.8)

by imposing some constraints. The residual error is defined by the Euclidean norm,
since the residual error is random and there is no reason to expect one random error to

2 The process of discretizing a continuous mapping introduces a regularization effect by limiting the
sharpness of gradients in the continuous problem. This is referred to as projection regularization, or dis-
cretization regularization. It does not, however, ensure control of the magnification of the round-off error
introduced by the high condition number of the associated system matrix.
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depend on another. Recall that minimizing χ2(c) without any constraints is the least-
squares minimization of Eq. (10.7). By imposing constraints on the minimization of
χ2(c), one in effect is attempting to “smooth” error magnification in the ill-posed
problem, i.e. reduce error propagation at the expense of smoothing the image. Reg-
ularization is, therefore, often referred to as smoothing. In addition, by avoiding
exact matching between the forward model, Ac, and the measurements, ê, one is also
acknowledging the presence of modeling errors, which will exist even in the absence
of measurement errors. In other words, regularization attempts to compensate for the
mismatch between forward mapping and actual measurements, the so-called resolving
error, caused by statistical variability and/or modeling error. Regularization provides
a family of solutions (whose members are determined by the type and degree of reg-
ularization) that approach the error-free solution. Nashed (1981) provided a general
mathematical framework for regularization for some of the approaches presented here.

In regularization, one of the following two forms of constraints can be employed
(Hansen, 1998):

1. c ∈ S(C), where S(C)⊆ C, i.e. restrict the solution to within a subset S(C) of the space of
solutions, C. This can be achieved for example by restricting a solution (density or attenua-
tion coefficient) to be nonnegative and not to exceed some expected maximum value. Such
confinement of solution is a form of regularization, that is also based on a priori physical
knowledge of the range of the expected solution.

2. η(c)≤ δ, where η(c) is some measure to which the size of the residual error, χ(c), is com-
pared, and δ is a designated upper-bound of η(c). Physically, this amounts to allowing the
solution to produce corresponding modeled measurements, ẽ, that do not match exactly the
actual measurements, e. The latter measurements have measurement uncertainties associated
with them, while the former ones are subject to modeling errors. Therefore, it is logical not
to expect perfect matching between the two.

Alternatively, instead of minimizing χ2(c) subject to constraints, one can (Hansen,
1998):

1. Minimize η(c) with the constraint: χ2(c)≤ γ 2, where γ 2 is a pre-assigned positive
parameter.

2. Minimize a combination of χ(c) and η(c), so that the mathematical desirability of mini-
mizing the residual error is combined with the minimization of η(c) in accordance to some
physical constraints. Since both χ(c) and η(c) are measures of “error”, their squared values
(representatives of variance) are added. Therefore, regularization is implemented by:

min
{

[χ(c)]2
+α2[

‖η(c)‖2
]2} (10.9)

where α2 is a regularization parameter that controls the amount of weighting in the mini-
mization process, given to η(c) relative to χ(c). The regularization of (10.9) is known as
Tikhonov regularization (Tikhonov, 1977)3. Notice that when α = 0, the minimization of
(10.9) resorts to basic least-squares, χ2, minimization of Eq. (8.2). Therefore, Tikhonov
regularization allows the residual error, χ(c), to reach only a “near” minimum value.

3 Although the method is widely named after A.N. Tikhonov (1963), J.D. Riley (1955), D.L. Phillips (1962),
S. Twomey (1963), and K. Miller (1970) introduced variants of this regularization approach.
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The result is “smoothness” (at least smoother than the oscillations in the solution due to ill-
conditioning) of the solution by adding a “roughness” penalty (a stabilization) term to the
minimization of the residual error, χ(c). One can define η(c) in a number of ways, to accom-
modate various regularization criteria and minimize:

min
{[
‖χ(c)‖2

]2
+α2

1

[
‖η1(c)‖2

]2
+α2

2

[
‖η2(c)‖2

]2
+ ·· ·

}
(10.10)

where η1(c)2, η2(c)2, etc., designate various regularization functionals and α2
1 , α2

2 , etc., are
the associated weights, i.e. regularization parameters.

The problem now is to determine which is the most suitable minimization process, to
define η(c) and find the optimum values for the parameters, δ, γ 2 or α2. Let us start
first by giving some insight into the mathematical significance of regularization.

10.4.2 Mathematical Significance

In order to arrive at a rationale for developing a regularization functional, let us revisit
the svd solution given by Eq. (10.6). Rewriting this solution by expanding the right-
hand-side of Eq. (10.6):

ĉ= A†ê= VS†UTe=
∑

i

1

si

(
ui

Tê
)

vi (10.11)

one has an expression showing that the division by a small singular value, si, leads
to the magnification of any error in e. Rather than excluding small singular values, as
done in arriving at matrix S† in Eq. (10.6), one can introduce a filter, gα(si), of the
eigenvalues AAT so that the solution becomes:

ĉ=
∑

i

gα(s
2
i )

1

si

(
uT

i ê
)

vi (10.12)

Arriving at the solution of Eq. (10.6) is equivalent to setting gα(si)= 1, when si > α,
and otherwise zero. A less abrupt filter is given by:

gα(si)=
s2

i

s2
i +α

2
(10.13)

This is the Tikhonov filter, which smoothly dampens the effect of small eigenvalues, as
it approaches zero when si << α, but retains the effect of large eigenvalues by being
close to unity when si >> α. It has the effect of shifting the spectrum of the eigen-
values away from singularity. This method of regularization is, therefore, sometimes
referred to as spectral shifting. Substituting the filter of Eq. (10.13) in Eq. (10.12) leads
to the solution:

ĉ=
∑

i

si

s2
i +α

2

(
uT

i ê
)

vi (10.14)
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Resorting back to the matrix form of the solution, Eq. (10.14) is expressed as:

ĉ= V
[
S2
+α2I

]−1
SUTê=

[
ATA+α2I

]−1
ATê (10.15)

Let us now rewrite the regularization condition of (10.9), making use of Eq. (10.8)
and defining η(c)= Gc, so that:

min
{

[Ac− ê]2
+α2[Gc]2

}
(10.16)

Minimization with respect to c yields the solution:

ĉ=
[
ATA+α2G2

]−1
ATê (10.17)

The solution of Eq. (10.17) requires that the null spaces of A and G not intersect
(or interest trivially), i.e. N (A)

⋂
N (G)= 0, where N refers to null space,4 i.e. the

space of images that corresponds to zero measurements. This condition is required so
that the inverted matrix, ATA+α2G2, is never an empty singular matrix. The same
condition also implies A has a full rank.5 This addresses the question of existence of
the regularized solution of Eq. (10.17). The linearity of the problem, AC= e, assures
the solution’s uniqueness, for a given regularization functional, since no two solutions
will produce exactly the same set of measurements (unless they are so close that they
overlap within the range of measurement uncertainties).

Comparing Eq. (10.17) to Eq. (10.15) shows that G= I. Therefore, applying a reg-
ularization functional η(c)= c (i.e. equal to the solution itself) is equivalent to filter-
ing singular values by the Tikhonov filter, Eq. (10.13), without performing svd of the
matrix AAA. Consequently, one can state that in the solution given by Eq. (10.17), the
amount of error propagation is controlled via the regularization parameter, α2. When
α2 is very small, error magnification will be quite high, since small singular values
would still be implicitly present in the solution. On the other hand, with a large α2

value, the solution can be over-smoothed by losing the contribution of higher singu-
lar values. An optimum value of α2 is, therefore, desired. Methods for finding such
optimal values are discussed in Section 10.5.

The advantage of Tikhonov regularization with G= I, is that it aims at minimizing
the magnitude of the solution, c, itself. This stabilizes the solution by reducing its
variability, preventing any severe oscillations produced by the ill-conditioning of the
system matrix, A. Also, this approach of regularization assumes no a priori knowledge
of the nature of the solution. It risks, however, the removal of genuine variations in c,
in the process of stabilizing the solution.

The regularization functional η(c)= c, i.e. with G= I, measures the size of the
residual error, χ(c), in terms of the solution, c, with the regularization parameter, α2,

4N (A) is the space of all vectors c such that Ac= 0.
5 Recall that the rank of a matrix is the number of its nonzero singular values, and corresponds to the number

of linearly independent rows or columns of the matrix.
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determining how close χ2(c) is allowed to reach its minimum value. In other words,
the minimization of the residual error, χ , is constrained by η(c), which also con-
strains the solution itself. Therefore, generally, the regularization functional, η(c), is
expressed in terms of the solution, c, so that:

η(c)= Gc (10.18)

where G is an M×N matrix, called the regularization matrix. Note that αG has same
physical units as A. The matrix G can take a number of forms, the standard being
G= I. Other forms for choosing G are discussed later in this section, after introducing
a different perspective to regularization, by considering the minimization problems of
(10.9) as a constrained optimization problem.

10.4.3 An Optimization Perspective

Let us consider the minimization of (10.9) as an optimization problem, of two func-
tionals: one for the residual error and the second of the regularization functional. Let
us first formulate a functional for the residual error that takes into account the fact that
in radiation measurements a priori estimate of the statistical variance of each measure-
ment is given by the Poisson statistics of radiation counting. Let σ 2

i be the variance
associated with each measurement, ei. Since one has more confidence in measure-
ments of low variance than those of high variance, one should give more influence
to the former measurements because of their good statistics. Let us introduce this
preference via a diagonal, M×M, statistical weight matrix, W, with elements, Wij,
defined as:

Wij =
δij

σj
(10.19)

where δij is the Kronecker delta. The function for the residual error can now be defined
(and constrained) as:

[
W
(
Ac− ê

)]T [W (
Ac− ê

)]
≤ δ2

χ (10.20)

where δχ is an upper limit of the weighted residual error. Similarly, one can restrict
the regularization functional of Eq. (10.18) by:

(Gc)T (Gc)≤ δ2
η (10.21)

The two constraints of (10.20) and (10.21) can be combined into a single cost func-
tion (also called the objective function), 8(c), weighted by the amount of imposed
constraints, so that:

8(c)= δ2
χ ×

[
W
(
Ac− ê

)]T [W (
Ac− ê

)]
+ δ2

η × (Gc)T (Gc) (10.22)
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The minimization of 8(c) is equivalent to the minimization of (10.9) with χ2(c) and
η2(c) defined by the left-hand-sides of Eqs. (10.20) and (10.21), respectively, and

α2
=

δ2
η

δ2
χ

. Therefore, regularization can be viewed as a relative constraining of the min-

imization of the residual error, in accordance to some functional defined by the regu-
larization matrix, G. The optimization parameter, α2 is then a measure of the amount
of regularization, or smoothing, measured relative to the upper-bound of the residual
error.

Minimizing the objective function of Eq. (10.22) yields:

ĉ=
[
ATW2A+α2G2

]−1
ATW2ê (10.23)

Note that, in the above discussion, a single regularization parameter, α2, is applied
in formulating the regularization functional. This parameter can be made to affect
some voxels, or a region-of-interest composed of a cluster of voxels, by replacing α2

with a diagonal matrix in which an element, α2
ii, represents the regularization effect on

the physical parameter, ci, of voxel i.
In summary, one can state that the purpose of regularization is to replace the orig-

inally ill-posed inverse problem by a well-posed problem in its proximity. This is
achieved by eliminating low singular values, or equivalently constraining the solution
of the inverse problem by adding a regularization functional to the original problem.
The effect is a smoothing of the ill-posed inverse problem. There are many possible
approximations to the original inverse problem, depending on the choice of the regu-
larization functional and the associated regularization problem. Some a priori knowl-
edge of the solution can help in determining the desired nature of regularization, as
discussed below.

10.4.4 Minimum Information

The solution given by the standard Tikhonov regularization of (10.16) with G= I,
is sometimes referred to as the “minimum information solution”.6 This is because
with G= I, no a priori information is involved in arriving at the solution. The lack
of correlation in Tikhonov regularization with G= I also implies a lack of interac-
tion between adjacent regions within the imaged medium, or a minimum-energy.7

Tikhonov regularization is also called quadratic regularization, for the reasons given
in Section 10.4.11. Statistically, Tikhonov regularization is equivalent to ridge regres-
sion, see Section 10.4.8. Long before Tikhonov regularization, Rutishauser (1968)
called the solution obtained by this method, the relaxed solution of the original least-
squares (residual minimization) problem of (8.2), since it is a near-minimization of the
residual.

6 It is also called the Occam approach (Constable et al., 1987), after the fourteenth century philosopher who
advocated that reasoning should be as simple as possible.

7 The energy of η(c) is equal to the square of its Euclidean norm (Bertero and Boccacci, 1998), ‖η(c)‖22.
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10.4.5 Doubly Relaxed

Rutishauser (1968) proposed a doubly-relaxed solution that further helps overcome
the ill-posedness of the problem, accomplished by:

min

{[(
ATW2A+αG

)
c−ATW2ê

]2
+α2[Gc]2

}
(10.24)

This so-called Rutishauser regularization is a relaxation of the solution obtained by
the already relaxed Tikhonov regularized solution of Eq. (10.16), weighted with W.
Equation (10.24) leads to the solution:

ĉ=
[

ATW2A+α2G2
+α2

(
ATW2A+α2G2

)−1
]−1

ATW2ê (10.25)

The regularization matrix, G, hence the regularization functional, η(c), can be for-
mulated in other ways to take advantage of a priori information, or to guide the
solution toward desired features. Some of these formulations are presented below.
The weight matrix, W, of Eq. (10.19) is employed in subsequent formulations, since
statistical estimates of the variance of radiation counting measurements can be read-
ily made; if not one should set W = I. Note also that the formulations below can be
combined according to (10.10).

10.4.6 Estimate of Solution

When some a priori estimate of the solution is known, say c∗, then the regularization
functional can be defined as (Hansen, 1998):

η(c)= G
(
c− c∗

)
(10.26)

Leading to the solution:

ĉ=
[
ATW2A+α2G2

]−1(
ATW2ê+α2G2c∗

)
(10.27)

This solution is obviously guided toward c∗, by minimization of the difference
between the solution and its initial estimate. This is useful when the purpose of imag-
ing is to detect the presence of anomalies in an object with a known structure. Note
that in Eq. (10.27), when α = 0, one would obtain a solution that provides fidelity to
measurements, while α =∞ would lead to best matching with the a priori solution
estimate.

10.4.7 Gradient of Solution

Some information about the image to be reconstructed is often known. For example,
in many cases the object’s physical attributes tend to vary between clusters of voxels,
rather from voxel to voxel. Within each cluster, a voxel’s attributes tend to be similar
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to that of its neighbors (cliques); i.e. a voxel tends to resemble its neighbors. Such
trends can be incorporated into the solution as a priori knowledge, by defining the
regularization matrix as a correlation matrix relating one physical attribute of a voxel
to those of its neighbors.

The smoothness of a solution, c, can be controlled by a regularization functional
that incorporates a first or second spatial derivative of c. This is equivalent to applying
a “low-pass” filter to the solution that minimizes any oscillatory features in the image.
The first derivative is employed to maximize flatness, while the second derivative min-
imizes roughness. Since no spatial relationship is explicitly present in the formulation
of c, though each element of c corresponds to a point in the spatial space, the spatial
derivatives (gradients) are formulated by difference equations, assuming unit spatial
intervals (unless image pixels/voxels vary in size within the same image). Also, in
formulating these gradients, the spatial location of a voxel relative to its neighbors
should be taken into account, since c is considered here as a one-dimensional array
while images encompass more than one direction. We assume here that c is structured
over a Cartesian mesh, such that its first Nx voxels correspond to the first set of ele-
ments in the Ex direction, the second Nx elements to the second set of voxels, and so on
to the last set being Ny, so that the second NxNy voxels correspond to the second layer
of voxels, up to the Nth

z layer, where N = NxNyNz.
A regularization functional formulated in terms of the first spatial Cartesian deriva-

tive of c is suited when a nearly uniform image is anticipated. The regularization
functional is then expressed as:

η(c)= Gc

Gij =


−1 for i= j

1 for j=

 i+ 1 for gradient in x
i+Nx for gradient in y
i+NxNy for gradient in z

0 otherwise

(10.28)

The gradients in more than one direction can be incorporated by including more than
one regularization functional in the form of Eq. (10.28) in accordance to (10.10).

When one expects a linear variation in the solution, c, from a voxel to its neighbor,
the regularization functional with the second spatial derivative (Laplacian operator)
should be used:

η(c)= Gc

Gij =


−4 for i= j

1 for j=

 i± 1, i±Nx for Laplacian in x,y
i± 1, i= NxNy for Laplacian in x,z
i±Nx, i= NxNy for Laplacian in y,z

0 otherwise

(10.29)

This regularization functional, also known as Phillips regularization, attempts to
reach a solution with minimum curvature in the distribution of the image attributes
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(Bertero and Boccacci, 1998). It tends, therefore, to enhance the edges of abrupt
changes between regions within the image, that would have otherwise been
smeared out by a first-gradient smoothing, or would not have been obvious without
smoothing.

These regularization functionals can be combined in accordance to Eq. (10.10). The
spatial-gradient form of regularization can also be further extended to higher order
derivatives. Gradient-based regularization acts as a bounding constraint, by limiting
the amount of change from one voxel to its neighbors. As such, while third-order,
or higher, gradients will not be effective in smoothing an image, it will prevent the
solution from reaching unrealistically high values caused by problem ill-posedness.
However, regularization with gradient functionals often tends to produce a “blocky”
effect, or spurious resolution, i.e. artificial details. This is because of its tendency to
emphasize change, whether such change is genuine or an artifact.

One can apply different gradient schemes to different regions of interest. If a
region is known to be nearly homogeneous, a first-order gradient regularization can
be applied within this region, while a Laplacian gradient can be applied in its imme-
diate neighboring regions if a gradual change is expected from the region of inter-
est to adjacent regions. Region-of-interest regularization is applied by restricting the
regularization functional to the elements of solution, c, that correspond to the region
of interest, while assigning zero or much smaller regularization functionals in other
regions. Care, however, must be taken to ensure that [GTG]−1 is bounded, otherwise
the whole exercise of regularization would be futile.

10.4.8 Covariance Matrix

Another interpretation of the regularization functional, η(c), can be arrived at if one
examines the weighted solution of Eq. (10.23) for a forward self-mapping (or map-
ping of c to its dual), i.e., with A= I. Then, given that (W2)−1 is a covariance matrix
of the measurements, e (with zero off-diagonal elements due to the assumed inde-
pendence of measurements), one can consider (G2)−1 to be also a covariance matrix.
Given that G operates on the solution c as (10.22) shows, (G2)−1 can be formulated
as the covariance matrix of the solution. Statistical variability in the solution can be
due to the physical nature of the imaged object itself, e.g. a concrete medium that may
appear to be uniform, but its density varies randomly around a mean value. Such a
priori information about the nature of the imaged object can be accommodated in the
regularization process via a covariance (correlation) matrix that can be determined in
advance (Tarantola, 1987). This allows the establishment of a regularization functional
that incorporates the regularization matrix as a weight matrix of the solution, similar
to using W in Eq. (10.23) as a weight matrix for measurements. Assuming a Gaus-
sian (normal) distribution of the image features, one can express such regularization
functionals as:

η(c)= Gc

G−2
ij = cov(c∗i ,c

∗
j ) (10.30)
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where the G−2
ij is an element of the covariance matrix,

(
G2)−1

and “cov” refers to the
covariance of the respective argument. The covariance matrix of c is to be determined
a priori for a reference (datum) object assumed to be typical of the objects for which an
image is to be reconstructed. The Gaussian formulation of Eq. (10.30) is reasonable
when the error in the reconstructed image is expected to be a random variable that
follows a normal distribution (the value of ci is random and is independent from any
other element of c).

Obviously if there is no correlation (structural cohesion) between any two points in
the image, the off-diagonal (i 6= j) elements will be zero, and the covariance matrix
will only be constituted of diagonal elements, each corresponding to the variance
of a ci value. If all ci’s values have the same variance, say σ 2

c , one would have(
G2)−1

= σ 2
x I. Then, one resorts back to the usual Tikhonov regularization, with

G= I (which is known in statistical terms as ridge regression), with the regulariza-

tion parameter becoming equal to α2

σ 2
c

. As such, α2 can be statistically viewed as an

adjuster of the spread of the variance of the solution parameters in an uncorrelated
image, i.e. it sets an upper-bound on the solution. In fact, when σ 2

c −→∞, or equiv-
alently α2

−→ 0, the image parameter is considered to be contaminated with white
noise (infinite variance, null correlation) (Tarantola, 1987).

The formulation of Eq. (10.30) allows the imposition of “soft” bounds on the solu-
tion, ĉ. This can be easily seen by considering an uncorrelated object, where only the
diagonal elements of the covariance elements are nonzero. Then the diagonal elements

will act as regulators of their corresponding ci values. More precisely, α
2

σ 2
ci

, where σ 2
ci

is

the variance associated with ci, becomes an element-by-element (at various values of
ci) regularization parameter. In other words, the statistical smoothing of Eq. (10.30) is
an element-by-element form of Tikhonov regularization. This feature can be used in
region-of-interest imaging, to deliberately emphasize the importance of a region over
others, by assigning it an artificially diminished variance.

10.4.9 Spatial Correlation

Statistical a priori information can also be incorporated into the solution through a
regularization functional that involves a correlation matrix relating one voxel to its
neighbors.

One can formulate the regularization matrix and associated regularization func-
tional, G, so that (Jackson, 1979):

η(c)= Gc

G−2
ij = σiσj exp

[
−
|Eri−Erj|

2

2L2

]
(10.31)

where σ 2
i designates a predetermined variance, Eri is the position of voxel i, and L is

the correlation length, or smoothing distance (length of neighborhood to which the
regularization is to be applied). Then, the regularization parameter, α2, in the solution
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of Eq. (10.23), determines the degree of influence this statistical regularization has
on the solution. In the formulation of Eq. (10.31), one value, σ 2, can be used for all
voxels, instead of σiσj (Tarantola, 1987).

The correlation of Eq. (10.31) is designed to capture the homogeneity or near
homogeneity of an image, but it can be selectively applied to regions where the
image structure is expected to be uniform. Other formulation for G, as a covariance
matrix, can be employed. For example, by using |Eri−Erj|/L, rather than |Eri−Erj|

2/L2

in Eq. (10.31), one obtains an exponential covariance matrix with fractals, i.e. a repe-
tition of the inherent features of the image upon zooming into a portion of the image
(Tarantola, 1987).

When it is known that each voxel in the image is distinct from its immediate neigh-
bors, the voxel is called “self-similar” (similar only to parts of itself), then the von
Karman covariance function should be applied in the neighborhood (Tarantola, 1987):

Wrij = K0

(
|Eri−Erj|

L

)
(10.32)

where K0 is the modified Bessel function8 of the second kind of order zero, and L
is the correlation length. Taking the zeroth order of the Bessel function ensures the
distinctiveness of a voxel from its neighbors. It should be stated that L, in Eqs. (10.31)
and (10.32), can vary from voxel to voxel, allowing the definition of some regions-of-
interest.

10.4.10 Modeling-Error Compensation

The minimization of the residual-error functional of Eq. (10.8) presumes that the
difference between the actual measurements, ê, and the corresponding computed
ones, Ac, is within the range of the uncertainties in ê. In practice, as indicated in Part I
of this book, the forward model is an approximation. As such, the error expressed
in Eq. (10.8) by ‖Ac− ê‖ is not only a residual error, in the numerical sense, but
also includes a modeling error. However, the modeling error is not random, and is in
general an additive error, since it is the result of ignoring effects that are complicated
to model (such as scattering in transmission and emission imaging and multiple
scattering in scatter imaging). The modeling error can be estimated using a reference
object as:

B∗ = e∗−Ac∗ (10.33)

where it is assumed that the reference measurements, e∗, are acquired with low
statistical variability, for an object with known physical attributes, c∗. Then, as

8 The modified Bessel function is given by:

Kn(z)=
1

2

(
z

2

)−n n−1∑
k=0

(n− k− 1)!

k!

(
−

z2

4

)k

+ (−1)n+1 ln

(
z

2

)
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Eq. (10.33) indicates, the difference between the actual measurements and those
modeled by the forward model gives the modeling error, B∗ for the reference object.
For an object with unknown features, but not expected to be very different from the
reference object, the modeling error can be estimated as βB∗, with β ≥ 0 being an
adjustment parameter that can be estimated a priori, perhaps by comparing ‖e‖ for
the imaged object to ‖e‖∗ of the reference object (Arendtsz and Hussein, 1995a).
Then, the functional of Eq. (10.8) can be replaced by:

χ(c)= ‖Ac+βB∗− ê‖2 (10.34)

This becomes the data fidelity norm (actual residual) error, which can be vulnerable
to the random variability in ê, as well as to uncertainties in determining β. One can
then devise a regularization function to moderate the effect of modeling errors as:

η(c)= B= ê−Ac (10.35)

where B is the unknown modeling error for the problem at hand. Note that the
regularization functional now is the residual error of Eq. (10.35), if the modeling error
is not taken into account, while the residual error, Eq. (10.34), incorporates some
estimate of the modeling error. One now needs to minimize the objective function:

min
{

[W(Ac+βB∗− ê)]T[W(Ac+βB∗− ê)]+α2(ê−Ac)2
}

(10.36)

which leads to the solution:

ĉ=
[
ATW2A−α2ATA

]−1(
ATW2(ê−βB∗)−α2ATê

)
(10.37)

10.4.11 Piecewise

While regularization can overcome the ill-posedness of an inverse problem, it comes,
as mentioned in Section 10.4.2, at the expense of smoothing the reconstructed image.
In many situations, the imaged object consists of clusters of homogeneous regions
separated by boundaries or edges. At each edge, there is an abrupt change in the
physical attributes. The above methods impose a global regularization function on the
entire solution, which does not help in preserving genuine edges and discontinuities in
an image. Preferential application of the above mentioned regularization schemes on
regions of interest can help bring out the presence of such regions in the reconstructed
image. This, however, requires a priori knowledge of the location of such regions.
Then, regularization methods can be judiciously applied to enhance a reconstructed
image, as discussed in Chapter 16. For the detection, during image reconstruction, of
unknown edges between otherwise homogeneous regions, one must introduce piece-
wise (local) regularization functionals, i.e. those that apply to a few voxels at a time.

In order to enable piecewise regularization, the regularization term, η(c) in (10.9),
is replaced by the summation of potential functions defined locally, i.e. piecewise, to
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emphasize local sharp changes in the image attributes. The cost function of Eq. (10.9)
takes the form:

min

{
[Ac− ê]2

+α2
∑

r

φ(Grc)

}
(10.38)

where Gr is a gradient operator acting in the neighborhood of each voxel and applied
in various ways (since the summation over r),9 and φ is called the potential function,
which characterizes the relationship between a voxel and its neighbors.10 The poten-
tial function is the logarithm of the probability density function, which is a quadratic
function for a Gaussian distribution. The potential function is positive-definite sym-
metric continuous and increases with t, with a unique minimum value at zero.

The minimization of Eq. (10.38) poses a number of problems. The first is the
absence of the Euclidean metric in defining the penalty term. The Euclidean metric
defines the closest distance between two entities, as such it defines a convex set, for
which a minimum exists.11 However, by choosing a convex function for φ(t), the
cost function of Eq. (10.38) can remain convex. But even then, a second problem
remains: the argument t of φ(t) is a function of the solution, which makes the prob-
lem of Eq. (10.38) nonlinear. This necessitates the employment of an iterative solution
process, see Section 10.7.

The function φ(t), where t = Gr(c), should be chosen such that at locations where
the spatial gradient of c is weak it promotes homogeneity, while when the gradient is

9 In the x− y plane, the first-derivative operator on c(xi,yj) corresponding to a voxel at (xi,yj) takes the
form (Nikolova and Chan, 2007):

G1(xi,yi)c= c(xi,yi)− c(xi−1,yi)

G2(xi,yi)c= c(xi,yi)− c(xi,yi−1)

G3(xi,yi)c=
1

2
[c(xi,yi)− c(xi−1,yi+1)]

G4(xi,yi)c=
1

2
[c(xi,yi)− c(xi+1,yi−1)]

Similar formulations can be made in three dimensions. For the second gradient operator (Pan and Reeves,
2006):

G1(xi,yi)c= c(xi,yi+1)− 2c(xi,yi)− c(xi,yi−1)

G2(xi,yi)c=
1

2
[c(xi−1,yi+1)− 2c(xi,yi)+ c(xi+1,yi−1)]

G3(xi,yi)c= c(xi+1,yi)− 2c(xi,yi)+ c(xi−1,yi)

G4(xi,yi)c=
1

2
[c(xi−1,yi−1)− 2c(xi,yi)+ c(xi+1,yi+1)]

10 The penalty function in Eq. (10.38) is used in statistical estimates as a replacement of the least-squares
cost function, in the so-called M-estimators technique (Rey, 1983), to overcome the presence of outliers
in observations.

11 A function, φ(x), is convex within an interval [a,b] if it is such that φ([γ x+ (1− γ )y))≤ γφ(x)+
(1− γ )φ(y), 0< γ < 1, and as such has a valley at the bottom of which a minimum is attained. In a
strictly convex function: φ([γ x+ (1− γ )y)) < γφ(x)+ (1− γ )φ(y). Equivalently, φ(x)≥ 0 for all a ∈
[a,b].
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steep φ(t) should manifest the presence of the edge. Let us consider Gr to be the spatial
gradient operator of c, then t = Grc

(
=

∂c
∂x in one dimension

)
. We will use φ′(t)=

∂c
∂t , and φ′′(t)= ∂2c

∂t2
. In weak-gradient regions, φ(t) should be such that (Aubert and

Kornprobst, 2006):

φ′(0)= 0 (10.39a)

lim
t→0+

φ′(t)

t
= lim

t→0+
φ′′(t)= φ′′(0) > 0 (10.39b)

The first condition, called influence function, indicates that when there is no spatial
gradient in c, there should be no change in the value of φ in the considered neighbor-
hood. The second condition, where φ′(t)

t , called the weight function, discourages huge
changes in φ when the spatial gradient approaches zero in any direction. The equality
of the three terms in Eq. (10.39b) assures a nearly flat function in the neighborhood of
t = 0, where the function is minimum and the gradient is zero.

In the presence of an edge (Aubert and Kornprobst, 2006):

lim
t→∞

φ′′(t)= 0 (10.40a)

lim
t→∞

φ′(t)

t
= a finite value > 0 (10.40b)

where γ is some positive real number. The condition of Eq. (10.40a) states that when
the spatial gradient, t, is extremely large, it should be accompanied by a fixed change
in c, to indicate the presence of an edge. On the other hand, the second condition of
Eq. (10.40b) ensures the existence of φ′′, and limits sharp changes in c in the presence
of a small gradient. These two conditions of Eq. (10.40) can be mathematically incom-
patible: φ′′ = 0 requires φ′ = constant or zero, and in turn limt→∞

φ′(t)
t = 0. This led

to the development of a number of creative formulations for φ(t) that attempt to par-
tially satisfy the conditions of Eq. (10.40) by taking advantage of the indefinite nature
of infinity and allow the two conditions to approach infinity at different rates, i.e. by
ensuring that:

lim
t→∞

φ′′(t)
φ′(t)

t

= 0 (10.41)

The requirements of Eqs. (10.39) to (10.41), provided that φ(t) is convex, do deal
with the ill-posedness of the problem for which regularization is devised in the first
place, while attempting to preserve image features that can be destroyed by a global
regularization of the problem.

To relate a voxel to its neighbors, one can take the view that in general, objects are
formed by physical phenomena that are at equilibrium or near equilibrium conditions.
As such, images of physical objects tend to consist of nearly homogeneous regions.
One can, therefore, say broadly that a voxel in an image likes to look like its neighbors,
or in other words, a voxel in an image can be considered as being in a state that tends to
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evolve toward equilibrium. Continuing with this analogy, a voxel can be considered to
be at a slightly perturbed state relative to the states of its closest neighboring voxels.
This can be described in thermodynamics by Gibbs function, and in statistics this
would form a Gaussian (normally distributed) Markov chain.12 Transitions from one
homogeneous (equilibrium) state to another homogeneous, but different, state takes
place gradually. Therefore, rather than smoothing the entire image, one should intro-
duce smoothing in regions known a priori to be smooth, while accommodating the
sharp transitions between states. This is typically used in image enhancement, as dis-
cussed in Section 16.5.

Below are some of the potential functions that can be used in piecewise regular-
ization. Table 10.1 provides a list of various piecewise regularization functions and
examines how they meet the conditions of Eq. (10.39), Eq. (10.40) and Eq. (10.41),
as well as of convexity, φ′′(tmin) > 0. The reader can plot these function for better
understanding of their influence on their neighbors.

Quadratic

Since the potential function of a Gaussian distribution is a quadratic function, which
is also a convex function, the most basic convex formulation for φ(t) is the form
(Demoment, 1989)13:

φ(t)= t2 (10.42)

This form satisfies the homogeneity condition of Eq. (10.39), and one of the edge
preservation conditions, Eq. (10.40b), but it does not fulfill the other condition
Eq. (10.40a), nor its substitute, Eq. (10.41). Therefore, φ(t) of Eq. (10.42), when
applied to the Ni neighbors of a voxel i will tend to dampen edges, in the presence
of sharp gradients, since its gradient is always finite (being proportional to the dif-
ference between the c value of adjacent neighbors). One can argue that though this
quadratic potential when applied to the entire image domain (rather than only to the
neighborhood of a voxel) is equivalent to the gradient Tikhonov regularization of
Section 10.4.7.

Huber

The influence of the quadratic potential can be limited via a scaling parameter, β,
determined in advance such that:

φ(t)=

{
t2
2 if 0≤ t ≤ β

β|t| − β2

2 if t > β
(10.43)

12 The logarithm of a distribution defines its potential. Since the Gibbs function is an exponential function
of the potential, it resembles a Gaussian distribution. A Markov chain is a random walk governed by
conditional probabilities, i.e. the future of a present state is conditionally independent of the past.

13 This paper also has an excellent overview of some regularization concepts.
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Table 10.1 Various Piecewise Regularization Functions, φ(t), β > 0 (Nikolova and Chan, 2007; Nikolova et al., 1998;
Green, 1990).

φ(t) Convex Homogeneity Edge Preservation

(10.39a) (10.39b) (10.40a) (10.40b) (10.41)
φ′′(t) φ′(0) lim

t→0+
φ′(t)

t lim
t→0+

φ′′(t) φ′′(0) lim
t→∞

φ′′(t) lim
t→∞

φ′(t)
t lim

t→∞

φ′′(t)
φ′(t)

t

≥ 0 = 0 > 0 > 0 > 0 = 0 = γ > 0 = 0

t2 yes yes yes yes yes no yes no
tβ , 1< β < 2 yes yes yes yes yes yes no yes{

t2

2 , 0≤ t ≤ β
|t|
2 −

β2

2 , t > β
yes yes yes yes yes no yes no

min(βt2,1) no yes yes yes yes yes no yes√
β + t2 yes yes yes yes yes yes no yes
βt2

1+βt2 no yes yes no no yes yes no

1− exp(−βt2) no yes no no no yes no yes

ln(1+βt2) no yes yes yes yes yes no no

ln(cosh(βt)) yes yes yes no no yes no yes
t
β
− ln

(
1+ t

β

)
yes yes yes no no yes no yessin(βt2),0≤ t ≤

√
π
2β

1, t >
√

π
2β

no yes yes no no yes no yes

t ln(βt) yes no no yes yes yes no yes
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Then, while the quadratic potential (Tikhonov-like regularization) remains for
small values of t, once the t value exceeds β the strength of the potential function is
reduced enabling boundaries to evolve. The value of β controls the penalty imposed on
the evolution of edges by the quadratic potential, allowing edge preservation. In other
words, by maintaining the quadratic term at low gradients (small t), weak variations
in c are retained, while larger ones are encouraged by the linear part of the poten-
tial at high gradients. However, the transition in the value of the gradient between
the quadratic and linear regions of the function is predetermined by the value of β,
which should be related to the expected magnitude of change in c at edges. When the
expected magnitude of edge changes is not known in advance, or is expected to vary
widely, it would then be difficult to assign a single value of β that will not smooth
some edges more than others.

The form of regularization associated with Eq. (10.43) is known as Huber regular-
ization (Huber, 1981, 1964). A disadvantage of this function, and similar discontinu-
ous functions involving a threshold value, is that they require a priori assignment of
the value of β at which an edge is considered to have been formed.

Generalized Gaussian

Bouman and Sauer (1993) generalized the Gaussian (quadratic function) of Eq. (10.42)
into the form:

φ(t)= tβ , 1< β < 2 (10.44)

giving lim
t→∞

φ′′(t)
φ′(t)

t

= β − 1, which is closer to satisfying condition (10.41), particularly

when β is closer to unity. Note that, at β = 1, lim
t→∞

φ(t)=∞, and the condition of

Eq. (10.40b) becomes too severe, while β < 1 leads to a nonconvex function, since
φ′′(0) < 0. On the other hand, β > 2 provokes the two conditions of Eq. (10.40).
In this so-called generalized Gaussian function, large (close to 2) values of β promote
image homogeneity at the expense of damping abrupt edge discontinuities, while a
small (close to unity) β allows edges to evolve. Therefore, with β values somewhere
in between one and two, edges can be preserved, while not over-amplifying small
fluctuations. At the same time, with such β values, ill-posedness can still be overcome
by employing a convex potential function. In addition, unlike in the Huber function,
Eq. (10.43), one needs not assign in advance a threshold value, beyond which a change
in the image attributes is considered to be caused by an edge.

Approximately Quadratic

Another approach is to find an approximation of the Huber function of Eq. (10.43), that
(1) moderates the smoothing effect of the quadratic potential function, Eq. (10.42), (2)
encourages edge preservation, and at the same time (3) avoids the thresholding of the
Huber function. Green (1990) proposed the log-cosh function:

φ(t)= ln [cosh(βt)] (10.45)
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This is a strictly convex function (φ > 0), and is approximately quadratic at small t,
and tends to linearity at large values, emulating the Huber function.

Truncated Quadrature

Rather than the linear term beyond the discontinuity, t > β, of the Huber function of
Eq. (10.43), Nikolova et al. (1998) truncated the quadratic function at some threshold
value, t = qγ < β, with qγ being a truncation parameter. At another threshold value,
t = rγ > β, the potential function was assigned a constant value, β2. In the transition
from the quadratic region, where the image is expected to be homogeneous, to the dis-
continuity at the edge, a transition state is introduced. Within that undetermined tran-
sition state, the potential function is defined by fitted quadratic splines that bridge the
continuous homogeneous state to the discontinuous edge state. Therefore, the potential
function is defined as:

φ(t)=


t2, t < qγ
β2
− γ (rγ − t)2, qγ ≤ |t|< rγ

β2, |t| ≥ rγ

qγ = β
(

1+ 1
γ

)− 1
2

rγ = β
(

1+ 1
γ

) 1
2

(10.46)

where γ > 0 is called the relaxation parameter that determines the width of the
relaxation state. Note that γ =∞, gives qγ = rγ = β, and the transition state ceases to
exist; consequently γ =∞ creates an abruptly terminated truncated quadratic poten-
tial function. On the other hand, a small γ << 1 value would produce a wide transi-
tion state. The potential function within the transition state is concave, which does not
assure minimization of the solution’s cost function. However, the degree of concavity
can be controlled by the value of γ , since φ′′(t)=−2γ,qγ ≤ |t|< rγ . Therefore,
Nikolova et al. (1998) proposed a graduated nonconvexity (concavity) iterative algo-
rithm using an exponential relaxation sequence that evolves slowly at the beginning
of iteration and faster later on (they used as an example γk = 0.25exp(0.2k), where γk

is the value of γ at iteration k).

Hypersurface Minimal

This is a potential function based on the physical phenomenon of electron transitions
in chemical reactions, where two electronic states are degenerate, allowing a hyper-
surface (minimal energy). These transitions are analogous to transition across edges in
an image. The corresponding potential function is of the form (Aubert and Kornprobst,
2006):

φ(t)=
√

1+ t2 (10.47)

This function satisfies conditions Eq. (10.39) to Eq. (10.41), though the limit for
Eq. (10.40b) is a small value close to zero. It is also a convex function.
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“Fair”

The so-called “Fair” function, given by Rey (1983):

φ(t)=
t

β
− ln

(
1+

t

β

)
(10.48)

satisfies the homogeneity conditions of Eq. (10.39), as well as the edge conditions of
Eqs. (10.40a) and (10.41). This function has continuous first, second, and third order
derivatives, which facilitates convergence in iterative computations.

Nonconvex Functions

A number of edge-preserving nonconvex potential functions are used for regular-
ization. Although such functions do not help with the problem’s ill-posedness, their
ability to tolerate abrupt edges makes them attractive for use in preserving image dis-
continuities. Nevertheless, with the first term in the objective function of (10.9) being
convex, and given that the effect of potential functions is local and can be controlled
by the regularization parameter, α2 in (10.38), the nonconvex effect of such regular-
ization on the problem’s ill-posedness can be diminished.

One such nonconvex potential function, suggested by Geman and McClure (1987)
(cited by Nuyts et al. (2002)) is as follows:

φ(t)=
βt2

1+βt2
(10.49)

where β is again a control parameter. This function satisfies simultaneously the con-
ditions of Eq. (10.40) by having φ′→ 0 as t→∞. The function of Eq. (10.49) is,
however, nonconvex. As a result, it does not serve as a regularization function for the
purpose of dealing with ill-posedness. Note that because of the nonconvex nature of
the function of Eq. (10.49), a different solution (image) can be arrived at for the same
value of β, with a slight variation in measurement error (noise).

10.4.12 Variational

This form of regularization, like the piecewise regularization of (10.38), allows for
bounded discontinuities in the solution, such as those encountered at image edges.
This is done by introducing regularization via a non-Euclidean term, so that the dis-
tance between image parameters in the obtained solution is not necessarily the shortest
distance as dictated by the Euclidean metric. Such regularization can be achieved by
simply using the L1 norm, in place of the Euclidean norm for the regularization term in
(10.9), producing the so-called total variation (Rudin et al., 1992). This is equivalent
to utilizing globally the generalized Gaussian regularization of Eq. (10.44) with β = 1.
Accordingly, the regularization of (10.38) applied globally (rather than piecewise), as
was done by Charbonnier et al. (1997), is a form of variational regularization.
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10.4.13 Maximum Entropy

Entropy is used in information theory as a measure of the amount of choice one has
in selecting an event: the more choice, the less the constraints, the higher the entropy.
In other words, entropy is a measure of disorder or randomness, and a measure of
loss (or lack) of information; hence a measure of uncertainty. In imaging, lack of
information is associated with an insufficient number of measurements (an undeter-
mined problem), or a high measurement uncertainty. In such problems, the same set
of measurements could correspond to a number of solutions, i.e. possible image con-
figurations. With no other information available to favor one particular configuration
over others, one is compelled to choose the arrangement with maximal entropy (max-
imum uncertainty). In other words, a maximum-entropy solution is a solution with
no unfounded constraints, i.e. a solution that “agrees” with what is known, but does
not assume anything that is not known (Jaynes, 1957). Therefore, information entropy
provides a means for regularization.

