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PREFACE TO THE 
2005 EDITION 

So here I am writing a third preface for Infinity and the Mind. Though I keep 
hoping to surpass it, this early work may turn out to be my most popular. 
Habent sua Jata libelli-books have their own destinies. 

I'm grateful to my publishers, and to the readers who've contacted me over 
the years. Infinity is important and interesting, and learning about it can indeed 
make a difference in one's life. 

I'll take this opportunity to expand upon my text with three notes touching 
on, respectively, cosmology, computer science, and set theory. 

*** 

In the first of the puzzles and paradoxes at the end of Chapter One, I posed 
the question of whether an infinite universe would be likely to have planets in 
every way identical to our own. And in my answer on page 295, I minimized 
this likelihood. 

But now I feel that I was underestimating the raw power of infinity. If our 
universe is infinite, then it could very well be that somewhere far from Earth, 
a person exactly like you is reading this precise sentence. 

The question turns out to be less hypothetical than I formerly supposed, for 
nowadays some cosmologists believe that our space is truly infinite, with an 
endless number of stars and planets. The initial I3ig Bang Singularity is to have 
happened not at any single point, but across infinite space. 

If the old image of the Big Bang was of a white dot appearing in a plane, 
the new image is of an entire endless plane becoming suddenly illuminated in 
every part. You might visualize a sheet of light settling down upon the plane; 
indeed, one current model views the universe as pair of parallel spaces that os
cillate back and forth, creating a Big Bang each time they pass through each 
other. 

Regarding the question of whether an infinite universe would contain other 
worlds just like Earth, I recently saw some interesting number play by Max 
Tegmark in his article "Parallel Universes" (Scientific American, May 2003, pp. 
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41-51). Assuming that the space-filling Big Bang happened 14 billion years ago, 
the region of the endless universe presently visible to us is a sphere with a di
ameter of some lO27, or 1 octillion, meters. (I should mention that the standard 
name for a number of the form lOCCk + 1 )'3) has the general form k-illion.) This 
octillion-meter-wide sphere, which is called a Hubble volume, contains those 
objects that are close enough so that light from them has had time since the 
Big Bang to reach us. 

Suppose we make the unexceptionable assumption that our Hubble volume 
has an average temperature of less than 100 million degrees centigrade (the 
sun's surface is a mere 5000 degrees centigrade). In this case, according to 
Tegmark, the Hubble volume has room for some 101lH protons. To get a han
dle on this number it's useful to use the number googol, which is written as a 
one followed by a hundred zeroes: 

lOll8 = 10(18 + ]()() = 101H . lOW() = 10((5+1)-3) . 10100 = quintillion googol. 

Now we can wonder how many distinct possible Hubble-volume-sized re
gions there could be. Let's think of the Hubble volume as a jungle-gym grid 
with a quintillion googol slots. One can specify an arbitrary random visible uni
verse by deciding what to put in each slot-one might leave a slot empty, put 
a proton or neutron in there, or perhaps stick in an electron or some other kind 
of particle. To keep things reasonably simple, let's suppose we have ten alter
nate ways to fill each of the quintillion googol proton-sized slots. In that case, 
the number of possible ways to populate a Hubble volume with matter con
sists of choosing among ten options a quintillion googol times in a row, which 
is ten to the quintillion googol power. In describing this number, it will be use
ful to use googol's big brother, the googolplex, which is 1 Ogoog()1 , that is, the 
number one followed by googol zeroes. (See p. 97 for more about googol and 
googolplex.) 

Since it's rather hard to typeset double exponents, I'll use the II symbol to 
stand for the second level of exponentiation. 

10(quintillinn googol) = 10C1O"I1H) = 10((10"100)'(10"18» = (l0(J01\100»)(10"18) = 
googol plexq uintIllion. 

So now we know that there are at most googolplex-to-the-quintillion possi
ble versions of how our visible universe could appear. A large number, yes, but 
if our universe is truly infinite, there will be an infinite number of possible Hub
ble volumes besides ours, and it seems likely that one of them could be an 
exact match for our own. 

How far off might the first copy of our visible universe be? One idea might 
be to set out in a straight line and \vhip through the first googolplex-to-the
quintillion Hubble volumes. Just for fun, let's give this distance a made-up 
name: one striiide. Given that a Hubble volume has a diameter of an octillion 
meters, a striiide is an octillion googolplex-to-the-quintillion meters. Would 
traveling this far guarantee a hit? Not quite. 

A little calculating of probabilities indicates that if I travel one striiide, I have 
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a 63% chance of encountering a Hubble volume exactly like the one I started 
from (the precise probability is very close to 1 - 1/ e, where e is the base of 
the natural logarithm). But as I travel more striiides, the odds go up, and after 
ten striiides, my chances of having found a visible universe exactly like ours is 
better than 99.99%. 

With all this said, there's still no certainzv that a supertraveler could find an
other Hubble volume just like the one right here. Consider for instance an in
finite set of integers which has only one odd member, the number 3. Someone 
who starts at 3 and looks for another odd number is going to be disappointed: 

(2, 3, 4, 6, 8, 10, 12, ... 2n, ... I. 

But realistically there's no reason to suppose that our particular Hubble vol
ume is unique and special. So, yes, if the universe really is infinite, then there 
probably are other people exactly like us somewhere out there. It's an odd 
thought, somehow liberating. Even if I goof up this preface, some other Rudy 
will get it right. So why worry? 

*** 

I need to make a correction to the section "A Technical Note on Man
Machine Equivalence" on pages 292-294. (I discovered the problem in con
versations with the philosophers Leon Horsten and Mark van Atten at the Uni
versity of Leuven in 2002. I was there as a grateful guest of the Brussels-based 
VLAC, or Flemish Academic Centre for Science and the Arts.) 

I hold with the conjecture that it is in principle possible to bring into exis
tence computing machines that think like humans do. The point of my techni
cal note was to defend my belief against J. Anthony Lucas's classic argument 
that Gc)c!el's Second Incompleteness Theorem nIles out man-machine equiva
lence, an argument which was revived and popularized by physicist-author 
Roger Penrose in the 1990s. 

Unfortunately my note has a mistake in it even though, in the second pref
ace to Infinity and the Mind, I claimed that my note was "definitive." Oh well. 
I'm another Rudy by now, and I'm here to set things right. 

Suppose h is an integer that codes the program for a device M h , whose out
put is very much like a person's. Lucas and Penrose want to say that (1) after 
hanging around with Mh for awhile, any reasonable person will feel like as
serting Tr(h), a sentence which says something like, "If I base a machine Mh 
on the algorithm coded by h I'll get a machine that only outputs true sentences 
about mathematics" and (2) having perceived the truth of Tr(h), any reason
able person will also feel like asserting ConCh), a sentence which says some
thing like, "If I base a machine Mh on the algorithm coded by h I'll get a ma
chine that never generates any mathematical contradictions." But Gc)del's 
Second Incompleteness Theorem shows that Mb can't prove ConCh), so now it 
looks as if any reasonable person who hangs around with a human-like Mb will 
soon know something that the machine itself can't prove. 

In my note, I argued that if Mh has an output very much like a person's, then 
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it must incvitably be that the number h would be very hard for a human to de
scribe. 1 suggested that the number h would in fact be humanly unnameable 
in the sense that no person could in their lifetime produce an accurate de
scription of this number. 

My reason for wanting this to be the case was that, if h is humanly un
nameable, then it would in fact be impossiblc for a person to prccisely formu
late, let alone aSSCl1, the sentences Tr(h) or ConCh). So the Lucas argument 
would fail to go through. 

But now, having spent the last eighteen years teaching and researching com
puter science, I realize that we could in principle describe a rather simple "mind 
recipe" that could be used to evolve a computer program very much like a per
son-although simulating the evolution on computing machinery might well 
take very many years. The key point is that this mind recipe itself could be ex
pressed by an easily nameable number h. 

The basic idea behind the mind recipe is to stal1 with a large population of 
sample programs, and to repeatedly measure their fitness at understanding 
some fixed library of books and movies, each time replacing the less fit pro
grams with mutations or combinations of the more fit programs. If properly de
signed, then over time this simulated evolution has a chance of producing 
human-like machines. Why shouldn't it? \Ve ourselvcs evolved from a very 
humble stal1. 

The mind recipe is both deterministic and nameable proVided that, when 
we make mutations or choose pairs of programs to combine, we use a simply 
defined deterministic pseudorandomizer for the source of the random bits 
needed to orchestrate the process of simulated evolution. We might use, for in
stance, the traditional C language randO function which returns the current 
value of a variable random_integer and at the same time refreshes this value 
to 214,013 . random_integer + 2531,011. Alternately, one could use a onc
dimensional cellular automaton such as the rule 30 that Stephen Wolfram de
scribes in his monumental A New Kind of Science (Wolfram Media, 2002). 

The point of the mind recipe is that we specify a complex machine M with 
a name of the form, say, "Seed your randomizer with the number 1946, create 
an initial population of a million random programs, and evolve the population 
through a billion generations, using the mutation and crossover genetic oper
ators, and gauging fitness according to the following specific tests: answer the 
enclosed quizzes on the following books and movies, do better than the other 
programs at the following list of games, score well in the programs' mutual 
rankings of each other, etc." And this name can be transparently converted into 
a nameable code number h. 

In other words, I was wrong in saying that if a machine Mh behaves like a 
human, then h must be unnameable. Note that this doesn't mean that the be
havior of the end product Mh is simple. lvlh itself is going to be the product of 
a billion generations of simulated evolution. The fully evolved program might, 
for instance, take the form of a neural network involving 100 trillion carefully 
tweaked real number weights-a mass of data that no human could hope to 
cogently overview. Mh just happcns to have a simple definition. 

So now what about Lucas and Penrose? The philosopher Hilary Putnam for-
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mulated what remains the best counterargument in his 1960 essay "Minds and 
Machines," which has been reprinted in A. R. Anderson, Minds and Machines 
(Prentice-Hall, 1964, pp. 43-59). (For Lucas's ripostes to such objections, see 
his genial if unconvincing essay, "A paper read to the Turing Conference at 
Brighton on April 6th, 1990," available online at http://users,ox.ac.uk/-jrlucas/ 
Godellbrighton.html.) 

Putnam's point is Simple. Even if you have seen i'vlb behaVing sensibly for a 
period of time, you still don't have any firm basis for asserting either that Mh 
will always say only true things about mathematics or that Mb will never fall 
into an inconsistency. Now if you were to have a full understanding of how 
Mb operates, then perhaps you could prove that Mh is consistent. But, as I just 
mentioned, in the case where h is the mind recipe, the operation of the even
tual Mb is incomprehensibly intricate, and we will never be in a position to le
gitimately claim to know the truth of the sentence ConCh), which asserts that 
Mh is consistent. This is, indeed, the content of Geidel's Second Incompleteness 
Theorem. Rather than ruling out man-machine equivalence, the theorem places 
limits on what we can know about machines equivalent to ourselves. 

And, really, this shouldn't come as a surprise. You can share an office or a 
house with a person P for fifteen years, grmving confident in the belief that P 
is consistent. and then one day Pbegins saying and doing things that are com
pletely insane, You imagined that you knew Con(P) to be true, but this was 
never the case at all. The only solid reason for asserting ConCP) would have 
been a systematic proof, but, given that you and P were of equivalent sophis
tication, this kind of proof remained always beyond your powers. All along, 
the very fact that ConCP) wasn't provable contained the possibility that it wasn't 
true, Like it or not, that's the zone we operate in when relating to other intel
ligent beings, 

On the topic of human and machine consciousness, I want to make an ad
ditional remark about the core "I am" sensation that I discuss in the "Robot Con
sciousness" section of Chapter Four. Somewhat disingenuously, I presented the 
"I am" sensation as being a given that results from simple existence. But it's 
more realistic to say that a person's core consciousness is based on certain kinds 
of activities taking place in the brain-processes which, by the way, could also 
be modeled by a program or a machine. A fairly detailed model of core con
sciousness appears in Antonio Damasio, The Feeling of What Happens (Har
court, 1999). Damasio views consciousness as arising in the context of the fol
lowing sequence: 

• Immersion. You are active in the world. 
• Seeing Objects. You distinguish separate objects in the world, including your 

body, 
• MOlJie-in-thl.'-Rrain. You have an ongoing mental model of the world. The 

movie-in-thc-brain includes images uf the world's objects and an image of 
your body. 

• Proto-Sell Your image of your body differs from an image of an object in that 
yuur image of your body includes images of your sensations and current men
tal contents. This rich image is the proto-self. 

http://users.ox.ac.uk/-jrlucas/Godellbrighton.html
http://users.ox.ac.uk/-jrlucas/Godellbrighton.html
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• Feelings. You automatically and continually enhance the movie-in-the-brain 
by adding in representations of the proto-self's interactions with objects. 
These second-order representations are what we call feelings. 

• Core Consci()usness. The act of continually forming feelings is part of what 
we mean by consciousness. At any given time, core consciousness is based 
on your feelings about a small group of images. Core consciousness high
lights those particular images, which accounts for your current focus of 
attention. 

You can find much more about robot intelligence, the mind recipe, and 
Damasio's core consciousness in my forthcoming book, The Lifebox, the 
Seashell and the Soul, slated to appear from Thunder's Mouth Press in 2005. 

*** 

Set theorists have stayed busy during the twenty-five years since I wrote In
finity and the Mind. Recently my attention was caught by a pair of expository 
articles by the mathematician W. Hugh Woodin, "The Continuum Hypothesis, 
Part I" and "The Continuum Hypothesis, Part II" (Notices a/the American Math
ematical Society, 48(6):567-576 and 48(7):681-690, respectively). I was sur
prised and pleased to see that Woodin and some like-minded set theorists be
lieve that Cantor's continuum problem may in fact be solvable, and that the 
answer is likely to match Kurt G()del's conjecture that the size c of the contin
uum is the transfinite cardinal X2 . During my years of exile among computing 
machines for whom 4 billion is the largest possible integer, I'd begun to fear 
that Cantor's question about higher infinites might be meaningless. 

A few weeks ago, I took a day off to visit Hugh Woodin in his office at the 
University of California in Berkeley, and he did his best to explain his recent 
work to me. 

Woodin's analysis can be formulated in terms of sets of the form H( K), mean
ing the set of all sets hereditarily of cardinality less than K. A set x is in H(K) if 
the size of x is less than K, and if all the members of x are in H(K) as well, that 
is, the members of x have size less than K, their members have size less than 
K, and so on. If we let Xo be the first infinite ordinal, then H(Xo) is the set of 
hereditarily finite sets. If there were no infinite sets at all, then the universe of 
set theory would be H(Xo)' 

The analysis gets interesting when we look at H(X 1)' where Xl is the first 
uncountable ordinal. H(X l ) contains the hereditarily countable sets, that is, sets 
such that their size is countable or finite, their members are countable or finite, 
the members of their members are countable or finite, and so on. If there were 
no uncountable sets at all, then the universe of set theory would be HeX l ). 

H(X]) can also be thought of as the universe of second-order number theory, 
where we talk about integers and sets of integers, for any set in H(X]) can be 
rather easily coded as a set of integers. 

The first part of Woodin's story relates to a set-theoretic axiom called pro
jective determinacy (PD for short). The notion of projective determinacy has 
been around for several decades; in some sense it says that there are enough 
sets of natural numbers to satisfy each of a large range of conditions that one 
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can formulate in HO<I)' Saying that there are so many different sets of num
bers means that the universe of set theory is wide, or rich in possibilities. 

The new development is that work with large cardinal axioms has convinced 
many set theorists that projective determinacy is true. In other words, just as 
Kurt G6del had hoped, thinking about higher orders of infinity has brought 
new insights about the structure of the smaller levels of sets such as HeX l ). 

What makes this especially satisfying is that adding projective determinacy to 
the usual axioms of set theory (called ZFC for short) resolves many questions 
about the little universe H(X I ) of hereditarily countable sets-and traditional 
Cohen forcing techniques cannot be used to prove that sentences in this uni
verse are independent of projective determinacy. In Woodin's terms, this means 
that the theory ZFC + PD is "generically absolute." 

The second part of Woodin's story is about how set theorists have now 
turned to the logically next larger universe to look at: H(X2 ), the set of all sets 
with cardinality hereditarily less than Xz. Given tbat being of size less than X 2 

means heing of size less than or equal to Xl' we can say that H(X2 ) is the set 
of all sets x such that x has size less than or equal to Xl' the set x's members 
have size less than or equal to Xl' and so on. 

In the old days, rather than looking at the HO levels, it seemed more use
ful to look at the partial universes Va' which are obtained by iterating the power 
set operation, as I describe on page 197. And, indeed, Vw is identical to H(Xo)' 
and VW + I is essentially the same as H(X I ). But, depending on how wide the 
universe of sets is, the step to VW + 2 can turn out to be a rather big jump that 
overshoots H(X 2 ). 

H(l<.z) is of crucial interest because Cantor's Continuum Hypothesis can be 
formulated as a sentence in H(X2)-this is because all maps from Xl into the 
continuum are members of H(Xz)' If there were a way to exhaustively list the 
real numbers as a sequence of length Xl' this list would be present in H(Xz )' 

Woodin's current quest is to emulate the success with projective determi
nacy and to get a deeper understanding of this small universe of sets H(Xz ), 
with an eye to, among other things, solving Cantor's continuum problem. And 
at this point he shifts into hyperdrive. He mixes extremely high-powered analy
sis of the set-theoretic universe as a whole with classical and detailed analysis 
of sets of natural numbers to arrive at the conclusion that c = X 2' 

But this conclusion is almost incidental to Woodin's larger goals. He and his 
colleagues feel that set theory is at a crossroads relating to a principle that he 
calls the n Conjecture, and which I can barely understand. This is twenty-first
century mathematics, well beyond the grasp of my twentieth-century Ph.D. in 
set theory. No matter. The message to take away is that the study of infinity is 
alive and well, armed with powerful new techniques that make it stranger and 
more fascinating than ever. 

Rudy Rucker 
Los Gatos, California 

June 22, 2004 
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Writing a second preface is a happy occasion. 
This summer I was back in Heidelberg, with my beloved wife Sylvia, for the first 

time since 1980. Here's an excerpt from my journal: 

Being in Heidelberg makes me terribly nostalgic. Fifteen years ago I was a 
young man here, full of ideas, writing Infinity ami the Mimi, White Light, and 
Software, not to mention most of the stories in The 57th Franz Kavka. And the 
children were so sweet and young: tiny nursery-school Isabel, first-grade Rudy, 
Jr., dynamic ten-year-old Georgia. Sylvia was learning German and struggling 
against being a trapped housewife with the kids coming home from school at 
noon every day; it wasn't an easy time for her. But for me-well, it seems like 
paradise, at least in retrospect. I thought I had so much time to finish my think
ing. The ideas I developed were, in many respects, my complete and finished 
thoughts, e.g., on robot consciousness via evolution, but at the time I thought I 
was still just roughing out a start. I didn't realize it was a high-water mark, and that 
I would never again think so deeply about the philosophy of mathematics. The 
Uar Paradox, the Berry Paradox-I solved them all to my own satisfaction; I got 
them to stop itching at me. And I created a kind of para-solution to the Contin
uum Problem in the form of my novel White Light. 

Thoughts today looking over Infinity and the Mind: 

Cantor's theory of higher infinities and his discovery of the Continuum Prob
lem remain, at least for this mathematician, The Greatest Story Ever Told. 

I am a satisfied user of the solution to the classic paradoxes presented in "The 
Unnameable." Proof: I was able to stop thinking about the paradoxes. (See the 
table on p. 153 for a summary.) 

The "Robots and Souls" discussion of human-machine equivalence is, I think, 
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definitive. (See p. 171 for G6del's seed-quote, p. 183 for my position, and p. 292 
for a formal refutation ofthe Lucas-Penrose argument.) 

Chapter Five's contents have been field-tested. Conclusion: All is One. Thank 
you for Everything, dear Absolute. Praise all in the channel, and let all praise the 
One! 

Rudy Rucker 
Los Gatos, California 
January 11, 1995 



PREFACE 

This book discusses every kind of infinity: potential and actual, mathematical and 
physical, theological and mundane. Talking about infinity leads to many fascinating 
paradoxes. By closely examining these paradoxes we learn a great deal about the 
human mind, its powers, and its limitations. 

The study of infinity is much more than a dry, academic game. The intellectual 
pursuit of the Absolute Infinite is, as Georg Cantor realized, a form of the soul's quest 
for God. Whether or not the goal is ever reached, an awareness of the process brings 
enlightenment. 

Infinity and the Mind has been written with the average person in mind. Most of 
the main text should prove digestible, if chewed. By and large, the separate sections 
are complete in themselves, and the reader should feel free to skip about in the book. 

At the end of each chapter there is a section with puzzles and paradoxes; answers 
are provided. For those who may wish to delve a bit deeper into set theory and logic, 
I have organized two mathematical excursions which are placed at the end of the 
book. 

Infinity and tbeMind was thought out and written over a period of some ten years. 
I started having ideas for it in that most Sixties of years, 1972. At that time I was writing 
a doctoral dissertation in set theory for Erik Ellentuck at Rutgers University and 
attending a logic seminar led by the eminent proof theorist Gaisi Takeuti at the 
Institute for Advanced Study in Princeton, New Jersey. The first time I met Takeuti I 
asked him what set theory was really about. "We are trying to get exact description of 
thoughts of infinite mind," he said. And then he laughed, as if filled with happiness by 
this impossible task. 

The same year I met Kurt Godel at the Institute for Advanced Study. No one in 
modern times has thought more logically than GOdel, no one has proved theorems 
of greater mathematical complexity. Yet the man I met was a joyful, twinkling 
sage-not some obsessed fossil. What struck me most about Godel was his intellectual 
freedom-his ability to move back and forth between frankly mystical insights and 
utterly precise logical derivations. As I began to study the writings of Georg Cantor, 
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the founder of set theory, I realized that Cantor shared this freedom. Logic and set 
theory are the tools for an exact metaphysics. 

The writing of this book started with a paper I did for a logic colloquium at Oxford 
University in 1976 and began in earnest with a set of mimeographed lecture notes for 
an interdepartmental course I taught with my friend William J. Edgar at SUNY 
Geneseo in 1977. In 1978 I rewrote my notes and reproduced them by photo-offset 
for an experimental metamathematics course. Those notes make up the present 
Chapters One and Three and the more technical Excursion I. 

I spent the years 1978-1980 at the Mathematics Institute of the University of 
Heidelberg, a guest of Gert Muller and the Alexander von Humboldt Foundation. 
While there, I wrote Chapter Four with Excursion II for a course of lectures on the 
philosophy of mathematics. Chapters Two and Five have been written this winter at 
Randolph-Macon Woman's College. 

Infinity and the Mind is a work of transmission. I dedicate it with love and respect 
to everyone in the channel. 

R.v.B.R. 
Lynchburg, Virginia 
June 19, 1981 
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CHAPTER ONE 

INFINITY 

A SHORT HISTORY OF INFINITY 

The symbol for infinity that one sees most often is the lazy eight 
curve, technically called the lemniscate. This symbol was first used in a 
seventeenth century treatise on conic sections. l It caught on quickly 
and was soon used to symbolize infinity or eternity in a variety of con
texts. For instance, in the 1700s the infinity symbol began appearing on 
the Tarot card known as the Juggler or the Magus. It is an interesting 
coincidence that the Qabbalistic symbol associated with this particular 
Tarot card is the Hebrew letter X, (pronounced ale£), for Georg Cantor, 
the founder of the modern mathematical theory of the infinite, used the 
symbol Xo, (pronounced alef-null), to stand for the first infinite number. 

The appropriateness of the symbol 00 for infinity lies in the fact that 
one can travel endlessly around such a curve . . . demolition derby 
style, if you will. Endlessness is, after all, a principal component of one's 
concept of infinity. Other notions associated with infinity are indefinite
ness and inconceivability. 

Figure 1. 
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Figure 2. 

Infinity commonly inspires feelings of awe, futility, and fear. Who as 
a child did not lie in bed filled with a slowly mounting terror while sink
ing into the idea of a universe that goes on and on, for ever and ever? 
Blaise Pascal puts this feeling very well: "When I consider the small 
span of my life absorbed in the eternity of all time, or the small part of 
space which I can touch or see engulfed by the infinite immensity of 
spaces that I know not and that know me not, I am frightened and as
tonished to see myself here instead of there . . . now instead of 
then."2 

It is possible to regard the history of the foundations of mathematics 
as a progressive enlarging of the mathematical universe to include more 
and more infinities. The Greek word for infinity was apeiron, which lit
erally means unbounded, but can also mean infinite, indefinite, or unde
fined. Apeiron was a negative, even pejorative, word. The original chaos 
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out of which the world was formed was apeiron. An arbitrary crooked 
line was apeiron. A dirty crumpled handkerchief was apeiron. Thus, 
apeiron need not only mean infinitely large, but can also mean totally 
disordered, infinitely complex, subject to no finite determination. In 
Aristotle's words, co ••• being infinite is a privation, not a perfection 
but the absence of a limit .... "3 

There was no place for the apeiron in the universe of Pythagoras and 
Plato. Pythagoras believed that any given aspect of the world could be 
represented by a finite arrangement of natural numbers, (where "natural 
number" means "whole number.") Plato believed that even his ultimate 
form, the. Good, must be finite and definite. This was in contradistinc
tion to almost all later metaphysicians, who assumed that the Absolute 
is necessarily infinite. In the next chapter I will discuss the way in which 
Greek mathematics was limited by this refusal to accept the apeiron, 
even in the relatively harmless guise of a real number with an infinite 
decimal expansion. 

Aristotle recognized that there are many aspects of the world that 
seem to point to the actuality of the apeiron. For instance, it seems pos
sible that time will go on forever; and it would seem that space is infi
nitely divisible, so that any line segment contains an infinity of points. 
In order to avoid these actual infinites that seemed to threaten the or
derliness of his a priori finite world, Aristotle invented the notion of the 
potentially infinite as opposed to the actually infinite. I will describe this 
distinction in more detail in the next section, but for now let me charac
terize it as follows. Aristotle would say that the set of natural numbers is 
potentially infinite, since there is no largest natural number, b\lt he 
would deny that the set is actually infinite, since it does not exist as one 
finished thing. This is a doubtful distinction, and I am inclined to agree 
with Cantor's opinion that co ••• in truth the potentially infinite has 
only a borrowed reality, insofar as a potentially infinite concept always 
points towards a logically prior actually infinite concept whose existence 
it depends on."4 

Plotinus was the first thinker after Plato to adopt the belief that at 
least God, or the One, is infinite, stating of the One that, "Absolutely 
One, it has never known measure and stands outside of number, and so 
is under no limit either in regard to anything external or internal; for 
any such determination would bring something of the dual into it."5 

St. Augustine, who adapted the Platonic philosophy to the Christian 
religion, believed not only that God was infinite, but also that God 
could think infinite thoughts. St. Augustine argued that, "Such as say 
that things infinite are past God's knowled8e may just as well leap head-
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long into this pit of impiety, and say that God knows not all numbers. 
. . . What madman would say so? . . . What are we mean wretches 
that dare presume to limit His knowledge ?"6 

This extremely modern position will be returned to in the last section 
of this chapter. Later medieval thinkers did not go as far as Augustine 
and, although granting the unlimitedness of God, were unwilling to 
grant that any of God's creatures could be infinite. In his Summa Theolo
giae St. Thomas Aquinas gives a sort of Aristotelian proof that "al
though God's power is unlimited, he still cannot make an absolutely un
limited thing, no more than he can make an unmade thing (for this 
involves contradictories being true together)."7 The arguments are ele
gant, but suffer from the flaw of being circular: it is proved that the no
tion of an unlimited thing is contradictory by slipping in the premise 
that a "thing" is by its very nature limited. 

Thus, with the exception of Augustine and a few others, the medieval 
thinkers were not prepared to deal with the infinitude of any entities 
other than God, be they physical, psychological, or purely abstract. The 
famous puzzle of how many angels can dance on the head of a pin can 
be viewed as a question about the relationship between the infinite 
Creator and the finite world. The crux of this problem is that, on the 
one hand, it would seem that since God is infinitely powerful, he should 
be able to bid an infinite number of angels to dance on the head of a pin; 
on the other hand, it was believed by the medieval thinkers that no ac
tually infinite collection could ever arise in the created world. 

---+---fP' 

Figure 3. 
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Their proofs that infinity is somehow a self-contradictory notion were 
all flawed, but there was at least one interesting paradox involving infin
ity that the medieval thinkers were aware of. It would seem that any line 
includes infinitely many points. Since the circumference of a circle with 
radius two is two times as long as the circumference of a circle with ra
dius one, then the former should include a larger infinity of points than 
the latter. But by drawing radii we can see that each point P on the small 
circle corresponds to exactly one point P' on the large circle, and each 
point Q' on the large circle corresponds to exactly one point Q on the 
small circle. Thus we seem to have two infinities that are simultaneously 
different and equal. 

In the early 1600s Galileo Galilei offered a curious solution to this 
problem. Galileo proposed that the smaller length could be turned into 
the longer length by adding an infinite number of infinitely small gaps. 
He was well aware that such a procedure leads to various difficulties: 
"These difficulties are real; and they are not the only ones. But let us 
remember that we are dealing with infinites and indivisibles, both of 
which transcend our finite understanding, the former on account of 
their magnitude, the latter because of their smallness. In spite of this, 
men cannot refrain from discussing them, even though it must be done 
in a roundabout way. "8 

He resolved some of his difficulties by asserting that problems arise 
only, "when we attempt, with our finite minds, to discuss the infinite, 
assigning to it those properties which we give to the finite and limited; 
but this I think is wrong, for we cannot speak of infinite quantities as 
being the one greater or less than or equal to another."9 This last asser
tion is supported by an example that is sometimes called Galileo's para
dox. 
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The paradoxical situation arises because, on the one hand, it seems 
evident that most natural numbers are not perfect squares, so that the 
set of perfect squares is smaller than the set of all natural numbers; but, 
on the other hand, since every natural number is the square root of ex
actly one perfect square, it would seem that there are just as many per
fect squares as natural numbers. For Galileo the upshot of this paradox 
was that, "we can only infer that the totality of all numbers is infinite, 
and that the number of squares is infinite . . . ; neither is the number 
of squares less than the totality of all numbers, nor the latter greater 
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than the former; and finally, the attributes 'equal,' 'greater,' and 'less,' 
are not applicable to infinite, but only to finite quantities."lo 

I have quoted Galileo at some length, because it is with him that we 
have the first signs of the modern attitude toward the actual infinite in 
mathematics. If infinite sets do not behave like finite sets, this does not 
mean that infinity is an inconsistent notion. It means, rather, that infi
nite numbers obey a different "arithmetic" from finite numbers. If using 
the ordinary notions of "equal" and "less than" on infinite sets leads to 
contradictions, this is not a sign that infinite sets cannot exist, but, 
rather, that these notions do not apply without modification to infinite 
sets. Galileo himself did not see how to carry out such a modification of 
these notions; this was to be the task of Georg Cantor, some 250 years 
later. 

One of the reasons that Galileo felt it necessary to come to some sort 
of terms with the actual infinite was his desire to treat space and time as 
continuously varying quantities. Thus, the results of an experiment on 
motion can be stated in the form that x = !(t), that space position is a 
certain function of continuously changing time. But this variable t that 
grows continuously from, say, zero to ten is apeiron, both in the sense 
that it takes on arbitrary values, and in the sense that it takes on infi
nitely many values. 

This view of position as a function of time introduced a problem that 
helped lead to the founding of the Calculus in the late 1600s. The prob
lem was that of finding the instantaneous velocity of a moving body, 
whose distance x from its starting point is given as a function !(t) of 
time. 

It turns out that to calculate the velocity at some instant to, one has to 

imagine measuring the speed over an infinitely small time interval dt. 
The speed!,(to) at to is given by the formula <f(to + dt) - !(to»/dt, as 
everyone who has ever survived a first-year calculus course knows. 

The quantity dt is called an infinitesimal, and obeys many strange 
rules. If dt is added to a regular number, then it can be ignored, treated 
like zero. But, on the other hand, dt is regarded as being different 
enough from zero to be usable as the denominator of a fraction. So is dt 
zero or not? Adding finitely many infinitesimals together just gives an
other infinitesimal. But adding infinitely many of them together can 
give either an ordinary number, or an infinitely large quantity. 

Bishop Berkeley found it curious that mathematicians could swallow 
the Newton-Leibniz theory of infinitesimals, yet balk at the peculiari
ties of orthodox Christian doctrine. He wrote about this in a 1734 
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work, the full title of which was, The Analyst, Or A Discourse Addressed to 
an Infidel Mathematician. Wherein It is examined whether the Object, Prin
ciples, and Inferences of the modern Analysis are more distinctly conceived, or 
more evidently deduced, than Religious Mysteries and Points of Faith. "First 
cast out the beam out of thine own Eye; and then shalt thou see clearly to cast 
out the mote out of thy brother's Eye."ll 

The use of infinitely small and infinitely large numbers in calculus was 
soon replaced by the limit process. But it is unlikely that the Calculus 
could ever have developed so rapidly if mathematicians had not been 
willing to think in terms of actual infinities. In the past fifteen years, 
Abraham Robinson's non-standard analysis has produced a technique 
by which infinitesimals can be used without fear of contradiction. Rob
inson's technique involves enlarging the real numbers to the set of hy
perreal numbers, which will be discussed in Chapter 2. 

After the introduction of the limit process, calculus was able to ad
vance for a long time without the use of any actually infinite quantities. 
But as mathematicians tried to get a precise description of the continuum 
or real line, it became evident that infinities in the foundations of math
ematics could only be avoided at the cost of great artificiality. Mathema
ticians, however, still hesitated to plunge into the world of the actually 
infinite, where a set could be the same size as a subset, a line could have 
as many points as a line half as long, and endless processes were treated 
as finished t~ings. 

In was Georg Cantor who, in the late 1800s, finally created a theory 
of the actual infinite which by its apparent consistency, demolished the 
Aristotelian and scholastic "proofs" that no such theory could be found. 
Although Cantor was a thoroughgoing scholar who later wrote some 
very interesting philosophical defenses of the actual infinite, his point of 
entry was a mathematical problem having to do with the uniqueness of 
the representation of a function as a trigonometric series. 

To give the flavor of the type of construction Cantor was working 
with, let us consider the construction of the Koch curve shown in Fig
ure 4. The Koch curve is found as the limit of an infinite sequence of 
approximations. The first approximation is a straight line segment (stage 
0). The middle third of this segment is then replaced by two pieces, 
each as long as the middle third, which are joined like two sides of an 
equilateral triangle (stage 1). At each succeeding stage, each line seg
ment has its middle third replaced by a spike resembling an equilateral 
triangle. 

Now, if we take infinity as something that can, in some sense, be at-
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Stage 1 

Stage 2 

Stage 3 

Stage 4 

Figure 4. Adapted from Benoit Mandelbrot, Fractals. 



INFINITY 9 

tained, then we will regard the limit of this infinite process as being a 
curve actually existing, if not in physical space, then at least as a mathe
matical object. The Koch curve is discussed at length in Benoit Mandel
brot's book, Fractals, where he explains why there is reason to think of 
the Koch curve in its infinite spikiness as being a better model of a 
coastline than any of its finitely spiky approximations. 12 

Cantor soon obtained a number of interesting results about actually 
infinite sets, most notably the result that the set of points on the real 
line constitutes a higher infinity than the set of all natural numbers. That 
is, Cantor was able to show that infinity is not an all or nothing concept: 
there are degrees of infinity. 

This fact runs counter to the naive concept of infinity: there is only 
one infinity, and this infinity is unattainable and not quite real. Cantor 
keeps this naive infinity, which he calls the Absolute Infinite, but he 
allows for many intermediate levels between the finite and the Absolute 
Infinite. These intermediate stages correspond to his transfinite num
bers ... numbers that are infinite, but none the less conceivable. 

In the next section we will discuss the possibility of finding physically 
existing transfinite sets. We will then look for ways in which such actual 
infinities might exist mentally. Finally we will discuss the Absolute, or 
metaphysical, infinite. 

This threefold division is due to Cantor, who, in the following pas
sage, distinguishes between the Absolute Infinite, the physical infini
ties, and the mathematical infinities: 

The actual infinite arises in three contexts: first when it is realized in 
the most complete form, in a fully independent other-worldly being, in 
Deo, where I call it the Absolute Infinite or simply Absolute; second when 
it occurs in the contingent, created world; third when the mind grasps it 
in abstracto as a mathematical magnitude, number, or order type. I wish 
to make a sharp contrast between the Absolute and what I call the Trans
finite, that is, the actual infinities of the last two sorts, which are clearly 
limited, subject to further increase, and thus related to the finite .13 

PHYSICAL INFINITIES 14 

There are three ways in which our world appears to be unbounded 
and thus, perhaps, infinite. It seems that time cannot end. It seems that 
space cannot end. And it seems that any interval of space or time can be 
divided and subdivided endlessly. We will consider these three ap
parent physical infinites in three subsections. 



10 INFINITY AND THE MIND 

TEMPORAL INFINITIES 

Suppose that the human race was never going to die out-that any 
given generation would be followed by another generation. Would we 
not then have to admit that the number of generations of man is actually 
infinite? 

Grandchildren 

Children 

Us 
Figure 5. 

• 

Aristotle argued against this conclusion, asserting that in this situa
tion the number of generations of man would be but potentially infi
nite; that is, infinite only in the sense of being inexhaustible. He main
tained that at any given time there would only have been some finite 
number of generations, and that it was not permissible to take the entire 
future as a single whole containing an actual infinitude of generations. 

It is my opinion that this sort of distinction rests on a view of time 
that has been fairly well discredited by modern relativistic physics. In 
order to agree with Aristotle that, although there will never be a last 
generation, there is no infinite set of all the generations, we must be
lieve that the future does not exist as a stable, definite thing. For if we 
have the future existing in a fixed way, then we have all of the infinitely 
many future generations existing "at once." 

But one of the chief consequences of Einstein's Special Theory of 
Relativity is that it is space-time that is fundamental, not isolated space 
which evolves as time passes. I will not argue this point in detail here, 
but let me repeat that on the basis of modern physical theory we have 
every reason to think of the passage of time as an illusion. Past, present, 
and future all exist together in space-time. 

