Implementation of biomedical
image processing algorithms

PFC0071-2003

Wouter De Raeve
Wouter.DeRaeve@mail.be

June 19, 2003

Abstract

The easy way to design image processing algorithms in the Matlab pro-
gramming environment needs to be compared with alternative ways. The
drawbacks of the Matlab codes are dependency of the Matlab’s engine and
often slow execution. This implies that the developed algorithms can only
be used within the original environment. Usage in, for example a hospital
is either difficult or expensive. Moreover, the executation of the Matlab’s
algorithms is usually slower than those that would be developed in a pro-
gramming language as C/C++. Those languages also carry the advantage
to be easily ported between different platforms. The project consists of try-
ing to convert the Matlab-algorithms into stand-alone applications, and to
compare the different methods available to achieve this.

Preamble

This project was only made possible thanks to the support of some people
and friends who I hold dear and to whom I owe a great deal. In particular
I would like to thank:

Carlos Platero and dr. ir. Luc De Backer for allowing me to complete
this final project work.

My parents for giving me the opportunity to go study abroad. This
was a lifetime experience, and without their support and kindness none
of this was possible.

Greet for letting me go for four months and for all the trust and support
she gave me.

Sylvie for being a better guide I could ever be.

My friends for accepting me who I am, for showing what friendship
means, and for joining me in the many unforgettable moments they
have given me.

My companions in Madrid of the GVA, for touring me around the city
and showing me Madrid outside the school.

Jeroen for standing up with my constant nagging and for his comfort-
ing words when needed.

llseé8 Julie for introducing us to Madrid, and for helping out the first
difficult days, as well as joining in our great activities.

4FEL and especially De bende van Oostmalle for making the years at
the Kaho Sint-Lieven as pleasant as possible.

A last word goes out to Frank Louwers, for hosting our pictures on
http://fotos.frankbruno.be.

Contents

1 Introduction 1
1.1 Goal of the project 1
1.2 Global positioning of the project 1
1.3 Structure and emphasis of this book 2

2 Matlab & Matlab Compiler 3
21 Matlab. 3

2.1.1 What is Matlab? 3
2.1.2 Image processing with Matlab. 4

2.2 Matlab Compiler: General 5
2.2.1 Overview e 5
2.2.2 How the compiler works 8
2.2.3 Limitations and restrictions 9

2.3 Matlab Compiler: Installation 11
2.3.1 Windows Installation 11

2.4 Developing in Windows/MSVC 21
2.4.1 Preparing your m-file 21
2.4.2 General developing tips 27
2.4.3 List of incompatible functions 28
2431 Edge 29

2.4.3.2 Imdilate oL 30

2.4.3.3 Imfeature 31

2.4.3.4 Imlincomb 32

2435 Load 34

24.3.6 Save 37

2.4.3.7 Strel 40

2.4.4 Distributing the applications 43

2.5 Ad/Disadvantages Matlab Compiler 46
2.5.1 Advantages 46
2.5.2 Disadvantages. 48

2.6 Comparison Matlab/Compiled algorithms 49
2.6.1 General noticeso 49
2.6.2 Speed comparison 49

CONTENTS

2.6.3 Programmer’s choice 54
2.6.4 Transportability between platforms 54
2.6.5 Otherremarks 54

3 Vigra 56
3.1 Whatis Vigra?o 56
3.1.1 General Description 56
3.1.2 Features L o 56

3.2 Installation of Vigra under Windows 58
3.2.1 Downloads 58
3.2.2 Installing downloads 59
3.2.3 Testing Installation 62

3.3 New Vigra-project 64
3.3.1 Testfile 64
3.3.2 Creating project L. 65

3.4 Why the Vigra-project was postponed 66
4 GUI 68
41 Whythe GUIo o 68
4.2 Developing environment 69
4.2.1 Java Depeloping Kit 69
4.2.2 Borland Jbuilder o000 69

4.3 Java ... 69
4.3.1 Java the trinityo 69
4.3.2 Java the language 69
4.3.3 Java the virtual machineo 70
4.3.4 Java the platform 71

4.4 How to work with the GUI 71
4.4.1 The GUlin general 71
442 FHVGUI 76
443 GUIinLinux 77

4.5 Someused classes oo 78
451 Utils oo 78
4.5.2 ExecFileFilter oo 78
4.5.3 StreamGobblero 80
4.5.4 OS_MillisConvertor 81

5 Used Tools 83
5.1 Borland JBuilder 8.0 oo 83
5.1.1 Downloading and Installation 83

5.1.2 Getting startedo 84

5.2 MikTex 2.3 86
5.2.1 What is INTEX?o o 87
5.2.2 What is MiKTeX?, 88

GVA-ELAI-UPM®PFC0071-2003 2

CONTENTS

== RO B I ©

5.2.3 Installation of MiKTeX 89
5.3 TeXnicCenter 1b6.0 94
5.3.1 Download and Installation 95
5.3.2 Configuration oL 95
5.3.3 How to Work with TeXnicCenter 95
5.4 TextPad Text Editor 97
5.5 Jasc Paint Shop Pro7 98
5.6 Jaws PDF Editor 1.1 99
Conclusion 101
6.1 Achievement of goals oL 101
6.2 Future possibilities L. 102
Example Algorithm 103
A.1 Matlab-original algorithm 103
A.2 Matlab-algorithm prepared for conversion 104
LaTeX Template 108
InspectImage Header 111
C.0.1 Include-listing. 111
C.0.2 Min/Max-references 111
Vigra License 113
D.0.3 The VIGRA Artistic License 113
1JG JPEG License 115
LIBTIFF Copyright 116
ZLIB License 117
GNU License 118
H.1 GNU GENERAL PUBLIC LICENSE 118
H.1.1 Preamble 118
H.1.2 TERMS AND CONDITIONS FOR COPYING, DIS-
TRIBUTION AND MODIFICATION 118
H.1.3 Warranty 0. 120
H.1.4 End of Terms and Conditions 120

GVA-ELAI-UPM®PFC0071-2003 3

Chapter 1

Introduction

1.1 Goal of the project

The main goal of this final project is to study the possibilities of converting
image processing algorithms, written in the Matlab-environment, to stand-
alone applications !, so they can be distributed without the requirement of
Matlab or any other software on the system. This project will try to compare
different possibilities, of which one will probably be used in the future at
the GVAZ2 lab. Therefore this project will also try to be a reference guide to
beginning users as well as a problem-solving guide.

1.2 Global positioning of the project

The project takes place in the EUITI 2, part of the UPM 4. The lab is
part of the ELAI ®. This project is one of many produced by the Grupo
Vision Artificial (GVA), which is led by Carlos Platero Duenas. GVA has
since long time been working on acquisition, processing, visualization and
calculation of images, medical images in particular. Currently, we’re working
for the Hospital Ramdn y Cajal de Madrid, the Fundacion para la Hepatitis
Virales and the Universidad Autonoma de Madrid, Facultad de Biologia.
Several projects are being completed by the time of writing. This is a short,
incomplete list of projects running:

e Conversion of Matlab-code to C++
e Acceleration of image-processing through computer clustering

e Development of Matlab Graphical User Interfaces

lindependent of used operating system

*Grupo Visién Artificial

3Escuela Universitaria de Ingenierfa Técnica Industrial
4Universidad Politécnica de Madrid

SElectrénica, Automética e Informética Industrial

1.3. STRUCTURE AND EMPHASIS OF THIS BOOK

e Image transport through Java Dicom-toolkit
e Reconstruction of 3D-images out of 2D-slices

The project comes into the larger framework of image processing, and there-
fore should be seen in that context.

1.3 Structure and emphasis of this book

This book is the report of the project performed from the beginning of
March until the end of June. It will explain the possibilities of converting
the code written in Matlab to C++. The idea behind this book was not to
produce a report as is, but as well try to act as a reference guide for future
development. Therefore it will not only contain a comparison between the
possibilities. A great part of this book will deal with how to use these possi-
bilities and which problems you might encounter when developing through
these methods. Therefore it will contain an installation guide for several
platforms, small examples to be able to test a successful installation or to
use as a starting point, as well as a short description and possible solution to
installation, developing, compiling and running errors you might encounter
throughout the process.

GVA-ELAI-UPM®PFC0071-2003 2

Chapter 2

Matlab & Matlab Compiler

2.1 Matlab

2.1.1 What is Matlab?
2.1.1.1 General description

MATLAB®) is a high-performance language for technical computing. It
integrates computation, visualization, and programming in an easy-to-use
environment where problems and solutions are expressed in familiar math-
ematical notation. Typical uses include:

e Math and computation

Algorithm development

Modeling, simulation, and prototyping

Data analysis, exploration, and visualization

Scientific and engineering graphics
e Application development, including graphical user interface building

MATLAB is an interactive system whose basic data element is an array
that does not require dimensioning. This allows you to solve many technical
computing problems, especially those with matrix and vector formulations,
in a fraction of the time it would take to write a program in a scalar nonin-
teractive language such as C or Fortran.

The name MATLAB stands for matrix laboratory. MATLAB was orig-
inally written to provide easy access to matrix software developed by the
LINPACK and EISPACK projects. Today, MATLAB uses software devel-
oped by the LAPACK and ARPACK projects, which together represent the
state-of-the-art in software for matrix computation.

2.1. MATLAB

MATLAB has evolved over a period of years with input from many
users. In university environments, it is the standard instructional tool for
introductory and advanced courses in mathematics, engineering, and science.
In industry, MATLAB is the tool of choice for high-productivity research,
development, and analysis.

MATLAB features a family of application-specific solutions called tool-
boxes. Very important to most users of MATLAB, toolboxes allow you to
learn and apply specialized technology. Toolboxes are comprehensive col-
lections of MATLAB functions (M-files) that extend the MATLAB environ-
ment to solve particular classes of problems. Areas in which toolboxes are
available include signal processing, control systems, neural networks, fuzzy
logic, wavelets, simulation, and many others.

2.1.1.2 Where to get it?

Matlab is produced by the Mathworks-firm. Their homepage can be found at
http://www.mathworks.com. Currently release 13 is the most up-to-date
version of Matlab, version 6.5. Matlab is not cheap, but special student
versions are available too, but yet with restrictions that severely limit the
usage, especially when working with large data structures such as images.
Therefore a full version is highly recommended. You can also download a
trial version of the program.

2.1.2 Image processing with Matlab

Matlab provides built-in functions for image-processing. The Image Process-
ing Toolbox extends the MATLAB(R) computing environment to provide
functions and interactive tools for enhancing and analysing digital images
an developing image processing algorithms. In addition, it facilitates the
learning and teaching of image processing techniques in both academic and
research settings.

Together, MATLAB and the Image Processing Toolbox provide scien-
tists, researchers, and engineers with a diverse, flexible set of tool for solving
complex imaging problems in disciplines such as aerospace/defence, astron-
omy, remote sensing, medical and scientific imaging, and materials science.
Most functions are implemented in the open MATLAB language, letting you
explore and customize existing toolbox algorithms or develop your own.

You can use the toolbox for the restoration of noisy or degraded images,
image enhancement for improved intelligibility, blob analysis, and extraction
and analysis of image data with image statistics and transforms, as well as
to develop complete solutions to challenging image processing problems that
involve multidimensional data sets.

Some of its key features are:

e Neighborhood and block operation

GVA-ELAI-UPM®PFC0071-2003 4

2.2. MATLAB COMPILER: GENERAL

e 2-D filters, linear filtering, and filter design

e Image analysis, including pixel, region, and feature statistics and mea-
surement

e Interactive GUI for control point selection

e Binary and grayscale morphology

e Spatial transformation

e Image registration, segmentation, and deblurring
e FFT, DCT, and radon transform

e Region-of-interest processing

e Multidimensional image processing

e DICOM import and export in addition to supported file formats in
MATLAB

e Color space conversions

Matlab’s Image Processing Toolbox provides fast ways to perform:
e Data Import and Export

e Image Analysis and Enhancement

e Image Manipulation

e Visualization

Latest version of the Image Processing toolbox is version 3. The home-
page can be found at:
http://www.mathworks.com/products/imageprocessing/.

2.2 Matlab Compiler: General

2.2.1 Overview
2.2.1.1 What?

The MATLAB Compiler enables you to convert many MATLAB applica-
tions containing math, graphics, and graphical user interfaces to stand-alone
C and C++ code. This code can be generated as stand-alone executables,
shared libraries, or dynamic link libraries (dll’s) for use on any MATLAB
supported platform. The MATLAB Compiler has three components: the
Compiler, the Math Library, and the Graphics Library.

GVA-ELAI-UPM®PFC0071-2003)

2.2. MATLAB COMPILER: GENERAL

You can take advantage of the MATLAB environment to quickly de-
velop and prototype your applications and then use the MATLAB Compiler
to automatically convert them into C or C++ source code. The MATLAB
Compiler eliminates the tedious manual translation process and reduces de-
velopment time for applications that run outside the MATLAB environment.

No thorough knowledge of C/C++ is needed, although a basic knowledge
is indeed essential, as well as experience with the Microsoft Visual C/C++
Developing Environment, if development with that compiler is intended.

Some of its key features are:

e Lets you embed MATLAB based algorithms into C and C++ appli-
cations and distribute them freely

e Enables you to include MATLAB math, graphics, and GUIs for end-
user applications

e Compiles many toolbox M-files for inclusion in your stand-alone ap-
plications

e Protects proprietary algorithms to prevent users from modifying code

e Allows you to compile, edit, and run your application from within
Microsoft Visual Studio

Yet there are some restrictions. The Mathworks-website ! mentions the
following:

e M-files containing objects
e Calls to the MATLAB Java interface
e M-files calls to eval or input containing workspace variables

Yet during the project more restrictions and difficulties arose, as will be
discussed later.

The Matlab Compiler’s home page can be found at
http://www.mathworks.com/products/compiler/

We have used the most recent version 3.0.

2.2.1.2 Why?

There are three main reasons to compile M-files:
1. To speed them up
2. To hide proprietary algorithms

3. To create stand-alone external applications

"http://www.mathworks.com

GVA-ELAI-UPM®PFC0071-2003 6

2.2. MATLAB COMPILER: GENERAL

Compiled C or C++ code typically runs faster than its M-file equivalents
because:

Compiled code usually runs faster than interpreted code

C or C++ code can contain simpler data types than M-files. The
MATLARB interpreter assumes that all variables in M-files are matri-
ces. By contrast, the MATLAB Compiler declares some C or C++
variables as simpler data types, such as scalar integers; a C or C++
compiler can take advantage of these simpler data types to produce
faster code. For instance, the code to add two scalar integers executes
much faster than the code to add two matrices.

C can avoid unnecessary array boundary checking. The MATLAB
interpreter always checks array boundaries whenever an M-file assigns
a new value to an array. By contrast, you can tell the MATLAB
Compiler not to generate this array-boundary checking code in the C
code. (Note that the i switch, which controls this, is not available in
C++.)

C or C++ can avoid unnecessary memory allocation overhead that the
MATLAB interpreter performs.

Compilation is most likely to speed up M-file functions that:

Contain loops

Contain variables that the MATLAB Compiler views as integer or real
scalars

Operate on real data only

Compilation is not likely to speed up M-file functions that:

Are heavily vectorized

Spend most of their time in MATLAB’s built-in indexing, math, or
graphics functions

MATLAB M-files are ASCII text files that anyone can view and modify.
MEX-files are binary files. Shipping MEX-files or stand-alone applications
instead of M-files hides proprietary algorithms and prevents modification of
your M-files.

GVA-ELAI-UPM®PFC0071-2003 7

2.2. MATLAB COMPILER: GENERAL

2.2.2 How the compiler works

The Matlab COMPILER. does not only convert written matlab functions
into C/C++-code, but as well into so called MEX-files, COM-libraries,. . .
But since the project only dealt with converting to stand-alone programs
through C/C++-code, I will only deal with those.

Depending on the option used, Matlab can convert user m-files into C-
code or into C++-code. Using the appropriate option, the Matlab Compiler
also generates additional files in order to be able to distribute the algorithm
as a stand-alone program.

The following example to show how the Matlab Compiler works is taken
from the Compiler reference guide.

M-File functian ta find the rank of a
magic square

mcc -m I

l ® Shaded block is user-written code.
Cversionof © CFie Wrapper » Shadowed blocks are loals.
e M code | Unshaded blocks ore MATLAB
Ispart. + Compiler-generated code.
| I|' ® Dotted blocks are (/C++ compiler-generdted
€ Compler I execulables.
Object Files ;
| MATLAB M-Fie Math Lbrary || MATLAB API Library |
[MATLAB Math Built-In Library | | MATLAB Utility Library |
| ANSI C Librory | || MATLAB /C+-+ Graphics Library |

|
Linker I

R
C Application

Figure 2.1: How the Compiler Works

The MATLAB Compiler, when invoked with the -m macro option, trans-
lates input M-files into C/C++ source code that is usable in any of the sup-
ported executable types. The Compiler also produces the required wrapper

GVA-ELAI-UPM®PFC0071-2003 8

2.2. MATLAB COMPILER: GENERAL

file suitable for a stand-alone application. Then, your ANSI C compiler or
C++ compiler compiles these C/C++ source code files and the resulting
object files are linked against the MATLAB C/C++ Math and Graphics
Libraries, which are included with the MATLAB Compiler.

2.2.3 Limitations and restrictions

The following limitations are the limitations and restrictions as mentioned
by Mathworks. Later on in the book a few other problems and limitations
will be discussed. Therefore this part should not be considered as foolproof.
Almost all functionality, available in Matlab is supported by the latest
version of the Matlab Compiler, yet there still are some restrictions.
This version of the Compiler cannot compile

e Script M-files

e M-files that use objects

e Calls to the MATLAB Java interface

e M-files that use input or eval to manipulate workspace variables?

e M-files that use exist with two input arguments, for example:
exist(’foo’,’var’)
The single variable form works for filenames and functions only.

e M-files that dynamically name variables to be loaded or saved. This
example is disallowed by the Compiler:

x= f7;
load(’foo.mat’,x);

e M-files that load text files, for example:
load -ascii samplingl

The Compiler cannot compile built-in MATLAB functions (functions
such as eig have no M-file, so they can’t be compiled). Note, however,
that most of these functions are available to you because they are in the
MATLAB Math Built-in Library (libmatlb).

In addition, the Compiler does not honor conditional global and per-
sistent declarations. It treats global and persistent as declarations. For
example:

Zinput and eval calls that do not use workspace variables will compile and execute
properly

GVA-ELAI-UPM®PFC0071-2003 9

2.2. MATLAB COMPILER: GENERAL

if (y==3)

persistent x

else

x = 3;

end

2.2.3.1 Stand-alone Applications

The previous rules also apply to stand-alone applications, yet there are some
other limitations that should be accounted for when developing. The follow-
ing table, as presented by Mathworks, gives a list of incompatible functions.

add_block add_line applescript assignin
callstats close_system cputime dbclear
dbcont dbdown dbquit dbstack
dbstatus dbstep dbstop dbtype
dbup delete_block delete_line diary
echo edt errorstat errortrap
evalin fields fschange | functionscalled
get_param hcreate help home
hregister inferiorto inmem isglobal
isjava isruntime java javaArray
javaMethod javaObject keyboard linmod
lookfor macprint mactools methods
mislocked mlock more munlock
new_system open_system pack pfile
rehash runtime set_param sim
simget simset sldebug str2func
superiorto | system_dependent | trmginput type
vms what which who
whos

Table 2.1: Unsupported functions in Stand-alone mode

2.2.3.2 Fixing Callback Problems: Missing Functions

The Mathworks-documents also mentions problems concerning so called call-
back problems. Since I did not run into such problems, I will not go into this
further, but instead would direct you to the Compiler Reference documents
available on the Mathworks website?.

3http://www.mathworks.com /products/compiler

GVA-ELAI-UPM®PFC0071-2003 10

2.3. MATLAB COMPILER: INSTALLATION

2.3 Matlab Compiler: Installation

2.3.1 Windows Installation

This section of the book will describe the installation and testing procedure
for using Matlab Compiler in conjunction with the Windows-operating sys-
tem. It will especially focus on installing Matlab Compiler when Microsoft
Visual C++ version 6.0 is installed, yet where possible a short description
on how to install it with other ¢/c++-compilers will be given.

2.3.1.1 System Requirements

No other requirements are necessary than those needed by Matlab itself. The
Compiler can not be installed if Matlab 6.5 Release 13 is not yet installed on
the system. In order to install Matlab itself, I direct you to the Mathworks-
website?, where detailed description is available.

In order to successfully be able to create a working stand-alone applica-
tion, a supported ANSI C/C++ compiler is necessary.

According to the Mathworks-website, the following compilers are sup-
ported?®:

e Lcc C version 2.4 (included with MATLAB). This is a C only compiler;
it does not work with C++.

e Watcom C/C++ versions 10.6 and 11.0

e Borland C++ versions 5.3, 5.4, 5.5, 5.6, and free 5.5. (You may see
references to these compilers as Borland C++Builder versions 3.0, 4.0,
5.0, and 6.0.) For more information on the free Borland compiler and
its associated command line tools, see http://community.borland.
com

e Microsoft Visual C/C++ (MSVC) versions 5.0, 6.0, and 7.0

Since T only worked with Microsoft Visual C/C++ version 6.0, the main
focus of the book will lay on this compiler, which has its advantages and
disadvantages (see later).

Important! If you want to use the Matlab Compiler with Microsoft
Visual C/C++, it is important that Microsoft Visual C/C++ is installed
into its default folder, since Matlab Compiler relies on parts of this compiler®.