In information theory, the entropy, u, associated with a solution, c, is defined by:

u=−
n+∑
i=1

(
ci

csum

)[
ln

(
ci

csum

)
−

lnβi

n+

]
(10.50)

where csum =
∑n+

i=1 ci is a normalization constant, the summation is over the n+

positive terms of c, and βi is the distribution with respect to which entropy is defined.
When βi = 1 for all i, entropy is defined with respect to a uniform distribution, which
is the default distribution in the absence of any other a priori knowledge of c. The
normalization of c provides a probability distribution of its elements. The entropy of
Eq. (10.50) is known as the Shannon-Jaynes (Jaynes, 1957; Shannon and Weaver,
1949) (or information) entropy. It is a negative measure of the information content of
the image formed by c. The maximum entropy regularization minimizes the negative
of the entropy, along with the minimization of the fidelity (residual) norm, that is:

min

[Ac− ê]2
+α2

n+∑
i=1

(
ci

csum

)[
ln

(
ci

csum

)
−

lnβi

n+

] (10.51)

Since the Euclidean norm does not appear in the regularization term, (10.51) can be
considered as a form of variational regularization. The nonlinear nature of the entropy
term dictates an iterative solution of the problem, using one of the methods described
in Section 10.6.

A solution obtained with maximum-entropy regularization produces an image
that best matches available measurements, but with minimal unnecessary correla-
tions between voxels. It is equivalent to a basic Tikhonov regularization: both are
minimum-information methods. However, the maximum-entropy solution has two
unique features: the ability to provide an unbiased solution from an incomplete
set of measurements, i.e. an underdetermined problem (see Chapter 14), and the
nonnegativity of solution (i.e. it is a Tikhonov regularization with positivity). The
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first feature arises from its favoring of a solution with maximum entropy (i.e. uncer-
tainty), among many possible solutions. The nonnegativity comes from the fact that
entropy is only defined for positive and additive parameters, since order cannot be
restored by subtracting or adding negative attributes. This feature allows the use of
maximum-entropy regularization as a stand-alone form of regularization (Landl and
Anderssen, 1996), or as a follow-up solution to refine the results obtained using other
means of regularization, as suggested by Chiang et al. (2005). In summary, a solution
based on (10.51) would be most consistent with available measurements, nonnega-
tive (because of the logarithm), and most noncommittal about missing information,
i.e. the obtained solution is most “objective” or “maximally uncommitted” to missing
information (Hansen, 1998).

Each term in the summation of Eq. (10.50) can be considered as a potential func-
tion: φ(t)= t ln(βt)+ constant, analogous to those defined in Section 10.4.11. This is
also a convex function, but while it does not fully satisfy the homogeneity conditions
of Eq. (10.39), it satisfies the two edge requirements of Eq. (10.40a) and Eq. (10.41).
Therefore, maximum-entropy regularization is edge preserving. A major difference
between this entropy-based potential function and those of Section 10.4.11 is that the
latter functions reach their minimum at zero, but φ(t)= t ln(βt) has a minimum at
exp(−β)

β
> 0. Its minimization, therefore, promotes positivity of solution by pushing it

away from zero.
An a priori estimate of the solution, c∗, can be used to define the distribution of βi

in Eq. (10.50) so that:

u=−
n+∑
i=1

(
ci

csum

)[
ln

(
ci

csum

)
− ln

(
c∗i

c∗sum

)]
(10.52)

Regularization with this relative entropy will seek a solution closest to c∗.
Equation (10.52) is known as the Kullback-Leibler metric (Kullback and Leibler,
1951) (called simply the Kullback distance) or the cross-entropy (Shore and Johnson,
1980). This distance, being obviously different from the Euclidean distance, makes the
maximum-entropy regularization of (10.51) a variational regularization. Note that the
Kullback distance in noncommutive, i.e. the distance between ci and c∗ is not equal to
the distance between c∗i and ci, since ci ln(ci/c∗i ) 6= c∗i ln(c∗i /ci). It is, therefore, patho-
logical (Demoment, 1989), in the sense that it is a measure of deviation from “normal”
state.

Another modified form of the entropy is given by (Dudı́k et al., 2007; Engl et al.,
2000; Hofmann and Krämer, 2005):

u=
n+∑
i=1

(
ci

csum

)[
ln

(
ci

csum

)
− ln

(
c∗i

c∗sum

)
−

(
ci

csum
−

c∗i
c∗sum

)]
(10.53)

The inclusion of c∗ helps in stabilizing the solution process (Chiang et al., 2005).
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10.4.14 Solution Bounding

The regularization methods discussed in Sections 10.4.7 to 10.4.13 aimed at smooth-
ing a reconstructed image, based on some a priori knowledge of its nature. This was
done without any regard to the nature of the acquired measurements, except by incor-
porating the weight matrix, W, in the solution. However, more information can be
extracted from the measurements themselves, or from supplementary measurements.

Given the forward model: Ac= e, one can estimate an upper bound, qj, for the
value of cj at a given voxel by:

qj =min
i

{
ei+ σi

Aij

}
; for Aij > 0 (10.54)

where σ 2
j is the variance associated with the measurement ej. Equation (10.54) gives

an upper bound, when Ai j> 0, because it does incorporate the contribution of all cor-
responding elements of A, and because it takes into account the elevating effect of any
statistical fluctuations by adding σi to each ei. However, this is a weak upper-bound14

because the minimization in Eq. (10.54) restricts the value of qj. By compiling all the
estimates of qj’s into an N×N diagonal matrix, Q, one can introduce the following
regularization functional as a solution constraint:

η(c)= Q−1c (10.55)

Qij = qjδij (10.56)

with δij being the Kronecker delta. With the regularization functional of Eq. (10.55),
the solution of Eq. (10.23) takes the form:

ĉ=
[
ATW2A+α2Q−2

]−1
ATW2ê (10.57)

Solution bounding can also be accomplished by obtaining information from sup-
plementary measurements not employed in the image reconstruction process. For
instance, in scatter imaging, transmission measurements can be employed to provide
an estimate of the sum of the attenuation coefficients along certain directions. This
information, for M′ supplementary measurements, can be put in the matrix form:

Hc≤ T (10.58)

where H is an M′×N constraint matrix (e.g. the linearized forward model for trans-
mission measurements) and T is a diagonal M′×M′ matrix in which each diago-
nal element corresponds to a supplementary measurement plus its statistical standard
deviation, to provide an upper-bound for the constraint and to take into account the

14 This approach was adopted by the ferdor and forist codes (Oak Ridge National Laboratory, code
collection PSR-17 and PSR 92, respectively) for neutron spectrum unfolding, and used by the author of
this book in scatter-imaging problems (Arendtsz and Hussein, 1995b; Hussein et al., 1986a,b).
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statistical quality of the measurements. The regularization functional with Eq. (10.58)
takes then the form:

η(c)= T−1Hc (10.59)

The resulting solution is:

ĉ=
[
ATW2A+α2HTT−2H

]−1
ATW2ê (10.60)

Note that in Eq. (10.58), when H = I, i.e., no mapping of the supplementary infor-
mation, T becomes an upper-bound of the solution. With T = cupI, where cup is a some
upper-bound that any element in c cannot exceed, Eq. (10.60) becomes identical to the

basic Tikhonov regularization of Eq. (10.17) with G= I, but with α2

c2
up

being now the

regularization parameter, instead of α2 in Eq. (10.17). Therefore, an explicit bounding
of the solution, determined from a priori information, can be formulated as:

c≤ cup (10.61)

leading to the regularization functional:

η(c)=
1

cup
c (10.62)

and the solution:

ĉ=
[

ATW2A+
α2

cup
I
]−1

ATW2ê (10.63)

Regularization to bound the solution to nonnegative values can also be achieved via
the maximum-entropy regularization method, described in Section 10.4.13. In addi-
tion, applying regularization using the Kullback distance of Eq. (10.52) gives some
rationale for the establishment the nonnegative solution, by relating it to an a priori
estimate of the solution. Note that constraints can be applied to bound the solution
within explicit lower and upper limits by nonlinear programming, see Lawson and
Hanson (1995), Stark and Parker (1995), Rao (1996), and Varah (1979).

10.5 Regularization-Parameter Determination

Regularization is introduced to control error propagation due to measurement uncer-
tainties. However, regularization also introduces its own error, by virtue of preventing
absolute minimization of the residual error, ‖Ac− ê‖. Let ĉα be the solution obtained
by a regularized solution, with a certain regularization function with a regularization
parameter, α2. Assuming that the true solution, c, is given by the error introduced by
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regularization plus that caused by the propagation of measurement uncertainties, δe,
the error, δĉα, in a solution subjected to regularization is then given by:

δĉα = (A
†
αAc− c)+A†

αδe (10.64)

where A†
α is the inversion operator that led to the solution ĉα .

The choice of α2 is a balance between the desire to temper the ill-posedness of the
inverse problem and the need to provide a solution that best matches the measure-
ments. As α2

→∞, the effect of measurements on the solution diminishes, which is
either meaningless or produces a default solution. On the other hand, as α2

→ 0, the
role of regularization in overcoming ill-posedness is weakened.

An optimal value of α2 is, therefore, sought. A number of methods can be used to
select a proper value for α2. These methods are presented below. While the ensuing
discussion focuses on α2, it is equally applicable to the selection of other regulariza-
tion parameters, such as β in piecewise regularization.

10.5.1 Convergence Regularization

Obviously, if there were no measurement uncertainties, there would be no need for
regularization. Since measurement uncertainties are inevitable, one should ensure that
as these uncertainties approach zero, the error in the solution also vanishes, even in
the presence of regularization. This becomes the basis for selecting the regulariza-
tion parameter, α2. Using the solution expressed in terms of the singular values, in
Section 10.4.2, for the basic Tikhonov regularization, and following the analysis of
Vogel (2002), the solution error of Eq. (10.64) can be expressed as:

δĉα =
∑

i

[
[gα(si)− 1]

(
vT

i c
)

vi

]
+

[
gα(si)

si

(
uT

i δe

)
vi

]
(10.65)

where use is made of Eqs. (10.11) and (10.13). The error introduced by regularization
vanishes when gα(si)→ 1, since then in accordance to Eq. (10.13) α2

→ 0. The pro-
pagation of δe is controlled by the term: gα(si)

si
=

si

s2
i +α

2 , which for s> α approaches
1
s <

1
α

; for s< α is approximately equal to s
α2 <

1
α

; and for s= α is equal to 1
2α

1
α

.

Therefore, the inequality gα(si)
si

< 1
α

is always valid. As a result
∥∥∥ gα(si)

si

(
uT

i δe
)

vi

∥∥∥≤
‖δe‖
α

. When there is no uncertainty in the measurements, i.e. when ‖δe‖→ 0, the asso-

ciated error propagation term, which is always ≤ ‖δe‖
α

, should also vanish. Therefore,

one must choose α = ‖δe‖
r, with r < 1, so that ‖δe‖

α
= ‖δe‖

1−r
6= 1 and is bounded.

With r > 0, one can also assure that the error introduced by regularization also van-
ishes as α2

→ 0. Therefore,

δĉα → 0, as ‖δe‖→ 0, if α2
= ‖δe‖

2r, 0< r < 1 (10.66)

This condition leads to a convergent regularization, since its effect vanishes with the
disappearance of measurement uncertainties. While this selection for α2 is suited for
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the basic Tikhonov regularization, with G= I, and by extension the svd solution of
Eq. (10.12), it is more difficult to apply to other regularization methods. It illustrates,
however, the need to assure that the regularization parameter is chosen with the con-
vergence criteria in mind.

10.5.2 Discrepancy Principle

Rather than assigning up front a specific value for α2, it can be assigned a posteri-
ori, i.e. after a solution estimate is arrived at. Use is then made of the discrepancy
principle (Morozov, 1984), which essentially indicates that there is no point in obtain-
ing a solution that produces corresponding estimated measurements, Aĉ, with an error
greater than δe (the error in available measurements). Therefore, one should seek a
value for α2 that produces a solution, ĉα , such that:

‖Aĉα − ê‖ = γ ‖δe‖ (10.67)

where γ is slightly greater than one, e.g. γ = 1.01, with ‖δe‖� ‖ê‖ (otherwise the
uncertainty in the measurements is too excessive to allow a meaningful solution). This
requires an iterative solution with gradually increasing (from zero) value of α2, with
Eq. (10.67) used as the stopping criteria for the iterative process. In radiation measure-
ments, an estimate of ‖δe‖ can be obtained using the Poisson counting statistics, see
Section 15.2. However, when the forward model does not accurately simulate the mea-
surements, as almost always the case (see Part I of this book), and in the presence of
other systematic errors, a solution produced by Eq. (10.67) can be under-regularized.
This, however, can be overcome by generalizing the discrepancy principle to include
the modeling error, as defined by B∗ in Eq. (10.33). Then the regularization parameter
is chosen so that:

‖Aĉα − ê‖ = γ (‖δe‖+ γm‖B∗‖) (10.68)

10.5.3 L-Curve

After obtaining a regularized solution, ĉα , with a certain parameter, α2, one can cal-
culate the regularization norm, ‖Gĉα‖, and the residual norm, ‖Aĉα − ê‖. If for vari-
ous values of α2, ln‖Gĉα‖ is plotted verses ln(‖Aĉα − ê‖), one typically obtains the
L-shaped of Figure 10.1 (Hansen, 1992; Hansen and O’Leary, 1993). At small values
of α2, the solution is quite susceptible to the measurement error, ‖δe‖, and conse-
quently quite sensitive to changes in α2, hence the vertical portion of the curve. As α2

becomes large, the problem tends to be over-regularized to the extent that the solution
is more dependent on regularization than on measurements; hence the horizontal por-
tion of the curve. This can be substantiated by Eq. (10.65), which shows that for small
values of α2, gα(si)≈ 1, the solution error, δĉα becomes dominated by propagated
measurement error, ‖δe‖, leading to large ‖Gĉα‖ values. At high α, gα(si)� 1, the
regularization error dominates, taking Aĉ further away from ê, leading to the increase
in ‖Aĉα − ê‖. The use of ln-ln scale emphasizes the changes in the values of these
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Figure 10.1 Typical L-curve showing the general relationship between the logarithms of regu-
larization norm, ‖Gĉα‖, and that of the residual norm, ln(‖Aĉα − ê‖).

norms, and makes it easier to locate the optimal value of α2, which obviously is at
the corner of the L-curve, where there is no further gain by introducing more regu-
larization. This curve, therefore, can be used to select the proper value of α2. Note
that selecting α2 according to the discrepancy principle, Eq. (10.67), corresponds to
choosing a value of ‖Aĉα − ê‖ just to the right of the corner of the L-curve, i.e. before
regularization starts to affect the solution significantly, making it insensitive to ‖δe‖.

10.5.4 Minimum Predictive Error

The best regularization parameter, α2, can also be considered to be the value that
minimizes the predictive error defined by (Vogel, 2002):

pα = Aĉα −Ac (10.69)

since this will provide the closest solution, ĉ, to the true solution, c. This error cannot
be explicitly computed, but it can be estimated as:

pα = Aĉα −Ac= (Aĉα − ê)+ (ê−Ac)

= (Aĉα − ê)+ (2AA†
α − I)δe (10.70)

with ê= Ac+ (2AA†
α − I)δe to incorporate the effect of regularization (note that with

no regularization: A†
α = A−1, 2AA†

α − I = I). One can recognize that the first term in
the estimate of Eq. (10.70), Aĉα − ê, is the residual error, which is a deterministic
term that is not affected by randomness, once a certain value of ê is utilized. On the
other hand, the second term, (2AA†

α − I)δe, is a random variable, since it contains the
statistical variability of the measurements via δe. The expected value, E(‖pα‖

2
2), is
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then given by (Vogel, 2002):

E(‖pα‖)= ‖Aĉα − ê‖22+ 2‖ê‖2 trace(AA†
α)−‖ê‖2 (10.71)

where the trace15 of AA†
α is used to estimate its expected value. In Eq. (10.71), the

variance of a radiation counting measurement is assumed to be equal to its mean
(measured) value, in accordance to the Poisson statistics described in Section 15.2.
Vogel (2002) provided an analogous expression to Eq. (10.71), albeit for a normally
distributed white noise with a certain variance. The expected value of the predictive
error is given by E(‖pα‖), which is an estimate of the risk in predicting a wrong solu-
tion. Therefore, E(‖pα‖) is called the unbiased predictive risk estimator. Obviously,
the regularization parameter, α2, should be chosen to minimize Eq. (10.71), in order
to obtain the lowest expected predictive error.

Thompson et al. (1991) proposed finding the regularization parameter by minimi-
zing the total predicted mean squared error defined as:

E(‖Ac−A(A†
α ê)‖22)= E(‖Ac−AA†

α(Ac+ δe)‖
2
2)

= ‖(I−AA†
α)Ac‖22+‖ê||2 trace(A†

α)
2 (10.72)

where again the variance in ê is taken to be equal to ‖ê‖ according to Poisson statistics.
However, the minimization of Eq. (10.72) requires knowledge of the true value of c,
but an estimate of c can be used to facilitate finding a value for α2.

A heuristic quasi-optimization approach for finding α2 was proposed by Hanke
and Raus (1996). It is based on minimizing the difference between two regularized
solutions, one (ĉα) with the usual regularization, and the second solution (ĉαα), using
the first solution, ĉα , as a solution estimate, as in Eq. (10.27). The difference between
the two solutions is then given by:

∥∥ĉα − ĉαα
∥∥2

2 =
∥∥(Aĉα − ê)− (Aĉαα − ê)

∥∥2
2 ≈

∥∥∥α2
(

AAT
+α2I

)
ATê

∥∥∥2

2
(10.73)

10.5.5 Generalized Cross Validation

The predictive error of Eq. (10.70) can also be expressed as:

pα = (Aĉα − ê)− (I−AA†
α)δe+AA†

αδe (10.74)

With the view that regularization aims at controlling error propagation, irrespective
of the random variability of measurements, the predictive error can be minimized by
minimizing:

V(α)=
‖Aĉα − ê‖22

[trace(I−AA†
α)]2

(10.75)

15 The trace of a square matrix is the sum of its diagonal elements.



HUSSEIN Ch10-9780123877772 2011/5/16 18:46 Page 155 #31

Matrix-Based Methods 155

The function V(α) is also an estimator of the mean-squared norm of the predictive
error. Choosing an α2 value that minimizes Eq. (10.74) reduces then the risk of obtain-
ing an erroneous solution. The function V(α) of Eq. (10.75) is called the general-
ized cross validation functional (Vogel, 2002), first introduced by Craven and Wahba
(1979).

10.5.6 Minimum Bound

In this method, the regularization parameter, α2, is chosen to minimize an approxi-
mate upper-bound of the solution error, ĉ− c. This upper-bound is determined by a
functional, B(α), that combines the residual error and the error that would have been
obtained if true (error-free measurements) were available and were used to obtain a
regularized solution. Since the latter error is not known, its squared value is estimated
to be at least equal to the measurement variance divided by the regularization parame-
ter. With the variance of the measurements taken to be equal to the measurement itself
(in accordance to the Poisson statistics of counting), one has (Lukas, 1998; Vogel,
2002):

B(α)=
∥∥∥(Aĉα − ê)T(AAT)†(Aĉα − ê)

∥∥∥2

2
+
γ

α2
‖ê‖2 (10.76)

for any γ ≥ 1. The parameter γ allows for adjusting the upper-bound in terms of the
measurement variance. The division of the variance term by α2 in Eq. (10.76) reduces
the upper-bound with increased regularization.

10.5.7 Statistical Hypothesis Testing

Rather than focusing on finding a regularization parameter, α2, that minimizes the
residual error while overcoming ill-posedness, or minimizing the predictive error or
some upper-bound of solution error, one can aim at find an α2 value that preserves the
profile (distribution) of the measurements. This is a powerful rationale given that, as
indicated in Part I of this book, the forward problem is itself approximate, and as such
best matching with measurements, or minimizing some measure of solution error, may
not be the most appropriate means of reaching an acceptable solution. Vogel (2002)
proposed using this profile-preservation approach, originally introduced by Veklerov
and Llacer (1987), as a stopping rule in an iterative solution, to chose a regularization
parameter which produces modeled measurements, Aĉα , that are Poisson distributed
(given Poisson-distributed measurements). To test whether a calculated set of mea-
surements, Aĉα , follows Poisson statistics, the Pearson’s chi-square (χ2) test can be
applied, as was done by Veklerov and Llacer (1987). Care should be taken, however,
to restore into the computed measurements any normalization16 or transformation that

16 As indicated in Section 15.2, the variance of a Poisson distribution is equal to its mean. With the value of
measurement taken as an estimate of the mean, the variance depends on the magnitude of a measurement.
Scaling or normalizing the latter changes the absolute value of the variance.
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may have been introduced to the original measurements, in order to correctly apply
the χ2 test.

The χ2 test involves calculating the relative difference between the observed fre-
quency, hok , and the expected (theoretical) frequency, htk , of a distribution of an experi-
mental outcome, k:

χ2
=

K∑
k=1

hok − htk

htk
(10.77)

where K is the total number of outcomes of the experiment. The hypothesis of Pois-
son distribution is rejected if the obtained χ2 value exceeds a certain critical value
determined by K− 1 (the number of degrees of freedom) and a desired χ2 probability
(significance level, typically taken to be 0.05 or less).

The procedure suggested by Veklerov and Llacer (1987) involves distributing,
in increasing order, the values of actual, ê, and modeled, ẽ= Aĉα , measurements
amongst K bins of equal intervals, so that all have the same theoretical probability,
pk =

1
K , for k = 1, . . .K. Then any observed measurement, êi, is assigned to the kth

bin according to the Poisson distribution, with a computed measurement, ẽi, taken as
the mean value. Using Eq. (15.1), we have the two probabilities:

Pa =

êi−1∑
n=0

ẽn
i

n!
exp(−ẽi)

Pb =

êi∑
n=0

ẽn
i

n!
exp(−ẽi)

representing two cumulative probabilities from zero to êi− 1 and zero to êi, respec-
tively. A random number, ρ, uniformly distributed between Pa and Pb is generated
using:

ρ = Pa+ ξ(Pb−Pa) (10.78)

where ξ is a random number uniformly distributed in [0,1]. Then the measurement, êi

is assigned to the kth bin, with k being the smallest integer such that: k ≥ ρK.
Applying the above procedure to all values in the vector ê, one obtains a histogram

distribution, of hk, the number of measurements belonging to bin i. Taking hk = hok

in Eq. (10.77), then the theoretical outcome becomes equal to htk =
M
K , where M is

the number of available measurements, which are assumed to be equally distributed
among the K bins. The χ2 test can now be applied, provided that M is sufficiently a
large number to make this test meaningful.

If the above χ2 test fails for a given value of the regularization parameter, α2, then
another value for α2 should be used to obtain another regularized solution, and the
above test is repeated, until an acceptable value for α2 is obtained. This exercise may
yield more than one acceptable α2 value, in which case one should select the value that
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best satisfies one of the regularization parameter selection methods described above.
On the other hand, if no acceptable value is produced by the χ2 test, then this should
be taken as an indication of the inappropriateness of the a priori information, or the
regularization method used in solving the inverse problem, but it could also be due to
inadequacy of the forward model itself.

10.5.8 Regularization by Iteration

Iterative solution methods discussed in Section 10.6 also introduce a regularization
effect, i.e. they help overcome the effect of uncertainties in the measurements (Bertero
and Boccacci, 1998). A converging iterative solution will approach the true solution,
within the range of error caused by measurement uncertainties. If an iterative process
is stopped within that error, one in effect obtains a regularized solution. In essence, the
number of iterations, k, becomes inversely proportional to the regularization parame-
ter, α2. That is, as k→∞, the effect of regularization vanishes, while at the beginning
of iteration a large amount of regularization is introduced. Then, the number of iter-
ations at which a satisfactory solution is arrived determines the effective amount of
regularization introduced into the solution.

10.6 Iterative Methods

In a matrix-based linear formulation, direct matrix inversion is only possible when
dealing with a matrix of a manageable size, within the available computing capacity.
In large-scale problems, matrix inversion is avoided altogether. An iterative scheme
is employed, even when the problem is linear, to avoid the increasing storage and
manipulation demands of computing a direct inversion.

An iterative solution starts with an initial estimate (guess) of the solution, ĉ0. Obvi-
ously, if a priori estimate of the solution is available, it should be used as the initial
guess. On the other hand, if a reasonable a priori knowledge of the nature of the
expected image is not available, a uniform image of some guessed attribute, or even
an empty imaging domain, can serve as the initial guess. Of course, the initial guess
must be physically sound, and within the lower and upper bounds of the expected solu-
tion; for instance an initial guess that has negative densities or attenuation coefficients
is not acceptable.

Progression from one solution estimate, ĉ(k), at iteration k, to the next, with
k = 0 being the initial guess, is achieved via a number of schemes, summarized in the
ensuing sections. However, one must ensure that each obtained solution estimate, ĉ(k),
like the initial guess, corresponds to a physically acceptable value within the expected
solution bounds; otherwise one may not arrive at the end of the iteration process to an
acceptable solution.

The problem’s solution is arrived at when the iterative process is stopped in accor-
dance to some predesignated criterion. Let ĉ(K) be the solution at the last iteration, K.
Intuitively, one would want ĉ(K) to be equal to the true solution, c, which is unknown.
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Therefore, some metrics are employed for the stopping criteria, and are discussed in
Section 10.6.5, after introducing various iterative schemes.

10.6.1 Geometric Approach

For an approximation Ac(k) of e, all vectors c(k)i , satisfying:∑
j

Aijc
(k)
j = constant (10.79)

define a hyperplane,17 since the values of the elements of c(k) become restricted by
the value of the constant. As such, the vector loses one degree of freedom, and the
dimensionality of its vector space is reduced by one. Note that when the constant in
Eq. (10.79) becomes equal to ei, one reaches the hyperplane of the sought solution.
An iterative scheme that “depends only on the orientation of hyperplanes and not on
a specific algebraic representation of the hyperplanes” is a geometric algorithm, in
accordance to Gordon and Mansour (2007). If both sides of Eq. (10.79) are norma-
lized, say with the squared value of the Euclidean norm of its Aij coefficients, then one
would still arrive at the same hyperplane, since the right-hand-side of the equation
remains constant. However, this normalization process removes any dependence on
specific values of the elements of the matrix, A, and if applied before the implementa-
tion of any non-geometric iterative scheme, renders it into a geometric one. Now, one
can devise an iterative scheme as follows:

Ac(k+1)
= Ac(k)+A1c(k) (10.80)

where 1ck is some corrective vector for c(k). Equation (10.80) indicates that the iter-
ative process moves from a set of hyperplanes to another. When A1c(k) = 0, the iter-
ations stabilize at the same set of hyperplanes, and the solution is reached.

In linear systems, A does not change from one iteration to another and Eq. (10.80)
is reduced to:

c(k+1)
= c(k)+1c(k) (10.81)

This can be applied to one voxel at a time so that:

c(k+1)
j = c(k)j +

Mj∑
i=1

1c(k)ji (10.82)

17 A hyperplane is a generalization of a two-dimensional plane, in a three-dimensional space, into many
dimensions in a multidimensional space. A k-dimensional hyperplane is defined in an n-dimensional
space (k < n) with k+ 1 points (a line is a one-dimensional hyperplane in a three-dimensional space,
and is defined by two points). A hyperplane described with a single linear equation:

∑n
1 aixi = b, where

ai’s and b are constants and xi’s are variables, is a linear plane with n− k = 1, as the xi values have lost
one degree of freedom. A set of linear planes given by Ax= b, where A is (n− k)× n matrix, x is an
n× 1 vector and b is an (n− k)× 1 vector, represents a set of linear k-dimensional hyperplanes in an
n-dimensional space. For more information, consult a book on algebraic geometry.
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where 1c(k)ij is a correction applied to pixel j from its contribution to measurement ei

at iteration k, and Mj is the total number of measurements to which cj contributes. The
corrections can be (1) conducted simultaneously to all voxels, without any updates
until the end of the iteration, (2) applied one voxel at a time, with all corrections
effected before proceeding to other voxels, or (3) performed for one set of measure-
ments (typically a projection) at a time, and applied to all voxels. The latter method
is known as the Algebraic Reconstruction Technique (art), and is one of the efficient
methods used in early tomographic reconstruction systems (Herman, 1980).

The correction factor 1c(k)ji in Eq. (10.82) can be estimated from the difference
between actual measurements and the corresponding estimated ones based on a current
estimate of c. This difference is converted to a corresponding 1c by normalization
with the corresponding A-matrix elements, so that:

1c(k+1)
ij =

(
ei−

∑Ni
j=1 Aijc

(k)
j

)
Aij∑Ni

j=1 A2
ij

(10.83)

where Ni is the number of voxels contributing to a measurement ei. Recall that in case
of transmission tomography the measurements applied in image reconstruction are the
ray-sums, as indicated in Chapter 4. The correction of Eq. (10.83) is known as the
additive correction. This correction procedure can also be weighted by the inverse of
measurement variance to give more influence to more accurate measurements, see for
example Barrett (1981).

A multiplicative correction process can also be applied:

1c(k+1)
ij =

(
ei−

∑Ni
k=1 Aikc(k)k

)
∑Ni

k=1 Aikc(k)k

× c(r)j (10.84)

where the superscript r refers to the most recently available value of cj. It can be eas-
ily shown that Eq. (10.84) distributes the residual error for a measurement in propor-
tion to the contribution of a pixel to the estimated measurements. One can show that
c(r)j +1c(k)ij = c(r)j

ei∑Ni
j=1 Aijc

(k)
j

, which indicates that the ratio between the measured and

modeled measurement is used in the multiplicative correction process of Eq. (10.84).

10.6.2 Successive Approximation

A natural iterative course is to proceed from one approximate solution, ĉ(k), to another
one, ĉ(k+1), that is closer to the final solution, ĉ(K). This requires a mapping of c into
itself, say c= T(c), so that one can set the iterative scheme as:

ĉ(k+1)
= T

(
ĉ(k)

)
(10.85)

with the mapping, T , such that the successive approximation process converges to a

fixed point in the solution space, C, when ĉ(K) = T
(

ĉ(K)
)

as K→∞.
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The mapping, T , can be constructed for the generalized least-squares solution of
Eq. (10.23) as (Bertero and Boccacci, 1998):

T(c)= c+ τ
{

ATW2ê−
[
ATW2A+α2G2

]
c
}

(10.86)

where τ is a relaxation (damping) parameter selected to ensure that the iterative pro-
cess of Eq. (10.85) converges. Since the solution of Eq. (10.23) is based on minimizing
the objective function (10.22), upon reaching this minimum, the difference between
T(c) and c is also minimized. Then the iterative scheme of Eq. (10.85) reaches its
fixed-point.

In order for this successive approximation process of Eq. (10.86) to reach a fixed
point, T(c), it must be a contraction mapping. Let Ā=

[
ATW2A+α2G2]c, and ē=

ATW2ê, then the incorporation of Eq. (10.86) into Eq. (10.85) becomes:

ĉ(k+1)
= T

(
c̄(k+1)

)
= τ ē+ (I− τ Ā)ĉ(k) (10.87)

ĉ(1) = = τ ē+ (I− τ Ā)2ĉ(0)

ĉ(2) = τ ē+ (I− τ Ā)ĉ(1) = τ [I+ (I− τ Ā)]ē+ (I− τ Ā)ĉ(0)

· · · · · · · · · · · · · · ·

ĉ(k) = τ [I+ (I− τ Ā)+ (I− τ Ā)2+ ·· ·+ (I− τ Ā)k−1]ē+ (I− τ Ā)kĉ(0)

(10.88)

For this series to converge, one must have:

% = ‖I− τ Ā‖< 1 (10.89)

which ensures that:∥∥∥T(c(k+1))−T(c(k))
∥∥∥≤ %∥∥∥c(k+1)

− c(k)
∥∥∥ (10.90)

The relaxation parameter τ , must then be chosen to ensure that the condition of
Eq. (10.89) is satisfied. Such a contraction mapping will lead to a single fixed point
c ∈ C provided that ĉ(k+1)

∈ C for all k. If there were two fixed points, say c1 and
c2, then in accordance to Eqs. (10.85) and (10.90): ‖c1− c2‖ = ‖T(c1)−T(c2)‖ ≤

%‖c1− c2‖, which necessitates that c1 = c2, since % < 1. Therefore, contraction map-
ping leads to a fixed point: the solution of Eq. (10.23).

The mapping of Eq. (10.85) is only a contraction mapping if ATA is a full-rank
matrix (Bertero and Boccacci, 1998), i.e. all its columns and rows are linearly inde-
pendent, or equivalently the eigenvalues of ATA have a positive lower-bound. If this
condition is not satisfied, then the mapping becomes non-expansive, i.e. % = 1, and
it is then difficult to guarantee that the sequence of Eq. (10.88) converges. Another
difficulty is to ensure that c(k) ∈ C, for all values of k. However, with a priori knowl-
edge of the lower and upper bounds of c, out-of-bound values can be set equal to their
closest bounds.
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The successive approximation method is also known as the Landweber method. It
is a gradient method, in the sense that the iterative process proceeds in the direction of
the gradient of the cost function (10.22). It can, therefore, be expressed as:

c(k+1)
= c(k)+ τ r(k) (10.91)

where,

r(k) = ATW2ê−
[
ATW2A+α2G2

]
c(k) (10.92)

with α2
=

δ2
η

δ2
χ

. The gradient of the cost function with respect to c is proportional to

ATW2
(
Ac(k)− ê

)
+α2G2c(k) =−r(k). Therefore, the successive approximation pro-

cess is driven in the direction opposite to the gradient of the convex cost function, i.e.
toward its minimum. Other gradient-based iterative processes are given below.

10.6.3 Steepest Descent

In this method, as in the successive approximation method, iterations are driven in
the direction of the gradient of the solution’s cost function, except that the relaxation
parameter changes from one iteration to another, in an attempt to match the actual, i.e.
the steepest, gradient of the cost function. The iterative process of Eq. (10.91) takes
now the form:

c(k+1)
= c(k)+ τ (k)r(k) (10.93)

with r(k) defined by Eq. (10.92). This method is also known as the Cauchy method.
The value of τk is selected to maximize the change in the cost function from

one iteration to another. Returning to the notation Ā=
[
ATW2A+α2G2]c, and ē=

ATW2ê, minimizing the cost function of Eq. (10.22) is equivalent to minimizing

(Āc− ē)2. With a convex cost function, one would desire
(
Āc(k+1)

− ê
)2
<(

Āc(k)− ê
)2

. Therefore, proceeding from iteration k to iteration k+ 1, τk is determined
by maximizing:(

Āc(k)− ê
)2
−

(
Āc(k+1)

− ê
)2
=−2τ (k)

(
Āc(k)− ē

)T
Ār(k)−

(
τ (k)

)2(
Ār(k)

)2

= 2τ (k)r(k)
T
Ar(k)−

(
τ (k)

)2(
Ār
(k)
)2

= 2τ (k)
(√

Ār(k)
)2
−

(
τ (k)

)2(
Ār
(k)
)2

(10.94)

where use is made of the fact that r(k) = ē− Āc(k). Maximizing (10.94) gives:

τ (k) =
‖r(k)‖2

‖

√

Ār(k)‖2
(10.95)
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Note that with
√

Ā= AW, i.e. with no regularization (α = 0), and with W = I,
Eq. (10.95) becomes equal to the usual expression reported in the literature, such as in
Bertero and Boccacci (1998).

The dynamic change of the relaxation parameter, τ , from one iteration to another,
is needed to provide the steepest descent toward the minimum of the solution’s cost
function. This should accelerate the iterative process toward the solution. However, as
the iterative process approaches the solution, it may tend to oscillate back and forth
around the minimum of the cost function. Moreover, the iterative step size, τ (k)r(k),
tends to shrink near the solution, which also tends to increase the number of iterations
required for solution convergence. Therefore, a method that drives the iterative pro-
cess directly toward the minimum of the cost function, such as the conjugate gradient
method, is favored.

10.6.4 Conjugate Gradient

The conjugate gradient generalizes the definition of orthogonality of one vector to
another, in terms of an operator: a positive definite matrix. In minimizing the cost
function of Eq. (10.22), one can define “conjugacy” using Ā=

[
ATW2A+α2G2]c, to

relate two iterations gradients, d(k+1) and d(k), to each other, so that:(
d(k+1)

)T
Ād(k) = 0 (10.96)

It is then said that the gradient d(k+1) is Ā-conjugate to the gradient d(k). If d(k) is
simply orthogonal to the normal gradient, r(k), i.e. (d(k))Tr(k) = 0, then d(k+1) will be
directed toward the minimum of the solution’s cost function (Bertero and Boccacci,
1998). This is an effective way of guiding the iterative process toward a solution.

The iterative process starts in the direction of the steepest descent, i.e. with
d(k) = r(0), with the latter determined using Eq. (10.92) with k = 0. All subsequent,
Ā-conjugate gradients are then determined by the recursive relationship:

d(k+1)
= r(k)+ τ (k)r d(k) (10.97)

with τ (k)r determined, for example as:

τ (k)r =
‖r(k+1)

‖
2

‖r(k)‖2
(10.98)

The iterative process then proceeds as:

c(k+1)
= c(k)+ τ (k)d(k) (10.99)

with

τ(k) =

∥∥∥∥(d(k)
)T

r(k)
∥∥∥∥∥∥∥∥(d(k)

)T
Ār(k)

∥∥∥∥ (10.100)
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The relaxation parameters, τ (k)r and τ(k), are chosen to ensure the orthogonality of
r(k+1) to r(k) and the Ā-conjugate orthogonality of d(k+1) and d(k). The conjugate gra-
dient method typically converges much faster than other iterative methods, since the
conjugate gradient drives the iterative process towards the desired solution. For more
details, see a book on numerical analysis or optimization, such as (Golub, 1996; Walsh,
1975).

10.6.5 Convergence Metrics and Stopping Criteria

In order to ensure that an iterative process does not go astray, a maximum number of
allowed iterations should always be designated. The value of this number can be based
on some prior experience with the problem, or when dealing with a new problem, on a
value that does not permit excessive computational time. It is also advisable to monitor
the execution time, and to stop iterations if that time exceeds a predesignated comput-
ing (cpu) processing time. An iterative process is terminated by either the maximum
number of iterations, or maximum cpu time, when none of the other stopping cri-
teria are met. An inspection of the value and trend of the metrics for these criteria
should then be conducted, to determine whether the iterative process is converging to
an acceptable solution or not. If the iterative process was proceeding toward a solu-
tion, then the problem should be resumed with the last obtained solution, ĉ(K), used
as an initial guess. Subsequently, the predesignated values for the maximum number
of iterations and allowed cpu time should be reevaluated. If none of the metrics for
the other stopping criteria are still satisfied, one should reexamine the problem and the
iterative scheme used. Even if a convergent solution is reached, one should also restart
the problem with a different initial guess, in the hope of reaching a solution within a
smaller number of iterations and execution time. However, a robust solution should
be independent of the initial guess.

An iterative process should stop when some metric reaches a sufficiently small pre-
designated value. In addition, if the stopping metric stabilizes, i.e. ceases to decrease,
or decreases very slowly, the iterative process should also stop, since there is no bene-
fit in continuing iteration. Then, the value of the obtained metric is likely the smallest
possible value one would arrive at, with the given set of measurements. It is advisable
to repeat the solution with a number of distinct initial guesses, in order to ensure that
the solution is independent of the initial guess; if not the problem would not have
a unique solution and the problem formulation should be reexamined. A number of
stopping metrics are given below. The order of applying these stopping criteria should
be as follows: (1) allocated cpu reached or exceeded, (2) maximum number of itera-
tions is attained, (3) residual-metric stopping criterion is satisfied, and (4) minimum
of convergence metric is reached. Another criterion, discussed at the end of this sec-
tion, is only applicable when testing an iterative scheme with an image of known
attributes, to see whether the true solution is reached. This stopping criterion should
be applied after the iterative process survives the above four criteria. In all cases, the
attained value of the stopping parameter should be reported at the end of the iterative
process, and preferably the value of the metrics should be retained for plotting as a
function of the iteration number, to examine the convergence behavior of the iterative
scheme.
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Residual Metric

Given a measurement uncertainty, δe, the best one can hope for is a solution, ĉ(k), that
produces modeled measurements, Aĉ(k), that deviate from the given measurements, ê,
by no more than δe. Therefore, a stopping criteria can be devised based on the residual
norm so that:

‖Aĉ(k)− ê‖ ≤ ‖δe‖ (10.101)

with the norm, ‖ · ‖, taken as the Euclidean norm, a measure of the most probable
error, see Appendix 7.A.

A number of variants to this stopping criteria can be applied (Barrett et al., 1994).
For instance, when ‖δe‖ cannot be estimated, or when its estimate is unreliable, the
following stopping criterion can be applied:

‖Aĉ(k)− ê‖ ≤ εe‖ê‖ (10.102)

where εe is an estimate of the overall relative uncertainty in ê, also called a stopping
tolerance.

When ‖A‖ is available, a less restrictive stopping criterion is:

‖Aĉ(k)− ê‖ ≤ εe(‖A‖‖ĉ
(k)
‖+‖ê‖) (10.103)

In all the above cases, the error in c is ‖δc‖ ≤ ‖A†
‖‖Aĉ(k)− ê‖; recall that A† is the

inverted matrix. Therefore, if an estimate of ‖A†
‖ is known, then the following stop-

ping criterion may also be applied:

‖Aĉ(k)− ê‖ ≤ εe
‖ĉ(k)‖
|A†‖

(10.104)

which assures that the relative error in ĉ(k) is less than εe.

Convergence Metric

Giving a machine’s precision, εmp, one should stop an iterative process when the dis-
tance between two successive estimates of a solution is less than or equal to some
value εv, i.e.:

‖ĉ(k)− ĉ(k−1)
‖ ≤ εv‖ĉ

(k)
‖ (10.105)

with εv ≥ εmp. The relationship of Eq. (10.105) can be used as a stopping criterion,
even when a residual-based stopping criterion is not reached, since there is no point
of obtaining images with precision greater than what is considered to be practically
acceptable. However, such stopping criterion should be applied only if the conver-
gence of the solution algorithm is assured in previous testing.
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An iterative process that converges to a solution should have a contracting distance
between iterations, that is:

‖ĉ(k)− ĉ(k−1)
‖< ‖ĉ(k−1)

− ĉ(k−2)
‖ (10.106)

In a converging solution, ‖ĉ(k)− ĉ(k−1)
‖ should continue to decrease as the solution is

approached. Significant irregular, oscillatory, or stalled behavior of this metric toward
the end of the solution may be caused by attempting to converge to a precision beyond
that of the computing machine; otherwise it may due to instabilities in the iterative
process. The latter can be addressed with improved regularization. One should expect,
however, some irregular behavior in the convergence norm at the beginning of itera-
tion, particularly if the initial guess is far off from the true solution.

Testing Metric

When testing a convergence scheme, one should start with a problem of known solu-
tion, c, and monitor the distance ‖ĉ(k)− c‖. Obviously, if the initial guess is equal to c,
the solution should be attained at the first iteration, if not the computer algorithm and
its coding should be checked, and the number and quality of measurements should be
assessed. Otherwise, the iterative scheme should stop when the following criterion is
satisfied:

‖ĉ(k)− c‖ ≤ εv‖c (10.107)

There is no point in proceeding further once the true solution is reached. The other
stopping metrics would then give information on the residual error and the conver-
gence error of the problem. On the other hand, if a solution is arrived at without
fulfilling the stopping criterion of Eq. (10.107), while converging in accordance to
the other metrics, one should reassess the problem and determine whether the mea-
surements used have a high level of uncertainty, the forward model is too simplistic,
or whether more effective regularization is needed. Note that using a forward-model
based on analytical calculations, say over a continuous test object such as the Shepp-
Logan phantom (see Section 15.6), and utilizing the estimated measurements to recon-
struct an image, enables one to determine the discretization error caused by dividing
the image into a certain number of pixels/voxels. The magnitude of this discretiza-
tion error increases with the coarseness of the image. Then, the testing metric will not
converge to a zero value, but to a value corresponding to the degree of discretization.