So the question of the infinitude of time is not one that is to be 
dodged by denying that time can be treated as a fixed dimension such as 
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space. The question still remains: is time infinite? If we take the entire 
space-time of our universe, is the time dimension infinitely extended or 
not? 

Fifty, or even twenty, years ago it would have been natural to assert 
that our universe has no beginning or end and that time is thus infinite 
in both directions. But recently it has become an established fact that 
the universe does have a beginning in time known as the Big Bang. The 
Big Bang took place approximately 15 billion years ago. At that time 
our universe was the size of a point, and it has been expanding ever 
since. What happened before the Big Bang? It is at least possible to an
swer, "Nothing." The apparent paradox of having afirst instant in time 
is sometimes avoided by saying that the Big Bang did not occur in 
time . . . that time is open, rather than closed, in the past. 

o(--~.'---4.~---+. 
x/2 x 

(8) 

[ 
(A) 

Figure 6A (bottom) and Figure 6B (top). 

This is a subtle distinction, but a useful one. If we think of time as 
being all the points greater than or equal to zero, then there is a first 
instant: zero. But if we think of time as being all the points strictly 
greater than zero, then there is no first instant. For any instant t greater 
than zero, one has an earlier instant tl2 that is also greater than zero. 
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But in any case, if we think of time as not existing before the Big 
Bang, then there are certainly not an infinite number of years in our 
past. And what about the future? There is no real consensus on this. 
Many cosmologists feel that our universe will eventually stop expanding 
and collapse to form a single huge black hole called the Big Stop or the 
Gnab Gib; others feel that the expansion of the universe will continue 
indefinitely. 

If the universe really does start as a point and eventually contract 
back to a point, is it really reasonable to say that there is no time except 
for the interval between these points? What comes before the begin
ning and after the end? 

One response is to view the universe as an oscillating system, which 
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Figure 9. 

repeatedly goes through expansions and contractions. This would rein
troduce an infinite time, which could, however, be avoided. 

The way in which one would avoid infinite time in an endlessly oscil
lating universe would be to adopt a belief in what used to be called "the 
eternal return." This is the belief that every so often the universe must 
repeat itself. The idea is that a finite universe must return to the same 
state every so often, and that once the same state has arisen, the future 
evolution of the universe will be the same as the one already under
gone. The doctrine of eternal recurrence amounts to the assumption 
that time is a vast circle. An oscillating universe with circular time is pic
tured in Figure 10. 

There is a simpler model of an oscillating universe with circular time, 
which can be called toroidal space-time. In toroidal space-time we have an 
oscillating universe that repeats itself after every cycle. Such a model is 
obtainable by identifying the two points, "Big Bang" and "Big Stop," in 
Figure 11. 
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Figure 10. 
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Figure 11. From R. v.B. Rucker, Geometry, Relativity, and the Fourth Di
mension. 



INFINITY 15 

Note, however, that if the universe really expands forever, then it 
cannot ever repeat itself, as the average distance between galaxies is a 
continually increasing quantity that never returns to the same value. 

SPATIAL INFINITIES 

We now turn to a consideration of the possibility of spatial infinites. 
The potential versus actual infinity distinction is sometimes used to try 
to scotch this question at the outset. Immanuel Kant, for instance, 
argues that the world cannot be an infinite whole of coexisting things 
because "in order therefore to conceive the world, which fills all space, 
as a whole, the successive synthesis of the parts of an infinite world 
would have to be looked upon as completed; that is, an infinite time 
would have to be looked upon as elapsed, during the enumeration of all 
coexisting things. "15 

Kant's point is that space is in some sense not already really there
that things exist together in space only when a mind perceives them to 
do so. If we accept this, then it is true that an infinite space is something 
that no finite mind can know of after any finite amount of time. But one 
feels that the world does exist as a whole, in advance of any efforts on 
our part to see it as a unity. And if we take all of space-time, it certainly 
does not seem to be meaningless to ask whether the spatial extent of 
space-time is infinite or not. 

-....-
" 

Figure 12A. Dart goes beyond "boundary." 

If there's 
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" ~ 
Figure 12B. Dart stops at boundary. 

In De Rerum Natura, Lucretius first gave the classic argument for the 
unboundedness of space: "Suppose for a moment that the whole of 
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space were bounded and that someone made his way to its uttermost 
boundary and threw a flying dart."16 It seems that either the dart must 
go past the boundary, in which case it is no boundary of space; or the 
dart must stop, in which case there is something just beyond the bound
ary that stops it, which again means that the purported boundary is not 
really the end of the universe. 

So great was their revulsion against the apeiron that Parmenides, 
Plato, and Aristotle all held that the space of our universe is bounded 
and finite, having the form of a vast sphere. When faced with the ques
tion of what lies outside this sphere, Aristotle maintained that "what is 
limited, is not limited in reference to something that surrounds it."17 

In modern times we have actually developed a way to make Aristo
tle's claim a bit more reasonable. As Lucretius realized, the weak point 
in the claim that space is a finite sphere is that such a space has a definite 
boundary. But there is a way to construct a three-dimensional space 
which is finite and which does not have boundary points: simply take the 
hypersurface of a hypersphere. Such a space is endless but not infinite. 

Infinite 
& Unbounded 

Figure 13A. 
• 

Finite & 
Bounded 

Figure 13B. 

Figure 13C. 

• 

To understand how something can be endless but not infinite, think 
of a circle. A fly can walk around and around the rim of a glass without 
ever coming to a barrier or stopping point, but none the less he will 
soon retrace his steps. 

Again, the surface of the Earth is a two-dimensional manifold which is 
finite but unbounded (unbounded in the sense of having no edges). 
You can travel and travel on the Earth's surface without ever coming to 
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any truly impassible barrier . . . but if you continue long enough, you 
will begin to recross your steps. 

The reason that the two-dimensional surface of the Earth is finite but 
unbounded is that it is bent, in three-dimensional space, into the shape 
of a sphere. In the same way, it is possible to imagine the three-dimen
sional space of our universe as being bent, in some four-dimensional 
space, into the shape of a hypersphere. It was Bernhard Riemann who 
first realized this possibility in 1854. There is, however, a traditional be
lief that anticipates the hypersphere. This tradition, described in the 
essay, "The Fearful Sphere of Pascal," by Jorge Luis Borges, is sum
marized by the saying (attributed to the legendary magician Hermes 
Trismegistus) that "God is an intelligible sphere, whose center is every
where and whose circumference is nowhere."18 If the universe is indeed 
a hypersphere, then it would be quite accurate to regard it as a sphere 
whose center is everywhere and whose circumference is nowhere. 

To see why this is so, consider the fact that if space is hyperspherical, 
then one can cover all of space by starting at any point and letting a 
sphere expand outwards from that point. The curious thing is that if one 
lets a sphere expand in hyperspherical space, there comes a time when 
the circumference of the sphere turns into a point and disappears. This 
fact can be grasped by considering the analogous situation of the se
quence of circular latitude lines on the spherical surface of the earth. 19 
This line of thought appears in Dante's Paradisio (1300).20 

Aristotle had believed that the world was a series of nine spheres cen
tered around the Earth. The last of these crystalline spheres was called 
the Primum Mobile and lay beyond the sphere upon which were fastened 
all of the stars (other than the sun, which was attached to the fourth 
sphere). In the Paradisio, Dante is led out through space by Beatrice. 
He passes through each of the nine spheres of the world: Moon, Mer
cury, Venus, Sun, Mars, Jupiter, Saturn, Fixed Stars, Primum Mobile. 
Beyond these nine spheres lie nine spheres of angels, corresponding to 
the nine spheres of the world. Beyond the nine spheres of angels lies a 
point called the Empyrean, which is the abode of God. 

The puzzling thing about Dante's cosmos as it is drawn in Figure 14 is 
that here the Empyrean appears not to be a point, but rather to be all of 
space (except for the interior of the last sphere of angels). But this can 
be remedied if we take space to be hyperspherical! In Figure 15 I have 
drawn the model we obtain if we take the diagram on the last page and 
curve it up into a sphere with a point-sized Empyrean. In the same way, 
the three-dimensional model depicted by the first picture can be turned 
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pri!1lU!1l Mobile Angels 

Figure 14. 

into the finite unbounded space of the second picture if we bend our 
three-dimensional space in such a way that all of the space outside our 
last angelic sphere is compressed to a point.21 Figure 16 is Dore's en
graving of the Empyrean surrounded by its spheres of angels. 

This whole notion of hyperspherical space was not consciously devel
oped until the mid-nineteenth century. In the Middle Ages there was a 
general and uncritical acceptance of Aristotle's view of the universe
without Dante's angelic spheres. 

Lucretius, of course, had insisted that space is infinite, and there were 
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Earth 

Figure 15. 

19 

many other thinkers, such as Nicolas of Cusa and Giordano Bruno, who 
believed in the infinitude of space. Some kept to the Aristotelian world 
system, but suggested that there were many such setups drifting 
around; others opted for a looser setup under which stars and planets 
are more or less randomly mixed together in infinite space. 

Bruno strongly advocated such viewpoints in his writings, especially 
his dialogue of 1584, "On the Infinite Universe and Worlds."22 Bruno 
travelled freely around Europe during his lifetime, teaching his doctrine 
of the infinite universe at many centers of learning. In 1591, a wealthy 
Venetian persuaded Bruno to come from Frankfurt to teach him "the 
art of memory and invention." Shortly after Bruno arrived, the trap was 
sprung. His host had been working closely with the ecclesiastical au
thorities, who considered Bruno a leading heretic or heresiarch. Bruno 
was turned over to the Inquisition. For nine years Bruno was interro
gated, tortured, and tried, but he would not give up his beliefs; early in 
1600 he was burned at the stake in the Roman Piazza Campo di Fiori. 
Bruno's example caused Galileo to express himself a good deal more 
cautiously on scientific questions in which the Church had an interest. 

Whether or not our space is actually infinite is a question that could 
conceivably be resolved in the next few decades. Assuming that Ein
stein's theory of gravitation is correct, there are basically cwo types of 
universe: i) a hyperspherical (closed and unbounded) space that ex
pands and then contracts back to a point; ii) an infinite space that ex
pands forever. It is my guess that case i) will come to be most widely 
accepted, if only because the notion of an actually infinite space extend-
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Figure 16. From Gustav Dare's Divine Comedy (Dover). 

ing out in every direction is so unsettling. The fate of the universe in 
case i) is certainly more interesting, since such a universe collapses back 
to an infinitely dense space-time singularity that may serve as the seed 
for a whole new universe. In case ii), on the other hand, we simply have 
cooling and dying suns drifting further and further apart in an utterly 
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Figure 17. 

empty black immensity . . . and in the end there are only ashes and 
cinders in an absolute and eternal night. 

Even though I am basically pro-infinity, my emotions lie with the hy
perspherical space. But is there any way of finding a spatial infinity 
here? Well, what about that four-dimensional space in which our hy
perspherical universe is floating? Many would dismiss this space as a 
mere mathematical fiction . . . as a colorful way of expressing the fi
nite, but unbounded, nature of our universe. This widely held position 
is really a more sophisticated version of Aristotle's claim that what is 
limited need not be limited with reference to something outside itself. 

But what if one chooses to believe that the four-dimensional space in 
which our universe curves is real? We might imagine a higher 4-D 
(four-dimensional) world called, let us say, a duoverse. The duoverse 
would be 4-D space in which a number of hyperspheres were floating. 
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The hypersurface of each of the hyperspheres would be a finite, un
bounded 3-D universe. 

Thus, a duoverse would contain a number of 3-D universes, but no 
inhabitant of anyone of these universes could reach anyone of the 
others, unless he could somehow travel through 4-D space. By lowering 
all the dimensions by one, one can see that this situation is analogous to 
a universe that is a 3-D space in which a number of spheres are floating. 
The surface of each sphere or planet is a finite, unbounded 2-D space; 
and no one can get from one planet surface to another planet surface 
without travelling through 3-D space. 

. . . . 
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Figure 18. 

Triverses in 
••• 6-0 Space 

(Hyperhyperhyperspheres) 

Duoverses in 
••• 5-0 Space 

(Hyperhyperspheres) 

Universes in 4-0 
••• Space 

(Hyperspheres) 

Stars in 3-D 
Space (Spheres) 

Following the Hermetic principle, "As above, so below," one is 
tempted to believe that the duoverse we are in is actually a finite and 
unbounded 4-D space (the 4-D surface of a 5-D sphere in 5-D space), 
and that there are a number of such duoverses drifting about in a 5-D 
triverse. This could be continued indefinitely. One is reminded of those 
Eastern descriptions of the world as a disk resting on the backs of ele
phants, who stand upon a turtle, who stands upon a turtle, who stands 
upon a turtle, who stands upon a turtle, etc. 

Note that in that particular sort of cosmos there is only one universe, 
one duoverse, one triverse, and so on. But in the kind of infinitely re
gressing cosmos that I have drawn in Figure 18, we have infinitely many 
objects at each level. Note also that to get from star A to star Bone 
would have to move through 5-D space to get to a different duoverse. It 
is a curious feature of such a cosmos that, although there are an infinite 
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CETE 
Figure 19. 

number of stars, no one n-dimensional space has more than a finite 
number of them. 

The question we are concerned with here is whether or not space is 
infinitely large. There seem to be three options: i) There is some level n 
for which n-dimensional space is real and infinitely extended. The sima-
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tion where our three-dimensional space is infinitely large falls under this 
case. ii) There is some n such that there is only one n-dimensional 
space. This space is to be finite and unbounded, and there is to be no 
reality to n + 1 dimensional space. The situation where our three-di
mensional space is finite and unbounded, and the reality of four-dimen
sional space denied, falls under this case. iii) There are real spaces of 
every dimension, and each of these spaces is finite and unbounded. In 
this case we either have an infinite number of universes, duoverses, etc., 
or we reach a level after which there is only one n-verse for each n. 

So is space infinite? It seems that we can insist that at some dimen
sionallevel it is infinite; adopt the Aristotelian stance that space is finite 
at some level beyond which nothing lies; or accept the view that there is 
an infinite sequence of dimensional levels. In this last case we already 
have a qualitative infinity in the dimensionality of space, and we mayor 
may not have a quantitative infinity in terms, say, of the total volume of 
all the 3-D spaces involved. 

INFINITIES IN THE SMALL 

In this subsection I will discuss the existence of the infinity in the 
small, as opposed to the infinity in the large, which has just been dis
cussed. Since a· point has no length, no finite number of points could 
ever constitute a line segment, which does have length. So it seems evi
dent that every line segment, or, for that matter, every continuous 
plane segment or region of space, must consist of an infinite number of 
points. By the same token, any interval of time should consist of an infi
nite number of instants; and any continuous region of space-time would 
consist of an infinite number of events (event being the technical term 
for a space-time location, i.e., point at an instant). 

It is undeniable that a continuous region of mathematical space has an 
infinite number of mathematical points. Right now, however, we are 
concerned with physical space. We should not be too hasty in assuming 
that every property of the abstract mathematical space we use to orga
nize our experiences is an actual property of the concrete physical space 
we live in. But what is "the space we live in"? If it is not the space of 
mathematical physics, is it the space of material objects? Is it the space 
of our perceptions? In terms of material objects or of perceptions, 
points do not really exist; for any material or perceptual phenomenon is 
spread over a certain finite region of space-time. So when we look for 
the infinity in the small in matter, we do not ask whether matter consists 
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of an infinity of (unobservable) mass-points, but, rather, whether matter 
is infinitely divisible. 

(A) Earth (8) Air 

(e) Fire (0) Water 

Figure 20. (A-D). From D. Hilbert and H. Cohn-Vossen, Geometry and the 
Imagination. 

A commitment to avoiding the formless made it natural for Greek 
-atomists such as Democritus to adopt a theory of matter under which 
the seemingly irregular bodies of the world are in fact collections of in
divisible, perfectly formed atoms. (The four kinds of atoms were 
shaped, according to Plato, like four of the regular polyhedra. There is 
one other polyhedron, the twelve-sided dodecahedron, and this was 
thought somehow to represent the Universe with its twelve signs of the 
zodiac.) For the atomists, it was as if the world were an immense Lego 
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set, with four kinds of blocks. The diverse substances of the world -oil, 
wood, stone, metal, flesh, wine, and so on-were regarded as being mix
tures of the four elemental substances: Earth, Air, Fire, and Water. 
Thus, gold was regarded by Plato as being a very dense sort of Water, 
and copper was viewed as gold with a small amount of Earth mixed in. 

The alchemists and early chemists adopted a similar system, only the 
number of elemental substances became vastly enlarged to include all 
homogeneous substances, such as the various ores, salts, and essences. 
The fundamental unit here was the molecule. 

A new stage in man's conception of matter came when it was discov
ered that if an electric current is passed through water, it can be decom
posed into hydrogen and oxygen. Eventually, the vast diversity of exist
ing molecules was brought under control by regarding molecules as 
collections of atoms. Soon some ninety different types of atoms or 
chemical elements were known. A new simplification occurred when it 
was discovered, by bombarding a sheet of foil with alpha rays, that an 
atom consists of a positive nucleus surrounded by electrons. Shortly 
after this the neutron was discovered, and the physical properties of the 
various atoms were accounted for by regarding them as collections of 
protons, neutrons, and electrons. 

Over the last half century it has been learned, by using particle accel
erators, that there are actually many types of "elementary particles" 
other than the neutron, electron, and proton. The situation in high-en
ergy physics today is as follows. A few particles-electrons, neutrinos, 
and muons-seem to be absolutely indivisible. These particles are called 
leptons. All others-protons, neutrons, mesons, lambdas, etc.-can be 
broken up into smaller units, which then reassemble to form more par
ticles. 

The historical pattern in the investigation of matter has been the ex
planation of diverse substances as combinations of a few simpler sub
stances. Diversity of form replaces diversity of substance. So it is no sur
prise that it has been proposed that the great variety of divisible 
particles that exist can be accounted for by assuming that these particles 
are all built up out of quarks. 

A second element in the historical pattern is that as more powerful 
tools of investigation are used, it becomes evident that there are more 
types of new building blocks than had been suspected initially. This is 
the phase that high-energy physics is currently moving into. First there 
were three kinds of quark: up, down, and strange. Now, the charmed 
quark has been admitted, and there are two new possible quarks: the 
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top quark and the bottom quark. It seems likely that the many diverse 
types of quark will eventually be accounted for by assuming that each 
quark is a combination of a few, let us say, darks . . . and that there are 
only a very small number of possible kinds of dark. The cycle will then 
repeat, with more and more different sorts of dark being indirectly ob
served, the new diversity being accounted for by viewing each dark as a 
collection of a few smaller particles of which there are a limited variety, 
this limited variety beginning to proliferate, and so on. 

• • • 
Figure 21. 
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If this sort of development can indeed continue indefinitely, then we 
are left with the fact that a stone is a collection of collections of collec
tions of. . . . The stone thus consists of an infinite number of particles, 
no one of which is indivisible. There is, finally, no matter-only form. 
For a stone is mostly empty space with a few molecules in it, a molecule 
is a cloud of atoms, an atom is a few electrons circling a tiny nu
cleus. . . . What if any seemingly solid bit of matter proves on closer 
inspection to be a cloud of smaller bits of matter, which are in turn 
clouds, and so on? Note that the branching matter tree that I began to 
draw for the stone has only a finite number of forks or nodes at each 
level, but that since there are infinitely many levels, there are in all an 
infinite number of nodes or component particles. 

There are various objections to this sort of physical infinity. One is 
the Aristotelian argument that unless one is actually smashing the stone 
down to the quark level, the quarks are only potentially (as opposed to 
actually) there. The point would be that the stone may be indefinitely 
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divisible, but that since no one will ever carry out infinitely many divi
sions, there are not really infinite numbers of particles in the stone right 
now. 

There is a more practical objection as well. This is that no quark has 
ever been observed in isolation; the existence of quarks is deduced only 
indirectly as a way of explaining the symmetries of structure that occur 
in tables of the elementary particles. This argument is not very strong, 
however. For one thing, a great number of the things we believe in can 
be observed only indirectly; and, more practically, if we can continue to 
increase the energy of our measuring tools, there is no reason to think 
that quarks cannot be more convincingly detected. 

A more fundamental objection to the whole idea of particles, subpar
ticles, etc., is that the underlying reality of the world may be field-like, 
rather than particle-like. By splitting particles indefinitely we arrived at 
the conclusion that there is only form, and no content; many physicists 
prefer to start with this viewpoint. For these physicists, the various fea
tures of the world are to be explained in terms of the geometry of 

Figure 22. 

space-time. To get a feeling for this viewpoint, one should look care
fully at the surface of a river or small brook. There are circular ripples, 
flow bulges, whirlpools and eddies, bubbles that form, drops that fly up 
and fall back, waves that crest into foam. The geometrodynamic world
view regards space-time as a substance like the surface of a brook; the 
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various fields and particles that seem to exist are explained as features of 
the flow. 

Does the space-time of geometrodynamics allow an infinity in the 
small? There is really no answer to this question at present. According 
to one viewpoint there should be a sort of graininess to space-time, and 
the grain size would represent a sort of indivisible atom; a different 
viewpoint suggests that space-time should be as infinitely continuous as 
mathematical space. 

What if there really is nothing smaller than electrons and quarks? Is 
there then any hope of an infinity in the small? One can argue that a 
given electron can have infinitely many locations along a given meter 
stick, so that our space really does have infinitely many points. It is 
sometimes asserted that the uncertainty principle of quantum me
chanics nullifies this argument, but this is not the case. 

Quantum mechanics puts no upper limit on the precision with which 
one can, in principle, determine the position of an electron. It is just 
that the more precisely the electron's position is known, the less pre
cisely are its speed and direction of motion known. Infinite precision is 
basically a nonphysical notion, but any desired finite degree of precision 
is, in principle, obtainable. The precision with which something can be 
measured is thus a good example of something that is potentially infi
nite, but never actually infinite. 

But this still gives us an actual infinity in the world. For if our electron 
is located somewhere between zero and one, then each member of the 
following infinite collection is a possible outcome of a possible mea
surement: 

.2 ± .1, .23 ± .01, .235 ± .001, .2356 ± .0001, ... , 
.235608947 ± .000000001, 

Although infinite precision is impossible, an electron can be found to 
occupy any of the infinitely many points between zero and one whose 
distance from zero is a terminating decimal. 

There are, however, some modern physical speculations that regard 
"space" and "time" as being abstractions which apply to our size level, 
but which become utterly meaningless out past the thirtieth decimal 
place. What would be there instead? Our old friend the apeiron. But 
even if we cannot really speak of infinitely many space locations, we 
might hope to find infinitely many sorts of particle. 

It is sometimes thought that quantum mechanics proves that there is a 
smallest size of particle that could exist. This is not true. Quantum me-
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chanics insists only that in order to "see" very small particles, we must 
use very energetic processes to look for them. 

It is illuminating, after all this, to learn how the high-energy physicists 
actually go about finding new particles. The process is a little like find
ing stations on the radio by inching the dial back and forth until you 
hear music instead of static. One uses a particle accelerator in which col
lisions (between electrons and positrons) are continually taking place. 
The energy of the collision processes is varied by turning the voltage on 
the accelerator up and down. There is number R that measures the 
"particleness" of the reaction taking place. R can be thought of as being 
a little like the information parameter that enables you to tell whether 
you have found a station, even though the sound of music is no louder 
than the sound of the static. When an energy is found at which the 
graph of R versus energy has a sudden peak, then it is assumed that the 
energy in question is characteristic of the rest-mass of a new particle. 
This process is called "bump-hunting." It is interesting to note that the 
sharper and narrower the peak, the more long-lived, and, thus, more 
"real" the particle is. 

The question of whether or not matter is infinitely divisible may 
never be decided. For whenever an allegedly minimal particle is exhib
ited, there will be those who claim that if a high enough energy were 
available, the particle could be decomposed; and whenever someone 
wishes to claim that matter is infinitely divisible, there will be some 
smallest known particle which cannot be split. One is almost tempted to 
doubt if the question of the infinite divisibility of matter has any real 
meaning at all, particularly in view of the fact that such concepts as 
"matter" and "space" have no real meaning in the micro-world of quan
tum mechanics. 

To return to something a little more concrete, let us consider the di
visibility of our perceptual field. There is a limit to the subdivisions that 
this field can undergo. If two clicks happen close enough together in 
time, they cannot be distinguished; if a spot of ink is small enough, we 
can no longer see it. Hume makes much of this fact in his Treatise of 
Human Nature of 1739: 

Put a spot of ink upon paper, fix your eye upon that spot, and retire to 
such a distance, that at last you lose sight of it; 'tis plain, that the moment 
before it vanish'd the image or impression was perfectly indivisible.23 

The best way to understand Hume's view of the world is to regard 
our space-time as being supplemented by an additional dimension of 
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scale. To represent what I have in mind, let us forget about time and 
drop all the space dimensions but one. In Figure 24 I have drawn the 
space-scale continuum for a one-dimensional world. An individual's 
perceptual field has a certain fixed size, as drawn; the field is made up of 
a certain finite number of slots or tiles-minimal perceptual units. In 
this model, the one-dimensional creature has two dimensions in which 
he can move his perceptual field. He can move to the left and right in 
space, and he can enlarge and contract his perceptual field. Rather than 
thinking of the field as enlarging and contracting, we think of the field 
moving up and down on the scale axis. 

If the labelled objects (mountain, stone, speck of rock dust) occupy 
the appropriate regions of the space-scale continuum, then we can think 
of the ordinary perceptual level as being when the field is placed some
where in the middle of the picture. At this perceptual level stones are 
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visible, but one has neither enlarged one's field of vision enough to see 
the mountain as a single object, nor contracted one's attention enough 
to see the specks of dust on the rock. Notice that changing the size of 
one's perceptual field amounts just to moving this field about in the 
space-scale continuum. 

Hume takes perceptions as primary. Although he is often thought of 
as an empiricist, his is actually an extremely idealistic viewpoint. The 
perceptions are "out there"; one's consciousness seems to move among 
them like a butterfly flitting from flower to flower. 

One's perceptual field has minimal elements, yet these minimal ele
ments can be resolved into smaller elements by altering one's field (by 
paying closer attention, using a telescope, or moving closer to the ob
ject in question). The only way to reconcile these two apparently con
tradictory aspects of our perceptual world is to view the world as a five
dimensional, space-time-scale continuum. 

The question of the existence of an infinity in the small now becomes 
the question of whether or not the space-scale continuum drawn in Fig
ure 24 extends downward indefinitely; similarly, the question of the ex
istence of infinity in the large is the question of whether or not the con
tinuum extends upward indefinitely. 
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I have long been interested in a curious trick that eliminates the infin
ity in the large and the infinity in the small without introducing anyabso
lute perceptual minimum or maximum. This is simply the trick of bend
ing the space-scale diagram into a tube, by turning the scale axis into a 
circle. Here the universe could consist of many galaxies, which consist 
of many star systems, which consist of many planets, which consist of 
many rocks, which consist of many molecules, which consist of many 
atoms, which consist of many elementary particles, which consist of 
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many quarks and leptons, which consist of many darks, which could 
consist of many universes.24 

A problem with the circular scale model is that if our universe is bro
ken down far enough, one gets many universes, each of which will 
break down into many more universes. Are all of these universes the 
same? Perhaps, but then it would be hard to see how there could really 
be more than one object in the world. Another difficulty is that if there 
are many universes, each of which breaks up into many more universes, 
how can each of the component universes be one of the starting uni
verses? 

1 234 5 6 
/". /". /". /". ~ ~ 
1 2 3 4 5 6 7 8 9 10 11 12 

There is no problem if we have infinitely many universes. To illus
trate this, I have drawn a picture of the simplest case: the case in which 
each universe is made up of two universes. We can see that 1 splits into 
1 and 2, 2 splits into 3 and 4,3 splits into 5 and 6, and in general n splits 
into 2n - 1 and 2n. We can continue splitting any given universe indef
initely, thus obtaining an infinite number of components in any bit of 
matter. 

What is gained here is freedom from the belief that any size scale is 
intrinsically more basic or important or complex than any other size 
scale. Why waste time on the six o'clock news when you are no more 
nor less important than a galaxy or an atom? The point of this question 
is that one is often pressured to feel that the concerns of society or the 
world are more significant than one's own immediate personal con
cerns. But this is based on the assumption that some sizes are in an ab
solute sense bigger than others, and it is this assumption that circular 
scale undermines. 

CONCLUSION 

In conclusion, note that it is entirely possible that our universe is in 
every sense finite. A toroidal space-time of the sort mentioned in the 
section on temporal infinities eliminates all infinities in the large; and if 
circular scale is introduced as in the section on infinities in the small, 
then there are no discrete infinities in the small. These finitizations can 
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be accomplished smoothly: there need be no end of time, edge of space, 
or smallest particle. 

But it is hard to believe that there would be only one of these totally 
finite universes. First, it is difficult to see how to apply circular scale un
problematically unless there are infinitely many universes; second, the 
principle of sufficient reason is violated if only this particular finite uni
verse exists; and third, there is the feeling that the "space" in which our 
space-time is curved should be real. 

In the section on spatial infinities it was pointed out that if, on the 
one hand, one repeatedly finitizes by replacing lines with circles, and if, 
on the other hand, one never accepts some particular finite n-verse as 
the end of the line-if, in other words, one thinks along the lines 
sketched in the last two paragraphs-then one is forced to conclude that 
space is infinite dimensional and that there are infinitely many objects in 
this cosmic space. 

INFINITIES IN THE MINDSCAPE 

In the last section I discussed some of the ways in which an actual 
infinity could physically arise. But there are things that are not physical. 
There are minds, thoughts, ideas, and forms. In this section we will see 
if any of these familiar nonphysical entities are actually infinite. 

In order to appreciate the section at hand, it is necessary to keep an 
open mind on the question of whether or not mind equals brain, for if 
one assumes a priori that a thought is nothing more than a certain bio
chemical configuration in a certain finite region of matter, then (unless 
one has infinite divisibility of matter) it seems to follow automatically 
that infinite thoughts are impossible. 

To cast a few preliminary doubts on the hypothesis that brain equals 
mind, let me quickly raise a few questions. Is what you thought yester
day still part of your mind? If you own and use an encyclopedia, are the 
facts in that encyclopedia part of your mind? Does a dream which you 
never remember really exist? How can you grasp a book as a whole, 
even though you only read it a word at a time? Would the truths of 
mathematics still exist if the universe disappeared? Did the Pythagorean 
theorem exist before Pythagoras? If three people see the same animal, 
we say the animal is real; what if three people see the same idea? 

I think of consciousness as a point, an "eye," that moves about in a 
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sort of mental space. All thoughts are already there in this multi-dimen
sional space, which we might as well call the Mindscape. Our bodies 
move about in the physical space called the Universe; our conscious
nesses move about in the mental space called the Mindscape. 

Just as we all share the same Universe, we all share the same Mind
scape. For just as you can physically occupy the same position in the 
Universe that anyone else does, you can, in principle, mentally occupy 
the same state of mind or position in the Mindscape that anyone else 
does. It is, of course, difficult to show someone exactly how to see 
things your way, but all of mankind's cultural heritage attests that this is 
not impossible. 

Just as a rock is already in the Universe, whether or not someone is 
handling it, an idea is already in the Mindscape, whether or not some
one is thinking it. A person who does mathematical research, writes 
stories, or meditates is an explorer of the Mindscape in much the same 
way that Armstrong, Livingstone, or Cousteau are explorers of the 
physical features of our Universe. The rocks on the Moon were there 
before the lunar module landed; and all the possible thoughts are al
ready out there in the Mindscape. 

The mind of an individual would seem to be analogous to the room 
or to the neighborhood in which that person lives. One is never in 
touch with the whole Universe through one's physical perceptions, and 
it is doubtful whether one's mind is ever able to fill the entire Mind
scape. 

One last analogy. Note that there is always a certain region of physi
cal space that only I can ordinarily know of-barring surgery, no one 
but me is in a position to assess the physical conditions obtaining within 
my stomach. In the same way, there is a certain part of the Mindscape 
that only I can ordinarily know of-unless I am to be greatly favored by 
the Muse, the feelings that pass over me when I think of my childhood 
will always remain private and inexpressible. Nevertheless, these almost 
ineffable feelings are part of the common Mindscape-they are simply 
difficult for anyone else to get to. 

The point of all this is that just as the finiteness of our physical bodies 
does not imply that every physical object is finite, the finiteness of the 
number of cells in our brains does not mean that every mental object is 
finite. 

Well ... are there any infinite minds, thoughts, ideas, or forms or 
what have you in the Mindscape? 

The most familiar candidate is the set N of all natural numbers. If I 
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try to exhibit N, all I can really do is show you something like this: 
N = {t, 2, 3, ... }. What the " ... " stands for is something that is 
evident, yet basically inexpressible. The idea, of course, is that all of the 
natural numbers are to be collected together into a whole. Each of them 
would seem to exist individually in the Mindscape, and one would sup
pose that the set consisting of exactly the natural numbers would' be in 
the Mindscape as well-one almost feels as if one can see it. 

2 3 4 .. 1 1+1 1+2 1+3 ... 
• • • • •• 

Figure 26. 

We might try to avoid the use of the " ... " by saying something like 
this: "N is the set that has the following property: one is in N, and for 
any number x that is in N, x plus one is in N as well." The trouble with 
this definition is that it does not uniquely single out one particular set. 
If, for instance, there were some infinitely large number I, and if N'" 
were the set consisting of all the numbers in N and all the numbers of 
the form I + n for some n in N, then N'" would satisfy the properry that 
for every x in N "', x plus one is in N '" as well . . . but N'" would be 
different from N. 

We might try to get around this difficulry by saying that N is the 
smallest set in the Mindscape that has one in it, and that has x plus one 
whenever it has x. But, for reasons that I will begin to explain in the 
next section, the word "Mlndscape" cannot be meaningfully used in a 
definition. The concept of "Mindscape" is too vast to be represented by 
any word or symbol. 

If we try to avoid this difficulry by substituting some sort of finite de
scription of the mental universe for the word "Mindscape," then we get 
the same problem as before. By the classic work of the logician Thoralf 
Skolem, we know that for any finite description of N one might come 
up with, there will be a different set N'" that also satisfies the descrip
tion. So it is quite literally true that what is really meant by the " ... " is 
inexpressible. 

Some thinkers have taken this to mean that there is, after all, no 
unique N in the Mindscape. This could be true. But one need not take 
this to mean that there are no infinite sets in the Mindscape: if there are 
many, many versions of the set of natural numbers, then there are 
many, many infinite sets. However, it is normally more desirable to as
sume that there is a simple unique N in the Mindscape, just as it is 
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simpler to assume that there is only one universe instead of a whole 
slew of "parallel worlds." 

I might note here that if time is indeed infinite, then just as we can 
indicate Earth by saying, "this planet," we could indicate our N by say
ing, "the number of seconds left in this time." This is, in fact, what 
people do when they attempt to define N by saying, "N is what you get 
if you start with one and keep adding ones forever." 

Figure 27. 

If infinite forms are actually out there in the Mindscape, then maybe 
we can, by some strange trick of mental perspective, see some of these 
forms. The philosopher Josiah Royce maintained that a person's mental 
image of his own mind must be infinite.25 His reason is that one's image 
of one's own mind is itself an item present in the mind. So the image 
includes an image that includes an image, and so on. This infinite re
gress can be nicely visualized by imagining a United States in which a 
vast and fanatically accurate scale model of the country occupies most 
of the Midwest. The scale model, being absolutely accurate, includes a 
copy of the scale model, etc. This regress is occasionally used to make a 
striking label for a commercial product. The old can of Pet Milk, for 
instance, bore a picture of a can of Pet Milk, which bore a picture of a 
can of Pet Milk, etc. 

In a physical situation we would probably never actually be able to 
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finish making such a label in all its infinite detail. But this is not to say 
that no such label or country-plus-scale-model could exist. There would 
be no problem, if matter were infinitely divisible. (If scale is indeed cir
cular, then everything is, in a sense, already an object of this nature!) 

There is certainly no reason why a nonphysical mind should not be 
infinite; and Royce's point is that if you believe that one of the things 
present in your mind is a perfect image of this mind and its contents, 
then your mind is infinite. One might try to avoid this conclusion by 
adopting a circular scale attitude and insisting that there is no difference 
between the mind and the mind's image of itself, so that the allegedly 
infinite set of thoughts {image of the mind, image of the image, image of 
the image of the image, ... } is really the same as the set {mind, mind, 
mind, ... }, which is just a set with one member: {mind}. 

(8) [¢]= [[ 3J = 

Figure 28 (A-C). 
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I would like to discuss this a bit more, but first let me formally intro
duce some of the apparatus of set theory. In Cantor's words, "A set is a 
Many that allows itself to be thought of as a One."26 A set is usually 
given as a pair of curly brackets enclosing some description of the con
tents of the set. It is easiest to think of the curly brackets as a thought 
balloon. Thus the set {l, 2} is the unity obtained by taking the multiplic
ity consisting of the numbers 1 and 2 and treating this multiplicity as a 
unity. That is, we can think of the set {l, 2} as being represented by a 
thought balloon that has 1 in it and 2 in it. 

Of particular interest in set theory is the empty set, 0. 0 is the One 
obtained by taking together . . . nothing. If we write out 0 in the ordi
nary way we get { }, which I have drawn as an empty thought balloon. 

Figure 29. 

More and more complicated sets can be built up using only the 
brackets in various arrangements. Thus we have the set H H depicted in 
Figure 28B, and we could equally well form H}, H H, H}, H HH which is 
how the number 3 is usually represented in terms of pure sets. (See Fig
ure 29.) 

Now let's get back to the question of whether or not a mind that has a 
perfect self-image is infinite. Really to get down to the bare bones, say 
that we have a mind or label or set M such that the only member of M is 
M. That is, M = {M}. Now, if we change this equation by replacing the 
M on the right by {M} then we get M = HMH. If we could continue 
replacing M by {M} forever, we would wind up with M = Hm ... 
. . . H}H. This could actually be a definition of an M whose only mem
ber is itself, for note that placing another pair of brackets around 
Hm. .. . .. }}}H changes nothing. In plain English, M is the set whose 
only member is the set whose only member is . . . 
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Figure 30. Based on a drawing from Robert Crumb, Your Hytone Comix (San 
Francisco: The Print Mint, 1976). 