Attention! Applications generated by the Matlab Compiler in Windows
are 32 bit applications, only usable in a 32 bit Windows-environment, and
will therefore not run in other environments such as DOS or Linux.

“http://www.mathworks.com/support/topic/install /index.shtml

°A completer list can be found here: http://www.mathworks.com/support/tech-
notes/1600/1601.shtml

5To be more precise: the VC98-folder should not be changed!

GVA-ELAI-UPM®PFC0071-2003 11

2.3. MATLAB COMPILER: INSTALLATION

2.3.1.2 Installation of the Compiler

The Matlab Compiler comes with the original installation CD as provided
by Mathworks when buying Matlab. The following steps only apply when
the Compiler is not yet installed on the system. You can check whether the
Compiler is already installed by typing ver at the Matlab command prompt.
The Matlab Compiler and its version should appear in the list:

MATLAB Compiler Version 3.0 (R13)

When Matlab Compiler does not appear in the list, the following steps
should be performed:

1. insert Mathworks Installation-disc, the welcome dialog automatically
shows up

2. Enter your Personal License Password (PLP), which was sent by e-mail
3. Click yes after reading the license agreement

4. Enter your name and company name

5. This is the most important step.

(a) Specify your current MATLAB installation directory as the in-
stallation directory

(b) Deselect all but the product (or products) you want to add. By
default, the installer lists all the products you are licensed to
install, preselected for installation, not just the new products. In
our case this means that the Matlab Compiler should be installed,
as well as the Matlab C/C++-Math and the Matlab C/C++
Graphics library.

GVA-ELAI-UPM®PFC0071-2003 12

2.3. MATLAB COMPILER: INSTALLATION

Product List

1. Select directory where products will be installed. Space available:

|CAMATLABEDRS Browse .. | 5327 W

2. Select inztallation options.

Space required for
product(s]. if ang:

453 M

% Install Products and Documentation.
" Install products only [documentation can be read off CO-ROM).
= Install documentation only.

3. Select language of docurnentation,

Space required faor
& English anly. documentation, if
' English and Japaness, if available. I

. &
L]
=
w
=
[
o

211 M

4. Select products and/ar documentation.

I~ ILMI Control Toolbox 1.0

|¥ MATLAB C-C++ Graphics Library 2

¥ MATLAR C-C++ Math Library 2

IC#MATLAE Compiler 2
1
1
i

oo~ e o

Total
[~ MATLAR Report Generator re?q:irzg;ace
I~ Mapping Toolbox
| Model Predictiwve Control Toolbox 1 LI EE4 M

Help | < Back I Mest > I LCancel |

Figure 2.2: Compiler Installation Windows

2.3.1.3 Configuring the Compiler

In this step you will configure the Matlab Compiler to be used with the
compiler installed on your system. This step assumes at least one supported
compiler is installed on the system. It also assumes that you have sufficient
read /write permissions on the computer.

As our goal is to create stand-alone applications only the part dealing
with that conversion would be necessary, but in order to set up a more
complete environment, and to be able to use all the functions within our
programming environment, it is important to configure the creation of MEX-
files” as well.

Configuring Compiler for creation of MEX-files

o In the Matlab Command Window, type mex -setup. The following question
will be asked:

Please choose your compiler for building external
interface (MEX) files:

Would you like mex to locate installed compilers [y]/n?

e Answer with ’y’, and a list of available supported compilers on the system
will be shown, such as the following example:

Select a compiler:
[1] Lcc C version 2.4 in C:\MATLAB6P5\sys\lcc

"MATLAB Executable

GVA-ELAI-UPM®PFC0071-2003 13

2.3. MATLAB COMPILER: INSTALLATION

[2] Microsoft Visual C/C++ version 6.0 in
C:\Archivos de programa\Microsoft Visual Studio

[0] None

Compiler:

Select the appropriate compiler, in my case the correct answer would be 2.
Verification will be asked:

Please verify your choices:

Compiler: Microsoft Visual C/C++ 6.0
Location: C:\Archivos de programa\Microsoft Visual Studio

Are these correct?([yl/n):

If the choice is indeed correct, type 'y’. The configuration will now begin. If
all turns out well, a text very similar to the following should be shown:

The default options file:

"C:\WINNT\Profiles\username

\Application Data\MathWorks\MATLAB\R13\mexopts.bat" is
being updated...

Installing the MATLAB Visual Studio add-in ...

Updated ...

e Now the Compiler is successfully configured.

Configuring Compiler to create stand-alone applications
In order to be able to create stand-alone applications, Mathworks has developed an
utility to easily customize the configuration and build process. This tool, which can
be invoked by typing mbuild at the command line is the easiest way to configure
the Matlab Compiler to create stand-alone applications.

Mbuild can be used as a complete command-line controlled utility, but when
using Microsoft Visual C/C++, no knowledge of the available options is necessary,
only a basic configuration.

The configuration for mbuild is very similar to that of the one above for the
creation of mex-files. I will here only shortly restate the necessary steps, and clarify
where things are different.

invoke mbuild -setup at the matlab command line

select 'y’ in order to let Matlab search for available compilers
choose the correct compiler (ic Microsoft Visual C/C++)

Press 'y’ when you have selected the correct compiler

If all finishes well, you’ll get basically the same message as before

Now you have to save the new info into the Matlab Path-library. You can do
this by invoking the following commands on the Matlab commond prompt:

GVA-ELAI-UPM®PFC0071-2003 14

2.3. MATLAB COMPILER: INSTALLATION

cd (prefdir)
mccsavepath;

Now the Matlab Compiler itself is fully configured.

2.3.1.4 Testing Installation within Matlab

The actual core of the C/C++-code generation by matlab, is provided by the
command mce. But since the rest of this book will be dealing with the creation
of applications using the Microsoft Visual C/C++ environment, where thorough
knowledge of the options of this command is unnecessary , I will only use it this
time to test the installation of the Compiler.

Testing of the installation can be done by following the following steps:

1. In the Matlab environment, go to the following folder:
C:\MATLAB6p5\extern\examples\cmath

Make sure the ex.c-files are available (1-6).
Test by invoking mbuild exl.c
If no errors occured, a exe-file was created which can be run

If any errors did occur, check Initial troubleshooting below

S Gk

In the Matlab environment, go to the following folder:
C:\MATLAB6p5\extern\examples\compiler

7. Make sure the file hello.m is in the folder
8. Test it by entering hello at the Matlab command prompt

9. Test the Compiler by invoking the following command:
mcc -m hello

10. If the Compiler is installed and configured correctly, the following files should
have been generated:

hello.c hello.h hello_main.c
hello.exe hello.m

11. If this gives errors, see below Initial troubleshooting.

Initial Troubleshooting

If for any error with these examples, try going through the installation proce-
dure again.

If the error occurring is not license-related, and you have tried reinstalling,
check the Matlab Compiler Reference guide for further trouble-shooting.

The Guide can be found here:
http://www.mathworks.com/access/helpdesk/help/pdf_doc/compiler/
compiler3.pdf

The sections applicable are:

e Mex Troubleshooting, page 61
e Troubleshooting the Compiler, page 63 and 111
e Troubleshooting mbuild, page 109

GVA-ELAI-UPM®PFC0071-2003 15

2.3. MATLAB COMPILER: INSTALLATION

2.3.1.5 Installation of Microsoft Visual C/C++ Add-In

MathWorks has provided the Matlab Compiler with built-in additional support
for the Microsoft Visual C/C++ developing environment. This through a plug-in,
which after installation is available in the developing environment, and which lets
you easily integrate m-files into a Visual C/C++-project.

If you have already performed the previous two installations, in short being
mex -setup and mbuild -setup, and you have selected the Microsoft Visual C/C++
compiler, the necessary files are already installed.

If not I will here repeat a short retake:

1. To build MEX-files with the add-in for Visual Studio, run the following com-
mand at the MATLAB command prompt:

mex —-setup

Follow the menus and choose either Microsoft Visual C/C++ 5.0 or 6.0. This
configures mex to use the selected Microsoft compiler and also installs the
necessary add-in files in your Microsoft Visual C/C++ directories.

2. To build stand-alone applications with the MATLAB add-in for Visual Stu-
dio (requires the MATLAB Compiler and the MATLAB C/C++ Math Li-
braries), run the following command at the MATLAB command prompt:

mbuild -setup

Follow the menus and choose either Microsoft Visual C/C++ 5.0 or 6.0. This
configures mbuild to use the selected Microsoft compiler and also installs the
necessary add-in files into your Microsoft Visual C/C++ directories. (It is
not a problem if these overlap with the files installed by the mex -setup
command.)

3. For either mex or stand-alone support, you should also run the following
commands at the MATLAB prompt:

cd(prefdir); mccsavepath;

These commands save your current MATLAB path to a file named mccpath
in your user preferences directory. (Type prefdir to see the name of your user
preferences directory.)

This step is necessary because the MATLAB add-in for Visual Studio runs
outside of the MATLAB environment, so it would have no way to determine
your MATLAB path. If you add directories to your MATLAB path and want
them to be visible to the MATLAB add-in, rerun the cd and mccsavepath
commands shown in this step and replace prefdir with the desired pathname.
This is necessary when you use external functions!

Now you are ready to add the plug-in into the Microsoft Visual C/C++ De-
veloping Environment. The plug-in will appear as a toolbar in the environment, as
well be able to select a Matlab Project in the New Project Dialog box.

I will here provide a step-by-step procedure.

GVA-ELAI-UPM®PFC0071-2003 16

2.3. MATLAB COMPILER: INSTALLATION

1. Select Tools - Customize from the MSVC® menu.

*.; Microsoft ¥isual C++

JJ File Edit ‘iew Insert Project Build IE Window Help

% | = E ﬁ | .:lﬁ':. E | -c_"l,’iRe_qisterCDntrol

A Error Lookup

l" ,ﬁ Ackiver Control Test Container
A% OLE/COM Object Yiswer

A% Soy++

)‘5 MFC Tracer

Cuskomize, ..

aptions, ..

ﬂ Macrao...

Record Quick Macro Ctrl+5Shift+R
Play Quick Macro Chel+Shift+P

Figure 2.3: Tools-Customize

2. Click on the Add-ins and Macro Files tab.

Commatds | Toolbars | Toolz I F.eyboard | Add-inz and kacro Filez |

Add-ing and macro files: Deszcrption:

[IE2% MATLAR Addin =]
48 saMPLE

Hint: Click on a check box to enable or dizable an add-in

or macro file. Browsze... |

Figure 2.4: Add-ins Macro Files

3. Select MATLAB for Visual Studio on the Add-ins and Macro Files list and
click Close. The floating MATLAB add-in for Visual Studio toolbar appears.
Selecting MATLAB for Visual Studio directs MSVC to automatically load
the add-in when you start MSVC again.

81 will call Microsoft Visual C/C++ 6.0 MSVC from now on

GVA-ELAI-UPM®PFC0071-2003 17

2.3. MATLAB COMPILER: INSTALLATION

E
1 & i F

Figure 2.5: Add-In toolbar

Now should be able to select a Matlab Project from the New Projects dialog,
as is shown in the picture below:

frew 21 x|

Filez Projects | ‘Workspaces | Other Documents |

24 ATL COM Appiwizard Project name:
DevStudio Addin Wizard |
G [5AP] Extension Wizard)
W akefile Location:

‘MATLAB Project Wizard | J
= MFC ActiveX Controhw/izard
|8 MFC appwizard [dI]
g MFC Appiwizard (exe) & [Create new workspace

7§ Utiliy Project) Sdd b curent workspace
"B |'Win32 Application I™ | Dependencyof:
jWinSZ Conzole Application
%) win32 Dynamic-Link Library I 4
%] 'Win32 Static Librany
Platforms:

Iwmaz

i]8 | Cancel I

Figure 2.6: New Matlab Project 1

When you see this screen, the installation of the plug-in was successful. The
following section will test the installation.

2.3.1.6 Testing of Microsoft Visual C/C++ Add-In

Before trying to test the integration with Microsoft Visual C/C++, it is advisable
to test the working of the Matlab Compiler within the Matlab environment, as is
described in section 2.3.1.3 on page 15.

In order to test the correct installation, it is advisable to first try to compile
and run one of the examples available.

I will here provide a step by step testing procedure:

GVA-ELAI-UPM®PFC0071-2003 18

2.3. MATLAB COMPILER: INSTALLATION

1. Create a new Matlab Project by selecting File - New - Projects - Matlab
Project Wizard and give the project a name, eg 'test’.

Jree 21

Files Projects | ‘Wiorkzpaces | Other Documents |

L& ATL COM Appwizard Project name:
W [e, Shucio Addin Wwizard |
& |SAP Extenszion Wizard

Location:

| o

#im MFC Actived Contralwizard
|89 MFC sppwizard [dI]

BA T Appiwizard (ere)

T Utility Project

IR]'Win32 Application
jWinBZ Console Application
%] win32 Dynamic-Link Library | 4
%] wina2 Static Library

& Create new workspace
) fodd b cumrent warkspace
" Dependensy af:

Platfarmnz:
Iwmaz

)8 | Cancel I

Figure 2.7: New Matlab Project 2

2. Select the language you would like to use, at this moment both languages
can be chosen. When developing later on, problems can occur when selecting
one or the other, in that case the choice will be important. See the section on
Incompatible functions for more information on this. Other options should
be in the default state, as these are the ones necessary for most applications.

GVA-ELAI-UPM®PFC0071-2003 19

2.3. MATLAB COMPILER: INSTALLATION

MATLAE Project Wizard - Step 1 of 1 x|

Wizual MATLAR Application Type:

Projecr — [enerate kain File—— "Use Handle Graphics—‘

r " No main file & Yes
Wizarc i

& Generate main file

—&pplication Language —
“C
ot

— Debug/Releaze
= & Debug
MATH " Release

< Back | [t > I Finizh I Cancel I Help |

Figure 2.8: Matlab Project Wizard

3. When pressing finish, you will be able to select your source m-file. For
this example, we will use the file ’flames.m’, available in the folder:
C\MATLABG6p1\ extern\ examples\sgl

4. Tt will then show a report file, produced by the Matlab Compiler. If no errors
turn up in this section, you can proceed. With higher complexity programs,
errors could occur here, which will be discussed later on.

5. Now you can build the application by pressing the build button in MSVC. It
will then start compiling all the necessary files. The result should look like
this:

Compiling...
flames.cpp
hot.cpp
flames_mainhg.cpp
Linking. ..

test.exe - 0 error(s), O warning(s)

6. Copy the file 'flames.mat’ to the folder of your MSVC-project.

You can now run the program by invoking it through a command-prompt. An
animation should appear.

GVA-ELAI-UPM®PFC0071-2003 20

2.4. DEVELOPING IN WINDOWS/MSVC

2.4 Developing in Windows/MSVC

2.4.1 Preparing your m-file

Before trying to compile any of the functions you have written, make sure you have
installed and configured the Compiler correctly. This can be checked by compiling
any of the examples, as described in the testing section 2.3.1.3 on page 15.

These should compile and run properly before continuing.

This section will describe how to prepare your m-files, so that successful com-
pilation is more likely. Following these restrictions will save already a great deal of
problems. Although the Matlab Compiler provides a very easy and fast creation of
stand-alone applications, it is most of the times not a click-and-go operation. This
book is intended to prevent and solve as much problems as possible.

2.4.1.1 Input Restrictions

When trying to develop a stand-alone application, this is one of the aspects that
most likely will need adjusting. In regular matlab-functions, as provided by m-files,
any kind and number of inputs can be used. This makes every function very flexible
and easy to understand from the outer world. People do not need to know anything
of the internal elements of the functions. A good help function on the meaning and
type of inputs is the only essential in order to use the function properly.

In the development of a stand-alone application, that can be run from the
command prompt, some of this flexibility and transparency will have to be given
up. Because of this, probably more knowledge of the internal functioning will be
necessary, although a thorough help file and explanation of the function should be
sufficient.

The missing of this flexibility and transparency can be solved as well by devel-
oping a gui® or shell around the main program, which will only be the algorithm
itself. In that case, no knowledge at all of the algorithm is needed, the user is not
aware of the existence of the algorithm in its present form.

A simple example will clarify.

The following example takes two inputs, inl and in2, which are supposed to be
integers. Then the content of these inputs is shown, as well as the sum of these
inputs. The Matlab code for this simple function:

function in(inl,in2)
inl

in2

inl+in2

And the result:

>> in(5,10);

inl =
5
in2 =

9Graphical User Interface

GVA-ELAI-UPM®PFC0071-2003 21

2.4. DEVELOPING IN WINDOWS/MSVC

10
ans =
15

Which is of course correct.

When compiling this function within MSVC!, the resulting file is called in-
put.exe, determined by the name given to the project, not by the name of the
function.

Normally you would then expect that the following command at the command-
prompt would give the proper results:

input 5 10

This because of the way we are used to working with DOS, where every com-
mand carries its inputs through the command-line. For example:

copy sourcefile destinationfile
Yet this returns a strange and incorrect result:

C:\Wouter\VC++6projects\examples\input>input 5 10

ini

in2

10

ans

102 101

Which is very strange, because it seemed to have loaded the inputs correctly, as
shown by the correct displaying, but the sum is calculated incorrectly. This is
because the inputs are treated as strings, not as integers.

Solution

The solution to this problem is very simple yet also very uncomfortable: not
using inputs. But inputs are inevitable in a function, so way around needs to be
used.

A solution one might think of, is using the built-in ”load” function in Matlab.
Yet this function can not be used because of a bug in the Matlab Compiler. See
more in the section about incompatible functions about this problem.

A viable, yet not ideal solution which I have used in developing the stand-alone
applications, is the following. Matlab offers I/O!! functions very similar to those
available in C. Functions as to open/read/write/close files. In this lies the solution

YMicrosoft Visual C/CH+
HTnput/Output

GVA-ELAI-UPM®PFC0071-2003 22

2.4. DEVELOPING IN WINDOWS/MSVC

used. Instead of giving the inputs as arguments at the command line, the inputs
are passed through a file. Then the Matlab functions to read from files is used to
read the inputs into their respective variables. Yet the file name of the file that
contains the values of the inputs cannot be passed either. Therefore this file name
will be a fixed string, and is hardcoded into the program. Thus after compilation,
the file name of that file is chosen and cannot be altered.
Advantages:

e Inputs possible
Disadvantages:

e Non-ideal workaround

e Not flexible (fixed filename)

e Non-transparent (user needs to know what inputs the algorithm expects)

However, this workaround is only necessary in the main function! This means
only the function that will be the resulting executable. Any functions called within
the main function can carry inputs as they were originally intended to.

Thus in our Matlab-code the following adjustments are made:

function in()

fid=fopen(’input.txt’,’r’);
in=fscanf (fid,’%i\n’)
fclose(fid);

inl=in(1,1)
in2=in(2,1)

inl+in2

The fixed filename where it will read its variables from is called ’input.txt’, but
can of course be any filename. A short description of the used functions:

fopen Opens the file for reading, indicated by the ’r’-switch
fscanf Reads formatted from the file identifier fid into the variable
fclose Closes the file

The file ’input.txt’ will contain the values:

10
This gives the correct result:

C:\Wouter\VC__6P~1\examples\in2>in2

in =

GVA-ELAI-UPM®PFC0071-2003 23

2.4. DEVELOPING IN WINDOWS/MSVC

10

inl =

in2 =

10

15

Yet this solution is meant when the inputs are digits. When the inputs are
strings, such as filenames, the adjustment to the algorithm is even smaller:

fid=fopen(’input.txt’,’r’);
inl=fgetl(fid);
in2=fgetl(fid);
fclose(fid);

The variables will now be strings in the matlab environment.

If you have adjusted your code like this, it is necessary that the file input.txt is
located in the working directory, that is in the directory your executable is located.
If the executable cannot find any of the files it has to open, whether it is a text-file,
an image or something else, the following error will be displayed:

Exception! File: handler.cpp, Line: 73
Invalid file identifier.

This is the first thing to keep in mind when trying to compile. In short:

e No inputs in main function
e Workaround by using fixed text-file
e Adjusting matlab code by using I/O functions

2.4.1.2 Output Restrictions

Next to the input restrictions, the restrictions imposed by the Compiler on possi-
ble outputs, thus the return values of the functions, are more logic and easier to
understand, but evenly uncomfortable as those implied on the inputs.

When writing algorithms in Matlab-code, it is not necessary to know in advance
which values you will return to the main program, nor of which type they are. This
way it is possible to return integers, doubles, strings, arrays or even combinations
of them. Thus a function like
function [ImgIn,ImgOut, ContVirus,Err] = ContVirusC(), which would return an

GVA-ELAI-UPM®PFC0071-2003 24

2.4. DEVELOPING IN WINDOWS/MSVC

array, containing two other arrays and two integers, would impose no problems.
These returned values can then be used within the matlab environment to perform
other actions.

Yet when developing a stand-alone application, that is restricted by the pos-
sibilities the operating system, ic DOS!? offers, such possibility nor exists nor is
necessary.

Not necessary, because the main reason for multiple returns in the matlab envi-
ronment is the possibility to reuse those variables with other functions, within the
matlab environment. Yet the stand-alone application is outside that environment,
and therefore those other functions can not be used. Even when those other func-
tions would as well be compiled into a stand-alone application, this would not be
necessary, since the functions can not take inputs as they would have in matlab, as
explained in the first section of this chapter.