10.7 Nonlinear Problems

When the forward mapping matrix, A, is a function of c, as in scatter imaging (see
Chapter 6), the cost function of Eq. (10.22) becomes nonlinear. The problem must
then be solved iteratively, by successive approximation or by gradient-based itera-
tive methods. The latter approach requires the determination of the gradient of the
cost function, which is not as straightforward as in the case of the linear problem
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discussed in Section 10.6, where the gradient is defined by Eq. (10.92). Neverthe-
less, the gradient can be determined, if not analytically, at least numerically using the
finite-difference method to calculate the Jacobian matrix of A. The book by Fletcher
(1987) is an excellent source for treating nonlinear least-squares problems. Some of
the common methods are presented here.

For nonlinear problems more than one solution that minimizes the cost function,
Eq. (10.22) can exist. There is a tendency for iterative schemes to converge to a local
minimum, typically one that is close to the initial solution guess, c(0). It is, therefore,
vital to examine the obtained solution to ensure that it is physically acceptable. An
iterative scheme that produces a local minimum would be usually sensitive to c(0),
producing different answers for different starting points. Bounding the solution, to be
between the physically anticipated low and upper bounds, can guide the iterative pro-
cess toward conversion. The choice of the regularization method and the value of its
associated parameter can also steer the iterative process toward the desired solution.
Regularization also helps in addressing ill-posedness that may be caused by the non-
linear nature of the problem, even in the absence of noise. For a discussion on the
above-mentioned issues see Hussein et al. (1986b) and Snieder (1998).

10.7.1 Quasi-Linearization

In weakly nonlinear problems, a solution can be found by linearizing the forward
problem around a reference solution, c∗, so that (Tarantola, 1987):

ê= Ac' Ac∗+∇(Ac)|c=c∗(c− c∗)

= Ac∗+
[
A+∇A|c=c∗c∗

]
(c− c∗)

=
[
A+∇A|c=c∗c∗

]
c− [∇A|c=c∗c∗]c∗ (10.108)

where the gradient, ∇A, is with respect to c. The semi-equal sign is used to indicate
that the second-order derivatives are neglected. Then direct inversion, or one of the
iterative methods of Section 10.6, can be used to solve Eq. (10.108) for c.

10.7.2 Successive Approximation

The successive approximation method, discussed in Section 10.6.2 for linear prob-
lems, can also be applied to nonlinear problems. The self-mapping, T , of Eq. (10.86)
is structured such that the nonlinear terms in the matrix A(c) are evaluated using the
current approximation, ĉ(k), so that:

T(c(k))= c(k)+ τ
{

AT(c(k))W2ê−
[
AT(c(k))W2A(c(k))+α2G2

]
c(k)

}
(10.109)

where A(c) indicates that A is a function of c. Then the iterative process resumes as in
Eq. (10.85):

ĉ(k+1)
= T(ĉ(k)) (10.110)
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with the mapping T such that the successive approximation process converges to a
fixed point in the solution space, C, when ĉ(K) = T(ĉ(K)) as K→∞. Again, the relax-
ation parameter, τ , must be selected to ensure the contraction mapping of Eq. (10.110).

The obvious advantage of the successive approximation method is that it does not
require the calculation of the derivative of the cost function, hence the Jacobian of the
matrix A(c). However, care must be taken to ensure that the conditions of contraction
mapping are met at all stages of the solution, since the condition of Eq. (10.89) (% < 1)
becomes difficult to satisfy due to the change in A from one iteration to another. In
addition to satisfying the conditions of contraction mapping, it must also be assured
that c(k) ∈ C, by bringing any estimate c(k) outside C back into C. The latter may
divert from the contraction of the mapping. This successive approximation process
was applied for solving the inverse problem of scatter imaging (Arendtsz and Hussein,
1995b; Hussein et al., 1986a,b).

10.7.3 Newton-Raphson

A cost function, 8(c), can be approximated by a Taylor’s series expansion around
some estimated solution, c(k) as:

8(c)=8(c(k))+∇8T
k (c− c(k))+

1

2
(c− c(k))∇28k(c− c(k))+H.O.T.

(10.111)

Ignoring the higher order terms (H.O.T.), and setting ∇8= 0 to maximize the cost
function, then:

∇8=∇8k+∇
28k(c− c(k))= 0 (10.112)

which leads to the iterative scheme:

c(k+1)
= c(k)− τk

[
∇

28k

]−1
∇8k (10.113)

where the relaxation parameter, τk, is introduced to avoid convergence to a sad-
dle point (where ∇28k = 0). This relaxation parameter is evaluated by minimizing:

8
(

c(k)− τk
[
∇

28k
]−1

)
(Rao, 1996). Note that when 8 is a quadratic function, as is

the case in Eq. (10.22) when A is linear, the iterative scheme of the Newton method
becomes identical to that of the steepest descent method, discussed in Section 10.6.3.

The evaluation of ∇28k involves the computation of the Jacobian matrix of the
function derivatives (the Hessian). This and the calculation of ∇8k are computation-
ally demanding. The scheme is quite effective when c(k) is close to the solution. If the
initial guess is far from the solution, Newton’s method would be quite slow, and it is
advisable to employ the successive approximation process. The Levenberg-Marquard
method, discussed in (Section 10.7.5) combines the two schemes.
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10.7.4 Gauss-Newton

This method, also known as the quasi-Newton method, approximates the Hessian
matrix by using only the first partial derivatives. The derivative of the residual term,[
W
(
Ac− ê

)]T [W (
Ac− ê

)]
in the cost function of Eq. (10.22) is:

∇

{[
W
(
Ac− ê

)]T [W (
Ac− ê

)]}
=∇

{
[R(c)]TR(c)

}
= 2[∇R(c)]TR(c) (10.114)

where Ri is the ith vector of the matrix R=W
(
Ac− ê

)
. The Hessian matrix, i.e. the

second derivatives is:

∇
2
{

[R(c)]TR(c)
}
=∇

2
{[

W2 (Ac− ê
)]T [

W2 (Ac− ê
)]}

= 2[∇R(c)]T
∇R(c)+ 2

M∑
i=1

Ri∇
2Ri(c) (10.115)

≈ 2[∇R(c)]T
∇R(c) (10.116)

When the residual is small, the last term in Eq. (10.115), which is computationally
demanding, can be ignored. This, in turn, simplifies the application of the Newton’s
iterative process, Eq. (10.113), leading to the Quasi-Newton method (also known as
the Gauss-Newton method, in the absence of regularization) (Tarantola, 1987). Note
that if the Hessian is approximated by the identity matrix, the iterative scheme of
Eq. (10.113) becomes equivalent to that the steepest descent method, Eq. (10.93).

10.7.5 Levenberg-Marquardt

This method combines the steepest descent method with the Newton-Raphson’s
method by modifying than latter scheme, Eq. (10.113), to (Rao, 1996):

c(k+1)
= c(k)− τk

[
∇

28k+αkI
]−1
∇8k (10.117)

where the Lagrange multiplier αk > 0 ensures that ∇28k+αkI is positive definite,
even if ∇28k is not. When αk� 1, the effect of ∇28k in Eq. (10.117) diminishes,
and the iterative process is driven toward the steepest descent, while for small αk the
∇

28k terms influence more the iterative scheme and it becomes more like the Newton-
Raphson method. Since the latter is more suited when c(k)→ c, iterations should start
with a large αk value, gradually decreasing as the iterative process progresses, eventu-
ally reaching zero. This in practice is determined by defining the so-called trust-region
radius. The value of1k is compared versus the metric ‖8k‖. As long as ‖8k‖ ≥1k, a
positive value of αk is applied, but when the condition ‖8k‖<1k is reached, αk = 0
is imposed (Moré, 1977). Notice the resemblance between αkI in Eq. (10.117) and the
corresponding term in the standard Tikhonov regularization, Eq. (10.17) with G= I,
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indicating the regularizing effect of the Levenberg-Marquard scheme, which adds to
its effectiveness.

10.7.6 Conjugate Gradient

This method, discussed in Section 10.6.4, is also applicable to nonlinear problems
(Rao, 1996). The method is known as the Fletcher-Reeves method, after the two work-
ers who generalized the conjugate gradient method to nonlinear problems (Fletcher
and Reeves, 1964). Its attraction is that it does not require the Hessian, as in the
other Newton-based methods discussed above. Then the residual, r(k) in Eq. (10.97),
is replaced by the negative of the gradient, and τ(k) of Eq. (10.100) is chosen so that
the gradient is orthogonal to the search direction.

10.8 Software

There is a number of computer routines that can be utilized for solving the
matrix-based problems discussed in this chapter. The Netlib repository http://www
.netlib.org/ contains freely available software. Of interest here are the lapack
(http://www.netlib.org/lapack/) and the minpak (http://www.netlib
.org/minpack/) collections; the former for linear problems and the latter for nonlin-
ear ones. The Association for Computing Machinery (ACM) posts software associated
with papers in its journal on http://calgo.acm.org/, some of which deals with
the linear and nonlinear least-squares problems addressed in this chapter. The Numer-
ical Recipes book by Press (2007) (http://www.nr.com/) also offers a number of
useful routines. The Hansen’s package (http://www2.imm.dtu.dk/∼pch/) has a
set of matlab regularization tools. Commercial vendors, such as Visual Numerics,
Inc. (IMSL: (http://www.vni.com/products/imsl/), Wolfram Research, Inc.
(http://www.wolfram.com/), and the Numerical Algorithms Group (http://
nag.com/) have also similar useful routines.
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P. Charbonnier, L. Blanc-Féraud, G. Aubert, and M. Barlaud, “Deterministic edge-preserving
regularization in computed imaging,” IEEE Trans. Image Process., vol. 6, pp. 298–311,
1997.

Y.-W. Chiang, P. P. Borbat, and J. H. Freed, “Maximum entropy: A complement to Tikhonov
regularization for determination of pair distance distributions by pulsed ESR,” Journal of
Magnetic Resonance, vol. 177, pp. 184–196, 2005.

S. Constable, R. Parker, and C. Constable, “Occam’s inversion: A practical algorithm for
generating smooth models from electromagnetic sounding data,” Geophysics, vol. 52,
pp. 289–300, 1987.

P. Craven and G. Wahba, “Smoothing noisy data with spline functions,” Numerische Mathe-
matik, vol. 31, pp. 377–403, 1979.

G. Demoment, “Image reconstruction and restoration: Overview of common estimation
structure and problems,” IEEE Trans. Acoust. Speech Signal Process, vol. ASSP-37,
pp. 2024–2036, 1989.

M. Dudı́k, S. J. Phillips, and S. J. Phillips, “Maximum entropy density estimation with gen-
eralized regularization and an application to species distribution modeling,” Journal of
Machine Learning Research, vol. 8, pp. 1217–1260, 2007.

H. W. Engl, M. Hanke, and A. Neubauer, Regularization of Inverse Problems. Dordrecht:
Kluwer Academic Publishing, 2000.

R. Fletcher and C. M. Reeves, “Function minimization by conjugate gradients,” Computer Jour-
nal, vol. 7, pp. 149–154, 1964.

R. Fletcher, Practical Methods of Optimization, 2nd ed. New York: John Wiley & Sons, 1987.
S. Geman and D. E. McClure, “Statistical methods for tomographic image reconstruction,” Bull.

Int. Stat. Inst., vol. 52, pp. 5–21, 1987.
G. H. Golub, Matrix Computations. Baltimore: Johns Hopkins University Press, 1996.
D. Gordon and R. Mansour, “A geometric approach to quadratic optimization: An improved

method for solving strongly underdetermined systems in CT,” Inverse Problems in Science
and Engineering, vol. 15, pp. 811–826, 2007.

P. J. Green, “Bayesian reconstructions from emission tomogrpahy data using a modified EM
algorithm,” IEEE Trans. Med. Imag, vol. 9, pp. 84–93, 1990.

M. Hanke and T. Raus, “A general heuristic for choosing the regularization parameter in ill-
posed problems,” SIAM Journal on Scientific Computing, vol. 17, pp. 956–972, 1996.

P. C. Hansen, “Analysis of discrete ill-posed problems by means of the L-curve,” SIAM Review,
vol. 34, pp. 561–580, 1992.

P. C. Hansen and D. P. O’Leary, “The use of the L-curve in the regularization of discrete ill-
posed problems,” SIAM J. Sci. Comput., vol. 14, pp. 1487–1503, 1993.

P. C. Hansen, Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear
Inversion. Philadelphia: Society for Industrial and Applied Mathematics, 1998.

G. Herman, Image Reconstruction From Projections: The Fundamentals of Computerized
Tomography. New York: Academic Press, 1980.
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J. Nuyts, D. Bequé, P. Dupont, and L. Mortelmans, “A concave prior penalizing relative dif-
ferences for maximum-a-posteriori reconstruction in emission tomography,” IEEE Trans.
Nucl. Sci., vol. 49, pp. 56–60, 2002.

R. Pan and S. J. Reeves, “Efficient Huber-Markov edge-preserving image restoration,” IEEE
Trans. Image Proces, vol. 15, pp. 3728–3735, 2006.

W. H. Press, Numerical Recipes: The Art of Scientific Computing. Cambridge: Cambridge
University Press, 2007.

S. S. Rao, Engineering optimization: Theory and practice. New York: John Wiley & Sons, 1996.
W. J. Rey, Introduction to Robust and Quasi-Robust Statistical Methods. Berlin: Springer-

Verlag, 1983.
L. I. Rudin, S. J. Osher, and E. Fatemi, “Nonlinear total variation based noise removal algo-

rithms,” Physica D, vol. 60, pp. 259–268, 1992.
H. Rutishauser, “Once again: The least squares problem,” Journal of Linear Algebra and its

Applications, vol. 1, pp. 479–488, 1968.
C. F. Shannon and W. Weaver, Mathematical Theory of Communication. Urbana: University of

Illinois Press, 1949.
J. E. Shore and R. W. Johnson, “Axiomatic derivation of the principle of maximum entropy and

the principle of minimum cross-entropy,” Transactions on Information Theory, vol. 26,
pp. 26–37, 1980.



HUSSEIN Ch10-9780123877772 2011/5/16 18:46 Page 172 #48

172 Computed Radiation Imaging

R. Snieder, “The role of nonlinearity in inverse problems,” Inverse Problems, vol. 14,
pp. 387–404, 1998.

P. B. Stark and R. L. Parker, “Bounded-variable least-squares: An algorithm and applications,”
Computational Statistics, vol. 10, pp. 129–141, 1995.

A. Tarantola, Inverse Problem Theory: Methods for Data Fitting and Model Parameter Estima-
tion. Amsterdam: Elsevier Science, 1987.

A. Thompson, J. Brown, J. Kay, and D. Titterington, “A study of methods of choosing the
smoothing parameter in image restoration by regularization,” IEEE Trans. Pattern Anal.
Machine Intell., vol. 13, pp. 326–339, 1991.

A. N. Tikhonov, Solutions of Ill-Posed Problems. Washington: Halsted Press, 1977.
D. M. Trujillo and H. R. Busby, Practical Inverse Analysis in Engineering. Boca Raton: CRC

Press, 1997.
J. M. Varah, “A practical examination of some numerical methods for linear discrete ill-posed

problems,” SIAM Review, vol. 21, pp. 100–111, 1979.
E. Veklerov and J. Llacer, “Stopping rule for the MLE algorithm based on statistical hypothesis

testing,” IEEE Transactions on Medical Imaging, vol. MI-6, pp. 313–319, 1987.
C. R. Vogel, Computational Methods for Inverse Problems. Philadelphia: Society for Industrial

and Applied Mathematics, 2002.
G. R. Walsh, Methods of Optimization. London: John Wiley & Sons, 1975.



HUSSEIN Ch11-9780123877772 2011/3/28 18:18 Page 173 #1

11 Functional Optimization

11.1 Formulation

With the forward model expressed as a function of the solution, e= f (c), the image
reconstruction problem can be addressed as an optimization problem of a cost func-
tion, 8(c), with f (c) as an operator. The purpose then is to find the vector ĉ that mini-
mizes8(c), in the presence of some physical constraints, such as the nonnegativity of
c and perhaps some designated upper-bound on its values.

Defining a cost function similar to that in Chapter 10, Eq. (10.22), one has
the following optimization problem for reconstructing an image, c, from measure-
ments ê:

Find c which minimizes

8(c)=
[
f (c)− ê

]2
+α2 (Gc)2 (11.1)

subject to

a≤ c≤ b (11.2)

where a (usually a= 0) and b are, respectively, lower and upper bounds for c. The
regularization term, α2 (Gc)2, is introduced to overcome the ill-posedness of the
inverse problem, using one of the methods discussed in Section 10.4.

The cost function, Eq. (11.1), and the associated constraints of Eq. (11.2), can
be combined into a single function, if the inequality constraints are presented as
equivalent equality functional constraints. This can be done by adding the non-
negative surplus and slack variables (Rao, 1996), x2

j and y2
j , and constructing the

functionals:

8lj = cj− aj− x2
j = 0, j= 1,2, . . . ,N (11.3)

8uj = cj− bj+ y2
j = 0, j= 1,2, . . . ,N (11.4)

with xj’s and yj’s forming the to-be-determined N× 1 vectors, x and y, known as the
surplus and slack vectors, respectively. The above two functionals, along with the cost

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00011-2
c© 2011 Elsevier Inc. All rights reserved.
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function of Eq. (11.1), formulate the Lagrangian functional:

L(c,x,y,λl,λu)=8(c)+
N∑

j=1

λlj8lj + λuj8uj

=8(c)+
N∑

j=1

λlj(cj− aj− x2
j )+ λuj(cj− bj+ y2

j ) (11.5)

where λlj ’s and λuj ’s are the elements of λl and λu (N× 1 unknown vectors, called
the Lagrange multipliers), which reflect the cost of complying with the constraints.
These multipliers have to have positive values to ensure minimization of the Legendre
function (Rao, 1996), hence the objective function of Eq. (11.1).

The optimization problem requires the minimization of the Lagrange functional,
Eq. (11.5), which in turn necessitates satisfaction of the conditions:

∂

∂cj
L(c,x,y,λl,λu)=

∂8(c)
∂cj
+N(λlj + λuj)= 0 (11.6)

∂

∂λlj
L(c,x,y,λl,λu)= cj− aj− x2

j = 0 (11.7)

∂

∂λuj

L(c,x,y,λl,λu)= cj− bj+ y2
j = 0 (11.8)

∂

∂xj
L(c,x,y,λl,λu)=−2λlj xj = 0 (11.9)

∂

∂yj
L(c,x,y,λl,λu)= 2λujyj = 0 (11.10)

The above five sets of relationships provide in total 5N equations for 5N unknowns,
the components of the N× 1 vectors: c, x, y, λl, and λu. The derivatives: ∂8(c)

∂cj
, j=

1,2 . . .N, can be approximated by the finite difference method, if their direct analytical
evaluation is cumbersome. Note, however, that the condition of Eq. (11.9) is satisfied
when either xj = 0 or λlj = 0. With a nil surplus variable, xj = 0, the corresponding
solution is zero at the optimal point, i.e. cj = 0, when aj = 0. The constraint is then
an active one, while λlj = 0 removes the corresponding term from Eq. (11.5), and
results in an inactive constraint. Similarly, the condition of Eq. (11.10) produces active
constraints when yj = 0, i.e. cj = bj, and inactive ones when λuj = 0 at the optimum
point. In other words, when one anticipates at the optimum solution that cj = 0 or cj =

bj, (i.e. cj equal to exactly the lower or upper bounds of the solution vector), one must
have corresponding non-zero Lagrange multipliers. This can be useful for instance
when imaging a dense material inserted within a lighter object of known density, or
vice versa, where the density of the surroundings can be set to designate a lower bound,
or an upper bound, as appropriate. In general, however, one should assume that all
constraints are active. Then, zero Lagrange multiplier values at the optimum solution
will produce the lower and upper bound values. The optimization problem represented
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by Eqs. (11.6) to (11.10) can be solved by nonlinear programming; see Lawson and
Hanson (1995), Stark and Parker (1995), Rao (1996), and Varah (1979).

The constrained optimization problem of Eqs. (11.1) and (11.2) can be transformed
to an unconstrained optimization problem by using a new variable, ζj, so that an ele-
ment cj in c becomes: (Rao, 1996):

cj = aj+ (bj− aj)sin2 ζj, or cj = aj+ (bj− aj)cos2 ζj, or

cj = aj+
(bj− aj)exp(ζj)

exp(ζj)+ exp(−ζj)
, or cj = aj+

(bj− aj)ζj
2

1+ ζ 2
j

(11.11)

with ζj’s forming an N× 1 vector, ζ . If the only constraint is to ensure nonnegative
values of c, one of the following transformation can be used:

cj = |ζj|, or cj = ζ
2
j , or cj = exp(ζj) (11.12)

With one of these transformations, the optimization problems of (11.1) and (11.2) are
transformed to the unconstrained optimization problem:

Find ζ which minimizes

8(ζ )=
[
f (ζ )− ê

]2
+α2 (Gζ )2 (11.13)

Once ζ is found, c is accordingly determined. The discussion in this chapter focuses,
therefore, on the transformed unconstrained optimization problem of Eq. (11.13). We
will refer, however, to c instead of ζ , with the understanding that when the constraints
are imposed, the transformed variables are used in the cost function. Readers interested
in methods that deal with constrained optimization problems can consult a book on
optimization, such as that of (Rao, 1996).

11.2 Effect of Number of Measurements

The optimization formulations discussed in Section 11.1 do not explicitly show the
effect of available data points (measurements, ê) on the solution. These measurements
appear in the cost function via the residual term (as in Eq. (8.4)), which can be writ-
ten as:

χ2
=

M∑
i=1

êi−

N∑
j=1

fj(cj)

2

(11.14)

where fi(cj) is the function (part of the forward model) that relates a measurement,
ei, to the a physical parameter, cj. It is obvious that the larger the value of M, the
higher the degree of complexity of χ2, and the corresponding cost function 8(c) of
Eq. (11.1) (which also incorporates the regularization term). This in turn increases the
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complexity of the optimization process, which will include more terms as the value of
M increases. At the same time, the complexity of the optimization function imposes
further consistency on the solution to meet the increasing demands of optimizing the
cost function. If M is a small number (M ≤ N), the optimization process will likely
lead to artificial values for the elements of c that do not correspond to reality, unless
supplemented by some a priori information, see Chapter 14. On the other hand, if M
is sufficiently larger than N, i.e. for an overdetermined problem, the optimization pro-
cess can accommodate fluctuations in ê due to statistical fluctuations, by the increased
demand of consistency imposed on the optimization process. Simply said, the more
available is the data, the better the ability of an optimization scheme to produce a
solution that matches the data; just like in curve fitting, the more data points, the better
the curve fit.

11.3 Sensitivity to Measurement Uncertainty

Analyzing the susceptibility of the system to error propagation in terms of the func-
tional f (c), requires the determination of the sensitivity of the obtained optimum solu-
tion to changes in ê. Let us consider the effect of the change in one measurement, ei,
on the optimized solution. Minimization of the cost function Eq. (11.1) requires:

∂8(c)
∂cj

= 0 (11.15)

Let us also assume that the change in ei is so small that this derivative remains equal
to zero at the optimum solution. The total derivatives of Eq. (11.15) with respect to ei

enables examining the effect of a small change in its value on the optimized parameters
(Rao, 1996):

∂28(c)
∂cj∂ei

+

N∑
k=1

∂28(c)
∂cj∂ck

∂ck

∂ei
= 0 (11.16)

There are N equations for this form, for the N sensitivity coefficients: ∂cj
∂ei
, j=

1,2, . . . ,N. This enables the determination of the value of these sensitivity coefficients
at the optimum solution. Then the error in an estimated optimum solution, c, due to an
uncertainty, 1ei in a measurement, êj can be estimated as:

1c=
∂c
∂ei
1ei (11.17)

The above process can be repeated for all measurements, ei, i= 1,2, . . . ,M. This
can, however, be a tedious process, but it is worth performing at least once as it
can assist in adjusting the regularization process to reduce the ill-posedness of the
problem.
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11.4 Minimization

The minimization of a cost function, 8(c), requires that its derivatives be equal to
zero, as indicated by Eq. (11.15). In addition, a solution, ĉ, is assured to be a local
minimum if the Hessian matrix of 8(c) is positive-definite, i.e.,

∂28(c)
∂ci∂cj

∣∣∣∣
c=ĉ

> 0 (11.18)

These derivatives can be approximated by the finite-difference method, if their direct
analytical evaluation is cumbersome. Satisfying the conditions of Eqs. (11.15) and
(11.18) does not ensure a global minimum for the objective function. Ensuring that
a global minimum is attained requires that 8(ĉ)≤8(c) for all values of c, while a
local minimum requires 8(ĉ)≤8(ĉ± δc) for all values of δc<< c, i.e. the satisfac-
tion of Eqs. (11.15) and (11.18) only near ĉ. If the cost function, 8(c), is a convex
function, then it has zero derivatives only at the bottom of its valley, and the problem
then has only one minimum, the global minimum. In a nonlinear image reconstruction
problem, even if the problem has more than one local minimum, the bounding of the
solution and the coherence of the image (consistency of measurements) typically (but
not necessarily) lead to one physically acceptable solution.

The unrestricted minimization of the cost function of (11.1), or its transformed
form (11.13) which incorporated the constraints, can be arrived at using the iterative
methods described in Section 10.7 for matrix-based systems. The iterative schemes
are formulated here in terms of the cost function, 8(c), but the reader should refer to
Section 10.7 for more information on these methods.

11.5 Search Methods

Searching for the minimum of a cost (objective) function, 8, can be performed itera-
tively, by proceeding from one estimate of the solution, c(k), to another. Some of these
iterative methods are summarized here.

11.5.1 Sequential Linearization

Similar to the quasi-linearization scheme of Section 10.7.1, the optimization problem
can be solved by the solution of a sequence of linear problems. Applying Eq. (11.15)
to the cost function of Eq. (11.1) yields:[

∂

∂cj
f (c)

]T [
f (c)− ê

]
+α2 [Gc]T ∂

∂cj
Gc= 0; j= 1,2, . . .N (11.19)

Approximating the functional f (c) as:

f (c)' f (c(k))+
[
∇f (c(k))

]T(
c(k+1)

− c(k)
)

(11.20)
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where ∇f T
=

[
∂f
∂c1
,
∂f
∂c2
, . . .

∂f
∂cN

]T
, the set of equations represented in Eq. (11.19)

becomes:[
∂

∂cj
f (c(k))

]T[
f (c(k))+

[
∇f (c(k))

]T(
c(k+1)

− c(k)
)
− ê

]
+ α2

[
Gc(k)

]T ∂

∂cj
Gc(k) = 0; j= 1,2, . . .N (11.21)

The above linear set of equations can be solved, given an estimate, c(k), to obtain a
new estimate c(k+1), and the process is repeated until it converges to a solution. If the
constraints of (11.2) are imposed along with the equations represented by Eq. (11.21),
the problem is a linear programming problem, see for example Rao (1996).

11.5.2 Gradient Driven

The gradient, ∇8, of the cost function, 8, is simply a vector of the partial deriva-
tives, ∂8

∂cj
, j= 1,2, . . . ,N. It can be evaluated either analytically or numerically using

the finite-difference method. Setting r=−∇8 in Eq. (10.93), the iterative scheme of
the steepest descent (Cauchy) method of Section 10.6.3 can be utilized. The Hessian
matrix, ∇28, being the matrix of second partial derivatives, can also be found by
differentiating ∇8 analytically or numerically. Then the Newton-Raphson iterative
scheme of Eq. (10.113) can be directly applied. If ∇28k is nonsingular, the iterative
process would converge to the solution that minimizes 8, provided that the initial
solution guess is sufficiently close to the solution (Rao, 1996).

The Hessian matrix can also be approximated using the residual, R(c)= f (c)− ê,
as in Eq. (10.116). The iterative scheme is then known as the Gauss-Newton method.
The availability of ∇8k and ∇28k enables the use of the Levenberg-Marquardt method
of Section 10.7.5, with its ability to undertake large iterative steps initially and smaller
steps as the final solution is approached. Other search methods can be found in opti-
mization textbooks, such as that of Rao (1996).

11.6 Genetic Evolution

A genetic algorithm can also be used to arrive in an evolutionary manner at the opti-
mum solution for minimizing the cost function of (11.1) and its constraints of (11.2)
(Liu and Han, 2003). In its most basic form, a genetic algorithm encodes each image
parameter, an element cj of c, by a finite-length string of numbers (“genes”), typically
binary numbers. The combination of the strings of all elements of c form a “chromo-
some” array. An evolutionary process analogous to that of the evolution of biological
systems is then applied to find the “fittest chromosome,” i.e. the one that minimizes
the cost function (or maximizes a fitness function proportional to the reciprocal of the
cost function), under the imposed constraints.

The evolution process commences by the random selection of a population of par-
ent chromosomes. The fitness of each chromosome is then determined by the value
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of the corresponding fitness function. Three evolutionary reproduction processes are
then employed to produce the fittest “offspring” in the next generation. First, a selec-
tion process is applied to give higher-fitness parents a larger probability to produce
the next generation. Secondly, a “cross-over” operation is performed on the selected
parent chromosomes in which parts of the genes are exchanged between two chromo-
somes to produce an offspring for the next generation. Thirdly, a “mutation” process
is applied to some chromosomes with a small probability to avoid gene stagnation
between generations, i.e. prevent all chromosomes in a generation from having the
same gene values at the same location of their strings. The performance of these three
basic operations produces a new generation. The gene string of each chromosome is
then decoded, and its fitness measured by the fitness function. The evolution processes
is repeated until the fittest chromosome is found. The gene string of this chromosome
is decoded to produce the optimal solution.

More details on the evolution process of genetic algorithms can be found in a num-
ber of textbooks, which the reader can find via a library search. We focus here on
a simple method to illustrate the concept. Let us start by a population of randomly
L generated images. In order to have an evolution process that emulates a natural
biological process, L has to be a large number. This by itself indicates that genetic
algorithms are computationally demanding, in terms of computer storage and the asso-
ciated manipulations. The method, is therefore, not well suited for image reconstruc-
tion on routine basis. However, genetic algorithms do not require the evaluation of
gradients or matrix inversion, making them appealing for use in nonlinear problems.

Let us define a fitness function of a member, c, of the population in terms of the
cost function (11.1) so that:

9(c)=
1

1+
[
f (c)− ê

]2
+α2 (Gc)2

(11.22)

The fitness of each of the L randomly generated images is then calculated using
Eq. (11.22), and ranked in a descending order according to their fitness. A certain
fraction, γL, of the most fit members is then selected for further processing (with
0< γ < 1). The remaining (1− γ )L members are discarded. The surviving γL mem-
bers form the “mating” pool that will generate new (1− γ )L possible images.

As part of the encoding process, let us accommodate the constraints of (11.2) by
making use of the lower limit, aj, and upper limit, bj, of each element, cj, in the mem-
ber, c, of the population, so that:

ζj =
cj− aj

bj− aj
(11.23)

The only concern now, in dealing with the optimization problem of Eqs. (11.1) and
(11.2), is to maximize the fitness function of Eq. (11.22). If in any subsequent gene-
ration, the constraints of (11.2) are provoked, the offending value is set equal to its
closest limit.
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Converting the decimal numbers associated with the fractions of Eq. (11.23)
accomplishes the encoding process. Let us designate the coded binary value for a vari-
able, cj, by ηj. The sequential combination of these binary strings, i.e., η1,η2, . . .ηN ,
produces a chromosome corresponding to a possible image, c.

The chromosomes corresponding to the selected γL members are then randomly
paired by sampling from a distribution representing their relative fitness with respect
to the overall fitness of all members. A total of (γ − 1)L pairs are to be selected to
replace the discarded chromosomes in the selection process. Each paired chromosome
is then subjected to a crossover process. A simple crossover operation is the uniform
scheme, which generates an offspring from two parents selected randomly.

The available generation of chromosomes, the fL from the previous generation and
the newly created (γ − 1)L chromosomes, are subjected to mutation. The mutation
process is applied randomly to very few genes in each chromosome, and converts a
gene to its complement value, i.e. a zero value becomes one and vice versa.

Following the mutation process, a new generation of chromosomes is born. These
chromosomes are decoded to obtain the new population of c values. Each element in
each new member of the population is checked against the constraints of Eq. (11.2),
and those that violate these limits are adjusted to the closest constraint value. The
fitness of each member is evaluated, and the member with the highest fitness value
is considered as a solution candidate. The entire set of operations is repeated again,
and so on. With the evolution from one generation to another, the fitness of solution
candidates should increase, while the overall fitness of the population should also
improve. Like an iterative process, a converging evolution process should lead to a
converging value of the fitness of solution candidates. Upon convergence, the solution
candidate will have the highest fitness value and is considered the final solution.

Although genetic algorithms are computationally demanding, Ali et al. (1999) pro-
posed their use in computing tomography when the number of projections is limited,
i.e. for underdetermined problems; see Chapter 14. The method is also proposed for
use in image enhancement, as discussed in Chapter 16.

11.7 Simulated Annealing

This is another optimization process that minimizes the cost function, 8(c), in a suc-
cessive manner by emulating a physical phenomenon; namely the annealing of metals.
Metal annealing is a hardening process which allows dislocated atoms in a metal to
settle in their most stable location by heating the metal and then allowing it to slowly
cool down. Heating gives the atoms kinetic energy, and the cooling process allows
the moving atoms to settle in a stable thermal-equilibrium arrangement. Simulated
annealing is governed by the Maxwell-Boltzmann distribution:

p(E)=
1

Z
exp

[
−

E

kT

]
(11.24)

where p(E) is the probability density function of having atoms with an energy E,
T is the medium’s absolute temperature, k is Boltzmann’s constant (k= 1.381×
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10−23 J/K), and Z is a normalization constant. At the lowest possible temperature,
T = 0, all atoms will be motionless and the medium will be at its most stable (lowest)
potential energy. While, reaching an absolute zero is not possible in practice, the lower
the temperature, the more stable the atomic structure. Moreover, the thermal motion of
atoms during the annealing process does not allow “spotty” minimum energy regions
within the medium to remain for a long period, as atoms will tend to move out. These
spotty regions would correspond to local minima in a nonlinear optimization pro-
cess. As such by simulating this annealing process in optimization, a global mini-
mum would tend to be attained. Measurement uncertainties would prevent a solution
from reaching a zero temperature, but a reasonably optimal solution is likely to be
arrived at.

Like any iterative scheme, the solution starts with some solution guess, c(0). The
iterative process proceeds from one iteration, k, to the next, k+ 1, randomly, e.g.
(Parks, 1990):

c(k+1)
= c(k)+D(k)ξ (11.25)

where ξ is a vector of random numbers in the interval [−1,1] and D is a diagonal
matrix that defines the maximum allowed change in c. For the first iteration one can
take: D(0)ii = 0.5(bi− ai) where bi and ai are the elements of the upper and lower
bounds of c. If an element in c(k+1) does not satisfy the constraints of (11.2), a new
random number is selected until the constraints are satisfied. This random sampling
process emulates the effect of heat on metals, which gives kinetic energy to the atoms
and enables them to move around. This random (Monte Carlo) Markov chain simu-
lation process of atoms movement does not reflect physical reality, as it may lead to
two atoms occupying the same point in space, or become too close to each other (in
defiance of the interaction forces between atoms that keep spatial separation between
neighboring atoms). These unrealistic possibilities are overcome by imposing a state
of thermal equilibrium, in which the kinetic energy is governed by the Maxwell-
Boltzmann distribution of Eq. (11.24), which distributes the energy around a mean
value (corresponding to T). In simulated annealing, the change in the cost function,
18(c), from one solution estimate to another, replaces E in the Maxwell-Boltzmann
distribution of Eq. (11.24), while k becomes a scaling factor and T acts as a control
parameter. With this distribution, some states are allowed to have an energy higher
than the mean energy, preventing these states from overlapping. Simulated anneal-
ing incorporates this physical effect via the algorithm of Metropolis et al. (1953),
which checks the energy (cost function) of each obtained solution element, c(k+1)

j .

If this solution element results in a decrease in the value of the cost function, c(k+1)
j

is accepted as a successful indication of system “cooling” and its value is retained.
On the other hand, if c(k+1)

j causes an increase in the value of the cost function, the
solution is accepted if it causes a small increase in energy, to allow for the Maxwell-
Boltzmann distribution of energy; otherwise the solution is rejected and a new value
of c(k+1)

j is randomly sampled, and the acceptability criteria is repeated over the newly
sampled value. The probability of accepting an increase in the cost function, 8(c), is
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expressed, in analogy with Eq. (11.24), as:

p(18(c))= exp

[
−
18(c)

kT

]
(11.26)

The scale factor, k, controls the amount of permitted change in energy. This con-
dition is implemented by sampling a random number, ξ , in the interval [0,1]. If

ξ < exp
[
−
18(c)

kT

]
, then the increase in the cost function is accepted, otherwise it is

rejected.
The random sampling and the associated processes are repeated at each tempera-

ture, T , until the average value of the cost function reaches a stable value, at which
point equilibrium is considered to have been attained at this T value. The iterative
process starts with a high temperature, and after reaching equilibrium, the temperature
is lowered, and the random sampling process is repeated starting from the previous
equilibrium solution. The temperature lowering process continues from one equilib-
rium state to another until a sufficiently low temperature is reached, below which no
significant change in the obtained solution occurs. This solution is considered to be
the optimum solution for the problem.

The choice of the initial temperature, the permitted degree of increase in energy via
the scaling parameter, k, in Eq. (11.26), the manner of “cooling” the system, and the
final temperature, define the so-called “cooling schedule.” A number of schemes can
be used, see van Laarhoven and Aarts (1987). However, the initial temperature should
be sufficiently high to permit complete mobility, as in allowing the melting of a metal,
with a gradual temperature decrease toward a completely immobile (frozen) system.
Random sampling should be devised to permit a minimum number of accepted energy
increases, with the number decreasing as the system approaches the freezing point.
The length of the Markov chain, i.e. the number of sampling operations, should be
limited to a pre-determined maximum number, to avoid excessive unnecessary com-
putations. The final temperate is typically reached when no improvement in the cost
function is realized in an entire random sampling process at a certain temperature.

Simulated annealing was considered for use in image reconstruction with paral-
lel processors to accommodate its computational demands (Girodias et al., 1991;
Shoemaker et al., 1991). The cost function for use in CT image reconstruction was
analyzed in Haneishi et al. (1990). The method was also introduced for image recon-
struction in single photon emission computed tomography (spect) (Webb, 1989).

11.8 Neural Networks

Another optimization method that relies on emulating a natural process is the
method of neural networks, which mimics the nervous system. The main advantage
of this method is that it does not require an explicit formulation of the forward
and inverse mappings. It rather establishes the relationship between measurements
and sought parameters via a learning process similar to that accomplished by the
brain. Sensed inputs (measured signals) are fed into a network of neurons, with
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each neuron processing the signal and passing it to other neurons, and so on
until a final output (result) is arrived at. A network is described by the manner
in which its neurons are connected, the weight it gives to the interconnections
between neurons, and the transformation function (from input to output) it asso-
ciates with each neuron. A number of network architectures are available through
a variety of software packages, see for example the matlab Neural Network Toolbox
(http://www.cpc.cs.qub.ac.uk/summaries/ACGV v2 0.html), among many
others.

The learning (training) process aims at finding the optimal weights of the inter-
connections that relate a given set of measurements to known outputs. The learning
schemes are based on iteratively minimizing the residual error between a known out-
come and that produced by the weight assigned to the network. The usual optimization
methods of the steepest descent, Newton, quasi-Newton and conjugate gradients meth-
ods, discussed in Chapter 10, can be used as strategies to update the guessed weights.
Once the optimal weights are found, the relationship between the measurements and
the sought parameters, i.e. the inverse mapping, is considered to have been established,
and the neutral network can be used efficiently and quickly to find the parameters for
a new set of measurements. For more information, readers can consult a textbook on
neural networks, such as Fausett (1994). An example of using neural networks for
imaging reconstruction is reported in Paschalis et al. (2004), for a spect system.
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12 Analytic Methods

12.1 Radon Transform

In transmission and emission imaging, measurements are cumulative indications,
represented by integrals of image parameters along lines of detector response. In
transmission imaging, see Chapter 4, the ray-sum is an integration of the attenuation
coefficients, which constitute the image parameters. For emission imaging, discussed
in Chapter 5, a measurement represents an integral of radiation emission intensities
along a detector’s line of response. In scatter imaging, Chapter 6, the problem is not
as straightforward, because of its nonlinear nature. An integral measurement can be
viewed as constituting an integral transform of image parameters. Such transform,
when performed over an imaging plane, is known as the Radon transform, which inte-
grates a function over lines in a plane.

Let us consider first the case of transmission tomography. A projection, p, is given
by Eq. (4.2), and is rewritten here in terms of the image parameter, c, as:

p(r,ϑ)=
∫

c(s) ds=R(r,ϑ)[c(x,y)] (12.1)

=

∞∫
−∞

c(r cosϑ − ssinϑ,r sinϑ + scosϑ) ds (12.2)

=

∞∫
−∞

∞∫
−∞

c(x,y)δ(r− xcosϑ − ysinϑ) dxdy (12.3)

where (r,ϑ) define the polar coordinates, see Figure 12.1, with s being the distance in
the polar direction and R refers to the Radon transform.

The limits of integration in Eq. (12.3) are written to cover the entire spatial domain,
but in practice the integration needs to cover only the image domain. Consider a
domain consisting of a circle of radius R, as shown in Figure 12.1. A fixed point
(x,y) within that domain will produce projections at different angles through lines in
the plane of the image. The end points corresponding to these projection lines through
(x,y) produce a sinusoidal curve: r = xcosϑ + ysinϑ . The Radon transform of a Dirac

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00012-4
c© 2011 Elsevier Inc. All rights reserved.
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Figure 12.1 Coordinates for Radon transform.

delta function is a distribution with support1 on the graph of a sine wave. Therefore, a
measurement projection is often called a sinogram.

The inverse Radon transform of p(r,ϑ) of Eq. (12.3) gives the sought solution:

R−1(x,y)[p(r,ϑ)]= c(x,y)=
1

2π

∞∫
−∞

∞∫
−∞

∂H[p(r,ϑ)]

∂r
dϑ (12.4)

where H defines a Hilbert transform.2 Equation (12.4) shows that a two-dimensional
parameter, c(x,y), can be recovered from one-dimensional projections, p(r,ϑ), using
an analytical formulation.