But if the only member of M is indeed M itself (rather than a copy of 
M), then M really only has one element. It is just that if we try to de
scribe this element by using brackets we get an infinite description. We 
call thoughts like M self-representative. Whether or not such an M is to 
be regarded as infinite depends on whether you experience the M sub
jectively (in the way you experience your own mind), or objectively (as 
a feature of the Mindscape that is to be precisely described in the lan
guage of set theory). 

Set theory is, indeed, the science of the Mindscape. A set is the form of 
a possible thought. Set theory enables us to put various facts about the 
Mindscape into one framework in the same way that the atomic theory 
of matter provides a framework in which the diverse physical and chem
ical qualities of matter can be simultaneously accommodated. 

Before the atomic theory of matter, such phenomena as melting and 
burning, rusting and freezing were regarded as qualitatively different. 
Once a good atomic theory was developed, however, all of these phe
nomena could be thought of in more or less the same way. The notion 
of set was consciously introduced only at the turn of the century. Be
fore long, it became evident that all of the objects that mathematicians 
discuss-functions, graphs, integrals, groups, spaces, relations, se
quences-all can be represented as sets. One can go so far as to say that 
mathematics is the study of certain features of the universe of set 
theory. 
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The universe of set theory is closely bound up with the Mindscape
one can, perhaps, think of the former as a sort of blueprint of the latter. 
A set is obtained when we take a thought and abstract from it all the 
emotive content, keeping only the abstract relational structure. A set is 
the form of a possible thought. So the question of whether or not there 
are any infinite entities in the Mindscape is really equivalent to the 
question of whether or not there are any infinite sets. 

According to set theorists, there certainly are infinite sets. Indeed, 
there is to be an endless hierarchy of infinities: the set of natural num
bers, the set of all sets of natural numbers, the set of all sets of sets of 
natural numbers, etc. Each member of this sequence can be shown to be 
of an infinity greater than that of the earlier members. In modern set 
theory there is a whole field of study called large cardinals, whose spe
cialists study a dizzying array of higher and higher infinities. 

But many mathematicians and philosophers do not go along with the 
set theorists. The traditionalfinitist viewpoint is still with us. According 
to the finidsts, there is nothing that is infinite, in heaven or on earth. 

Those who assert that infinite sets of every size have a secure exis
tence in the Mindscape are usually called Platonists. This name is a bit 
inapt, since Plato did not believe in infinity; but he did believe in the 
existence of ideas independent of thinkers, and it is for this aspect of his 
thought that the Platonists are named. 

It is not likely that the finidst vs. Platonist debate will ever be con
cluded. On the one hand, it is probably impossible to meet the demands 
of a finitist who says that 'he will believe in infinity only if he is shown an 
infinite set right now; on the other hand, the notion of infinite sets ap
pears to be logically consistent, so the finitist can never prove that infi
nite sets do not exist. 

I incline towards Platonism; but if you are stubborn enough, how can 
I possibly convince you that infinite things are real? All I can do, after 
all, is to make a finite number of marks on a finite number of sheets of 
paper. If you are truly committed to disbelief in the infinite, then you 
will not be satisfied by anything less than my simultaneously exhibiting 
each member of some infinite set . . . and whenever I claim that I 
have done so, you will triumphantly point at the finiteness of the num
ber of marks on paper which I have really shown you. 

In pre-Cantorian times finitists sometimes thought that they had 
proved the impossibility of actually infinite sets. These proofs, however, 
were always fallacious. Such proofs usually deal with some particular 
property P of numbers that each natural number happens to enjoy. 



INFINITY 43 

P might be the property of being odd or even, having an immediate 
predecessor, being the sum of finitely many units, or being greater than 
any predecessor. The false proof that no infinite numbers exist then 
takes the form: "Every number has property P. If x is an infinite num
ber, then x cannot have property P. Therefore no infinite numbers can 
exist." The fallacy in such a circular proof is that when it is asserted that 
"every number has property P," it is being quietly assumed that any
thing that fails to have property P does not exist. 

But, of course, one cannot assume that the infinite sets must have 
certain properties before one has ever looked at them! Galileo's para
dox, for example, showed that an infinite set can be put into a one-to
one correspondence with a proper subset of itself. Had we assumed 
in advance that no set could be put into a one-to-one correspondence 
with a proper subset of itself, then we would have had a proof that no 
infinite set can exist. But such an assumption is totally unwa"anted; in
deed, to make such an assumption is essentially to assume in advance 
that every set is finite . . . which does not make for a very productive 
debate. 

But are we quite sure that the finitists will never come up with some 
valid proof that the notion of infinite sets is incoherent and fundamen
tally meaningless? A Platonist would answer that yes, he is sure that 
there is no inconsistency in the theory of infinite sets. He is sure of this 
because the theory in question is a description of certain features of the 
Mindscape that "anyone can see." 

But the finitist can still hope. There is a curious proof, discovered by 
Kurt Godel in 1930, that the consistency of set theory cannot be fi
nitely proved. The time will never come when the finitist is absolutely 
forced to admit that it is safe to talk about infinite sets. 

In mathematics no other subject has led to more polemics than the 
issue of the existence or nonexistence of mathematical infinities. We 
will return to some of these polemics in the last chapter. For now, let us 
reprint Cantor's opening salvo in the modern phase of this age-old de
bate: 

The fear of infinity is a form of myopia that destroys the possibility of 
seeing the actual infinite, even though it in its highest form has created 
and sustains us, and in its secondary transfinite forms occurs all around us 
and even inhabits our minds.17 

Strong words! But what does Cantor mean when he says that the 
highest form of infinity created us? Read on! 
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THE ABSOLUTE INFINITE 

There is a certain type of nonphysical entity that was not discussed in 
the last section. God, the Cosmos, the Mindscape, and the class V of all 
sets-all of these are versions of what philosophers call the Absolute. 
The word "Absolute" is used here in the sense of "non-relative, non
subjective." An Absolute exists by itself, and in the highest possible de
gree of completeness. 

As I mentioned earlier, Plotinus held that the One could not be lim
ited in any sense. As Aquinas, the quintessential theologian, says: "The 
notion of form is most fully realized in existence itself. And in God ex
istence is not acquired by anything, but God is existence itself subsis
tent. It is clear, then, that God himself is both limitless and perfect."28 

The limitlessness of God is expressed in a form closer to the mathe
matical infinite by St. Gregory: "No matter how far our mind may have 
progressed in the contemplation of God, it does not attain to what He 
is, but to what is beneath Him."29 We have here the rudiments of the 
infinite dialectic process that takes place if we systematically try to build 
up an image of the whole Mindscape. 

Thinking T 
(A) 

Figure 31 (A-B). 

Thinking T and "T" 
(8) 

Suppose that I want to add thought after thought to my mind until 
my mind fills the whole Mindscape. Whenever I make an attempt at 
this, I am collecting together a group of thoughts into a single thought 
T. Now, when I become conscious of my state of mind T, I realize that 
this is a new thought that I had not yet accounted for . . . so I improve 
my image of the Mindscape by passing to the thought that includes all 
the elements of T plus T itself, viewed objectively. 
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This is a dialectic process in the sense that the thetic component is 
one's instantaneous unconscious image of the Absolute, the antithetic 
component is the conscious formalization of this image, and the syn
thetic component is the formation of a new unconscious image of the 
Absolute that incorporates one's earlier images and the awareness that 
they are inadequate.3o 

This process is most clearly understood if we start with nothing at all, 
as in the cartoon strip of Whee lie Willie in Figure 32. (Whee lie Willie is 
a character whose adventures I occasionally used to draw for the Rutgers 
Daily Targum when I was in graduate school there.) Notice that in each 
of the shifts, what takes place is that Wheelie Willie forms a thought 
that has as its members the members of the last thought plus the last 
thought itself. Looked at another way, the thought at each stage has all 
of the previous stages as components. 

If we call the nth thought Tn, we can define Tn in two ways. On the 
one hand, we can use an inductive definition: To = 0 and 
T n+l = Tn U {T J, where for any sets A and B, A U B means the set of 
all the sets that are members of A or of B. On the other hand, we can 
use a different sort of inductive definition: Tn = {T m:m < n}, which 
means "Tn is the set of all T m such that m is less than n." 

Some readers may have asked themselves if the thought T plus "T" 
really has to be different from the thought T. And the answer is, not 
always. In the last section we were looking at a mind, M, which has M as 
one of its components. Such an M is already fully self-aware, and M plus 
"M" is no different from M. In terms of sets, M U {M} = M. 

It would-seem, in particular, that God should be able to form a pre
cise mental image of Himself. Insofar as the Mindscape is God's mind, 
what I am saying is that one of the objects in the Mindscape should be 
the Mindscape itself. That is, the Mindscape is an M that has M as one 
of its members. Now, any object in the Mindscape is, in principle, 
something that one can perceive through one's consciousness. So it 
would seem to be possible for our minds actually to attain a vision of 
God or of the whole Mindscape. 

Now this seems to contradict St. Gregory's dictum and the general 
feeling that the Absolute is unknowable. But there are two kinds of 
knowing: the rational and the mystical. 

If I know something rationally, then I have some thought that is built 
up from simpler thoughts, which are in turn built up from still simpler 
thoughts. This regress is not infinite, but goes only through some finite 
number of stages before certain simple and unanalyzable perceptions 
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and ideas are reached. My idea of "house" consists of a collection of 
ideas, each one of which represents a certain type of house (e.g., my 
house, brick house, hovel). Each idea of a type of house consists of ideas 
of various components and functions (doors, windows, shelter), which 
can in turn be explicated in terms of certain simple ideas (walking, vi
sion, warmth). 

When I communicate a rational thought, what I do first is to show 
what the components of my thought are, and then to show how the 
components fit together. If one of the components of the final thought 
were to be the final thought itself, then this rational communication 
would be blocked by an infinite regress. To explain the thought, I 
would first have to explain the thought. I could not finish unless I had 
already finished. 

In terms of rational thoughts, the Absolute is unthinkable. There is 
no non-circular way to reach it from below. Any real knowledge of the 
Absolute must be mystical, if indeed such a thing as mystical knowledge 
is possible. 

Mathematics and philosophy do not normally have a great deal to say 
about the mystical way of knowing things. Mystically speaking, it is pos
sible to experience a direct vision of the whole Mindscape. This vision 
cannot be rationally communicated for the reasons just outlined. Of 
course, it is possible to communicate mystical knowledge in an indirect 
way, for example, by advocating that a person prepare his or her mind 
through carrying out some physical or spiritual exercises. But, ul
timately, mystical knowledge is attained all at once or not at all. There 
is no gradual path by which to build up an M that has M as one of its 
elements. 

Even if full knowledge of the Absolute is only possible through mys
ticism, it is still possible and worthwhile to discuss partial knowledge of 
the Absolute rationally. A significant thing about the Mindscape and 
the other Absolutes is that they are actually infinite. Indeed, in 1887 
Cantor's friend, Richard Dedekind, published a proof that the Mind
scape is infinite, where Dedekind's word for Mindscape was Gedanken
welt, meaning thought-world.31 

Dedekind's argument for the infinitude of the Mindscape was that if s 
is a thought, then so is "s is a possible thought," so that if s is some ratio
nal non-self-representative thought, then each member of the infinite 
sequence {s, s is a possible thought, s is a possible thought is a possible 
thought, ... } will be in the Mindscape, which must, therefore, be infi
nite. 

A very similar argument proves that the class of all sets is infinite. The 



48 INFINITY AND THE MIND 

class of all sets is normally called V, or Cantor's Absolute. We can use 
the Wheelie Willie sequence of sets to see that there are infinitely many 
different sets in V. 

Dedekind modelled his argument after an argument that appears in 
Bernard Bolzano's Paradoxes 0/ the Infinite (ca. 1840): 

"The class of all true propositions is easily seen to be infinite. For if we fix 
our attention upon any truth taken at random ... ,and label it A, we 
find that the proposition conveyed by the words 'A is true' is distinct 
from the proposition A itself. . . "32 

So we can see that the Mindscape, the class of all sets, and the class of 
all true propositions are all infinite. Does this guarantee that infinite ob
jects exist? Not really. For a case can be made for the pluralist claim that 
the Mindscape, the class of all sets, and the class of all true propositions 
do not exist as objects, as unities, as finished things. 

In more familiar terms, it is not hard to prove that God is infi
nite . . . but what if you don't believe that God exists? It may seem 
hard to doubt that the more impersonal Absolutes-such as "every
thing," or the Mindscape-exist, but there are those who do doubt this. 
The issue under consideration is a version of the old philosophical 
problem of the One and the Many. What is being asked is whether the 
cosmos exists as an organic One, or merely as a Many with no essential 
coherence. It is certainly true that the Mindscape, for instance, does not 
exist as a single rational thought. For if the Mindscape is a One, then it 
is a member of itself, and thus can only be known through a flash of 
mystical vision. No rational thought is a member of itself, so no rational 
thought could tie the Mindscape into a One. 

Normally the word "set" is restricted by definition to apply only to 

collections that are not members of themselves. Under this use of the 
word, the class V of all sets cannot be a set, for if it were, we would have 
a set V such that V is a member of itself. So V becomes a collection that 
can never be formed into a One. 

Suppose that we do not believe in circular scale and assume that any 
physical thing is not a part or component of itself. Is the Cosmos, the 
collection of all physical things, a thing? If it is, then it has to be a com
ponent of itself, which we do not allow. So the Cosmos is not a thing, 
but only a Many that can never be a One. 

There is a highly relevant passage in a letter Cantor wrote to Dede
kind in 1905: 

"A multiplicity can be such that the assumption that all its elements 'are 
together' leads to a contradiction, so that it is impossible to conceive of 
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the multiplicity as a unity, as 'one finished thing.' Such multiplicities I call 
absolutely infinite or inconsistent multIPlicities. As we can readily see, the 
'totality of everything thinkable,' for example, is such a multiplic
ity ... "33 

49 

Again, the reason that it would be a contradiction if the collection of 
all rational thoughts were a rational thought T is that then T would be a 
member of itself, violating the rationality ofT (where "rational" means 
non-self-representative). The upshot of all this is that God, the Mind
scape, the class of all sets, and the class of all true propositions all seem 
to be infinite, but it is at least possible to question whether any of these 
Absolutes exists as a single entity. Certainly they do not exist as entities 
that can be fully grasped by the rational mind. 

CONNECTIONS 

In this section I would like to explore some of the connections be
tween the various sorts of infinities that have been discussed.34 In his 
1887 essay, "Contributions to the Study of the Transfinite," Cantor 
quotes a passage from Aquinas's Summa and states repeatedly that in 
this passage appear the only two really significant objections that have 
ever been raised against the actual infinite.as Let us examine this quote 
from Aquinas here, reproducing Cantor's italics: 

The existence of an actually infinite multitude is impossible. 1) For any 
set of things one considers must be a specific set. And sets of things are 
specified by the number of things in them. Now no number is infinite, for num
ber results from counting through a set in units. So no set of things can 
actually be inherently unlimited, nor can it happen to be unlimited. 
2) Again, every set of things existing in the world has been created, and 
anything created is subject to some definite purpose of its creator, for causes 
never act to no purpose. All created things must be subject therefore to def
inite enumeration. Thus even a number of things that happens to be un
limited cannot actually exist.36 

It seems clear that Aquinas's first point is that an infinite set can occur 
only if infinite numbers exist, and he does not believe that infinite num
bers exist. Cantor's theory of transfinite numbers stands as the only ade
quate response to this objection. For many years, it was believed that 
the notion of actually infinite numbers was fundamentally incoherent. It 
was only with the birth of Cantor's theory in the late 1800s that a con
sistent and reasonable theory of infinite, or transfinite, numbers was de
veloped. As Cantor remarks in his discussion of Aquinas's objection, 
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this objection against the existence of actually infinite collections is to 

be met positively by exhibiting a theory of infinite numbers. 
It is not so obvious what Acquinas's second point might be. It might 

be taken to be simply a variation on the first point. Under this reading, 
the first point says that any set must have a number of cardinality, but all 
numbers are finite; and the second point says that any set must have a 
purpose or significance, but any definite purpose is finite. If this is in
deed Aquinas's meaning, then we can say that once again the Cantorian 
theory of infinite sets provides a positive rebuttal. 

Aquinas's whole view of the infinite is not really tenable, for he held 
that God is infinite, but that no created thing is infinite. This contradicts 
a widely accepted principle known as the Reflection Principle. The Re
flection Principle as formulated in set theory goes as follows: every con
ceivable property that is enjoyed by V is also enjoyed by some set. (Re
call here that V is Cantor's Absolute, the class of all sets.) 
Philosophically it would run: every conceivable property of the Abso
lute is shared by some lesser entity; or, every conceivable property of 
the Mindscape is also a property of some possible thought. 

The motivation behind the Reflection Principle is that the Absolute 
should be totally inconceivable. Now, if there is some conceivable 
property P such that the Absolute is the only thing having property P, 
then I can conceive of the Absolute as "the only thing with property P." 
The Reflection Principle prevents this from happening by asserting that 
whenever I conceive of some very powerful property P, then the first 
thing I come up with that satisfies P will not be the Absolute, but will 
instead be some smallish rational thought that just happens to reflect 
the facet of the Absolute that is expressed by saying it has property P. 

Let me give an example of a Reflection Principle argument. For every 
thought 5 in the Mindscape, the thought "5 is a possible thought" is also a 
thought in the Mindscape. By Reflection there must, therefore, be some 
thought W such that For every thought 5 in W, the thought "5 is a possible 
thought" is also in W. This W reflects, or shares, the italicized property 
of the Mindscape. But note now that this W must be infinite. So an infi
nite thought exists. 

Again, it is true that each of the Wheelie Willie sets Tn is a member of 
V. By the Reflection Principle there must, therefore, be some set N 
such that each of the Whee lie Willie sets Tn is a member of N. There
fore an infinite set N exists. 

The point I wish to make is that if one accepts the existence of any of 
the various infinite Absolutes, then one is fairly well committed to ac-



INFINITY 51 

cepting the existence of infinite thoughts and sets. For to deny the Re
flection Principle is practically to assert that the Absolute can be finitely 
described, which is most unreasonable. 

The passage from St. Augustine that I referred to earlier contains a 
kind of Reflection Principle argument for the reality of the set N of all 
natural numbers. In that passage Augustine argues that God must al
ready know each and every natural number and that he even knows "in
finiteness" in the form of all the natural numbers taken at once-for 
otherwise the set of natural numbers would exhaust his abilities. God, 
according to Augustine, must lie beyond the set of natural numbers. 

To summarize the points in this chapter: 

1. The infinite normally inspires such feelings of helplessness, fatility, and de
spair that the natural human impulse is to reject it out of hand. 

2. There are, however, no conclusive proofs that everything is finite; and the 
question of whether or not anything infinite exists remains as an open, al
most empirical problem. 

3. There are various sorts of physical infinites that could actually exist: infinite 
time, infinitely large space, infinite dimensional space, infinitely continuous 
space, and infinitely divisible matter. Each of these infinites is, in principle, 
avoidable; whether or not our Cosmos actually does avoid infinities remains 
to be seen. 

4. In Cantor's set theory we have a great number of infinite sets. This simple 
and coherent theory of the infinite provides a logical framework in which to 
discuss infinities. Moreover, if we feel that the things that mathematicians 
discuss are real, then we can conclude that actually infinite things exist. 

S. Attempts to analyze the phenomenon of consciousness and self-awareness 
rationally appear to lead to infinite regresses. This seems to indicate that 
consciousness is essentially infinite. 

6. The Absolute is certainly infinite. So one must either deny the reality of the 
Absolute or accept the existence of at least one infinity. 

7. According to the Reflection Principle, once one has an infinite Absolute, 
one must also have many conceivable infinities as well. 

PUZZLES AND PARADOXES 
(Answers on Page 295) 

1. It is sometimes said that if infinitely many planets existed, then every pos
sible planet would have to exist, including, for instance, a planet exactly 
like Earth, except with unicorns. Is this necessarily true? 
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2. Consider a very durable ceiling lamp that has an on-off pull string. Say that 
the string is to be pulled at noon every day, for the rest of time. If the 
lamp starts out off, will it be on or off after an infinite number of days have 
passed? 

3. For each observer 0, there is some fixed upper bound No to the number 
of stars that 0 can physically see. Therefore, for each observer the uni
verse is finite. Does this imply that the universe is finite? 

4. "I have five fingers on my left hand," means the same thing as, "When I 
count up all the fingers on my left hand, the last number I say isfive. " What 
might "I have 00 fingers on my left hand" mean? 

5. Suppose that we find an infinite number I that is the largest possible num
ber. But now, what about I + I? 

6. In the little-known field of "enumerative geometry," it is said that there 
are 00 points on a line and 002 points in a plane. There are said to be 002 
lines in the plane as well: "To get the correct number 002 of straight lines in 
the plane, we must divide the number 004 of pairs of points in the plane by 
the number 002 of pairs of points on a straight line."37 How many circles 
should there be in the plane? How many ellipses? 

7. Can you prove, without circularity, that seven is a finite number? 
8. The universe has lasted about 1010 years since the Big Bang. There are 

about 3 X 107 seconds in a year. According to quantum mechanics, the 
usual conception of continuous time does not extend to intervals shorter 
than 5 x 10-44 seconds, so we might think of this unit as being a kind of 
"instant," faster than which nothing can happen. How many "instants" of 
time does that come to so far? Is it reasonable to argue that larger num
bers, such as 10100, do' not yet exist? 

9. Say that the space we live in is infinitely large. Consider an infinite line L 
contained in our space. L is infinity yards long, and L is infinity feet long. 
But since each yard is three feet, L is also three-times-infinity feet long. 
How can infinity equal three times infinity?38 

10. Here is an example of an infinite regress. Suppose that some person 
wishes to prepare a text in which every appearance of the letters "man" is 
replaced by the letters "woman." If this is rigidly adhered to, then "man 
and woman" becomes "woman and wowoman," then "wowoman and 
wowowoman," and so on. what do you reach in the limit? 



CHAPTER TWO 

ALL THE NUMBERS 

In this chapter we will begin by tracing the development of the famil
iar real number system with its infinity of irrational numbers. Once one 
has accepted irrational numbers, there is really no reason not to accept 
infinitely large or transfinite numbers. So the second section of the 
chapter will be devoted to the transfinite ordinals and cardinals. The or
dinals form a gappy number sequence somewhat like the natural num
bers. It is a natural move to fill in these gaps as densely as possible, just 
as one fills in the space between, for instance, two and three with ratio
nal and real numbers. If we fill in as much as possible we end up with 
what might be called an absolutely continuous ordering. In the section on 
infinitesmals and surreal numbers I will present some examples of such 
orderings, anyone of which can be viewed as comprising "all the num
bers" (including the infinitesmals). In the final section of this chapter I 
will return, once again, to the question of whether the infinitely big and 
infinitely small numbers have any real existence, physically or other
WIse. 

FROM PYTHAGOREAN ISM TO CANTORISM 

Pythagoras lived in Greece and in Italy in the sixth century B.C. He is 
an extremely shadowy and ambivalent figure. On the one hand, he was a 
wizard, the shamanistic leader of a religious sect. On the other, he has 
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frequently been credited with bringing about the birth of modern math
ematics and mathematical physics. 

The sect of Pythagoreans is best known for their belief in metempsy
chosis, or reincarnation. They believed that there is one cosmic mind or 
soul, that you are alive because a small piece of this soul is imprisoned 
in your body, and that the bit of soul that animates you will animate 
many other bodies before returning to full unity with the one big soul. 
The Pythagoreans adhered to a great number of rules and taboos (never 
look back when crossing a border, always put the right shoe on first, 
never pick up food that drops from the table), apparently in an effort to 
bring themselves into a closer harmony with the cosmos. Presumably it 
was hoped that if in the course of your lifetime you could bring yourself 
into a close enough relationship with the One, then when your body 
died, the soul that vivified it might be able to return to the source in
stead of being forced into another body. 

Pythagoras was said to be able to remember several of his previous 
lives, and he was believed to have many other supernatural powers as 
well. There is a whole series of ancient miracle tales about Pythagoras, 
such as stories that he was once seen in widely separated places at the 
same time, and that once when he was crossing a river it hailed him in an 
audible voice saying, "Greetings, Pythagoras." 

Part and parcel of the Pythagorean religious beliefs were a number of 
numerological notions. There was a feeling that the essential nature of 
the cosmos was somehow numerical, with certain numbers seeming to 
embody particular abstract concepts. The Pythagoreans made the fol
lowing identifications: 1 was mind (the One); 2 was opinion (the first 
moving away from unity); 3 represented wholeness (beginning, middle, 
and end); 4 was justice (a "square" deal); 5 stood for marriage (since 
5 = 2 + 3, and even numbers were regarded as female, odd as male). 
Under a later system the numbers one through four were identified 
with the point, line, plane, and solid, respectively . 

• Point 
(A) 

• Line 
(8) 

• Plane 
(C) 

Figure 33 (A-D). 

Solid 
(D) 

The number ten was singled out for special attention and was said to 
symbolize perfection. One reason for this is obvious: people have ten 
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• 
• • 

• • • 
• • • • Figure 34. 

fingers, and most of our systems of numeration are based on the num
ber ten. But a more important reason for the importance of the number 
ten is that 10 = 1 + 2 + 3 + 4, and the numbers one through four and 
their interrelations were regarded as primary. This fact about 10 was 
represented by the Pythagorean tetraetys depicted in Figure 36. A Py
thagorean would feel right at home in a bowling alley, ritually building 
and destroying the tetraetys with a sphere punctuated by a triad of holes, 
and recording his progress with a series of numbers inscribed in 
squares. 

The Pythagoreans assumed that since ten was so important, there 
should be ten heavenly bodies. At the time there were only nine known 
celestial objects (not counting the stars), so the Pythagoreans postulated 
the existence of a counter-Earth that is never seen, because it is always 
on the opposite side of the sun. 

It is interesting to realize that this type of argument is the stock in 
trade of modern mathematical physics. For example, a three-dimen
sional chart of all the known elementary particles is drawn up. The chart 
looks, let us say, like a regular dodecahedron with one corner missing. 
It would look prettier, more symmetric, if there were an additional par
ticle with such and such characteristics to fill the missing corner, so the 
physicists postulate the existence of such a particle. The surprising thing 
is that, often as not, such an argument turns out to be correct: a particle 
with exactly the predicted properties is discovered. 

The fact is that a priori mathematical considerations can lead to em
pirically determined physical truths. The structure of the physical uni
verse is deeply related to the structure of the mathematical universe. 
The Pythagoreans were aware of examples of this relationship, having 
observed, for instance, that if the lengths of two stretched strings are in 
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a simple numerical ratio (such as 2 : 1 or 3 : 2 or 4 : 1), then the notes pro
duced by plucking the strings are consonant. 

The conclusion that the Pythagoreans drew was, according to Aristo
tle, "that the elements of numbers are the elements of things, and that 
the whole heaven is a harmony and a number." Again, Aristotle states 
that the Pythagoreans "considered number as the substance of all 
things."l 

This sort of viewpoint is not uncongenial to the modern scientist, for 
whom any phenomenon can be expressed in terms of numbers, vectors, 
functions, operators, groups, and the like. If one believes that the uni
verse is basically all form and no content and that the forms that arise in 
nature all admit of mathematical representation, then one can reason
ably conclude that anything that exists is ultimately a mathematical ob
ject. 

Take my right shoe, for example. I can, of course, state the size, 
count the number of eyelets, or determine the weight in grams. But 
even independently of my efforts, the shape exists mathematically as 
the set of coordinates of points that happen to lie within the substance 
of the shoe; and the color of the shoe is precisely specified by a function 
giving the wave lengths of light reflected at each point of the surface of 
the shoe. As for the actual particles that make up the shoe, they may 
very well be nothing more than small irregularities in the curvature of 
space-time. So it is not really so odd to believe with the Pythagoreans 
that ultimate reality is precise mathemetical form. 

LIMITED 
ONE 
REST 

STRAIGHT 
GOOD 

UNLIMITED 
MANY 

MOTION 
CROOKED 

BAD 

So far, so good. But the story gets more interesting. The Pythag
oreans did not believe in infinite forms. They are credited with the crea
tion of a "table of opposites," which I have partially reprinted. Looking 
at this table, it is evident that the Pythagoreans would not have been big 
fans of infinity. In the original Greek they have ape iron for "unlimited." 

Now, if i) everything is a mathematical form and ii) nothing infinite 
exists, then everything is basically either a natural number or some rela
tionship between a few natural numbers. Note that you have to give up 
either i) or ii) if it can be proved that there is some feature of the world 
that cannot, even in principle, be fully represented by a finite number of 
natural numbers. 
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Imagine the coast of Southern Italy. You're out on the water 
. . brilliant, ultramarine water and dry, rugged rocks. Pythagoras 

himself is aboard the boat on this outing of the brotherhood. There's 
been a lot of hassles with the locals, and everything is finally mellow, 
kind of merged out here on the water. Pythagoras is sitting on the deck 
talking with Hippasus, a guy in his thirties who laughs a lot. Hippasus is 
scratching lines on the smooth deck with a knife, showing Pythagoras 
and some of the others a construction he's been fooling with. It goes 
something like this. 

5 

Figure 35. 

S 

Once a square and the diagonal of the square have been drawn, one 
can ask about the ratio d:s of the length of the diagonal to the length of 
the side. If all things are expressible in terms of natural numbers, then 
one would expect that there are two natural numbers m and n such that 
d:s::m :n. But it can be conclusively proved that no such natural numbers m 
and n exist. The ratio d:s is irrational, nameless, apeiron. 

In the mental movie we were just watching, Hippasus is letting Py
thagoras in on this. One version of the movie's ending is that when the 
Pythagoreans returned from their sail, it turned out that Hippasus had 
"drowned at sea"! 

Given the Pythagorean theorem, which states that the square of the 
hypotenuse of a right triangle is equal to the sum of the squares of the 
sides, we can see that d 2 = S2 + S2, so d 2 = 2r2, so d 2/S2 = 2, so the ratio 
d / J = v'2. In modern terms, what the Pythagoreans learned was that 
V2 is an irrational number. But as far as they were concerned, they had 
discovered that there was a physical relationship, the ratio d:s, which 
was not representable in terms of numbers. Since they did not recog
nize the existence of ratios other than the natural number ratios, the 
ratio d:s was called alogos, meaning "inexpressible." It was also called 
arratos, meaning "not having a ratio." 
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It is interesting to see how one might go about trying to find a repre
sentation of V2 as a fraction, or ratio, of natural numbers. This 
amounts to the problem of finding an n such that for some m, m2/n 2 = 
2n2/n 2 • In the table below, I have sketched the beginning of a search for 
such an n. The curious thing is that we can say with certainty that this 
search must remain forever fruitless. The proof is covered in almost 
every survey course of mathematics. 

• 1 
(A) 

(2/2)2 = 4/4 < 8/4 < 9/4 = (3/2)2, so 2/2 < V2 < 3/2 
(4/3)2 = 16/9 < 18/9 < 25/9 = (5/3)2, so 4/3 < V2 < 5/3 
(5/4)2 = 25/16 < 32/16 < 36/16 = (6/4)2, so 5/4 < V2 < 6/4 
(7/5)2 = 49/25 < 50/25 < 64/25 = (8/5)2 so 7/5 < V2 < 8/5 
(8/6)2 = 64/36 < 72/36 < 81/36 = (9/6)2, so 8/6 < V2 < 9/6 
(9/7)2 = 81/49 < 98/49 < 100/49 = (l0/7)2, so 9/7 < V2 < 10/7 

'-.--' 

Continue forever with all 
fractions equal to two in this 
column. 

• 
• • • 2 3 

(6) (C) 

• 
Figure 36 (A-E). 

• • • • 
• • • 4 5 

(D) (E) 

• 
• 

For the Greeks there were two kinds of magnitudes: discrete and 
continuous. Discrete magnitudes could be counted, set into correspon
dence with natural numbers that were sometimes visualized as patterns 
of dots. But continuous magnitudes simply did not correspond to any 
number at all. Just as we can add and multiply numbers, we can manipu
late continuous magnitudes by means of the techniques called geo
metrical algebra. The Greeks developed these techniques to the point 
where they could, in effect, solve most quadratic equations involving 
continuous magnitudes. 

Consider, for example, the geometric technique for finding the mean 
proportional between two lengths a and b. That is, given line segments a 
and b, we wish to find a line segment m such that a:m::m :b. The con
struction of m is as follows. 

1. Put a and b end to end, forming AC. 
2. Construct a semicircle having AC as diameter. 
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a b 
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(A) 
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m " 

(C) 

Figure 37 (A-C). 

..... , 

(B) 

, , , , , 
..... , 

b " 

• c 

c 

3. Erect a perpendicular to AC at B, meeting the semicircle at D, let AD have 
length m. 

4. a:m::m:b because triangle ABD is similar to triangle DBC. 

a Area ab 

b 

(A) 

m 

Figure 38 (A-B). 

Area m2 

m 

(B) 

ab = m2 

In modern terms we would ~that m is a solution of the equation 
a/x = x/b,a'b = X2, orx = \Ia·b. The fact that we can solve the sec
ond to last equation is expressed geometrically in Proposition 14 of 
Book II of Euclid's Elements, which says in part that, "It is possible to 
construct a square equal [in area] to any given rectangle."2 

Notice how differently the problem of finding the mean proportional 
is treated today. Since i) we think of there being a real number corre-
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sponding to every length, and since ii) we have extended all of the usual 
operations, such as multiplication and square root, to the real numbers, 
we are able to assert that i) any given line segments have some real num
ber lengths a and b and that ii) there is a real number m = y';b. 

What are these protean real numbers of ours? In general, a non-nega
tive real number has the form n.rlr2rar4rS ... , where n is a natural 
number, and each of the rl is one of the digits 0 through 9. The inter
esting thing about these "real" numbers is that they are, in point of fact, 
very ideal objects. The string of digits to the right of the decimal place 
is infinite. Strictly speaking, a real number can never be completely 
written out. 

Of course, some real numbers, such as 25.000 ... or 
3.123123123 ... , eventually begin repeating themselves. For conve
nience we write these numbers as follows: 25.'0 and 3.123, where it is 
understood that the string of digits under the bar is repeated over and 
over. There is an interesting little theorem about repeating decimals. To 
state this theorem, we must keep in mind that a real number is rational 
if it is equal to some fraction, such as 7/18• 

Theorem: A real number r is rational if and only if it has a repeating decimal 
expansion. 

.28571428 ... = .285714 
7)(%).00000000 

1 4 
(IDo 

56 

@o 
35 
(3)0 

49 
(Do 

7 

(2)0 
28 

(1)0 
14 
@o 

56 

4 

Instead of giving a formal proof of the theorem, let's just see an ex-
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ample of how each direction works. First, imagine that you have a real 
number r that is equal to the fraction 2/7• In order to get the decimal 
expansion of r, we begin dividing 7 into 2. I have circled the successive 
remainders that occur. Notice that i) when you are dividing by 7 the 
remainder is always one of the natural numbers 0 through 6, and ii) if 
the same remainder occurs twice, then the decimal starts repeating, 
since the same sequence of actions will follow. 

Second, imagine that there is a real number r that has the repeating 
decimal expansion .123. Now, r has an infinite number of blocks of 
"123" to the right of the decimal, so if we move one of these blocks to 
the left of the decimal, by taking 1000 r, then there will still be an infi
nite number of "123" blocks to the right of the decimal. 

1000 r = 123.123123123 .. . 
r = .123123123 .. . 

999 r = 123 
r = 123/999 

r = 41/333 

So, in the indicated calculation, if we subtract r from 1000 r, then there 
is nothing remaining on the right of the decimal. 

It is satisfying to see that the two finite ways of describing a real num
ber-as a fraction, or as a repeating decimal-coincide. Given that we 
have proved that V2 is irrational, we can be sure that the decimal ex
pansion of V2 never repeats. That is, when we write V2 = 
1.4159 . . . ,we do not have any simple way of describing the pattern 
that the" ... " stands for. 

We can also use the theorem in the reverse way. That is, we can artifi
cially construct a non-repeating decimal and be sure that this represents 
an irrational real number. There is, for instance, the artificial number of 
Liouville, .010010001000010000010000001 ... , where the build
ing principle of steadily increasing the number of zeros between the 
ones guarantees that the number never repeats itself. A different sort 
of non-repeating decimal can be obtained by sticking together all 
of the natural numbers to get the "number number," 
.1234567891011121314151617181920212223 ... 

. 123 

o .1 
II'-Th l' . . 12 e Imlt 

Figure 39. 
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But how can we be sure that such artificial decimal expansions are 
really numbers? What exactly is meant by .12345 ... ? The under
standing is that .12345 ... stands for the infinite series or sum, 1/10 + 
2/100 + 3/1000 + 4!Ioooo + 5/100000 + .... It is easy to visualize a geo
metric interpretation. 

One is tempted just to say that a given real number, such as 
.12345 ... ,is really to be thought of as a point on the idealized real 
number line. The problem with this approach is that one has not really 
explained where the "real number line" comes from. The real number 
line is basically something to be found with certainty only in the Mind
scape; there is no reason to assume in advance that our physical space is 
filled with copies of the real number line. 

This problem was finally dealt with only about one hundred years 
ago, by our old friends Cantor and Dedekind. Cantor basically defined a 
real number simply as an infinite sequence of digits, just as was done 
above. The original element of his approach was that one does not act as 
if the limit or sum of the infinite series expressed by a real number is 
anything other than or external to the series itself. Thus, the sum of the 
series 2/10 + 5!IOOO + 7!I0000 + 9/100000 + ... is nothing other than the 
series itself, also known as .20579 .... By using various weird defini
tions one can learn to add and multiply such series with each other with
out having to pretend that one is really working with finitely given 
limits. The point is that Cantor gave up the pretense that the real num
bers are primarily finite lengths. He treated them rather as arbitrary in
finite series of the form ±n.rlr2r3r4. 

o 
I I DCI I I 

2 

Figure 40. 
Dedekind also defined real numbers in terms of infinite sets. His ap

proach was to characterize a real number as a cut [L, R] of the rational 
numbers. The idea is that every rational is either in L or in R and every 
member of L is less than every member of R. For instance, the square 
root of two would be represented by the cut [{alb: a21b2 < 2}, {alb: 
a21b2 > 2}]. The crucial thing about Dedekind's definition of real num
ber is that, again, the real number itself is an infinite set. To be more 
precise, a Dedekind real number is a pair [L, R] of infinite sets. 