Yet often the results are needed for later reference, or for usage within other
programs or algorithms. This means that there has to be a way to save the results
of the algorithms, which would normally be saved by returning them to the main
program, in an other way so that they remain accessible when the application or
algorithm has finished.

The solution for this problem depends on which value(s) the algorithm returns.
When there’s only one return, and it’s an integer within the limits of 255, no
adjustment to the algorithm needs to be made, since DOS can get one return from
a program. Yet DOS does not see this as a real variable, but as an error code.
Therefore this solution can only be used when the algorithm is used within another
program that can catch the error return code, such as a gui written in Java.

An example will make this clear:

function out=out()

out=15;

This of course returns the value 15. When running this function in matlab, a
variable with value 15 can be used within the matlab environment.

>> val=out
val =

15

When compiling this function in MSVC, and running it in a DOS-prompt, we
get no result, since it cannot be inserted into a variable:

C:\Wouter\VC++6projects\examples\out>out

C:\Wouter\VC++6projects\examples\out>

The result the function returned can be found in the errorlevel code, which can be
displayed by typing echo %errorlevel% at the command prompt:

2 Although we are using windows, the application generated by the compiler is basi-
cally a dos command-line based application, and therefore subsides to the restrictions dos
implies

GVA-ELAI-UPM®PFC0071-2003 25

2.4. DEVELOPING IN WINDOWS/MSVC

C:\Wouter\VC++6projects\examples\out>out

C:\Wouter\VC++6projects\examples\out>echo Yerrorlevely,
15

Yet this is not a good solution, because
1. You need an external program that catches the errorlevel code

2. The errorlevel code is limited to 255, so results bigger than 255 can not be
stored

In the end this a faulty workaround, and therefore following solution should always
be followed.

The solution needed when multiple return values, other than integers are needed
lies in the method that is used by any program since long time to save data, files.
The possibilities matlab offers for I/O with files makes it possible to save the data
to a file. A full description on the possibilities Matlab offers on File I/O can be
found at the Mathworks website!3.

For the algorithms used in the GVA-lab, which for now only return arrays of
integers and image files, only a the following functions are needed:

imwrite Writes image arrays to a file
fprintf Writes ascii data to a text file

Yet this has some consequenses. The user that would like to use the results
from the algorithm later on, has to know the exact format in which the results were
written to the outputfile. This problem can be solved by issuing a clear description
on how a certain variable type is written.

e Images will be written in the JPG'*-format.

e Arrays of integers/doubles will be written as following into the text file (eg
a 4x3-array)

1 54 244 12
48 47 12 31
12 14 1 36

Every application will create its own output file, most of the time a text file.
The filename of this file can be hardcoded, chosen by the developer, or can be
chosen by the user, which of course then should be considered as an input, with
the consequenses as described in the first section of this chapter.

To summarize:

No outputs as in the Matlab-environment

Single integer output smaller than 255 can be treated as errorlevel code in
dos (not recommended)

Return values or results should be stored in a file

e Results file can be hardcoded or chosen by the user

Bhttp://www.mathworks.com/support/product /ML /tech-note/io/pagel.shtml
1 Joint Picture Expert Group

GVA-ELAI-UPM®PFC0071-2003 26

2.4. DEVELOPING IN WINDOWS/MSVC

2.4.1.3 Documented Limitations

Before trying to compile your algorithms, check your code to find in your algorithm
any functions that might be in the list of documented restrictions imposed by the
Matlab Compiler. For a list of those functions, see section 2.2.3 on page 9.

2.4.1.4 Incompatible functions

Later on in this book a list of incompatible functions, functions that will generate
errors during conversion, compile or runtime, is given. Also the solution to the
problems with these functions is given.

Therefore it is advisable as a prevention rule to already perform the actions
stated in the solutions. The solutions stated there are applicable to a wide range
of functions, and thus can help prevent a lot of problems.

An example of an algorithm that was prepared fully for conversion can be found
in the back of the book. There you will find the original algorithm, thus containing
the code as it was originally run in the Matlab-environment, plus the algorithm,
adjusted to be correctly converted. The code also contains comments, referring to
any problems that occurred converting this algorithm, plus a short solution. The
full solution can then be found in the respective parts of the book.

2.4.2 General developing tips

A lot of problems might occur when trying to convert the matlab-algorithms using
the Matlab Compiler. The following sections will try to facilitate the development
by issuing tips and providing a list of incompatible functions.

2.4.2.1 Successful installation

Make sure the installation was successfully finished. The installation procedure
can be found at section 2.3.1 on page 11 and the testing procedure can be found at
section 2.3.1.3 on page 15.

2.4.2.2 Preparation

Before compiling, remember that there are a few limitations to the compiler and
some oddities might occur. Try preparing your matlab code by eliminating errors
by going through these limitations. The section describing this can be found at
2.4.1 on page 21.

I will here provide a short list of these limitations:

inputs Matlab doesn’t accept inputs as you would put them in the command line
in DOS. Therefore use files to load your data.

outputs Neither does the Compiler support return values as you’re used to in the
Matlab Environment. Again the solution here lies in the usage of files to
store your data.

documented limitations Mathworks has documented and listed a few of the
limitations of the Matlab Compiler. Make sure none of your functions is
listed there. These limitations can be found in this book at section 2.2.3 on
page 9.

GVA-ELAI-UPM®PFC0071-2003 27

2.4. DEVELOPING IN WINDOWS/MSVC

2.4.2.3 Usage of modules

This is a rule that applies to any development of software/algorithms. Whenever
trying to develop an algorithm, try developing using re-usable modules. Meaning,
when writing algorithms that often use the same set of routines, try combining
those routines into a new function. Remember, within your algorithm, there are no
restrictions concerning the input/outputs.

This has multiple advantages. First, it makes your code clearer, making it easier
to find where a possible error occurs. It also makes it more transparent for future
viewers to understand the working of the algorithm. And it enlarges the chance
one of the modules created can be used in the future, thus saving developing time
and costs.

Secondly, it rules out a lot of possible errors when compiling. Meaning, when
using a function or module that already was used before in a successfully compiled
project, the error occurring in the new project cannot be caused by that particular
module.

An example of this is reading data from a textfile. As will be described later
on in this book. The Matlab Compiler does not support the usage of the function
load when trying to read ascii-files. Instead, you have to write your own methods
to read the file, using low-level I/O-functions. Instead of writing this set of routines
over and over again for every algorithms, it is advisable to write a separate function
that reads all data from a file, which then can be used in every future algorithm.

2.4.2.4 Step-by-step developing

It is very unlikely when first trying to convert the matlab-code to C/C++-code,
you will get a flawless compilation. Most of the times an error will occur, and it
is not always easy nor very clear which function or which part causes the error.
Thus the following method provides a time consuming but effective solution to this
problem.

When the algorithm is prepared as described earlier in this book, it is advisable,
when a full compilation turns out to be unsuccessful, to try compiling step-by-step.

Divide the algorithm into different parts, and try compiling first the first part.
When this is successful, you can add the second part and so on. If a failure occurs
at one part, try compiling that part line by line. That way it will be easy to locate
the problem and then find a possible solution or work-around for it.

2.4.3 List of incompatible functions

When developing stand-alone applications using the Matlab Compiler, it will soon
turn out not to be a click-and-go type of situation, which you would expect reading
the glossary Mathworks presents on its Compiler. Unfortunately a lot of problems
have occurred during the converting of the presented algorithms. A lot of these
problems were repetitive, since a lot of the algorithms used at the GVA, use the
same functions and methods of writing.

This section of the book will try to present a list of functions that will produce
errors during compile-or run-time. This is only a list of the functions I came across
to when converting the algorithms given to me during the time of this project.
Therefore this list can not at any point be considered as complete or failsafe. Yet it
can be considered as a reference to some of the problems that might occur. As well

GVA-ELAI-UPM®PFC0071-2003 28

2.4. DEVELOPING IN WINDOWS/MSVC

it should be considered as a dynamic part of this book, since future developments
might give new problems, to which the solutions will be put here as well.

Another thing to consider is that although some functions might not be listed
here, but indeed were used in the algorithms, and therefore were considered as
successful, could give problems in your case. This because the solution provided
for one function, might as well be the solution to a problem with another function.
This is especially the case with the solutions presented here: Strel Section 2.4.3.7
on page 41 and here: Check* not found in section 2.4.3.7 on page 42.

It is also often that one function uses another function, that is actually the base
of the problem. An example of this is the function Fdge that uses the Imlincomb-
function. This will most of the times be visible at the error reported. Therefore
the solution can be found at that function. Thus, although the erroneous function
might not be in this list, it is advisable to try one of the solutions presented here.

I have tried to put as much as structure into this section as possible, so it would
be possible for future readers to have a quick reference.

Before continuing, it is off course necessary that the reason for the error or
problem lies in the usage of one of these functions. This means that successful
installation should have been tested, as described in section 2.3.1.3 on page 15.

2.4.3.1 Edge

The function edges finds edges in an intensity image.

edge takes an intensity image I as its input, and returns a binary image BW of the
same size as I, with 1’s where the function finds edges in I and 0’s elsewhere.

edge supports six different edge-finding methods:

e The Sobel method finds edges using the Sobel approximation to the
derivative.

e The Prewitt method finds edges using the Prewitt approximation to
the derivative.

e The Roberts method finds edges using the Roberts approximation to
the derivative.

e The Laplacian of Gaussian method finds edges by looking for zero cross-
ings after filtering I with a Laplacian of Gaussian filter.

e The zero-cross method finds edges by looking for zero crossings after
filtering I with a filter you specify.

e The Canny method finds edges by looking for local maxima of the gra-
dient of I. The gradient is calculated using the derivative of a Gaussian
filter. The method uses two thresholds, to detect strong and weak edges,
and includes the weak edges in the output only if they are connected
to strong edges. This method is therefore less likely than the others to
be "fooled” by noise, and more likely to detect true weak edges.

Type of error Compile-error when using C++

example program

ImgEnt = imread(’cameraman.tif’);

GVA-ELAI-UPM®PFC0071-2003 29

2.4. DEVELOPING IN WINDOWS/MSVC

ImgBorder=edge (ImgEnt(:,:),’canny’,.4,2);
imshow (ImgBorder)

Matlab output The Matlab output is the following picture:

Figure 2.9: Result of Edge-function

The problem occurs when trying to compile the project when using C++-code:

imlincomb.cpp

c:\edgetest\imlincomb.cpp(578) : error C2065:
’mlxClassname’ : undeclared identifier

Error executing cl.exe.

edgetest.exe - 1 error(s), O warning(s)

It is clearly to be seen that the problem lies in the usage of the function imlin-
comb. Refer to the section on imlincomb to solve the problem.

2.4.3.2 Imdilate

The function imdilate dilates the image.

imdilate imdilate(IM,SE) dilates the grayscale, binary, or packed binary image
IM, returning the dilated image, IM2. The argument SE is a structuring
element object, or array of structuring element objects, returned by the strel
function.

Here it can already be seen that the problems occurring when using this function
are caused by the necessary usage of the strel function. Refer to the section on the
strel-function on how to solve the problem.

GVA-ELAI-UPM®PFC0071-2003 30

2.4. DEVELOPING IN WINDOWS/MSVC

2.4.3.3 Imfeature

The function imfeature computes feature measurements for image regions.

imfeature stats = imfeature(L,measurements) computes a set of measurements
for each labeled region in the label matrix L. Positive integer elements of L
correspond to different regions. For example, the set of elements of L equal
to 1 corresponds to region 1; the set of elements of L equal to 2 corresponds
to region 2; and so on. stats is a structure array of length max(L(:)). The
fields of the structure array denote different measurements for each region,

as specified by measurements.

measurements can be a comma-separated

list of strings, a cell array containing strings, the single string ’all’, or the
single string ’basic’. The set of valid measurement strings is included in the
following table:

"Area’ Tmage’ "EulerNumber’
"Centroid’ "FilledImage’ "Extrema’
"BoundingBox’ "FilledArea’ "EquivDiameter’
"MajorAxisLength’ | 'ConvexHull’ "Solidity’
"MinorAxisLength’ | ’ConvexImage’ "Extent’
"Eccentricity’ "ConvexArea’ "PixelList’
"Orientation’

Type of error Incorrect result

Table 2.2: Imfeature measurements strings

example program

function imfeattest()

ImgEnt=imread(’ cameraman.tif’);

ImgBorde=edge (ImgEnt(:,:),’canny’,.4,2);
ImgObj = (ImgEnt(:,:)>150) & (“ImgBorde);

ImgEtig=bwlabel (ImgObj) ;
= imfeature (ImgEtiq,’Area’);

stat
stat

(1) .Area

Matlab output

ans

29332

This function converts, compiles and builds well, but when running it in the
dos-command prompt, the wrong result is shown:

GVA-ELAI-UPM®PFC0071-2003

31

2.4. DEVELOPING IN WINDOWS/MSVC

C:\imfeattest>imfeattest

(]

Solution The solution to this problem was not so easily to be found. Some other
people did have the same problem, for example here:
http://mathforum.org/epigone/comp.soft-sys.matlab/prelkalkhex/
uy9tzp8l5.fsf@mail .mathworks.com where is stated that the solution to
the problem should be found here:
http://www.mathworks.com/support/solutions/data/27239.shtml. Yet
that address is no longer valid. Therefore another solution needed to be
found.

When going through the manual of imfeature the following was stated:

Note This function is obsolete and may be removed
in future versions. Use regionprops instead.

It seems the imfeature-function has been replaced by a new function called
TegIONPTOPS.

STATS = regionprops(L,properties) measures a set of properties for
each labeled region in the label matrix L.

Thus in the next attempt the imfeature function was replaced by the region-
props-function.

stat = regionprops (ImgEtiq,’Area’);

which gives the same result as before:
After restarting the project, the correct result is displayed:

C:\imfeattest>imfeattest

29332

2.4.3.4 Imlincomb

The function imlincomb computes a linear combination of images.

imlincomb Z = imlincomb(K1,A1,K2,A2,....Kn,An) computes
K1xA1 + K2%A2 + ... + KnxAn where K1, K2, through Kn are real, double
scalars and Al, A2, through An are real, nonsparse, numeric arrays with the
same class and size. Z has the same class and size as Al.

Type of error Compile-error

GVA-ELAI-UPM®PFC0071-2003 32

2.4. DEVELOPING IN WINDOWS/MSVC

example program
I = imread(’rice.tif’);
J = imread(’cameraman.tif’);
K=imlincomb(2,I,2,J);
imshow (K)

Matlab output The output of this function is the picture shown below:

Figure 2.10: Imlincomb-result

This function is used quite often, and most of the times by other functions
of the Matlab Image Processing toolbox. Functions that use imlincomb are:

e edge
e imadd
e imsubtract

The problem with this function only occurs when trying to convert to C++-
code, not with C-code.

Conversion works flawlessly, but when trying to compile, the following error is
shown:

imlincomb.cpp
c:\imlincombtest\imlincomb.cpp(578)
error C2065: ’mlxClassname’ : undeclared identifier

Again, the ”solution”, or better workaround, can be found on the Mathworks
Website: http://www.mathworks.com/support/solutions/data/32633.shtml.

GVA-ELAI-UPM®PFC0071-2003 33

2.4. DEVELOPING IN WINDOWS/MSVC

Solution:

This is a bug in the MATLAB Compiler 3.0 (R13) that has been
reported to our development staff for further investigation.

As a workaorund, please try generating a C stand-alone
instead of a C++ stand-alone.

When trying to compile into C-code, the following compile-messages are shown:

c:\imlincombtest\imread.c(1199) : warning C4761:
integral size mismatch in argument; conversion supplied
checkinput.c

c:\imlincombtest\imshow.c(1744) : warning C4761:
integral size mismatch in argument; conversion supplied
checknargin.c

checkstrs.c

images_private_imlincombc_mex_interface.c

iptgetpref.c

truesize.c

c:\imlincombtest\iptgetpref.c(461) : warning C4761:
integral size mismatch in argument; conversion supplied
c:\imlincombtest\iptgetpref.c(618) : warning C4761:
integral size mismatch in argument; conversion supplied
images_private_num2ordinal.c
c:\imlincombtest\truesize.c(1117) : warning C4761:
integral size mismatch in argument; conversion supplied

Linking...
imlincombtest.exe - 0 error(s), 5 warning(s)

In spite of the warnings, the program runs fine, that is, if the images used
('rice.tif’,’cameraman.tif’) are copied to the working directory.

Thus, as a conclusion, it can be said that for now, it is better to convert into
C-code, and not into C++-code. During the project, I did not occur any problems
when changing to C-code.

2.4.3.5 Load

The function load loads workspace variables from disk.

load S = load(...) returns the contents of a MAT-file in the variable S. If the
file is a MAT-file, S is a struct containing fields that match the variables in
retrieved. When the file contains ASCII data, S is a double-precision array.

Options on the type of file that is loaded, can be given by an option switch.
Possibilities are:

e -mat forces load to treat the file as a MAT-file, regardless of file extension.
With -mat, load returns an error if the file is not a MAT-file.

GVA-ELAI-UPM®PFC0071-2003 34

2.4. DEVELOPING IN WINDOWS/MSVC

e -ascii forces load to treat the file as an ascii-file, regardless of file extension.
With -ascii, load returns an error if the file is not numeric text.

Type of error Runtime-error

example program
function loadtest()

s=load(’input.txt’,’-ascii’)
This forces load to treat the file ’input.txt’ as an ascii-file. This isn’t really

necessary, since a file with the extension ’txt’ is automatically treated as an
ascii-file. ’input.txt’ is a text file with the following contents:

5
10

matlab output
S =

5
10

This function, which provides an easy way to load in variables, gives errors
when trying to run the compiled program. Conversion, compilation and building
otherwise are flawless.

C:\loadtest>loadtest
ERROR: Can’t open file C:\loadtest\input.txt.

EXITING
Yet, the file is in the working directory:

C:\loadtest>dir input.txt
El volumen de la unidad C no tiene etiqueta.
El ntumero de serie del volumen es: BCS5F-9EE5

Directorio de C:\loadtest

24/04/2003 17:36 5 input.txt
1 archivos 5 bytes
0 dirs 3.551.293.440 bytes libres

The problem lies again in a bug in the Matlab Compiler. This is stated clearly
at the Mathworks website:
http://www.mathworks.com/support/solutions/data/24103.shtml.

This is a bug in the MATLAB Compiler where the compiled LOAD

function is unable to read ASCII files. This problem has been
reported to our development staff to be addressed in a future
release of MATLAB.

GVA-ELAI-UPM®PFC0071-2003 35

2.4. DEVELOPING IN WINDOWS/MSVC

We suggest saving your data in a MAT file that can be read in
using LOAD in your stand-alone application. Please note that

if you take the return value of a LOAD command into a variable,
the data contained in the variable will be in a structure format.
Thus, you will have to refer to the particular variable

within the structure.

If you would like to use an ASCII file, please use the low
level File I/0 commands like FSCANF.

The workaround suggested on the website is a possible workaround for MAT-
files. But since we are working with plain ascii-files, that workaround is not possible.
The file we would like to read is created by the external program ejemplo2, which
is a plain dos-application which saves the results into a text file.

Therefore another solution is needed. As stated on the website, the usage of
the low-level file I/O commands is necessary.

For a general guide on file I/O, refer to the Mathworks-website:
http://www.mathworks . com/support/tech-notes/1600/1602.shtml

The solution presented here is a general workaround around this problem, and
consists of writing a function that is able to read in data from an ascii-file, as it
would be done by the load-function within the Matlab environment.

loadascii

The function, which will be called loadascii, takes the filename of the ascii-file
as input, and returns the matlab variable.

The source code for the function is pretty simple and straightforward:

function a = loadAscii(filename)
fid = fopen(filename);

if fid==-1
error([filename ’: File does not exist’]);
end
numlines = O;
try
while(1)
tline = fgetl(fid);

if “ischar(tline), break, end
numlines=numlines+1;
end
fseek(fid, 0, ’bof’);
a = fscanf(fid,’%g’, [numlines inf]);
[r c] = size(a);
% The next two steps are required since MATLAB
% reads the data in column major format
% and fscanf reads data in row major format
a = reshape(a,c,r);
a=a’;
fclose(fid);
catch
fclose(fid);

GVA-ELAI-UPM®PFC0071-2003 36

2.4. DEVELOPING IN WINDOWS/MSVC

error([filename ’: Error while reading file’]);
end

This function can be used every time trying to read in an ascii-file into a vari-
able, and is therefore easier than to write your own routines every time.

A short explanation of the function. First, it checks whether the given file,
which is known by the string-variable filename, exists. If not, it returns an error
code.Then, it performs a loop as long as valid data is read in. It reads is data line by
line. The data obtained there serves only to know the number of valid lines in the
file. The actual reading is then performed outside the loop by the fscanf-statement.
Due to the difference in interpreting data between Matlab and the fscanf-function, a
reshape-statement is necessary. This reshapes the array a, and changes the number
of columns to rows and vice-versa. Then, the array is transported to get the correct
result.