Two conditions are required to readily apply the Radon transform and its inverse.
First, differentiation to obtain ∂H[p(r,ϑ)]

∂r in Eq. (12.4) requires the availability of
projections along the Er direction. With parallel projections, at the same angle ϑ ,
this derivative can be readily found numerically by the finite difference method or
analytically if an analytical formulation of the projections as a function of r can be

1 A support is the smallest closed set containing the arguments of a function (set closure).
2 The Hilbert transform of a function f (x) is an integral transform of the form:

H[f (x)]= g(y)=
PV

π

∞∫
−∞

f (x) dx

x− y

PV

∞∫
−∞

f (x) dx= lim
R→∞

R∫
−R

f (x) dx

where PV is the integral’s Cauchy principal value.
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established. Secondly, the integration over the polar angle, ϑ in Eq. (12.4), dictates
that the inverse Radon transform be conducted over the r-ϑ plan. These two condi-
tions concur with the requirements of parallel-ray transmission tomography. In dealing
with fan-beam or three-dimensional transmission tomography, these two conditions
are not readily met, and some form of reformulation must be introduced. In transmis-
sion imaging, the Radon transform is readily obtained by the projections, see Eq. (4.2).
In both emission and scatter imaging, the integral of the Radon transform, Eq. (12.3),
is modulated by the attenuation and divergence terms, see Chapters 5 and 6. Rather
than dealing with these complications here, we will address them when considering
the Fourier transform discussed in the ensuing section; because the Radon transform
is closely related to that of Fourier, while the latter is more suited for numerical imple-
mentation. We start first with the parallel-beam transmission tomography arrangement,
expand the concepts to accommodate other forms of transmission tomography, then
consider emission and scatter imaging.

12.2 Two-Dimensional Fourier Transforms

Section 8.3.1 presented a formulation for the linear inverse problem of transmission
tomography by expressing the solution in terms of a Fourier series, i.e. the super-
position of sinusoidal waves expressed in complex exponentials. The coefficients of
this expansion are determined by the inverse Fourier transform, which is readily pro-
vided by the efficient, but approximate, Fast Fourier Transform (fft) computing algo-
rithms (for a free software see: http://www.fftw.org/). The basic formulation of
Section 8.3.1 is applied to the two-dimensional tomographic imaging problem with
the aid of some basic concepts introduced below.

12.2.1 Fundamental Equations

Let us consider the two-dimensional transmission-tomography imaging problem of
determining the image parameter, c, (attenuation coefficient), at every image point
(x,y) on a cross section in the x-y plane. The Fourier integral of Eq. (8.5) can be
expressed as:

c(x,y)=

∞∫
−∞

∞∫
−∞

C(kx,ky)exp[2π i(kxx+ kyy)]dkx dky (12.5)

where kx and ky are frequencies in the x and y directions, respectively, and C(kx,ky)

is the corresponding Fourier coefficient. The expansion coefficients are determined by
the inverse transform of the Fourier integral:

C(kx,ky)=

∞∫
−∞

∞∫
−∞

c(x,y)exp[−2π i(kxx+ kyy)]dx dy (12.6)
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where C(kx,ky) is the two-dimensional Fourier transform of c(x,y). Note that in
Eq. (12.6), c vanishes outside the image domain. However, the infinite limits of the
integrals are preserved here for the sake of mathematical rigor.

Since tomographic imaging requires multidirection exposure, of the imaged section
to radiation from various directions, it is more convenient to consider the problem in
the polar system of coordinates, (r-ϑ), with:

tanϑ =
ky

kx
; r = xcosϑ + ysinϑ (12.7)

Then Eq. (12.6) becomes:

C(kx,ky)= C(k,ϑ)=
∞∫
−∞

∞∫
−∞

c(r,ϑ)exp(−2π ikr)rdϑ dr (12.8)

=

∞∫
−∞


∞∫
−∞

c(r,ϑ)rdϑ

exp(−2π ikr) dr

=

∞∫
−∞

p(r,ϑ)exp(−2π ikr) dr = P(k,ϑ) (12.9)

with k2
= k2

x + k2
y , p(r,ϑ) being the projection (ray sum) at r in the direction Eϑ = Es

(normal to Er). Notice that k is not a function of x or y, which made it possible to
exchange the order of integrals in the above formulation.

Figure 12.2 shows the projection, p, for a uniform object at some angle, ϑ , in
parallel-beam projections, along with the associated modulus of the Fourier trans-
form, |P|. Notice here that the projection, p, is formed by a set of Radon-transformed
measurements i.e. ray-sums, (see Section 4.1), and P is a transform of the entire pro-
file of p.

Combining Eqs. (12.8) and (12.9) gives:

C(k,ϑ)= P(k,ϑ) (12.10)

which indicates that the Fourier coefficient, C(k,ϑ), of the sought parameter, c(k,ϑ), is
equal to the Fourier coefficient, P(k,ϑ), of the measurement projection, p(r,ϑ), with
respect to r. This is the so-called central slice theorem, or the Fourier slice theorem
(also called the projection theorem), as its states that the Fourier transform of paral-
lel projections of transmission measurements gives a “slice” of the two-dimensional
transform of the sought solution. It relates the one-dimensional Fourier transform of a
parallel projection to the two-dimensional Fourier transform of the image parameters.
In other words, the Fourier transform of a projection is a cross section of the Fourier
transform of the image at its center. The central slice theorem is fundamental to the
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Figure 12.2 A schematic showing the projection, p, of a uniform rectangular object at a single
direction, ϑ , in a parallel-beam arrangement, and the modulus, |P|, of its Fourier spectrum.

Fourier solution of the inverse problem of transmission imaging, as it reduces it into
two basic transforms: (1) the Radon transform in which transmission measurements
are presented as ray-sums, with each set of ray-sums providing a projection, and (2) the
Fourier transform of the projections. For each projection, a two-dimensional array of
Fourier coefficients of the sought solution is generated. The inverse Fourier transforms
of these coefficients leads to the sought solution.

With the availability of Fast Fourier Transform (fft) computing algorithms, the
solution of the inverse problem of transmission tomography appears simple and
straightforward. There are, however a number of complications in applying the central
slice theorem of Eq. (12.10). First, P , is a one-dimensional transform, as Eq. (12.9)
indicates, while C is a two-dimensional one, defined by Eq. (12.8). Secondly, these
transforms are provided in the polar, (r,ϑ), coordinates system, while the solution is
sought in Cartesian, (x,y), coordinates, where the image pixels are formed. Thirdly,
this is essentially an analytical solution that requires complete and continuous pro-
jections of the measurement ray-sums, in order to be able to perform the Fourier
transforms and subsequent inversion. In practice, however, no matter how large the
number of radiation measurements recorded is, one always has a finite number of pro-
jections. This results in a discrete frequency space that may contain “gaps” i.e. the
absence of some frequencies needed in the construction of the two-dimensional set
of coefficients. Interpolating between the one-dimensional projection coefficients then
becomes necessary, to be able to estimate the absent values. The discretized nature
of measurements and image parameters also necessitates replacing the integrals in the
above equations with summations and limiting the domain of summation to finite val-
ues. Fourth, in practice, the projections in Eq. (12.9), are replaced by measured values



HUSSEIN Ch12-9780123877772 2011/5/16 18:46 Page 190 #6

190 Computed Radiation Imaging

with associated uncertainties. Fifth, an originally well-posed problem will become
ill-posed when solved by the Fourier transform method, because it is in effect a dis-
cretization method in the frequency domain due to the finite number of projections.
These numerical aspects of the problem are discussed in the ensuing sections.

12.2.2 Completeness and Continuity

A continuous function can be constructed from a set of values sampled at a closely
spaced discrete points, if the function is band-limited, i.e. its Fourier transform is nil
outside a finite frequency range. If the bandwidth of the function is 2kmax, it covers
the frequency range: |k| ≤ kmax. Then, a band-limited function has a non-zero Fourier
transform only when |k| ≤ kmax, where kmax is the maximum frequency. The sampling
theorem dictates that the sampling frequency be equal to or greater than the bandwidth,
in order to exactly reconstruct a function from its discrete samples. Therefore, if Ms

measurements are acquired in a transmission projection, at equally spaced intervals
each of width, 1r, i.e. a sample frequency (samples per unit length) of 1

1r , then:

1

1r
≥ 2kmax; kmax ≤

1

21r
(12.11)

is required for complete sampling of the projection profile. The condition of
Eq. (12.11) is known as the Nyquist condition. It is the only restriction needed to
utilize the central slice theorem of Eq. (12.10) to reconstruct continuous images in
transmission tomography, as it permits interpolation between projection values with-
out loss of information due to sampling. However, it should be kept in mind, as indi-
cated in Section 8.3.1, that the condition of Eq. (12.11) cuts off terms in the integral
of Eq. (12.5) for |k|> kmax. Abrupt changes in material (sharp edges) can produce
such high frequencies. Not allowing the sampling of these frequencies may result in
their reappearance disguised as lower frequencies; resulting in an aliasing artifact. The
elimination altogether of these high frequencies leads to the Gibbs phenomenon: an
artifact that produces an overshoot, or ringing, at sharp boundaries (a low-density
ring can appear artificially inside a high-density boundary (Brooks and Di Chiro,
1976)).

Bandwidth limiting makes an originally well-posed problem ill-posed, when solved
by the Fourier transform method. This is because it excludes frequencies outside the
band from contributing to the image. In addition, the chosen width of the band deter-
mines the domain of solution. Therefore, the image obtained by the Fourier transform
method is not unique, which violates one of the conditions of well-posedness. Conse-
quently, an inverse problem solved by the Fourier transform method will still remain
susceptible to error. An error in a measurement directly alters the values of the Fourier
coefficients, hence the solution.

12.2.3 Discretization

The sampling of measurements in a projection is a discrete process. Let us consider
the case of a beam of width w rastering an object along a line to produce a pro-
jection profile. The beam width determines the maximum spatial frequency (cycles
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per unit length):

kmax =
1

w
(12.12)

According to the Nyquist condition of Eq. (12.11), one needs to sample at least two
measurements per beam width, so that:

1r =
w

2
(12.13)

is the smallest uniform-sampling width that allows continuous construction of the
projection profiles from discrete sampling. Therefore, the number of measurements
acquired in a projection, Mr, is given by:

Mr =
2R

1r
=

4R

w
(12.14)

where R is the radius within which the imaged section is enclosed. Then the band-
width, 2kmax, in the Fourier space can be divided into equal frequency intervals, each
with width 1k so that:

1k =
2kmax

Mr
=

2

w
×

w

4R
=

1

2R
(12.15)

The many projections required in transmission tomography can be acquired by
rotating the parallel beam by an angle, 1ϑ , around the central axis of the imaged
section. Then one acquires, with uniform sampling,

Mϑ =
π

1ϑ
(12.16)

projections over 0≤ ϑ ≤ π , since in parallel-beam transmission tomography projec-
tions within π ≤ ϑ ≤ 2π are redundant,3 as they provide the information given by the
projections within 0≤ ϑ ≤ π . Each projection rotation will produce a change, 1k, in
frequency, since the maximum frequency, kmax should not be exceeded. Therefore, one
should chose the angular interval, 1ϑ , such that:

1ϑ =
1k

kmax
=

w

2R
=
1r

R
=

π

Mϑ

(12.17)

One has1r = R1ϑ , which is equal to the arc length corresponding to1ϑ at radius R,
and consequently 1r = πR

Mϑ
and Mϑ =

πR
1r .

The above described discretization of the Radon space (the spatial domain) and the
corresponding Fourier space (frequency domain) are depicted in Figure 12.3.

3 Non-redundant measurements within π ≤ ϑ ≤ 2π can be obtained by off-setting the source or detector
positions so that opposing beams interleave (Goldman, 2007).
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Radon domain Fourier domain

Δk

Δϑ
Δϑ

Δr

2R 2kmax

Figure 12.3 Discretization of samples in the Radon and Fourier spaces.

The total number of measurements, M, required to satisfy the sampling condition
is then:

M =MrMϑ =
2R

1r
×
πR

1r
=
π

2

(
2R

1r

)2

(12.18)

The M measurements can be used to image up to N squares pixels in a circle of radius
R enclosing the imaged section so that:

N =
πR2

w2
=

πR2

4(1r)2
=

M

8
(12.19)

That is, the number of knowns (measurements) is eight times the number of unknowns
(pixel parameters). This is a much higher degree of overdetermination than that
typically acquired in practice (from two to three), see Section 9.1.1. This is because
satisfying the above conditions leads to sufficient number of pixels from which a
continuous image, not affected by the discrete nature of the measurements, can be con-
structed. This high degree of overdetermination required for image reconstruction by
direct inverse Fourier transform is hardly used in image reconstruction. Its study, how-
ever, enables one to appreciate the approximate nature of the other analytical methods
discussed in Section 12.3.

The fact that the number of available projections is always finite necessitates
replacing the continuous integrals in Fourier transforms by summations over discrete
frequencies. The Fourier transform, P(k,ϑ), of a projection, p(ϑ), consisting of Mr

equispaced intervals of width 1r, can be expressed in terms of Mr discrete points
using the discrete Fourier transform:

P(ϑ,m1k)=
1

Mr

Mr
2∑

n=−Mr
2

p(n1r,ϑ)exp

[
−

2π inm

Mr

]
(12.20)
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with 1k given by Eq. (12.15) and the appearance of m1k signifies the fact that
discrete values are used in Eq. (12.20). It should be kept in mind, however,
that P(ϑ,m1k = k) 6= P(ϑ,k), i.e. a sampled Fourier transform as evaluated from
Eq. (12.20) is not equal to the value sampled from a continuous presentation of
the projection, p(r,ϑ), if it were available. In fact, discrete sampled values corre-
spond to shifted (at intervals) values of the continuous (ideal) Fourier transform.
Therefore, the continuous transform is obtained approximately by the summation of
P(m1k,ϑ) (Stark, 1979):

P(k,ϑ)≈

M2
2∑

m=−Mr
2

P(ϑ,m1k) sinc

[
k−m1k

1k

]
(12.21)

where sinc(x)= sin(πx)
πx , with sinc(x)= 1 at x= 0, so that

∫
∞

−∞
sinc(x)dx= π . Recall

that sinc(k) is the Fourier transform of a rectangular function, rect(x), of unit width
and unit height, i.e. rect(x)= 1 for |x| ≤ 0.5 and rect(x)= 0 when x> 0.5. Therefore,
the appearance of the sinc(x) function in Eq. (12.21) is due to the discrete sampling
of projections at finite widths. The approximation in Eq. (12.21) is due to the fact that
the exact value requires summation from −∞ to∞. Equation (12.21) amounts to the

filtering of P(ϑ,m1k) with sinc
(

k−m1k
1k

)
.

The Fourier transform in Eq. (12.21) is conducted in the polar coordinates, to
accommodate projections at various orientations. Equating these projection transforms
to the solution transforms, in accordance to the sampling theorem (see Section 12.2.2),
produces transforms, C(k,ϑ), also in the polar coordinates. Interpolation is required
for transforming from the polar mesh to the rectangular grid over which the image
is formed. Various interpretation methods are discussed below guided by Stark et al.
(1981).

12.2.4 Interpolation

If the conditions of the sampling theorem are met and the projects are sampled uni-
formly, then exact interpolation can be performed to provide the value of C(k,ϑ). Let
us assume that the projections are sampled over discrete angles: ϑl, l= 1,2 . . .Mϑ over
2π , with Mϑ selected to satisfy the condition of Eq. (12.11) of the sampling theorem.
Then each projection gives a corresponding Fourier transform of the solution in the
polar coordinates, C(k,ϑl), and the exact value of C(k,ϑ) can be evaluated an any
angle, ϑ , based on the so-called circular sampling theorem (Stark, 1979), as follows:

C(k,ϑ)=
Mϑ−1∑

l=0

C
(

k,
2π l

N

) sin
[

N
2

(
ϑ − 2π l

N

)]
sin
[

1
2

(
ϑ − 2π l

N

)] (12.22)

Since the Fourier frequency, k, assumes positive and negative values, including zero,
k = 0,±1,±2, . . . ,±kmax, then Mϑ = 2K+ 1 is the smallest value of Mϑ permitted by
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the sampling theorem, where in accordance to Eq. (12.11):

K =
R

w
+ 1 (12.23)

In parallel-beam transmission tomography, projections are obtained over 0≤ ϑ ≤ π ,
since a projection, p, at π +ϑ is equal to that at ϑ . On the other hand, one can view
each projection at angle ϑ ≤ π as having two samples of C(k,ϑ) so that the entire
range of the polar direction is covered. Therefore, the total number of projections
in parallel-beam transmission tomography over 0≤ ϑ ≤ 2π is an even number. The
smallest even number for Mϑ projections is 2K+ 2, i.e. K+ 2 is the smallest number
of projections over 0≤ ϑ ≤ π . Therefore, Eq. (12.22) can be rewritten as:

C(k,ϑ)=
2K+1∑
l=0

C
(

k,
π l

K+ 1

) sin
[
(K+ 1)

(
ϑ − π l

K+1

)]
sin
[

1
2

(
ϑ − π l

K+1

)] (12.24)

Applying the central slice theorem, Eq. (12.10), C(k,ϑ)= P(k,ϑ), and using
Eqs. (12.21) and (12.24), one obtains:

C(k,ϑ)=
2K+1∑
l=0

P
(

k,
π l

K+ 1

) sin
[
(K+ 1)

(
ϑ − π l

K+1

)]
sin
[

1
2

(
ϑ − π l

K+1

)] (12.25)

=

2K+1∑
l=0

Mr
2∑

m=−Mr
2

C
(

m1k,
π l

K+ 1

)
sinc

[
k−m1r

1k

]

×

sin
[
(K+ 1)

(
ϑ − π l

K+1

)]
sin
[

1
2

(
ϑ − π l

K+1

)] (12.26)

Equation (12.26) shows that C(k,ϑ) can be calculated at (k,ϑ) from discrete sampled
values.

12.2.5 Direct Fourier Inversion

Using Eq. (12.25), the continuous function of C(k,ϑ) can be constructed from dis-
crete values of the transform of the sampled projections. With the relationships of
Eq. (12.7), C(kx,ky) can be computed over a Cartesian grid. Then, the image para-
meter, c(x,y), can be found at different pixels using the Fourier integral of Eq. (12.5),
obtained with the aid of an inverse fast Fourier transform algorithm. This latter approx-
imation, along with the approximation of Eq. (12.21), results in truncation and aliasing
errors in the image. Therefore, interpolating Fourier transforms is an ill-posed problem
(Lannes et al., 1994), since a small error in interpolation at one frequency will affect
other frequencies. Some methods are proposed to reduce these errors, see for example
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Stark et al. (1981) and Maréchalt et al. (2000). However, direct Fourier inversion is
less commonly used due to the better accuracy produced by the Fourier-frequency
filtering method, discussed below.

12.2.6 Fourier-Frequency Filtering

So far, we have focused on analyzing the Fourier transforms of the projections and
solution parameters. Let us now return to the fundamental integral of Eq. (12.5) and
transform it to the polar coordinates system, (r,ϑ). The purpose of this exercise,
guided by Kak and Slaney (2001), is to show that the Fourier transform can be used to
filter the projections, and descramble their fundamental components, to arrive at the
solution itself. Using the relationships of Eq. (12.7), the Fourier integral of Eq. (12.5)
can be expressed in polar coordinates as:

c(x,y)=

π∫
0

∞∫
−∞

C(k,ϑ)exp[2π ikr]|k|dk dϑ (12.27)

Notice that ϑ covers half the polar angular range due to the redundancy of mea-
surements in the other half in parallel-beam transmission tomography, i.e. because
C(k,ϑ +π)= C(−k,ϑ); hence the use of |k| instead of k. Using the central slice the-
orem, C(k,ϑ) can be replaced by the corresponding projection P(k,ϑ) in Eq. (12.27)
to give:

c(x,y)=

π∫
0

 ∞∫
−∞

P(k,ϑ)|k|exp[2π ikr]dk

dϑ =

π∫
0

q(r,ϑ) dϑ (12.28)

where

q(r,ϑ)=

∞∫
−∞

P(k,ϑ)|k|exp[2π ikr] dk (12.29)

is a “frequency-filtered” form of the projection, P(k,ϑ), with a filter frequency equal
to |k|. This is a ramp-filter in the frequency domain, due to the linear nature of |k|.
Equation (12.28) indicates that the summation of these filtered projections over the
polar angles of the original projections gives the sought solution, c(x,y). This sim-
ple, but remarkable observation, is behind the wide use of the filtered backprojection
method discussed in Section 12.3.2.

12.3 Backprojection

The essence of this method in its simple form is to project directly measured or
filtered values of each projection back into the voxels in the image that contribute
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to a measurement. With all projections at all recorded polar angles projected back into
the image voxels, one would obtain an “imprint” of the image. The objective of filter-
ing the projections prior to backprojecting them is to suppress unwanted artifacts, as
shown below after discussing backprojection without filtering.

12.3.1 Direct

Backprojecting direct (unfiltered) measurements is mathematically processed as:

c̃(x,y)=
Mϑ∑

m=1

p(rm,ϑm)1ϑ =

Mϑ∑
m=1

p(xcosϑm+ ysinϑm,ϑm)1ϑ (12.30)

where 1ϑ is given by Eq. (12.16), and c̃(x,y) is a relative value, not the true absolute
value, of c(x,y). In other words, Eq. (12.30) gives the value of c(xi,yj) for the voxel
at (xi,yj) in comparison to the value at other points in the image.

Equation (12.30) is a backprojection in the spatial domain, its analogous form in
the frequency domain is quite revealing. Replacing p(rm,ϑm) by its Fourier integral:

p(rm,ϑm)=

∞∫
−∞

P(r,ϑ)exp[2πkr]dk (12.31)

the continuous form of Eq. (12.30) becomes:

c̃(x,y)=

π∫
0

∞∫
−∞

P(r,ϑ)exp[2πkr]dk dϑ =

c̃(r,ϑ)=

π∫
0

∞∫
−∞

P(r,ϑ)
|k|

exp[2πkr]|k|dk dϑ (12.32)

The introduction of |k| is required to express the integral in the polar coordinates, as
in Eq. (12.27). The Fourier transform of Eq. (12.32) is then: C̃(x,y)= P(r,ϑ)

|k| , which
together with the center slice theorem, Eq. (12.10), shows that:

C̃(x,y)=
P(r,ϑ)
|k|

=
C(r,ϑ)
|k|

(12.33)

This expression indicates that C̃(x,y) is equal to the exact Fourier transform, C(x,y),
divided by the magnitude of the spatial frequency, |k|. This has two implications for
direct backprojection of Eq. (12.30): (1) C̃(x,y) is a scaled (relative) value of the actual
Fourier transform of the image parameter, C(x,y), and (2) high-frequency components
are suppressed in the reconstructed image as the solution emphasizes low-frequency
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components. In addition, simple backprojection associates non-zero values to empty
(zero density) voxels. As a result, it produces a foggy background, and in some cases
a star effect (an outward spread) may be associated with high density points (Brooks
and Di Chiro, 1976).

Equation (12.33) also provides the foundation for Fourier filtered backprojection,
as it indicates that multiplying the Fourier transform of the projections, P(r,ϑ), by
|k|, then backprojecting it, will lead to the Fourier transform of the solution, C(r,ϑ),
as was also indicated by Eq. (12.28).

12.3.2 Fourier Filtered

In this process all projections are filtered with the magnitude of the frequency, in accor-
dance to Eq. (12.28). The resulting values are then backprojected to obtain the required
image parameters. This amounts to implementing Eq. (12.27) in a discrete form:

c̃(x,y)=
Mϑ∑

m=1

q(xcosϑm+ ysinϑm,ϑm)1ϑ (12.34)

Notice that this equation is similar to the direct backprojection equation, Eq. (12.30),
except for the use of q instead of p, where q is given by Eq. (12.29). This approach,
however, not only produces the exact value of the image parameters, c(x,y), but
also eliminates the foggy and star artifacts associated with direct backprojection.
The latter observation is due to the fact that, in accordance to Eq. (12.33), the
Fourier transform of the direct backprojection is divided by the magnitude of the fre-
quency, |k|, allowing the contribution of high-frequency components to decrease in
proportion to their frequency, while providing the opposite effect for low frequency
components.

Aside from the discretization error associated with the summation in Eq. (12.34),
the implementation of this method requires the availability of all values of
rm = xcosϑm+ ysinϑm. Since p(r,ϑm), and consequently q(r,ϑm), are calculated at
a finite number of discrete points, interpolation is required for the r values that are
not sampled, i.e. for points not directly in the path of a sampled radiation beam. This
can be accomplished by simply using the value of the nearest neighbor, interpolation
between adjacent values, or using exact interpolation in accordance with the sam-
pling theorem as discussed in Section 12.2.4. The latter method is hardly used as
it requires a large number of measurements, and is computationally demanding. The
above mentioned discretization and interpolation approximations result in some loss in
image resolution, particularly near edges where streaks in the image may be observed
(Brooks and Di Chiro, 1976).

Fourier filtered backprojection is quite attractive because of its simplicity, ease of
numerical implementation and the ability to perform it immediately once a projection
is recorded, without awaiting to acquire and store all projections. Moreover, in this
method, interpolation can be performed more accurately in the spatial domain, unlike
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in the direct Fourier inversion method, discussed in Section 12.2.5, which requires a
more complicated interpolation process (Kak and Slaney, 2001).

12.3.3 Radon Filtered

According to the Fourier transform theory, the Fourier transform of a product of
functions, e.g. F(k)×G(k), is equal to the convolution4 of their individual Fourier
transforms: f (r) ∗ g(r). This is known as the convolution theorem. Realizing that
Eq. (12.29) consists of the Fourier transform of the product P(k,ϑ)|k|, and that the
Fourier transform of P(k,ϑ) is p(r,ϑ) and that of |k| is − 1

2π2r2 , applying the convo-
lution theorem to Eq. (12.29) results in (Brooks and Di Chiro, 1976):

q(r,ϑ)=−
1

2π2

∞∫
−∞

p(r′,ϑ)

(r− r′)2
dr′ =

1

2π2r2

∞∫
−∞

∂p(r′,ϑ)
∂r′

r− r′
dr′ (12.35)

where the last step involved integration by parts. Equation (12.35) represents a filter-
ing of the derivatives of the projections with the inverse distance from the point of
filtering. Once this filtering process is applied, the filtered values given by q(r,ϑ) are
backprojected, in accordance to Eq. (12.30) with q(r,ϑ) replacing p(r,ϑ). Since the
filtering of Eq. (12.35) involves the projections themselves, not their Fourier trans-
forms, this method is known as Radon filtering.

Although the implementation of Eq. (12.35) appears at first glance to be attrac-
tive, because it deals directly with the projections and avoids Fourier transforms,
the availability of Fast Fourier transforms alleviates this apparent advantage. More-
over, numerically approximating the derivatives and the singularity at r′ = r makes
this method susceptible to numerical error propagation. However, Lanzavecchia et al.
(1999) utilized the Radon transform, in three-dimensional image reconstruction, to
devise a special filter to correct inconsistencies in measurements and for interpolation
to fill gaps in the Radon transform.

12.3.4 Shepp-Logan Filtered

Let a Fourier projection, P(k,ϑ), be filtered by some weighting function, W(k), so
that:

q(r,ϑ)=

∞∫
−∞

P(k,ϑ)W(k)exp[2π ikr]dk (12.36)

4 A convolution operator relates one point to another by their separation distance, so that: f (r) ∗ g(r)=∫
∞

−∞
f (r′)g(r− r′)dr′ =

∫
∞

−∞
g(r′)f (r− r′)dr′.
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Applying the convolution theorem to Eq. (12.36) results in:

q(r,ϑ)=

∞∫
−∞

p(r′,ϑ)W(r− r′)dr′ (12.37)

where W(r) is the inverse Fourier transform of W(k). The formulation of Eq. (12.37)
requires W(r) to be an even function, i.e. W(+r)=W(−r), and W(k) be bandwidth
limited (Shepp and Logan, 1974). Applying the filtering function of Eq. (12.37) to
Eq. (12.34) gives a solution in which a projection, p(r′,ϑ), is weighted by W(r′− r),
with r− r′ being the distance from a point in the image r to the point r′ at which the
projection is recorded. Interpolation between neighboring projections can be used if r′

does not correspond to a measured projection. Shepp and Logan (1974) proposed the
following weight function:

W(0)=
MR

πr2
=

4

π(1r)
;W(r)=−

M2
R

π(M2
Rr2−R2)

=W(n1r)=

−
4

π(1r)2(4n2− 1)
(12.38)

with Mr being the number of ray-sums in a projection, and R is the radius enclosing the
object. In the discrete form, W(r) is linear between sampled projections. The Fourier
transform of Eq. (12.38) is:

W(k)=

∣∣∣∣4kmax sin

(
πk

2kmax

)∣∣∣∣sinc2
(
πk

2kmax

)
(12.39)

This is known as the Shepp-Logan filter (Shepp and Logan, 1974). Notice here, when
k << kmax, one has W(k)≈ |k|, and this filter becomes identical to the Fourier filter of
to Eq. (12.28), but as k→ kmax, the value of W(k) exceeds |k|.

The weight function of Eq. (12.38) can be directly applied in the spatial domain,
which makes it quite simple to numerically implement, see the computer program in
Shepp and Logan (1974). It is, however, an approximation that does not accommodate
higher frequency components well.

12.3.5 Convolution Filtered

Since k has a maximum value of kmax, the filtering operation in Eq. (12.29) should be
limited to ±kmax, so that the Fourier transform of |k| should be expressed as:

|K| =
kmax∫
−kmax

|k|exp[2π ikr]dk =
kmax sin(2πkmaxr)

πr
−

sin2(πkmaxr)

π2r2
(12.40)
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With this expression, one can repeat the exercise of using the convolution theorem, as
done in Section 12.3.3. Then, for a filtered projection, one obtains:

q(r,ϑ)=

∞∫
−∞

p(r′,ϑ)

[
kmax sin[2πkmax(r− r′))]

π(r− r′)
−

sin2[πkmax(r− r′)]

π2(r− r′)2

]
dr′

=

∞∫
−∞

p(r′,ϑ)

[
2k2

maxsinc[2πkmax(r− r′)]−
sin2[πkmax(r− r′)]

π2(r− nr′)2

]
dr′

= kmaxp(r,ϑ)−

∞∫
−∞

p(r′,ϑ)
sin2[πkmax(r− r′)]

π2(r− r′)2
dr′ (12.41)

Use was made here of 1r = kmax
2 , in accordance to Eqs. (12.12) and Eq. (12.13), and

the fact that sinc(2πkmax(r− r′)) is equal to unity everywhere except at r′ = r where
it is equal zero. The first term in Eq. (12.41) is the inverse Fourier transform of the
rectangular function, while the second term is that of a triangle function. Therefore,
the filter of Eq. (12.41) expresses the difference between a rectangular and a triangle
centered around k = 0, which avoids the singularity at r = 0. This is the Ram-Lak
filter, named after Ramachandran and Lakshiminarayanan (1971).

In a discrete form, one has:

q(ri,ϑm)=
p(ri,ϑm)

21r
−

1

π21r

Mr∑
j=1, i−j=odd

p(rj,ϑm)

(i− j)2
(12.42)

Since sin2[πkmax(r− r′)]= sin2(πkmaxn1r)= sin2( nπ
2 ) is zero when n= 0 or is

even, and is equal to one when the integer n is even, only odd values of i− j con-
tribute to the summation in Eq. (12.42).

Limiting the frequency to |k| ≤ kmax avoids the divergence in the Fourier trans-
form of the unbounded |k|; which is equal to − 1

2π2r2 causing it to diverge as r→ 0.
Given the convolution theorem discussed above, the Fourier integral of Eq. (12.29)
will also tend to diverge, if |k| is not bounded. This bandwidth limiting shows its
effect in the appearance of the sinc function in the integral of Eq. (12.41), which elim-
inates frequencies greater than kmax in a convolution integral (Brooks and Di Chiro,
1976).

The filter of Eq. (12.42) is known as the convolution filter, because it includes
the convolution kernel: i− j, which relates one beam i to a neighboring beam j, in
parallel-beam transmission tomography, by the separation distance between them.
This convolution term appears in the subtraction part of the filter. In effect, it per-
mits the neighbors of a beam in a projection to contribute to its backprojection, with
a degree of influence decreasing with the square of the separation distance. The even
values of i− j are excluded from the filter, since this filter represents a squared sine-
wave originating at beam i that peaks at the next neighbor (Brooks and Di Chiro,
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1976). The first term in the filter of Eq. (12.42) is the estimated highest spatial rate of
change of the original projection. It has the effect of dampening the measured projec-
tions, which further reduces its over-contribution in the backprojection process.

Convoluted-filtered backprojection is quite attractive because it avoids the use
of Fourier transforms in frequency filtering, and does not require the derivatives as
in Radon filtering. However, it has the disadvantage of band-limiting, discussed in
Section 12.2.2, with its associated artifacts of aliasing and the Gibbs phenomenon.

12.3.6 Noise Filtering

Signal noise can produce frequencies greater than kmax. To suppress such noise, filtered
projections are further multiplied by a smoothing filter: the Shepp-Logan filter (the
sinc(x) function), or a low-pass filter. A low-pass filter takes the general form:

qlp =

{
α+ (1−α)cos

(
πk

kmax

)
for k ≤ kmax

0 for k > kmax
(12.43)

With α = 0, one has a cosine filter. The Hann (Hanning) filter uses α = 0.5, while the
Hamming filter has α = 0.54 (Hamming, 1977).

12.3.7 Error Propagation

Let σ 2 be the statistical variance associated with each measurement in a projection p.
For the sake of simplification, we will assume σ 2 is the same for all measurements.
Since backprojection, Eq. (12.28), is linear, the variance of a reconstructed parameter
c̃(x,y) is simply:

σ 2
ĉ =

(
2π

Mϑ

)2 Mϑ∑
m=1

σ 2
q =

4π2σ 2
q

Mϑ

(12.44)

assuming an equal variance of σ 2
q for all projections. Expressing q in terms of a weight,

W, as in Eq. (12.37), enables the estimation of σ 2
q as:

σ 2
q =

Mr∑
j

(
2R

Mr

)2

σ 2W2
j =

4R2σ 2

M2
r

Mr∑
j

W2
j (12.45)

and

σ 2
ĉ =

(4πR)2σ 2

MϑM2
r

Mr∑
j

W2
j =

πσ 2

2Rk3
max

Mr∑
j

W2
j (12.46)

where in the last expression use is made of Eq. (12.14) and Mϑ =
πR
1r = 2πRkmax;

which is consistent with the Nyquist condition 1r = 1
2kmax

of the sampling theorem,
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Eq. (12.11). With
∫
∞

−∞
W2(u)du=1r

∑Mr
j W2

j =
1

2kmax

∑Mr
j W2

j , Eq. (12.46) can be
expressed as:

σ 2
ĉ =

πσ 2

Rk2
max

∞∫
−∞

W2(u)du (12.47)

and the integral can be evaluated in either the spatial or the frequency domain, since u
in the integral is a dummy variable.

Equation (12.47) demonstrates the importance of choosing a weighting function,
hence a filter, that reduces the statistical variance. However, it is essential to select
a filter based on sound analytical reasoning, so that it produces the exact solution in
ideal (noise free) measurements. Equation (12.47) also reflects the fact that a higher
sampling frequency reduces the propagation of statistical fluctuations.

12.4 Fan-Beam Transmission Tomography

The methods discussed in Sections 12.1, 12.2, and 12.3 apply to parallel-beam geome-
try. Most two-dimensional transmission imaging systems employ, however, fan-beam
geometries. In a fan beam, radiation emanating from a point at a tip spreads in a plane
at different directions, which complicates the mathematical formulation of the analy-
tical problem of backprojection. One approach to dealing with fan-beam projections is
to convert them into equivalent parallel-beam ones, in a process known as rebinning.
The other approach is to modify the backprojection process itself to accommodate fan
beams. These two approaches are discussed below.

12.4.1 Rebinning

A fan-beam projection can be viewed as a set of parallel-beam projections accumu-
lated at various polar angles. Let us consider a fan beam with its central ray making an
angle π

2 +ϑf with the x-axis, as shown in Figure 12.4. Notice here that the detectors
are assumed to be arranged over the curve of the fan beam (in the curved direction
along rf ); the situation in which detectors are located along a line (along rl) is dis-
cussed in Section 12.5. Let us consider a subbeam (if , jf ) (a ray in a fan beam) that
provides a projection at a radial distance rip and a polar angle ϑjp in the polar coordi-
nates, but records a projection at a radial distance rif along the arc of detectors measur-
ing the projections from the parent fan beam. Then, assuming that the source-detector
assembly is rotated around the source-detector midpoint, the polar coordinates for the
subbeam (ri,ϑjp ) are related to the fan-beam geometric coordinates (rif ,ϑjf ) by:

rip = |so|sinγ (12.48)

ϑjp = ϑjf + γ (12.49)

The task now is to convert the fan-beam geometric coordinates (rif ,ϑjf ), where i and j
are integers, to the parallel-beam coordinates (rip ,ϑjp ), while obtaining integer values
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Figure 12.4 A schematic of a cone beam of a half-angle γmax at S, a centerline SOD, and a
subbeam at angle γ = rf

|SD| , with subscripts f and p referring to fan-beam and parallel-beam
geometries, respectively.

for i and j so that the discretized formation for parallel-beam becomes applicable. This
requires a two-stage interpolation process (Barrett, 1981). With1rf and1ϑf being the
discrete sampling intervals in the fan-beam setup and 1r and 1φ the corresponding
intervals in the parallel-beam geometry, one then has:

rif = if1rf ; ϑjf = jf1ϑf (12.50)

ri = i1r; ϑj = j1ϑ (12.51)

At a fixed value of if , ϑjp and ϑjf are related by Eq. (12.49), which in the discrete form
gives:

j̃f = j
1ϑ

1ϑf
−

i1rf

|SD|1ϑf
(12.52)

This produces a noninteger value for j̃f . However, between the projections correspond-
ing to the integer values just below and above j̃f at the same if , one obtains an interme-
diate projection value in the polar direction of ϑ . These projections are not necessarily
at uniform radial intervals in the polar coordinates, necessitating a second interpo-
lation between projections at a fixed value of j. A discrete interval in Eq. (12.48) is
given by:

ĩf =
|SD|

1rf
sin−1

(
i1r

|SO|

)
(12.53)
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Interpolation between projections corresponding to the nearest integers of ĩf produces
projections at uniform radial intervals. Now with uniform sampling in the radial and
polar directions, one can apply any of the methods used for image reconstruction for
parallel-beam projections.

12.4.2 Direct Backprojection

In parallel-beam direct backprojection (Section 12.3.1), each ray-sum is projected
along the line-of-response of the detector, and the backprojections of rays passing
through each point (or pixel) in the image are summed. Let us apply the same logic
to a point a: (x,y), or (r, ϑ) in Figure 12.4. Writing Eq. (12.28), keeping in mind
that fan-beam projections can be acquired over the entire polar range of 2π without
redundancy, then guided by Figure 12.4 and using Eqs. (12.36) and (12.37), one has:

c(x,y)=
1

2

2π∫
0

rpmax∫
−rpmax

p(r′p,ϑp)W(xcosϑp+ ysinϑp− r′p) dr′dϑp (12.54)

c(r,ϑ)=
1

2

2π∫
0

rpmax∫
−rpmax

p(r′p,ϑp)W(r cos(ϑp−ϑ)− r′p) dr′dϑp (12.55)

where W is a weighting function, the subscript p refers to the parallel-beam geometry,
±rpmax are the edge points in the projection beyond which p(r′p,ϑp)= 0, and q is a
filter in the spatial domain. Now, using relationships (12.48) and (12.49) to arrive at
an expression for the fan-beam geometry, Eq. (12.55) becomes:

c(r,ϑ)=
1

2

2π−γ∫
−γ

sin−1
(

rpmax
|SO|

)∫
−sin−1

(
rpmax
|SO|

) p
(
|SO|sinγ,ϑf + γ

)
×W

(
r cos(ϑf + γ −ϑ)− |SO|sinγ

)
|SO|cosγ dγ dϑf (12.56)

where the subscript f refers to the fan-beam geometry, and the integration over γ
takes into account that one edge of the first fan beam is below its centerline while for
the last beam one edge is above the centerline. Equation (12.56) can now be simpli-
fied to:

c(r,ϑ)=
1

2

2π∫
0

γmax∫
−γmax

p(ϑf ,γ )W
(
r cos(ϑf + γ −ϑ)− |SO|sinγ

)
|SO|cosγ dγ dϑf

(12.57)

where γmax is the upper limit of γ , i.e. the angle at the edge of the fan beam (see
Figure 12.4).
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Let us now focus on the filter function, W[r cos(ϑf + γ −ϑ)], and attempt to relate
it to the Fourier filter, |k| of Eq. (12.29) (Kak and Slaney, 2001). The argument of this
filter can be simplified using the geometry of Figure (12.4):

|AA′| = |SA|sin
(π

2
−ϑf +ϑ

)
= |SA|sinγ ′ = r cos(ϑf −ϑ)

|OA′| = |SA|cos
(π

2
−ϑf +ϑ

)
− |SO| = |SA|cosγ ′− |SO| = r sin

(
ϑf −ϑ

)
where γ ′ = π

2 −ϑf +ϑ is the angle the direction of r makes with the subbeam (SOD).
Then,

r cos(ϑf+γ −ϑ)− |SO|sinγ

= r cos(ϑf −ϑ)cosγ − r sin(ϑf −ϑ)sinγ − |SO|sinγ

= |SA|(sinγ ′ cosγ − cosγ ′ sinγ )

= |SA|sin(γ ′− γ ) (12.58)

Therefore, W(r cos(ϑf + γ −ϑ)=W(|SA|sin(γ ′− γ )). Analogous to the inverse
Fourier transform of the Fourier filter, |k|, one can develop an expression in terms
of W(|SA|sinγ ):

W(r)=

∞∫
−∞

|k|exp[2π ikr] dk

W(|SA|sinγ )=

∞∫
−∞

|k|exp[2π ik|SA|sinγ ] dk

=

(
γ

|SA|sinγ

)2 ∞∫
−∞

|k′|exp[2π ik′] dk′

=

(
γ

|SA|sinγ

)2

W(γ ) (12.59)

W(γ )=

∞∫
−∞

|kγ |exp[2π ikγ γ ] dkγ (12.60)

kγ =
k|SA|sinγ

γ
(12.61)

With Eqs. (12.58) and (12.61), the Fourier filtered form of Eq. (12.57) becomes:

c(r,ϑ)=

2π∫
0

1

|SA|2

γmax∫
−γmax

p(ϑf ,γ )Wf (γ
′
− γ )|SO|cosγ dγ dϑf (12.62)
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=

2π∫
0

1

|SA|2

γmax∫
−γmax

pf (ϑf ,γ )Wf (γ
′
− γ ) dγ dϑf (12.63)

=

2π∫
0

1

|SA|2
Qf (ϑf ) dϑf (12.64)

with

Wf (γ )=
1

2

(
γ

sinγ

)2

W(γ ) (12.65)

pf (ϑf ,γ )= p(ϑf ,γ )|SO|cosγ (12.66)

Qf (ϑf )= pf (ϑf ,γ ) ∗Wf (γ ) (12.67)

given that “∗” is the convolution operator. Notice the presence of the inverse squared-
distance term, 1

|SA|2
, in Eq. (12.64), which was not present in parallel-beam projec-

tions. This term gives more weight to points closer to the source than those farther
away, accounting for radiation divergence, see Section 2.6, which is ignored in paral-
lel beams where beam divergence is not considered.

Equation (12.64) presents the formulation for backprojection that can be used for
fan beams. The filtering function, W, is modified at each subbeam, γ , to Wf by
Eq. (12.65). Moreover, the projections are modified, in accordance to Eq. (12.66),
at each point by the distance from the source and the point, |SO|, and for each sub-
beam in the fan beam by cosγ . The convolution of the modified filter and projec-
tion, Eq. (12.67), is then backprojected to obtain the solution, using Eq. (12.64). The
convolution process can be accomplished with the aid of the fast Fourier transform
algorithm. The formulation of Eq. (12.64) is analogous to that used in parallel-beam
projections, enabling the use of the latter’s other filters and features.