It is a curious fact in the history of mathematics that Dedekind's defi
nition of real numbers is taken over almost unaltered from the Eudox
ian theory of proportion given in Euclid's Elements, Book V. The prob
lem Eudoxus had been concerned with was how we can compare and 
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manipulate ratios (such as the d:s ratio mentioned above) that are not 
equal to the ratio of any two natural numbers. His solution was, essen
tiall y, to regard an irrational ratio X : Y as a cut of the form [{m : n 1m Y < 
nX}, {m:n ImY > nX}]. One can see that this makes sense if one realizes 
that min < XIY if mY < nX, and likewise for >. 

The difference between what Eudoxus and Dedekind did is that Eu
doxus thought of the ratio between two magnitudes as the fundamental 
thing, with the description in terms of infinite sets arising only in a prac
tical and potentially infinite way (since one would not, in practice, ever 
need all of the members of each side of the cut). Unless someone had 
constructed two specific magnitudes to be compared, the equivalent cut 
had no meaning ... as it was an infinite, and thus unreal, thing. 

Dedekind, on the other hand, accepted the actually infinite sets of the 
cut as fundamental. Whether or not one has a particular trick for con
structing a length that drops a point down into the cut's gap is immate
rial. All the different actually infinite cut-sets exist in the Mindscape, 
and all the real numbers are already there, whether or not they can be 
finitely named or constructed. 

The point is that the only way to get a stable mathematical represen
tation of the notion "arbitrary real number" is to represent real num
bers by actually infinite sets. There is no other way to get an absolute 
foundation of the real number system in terms of discrete mathematical 
objects. 

Once it was realized that real numbers can be represented in terms of 
infinite sets, the dam broke. Ten years after Cantor's death it was al
ready a commonplace that every mathematical object can be repre
sented by a set. If you have ever picked up a mathematics text in any 
field, be it analysis, algebra, or topology, you will have noticed that the 
book begins with a short chapter or section on set theory. This is be
cause everything the book mentions can be best represented as a set. 

For the Pythagoreans everything was a natural number. Their belief 
became untenable when it was realized that certain things are in their 
inmost essence infinite. The modern mathematical credo called Can
torism asserts that everything (at least everything mathematical) is a set. 

Just as the existence of the actual infinite forces a revision of the 
Pythagorean position, the existence of the Absolute infinite forces a re
vision of the Cantorian position. If there are, indeed, Absolutes of the 
kind discussed in the earlier section on the Absolute infinite, then there 
are things that are not sets. Set theorists are still not quite certain what 
to do about this. But let us not worry about Absolute infinity before 
discussing the transfinite. 
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Once we realize that the irrational numbers are fundamentally infi
nite, in that they can be fully grounded only on a theory of infinite sets, 
then it is natural to start looking at infinitely large, or transfinite, num
bers. In Cantor's words, "One can without qualification say that the 
transfinite numbers stand or fall with the infinite irrationals; their inmost 
essence is the same, for these are definitely laid out instances or modifi
cations of the actual infinite."3 

A last remark on Cantorism. Just as chemistry was unified and simpli
fied when it was realized that every chemical compound is made of 
atoms, mathematics was dramatically unified when it was realized that 
every object of mathematics can be taken to be the same kind of thing. 
There are now other ways than set theory to unify mathematics, but be
fore set theory there was no such unifying concept. Indeed, in the 
Renaissance, mathematicians hesitated to add x 2 to x 3 , since the one was 
an area and the other a volume. Since the advent of set theory, one can 
correctly say that all mathematicians are exploring the same mental uni
verse. 

TRANSFINITE NUMBERS 

In my novel White Light, I describe a mountain that is higher than 
infinity.4 This mountain, called Mount On, consists of alternating cliffs 
and meadows. The curious thing about it is that even after one has 
climbed ten cliffs, a thousand cliffs, infinitely many cliffs . . . there are 
always more cliffs. The climbers of Mount On are able to make some 
progress because they are able to execute a procedure called a "speed
up." By using speed-ups they are able, for instance, to zip past the first 
infinity of cliffs in two hours. 

How is this done? The idea is to climb the first cliff in one hour, the 
next cliff in half an hour, the one after that in a quarter of an hour, and, 
in general, the nth cliff in 1/2n hours. Since 1 + 1/2 + 1/4 + 
lis + ... sums to 2, we see that after two hours our climbers have 
passed infinitely many cliffs. But there are more, many more. 

In this section we will climb up through the transfinite numbers, 
which are usually called ordinal numbers, or just ordinals. Typically, one 
describes some ordinal a by giving an example of an ordered set M such 
that if one could count M in the correct order, then one would count up 
to a. a is then viewed as the abstract order type of M, called M for short. 
The ordinal M is gotten from the ordered set M by ignoring the actual 
appearance of the individual members of M and instead concentrating 
on the arrangement, or order, of these members. 
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FROM OMEGA TO EPSILON-ZERO 

The transfinite ordinal numbers can be thought of as arising through 
counting. There are two principles for generating ordinal numbers: I) if 
you have the ordinal number a, then you can find a next ordinal, called 
a + 1; II) if you have some definite sequence of increasing ordinals a, 
then you can find a last ordinal which is greater than all the a's, called 
lim(a). 

We also need a first ordinal to start with, called 0. (Strictly speaking, 
the second principle for generating ordinals gives us 0, since zero is the 
first ordinal after the empty sequence.) In any case, once we have zero, 
the first principle can be repeatedly applied to get the ordinal numbers 
0, 1, 2, . . . . Now, to get past the infinite sequence of finite ordinals 
we use principle II to get limen), usually called w, pronounced "omega." 
(Omega is also sometimes called "alef-null.") 

Omega is the last letter in the Greek alphabet (they put zeta some
where in the middle), which may be why Cantor chose to use it as the 
number after all the finite numbers. The word "omega" is somewhat fa
miliar, as it appears in the Book of Revelations, where God is quoted as 
saying, "I am the Alpha and the Omega," meaning, "I am the beginning 
and the end." 

Now we have 0, 1,2, ... w. Using principle I repeatedly we get the 
sequence 0,1,2, ... w, w + 1, w + 2, w + 3, .... To go further, 
we use principle II to form lim(w + n), which is usually called w + wor 
w·2. 

You might wonder why lim(w + n), w + w, and W' 2 should all be 
the same. It turns out that there is a definite way to define addition and 
multiplication of infinite ordinals so that everything works out. Let me 
briefly explain. The ordinal number a + b is obtained by counting out 
to a and then counting b steps further. The ordinal number a·b is ob
tained by counting up to a, b times in a row. That is, a . b is obtained by 
sticking together b copies of a, treating thi~s an ordered set M, and 
then abstracting to get the ordinal number M = a' b. 

As long as one sticks to finite ordinals, these operations are the same 
as the ordinary plus and times, and they are commutative. However, 
once we start working with infinite ordinals, commutativity no longer 
holds. Thus, .. ........... .. ......... 

'-.,-' 

1 + w w 
xxx x • • • x xxxx ••• x 

'-.,-' 

w + 1 w + 1 
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1 + W is just the same as w, but w + 1 is the next number after w. 
Again, 

** ** ** • • • **** ... '---" '---" '---" 
, , 

2·w 2 + 2 + 2 + • • • w 

DODD ••• DODD ••• DODD ••• DODD ••• , 

w·2 = w + w w+w 

w· 2 is two omegas placed next to each other, which gives an ordinal 
w + w, but 2·w is omega twos placed next to each other, which makes 
an ordered set with ordinal number w. 

Moving on with the ordinals, by using principle I repeatedly, we now 
have 0, 1,2, ... w, w + 1, w + 2, ... w'2, w·2 + 1, w·2 + 2, 
.... It is evident that lim(w·2 + n) should be the ordinal w·2 + w 
also known as W· 3. Continuing in this vein, we can arrive at W· n for 
each finite n, and using principle II we form lim(w' n), which should be 
omega copies of omega, that is, W'W, also known as w2• 

In order to see how to pass from w to w2 to w3 and finally on to wW , it 
will be useful to look at the pictures in Figure 41. I will now describe 
four sets of points, M 1, M2 , M3 , and Mw. In each case, the set of points 
can be thought of as lying between zero and one on the real number 
line, and each M j will be such that if we view it as an ordered set and 
abstract to form the ordinal number M I, we arrive at Wi. One may won
der how to fit an ordered set with ordinal number w2 in between zero 
and one on the real line, since the space available seems to be finite. The 
trick is based on Zeno's paradox: if you start out going from zero to 
one, but do it by first going halfway, and then going half the remaining 
distance, and then half the remaining distance, and so on . . . always 
going just half of what's left ... then it will take you omega steps to 
get there. This is basically what the first picture shows. 

The second picture is obtained by plugging a copy of the first picture 
into each of the spaces between points in the first picture. The third 
picture is obtained by plugging a copy of the second picture into each of 
the spaces between points in the first picture . . . . at least, this is what 
we would say if we think of w3 as being w2 • w. If, on the other hand, we 
think of w3 as being W· w2, then we would say that the third picture is 
obtained by plugging a copy of the first picture into each of the spaces 
between points in the second picture, thus obtaining w2 copies of w (as 
opposed to w copies of w2.) Both come to the same thing, since al-
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M" = {1 - 'I.n - '10m, -. . - '10m.: oeN & m" ... ,m._,.N & n < m, < ... < m. 
o 2 3 .. +1 .. ·2 .. ·3 .r ... ·2 .r OJ' .,. + •• • • • • • • • • • + 
--------------.. .. ~ ... 

(O) 

Figure 41 (A-D). 
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though ordinal multiplication is not commutative, it is associative. The 
fourth picture is obtained by first continuing the process started in the 
first three pictures endlessly . . . and then putting a copy of each of 
the pictures together. 

I have written next to each picture the real number coordinates of the 
points involved if we think of the interval as the unit interval on the real 
line. These set definitions are not particularly important for us, but what 
is important is to realize that a transfinite arrangement of points can be 
fitted into a finite space. By using Zenonian squeezing we can sort of 
see an ordering of type w2 all at once! Transfinite ordinals are not really 
so inconceivable after all. 

It turns out that one can actually fit any countable ordinal into a pic
ture of this nature. (In the next subsection we will look at the uncount
able ordinals.) But the illustration of w3 is already something of a mess, 
and had I not used the arrow symbolism, the picture of WW would be so 
lacking in detail as to be quite uninformative. We will look at a different 
technique for picturing ordinals shortly. 

But first let me describe just how far we want to go in this section. 
One way of characterizing w2 is that it is an ordinal a such that w + a = 
a. This can be seen by thinking of w2 as being w + w + w + w + .... 
Clearly, putting an "w+" in front of this symbol changes nothing. In 
point of fact, w2 is the /irst such ordinal. 

What about the first ordinal a such that w . a = a? If we take WW to be 
w·w·w·w ... , we can see that placing an "w·" in front of WW changes 
nothing. Or, assuming that the familiar laws of exponents hold for ordi
nals (and they do), we can reason that w ·WW = w1·ww = w1+W = wW, 
since 1 + w = w. As before, it is possible to prove that WW is the /irst 
ordinal a such that w·a = a. 

The first ordinal a such that wa = a is called Eo, pronounced" epsilon 
zero." Simply by manipulating symbols, we would expect that Eo has the 
following form: 

w 
w 

w 
w 

Evidently, putting such a symbol in the exponent posltlon over an 
omega does not change anything, since a stack of omegas 1 + w high is 
the same as a stack w high. 
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But we can describe epsilon zero a little better. Suppose that ab is de
fined to mean "an exponentiated stack of a many b's." ab is pronounced, 
"b tetrated to the a." The name tetration is used since tetra is the Latin 
root for jour, and tetration occurs in fourth place in the logical 
progression: addition, multiplication, exponentiation, tetration. You 
don't ordinarily hear much about tetration because it is so powerful an 
operation that tetrating even very small numbers with each other pro
duces inordinately large numbers. A tetration is worked out below. 

42 = 2(2(2'» 

= 2(24 ) 

= 216 

= 64,536 

Note that we must be careful to associate from the top down, rather 
than from the bottom up, if we want to get the largest possible num
bers. 

As further examples, 33 is 3(33 ) = 327, which is just under eight tril
lion. 310 is 10(010 ) = lObillion, which is the number that is written by 
putting a one and then ten billion zeros (as opposed to, say, a million, 
which is written by putting a one and then six zeros. Now, 2W is just WW. 

And 3W = w<w">, which is kind of hard to get at. One way of visualizing 
this number is to go back to the picture of WW , and to imagine replacing 
each of the dots on the line by the symbol "w·" to get the product of 
wWomegas. 

In any case, the point of all this is that €o is Ww. And the countable 
ordinals don't stop there. If, for instance, one could make some sense of 
the following symbol one would have an even larger ordinal. 

In trying to think of bigger and bigger ordinals, one sinks into a kind of 
endless morass. Any procedure you come up with for naming larger or
dinals eventually peters out, and the ordinals keep on coming. Finally, 
your mind snaps, and maybe you get a momentary glimpse of what the 
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Absolute infinite is all about. Then you try to formalize your glimpse, 
and you end up with a new system for naming ordinals . . . which 
eventually peters out. . . .5 

But this WW is just the beginning. Let us look at a different type of 
picture of WW. Suppose that we let PN be the set of all polynomials in x 
with natural number coefficients. Examples of members of PN would 
be x, x + 3, 5x2 + 2x + 4, 3X 8 + 6x3 + 163. Now, suppose that given 
two polynomialsp(x) and q(x) from PN, we define the following order 
relation: P(x) < bep q(x) if and only if the graph of the polynomial q 
eventually manages to get above, and stay above, the graph of the poly
nomial p. (The letters "bep" stand for "by-end-pieces. ") 

35 

30 
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15 
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2 

Figure 42. 
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The reason I have brought all this up is that if we take PN with the 
<bep ordering, then the ordinal number PN of this ordering is WW. The 
correspondence is simplicity itself: the polynomial p(x) represents the 
transfinite number P(w) (with the one stipulation that the coefficients of 
the polynomial must be moved to the right in the translation process 
that is, 3X2 + 2x is to correspond to w2• 3 + W' 2). 

In Figure 42 I have illustrated the fact that 0 < bep 1 < bep2 < bepx 

+ 1 < bep2x < bepX2 < bepX2 + X < bep2x2 < bepX3 < bepXx < bep 3X , 

where 3X means x tetrated to the three, x<XZ). 
Strictly speaking <bep has only been defined for polynomials, but it is 

e~ident how we can extend it to arbitrary expressions or functions in x. 
If we allow tetration as a standard operation and let PPN be the set of all 
pseudo-polynomials formed by using natural number coefficients and 
tetration, as well as exponentiation, then it is not difficult to see that 
PPN is Eo when PPN is ordered by <bep. An example of a pseudopoly
nomial from PPN would be (5X) + 2(3X)4 + 7(3x) + ex)8 + 13(2x)2 + 
llex) + 3X7 + 9X3 + 2x + 78. Note that Xx represents Eo. 

Figure 43. Ziggurat to w2 • 
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The by-end-pieces ordering was first studied by DuBois-Reymond, 
whose work is interestingly presented in G. H. Hardy's book, Orders 0/ 
Infinity.6 Felix Hausdorff improved upon Reymond's techniques in his 
monumental series of papers, "Untersuchen uber Ordnungstypen," in the 
early 1900s. The term "by-end-pieces ordering" is taken from Kurt 
Godel, whose research revived interest in this ordering in the 1960s.7 

We could really restrict our attention to functions from the natural 
numbers into the natural numbers. It is amusing to represent ordinal 
numbers as stacks of such functions, filling in the lines between graph 
points in the natural way. In order to make the pictures look nice, you 
leave out parts of the lines to avoid crossings. I call these pictures "zig-

err· 2 
+ Cd· 2 

Cd" + Cd 

~~E.~ =:=~~~ 
===r----------------~~ 

o 
Figure 44. Ziggurat to w3 • 
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gurats" because they look like Babylonian towers or Aztec pyramids. 
Figure 43 is a ziggurat of height 002 , and Figure 44 shows one of height 
003 . In the latter I·· have not drawn in all the lines, so that it is not so 
confusing. In every case, the missing line is a line that would hug the 
line right underneath itself as closely as possible. 

THE ALEFS 

The famous mathematician David Hilbert used to illustrate his popu
lar lectures with stories about a hotel with infinitely many rooms.s This 
mythical hotel, usually called Hilbert's Hotel, is supposed to have 
omega rooms: Room 0, Room 1, Room 2, ... ,Room n, and sO on. 
As in the last section, it is convenient to start counting with O. 

To fix the ideas, I have drawn a picture of Hilbert's Hotel in Figure 
45. In order to fit it on the page, I have assumed that each floor is 
equipped with a science-fictional space condenser, a device that makes 
each succeeding story two-thirds as high as the one before. The shrink
ing field also affects the guests. Thus, although the ceilings on Floor 3 
are only two or three feet high, the space condenser on that story 
shrinks the guests to one or two feet, and they are perfectly comfort
able. I will leave it as an exercise for the reader to check that if the first 
floor is ten feet high, and each successive floor is two-thirds as high as 
the one before, then the total height of the hotel's 00 stories is thirty 
feet. 

One of the most paradoxical things about Hilbert's Hotel is that even 
after it fills up, more and more people can be squeezed in, without mak
ing anyone share a room! Say, for instance, that 00 guests have arrived, 
and every room is occupied with a guest n in each Room n. Now, say 
that one more guest arrives: Guest oo. How to fit him in? 

G,,,,. l~~~ e 
Room # ® CD 0 .. ·· 

w + 1 Guests in w Rooms 

Easy! We put Guest 00 in Room 0, which is emptied by moving Guest 
o to Room 1, which is emptied by moving Guest 1 to Room 2, which is 
emptied by ... 

Fine! But what if there had been an infinite number of new guests? 
Even such a procession of 00 + 00 guests could be lodged in Hilbert's 



o 

Individual Guest Number: 0, 1, 2, ... w 
Total Number of Guests:' cd "+'1 

Figure 45. 
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Hotel. We simply put the first w guests in the even-numbered rooms, 
and the next w guests in the odd-numbered rooms. 

Guest II 

Room # CD·· . 
Guest II 

Now it is in fact possible, by suitable rearrangements, to fit w2 , wW , or 
even Eo guests into Hilbert's Hotel. But eventually we do reach a limit 
to this wonderful hotel's powers of absorption: aiel-one, also known as 
Xl' Alef-one is a hard number to describe. One way of putting it is that 
alef-one is the first ordinal number a such that no possible rearrange
ment can fit a set of a guests into w rooms. Alef-one represents an order 
of infinity that is essentially greater than w in a way that w + w is not. 

To get a better idea of alef-one, let's go back to the idea of people 
climbing a mountain as high as all the ordinals. How hard will it be for 
them to get to alef-one? 

We will assume that, in the marvelous land where Mount On rises, 
the climbers can attain any desired finite speed. Then, as we mentioned 
at the beginning of the "Transfinite Numbers" section, they can scale the 
infinity of cliffs leading up to w in a finite time. If they keep accelerating 
so that the nth cliff only takes 1/2n hours, then they reach w after two 
hours. By repeating this they could reach w + w in four hours, or, if 
they did everything four times as fast, they could actually get to w + w 
in one hour. Turning to Figure 46, we can see how our climbers could 
even reach w2 in one hour. The idea is to devote to each of the w2 cliffs 
the alIa ted finite interval of time. (Thus, for instance, the stretch be
tween w' 2 and W' 2 + 1 is to be covered during the time interval be
tween 3/4 hour and 13/16 hour.) 

Now, the point I want to make is that these climbers could never 
reach alef-one. There is no way that we can fold together various finite 
bursts of speed and cover alef-one cliffs in a finite amount of time. The 
only way to get out to alef-one is by actually going ahead and travelling 
alef-one miles per hour. 

One last picture of alef-one. Go back to Figure 42. In this picture we 
saw how various ordinals can be represented as sequences of functions 
ordered according to steepness (the <bep ordering). How long a se
quence of functions can be found with each function steeper than all the 
ones before? At least alef-one. That is, if S is a set of functions so that 



Figure 46. 
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for every g (no matter how steep), there will be anf in S that is steeper, 
then S must have at least alef-one members. 

It is now time to give a formal definition of alef-one. This definition 
hinges upon the notion of cardinality. Given two ordinals A and B, we 
say that A has the same cardinality as B if there exists a one-to-one map 
from A onto B. (When I speak of a map from A onto B, I really mean a 
map from the set of ordinals less than A onto the set of ordinals less 
than 8.) 

In our discussion of Hilbert's Hotel we learned, for instance, that 
w + w has the same cardinality as w. For there is a way of matching up, 
in a one-to-one fashion, the members of {O, 1, 2, . . . w, w + 1, 
w + 2, ... } with the members of {O, 1, 2, ... }. That is, there is a 
one-to-one map from w + w onto w. Now, alef-one is defined to be the 
first ordinal with cardinality greater than w. Alef-one is the first ordinal 
that cannot be mapped one-to-one onto w. 

In general, we say that the ordinal number A is a cardinal number if 
and only if A does not have the same cardinality as any B less thanA. All 
of the natural numbers are cardinals. There is, for instance, no way to 
find a one-to-one map from three onto two. (Keep in mind that we com
monly identify the number N with the set {O, 1, . . . , N - 1} of N 
numbers less than N.) 

3:cr cp 
2:@ CD 

Not from all of 3. Not one-to-one. 

w is, of course, a cardinal number. The infinite number w cannot be 
mapped one-to-one into any of the finite numbers before it. No finite 
hotel, no matter how large, can sleep infinitely many guests one to a 
room. 

The infinite cardinals are also called a/e/s. In general, alef-a, or Xa , 

means the ath infinite cardinal. Thus, alef-null, or Xo, is just w, the first 
(Oth) infinite cardinal. It turns out that just as we can always find more 
ordinals, we can always find more cardinals. After Xo come Xl, X2 , X3 , 

. . . Xw , Xw+1, • • • Xw .. , • • • Xx!, . . . Xx"" . • . , and so on. After 
a while we can even find a number () such that () = XB • One way of get
ting such a () is indicated below. 
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(J=~ 

Is this the end? It's never the end, when you're discovering transfinite 
numbers. After (} come ~8+1' ~8+w, ~8 + ~w, and so on and on, world 
without end. 

According to the Reflection Principle, it is impossible ever to con
ceive of an end to the ordinals. We do have a symbol 0, the big Omega, 
which we use to stand for the Absolute Infinity that lies beyond all the 
ordinals. But 0 is inconceivable. The Reflection Principle makes this 
precise by saying that any description D of 0 that we might come up 
with will apply to some ordinal a short of O. 

o is called Absolute Infinity because it is not a relative notion. The 
line of ordinals leading out to 0 contains all the ordinals, all the possible 
stages of counting. It is because every possible ordinal occurs before 0 
that n is not really a definite ordinal number. Confusing talk! If you 
would like to read more about 0 and the transfinite numbers plan to 
take Excursion I. 

INFINITESIMALS AND SURREAL NUMBERS 

The best-loved ofZeno's paradoxes is the one that states that you can 
never leave the room you are in. For, Zeno reasons, in order to reach 
the door you must first traverse half the distance there. But then you 
are still in the room, and to reach the door you must traverse half the 
remaining distance. But then .... 

Chair ~ ,..---.. -. Door 

I I I I·· ·1 
Figure 47. 

What exactly is paradoxical here? The problem seems to be that we 
can analyze the passage from chair to door in two ways. First, in the nor-
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mal way, as a unit, a single undivided action, as a 1. Second, as the limit 
of an infinite sequence of actions, as the sum of a series (l/2 + 1/4 + 
1/8 + ... ). The modern tendency is to resolve Zeno's paradox by in
sisting that the sum of the infinite series 1/2 + 1/4 + 1/8 + ... is equal 
to 1.9 One then goes on to add that since each of the successive steps is 
done in half as much time, the actual time taken to complete the infinite 
series is no different from the real time taken to leave the room. 

But still . . . there is some residue of dissatisfaction. The feeling is 
that if you just keep halving the distances you never really get to the 
door. You may get arbitrarily close, but you never quite reach the limit. 

The paradox can be expressed in a different way. In our ordinary real 
number system, we say that the number K with decimal expansion 
.99999 is the same as 1. An informal argument for this is sketched 
below. 

10K = 9.999 . 
K = .9999. 

9K = 9 
K=1 

But maybe this argument is misleading. What if there is some number, 
call it 1 - 1ill), that is greater than any finite string.9 ... 9 of nines, 
yet less than 1? If K were actually equal to 1 - 1ill), the informal ar
gument used in the last paragraph would not work, for this argument 
overlooks the fact that the difference between 10K and 10 is ten times 
as great as the difference between K and 1. There is a residual infinites
imal quantity below that does not get canceled out. 

10K = 10 - IO/w 
K = 1 - l/w 

9K = 9 - 9/w 
K = 1 - l!w 

Intuitively, nothing could be more natural than to go ahead and talk 
about 1iw, 1/l'\1, and so on. Just as we move from the natural numbers 
to the fractions and then on to the reals, should we not be able to move 
from the whole ordinal numbers to some richer number field? 

Curiously, Cantor himself was very much opposed to this step. When 
a fellow mathematician attempted to use Cantor's transfinite numbers 
to develop a theory of infinitely small quantities, Cantor accused him of 
trying to "infect mathematics with the Cholera-Bacillus of infinitesi
mals."l0 Cantor even constructed a proof that no number can be infini-
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tesimal. This proof, however, is just as circular and worthless as finitist 
attempts to prove that no number can be infinite. In both cases, the de
sired conclusion is smuggled in as part of the definition of "number." 

Why was Cantor so vehemently opposed to infinitesimals? In his val
uable essay, "The Metaphysics of the Calculus," Abraham Robinson 
suggests that Cantor already had enough problems trying to defend 
transfinite numbers.ll It seems likely that, consciously or otherwise, 
Cantor deemed it politically wise to go along with orthodox mathemati
cians on the question of infinitesimals. Cantor's stance might be com
pared to that of a pro-marijuana Congressional candidate who advo
cates harsh penalties for the sale or use of heroin. Yet, as we shall see, 
there is almost as much justification for infinitesimals as there is for 
Cantor's transfinite ordinals. 

Formally speaking, it is as consistent to say that there is a number be
tween all of .9, .99, .999, ... and 1 as it is to say that there is a num
ber greater than all of 1,2,3, .... And just as we go on to find more 
and more ordinals piled atop one another, we can go on to find more 
and more infinitesimals squeezed beneath each other. 

Part of the great attractiveness of Cantor's theory stems from the fact 
that all of his transfinite numbers can be seen as steps towards the single 
Absolute Infinity that lies beyond them all. Indeed, as I have mentioned 
before, modern formalizations of set theory often proceed by introduc
ing a symbol n for Absolute Infinity and by then assuming the Reflec
tion Principle: every conceivable property of n is shared by some ordi
nalless than n. Thus, for instance, since we know that n is 

0,1,2, 
Reflection 

0,1,2, 

greater than all the finite numbers n, we know by Reflection that there 
must be some existing ordinal, call it w, that is also greater than all the 
finite n. 

The Reflection Principle is really a different way of saying un is in
conceivable." For "n is inconceivable" is the same as "there is no con
ceivable property P that uniquely characterizes n," and this is the same 
as "whenever P is a conceivable property of n, then there must be other 
ordinals also enjoying property P." n can never be the first whatever, 
just as it can never be the only whatever ... whatever whatever may be. 

To sum up, we justify Cantor's transfinites from the two assumptions: 
i) there is an Absolute Infinity, n; ii) n is inconceivable. 
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A skeptical reader could, quite rightly, demand to know how it is pos
sible to discourse rationally about an inconceivable object like n. I 
would respond that n is a given, an object of our immediate pre-rational 
experience. And to use the tools of symbolic logic to investigate an em
pirically existing phenomenon is not to commit a category mistake, any 
more than it is a categorty mistake to look at living cells through the 
inanimate lenses of a microscope. 

We have a primitive concept of infinity. This concept is inspired, I 
suspect, by the same deep substrate of mind that conditions religious 
thought. Set theory could even be viewed as a form of exact theology. 
By means of the set-theoretic analysis of Absolute Infinity, we attain 
knowledge of many lower infinities-the transfinite ordinals and cardi
nals. 

I wish now to call the reader's attention to a different sort of absolute: 
Absolute Continuity. Perfectly continuous space. 

The basic intuition about an Absolutely Continuous line is that such a 
line cannot be conceived of as a set of points. Zeno expresses this intui
tion in his paradox of the arrow. 12 The paradox of the arrow seems to 
constitute a proof that space is not made of points. For, Zeno argues, 
consider an arrow that flies from the bow to the target. If space is made 
up of points, then the flight of the arrow can be decomposed into an 
infinite set of frozen movements, movements where the tip of the arrow 
successively occupies each of the points between bow and target. The 
problem is that while the arrow is at anyone fixed point, say the halfway 
point, the arrow is motionless. How can the flight of the arrow be a se
quence of motionless stills? Where did the motion go? 

.49 .50 . 51 .52 •... 

Figure 48. 

A movie of an arrow's flight is, of course, a sequence of motionless 
stills. But this does not disturb us, as we realize that the arrow moves in 
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between the pictures. The problem Zeno raises is that if space is made 
of points, and if a still is taken at each point, then there is no possibility 
of "moving between the pictures" ... because there is nothing between 
the pictures. 

Zeno's way out of the paradox is to deny that space is really made up 
of points. As a Parmenidean monist, Zeno viewed space as an undivided 
whole that cannot really be broken down into parts. We can find scat
tered locations in space, but space is always more than the sum of these 
isolated points. One can pick out higher and higher infinities of points 
from an Absolutely Continuous tract of space, but there will always be a 
residue of leftover space, of continuous little pieces, infinitesimal inter
vals over which the actual motion takes place. 

This view of space has been held by several philosophers since Zeno, 
notably C. S. Peirce and, perhaps, Kurt G6del. G6del distinguishes be
tween the set of points described in set theoretic analysis and the con
tinuous line of space intuition: "According to this intuitive concept, 
summing up all the points, we still do not get the line; rather the points 
form some kind of scaffold on the line."13 

Peirce goes further than this. According to him, a truly continuous 
line is so richly packed with points that no conceivable set, no matter 
how large, can exhaust the line. There should not just be one point be
tween all of 1/2,2/3,3/4, 4/5, Sis, ... and 1. There should be w points, ~1 
points, Absolutely Infinitely many!14 

The early set theorist Felix Hausdorff demonstrated the logical possi
bility of such an Absolutely Continuous ordering. Hausdorff's con
struction goes as follows. We are to imagine a superdictionary of a very 
special sort: i) All the words in Hausdorff's dictionary will be spelled 
using only As and Bs. ii) Each word will be of Absolutely Infinite 
length, with one letter for each ordinal. iii) Each word must end with 
the letters BAAAAA . . . ,with, that is, a single B leading off an Ab
solutely Infinite tail of AS.15 

Now, if we arrange Hausdorff's dictionary of words in alphabetical 
order, we get an ordering so dense that between any two successive sets 
of words there is room for more words. You might expect 
AAAA . . . to be the first word in the dictionary, but this is not an 
allowable word. By rule iii, every word must have a last B before its 
final string of As. So is BAAA ... the first word? No. 
ABAAA ... comes first. And between these two comes, of course, 
ABBAAA. . . . In order to describe some of the longer words I will 
write A'JJ and B'" to mean strings of w As and Bs, respectively. 
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A"'N'BAAA .. 
A"'BAAA .. . 
AABAAA .. . 
ABAAA .. . 
ABBAAA .. . 
AB"'BAAA .. 
BAAA .. . 
BBAAA .. . 
B'" A "'BAAA . 
B"'ABAAA .. . 
B"'BAAA .. . 
B"'BBAAA .. . 
B"'B"'BAAA . . . 

1/(fIJ + fIJ) 

l/fIJ 
1/. 
l/Z 

3/4 

1 - l/fIJ 
1 
2 
fIJ/2 
fIJ-l 
fIJ 

fIJ+l 
fIJ+fIJ 

83 

Exhibited above are some of the words in Hausdorff s dictionary, 
along' with more customary number names that are appropriate for 
where these words appear. These number names are expressive, but ba
sically a bit unjustified, as we do not have in our hands a definition for 
how to add and multiply these words like numbers. 

But quite recently, the English mathematician and puzzlistJohn Hor
ton Conway has discovered an Absolutely Continuous class of numbers 
that do have a simply defined addition and multiplication. Conway's 
new numbers are called the class of surreal numbers, or simply No.16 

Conway speaks of his numbers as being "born" on an endless suc
cession of days, one day of creation for each ordinal. In general, on the 
ath day, new numbers are placed in all gaps between successive sets of 
surreal numbers born on earlier days. In Conway's ingenious system 
one can write down and manipulate virtually any wild number one 
might think of: 

or what have you. He even gets a definition of the traditional symbol 00, 

for potential infinity. 00 is defined as the gap between the finitely large 
and the infinitely,.!arge surreal numbers, and Conway derives the weird 
equation, 00 = V co, which almost magically ties together potential infin
ity 00, the simplest actual infinity cu, and the Absolute Infinite O. 

Although Conway's surreal numbers are aesthetically pleasing and 
philosophically significant, they have not attained any wide usage 
among more practically minded mathematicians. One problem could be 
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Figure 49. From]. H. Conway, On Numbers and Games (Academic Press, 1976), p. 11. 
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that it is hard to define the higher-order operations (such as exponentia
tion and tetration) correctly on the number field No. 

Instead of using the surreal numbers, those mathematicians who need 
infinitesimals use a smaller, and somewhat different, extension of the 
reals, the so-called hyperreal numbers. These numbers, also known as 
non-standard numbers, were systematically introduced by Abraham 
Robinson in the 1960sY 
Conw~s numbers are introduced as "gaps" between pairs of sets. 

Thus, vru is (0, 1, 2, ... 1 ... ru/4, ru/2, ru) and, more obviously, 
l/ru is (0 I ... 1/4, 1/2 , 1). Robinson's hyperreal numbers are best 
thought of as sequences of reals. Thus, a hyperreal is a functionf from 
the set N+ of positive natural numbers (N-f. = {t, 2, 3, ... }) into the 
set R of real numbers. 

This is convenient, since all of the operations on the ordinary reals 
can be carried over in a "pointwise" fashion to the functions that we call 
hyperreal numbers. Thus, f + g is the sequence such that f + g(n) = 
f(n) + g(n), andfo is defined by fO(n) = /(n)D<n). 

As was already mentioned in the "From Omega to Epsilon-zero" sub
section, we can order such functions by-end-pieces:f < bepg means that 
the graph off eventually gets under, and stays under, the graph of g. 

Figure 50 is a drawing of some of the functions representing hyper
real numbers. Notice that "1/ru" is given by the function l(n) = l/n. 
Any standard real number r will be represented by a constant function 
cr(n) = r. It is easy to see that for any positive real r we will have 
Co < bepI < bepcr , which is to say that I represents an infinitesimal. 

As is well-known, Newton and Leibniz used both infinities and infini
tesimals to develop the differential and integral calculus. They used the 
symbol "00" for infinity, and the symbol "dx" for an infinitesimal num
ber. To put a better face on things, Leibniz assured his correspondents 
that his 00 was merely a potential, or "syncategorematic," infinity. New
ton called his infinitesimal dx a "fluxion." 

Bishop Berkeley derided Newton's fluxions as "the ghosts of de
parted quantities," but the progress of infinitesimal analysis continued 
unimpeded throughout the eighteenth century. No one was quite sure 
it was all right to use infinities, but the process gave the right answers. 
As Jean Le Rond d' Alembert said, "Allez en avant, la foi vous viendra. JJ 

Finally, in the mid-nineteenth century, Weierstrass and others found a 
way to avoid the use of actual infinities in calculus.1s Let us briefly de
scribe the technique that was adopted. 

In calculus one discusses different sorts of calculation processes 
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Figure 50. 

C( , , ) whose outcome depends on what numbers are fed in. A typical 
use of infinitely large and infinitely small numbers is to say that for cer
tain real numbers a and b, the outcome of C(oo, dx, a) is b. Both the de
rivative and the integral are defined in this way: as calculations that ac
cept a real number (or numbers) and some infinitely large and/or small 
numbers as input, and that then give some definite real number as out
put. 

Weierstrass's technique was to replace a statement such as "C(oo, dx, 
a) = b" by "if we take I to be a large enough real number, and i to be a 
small enough real number, then the value of C(l, i, a) will be very close to 
b." By letting I grow and i shrink, one is supposed to be able to bring 
C (l, i, a) to within any desired degree of closeness to b. This is called the 
limit process. 
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Of course, if one believes in infinitely large and infinitely small num
bers, it is much simpler just to ask if C(oo, dx, a) equals b. But so great is 
the average person's fear of infinity that to this day calculus allover the 
world is being taught as a study of limit processes instead of what it really 
is: infinitesimal analysis. 

As someone who has spent a good portion of his adult life teaching 
calculus courses for a living, I can tell you how weary one gets of trying 
to explain the complex and fiddling theory of limits to wave after wave 
of uncomprehending freshmen. 

I often think of C. H. Hinton's words from a similar context: 

"How pleasant it would be to let pass away some of that verbiage I learnt 
at school-learnt because teachers must live, I suppose. The apeing and 
prolonged caw called grammar, the cackling of the human hen over the 
egg of language-I should like to unlearn grammar."19 

But there is hope for a brighter future. Robinson's investigations of 
the hyperreal numbers have put infinitesimals on a logically unimpeach
able basis, and here and there calculus texts based on infinitesimals have 
appeared.20 

HIGHER PHYSICAL INFINITIES 

Suppose that our universe were, in fact, more than w miles in diam
eter. Could you ever travel a transfinite number of miles from Earth? 