Our little example can now be rewritten as:

function loadtest()
s=loadAscii(’input.txt’)

The loadAscii-function has to be in the same folder as the loadtest-function!
Now after restarting the project, the correct result is displayed:

C:\loadtest>loadtest

2.4.3.6 Save

The Save-function is a bit odd in this series of incompatible functions. The func-
tion does not give any conversion problems, nor any compiling or linking errors or
oddities. Yet, it turned out to act strangely when using it to store data into a text
file, and then reusing it again in another program. This problem occurred with the
specific algorithm used during this project. It might be that in other situations, no
problems occur, yet it is advisable to use the solution here provided, since it seems
to be more foolproof than the Save-function itself.

save saves workspace variables on disk.

save save filename varl var2 ... saves only the specified workspace variables in
filename.mat. Use the * wildcard to save only those variables that match the
specified pattern. For example, save(’A*’) saves all variables that start with
A. Options can be given by using several switches, listed in the table below:

GVA-ELAI-UPM®PFC0071-2003 37

2.4. DEVELOPING IN WINDOWS/MSVC

option Argument Result: How Data is Stored
-append The specified MAT-file, appended to the end
-ascii 8-digit ASCII format
-ascii -double 16-digit ASCII format
-ascii -tabs delimits with tabs
-ascii -double -tabs 16-digit ASCII format, tab delimited
-mat Binary MAT-file form (default)
-v4 A format that MATLAB version 4 can open

Table 2.3: Options for “save*

The one we are particularly interested in is the -ascii option. This would allow
us to easily load the stored variables again in an external program. But Mathworks
imposes some restrictions on the usage of the storing of ascii-files:

e Each variable to be saved must be either a two dimensional double array or

a two dimensional character array. Saving a complex double array causes the
imaginary part of the data to be lost, as MATLAB cannot load non-numeric
data (’1").

e In order to be able to read the file with the MATLAB load function, all of the

variables must have the same number of columns. If you are using a program
other than MATLAB to read the saved data this restriction can be relaxed.

e Each MATLAB character in a character array is converted to a floating point

number equal to its internal ASCII code and written out as a floating point
number string. There is no information in the save file that indicates whether
the value was originally a number or a character.

e The values of all variables saved merge into a single variable that takes the

name of the ASCII file (minus any extension). Therefore, it is advisable to
save only one variable at a time.

Yet when using the compiler, even when keeping in mind those restrictions,
problems may occur. I will show the possible problem with the program used in
the algorithm.

This is the Matlab-code for the program:

ImgEnt = imread(’cameraman.tif’);

Hist
save
dos (

= imhist(ImgEnt(:,:));
hist.txt Hist -ASCII
’ejemplo2 hist.txt ResUmb’);

This save the results of the histogram-function imhist to a file called hist.txt,
which is then again read by an external program called ejemplo2.exe which calcu-

lates

the threshold-values of the images, and saves those in the file called ResUmb.

When executing this code in Matlab, the following results are obtained:
hist.txt (only first 15 lines)

GVA-ELAI-UPM®PFC0071-2003 38

2.4. DEVELOPING IN WINDOWS/MSVC

1.0000000e+000

2

= = 00 O 00NN 000~ O

108
109
108
29

99

36

140
175
184
167
110

.8000000e+002
.2290000e+003
.5200000e+002
.2160000e+003
.2900000e+002
.2400000e+002
.2200000e+002
.5800000e+002
.1700000e+002
.8000000e+002
.3800000e+002
.1720000e+003
.2080000e+003
.3530000e+003

ResUmb

So far, no problems.

Now when the function is converted to a stand-alone

program, and then executed, the following error happens:

Ejemplo2.exe - Error de aplicacién 5'

° La instruccion en "0x0040c396" hace referencia a la memaria en "0x0053c894", La memaria no se puede "read”,

Haga clic en Aceptar para finalizar este programa
Haga clic en CANCELAR para depurar el programa

Aceptar I Cancelar

Figure 2.11: Savetest-error

This is not an error caused by the Matlab-program, but a "regular” windows
memory error. This leads to the suspicion that the external program ejemplo2.exe

GVA-ELAI-UPM®PFC0071-2003 39

2.4. DEVELOPING IN WINDOWS/MSVC

might be the cause of the problem. Yet it has run perfectly within the matlab
environment. Therefore the problem lies in the save-function.

After a closer look it can be seen that the save-function is not well converted.
The output-file of the save-function, hist.txt, is not saved correctly. When opening
the hist.txt file, the following can be seen:

MATLAB 5.0 MAT-file, Platform: PCWIN,
Created on: Thu May 08 18:00:45 2003

Which is of course completely different from the result within the Matlab-
environment. This causes the program ”ejemplo2” to read in faulty results, and
crash, hence generating the shown error dialog.

Thus we have to write our own routine of saving the histogram, or any other
variable. This can be done by using the Matlabs internal I/O-routines.

De array hist is an array of 1 column, of which every element is saved on a new
line in the hist.txt-file. Thus a simple loop, for the whole size of hist does the trick.
Every time one value is taken from hist, and written on a new line in the file.

This is the code:

fid = fopen(’hist.txt’,’w’);
for i=1:size(Hist,1)
fprintf (fid, ’%i\n’ ,Hist(i));
end
fclose(fid);

A little explanation:

fid = fopen(’hist.txt’,’w’); Creates a file identifier, with the option ’'write’, if
the file doesn’t exist, a new file will be created, as in our case.

for i=1:size(Hist,1) Perform the loop for the whole size of Hist, thus taking every
element.

fprintf(fid,”%in’,Hist(i)); Write the value as an integer (%i), followed by a new-
line character (
n). Of course other types, such as doubles or floats can be used.

fclose(fid); Close the file-identifier, so the file becomes accessible again.

Now the program runs fine and the correct result is calculated.

2.4.3.7 Strel

The function strel creates a morphological structuring element, used when opening
and performing morphological functions on images.

strel SE = strel(shape,parameters) creates a structuring element, SE, of the type
specified by shape, listed in the table below.

GVA-ELAI-UPM®PFC0071-2003 40

2.4. DEVELOPING IN WINDOWS/MSVC

Flat Structuring Elements
"arbitrary’ "pair’
"diamond’ 'periodicline’

"disk’ ‘rectangle’

'line’ ‘square’
‘octagon’

Nonflat Structuring Elements
‘arbitrary’ ‘ "ball’

Table 2.4: Shapes by strel

Type of error Runtime-error

example program
function streltest()

se=strel(’square’,3)

Matlab output
se =

Flat STREL object containing 9 neighbors.

Neighborhood:
1 1 1
1 1 1
1 1 1

This function which is very often used and therefore of great importance, con-
verts and compiles without errors, but gives an error during runtime.
A part of the problem can already be seen during conversion-time:

Warning: File: streltest Line: 3 Column: 4

The MATLAB Compiler does not currently support MATLAB object-
oriented programming. References to the method "strel" will produce
a run-time error.

Compilation runs without problems, but when trying to run the built executable
the following problem occurs:

Exception! File: handler.cpp, Line: 73
Undefined function or variable ’strel’.

Solution The solution to this problem is given on the Mathworks website.

It seems the Matlab Compiler can not find the necessary files for the correct
conversion, therefore a set of files needs to be copied to a general accessible folder.
http://www.mathworks.com/support/solutions/data/29113.shtml

GVA-ELAI-UPM®PFC0071-2003 41

2.4. DEVELOPING IN WINDOWS/MSVC

Solution:

If you are using any morphological functions in the M-file that you
are trying to compile, please copy all the files from:

toolbox/images/images/@strel

into your working directory, or somewhere on the MATLAB path so that
the compiler can see them. Please Note: This is not a general way to
compile user-defined classes (this is a specific work-around
provided for the Image Processing Toolbox).

The files involved in this operation are:

Contents.m
disp.m
display.m
getheight.m
getneighbors.m
getnhood.m
getsequence.m
isflat.m
reflect.m
strel.m
translate.m

These files need to be copied to the ”working directory” meaning to the direc-
tory where the main algorithm that uses the strel-functions, is situated.

After doing this and reconverting/recompiling/rebuilding the project, another
problem occurs, as is seen during conversion-time:

Warning: File: strel Line: 652 Column: 5

References to "checkinput" will produce a run-time error because it
is an undefined function or variable.

(and others alike)

and during runtime:

Exception! File: handler.cpp, Line: 73
Undefined function or variable ’checknargin’.

The solution to this new problem can again be found on the Mathworks-website:
http://www.mathworks. com/support/solutions/data/32474.shtml

This error message occurs because the MATLAB Compiler does not
locate these files properly.

To work around this problem, move all the files starting with
"check" from the Image Processing Toolbox 3.2 (R13) private
directory into the parent directory of that private directory.
That is, copy these files:

GVA-ELAI-UPM®PFC0071-2003 42

2.4. DEVELOPING IN WINDOWS/MSVC

$MATLAB\toolbox\images\images\private\checkconn.m
$MATLAB\toolbox\images\images\private\checkinput.m
$MATLAB\toolbox\images\images\private\checknargin.m
$MATLAB\toolbox\images\images\private\checkstrs.m

to this location:

$MATLAB\toolbox\images\images

The Mathworks website also offers a immediate method to do this.

movefile([matlabroot ’\toolbox\images\images\private\check*’],
[matlabroot ’\toolbox\images\images\’])
rehash toolbox

After copying these files, and restarting the project, finally the correct result is
obtained.

2.4.4 Distributing the applications

After successfully converting the Matlab-code into C/C++-code, and then compil-
ing and building them into an executable exe-file, we can now consider the final
stage, what it was meant to be, in casu a stand-alone application. First, it is
important to define what a stand-alone application is.

In our project, a stand-alone algorithm is an algorithm that can be run inde-
pendently from any installed program, shell or gui. This means that the program
must also run when Matlab is not installed on the system, or when there is no gui
available for the algorithm.

The second objective is already completed. Since every algorithm is treated as
a separate one, every algorithm can be run from any command prompt, that is if
all other necessities are available, such as libraries (see later) or files (input, images,

The following of this section can be mainly be revised in brief here:
http://www.mathworks . com/support/tech-notes/1600/1606.shtml
For the first adjective, some larger arrangements need to be made.

2.4.4.1 Installing standard Matlab Libraries

All the basic Matlab-libraries need to be installed on the system, in order to make
any program work on any system. MathWorks provides an installer to perform this
action. It is necessary that this installer is executed, although it appears it is only
copying files, merely copying files does not work. The installer can be found here:
$MATLAB\extern\lib\win32\mglinstaller.exe This file should be distributed
along with any executable created by the Matlab Compiler. This file should then
be installed on the target computer. The installation is pretty straightforward, yet
I will provide here a description.

GVA-ELAI-UPM®PFC0071-2003 43

2.4. DEVELOPING IN WINDOWS/MSVC

Where After double clicking, two files will be extracted, and you will be asked
where to install the libraries. If you only need one algorithm, which is in
the folder where you started the installer, you can select the default folder
by pressing ENTER, otherwise, which is recommendable, you can choose to
install the libraries in any path you like.

Checking This will extract two folders into the folder you have selected. These
folders are named bin and toolboz.

Adding path In this part you will need to add the path of the libraries to the
system’s path variable, so the system can find the new libraries. You can add
the path as following;:

e Start-Control Panel-System
e tabpage Advanced, Environment variables
e In the Systems Variable-section, locate the path-line and press Edit

e At the end, add a semi-colon, followed by the path of the libraries,
followed by \bin\win32. For example, if you installed the libraries
to the folder c:\matlibs, the path line should be changed by adding
c:\matlibs\ bin\ win32, as shown in the picture.

Propiedades del sistema 21xl

Generall Identificacion de ledl Hardwalel Perfiles de usuario Avanzado |

variables de entorno. x|
Madificar la variable del sistema g |
Mombre de variable: I Path
Walor de variable: I b9 Systern3 2| Whem; Ctimatlibs! birwina2|

Acepkar I Cancelar |

—Wariables del sistema

Variable | Valor |i|

Osz2LibPath CHWINNT sy skem32os2\dll;

Path CHWINNT sy skem32; CWINNT CHWIN. ..

PATHERT JZOM; EXE; BAT; . CMD; VBS; VBE; IS5,

PROCESSOR_AR... x86 hf
Mueva. ., Editar... | Eliminar |

Aceptar | Cancelar | J

Figure 2.12: Path variable adjustment

2.4.4.2 Copying (optional) binairies

If there are any, all files within the folder bin, created in the working directory,
should be distributed along with the algorithm.

GVA-ELAI-UPM®PFC0071-2003 44

2.4. DEVELOPING IN WINDOWS/MSVC

2.4.4.3 Any custom MEX-files your application uses

This is the least clear and also the most tricky section. On the Mathworks, only is
stated as in the title: Any custom MEX files your application uses.

Yet it is difficult to know which those are. One possibility is to look in the
working directory of the program at the generated C/C+-+-files. Most of them
will represent a dll. For example applylut_mex_interface.c represents applylut.dll.
The other possibility is a trial-and-error procedure. In this, you try executing the
algorithm from the command prompt. If an error occurs, it will be in the line of
the following:

ERROR: Failed to find MEX-File on path : dataread.dll

This directly points out which dll is missing. Locate this dll in your Matlab-folder,
and copy it to the working directory of the program, and retry.
Yet also a slightly different error can occur.

Failed to find MEX-File on path : images/private/imfilter_mex.dll

Copying this dll does not affect this error. The explanation and solution can
be found on the Mathworks website:
http://www.mathworks. com/support/solutions/data/32983.shtml

They also provide a solution:

Solution:

The current fix to this problem is to recreate the MATLAB
path on the deployment computer.

For example, consider the DLL:
C:\matlab6p5\toolbox\images\images\private\imhistc.d1ll.
On the deployment computer, you will need to create the entire tree:

c:\matlab6p5\toolbox\images\images\private\imhistc.d1l.

Thus on the target computer, we need to create that specific tree exactly as on the
source computer, and copy the libraries to the target computer.
These are the libraries involved:

bwfillc.dll

bwlabell.dll

bwlabel2.dll

bwlabelnmex.dll

castc.dll

cq.dll

ddist.dll
dicom_decode_rle.dll
dicom_decode_rle_segment.dll

GVA-ELAI-UPM®PFC0071-2003 45

2.5. AD/DISADVANTAGES MATLAB COMPILER

dilbw.dll
ditherc.dll
erobw.dll
eucdist2.d1l
graytol6.d11l
grayto8.dll
grayxform.dll
imdivmex.d1l1l
imfilter_mex.dll
imhistc.dll
imlincombc.dll
immultmex.dll
inv_1lwm.dll
inv_piecewiselinear.dll
iptregistry.dll
morphmex.dll
mwguidgen.dll
nnsearch.dll
ordf.dll
radonc.dll
resampsep.dll
watershed_vs.dll

After copying all these libraries, the algorithm should run fine.

2.4.4.4 Summary
Thus, in short the following steps are necessary when distributing an algorithm:
e Install Matlab Runtime Libraries (mglinstaller.exe)

e Copy files from
bin-folder to target computer

e Copy any other needed libraries to target computer (including privates)

2.5 Ad/Disadvantages Matlab Compiler

2.5.1 Advantages

In this section I will try to summarize and describe the advantages the Matlab
Compiler offers. I will go through some of the advantages the Mathworks-company
states, as well as some of my own experiences. I will not only give here the advan-
tages, but critically look at them whether they are achieved or not.

First, let us go through the advantages according to Mathworks.

2.5.1.1 Advantages according to Mathworks

The Matlab Compiler gives according to the Mathworks website and the documen-
tation of the Compiler the following advantages:

e Faster execution

GVA-ELAI-UPM®PFC0071-2003 46

2.5. AD/DISADVANTAGES MATLAB COMPILER

e Easy distribution
e To hide algorithms

Faster execution is an advantage that might seem important nowadays. Math-
works states that compiled functions should run faster than the original.
There are four reasons to this. The first reason is that every time an algo-
rithm is run within the matlab environment, the code needs to be interpreted
by the Matlab engine, and converted to machine language so the processor
can execute it. Although the current engine and wide instruction set of cur-
rent processors have limited this time, it could be a difference. Yet, if it would
make a difference, it would be unnoticeable compared to the overall execu-
tion time of the algorithms used. The second reason is that Matlab treats
all variables as matrices, whether it is a simple integer or a complex array.
The code in C/C++ does not act this way. It often uses simpler structures,
such as integers, when a more complex structure is necessary. Since our al-
gorithms use all kinds of structures, this advantage can hardly be noticed.
The third reason is that the generated C-code (not C++-code) can be set up
not to check array boundaries. Matlab always performs this check. Yet to
insure stability it is advisable to leave this check in the generated code, so no
speed advantage can be found here. The fourth deals with a better memory
allocation used in C/C++ than in Matlab. No real details can be said about
this.

Overall, it can not really be said that the compilation of the programs offers a
significant increase in execution time. In some cases the compiled file turned
out to be even slower. Yet in other cases a speed increase might be noticeable.
Mathworks also points this out. They state that compilation is most likely
to speed up algorithms using loops, integers or other simple data structures.
Yet, it is not likely to speed up algorithms using complex vectors, Matlab’s
indexing or graphics functions. Since in our case most of the time we are
dealing with the latter case, it is not so remarkable no speed increase was
noticed.

Easy distribution was one of the main reasons for this project. The free distri-
bution as a stand-alone application without the necessity of Matlab, makes
it easy to use the algorithms in an external environment, such as in our case
a hospital or a university. So distributing your stand-alone applications is
indeed possible. It could be considered as easy, since once a package is set for
an algorithm, it can be installed on every pc in the same way. Yet it could
also be considered as un-easy and complicated, since creating the packages
is far from transparent or reusable. Although the included installer pro-
vides a large deal of the needed libraries, the necessity to adjust the system
path manually, and the necessity to add additional libraries, which are to be
found through a primitive manner, makes the distribution a part on which
the Compiler can improve in the future. In the end though, a package could
be created using an installer, which then could be easily distributed, so none
of this hassle would be necessary.

Hiding of algorithms is obtained easily. Since the built executable can be dis-
tributed without the necessity of any source files, none of the internal mecha-
nism of the algorithm is available to the outer world. Although the distribut-
ing of source code should be cheered at, when hours and hours of developing

GVA-ELAI-UPM®PFC0071-2003 47

2.5. AD/DISADVANTAGES MATLAB COMPILER

time and big investments were necessary, this is the only way to be able to
gain some of its costs.0

2.5.1.2 Other Advantages

The following advantages are some of the advantages I saw out of experience of
working with the Compiler. Some of these are already in respect to other possibil-
ities of implementing these algorithms.

Fast developing When all problems are solved with the compiler, and a bit of
knowledge of the generated errors and problems is at hand, converting an
algorithm using the Matlab Compiler can become a matter of minutes. This
is a great deal less than when using external libraries. In that case you
basically need to rebuild the algorithm from scratch, translating every line
of Matlab-code into a similar function provided by the library. Often these
functions use different type of arguments than the function in Matlab, which
makes it even more difficult to reproduce the results.

Easy testing It is easy to test the converted product. Since there is always the
source algorithm available within the Matlab Environment, it is easy to con-
trol the results obtained by the algorithm.

Easy installation The installation of the Compiler is very straightforward and
well documented, and should not impose any problems, when following the
guidelines. Installing the Compiler after an installation of Matlab does not
impose any problems either.

Easy integration with MSVC The possibility to add an add-in to the Microsoft
Visual C++ developing environment, and the ability to easily start a project
based on a Matlab-file from within the MSVC-environment, makes the com-
piler very easy to use, without having to know off the parameters of the
conversion.

2.5.2 Disadvantages

In this part the main disadvantages of the Matlab Compiler that I ran into during
the project will be discussed. These are all disadvantages out of experience, since
of course Mathworks does not provide any disadvantages as is. The limitations and
restriction on the functionality of the Compiler, as given by Mathworks, could be
considered as disadvantages, but since the usage of these functions in a stand-alone
version is often unnecessary, and in our algorithms never used, it is my opinion that
these do not really count as a disadvantage.

Undocumented limitations There are some limitations to the Compiler that
are not mentioned. As can be seen in the section 2.4.3 on page 28 a lot of
functions carry out problems. The solution to these problems can almost
always be found on the Mathworks-website, so they are aware of them, but
yet nothing is mentioned in the manual.

Incompatible functions There seem to be quite some functions that have dif-
ficulties to be converted correctly. This is a disadvantage to the Compiler,
since for every algorithm, you need to find out which is the erroneous func-
tion, and then find a solution. This can be time-consuming, but as already

GVA-ELAI-UPM®PFC0071-2003 48

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

stated before, it seems that when a number of solutions is applied, a lot of
problems are avoided and solved. Therefore it is advisable to first apply these
solutions in advance, to avoid a few problems.

Code preparation As stated in the section ”Preparing your m-file” on page 21, a
few adjustments need to be made to the original algorithm, in order to ensure
proper converting. These adjustments could take some time, but when an
example is at hand, it’s often a matter of copy-paste.

2.6 Comparison Matlab/Compiled algorithms

2.6.1 General notices

An important part of the entire process of the conversion, and which was one of the
reasons to start studying on the conversion possibilities, was to make a comparison
on the result of the different methods.

It is necessary to review the both otherwise identical algorithms, being one
written and run within the Matlab environment, the other one being the converted
C/CH+-version. It is needed to review these algorithms on several fields that serve
the main purpose, being offering a fast, cheap and easy-to-use solution for the
people at the hospital to process their images. An other important factor is the
ease for the programmer, or how to obtain the final result that will be distributed
to the distinct hospitals.

Another aspect that could be considered as important is the transportability
to several platforms. In the end, it might be interesting to develop executables or
code that can be run on several platforms, mainly being Windows and Linux. This
because both offer their own advantages, making further research on both platforms
possible, thus not limiting the options by restraining one of them.