12.5 Cone-Beam Transmission Tomography

Three-dimensional projections can be directly acquired on a planar detector using a
cone-beam rotating around the object. Image reconstruction can then be accomplished
by considering each plane within the cone to correspond to a fan-beam, applying back-
projection to each fan beam, and adding the contribution from all fan beams to obtain
the final three-dimensional image.

A pencil beam in 3D is identified by its direction in cylindrical coordinates:

ŝp = cosϑp sinϕp x̂+ sinϑp sinϕp ŷ+ cosϕp ẑ

where x̂, ŷ, and ẑ designate unit vectors, and ϑp and ϕp are, respectively, the angle the
ray makes with the x-axis (polar angle) and z-axis (azimuthal angle). The pencil beam
is then the loci of pointsEl+ sŝp where−∞≤ l≤∞ is a distance along the beam andEl
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Figure 12.5 A schematic of rays in three dimensions.

is the radial vector from the point of origin (center of beam rotation), normal to ŝp, see
Figure 12.5. A set of parallel beams can be formed in three dimensions by maintaining
the direction of ŝp and changing the source location on a plane normal to ŝp, while a
cone-beam is formed by fixing the source position while changing the direction of the
ray. The corresponding two-dimensional cases are then formed by fixing the azimuthal
angle, ϕp, to a certain value corresponding to the plane of interest, e.g. ϕp =

π
2 for the

x-y plane. A transmission projection for any pencil beam in three-dimensions is then
given by:

p(El, ŝ)=

∞∫
−∞

c(El+ sŝ) ds (12.68)

The direction of integration in Eq. (12.68) for a parallel beam is along ŝ= ŝp, while
that for a subbeam in a cone-beam (making an angle, γ , with the centerline of the cone
(along ŝ0) and an angle, ϕ, with the z axis) is along ŝ= ŝγ . To relate ŝγ to that of the
parallel-beam arrangement, we will consider the set of beams parallel to ŝ0. Then, as
can be seen in Figure 12.5:

ŝ= ŝγ =
|SO|ŝ0+El√
|SO|2+ |l|2

(12.69)
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where El is the radial vector corresponding to the considered ray at (γ,ϕ).
The solution in three dimensions for cone-beams can now be expressed by gener-

alizing Eq. (12.55), so that (Denton et al., 1979):

c(x,y,z)= c(Er)=

4π∫
0

1

8π3

|SO|3

(|SO| +Er · ŝ0)3
d�p

×

∫
|SO|√
|SO|2+ |l|2

p(El, ŝ)W

(
|SO|[(Er · ŝ0)ŝ0]

|SO| +Er · ŝ0
−Es

)
dEl (12.70)

where �p is a solid angle within the cone beam, d�= d cosϑpdϕp and “·” desig-
nate a dot product. Note that |SO| +Er · ŝ0−Es is a distance along El, hence the integra-
tion is over El, i.e. over all subbeams passing by a point in the image at Er. The other
weight functions are due to geometric considerations, similar to those considered in
Section 12.4, and account for radiation divergence. The filter function in Eq. (12.70)
is an appropriate convolving function, see for example (Denton et al., 1979).

Three-dimensional image reconstruction can then be conducted by performing
the integrations in Eq. (12.70) in three steps. First, the projections are modified to
|SO|

√
|SO|2+|l|2

p(El, ŝ). Secondly, the modified projections are convoluted with W, to obtain

the second integral in Eq. (12.70). Finally, the projections are backprojected with the

weight 1
8π3

|SO|3

(|SO|+Er·ŝ0)
3 . This process can be easily discretized as shown in (Denton

et al., 1979). Feldkamp et al. (1984) presented an approximate but numerically effi-
cient convolution-backprojection formula for 3D cone-beam image reconstruction.
The formula is based on the accumulation of contributions of the image parameters
from two-dimensional fan-beam projections. Due to its simplicity and its numerical
efficiency, this scheme is widely used in cone-beam systems. Such systems typically
involve helical (or spiral) scanning process, in which the object is moved through
a rotating source-detector gantry while measurements are gathered. The scheme of
Feldkamp et al. (1984) is typically formulated for spiral/helical scanning loci with
equi-spatial cone-beam projections, but Wang et al. (2001) provided a scheme for
equi-angular cone-beam projections.

12.6 Emission Imaging

As indicated in Chapter 5, a measurement in emission imaging is essentially the
summation of radiation activities over all points in the field-of-view of a detector.
Therefore, an emission measurement can be manipulated in the manner projections
are handled in transmission imaging, except for the fact that emission measurements
are modulated by radiation attenuation within the object. If the attenuation coefficient
is known at all points in an imaged section, then it would be possible to estimate
the degree of attenuation from a point in the object to the position of a detector, and
incorporate attenuation factors into the backprojection process to correct for the mod-
ulating effect of attenuation. In many cases, the detailed distribution of the attenuation
coefficient within the interrogated object is not known, but either its average value is
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given from a priori knowledge, or its distribution along various orientations around
the object is estimated from single-projection transmission measurements, or from full
transmission tomography. Even with a single uniform value of the attenuation coef-
ficient within the object, the degree of attenuation would change with the change in
the distance from the source to the object’s edge facing the detector. Therefore, cor-
rection for attenuation should be considered at each direction, ϑ , of a projection. This
necessitates the introduction of a second Fourier transform with respect to the polar
direction, in addition to the usual spatial transform along the radial distance.

For simplicity, let us first consider a parallel-beam arrangement (or an arrangement
in which radiation divergence is neglected). Starting with attenuation-free measure-
ments, the two-dimensional Fourier transform of the sought solution, c, is (Metz and
Pan, 1995):

C(k,ψ)=
∞∫
−∞

∞∫
−∞

c(x,y)exp[−2π(ikxx+ kyy)] dxdy

=

2π∫
0

∞∫
0

c(r,ϑ)exp[−2πkir(cos(ψ −ϑ)] rdϑdr (12.71)

with x= r cosϑ , y= sinϑ and tanψ = ky
kx

.
The inverse Fourier transform of Eq. (12.71) is:

c(r,ϑ)=

2π∫
0

∞∫
0

C(x,y)exp[2πkir(cos(ϑ −ψ)] kdkdψ (12.72)

The transform C(k,ψ) is periodic in ψ , except at k = 0, with a period of 2π . As
such it can be presented by a Fourier series expansion of the form:

C(k,ψ)=
∞∑
−∞

C(k,kψ )exp[ikψψ] (12.73)

where,

C(k,kψ )=
1

2π

2π∫
0

C(k,ψ)exp[−ikψψ] dψ (12.74)

=
1

2π

2π∫
0

2π∫
0

∞∫
0

c(r,ϑ)exp[−2πkir cos(ψ −ϑ)]

× exp[−ikψψ] rdϑdr dψ (12.75)

=
1

2π

2π∫
0

2π∫
0

∞∫
0

c(r,ϑ)exp
[
−2πkir cos

(
ψ ′+

π

2

)]
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× exp
[
−ikψ

(
ψ ′+ϑ +

π

2

)]
rdϑdr dψ ′

= (−i)kψ
2π∫

0

∞∫
0

c(r,ϑ)exp[−ikψϑ]Jk(2πkr) rdϑdr (12.76)

where use is made of Eq. (12.71), ψ ′ = ψ −ϑ − π
2 , exp[−π2 ]=−i, and J(2πkir) is

the Bessel function of the first kind or order k:5

Jk(2πkr)=
1

2π

2π∫
0

exp[i(2πkr sinψ ′)− kψ ′] dψ ′ (12.77)

Ignoring attenuation, an emission measurement at a detector point defined in polar
coordinates, (r,ψ), is modeled by:

e0(s,ψ)=
∫

c(s, t) dt (12.78)

for a detector at position s that records emissions along a line t, and e0 is a mea-
surement modeled without considering attenuation. Two-dimensional polar Fourier
transform of e0 is considered here to facilitate the next step of incorporating the effect
of attenuation:

E0(k,kψ )=
1

2π

2π∫
0

∞∫
−∞

e0(s,ψ)exp[−ikψψ]exp[−2π iks] dsdψ (12.79)

=
1

2π

2π∫
0

∞∫
−∞

∞∫
−∞

c(x,y)exp[−2π(ikxx+ kyy)]exp[−ikψψ] dxdydψ

= C(k,kψ ) (12.80)

where the last equation is obtained from Eq. (12.75), which verifies the center slice
theorem of Eq. (12.10) in the polar Fourier transform.

Assuming an attenuation coefficient, 6(r,ϑ) at point (x,y) within the object and
zero outside it, then aided by Figure 12.6, Eq. (12.78) becomes:

e6(s,ψ)=

∞∫
−∞

c(s, t)exp

−
 0∫

t(s0,ψ)

+

t∫
0

6(s,ψ, t′)dt′

dt (12.81)

=

∞∫
−∞

c(s, t)exp

−6̄(s,ψ)
 0∫

t(s0,ψ)

+

t∫
0

dt′

dt

5 The transform:
∫
∞

0 c(r)Jk(sr) rdϑdr is known as the kth order Hankel transform of c(r), and is useful for
radially symmetric functions.
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Figure 12.6 A schematic showing a line of sources normal to a detection line making an angle
ψ with the x-axis, with the reduced attenuation distance, t(s0,ψ), measured from the edge of
the object to s-axis.

=

∞∫
−∞

c(s, t)exp
[
−6̄(s,ψ) {t(s0,ψ)+ t}

]
dt

= exp[−6̄(s,ψ)]t(s0,ψ)]

∞∫
−∞

c(s, t)exp
[
−6̄(s,ψ)t

]
dt

= exp[−6̄(s,ψ)t]e6̄(s,ψ) (12.82)

where t(s0,ψ) is the distance from a point (s0,ψ) on the s-axis, i.e. toward the detec-
tor’s position, and 6̄(s,ψ) is the average attenuation coefficient along a ray at (r,ψ),
which can be determined a priori by a transmission measurement. The transform:

e6̄(s,ψ)=

∞∫
−∞

c(s, t)exp
[
−6̄(s,ψ)t)

]
dt (12.83)

with 6̄ being an average attenuation coefficient, is a modified exponentially trans-
formed projection, often called the exponential Radon transform. Without the averag-
ing introduced to produce Eq. (12.83), applying any form of backprojection would be
difficult.

The modified projections can be directly backprojected but with an exponential
weighting (Tretiak and Metz, 1980):

c(r,ϑ)=

2π∫
0

exp[6̄t]
|k|

2
exp[2π iks]


∞∫
−∞

e6̄(s
′,ψ)exp[2π iks′] ds′

dkdψ

(12.84)
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This, however, like simple direct projection suffers from susceptibility to error
propagation.

The two-dimensional Fourier transform of Eq. (12.83) is (Metz and Pan, 1995):

E6̄(s,ψ)=
1

2π

2π∫
0

∞∫
−∞

e6̄(s,ψ)exp(−2π iks)exp[−ikψψ] dsdψ

=
1

2π

2π∫
0

∞∫
−∞

∞∫
−∞

c(s,ψ)exp
[
−(6̄(t,ψ)t+ 2π iks+ ikψψ)

]
ds dtdψ

=
1

2π

2π∫
0

∞∫
−∞

∞∫
−∞

c(r,ϑ)

× exp
[
6̄(t,ψ)r sin(ψ −ϑ)− 2π ikr cos(ψ −ϑ)− ikψψ

]
ds drdψ

= (−i)kψ
2π∫

0

∞∫
0

c(r,ϑ)exp[−ikψϑ]

 1

2π
×

2π∫
0

exp
[
6̄(t,ψ)r cosψ ′

+ i(2πk sinψ ′− kψψ
′) dψ ′

]rdϑdr (12.85)

where ψ ′ = ψ −ϑ − π
2 . Note that at 6̄ = 0, Eq. (12.85) becomes identical to

Eq. (12.76). Similar to the latter expression, Eq. (12.85) can be written in terms of
a Bessel function (Metz and Pan, 1995):

E6̄(k,kψ )= (−i)kψ
2π∫

0

∞∫
0

c(r,ϑ)exp[−ikψϑ]

 k+ k6√
k2− k2

6

kψ

Jk(2π

(√
k2− k2

6)r

)
(12.86)

where k6 =
6̄
2π , and the Bessel function is defined in Eq. (12.77). Then, the Fourier

coefficient for unattenuated radiation, C(k,kψ ) of Eq. (12.76), is related to the attenu-
ated one, E6̄(s,ψ) by:

E6̄(k,kψ )=

 k+ k6√
k2− k2

6

kψ

C
(√

k2− k2
6,kψ

)
(12.87)
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Or equivalently,

E6̄
(
±

√
k2+ k2

6,kψ

)
=

±
√

k2+ k2
6 + k6

k

kψ

C(k,kψ ) (12.88)

Therefore, attenuation shifts a frequency k of the unattenuated Fourier coefficient,

C(k,kψ ), to a frequency ±
√

k2+ k2
6 . For kψ > 0, the amplitude is also increased

by

[√
k2+k2

6+k6
k

]kψ
> 1 for the shifted frequency of

√
k2+ k2

6 . On the other hand,

the amplitude at the frequency −
√

k2+ k2
6 is altered by

[
−

√
k2+k2

6+k6
k

]kψ
(< 1 for

|k|> k6), with a change in sign for odd values of kψ . The higher the frequency, k,
the less pronounced the effect of attenuation, but the opposite is true for increasing
values of kψ . Obviously, the higher the degree of attenuation, the more significant is
the influence of attenuation.

From the values of E6̄(k,kψ ), the unattenuated Fourier transform, C(k,kψ ), can
be calculated, using Eq. (12.87). However, this equation produces two values for
C(k,kψ ), corresponding to ±k. A linear combination of the two values can be used
to estimate C(k,kψ ):

C(k,kψ )= w


√

k2− k2
6

k+ k6

kψ

E6̄(k,kψ )+ (1−w)


√

k2− k2
6

−k+ k6

kψ

E6̄(−k,kψ )

(12.89)

where 0≤ w≤ 1 can be chosen to minimize noise propagation (Metz and Pan, 1995).
Once the equivalent unattenuated values are estimated, they can be equated to the
corresponding attenuated projections, in accordance to the central slice theorem,
Eq. (12.10). Then any of the methods discussed in this chapter for transmission tomo-
graphy can be applied.

12.7 Scatter Imaging

In the absence of attenuation, scatter imaging becomes an emission-like problem,
with a detector measurement representing the scatter intensity of all voxels in the
field-of-view of the detector. Then the two-dimensional Radon transform, discussed in
Section 12.6, can be used for image reconstruction in scatter imaging, see also (Truong
et al., 2007). Similarly, if constant attenuation is assumed, then the method of the
modified projections of Section 12.6 can be applied. However, since the attenuation
coefficient (macroscopic cross section) of the incident radiation is lower than that of
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the scattered radiation, and the latter varies with the energy of scattered radiation, the
assumption of constant attenuation is not a very good one. Therefore, analytic methods
are not generally adequate for use in scatter imaging.

12.8 Computer Codes

An Internet search will reveal the availability of a number of computer codes for
image reconstruction using Fourier-based methods. At the time of writing this book,
such a search resulted in the following links:
http://www.owlnet.rice.edu/˜elec431/projects96/DSP/backproject3
.html,
http://oregonstate.edu/˜faridana/preprints/fbp.txt,
http://cars9.uchicago.edu/software/idl/tomography.html,
http://www.chem.fsu.edu/steinbock/downloads.htm, and
http://engineering.purdue.edu/˜bouman/software/tomography/.

12.9 Wavelet Transforms

In Section 8.3.1, it was shown that the linear inverse problem of transmission tomo-
graphy can be formulated by the superposition of sinusoidal waves (Fourier series).
A sinusoidal wave extends indefinitely. A wavelet (a small wave) is confined to a small
duration, i.e. it has a starting point and an ending point.6 This enables the performance
of the so-called scale analysis, in contrast to the frequency analysis of Fourier trans-
forms. Scale analysis examines the features of a function (or a signal) at different
ranges or resolutions: fine, medium and coarse. While a coarse range provides overall
features, a fine range reveals more feature details. This analysis is performed via a
“mother wavelet,” which is shifted (translated) and dilated (contracted or scaled) and
applied to the original signal to provide an approximation. The mother wavelet is then
translated, dilated, and applied to the signal again to provide another approximation,
and so on until a set of approximations is obtained at different scales. The resulting
set of approximations represents the wavelet transforms. An inverse wavelet trans-
form reconstructs a signal from its wavelet transforms. Wavelet transforms tend to be
less sensitive to noise because in effect they average the original signal over different
ranges or scales. Similar to the Fourier-expansion method, the wavelet method is used
for reconstructing linear problems that can be presented by Radon transforms.

With a mother wavelet, 9(x), daughter wavelets are formed by a translation with
an amount b, and a contraction by a, so that7:

9(x)(a,b) =
1
√

a
9

(
x− b

a

)
(12.90)

6 Graps (1995) and Strang (1994) provide excellent overviews of the concept of wavelets.
7 Equations (12.90) to (12.92) are based on: Weisstein, Eric W. Wavelet. From MathWorld–A Wolfram Web

Resource. http://mathworld.wolfram.com/Wavelet.html
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Then a wavelet transform of a function, c(x), is:

W9(a,b)c=

∞∫
∞

c(x)9(x)(a,b)dx=
1
√

a

∞∫
∞

c(x)9

(
x− b

a

)
dx (12.91)

The function, c(x), is then reconstructed in terms of wavelets and the associated scale
function by the Calderón’s formula:

c(x)= K9

∞∫
−∞

∞∫
−∞

〈
c(x),9(x)(a,b)

〉
9(x)(a,b)a

−2 da db (12.92)

where the inner product,8
〈
c(x),9(x)(a,b)

〉
, is a wavelet coefficients, and K9 is a nor-

malization constant.
In a discrete form, a function, c(x), is defined over several subsequent scales. These

functions can be used to define wavelets. Let a function be defined over different suc-
cessively refined scales (intervals). For N scales, the function, c(x), can be presented
over N intervals by an N× 1 vector, c, so that:

c=WNb (12.93)

where WN is the wavelet-basis matrix and b=W−1
9 c is the wavelet in the expansion

coefficients determined by the value of c(x) over various scales, and the values of WN

is determined by Eqs. (12.90) and (12.91). For computational convenience, a scaling
factor of two is used to proceed from one resolution level to the next.

The above analysis is founded on a predefined mother wavelet. There are a several
families of wavelets, see for example Graps (1995). The simplest mother wavelet form
is that of Haar (Strang, 1994), which is a square wavelet that is positive over half a
unit scale and negative over the other half:

9(x)=


1 0≤ x<

1

2

−1
1

2
< x≤ 1

0 otherwise

(12.94)

The translation and dilation of this mother function generates the daughter functions:

9(x)(s,l) =9(2
sx− l) (12.95)

where s is a nonnegative integer and 0≤ l≤ 2s
− 1. In addition to the mother and

daughters wavelets, a scaling basis, 8, is formulated so that an overall integral is
defined over the unit scale. The first scale, N = 1 considers the entire range (normal-
ized here to one unit), so that 8=W1 = 1 in Eq. (12.93) is a 1× 1 identity matrix.

8
〈 f ,g〉 =

∫
fg dx.
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The second resolution level, has the scaling basis:8= [1,1]T and the mother wavelet,
9(0,0) =9(x− 0)= [1,1,−1,−1]T; with the two vectors forming W2, a 2× 2 matrix.
For the third scale resolution, N = 4, in Eq. (12.93), the scaling basis over the four
intervals will be a vector: 8= [1,1,1,1]T. The mother wavelet, 9(0,0) =9(x− 0)=
[1,1,−1,−1]T, is such that its square wave covers the entire scale. The first dilation
produces 9(1,0) =9(2x− 0)= [1,−1,0,0]T, and the subsequent translation produce
9(1,1) =9(2x− 1)= [0,0,1,−1]T. The four vectors together form a 4× 4 matrix,
W4, and so on. The elements of c in Eq. (12.93) are the average values of c(x) over
each of the considered intervals within the unit range 0≤ x≤ 1. Rather than inverting
the wave matrix in Eq. (12.93) to determine the elements of b, the averages and half of
the differences of consecutive pairs elements of c are evaluated in a pyramid algorithm
that moves the averaged values upward for further averaging and differencing (Strang,
1994). The top averages and differences, along with the bottom differences determine
the coefficients.

As far as signal frequency is concerned, the averaging and differencing operations
involved in wavelet transforms can be viewed, respectively, as low-pass and high-pass
filters of c(x). The fast wavelet transform pyramid algorithm elucidates the multireso-
lution nature of wavelet transforms in which a signal is resolved at multiple scales by
differences that reveal the signal details at a given scale and averages that smooth the
signal. Once the wavelet expansion coefficients are determined, the original signal,
c(x), can be retrieved in its discrete form by multiplying the wavelet matrix by the
coefficients, in accordance to Eq. (12.93).

Retrieving a signal from its wavelet expansion coefficients is a form of filtering,
that both smoothes the signal and reveals details, since some of the coefficients cor-
respond to the averages and others to the differences. If the details are not important,
coefficients below a certain threshold value can be eliminated before reconstructing
the signal. This “denoising” process has the advantage that it is accomplished without
smoothing out the sharp edges in the signal (Graps, 1995).

In a multiresolution approximation, separable wavelet basis can be employed in
multidimensional wavelet transforms (Mallat, 1989). In two dimensions, (x,y), the
scaling function, 8, and the mother wavelet, 9, are combined so that:

g(x,y)=


8(x,y) = 8(x)8(y)
91(x,y) = 8(x)9(y)
92(x,y) = 9(x)8(y)
93(x,y) = 9(x)9(y)

 (12.96)

to form the wavelet basis (a scaling function and three wavelets).
Wavelet transforms are used in image reconstruction of linear problems from one-

dimensional projections in a manner similar to that of Fourier filtered backprojection,
discussed in 12.3.2. However, the Fourier filter of Eq. (12.29) is replaced by (Rashid-
Farrokhi et al., 1997):

q(r,ϑ)2s =

∞∫
−∞

P(k,ϑ)|k|G̃2s(k cosϑ,k sinϑ)dk (12.97)
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where g̃(Er)= g(−Er), G is the Fourier transform of g and g2(Er)= 2sg(2s
Er), with Er being

a distance vectors with (x,y) components. The filtering |k|G̃ is known as the wavelet
ramp filter, in contrast with the ramp filter, k. Rashid-Farrokhi et al. (1997) inves-
tigated a number of wavelets for use in computed tomography. For other work on
image reconstruction with wallets see, for example, Delaney and Bresler (1995) and
Bonnet et al. (2002). The wavelet method is also useful in local (region-of-interest)
tomography as discussed in Section 14.2.6.
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P. Maréchalt, D. Togane, and A. Cellert, “A new reconstruction methodology for computerized
tomography: FRECT (Fourier regularized computed tomography),” IEEE Transactions on
Nuclear Science, vol. 47, pp. 1595–1601, 2000.

C. E. Metz and X. Pan, “A unified analysis of exact methods of inverting the 2-D exponential
radon transform, with implications for noise control in SPECT,” IEEE Transactions On
Medical Imaging, vol. 14, pp. 643–658, 1995.

G. N. Ramachandran and A. V. Lakshiminarayanan, “Three-dimensional reconstruction from
radiographs and electron micrographs: Application of convolutions instead of Fourier
transforms,” Indian J. Pure Appl. Phys, vol. 9, pp. 997–1003, 1971.



HUSSEIN Ch12-9780123877772 2011/5/16 18:46 Page 218 #34

218 Computed Radiation Imaging

F. Rashid-Farrokhi, K. J. R. Liu, C. A. Berenstein, and D. Walnut, “Wavelet-based multiresolu-
tion local tomography,” IEEE Transactions on Image Processing, vol. 6, pp. 1412–1430,
1997.

L. A. Shepp and B. F. Logan, “The Fourier reconstruction of a head section,” IEEE Trans. Nucl.
Sci., vol. 21, pp. 21–43, 1974.

H. Stark, “Sampling theorems in polar coordinates,” Journal of the Optical Society of America
A, vol. 69, pp. 1519–1525, 1979.

H. Stark, J. W. Woods, I. Paul, and R. Hingorani, “Direct fourier reconstruction in computer
tomography,” IEEE Trans. Acoust. Speech Signal Processing, vol. ASSP-29, pp. 237–244,
1981.

G. Strang, “Wavelets,” American Scientist, vol. 82, pp. 250–255, 1994.
O. Tretiak and C. E. Metz, “The exponential radon transform,” SIAM J. Appl. Math, vol. 39,

pp. 341–354, 1980.
T. T. Truong, M. K. Nguyen, and H. Zaidi, “The mathematical foundations of 3D Compton scat-

ter emission imaging,” International Journal of Biomedical Imaging, vol. 2007, pp. 1–11,
2007, article ID 92780, doi:10.1155/2007/92780.

B. Wang, H. Liu, S. Zhao, and G. Wang, “Feldkamp-type image reconstruction from equiangular
data,” Journal of X-Ray Science and Technology, vol. 9, pp. 113–120, 2001.



HUSSEIN Ch13-9780123877772 2011/5/16 18:47 Page 219 #1

13 Probabilistic Methods

As indicated in Section 8.4, a statistical estimate of the solution of an inverse problem
requires a priori knowledge of at least the probability distribution, P(c), of the solu-
tion, c. The probability distribution of the measurements, P(e), can be taken as a scal-
ing factor in estimating the conditional probability, P(c|e), of the inverse mapping
from the Bayes’ hypothesis, Eq. (8.11), and need not be explicitly known. A solution,
ĉ, can then be estimated in a number of ways, as described in the ensuing sections,
starting with the simplest approach of equiprobable distributions.

13.1 Bayesian - Minimum Information

As in the Tikhonov regularization of (10.16), see also Section 10.4.4, one can arrive at
a solution without involving a priori statistical information. This is accomplished by
proclaiming complete ignorance about the statistical nature of the solution, and assum-
ing an equiprobable (uniform) distribution for the elements of the solution vector, c.
In order to arrive at such distribution, we will normalize the forward mapping e= Ac,
so that (Hussein, 1983):

N∑
i=1

Āij = 1 (13.1)

e= Ac= Āc̄ (13.2)

Āij =
Aij∑M
i=1 Aij

(13.3)

c̄j =

(
M∑

i=1

Aij

)
cj (13.4)

where N is the length of vector c and M is that of vector e, and Ā and c̄ are normalized
forms of A and c, respectively. The normalization accomplished by Eq. (13.1) enables
one to view an element of the matrix Ā as the conditional probability of obtaining a
measurement, ei, given a normalized parameter, c̄j, or correspondingly cj, i.e.

P(ei|cj)= P(ei|c̄j)= Āij (13.5)

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00013-6
c© 2011 Elsevier Inc. All rights reserved.
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This enables the establishment of the conditional probability of the forward mapping,
P(e|c). We also make use of the law of total probability:

P(ei)=

N∑
n=1

P(ei|c̄n)P(c̄n) (13.6)

Then, applying the Bayes’ postulate of Eq. (8.11), the a posteriori (conditional prob-
ability of the inverse mapping), P(c|e), is given by:

P(cj|ei)= P(c̄j|ei)=
P(ei|c̄j)P(c̄j)

P(ei)
=

P(ei|c̄j)P(c̄j)∑N
n=1 P(ei|c̄n)P(c̄j)

=
ĀijP(c̄j)∑N

n=1 ĀinP(c̄n)

(13.7)

where use was made of Eq. (13.5). The probability P(c̄j), with the assumption of
equiprobable distribution, is such that:

P(c̄j)=
c̄j∑N

n=1 c̄n
(13.8)

Similarly, one can also assume an equiprobable distribution for P(ei):

P(ei)=
ei∑M

m=1 em
(13.9)

Substituting Eqs. (13.8) and (13.9) in Eq. (13.7):

P(c̄j|ei)=

Āij
c̄j∑N

n=1 c̄n∑N
n=1 Āin

c̄n∑N
n′=1 c̄′n

=
Āijc̄j∑N

n=1 Āinc̄n
(13.10)

Now reapplying the law of total probability in the form:

P(c̄j)=

M∑
i=1

P(c̄j|ei)P(ei) (13.11)

and using Eqs. (13.8), (13.9), and (13.10):

c̄j∑N
n=1 c̄n

=

M∑
i=1

Āijc̄j∑N
n=1 Āinc̄n

ei∑M
m=1 em

c̄j =

M∑
i=1

Āijc̄jei∑N
n=1 Āinc̄n

×

∑N
n=1 c̄n∑M
m=1 em
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=

M∑
i=1

Āijc̄jei∑N
n=1 Āinc̄n

×

∑N
n=1

(∑N
n′=1 Ann′

)
cn∑M

m=1 em

=

M∑
i=1

Āijc̄jei∑N
n=1 Āinc̄n

(13.12)

where use was made of Eq. (13.4), and the fact that

M∑
m=1

em =

N∑
n=1

(
N∑

n′=1

Ann′

)
cn

The formulation of Eq. (13.12), which is based on proclaiming equiprobable distri-
butions for both the measurements and the solution, can be used to arrive at the simple
iterative scheme:

cj
(k+1)
= cj

(k)
M∑

i=1

Aij∑M
n=1 Anj

×
ei

ê(k)i

(13.13)

where k is the iteration number and êi is a calculated, according to the forward model,
value for the ith measurement, and use was made of Eq. (13.3). This is a succes-
sive approximation process that does not rely on matrix inversion. It provides a mild
adjustment process at each iteration, and as such does not amplify noise considerably.
If the elements of the matrix A are nonnegative, as it is usually the case in radiation
imaging, then one can ensure nonnegative values of the elements of c by initiating the
iterative process with a nonnegative guess. This method was used for refinement of
a solution obtained using another successive approximation process (Hussein et al.,
1986). In image restoration, this method is known as the Richardson-Lucy algorithm
(Lucy, 1974, Richardson, 1972), see Chapter 16. The next section shows that the iter-
ative process of Eq. (13.13) converges to the most likely solution when the likelihood,
P(e|c), is governed by Poisson statistics.

13.2 Poisson Distribution

Radiation counting is governed by Poisson statistics, see Section 15.2. Therefore, one
would expect both the measurement vector, e, and the modeled measurement, ê= Ac,
to belong to the same distribution. The likelihood, P(e|c), can be replaced with equiv-
alent likelihood, P(e|ê). By combining the Poisson probability for each measurement,
the conditional probability, P(e|ê), can be expressed as:

P(e|ê)=
M∏

i=1

exp
[
−êi

] (êi
)ei

ei!
(13.14)
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where N is the length of the vector, c, and M is the number of acquired measurements
forming the measurement vector, e, and Aij is the jthe element of A.

The most likely solution is the one that maximizes P(e|ê), or equivalently maxi-
mizes lnP(e|ê):

maxlnP(e|ê)=max
M∑

i=1

(
−êi+ ei ln êi

)
(13.15)

with lnei! removed from maximization, since the solution is sought for a fixed set of
measurements. Maximizing Eq. (13.15) requires that:

∂

∂ êi
lnP(e|ê)=

M∑
i=1

−1+
ei

êi
= 0 (13.16)

which indicates that lnP(e|ê) is maximum when ê= e, i.e. when the solution is
reached. A solution, ĉ, is obtained when:

∂

∂ ĉj
lnP(e|ê)=

M∑
i=1

−Aij+ ei
Aij∑N

n=1 Aincn
=

M∑
i=1

−Aij+Aij
ei

êi
= 0 (13.17)

This provides the basis for a likelihood-maximization iterative process of the form
(Shepp and Vardi, 1982):

ĉ(k+1)
j = ĉ(k)j

M∑
i=1

Aij∑M
n=1 Anj

ei

ê(k)i

(13.18)

where k refers to the iteration number. As the solution converges, ĉ(k+1)
j → ĉ(k)j , the

likelihood would have reached its maximum. In fact, as k increases, the likelihood can
be shown to strictly increase at each step of the iteration, unless it has already reached
its maximum value (Shepp and Vardi, 1982). Notice the similarity between Eq. (13.18)
and Eq. (13.11), which is based on the Bayesian hypothesis for estimating the a pos-
teriori probability, along with an assumed uniform distribution for c. With the latter
assumption, the term lnP(c) is irrelevant in determining the logarithm of the a posteri-
ori, which then becomes equal to the likelihood. Moreover, maximizing the likelihood
of Eq. (13.15) amounts to matching modeled, êi, and measured, ei, values one by one,
which is also accomplished by Eq. (13.11). In essence, the Bayesian approach amounts
also to maximizing the logarithm of the Poisson-based likelihood.

The expression of Eq. (13.18) can be rewritten as:

ĉ(k+1)
j = ĉ(k)j +

ĉ(k)j∑M
n=1 Anj

[
M∑

i=1

ei
Aij∑M

n=1 Anj
−

M∑
n=1

Anj

]

= ĉ(k)j +
ĉ(k)j∑M
n=1 Anj

∂

∂ ĉj
lnP

(
e|ĉ(k)j

)
(13.19)
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where use is made of Eq. (13.17) and of the full expansion of ê in terms of ĉ(k)j . In a
matrix form, Eq. (13.19) is expressed as:

c(k+1)
= c(k)+D(k) ∇ lnP

(
e|ĉ(k)j

)
(13.20)

where D(k) is diagonal matrix with the jth element equal to
ĉ(k)j∑M
n=1 Anj

and

∇ lnP
(
e|ĉ(k)j

)
is the gradient of the logarithm of the likelihood. The formulation of

Eq. (13.20) enables the use of a gradient-based iterative algorithm, such as one of
those described in Chapter 10. Lange et al. (1987) presented a number of ways to
accelerate convergence of the iteration process.

Poisson statistics applies to measurement counts. In both emission and scatter
imaging, detector counts are the measurements used in image reconstruction, and
the formulations for the likelihood given in this section are directly applicable. In
transmission imaging, projections obtained via Radon transforms (see Chapter 4) are
employed in the image reconstruction process. Therefore, the formulation for lnP(e|ê)
is slightly different. Since measurements are independent of each other, the Poisson a
priori is given by:

P(e|ê)=
∏

i

exp(−êi)
êi

ei

ei!
=

∏
i

exp[−e0i exp[pi]]
(e0i exp[−pi])ei

ei!
(13.21)

lnP(e|ê)=
∑

i

−e0i exp[−pi]+ ei ln(e0i exp[−pi])− lnei!

=

∑
i

−e0i exp[−pi]− eipi+ ei lne0i − lnei!

=

∑
i

−e0i exp[−pi]− eipi+ constant (13.22)

The constant is due to the fact that the source strength and measurements are fixed,
for a sought set of parameters, ĉ. Therefore, for transmission, the logarithm of the
likelihood, lnP(e|ê), is given by:

− lnP(e|ê)=
∑

i

(
e0i exp[−pi]+ eipi

)
+ constant (13.23)

where e is the vector of the measurements, ê is the vector of modeled measurements,
and êi = e0i exp[−pi] is the ray-sum (projection) corresponding to a measurement ei,
with e0i being the source intensity.

13.3 Normal Distribution

Appendix 8.A presented a method for maximizing the probability, P(ê), or precisely
minimizing − lnP(ê), assuming that P(ê) is a normal (Gaussian) distribution with a
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mean, e, and a variance, σ . The use of the normal distribution in radiation counting
is justified by the fact that the Poisson distribution, which governs radiation counting,
approaches a normal distribution when the number of counts exceeds about 20 counts
(Hussein, 2003). The negative of the logarithm of the normal distribution (the likeli-
hood) also lends itself readily to minimization, unlike the Poisson distribution which
as shown in Section 13.2 is a more complicated expression. The distribution P(ê) with
a mean e is equivalent to the conditional probability P(e|ê), and consequently corre-
sponds to P(e|ĉ), since ê= Aĉ. Therefore, maximizing P(ê) is in effect a maximization
of the likelihood, P(e|c).

13.4 Maximum a posteriori (map)

The expected solution, c, for a given set of measurements, e, is the one that maximizes
the a posteriori probability, P(c|e). This, according to the Bayes theorem, Eq. (8.11),
is equivalent to:

max
P(e|c)P(c)

P(e)
(13.24)

If nothing is known about the solution, c, except that it arises from some constant
(independent of c) distribution, P(c), and if the distribution of e is a fixed distribution,
P(e), then the likely solution, ĉ, is the solution that maximizes also the likelihood
P(e|c). However, if an a priori distribution, P(c) is known or assumed, c can be treated
as a random variable, and one maximizes the a posteriori, i.e.,

max {P(e|c)P(c)} (13.25)

The probability, P(e), in (13.24) is removed from the optimization process, because
it is a normalization term for the a posteriori. The maximization of the a posteriori
provides an expected value for the solution, while maximizing the likelihood provides
the most likely solution.

Maximizing the a posteriori is equivalent to maximizing the logarithm of (13.25):

max {lnP(e|c)+ lnP(c)} (13.26)

Now one is maximizing a modified form of the logarithm of the likelihood, by adding
the term, lnP(c). This added term acts as regularizer of the likelihood. One can con-
sider the maximum a posteriori method as a likelihood maximization method with
an added regularization term. Owing to relationship (13.26), the regularization term
is often referred to as the hyperprior. Therefore, choosing an a priori resembles the
choice of the regularization method, discussed in Section 10.4 for matrix-based meth-
ods, since regularization is based on some a priori knowledge about the nature of the
solution.
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There is some basic a priori knowledge about the solution, c, in radiation imaging.
For instance, c≥ 0 and in linear (or linearized) problems, P(c) is additive, i.e.
P(c1)+P(c2)= P(c1+ c2). The latter is due to the fact that, with corpuscular radi-
ation, the higher the value of c, the higher the value of the ray-sum in transmission
imaging, the radiation intensity in emission imaging and the scattering flux in scatter
imaging (when attenuation is constant or ignored in the latter two imaging modalities,
and when scattering is ignored in transmission imaging). There is no single form for
a positive and additive a priori distribution, but in general such distribution tends to
take the form (Sivia, 1990):

P(c)= K exp[αu(c)] (13.27)

where K is a normalization constant, α is some constant, and u(c) is the Shannon-
Jaynes information entropy defined by Eq. (10.50). In the absence of any other a priori
information about c, one can define the entropy with respect to a uniform distribution,
βi = 1 in Eq. (10.50). Then, one can express Eq. (10.50) as:

u(c)=−
N∑

j=1

(
cj

csum

)
ln

(
cj

csum

)
(13.28)

where csum =
∑N

j=1 cj and the summation over n+ in Eq. (10.50) is replaced by a
summation over the N values of c since they are assumed to be all positive. Then,
lnP(c) with the definition of u(c) given by Eq. (13.28) is:

lnP(c)=−
∑

j

αj

(
cj

csum

)
ln

(
cj

csum

)
(13.29)

with αj being the value of α associated with cj. The maximum value of lnP(c) occurs at
cj = csum exp

[
−

1
csum

]
. Therefore, adding the logarithm of this a priori to the likelihood

in Eq. (13.26) bounds the upper limit of c. The entropy a priori incorporated into the
maximization of (13.26) adds its partial derivative, with respect to cj, to the partial

derivative of the likelihood. The added partial derivative is − αj
csum

(
1

csum
+ ln cj

csum

)
.

Since cj
csum
≤1, this partial derivative is always ≥ 0. The larger the value of α, the

more influence the a priori has on the maximization process of the a posteriori, the
more pronounced is its upper-bounding effect. Note, however, as cj→ 0, the effect of
the a priori becomes too strong and needs to be moderated, which can be done via the
gamma distribution described below.

Lange et al. (1987) proposed the use of the gamma distribution for the a pri-
ori, P(c), which assumes that the image voxels are statistically independent. The
gamma distribution for a random variable, c, is defined by a shape parameter, α, and a

mean β = αc (variance = β2

α
, mode β

α
(α− 1), skewness = 2

√
α

). When α is an integer
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α = K, the distribution becomes equivalent to the aggregation of K independent expo-
nential distributions, each with a mean of β

K . The mean of the gamma distribution is,
therefore, equal to αc, where c is a gamma distributed random variable. For an image
parameter, cj, the probability density function, p(ci), for a gamma distribution is:

p(cj;αj,βj)=
1

0(αj)

(
αj

βj

)αj

c
αj−1
j exp

[
−
αj

βj
cj

]
(13.30)

where 0(α) is the gamma function.1 The gamma distribution changes slowly between
image voxels and provides some smoothing. It is also quite flexible, as its effect can be
controlled by choosing the shape parameter, α>1, allowing it to provide the desired
features around c. The application of the gamma distribution as an a priori probability

is facilitated by the fact that 0(αj)
(
αj
βj

)αj
in Eq. (13.30) is independent of cj and need

not to be considered in the maximization process. Therefore, for lnP(c) in Eq. (13.26),
one has:

lnP(c)=
∑

j

(αj− 1) lncj−
αj

βj
cj (13.31)

The first term, (αj− 1) lncj steers the value cj away from zero, while the second term,
−
αj
βj

cj prevents cj from approaching infinity. In Eq. (13.31), lnP(c) is bounded by the
distribution’s mode (its most likely value), which occurs when lnP(c) is maximum
at cmode

j =
βj
αj
(1−αj). At large values of α: cmode

j → βj, i.e. the mode approaches the

mean. On the other hand, at α = 1: cmode
j = 0, and the log a priori of Eq. (13.31) limits

the upper value of cj. The addition of this log a priori to the likelihood, lnP(e|c), in
Eq. (13.26) biases the maximum of the likelihood towards cmode

j .
The a priori gamma distribution is incorporated into the Poisson-based likelihood

estimate of Eq. (13.18) by adding its partial derivative, with respect to cj, to the con-
dition for maximizing the likelihood, Eq. (13.17), so that:

∂

∂ ĉj

[
lnP(e|ê)+ ln(c)

]
=

M∑
i=1

−Aij+ ei
Aij∑N

j=1 Aijcj
+
αj− 1

βj
−
αj

βj
= 0 (13.32)

which leads to the iterative process:

ĉ(k+1)
j =

ĉ(k)j∑M
i=1 Aij+

αj
βj

(
M∑

i=1

Aij
ei

ê(k)i

−
αj− 1

βj

)
(13.33)

Lange et al. (1987) showed that the addition of the gamma a priori enhances the rate of
convergence of the iterative process as it approaches the maximum of the a posteriori,
in addition to bounding the solutions as indicated earlier.

1 0(α)=
∫
∞

0 tα−1 exp[−t] dt =
∫ 1

0

[
ln
( 1

t

)]α−1
dt.
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The inclusion of the a priori term, P(c), with the likelihood, P(e|c), can be viewed
as a form of regularization of the latter. Therefore, the regularization functions of
Section 10.4 can also be employed. This is typically done to preserve edges, using
the piece-wise functions, discussed in Section 10.4.11. The Gibbs, Huber, and total
variation functions of Section 10.4.11 were used for this purpose, see for example
Geman and Geman (1984), Chlewicki et al. (2004) and Panin et al. (1999). Alenius
and Ruotsalainen (1997) introduced the median root a priori, which is based on assum-
ing that the image to be reconstructed is locally monotonic, i.e. c is spatially nonin-
creasing or nondecreasing in a local region. This is accomplished by penalizing devi-
ations of a voxel value from the median of voxels in the neighborhood (which is the
value at the middle of ordered voxels in a neighborhood). In another work, (Alenius
and Ruotsalainen, 2002), the same authors generalized this concept by replacing the
median by the linear combination of ordered values or weighted averages, to reduce
streaking in the reconstructed image.