This would be possible, assuming you had the ability to accelerate up to 
any speed short of the speed of light (some. 7 billion miles per hour). 
The technique hinges on Einstein's Special Theory of Relativity. As you 
travel closer and closer to the speed of light, your own time runs slower 
and slower relative to the rest of the universe. By a suitable accelera
tion, you could travel, say, w billion miles in what feels like four hours. 

The first billion miles (done at about .4 the speed of light) would 
seem to take two hours. The next billion miles (done at about .6 the 
speed of light) would take only an hour of your time. The third billion 
(done at .7 the speed of light) would take you only half an hour. And so 
on. After four hours you would be past milestone w. 

In my novel, White Light, I describe such a journey from the view
point of a massless soul and spirit who is able to accelerate himself end
lessly by some obscure force of will. Let me reprint the description of 
his journey, purponedly made with a fellow spirit named Kathy: 
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The first part of the trip was dull. Although we were accelerating stead
ily, it still took an hour to get out of the solar system. And then we had an 
hour and a half of vacuum till the next star. 

About three hours into our trip it began to get interesting. Objectively 
we were doing about. 7 the speed of light. Because of our distorted time 
and length standards, it felt like we were doing three times that. Weird 
relativistic effects began setting in. 

It seemed like we were looking out of a cave. All behind us and on 
both sides of us there was the dead absolute nothing called 'Elsewhere' in 
relativity theory. The stars had somehow all scooted their images around 
to in front of us. We accelerated harder. 

The thousand light-year trip across the galaxy only seemed to take half 
an hour. But what a half-hour. I would be looking out our speed-cone at 
the vast disk of stars that lay ahead of me . . . most of them clinging to 
the edge. Slowly one of the stars would detach itself from the clustered 
edge and accelerate along a hyperbolic path towards the center, then, 
ZOW, it would whip past us and go arcing back Out to the edge of our 
visual field. 

There was a pattern to the flicker of passing stars, and I began to get 
into it. It was like listening to the clicking of train wheels. Everything but 
the swooping pulses of light faded from my attention. I pushed to make 
the flickering come faster. 

There were patterns to the flicker . . . star clusters . . . and as we 
accelerated more I began to see second and third order patterns. Sud
denly the stars stopped. We were out of the galaxy. 

Our visual field had contracted so much that I felt myself to be looking 
out of a porthole. There was dark on all sides and I knew fear. My back 
was a knot of pain, but I drove myself to accelerate more and more, to 
make the porthole smaller. 

A few squashed disks of light tumbled out from infinity and whizzed 
back. Then more and more came twisting past. Galaxies. I felt like a gnat 
in a snowstorm. We flew through some of the galaxies. Inside was a 
happy blur. We were going much too fast to see the individual stars hur
tle past. 

We pushed harder, harder. We hit a galaxy every few seconds now, 
and as before I began to detect higher-order patterns in the stroboscopic 
flicker. 

From then on that was all I could see . . . a flicker which would build 
and build to an almost constant flash, abruptly drop in frequency, and 
then buiIc. again. At the end of each cycle we reached a higher level of 
clustering alld the light became brighter. 

I was on the ragged edge of exhaustion. The strobing was building cas
tled landscapes in my mind. My lucidity was fading fast as I stared into 
the more and more involuted blur of light before me. I tried to make it 
come faster. 

There was still a certain depth to the pattern of light ahead of us, but I 
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noticed that the harder I pushed the acceleration, the shallower and more 
two-dimensional the scene in front of me became. I concentrated on flat
tening it out. 

The energy to push no longer seemed to emanate from me or from 
Kathy. It was as if I were somehow ram-jetting the incoming light right 
through us . . . applying only a certain shift of perspective to move us 
even faster. 

With a final effort we turned the universe into a single blinding point 
of light.21 
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I have reprinted such a long excerpt so as to make the idea of travel
ling out past infinity feel a bit more natural. Of course, actually to do 
such a trip in a real, and massive, spaceship would require an infinite 
amount of energy. But this could perhaps be taken care of by scooping 
in star after passing star for fuel! 

A side effect of using relativistic time dilation to travel w miles is that 
one would finish the trip not only w miles away from earth, but also w 
years in the future. The concept of a transfinite cosmic time scale has 
appeared in some modern astrophysical discussions. In particular, it has 
been predicted that if one were to fly at a rotating black hole, one would 
bounce off and land w years in the future-in, effectively, a different 
universe.22 

A different method of achieving very high physical infinities in the 
large is to postulate the existence of many parallel universes. Indeed, if 
our universe is determined by Xo bits of information, and if every possi
ble universe exists, then there must be at least Xl other universes. Hugh 
Everett's notorious Many-Worlds Interpretation for quantum me
chanics postulates a situation like this. One difficulty for the doubting 
Kantian is that it is, in principle, impossible to detect the other parallel 
worlds. 

The idea of one universe that lasts Xl years is about the same as the 
idea of Xl universes that last w years each. In either case, one has to do 
something very extraordinary to break out of the particular space-time 
one starts in. Whether one calls this extraordinary action "travelling in
finitely far into the future" or "jumping to a parallel time-stream" is, 
perhaps, only a matter of taste.23 

What about higher infinities in the small? As is discussed in Excursion 
I, Cantor proved in 1873 that mathematical space contains at least Xl 
points. So, if our physical space is actually rich enough so that every real 
number (such as 3.14159 ... ) represents a distinct point in space, 
then there are at least Xl points in space. Whether mathematical space 
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might contain more than ~1 points is still an open problem: the Contin
uum Problem. 

Assuming that our physical space is, in fact, the same as mathematical 
space, Cantor was led to a very strange speculation: that matter-objects 
and aether-objects are made up of, respectively, ~o and ~1 "atoms" each. 
Let us see how he arrived at this position.24 

Cantor believed that since any tiny ball-type atom can be cut in half, 
the ultimate constituents of matter must be point-sized objects, which 
he called mass-monads. (The word "monad" is taken from Leibniz, who 
in his Monadology describes the universe as a collection of simple and 
indivisible monads acting in harmony.)2S Cantor held that any piece of 
matter is made up of ~o mass-monads, packed densely together like the 
rational numbers on the number line. 

In Cantor's time it was widely believed that there is another funda
mental substance besides matter: aether. Cantor did not regard the 
aether as an all-pervading substance filling all of space. He believed, 
rather, that the aether is clumpy, and that such phenomena as light, 
heat, electricity, and magnetism could be explained in terms of tendrils 
and globs of aether. 

In so far as aether should be a finer and subtler substance than matter, 
Cantor proposed that each chunk of aether is made up of ~1 aether
monads. Thus, mass is thought of as something similar to a heap of sand, 
a congeries of bright dots, while aether is like water, a continuous sub
stance that can trickle through the infinitesimal interstices in matter. 

Can anything be made of Cantor's theory? Present-day science has no 
need of aether, or of any other higher types of matter. But something 
may yet come of Cantor's theory. Peirce, for instance, has suggested 
that the mind-body problem might be solved by regarding the human 
mind as being able to act on Cantorian aether-objects. Perhaps we have 
ectoplasmic souls, each made of ~1 aether-monads! 

Infinities much larger than ~1 could occur in the small, if space were 
to be Absolutely Continuous in the sense discussed in the previous sec
tion. It is hard to imagine ever observing such nested infinitesimals, but 
some useful theory, with observable consequences, may find its theo
retical foundations in Absolutely Continuous space. Or it could be that 
particles can be viewed as singularities of varying transfinite order. 
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PUZZLES AND PARaDOXES 
(Answers on page 297) 
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1. Describe how you would organize your time so as to travel w + w miles in 
one hour. 

2. Let a be some real number between -1 and 1. Consider the sum S of the 
geometric series given by the equation S = 1 + a + a2 + a3 + 
... Prove that S is 1/(1 - a) by multiplying both sides of the defining 
equation by a, and by then subtracting the new equation from the old. 
Test the formula out on a = 1/2, - 1/2, 1/3 , 2/3 , and .1. What happens for 
a = 1, - 1, or 2? 

3. How exactly would you fit W'W guests into the w rooms of Hilbert's 
Hotel? 

4. Consider the guest register at Hilbert's Hotel. Each page holds only fini
tely many names, and new arrivals must always sign in at the next available 
space. How many pages must the register have so that as long as guests can 
still be squeezed into the hotel (possibly by rearranging them), there is 
still room for the signatures of the new arrivals (without rearranging)? 

5. In his short story, "The Book of Sand," Jorge-Luis Borges describes an 
infinite book that i) has no first or last page.26 The book is written in a 
foreign alphabet, but includes illustrations on some of the pages. The nar
rator in the story observes that ii) each page of the Book of Sand has a 
different, apparently random, natural number in the corner. He also re
ports that iii) "The small illustrations, I verified, came two thousand pages 
apart." What type of ordering would the pages of this book resemble? 

6. What is the difference between Nl . wand W' Nl ? 
7. We say the ordinal number a is even, if for some ordinal b, 2· b = a. Is w 

even? Is w + 4 even? 
8. The ordinal number a is said to be regular, if a cannot be written as the 

sum of less than a numbers, all of which are less than a. w is regular since it 
is not the sum of finitely many finite numbers. w + w is not regular since it 
is the sum of two (which is less than w + w) numbers (wand w) less than 
w + w. Ten is not regular since it is the sum of less than ten numbers less 
than ten, (say 3 + 5 + 2, or 9 + O. Is Nl regular? Only three of the finite 
natural numbers are regular. Which are these numbers? 

9. Points in the usual Cartesian plane are given as pairs (x, y) of real num
bers. Let the points in the Dehn plane be given as pairs (x, y) of finitely 
large surreal numbers.27 (Infinitely small numbers allowed, but infinitely 
large numbers excluded.) Show that Euclid's Fifth Postulate fails in the 
Dehn plane-that is, show that there are many straight lines through (0, 1) 
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that do not intersect the x-axis at any finite point-and conclude that in the 
Dehn plane a line can have more than one "parallel" through a given point. 

10. A recent science-fiction novel states that the following is a law of nature: 
"Every string which has one end also has another end. "28 Is this necessarily 
true? 



CHAPTER THREE 

THE UNNAMEABLE 

This chapter discusses three famous logical paradoxes: the Berry 
paradox, Richard's paradox, and the paradox of the Liar. It is my con
tention that each of these paradoxes points to the existence of mental 
concepts that defy any exact formalization. Insofar as the human mind 
understands these paradoxes, it is in some sense infinite. 

The first section deals with the Berry paradox-a paradox having to 
do with the impossibility of ever explaining exactly how we use lan
guage. This paradox has certain implications about the limitations of 
man-made "thinking machines." 

The second section discusses a number of topics relating to Richard's 
paradox. In particular, we ask if there is, in heaven or on Earth, anything 
truly random-random in the sense of having no finite description, ran
dom in the sense of being infinitely complex. 

The "What is Truth?" section delves into the rich variety of problems 
coming out of the simple sentence: THIS SENTENCE IS NOT TRUE. 

THE BERRY PARADOX 1 

What is the biggest natural number you can think of? If your mind is 
infinite (as it may very well be), then you might insist that you can think 
of all the natural numbers, so I'd better change the question to this: 
What is the biggest natural number that you can describe? On the one 
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hand, it seems that there can be no greatest number G that you can de
scribe . . . for if you can talk about G, then why shouldn't you be able 
to talk about G + 1, G + G, G 'G, and GG? On the other hand, it 
seems that there must be some limit to the sizes of the natural numbers 
that you can describe . . . for whether or not your mind is really infi
nite, you certainly will not specifically mention each of the natural num
bers in your lifetime. 

This last fact seems at first to provide a way out of the dilemma posed 
by the question of what is the largest number I personally can describe. 
The fact is that I might once discuss some number G, but then die be
fore ever getting around to mentioning G + 1, so it is not, after all, true 
that if one can talk about G, then one can invariably talk about G + 1 as 
well. But what about talk like this: "Let 110 be the smallest natural num
ber that I will never name," or "Let W be the smallest natural number 
that is greater than every number that I will ever name." Can it be that 
these phrases are not really names? But who can deny that the numbers 
110 and W actually exist, even though their precise values will not be 
clear until I die? 

There is a realm of natural numbers that can be humanly described, 
and beyond a somewhat variable transition point, there lies a whole 
other realm of natural numbers that cannot be singled out by any de
scription that is short enough to be humanly comprehensible. It is these 
unnameable natural numbers that are of interest here. 

There is, of course, a sense in which any natural number has a name 
-the base ten positional representation we are so familiar with. But for 
you or me, something like 543 ... 784 cannot really serve as a de
scription of a number if the" . . . "stands for a random string of digits 
stretching from here to the other side of the galaxy. 

To make our original question less subject to individual variations, 
we will ask it about a general person rather than about you specifically; 
to make the question more precise, we will require our descriptions to 
be less than one billion words long. Thus, the question now becomes: 
What is the biggest natural number that a person can be told of in less 
than a billion words? Actually, it is more interesting to phrase the ques
tion this way: What is the first natural number that cannot be described 
to a person in under one billion words? 

The reason I pick the limit of a billion words here is that I am about 
thirty-five, and I estimate that so far I have read some 300 million words 
and have heard some 200 million words, making a total of half a billion 
words. So a reasonably generous estimate of the number of words a per
son might absorb in a lifetime seems to be one billion. The point of my 
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question is: What is the smallest natural number that cannot be de
scribed to a person in words? 

Perhaps you have noticed that there is something fishy here. Assume 
there are indeed numbers that cannot be described to a person in words 
in the space of a lifetime; and assume that there is indeed a least such 
number, which we may as well call uo. Now, it looks as if I have just 
described a particular natural number called uo. But Uo is supposed to be the 
first number that cannot be described in words. 

Paradoxes are compact energy sources, talismans. Contemplating one 
of Zeno's paradoxes is like running your hand over some callipygous 
marble Aphrodite, or staring into a mandala. A good paradox can never 
be finally disposed of. The paradox touched upon in the paragraph 
above is a version of the problem of how we can talk about things that 
we cannot talk about. It was cast in the present form by an obscure li
brarian named G. G. Berry, who told it to Bertrand Russell, who put it 
this way: "'The least integer not nameable in fewer than nineteen sylla
bles' is itself a name consisting of eighteen syllables; hence the least in
teger not nameable in fewer than nineteen syllables can be named in 
eighteen syllables, which is a contradiction."2 The very existence of a 
paradox such as this can be used to derive some interesting facts about 
the relationship between the mind and the universe. No one has made 
such a derivation as boldly as Borges: 

"We (the undivided divinity operating within us) have dreamt the world. 
We have dreamt it as firm, mysterious, visible, ubiquitous in space and 
durable in time; but in its architecture we have allowed tenuous and ex
ternal crevices of unreason which tell us it is false."3 

Actually, since the paradoxes inhere in the very nature of rational 
thought, I don't think that "we" could have chosen to dream a world free 
of paradoxes. Rather than saying that the paradoxes indicate that the 
rational world is "false," I would say that they indicate that it is incom
plete-that there is more to reality than meets the eye. 

In order to reach a richer appreciation of what is involved in the para
dox of the first unnameable number, it is necessary to think a bit about 
how one goes about naming natural numbers. 

NAMING NUMBERS 

Imagine. Pursued by a tiny girl in a yellow dress, white ducks move 
deliberately across a green sward sloping down to stagnant brown 
water. How many ducks are there? 

It is surprisingly difficult to freeze and count the items in a mental 
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image. As soon as you muster the determination and mental clarity to 
focus on one part of the flock of ducks, the rest of them become hazy 
and variable. 

In Rene Daumal'sMount Analogue, the character Father Sogol (who is 
modelled on G. I. Gurdjieff) claims that we cannot really carry more 
than four things in the mind at once, and gives the following example: 

"I. I get dressed to go out; 2. I go out to catch a train; 3. I catch the train 
to go to work; 4. I go to work to earn a living . . . ; now try to add a fifth 
step, and I am sure that at least one of the first three will vanish from 
your mind."4 

The word "number" can be construed as meaning "that which makes 
numb." The point is that the assigning of numbers to things in the world 
replaces vibrant confusion with hard and immutable fact. For an idealist, 
the surprising thing is that it is possible even to begin to thus "numb" the 
world. That is, if one believes that the whole world is a dream, an illu
sion, an image in some Mind . . . if one believes this, then it is hard to 
account for the identity between the numbers that different people ex
tract from the world. If I go into the woods and count the branches on a 
particular dead oak that looks like a dinosaur, and if you do the same 
tomorrow, then our numbers will certainly agree. You can leave your 
home for fourteen years, and when you go back, your house is still the 
seventh on the right. The only way to account for the numerical identi
ties among the worlds you and I dream up must be that in some sense 
you and I are really the same person. 

But whether or not we are in some sense the same person, I still have 
to write the rest of this section, so I can read it and find out about the 
Berry paradox! The point I was just making is that we get some sort of 
hold on the world by assigning numbers to things. Now, the way in 
which we assign numbers to finite sets of things is by counting. In order 
to learn to count we memorize, during the first few years of life, a cer
tain sequence of sounds. To count a small collection you say the suc
cessive number sounds as you point once at each member of the collec
tion. The last sound you make is used as the name of the number, or the 
size or cardinality of the collection. 

Any well-remembered sequence could be used as a number list. The 
Greeks used the letters of their alphabet. If you liked you could use the 
names in your phone book or the verses of the Bible. In his story 
"Funes the Memorious," Borges describes a youth with a perfect mem
ory who invents a unique name for each of the first 24,000 numbers: 
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In place of seven thousand thirteen, he would say (for example) Maximo 
Perez; in place of seven thousand fourteen, The Railroad; other numbers 
were Luis Melian Lafinur, Olimar, sulpher, the reins, the whale, the gas, the 
caldron, Napoleon, Agustin de Vedia. In place of five hundred, he would 
say nine. . . . I tried to explain to him that this rhapsody of incoherent 
terms was precisely the opposite of a system of numbers. I told him that 
saying 365 meant saying three hundreds, six tens, five ones, an analysis 
which is not found in the 'numbers' The Negro Timoteo or meat blanket. 
Funes did not understand me or refused to understad me.5 
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As Borges points out, the drawback with unusual counting sequences is 
not only that they are hard to learn, but also that they are not based on a 
system which produces an unending supply of new names. 

The simplest system for naming numbers is the tally system. This sys
tem names the number n by a sequence of n strokes. Thus, the name of 
the number we normally call five would be / / / / /, or stroke stroke 
stroke stroke stroke. The first number not nameable by the tally system 
in less than one billion words is just stroke stroke stroke ... stroke 
stroke stroke, where I have left out 999,999,994 strokes so that there 
will be room for something else in my life. 

Our familiar number system is based on memorized names for the 
numbers / through / / / / / / / / /; an ingenious system based on powers of 
ten is used for larger numbers. There are, in principle, definite names 
for every number. In the United States the name of the number we 
write as a 1 followed by 3(n + 1) O's is called a (Latin for n )-illion. Thus, 
if we have a 1 followed by 12 O's, then we have a trillion, since 12 = 
3(3 + 1) and Latin for three is trio The number consisting of a one fol
lowed by 1000's is frequently called a googol, but it could also be called 
ten duotrentillion, since 100 = 1 + 3(32 + 1) and Latin for thirty-two 
is something like duo-trentum. Actually, one hardly ever uses the 
higher "-illion" names, and numbers which are more than thirty digits 
long are normally read just by listing their digits with the understanding 
that these digits are to be interpreted in terms of the powers of ten sys
tem. 

For large numbers it is convenient to use exponential notation. Here 
googol is written as 10100, and one can readily pass on to googolplex, de
fined as 10g00go1 or 10(0100). Notice that googolplex is not nameable in 
less than a billion words if we only use the ordinary "-illion" number 
notation for it. Clearly there will be some numbers near googolplex 
which are so irregular that they cannot be named in any way much 
shorter than reading off their digits. These numbers are really unname-
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able for a human being, since a number that was googol digits long 
would, if written out on sheets of paper, easily fill space out to the most 
distant visible star-since I estimate that if we packed ten billion cubic 
light years with books containing digit after digit, then there would only 
be room for some 1062 digits in these books. 

Making estimates of such ridiculously large numbers is an ancient and 
honorable pastime. There is a well-known treatise by Archimedes 
called "The Sand Reckoner," where he estimates that it would take 
under 1063 grains of sand to fill a sphere with a radius equal to the dis
tance from the Earth to the Sun.6 The really interesting thing about his 
essay is that the Greeks did not have the notion of exponentiation. All 
they had was the notion of multiplying two numbers, and the largest 
number that they had a name for was a myriad (= 10,000 = 104). 

So how did Archimedes manage to get out to 1063 ? He took myriad
myriad as his basic building block M (= 108 ). What he did then was, 
without using exponents directly, to find names for all of the numbers 
out to M<M2) (= 10<8'1018». His trick was, for each j and k less than or 
equal to M, to introduce numbers of the kth order of thejth period. If 
we call the greatest number of the kth order of the jth period A(k, j); 
then Archimedes' construction can be summarized by four rules: i) 
A(1, 1) = M; ii) A(1,j + 1) = M 'A(k,j); iii) A(k + 1,1) = A(k, M); 
iv)A(k + l,j + 1) = M 'A(k + l,j). Actually, Archimedes could have 
done better. He should have used a stronger rule than iv)-call it iv*') 
A(k + l,j + 1) = A(k + 1, 1)'A(k + l,j). The largest number he 
reached was A(M, M), which he called "myriad-myriad units of the 
myriad-myriad-th order of the myriad-myriad-th period," and which is 
(MM)M = M(W), the product of M2 copies of M. If Archimedes had used 
iv*') instead of iv), he would have gotten A *'(M, M) = M(MM), the prod
uct of MM copies of M. 

M· ... ·M· ·M· ... ·M 
I 

1st period _ M·II M th period _ M Jl' 

What Archimedes Did 

One wonders whether there is any limit to the numbers that could be 
described on the basis of M, multiplication, and nested iterations of 
length M. There is a sort of double iteration process that defines what is 
called the Ackermann generalized exponential G (n, k, j) as follows i) 
G(1, k,j) = j·k; ii) G(n + 1, l,j) = j; iii) G(n + 1, k + l,j) = 
G(n, G(n + l,k,j),j). This looks harmless enough, but it turns out that 
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M· ... ·M ... M· ... ·M . . M· ·M ... M· ... ·M 
~ '----v------' '-' -----v----' ~ 
,1stperiod"'~M.M 

2nd period'" ~ MM' . 
3rd period'" ~ MM3 

Mth period'" ~ MM 

How He Might Have Continued 

G(2, k, j) is the number gotten by multiplyingk many j's (also known as 
jk); G(3, k,j) is the number gotten by exponentiating a stack of k many 
j's (also known as kj orj tetrated to the k); G(4, k,j) is the number got
ten by tetrating a stack of k many j's (sometimes known asj pentated to 
the k); and so on. Clearly G(M, M, M) is going to be a fabulously large 
natural number. 

There is a certain formal criterion that regards the definition of A as 
singly nested and the definition of G as doubly nested. It turns out that 
the function taking x into G(x, x, x) is by-end-pieces greater than any 
function that can be defined using single nesting (recall the by-end
pieces ordering from "Transfinite Numbers.") By nesting our defini
tions more than two times, we can get more rapidly growing functions 
and names for larger numbers. It would seem that the limit of what can 
be done here might be a number P that is greater than any H(M, ... , 
M), where H is a function of M arguments defined by at most M nest
ings. The idea would be that one cannot systematically reach beyond P 
without using a systematic procedure that in some dimension is bigger 
than M. 

This does not, however, rule out the possibility of finding a short, but 
non-systematic, description of some number much greater than P. In 
1742, Christian Goldbach made the conjecture that every even number 
greater than two is the sum of two primes. It is not known whether or 
not Goldbach's conjecture is true. It is true for all the even numbers 
that anyone has ever looked at: 4 = 2 + 2 (recall that 2 is the first prime 
number, as it has no divisors other than 1 and itself), 6 = 3 + 3, 8 = 
3 + 5,20 = 7 + 13, 84 = 23 + 61, and so on. But maybe Goldbach's 
conjecture fails for some fantastically large even number. In this case 
"the least even number after 2 that is not the sum of two primes" could 
be the name of some number much greater than P. 
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In itself, the string of symbols G(M, M, M) is not really a name. A 
name should be self-sufficient, containing definitions of all the symbols 
and words that it uses. Of course, these definitions involve more words, 
but the assumption is that ultimately any description should be reduc
ible to extremely simple statements about, let us say, writing down 
strokes.· It is not hard to imagine how one would complete the name 
G(M, M, M) by adding a description of M, of multiplication, of the 
Ackerman generalized exponential, and so on. We denote this ex
panded name by [G(M, M, M)]. The idea is that [G(M, M, M)] might 
be something like the last few pages, along with a few more pages of 
further amplification. Given this full description, anyone would be able 
to figure out what number is being named, to the point of being able to 
come up with a list of G (M,~ M, M) strokes, if there were no limitation 
on time. 

Names like [the googolth prime number] or [G(M, M, M)] are what 
we might call constructive names. There is another sort of name, [the 
least even number greater than 2 that is not the sum of two primes], 
[the millionth perfect number], or [the first n such that there is a string 
of 20 sevens that ends at the nth place of the decimal expansion of 1T]. It 
is not presently known whether any of these names actually names a 
number, since we don't know if there are any even numbers greater 
than 2 that are not the sum of two primes, or if there are actually a mil
lion perfect numbers (recall that a number is perfect if it is the sum of its 
divisors other than itself), or if there is a string of 20 sevens anywhere in 
the decimal expansion of 1T. Trying to find the number named by each 
of these names involves searching through all the numbers until the 
right sort of number is found. But in each case, the search could be 
fruitless. If, however, you didn't know this in advance, you would sim
ply continue searching forever. 

UNDERSTANDING NAMES 

Now that we have discussed various sorts of names of numbers, let's 
go back to the paradox that started all this. Uo is supposed to be the first 
number that cannot be described in under one billion words. It seems 
that the only way to avoid paradox is to assume that Uo is not the name 
or description of any number. This could be because i) every natural 
number can be described in under one billion words, or because ii) 
there is no way to extend our description of Uo to a really complete de
scription [uo] that can be understood by everyone. 
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Possibility i) is a bit odd. The idea here is that even though there are 
only a finite number of names that have a length under one billion 
words, there are infinitely many ways of taking these names. Given the 
open-ended nature of mind and language, a single name can be inter
preted in many ways. This is actually less reasonable than it sounds. 
What possibility i) boils down to is that if Uo is a name of n, then it must 
be the name of some m > n as well, so that Uo itself is actually the name 
of infinitely many different numbers. The justification for this would be 
that each of the infinitely many times you say, "The first number not 
nameable in under one billion words," you will mean something a little 
more comprehensive by nameable. In other words, you start out saying, 
"uo" and then you say, "but that wasn't the real Uo since I laid that name 
'uo' on it ... what I am thinking of now is the real uo," and you get a 
bigger number; and then you keep doing the same shift over and over 
forever. The point is that if you think of the concept of naming in end
lessly more sophisticated ways, then the single name Uo can actually 
serve to name each of the natural numbers! 

This way of weaseling out the Berry paradox is sometimes explicitly 
ruled out by requiring that the names for numbers be interpreted in one 
and only one definite way. In this case, we are forced to accept possibil
ity ii). Possibility ii) says that there is no way to explicate in under one 
billion words what we mean by "nameable in under one billion words." 
Where exactly does the difficulty lie? The problem is not in coming up 
with a list of all the possible combinations of under one billion words. 
In principle, that can be done quite mechanically. A sufficiently large 
machine could mindlessly print out all of the possible combinations of 
under one billion words without any difficulty at all. Assuming that we 
restrict ourselves to the million or so words that make up the English 
language, then there will be something like 10<6 billion) sequences of 
under one billion words. 

Let me repeat that the problem in explicating the phrase "nameable 
in under one billion words" is not the problem of actually producing 
each of the 10<6 billion) possible combinations of words that might consti
tute a person's lifetime word intake. The problem is, rather, this: there 
is no way to describe in (under a billion) words a general procedure that 
will translate any string of (under a billion) words into the number, if 
any, named by that string of words. Put differently, there is no way for a 
person to describe exhaustively how he goes about transforming words into 
thoughts. 

For suppose that you could come up with some final description of 
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how it is that you turn words into thoughts, names into numbers. This 
description, call it TRANS, would be so precise that given TRANS and 
any sequence of words one could, without having to think at all, apply 
TRANS to the sequence of words and come up with the number, if any, 
described by the sequence in question. Now, consider this description 
of Uo: [Mechanically generate one after another of the possible strings 
of under one billion English words. Apply TRANS to each string in 
turn, making a list of the numbers obtained in this way. Uo is the first 
number not in this list.]' 

This bracketed description, let us call it [uo-TRANS], has approxi
mately the same length as TRANS; so if TRANS could be described in 
under one billion words, then [uo-TRANS] would also weigh in at 
under one billion words, leading to the unacceptable conclusion that Uo 

can be described in under one billion words. So we must conclude that 
any TRANS that is less than one billion words cannot code up an ex
haustive or programmatic description of how to understand every En
glish phrase shorter than one billion words. 7 

The bound of one billion is perhaps too big to be meaningful. Let's 
drop our word limit down to 200,000, the length of a good-sized book. 
What we have discovered is that there can be no book-length program 
that will enable a computer to understand every book. One could, of 
course, write a "crib sheet" program that provided explicit answers to 
every question that could ever be asked about every book-but this 
program would overflow the bounds of the galaxy. The interesting fact 
that we have learned from the Berry paradox is that there can never be a 
tricky sort of program that will give a reasonably short description of how 
to understand language. 

It is perhaps not too much a caricature of the later Wittgenstein's "or
dinary language" philosophy to say he argued that when people talk to 
each other, they are really just playing a game with noises. You make 
such a noise and I do this and that. But if it is even in principle impossible 
for anyone ever to formulate a complete set of rules describing how he 
uses language, then how can anyone assert that learning to use language 
is just a process of learning to playa certain game according to certain 
rules? To express this thought in the style ofWittgenstein: If this is just 
a game following rules, then why can't anyone tell me what the rules 
are? 

Wittgenstein's earlier view of language seems more tenable.s Accord
ing to this "picture theory of language," there are certain relationships 
among concepts and objects that we perceive in the physical and mental 
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universe around us. In order to point these features out to each other, 
we use words to set up language structures that somehow mirror or 
model them. I think such a view of language (which is dependent on an 
external, objective, but undefinable, concept of "truth") seems much 
more tenable than any view of language as the working out of a formal
izable logical system. 

It is worthwhile to give a more precise description of what the Berry 
paradox tells us about digital computers. The information-theoretic in
terpretation of the Berry paradox that I am about to describe is due to 
Gregory Chaitin.9 Consider a fixed machine M. For the sake of definite
ness, let us say that M is a large digital computer with an interactive APL 
terminal, which has the form of an IBM typewriter with a thick cable 
leading out the back. We can think of any string of symbols that is typed 
on the terminal keyboard as being a program P. We say that P is an M
name for the number n if typing the program P causes the machine to 
type out the number n in the customary base ten notation and then 
stop. 

The length of a program P is defined to be the number of key strokes 
necessary to input P, and we define the in/ormation-theoretic complexity 0/ 
non M to be the number [M(n) equal to the length of the shortest pro
gram that is an M -name for n. In other words, [M(n) is the smallest num
ber k such that k properly chosen hits on the keyboard will cause M to 
print out the number n in base ten notation. 

It is not hard to see that [M(n) will never be longer than the actual 
number of digits in the number n. For if we simply type the number n 
on our terminal,· then we will not have told M to do anything, so M 
will be stopped, and the number n will be sitting there typed out 
on the paper in front of us. If one types the "program" 
"25252525252525252525252525252525," then one is immediately in 
the situation of having 252525252)2525252525252525252525 typed 
out and M stopped. However, we could achieve the same end result 
more economically by typing the instruction: "Print '25' sixteen times 
and stop." The latter instruction is a bit more economical since it uses 
27 keystrokes instead of the 32 keystrokes of the original program. For 
a more extreme example, consider the case of 101000• To type out this 
number in base ten notation requires 1001 keystrokes. But, assuming 
our M uses the symbol ..... to stand for exponentiation, we can simply 
type "evaluate 10·1000" on the terminal, which will then busily type 
out all 1001 digits of 101000 and stop. 

We now want to consider the program R, which has a form something 
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like, "Print the first number that has no M-name as short as this pro
gram." Now, we do not think of M as automatically endowed with self
knowledge, so the phrase "M-name" must be explicitly definied. This 
can be done by giving a list of the rules by which M actually operates
in effect, one gives the computer instructions that enable it internally to 
simulate its own behavior. Having done this, we can find some simply 
described number r (such as 10* 1 0) such that the program R will have a 
length much less than r, where R is, "Simulate a machine M that oper
ates as follows: [Description of M goes herel Now print out the first 
number that has no M-name shorter than r." 

Now, since this program has length much less than r, it must fail to be 
an M-name for any number, otherwise a contradiction would arise. But 
how can a definite program such as R fail to name a number? Anyone 
who has ever tried to program a computer is familiar with the phenom
ena of looping and endless search. Certain programs cause the machine to 

go into an endless loop, never outputting anything; other programs will 
cause the machine to output an endless string of numbers. When a ma
chine enters either one of these situations, then it will run forever un
less some external agent turns it off. 

#1: Go to #2 
#2: Go to #1 

LOOPING 

If n = n, then print "n." 
If n I- n, then stop. 

ENDLESS SEARCH 

If program R is fed into M, then M will run forever and never come 
up with Cin output. Why is this? When M tries to execute the program R, 
M must go through a process like this: i) list all possible programs of 
length r; ii) for each such program P, simulate the action of M on P; iii) 
if M acting on P outputs n, then place n in the set S; iv) let uo(M) be the 
first number not in the set S. We know a priori that this process can 
never terminate, so there must be some sort of loop or endless search 
hidden in it. Where? The loop is in the translation step ii). For one of 
the programs of length less than r is going to be the program R, and 
when M tries to simulate the action of M on R, then M must simulate M 
trying to work through steps i) - iv) of R . . . which eventually leads 
to simulating the simulation of program R . . . which leads to the sim
ulation of the simulation of the simulation of program R ... 

It is almost as if the poor machine is trying to break through to full 
self-consciousness with this endless regress of self-simulation. Another 
way of looking at this problem is to say that M cannot prove that there 
are any numbers n with complexity IM(n) > r. Now, r is approximately 
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equal to the complexity of a description of M, so one might say that M 
cannot prove the existence of any numbers with information-theoretic 
complexity much greater than that of M. 

I used uo(M) above to stand for the first number with complexity 
greater than r. Suppose that we use W(M) to stand for the first number 
greater than every number with complexity less than r. That is, W(M) is 
greater than any number that M can output on the basis of less than r 
strokes, where r, again, is a number chosen to be greater than the com
plexity of M. If we think of the output of M as being the number of 
seconds t that it runs before stopping, instead of being the number n 
that it prints, then we have an interesting situation. Assuming that M is 
as complex a thing as can be conceived of, then any instruction fed into 
M will be less complex than M, Therefore, the output of M with such an 
input must be less than W(M). If we think in terms of runtime as out
put, then we can conclude that any instruction less complex than M will 
cause M to do one of two things: a) run for some time shorter than 
W(M), or b) run forever. 

So now, dropping all the terminology, we can look at a very curious 
fact. Assuming there is some upper limit to the complexity of the ma
chines we can build, then there is some number W such that any ma
chine which we set into operation must either a) turn itself off in less 
than W seconds, or b) run forever. It is as if there were certain regions 
of the future that are entirely inaccessible to us. 

To make this problem more colorful, imagine that time will continue 
indefinitely and that you are going to build a time machine which you 
can set to take you D days into the future for any particular D that you 
program into the machine. There would be some future day Dw such 
that any attempt to get the machine to take you out past Dw would end 
with the machine running forever and taking you infinitely far into the 
future. The problem would be that you could in no way even conceive of 
any finite number of days large enough to reach past Dw. 

Or, if you don't like time machines, think of this in terms of time 
bombs. There is a certain future date after which it can be said with as
surance that no time bomb set up by us before the year 2000 can still go 
off (assuming that the timer on the bomb is some sort of digital device 
that does not malfunction).lO 

Let's go back to the Berry paradox for human beings, instead of for 
digital computers. One apparent difference between the two is that 
humans have a certain sort of self-knowledge, which is perhaps not en
joyed by machines. But are we really any better off with out so-called 
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self-knowledge? Don't we run into precisely the same regress as M did 
when we try to understand what is meant by 110, the first number that we 
can't name? For to find the first number we can't name, we have to find 
out what each name applies to, and take the first number that is left out 
- but to figure out what each name applies to, we have to figure out 
what the name 110 applies to, don't we? 

One way out of this regress is to regard a name like 110 as being a sec
ond-order name, so that there will be all the numbers nameable (in under 
a million words, say) without using the second-order concepts such as 
"nameable"; then there will be the second-order nameable numbers, 
such as 110 or G (110,110, 110); beyond all these would be 11 1, the first num
ber not nameable using second-order concepts, etc. But this type-theo
retic way out of the Berry paradox is not really satisfying, for one wants 
to say, "look, by '110' I mean the first number that can't be named in less 
than a million words by any means whatsoever, and that includes every 
order of language that you can invent in under one million words." 

Uo p w 
------~c=0~~·~c=3~~----~~~ .. ~.c=3~~c=0~~.----+.w 

Figure 51. 

This absolutist view can be visualized as in Figure 51. All the circled 
numbers are nameable, and 110 is the first unnameable number. There 
will probably be runs of nameable numbers further up the line. For in
stance, "the largest perfect number" might name some extremely large 
number P > 110, and then we would have P + nand P - n nameable as 
well, for numbers n with names not too close to the maximum word 
limit. Eventually, all the names will peter out and one gets a number W 
that is greater than every number nameable in less than the prescribed 
number of words. 