2.6.2 Speed comparison

One of the main reasons for starting this project was the possible increase in speed
that could be obtained by converting the matlab algorithms to C/C++-code. This
was important, since some of the algorithms can be quite time-consuming, especially
when using large sets of images, or in the future, when developing will be extended
to the usage of three-dimensional objects. The importance of this factor does not
only reflect in this project, but also in other projects running in the GVA, such as
the clustering of computers.

The reasons why the conversion from the Matlab-algorithms to C/C++-code
could deliver a decrease of execution time were already discussed at section 2.5.1.1
on page 47, but will be repeated here in short:

Interpretation Every time an algorithm is run within the Matlab-environment,
the code needs to be interpreted by Matlab, and converted to assembly code
which can then be run by the processor. This is not necessary when you
have C++/C-code, which, once built, generates an executable which does
not have to be interpreted again.

Variables Matlab treats every variable, even an integer, as matrices. This creates
overhead that is speed-restraining, which is not necessary in C/C++, where
all data types can be used.

GVA-ELAI-UPM®PFC0071-2003 49

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

Array boundaries Matlab always checks for array boundaries, in order not to go
out of these arrays and thus cause errors. This can be turned of if wanted in
C++/C, in order to gain speed. Yet this is not advisable since it could lead
to unwanted crashes.

Memory allocation Memory allocation provided by the C/C++-compiler is sup-
posed to be better than that of the Matlab interpreter. This could gain a
speed increase as well.

In order to test the difference in execution time, three algorithms were taken
and were processed on a set of images. These specific algorithms were taken, since
these were the one requested to be converted by the end of the project. These three
algorithms would be the ones sent to the hospitals, and which would be integrated
into a graphical user interface for automatic processing.

The algorithms in particular are:

Neuro Blastomas A very time-consuming algorithm that takes two images at a
time in order to calculate numbers of viruses.

FHYV Virus Algorithm to detect the number of viruses in one image

FHYV Cellulas Algorithm to count the cells of an enhanced image

2.6.2.1 Neuro Blastomas

This is one of the more time-consuming algorithms. It is used to detect the number
of bad cells in two images. The first image contains the original cells, and the
second contains a selected part of marked cells. An example of these images can
be seen below:

Figure 2.13: Original cells

GVA-ELAI-UPM®PFC0071-2003 50

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

Figure 2.14: Marked cells

The algorithms uses mainly morphological functions, of which the following are
the most typical for the algorithm:

e Edge-detection through ’canny’-algorithm
e Image Dilation

e Image Histogram

Image Subtraction

Image Region Properties calculation

The algorithm was processed on 24 images, meaning 12 sets of 2 images, since
the algorithm takes 2 images at a time.

The following table presents the execution times in the different environments:
15

0S Number Total Avg time | Avg time
of images | execution time /set /image
MATLAB | Win32 | 24 (12x2) 2:33 12,82s 6,41s
C | Win32 | 24 (12x2) 2:42 13,84 6,955
MATLAB | Linux | 24 (12x2) 2:10 10,9s 5,45s
C | Linux | 24 (12x2) 2:13 11,1s 5,55s

Table 2.5: Execution times NB

Thus, in the end, it can be seen that in this case, there is not a real gain in
speed. The difference of 0,1s can as well be less the next time the algorithm would
be processed.

The explanation of this lack of increase in speed lays in one of the main functions
of the algorithm. The most time consuming function here is the edge-detection-
function, which uses the canny-method to calculate the edges in the image. Al-
though the other functions do offer some speed increase, this speed increase is

1508: Operating System

GVA-ELAI-UPM®PFC0071-2003 o1

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

zeroed out by the edge-detection, which takes longer in C/C++ than in the Matlab-
environment.

A remark on this is that this is not the only case with this function. When
trying to implement this function using Vigra (see later), this function turned
out to be very slow in C/C++ as well. Basically it could be concluded that the
implementation and handling of this function in Matlab is far superior than those

in C/C++.

2.6.2.2 FHYV Virus

This is the first of the two algorithms used in a particular hospital. As the algorithm
it is quite straightforward, and not as time consuming.
The main functions used:

e Image Histogram
e Thresholding
e Image labeling

The simplicity of the algorithm makes it fast to execute. It only takes one
image to compute. An example of such an image is presented below:

Figure 2.15: Example of FHV Virus image

The following table presents the execution times in the different environments:

OS Number Total Avg time | Avg time
of images | execution time /set /image
MATLAB | Win32 8 1,2s 150ms 150ms
C | Win32 8 1,02s 127ms 127ms
MATLAB | Linux 8 1,12s 140ms 140ms
C | Linux 8 0,88s 110ms 110ms

Table 2.6: Execution times FHV Virus

In this case a difference can be seen. Although it seems very small, in average
a gain of 13% can be seen. Here we can see some of the speed advantages the
conversion to C/C++ can give.

GVA-ELAI-UPM®PFC0071-2003 52

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

2.6.2.3 FHYV Cellulas

The second of the two algorithms counts the cells of an image. Again it is quite a
straightforward algorithm, and differs from the previous only in a few parameters.
Thus again the same main functions can be found: The main functions used:

e Image Histogram
e Thresholding
e Image labeling

An image example:

Figure 2.16: FHV Cellulas Example

The following table presents the execution times in the different environments:

OS Number Total Avg time | Avg time
of images | execution time /set /image
MATLAB | Win32 8 1,6s 203ms 203ms
C | Win32 8 1,2s 153ms 153ms
MATLAB | Linux 8 1,44s 180ms 180ms
C | Linux 8 1,12s 140ms 140ms

Table 2.7: Execution times FHV Cellulas

This time an even greater amount of speed increase can be noticed. The differ-
ence is now up to 45%.

2.6.2.4 Conclusion

As a conclusion it can be said that the conversion of the algorithms to C/C++
can indeed cause a speed increase in the execution. Yet it is also to be noted that
this might be very depending on the type of algorithm and the functions used.
It appears that some functions even cause a longer execution time. The Canny
Edge-detection is a good example of this.

GVA-ELAI-UPM®PFC0071-2003 53

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

2.6.3 Programmer’s choice

Another aspect that might be considered as important is the ease for the pro-
grammer to develop his applications. In the comparison between the algorithm
within the Matlab environment, and the built algorithm in the dos-environment,
this discussion is somewhat pointless.

Pointless, since every built algorithm is based on an algorithm in Matlab, thus
always extra will be needed to make the conversion. Yet it is to be noted, that,
using the plug-in for the Microsoft Visual Studio, and following the notes in the
book earlier on, describing the possible problems and precautions, the conversion
can be considered as an easy job, only taking a few minutes.

2.6.4 Transportability between platforms

Another important feature of an application might be its easy transportability
between platforms. When speaking of platforms, the main can be considered to be
Windows and Linux, since those are most widely spread and available.

Here a clear distinction can be found between the two environments. Since Mat-
lab also exists for Linux, and all functions available in Windows are also available
on that platform, the algorithms developed in Matlab do not need any adjust-
ment when porting them for usage in Linux. The only thing that might need to be
changed is static path variables, if present, since path and file handling is somewhat
different between the two platforms.

This does not count for the built algorithm. This even counts in two phases.
First, during the conversion of a m-file, thus a matlab-algorithm, several Matlab-
libraries are used in order to correctly convert the functions. These libraries are
different in Windows and in Linux. Secondly, when linking the C++/C-code in
the compiler, the compiler is set to compile executables for the one or the other
platform. These executables can not be executed in the other platform.

Thus in this part, the Matlab algorithm is in the advantage. Yet the Compiler
also exists in Linux. Although the ease-of-use, mainly provided by the plug-in for
Microsoft Visual C++, is absolutely absent, and Linux might be more difficult to
work with, in the end it is possible to convert the algorithms to executables in the
Linux environment as well.

When considering a GUI, to facilitate the usage of the algorithm, the picture is
somewhat different. Here the graphical user interfaced that would be developed in
Matlab, is not compatible with Linux. Since the gui accesses functions, for example
to obtain the contents of a folder, only available in Windows, porting the gui to
Linux takes an extensive amount of work. A GUI, developed in any other, por
fundo platform independent developing language, such as Swing in Java or QT in
C++, would need none or only minor adjustments in order to work correctly on
the other platform.

2.6.5 Other remarks

The points mentioned above are the main comparison subjects on the two running
environments. Yet other aspects might be considered as important as well. Es-
pecially those from the point of view of the future users of the algorithms, ic the
people at the different hospitals the GVA is working for.

GVA-ELAI-UPM®PFC0071-2003 o4

2.6. COMPARISON MATLAB/COMPILED ALGORITHMS

For those people other aspects than ease-of-development or portability might
be of importance. In this section a short notice on some of these possible aspects
will be given.

2.6.5.1 Price

For the people at the hospital this probably is, except of course the accuracy and
correctness of the results, one of the main factors. Here it is that the strength of a
converted algorithm comes at hand.

If a hospital would like to run the algorithm from within the Matlab-
environment, they would need to acquire the following:

Matlab 6.5 R13 | 2650eur
Matlab Signal Processing Toolbox | 1100eur
Matlab Image Processing Toolbox | 1250eur

Table 2.8: Matlab Requirements

This is for only one user, and without going into pirate software, this would be
an immensive amount of money to be spent.

On the other hand, using compiled algorithms, which can be distributed as
stand-alone applications, without the necessity of Matlab, this could be considered
as free, knowing that the GVA does not charge the hospitals. In this case only the
previous products are needed, plus the Matlab Compiler.

Therefore it is clear that using stand-alone applications is a lot cheaper for the
hospitals than acquiring the Matlab Software itself.

2.6.5.2 Ease of use

For the people at the hospital, it is necessary that the algorithms are easy to use,
without needing to know any of the inner of the algorithms.

Considering the algorithms within the Matlab-environment, this is hardly the
case, the user needs to know what kind of inputs are expected, and how to get the
output. Nonetheless this is basic Matlab knowledge, and with some simple instruc-
tions it can be clarified. Also Matlab offers the ability to construct a graphical user
interface, invoking the algorithm. The development of this gui takes some time,
but makes it for the users easier to use the algorithm, plus it makes it possible to
process a set of images automatically. Thus the user friendliness can be augmented
substantially.

The Stand-Alone application as is, is not as user-friendly either. The user needs
to create an input file that contains any data needed by the algorithm, such as the
name of an image, plus the user needs to go into the dos-command box to run the
algorithm. But also here a solution is possible. Again, a lot of ways exist to build a
GUI which provides the same functionality or more as would be possible in Matlab.
It is possible to use programming languages as Java (Swing) or C+ (QT) to create
platform independent GUT’s.

GVA-ELAI-UPM®PFC0071-2003 95

Chapter 3

Vigra

3.1 What is Vigra?

3.1.1 General Description

VIGRA stands for ”Vision with Generic Algorithms”. It’s a novel computer vi-
sion library that puts its main emphasize on customizable algorithms and data
structures. By using template techniques similar to those in the C++ Standard
Template Library, you can easily adapt any VIGRA component to the needs of
your application, without thereby giving up execution speed. VIGRA was mainly
implemented by Ullrich Ké&the.

In order to fully understand the VIGRA-libraries, and if you’re willing to adjust,
improve or write new functions, it is advisable to check the following documentation:

Reusable Software in Computer Vision in: B. Jdhne, H. Hauflecker, P.
Geifller: ”Handbook on Computer Vision and Applications”, volume 3,
Acadamic Press, 1999

STL-Style Generic Programming with Images in: C++ Report Magazine
12(1), January 2000

Note: Yet for this project none of this is necessary, we will deal only with the
available functions.

The Vigra Homepage can be found here:
http://kogs-www.informatik.uni-hamburg.de/ koethe/vigra/

3.1.2 Features

The list of features Vigra offers is quite long:
Images

e templated image data structures for arbitrary pixel types

e pre-instantiated images with many different scalar and vector valued pixel
types

e 2-dimensional image iterators, adapters for various image subsets

o6

3.1. WHAT IS VIGRA?

e input/output of many image file formats: Windows BMP, GIF, JPEG, PNM,
Sun Raster, TIFF (including 32bit integer, float, and double), Khoros VIFF

Image Processing

e STL-style image processing algorithms with functors (e.g. arithmetic and
algebraic operations, gamma correction, contrast adaptation, thresholding),
arbitrary regions of interest using mask images

e image resizing using resampling, linear interpolation, or spline interpolation
e automated functor creation using expression templates

e color space conversions: RGB, R’G'B’, XYZ, L*a*b*, L*u*v* Y'PbPr,
Y'ChCr, Y'IQ, and Y'UV

e Fourier transform (via fftw)
Filters

e 2-dimensional and separable convolution, Gaussian filters and their deriva-
tives, Laplacian of Gaussian etc.

e recursive filters, exponential filters

e non-linear diffusion (adaptive filters)

e distance transform (Manhattan, Euclidean, Checker Board norms)
e morphological filters and median (disk structuring elements)

e Loy/Zelinsky symmetry transform

o Gabor filters
Segmentation

e edge detectors: Canny, zero crossings, Shen-Castan

e corner detectors: corner response function, Beaudet, Rohr and Forstner cor-
ner detectors

e region growing: seeded region growing, watershed algorithm
Image Analysis

e connected components labeling

e detection of local minima/maxima (including plateaus)

e region statistics

GVA-ELAI-UPM®PFC0071-2003 o7

3.2. INSTALLATION OF VIGRA UNDER WINDOWS

3.2 Installation of Vigra under Windows
3.2.1 Downloads

In order to work with the Vigra libraries in conjunction with JPEG and TIFF-
files, some files need to be downloaded. I will try as much as possible to inform
the version of the needed files. This because of problems that occur when using
different /newer versions of the software.

It is advisable to create a base directory in which the downloaded files will be
stored.

e Vigra Package The current version of the Vigra library package is
version 1.1.6. This can be downloaded from the Vigra Homepage
(http://kogs-www.informatik.uni-hamburg.de/ koethe/vigra/) or di-
rectly from this link: http://kogs-www.informatik.uni-hamburg.de/
“koethe/vigra/vigral.l.6.tar.gz.

e TIFF To have support for the TIFF-image format, it is necessary to down-
load the needed library files and include files for this format. The home-
page can be found here: http://www.libtiff.org/. All necessary files can
be found here: http://gnuwin32.sourceforge.net/packages/tiff.htm.
The version used during the project was version 3.5.7. The following files
are needed:

1. Binaries - tiff-3.5.7-1-bin.zip
2. Libraries - tiff-3.5.7-1-1ib.zip

o FFTW These files are needed for some of the functions of Vigra. If these
functions are not used, these files are not necessary, yet it is advisable
to download and install them. The functions in casu are Fast Fourier
Transform-functions. The homepage of the FFTW-libraries is located here:
http://www.fftw.org/. The libraries used in the project had version
2.1.3. Yet in order to avoid having to build the libraries yourself, pre-
built libraries can be found here: http://claymore.engineer.gvsu.edu/
\~"steriana/software_fftw.html. The FFTW for Win32 are needed,
which can be downloaded directly here: http://claymore.engineer.gvsu.
edu/\"steriana/fftw213.1ibs.zip.

e ZLIB ZLib is a library needed when compressing/decompressing image
files, such as is the case with JPEG-files. = Therefore, when working
with JPEG-files, these libraries are needed too. The hompage is located
at: http://www.gzip.org/zlib/.They can be found at http://gnuwin32.
sourceforge.net/packages/z1ib.htm. The version used in the project was
version 1.1.4. Yet again, a pre-built library can be found, and is advisable:
http://www.winimage.com/zLibD11/z1ib114d11.zip.

o JPEG Since most of the images worked with during this project are JPEG-
files, the libraries were needed too. The homepage of the open-source JPEG-
libraries is located here: http://www.ijg.org. Of this, several files are
needed, and it is important to get the correct files, since there might be
errors using other versions.

GVA-ELAI-UPM®PFC0071-2003 58

3.2. INSTALLATION OF VIGRA UNDER WINDOWS

1. Binaries - jpeg-6b-1-bin.zip - 153 712 bytes - http://gnuwin32.
sourceforge.net/downlinks/jpeg-bin-zip.htm

2. Libraries - libjpeg.lib - 900 758 bytes - http://www.stillhq.com/
cgi-bin/cvsweb/panda/contrib/libjpeg/libjpeg.lib

3. Include files - jpegsrc.v6b.tar.gz - 613 261 bytes - http://ijg.org/
files/jpegsrc.v6b.tar.gz

4. Windows DLL - libjpeg.dll - 151 685 bytes (rename jpeg-62.dll)

3.2.2 Installing downloads

After downloading the necessary files, the proper files need to be extracted and
system settings need to be updated.

It is advisable to create a folder in which all the libraries, except those of vigra,
will be installed. Since all libraries reside under the GNU-license (see license) (or
similar), a folder gnuwin32 was created for this purpose.

3.2.2.1 FFTW Libraries

When you followed the instructions in the download-section, you should have the
fftw213.1libs. zip-file in your download folder.

Open the file with Winzip, and extract the files to a destination folder, eg
C:\Archivos de programa\GnuWin32\FFTW\1lib.

The following files should now be located in the folder:

FFTW2d11.4d11
FFTW2d11l.exp
FFTW2d11.1ib
FFTW2st.1lib
RFFTW2d11.4d11
RFFTW2d11.exp
RFFTW2d11.1ib
RFFTW2st.1ib

3.2.2.2 TIFF Libraries
The following files should be downloaded into your folder:

tiff-3.

5 lib.zip
tiff-3.5

LT-1-
.7-1-bin.zip

Both files should be extracted into a proper folder, such as TIFF, while assuring
the option ”use folder names” within winzip is checked.

After extracting, the following folders should have been created:

bin
contrib
include
1lib

man
manifest

GVA-ELAI-UPM®PFC0071-2003 59

3.2. INSTALLATION OF VIGRA UNDER WINDOWS

3.2.2.3 ZLIB Libraries

Again, extract the file you downloaded, zlib114dll.zip to a proper folder, eg LIB.
The following files/folders should have been extracted:

dllie
dl132
static32

ioapi.h
readme.txt
unzip.h
zconf.h
zip.h
zlib.h

3.2.2.4 JPEG-Libraries

The installing of these files is somewhat different in some cases:

jpeg-6b-1-bin.zip should be extracted into a proper folder, preferably called
JPEG. A folder called bin will be created. Assure the file jpeg-62.dll is
available.

libjpeg.lib should be copied into a folder called /ib into the JPEG-folder.

jpegsrc.v6b.tar.gz should be extracted into the JPEG-folder. A folder called
Jpeg-6b will be created

libjpeg.dll is the same as jpeg-62.dll. Therefore, the jpeg-62.dll can be copied to
libjpeg.dll in the same folder.

3.2.2.5 Vigra-Libraries
Extract the file vigral.1.6.tar.gz into a chosen folder.

3.2.2.6 Updating MSVC Directories

In order to make it possible for Microsoft Visual C/C++ to find the new libraries
and source files, the directory settings need to be adjusted.
The directory settings can be found at: Tools-Options-Directories.
$installpath is the path where you extracted all the libraries. If you chose as
suggested, 4 folders should be there:

FFTW
ZLIB
JPEG
TIFF

The following directories should be added:
Include files

e S$installpath\JPEG\JPEG-6B (several header/source-files)

GVA-ELAI-UPM®PFC0071-2003 60

3.2. INSTALLATION OF VIGRA UNDER WINDOWS

o Sinstallpath\TIFF\INCLUDE (tiff.h and others)
e $vigrapath\VIGRA1.1.6\INCLUDE (Vigra and Irix-folders)

Library files
e Sinstallpath\JPEG\LIB (libjpeg.lib)
e Sinstallpath\TIFF\LIB (libtiff.lib)
e Sinstallpath\FFTW\LIB (FFTW2dlllib)

3.2.2.7 Updating Windows path Variable

Windows needs several Dynamic Link Libraries (DLL’s) in order to run the exe-
cutables generated using the Vigra Libraries. These DLL’s are mainly concerning
the usage of JPEG and TIFF-files.

If you do not know how to update the Windows Path Variable, check the section
on distributing Matlab stand-alone applications on section 2.4.4.1 on page 44.

The following paths should be added to the Windows Path-variable:

$installpath\FFTW\LIB (several dll’s)
$installpath\ZLIB\DLL32 (zlib.dll)
$installpath\JPEG\BIN (jpeg-62.dll and libjpeg.dll)
$installpath\ TIFF\BIN (libtiff.d1l)

3.2.2.8 Handling Microsoft Visual C/C++ 6.0 Compiler Bug

Please note that Microsoft has fized all of the problems described below in Visual
Studio. NET, so the following description is relevant only if you are using the earlier
6.0 version.

The Microsoft Visual C++ compiler, version 6.0 (which we shall call VC++
6.0) fails to match the C++ standard in several ways that prevent some of the
code in in the Vigra C++ library from compiling properly. A deal of these un-
matching code problems can already be solved by installing the latest service pack
available. This service pack, currently version 5, can be downloaded from the Mi-
crosoft website: http://msdn.microsoft.com/vstudio/downloads/updates/sp/
vs6/spb/default.aspx.

The problem influencing the Vigra-libraries is the following. The MS library
does not define the min and max algorithms, which should be found in the jalgo-
rithmg-header.