The concept of nonlinear anisotropic diffusion, introduced by Perona and Malik
(1990), can also be used as a form of regularization of the likelihood. This is accom-
plished by adding a penalty (or a regularization) function to the likelihood so that
direction-dependent and c-dependent diffusion of the image parameters, c, is intro-
duced at each voxel.2 The diffusion coefficient is introduced via an “edge-shaping”
function, g(|1c|), where |1c| is the magnitude of the gradient of c. The function, g, is
chosen to be a nonnegative monotonically decreasing function such that g(0)= 1.0
and g(b)→ 0 as b→∞. The purpose of this anisotropic diffusion process is to
smooth noise while preserving the edges (sharp changes) in the image. Perona and
Malik (1990) proposed the following formulations for g:

g(|1c|)= exp

[
−

(
|1c|

D

)2
]

(13.34)

and

g(|1c|)=
1

1+
(
|1c|

D

)2
(13.35)

where D is a constant that determines the degree of spread of g. The function in
Eq. (13.34) tends to favor sharp edges over mild ones, while the function of Eq. (13.35)
tolerates wider regions more than narrow ones. Zhu et al. (2006) showed that the fol-
lowing iterative scheme maximizes the likelihood with a nonlinear anisotropic diffu-
sion penalty:

c(k+1)
=

c(k)

AT
+β∇ ·

(
g
(
|1c(k)|

)
|1c(k)|

) × ATe(
Ac(k)

) (13.36)

2 Linear isotropic (Fickian) diffusion is equivalent to convolving the image with a normal (Gaussian)
distribution (Koenderink, 1984).
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where k refers to the iteration number, and β is a regularization parameter.
Equation (13.36) is applied to one element of the vector c at a time. Rather than using
the function g(c), Zhu et al. (2006) proposed the use of fuzzy nonlinear anisotropic
diffusion coefficients, with the degree of diffusion controlled by fuzzy rules expressed
in a linguistic form.

13.5 The Monte Carlo Method

This method relies on the Markov chain of a series of randomly sampled scenarios,
governed by appropriate probability distributions. As indicated in Section 11.7, the
method of simulated annealing relies on optimizing a cost function iteratively by pro-
ceeding from one iteration to another randomly, in accordance to a prescribed proba-
bility distribution. Genetic algorithms, discussed in Section 11.6, also rely on random
sampling for the selection of a population of parent chromosomes. Direct Monte Carlo
sampling can be used to produce a large set of possible solutions of the problem param-
eters, c, and use the mismatch between the corresponding modeled measurements, Ac,
and the given measurements, e, in conjunction with the Bayesian hypothesis, to deter-
mine the solution, or subset of solutions, that most likely correspond to the measure-
ments. An outline of this approach is given here, guided by Mosegaard and Tarantola
(1995) and Tarantola (2005) (Chapter 2).

The Bayesian hypothesis of Eq. (8.11) can be expressed in terms of the joint prob-
ability, P(c,e), as:

P(c,e)= P(c|e)P(e)= P(e|c)P(c) (13.37)

The joint probability formulates the random walks of Monte Carlo simulations, which
generate the solution sets. Since the a posteriori probability, P(c|e), is not known, as
it corresponds to the sought inverse mapping, one can rely on the right-hand-side of
Eq. (13.37) to construct the random walks. With P(e) being constant for a given prob-
lem, then constructing the joint probability corresponds to constructing the a posteriori
probability, P(c|e). As discussed in Section 13.3, for a normal distribution of measure-
ment uncertainties, minimizing the likelihood, − lnP(e|c), leads to the least-squares
solution. Therefore, the likelihood, P(e|c), can be replaced by the square root of the
term minimized in the least-squares method, see Appendix 8.A, and the a posteriori
probability can be expressed as:

P(c|e)= P0 exp[−S(c|e)] (13.38)

S(c|e)=
N∑

i=1

((Aijcj− ei))
2

σ 2
i

(13.39)

where P0 is a normalization constant, σ 2
i is the variance in measurement ei, and

exp[S(c|e)] is known as the “misfit function.” Therefore, the Monte Carlo method
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involves two random procedures, one from the a priori probability and the second
from the a posteriori probability.

A random walk would start by randomly sampling a vector, c0, in accordance to
P(c), if known, or based on some a priori information about c. In the discussion below,
its assumed that P(c) is not known, and as such an equiprobale distribution is assumed
with a preset lower and upper bounds: cmax ≤ c≤ cmin, with the unknown vector hav-
ing a length N. Then, one can sample a set of N uniformly distributed random num-
bers, 1≤ ξ ≤ 0, i= 1,2, . . .N from a uniform distribution. Let these generated random
numbers be the elements of a diagonal matrix, Xk, then one can perform a random
walk from a state ck to a state ck+1 (with k = 0,1,2, . . .) by perturbing the former, as
follows:

ck+1 =

{
ck+Xk(cmax− ck)ck, if Y ≥ 0.5
ck−Xk(ck− cmin)ck if Y < 0.5

(13.40)

where Y is a another vector of random numbers whose elements are uniformly dis-
tributed within [0,1]. The above random walk process changes all elements of ck at
once. A milder random walk may change one elements, or a subset of elements, at a
time, to ensure that an increase in the likelihood is attained from one random walk to
another. The set of sampled random walks is known as the Markov chain, where a new
random walk depends only on the one immediately preceding it.

Sampling from the a priori probability of Eq. (13.38) is performed after each new
random-walk generated set, ck+1, by the rejection method, so that:

If

{
S(ck+1|e)≤ S(c|e) accept ck+1
S(ck+1|e) > S(c|e) accept ck+1 with probability exp[−1S(ck+1|e)]

(13.41)

where [S(c|e)] is the misfit function of Eq. (13.39), and 1S(ck+1|e)= S(ck+1|e)−
S(ck|e). The scheme of Eq. (13.41) is the Metropolis rule (Metropolis et al., 1953),
which produces an equilibrium distribution as the number of random walks approach
infinity. The application of the second step is accomplished by sampling a random
number, ξ , from the uniform distribution in the interval [0,1], then if ξ ≤1S(ck+1|e),
the sampled set is accepted; otherwise the sampled set is rejected and a new step is
sampled before proceeding to the new random walk. The random walk, as guided
by the Metropolis rule, will reach a nearly stable equilibrium distribution, which is
considered as the problem’s solution.

This stochastic approach avoids the local minima usually associated with
derivative-based optimization methods that attempt to minimize a cost function. The
reader will recognize the similarity between this approach and those of genetic evo-
lution and simulated annealing, discussed in Sections 11.6 and 11.7, respectively. In
fact, if the misfit of Eq. (13.39) is taken as the energy of the Maxwell-Boltzmann dis-
tribution, one has the simulated annealing method. Also, the piecewise regularization
with the Gibbs function, discussed in Section 10.4.11, is a form of the Monte Carlo
method.
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14.1 Incompleteness

When the number of measurements is less than the number of unknown image param-
eters, one has an inverse problem with multiple solutions, i.e. many values of image
parameters, c, that can correspond to the same set of measurements, e. The inverse
problem is then said to be incomplete or underdetermined. Even if the problem is
well-determined, that is the number of measurements is exactly equal to the number
of unknown parameters, the inverse problem can still in effect be incomplete, since
statistical fluctuations, systematic measurement errors, modeling errors, and the dis-
cretization process itself inevitably produce inconsistencies. To overcome these incon-
sistencies, one should always seek to overdetermine the problem, either by acquiring
more measurements or by decreasing the number of problem unknowns. In imaging,
the latter lowers the spatial resolution as it requires increasing the voxel/pixel size,
while increasing the number of measurements leads to elevated radiation exposure
and prolonged measurement time and/or a more demanding measurement system (in
terms of number of detectors and/or scans). There is no rigid rule to determine the
number of measurements required to arrive at an acceptable level of overdetermina-
tion, but it is usually dictated by practical considerations: in terms of measurement
time, available source strength, number and efficiency of detectors, scanning mech-
anisms, etc. Nevertheless, Section 9.1 presented two methods for determining the
number of measurements, one based on the sampling theorem and the other on error
minimization.

There are situations though in which overdetermining the inverse problem of radi-
ation imaging, to attain a desired spatial resolution, is not practical or possible. One
then has to deal with an incomplete inverse problem, which has potentially many
possible solutions. The inverse problem becomes then an “estimation” problem, in
which one seeks the most appropriate (most probable, expected, realistic, or optimal)
solution amongst all possible solutions. One can also compensate for the “missing”
measurements with some a priori information or some physical constraints on the
solution. Methods for solving incomplete problems are presented in this chapter. We
first consider methods discussed in the previous chapters that are suited for solving
underdetermined problems.

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00014-8
c© 2011 Elsevier Inc. All rights reserved.
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14.2 General Solution Methods

14.2.1 Least-Squares Solution

The least-squares method, see Chapter 8, inherently accommodates incomplete prob-
lems, as it finds the solution with the minimum residual error. That is, it finds the
solution that produces modeled measurements, Ac, that correspond as much as pos-
sible to a given set of measurements, e. Using the Euclidean norm to define the dif-
ference between e and Ac, one has a maximum-likelihood solution, as indicated in
Appendix 8.A. This solution amounts in effect to inverting: [ATA]c= ATe, or the
weighted form: [ATWA]c= ATWe, where W is a diagonal matrix whose elements are
typically the variance of measurements, to give preference to more statistically reliable
measurements, see Eq. (8.3). One can also supplement the least-squares solution with
regularization, as discussed in Section. 10.4, to provide a solution with a desired fea-
ture. For example, to impose smoothness on the solution, one can choose the solution
with maximum information entropy.

14.2.2 Twomey-Phillips Solution

When a reasonable initial estimate of the image to be reconstructed is available, reg-
ularization with this solution estimate, see Section 10.4.6, can be used to supplement
an incomplete problem. This estimate can also be corrected to better match the mea-
surements using the Twomey-Phillips solution (Twomey, 1963):

ĉ= c∗+
[
ATA+α2G2

]−1
AT(ê−Ac∗) (14.1)

where c∗ is the initial estimate and the generalized regularization of Eq. (10.17) is
implemented. Equation (14.1) can be rearranged as follows:[

ATA+α2G2
]
(ĉ− c∗)= AT(ê−Ac∗)

ATAĉ−ATAc∗+α2G2(ĉ− c∗)= ATê−ATAc∗

α2G2(ĉ− c∗)= AT(ê−Aĉ)

ĉ= c∗+
1

α2
G−2(ê−Aĉ)

The last relationship provides an iterative scheme to update the solution estimate:

ĉ(k+1)
= ĉ(k)+

γ 2

α2
G−2

(
ê−Aĉ(k)

)
(14.2)

where k is the iteration number with ĉ(0) = c∗ and γ 2 is a relaxation parameter that
controls the rate of change from one iteration to another.
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14.2.3 Algebraic Geometric Solution

Thought different least-squares solutions can be obtained with a different weight
matrix, W, the least-squares solution is essentially governed by the particular alge-
braic representation of the forward problem, Ac= e, which corresponds to a partic-
ular set of hyperplanes. Normalizing the forward problem before solving it makes
the solution dependent only on the geometry of the hyperplanes, not on their par-
ticular algebraic representation. One then has the algebraic reconstruction technique
(art), used in earlier generations of transmission tomography systems. As indicated
in Section 10.6.1, Gordon and Mansour (2007) observed that a geometric iterative
approach is quite effective in solving strongly underdetermined transmission tomog-
raphy problems. The same iterative approach is used for solving the tomosynthesis
problem discussed in Section 1.2. Normalization was achieved in these solutions
by multiplying the system equation, Ac= e, by a diagonal matrix, Dr, whose ele-
ments are the reciprocals of the Euclidean norm of a row vector of A. Then, for
the resulting system, DrA= Dre, column normalization was performed by dividing
each column of A by the Euclidean norm of the column. The least-squares residual
was then minimized in an iterative manner using a conjugate gradient scheme, see
Section 10.6.4.

14.2.4 Pseudoinversion

The system matrix, A, in an incomplete problem is rank-deficient, similar to a com-
plete problem with noise measurements that makes two rows in a matrix practi-
cally equivalent to each other. Therefore, the pseudoinverse (Moore-Penrose inverse)
singular-value decomposition method, described in Section 10.2, provides one of the
many non-unique solutions of an incomplete problem which matches in part the for-
ward model (i.e. not necessarily matching all available measurements). This method
will always produce a solution, but such solution may not be reliable.

14.2.5 Optimization Methods

One of the optimization methods discussed in Chapter 11 can be used to arrive at
an optimal solution for incomplete problems, subject to some constraints or a priori
knowledge. Such constraints will help guide the optimization process to a realistic
solution.

14.2.6 Analytic Solutions

In linear problems, using Fourier transforms (Section 12.2), interpolating between
known values, or limiting the value of the highest frequency used in image reconstruc-
tion, can help overcome the incompleteness of the problem. This comes, however, at
the price of reduced spatial resolution.
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Wavelets

The multiresolution (scaling) wavelet analysis presented in Section 12.9 can be used
to handle incomplete problems, with the view that an incomplete problem for a high-
resolution problem is a complete problem at a lower resolution. Therefore, one can
reconstruct a low-resolution image over the entire domain, and with the aid of wavelet
transform obtain a more detailed resolution within a smaller region-of-interest. This is
a local imaging problem, since it focuses only on a localized smaller region.

Wavelet transform is suited for the local problem of imaging when wavelet of van-
ishing moments are employed (Rashid-Farrokhi et al., 1997).1 This is due to the fact
that the Hilbert transform of a function (see Section 12.1) decays rapidly if it has
a large number of vanishing moments. Therefore, selecting wavelets with vanishing
moments enables the calculation of wavelet coefficients using local projections. Then
with projections from a region-of-interest and a margin of nearby projections, image
reconstruction can be performed locally over a small region, see for example Rashid-
Farrokhi et al. (1997), Das and Sastry (2002), and Bonnet et al. (2002).

14.2.7 Probabilistic Solution

The Bayesian approach of Chapter 13 with an a priori probability distribution, such
as the gamma distribution of Section 13.4, augments an underdetermined problem
and converts it into an overdetermined problem that can be solved by maximizing
the a Posteriori probability (Lange et al., 1987). Other methods that can accommo-
date incomplete problems include the Monte Carlo method discussed in Section 13.5,
and other related optimization methods that rely on some form of random sampling,
such as genetic evolution and simulated annealing (Ali et al., 1999), see Sections 11.6
and 11.7, respectively. Section 14.4 shows how image features can be incorporated
into Markov chain fields. However, the most effective methods for dealing with an
incomplete problem is the estimation maximization method discussed below.

14.3 Estimation Maximization

This method deals with problem incompleteness by introducing, based on the statisti-
cal behavior of the expected solution, a random set of “unobservable” (virtual2) mea-
surements. To explain what is meant by an unobservable measurement, let us consider
a single measurement, ei. This measurement is estimated by the forward model by:

êi =

Ni∑
j=1

Aijcj (14.3)

1 Orthonormal wavelets with a scaling function with vanishing moments are known as “coiflets.”
2 The term virtual measurements is also used to describe any a priori constraints (Rodgers, 1976). Since

unobservable measurements are selected based an a priori probability distribution, there are in effect
virtual measurements.
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where Ni is the number of parameters, consequently image pixels/voxels, contributing
to ei. The same measurement, ei, also corresponds to the summation of a set of random
virtual (undetectable) measurements, vij, so that:

êi =

Ni∑
j=1

vij (14.4)

Comparing Eqs. (14.3) and (14.4), one can state that:

êij = Aijcj

is the mean value of the random virtual measurement vij. Note that zero virtual mea-
surements are trivial and are excluded. Similarly, each other actual measurement can
have a corresponding set of virtual measurements. For all available M measurements,
one can form a set of virtual measurements. These virtual measurements, along with
the M actual measurements, could overdetermine the problem. With iterative updates
of the virtual measurements, an acceptable solution can be attained. Of courses, if
M > N, where N is the number of unknowns, there would be no need to rely on such
unobservable (also called latent) measurements.

For virtual measurements, in the from of a vector, vi corresponding to each actual
measurement ei, one can express the joint probability,3 i.e. the probability of vi, ei, and
c together, as:

P(ei,vi,c)= P(ei|vi,c)p(ei|c)p(c) (14.5)

and in turn,

P(e|v,c)=
∑

i

P(ei|vi,c) (14.6)

where v is the vector of all virtual measurements. The logarithm of the a posteriori
that needs to be optimized, Eq. (13.26), can now be expressed as:

lnP(e|c)+ lnP(c)= ln
∑

i

P(ei|vi,c)+ lnP(c) (14.7)

Notice that Eq. (14.7) requires only knowing the summation of the virtual measure-
ments, not their individual values. The derivatives of Eq. (14.7), with respect to c, can
be used to drive an iterative process towards the maximum a posteriori (map). How-
ever, obtaining the gradient of Eq. (14.7) is not a trivial task. The method of expecta-
tion maximization (em) can be used instead to estimate and optimize the logarithm of

3 P(e,c)= P(e|c)P(c).
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the joint probability, lnP
(
e,vi,c|c(k)

)
, based on a previous estimate c(k) of the sought

solution, c. Therefore, the estimation (E-step) determines:

Q
(

c(k+1)
|c(k)

)
= E

(
lnP(e,v,c|c(k)

)
(14.8)

where E (·) designates expected value. Maximization (M-step) Q
(
c(k+1)

|c(k)
)

with
respect to c(k) drives the iterative process towards the maximum a posteriori. Note
that replacing P(e,v,c) with P(e,v|c) in Eq. (14.8) leads to an estimate of the a priori,
since P(e,v,c)= P(e,v|c)P(c)).

14.3.1 Poisson Distribution Likelihood

Emission Imaging

Let us consider the estimation maximization of the logarithm of the likelihood assum-
ing that the virtual measurements are governed by Poisson statistics, as is the case in
emission imaging. Then, as in Eq. (13.14), one has:

P(v|c)=
∏

i

∏
j

exp
[
−êij

] (êij
)vij

vij!
=

∏
i

∏
j

exp
[
−Aijcj

] (Aijcj
)vij

vij!
(14.9)

where êij is a modeled measurement corresponding to the virtual measurement vij. The
logarithm of the likelihood converts the above products into summations:

lnP(v|c)=
∑

i

∑
j

−Aijcj+ vij lnAijcj− lnvij! (14.10)

The estimation maximization method provides a means for estimating the expected
value of the virtual measurements with respect to the actual available measurements,
then maximizes this expectation to provide a more likely estimate of the solution
(Lange and Carson, 1984). Let us assume that some estimate, c(k), is given, along
with a measurement vector, e. Then, from Eq. (14.9), one can express the conditional
expectation of the virtual measurements with respect to the actual measurements and
the estimated solution as:

Q
(

c(k+1)
|c(k)

)
= E

(
lnP(e,v|c)|c(k)

)
=

∑
i

∑
j

−Aijcj+E
(

vij|e,c(k)
)

lnAijcj−E
(
lnvij!

)
(14.11)

There is no need to determine
∑

i
∑

j E
(
lnvij!

)
, since it has no effect on the max-

imization step, as shown by Eq. (14.13) below. The expected value of
(
vij|e,c(k)

)
can be obtained using the definition of vij as being the contribution of voxel j to a
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measurement ei. This contribution is determined by the element Aij of matrix A, which
relates ei to ci. Therefore, one can express E

(
e,vij|c(k)

)
as:

E
(

e,vij|c(k)
)
=

Aijc
(k)
j∑

n Ainc(k)n

ei (14.12)

Note that the summation of E
(
e,vij|c(k)

)
of all contributing voxels satisfies Eq. (14.4).

The maximization of E
(
lnP

(
e,v|c|c(k)

))
requires:

∂

∂cj
E
(

lnP
(
e,v|c|c(k)

))
=

∑
i

−Aij+
Aijc

(k)
j∑

n Ainc(k)n

ei

cj
= 0 (14.13)

where use is made of Eqs. (14.11) and (14.12), and assuming that Aij is not a
function of cj, i.e. the problem is linear, or quasi-linear in an iterative successive
approximation process. Notice also that E

(
lnvij!

)
does not involve cj, because even

if it were explicitly formulated it would have been estimated based on c(k)n . With
∂2

∂c2
j
E
(
lnP

(
e,v|c|c(k)

))
being negative, Eq. (14.11) is concave and Eq. (14.13) pro-

duces the maximum value of Eq. (14.11), in the form of an updated estimate:

c(k+1)
j =

c(k)j∑
i Aij

Aijei∑
n Ainc(k)n

=
Aijc

(k)
j∑

i Aij

ei

e(k)i

(14.14)

with e(k)i being the modeled measurement at iteration k. The expected value of
Eq. (14.12) is then updated and maximized, until the iterative process converges at
a solution that maximizes Eq. (14.12).

The expressions of Eq. (14.14) is identical to that of Eq. (13.18) which maximizes
the likelihood based on only observable measurements. The difference between the
two is that when the problem is incomplete, the exact value of the likelihood is not
known. With the known data, the em method finds a posteriori estimates of the prob-
abilities of the values of virtual measurements. For each v, the em method calculates
an expected value of the likelihood, given e and the estimated c(k). The em method
iterates over the value of the likelihood. As such, the em method gives a conditional
probability distribution of the virtual measurements, as well as an estimate of the solu-
tion, c. Note that the gradient-based formation of Eq. (13.20) is also applicable here.

Transmission Imaging

In transmission imaging, a virtual measurement, vi,j, can be taken as the intensity of
radiation entering a voxel j and contributing to detector i (Lange and Carson, 1984).
Then the intensity of radiation leaving a voxel j depends on the intensity of radia-
tion entering the voxel, the radiation attenuation coefficient of the material within the
voxel, cj, and the distance, ri,j, radiation travels through the voxel towards detector i.
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Then, the intensity of radiation leaving the voxel is governed by a binomial distribu-
tion4 of a success probability exp[−cjri,j] and a number of trials vi,j. Note that a mea-
sured radiation intensity, ei, is the intensity of radiation leaving the last voxel along
the radiation beam viewed by detector i. Therefore, ei can be viewed as a member of
the complete measurement set that includes all virtual measurements. Therefore, vi,Ni

is a random variable for which ei is the measured (mean) value, with Ni being the
last voxel seen by detector i. The source (incident radiation) intensity, e0i of beam i is
Poisson-distributed, ei and vi,j follow a Poisson distribution. Therefore, one has:

P(e0i)= exp[−e0i ]
e

v1,i
0i

vi,1!
; P(vi,j)= exp[−v̄i,j]

v̄
vi,j
i,j

vi,j!
; P(ei)= exp[−ei]

e
vi,Ni
i

vi,Ni !
(14.15)

where v̄i,j is the expected value of v̄i,j. The expected (mean) value of vi,j is given by:

E(vi,j)= e0i exp

 Ni∑
j=1

cjri,j

= v̄i,j (14.16)

A virtual measurement resulting from radiation exiting a voxel, vi+1,j, is related to
that entering the same voxel (both in the same ray i) by the binomial distribution with
a success probability exp[−cjri,j] for vi,j number of trials. Therefore, over a beam
i, starting from the source and ending at the detector, one can write the conditional
probability:

P(ei,vi|c)= exp[−e0i ]
e

v1,i
0i

vi,1!

×

Ni−1∏
j=1

vi,j!

(vi,j− vi+1,j)!ei!

(
v̄i+1,j

v̄i, j

)vi+1, j
(

1−
v̄i+1,j

v̄i,j

)vi,j−vi+1, j

(14.17)

where vi is the vector of virtual measurements corresponding to beam i. Given that
vj+1,i = vj,i exp[−cjri,j] and based on Eq. (14.17), one can formulate the logarithm of
the likelihood as:

lnP(e,v|c)=−e0i + v1,i lne0i − lnvi,1!

+

Ni−1∑
j=1

{
[lnvi,j!− ln(vi,j− vi+1,j)!− lnei!]

+ vi+1,j ln(exp[−cjri,j])

+ (vi,j− vi+1,j) ln(1− exp[−cjri,j])
}

(14.18)

4 For a binomial distribution: P(x)= n!
(n−x)!x! px(1− p)n−x, where x is a random variable with a success

probability p and n is the number of trials.
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Therefore,

E (lnP(e,v|c))=
∑

i

−e0i + v̄1,i lne0i −E(lnvi,1!)

+

Ni−1∑
j=1

E
({

[lnvi,j!− ln(vi,j− vi+1,j)!− lnei!]
)

+ v̄i+1,j ln(exp[−cjri,j])

+ (v̄i,j− v̄i+1,j) ln(1− exp[−cjri,j])
}

(14.19)

The maximization of this estimation requires:

∂E (lnP(e,v|c))
∂c

= 0 (14.20)∑
i

v̄i+1,jri,j+ (v̄i,j− v̄i+1,j)
ri,j exp[−cjri,j]

1− exp[−cjri,j]
= 0 (14.21)

Solving this equation to estimate cj is not straightforward due to the nonlinearity
of Eq. (14.21). However, a number of approximations have been proposed (Lange
and Carson, 1984, Lange et al., 1987). Assuming that cjri,j << 1, which is a reason-
able assumption in small voxels, low-density material, and/or high radiation energy,
then5:

exp[−cjri,j]

1− exp[−cjri,j]
=

1

exp[cjri,j]− 1
≈

1

cjri,j
−

1

2
+

1

12(cjri,j)
(14.22)

Taking only the first term in the approximation gives an upper estimate of cj. On the
other hand, the negative second term in the approximation is likely to have the largest
magnitude in the expansion, and as such the first two terms produce a lower bound
of cj. The three terms of the approximation taken together provide a more accurate, but
more computationally demanding expression, for cj. Therefore, Eq. (14.21) produces
the following approximations for the maximization of Eq. (14.19) (Lange and Carson,
1984), with the virtual measurements estimated at the previous iteration, k− 1:

First-order approximation:

cj(k) =

∑
i v̄i,j− v̄i+1,j∑

i v̄i+1,jri,j
(14.23)

5 Let x= cjri,j << 1,z= exp[x]− 1,z+ 1<< 1; x
exp[x]−1 =

ln(z+1)
z =

z+ z2

2 +
z3

3 +···

z = 1− z
2 +

z2

x . With z=

exp[x]− 1,≈ x+ x2

2 , the expression in Eq. (14.22) is arrived at after neglecting third and higher order
terms.
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Second-order approximation:

cj(k) =

∑
i v̄i,j− v̄i+1,j∑

i
1
2 (v̄i,j+ v̄i+1,j)ri,j

(14.24)

Third-order approximation:

0= (cj(k))2
∑

i

(v̄i,j− v̄i+1,j)
r2

i,j

12
− cj(k)

∑
i

(v̄i,j+ v̄i+1,j)
ri,j

2
+

∑
i

(v̄i,j− v̄i+1,j)

(14.25)

Devising a gradient-driven iterative scheme, such as that of Eq. (13.20), is not as
straightforward for the case of transmission imaging. However, in analogy with the
latter scheme, Lange et al. (1987) suggested the use of:

c(k+1)
= c(k)D(k) ∇ lnP

(
e|ĉ(k)j

)
(14.26)

with the jth term in the diagonal matrix D(k) in Eq. (14.26) as:

Djj =
c(k)j∑
i eirij

(14.27)

So that:

c(k+1)
j = c(k)j +

c(k)j∑
i eirij

∂

∂cj
lnP

(
e|ĉ(k)j

)
= c(k)j +

c(k)j∑
i eirij

{∑
i

v̄i+1,jri,j+ (v̄i,j− v̄i+1,j)
ri,j exp

[
−c(k)j ri,j

]
1− exp

[
−c(k)j ri,j

]}
(14.28)

14.3.2 Scatter Imaging

No formulation is given in the literature for estimation maximization with virtual mea-
surements in scatter imaging. We will developed here a formulation that combines
those used in emission and transmission imaging. In scattering, a virtual measure-
ment, vi,j, can be taken as the intensity of radiation scattered from voxel j that con-
tributes to detector i. A virtual measurement depends, therefore, on the intensity of
radiation entering the voxel, the type and density of material within the voxel, the size
of the voxel, and the probability of scattering. The first factor, the intensity of radiation
entering a voxel, is Poisson distributed, as in the case of transmission imaging. The
density and type of material within the voxel can be simply considered to have a uni-
form probability distribution (assuming lack of other knowledge) or to have a gamma
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distribution, see Eq. (13.30). The size of a voxel is obviously not a random variable
and is fixed by the desired image resolution. The probability of scattering depends
on the type of radiation and its scattering modality, as well as the density and type of
material within the voxel. The probability of scattering per unit density for a particular
material is a physical property (cross section) that can be determined a priori. It can
be considered in most cases to be independent of the sought solution, c. Let σij be the
probability of scattering from voxel j to detector i (i.e. the microscopic angular cross
section for the reaction). Given these arguments, one can postulate that virtual mea-
surements in scatter imaging are dominantly Poisson distributed, and utilize the same
formulations used in emission imaging. However, attention must be paid to the fact
that scattering is a nonlinear process, and another iterative process (other than estima-
tion maximization) is need to formulate the matrix, A, relating c to e. Nevertheless,
within each iteration for nonlinearity, the problem can be considered to be quasilinear,
enabling the application of estimation maximization.

14.3.3 Ordered Subset Estimation Maximization

In order to accelerate the typically slow expectation minimization iterative process,
Hudson and Larkin (1994) proposed an ordered iterative process in which a measure-
ment set is grouped into a number of subsets, and solution updates performed only
over one subset at time. This is known as the ordered subsets estimation maximiza-
tion (osem) method. Subsets should be formed in such a way that each voxel has
about the same probability of contributing to each subset. The row-action maximum-
likelihood algorithm is such an iterative scheme, in which measurements are processed
sequentially (Browne and Pierro, 1996). The ordered subset iterative approach typi-
cally accelerates iterations toward convergence at early stages, though iteration over
the entire set of measurements is needed at the late stages to reach convergence (Leahy
and Qi, 2000).

14.4 Markov Random Fields

Adequate solution of an underdetermined problem depends on having reliable a priori
information. Rather than relying on an estimate of the solution or certain constraints,
which can greatly influence the solution, one can take advantage of the fact that most
physical objects, and subsequently their images, are composed of clusters of nearly
homogeneous regions separated by boundaries or edges. Geman and Geman (1984)
described such objects by coupled Markov random fields (mrf), i.e. fields in which a
new random event depends only on the one immediately preceding it. Each voxel in
an image is designated a clique of neighboring voxels via some unobservable line or a
label, l, so that each image is modeled by the vector pair (c, l). This enables expressing
the a priori information by a probability distribution coupled by some a priori energy,
9 and a partition function, Z:

P(c, l)=
1

Z
exp

[
−
9(c, l)

T

]
(14.29)
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This is the Gibbs distribution at some temperature, T , used in thermodynamics to
describe transitions from one equilibrium state to another, discussed also in Sec-
tion 10.4.11. The image reconstruction problem can then be formulated as a max-
imization of the a posteriori conditional probability P(c, l|e), which is equivalent
to the minimization of the a posteriori “energy”: ‖Ac− e‖2+9(c, l). The energy
term, 9(c, l), acts as a regularization functional. Any of the piecewise regularization
methods of Section 10.4.11 can be applied here.

Geman and Geman (1984) suggested solving this problem stochastically, rather
than using iterative methods that globally and monotonically increase the a poste-
riori probability. The so-called stochastic relaxation (simulated annealing) approach
generates a sequences of images that evolve locally, while converging to the optimal
solution. Each voxel in the image is designated a clique of neighboring voxels. Start-
ing with a high temperature, T , a local random change, sampled from the conditional
probability P(c, l|e), is made based on the current value of voxels and their cliques.
The energy is then lowered, to assure convergence to a solution at the lowest temper-
ature, and the random sampling process is repeated.

Nikolova et al. (1998) viewed an image as consisting of a vector pair (c, l), with l
being an unobservable line or label. With l being a noninteracting Boolean-like pro-
cess, it can be determined by minimizing 9(c, l), to obtain a value l̂(c) for a given c.
Then the a posteriori energy, ‖Ac− e‖2+9(c, l̂), is minimized. This dual-stage opti-
mization process better accounts for the presence of both uniform clusters and edges,
which is the initial premise of this mrf model.
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15 Testing

The quality of a reconstructed image depends not only on the formulation and solution
of the associated forward and inverse problems, but also on the quality and num-
ber and scheme of acquiring required measurements. Therefore, before designing and
constructing an actual imaging system for laboratory and field use, the numerical
robustness of this inverse problem and the effect of measurements on the problem’s
solution should be examined. It is desirable also to assess and evaluate various numer-
ical schemes for solving the inverse problem. Moreover, the quality of the recon-
structed image needs to be examined.

Numerical testing should be done in steps. The first step is to consider an ideal
(error-free) problem that employs modeled measurements (synthetic data) produced
by the forward model. From the perspective of solving the inverse problem of image
reconstruction, modeled measurements are free of uncertainty. Failure to solve the
ideal problem is indicative of failure in implementing the solution strategy, or even of
flaws in the methodology itself. After succeeding in solving the ideal inverse problem,
one should consider the solution of a “noisy,” but otherwise ideal inverse problem,
in which random noise is artificially introduced to the modeled measurements. Var-
ious levels of noise will demonstrate the extent with which the inverse problem is
susceptible to noise in the measurements, and the maximum level of noise beyond
which a solution to the problem becomes meaningless. The third step in testing should
involve modeled measurements produced by some other method independent of the
forward problem, e.g. by Monte Carlo simulations. Such testing will assess the ade-
quacy of the forward model and the effect of its idealizations on the solution of the
inverse problems. Following these three steps with modeled measurements, one can
proceed with testing using laboratory measurements, assured that the numerical and
physical aspects of the problem have been addressed and only practical issues can fur-
ther affect the solution. These four levels of testing are discussed below, followed in
Section 15.5 by definition of parameters for determining and measuring the quality of
a reconstructed image.

15.1 Ideal Problem

In the ideal problem, data generated by the forward model is used in place of actual
measurements. Therefore, the ideal problem is an exact problem not affected by model
approximations, statistical variability, or any other sources of random or systematic

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00015-X
c© 2011 Elsevier Inc. All rights reserved.
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errors. Its value is in verifying and debugging numerical algorithms and associated
computer programs for solving the inverse problem. Once computer codes are verified,
the ideal problem can be used to ensure that physically meaningful results are obtained
for different expected image configurations. In the design process, the ideal problem
can also be utilized to optimize measurement gathering (or scanning) strategies. These
testing aspects are discussed below.

In an ideal problem, the computer program used in image reconstruction should
reproduce an exact image of the object for which the modeled measurement data were
generated. The most convenient approach perhaps is to start with a uniform object of
the same size and spatial resolution as that typically expected in practice. The modeled
measurements for such a uniform object should produce predictable trends, without
abrupt changes except at boundaries, with magnitudes comparable to those obtained
by hand or spreadsheet calculations. If such expected results are not obtainable, the
input data as well as the algorithm used for formulating the forward problem and the
associated computer coding should be reexamined. If no acceptable image is obtain-
able at all, the numerical inversion algorithmic itself should be reexamined. Once
image reconstruction for a uniform object is successfully accomplished, one should
test the inversion process with a variety of nonuniform configurations, similar in nature
to those expected in practice, for various spatial resolutions and for a variety of mate-
rials. Section 15.6 gives some configurations suited for testing image reconstruction
algorithms. Of particular interest are the continuous phantoms formed with the help of
analytical shapes, such as polygons and ellipses, since they can be used to study the
effect of discretization on the forward and inverse formulations of the problem.

With an ideal problem, one can examine many of the numerical characteristics of
the problem, such as existence, uniqueness, continuity, and stability of solution, for
a given set of modeled measurements. In an iterative scheme, one can also inves-
tigate whether the problem converges to a unique solution, the conditions for such
convergence, and its independence of the initial guess. Testing an iterative process
should be first conducted with an initial guess identical to the known solution, then
the exact solution should be arrived at immediately, without any iteration. Failure to
pass this initial test would indicate inadequacy in programming or formulating the
iterative process. A number of tests should be conducted to demonstrate that the space
within which the physical parameters are reconstructed is complete, by showing that
the problem converges within the bounds of the space.

Before proceeding any further, one must be satisfied with the behavior of the ideal
inverse problem. If a fully acceptable solution is unattainable under ideal conditions,
the problem solution under realistic conditions will be even less acceptable. On the
other hand, obtaining a solution with the ideal problem does not ensure an accept-
able solution for an actual problem, due to the ill-posedness associated with practical
inverse problems. However, some insight into ill-posedness can be obtained from the
ideal problem. Sensitivity of the inversion process to numerical errors introduced by
truncation of supplied modeled data, and propagation of round-off error during the
inversion process, are strong indicators of the problem’s ill-posedness. Such small
errors should not have a noticeable effect on the solution of the supposedly well-
posed ideal problem. By executing a particular test problem under both single and
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double computing-machine precession, the effect of numerical-error diffusion can
be observed. If error diffusion is problematic, the numerical implementation of the
inverse problem should be inspected to determine the cause. Once corrected, or if
no obvious sources for error diffusion were found, the intrinsic nature of the inverse
problem should be considered. If one has a matrix-based system, it should be ensured
that the matrix is not rank deficient. The condition number should also be calculated;
the larger this number the more inclined the problem to be ill-posed. The potential
ill-posedness of a functional inversion process can be explored by observing how far
the χ2 value, left-hand-side of Eq. (8.4), is from zero. In a frequency-based solution,
the presence of high-frequency components in a uniform or a nearly-uniform image
could be indicative of susceptibility to ill-posedness. In the backprojection approach,
the value of the error, as determined by Eq. (8.10), is a measure of how vulnerable the
problem is to well-posedness.

If strong ill-posedness is encountered in an ideal problem, the layout of the imaging
process must be altered. In other words, one must revisit the strategy of acquiring
measurements, i.e. their number, location, independence, etc. With the ideal problem,
one can also examine the effect of system parameters, such as source position, energy,
direction and collimation, detector location, energy window, width of field-of-view,
voxel size, level of details in the forward model modeling, etc.

One must keep in mind that success in solving the ideal inverse problem does not
assure by itself correct solution of the actual inverse problem. Such an ideal solu-
tion, for all practical purposes, is trivial, leading to what Colton and Kress (1992)
called the inverse crime. Such situation can be avoided by synthesizing the measure-
ments using a forward model that is different in precession from the forward model
inverted in the inversion process, e.g. by generating each model at a different level of
discretization.

15.2 Noisy-Ideal Problem

Before testing an inverse problem with actual data, its ill-posedness can be studied by
contaminating the ideal data with random noise. This enables examining the numerical
aspects of the problem without worrying about modeling errors and other deviations
from ideal conditions that are encountered when acquiring measurements in the lab-
oratory. Radiation-counting measurements are governed by the Poisson distribution,
because it is a discrete binary process (count/no count) of events that are independent
of each other, and arise from a very large population (atoms or their nuclei) with a
very small probability (only a very small fraction of the atoms/nuclei produce counts
within a measurement time). The Poisson distribution is such that the probability den-
sity function of measuring a count of n (say, particles) is:

P(n)=
mn

n!
exp(−m) (15.1)

where
∑
∞

n=0 nP(n)= 1, with a mean m=
∑
∞

n=0 nP(n) and a variance σ 2
=
∑
∞

n=0
n(n−m)2P(n)= m, equal to its mean, i.e. m= σ 2. When only one measurement
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count, n0, is recorded, it can be considered as being the mean value of a Poisson
distribution with an estimated sample variance also equal to n0. In other words, if a
measurement is to be repeated many times, one would expect a Poisson distribution
with a mean, n0, and a variance, n0. It should be noted too that a Poisson distribution
approaches a normal (Gaussian) one when m is large. Then the confidence intervals of
the normal distribution can also be associated with the Poisson distribution.

In order to simulate statistical fluctuations in forward-model estimated measure-
ments that correspond to radiation counts, one must introduce random variations gov-
erned by the Poisson distribution. Forward models, such as those of Eqs. (4.1), (5.1),
(5.6), and (6.6), produce modeled measurements that include calibration or system
constants that may not be known unless laboratory measurements are recorded. Such
constants can, however, be assigned to unity to facilitate testing the image reconstruc-
tion software, but then modeled measurements may have values that are much less
than unity, which does not agree with the binary nature of the Poisson distribution.
However, one usually has an idea of the order of magnitude of the counts of the actual
measurements, and can devise a reasonable scaling factor which when multiplied by
the modeled measurements would produce values on the order of magnitude of the
expected measurements. The scaled values can then be contaminated with Poisson
random noise, and the resulting values can be rescaled back to obtain values com-
parable in magnitude to the original noise-free modeled measurements. To illustrate
this process, let us consider a modeled ideal (error-free) measurement, ei, with a scale
factor of 10r where r is a positive integer, then the scaled measurement, ei× 10r, can
be contaminated with a Poisson noise generated by an algorithm such as (Atkinson,
1979):

1. Using a uniform distribution in the (0,1] interval,1 sample some n random numbers:
ξ1,ξ2, . . . ξn, and for each number generate the corresponding random variables from an
exponential distribution, with the transformation:

ηj =− ln(ξj) j= 1,2, . . .n

2. Continue generating the above random variables, one at a time, until:

n∑
j=1

ξj ≥ ei×10r

Then, n− 1 is a randomly sampled variable from a Poisson distribution of mean equal
to ei× 10r. In turn, (n− 1)× 10r corresponds to a molded measurement, ei, contam-
inated with Poisson noise. Given that computers generate “pseudo” random numbers
that begin with a predesignated “seed,” the same sequence of random variables can be
regenerated by repeating the problem with the same seed. This enables diagnosis of
algorithms without the interference of truly random effects.

At high counts, the Poisson distribution approaches a normal (Gaussian) distribu-
tion, with variance and mean equal to each other. Therefore, for a mean value m, the

1 Zero is excluded from the sampling process to avoid indefinite logarithms. The interval [0,1] can be
replaced, for example, by the interval [0.001,1].
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standard deviation is σ =
√

m, leading to a fractional (relative) standard deviation of
f = σ

m =
1
√

m
. Knowing the expected magnitude of an actual measurement, one can

estimate the expected relative error and sample a random variable, χ , from a (1, f 2)
normal distribution, i.e. with a mean equal to unity and a relative variance, f 2. Then,
χ × ei corresponds to a modeled measurement, ei, contaminated with normally dis-
tributed noise (also called Gaussian white noise). The Box-Muller method (Box and
Muller, 1958) can be used to sample χ as follows:

1. Sample a random number, ξ from a uniform distribution in (0,2π ].
2. Sample another random number, η, from a uniform distribution (0,1].
3. Generate the random variables:

χ1 = σ
√
−2lnηcosξ +m, χ2 = σ

√
−2lnη sinξ +m

These random variables are normally distributed with mean, m, and variance σ 2.
Either one of the sampled variables, χ1 and χ2, can be used to contaminate a mod-
eled measurement.

In a normal distribution, one can associate confidence levels with various values of
σ : 68% of the measurements lie within ±σ around the mean, 95% are within ±2σ ,
99.7% within ±3σ , and so on. A confidence level of 95% is recommended for use in
uncertainty analysis.2 Since, a Poisson distribution approaches a normal distribution
at high counts, the same confidence levels can be utilized in both distributions.