To avoid paradox, one has to accept the fact that the names 110 and W 
are really not names. So the concept of "nameability" is itself really un
nameable. The symbols n-a-m-e-a-b-I-e· point to the concept, but they 
do not really reach it. In somewhat the same sense, the symbol n, which 
is used to stand for the Absolute Infinite, points towards the Absolute 
Infinite, but cannot really denote it. Just as the Absolute lies beyond 
any possible description, the notion of nameable in a lifetime lies beyond 
any rational human description. 

Is this a final solution to the Berry paradox? Not really. For we are 
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still left with the basic problem of how a sentence like "nameability is an 
unnameable concept" is meaningful, even though the subject of the 
sentence is a word that cannot denote any single graspable concept. It is 
curious how interesting it can be to talk about things that we supposedly 
can't talk about! 

One conclusion we might draw is that there are two distinct modes of 
consciousness: the finite and the infinite. As long as I identify with my 
body and my rational mind, I cannot conceive of my Uo; but it is not 
hard to envision my Uo if I identify with the Absolute. This does not 
lead to the usual type-theoretic regress, because someone who is 
merged with the Absolute is in a position to "name" each and every nat
ural number at once. 

RANDOM REALS 

In principle, every real number r codes up a countably infinite 
amount of information: the infinite sequence of digits in r's decimal ex
pansion. In practice, all of the real numbers we ordinarily deal with are 
actually specified by a finite amount of information. Names such as 2/7, 

v'13, 17"2, cos 3, log10387 are, in fact, compact and stylized sets of in
structions for generating the endless decimal expansions in question. 

We will say that a real number is random if it has an irreducibly infi
nite amount of information. That is, a sequence of digits is random if 
there is no finite way of describing it-no finitely given procedure that 
can be used to generate the sequence digit by digit. Actually, the word 
"random" is usually applied only to real numbers that obey certain fur
ther conditions having to do with the notion that each nameable subse
quence of a random sequence should be random as well. 11 But for our 
purposes, it will be sufficient to equate randomness with unnameability. 

The subsection, "Constructing Reals," contains a historical develop
ment of the various sorts of names for real numbers that are used, with 
particular emphasis on the Greek methods of constructing reals. The 
subsection, "The Library of Babel," presents and analyzes the idea of a 
Total Library containing all possible books. In the somewhat technical 
subsection, "Richard's Paradox," a construction discovered by Jules 
Richard is examined. This construction seems to produce a random real 
by diagonalizing over the set of reals having names in the Total Library; 
it raises some of the same issues as did the Berry paradox. In the final 
subsection, "Coding the World," the question of the physical existence 
of random reals is investigated. 
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CONSTRUCTING REALS 

In chis seccion it will be useful to chink of real numbers as points on 
an idealized continuous line. The points called 0 and 1 must be marked 
arbitrarily, but from then on the correlation between real numbers and 
points on che marked line is more or less automatic. 

The ordinary representacion of a real number as an endless decimal 
expansion can be viewed as a description of an infinite procedure for 
locating a particular point (or infinitesimal neighborhood) on the 
marked line. If we allow ourselves the use of various standard curves 
and surfaces, then there are many real numbers for which there is afi
nite procedure for locating the corresponding point on che marked line. 

o 

Figure 52. 

Assuming chat we have a compass, the point called 2 can be found in 
a finice amount of time by drawing the circle with its center at 1 and 
radius equal co the interval between 1 and O. It should, perhaps, be 
pointed out chat, in praccice, the perfect drawing of this circle would 
actually be an infinice process. For even if our lines had no thickness and 
our compass's drawer and stabber were points, there would still be the 
difficulcy of managing to put the stabber exactly chrough the point 1 and 
contriving to set the drawer down exactly on the point O. In practice, 
matching up two points is an infinice process of repeatedly reducing 
one's error-a feedback loop. To avoid chis objection to the finiteness 
of the construction of 2, one may as well assume that perfect circles 
with specified centers and radii will spring into existence on command, 
as will perfectly straight lines through specified pairs of points. This, 
after all, is the content of Euclid's third and first postulates, which do 
not actually mention "rulers and compasses." 
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The upshot is that given 0 and 1 we can, without idealizing too much, 
find the point corresponding to the real number 2 with infinite pre
cision in a finite amount of time. The same is true of any real number 
whose decimal expansion terminates or repeats, for such a real number 
is rational, and every rational point on the marked line can be found 
with ruler-compass constructions. 

4 5 

Figure 53. 

As an example, I show how one might find the point corresponding 
to the real number 2.40000 .... This is the same as 22/5, so the core of 
the construction is to find a line segment of length 2/5. This is done in 
Figure 53 by means of a trick that uses similar triangles to divide a given 
interval (in this case a copy of the interval between 0 and 1) into five 
equal pieces. 

Using ruler and compass we can not only construct any rational num
ber, but also construct any number obtained from the rationals by com
bining the operations of addition, subtraction, multiplication, division, 
and the taking of square roots. (Recall that in the section "From Py
thagoreanism to Cantorism" I showed how to take square roots with 
ruler and compass.) So a point on the marked line corresponding to, 

V3 + v'2T v'3...r::77 b L d . h . fi . '" say, 308 or 0, can e loun WIt 10 mte preClsIon 10 a 

finite number of time if we are allowed to call circles and lines into exis
tence as desired. 

The three famous problems of antiquity have to do with the question 
of which ruler-compass constructions are possible. I refer here to the 
problems of Duplicating the Cube, Trisecting the Angle, and Squaring 
the Circle. The first and third of these problems are of special interest 
here. 

In the Duplicating the Cube problem, one wants to construct a cube 
that has twice the volume of a given cube. It is not hard to see that this is 
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tantamount to finding a finite method for locating on the marked line 
the point corresponding to the real number-0'2 . 

./ ./ 

s 

S /s 

(A) 

v = S3 

V'2S 

(8) 

Figure 54 (A-B). 

-v2s 

In the Squaring the Circle problem, one wants to construct a square 
that has the same area as a given circle. This amounts to being able to 
find a finite method for locatin~on the marked line the point corre
sponding to the real number V'11" or, what is equivalent since we can 
square and take square roots with ruler and compass, the real number 
'11". 

A = 'IT'" A = 'IT'" 

(A) (8) 

Figure 55. 

Someone brought up on the modern theory of real numbers is prone 
to feel that simply writing down and understanding the symbols-0'2 
solves the problem of Duplicating the Cube. For, after all, once you un
derstand that\Y2 means "the real number whose cube is 2," you can set 
out to determine digit after digit of the decimal expansion of 0. 

13 < 23 , so -ij2 begins with 1 
1.23 < 2 < 1.33 , so -ij2 begins with 1.2 

1.263 < 2 < 1.273, SO -ij2 begins with 1.26 
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If you like, you can locate the points corresponding to each of the 
initial pieces of the endless expansion of~, and after an infinite 
amount of time you will reach the limit point that represents \Y2. 

1.26 

• I II I ~ 
0 1 1.2 2 

Figure 56. 

But this is nothing the Greeks did not know about. They were fully 
aware that one can find points that better and better approximate the 
location of0 on the marked line, or that given a marble cube one can 
find larger marble cubes that come closer and closer to weighing twice 
as much as the original cube. 

By the process of trial and error we can always come closer and closer 
to finding a continuous magnitude with some specified property. The 
axiom 0/ continuity (first explicitly introduced by Dedekind) asserts that 
there is a single right magnitude that exists as the limit of any such pro
cess. In modern times we have found it convenient actually to identify 
continuous magnitudes with such processes-a particular continuous 
magnitude is represented by the specific process of trial and error coded 
up in the decimal expansion of the corresponding real number. 

But when the Greeks posed the problem of duplicating the cube, 
they wanted a/mite method of constructing a line segment with length 
exactly equal to\Y2. They were suspicious of infinite processes, holding 
that no such process could legitimately be regarded as completed, and 
in the absence of a finite construction of the location -0'2 they might 
even have questioned whether any such perfectly right location really 
exists at all. 

The first person to come up with a finite method for constructing-0'2 
was Archytas, a member of the Pythagorean sect. Archytas was a friend 
of Plato, and is said to have once prevented Dionysius from killing Plato 
(Dionysius being Plato's school master). Archytas is also credited by 
Aristotle with having invented a model bird that flew and a special sort 
of baby rattle-all of this in the fourth century S.c. 

Archytas's method for finding the cube root of two involves consid
ering the intersection point of a torus, a cylinder, and a cone. One starts 
with the circle with diameter OC equal to 2 (Figure 57 A). On this circle, 
find a point B such that the chord OB has length 1. 

We generate the torus by rotating a copy of this circle about a line 
through 0 and perpendicular to OC. We generate the cylinder by mov-
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ing the circle perpendicular to itself. We generate the cone by extend
ing the chord OB until it intersects a line passing through C perpendicu
lar to OC, and by then rotating the triangle formed about this line. 

If these three surfaces are placed so that the original circles match, 
then there will be a point P where all three surfaces intersect. Directly 
beneath P will be a point X on the original circle, and the distance OX 
equals -\Y2. In order to vizualize where P is, I have drawn on the cylin
der the curves where the cylinder would intersect the cone and torus. P 
lies at the intersection of these two curves. 

The reason that OX is \V2 has to do with the fact that this particular 
construction leads to a right triangle of the kind drawn in Figure 57E. 
Because all of the triangles in this figure are similar, we get the contin
ued proportion that leads to the solution of the Duplicating the Cube 
problem. 

The Duplicating the Cube problem arose when the oracle at Delos 
told the Delians that a plague they were currently suffering would be 
lifted only if they would double the size of the temple altar. The Delians 
were clever enough to realize that the volume of any three-dimensional 
object is doubled if each of its dimensions is increased by a factor of\V2, 
and thus the problem was born. 

The Greeks seem to have realized quite soon that no ruler-compass 
construction would suffice to construct cube roots. There are a number 
of recorded solutions to the Duplicating the Cube problem, all of them 
involving some sort of higher-order curve or surface. A thorough cata
logue of these solutions appears in T. 1. Heath's classic work, A History 
0/ Greek Mathematics, written during the First World War. 

In his preface, Heath quotes a remark of Plato's on the Duplicating 
the Cube Problem that must have seemed particularly apt during those 
war years: "It must be supposed, not that the god specially wished this 
problem solved, but that he would have the Greeks desist from war and 
wickedness and cultivate the Muses, so that, their passions being as
suaged by philosophy and mathematics, they might live in innocent and 
mutually helpful intercourse with one another."12 

It was not conclusively proved that ~ cannot be constructed using 
only lines and circles until early in the 1800s, but, as I have mentioned, 
the Greeks suspected this from the very beginning, and took the Dupli
cating the Cube problem as an impetus to move on to more compli
cated, but still finite, methods of construction. 

It should be noted that Archytas's method is a fairly natural extension 
of ruler-compass methods. Ruler-compass methods allow one to: i) 
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form the trail of a point moved in any fixed direction; ii) form the trail 
of a point rotated about any other point. To get the cylinder, torus, and 
cone of Archytas we need only be allowed to: i) form the trail of any 
plane curve moved in any fixed direction; and ii) form the trail of any 
curve (ie., plane figure) rotated about any line. 13 

As we know since Ferdinand Lindemann's proof of 1882, the number 
pi is transcendental, which means that it can never be constructed by 
taking intersections of simple (algebraic) curves and surfaces a finite 
number of times. One might be inclined to say that pi can be con
structed simply by rolling a circle of diameter one through one revolu
tion, but this seems to involve the notions of motion and of time, which 
are perhaps extra-geometric. Actually the notion of rolling the circle 

Figure 58. 

can be statically represented by the helix in Figure 58. This is a helix 
that moves up just as fast as it moves around the cylinder, making a 45 
degree angle with the cylinder's generators at each point. Evidently, the 
vertical change produced during one complete revolution will be equal 
to the circumference of the circle. 

A somewhat more constructive process for getting pi in a finite 
amount of time is due to Archimedes, and is illustrated in Figure 59. 
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The idea is that one takes an Archimedean spiral, obtained by rotating a 
line at a constant rate while a point moves out along this line at some 
other (not necessarily related) constant rate. If the spiral starts at 0 and 
completes its first turn at P, then one can draw the line PT tangent to 
the spiral at P and the line OT perpendicular to OP at 0, and the point T 
where these two lines cross will determine a distance OT equal to pi 
times OP. 

The Greeks also used a much more contemporary method for finding 
approximations of pi: the method of exhaustion. Originated by Anti
phon and perfected by Archimedes, this method consists simply of in
scribing and circumscribing polygons with more and more sides upon a 
given circle. One can, in general, compute the perimeter of any poly
gon, so that by finding the perimeter of, for instance, a 96-sided regular 
polygon that just fits inside a circle with diameter one, it is possible to 
get a good approximation of pi. By precisely this method Archimedes 
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showed that 31°/71 < 11' < 31/7, and there is, in principle, no limit to the 
accuracy obtainable by this method (although, of course, infinite pre
cision will never be obtained in a finite amount of time in this manner). 

Figure 60. 

I have illustrated Archimedes's method of exhaustion in Figure 60. 
The idea is that one starts with a regular inscribed hexagon at stage 1, 
and that by repeatedly bisecting the subtended arcs of the circle one 
gets to a 3· 2n-gon at stage n. The length S n of the side of a 3· 2n-gon 
inscribed in a circle of radius 1/2 is given by the recursive formula dis
played in Figure 60. To see how the formula is obtained one can think 
of the figure as illustrating the general transition from Sn to Sn+l, and by 
using the Pythagorean theorem twice the formula can be obtained. 
Given the side Sn of the regular 3· 2n-gon inscribed in a circle of radius 
1/2, we can approximate 11' by the perimeter Pn = 3' 2n 'Sn of this poly
gon. 

In a sense, the three formulas in Figure 60 give a finite description of 
pi, and in a sense they do not. On the one hand, the three formulas can 
be used to compute P n for arbitrarily large values of n, and for large 
enough n, P n will be arbitrarily close to pi. On the other hand, these 
three formulas will never give the exact point pi on the number line 
after any finite length of time. 
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Zeno's bisection paradox brings this distinction into sharp relief. If 
you are at 1 on the number line, there are two ways to get to 2. You can 
use the finite procedure of moving one unit all at once; or you can use 
the infinite procedure of moving 1/2 unit, then 1/4 , then l/S, etc. If we 
ignore the possibility of there being distinct points an infinitesimal dis
tance apart from each other, then it is evident that these two procedures 
lead to the same point. This fact is usually represented by the equation 
1 + 1 = 1 + 1/2 + 1/4 + l/S + ... Zeno viewed this as paradoxical. 
He assumed a priori that no actual infinity could exist, so that no infinite 
process could be regarded as completed; therefore the equivalence be
tween a finite and an infinite process seemed impossible. 

As I have mentioned before, the ordinary decimal expansion of a real 
number actually represents an infinite process for finding a point corre
sponding to the number in question. Although infinite, this process is 
quite definite, and we feel comfortable with it. It should be realized, 
however, that for many of these real numbers there is no alternate finite 
process at all for finding the length described. 

Take, for instance, the number L = 10-1 + 1O-2 ! + 10-3 ! + 1O-4 ! + 
1O-5 ! + .. = .110001000000000000000001000000000000000000-
000000000000000000000000000000000000000000000000000000-
0000000000000000000000010. . .. (Recall that n! means n factorial, 
the product of the numbers one through n). In 1844 Joseph Liouville 
proved that this number is transcendental, meaning that L is not the 
root of any polynomial with rational coefficients. There are many tran
scendental numbers, but L was the first number for which anyone was 
able to prove that it is transcendental. In fact, L is artificially tailor-made 
to make just such a proof possible. 14 

Since L is transcendental, it can never be found by a method such as 
Archytas's technique of intersecting algebraic curves and surfaces. Since 
L is highly artificial, it is most unlikely that a segment of length Lean 
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ever be found by any other finite method . . . such as the spiral and 
helix constructions of 7T. So L is a number for which the corresponding 
length can only be found by the sort of infinite process questioned by 
Zeno. 

One could, of course, idealize a bit more than previously and imagine 
a device-call it a Summer-that will construct lengths corresponding to 
numbers such as L. The Summer geometrically sums up any infinite se
ries in one second. Thus, given a decmal expansion .r1r1r3 ... , the 
Summer moves a pointer to .r1 in the first 1/2 second, finds .r1r2 in the 
next 1/4 second, fnds .r1r2r3 in the next 1/8 second, and at the end of one 
second, the Summer's pointer indicates the point corresponding to the 
decimal series .r1r2ra' . . . 

This is really not so great an idealization-recall that we already had to 
idealize in order to talk about ruler-compass constructions. In a sense, 
when you move a pointer from 1 to 2 on the number line in one second, 
you are acting as a Summer on the series 1 + 1/2 + 1/4 + 1/8 + ... ! 
This, incidentally, was part of Aristotle's answer to Zeno's bisection 
paradox: Since we do indeed act as Summers when we move in time, 
there is nothing fundamentally contradictory about them. 

One must be careful, however, not to feed a divergent series into the 
Summer, or it will break. If, for instance one gives the Summer the 
Grandi series to work on, then it will shake itself to pieces. The Grandi 
series is the series 1 - 1 + 1 - 1 + 1 - 1 + . . . Looked at one way 
this is (1 - 1) + (1 - 1) + ... = 0; but looked at another way, we 
have 1 + (- 1 + 1) + (- 1 + 1) + . . . = I! 

Grandi discovered this series in 1703; he claimed that God must have 
used a technique based on this series in order to create Something from 
Nothing, and thus get the cosmos going. 15 This is not really as insane as 
it sounds-a more sophisticated way of saying something similar would 
be to claim that the cosmos is a moire, an interference pattern produced 
by a wave function out of phase with itself. 

But in any case, if one feeds the Grandi series into the Summer, the 
pointer is going to twitch back and forth between 0 and 1 infinitely 
many times at a speed that reaches infinity as the second runs out. Un
less some special provision (e.g., "point to 1 when in doubt") has been 
built into the Summer, there is simply no reason why it should point to 
anyone point instead of any other point at the end of a second . . . so 
I would prefer to say that it breaks. 

The question of what a Summer does with divergent infinite series 
has been thoroughly discussed by philosophers of science as the prob-
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Figure 62. The Summer at work on the Frandi Series. 
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lem of the Thompson Lamp.16 There is no problem with the action of a 
Summer on a convergent series such as the decimal expansion of a real. 
The increments of motion become smaller and smaller, and at the end 
of the second the pointer ha~ smoothly come to rest at a particular 
point. When you hold a hard pencil between your two fingers and let 
the tip bounce on a table, you see a motion something like that of the 
pointer of a Summer acting on a convergent series. In principle, the 
pencil point bounces an infinite number of times, but the total distance 
travelled can be computed to be finite, and the total time elapsed is fi
nite as well. In particular, if the pencil point starts out at a height of one 
inch above the table, and each time it bounces back to 9/10 the height 
from which it has dropped, then it will fall a total distance of 1 + 9/10 + 
(9/10)2 + (9/10)3 + . = 10, and the time elapsed can similarly be seen 
to be finite. 

D = 1 + 9ho + (9/10)2 + (9/10)3 + . 
9/10 D = 9/tO + (9/10)2 + (9/10)3 + . 
1/10 D = 1 

D=lO 

From now on, we will say that a real number r has been finitely de
scribed if there is some finite description of how to generate the deci
mal series expansion R.r1r2r3 ... of r. In general, such a finite descrip
tion will consist of some general set of instructions that, when applied 
to any natural number n, will institute a process terminating with the 
evaluation of the digit r n. Any such description of a general function 
giving an R and an r n for each n can be fed into the Summer to locate a 
particular point on the real line. 

There is, of course, a little vagueness in the words, "finite descrip
tion" and, as we will see in the "Richard's Paradox" subsection, this 
vagueness leads to complications like those tnat came out of the Berry 
paradox concerning the words "describable in less than a billion words." 

THE LIBRARY OF BABEL 

Eventually we want to try to find a random real number-that is, a 
real number that has no finite description whatsoever. But before going 
on with this project, we need to get a clearer notion of the set of all 
possible finite descriptions. 

It is initially easier not to be concerned with questions of meaningful
ness, and to view any string of symbols whatsoever as a "possible de-
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scription." The set of all finitely long strings of typographic symbols is, 
in any case, an intrinsically interesting set. 

Related sets have been discussed in "The Universal Library" by Kurd 
LasswitzI7 and in "The Library of Babel" by Jorge Luis Borges.18 The 
Borges story is a first person account narrated by an inhabitant of a fan
tastic library consisting of an apparently endless number of hexagonal 
rooms lined with identically bound volumes. Each volume has 410 
pages consisting of forty lines of eighty symbols each. Most of the 
books seem to be meaningless jumbles of letters. 

The narrator and his fellows spend their whole lives wandering in this 
library, ceaselessly speculating on what it all means. Some believe that 
every single book has meaning- if not in Spanish, then in English or 
Hungarian; if not in any known language, then in a language of the fu
ture or in code. But a book consisting, say, of 410 pages of b's seems to 
be meaningless under any interpretation; and the narrator draws the 
conclusion that the library actually includes every possible book-length 
string of symbols. 

He feels that the library includes everything, and one of those mar-
vellous Borgesian lists ensues: 

Everything: the minutely detailed history of the future, the archangels' 
autobiographies, the faithful catalogue of the Library, thousands and 
thousands of false catalogues, the demonstration of the fallacy of those 
catalogues, the demonstration of the fallacy of the true catalogue, the 
Gnostic gospel of Basilides, the commentary on that gospel, the com
mentary on the commentary on that gospel, the true story of your death, 
the translation of every book in all languages, the interpolations of every 
book in all books. 19 

In a sense a library like this is useless. Randomly selecting a book 
from the Library of Babel is equivalent to sitting down and randomly 
typing 410 pages. Even if you were, by some miracle, to find a book in 
the Library that seemed to provide a solution to Cantor's Continuum 
Problem, you would have to check very carefully to make sure that you 
had not obtained one of the thousands of false versions of this 
book . . . and even if your book seemed to be without error, it might 
be possible to find another error-free book that provided a very differ
ent solution to Cantor's Continuum Problem. Looking at the titles of 
the books would be of no help, for a book called The Continuum Prob
lem might turn out to be about, say, astral travel. 

The narrator of "The Library of Babel" actually claims too much for 
his library in the quote above. The detailed history of the future would 
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(unless the world is to end quite soon) probably not fit into any 410-
page volume; and the catalogue of the immense Library of Babel would 
certainly not fit into any 410 pages. To be really certain of having every
thing in one's library, one should allow books to have any finite length, 
no matter how long. But then one's Library becomes infinite. 

In a belated urge to economize, Borges limits the symbols used in the 
books in his Library to twenty-five: the lower-case letters of the alpha
bet (excluding h, k, w, and x), the period, the comma, and the space. 
But it is too late for economy. Each book in his Library has 1,312,000 
slots (=410 X 40 X 80), so there are 251,312.000 = 102.000.000 books in 
the Library of Babel . . . barring repetitions. 

Kurd Lasswitz arrives at the same figure for the number of volumes in 
his Universal Library, and to point out the largeness of this number he 
remarks that if his books were placed side by side it would make a shelf 
about 101,999,982 light-years long. The fact is that there are so many 
books in this Library that the number of light-years of books is not sub
stantially smaller than the number of books. 

As I mentioned above, if we allow our books to be arbitrarily long, 
then there are infinitely many books in what could be called the Total 
Library. We can see that the Total Library is infinite, since for each natu
ral number n, there must be a book consisting of n repetitions of the 
word "yam." Thus all of these are books in the Total Library: yam, 
yamyam,yamyamyam,ad inf. 

Given that the Total Library is already going to be infinite, there is 
not much point in trying to cut corners on the number of symbols used 
in the books. A book such as Infinity and the Mind uses something like 
three hundred typographical symbols, but to keep the rest of the discus
sion manageable, we'll limit ourselves to the seventy-five most basic 
symbols: the space, the lower and upper case Roman alphabets, the 
digits 0 through 9, the apostrophe, comma, dash, semicolon, colon, pe
riod, exclamation point and question mark, the left and right quotation 
marks, and the left and right parentheses. 

Is there any danger that the Total Library is uncountably infinite? If 
you are careless, you might think that it is, reasoning as follows: I can 
create an arbitrarily long finite book using the seventy-five basic sym
bols by choosing one of these symbols w times. This can be done in 
75 X 75 X 75 X ... = 75w = c ways; therefore, the Total Library has 
the uncountable cardinality of the continuum.2o 

The flaw in this argument is that what has really been calculated is the 
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number of books of length w, rather than the number of books hav
ing length less than w. The Total Library has cardinality ~o, and we 
prove this by constructing a one-to-one map, called CODE, from the 
set of all finite books into the set of natural numbers. (This proves that 
the cardinality of the Total Library is $ ~o, and since the "yam" argu
ment shows that this cardinality is 2:: ~o, the rules of transfinite arithme
tic imply that the cardinality in question is equal to ~o.) 

To set up the CODE map we start by assigning a ditigal code to each 
of the seventy-five basic symbols. 

-1 Y -28 X-56 
a -2 z -29 Y -57 
b -3 A -31 Z -58 
c -4 B -32 0-59 
d -5 C -33 1 -61 
e -6 D -34 2 ~62 
f -7 E -35 3 -63 
g -8 F -36 4 -64 
h -9 G -37 5 -65 
i -11 H -38 6 -66 
j -12 1-39 7 -67 
k -13 J -41 8 -68 
1 -14 K -42 9 -69 

m -15 L -43 -71 
n -16 M -44 , -72 
0-17 N -45 - -73 
p -18 0-46 ; -74 
q -19 P -47 : -75 
r -21 Q -48 . -76 
s -22 R -49 ! -77 
t -23 S -51 ? -78 
u -24 T -52 .. -79 
v -25 U -53 .. -81 

w -26 V-54 ( -82 
x -27 W -55 ) -83 

We are careful to use only code numbers with no zeros in them, reserv
ing zero for a different purpose. To code up a given string of symbols, 
we replace each symbol by its code number, put zeros in between the 
code numbers so we can tell them apart, and then stick everything to
gether to get a big natural number. 
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Yes? 
Yes ? 

57 6 22 78 
5706022078 
5,706,022,078 

U sing the zeros as spacers makes it possible to decode any code num
ber. 

45,017,077 
45017077 
45 17 77 
N 0 

No! 

Of course, most numbers don't code up anything at all under this sys
tem. Thus, 235,794 simply doesn't code up anything. But the point is 
that every book in the Total Library is coded up by some finite natural 
number. 

The reader may enjoy checking that the number CODE (Moby Dick), 
which codes up the text of Moby Dick, starts out 330201401401015-
06010390220901502060140760 ... 

It will be convenient later on to think of the Xo books in the Total 
Library as being listed Bo, B 1 , B 2 , ••• in order of the size of their code 
numbers. In effect, this arrangement lists all the books one symbol 
long, then all the books that are two symbols long, and then the three
symbol-long books, and so on. 

Coming back to the coding process for a minute, notice that there is, 
in principle, no reason why a child could not be taught from the begin
ning to read book codes instead of books. You'd teach him that 2, 3, 
4, ... is the alphabet (pronounced hay, bee, sea, ... ), teach him to 
use 76 at the end of a sentence, teach him always to separate his sym
bols by zeros, and so on. 

For a person taught to read in this manner, the Total Library would 
simply be an infinite subset of the set of natural numbers. "Have you 
read 3,702,102,025,011,023,028,071,022,010,490,201,101,603,017,-
026?" "Yes, I liked it even more than his 54." The point is that there is 
nothing sacred about our particular letter symbols. What is essential in a 
book is the overall pattern these symbols form. 

A curious thought arises here. Suppose that we gave the code num
bers for all the books in the Library of Congress to some blob from 
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outer space, To the extent that the meaning of any word can be ex
plained, the explanation of all the recurring symbol patterns will be pro
vided by other symbol patterns in this welter of data, Would the alien 
ever be able to figure out what the books were about? Even if he 
couldn't understand them in the usual sense, would he be able to appre
ciate the abstract patterns of symbols formed by the classics? 

Note that these questions would equally well arise if the alien were 
given the books in English, The point of considering the codes of the 
books in this example is just to bring out the fact that given a text of 
ours, an alien would have only the text's abstract structure to work with, 

With this in mind, the scientists interested in extraterrestrial commu
nication have devised certain very simply patterned messages to be 
beamed into outer space. A recent spacecraft also carried some more 
complex information patterns for the aliens, notably a recording of 
Chuck Berry's "Johnny B. Goode." Reading off the digital coding of 
this song, the aliens may notice certain regularities of pattern, certain 
mathematical progressions. 

A song is a curious sort of information pattern in that it has no real 
content-it is appreciated simply for its form. One might be tempted to 

think that we can somehow teach aliens what our words mean, perhaps 
by means of chemical formulae, etc. Still, there seems to be a large por
tion of our language experience that can be taught only by direct dem
onstration. "There, feel that, drink ... that's water, Helen, water." 

It may be that the aliens will enjoy our messages only sensuously, in 
the way we enjoy music and abstract art. Then again, they may read 
meanings peculiar to their own world-views into our messages. 

The discussion of aliens looking at our books is quite relevant to the 
question of when a string of symbols names a real number. For some, 
the two symbol string "pi" names a definite real number. Someone else 
might prefer the longer name, "pi is the ratio of the circumference of a 
Euclidean circle to its diameter." An individual unfamiliar with mathe
matics might require this last definition to be amplified to a complete 
treatise on plane geometry. 

Presumably, a complete enough treatise would enable any type of 
thinking creature to derive and use the formulae for pi set out in Figure 
60, even if this creature had no idea of the kind of visual and tactile 
experiences that humans associate with "circles." 

A different approach to naming pi would have been simply to start 
with these formulae and some sort of an explanation of how to use 
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them. Alternatively, one could use the description of pi that is usually 
proved towards the end of a second-year calculus course: "Pi is the limit 
of the infinite series 4 - 4/3 + 4/5 - 4/7 + 4/9 - •.. " 

In a sense, digital computers are the only aliens that we are able to 
talk to at all, so they are often taken as a standard of name ability . Every 
large general-purpose computer is fundamentally the same (they are all 
"universal Turning machines"), so we can talk about a general computer 
C without having to be too specific. One can formally say that the book 
Bi names the real number r = K.ele2e3e4 . . . provided that feeding Bl 
into C throws C into such a state that if zero is fed into C, C prints out 
K, and if any n greater than zero is fed into C, then C prints out the nth 
digit en of the decimal expansion of r. 

In the next subsection we will use the phrase "B names the real num
ber r" in several ways. If the specific way just given is meant, then we 
will sometmes say "B is a C -name for the number r" to emphasize this. 

RICHARD'S PARADOX 21 

Let M be some type of being: a computer, a human, the human race 
as a whole, a thinking galaxy, or God Himself. We say that the finite 
string of symbols B is an M-name for the real number s exactly when M 
is able to give the number s on the basis of the information in B. As was 
discussed in "Constructing Reals," we may know the value of a real 
number, even though we cannot give the full infinite decimal expansion 
all at once. We will say that M is able to give us the real number s, pro
vided that M is in a position to give the nth digit of the decimal expan
sion of s for any desired n. Thus, I say that I am able to give the real 
number pi, not because I have the entire decimal expansion in my mind 
at once, but, rather, because for whatever n you mention, I can, in time, 
respond with the nth digit of the decimal expansion of pi. I can do this 
because I have a certain technique for computing more and more digits 
of the expansion of pi. For me, a string of symbols describing such a 
computation technique serves as a name for the real number pi. 

Now, let us fix our attention on some one particular M and consider 
the set EM of all the real numbers that have a finite M -name somewhere 
in the Total Lbrary. It seems that since we can find a translation func
tion Trans M that maps the countable Total Lbrary onto the set EM, EM 
must be countable. Now, the diagonalizing technique studied in Excur
sion I shows how to find a real number different from every member of 
any given countable set of reals, so it seems that for any M, there will be 
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real numbers that do not have any finitely long M-name; these reals 
might be called M-random reals. 

The question of whether or not there is a best M comes up here. That 
is, is there a sort of ultimate M such that if a real number s has any finite 
name at all, then it has an M-name? If this is indeed the case, then we 
can think of the M-random real numbers as being random in the abso
lute sense of having no finite description at all. 

Since it is the nature of infinite sequences of digits that really con
cerns us here, it will be no great loss if we restrict our attention (0 the 
real numbers between zero and one-that is, the real numbers with 
nothing (0 the left of the decimal point. 

Returning (0 the M's, it is simpler to think of them behavioristically. 
An M is something that turns natural numbers into real numbers, and if 
two M's behave the same we regard them as identical. So we can iden
tify an M with a certain list of real numbers, which can in turn be coded 
up by a single real number. 

In general, for a given M and a given natural number n, we can define 
TransM(n) (0 be the real number .enlen2enaen4 ... given by the defini
tion. 

{
The real number between zero and one, if any, whose 

TransM(n) = M-name is coded up by n 
.999 , , , otherwise 

In terms of behavior, M is given by the doubly infinite square array of 
all the enk' By means of a certain sort of shuffling, we can fit all of these 

1 ~TransM(l) =·ft fo!1f 
2 ~ TransM(2) = ·ft /0f 0f 9 

3 ~TransM(3) =. ~ 5 2 

4 ~ TransM(4) = ~ 0 0 1 

5 ~ TransM(5) =. ~ 1 0 
./ 

T M = .elle12f21e13e22e31eI4e23e32e4,e'5 

5 

4 

o 

=.129392095039280. 

9 

2 

9 

1 

enk into a single w-seq\,lence, which can be regarded as a real number 
that might as well be called T M or .mlm2ma . ... 
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There is another interesting number obtainable from the square array 
given. This is the diagonal number dM = .dtd2d3 .•• ,defined so that 

d = {e .... - 1 if e .... is not 0 = {m(2R2-2 .. +0 - 1 if m(2 .. 2-2n+ll is not 0 
.. 1 if enn is O. 1 if mUI,,'-2R+O is o. 

Now, dM is different from every one of the TransM(n), which is to say 
that dM is M-random and has no M-name. 

A little thought shows that dM can be defined directly from T M since 
enn is always in the 2n2 - 2n + 1 place of T M. SO we could also use the 
right-hand definition of dM • The dependence of dM on T M can be ex
pressed by saying dM = /(T M). 

We will say that a naming system M is closed if whenever M has a name 
for some real number s, then M also has a name for real numbers that 
have simple definitions in terms of s. In particular, we say that M is 
closed only if whenever M names a real number s, then M also names the 
real number/(s), meaning that if M names the code TN of some naming 
system, then M will also name the diagonalization dN of this naming sys
tem. Given the definition above of dM in terms of T M, we can see that 
any naming system that would naturally be adopted by a rational being 
would be closed in this sense. 

Now, consider a closed naming system M. M cannot name the diago
nal number dM , since this number is constructed to differ from every 
real number with an M-name. If M has a name for T M, then since M is 
closed, M will also name dM-but this is impossible. Therefore, M does 
not have a name for T M. In general, no closed naming system can name 
the real number T M that codes up this system. 

This fact was first discovered by Jules Richard in 1905. Richard was a 
French high school teacher at the time. He formulated the fact that no 
closed M names T M as a paradox by taking his naming system to be a 
given and evident universal relation. That is, he assumed that "8 is a 
name for s" is a relation that is already perfectly clear. But if this relation 
is already perfectly clear, then the real number T coding up all the 
nameable reals is clearly defined, and then d (the diagonalization) is 
clearly d.:fined. But d cannot be nameable since it differs by construc
tion from every nameable real. So, if we assume that the relation of 
naming is clearly named by the word "name," then we can name a num
ber d that differs from every number that we can name. Such is Rich
ard's paradox. 

Richard himself was able to see that the way out of the paradox is to 
deny that the M one has in mind can name T M. As he puts it, the diago-
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nal number is really only named by M if the translation code T M is to
tally defined, "and this is not done except by infinitely many words."22 

Is there any deeper significance to the fact that no closed naming sys
tem M names its translation code T M? Looked at quite formally, we are 
simply saying 

T M = . CD0®0®0®®CD® 
"11 IIIII ~TranSM(1):.Z 230 .. . 

'-----L--1.f---L.--+.-~_ TransM(2) -.9 9 9 .. . 
'------'--~TransM(3) =.2 5 .. . 

TransM(4) = .0 .. . 

that when certain real numbers T M are decomposed into countably 
many real numbers in the way indicated above, then the original num
ber does not appear among the countably many real numbers obtained. 
This, of course, applies only to numbers T M that code up a closed sys
tem of naming. It is worth noting, incidentally, that ifT M does code up a 
closed system, then breaking down one of the new numbers like 
TransM(3) should not lead to any numbers not already present after the 
first breakdown. 

If we think of M as a human being, then we can imagine the n's as 
being books made of words, and think ofTransM as being the process of 
translating each book into a real number. There can be no book that 
gets translated into the real number T M coding up all of M's activity. 

We can make this more colorful. The code numbers can be thought 
of as books made of words, and we can perhaps think of the real num
bers named by these words as being ideas. The idea of pi embodies the 
whole infinite decimal expansion in a simple pattern. In general, a real 
number is something like an idea, because it has a definite existence as a 
mental (as opposed to physical) object, yet nevertheless provides a nor
mative standard for concrete approximations (namely, the initial seg
ments of the infinite decimal expansion). So, we might say that Rich
ard's argument demonstrates that no human being can give a finite 
description of how he turns words into ideas. 

This is quite similar to the moral already drawn from the Berry para
dox-that no finite scheme can capture the essence of how one con
nects the real and the ideal, the physical and the mental, language and 
thought. 

But wait. Even thoughM has no finite name for T M, couldn't there be 
a better naming system M* that does have a name for T M? There seem to 
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be two alternatives. On the one hand, it may be that T M is absolutely 
unnameable, in the sense that no finitely given systemM* can name T M. 

In this case, M must be infinitely complicated. On the other hand, it 
may be that there is some finite way of giving M and T M within a higher 
system M*. In this case, M is incomplete. So we can conclude that any 
system for naming real numbers must either be infinitely complicated (so that 
T m is itself random in the absolute sense) or incomplete (so that T M does 
eventually admit of a finite description). 