The problem occurs when trying to compile certain functions, error as the
following might occur:

c:\vigra\vigral.1.6\include\vigra\inspectimage.hxx(949)
error C2039: ’min’ : is not a member of ’std’
c:\vigra\vigral.1l.6\include\vigra\inspectimage.hxx(949)
error C2065: ’min’ : undeclared identifier

The workaround we use is to define a new header file, say minmax.h, which we

include in any file that uses these functions.
This header file should look like this:

GVA-ELAI-UPM®PFC0071-2003 61

3.2. INSTALLATION OF VIGRA UNDER WINDOWS

#ifndef ,GUARD_minmax_H

#define ,GUARD_minmax_H

#ifdef ,_MSC_VER

//_ mneeded, to cope with bug ,in MS library:
//uit fails to define min/max

template <class T>,inline T max (const T& a, const T& b)

{

return,, (a > b)7uau:ub;

}

template <class T>,inline T min(const T& a, const T& b)

{

return, (a < b) 7,8, :ub;

}
#endif
#endif

This file should be copied to the include folder of vigra, for example
C:\Vigra\vigral.1.6\include\vigra.

The errors mentioned all occur in another header-file of Vigra, named inspec-
timage.hxx which is located in the Vigra-include directory. This file should be
adjusted as following. In the appendix the full source-code of the sections that need
to be changed can be found so you can copy it from there if needed.

1. Include minmaz.h by adding #include "vigra/minmax.h" to inspectim-
age.hzz

2. Change every instance of std: :min and std: :max to min respectively max

3.2.3 Testing Installation

In order to test the correct installation and set-up, open the Vigra Workspace,
which is located in the wvigra\ src\-folder.

GVA-ELAI-UPM®PFC0071-2003 62

3.2. INSTALLATION OF VIGRA UNDER WINDOWS

*.. ¥igra - Microsoft ¥isual C++ =18(x]

Ele Edt Vew Insert Project Buid Tools Window Help

BlwEd) e oo @ER(RC 00 e |[Raee

_ColorsList [=1[141 class members) ENi R oy

e ||
B Workspace vigia: 12 projectls]

convert files

edge fies

& invert files

inver_explicit files

profils fles

pvramid fes

tesice files

smaoth files

subimage fles

woronoi files

watershed files

[=[MNo mermbers - Create C/C++ bember Function. =] # =

32 Classiiew | [2] FileView

utils o

viff.c

writeinags o

Cresting library

vigrainpsx.lib - 0 error(s). 2 warning(s)

[AT0Th puite {Tebug 3, Find mFiles 1, Find in Files2 7. Tl | >|J
Fieady [a4
{#1nicio H &S H FrstTry |[emvigra-m.. & pisaueda...| Bysrc | Byl | [Elsricce... | [facrobat k... GBI e

Figure 3.1: Vigra Workspace

Set the impex-project as active project, and compile. If all is ok, the building
will succeed, but you might get warnings, as shown in the picture. This doesn’t
affect the correct operation of vigra. It is important that this compilation is suc-
cessful.

Then, compile, for example, the convert-project. This should also succeed.
You should then have a file called convert.exe in the examples-folder.

Running this file without any arguments should give the following output:

Usage: C:\Vigra\vigral.l.6\src\examples\convert.exe infile outfile
(supported formats: BMP GIF JPEG PBM PGM PPM P7 PNM SUN TIFF VIFF)

Running this file with arguments included should work fine too:

C:\Vigra\vigral.1l.6\src\examples>convert c:\wouter\images\out.jpg
c:\wouter\images\test.bmp

C:\Vigra\vigral.1l.6\src\examples>

As a final test, set the function edge as active project, and try to compile it. If
the previous worked, this should compile without errors. If some errors do occur,
check the solution in section 3.2.2.8 on page 61

GVA-ELAI-UPM®PFC0071-2003 63

3.3. NEW VIGRA-PROJECT

3.3 New Vigra-project
3.3.1 Testfile

It is now possible to create a new project and start working using the Vigra-libraries
for C.

To make sure the source file is not the cause of the problems, I will here post an
example-file which should compile fine. This is an exact copy of the convert.cxx-
file, which is a good base for every algorithm, since it only reads and writes the
images to the correct image type.

convert.cxx

/ /
/% */
/* Copyright 1998-2002 by Ullrich Koethe */
/% Cognitive Systems Group, University of Hamburg, Germany */
/* */
/% This file is part of the VIGRA computer vision library. */
/% (Version 1.1.6, Oct 10 2002) */
/* You may use, modify, and distribute this software according */
/% to the terms stated in the LICENSE file included in */
/* the VIGRA distribution. */
/% */
/* The VIGRA Website is */
/* http://kogs-www.informatik.uni-hamburg.de/“koethe/vigra/ */
/% Please direct questions, bug reports, and contributions to */
/* koethe@informatik.uni-hamburg.de */
/% */
/* THIS SOFTWARE IS PROVIDED AS IS AND WITHOUT ANY EXPRESS OR */
/* IMPLIED WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED */
/* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. */
/% */
/ /

#include <iostream>
#include "vigra/stdimage.hxx"
#include "vigra/impex.hxx"

using namespace vigra;
// MSVC doesn’t support Koenig lookup

int main(int argc, char ** argv)

{

if(arge != 3)

{
std::cout << "Usage: " << argv[0] << " infile outfile" << std::endl;
std::cout << "(supported formats: " << vigra::impexListFormats() << ")" << std::endl;
return 1;

}

try

{

// read image given as first argument
// file type is determined automatically
vigra::ImageImportInfo info(argv[1]);

if (info.isGrayscale())

{
// create a gray scale image of appropriate size
vigra::BImage in(info.width(), info.height());
// import the image just read
importImage(info, destImage(in));
// write the image to the file given as second argument
// the file type will be determined from the file name’s extension
exportImage (srcImageRange(in), vigra::ImageExportInfo(argv([2]));
s
else
{

// create a RGB image of appropriate size
vigra: :BRGBImage in(info.width(), info.height());

GVA-ELAI-UPM®PFC0071-2003 64

3.3. NEW VIGRA-PROJECT

// import the image just read
importImage(info, destImage(in));
// write the image to the file given as second argument
// the file type will be determined from the file name’s extension
exportImage (srcImageRange(in), vigra::ImageExportInfo(argv([2]));
}
}
catch (vigra::StdException & e)
{
// catch any errors that might have occured and print their reason
std::cout << e.what() << std::endl;
return 1;

}

return O;

¥

3.3.2 Creating project
3.3.2.1 Empty Project

In order to start with the most general project, you can start with an empty
project in Microsoft Visual C/C++. This can be done by selecting ”File-
New”, and then selecting the "Win32 Console Application” in the Projects-
tab. Select a name for the project and press OK.

3.3.2.2 Add Vigra

To be able to correctly link the developed code, the Vigra base library file
should be included. This file was created by the compilation of the impex-
project in the Vigra-workspace. See section 3.2.3 on page 62 for more info
on this.

The compilation was successful if a file called vigraimpex.lib was cre-
ated in the also newly created lib/windows-folder. Thus, for example, the file
should be located in a folder called C:\Vigra\vigral.1.6\1ib\windows.

This folder should be added to the MSVC’s list of library directories.
This can be done by selecting ” Tools-Options”, the tab ”directories”,”library
files” and there adding the folder in question.

3.3.2.3 Create Standard Project

The following will create the standard code, which is standard, because it
basically just opens and then writes again the file to the filenames given at
the command prompt.

Select ”File-New-C/C++ Sourcefile”, give it a name and press OK. Then
copy the code from the file convert.cxx which you can find in the Vigra/S-
rc/Examples-folder. Or which you can find here at section 3.3.1 on page
64.

GVA-ELAI-UPM®PFC0071-2003 65

3.4. WHY THE VIGRA-PROJECT WAS POSTPONED

3.3.2.4 Change Project Settings

Also the project settings need to be adjusted. The vigraimpex, jpeg and tiff
libraries need to be included in the project.

This can be done by selecting ”Project-Settings” from the Menu, and
then going to the Link-tab. The following three files need to be added in
the "Modules”-field:

e vigraimpex.lib

o libtiff.lib

e libjpeg.lib

This is shown in the picture:

Settings Far: |'w/in32 Diebug j General | Debug | C/C++ Link | Flesoun::a EE

Beset |

Output file name:

Categony:

IDebug.n"first.er:e

Objectdlibrary modules:
Ivigraimpex.lib libtiff_lib libjpeg lib kemel32 lib user32 b gdid

¥ Gererate debuginfo [lgnore all default libraries
¥ Link incrementally [Generate mapfile
™| Enable prafiing

Project Options:

vigraimpes: lib ibtiff b libjpeg lib kemmel32 b user32 b &
gdiZ2 lib winzpoal b comdlg32. lib advapiz2 lib
zhell32 lib ole32 lib oleaut32 lib uuid. lib adbc32 lib j

QE I Cancel |

Figure 3.2: Vigra Project Settings

After compiling this successfully, Vigra can be used completely.

3.4 Why the Vigra-project was postponed

At this point of the project, after the successful installation and testing of
the Vigra-libraries, it was decided by the GVA to postpone or call off this
part of the project. There are several reasons for this decision.

e First, the conversion of the algorithms on both platforms had to be
finished by the end of June, meaning that for the developing of the

GVA-ELAI-UPM®PFC0071-2003 66

3.4. WHY THE VIGRA-PROJECT WAS POSTPONED

algorithms with Vigra, only three and a half weeks were left. This
tight schedual, considering the rather time-consuming development
using Vigra, was the main reason for the postponing.

e Secondly, the Vigra-libraries did not turn out to be what they were
expected too. Vigra is a very powerfull image processing library, but
a lot of things needed to be implemented. Vigra uses extensively of
templates, which makes the code very extensible, yet for a beginning
programmer quite difficult to use. Also, if a similar function exists in
the Vigra libraries, the global point of view of the function is different
than that in Matlab. This makes it necessary to extensively test the
accordance between the different parameters of the functions, which
is time-consuming. This implies that for every line of code in Matlab
a thorough research is needed, and therefor is not a five-minute task.

e Thirdly, the functions that were converted to Vigra, and that were able
to produce similar results as in Matlab, turned out to be slower than
their counterparts in Matlab. Since the execution time was one of the
reasons to convert the code to C/C++, this was a major disadvantage
of Vigra. Since for only one function execution time differed a lot,
in an algorithm using multiple functions, the results would have been
even worse.

e Last, after the conversion to both platforms, a GUI needed to be made
to make the processing of the images easier and more convenient. The
intention is to make this GUI using QT, a platform independent GUI-
designer for C++. Yet this project, performed by another student in
the school, did not advance as wanted. Therefore a faster method to
make the GUI was needed. The time that came clear by postponing
Vigra was used to create this GUI in Java.

GVA-ELAI-UPM®PFC0071-2003 67

Chapter 4

GUI

4.1 Why the GUI

The final stage of this project consisted out of developing a GUI' for the
processing of the algorithms. Although all the converted algorithms can be
seen as stand-alone applications, and can thus be ran without the necessity
of any other program, a GUI has several advantages.

A GUI makes it possible for a non-expert user to easily use the algo-
rithms. He does not need to know any of the functioning of the algorithm,
nor does he need to know what kind of input is expected, and what kind of
output is produced. It is only necessary to know how the gui itself works.

The usage of a graphical interface also makes it possible to automate the
process. The command-line based stand-alone application has the disadvan-
tage that it can only work on one image, or on a pair of images at the same
time. Most of the times a whole set of images needs to be processed, and
thus invoking the stand-alone application for every image separately would
be time-consuming and inefficient. One possibility is to adjust the algorithm
for the usage of multiple images, but this would require a thorough reimple-
mentation. A gui makes it easy to do this, since a gui can take care of the
sequential processing of the images. The user only needs to press ”start” in
order to begin the processing.

The last reason is that in the Matlab-environment already a gui was
developed. The extension of this gui to a platform independent language is
merely a logical step since also the Matlab-algorithms were converted. Also
in a test-phase, the people at the hospital were introduced with the GUI in
Matlab. Designing a similar GUI would make the step to the new system
easier.

!Graphical User Interface

68

4.2. DEVELOPING ENVIRONMENT

4.2 Developing environment

4.2.1 Java Depeloping Kit

Java was chosen as programming language for the GUIL. The reason behind
this is that Java provides a fast and easily understandable way to create
GUI’s. The developing time of the gui using Java is significantly shorter than
when another option, of which QT? is an example, would have been chosen.
This because of the available knowledge of this language and developing, as
well as the easy adaptability towards the future. Java’s home page is located
at http://java.sun.com. The version of the JDK used in this project was
version 1.4.1.

4.2.2 Borland Jbuilder

As developing environment Borland JBuilder 8.0 Personal was chosen. The
homepage of Borland can be found at http://www.borland.com. This ver-
sion has limited features, but is free to use and is sufficient for our needs.
This environment was chosen because of the programmer’s experience with
this environment, which made clear that an easy and fast development of
the GUI was possible.

4.3 Java

In this section I will give a short description on what is Java.

4.3.1 Java the trinity

Java as a whole consists of three distinct, but interlocking, parts:
e an object-oriented language
e a virtual machine, which provides binary portability across platforms

e a platform, or core library, which provides portable system and GUI
services

Very little in Java is completely new, but part of its power is the way that
it brings together all these ideas into a single development platform.

4.3.2 Java the language

Java is an excellent object-oriented language that has borrowed many of the
good bits from previous languages without carrying too much baggage along
with them.

Zhttp://www.trolltech.com/products/qt

GVA-ELAI-UPM®PFC0071-2003 69

4.3. JAVA

It is a general-purpose language; you could write pretty much anything
in it. Sun’s javac compiler is written only in Java, for eample. It’s better
for some things than others, of course. I'll address that later.

Syntactically, Java resembles C for the most part, and has pretty stan-
dard C looping constructs and operators. Architecturally, it resembles
SmallTalk more than C++, since it includes garbage collection, and (ex-
cept for primitives) everything is a first-class object.

Java is stricter than C in some respects; for example you must use a
boolean expression in conditionals, not integers or pointers or what-have-
you. On the whole, however, it manages to be both cleaner and more for-
giving than C without being as annoying as, say, Pascal to do real work in.
It seems to already be replacing Pascal and C as a first-language in univer-
sities; the language is set up so that a good compiler can catch most of the
stupid mistakes that trip up youngsters, and its robust design prevents the
more bizarre forms of memory allocation and access bugs.

Java was designed from the beginning to prevent the sort of access viola-
tions, memory leaks and array indexing errors that comprimise the security
and stability of C and C++ applications. Most introductions to Java would
say that they did that by doing away with pointers; I would disagree - every-
thing (again, except for primitives) is a pointer in Java, in the sense that it
is a reference rather than a pure value. More complex references are planned
for Java 1.2 and later, including weak references that don’t prevent garbage
collection.

But most really severe bugs in C apps come from bad array references,
memory management problems, dangling or mangling pointers, etc. None
of this is possible in Java without a lot of pretty pathological work. The
addition of garbage collection eliminates whole rafts of problems, and bounds
checking prevents most of the rest. Wimpy? Perhaps - but then again,
having the compiler decide which registers to put stuff in was considered
wimpy at one point. As the (cost of programmer time/cost of computer
time) ratio gets bigger, doing your own memory management looks less and
less attractive.

4.3.3 Java the virtual machine

You can certainly compile java language apps to native binaries, but part of
the original idea was binary portability, a much more stringent requirement.
This is obviously required when you are sending code over a hetorogenous
network and expecting it to work on all manner of hardware and operating
systems.

To get binary portability, you have to have an intermediate form, usually
referred to as pseudocode or p-code. This is a machine language for a
machine that is built in software, that then translates the p-code to real
machine code on the fly in some fashion. P-code is nothing new; some

GVA-ELAI-UPM®PFC0071-2003 70

4.4. HOW TO WORK WITH THE GUI

SmallTalk implementations use it, and some microkernel-based operating
systems use it. And a software emulator is simply a virtual machine whose
p-code is the code for an actual CPU.

A Java VM has to conform to the Java VM specification, which spec-
ifies the number and type of registers, endianness, and the size of integers
and longs and such. This last prevents Java applications from breaking on
assumptions made about the size of things. In addition, Java p-code can
be verified at run-time to see if it came from a valid compiler; this prevents
weird virii and such from being dumped on an unsuspecting VM to exploit
faults in the implementation.

4.3.4 Java the platform

This is the part Microsoft is scared about. There have been cross-platform
toolkits. There have been virtual machine environments. But put them
together, and you have binary-portable, cross-platform, fully GUI, system
and network-capable applications. Instead of locally-installed, client-server,
platform-specific applications, you have applets, or Marimba channels, or
applications servers that don’t care what sort of machine it’s serving up
applications to, as long as the machine speaks Java. And as more corporate
information systems are written in Java, the need to standardize on single
business-wide platform diminishes, giving everyone more of a choice for their
desktops.

4.4 How to work with the GUI

4.4.1 The GUI in general

The GUI was developed with the original Matlab-GUI in mind. It is at-
tempted to provide the same functionality and system as the GUI devel-
oped in Matlab. The GUI in Matlab was developed by David Lopez as a
part of his project. The description given here is the general description of
the GUI. For the different algorithms, only small parts of the GUI change,
mostly supportive messages. The main idea and functioning of the GUI
remains unchanged.

For the understanding of the GUI, the following section will describe
which options are possible with the GUI, and how to use it.

When the GUI is started, the main screen of the GUI will appear, this
will look like the picture below. You can adjust the size of the screen if
wanted.

GVA-ELAI-UPM®PFC0071-2003 71

4.4. HOW TO WORK WITH THE GUI

RE=TE

File Help

Image folder:

Excel file:

Image Hame:

Start Stop

Please zelect folder that cortainz images

Figure 4.1: GUI Main Screen

The left part of the screen is used to display the results of the process-
ing. The right screen is the selection screen, where the user can choose the
settings for the processing. All the settings need to be set in order for the
algorithm to work.

Basically, the user needs to perform the following steps:

e Select the folder that contains the images
e Select an excel-file to store the results
e Press start to begin processing

At every step, the status bar will display a message showing which step
is required next.

4.4.1.1 Select folder

In this section the user can select the folder which contains the images.
Depending on the type of algorithm, the required contents of the folder can
differ. The program will check whether the contents of the folder are correct
for the algorithm to be used, and will report if this is not the case.

The dialog to select the folder can be opened by pushing the button
next to the text field. At the time, this is the only button that works, so no
problems should arise. The dialog to select the folder then appears:

GVA-ELAI-UPM®PFC0071-2003 72

4.4. HOW TO WORK WITH THE GUI

& Select folder that contains images x|

Buscar en:

I@ Mis documentos

-l BExER

D Debug
1 tflowlates

D Brovwser Security Test Results_archlvosD ald-igra

0 wepu
21 zeusvoorhesid

1 FuerteL atexBart

1 Informe

(] john

1 mail

1 M rncisica

1 Miz archivos reciidos
Mig imdgenes

D My eBooks

Rormbre de archivo - Documents ancl Seft

Select |
Cancelar |

documentos

||

| Archivos de tipo: Todos los archivos

Figure 4.2: Select image folder

You are then able to select the folder containing the images, by going to
the directories as normal in a windows-environment.

When a folder is selected that contains no valid images, this means that
the folder does not contain images suited for the algorithm, the following
error is displayed:

Folder not valid

e Folder contains no valid images, please select other Folder,

X

Figure 4.3: Folder contains no valid images

After pressing OK, the user can select a new folder. Another error that
may occur is that some of the requirements of the folder for the algorithm
are not met. For example, some algorithms take a set of images at a time,
for example 2. It is then necessary that there are an whole number of sets
available. For example a set consists out of Aln.jpg and Al.jpg. If thus
the number of images ending with n. jpg is different than those with . jpg,
the computing is not possible, and an error like the following will occur:

GVA-ELAI-UPM®PFC0071-2003 73

4.4. HOW TO WORK WITH THE GUI

Number of images not equall x|

Mumber of blue and selected images nok equal!
Plzase review Folder and reselact

Figure 4.4: Number not valid

The user can now reselect his folder.

If no errors occur, the name of the folder is now shown in the text field,
and now it is possible to select the results-file. Also the GUI will be updated,
and the number of images or image sets to be processed will be shown.

4.4.1.2 Excel-file

The user can now select the excel-file in which the results of the process-
ing will be stored. Again, a similar screen as the one for choosing the
image folder appears, yet now it is possible to only select files with the
x1s-extension, or to type in a new filename with the x1s extension in the
field.

x
Buscat en: I@ Miz documentos j I'fF'

@ =df xls

Mombre de archivo: || Ahrir
Archivos de tipo: IExce|_ﬂ|es (*.x15) LI Cancelar

Figure 4.5: Choose Excel-file

The user now has two possibilities:
e Select an existing file
e Create a new file

When the first option is chosen, and thus an existing file is selected in
the dialog, the existing file will be deleted. The user is reported with this
fact with a warning message:

GVA-ELAI-UPM®PFC0071-2003 74

4.4. HOW TO WORK WITH THE GUI

Warning! File will be erased! x|
Warning! File already exists,
The File will be deleted.

Cancelar

d

Figure 4.6: File will be deleted.

If the user chooses to accept this, the file will be deleted. Otherwise it
is possible to enter a new filename or select another file.

The second option is to type in a filename in the text field. It is required
to fill in a filename that carries the xls-extension. If a filename with another
extension is filled in, the following error-message will be displayed:

File not valid x|

Q Please type filename with xls-extension

Figure 4.7: Excel extension necessary

The user can now select a new file. If a file without extension is inserted,
the extension zls will be automatically added.

When no errors occur, the text field will show where the results file will
be stored. It is now possible to start processing.

4.4.1.3 Processing

The processing can be started by pressing the start button. During the
processing, the set of images is being calculated, and the results of the
algorithm are written to the excel file chosen before. Also the time of the
calculation is kept, so it is possible to get a view on the time it took to
process the images.