Image reconstruction should be tested at various noise levels. This enables the
determination of the highest permissible level of noise in measurements that can be tol-
erated by the inverse problem while producing acceptable solutions. The same analysis
can also be used to determine the source strength that would result in a desired level
of confidence in the reconstructed images. Noise levels can easily be varied when
sampling from a normal distribution (1, f 2) by varying the value of f . In a Poisson
distribution, the noise level can be varied by changing the scaling factor, 10r.

Failure to accommodate an acceptable level of noise in image reconstruction may
indicate the need for regularization (see Chapter 10.4). Varying the level of noise is
also useful in studying the effect, and determining the degree, of regularization. If
even with regularization, it is found that the image reconstruction scheme is quite vul-
nerable to noise, then one must reexamine the layout of the imaging system and alter
it to provide a more robust (better posed) problem. It should be also kept in mind that
if the noise level does not have much effect on the error-free synthetic data, and if
the forward model used in generating these modeled measurements is the same as that
employed in the inversion process, one may end up with an excessively optimistic
solution of the inverse problem, leading to the inverse crime described at the end of
Section 15.1. Such situation can be avoided by using a level of noise sufficient to per-
turb the idealized modeled measurements, and/or by employing a forward model for
generating the idealized data that is different in precession (e.g. level of discretization)
from that used in solving the inverse problem.

2 Measurement Uncertainty, Part I, ANSI/ASME PTC 19.1-1985.
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15.3 Independently-Simulated-Data Problem

An intermediate step before testing with actual laboratory data should involve testing
with numerical data generated independently from those modeled using the forward
problem. Such data should include effects ignored in the forward model (e.g. scatter-
ing in transmission and emission imaging and multiple scattering in scatter imaging),
and those not fully simulated in the forward model (such as x-ray beam hardening).
It is also preferable to generate such independent measurements using a continuous
model to examine the effect of the discretization normally associated with the forward
problem. Testing image reconstruction with such independent data, not only provides
a means to assess the susceptibility of the inverse problem to modeling errors, but it is
also a form of validating the forward problem itself.

The solution of the Boltzmann transport equation, Eq. (2.11), can provide such
independent data. The most practical and most widely used method for solving this
transport equation is the Monte Carlo method. This method solves a transport prob-
lem by the simulation of random walks of radiation source particles in accordance to
random variables sampled from probability distributions based on the transport ker-
nels of the Boltzmann transport equation, see for example Hussein (2007). By aver-
aging the contributions of all random walks, an estimate of a desired measurement is
obtained, with an associated standard deviation. With the Monte Carlo method, com-
plex geometries can be simulated, and most radiation interactions can be taken into
account. The statistical nature of the Monte Carlo results also introduces variabilities
not unlike those encountered in laboratory measurements. However, one should aim
at obtaining simulated results with as low statistical variance as possible, so that the
problem can be validated without the distraction of statistical variations. A number
of computer codes are available, but the mcnp code (http://mcnp-green.lanl
.gov/) is widely used in radiation transport calculations.

Before proceeding to utilize Monte Carlo generated data in image reconstruction,
this data should be compared with the ideal ones provided by the forward model, to
assess whether the inexactness of the latter can be tolerated. This is a mutual verifica-
tion process that can point out mistakes in setting up the forward problem, or modeling
errors in the simulation. Simulating a simple problem, say for a uniform object, can
help identify the sources of error, if any. If the adequacy of the Monte Carlo process is
assured, but no good agreement with the forward model is attained, the source of the
discrepancy should be identified, and an effort should be made to improve the forward
model. If the difference between the two appears not to be significant, but some of
the Monte Carlo simulated measurements had a large statistical variance (not signifi-
cantly reduced by increasing the number of random walks), this large variability could
be inherent in the physical process; e.g. due to secondary radiation that contributes a
small but consistent amount to the detector response. If simulated and forward model
data agree, except for few measurements, careful examination of those measurements
should be conducted one-by-one, to determine the cause of such difference. If no iden-
tifiable reason for the difference can be easily found in the forward model, the corre-
sponding measurements should be excluded from the measurement set, as they are
likely to cause similar problems in practice.
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15.4 Laboratory Problem

When solving an inverse problem with laboratory measurements, one is faced with
practical challenges that include:

Background: measured radiation that is not related to the interrogated object. This neces-
sitates the introduction of a background correction process.
Inaccuracy: caused by systematic measurement errors in the translation of laboratory
spatial parameters (positions of source, object, and detectors) into the forward model, or
inaccuracies in determining the latter parameters. Minimizing this error ensures best setup
matching between simulation and laboratory arrangements.
Uncertainty: due to statistical, electronic, or temporal fluctuations in measurements, lead-
ing to imprecise results. These uncertainties must be quantified.
Calibration: scaling the forward model to incorporate source strength, detector efficiency
and counting period, as well as any other parameters not accounted for in the forward model.
Therefore, a calibration process must be introduced.
Inexactness: due to approximations and simplifications of the forward model. After
accounting for background radiation and calibration, the forward model should produce
results that match, within statistical variability, laboratory measurements.

The above aspects are elaborated upon below.

15.4.1 Background

Background is the radiation recorded by the detection system that does not provide
relevant information to imaging. This background can be viewed as consisting of pas-
sive and active components. The passive background is any radiation detectable in the
absence of both the external radiation source (to be used in imaging) and the inter-
rogated object. The active background component is that measured in the source’s
presence, but in the absence of the object.

The passive background is due to natural radiation in the surroundings, cosmic rays,
radiation leakage from a shielded radioisotopic source, electronic noise, thermal drift,
mechanical vibrations (microphonics), afterglow (residual signal after termination of
a preceding immediate exposure), etc. Thermal energy can also produce a detectable
signal, independent of radiation exposure. This passive component tends to be low in
intensity and can be filtered out electronically or subtracted from detected signals.

The active background component consists of direct and indirect components. The
indirect component is caused by scattering or secondary emissions from surrounding
structures. In transmission imaging, the direct background is the signal measured in
the absence of the object, called the flat field. This signal is used in determining the
projections by providing the normalization factor, I0, in Eq. (4.2).

Measurement of the direct radiation background component in transmission tomog-
raphy is, therefore, essential and is in effect a calibration process. In emission imaging
with an embedded source, a stand-alone source of known activity, employed in the
absence of the object but placed at its intended location, can be used to provide an
estimate of the direct background component, per unit source activity. This compo-
nent can, in turn, be used to calibrate detectors. In induced emission, the radiation
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(of the same type used in emission imaging) detected in the presence of the activating
source, but in the absence of the object, represents the direct background component.
The indirect background component is typically much smaller than the direct one,
but it is also irrelevant to image reconstruction, and should be minimized as much as
possible.

In transmission imaging and embedded emission imaging, the passive component
of radiation background should be subtracted from the active component, before using
the latter to calibrate the measurements. The passive component should be recorded for
each detector, since no two detectors are exactly identical in their response. In induce-
emission and scatter imaging, the total (active and passive) background component
should be subtracted, detector-by-detector, from the signals measured in the presence
of the object. Attention should also be paid to the subtraction of background radiation
from the signals recorded for the interrogated object, since the presence of the object
itself can attenuate and/or scatter background radiation, altering the background lev-
els recorded in the absence of the object. Therefore, it is always desirable to reduce
the background radiation as much as possible. Methods for background reduction are
suggested in Chapter 17 of Hussein (2003).

15.4.2 Inaccuracy

Matching the setup used in the forward model with that of the laboratory is vital for
validating both the forward and inverse problems. Systematic errors, if not corrected,
can cause mismatching between the two setups. Perhaps the most elementary cause of
such systematic errors is the inability to visually see radiation and hence determine its
exact path and direction. This makes it difficult to match the assumed model geometric
setup with a laboratory setup. A small semiconductor laser beam may be positioned
behind the source and detector collimators to observe their fields-of-view, but such
laser beams tend to diffuse quite broadly and do not provide a faithful representation
of radiation divergence. Moreover, it is difficult to know exactly the source’s position
(particularly the location of a radioisotope within a shielding container) to properly
place the laser beam. Small markers (small diameter objects) can be placed between
the source and the detector and moved around the expected region of intersection of
the fields-of-view of the source and detector, to determine its boundaries. Such mark-
ers can also be used to determine the source’s profile (change in intensity across a
detector aperture). A small calibration source can also be employed as a marker, and
moved in front of a detector’s collimator to map the detector’s field-of-view. Such
information can be conveyed to the modeling process to adjust the model until a rea-
sonable matching is obtained between the simulated and modeled arrangements. In
performing such measurements, attention should be paid to the three-dimensionality
of radiation transport, i.e. the source and detector fields-of-view should be mapped at
two orthogonal planes. This is useful even when only a section of the object along one
of the two planes is considered, as it can be used to determine the effective thickness
of the imaged section.

When modeling radiation interactions (scattering and induced emission) within an
object, the location of the interrogated object must be known. In the laboratory, it
is convenient to designate an imaging region between the source(s) and detector(s),
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within which the interrogated object should be placed. Markers (small-diameter rods,
pins, etc.) can be used to ensure that the boundaries of this region are exposed to source
radiation and contribute to detectors. Markers can also be placed in the proximity of
the interrogated object, e.g. near its surface, and left during the acquisition of image
measurements. Reconstructed images of these markers will then help relate spatial
locations in the reconstructed image to the corresponding ones in the imaged object.

Systematic error can also result when acquiring actual spatial position measure-
ments in the laboratory. Such measurements should be performed with care and with
high-accuracy devices. Care should also be taken in conveying such measurements to
the forward model, to avoid human error.

15.4.3 Measurement Uncertainties

As a result of the probabilistic nature of radiation emission and interactions, there
is always statistical variability associated with radiation measurements. This statis-
tical variability is governed by the Poisson distribution, discussed in Section 15.2.
A recorded count has, therefore, an associated random “error,” also called quantum
noise. Since image reconstruction is a quantitative process, the uncertainty associated
with a recorded count must also be quantified. This is facilitated by the fact that the
statistical variance of a count, according to the Poisson distribution, is equal to the
count itself. Also at large counts, the Poisson distribution approaches a normal dis-
tribution, enabling the quantification of the confidence intervals associated with the
range of counts around a recorded (considered to be an estimate of the mean) value.
Obviously, statistical variability can be reduced by increasing the counting period, the
source strength, detector efficiency and/or size and the size of the source and detector
collimator apertures. Estimating the statistical variance also enables weighting of mea-
surements in image reconstruction to reduce the importance of weak (large variance)
measurements, see Section 8.

Electronic processing of detected radiation events is also subject to statistical fluc-
tuations because electrons themselves are discrete. The contribution of electronic
noise, called shot noise, tends, however, to be much less than that of the random error
associated with radiation generation and interaction.

Temporal changes in source emission rate, due to the decay of a radioisotope or
instabilities in the power source of a radiation generator, also cause fluctuations in the
measurements. Such temporal changes become significant if imaging measurements
are gathered within a long period of time. Taking active background measurements
before and after acquiring imaging data can be used as an indicator of the change in
source strength during the measurement period. Temporal changes can also be caused
by the object itself if it is not stationary, as in the case of fluid flow or a living sub-
ject (due to respiration, cardiac motion, peristalsis, voluntary or involuntary motion).
Overlapping measurements can smooth out the effects of motion.

15.4.4 Calibration

The forward models of emission and scatter imaging, Eqs. (4.1), (5.1), (5.6), and
(6.6), contain system constants that need to be determined. These constants depend
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on parameters that are not affected by imaged objects, and as such in principle can
be determined by calibration. This can be done by recording laboratory measurements
with low statistical uncertainties for a reference object, and dividing the measurement
values by the corresponding normalized (i.e. with the system constant set to unity)
computed values. A reference object is typically a uniform object of known mate-
rial density and composition, representative of the objects to be integrated. Using the
terminology of Chapter 1, a system constant, K, is given by:

K =
ê|δe<<ê−B

(mc)|K=1

∣∣∣∣
Reference Object

(15.2)

where B refers here to the measured background radiation. For the same source and
for identical detectors, the calculated values of the system constant, K, should be the
same for all measurements, irrespective of the nature of the reference object. In reality,
however, no two detectors are fully identical in their response, and the strength of
an external source can have a non-uniform profile which can alter the value of K
as the distance between the detector and the source changes. System constants may,
therefore, be calculated for each detector position.

System constants should be independent of the nature of the reference object. This
independence should be tested by determining the values of the system constants using
two significantly different reference objects. If the system constants change signif-
icantly from one reference object to another, their use in image reconstruction will
have a considerable effect on the results. The inexactness of forward models is likely
the reason the system constants will depend on the reference object, since model sim-
plifications typically ignore object-dependent secondary effects (such as scattering in
transmission and emission imaging, absorption in emission and scatter imaging, and
multiple scattering in scatter imaging). Calibrating for such object-dependent effects
can be a daunting task. Fortunately, however, in many cases, secondary effects are
not very significant and can be ignored, or the detection system can be designed to
reduce their contribution to the recorded counts (e.g. by energy discrimination to dis-
card undesired scattering). In other cases, secondary effects can be incorporated in the
image reconstruction process (as in accounting for radiation attenuation in emission
imaging, see Sections 5.1 and 5.2), or considered as a penalty that need to be min-
imized (as in accounting for multiple scattering in scatter imaging, as discussed in
Section 6.3). Nevertheless, we introduce here a calibration strategy that can alleviate
the object-dependence of the system constants.

Let us express a laboratory measurement in terms of three components: a mod-
eled one, a component not accounted for in the forward model, and the background
component, so that:

ê= K(mc)|K=1+Ksc+B, δe << e (15.3)

where Ks is a secondary calibration constant, which when multiplied by the modeled
parameter, c, gives the secondary effects ignored in the forward model. Here, we are
assuming that the secondary effects are linearly-dependent on c, but if needed higher-
order dependence can be added with the aid of more calibration constants. The value
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of K in Eq. (15.3) can be calculated using Eq. (15.2) for a reference object in which the
secondary effects are known to be minimal, e.g. a thin object where undesirable scat-
tering and attenuation effects are not that significant. Alternatively, the value of K for
a given source-detector configuration can be obtained using a set of reference objects,
and finding the best-fit value that provides an object-dependent K value, since usu-

ally K(mc)|K=1 > Ksc. An estimate for K can be found by minimizing
[

ê−B
m̂c|K=1

−K
]2

,

with a least-squares scheme. Two values for the secondary calibration factor can then
be determined using two reference objects, one, Ksl with a low value cl and the other,
Ksh with a high ch value. Then for an imaged object, an average of its c values can be
utilized to estimate the secondary calibration constant, Ks, to be used in its calibration:

Ks = (1−α)Ksl +αKsh , α =
c− cl

ch− cl

In essence, the estimated Ks value would act on a secondary forward mapping of mea-
surements in accordance to Eq. (15.3). This dual-reference object calibration process
can be extended to multiple-reference objects, if in Eq. (15.3) higher orders of c are
used to correct for secondary effects at a higher level of dependence on c. Also, the
secondary calibration can be updated iteratively, during the image reconstruction pro-
cess as better estimates of c are obtained.

Calibration can also be enabled during each imaging exercise by placing a number
of small reference (calibration) objects of known characteristics at the periphery of the
field of imaging. The reconstructed image parameters can then be scaled to those of
the known calibration objects. The use of more than one calibration object, positioned
at various locations, is desired to average out any spatial bias in the imaging process.

15.4.5 Inexactness

Even though the exactness of the forward model can be assessed with Monte Carlo
simulations, as discussed in Section 15.3, there are aspects of experimental measure-
ments that are difficult to incorporate or exactly emulate in simulations. For instance,
simulated source characteristics in terms of size, self-attenuation, energy distribution,
and orientation may not exactly match the true characteristics, while detector size,
efficiency, energy response, and direction of incidence may not be fully incorporated
or faithfully simulated. Moreover, Monte Carlo simulations are typically performed
for a unit source, and in the forward model the detection efficiency is incorporated
into a calibration constant along with the source strength. Also, the calibration pro-
cess is not always a direct linear scaling process, as discussed in Section 15.4.4. Even
after correcting for background radiation, minimizing systematic error, evaluating sta-
tistical uncertainty, and calibration, comparison between modeled measurements and
those measured in the laboratory, when performed over a number of test object, may
reveal some peculiarities that may not have been taken into account in the background
correction and the calibration processes, or when dealing with systematic error. For
instance, one is likely to discover, at least for some test objects, that the background
correction and the calibration process may not produce consistent matching between
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the forward model and the experiments. Objects very transparent or too opaque to radi-
ation may affect the background component and/or the calibration process, and minor
systematic errors in determining spatial locations may skew the geometric appearance
of some objects toward or away from some detectors. Even when background correc-
tion and calibration produce consistent results, the experimental results will always
have their own statistical fluctuations, and forward-model calibrated and background-
corrected measurements should produce results that lie within the bounds of statistical
variability. If such agreement is not reached, one should revisit the experimental pro-
cesses and introduce necessary corrections.

15.5 Image Quality

A perfect image is a continuous image, while a reconstructed image is discretized
over pixels or voxels. The discretization process has an immediate impact on image
quality: it smoothes out continually changing features and lumps them into a single
value averaged over the area of a pixel or the volume of a voxel. As a result, the
spatial resolution3 of the image is reduced, blurring sharp features. This averaging
process also reduces the contrast sensitivity, i.e. the magnitude of abrupt changes
(narrow peaks and valleys, and edges) will be underestimated. Even if an imaged
object is uniform, discretization will reduce sharpness and contrast at the boundaries
of the image, unless the discretization mesh perfectly matches the edges of the object.
Even with perfect voxel matching, no two adjacent pixels/voxels will have exactly
the same numerical attribute, due to the uncertainties always associated with measure-
ments employed in image reconstruction and their subsequent propagation through
the process. Therefore, uniform objects with curved boundaries (such as disks) pro-
vide convenient means for the quantitative determination of an image’s quality.

A standard method for measuring the spatial resolution and material contrast is
provided by ASTM International.4 This method is based on examining the recon-
structed image of a uniform disk of material. It determines the spatial resolution by
the sharpness at the edge of the disk, and computes the contrast sensitivity by the
statistical analysis of the reconstructed image at the center of the disk, as well as
at the peripheries (see Section 15.5.2). The astm method uses the modulation trans-
fer function (mtd) to quantify the spatial resolution, and the contrast discrimination
function (cdf) to quantify the contrast sensitivity. These two functions are defined in
Sections 15.5.1 and 15.5.2, respectively. Although this standard was developed specif-
ically for transmission-based x-ray and gamma-ray ct systems, the concepts it intro-
duces are equally valid for use in any numerically reconstructed image.

Since numerical values for the image parameter, c, are reconstructed, it is natural
to examine the quantitative accuracy of these values. However, this is not always
a straightforward task, as explained in Section 15.5.4. Methods for determining the

3 Resolution is the smallest observable change in a quantity.
4 ASTM Standard E1695 - 95(2006)e1, Standard Test Method for Measurement of Computed Tomography

(CT) System Performance, ASTM International, West Conshohocken, PA, www.astm.org.
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spatial resolution, contrast resolution, and accuracy are discussed below. It should be
noted that images are eventually viewed by the human eye, and therefore both contrast
and resolution should be judged by human perception, unless images are presented as
tabulated values where absolute pixel/values are individually given.

15.5.1 Spatial Resolution

The spatial contrast of an imaging system is not only determined by the size of voxel/
pixel of the reconstructed image, but is also affected by the size of the source’s field-
of-view and the detector’s aperture, the distance between two adjacent detectors, and
by the number of available measurements relative to the number of image voxels/
pixels.

Let us consider two high contrast small spots far apart in space within an otherwise
uniform background, see Section 15.5.2 for definition of contrast. The reason the two
spots must have a high contrast is to ensure that they are recognizable beyond the
effects of noise and measurement errors in the reconstructed image. If these two spots
are brought close to each others in space, they will remain distinguishable until they
become too closely spaced. Spatial resolution is the minimum distance between the
two spots at which they can still be observed as two distinct spots. One would not
expect the spatial resolution to be less than the width of a pixel/voxel, because if the
edges of the two spots exist within the same pixel/voxel, the image reconstruction
process will smear the attributes of the two spots together into a single value within
the shared pixel/voxel.

Point Spread Function

The spatial spread of a true value of a physical parameter, c(Er), during the imaging
process, can be mathematically expressed as:

c̃(Er)=

∞∫
−∞

K(Er; Er′)c(Er′) dEr′ (15.4)

where c̃(Er) is the observed imaging parameter and K(Er; Er′) is a system-specific spread
function, or kernel. A point at position, Er0, in the image can be represented by an
impulse (a Dirac delta) function, δ(Er−Er0). Therefore, the point spread function (psf)
is given by:

P(Er)=

∞∫
−∞

K(Er; Er′)δ(Er′−Er0) dEr′ = K(Er;Er0) (15.5)

Therefore, psf provides a means of determining the spread function, K(Er; Er′), one
point at a time. Recall that the concept of the point spread function was introduced in
Section 9.2.2 to relate an impulse change in an image parameter, c, to a measurement
profile.
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Even under ideal conditions where there are no physical constraints and no
measurement noise that cause spatial spread in the reconstructed image, the dis-
cretization process (see Section 7.1), necessary for numerical image reconstruction,
will introduce a spatial spread, for a voxel at position Er, in the form of a rectangular
function:

rect

(
Er′−Er

1r

)
=


1 if

∣∣∣ Er′−Er1r

∣∣∣< 1

2

0 if
∣∣∣ Er′−Er1r

∣∣∣> 1

2

(15.6)

where 1r is the voxel width. For uniform voxels, this spread function is independent
of the position of the voxel, and as such the kernel, K(Er; Er′), in Eq. (15.4) can be

represented by a shift-invariant (also called isoplanatic) function: K(Er− Er′). According

to Eq. (15.5), the psf of discretization is the rectangular function: rect
(
Er−Er0
1r

)
.

In practice, however, system imperfections and measurement noise produce a psf
spread non-uniformly in space that surpasses a voxel’s volume. Such spread may be
skewed more in one spatial direction than another. The degree of the spread of the
psf defines the spatial resolution. It is typically measured by the full width at half
maximum (fwhm). The lack of psf isotropy is determined by the variation of the
fwhm when measured in different directions. The skewness (asymmetry) of the psf
at any given spatial direction can also be quantified to indicate any bias in the spread
of the psf in two opposite directions. The psf can vary within the image, and should
be measured at the center of the image, its edges, and in between. One should aim
at designing an imaging system that produces a psf that is isotropic, symmetric, and
independent of position.

The psf can be measured with the aid of a wire of material with an attribute consid-
erably different (much higher or much lower) from that of the surrounding reference
medium. In emission imaging, a wire-like (line) source is used. The spatial resolution
should be measured at different plane orientations in the image, one plane at a time.
The wire should be positioned normal to the selected plane, and the geometric cross
section of the wire should be less than that of an image pixel/voxel in the plane, for
the wire to be representative of a point. On the other hand, the wire should be larger
in length than the thickness of a pixel or the height of a voxel normal to the plane,
to ensure that the pixel/voxel is completely covered by the wire material in the direc-
tion normal to the plane of measurement. A number of wires positioned in different
locations should be simultaneously used to examine the dependence of the spatial res-
olution on position. The location of wires within pixels/voxels should differ such that
in some cases a wire overlaps more than one pixel/voxel, and on average wires occupy
random positions within pixels/voxels.

Line Spread Function

Using the point spread function to measure the spatial resolution is limited by the
fact that in reality one cannot physically represent a point. A wire no matter how
thin still has a finite diameter. Also, if the wire has too small a diameter, it may not
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appear in the reconstructed image with a sufficient contrast to be distinguishable from
the background; rendering it useless as the high contrast medium needed in spatial-
resolution determination. It is, therefore, often more practical to measure the line
spread function (lsf).

The lsf measures the distribution in a reconstructed image of a high-contrast line of
infinitesimal thickness placed within an object. It is the integration of the point spread
function along a line. If the psf at point at position Er is P(Er), then the lsf along a line
in a particular direction Ev is:

L(Ev)=

∞∫
−∞

P(Er) dEv (15.7)

This equation indicates that the lsf can be obtained from the psf by integrating the lat-
ter along the line over which the lsf is defined. However, the lsf can also be measured
by placing a line made of a high contrast material (or a line source in emission imag-
ing) within a reference uniform medium. The thickness of the line object should be
smaller than the width of voxel/pixel in the imaging system. The lsf can be quantified
with the fwhm of the observed psf at varies locations of the line, with all indicators
integrated to provide an overall lsf for a given line. One can also progressively bring
two wires close to each other and observe their positions in the reconstructed image.
The smallest distance beyond which the image of the two wires overlap each other
defines the spatial resolution around the location of the two wires. A number of wires
branching out from the tip of a triangle (forming a fan) should be used for measur-
ing the lsf in a plane, since this configuration provides a varying separation distance
between the lines, see for example Smith (2003, Chapter 25). Then each wire and the
adjacent space define a line pair, and the spatial resolution can be expressed in terms
of line pairs per unit distance (e.g., lines per mm: lpm). With such a line-pair gauge,
the distribution of the lsf in the plane can be examined at different lpm values. The
lpm at which the separation of the wire is barely visible in the image determines the
spatial resolution of the image.

It should be noted the lsf’s depends on the direction of the line. Consequently,
though a lsf in a given direction can be calculated by integrating the psf along the
line of the lsf, the opposite is not true, i.e. the psf cannot be calculated from a single
lsf, unless the psf is isotropic.

Edge Response Function

Although a line spread function is easier to measure than a point spread function, mea-
suring the former can still suffer from one of the disadvantages of the latter; namely,
the disappearance of the high contrast advantage if the wire used to measure the psf
is too thin to be visible in the reconstructed image. Both the psf and lsf are based on
the system response to an impulse function, at a point or over a line. However, the
system response can also be obtained via a step function, which is the premise of the
edge response function (erf). A step function is essentially a line function that ends
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at the point in space where the step is created. Therefore, an erf, S(Ev,v0), that has a
non-zero value until location, v0, on the line direction, Ev, is related to the lsf, L(Ev),
along this line by:

S(Ev,v0)=

v0∫
−∞

L(Ev′) d Ev′ (15.8)

Consequently,

L(Ev)=
dS(Ev,v0)

dv
(15.9)

The erf can be measured with the aid of a block of a high contrast material (or a
plate source in emission imaging) that has a planar edge. The plane of the edge should
be placed perpendicular to the plane within which the spatial resolution is to be deter-
mined. The planar edge of the block should be aligned at a slight angle with either
the edges of pixel/voxel rows or columns in the measurement plane to magnify the
edge response by having the plane edge partially occupying image voxels. This facil-
itates the calculation of the lsf from the erf, using Eq. (15.9). The erf is quantified
by the distance within which the edge response rises from 10% to 90% (Smith, 2003,
Chapter 25).

Modulation Transfer Function

The spatial resolution, as indicated above, is typically expressed in terms of line pairs
per unit distance, which is a spatial frequency. Therefore, the spatial resolution can
also be examined in the frequency domain, with the aid of Fourier expansions, as
discussed in Section 8.3.1. This is because an image can be viewed as consisting of
sinusoidal waves with a range of spatial frequencies with varying amplitudes. A uni-
form image has low-frequency components, except at its edges where high frequency
components are needed to describe the abrupt change of the image attributes to zero
outside the image domain. In a more general image with many features, a wide range
of frequencies would be present. The amplitude of each frequency component should
be sufficiently high to distinguish it from the low frequency of the background. The
absence of some frequencies, or a reduction in their amplitude and a shift in their
phase, would blur the image and reduce its spatial resolution. Therefore, similar to
introducing an impulse into an image to determine its point spread function, one can
introduce a frequency component to determine the modulation transfer function of the
image.

Let us consider a true feature in an image of a frequency component of unit ampli-
tude, u(Er)= exp[2π i(Ek · Er)], with Ek being the spatial frequency (wave number) vector.
According to Eq. (15.4), this feature would be blurred and appear as:

ũ(Er)=

∞∫
−∞

K(Er; Er′)exp[2π(Ek · Er′)] dEr′ (15.10)
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If the shape of blurring of a point in an image is independent of the location of the
point (i.e. shift invariant), then the kernel, K(Er; Er′) in Eq. (15.4) can be replaced by
the convolution kernel: K(Er− Er′). Substituting Er′′ = Er− Er′ in Eq. (15.10) and using the
convolution kernel, one has:

ũ(Er)= exp[2π(Ek · Er)]

∞∫
−∞

K( Er′′)exp[−2π(Ek · Er′)] d Er′′ = u(Er)K(Ek) (15.11)

with the last step arrived at using the definition of the Fourier transform, Eq. (8.6).
The use of K( Er′′) in Eq. (15.11) indicates that a shift-invariant spread function retains
the frequency of a feature in the image, while changing its amplitude and phase shift

by the Fourier transform of the spread function, K(Ek). This factor of change is known
as the transfer function, as it determines the amount of change (by blurring) in the
amplitude and phase shift of a frequency component. Notice that the transfer func-
tion is a constant for a given frequency, k, i.e. it is not a function of position as
expected for a shift-invariant psf. The magnitude of the transfer function is known
as the modulation transfer function (mtf). Recalling from Eq. (15.5) that an impulse
image produces the point spread function, p(Er), therefore, the mtf is simply the mag-
nitude of the Fourier transform of a shift-invariant psf. Consequently, the mtf is the
one-dimensional Fourier transform of the ltf, and the latter is found from the erf by
taking its derivative according to Eq. (15.9).

An image consists of the superposition of many frequency components. Therefore,
an image can be represented as:

c(Er)=

∞∫
−∞

exp[2π(Ek · Er)]C(Ek) dEk (15.12)

where C(Ek) is the Fourier transform of the original image parameter, c(Er), at various
locations, Er, in the image:

C(Ek)=
∞∫
−∞

exp[−2π(Ek · Er)]c(Er) dEr (15.13)

Using the fact that the amplitude and phase shift of each frequency component is
modulated by the transfer function, K(k), then the image is blurred to:

c̃(Er)=

∞∫
−∞

K(Ek)exp[2π(Ek · Er)]C(Ek) dEk (15.14)

A Fourier transform of Eq. (15.14) yields:

Ĉ(Ek)= C(Ek)K(Ek) (15.15)
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One would arrive also at Eq. (15.15) by the Fourier transform of Eq. (15.4) when
the kernel is shift invariant, which affirms the fact that a frequency component in an
image is blurred by the mtf without a change in frequency. It should be noted that the
exponential term in Eq. (15.14) is a sinusoidal function, which is difficult to introduce
in imaging systems. When rectangular waves, or other waves that introduce sharp-
edges, are used, the obtained transfer function is no longer exactly an mtf, and should
be more rigorously referred to as the contrast transfer function (ctf) (Morgan, 1983).

The line-pair gauge, described in Section 15.5.1, provides different spatial frequen-
cies, in terms of line pairs per unit distance; with the highest frequency being at the tip
of the triangle and the lowest at the opposite end. The Fourier transform, performed
digitally with a fast Fourier transform, of the lsf, measured with this gauge provides
the mtf at various frequencies. Also, the erf measured with a block inclined with the
pixel/voxel lines, can be used to find the mtf at various spatial frequencies, by taking
the derivatives of the erf to find the lsf and then applying the Fourier transform. The
mtf can also be measured directly, albeit approximately, by using a star or a sunburst
gauge (Morgan, 1983). The spatial frequency at which the mtf is so reduced in value
that it is not practically observable defines the spatial resolution of the image. For
emission imaging, capillary line sources can be used, see for instance the qc phan-
toms of the Data Spectrum Corporation, Hillsborough, North Carolina (http://www
.spect.com/products-all.html).

As indicated at the beginning of this section, the astm procedure for measuring
the spatial resolution in computed tomography, requires the use of a uniform disk
of a high-contrast material. The psf of a disk would produce a profile in the form a
rectangular pulse along a line passing through the center of the disk, provided that the
psf is symmetric and isotropic. The lsf is then the integral of the profile of psf along
a certain direction. In effect, the lsf is the summation of the image parameters in the
pixels/voxels, along the selected direction. The profile of the lsf is then obtained by
traversing the disk in a direction normal to the direction of the line of the lsf, and
adding the pixel/voxel values in the direction of the line. Therefore, for a rectangular
function of a uniform disk, the lsf should have a sinϑ profile, with ϑ being the angle
with the normal to the line of the lsf as it sweeps from one end of the disk to the
opposite end. The edge of the disk also covers pixels/voxels at various rates, providing
the ability to determine the erf at different spatial frequencies, the derivative of which
produces the lsf. As indicated earlier, the Fourier transform of the lsf provides the
mtf. The derivative of the erf is also the slope of the psf point spread function around
the circumference of the disk. Therefore, the mtf takes into account the edge response
at all angles. To determine whether the psf of the imaging system is symmetric and
isotopic, the lsf should be measured at various directions, at least at two mutually
perpendicular directions.

15.5.2 Contrast

Contrast is the ability to distinguish in an image two neighboring features of nearly
identical intensity. The contrast of an image is affected by the size and number of
voxels/pixels of the image, the strength of the source, the detector efficiency, and the
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measurement time (factors that control the strength of recorded measurements). The
image reconstruction process can also affect contrast, if it results in smoothing of
image parameters, which smears small differences between neighbors.

Contrast is defined by the absolute difference between image parameters, 1c,
between two similar but not identical physical attributes. If these two features are
indistinguishable from each other, they would appear as a single entity. We will
differentiate here between visual (subjective) distinguishability and numerical (quan-
tifiable) distinguishability. The former is used in visual sciences, see for example
Wandell (1995), to determine the detection threshold i.e. the value below which it
becomes difficult for human observers to discern the two features. Since the value of
c is numerically readily available, it is more objective to quantify the detection thresh-
old as the smallest numerical value of |1c|, below which |1c| is not distinguishable
from statistical uncertainties. Contrast detection threshold is also known as contrast
resolution or contrast discrimination.

The two features considered in defining contrast can be provided by an insert and a
surrounding uniform medium, if the insert and the surroundings are slightly different
in their physical attributes. The contrast detection threshold depends on the size of
the examined feature, since a large feature is easier to discern from an image’s back-
ground than a smaller one. Therefore, contrast can be defined by the smallest volume
(or number of voxels/pixels) required to distinguish in an image a certain contrast
level. Contrast resolution and spatial resolution are naturally related. It is difficult to
simultaneously have an image with both a high spatial resolution and contrast reso-
lution; to determine one, the other must be suppressed. As such, in determining the
spatial resolution, in Section 15.5.1, we needed small spots with high contrast, while
for measuring contrast large spots are employed.

A contrast ratio is typically used to quantify contrast. A number of measures can
be utilized to define this ratio (Mantiuk et al., 2006):

Simple Contrast=
cf

cb

Weber Fraction=
|cf − cb|

cb

Logarithmic Ratio= log10

∣∣∣∣ cf

cb

∣∣∣∣
Signal-to-Noise Ratio=

|cf − cb|

σf

where cf and cb designate, respectively, the values of the image parameter, c, for the
test (insert) feature and its immediate neighboring background, and σf is the standard
error (variance) in the value of cf . The log10 is used, instead of natural logarithm, as it
is the convention employed in vision science; it results in, when multiplied by ten, a
contrast defined in units of decibels (dB). The logarithmic ratio enables the definition
of the contrast over a wide range.

While measuring spatial resolution requires the use of a high contrast test object,
measuring contrast demands a low-contrast test object, i.e. low c value, where the
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uncertainties (noise) in c can compete with the value of c itself. Therefore, contrast
resolution is often referred to as low-contrast resolution (Kalender, 2005). The con-
trast threshold necessary for the detection of an intrusion in an otherwise low-contrast
uniform image is determined, as recommended by the International ASTM Standard
E1695 - 95(2006)e1, by statistical analysis of the reconstructed image of a uniform
disk. The standard errors (deviation from mean) for the c values in regions of various
sizes should be calculated. Regions of progressively increasing size (number of pixels/
voxels) should be considered at the center of the image, as well as its peripheries. The
minimum contrast (detection threshold), |1c|min, is determined by assigning a certain
confidence level; say 3.29σc for a 95% probability of detection (assuming a normal
distribution of the c values). A plot of the detection threshold contrast versus the region
size (which can be designated in terms of the number of pixels/voxels in each region)
forms the so-called contrast discrimination function (cdf). The contrast resolution,
value of |1c|min, for a given intrusion (insert) size, is the value corresponding to the
intrusion size in this empirically constructed cdf function; with the view that the intru-
sion must produce a c value that exceeds the threshold detection contrast for its size.
The Weber fraction at the detection threshold is then the ratio of the quotient of the
threshold contrast to the average c value of the background.

While cdf provides a predicted detection threshold contrast, the actual detection
contrast can be determined by testing using an object with inserts of various sizes
containing a material with attributes slightly different from those of the background
material; such as polystyrene in water in transmission and scatter imaging, and too
weak but slightly different source activities in emission imaging. The averages of
the distribution of the c values, in the pixels/voxels corresponding to each insert in
the reconstructed image, are then calculated. The difference between these average
c values and the c value for the background medium determines the actual detection
contrast, |1c|actual, for different insert sizes. The ratio of the actual detection contrast
to the threshold detection contrast, |1c|actual

|1c|min
, defines the so-called visibility factor (von

Falck et al., 2008). At a value of one, the visibility factor is the threshold detectability
at the confidence level at which the cdf was devised.

15.5.3 Sensitivity

Sensitivity is the magnitude of the rate of change of an output of an operation with
respect to its input. Since in imaging the input is a measurement vector, e, and the out-
put is a reconstructed image represented by the vector c, image sensitivity is defined

by a matrix in which the ij element is
∣∣∣ ∂ci
∂ej

∣∣∣, where ci and ej are, respectively, elements

in c and e. This matrix can be derived mathematically from the problem’s forward
model, and it should be examined to determine, and subsequently remove, any mea-
surement that results in poor sensitivity. Experimentally, a number of approaches, each
providing a different perspective to sensitivity, can be applied. For example, the sen-
sitivity of a system to statistical fluctuations in measurements can be determined by
taking measurements for a certain object at two levels of uncertainties; say by chang-
ing the source strength and/or measurement acquisition time to values slightly differ-
ent from the nominal design operating values, and reconstructing the corresponding
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images. The voxel-by-voxel differences between the reconstructed images at the two
levels of uncertainties relative to the observed change in measurements determine the
sensitivity-to-fluctuations matrix. One desires, of course, low sensitivity to fluctua-
tions. Alternatively, one can image two uniform objects of different physical prop-
erties. Again, the voxel-by-voxel differences between the reconstructed images and
measurements for each object produce a contrast-sensitivity matrix.

Experimentally-determined sensitivity matrices incorporate physical and measure-
ments effects not included in the forward model. Measuring or determining the sensi-
tivity matrix is useful in the design process, while for an operating system measuring
the spatial resolution and contrast are sufficient as measures of the system’s sensitivity.
This is because sensitivity affects both the spatial resolution, through the point spread
function, as well as the change in the c values. Therefore, the term contrast sensitiv-
ity is also used to define contrast. Note that in visual sciences contrast sensitivity is
defined as the negative of the logarithm of the Weber fraction at the threshold detec-
tion contrast (Wandell, 1995). With this definition, a low threshold detection contrast
would indicate large sensitivity, as one would intuitively expect.

15.5.4 Accuracy and Precision

Since in radiation imaging, the constructed image parameters, c, are physical
quantities, one should question the accuracy of these parameters; i.e. how close the
indicated values are to the corresponding “true” values. Accuracy can be measured by
comparing the true value of the imaged physical attributes to the reconstructed values.
In emission imaging, this is doable, since the true source activity can be directly
measured. In transmission and scatter imaging, particularly when imaging with a mul-
tienergetic source, such as an x-ray source, the true image parameters should be inde-
pendently deduced from transmission and scattering measurements (as appropriate). In
other words, one should not rely on theoretical values, to avoid uncertainties in deter-
mining material density and composition and the effect of the source energy distribu-
tion on the imaged physical attributes. Alternatively, one can rely on the calibration of
image parameters, by reconstructing the image of an object of known attributes and
comparing the results against the theoretical values of these attributes. Such calibration
process is also useful in determining the so-called contrast scale factors of an imag-
ing system. The contrast factor is the difference in the actual physical attributes of
two media relative to the corresponding observed change in a reconstructed image
of the two media (Lin et al., 1993). The scale factors can be useful in determining,
in transmission imaging with multienergetic radiation source, the effective energy
of the source by finding the energy that produces nearly a contrast scale factor
of unity.

The precision of an imaging system is determined by the degree of repeatability and
reproducibility of c, within the anticipated range of statistical fluctuations. However,
operating conditions and equipment positioning, if the design is not robust, can have
an effect on the acquired measurements and the manner in which they are related to c
in the forward model. Therefore, constancy tests for image spatial resolution, contrast
and accuracy should be periodically performed to detect any changes in system
components.
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15.5.5 Systematic Artifacts

Statistical fluctuations in measurements tend, by their nature, to produce random
artifacts in the reconstructed image, though the degree of which may depend on the
method of imaging and the image reconstruction algorithm. Systematic errors can also
produce image artifacts. The most prominent of systematic errors could be the one
caused by the simplification of the forward model employed in the image reconstruc-
tion process, as discussed in Part I of this book. Such modeling errors have a direct
effect on imaging because the forward model is inverted to reconstruct the image.
Even if the forward model is reasonably representative of the physical process, the
discretization of the image into voxels or pixels results in averaging of the imaged
physical property over the volume of each discretized element. If an element hap-
pens to encompass more than one material, discretization will provide an average
value of the imaged parameter based on the volumetric fraction occupied by each ele-
ment. The result is an artifact called the partial-volume effect that blurs boundaries
between image regions. The opposite of this effect occurs if radiation divergence is
not accounted for in the forward model, resulting in pixels/voxels outside the intended
source/detector fields-of-view being folded into the designated ones, producing an
overfilling of those pixels/voxels.

Systematic errors are also caused by mechanical effects (motion and displace-
ment), geometric factors (misalignment and object falling outside designated imag-
ing domain), or equipment failure, as well as bias in the image reconstruction process
itself. Also poor measurement sampling produces a systematic artifact. The fact that
each detector itself has a physical finite volume, i.e. it is not a point, introduces widen-
ing of the point spread function and a systematic reduction in spatial resolution. Drift
and instability in detectors and associated electronics result in change in the mea-
surements, hence are also a cause for image artifacts. In addition, detector saturation
by very high radiation intensity or susceptibility to electronic noise at low radiation
intensity both result in a measurement that does not faithfully reflect the intensity of
radiation reaching the detector. Mechanical vibrations and external electric fields can
also alter a detector’s repose. Some detectors have a hysteresis effect, or afterglow,
that contaminate subsequent measurements taken shortly after by the same detector.
Detectors in close proximity can also influence each other through cross-talk.

Owing to their systematic nature, systematic artifacts tend to produce certain
recognizable patterns in the reconstructed images, such as rings, streaks, banding,
cupping, or simply characteristic blurring. Imaging of a uniform test object with
low-uncertainty measurements can reveal such artifacts. Other sources of errors that
cause artifacts (systematic and otherwise) are given in this book under “error” and/or
“artifact.”

15.6 Test Objects

For medical imaging, computed tomography (ct) image parameters for sections
of human male and female cadaver are made available by the U.S. National
Institute of Health through the Visible Human Project: http://www.nlm.nih
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.gov/research/visible/getting data.html. This section presents some sim-
ple section configuration that are suited for the assessment of image reconstruction
algorithms for medical and industrial imaging.