The real motive in taking up Richard's paradox was to try to find a 
real number that is absolutely random and answers to no finite descrip
tion. If we believe that there is such a thing as a maximal naming system 
U, then it cannot be that U can be improved to a naming system U* that 
names everything U names, and names T u as well. So if we believe that 
there is a maximal naming system U, then we know that there is a ran
dom real number-the translation code T u. If we accept the relation "B 
names s" as being meaningful without further specification, then we are 
really thinking in terms of some maximal system U. But there is some 
question as to whether this is a legitimate way to think. 

One could be rather hard-nosed about it and deny that a naming sys
tem M exists unless it has been exhaustively specified by various rules 
and schemata. Such an M is basically a finite thing, and can always be 
improved upon to get a better M* that also describes T M. Now, this 
kind of process can be continued indefinitely without ever reaching a 
stopping point. It is a bit like the way in which we can always find a 
greater natural number without ever getting to an actually infinite 
number. 

So a Richard-style argument will give us an irreducibly infinitely com
plex real number T u only if we are already willing to accept the exis
tence of a somewhat transcendental relation of "naming." Such a U 
would be embodied in, let us say, a God who was an English-speaking 
mathematician. But all we are doing then is assuming one infinity to get 
another one. 

CODING THE WORLD 

One can conceive, ideally, of a set of facts that would enable one to 
answer every possible question about our universe. The question that 
concerns us here is whether o.r not the smallest, most efficient such 
complete description of the world is finite or infinite. 

Whether or not the world itself is infinite to begin with makes a dif-
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ference, of course. But this was already discussed in the "Physical Infin
ities" and "Higher Physical Infinities" sections. Here we are concerned 
with distinguishing between the following three cases: 1) The universe 
is totally finite, and thus admits of a finite complete description; 2) The 
universe is in some respect infinite, but nevertheless is completely spec
ified by some finite set of facts; 3) The universe is infinite and cannot be 
completely described by any finite collection of sentences. 

Case 1 is the situation where space and time are finite and quantized. 
Here the universe has only a finite extent, and space-time is grainy, so 
that only a finite number of possible space-time locations exist. A com
plete description of the universe could be given by specifying what was 
to be found at each of the finitely many space-time locations. 

-( 

A~ 
)... 

-<r T 1 
Figure 63. 

A universe such as this is something like a picture made of individual 
light bulbs, such as one sees in displays at Times Square. Or, one might 
think of the universe as being a large, but finite, four-dimensional Go 
board 'with white stones for matter and black stones for antimatter. 

I might mention in passing that the German mathematician Eduard 
Wette believes that the universe is totally finite in the way just de
scribed, having well under 101010 space-time locations. He concludes 
from this that any mathematical talk about numbers greater than 101010 

is meaningless, and even inconsistent. He has repeatedly tried to use 
this insight to fashion a convincing proof that all of traditional mathe
matics is contradictory.23 Needless to say, Wette's ideas are unpopular 
among mathematicians. 

Case 2 is the rationalists' dream. Here we have an infinite universe 
whose very essence is somehow captured by a finite set of facts and nat
ural laws. Science continually works to approach this situation by find-
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ing laws that account for and summarize a wide variety of individual 
cases. Once we know about the proton-neutron-electron model of the 
atom, then the table of elements becomes very easy to understand. 

An extreme example of this sort of process appears in Eddington's 
Fundamental Theory.24 Here Eddington tries to derive such physical 
constants as the mass of the electron and the radius of the universe from 
certain a priori theoretical considerations. His efforts must be judged 
largely unsuccessful, but the idea of finding a few key facts and laws that 
account for everything is still an attractive one. 

One could, of course, question whether any finite theory could some
how predict the mass of infinitely many stars, or even the arrangement 
of the blades of grass in a lawn. Actually, there is a certain sense in 
which no finite theory can exhaustively describe an infinite world. 
Godel's Incompleteness Theorem, which will be studied in the next 
chapter, states that no finite theory can predict all of the true facts about 
natural numbers. Now, if the universe is infinite, then it embodies the 
full set of natural numbers, so Godel's Theorem seems to say that for 
any given finite theory of the universe, there are certain facts having to 
do with sets of physical objects that cannot be proved by the theory. 

But let us set this difficulty aside for now and look at a more concrete 
way in which a universe might fail to answer to any finite description. 
We will consider a universe that continues expanding forever after an 
initial singular state. Our own universe may very well be like this. Given 
an infinite future, with no future collapses to rub everything out, might 
look for an irreducible infinity in the form of a random sequence. 

Suppose you started flipping a coin and wrote down a 1 for every 
"heads" and a 0 for every "tails". If you put a decimal point in front of it 
all, something is generated that looks like it might be a random real 
number, say, .0110010100001011. ... But there is the problem that 
you will not be around forever, so you will not be able to produce an 
infinite sequence of digits. 

To avoid this, you might build a coin-flipping machine. To keep the 
machine running, you supply it with a couple of repair robots, who are 
also capable of repairing and even building copies of themselves. In 
order that these three friends don't run out of energy or raw materials, 
we put them in a spaceship that zooms around the universe scooping up 
matter and converting it into energy and the desired elements. If we 
have an everlasting universe with an infinite amount of matter in it, then 
there is no theoretical reason why such an immortal coin-flipper could 
not be set up. 
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Figure 64. 

If the coin-flipper is unbiased, it is at least logically possible that 
nothing but heads will come up from now on. But we would expect it to 

be more likely to produce a sequence of zeros and ones answering to no 
finite description. A universe in which at least one such random coin
flipper existed would not have any finite description. 

It may very well be that no one will ever bother building such a com
plicated machine. Isn't there some simpler sort of physical choice mech
anism? 

Consider a hydrogen atom, consisting of an electron circling a pro
ton. The atom can exist in various energy states. In general, it moves to 
higher energy states by absorbing photons, and passes to lower energy 
states by emitting photons. Suppose that we watch a particular hydro
gen atom, and at the end of each second we write down 1 if the atom 
has emitted a photon during that second, and write down 0 otherwise. 

There is no reason why a given hydrogen atom may not survive intact 
for the rest of time, but there is a problem here in that we will not be 
around for the rest of time to watch it and mark down zeros and ones.25 
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Figure 65 (A-B). 
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At first one is inclined to feel that whether or not anyone looks the atom 
will, during any given second, either emit a photon or fail to do so. So 
one is tempted to believe that if time goes on forever, then each hydro
gen atom in a certain sense already embodies or labels an infinite se
quence of zeros and ones. 

Randomness is not usually an axiom explicitly assumed in quantum 
mechanics, but there is a strong feeling that the behavior of a hydrogen 
atom is, in principle, unpredictable. So we would expect most of the 
hydrogen atoms to be generating random real numbers. (There is one 
theorist, Paul Benioff, who has tried extending Quantum Mechanics by 
explicitly assuming that such hydrogen sequences would be random in 
the sense of answering to no finite description. 26 ) 

But there is a big catch. Unless someone looks at a hydrogen atom, it 
need not have definitely emitted a photon or not. It can be, according to 
orthodox quantum mechanics, in what is called a mixed state. That is, 
unless it is being subjected to external measurements, the hydrogen 
atom can be in a state where it emits a photon with sixty percent proba
bility and fails to emit a photon with forty percent probability, but does 
not unequivocally do either one! 

The same sort of thing actually applies even to macroscopic systems 
such as the coin-flipper. The coin-flipper starts out in a certain state de
scribed by a certain wave function. The wave function evolves deter
ministically according to Schrodinger's wave equation as time goes by. 
Unless someone is there to keep an eye on the flipper, it will soon enter 
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a state of always getting tosses that are fifty percent heads and fifty per
cent tails. That is, each toss is 50/50. 

It is difficult to assign any meaning to a statement such as this. How 
can you toss a coin, have it land (not on an edge) and be fifty percent tail 
and fifty percent head? You can't ... because you can only see one 
universe. If you could somehow split into two distinct people in two 
distinct universes, then you could see the coin come up heads and come 
up tails on the "same" toss. 

Start 

TIT TTH THT THH HTT HTH HHT HHH 
• • • 

Figure 66. 

One way of interpreting quantum mechanics is to claim that the uni
verse actually does split like this every time a decision has to be made. 
The idea is that if there is no sufficient reason for the world to choose H 
over T or T over H, then it chooses both.27 

As the universe continues its dividing and redividing, every node in 
an infinite binary tree of possibilities is filled by a possible world. After 
ten coin flips, there will be coin flippers in 210 = 1024 different uni
verses, one for each possible sequence of ten zeros and ones. 

Curiously, such a branching universe contains less information than a 
universe that does not branch. For if there is only one coin-flipper, then 
a unique sequence of zeros and ones is generated, and this sequence is, 
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in all likelihood, a random real coding up an irreducibly infinite amount 
of information. But if a coin-flipper splits in two every time the coin is 
tossed, then there is no one flipper you can point to in order to pick out 
a path through the binary tree. 

If you start up a coin-flipper in a branching universe, then all you get 
is the occupation of every node of an infinite binary tree. This sort of 
setup is completely described by a finite number of words: "Take every 
possible finite sequence of zeros and ones." If the universe does not 
branch, then the only way to describe what this particular flipper does is 
to state the actual sequence it generates: ".011010001010000110 ... " 
In this case one can hope that there is some hidden order to the universe 
that finitely determines the sequence in question, but this hope may 
very well be unfounded. 

This is an interesting point, and bears a little more discussion. If every 
possible universe exists, then there is no need to account for the special 
peculiarities of this universe (e.g., the facts that there is an ant crawling 
up my screen right now, or that there are 79 clover blooms in my back
yard, or that sentient beings exist in this universe, or that space has 
three dimensions). If every possible universe exists, then there is no 
need to explain any peculiarity. Why is there an ant on my screen? No 
reason-there is another universe exactly the same except with no ant. 

This situation is a bit like the Total Library. Given that every possible 
book is there, it would not really make sense to ask what the printer had 
in mind when he filled some given volume with "yam's." He did so be
cause he had to do every possible book. In a sense, the Total Library 
contains no information at all! 

So if every possible universe exists, then the cosmos can be rather 
simply specified by the injunction: "Take every possible universe." Ac
tually, a bit more than that would be needed. In particular, one would 
have to decide what constitutes a "possible universe." A fairly conserva
tive answer would be to take all the possible ways of filling a four-di
mensional space-time with mass and energy consistent with Maxwell's 
equations and Einstein's field equations. And what about universes 
where the usual laws of physics do not hold, or universes where even 
the usual rules of logic do not apply? But it would take us too far afield 
to consider questions such as these. 

It is very hard to believe seriously that every possible universe exists. 
But let us give it a try. If all possible worlds are out there, then every 
time I get in my car there is a world where I suffer a fatal accident. How, 
one is tempted to ask, do you stay in the worlds where you don't get 
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killed? The answer seems to be : You don't. You are equally in all of 
those worlds. Really to accept this fact is a source, I would say, of pro
found liberation. Once you're born, the worst has already happened to 
you. 

The main unanswered question about the Many Universes model is 
how it is that one seems to oneself to be just in one universe. If every
thing is possible, why can't you be aware of it? Maybe you can, or are all 
the time. If you examine your preverbalized thought patterns, they are 
rather different from ordinary consensus reality. 

For example, if I am handed a bowl of walnuts, it may look in an in
stant like a cave, an old man's face, clouds, the Matterhorn, a eat's eye, 
hands, or The Wreck of the Medusa. When I see something for the first 
time, before I have decided what is is, it is many things at once. "Ah, 
yes, a bowl of walnuts," I say shortly, and then I have only the one real
ity in my consciousness. But until I name the object and make it be one 
thing or another, I am in a mixed state-in many worlds. 

Dreams are perhaps jumbled perceptions of many possible worlds. 
Language and ordinary thought form a sort of touchstone which keeps 
bringing you back to the same reality . You certainly do leave ordinary 
reality every time you fall asleep. If you woke up alone and with no 
memories but your dreams, could the dreams take over? 

Despite all that has just been said, I do not believe very strongly in 
the full Many Universes theory. The universe we live in is so artfully 
constructed, so full of checks and balances, causes and coincidences, 
that it is hard to believe that this universe is just the product of a zillion 
coin-flips. There is so much holistic order in the universe that it seems 
implausible to suppose that we are just in some random one of all the 
possible worlds. There may be other universes, and we may be able to 
sense them in some manner, but I would expect each universe to have a 
certain overall patterning or essence. 

This underlying pattern is what is sought when one looks for the 
shortest, most efficient complete description of a universe. But if the 
universe is indeed infinite, there seems to be no pressing reason why 
the underlying pattern of the universe should not be infinite as well. 
This brings us to Case 3. 

This case, where one has an infinite universe with no finite descrip
tion, actually splits into a number of subcases according to which level 
of infinity is assigned to the universe and to its descriptions. One could 
have a countable universe with a countable description, an uncountable 
universe with a countable description, or an uncountable universe with 
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only an uncountable description. But it would be too confusing to con
sider these subcases here. Instead, let us further discuss the distinction 
between Case 2 and Case 3, looking at some concrete examples of how 
one might go about trying to code up the whole universe. 

The most naive approach is to imagine that the universe is made of 
some finite or countably infinite collection of particles mo, ml> m2, 
... ,and that at each time t, each of these particles is of a definite type 
(electron, quark, photon, etc.) and has a definite position, orientation, 
and momentum. It is evident that all this information constitutes a set of 
real numbers that is at most countably infinite. Using the shuffling tech
nique of the last subsection, all of these real numbers can be combined 
to form a single real number V(t), which represents an exhaustive de
scription of the state of the universe at time t. 

We who have heard of quantum mechanics all our lives must question 
whether any such number V(t) really exists, particularly since we know 
that we could never measure the position of anything with infinite pre
cision, and especially not if the momentum is to be found with infinite 
precision as well. But for the physical determinists of the nineteenth 
century this objection had no force. They assumed that even if we could 
not measure it, Vet) existed at each t. The determinists also believed 
that it was not necessary to know all of the V(t). Indeed, they assumed 
that given Veto) at one time to, all of the remaining V(t) could be calcu
lated on the basis of Newton's Laws of Motion. So for an old-fashioned 
determinist, a complete description of the universe can take the form of 
a single real number V. 

Simply by looking at the leaves on a tree, the wrinkles on one's palm, 
or a sky full of clouds, one can quickly convince oneself that if such a 
universal number V has any finite description, then the length of this 
description must be very long. I would guess that the shortest natural 
number coding up a description of how to generate V would have to be 
longer than the number called Uo in "The Berry Paradox." 

An interesting side issue arises here. Even if some perfectly accurate 
description V of the universe exists, it seems likely that if we repre
sented V by the clumsy expedient of putting numbers in books, then 
this representation of V would not fit in the universe. Of course, the 
most efficient representation of V is the universe itself, so at least one 
representation of V exists. But could we ever hope to have a desk-top 
or pocket-sized model of the universe? Only if matter is indefinitely di
visible. 

For if there is some smallest size particle, then any object in the uni-
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verse will have less particles than the universe, and thus cannot serve as 
a scale model. But if there is no smallest particle size, then any portion 
of matter contains the same infinitely many particles, so it would be pos
sible for some small region of matter to look exactly like the entire uni
verse. 

• • 
• 

• • 
Figure 67. 

Let us describe a way of modelling this possibility. Consider the pat
tern in Figure 67, colloquially known as a Phoebe Snow by crapshooters. 
We can use this pattern as the base for an endless sequence of more and 
more detailed patterns of the same size. We do this by replacing each of 
the dots by a tiny Phoebe Snow to get a new pattern, replacing each dot 
in the new pattern by a tinier Phoebe Snow, and so on . 

• 

Figure 68. 

In Figure 69 I have reproduced plate 115 from Benoit Mandelbrot's 
Fractals. This shows an enlarged picture of the fourth stage of the pro
cess just described. If the process is carried out an actually infinite num
ber of times, we get something called a Fournier fractal (after E. E. 
Fournier D' Albe, who devised a similar pattern in 1907 to describe how 
he thought the galaxies might be arranged in space). 

What we obtain is a universe that seems, at a glance, to be made of 
five chunks of matter in the Phoebe Snow arrangement. Upon closer 
inspection, each of these chunks resolves itself into five smaller sub
chunks, each of which upon closer inspection reveals itself to be a 
Phoebe Snow of five subsubchunks, etc. In other words, this fractal 
consists of five groups consisting of five groups consisting of five 
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Figure 69. From Benoit Mandelbrot, Fractals. 
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groups. . . . The phrase "five groups consisting of" is repeated w times. 
Now, if a few of the initial repetitions of this phrase are left off, nothing 
is changed, so it is evident that each of the groups, subgroups, etc., has 
the exact same internal structure as the entire Fournier fractal universe. 

I might add here that this could all have been carried out three-di
mensionally by adding cwo dots to the basic pattern-one dot directly 
above the central dot, and one dot directly below the central dot, ob
taining a "centered octohedron." The final fractal would be obtained by 
endlessly replacing dots by smaller centered octohedra. 

The point is that if matter is infinitely divisible, then it is conceptually 
possible that there are particles that are exact replicas of the whole uni-
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verse. If one chooses to identtfy these particles with the entire universe, 
then the circular scale situation of the subsection, "Infinities in the Small," 
arises. Note also that even if there is no circling back, such a Fournier 
fractal universe would contain only a countable infinity of groups, sub
groups, etc. One unnatural feature of this model is that it is finite and 
bounded, in the sense of having outer boundary groups around an inner 
group. If we try to remedy this by curving the space into a hypersphere, 
then it is hard to see how the groups in the space can also be curved into 
hyperspheres, since the space itself normally has a dimension one lower 
than the space it is curved in. One way out of this problem would be to 
work with space of infinitely regressing dimensionality, so that one 
works with a hyperhyper ... space, but this notion has never been 
studied. 

In any case we were talking about ways of coding up the universe and 
the question of whether such codes are finite or infinite. The digression 
that just ended had to do with the question of whether it was, in princi
ple, possible for the universe to include a scale model of itself. 

We have already examined the physical determinists' method of cod
ing up the universe by a single real number U. Even the non-determin
istic theories of physics would generally seem to allow for the universe's 
instantaneous state being coded up by a real number, and for its entire 
history being coded up by a countable set of real numbers (give the 
state at each rational time coordinate), which can in turn be folded into 
a single universal real V, which mayor may not be coded up by some 
magically efficacious finite formula. 

There is something a bit unnatural in trying to describe the universe 
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in terms of elementary particles, particularly in light of the fact that our 
knowledge of these particles is so derivative and uncertain. There are a 
number of facts that suggest the view that the data about these particles 
that we obtain are, in some sense, mind-produced. Perhaps it would be 
better to base our description of the world on actual human thought 
and experience. 

That is, we would want to compile a list of all the things about the 
world that a person could find out. I might start, for instance, by men
tioning the pen lying next to my typewriter. By way of describing it, I 
mention that it is black and shiny, but now I must pause to explain what 
"black" means. One component of what "black" means is certainly its 
association with the idea of "night." Fully to express what "night" is, I 
must give specific examples of various nights I have experienced, for 
instance, the night in 1966 when Sylvia and I stood on a fragrant terrace 
looking out at the path the moonlight made on the Mediterranean. But 
really to describe how it felt to be there, I had better tell you about Syl
via. She was born in Budapest-here is a map of the city. A map is a 
sort of diagram drawn with a pen. Pens? They're things you write with 
-I have one right here next to my typewriter; it's black and shiny .... 

The fact is that when we try to describe anyone object or experience 
fully in terms of other objects and experiences, more and more things 
get dragged in, including repeated appearances of the object originally 
being discussed. 

There is no real contradiction or regress here, but it does seem that 
the body of possible experience is something like a neglected dish of 
hard candy; we try to pick one piece of candy up and the whole dishful 
comes along. It is probably impossible to describe anyone thing in the 
world exhaustively without mentioning everything else as well. No mat
ter what you start with you're going to end up by mentioning the scar on 
my right index finger, the shape of the first sunspot to appear in 1292 
B.C., the genetic makeup of the spirochetes that attacked Ivan the Terri
ble, and the nature of the galactic civilization that has evolved in the 
Whirlpool Nebula. 

How can all this diversity be grasped as a mathematical unity? One 
approach would be to let The Description be the set of books in the 
Total Library that consist of true English descriptions of some aspect of 
the universe. Wittgenstein says, "The world is everything that is the 
case," and we will let The Description be all the English descriptions of 
things that are indeed the case. The Description constitutes a set of 
books, which can be viewed as a set of code numbers. So The Descrip-
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tion itself can be viewed as an infinite set of natural numbers, which can 
be coded, if desired, as a single real number that could be called D. 

The restriction to English poses no real problems, since The Descrip
tion will include an explanation of what each word means in terms of all 
the other words. Insofar as the attainable physical knowledge of the 
world constitutes only a part of "what is the case," D really has more 
information than U. 

Again, we might ask if D could possibly have a finite description of 
some kind. For instance, what if by some miracle, D turned out to be 
one over pi! People who believe that there is some ultimate answer to 
"it all" are in the position of hoping for just such a miracle. But anyone 
who has ever savored the endless diversity of nature must feel-and 
even hope-that the universe can never be fully captured by any finite 
schema, and that the pattern of the universe is, in a formal sense, ran
dom and unnameable. 

The bounded and finite One of Plato and Parmenides seems no more 
worthy of worship than an overgrown computer. There is a harrowing 
passage in Moby Dick where Ahab stands on the deck in a thunderstorm, 
holding a lightning rod and ranting to his shipmates' nameable God: 

"There is some unsuffusing thing beyond thee, thou clear spirit, to whom 
all thy eternity is but time, all thy creativeness mechanical. Through thee, 
thy flaming self, my scorched eyes do dimly see it."28 

WHAT IS TRUTH? 

The golden age of Greek philosophy was not very far in the past at 
the time of Christ. One of the very few representatives of the Greco
Roman world who appears in the Gospels is Pontius Pilate. In view of 
this fact, the following passage from the Gospel according to John takes 
on a certain significance as an archetypal confrontation between mysti
cal and rational ways of thinking: 

Pilate said to him, "So you are a king?" Jesus answered, "You say that I 
am a king. For this I was born, and for this I have come into the world, to 

bear witness to the truth. Everyone who is of the truth hears my voice." 
Pilate said to him, 'What is truth?'" -John 18 (37-38). 

The notion of truth leads to a number of logical difficulties. One of 
the most prominent of these difficulties is the Liar paradox, also known 
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as the Epimenides paradox. Epimenides lived in Cnossus, the capital 
city of Crete, sometime before the time of Christ. It is generally be
lieved that St. Paul is referring to Epimenides in the following passage: 
"One of themselves, a prophet of their own, said, 'Cretans are always 
liars, evil beasts, lazy gluttons.' This testimony is true." -Epistle to 
Titus 1 (12-13).29 

The paradoxical aspect of Epimenides the Cretan saying, "Cretans are 
always liars," is that if what he says is true, then he must be lying. In 
view of this, it is especially ironic that Paul adds, "This testimony is 
true!" 

The Liar paradox can be sharpened by considering the sentence: A) 
THIS SENTENCE IS FALSE. 

That is, A is a sentence saying that A is false. If A is true, then what it 
says is true, so A is false. If A is false, then it is true to say that A is false, 
so A is true. 

This is certainly a deplorable state of affairs. One way in which people 
have tried to get out of the paradox is to deny that A is either true or 
false-to assert that A simply happens to be a sentence that has no defi
nite truth value. Now, we are certainly familiar with sentences that 
seem to be meaningless, rather than strictly true or false. "Virtue is 
triangular" and "Donald Duck weighs 62.8 pounds" are sentences that 
we would hesitate to call definitely true or definitely false. So why 
couldn't A be another such sentence? 

This exit route can be closed in the following way. Consider the sen
tence: B) THIS SENTENCE IS NOT TRUE. 

B is a sentence saying that B is not true. Now, every sentence is either 
true or not true. If B is true, then B is not true. If B is not true, then B is 
true. Therefore, B is both true and not true-which is a contradiction. 

It certainly seems that any sentence must either be true or not true, 
where "not true" is taken in the broadest possible sense of "false, mean
ingless, contradictory, or impossible to verify." So it seems dishonest to 
try to escape the present form of the Liar paradox by denying that every 
sentence is either true or not true. 

We might, instead, try denying that B is a sentence. There is certainly 
something peculiar about B. It refers to itself with the phrase THIS 
SENTENCE, and if we replace THIS SENTENCE by a quotation of 
the sentence in question, namely by "This sentence is not true," then 
we are no better off than before. Repeating this substitution leads to an 
infinite regress: 
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THIS SENTENCE IS NOT TRUE. 
"THIS SENTENCE IS NOT TRUE" IS NOT TRUE. 
""THIS SENTENCE IS NOT TRUE" IS NOT TRUE" IS NOT 

TRUE ... 
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. " IS NOT TRUE" IS NOT TRUE" IS NOT TRUE. 

Note that the limiting sentence at the bottom consists of an w-sequence 
of'" s running from left to right, followed by an w-sequence of" IS NOT 
TRUE's running from right to left. 

There is actually nothing inherently bad about infinite regresses. Jo
siah Royce has made the point that an infinite regress can usually be 
avoided by looking at the situation in a schematic way. For instance, if I 
say that there is a sentence B that says B IS NOT TRUE, then there is 
no infinity present. It is only when I insist on eliminating the symbol 
"B" that the infinite regress arises. 

Recall that we say a very similar situation in the "Infinities in the 
Mindscape" section, when we discussed a mind that consists of pure 
self-awareness. This was modelled as a set M whose only member is M. 
It is possible to grasp the essence of the set M immediately and all at 
once, but if we try to eliminate the symbol "M", we get the infinitely 
regressing definition of M as {{{. .. . .. }}}. 

The traditional belief was that if a line of thought leads to an infinite 
regress, then this line of thought is invalid.30 This belief is founded on 
the notion that infinity is inherently contradictory and even incoherent. 
But Cantor has delivered us from this superstitious fear of the infinite. 
And not a moment too soon, for in 1893 F. H. Bradley published a 
book, Appearance and Reality, which seems to show that just about any 
sentence leads to an infinite regress when thoroughly analyzed.31 

Bradley's argument goes something like this. Ordinarily we think of 
the world as being made up of various individuals a, b, ... , which 
stand in various relations R, P, . . . to each other. For instance, for me 
to say that this X is to the left of this X is to say that a certain relation L 
(" to the left of") is satisfied by the object a (the first X mark) and the 
object b (the second X mark) taken in that order. This is abbreviated as 
L(a, b). 

Now, Bradley continues, we can think of relations as themselves 
being higher-order objects that can, in turn, stand in various higher-
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order relations to other relations and objects. We do this, for instance, 
when we say, "It is more blessed to give then to receive.'· Returning to 
the example above, we can view the relation L as a (higher-order) object 
and say that L(a, b) really means that L, a, and b have a certain higher
order relation-call it satisfaction-to each other. This is, we can say that 
L(a, b) really means S(L, a, b) where S is the "first-order satisfaction re
lation" such that in general S(R, x, y) holds if and only if x stands in the 
relation R to y. 

But now we can introduce a still higher-order relation S' and say that 
S(L, a, b) really means S'(S, L, a, b) where S' is the "second-order satis
faction relation" such that in general S'(Q, R, x, y) holds if and only if 
Q (R, x, y). Indeed, Bradley argues that not only is it possible to start 
down this path, but that it is necessary. For he feels that to assert a state
ment such as L(a, b) is to say that the relation L, the object a, and the 
object b stand in a certain relation to each other. 

And, of course, there is no stopping, and we have the infinite regress: 

L(a, b) 
S(L, a, b) 
S'(S, L, a, b) 
S"(S', S, L, a, b) 

. S", S', S, L, a, b). 

The moral is that even a statement as simple and unproblematic as 
"this X is to the left of this X " can lead to an infinite regress, so the mere 
fact that the Liar paradox sentence B leads to an infinite regress does not 
automatically mean that B is not a sentence and that B is, therefore, ex-

a b 

Figure 71. 
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empt from having to be either true or not true. In other words, we should 
not dismiss the Liar paradox out of hand simply becau~e it leads to an in
finite regress-for Bradley has shown that every sentence leads to an infi
nite regress. 

Before going any further, let's eliminate the symbolism and try to see 
what Bradley has really done. His basic intuition seems to be that 
nothing can be linked to anything else without a mediating relation. 
Thus, L links a to b, S links a to Land L to b, S' links a to Sand S to L 
and L to b, and so on. 

Figure 72. 

We can visualize this geometrically by starting with an a and b with a 
sort of chasm in between them. Now, the relation L can be viewed as a 
bridge across the chasm. Continuing, we can think of S as a pair of 
bridges spanning the gulfs between a and Land Land b, and of S' as a 
set of four bridges connecting a to S, S to L, L to S, and S to b. In the 
limit we get a fractal, which is partially drawn in Figure 73. 

Figure 73. 
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Leaving aside, for now, Bradley's concern with how it is that disparate 
language elements are unified into a sentence, let us consider what the 
sentences in his infinite regress actually say. 

L(", b) says" is to the left of b. 
S(L, a, b) says "" is to the left of b" is true. 
S'(S, L, ", b) says ''''" is to the left of b" is true" is true . 

. . S", S', S, L, ", b) says ......... " is to the left of b" is true" is true" is 
true" .... 

Another way of putting it is that Bradley believes that truly to assert 
some sentence E, one must really assert each of the following infinite 
regress of sentences: E , "E" is true, .... E .. is true" is true, . . . This re
gress tends toward the limit . . . .. .. "E" is true" is true" . . . ,where 
on the left we have an w-sequence of left-hand quotation marks running 
from right to left, and on the right we have an w-sequence of is true" 's 
running from left to right. 

Can we avoid this infinite regress by insisting that once you have said 
E, it adds nothing also to say "E" is true? This is the case for certain 
artificial sentences. We can construct such an artificial sentence like this: 
C) THIS SENTENCE IS TRUE. 

C says that C is true, so C and "c" is true are the same sentence. If we 
analyze C) as we did B), we see that C) actually has the form: ...... . . . 
. . ." IS TRUE" IS TRUE" IS TRUE, where an w-sequence of quotes 
moves in from the left, and an w-sequence of" IS TRUE's moves in 
from the right. Clearly, tacking on an extra quotation mark in front and 
an" IS TRUE in back changes nothing. So for the artificial sentence C, C 
and "c" is true are the same. Incidentally, you might wonder whether 
THIS SENTENCE IS TRUE is true or not. I don't know. All I can tell 
you offhand is that if it is true, then it is true; and if it is false, then it is 
false . . . which is not too helpful. 

Returning to the main line of thought, I would like to stress the fact 
that for most sentences E, "E" is true really is a sentence that is different 
from E. To understand a sentence such as "a is to the left of b," we need 
only know where a and b are and what "left" means. But to understand 
.. It is true that a is to the left of b," we have to know what "true" means 
as well. And this is not so easy to know. 

In point of fact, there can be no finite complete description of truth. 
Truth is undefinable. As we will see, this will be our way out of the Liar 
paradox. For if truth is undefinable, then the word "truth" cannot prop
erly be used to stand for the full concept of truth, so the Liar sentence B 
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really does not mean what we thought it did, and the paradox is 
avoided. 

But before thinking that through, let's look at Alfred Tarski's 1934 
proof that truth is not definable.32 Consider the Total Library. Some of 
the "books" will assert sentences, and some of these sentences will 
be what we think of as true sentences. If, for instance, the text of B5389 is 
simply "Snow is white," then we would say that B5389 is a true book, or, 
abbreviating, T(B s389)' 

In general, T(Bn) if Bn is a book that is true. Recall that in the last 
subsection we referred to the set of all true books as The Description. 
You might ask who is going to decide which of the Bn are true-but 
let's dodge that for now by saying we'll let God decide which books are 
true. 

So T(Bn) holds if and only if Bn is true. Now I wish to prove that 
there can be no finite description of the T predicate. There can be no 
finite accounting for which books God will say are true. 

Figure 74. 

For suppose that there were a finite blueprint or program for building 
a "truth machine" such as the one illustrated in Figure 74. The truth 
machine has a slot where you can put a book Bn in. The truth machine 
scans the pages of Bn, and if Bn is true, then it is placed in a nice orderly 
row with all the other true books. But if Bn is not true, then the truth 
machine spits it out onto the scrap heap of history. 

O.K. So, now have a finite set of instructions for building a truth ma-
chine. Let K be the book that goes as follows: 

"Imagine building a truth machine according to the following set of in
structions. [Give the instructions.] Now, the assertion that this book 
wishes to make is the following: The truth machine will not say that this 
book is true." 
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Toss K into the truth machine's mouth and watch the fun begin! 
Fun, that is, if you enjoy seeing valuable machinery destroy itself. 

The truth machine can't say thatK is false, since thenKwould be true
in that it predicts that the truth machine will not say that K is true. And 
the truth machine can't say that K is true, since if the machine says K is 
true, then K is false-since it predicts that the machine will not say K is 
true. SoK sticks in the truth machine's craw: The machine can't say YES 
and it can't say NO. 

So, in fact, the truth machine never will say that K is true. But that's 
what K says. We who look in from the outside can see that K really is 
true, in the absolute and undefinable sense of the word "true." K is a 
true book, but the truth machine is unable to recognize this fact! 

Speaking a bit more formally, we have proved that for any finite set of 
instructions S for building a truth machine M s , there is a finite book Ks 
such that Ks is true and Ms cannot recognize this fact. Ks is, as above, 
the book saying, "Ms will not say that Ks is true," and when we give Ks 
to M s , Ms goes into an endlessly regressing loop and never says any
thing again. 

There can be no finite description of a truth machine that singles out 
as true all the true books. There is no robot we could build to winnow 
The Description out of the Total Library. Truth is undefinable. 

The solution to the Liar paradox is now at hand. In itself, the sen
tence: B) THIS SENTENCE IS NOT TRUE is not really a meaningful 
utterance. Some description S of what is meant by TRUE must be ap
pended, so that B really becomes Ks: Ks) THIS SENTENCE IS NOT 
TRUE ACCORDING TO DESCRIPTION S OF TRUTH. 

In terms of description S, Ks will be neither true nor untrue, for S 
cannot reach a decision on Ks. So there is no paradox. 

In terms of our absolute, but unformalizable, notion of truth, Ks is 
true. Better and better descriptions of truth can be obtained, but no fi
nite description can ever exhaust the unnameable concept that we point 
at with the symbols T-R-U-T-H. 

A truth machine descriptionS cannot always correctly decide the truth 
of statements mentioning S. But it is possible, given S, to come up with 
a better truth machine descriptionS' that does every thingS did and also 
is able to correctly decide the truth of statements about S. (S' could, for 
instance, include all the rules of S, plus the new rule, "Ks is true.") 

This move can be used to generate an infinite sequence Sn of truth 
machine descriptions. We let So be some truth machine description that 
decides about sentences that do not mention truth at all, and for each 
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n + 1 we let Sn~l = Sn'. That is Sn+l decides everything Sn did, and de
cides sentences about Sn as well. 

With this in mind, we can arrive at a better understanding of what 
underlies Bradley's regress. Suppose that you want to state some decla
ration E in such a way that it is absolutely clear that E is true. 

If you simply say HE ," then people may think that you are only recit
ing poetry or framing a hypothesis, so you want to say something like HE 
is true." Unfortunately, the people you are talking to are positivists, and 
they insist that you define every term that you use-and it is impossible 
to define the absolute notion of truth that you had in mind. So, you de
scribe some definition So of truth and say, HE is true according to So." 
But now you feel that you should stress that this last sentence is true, 
and the regress begins: 

E. 
"E" is true according to So. 
""E" is true according to So" is true according to S 1. 

"" "E" is true according to So" is true according to S t is true according to S2. 

No final satisfaction is ever reached. Indeed, this regress can be car
ried on past w. For if Sw is the truth description that feeds a given book 
into one after another of the Sn until an answer appears, then Sw is still 
finitely described and we can move on to SW+1 = Sw'. 

Of course, our absolute notion of truth should be such that if E is true, 
then "E is true" is true, and so on. But this absolute notion is not finitely 
describable. If we restrict ourselves to finitely describable notions of 
truth, then Bradley's regress is unavoidable. 

It is, of course, possible to deny that any absolute notion of truth 
exists, and to insist that all there will ever be is better truth definitions, 
tending toward a limit that is wholly imaginary. This point of view is 
analogous to the point of view that admits that there are arbitrarily large 
':latural numbers, but denies that the actually infinite limit w of this se
quence exists. Even more analogous is the viewpoint of those who 
admit the existence of the various infinite sets, but deny the existence of 
the unified existence of all sets at once in Cantor's Absolute. These are 
all variations of the One/Many problem that will be discussed in Chap
ter 5. 

The critical reader will have noticed certain weak points in the proof 
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that truth is undefinable. In particular, he may wonder how one can le
gitimately construct a book such as Ks that refers to itself without using 
the somehow transcendental phrasing, "this book," and he may wonder 
if the proof is not somehow circular or fallacious, since it seems to men
tion the very notion of truth whose undefinability is being proved. In 
the next chapter (and in Excursion II) I show how a version of this proof 
can be constructed so as to be completely unimpeachable. 

To sum up, we have shown that truth is a concept that cannot be rig
orously defined in a finite way. Because of this, it is possible to assert 
that THIS SENTENCE IS NOT TRUE is not really a sentence, and is 
thus exempt from having to be either true or not true. This is not an 
entirely satisfactory solution, since we feel that a collection of words 
that' is neither true nor not true should really be called not true. Like all 
good paradoxes, the Liar paradox resists any final resolution and en
dures as "an eternal crevice of unreason." 