After the processing, the status bar will show the time it took to process
the set of images, as well as the average time per set of images:

GVA-ELAI-UPM®PFC0071-2003 75

4.4. HOW TO WORK WITH THE GUI

& Nucleos Counting -0l x|

Fil= Help

Image folder:

‘outerimages\Seriel -MNE R1marzo03 |

n Excel file:
HvileraeveiMis documentosisdf xls |

Image Hame:

IC:'O.-‘\I':-uter‘.images\Serim -MB R1tnarz

Start | Stop |

Processing finished successfully, total titne:|4:12:294 | average time per set of images:|21:49 ‘

Figure 4.8: Results of processing

4.4.2 FHV GUI

The GUI has another version, created for the FHV algorithms, which is com-
pletely similar except that the user has the option to choose the algorithm
through a dropdown-box, as you can see below:

GVA-ELAI-UPM®PFC0071-2003 76

4.4. HOW TO WORK WITH THE GUI

-loix|

File Help

Algorithm:

FHY_Cell
FHY _Virus

Image folder:

[

Excel file:

[

Image Hame:

p——

Stert Stop

Pleaze select algorithn

Figure 4.9: GUI for FHV Algorithms with Visualization

After selecting the algorithm, the process is exactly equal as the one
described above. This algorithm/gui also creates the resulting images, and
displays them. After processing one image, the user is given the possibility
to accept or deny the result, or to stop the processing altogether, which
resets all settings and allows the user to reselect the options.

Image succesfully processed il

Irmage
Ciouteriimagesvirusfhvi Celll Al jpg

processed.

- accept saves processed result bo disc
- decline continues but does nok save result
- stop quits the processing and resets options (results not saved)

ccept]| Decine | stop |

Figure 4.10: Accept/Decline/Stop-dialog FHV

4.4.3 GUI in Linux

The gui in Linux is completely identical as the one available and described
in Windows.

GVA-ELAI-UPM®PFC0071-2003 7

4.5. SOME USED CLASSES

4.5 Some used classes

In this section I will present the set of classes used outside the standard
Java classes. These are thus not the classes for making the gui itself, such as
provided by Swing in Java, but the classes used to perform certain actions.

4.5.1 Utils

This class has only one method, called getExtension(File f) which returns
the extension of a certain File.

The method is pretty straightforward, it takes the File as input and
returns the extension of the File as a String.

import java.io.File;

public class Utils
{

VAL
* Get the extension of a file.
*/
public static String getExtension(File f)
{
String ext = null;
String s = f.getName();
//gets index of "." that seperates filename from extension
int i = s.lastIndex0f(’.?);

if (4 > 0 && i < s.length() - 1) {
ext = s.substring(i+1).toLowerCase();
//get only extension

}

return ext;

4.5.2 ExecFileFilter

This class extends the FileFilter class. It makes sure that only files with the
xls extension are shown or can be selected.

In order to make a FileFilter, a class extending the FileFilter-class needs
to be declared, since the FileFilter class is abstract. This class needs to im-
plement at least the accept(File f)-method from FileFilter. The FileFilter-
class reference can be found here: http://java.sun.com/j2se/1.4.1/
docs/api/javax/swing/filechooser/FileFilter.html.

GVA-ELAI-UPM®PFC0071-2003 78

4.5. SOME USED CLASSES

There are two methods that can be implemented. Although only the
accept()-class needs to be implemented, it is advisable to implement getDe-
scription() as well.

4.5.2.1 accept(File f)

This function states whether a certain file is accepted. If the file should be
accepted, the function should return true, otherwise false.

The function uses the method getEztension from the class Utils to get
the extension of the File.

Since only files with the extension zls are accepted, accept only returns
true when the extension is correct.

public boolean accept(File f)

{
String extension=Utils.getExtension(f);
if (extension !'= null)
{
if (extension.equals("xls"))
return true;
else
return false;
}

return false;

4.5.2.2 getDescription()

This function returns a description of the FileFilter, in our case
Excel-files (*.xls). This function is used within a dialog to select files,
and is shown in the dropdown list.

4.5.2.3 Full code
import javax.swing.filechooser.x*;

import java.io.File;

public class ExcelFileFilter extends javax.swing.filechooser.FileFilter

{

final String excelfileext="xls";

public ExcelFileFilter()
{
}

public boolean accept(File f)

GVA-ELAI-UPM®PFC0071-2003 79

4.5. SOME USED CLASSES

{
String extension=Utils.getExtension(f);
if (extension != null)
{
if (extension.equals("x1ls"))
return true;
else
return false;
}
return false;
}
public String getDescription()
{
return "Excel-files (*.x1ls)";
}

}

4.5.3 StreamGobbler

This class is need in order to correctly use the Runtime.ezec()-function,
which runs a program outside the Java program. This program is a new
Process within the environment.

Because some native platforms only provide limited buffer size for stan-
dard input and output streams, failure to promptly write the input stream
or read the output stream of the subprocess may cause the subprocess to
block, and even deadlock. Since our program produces output, itis necessary
to capture this output.

The output produced by the process, thus the external program, is a
Stream, which can be obtained by the getInputStream and getErrorStream-
methods. These streams should then be buffered to make sure all output can
be caught. Since a BufferedReader can only be created through a Reader,
first a Reader needs to be declared.

For more info on the subject, see this link: http://www.javaworld.
com/javaworld/jw-12-2000/jw-1229-traps.html.

4.5.3.1 Full code

import java.io.*;

class StreamGobbler extends Thread
{

InputStream is;

String type;

GVA-ELAI-UPM®PFC0071-2003 80

4.5. SOME USED CLASSES

StreamGobbler (InputStream is, String type)

{
this.is = is;
this.type = type;
}
public void run()
{
try
{
InputStreamReader isr = new InputStreamReader(is);
BufferedReader br = new BufferedReader(isr);
String line=null;
while ((line = br.readLine()) != null)
System.out.println(type + ">" + line);
br.close();
isr.close();
} catch (I0Exception ioe)
{
ioe.printStackTrace();
}
}

4.5.4 0OS_MillisConvertor

This class provides a way to convert milliseconds to weeks, days, minutes,
seconds and milliseconds, and provides methods to print these.

This is useful, since a timer in Java works with milliseconds, and in
order to display a more understandable and clearer visualisation, a display
in minutes, etc is easier.

The original class is written by Joe Sam Shirah. The main expla-
nation and source code can be found here: http://www.conceptgo.com/
articles/MillisConverter.html.

I have added a method which prints the days, hours,...but with only
a : between the several parts. This method, which is called formatEnd-
StringSimple, which is based on the method formatEndString.

4.5.4.1 formatEndStringSimple

public StringBuffer formatEndStringSimple(
boolean bPrintRemaining)
{
StringBuffer sb = new StringBuffer(50);

GVA-ELAI-UPM®PFC0071-2003 81

4.5. SOME USED CLASSES

bPrintRemaining = bPrintRemaining

bPrintRemaining :

if(bPrintRemaining)
{
sb.append(":");
sb.append(iHours);
}

bPrintRemaining = bPrintRemaining

bPrintRemaining :

if (bPrintRemaining)
{
sb.append(":");
sb.append(iMinutes);
}

bPrintRemaining = bPrintRemaining

bPrintRemaining :

if (bPrintRemaining)
{
sb.append(":");
sb.append(iSeconds);
}

bPrintRemaining = bPrintRemaining

bPrintRemaining :

if(bPrintRemaining)
{
sb.append(":");
sb.append(iMillis);
}

if (sb.index0f(":")==0)
{

(iHours != 0);

(iMinutes != 0);

(iSeconds != 0);

(iMillis != 0);

return new StringBuffer(sb.substring(1));

}

else return sb;

GVA-ELAI-UPM®PFC0071-2003

82

Chapter 5

Used Tools

5.1 Borland JBuilder 8.0

Since the decision was taking to develop the GUI in the Java programming
language, because of the fast developing time, and the transportability be-
tween platforms, a development environment was useful.

As integrated development environment Borland’s JBuilder 8 Personal
edition was chosen. JBuilder’s webpage can be found here: http://www.
borland.com/jbuilder/index.html. There were several reasons to choose
this developing environment:

e FKase-of-use

e Fast developing

e Free

e Programmer’s Experience

The Personal version, which is sufficient for our needs, is free to use
and can be downloaded from the Borland JBuilder website. It provides
an easy way to develop graphical user interfaces and applications using the
Java programming language. Using JBuilder, no detailed knowledge of the
Java Swing elements is needed, although a minor knowledge is advised.
Through this environment it is possible to develop a graphical user interface
or application swifter than using line-based programming.

5.1.1 Downloading and Installation
5.1.1.1 Download

Borland JBuilder 8 Personal edition, which is free to used, can be down-
loaded from Borland’s Website. You can start from the main page, or

83

5.1. BORLAND JBUILDER 8.0

go directly to the JBuilder download page, which is located here: http:
//www.borland. com/products/downloads/download_jbuilder.html.

There the Personal edition should be chosen. You will be asked to fill in
some personal details in order to be able to obtain a valid key to activate
the software. This key will be sent by email.

It is also advisable to download the documentation and samples available
on the website. These can be found here: http://info.borland.com/
techpubs/jbuilder/index8.html. If wanted, and which is advisable, the
documentation can be integrated with the JBuilder IDE. In order to obtain
this, the documentation pack needs to be downloaded. The direct links to
these packs are the following:

Documentation ftp://ftpc.borland.com/pub/jbuilder/
jb8personal/jb8docs.zip

Samples ftp://ftpc.borland.com/pub/jbuilder/jb8personal/
jb8samples.zip

5.1.1.2 Installation

JBuilder’s installation is straightforward and easy. Only the following steps
are needed:

1. unpack the downloaded zip-file
2. run the executable (usually called 'per_install.exe’)
3. accept all license notices

4. choose a folder that contains no spaces (JBuilder will not run other-
wise)

The documentation and samples installation is very likewise. Again un-
pack the zip-file, run the install file, select your JBuilder folder, and press
OK.

5.1.2 Getting started

Getting started with JBuilder is quite straightforward. I will post here a
short tutorial on how to start a first project within JBuilder.

1. Start a new project by selecting 'New Project’ from the ’File’-menu.
The following screen will appear. Select a name and press Finish. The
other steps in the project can be left on their default setting.

GVA-ELAI-UPM®PFC0071-2003 84

5.1. BORLAND JBUILDER 8.0

(D) Project Wizard - Step 1 of 3 x|
Select name and template for your new JBuilder project
Enter @ name for your project and the path to the directory where it is to be saved. You can
optionaly choose an existing project as atemplete for the intial default values used inthis
wizard
Natme: [uriities Type: o= =
Directory: [C:/Documents snd Setingswleraevefirssctiuntisd =] =
Termplate: [(Detautt project) =[] =

¥ 2dd project to active project group:

I™ Generate project nates file

= Back | hlext = I Finish | Cancel | Help

Figure 5.1: Step 1 of creating a new Project

2. Start a new application by selecting ’Application’ from the 'General’-
tab in the ’File”New’-menu. Fill in a name for the package. This is
the package under which all files will be stored. Also give a name to

your application. Then press next.

(3) Application Wizard - Step 1 of 3 x|

Enter application class details

Fill in the following fields to quickly define and create a new Java
application. The application will consist of & main application class and a
Frame class that you can customize using the visual designer.

Packags: m

| [=]

Clazs name: IAppIicat\om

i [Generate header comments

= Back | Mext = I Finish | Cancel | Help |

Figure 5.2: Step 1 of the New Application

3. Fill in a name for the frame. This is the main frame of the graphical
user interface. Also give a title to the frame. This is what you will see
in the bar at the top of the screen. Most of the times this is the name
of your application. You can then select which items JBuilder should
create automatically. If you want to start with a bald gui, only select
the last box. After filling in these details, press finish.

GVA-ELAI-UPM®PFC0071-2003

85

5.2. MIKTEX 2.3

(D) Application Wizard - Step 2 of 3 |

Enter frame class details
Fill irnthe following fislds to defing the frame class for your new Jars

application. Once crested, this frame class can be customized using the
wisual designer

Class: ImainFrame

Ul rie [First Appication

al option

™ Generate menu bar
™ Generats toolbar

I” Generate status bar
[~ Generate About disloy

IV Center framme on screen

= Back | Mext = | Finish | Cancel | Help |

After doing this, you will have created a first application on which you
can built your full application.

You can now start adding elements using the built in designer in
JBuilder, by selecting the Design-tab.

When first starting with JBuilder and GUT’s, it is advisable to follow
one of the tutorials available within JBuilder. That is, if you have installed
the documentation.

Go to the tutorials by selecting ’JBuilder Tutorials’ from the "Help’-
menu. If you have installed the documentation and the samples, you will
see a list of tutorials on the right hand of the screen. Click on 'user interface
tutorials’. You will now have three tutorials to choose from:

e ”Building a Java text editor”
e ”"Creating a Ul with nested layouts”

e "GridBaglLayout tutorial”

The best to begin with is Building a Java Text Editor so I'd suggest to
start of with that one. It will provide a basic knowledge of gui’s, necessary
to work with JBuilder.

5.2 MikTex 2.3

To write this book, two possibilities were offered. The first was to type the
book using a standard word processor like Microsoft Word, and the second
was to work using KTEX.

This book was written using the latter, and this because of several rea-
sons:

GVA-ELAI-UPM®PFC0071-2003 86

5.2. MIKTEX 2.3

e Lree

e Positive experience in the past

Widely accepted

Available for many platforms

Faster

Known difficulty of Word with large documents

The template used to create this book can be found at the back of this
book, and may be used freely.

The Not So Short Introduction to LaTeX2e is an 87 page introduction
LaTeX2e by Tobias Oetiker et al (DVI file). Updated Apr, 1999. Worth a
read.

5.2.1 What is BTEX?

LaTeX is a document preparation system for high-quality typesetting. It is
most often used for medium-to-large technical or scientific documents, but
it can be used for almost any form of publishing.

LaTeX is not a word processor! Instead, LaTeX encourages authors
not to worry too much about the appearance of their documents, but to
concentrate on getting the right content.

LaTeX contains features for:

e Typesetting journal articles, technical reports, books, and slide pre-
sentations.

e Control over large documents containing sectioning, cross-references,
tables and figures.

e Typesetting of complex mathematical formulae.

e Advanced typesetting of mathematics with AMS-LaTeX.
e Automatic generation of bibliographies and indexes.

e Multi-lingual typesetting.

e Inclusion of artwork, and process or spot color.

e Using PostScript or Metafont fonts

GVA-ELAI-UPM®PFC0071-2003 87

5.2. MIKTEX 2.3

LaTeX is based on Donald E. Knuth’s TeX typesetting language. LaTeX
was first developed in 1985 by Leslie Lamport, and is now being maintained
and developed by the LaTeX3 Project!. LaTeX is available for free by
anonymous ftp?.

5.2.2 What is MiKTeX?

MiKTeX (pronounced mik-tech) is an up-to-date implementation of TEXand
related programs for Windows (all current variants) on x86 systems.
MiKTeXs main features include:

e casy to install
e complete: 887 packages (fonts, macros, ...) are included
e living: the package repository is updated periodically

e casy package management: a wizard helps you to keep your installation
up-to-date

e the DVI viewer Yap allows for an optimized edit-compile-view cycle
e MiKTeX is open source

The MiKTeX distribution consists of the following components:

e TeX: the classic TeX compiler

o pdfTeX, e-TeX, pdf-e-TeX, Omega, NTS: various TeX variants

e Dvipdfm: converts TeX output into PDF documents

e MetaPost: converts picture specifications into PostScript commands
e a complete set of macro packages and fonts

e Yap: a viewer for TeX output

e TeXify: a TeX compiler driver

e MiKTeX Options: assists in configuring MiKTeX

e Lots of utilities: tools for the creation of bibliographies & indexes,
PostScript utilities, and more.

The current version of MiKTeX is version 2.3. The homepage of MiKTex
can be found at http://www.miktex.org.

Thus, in plain words, MiKTeX provides a compiler in order to process
IXTEX-documents under the windows environment.

"http://www.latex-project.org/latex3.html
“http://www.latex-project.org/ftp.html

GVA-ELAI-UPM®PFC0071-2003 88

5.2. MIKTEX 2.3

5.2.3 Installation of MiKTeX

The installation screenshots are taken from the MiKTeX website, since the
installation was already performed on this pc, and no screenshots were taken
then.

Four steps are necessary to install MiKTeX from the Internet:

1. Check to see if the prerequisites are met.
2. Choose a package set.
3. Download MiKTeX.

4. Install MiKTeX.

5.2.3.1 Prerequisites

These are system requirements imposed by MiKTeX. These imply the avail-
ability of certain files on the system, yet since Windows 98 these are auto-
matically available in any windows version.

File Name | Required Version Distribution Platform
comctl32.dll 5.80.2614.3600 Common Control Library Patch (50comupd.exe)?
wininet.dll 4.70.0.1300 Internet Explorer 4.0 or better

Table 5.1: Required Windows components

5.2.3.2 Choosing a package set

You can choose between three package sets: ”Small MiKTeX”, ” Large MiK-
TeX” and ”Total MiKTeX”.

Small MiKTeX This is a basic MiKTeX system with TeX, pdfTeX, rec-
ommended LaTeX packages and Type 1 fonts. This uses about 100
MB disk space.

Large MiKTeX This adds O(mega), ConTeXt, e-TeX and more. This
uses about 200 MB disk space.

Total MiKTeX This includes all available packages. This uses about 500
MB disk space.

You can start with the small package and add packages later using the
Package manager, or immediately select a larger package.

GVA-ELAI-UPM®PFC0071-2003 89

5.2. MIKTEX 2.3

5.2.3.3 Downloading MiKTeX

It is advisable to install MiKTeX using the installation wizard. This instal-
lation wizard can be downloaded from numerous places. The latest version
can always be found at http://prdownloads.sourceforge.net/miktex/
setup.exe?download.

1. Start the wizard (setup.exe). The welcome page will be presented:

MiKTeX Setup Wizard 2.2.7 3

Welcome to the MiKTeX Setup
Wizard

Thiz wizard installs MikT e on wour computer.
Mik.Tek is a free Tex distibution for Windows.

To continue with Setup, click Mest.

[Hewt > |[Cancel

Figure 5.3: MiKTeX Welcome screen

Click Next ; to advance to the next page.

2. Choose "Download only” as the primary setup task, and press Next
to advance

3. Choose the package set you wish to download:

GVA-ELAI-UPM®PFC0071-2003 90

5.2. MIKTEX 2.3

MiKTeX Setup Wizard 2.2.7 3

Package Set
Choose a package set.

) Gmall Download size: 23 ME
Size ondisk: 100 MB

A small set of packages: Tei, recommended LaTex packages. pdfT e, Typel
fants.
(O Large Download size: 64 MB
Size on dizk: 100 MB
This add: Omega, e-Tei and advanced macro packages like ConText.

(@i otat Download size: 143 MB
Size on dizk: 500 MB

All available packages.

< Back ” Mest > l[Cancel

Figure 5.4: Select package

4. It will now provide with a list of mirrors where you can download the
packages. It is advisable to select a mirror near your location.

5. The next step is to select a folder where the packages will be down-
loaded to. This is not necessarily the same folder as the one where
MiKTeX will be installed to later on. It is even advised to put this
in a different folder, in order to easily be able to reinstall, if needed,
without downloading again.

6. The download will start, and you will be able to see how much time is
left in order for the download to complete.

7. When the download is complete, you can proceed to the following
screen:

GVA-ELAI-UPM®PFC0071-2003 91

5.2. MIKTEX 2.3

MiKTeX Setup Wizard 2.2.7 3

Completing the MiKTeX Setup
Wizard

'ou have sucessiully completed the MIKT e Setup \Wizard.
The packages you choze have been copied to a local

package repository. You can inztall Mik.T e by running this
wizard again.

To exit the wizard, click Finish.

Figure 5.5: Download Complete

5.2.3.4 Installation
1. Start the wizard again (setup.exe)

2. Now select the install-option:

MiKTeX Setup Wizard 2.2.7

Setup Task
Chaoose the primary task, MiE.Tex Setup \Wizard is ta cany out.

Chooze one of the following setup tasks:

(O Download only

Download required MiKT e packages to a local package repogitory.

Install MiK.Tex from a local package repositony.

< Back ” Mest >][Cancel

Figure 5.6: Install Option

3. Select the package you wish to install, preferably this is the same as
the downloaded one, but you can also select a smaller package.

GVA-ELAI-UPM®PFC0071-2003 92

5.2. MIKTEX 2.3

4. Select whether to install a shared or private environment. The shared
environment lets other users of the computer also use the miktex en-
vironment.

5. Select the folder where you have downloaded the packages.

6. Next, select the folder where you would like to install MiKTeX, re-
member that depending on the packages you would like to install, up
till 500MB of disk space can be needed.

7. The next option lets you select whether you would like to incorporate
other texmf-directories. These are directories that contain additional
packages in the Network Neighbourhood. You can safely defer this
decision, because you can subsequently add additional TEXMF' direc-
tories with the help of MiKTeX Options.

MiKTeX Setup Wizard 2.2.7 X

Additional TEXMF Folder Trees
You can incorporate existing TEXMF folder trees.

You can incorporate existing TEXMF folder trees, i.e. you can make use of Tex related
packages that are already installed in you netwark neighbourhood.