15.6.1 Single Inserts

After testing with a uniform object, the next step is to consider an insert within a
uniform object. The simplest approach is to introduce, in an otherwise uniform object,
inserts of different material attributes. One can start with a linear strip, move to a cubic
or a parallelepiped volume, then perhaps to some arbitrary shape. These inserts enable
examining an imaging system’s ability to distinguish abrupt changes and boundaries,
i.e. to test image sharpness. However, particularly in medical imaging, one needs to
also examine changes associated with curved shapes.

The simplest curved configuration is that of a sphere. The size and density of a
spherical insert can be varied. The spherical shape is equivalent to a circular insert in
section (tomographic) imaging. The sphere is analytically easy to generate and incor-
porate into the forward model to generate modeled data for testing. The location of a
voxel ijk extending from point (xi,yj,zk) to point (xi+1,yj+1,Zk+1) with respect to a
spherical insert of radius R centered at point (x0,y0,z0) is such that:

Voxel is inside sphere, if:

1

R2

[
(xi+l− x0)

2
+ (yi+m− y0)

2
+ (zi+n− z0)

2
]
≤ 1 (15.16)

for all combinations of l= 0,1; m= 0,1;k = 0,1.

Voxel is outside sphere, if:

1

R2

[
(xi+l− x0)

2
+ (yi+m− y0)

2
+ (zn+l− z0)

2
]
> 1 (15.17)

for all combinations of l= 0,1;m= 0,1;k = 0,1

Voxel is intersected by sphere, if:

both Eqs. (15.16) and (15.17) are not satisfied. (15.18)

The latter condition would necessitate calculating the volume of the portion of the
voxel which lies inside the sphere, so that the voxel attributes can be weighted accord-
ingly in a forward calculation. An approximate estimate of the volume inside the
sphere can be obtained by assuming that each voxel’s corner-point corresponds to
one eighth

( 1
8

)
of the voxel’s volume. Then, the number of voxel corners that do not

satisfy Eq. (15.16) multiplied by 1
8 gives the fraction of the voxel volume outside the

sphere. Similarly, the number of voxel corners that do not fulfill Eq. (15.17) times 1
8

gives the fraction of the voxel volume inside the sphere. The two volume portions
should complement each other. More accurate volume calculations can be obtained,
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for voxels partially within the sphere insert, by determining the intersections points of
the voxel within the sphere.

A more sophisticated insert is that of an ellipsoid, whose surface can be described
by the general equation:

1

a2
[(x− x0)cosϑ sinϕ+ (y− y0)sinϑ sinϕ+ (z− z0)cosϕ]2

+
1

b2
[−(x− x0)sinϑ + (y− y0)cosϑ]2

+
1

c2
[−(x− x0)cosϑ cosϕ− (y− y0)sinϑ cosϕ+ (z− z0)sinϕ]2

= 1

(15.19)

where a, b and c are, respectively, the radii along the X, Y , and Z axes of the spheroid,
ϑ is the polar angle the major axis X makes with the x-axis of the coordinates sys-
tem, and ϕ is the azimuthal angle the X-axis makes with the z-axis of coordinates. In
the formulation of Eq. (15.19), it is assumed that the ellipsoid was not azimuthally
rotated, but formulations that consider such rotation can be analogously generated. Of
course, when a= b= c, one has a sphere. When a= b< c, one has a prolate spheroid
(North-American football-shape), while a= b> c gives an oblate (door-knob shaped)
spheroid. The procedure for locating a voxel within an ellipsoid is similar to that for
the sphere with the left-hand-side of Eq. (15.19) replacing the corresponding one in
the inequalities of Eqs. (15.16) and (15.17). The same approximate approach, used for
a spherical insert for determining the volume of a portion of voxel intersected by the
insert, can also be applied for an ellipsoid insert.

15.6.2 Multiple Inserts

While test objects with a single insert enable examination of the ability of an image
reconstruction scheme to distinguish between two materials and determine the loca-
tion and shape of an enclosed cluster, they do not challenge the problem with many
features that can mask each other. Multiple inserts do not only provide such a chal-
lenge, but they also test for more realistic features. Selective voxel-by-voxel fillings
can fulfill this purpose. A multi-layered object can be set to emulate a composite mate-
rial. On the other hand, a checkerboard formation of voxels with alternating materials
can test whether the image reconstruction process can decipher adjacent voxels, or
simply smears them into some averaged value. Selective voxel-by-voxel designation
can also be used to configure a test object that resembles any desired systematic or
random patterns.

In order to accommodate curved geometries, multiple spherical or ellipsoidal
inserts can be employed. Determining whether a voxel is fully or partially inside a
given curved region can be determined in the same fashion used above for a single
insert, by deciding whether the voxel is in the inside of an ellipsoidal surface, out-
side of it, or is intersected by it. When an ellipsoidal surface overlaps others, each
surface can be designated a so-called gray level, so that the attribute of a voxel
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is the sum of the gray-level values of the surfaces within which it intersects, in
addition to partial (volume-weighted) values for the surfaces that intersects it. A sur-
face gray level could be negative to be able to reduce the value of the attributed
physical parameter. This is the approach used by Shepp and Logan (1974) for a
section of the skull. This test section is widely used in testing medical images,
because in addition to being easy to implement, it provides rich and nearly-realistic
textual and density changes. Matlab provides a function for this phantom, along
with a modified version. A 3D extension of this function that generates a phan-
tom consisting of an arbitrary number of ellipsoids in 3D is also available via the
matlab Central File Exchange: http://www.mathworks.com/matlabcentral/
fileexchange/loadFile.do?objectId=9416. These continuous phantoms can
also be used to examine the effect of discretization on image reconstruction.

The Phantom Laboratory, Salem, NY (http://www.phantomlab.com/) pro-
duces phantoms for testing medical imaging systems. Data Spectrum Corpo-
ration, Hillsborough, North Carolina (http://www.spect.com/products-all
.html) provides a number of phantoms for use in emission imaging (spect and
pet). The phantom group (Arbeitsgruppe Phantome) of the Institute of Medi-
cal Physics Friedrich-Alexander-University Erlangen-Nürnberg, Henkestr, Erlangen,
Germany http://www.imp.uni-erlangen.de/phantoms/) describes a number
of phantoms for testing transmission-based ct systems that can also be utilized
in scatter imaging. Imaging Solutions, Sunnybank Hills, Qld, Australia (http://
www.imagingsolutionsaus.com.au/) supplies phantoms and tissue simulation
solutions.
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16 Post-Processing: Image
Enhancement

Images are reconstructed over discrete pixels/voxels. An imaged object tends,
however, to be composed of regions of continuous material with interfacing bound-
aries. Within each region, discretization can conceal small changes from one point
to another. Even if a region is uniform, measurement uncertainties may give the
appearance of fluctuating image parameters. Discretization also blurs abrupt changes
at boundaries between regions, since pixel/voxel boundaries are unlikely to coincide
with natural boundaries, and measurement noise tends also to smear out the bound-
aries. One is, therefore, tempted to apply some form of image processing on recon-
structed images to accentuate their features, e.g. by smoothing out noise or sharpening
the appearance of edges.

Image enhancement aims at producing a better quality image from an image of
lesser quality (raw image). It is, therefore, a mapping of one image to another. As such,
image enhancement can be viewed as an inverse problem for which the input is the
raw image. This mapping is, however, a one-to-one correspondence between the pixel/
voxels of the enhanced image and those of the raw image; unlike the inverse problem
of image reconstruction where a measurement usually corresponds to many image
parameters. As a result, the inverse problem of image enhancement deals with pixels/
voxels that are not directly correlated to each other. On the other hand, because in
image reconstruction measurements present some form of correlation between pixels/
voxels, it is advisable to incorporate some image enhancement measures within the
image reconstruction process itself through regularization, see Section 10.4. Post-
processing of reconstructed images becomes then a means to enhance the visibility
(by the eye or any other visual aid) of reconstructed images. Therefore, direct image
enhancement is considered here to be concerned with removing spatial blurring and
faintness, in order to provide the human eye with appealing crisper and sharper images.
Image processing, enhancement, and restoration methods are widely available for use
with digital photographs, video frames, and astronomical images. Here, an overview
of image enhancement methods is given, addressed in a fashion similar to that used
for solving the inverse problem of image reconstruction. More details can be found in
textbooks on digital image processing or signal processing e.g. Castleman (1996),
Gonzalez and Woods (2008), Proakis and Manolakis (2007), and Smith (2003).
The neural networks optimization method (Section 11.8), and genetic algorithms

Computed Radiation Imaging. DOI: 10.1016/B978-0-12-387777-2.00016-1
c© 2011 Elsevier Inc. All rights reserved.
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(Section 11.6), have been also suggested for this purpose, see Tsoy and Spitsyn (2006)
and Paulinas and Ušinskas (2007).

The emphasis in this chapter is on image enhancement, not on image processing.
The latter deals with extracting information from an image by segmenting it
to extract particular features, recognize or detect certain patterns or characteris-
tics, or as an image analysis tool. These, as well as image enhancement meth-
ods, can be found in a variety of image processing software, such as: matlab’s
Image Processing Toolbox (http://www.mathworks.com/products/image/);
Quantim, licensed free of charge software, (www.iup.uni-heidelberg.de/
institut/forschung/groups/ts/soil physics/tools/); and the Hyperme-
dia Image Processing Reference-hipr (http://homepages.inf.ed.ac.uk/rbf/
HIPR2/hipr top.htm). One should keep in mind that methods for image process-
ing, enhancement, and restoration are rapidly evolving fields due to the continuing
improvement in computer technology.

16.1 Image Convolution

Let the spatial distribution of a reconstructed image be denoted by g(Er), which is a
function that is known only at discrete intervals defined by the c values of the recon-
structed image at various pixels/voxels. We are using here the f -g-h notation, not only
because it is commonly used in the literature of image processing, but also to distin-
guish the inverse problem of image enhancement from that of image reconstruction.

The purpose of image enhancement is to remove as much as possible the effect of
the spatial (geometric) spread and faintness in the reconstructed image inherent in the
discretization process and the associated uncertainties (noise), i.e. to restore g(Er) to an
enhanced image, f (Er). Faintness in an image is caused by fluctuations in arriving at
the image parameter, g, which are typically reduced by increasing exposure (intensity
of radiation source and/or measurement time). Therefore, the effect of faintness can
be accounted for in image restoration by considering the image to contain an additive
noise component that needs to be removed. Each point in the restored (after process-
ing) image is assumed to have been blurred by a point spread (blurring) function,
h(Er; Er′), that describes the influence of point Er on a neighboring point Er′.

The concept of the point spread function was discussed in Section 9.2.2 in terms
of relating an impulse change in an image parameter, c, to a measurement, e, and in
Section 15.5 for relating a true change in c to the corresponding change in the recon-
structed image. Here, we consider it from the perspective of relating a reconstructed
image (considered to be degraded) to the sought enhanced image (considered to be
the true image). Ideally, the true image is the amalgamation of contiguous points, each
represented by a Dirac delta function modified by a certain amplitude, so that:

f (Er)=
∫
δ(Er− Er′) f (Er′)dEr′ (16.1)

where δ(Er− Er′)= 1 when Er′ = Er, and is equal to zero otherwise. Spatial degradation
alterers the delta function to a point spread function, h. Typically, the influence of
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a point spread function (psf) depends on the distance Er− Er′. Therefore, psf can be
expressed as h(Er− Er′), and is then said to be shift-invariant (or isoplanatic).

Let us assume for simplicity that h is a spatially linear function. The degraded
image, g, can then be represented as

g(Er)=
∫

h(Er− Er′)f (Er′) dr′+ η(Er)= h(Er) ∗ f (Er)+ η(Er) (16.2)

where “∗” designates a convolution operator, and η(Er) is the noise component associ-
ated with f (Er). Note that if h(Er− Er′)= δ(Er− Er′), then the image is degraded only by
noise. Equation (16.2) shows that image spatial blurring is a convolution of the true
image. Therefore, the enhanced image, f (Er), is restored by deconvolution. The restored
image is considered to be a visually appealing image, since the deconvolution process
removes the effect of the psf, producing a smoother (less rugged) image structure,
from which features are easier to identify. Since the eyes see only a surface image, we
will assume that planar (section) images are to be enhanced, so that selected planes in
a three-dimensional image are considered one at a time; though the generalization to
three dimensions is doable in many cases.

Equation (16.2) is easier to perform in the frequency domain, where convolution
is transformed to a multiplication operation. Like a musical tone, an image can be
decomposed into a set of sinusoidal waves (albeit in space, rather than in time) of
various frequencies and amplitudes. This decomposition is accomplished via a Fourier
transform, see Section 8.3.1. The convolution of Eq. (16.2) in the spatial frequency
domain is simply the multiplication of the Fourier transforms of h and f (H and F ,
respectively), so that:

G(Ek)=H(Ek)F(Ek)+N (Ek) (16.3)

where Ek is the spatial frequency vector and N (Ek) is the Fourier transform of the
noise component at frequency Ek. Therefore, the Fourier transform, F , of the restored
image, f , is obtained by:

F(Ek)=
1

H(Ek)
G(Ek) (16.4)

provided that N (Ek) << G(Ek), which is hopefully the case. The restored image is then
obtained by the inverse Fourier transform (indicated by F−1):

f (Er)=F−1
{
F(Ek)

}
=F−1

{
G(Ek)−N (Ek)

H(Ek)

}
(16.5)

This Fourier transform is to performed in two dimensions for an image plane, or
three dimensions in a volume image. The following section examines the nature of
the blurring function, h, and noise.
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16.2 Image Degradation

16.2.1 Point Spread Function

Without knowing the inherent point spread function (psf) that causes image degra-
dation, one can assume some simple psf to enhance image quality. For example, an
image can be smoothed using the following psf:

h(Er− Er′)|Smooth = a0δ(Er− Er′)+ a1δ(Er− Er′+11Er)+ a2δ(Er− Er′+12Er)+ ·· · ;

a0>a1>a2>0, . . . ;
∑

ai = 1 (16.6)

where1nEr is the distance from a first voxel to its nth neighbor, and the ai’s are smooth-
ing weights. Obviously, a0 is the weight given to a voxel at Er′ = Er, a1 is that given to its
immediate (first neighbors), a2 is the weight to second neighbors, and so on. For a two-
dimensional image of square pixels with width, 1L, with four immediate neighbors
and four second neighbors, one has: a0 = 0.25, a1 = 0.125, a2 = 0.0625,ai = 0, i> 2,
|11Er| =1L, and |12Er| =

√
21L. In the frequency domain, the smoothing filter of

Eq. (16.6) is a low-pass filter that removes high spatial frequency components, typi-
cally associated with noise or sharp edges.

A high-pass filter in the frequency domain enhances edges, and is equivalent to a
second derivative finite-difference (Laplacian) filter. In the spatial domain, its psf is
expressed as:

h(Er− Er′)|Sharpen = a0δ(Er− Er′)+ a1δ(Er− Er′+11Er)+ a2δ(Er− Er′+12Er)+ ·· · ;

|a0| =
∑
i>0

|ai|, . . . ;
∑

ai = 0 (16.7)

For the two-dimensional example above, one can employ a second derivative rely-
ing only on the first neighbors so that: a0 = 4, a1 =−1,ai > 0, i> 1, or incorporate
second neighbors: a0 = 8, a1 =−1,a2 =−1,ai > 0, i> 2.

A high-pass filter can also be described as the complement of a low-pass filter, i.e.

h(Er− Er′)|Unsharp masking = δ(Er− Er′)− h(Er− Er′)|Smooth (16.8)

This psf is known as unsharp masking because it emulates the traditional film pho-
tography technique; in which a mask, created from a blurred (out of focus) image, is
superimposed on the original image. Since deconvolution with the impulse function,
δ(Er− Er′), leaves an image’s spatial spread unaltered, while a low-pass filter retains
low frequency components (associated with spatial uniformity), the filter of Eq. (16.8)
allows the high frequency components of abrupt edge changes to remain in the image.
This results in a mask showing the contours of edges present in the image. Obviously
the filter of Eq. (16.8) will produce a faint image, but when subtracted from (overlaid
over) the original (unprocessed) image will give an outline of the edges. This image
can then be sharpened by selectively increasing the contrast of pixels near the contours
relative to those away from it.
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The point spread functions described above assume no knowledge of the nature
of the physical process or the system that produced the image. The goal was simply
to accentuate some image features by smoothing out any spatial spread inherent in
the image formation, or by sharpening edges. If these same operations are performed
using the actual system’s psf, or at least an estimate of which, one would expect
a more realistically enhanced image. The procedures described in Section 15.5, for
measuring the psf relating image parameters to measurements, can also be utilized to
determine the psf relating actual image parameters (those of the calibration reference
object) to the reconstructed image parameters. The psf for the reference object can be
assumed to be the same for other objects, since the spatial spread is typically governed
by the physical nature of the imaging setup, the discretization mesh over which the
image is reconstructed, and the image reconstruction scheme. Even without experi-
mental measurements, one can arrive at an approximate estimate of the psf using
the available unprocessed image itself and some a priori knowledge of the imaged
object. For instance, one can recognize some image features, such as edge corners
of uniform regions. Then, by selecting a few pixels/voxels in the predictable region
and comparing their image parameters to the expected actual ones, one can estimate
the psf, which can be employed everywhere in the image, if it is spatially invariant.
Section 16.7 presents a blind approach for estimating the inverse of the point spread
function. Another approach is to assume a Gaussian (normal) distribution of a certain
variance as the psf. The rationale for this choice is discussed below.

Blurring (spread) of the ideal impulse (delta) function can be attributed to a number
of factors. In radiation reconstructed imaging, the cause of such spatial blurring can be
traced from the source of radiation (whether external or embedded) to the detector that
records the measured radiation and its associated electronics, and through the inverse
problem that reconstructs an image from the measurements. An external source of
radiation is never a point (an isotopic source has a finite volume and an x-ray machine
has a finite focal spot size). A detector, whether stand-alone or as a part of a flat panel
detector array, has also a finite volume. The fixed voxel/pixel size within which an
image is reconstructed introduces directly a rectangular spread function within the
image. The discretization of the forward problem, see Section 7.1, also causes blur-
ring. Mechanical positioning and motion (object and equipment) influence the spread
function. Given the above stated factors, it is not easy to describe analytically a point
spread function. However, given that blurring is caused by many factors that are gen-
erally independent of each other, one can assume that the spatial spread is a random
process described by a certain statistical distribution. The inclination in image restora-
tion is to assume a point spread function described by a Gaussian function of a certain
variance (width):

h(Er− Er′)|Gaussian = exp

−π ( |Er− Er′|
1W

)2
 (16.9)

where1W is a measure of the width (window) of the function (= 1.065×fwhm, with
fwhm being the full width of the distribution at half its maximum). The justification
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for using such a distribution is the same justification used to assess most experimental
or numerical errors by a normal distribution. In accordance to the central limit theo-
rem, any set of independent observations from the same system will tend to resemble
a normal (Gaussian) distribution, as the number of observations increases. Therefore,
a normal distribution for the point spread function, h, can be assumed. Note that direct
application of a Gaussian psf is equivalent to a low-pass filter, while a high-pass fil-
ter is implemented with the second derivative of the distribution or using the unsharp
masking of Eq. (16.8). The width of the distribution, as defined by its variance, deter-
mines the stretch of the psf in the same manner the number of coefficients in the
filters of Eqs. (16.6) and (16.7) determines the number of neighbors used in filtering.
A normalized form of Eq. (16.9) is given by (RSICC, 1978):

h(Er− Er′)|Gaussian (normalized) =
1

√
2πσ ′

exp

−1

2

(
|Er− Er′|

σ ′

)2
; σ ′ =

1W |Er′|

2.355

(16.10)

This definition assures that the psf is normalized to unity, which preservers the value
of an image parameter, c.

16.2.2 Noise

As Eq. (16.2) indicates, image enhancement requires knowledge of the amount of
noise associated with the to-be-enhanced image. This noise can also be estimated from
the statistical fluctuation in the value of an image parameter. In radiation imaging, the
source of radiation, whether internal or external, is governed by Poisson statistics,
see Section 15.2. The intensity of measured radiation also fluctuates in accordance
to Poisson statistics. Instability in the electronic and electric systems used with the
detection system (or electronically driven sources) causes fluctuations in the recorded
measurements. These can be eliminated by amplitude discrimination, as they tend to
be low-amplitude signals, but may still influence the measurements by fluctuations that
may be described by a Gaussian (normal) distribution. The statistical spread inherent
in the imaging setup is propagated via the image reconstruction process, which is typ-
ically an ill-posed inverse problem. The approximations introduced in formulating the
forward problem, as discussed in Part I of this book, are also a source of error that
affect the quality of a reconstructed image. In addition, image artifacts due to system-
atic errors cause reconstructed image parameters to differ from actual ones. However,
fluctuation in reconstructed image parameters are not entirely random and indepen-
dent, as they tend to be correlated by the integral nature of the measurements from
which they are reconstructed. One can argue that such correlation will tend to be sys-
tematic and will not alter much the randomness caused by the source of fluctuations.
Even when the source of such fluctuations is Poisson distributed, for 20 observations
or more, one can use the statistics of the normal (Gaussian) distribution to approxi-
mate the actual distribution. Note here, we are speaking of a distribution of the value
of an observed image parameter at a given position, rather than the distribution of the
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spatial spread which can also be described by a Gaussian distribution, but in space, as
indicated at the end of Section 16.2.1.

16.3 Frequency Filtering

Direct application of Eq. (16.4) can be viewed as filtering the Fourier transform of
the reconstructed image, G, by 1

H , to obtain a restored image: F = H
G . In enhancing a

reconstructed image, one is intuitively tempted to remove the effect of discretization
into pixels/voxels. Let us pursue this premise. Discretization can be seen as intro-

ducing a rectangular function, rect
(
Er

21r

)
, where 1r is the width of the voxel, which

is equivalent to the multiplication of a one-dimensional rectangular function in each
of the directions of the spatial coordinates of the image. The Fourier transform of a

rect
(
Er

21r

)
function will produce a function: (21r)nsinc(kEr)= (21r)n sin(Ek)

|Ek|
, when n

is the dimension of the spatial space of the image (= 2 for a section image and = 3

for a volume image). The inverse filter will then involves the term: |Ek|
sin(Ek)

. Since the

sine function periodically goes to zero, there will an infinite set of frequencies, giving
rise to an unbounded transform. This inverse filter provides an idealization that may
be approximated by assigning: an upper-bound on inverse filtering, a heuristic model
(Barrett, 1981), linear interpolation, cubic convolution, cubic spline modeling, or more
common statistical modeling. The latter is discussed below (Park and Schowengerdt,
1983).

16.3.1 Gaussian Filter

Let us consider the case in which h is assumed to be a Gaussian statistical distribution,
given by Eq. (16.9), then for a two-dimensional image:

H(Ek)|Gaussian =1
2
g exp

[
−π12

g|
Ek|

2
]

(16.11)

where1g is the width of the Gaussian distribution, and use is made of the fact that the
Fourier transform,H, of a Gaussian is another Gaussian. The inverse Fourier Gaussian
filter is simply the reciprocal of Eq. (16.11). Since a reconstructed image is band lim-
ited, due to the discretization process, the inverse filter will have a cutoff frequency,
kmax ≤

1
21r , where1r is the pixel/voxel width, see Eq. (12.11). Therefore, the inverse

Fourier Gaussian filter becomes:

1

H(Ek− Ek′)|Gaussian
=


1

12
g

exp
[
π12

g|
Ek|

2
]

when |Ek| ≤ kmax

0 when |Ek|> kmax

(16.12)

Subsequently, in an image with an inherent Gaussian point spread function, in which
the effect of noise is negligible, the inverse Fourier Gaussian will result in an overall
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effect described by:

1

H(Ek− Ek′)|Gaussian
H(Ek− Ek′)|Gaussian =

{
1 when |Ek| ≤ kmax

0 when |Ek|> kmax
= rect(Ek− Ek′)

(16.13)

where rect(Ek) is the rectangular function. Therefore, when the inverse Fourier trans-
form is applied to the filtered frequency image, one gets: F−1rect(Ek). The Fourier
transform of a rectangular function is a sinc function, which like the rect function is,
in a multidimensional space, the product of its values in each dimension. Therefore,
the net effect of an inverse Gaussian band limited filter is to introduce a sinc function
correction to the enhanced image.

16.3.2 Parzen Filter

A filter that resembles the Gaussian filter, but with a narrower spread range, is given
by the Parzen function (Parzen, 1962):

1

H(Ek)|Parzen
=


1− 6|Ek|2+ 6|Ek|3 when 0≤ |Ek| ≤

kc

2
2(1− |Ek|)3 when

1

2
< |Ek| ≤ kc

(16.14)

where kc is a cut-off frequency. The advantage of this filter is that it can be designed,
by the choice of kc, to go to zero at the boundaries.

16.3.3 Pseudoinverse/Matched Filter

One disadvantage of the Fourier Gaussian filter is that some frequencies may not exist,
or are weak, in the image. This results in zero or very small values for H(Ek), which
makes the application of the filter of Eq. (16.4) vulnerable to singularities and to the
amplification of noise. This can be overcome by utilizing the pseudoinverse filter:

1

HB(Ek)
=

H?(Ek)
H2(Ek)+B

≈

1

H(Ek)
when H2(Ek) >> B

H?(Ek)
B

when H2(Ek) << B

(16.15)

where H? is the complex conjugate of H, and B is an arbitrary constant that sup-
presses frequencies with zero or low amplitudes. Note that applying H? is equivalent
to correlating the reconstructed image with the to-be-restored image,1 resulting in the

1 The correlation (or cross-correlation) integral is similar to the convolution integral of Eq. (16.2), except
that convolution involves reversing a function, shifting it, and multiplying it by another function, whereas
correlation only involves shifting a function and multiplying it by another function without reversing.
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so-called matched filtering. The disadvantage of the bounded filter of Eq. (16.15) is
that it amplifies high frequencies by 1

B , and accordingly amplifies noise present at
high frequency when B<< 1. This may be overcome by using a frequency-dependent
constant, but assigning such a constant will require some judgment based on a priori
knowledge of the nature of the imaged object.

16.3.4 Wiener Filter

Another filtering approach to suppress noise is to replace the constant B in Eq. (16.15)
by the relative noise with respect to the signal, so that Eq. (16.15):

1

HWiener(Ek)
=

H?(Ek)

H2(Ek)+
(
N (Ek)
G(Ek)

)2
≈

1

H(Ek)
when H2(Ek) <<

(
G(Ek)
N (Ek)

)2

H?(Ek) when H2(Ek) >>
(
G(Ek)
N (Ek)

)2

(16.16)

where N (Ek) is the Fourier transform of the noise. Note here that G(
Ek)

N (Ek) is the signal-

to-noise ratio at frequency Ek. The filter of Eq. (16.16) is known as the Wiener, or
the Wiener-Helstorm, filter.2 It requires knowing the noise frequency distribution. If
white noise (equal amount at all frequencies) is assumed, then N (Ek)= 1, and if the
noise is Poisson distributed the variance of the noise is equal to the signal. In either
case, the Wiener filter will act as an inverse filter, 1

H , when the signal is strong, and as
a correlation filter,H?, when the signal is weak. One last note about the Wiener filter:
it minimizes the mean-squares difference between the given image and the restored
image at a given frequency, as can be deduced from Eq. (16.16), and as such it is a
least-squares filter applied one frequency at a time.

16.3.5 Power Spectrum Equalization Filter

Filtering can be accomplished using the power spectrum (squared amplitude of each
frequency component). For white noise, the power spectrum is equal to its variance.
Removing the power spectrum of the noise from that of the available image restores
the power spectrum density3 of the enhanced image. Performing power spectral equal-
ization (pse) (Cannon, 1976) of Eq. (16.2), one has:

Sg(Ek)=H2(Ek)Sf (Ek)+ Sη(Ek) (16.17)

2 Strictly speaking, the filter of Eq. (16.16) is called the Wiener filter when h is the impulse function, i.e.
whenH= 1.

3 In the frequency domain, the power spectrum density is equal to the Fourier transform of the autocorrela-
tion function of a signal.
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where S(Ek) refers to the power spectrum density of its subscripted variables. The pse
inverse filter is then:

1

HPSE(Ek)
=

 1

H2(Ek)Sf (Ek)+
Sη(Ek)

Sf (Ek)


1
2

(16.18)

Notice the similarity with the Wiener filter, Eq. (16.16), where both are reduced to
simple inverse filtering in the absence of noise, and both do not amplify noise in
the absence of the frequency components, Sf (Ek) or G(Ek), as they are cut off to zero.
However, if HPSE(Ek)= 0, the pse filter is not cut off: a feature that makes it some-
times more effective than the Wiener filter. The pse filter is also called the homo-
morphic (Greek for “same shape”) filter, as it preserves the overall features of the
image by power spectrum equalization. To implement the pse filter, one replaces Sf in

Eq. (16.18) by
Sf−Sη
H2 at each frequency, Ek; provided of course that Sη can be estimated

from the statistical characteristics of the noise.

16.3.6 Metz Filter

Another filter that suppresses high-frequency noise is the Metz (Metz and Beck, 1974)
filter, expressed as:

1

HMetz(Ek)
=

1−
[
1−H2

]n
H(Ek)

(16.19)

with the order n>1 chosen to minimize the mean-squared difference between g and f .
The noise amplification at high frequency, caused by the deblurring term in the denom-
inator of Eq. (16.19), is compensated for in the Metz filter by the numerator. Increasing
the order of the Metz filter increases the contribution of high frequency components,
hence the noise.

16.3.7 Frequency-Dependent Filters

To emphasize the components of a particular spatial frequency range over the others,
one can apply frequency-dependent filters. For example a ramp filter, which increases
in amplitude with frequency, would emphasize the high-frequency components of the
image, but would also accentuate high frequency noise. It is, therefore, a high-pass
filter. The Hann and Hamming filters (Hamming, 1977), on the other hand, are low-
pass filters with a dynamic frequency response. They take the form:

1

HHann(Ek)
=

1

2

(
1+ cosπ

|Ek|

kmax

)
(16.20)

1

HHamming(Ek)
=

1

2

(
1.08+ 0.92 cosπ

|Ek|

kmax

)
(16.21)
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where kmax is a cut-off frequency; usually the Nyquist frequency of the image. Both
these filters are low-pass filters. Notice that these two filters are similar, except that the
Hamming filter has a non-zero value at the maximum frequency, so as not to filter out
this frequency. These two filters are to be used when more reliable image parameter
values are desired, at the expense of reduced spatial resolution. If, on the other hand,
a higher spatial resolution is desired at the expense of a higher level of noise, the
Butterworth filter (Hamming, 1977) should be applied. This filter takes the form:

1

HButterworth(Ek)
=

1

1+
(
|Ek|

kmax

)n (16.22)

where n is an integer that defines the order of the filter; the higher the order, the faster
the rate at which the filter approaches the cut-off frequency. Therefore, a sharper cut-
off is attained at high n values. In other words, n determines how fast is the transition
between retained and filtered out frequencies. Note that at n= 0, the filter has a mag-
nitude of unity at all frequencies, while as n→∞ the filter has a zero amplitude at
all frequencies, except at |k| = 0 where the amplitude is unity. The ability to apply
such sharp cut-offs is one of the advantages of the Butterworth filter, as it allows
the elimination of noise at higher frequencies while retaining image contrast. Two or
more filters can be combined into a single filter. For instance, combining the ramp filter
with a Hanning, Parzen, or Butterworth window can improve image visualization. The
combined filters are band-pass (also called windowed, tapering, or apodized) filters,
as they tend to emphasize a certain range of frequencies, rather than being low-pass
or high-pass filters. Other frequency filters, including those discussed in Chapter 12,
can also be employed. The wavelets methods of Section 12.9 is also utilized in image
enhancement.

16.4 Matrix Based

Like any other discrete problem, image enhancement can be represented in a matrix
form as:

g=Hf + η (16.23)

where g is a vector whose elements contain the image parameters of the to-be enhanced
image, f is a vector of the sought image, η is the noise vector, H is the point-spread
(blurring) matrix, and η is the noise in the image. If H is known, then the inverse prob-
lem of finding f from g can be solved using any of the matrix-based methods discussed
in Chapter 10. Note, however, that the matrix H is a square matrix since the vectors f
and g have the same dimensions; unless one is collapsing the image g into a coarser
image f to obtain more reliable values of f at the expense of resolution. With a square
matrix, Eq. (16.23) becomes a fully-determined problem, but with no additional data
to compensate for the effect of noise. Therefore, some a priori knowledge of the nature
of the image can aid in compensating for the effect of noise.



HUSSEIN Ch16-9780123877772 2011/5/13 11:38 Page 282 #12

282 Computed Radiation Imaging

A matrix-based restoration of the image f takes the form:

f =
[
HTH+αBTB

]−1
HTg (16.24)

where α is a regularization parameter, B is a regularization matrix. Notice that when
B is a null matrix, Eq. (16.24) becomes a least-squares (or maximum likelihood) esti-
mate of the solution, which is analogous to the inverse filter of Eq. (16.4). A solution
with B= I leads to Tikhonov regularization, Eq. (10.9), or equivalently a maximum a
posteriori solution that produces a smooth solution (a minimum information solution).
If B is chosen as a Laplacian, the filtering of Eq. (16.24) smoothes the second order
derivative, making the first derivative nearly constant. This helps in eliminating noise,
but at the expense of not preserving edges well. Equation (16.24) is arrived at by mini-
mizing the Euclidean norm (Lq, q= 2) of the corresponding cost function. Decreasing
the order, q, e.g. by using the L1 norm (total variation) is more effective in preserv-
ing edges (Aubert and Kornprobst, 2006). The latter reference gives an overview of
variational approaches based on partial-differential equations for image restoration.

A diagonal weight matrix, W, can also be introduced in Eq. (16.24) as BTWB, to
introduce smoothing with different weights at different portions of the image; e.g. one
can choose a weight of about one in smooth regions and a nearly zero weight near
edges. Any of the regularization methods of Section 10.4, or a combination of, can be
introduced into Eq. (16.24), sequentially or simultaneously as appropriate. Piecewise
(local) regularization, discussed in Section 10.4.11, is particularly attractive for apply-
ing near boundaries and edges. If the matrices encountered are too large to be directly
inverted, one can rely on some of the iterative methods discussed in Section 10.6.2,
such as the steepest descent or the Conjugate Gradient methods.

The blurring matrix can be assembled from one of the point spread functions
described in Section 16.2.1. When the image, g, is arranged by stacking the image
parameters of columns of a section of an image, the blurring matrix, h, will take
a repetitive block form, such as that of a Toeplitz matrix which has constant val-
ues along negative-sloping diagonals.4 Such a matrix type can be readily diagonal-
ized then inverted (Ng, 2004, Vogel, 2002). Hansen (2002) discussed methods for the
regularization of Toeplitz matrices, relating them to deconvolution using fast Fourier
transforms, and provided examples for image restoration.

16.5 Statistical Methods

Viewing the blurring matrix, h, as the conditional probability of obtaining g given f ,
any of the probabilistic methods of Chapter 13 can be utilized. In the most basic for-
mulation, a pixel/voxel with an image parameter, gi, is related to the “true” parameter,

4 Weisstein, Eric W., “Toeplitz Matrix,” From MathWorld - A Wolfram Web Resource. http://mathworld
.wolfram.com/ToeplitzMatrix.html
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fi, in accordance to Eq. (16.23), when neglecting the effect of noise, by:

hi =
∑

j

hij fj (16.25)

where hij is an element of the blurring matrix, h. If the point spread function is
such that

∑
j hij = 1, then one is applying a smoothing function, as in Eq. (16.6).

One can also use a proper distribution (say Gaussian) normalized to unity. In either
case, hij can be represented as a conditional probability: P(gi| fj)= hij. Applying the
Bayes’ hypothesis, Eq. (8.11), one restores fj iteratively using a scheme analogous to
Eq. (13.12):

f (k+1)
j = f (k)j

∑
i

hijgi∑
n hjn fn

(16.26)

where k is the iteration number. In image restoration, the scheme of Eq. (16.26) is
known as the Lucy-Richardson algorithm (Lucy, 1974; Richardson, 1972). This iter-
ative scheme tends, however, to amplify noise, which also makes reaching a con-
verged solution, where f (k+1)

j = f (k)j , difficult. The difference between f (k+1)
j and f (k)j

becomes so small that it cannot be attributed to noise and its amplification. It becomes
then difficult to decide on the number of iterations required to reach an acceptable
solution.

Hunt and Sementilli (1992) developed a maximum a posteriori (map) scheme
(see Section 13.4) assuming that an image parameter at position Er, g(Er), is Poisson-
distributed with a mean value determined by the right-hand side of Eq. (16.25). This
results in the iterative scheme:

f (Er)(k+1)
= f (Er)(k) exp

[(
g(Er)

f (Er)(k) ∗ h(Er)

)
⊗ h(Er)

]
(16.27)

where “∗” and “⊗” designate the convolution and correlation operators, respectively,
see Footnote 1 of this chapter. This nonlinear scheme is reported to be capable of
recovering spatial image frequency components beyond the maximum sampling fre-
quency of the imaging system; resulting in the so-called super-resolution recovery.
Other map methods, discussed in Section 13.4, can be utilized for image enhancement.
The stochastic methods of Section 13.5 can also be employed in image enhancement.

16.6 Optimization

Image enhancement can also be viewed as an optimization problem with the objective
of minimizing a measure of g−hf , along with constraints, such as image parameters
being nonnegative and do not exceed a certain preassigned maximum value, or some
other a priori constraints. The optimization methods of Chapter 11 can then be applied.
However, the optimization problem of image enhancement is disadvantaged by being
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a fully determined problem, where the number of unknowns is equal to the number
of known parameters; unless a coarser image is to be obtained to improve confidence
in the values of f at the expense of reduction in resolution. In the presence of noise,
and with uncertainty in knowing the blurring matrix, h, a fully determined problem
becomes in effect an incomplete (underdetermined) problem. Incorporating a priori
information as constraints becomes then important in the optimization problem of
image enhancement, see Chapter 14.

One way to overcome the inherent incompleteness of the image enhancement prob-
lem is to add terms to the cost function regularization to smooth the image, preserve
edges, and/or ensure a particular image texture. Section 10.4 discusses many regular-
ization methods. Another two regularization methods, particularly useful in accentu-
ating image features, are given here.

For sharp edges, the following regularization term, B, was proposed by Conan et al.
(2000) to overcome the ringing artifact usually associated with edges:

BSharp Edge = α
∑

r

|1f (Er)|

β
− ln

[
1+
|1f (Er)|

β

]
(16.28)

where |1f (Er)| is a gradient determined by the Euclidean distance of the finite-
difference, α and β are adjustable regularization parameters, and the summation is
over the voxels/pixels of the image. This regularization term is actually a first-order
approximation of the conditional probability P( f |g), assuming a Poisson distribution.

For images containing simple shapes, the texture of that shape can be used as a
regularization local (piecewise) function of the form (Jeffs and Pun, 1996):

BShape =
∑
i,j

bij|fi− fj|
s (16.29)

where i, j are the indices of a pixel in a two-dimensional cross section of the considered
shape, bij is a neighborhood influence parameter, and s is shape parameter. Jeffs and
Pun (1996) reported s-values for large objects observed in astronomical images. The
same approach can be adopted for industrial and medical radiological imaging by
analogy or by trial and error. Shape matching can also be achieved by identifying
the occurrence of a particular pattern in an image, determining the locations where
g(Er) matches a certain pattern, fp(Er), and maximizing the correlation between g(Er)
and fp(Er).

16.7 Blind Deconvolution

One can attempt to enhance an image without knowing its blurring (point spread) func-
tion. This is called blind or myopic deconvolution. There are two general approaches
to addressing this problem. The first approach is to estimate the point spread func-
tion from the blurred image itself. The second approach is to simultaneously solve for
the point spread function (psf) and the image parameters of the refined images. Some
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example methods for both approaches are given here. The review articles of Kundur
and Hatzinakos (1996a,b), Yitzhaky et al. (1999), and Jiang and Wang (2003) can be
consulted for other methods.

A blurred image contains information on the true image, the blurring function and
noise. One can decrease the effect of the noise and the true image by estimating the
blurring function as the average of a number of estimates based on segments within a
single image. The only consistent influence on the averaging process is that of the psf,
if it is spatially invariant. Therefore, one can obtain an estimate of the psf by dividing
the available image into small segments, which may overlap, but are wide enough
to encompass the range of the psf. For each segment, the power spectral density is
calculated. The average of these densities then replaces the denominator of the pse
filter, Eq. (16.18). With the numerator of the same equation evaluated as the average
of the power spectral density of the entire image minus that of its noise, one obtains
an inverse filter that can be used to deconvolve the image.

Another direct, noniterative, blind deconvolution relies on the so-called whitening
process (Yitzhaky et al., 1998), in which each segment of an image is first filtered
in the frequency domain with a certain high-pass filter, W−1(Ek), to reach a better
estimate of the “true” image. Let the average of the spectral density of the filtered
image be, Sf̃ (

Ek), which can be related to the spectral power density of the blurred

image by: Sg(Ek)=H2Sf =H2W−2Sf , with Sf being the spectral power density of the
true image and assuming that averaging removes the effect of noise. This enables the
determination of the Fourier transform of the psd, H(Ek), with Sf = Sg− Sη, where Sη
is an estimated spectrum power density of the noise.

The other approach to blind deconvolution is a double iterative process to estimate
both the psf and the enhanced image (Ayers and Dainty, 1988). Prior image con-
straints, (such as the nonnegativity of both the psf and the sought solution, the image
support (spatial domain), and band width), can be incorporated into this solution pro-
cess. The first stage of the iterative process starts by choosing an approximate of the
refined image that satisfies the constraints, and finding its Fourier transform, F̂ (l)(Ek),
l= 0 for the initial estimate. After ensuring that this estimate satisfies the a priori
constraints, an estimate of the psf function, K(Ek), is found using a Wiener-like filter:

H(l+1)(Ek)=
G(Ek)

(
F (l)(Ek)

)∗
(
F (l)(Ek)

)2
+α2

(
1

H(l)(Ek)

)2
(16.30)

with an initial estimate assumed for H(0)(Ek), and α2 being a regularization parameter
that accounts for the energy of the noise. The new estimate of the psd is then used to
update the estimate for the solution:

F (l+1)(Ek)=
G(Ek)

(
H(l)(Ek)

)∗
(
H(l)(Ek)

)2
+α2

(
1

F (l)(Ek)

)2
(16.31)



HUSSEIN Ch16-9780123877772 2011/5/13 11:38 Page 286 #16

286 Computed Radiation Imaging

At each step, one should ensure that the constraints are satisfied, for both the Fourier
transforms and their inverses, and corrective actions taken, if necessary.

Simulated annealing has been also used in blind deconvolution, in which a solution
is attained by minimizing an objective cost function with respect to both the solutions
and the psf, see McCallum (1990). Alternating minimization of the cost function,
first with respect to the solution, and then with respect to the psd, or vice versa, has
been also proposed by You and Kaveh (1996) for a matrix-based cost function. The
nonnegativity and support constraints recursive inverse filtering (nas-rif) algorithm
of Kundur and Hatzinakos (1998) applies a penalty function that discourages having
image parameters with values outside of the image’s support domain, and those of
negative values. In reconstructed images, the support domain is usually defined by
the domain of the voxels within which the image is reconstructed, and the support
constraint is not necessary. The recursive inverse filtering feature of this algorithm is
due to its use of an approximate inverse filter updated iteratively.
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