If you are unsure, uze the default comfiguration. Y'ou can incorporate existing folder
trees later via the MIkK.T e Options shortout.

() Dor't incorporate existing TEXMF folder trees now.

() Incorparate existing TEXMF falder trees.

< Back ” MHest > l[Cancel

Figure 5.7: Remote TexMF Folders

8. After a review of the chosen options, the installation can begin.

9. After a successful installation, the following screen is shown:

GVA-ELAI-UPM®PFC0071-2003 93

5.3. TEXNICCENTER 1B6.0

MiKTeX Setup Wizard 2.2.7 3

Completing the MiKTeX Setup
Wizard

'ou have sucessiully completed the MIKT e Setup \Wizard.

The packages you choze have been installed.

To exit the wizard, click Finish.

Figure 5.8: Install Finished

5.2.3.5 Using MiKTeX

In order to avoid needing to know the command line based compilation of
MiKTeX, we will use an integrated developing environment, called TeXnic-
Center to develop our IATEX-files. See more about this in the following
section.

5.3 TeXnicCenter 1b6.0

TeXnicCenter is an integrated development environment (IDE) for develop-
ing LaTeX-documents on Microsoft Windows (Windows 9x/ME, NT/2000).

IDE means, that TeXnicCenter is an application, that integrates all the
tools, needed to develop documents with LaTeX, in just one application. You
have the editor to write your LaTeX files with, you can start the building
process just by choosing a menu item and the output of the LaTeX compiler
is written to a window of TeXnicCenter and analyzed, so that you can simply
jump from one error, warning or bad box to another one.

Also viewing the generated output is easy with TeXnicCenter. Just
choose a menu item and the correct viewer application will be started and
if supported by the viewer, the output will be displayed at the position
belonging to the current source position in TeXnicCenter.

TeXnicCenter’s aim is to support the LaTeX-newbie by providing him
the most important LaTeX constructs via menu and by abstracting the use
of the LaTeX compiler and other tools like Makelndex and BibTeX and
even support the LaTeX-pro by providing a powerfull, fully customizable

GVA-ELAI-UPM®PFC0071-2003 94

5.3. TEXNICCENTER 1B6.0

and integrated environment.
The TeXnicCenter’s main web page can be found at the following ad-
dress: http://www.toolscenter.org/products/texniccenter/.

5.3.1 Download and Installation

The current latest version of TeXnicCenter is version 1 beta 6.01. This
version can be downloaded from the main website, or directly from this ad-
dress: http://prdownloads.sourceforge.net/texniccenter/TXCSetup_
1Beta6_01.exe7download.

The installation of TeXnicCenter is easy, and should offer no problems.

5.3.2 Configuration

When first running TeXnicCenter, tell the configuration wizard to configure
for use with MikTeX. This will automatically set all paths correctly to use
TEXcorrectly.

There is only one setting to be changed, this is when the configur-
ing wizard asks to fill in a path for the different viewer. In the textbox
for the DVI-viewer, you should select the Yap-viewer that is installed to-
gether with MiKTeX. This viewer can be found in the following folder:
c:\texmf\miktex\bin\yap.exe if you accepted the default settings of the
MiKTeX-installation.

5.3.3 How to Work with TeXnicCenter

The main screen of TeXnicCenter is quite similar to that known in other
editors like Word. The two lower toolbars allow you to easily access INTEX-
commands such as Emphasize, Bold, or allow easy creation of enumerating-
environments or likewise, without having to know the exact syntax of the

TEX-commands.

T e e o o e
[E2E208 50

Figure 5.9: TeXnicCenter main screen

GVA-ELAI-UPM®PFC0071-2003 95

5.3. TEXNICCENTER 1B6.0

Since we are working in Windows, and would like to generate a book
available on any platform, Acrobat’s PDF-format is most appropriate 4.
Thus in the dropdown button we must select ”LaTex=;PDF”.

When working with TeXnicCenter, you have two possibilities:

e Work in a project
e Work in single files

The latter is only useful when working with small documents. When
writing a book of substantial size, it is better to create a new project. This
allows for easy managing of the different files of the project.

5.3.3.1 Creating a new project

A new project can be started by selecting ’File’-’New Project’ in the menu
bar. You then get the following screen:

MNew Project 5'

General | — F_”e
Project name:

[

Empty Project Project path:

C:\Documents and Settingshwd |
File format; IUnik 'I

Lniz

Features Il
= ;
[~ Uses BibTex

[~ Uses Makelndes

— Template

Cancel |

Figure 5.10: New TeXnic Project

Choose a name for the project, and the default empty project template.
For compatibility issues, it is advisable to select the UNIX-file format. The
other options may be left to default.

You will now have a clean project to start with, and the main file of your
project opened. For this main file, you can use the template provided with
this book, use others, or start from scratch.

‘http://www.adobe.com/acrobat

GVA-ELAI-UPM®PFC0071-2003 96

5.4. TEXTPAD TEXT EDITOR

5.3.3.2 Compiling the project

After writing your LaTeX-code, using the IDE, or entering your commands
manually. The project can be compiled using the buttons known from any
other integrated developing environment.

These buttons are located right to the dropdown selection box:

J“ LaTeX =» FDF - ||ﬁ|@|®.|"'l !‘-|-P??4-|==>€E}EEI=<:=

Figure 5.11: TeXnic Build Buttons

The main button is the first, which compiles the entire project. In the
box below, the result of the build will be displayed. If no errors occured,
the output can be viewed by clicking the preview button, which is located
in the same bar.

The interface of TeXnicCenter should be quite intuitive in order to work
on more elaborate projects.

5.4 TextPad Text Editor

TextPad is a powerful, general purpose editor for plain text files. During
this project, it was several times used to quickly review files, algorithms,
source code,. .. Or to write new test files, test programs, etc.

It is a powerful replacement for any other text editor, offering following
features:

e English, French, German, Italian, Polish, Portuguese and Spanish user
interfaces.

e A spelling checker with dictionaries in 10 languages.

e Unlimited undo/redo capability. The undo buffer can be optionally
cleared when a file is saved, or by using the Mark Clean command.

e Viewer for binary files using a hexadecimal display format.
e Syntax highlighting depending on input file

e User-adjustable highlighting

e Plug-ins for external languages

e External command execution

e Java Compilation/Execution on the fly

GVA-ELAI-UPM®PFC0071-2003 97

5.5. JASC PAINT SHOP PRO 7

The main webpage of TextPad can be found at http://www.textpad.
com, where also other plug-ins can be downloaded. These add-ons provide
support for syntax-highlighting, command-shortcuts,. . . for several file types.

A few examples of these add-ons that were particularly useful in the
project:

e Syntax definitions for LaTex

e Syntax highlighting for Matlab Release 13 functions and operators.
Also Matlab function for generating Matlab keywords.

e Syntax definitions for Java 2 JDK 1.4.0

e Syntax definitions for C and C++ which includes definitions for ATL,
WTL, and STL.

SETE
lajx|

IEEEIEEIC IR TRY HR [RGB e r R
— iaxl

bl

Mihpplcation ava

eeeeee Calls ta
he construct() nether

nev Swingllorker() {
{

tionList
public voi on} d(Ae e) {
JOptionPane. showlessageDialog(f. worker get()):

b
JButton b = new JButton('Click here to show component construsted by Svinglorker');
b tener(log):

£.getContentPane() .add(b):
£ pack():
£ show()!

//Th ding a listener is alvays safe
£ addvi
ovEvent =) {

b

T [ead [owr Fock Fyre ee [cons

(V|
| Phacrobr ... | EikazasLLk...| B 3asc pain..| £15PORT.b...| Erentpad .| [rentpad... |G- BES#E 15:20

Figure 5.12: TextPad

5.5 Jasc Paint Shop Pro 7

Paint Shop Pro, developed by the Jasc Software company®, is one of the most
used photo and graphics editors, mainly because of the following reasons:

e Easy-to-use

*http://www. jasc.com

GVA-ELAI-UPM®PFC0071-2003 98

5.6. JAWS PDF EDITOR 1.1

e Compatible with plug-ins of Adobe Photoshop
e Fast

All the screenshots in this book were created and edited using Paint
Shop Pro.

The version used in this project was version 7.04. Currently, version 8
is available, of which a 30-day trial version can be downloaded from here:
http://www. jasc.com/download_4.asp?.

5 Jasc Paint Shop Pro - [textpad.png™* [1:2] (Background)] =& x|
P Fle Edit View [nage Effects Colors Layers Objects Selections Masks ‘Window Help _l&@l x|

DEHSE 2 4 ae @0 ranwnz ea
BEEEELY FlEEEELE

= e |
Q

]

e

i

=] 2

SI;.? Styles
&)
V4 b o
& Texiures
o o,
1 = 9
Y I Lock
4 i =
& B -

&

5 >
A

&

B o
|

o
T b e e
T P Y L6 P VPN O [P YOS PV I e E T

For Help, press Fi fimage: 1024 x 768 x 16 Milion - 2.2 MBytes

HRnicio || & G [[© || [Trewncce. | Gymieex [[B3ascpai. &)sase soft..| E]porro.. Gjks | BikazaaLic..| G EE2 155

Figure 5.13: Paint Shop Pro

5.6 Jaws PDF Editor 1.1

Jaws PDF Editor, produced by Global Graphics software 6, allows basic
manipulation of PDF-documents, which would otherwise be impossible.
The main reason for using the software was to be able to select certain
parts of a text out of a PDF-document in order to be able to reuse it in this
book.
Other than that, Jaws PDF-editor offers the following features:

View and print PDF files Open, navigate and print any PDF file using
Jaws PDF Editor. Navigation

Shttp://www.globalgraphics.com/

GVA-ELAI-UPM®PFC0071-2003 99

5.6. JAWS PDF EDITOR 1.1

Manipulate PDF files Jaws PDF Editor allows you to manipulate PDF
pages and documents by rotating, deleting, inserting, extracting and
re-ordering pages and then saving the changes to the file.

Annotate with comments Jaws PDF Editor includes the ability to cre-
ate,add and save comments directly in the PDF file.Add ”sticky note”
comments or highlight, strikeout and underline text.All comment types

have a pop-up comment window into which you can type additional
information.

Security Settings Jaws PDF Editor allows users to set passwords or
change security rights on the PDF file.

Jaws PDF Editor is available as a 30-Day Trial version from their website:
http://www.jawspdf.com/pdf_editor/index.html

ws PDF Editor - [informe.pdf - p3 - 100%] ===

Comments Tooks window Help ;Iilzj
ooy s G640 &ss]0]

[Document Security Information

Secutty Methodt [5iardad a0 6 ©
Open Password

-
Changing the Decument. [ot floed 7]
Solecting Test and Graphics: [Alowed 7]
dding or Changing Camments and Form Fieds: [lot Aloved <]

Ecit Document Securiy Settings

i

Al
[B [0« 3et1z3 » W[[© 10 - @ @ aloldles]

hnicio||| @ G] 5 © || Wyosscpant sho...| £porreader a... | E1sPoRTbe - Te..| [F}acrcbat Read.. |[¥ 3ams poF Edi.. [T]Tesniccenter - Q . 1614

Figure 5.14: Jaws PDF Editor

GVA-ELAI-UPM®PFC0071-2003 100

Chapter 6

Conclusion

6.1 Achievement of goals
The following goals were achieved during this project:

e Conversion of algorithms to stand-alone application in Windows envi-
ronment using Matlab Compiler

e Investigation difficulties Matlab Compiler

e Comprehensive reference/manual on Matlab Compiler
e Integration Matlab Compiler/Microsoft Visual Studio
e Comparison runtime environments

e Introduction to Vigra Image Library

e Evaluation of Vigra Image Library

e Development of graphical user interface for automatic processing

Thus we can say the main objective is succeeded. Since the main objec-
tive was to convert the algorithms to ¢/c++ code, we could say this part
is succeeded. Yet, the generated code from the Compiler is not platform
independent, so the same procedure is necessary on any other platform too.
Yet the Compiler-related problems should already be solved, since these
problems are independent of the operating system. The solution to these
problems has been described thoroughly throughout the book, so they should
impose nor difficulties, nor time-consumption.

Also a comparison between the two runtime environments, being the
Matlab Environment and the Windows Stand-Alone environment was given,
making clear the advantages and disadvantages both carry.

Secondly, an introduction and a thorough installation procedure to the
Vigra Imaging Library was given. This offers a solid base for any further

101

6.2. FUTURE POSSIBILITIES

development in the future, if necessary. The development using this library
was stopped during this project, because of reasons that are described in
the corresponding section.

Finally, the project was ended by developing a graphical user interface
using the platform independent language of Java. This graphical user in-
terface was developed to facilitate the usage of the converted algorithm, as
well as to provide an easy way to process larger quantities of images.

6.2 Future possibilities

This project is the first in trying to convert the algorithms written in Mat-
lab code to stand-alone, platform independent applications. In this project
mainly the usage of the built-in compiler is tested. This turned out to be
a fast, easy and fluent way of converting the algorithms. That is, in the
Windows environment, mainly thanks to the availability of a plug-in for
the Microsoft Visual C/C++ integrated developing environment. In the
other operating system, being Linux, where such a plug-in is non-existing,
this conversion using the Compiler is basically the same, yet more complex.
This because every step of the process needs to be taken manually. This
being the configuring of the Compiler, the configuring of the libraries, path
settings, C/C+-+-compiler configuration, etc.

Also a small side-step to other possibilities of converting the algorithms
was made, in casu the Vigra Imaging Libraries. Although this way is a lot
more inconvenient, difficult and time-consuming, this might be a path to
take in the future. Also the possibilities of other image processing libraries
might be tested in the future, since they are widely spread, but, due to
the complexity of the C/C++-programming language, may turn out to be
equally difficult.

Also the user interface might be ported to other languages. If both the
algorithms and the GUI would be ported to the C/C++-language, a speed
increase would be possible, since both could then be more easily integrated.
Also the porting to different platforms would be a more fluent task.

Thus, concluding, the following improvements or extensions could be
made in the future:

e Converting algorithms using Compiler in Linux
e Porting algorithms to C/C++ using external libraries

e Porting graphical user interface to C/C++

GVA-ELAI-UPM®PFC0071-2003 102

Appendix A

Example Algorithm

A.1 Matlab-original algorithm

function [ContCell,CodErr] = ContCellAzulSinV1(NomFich_n,NomFich_m)

%Inicializar codigo de error
CodErr = 0;

%Leer fichero
ImgEnt = imread(NomFich_n);
ImgMar = imread(NomFich_m);

%Detectar Bordes

ImgBorde=edge (ImgEnt(:,:,2), ’canny’,.4,2); %Emplea el verde

%Ampliar el borde
se= strel(’square’,5);
ImgBorde = imdilate(ImgBorde,se);

pA

%0btener nucleos

yA

%Img0bj = logical((ImgEnt(:,:,2)>100)-ImgBorde) ;
%Determinar Umbral nucleos

Hist = imhist(ImgEnt(:,:,2));

Umbral = BIN_Iterativo(Hist);

#Determinar nucleos

ImgObj = (ImgEnt(:,:,2)>Umbral) & ("ImgBorde);

103

A.2. MATLAB-ALGORITHM PREPARED FOR CONVERSION

se = strel(’disk’,10);

ImgObj = imopen(Img0Obj,se);
%Contabilidad
ImgEtig=bwlabel (Img0bj) ;
ContCell = max(max(ImgEtiq));

pA
%0btener nucleos seleccionados
yA
%Determinar Umbral etiquetados
ImgResta = imsubtract(ImgMar(:,:,2),ImgMar(:,:,1));
Hist = imhist(ImgResta);
Umbral = BIN_Momentos(Hist,size(ImgMar,1)*size(ImgMar,2));
ImgEtigM = (ImgEtiq .* (ImgResta>Umbral));
%ImgEtigM = imopen(ImgEtigM,se);
stat = imfeature (ImgEtiqM,’Area’);
ContCellMar = O;
ObjBorrar = [];
for i=1:size(stat,1)

if (stat(i) .Area > 150)

ContCellMar = ContCellMar+1;
else
ObjBorrar = [ObjBorrar;il;

end
end
ContCell = [ContCell,ContCellMar];

%Eliminar Objetos no etiquetados
%for i=1:size(0bjBorrar,1)
yA ImgEtiq(ImgEtiq == ObjBorrar(i)) = 0;

hend

J#Resultado

%ImgEnt = [ImgEnt ImagResMarcado(ImgEnt,ImgObj)];
%ImgSal = [ImgMar ImagResMarcado(ImgMar,ImgEtiq>0)];

A.2 Matlab-algorithm prepared for conversion

function ContCellAzulSinV1()
%As can be seen, no inputs nor outputs

GVA-ELAI-UPM®PFC0071-2003 104

A.2. MATLAB-ALGORITHM PREPARED FOR CONVERSION

%Inicializar codigo de error
CodErr = 0;

%initialize timer
%(in order to be able to view execution time)
tic

#Read image filenames (replaces input parametres)
fid=fopen(’files.txt’,’r’);
FileNameInBlue=fgetl(fid);
FileNameInSel=fgetl(fid);
FileNameOutBlue=fgetl(fid);
FileNameQOutSel=fgetl(fid);

fclose(fid);

/iLeer fichero

#Read images
ImgInBlue=imread(FileNameInBlue) ;
ImgInSel=imread(FileNameInSel);

%Leer fichero (Replaced by lines above)
%ImgEnt = imread(NomFich_n);
%ImgMar = imread(NomFich_m);

%Detectar Bordes

ImgBorde=edge (ImgEnt(:,:,2),’canny’,.4,2); %Emplea el verde
%this causes runtime error
%see notes on edge in book for solution

%Ampliar el borde

se= strel(’square’,5);

%causes runtime error, see notes on strel
ImgBorde = imdilate(ImgBorde,se);

pA

%0btener nucleos

pA

%ImgObj = logical((ImgEnt(:,:,2)>100)-ImgBorde) ;
%Determinar Umbral nucleos

Hist = imhist(ImgEnt(:,:,2));

Umbral = BIN_Iterativo(Hist);

GVA-ELAI-UPM®PFC0071-2003 105

A.2. MATLAB-ALGORITHM PREPARED FOR CONVERSION

#Determinar nucleos

ImgObj = (ImgEnt(:,:,2)>Umbral) & (“ImgBorde);
se = strel(’disk’,10);

ImgObj = imopen(ImgQObj,se);

%Contabilidad

ImgEtig=bwlabel (ImgObj) ;

ContCell = max(max(ImgEtiq));

b
%0btener nucleos seleccionados
b
%Determinar Umbral etiquetados
ImgResta = imsubtract(ImgMar(:,:,2),ImgMar(:,:,1));
Jimsubract works only in C, not C++
Hist = imhist(ImgResta);
Umbral = BIN_Momentos(Hist,size(ImgMar,1)*size(ImgMar,2));
ImgEtigM = (ImgEtiq .* (ImgResta>Umbral));
%»ImgEtigM = imopen(ImgEtigM,se);
Jstat = imfeature (ImgEtigM,’Area’);
%imfeature does not work with Compiler
huse regionprops instead
stat = regionprops(ImgEtigM, ’Area’);
ContCellMar = 0;
ObjBorrar = [];
for i=1:size(stat,1)

if (stat (i) .Area > 150)

ContCellMar = ContCellMar+1;
else
ObjBorrar = [ObjBorrar;il];

end
end
ContCell = [ContCell,ContCellMar];

%Eliminar Objetos no etiquetados

hfor i=1:size(0ObjBorrar,1)

yA ImgEtiq(ImgEtiq == ObjBorrar(i)) = 0;
%end

%Resultado (replaced by procedure below)
%ImgEnt = [ImgEnt ImagResMarcado(ImgEnt,ImgObj)];
%ImgSal = [ImgMar ImagResMarcado(ImgMar,ImgEtiq>0)];

GVA-ELAI-UPM®PFC0071-2003 106

A.2. MATLAB-ALGORITHM PREPARED FOR CONVERSION

%Visualize results
ImgOutBlue = ImagResMarcado(ImgInBlue,ImgObj);
ImgOutSel = ImagResMarcado(ImgInSel,ImgEtig>0);

%Write results
imwrite (ImgOutBlue,FileNameQutBlue) ;
imwrite (ImgOutSel,FileNameQutSel);

JWrite countings to file
fid=fopen(’results.txt’,’w’);
fprintf (£fid,’%d\n’,CountBlue) ;
fprintf (fid,’%d\n’,CountSel) ;
fclose(fid);

%end timer
toc

GVA-ELAI-UPM®PFC0071-2003 107

Appendix B

LaTeX Template

\documentclass[11pt,adpaper]{report}

\usepackage{url}
%\usepackage [T1]{fontenc}
\usepackage[latinl] {inputenc}

\usepackage{amssymb}
\usepackage{longtable}
\usepackage [section]{placeins}

\usepackage{float}

\usepackage{makeidx}
\makeindex

\usepackage [pdftex] {graphicx}

\usepackage{fancyhdr}
\pagestyle{fancy}
\addtolength{\headheight}{1.6pt}
\lhead{}

\chead{}

\rhead{\rightmark}
\1foot{GVA-ELAI-UPM\circledR PFC0059-2001}
\cfoot{}

\rfoot{\thepage}
\renewcommand{\headrulewidth}{0.4pt}
\renewcommand{\footrulewidth}{0.4pt}

%\usepackage{hyperref}

108

\newenvironment{preamble}
{

\titlepage

\null

\vfil

\begin{center}
\textbf{Preamble}\\
\vspace{10pt}
\end{center}

}

{
\par