CONCLUSION 

The three columns of the following table summarize the three sections 
of this chapter. In each case one starts with a familiar infinite concept a), 
and runs into a paradox, b). These three paradoxes have a certain similar
ity in that each of them has to do with semantics, that is, each paradox cen
ters on the process of determining the meaning of strings of symbols. 
One way of resolving these paradoxes is to insist that the key word 
("name," "nameable," "true") points toward, but cannot actually name 
or define the needed concept with the requisite precision, and then to 
assert that the statements in row b) can be regarded as meaningless. But 
one cannot just stop here. It is not satisfying to "solve" paradoxes by 
dismissing them as meaningless. I am reminded here of the master puzz
list Sam Loyd's comments on Alexander the Great's method of undoing 
the Gordian knot: 

Alexander the Great, it is said, made many ineffectual attempts to untie 
some of the knots, but finally becoming enraged at his want of success, 
drew his sword and cut the cord, exclaiming that 'such is the common 
sense way to get a thing when you want it.' Strange that those familiar 
with the story and its contemptible climax endorse it with a certain air of 
assumed pride when they have surmounted some difficulty and exclaim: 
'I have cut the Gordian knot!,33 

In row c) we have taken each of the paradoxes and replaced the nebu
lous key words by precise approximations ("Ml-name," "M2-nameable," 
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a) The natural numbers. The real numbers. Truth. 

b) let the Berry number Let the Richard number This statement is not 
be the first natural be the real number true. 
number which has no obtained by diagonaliz-
name as short as this ing the list of all 
sentence. nameable reals. 

c) Let M 1 be the following Let M2 be the following Let Ma be the following 
system: [Description of system: [Description of system: [Description of 
M I). Print out the first M2). Generate the real Ma). Ma will not say 
number which has no number obtained by that this paragraph is 
M I-name as short as this. diagonalizing over all true. 

reals which M2 names. 

d) There is some number There is a nameable There is a true sentence 
u such that Ml is unable real number which Mz which Ma cannot recog-
to generate any natural cannot name. nize as true. 
numbers with com-
plexity greater than u. 

e) No finite system can No finite system can No finite system can 
generate arbitrarily understand everything. define truth. 
complex patterns. 

"true according to M 3"). The Mi are intended to be any finitely describ
able system, e.g., an appropriately programmed digital computer, or 
perhaps even a human being (for it may be that a biological organism 
does admit of an exhaustive finite description). It is to be understood 
that Ml is arranged so that a given finite input B causes Ml to print out 
some finite natural number nB; that M2 is set up so that any given finite 
input B converts M2 into a device that will give out a digit rB.n for each 
requested n; and that M3 takes any given finite input B and types out 
"true" or "not true." The key fact is that none of the M t always work 
properly, that there are certain B's that cause these M/s to run forever 
without ever outputting anything. In particular, each of the three para
graphs in row c) will cause the relevant Mi to enter an endless loop. 

Because of this we can draw the conclusions in row d). Since M 1 

cannot find the natural number described in row c), it must be that Ml 
cannot locate any number whose shortest description is longer than the 
length II of that paragraph in row c). For any input B, either Ml gives out 
a number whose complexity (shortest description length) is less than II, 
or Ml runs forever. In running forever it will go past numbers (of sec-



154 INFINITY AND THE MIND 

onds) of arbitrarily large complexity, but it is unable to stop and point 
out any of these numbers with complexity greater than u. Since this ar
gument applies to any finite system M 1, we can draw the general conclu
sion in rowe). 

Since M2 does admit of a precise finite description, the description in 
row c) does actually describe a specific real number. It is just that this 
description cannot be unraveled by M 2 • In this sense there is some 
meaningful paragraph that M2 does not understand, and the conclusion 
in rowe) can be drawn. Recall from the section on Richard's paradox 
that analyzing the construction of the M 2-Richard number shows that 
M2 is also unable to name the real number T M2 that codes up its own 
translation process. So we might improve the conclusion in rowe) to 
something like; no finite system can finitely describe the process by 
which it converts words into thoughts. 

Since Ma never draws a conclusion on the paragraph in row c), we 
know that Ma will not say that that paragraph is true. So it is in fact true, 
although Ma cannot recognize this fact. Thus, we reach the conclusion 
in rowe), which can also be phrased this way: for any given finite system 
there is a truth that the finite system in question cannot recognize as 
true. 

This last conclusion is an imprecise statement of Godel's First Incom
pleteness Theorem, which will be considered in detail in the next chap
ter, where we will also attempt to use these facts to draw some conclu
sions about the nature of human and mechanical minds. 

So we have learned that for any finitely give system M, there will be a 
number of things that M cannot name, describe, conceive of, under
stand. For any finite system M, there are things that are unnameable rela
tive to M. Now we must ask if there is anything that is absolutely unname
able, that is, beyond the comprehension of any finite system whatsoever. 

In Chapter 1 we considered the related question of whether anything 
is actually (as opposed to potentially) infinite. We knew that for any 
given natural number n, there is a larger natural number (e.g., n + 1). 
The question was whether there is any number such as w that is bigger 
than every natural number at once. 

I discussed the possibility of physical and mental actual infinities the 
"Physical Infinities" and "Infinities in the Mindscape" sections; in "The 
Absolute Infinite" I introduced the Absolute as something that is as
suredly infinite, if indeed it exists. 

In the "Coding the World" subsection in this chapter the issue of 
whether any physical and absolutely unnameable reals exist was han-
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dIed; it should be evident from our previous discussions of the Abso
lute that it is absolutely unnameable. However, we have not yet said 
much on the question of whether any absolutely unnameable mental 
objects can be found. 

We have already seen that the set of all true books is an unnameable 
mental object. But this set is rather nebulous, and one might question if 
it really exists. The same would apply to the unnameable process by 
which we translate words into thoughts. In the next chapter we will see 
that there is a fairly definite mental object that cannot be completely 
specified in any finite way. This is the set of all true statements about 
natural numbers. 

PUZZLES AND PARADOXES 
(Answers, p. 299) 

1. Show that ten tetrated to the four is greater than googolplex. 
2. A Berry-paradox-style argument is sometimes given to "prove" that every 

natural number is interesting. Try to construct such an argument. 
3. Find the lengths of the hypotenuses in this spiral arrangement of right trian

gles: 

Figure 75. 

4. Suppose that I find in the Total Library a book that I believe to be a 
correct, detailed description of your entire life, past and future. You do not 
like this, as you feel your future is, and should remain, undecided, if I show 
you the book in question, can you prove that I am wrong? 

5. This is the classical paradox of the Crocodile: "A Crocodile had stolen a 
Baby off the banks of the Nile. The Mother implored him to restore her 
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darling. 'Well,' said the Crocodile, 'if you say truly what I shall do I will 
restore it: if not, I will devour it.' "34 What should the mother say? 

6. What is the meaning of the following sentence: "APPENDED TO ITS 
OWN QUOTATION IS FALSE" APPENDED TO ITS OWN QUOTA
TION IS FALSE. 

7. John Barth begins his Lost in the Funhouse with the infinite story: ONCE 
UPON A TIME THERE WAS A STORY THAT BEGAN ONCE UPON 
A TIME THERE WAS A STORY THAT BEGAN ONCE UPON A 
TIME THERE WAS A STORY THAT BEGAN .... 36 This involves a 
single left-to-right cu-sequence. Can you think of an appropriate right-to
left cu-sequence to close off Barth's story with? 

8. Say that we have established some starting assumption A, and wish to draw 
a specific conclusion C. In order to do this, we normally proceed by proving 
the implication (if A, then C). But suppose that some stubborn individual 
denies that C follows inevitably from A and (if A, then C). Then we must 
establish not only A and (if A, then C), but also (if A and (if A, then C), then 
C). Show that if our interlocuter remains stubborn enough, he can in this 
way force us into an infinite regress.37 



CHAPTER FOUR 

ROBOTS AND 
SOULS 

Are people just complicated robots ... or do we have souls? On 
the one hand, being conscious certainly feels like something more than 
the mechanical working out of a computer program. But on the other 
hand, what could a soul possibly be? How could it act on matter? Might 
a machine have a soul? 

A theorem of mathematical logic, Godel's Incompleteness Theorem, 
is widely thought to have a bearing on this constellation of problems. In 
this chapter we will begin by investigating Godel's famous theorem and 
end by making some speculations about mechanical intelligence and the 
nature of consciousness. 

The first section gives a quick overview'of Godel and his Incomplete
ness Theorem. In the following section I describe a series of conversa
tions that I had with Godel about his theorem and some related matters. 
"Towards Robot Consciousness" contains a more detailed treatment of 
Godel's theorem and explains exactly what Godel thought the conse
quences of his theorem were for the field of Artificial Intelligence. (An 
even more detailed treatment is to be found in Excursion II.) In "Be
yond Mechanism," I explore Godel's claim that there is a nonmaterial 
component to human consciousness. 

GODEL'S INCOMPLETENESS THEOREM 

In the summer of 1930, the twenty-four-year-old mathematician 
Kurt Godel proved a strange theorem: mathematics is open-ended. There 
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can never be a final, best system of mathematics. Every axiom-system 
for mathematics will eventually run into certain simple problems that it 
cannot solve at all. This is Godel's Incompleteness Theorem. 

The implications of this epochal discovery are devastating. The think
ers of the Industrial Revolution liked to regard the universe as a vast 
preprogrammed machine. It was optimistically predicted that soon sci
entists would know all the rules, all the programs. But if Godel's Theo
rem tells us anything, it is this: Man will never know the final secret of 
the universe. 

Of course, anyone can say that science does not have all the answers. 
What makes Godel's achievement so remarkable is that he could rigor
ously prove this, stating his proof in the utterly precise language of sym
bolic logic. To come up with a mathematical proof for the incomplete
ness of mathematics is a little like managing to stand on one's own 
shoulders. How did Godel come to think of such a proof? What kind of 
person was he? 

Kurt Godel was born on April 28, 1906, in Brunn (Brno), Czech
oslovakia, at that time part of Austria-Hungary. His family was part of 
the sizable German minority in Brunn, and his father was the successful 
manager of one of the city's numerous textile mills. Godel's childhood 
was marred by a case of rheumatic fever at the age of six. He recovered 
from the disease, but for the rest of his life he had morbid fears about 
his health. 1 

He attended the University of Vienna, starting as an undergraduate 
in 1923 and earning his doctorate in mathematics in 1930. Vienna was a 
terribly exciting place to be in those years. The beginnings of psycho
analysis, twelve-tone music, modern architecture, and non-representa
tional painting can all be traced to this period-with Sigmund Freud, 
Arnold Schonberg, Adolf Loos, and Oskar Kokoschka all active in 
Vienna. 

But, more importantly for Godel, this was also a period of great phil
osophical ferment in Vienna. In 1921 the Viennese intellectual Ludwig 
Wittgenstein had published his gem-like Tractatus Logico-Philosophicus. 
And logical positivism was being founded and developed by a group of 
philosophers known as the "Vienna Circle." Godel's principal teacher, 
Hans Hahn, was a prominent member of this group, as were Moritz 
Schlick, Philipp Frank, and Rudolf Carnap. The Vienna Circle held its 
meetings in a seminar room near the mathematics department, and 
Godel attended these meetings regularly. 

The basic credo of logical positivism is summed up by Rudolf Car
nap's manifesto: "We give no answers to philosophical questions and in-



ROBOTS AND SOULS 159 

deed reject all philosophical questions, whether of Metaphysics, Ethics or 
Epistemology."2 The idea was that abstract philosophical statements 
such as, "All is One," are meaningless-not true or false, but simply 
without content. This position was based on the so-called "Verifiability 
Principle," according to which the meaning of a statement is equated 
with the method for verifying the statement. Since the positivists could 
see no way scientifically to document metaphysical statements like, "All 
is One," or "The Absolute is outside time," these statements were re
garded as wholly devoid of significance. 

This basically negative part of logical positivism was greatly in
fluenced by Wittgenstein's celebrated Tractatus. This short and aphoris
tic book offers the following solution to the problems of traditional phi
losophy: "What we cannot talk about we must pass over in silence."3 
But it should be pointed out that Wittgenstein, although friendly with 
members of the Vienna Circle, was never quite a logical positivist. On 
the contrary, he sometimes sounds like a Zen mystic. He elegantly de
scribes his position in the Trac~s: 

"We feel that even when all possible scientific questions have been an
swered, the problems of life remain completely untouched. Of course 
there are then no questions left, and this itself is the answer. The solution 
of the problem of life is seen in the vanishing of the problem."4 

The positive part of logical positivism was a program to unify all of 
science, using the language of symbolic logic. The inspiration came 
from Whitehead and Russell's Principia Mathematica of 1910.5 In this 
monumental work (three mammoth volumes), it is shown how all of our 
familiar mathematical concepts and facts can be logically derived from 
certain very simple and primitive principles of reasoning. The logical 
positivists hoped to put other branches of science, including physics and 
psychology, on a similarly rigorous footing. 

The principal achievement of Whitehead and Russell was to get a me
chanically precise definition of what we mean when we say that some 
statement/ollows logically from some other statements. With this defini
tion in hand, the "formalist" mathematician David Hilbert pointed out 
that mathematics was now only a matter of choosing the right axioms 
and examining the logical consequences of these axioms. The positivists 
hoped to extend this approach to all the sciences, and even to all of 
human thought. 

In order to grasp the implications of such a programmatic approach 
to human knowledge, I would like to run a little thought-experiment 
here, an alternate-world fantasy. Imagine: 
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A complete axiom-system for mathematics was obtained by 1950. The 
system was called MT for Mathematical Truth. It was theoretically estab
lished that any true mathematical statement could be proved from MT, 
and that any false mathematical statement could be disproved from MT. 
Thus, the axioms of MT, along with the Whitehead-Russell-Hilbert rules 
for logical deduction, captured the whole of mathematics. 

The existence of the complete theory MT did not really begin to affect 
mathematicians until the twenty-first century. They went on much as be
fore, using their intuition and ingenuity to find ways of combining the 
various axioms of MT to yield logical proofs of interesting theorems. But 
in the year 2000, the computers became big enough to take over. In the 
space of ten years a single linked system of Josephson-junction proces
sors had made mathematicians as obsolete as slide-rules. The system was 
called MTM for Mathematical Truth Machine. 

The functioning of MTM was as follows. MTM was programmed with 
the basic axioms of the complete system MT. What MTM did was simple. 
It exhaustively worked out all the logical consequences of these axioms: 
first all the theorems with one-step proofs; then all the theorems with 
two-step proofs; then three; and, before long, three million; and so on 
and on. . 

As MTM proved theorem after theorem, these were added to its sys
tematic master list. If you wanted to know about some mathematical 
problem ("Is Fermat's Last Theorem true?" "What is the solution to this 
differential equation?" "What is the shortest route connecting these ten 
cities?") you fed your question into MTM, and MTM would search its 
master list for your answer. 

If the answer was already in the master list, fine. If not, you had to wait 
a bit, but sooner or later MTM would get to the theorem answering your 
question. There was no point consulting a mathematician instead, since 
MTM had already gone far beyond all logical derivations short enough to 
be' humanly comprehensibJe. 

All this was fine with everyone except the mathematicians. A few of 
them rebelled to create a new "surreal mathematics" based on deliber
ately false and inconsistent assumptions. But MTM one-upped them by 
taking a spare hour to work out the most interesting false theorems of 
"surreal mathematics." With its ever-increasing store of mathematical 
and logical fact, MTM was getting faster and faster. You could feed it any 
set of axioms and it could work out the most interesting consequences in 
next to no time at all. 

The physicists were the next to go the way of the mathematicians. Late 
in the 1990s an Israeli graduate student had achieved the final unification 
of General Relativity with Quantum Mechanics. A simple list of axioms, 
twenty-five in number, summarized all the laws of nature. This theory, 
called PT for Physical Truth, was programmed into a computer linked up 
with MTM. The new system, called PTM for Physical Truth Machine, 
began systematically working out the consequences of PT. Soon the 
three-body problem was solved, an explanation for the mass of the elec-
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tron was produced, the exact age of the universe was calculated, and sev
eral methods for safe nuclear fusion were discovered. 

A critical mass of knowledge had been reached by MTM and PTM. In 
the next few years, complete theories were found for biology, psychol
ogy, and sociology. A planet-wide system oflinked computers combined 
all of these complete theories to produce the god-like STM, for Scientific 
Truth Machine. 

Any scientific question at all was best answered by consulting STM. 
Either STM had already worked out the answer, or it soon would. No 
scientist could know as much as STM, so independent work was useless. 
During the Italian Renaissance there were certain mathematicians who 
made theirliving by being able to solve cubic equations. Imagine their 
dismay if one of the princes had been given the simple formula for solv
ing cubics, along with a pocket calculator to work out the solutions! This 
was the situation in which the scientists now found themselves. The ut
terly mechanical working out of a complete theory had replaced any need 
for scientific intuition or creativity. 

The last step came suddenly, in the year 2060. An embittered Argen
tine scientist had, with the help of the STM, worked out a complete the
ory of aesthetics. The immutable laws of what makes a great novel, paint
ing, or symphony were incorporated int<;) an axiom system called AT for 
Artistic Truth. The clandestinely assembled ATM sprang into action and 
began producing short works magnificently expressive of the condition 
of man in the cosmos. 

Over the protests of the artists, the government coupled ATM with 
STM to get UTM, the Universal Truth Machine. There was no longer 
any need to do anything. Whatever any person wanted to know or do or 
say would, sooner or later, be done better by UTM. Terrorist acts against 
UTM were impossible, as UTM had a complete theory of human behav
ior, and could predict and ward off any such attack. About the only thing 
people still had left for their own was sports. A UTM terminal was placed 
in each home, and the world slid toward senescence, watching the tube. 

Depressing? Don't worry! 
In 1930 Kurt G6del proved that there can never be a UTM (Univer

sal Truth Machine). There can't even be an MTM (Mathematical Truth 
Machine). There is no complete set MY of axioms for mathematical 
truth. Any system of knowledge about the world is, and must remain, 
fundamentally incomplete, eternally subject to revision. 

Of course, the future could follow a scenario similar to what I just 
outlined. The difference, thanks to G6del, is that the machines will 
never have all the answers. There will always be room for a creative per
son who can think of a better way of doing things. 

Try to catch the universe in a finite net of axioms and the universe 
will fight back. Reality is, on the deepest level, essentially infinite. No 
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finitely programmed machine can ever exhaust the richness of the men
tal and physical world we inhabit. 

The proof of G6del's Incompleteness Theorem is so simple, and so 
sneaky, that it is almost embarrassing to relate. His basic procedure is as 
follows: 

1. Someone introduces G6del to UTM, a machine that is supposed to be a 
Universal Truth Machine, capable of correctly answering any question at 
all. 

2. G6del asks for the program and circuit diagrams of the UTM. The program 
may be complicated, but it can only be finitely long. Call the program 
P(UTM) for Program of the Universal Truth Machine. 

3. Smiling a little, G6del writes out the following sentence: "The machine 
constructed on the basis of the program P( UT M) will never say that this 
sentence is true." Call this sentence G for G6del. Note that G is equivalent to 
"UT M will never say G is true." 

4. Now G6dellaughs his high laugh and asks UTM whether G is true or not. 
5. If UTM says G is true, then "UTM will never say G is true" is false. If 

"UTM will never say G is true" is false, then G is false (since G = "UTM 
will never say G is true.") So if UTM says that G is true, then G is in fact 
false, and UTM has made a false statement. So UTM will never say that G is 
true, since UTM makes only true statements. 

6. We have established that UTM will never say G is true. So "UTM will 
never say G is true" is in fact a true sentence. So G is true (since 
G = "UTM will never say G is true."). 

7. "I know a truth that UTM can never utter," Godel says. "I know that G is 
true. UTM is not truly universal." 

Think about it-it grows on you. 
The gimmick in Godel's proof is very similar to the gimmick in the 

famous Liar paradox of Epimenides: "I am lying," says Epimenides. Is 
he? Or, as in "What is Truth," define B to be the sentence "B is not 
true." Is B true? The problem is that B is true if and only if B is not true. 
So B is somehow outside the scope of the applicability of the concepts 
"true" and "not true." There is something viciously meaningless about 
the sentence B, and one is inclined just to try to forget about it. 

But G6del's G sentences cannot be so lightly dismissed. With his 
great mathematical and logical genius, G6del was able to find a way (for 
any given P(UTM) actually to write down a complicated polynomial 
equation that has a solution if and only if G is true. So G is not at all 
some vague or non-mathematical sentence. G is a specific mathematical 
problem that we know the answer to, even though UT M does not! So UTM 
does not, and cannot, embody a best and final theory of mathematics. 
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G6del's Incompleteness Theorem flew in the face of the formalist 
and logical positivist movements of the time. But everyone who was ca
pable of following the many steps of the detailed proof was forced to 
concede its correctness. G6del became famous. 

When the Second World War broke out, G6del moved to Princeton, 
New Jersey, to take up a permanent position at the Institute for Ad
vanced Study. This famous "college without students" had been estab
lished a few years earlier with the financial help of Louis Bamberger, the 
department-store magnate. The aging Einstein was also there, and he 
became one ofG6del's few intimates. They could often be seen walking 
the great lawn in front of the Institute's Fuld Hall discussing relativity. 
G6del hirriself published a curious paper in relativity, in which he de
scribed a special class of universe where time-travel by rocket ship is 
possible.6 

G6del did some of his most interesting work during the 1940s. Soon 
after arriving in the United States he published his only book, a mono
graph on set theory called The Consistency 0/ the Continuum Hypothesis. 7 

This book contains his proof that Cantor's Continuum Hypothesis 
cannot be disproved from the existing axioms of set theory. As with his 
Incompleteness Theorems, it was not only the statement of the theo
rem, but also the method of proof that had such an impact on mathe
matics and philosophy. Here G6del found a whole new way of thinking 
about the class of all sets and discovered certain absolute features of the 
mathematical universe that had never been suspected. 

In the mid-1940s he wrote a pair of rather philosophical papers 
aimed at the non-specialist, "Russell's Mathematical Logic" and "What 
is Cantor's Continuum Problem?"8 These beautifully written papers re
veal G6del as anything but a logical positivist. He argues here that sets 
and concepts exist external to any individual's activities, and that ques
tions about infinite sets are every bit as meaningful as questions about 
physics. This Platonistic strand in G6del's thought became more and 
more pronounced over the years, culminating in his 1964 addendum to 
the "What is Cantor's Continuum Problem?" paper, which contains 
these passages: 

Despite their remoteness from sense experience, we do have some
thing like a perception of the objects of set theory, as is seen from the 
fact that the axioms force themselves upon us as being true. I don't see 
any reason why we should have less confidence in this kind of percep
tion, i.e., in mathematical intuition, than in sense perception ... The 
set theoretical paradoxes are hardly any more troublesome for mathe
matics than deceptions of the senses are for physics. . . . Evidently the 
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'given' underlying mathematics is closely related to the abstract elements 
contained in our empirical ideas. It by no means follows, however, that 
the data of this second kind, because they cannot be associated with ac
tions of certain things upon our sense organs, are something purely sub
jective, as Kant asserted. Rather, they, too, may represent an aspect of 
objective reality, but, as opposed to the sensations, their presence in us 
may be due to another kind of relationship between ourselves and real
ity.9 

Despite his high level of scientific creativity during this period, Godel 
seems to have had some opposition at the Institute, as he was not pro
moted from member to faculty status until 1953.10 It may have been 
that to some people Godel's Incompleteness Theorems seemed wholly 
negative, and that as a result they tried to dismiss these theorems as 
mere curiosities with no real mathematical or philosophical significance. 

But in point of fact, Godel's Incompleteness Theorems are of an im
portance comparable to the Pythagoreans' proof that the square root of 
two is irrational. The analogy is quite close. The Pythagoreans learned 
that no ratio of natural numbers could fully describe the relation be
tween the diagonal and the side of a square. For his part, Godel showed 
that no finitely describable theory can codify all mathematical truth. 
That is, he has shown that the set of all true statements about mathe
matics is finitely unnameable, and thus essentially random and infinite. 

It is characteristic of Godel's work that the Incompleteness Theo
rems use purely mathematical reasoning to prove certain facts about the 
objective world. In 1949 he actually attempted to demonstrate the un
reality of time by means of an argument in mathematical physics. 11 

Godel published only one paper after this, a 1958 discussion of how 
one might prove the consistency of mathematics by assuming that men
tal objects have an objective existence. 12 He did not like publicity and 
made at most two or three public appearances during the latter part of 
his life. Nevertheless, he continued as a guiding force in logic and set 
theory. Any mathematician who was invited to do so eagerly made the 
pilgrimage to his office at the Institute for Advanced Study. 

In the next section, I describe my own pilgrimages. 

CONVERSATIONS WITH GODEL13 

I didn't know where his real office door was, so I went around to 
knock on the outside door instead. This was a glass patio door, looking 
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out on a little pond and the peaceful woods beyond the Institute for 
Advanced Study. It was a sunny March day, but the office was quite 
dark. I couldn't see in. Did Kurt G6del really want to see me? 

Suddenly he was there, floating up before the long glass door like 
some fantastic deep-sea fish in a pressurized aquarium. He let me in, 
and I took a seat by his desk. 

Kurt G6del was unquestionably the greatest logician of the century. 
He may also have been one of our greatest philosophers. When he died 
in 1978, one of the speakers at his memorial service made a provocative 
comparison of G6del with Einstein . . . and with Kafka. 14 

Like Einstein, G6del was German-speaking and sought a haven from 
the events of the Second World War in Princeton. And like Einstein, 
G6del developed a structure of exact thought that forces everyone, sci
entist and layman alike, to look at the world in a new way. 

The Kafkaesque aspect of G6del's work and character is expressed in 
his famous Incompleteness Theorem of 1930. Although this theorem 
can be stated and proved in a rigorously mathematical way, what it 
seems to say is that rational thought can never penetrate to the final, ulti
mate truth. A bit more precisely, the Incompleteness Theorem shows 
that human beings can never formulate a correct and complete descrip
tion of the set of natural numbers, {O, 1,2,3, ... }. But if mathemati
cians cannot ever fully understand something as simple as number the
ory, then it is certainly too much to expect that science will ever expose 
any ultimate secret of the universe. 

Scientists are thus left in a position somewhat like K. in The Castle. 15 

Endlessly we hurry up and down corridors, meeting people, knocking 
on doors, conducting our investigations. But the ultimate success will 
never be ours. Nowhere in the castle of science is there a final exit to 
absolute truth. 

This seems terribly depressing. But, paradoxically, to understand 
G6del's proof is to find a sort of liberation. For many logic students, the 
final breakthrough to full understanding of the Incompleteness Theo
rem is practically a conversion experience. This is partly a by-product of 
the potent mystique G6del's name carries. But, more profoundly, to 
understand the essentially labyrinthine nature of the castle is, somehow, 
to be free of it. 

G6del certainly impressed me as a man who had freed himself from 
the mundane struggle. I visited him in his Institute office three times in 
1972, and if there is one single thing I remember most, it is his laughter. 

His voice had a high, singsong quality. He frequently raised his voice 
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toward the ends of his sentences, giving his utterances a quality of ques
tioning incredulity. Often he would let his voice trail off into an amused 
hum. And, above all, there were his bursts of complexly rhythmic 
laughter. 

The conversation and laughter of G6del were almost hypnotic. Lis
tening to him, I would be filled with the feeling of perfect understand
ing. He, for his part, was able to follow any of my chains of reasoning to 
its end almost as soon as I had begun it. What with his strangely infor
mative laughter and his practically instantaneous grasp of what I was 
saying, a conversation with G6del felt very much like direct telepathetic 
comm unication. 

The first time I visited G6del it was at his invitation. I was at Rutgers 
University, writing my doctoral thesis in logic and set theory. I was par
ticularly interested in Cantor's Continuum Problem. One of G6del's 
unpublished manuscripts on this problem was making the rounds, and I 
was able to get hold of a Xerox of a Xerox of a Xerox. 16 

I deciphered the faint squiggles and thought about the ideas for sev
eral months, finally giving a talk on the manuscript at Rutgers. I had a 
number of questions about the proof G6del had sketched and wrote 
him a letter about them. 

He probably would not have answered-G6del almost never an
swered letters. But I happened to be attending a weekly seminar at the 
Institute with Gaisi Takeuti, an eminent logician who was there for a 
year's research. G6del knew this, and one day while I was at the seminar 
in Takeuti's office, he phoned up and asked that I come see him. 

G6del's office was dim and unlit. There was comfortable carpeting 
and furniture. On the empty desk sat an empty glass of milk. G6del was 
quite short, but his presence was such that visitors sometimes left with 
the impression that he was very tall. 

When I saw him he was dressed as in all his pictures, with a suit over a 
warm vest and necktie. He is known to have worried a great deal about 
his health and was always careful to keep himself well bundled-up. In
deed, in the winter, one would sometimes see him leaving the Institute 
with a scarf wrapped around his head. 

He encouraged me to ask questions, and, feeling like Aladdin in the 
treasure cave, I asked him as many as I could think of. His mind was 
unbelievably fast and experienced. It seemed that, over the years, he 
had already thought every possible philosophical problem through to 
the very end. 

Despite his vast knowledge, he still could discuss ideas with the zest 
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and openness of a young man. If I happened to say something particu
larly stupid or naive, his response was not mockery, but rather an 
amused astonishment that anyone could think such a thing. It was as if 
during his years of isolated thought he had forgotten that the rest of the 
human race was not advancing along with him. 

The question of why Godel chose to live most of his life in splendid 
isolation is a difficult one. Although he was not Jewish, the Second 
World War forced him to flee Europe, and this may have soured him 
somewhat on humanity. Yet, he loved life in America, the comfortable 
position at the Institute, the chance to meet Einstein, the great social 
freedom. But he spent his later years in an ever-deepening silence. 

The first time I saw Godel, he invited me; the second two times, I 
invited myself. This was not easy. I wrote him several times, insisting 
that we should meet again to talk. Finally I phoned him to say this again. 

"Talk about what?" Godel said, warily. When I finally got to his office 
for my second visit, he looked up at me with an expression of real dis
like. But annoyance gave way to interest, and, after I'd asked a few 
questions, the conversation turned as friendly and spirited as the first. 
Still, toward the end of a conversation, when he was tired, Godel would 
sometimes look at a visitor with an eerie mixture of fear and suspicion, 
as if to say, what is this stranger doing in my retreat? 

Godel was, first and foremost, a great thinker. The essence of the 
man is not to be found in his physical description, but rather in his 
ideas. I would like to describe now some of our discussions on mathe
matics, physics, and philosophy. 

One of Godel's less well-known papers is a 1949 article called, "A 
Remark on the Relationship Between Relativity Theory and Idealistic 
Philosophy."17 In this paper, probably influenced by his conversations 
with Einstein as well as by his interest in Kant, Godel attempts to show 
that the passage of time is an illusion. The past, present and future of 
the universe are just different regions of a single vast space-time. Time 
is part of space-time, but space-time is a higher reality existing outside of 
time. 

In order to destroy the time-bound notion of the universe as a series 
of evanescent frames on some cosmic movie screen, Godel actually con
structed a mathematical description of a possible universe in which one 
can travel back through time. His motivation was that if one can con
ceive of time-travelling to last year, then one is pretty well forced to 
admit the existence of something besides the immediate present. 

I was disturbed by the traditional paradoxes inherent in time-travel. 
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What if I were to travel back in time and kill my past self? If my past self 
died, then there would be no I to travel back in time, so I wouldn't kill 
my past self after all. So then the time-trip would take place, and I would 
kill my past self. And so on. I was also disturbed by the fact that if the 
future is already there, then there is some sense in which our free will is 
an illusion. IS 

G6del seemed to believe that not only is the future already there, but 
worse, that it is, in principle, possible to predict completely the actions 
of some given person. 

I objected that if there were a completely accurate theory predicting 
my actions, then I could prove the theory false-by learning the theory 
and then doing the opposite of what it predicted. According to my 
notes, G6del's response went as follows: "It should be possible to form 
a complete theory of human behavior, i.e., to predict from the heredi
tary and environmental givens what a person will do. However, if a mis
chievous person learns of this theory, he can act in a way so as to negate 
it. Hence I conclude that such a theory exists, but that no mischievous 
person will learn of it. In the same way, time-travel is possible, but no 
person will ever manage to kill his past self." G6dellaughed his laugh 
then, and concluded, "The a priori is greatly neglected. Logic is very 
powerful." 

Apropos of the free will question, on another occasion he said: 

"There is no contradiction between free will and knowing in advance 
precisely what one will do. If one knows oneself completely then this is 
the situation. One does not deliberately do the opposite of what one 
wants." 

As well as questions, I also brought in for G6del's enjoyment some 
offbeat theories of physics I had come up with recently. I was quite sat
isfied when, after hearing one of my half-baked theories, he shook his 
head and said, "This is a very strange idea. A bizarre idea."19 

There is one idea truly central to G6del's thought that we discussed at 
some length. This is the philosophy underlying G6del's credo, "I do ob
jective mathematics." By this, G6del meant that mathematical entities 
exist independently of the activities of mathematicians, in much the 
same way that the stars would be there even if there were no astron
omers to look at them. For G6del, mathematics, even the mathematics 
of the infinite, was an essentially empirical science. 

According to this standpoint, which mathematicians call Platonism, 
we do not create the mental objects we talk about. Instead, we./ind them, 
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on some higher plane that the mind sees into, by a process not unlike 
sense perception. 

The philosophy of rnathematics antithetical to Platonism isformalism, 
allied to positivism. According to formalism, mathematics is really just 
an elaborate set of rules for manipulating symbols. By applying the 
rules to certain "axiomatic" strings of symbols, mathematicians go about 
"proving" certain other strings of symbols to be "theorems." 

The game of mathematics is, for some obscure reason, a useful game. 
Some strings of symbols seem to reflect certain patterns of the physical 
world. Not only is "2 + 2 = 4" a theorem, but two apples taken with 
two more apples make four apples. 

It is when one begins talking about infinite numbers that the trouble 
really begins. Cantor's Continuum Problem is undecidable on the basis 
of our present-day theories of mathematics. For the formalists this 
means that the continuum question has no definite answer. But for a 
Platonist like Godel, this means only that we have not yet "looked" at 
the continuum hard enough to see what the answer is. 

In one of our conversations I pressed Godel to explain what he meant 
by the "other relation to reality" by which he said one could directly see 
mathematical objects. He made the point that the same possibilities of 
thought are open to everyone, so that we can take the world of possible 
forms as objective and absolute. Possibility is observer-independent, 
and therefore real, because it is not subject to our will. 

There is a hidden analogy here. Everyone believes that the Empire 
State Building is real, because it is possible for almost anyone to go and 
see it for himself. By the same token, anyone who takes the trouble to 
learn some mathematics can "see" the set of natural numbers for him
self. So, Godel reasoned, it must be that the set of natural numbers has 
an independent existence, an existence as a certain abstract possibility 
of thought. 

I asked him how best to perceive pure abstract possibility. He said 
three things. i) First one must close off the other senses, for instance, by 
lying down in a quiet place. It is not enough, however, to perform this 
nega.tive action, one must actively seek with the mind. ii) It is a mistake 
to let everyday reality condition possibility, and only to imagine the 
combinings and permutations of physical objects-the mind is capable 
of directly perceiving infinite sets. iii) The ultimate goal of such 
thought, and of all philosophy, is the perception of the Absolute. Godel 
rounded off these comments with a remark on Plato: "When Plautus 
could fully perceive the Good, his philosophy ended." 



170 INFINITY AND THE MIND 

Godel shared with Einstein a certain mystical turn of thought. The 
word "mystic" is almost pejorative these days. But mysticism does not 
really have anything to do with incense or encounter groups or demo
niac possession. There is a difference between mysticism and occultism. 

A pure strand of classical mysticism runs from Plato to Plotinus and 
Eckhart to such great modern thinkers as Aldous Huxley and D. T. Su
zuki. The central teaching of mysticism is this: Reality is One. The prac
tice of mysticism consists in finding ways to experience this higher unity 
directly. 

The One has variously been called the Good, God, the Cosmos, the 
Mind, the Void, or (perhaps most neutrally) the Absolute. No door in 
the labyrinthine castle of science opens directly onto the Absolute. But 
if one understands the maze well enough, it is possible to jump out of 
the system and experience the Absolute for oneself. 

The last time I spoke with Kurt Godel was on the telephone, in 
March 1977. I had been studying the problem of whether machines can 
think, and I had become interested in the distinction between a system's 
behavior and the underlying mind or consciousness, if any. 

What had struck me was that if a machine could mimic all of our be
havior, both internal and external, then it would seem that there is 
nothing left to be added. Body and brain fall under the heading of hard
ware. Habits, knowledge, self-image and the like can all be classed as 
software. All that is necessary for the resulting system to be alive is that 
it actually exist. 

In short, I had begun to think that consciousness is really nothing 
more than simple existence. By way of leading up to this, I asked Godel 
if he believed there is a single Mind behind all the various appearances 
and activities of the world. 

He replied that, yes, the Mind is the thing that is structured, but that 
the Mind exists independently of its individual properties. 

I then asked if he believed that the Mind is everywhere, as opposed 
JO being localized in the brains of people. 

Godel replied, "Of course. This is the basic mystic teaching." 
We talked a little set theory, and then I asked him my last question: 

"What causes the illusion of the passage of time?" 
Godel spoke not directly to this question, but to the question of what 

my question meant-that is, why anyone would even believe that there 
is a perceived passage of time at all. 

He went on to relate the getting rid of belief in the passage of time to 

the struggle to experience the One Mind of mysticism. Finally he said 
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this: "The illusion of the passage of time arises from the confusing of 
the given with the real. Passage of time arises because we think of occu
pying different realities. In fact, we occupy only different givens. There 
is only one reality." 

I wanted to visit G6del again, but he told me that he was too ill. In the 
middle of January 1978, I dreamed I was at his bedside. 

There was a chess board on the covers in front of him. G6del reached 
his hand out and knocked the board over, tipping the men onto the 
floor. The chessboard expanded to an infinite mathematical plane. And 
then that, too, vanished. There was a brief play of symbols, and then 
emptiness-an emptiness flooded with even white light. 

The next day I learned that Kurt G6del was dead. 

TOWARDS ROBOT CONSCIOUSNESS 20 

The human mind is incapable of formulating (or mechanizing) all its mathemati
cal intuitions, i.e., if it has succeeded in formulating some of them, this very fact 
yields new intuitive knowledge, e.g., the consistency of this formalism. This fact may 
be called the 'incompletability' of mathematics. On the other hand, on the basis of 
what has been proved so far, it remains possible that there may exist (and even be 
empirically discovereable) a theorem-proving machine which in fact is equivalent to 
mathematical intuition, but cannot be proved to be so, nor even be proved to yield 
only correct theorems of finitary number theory. 

-Kurt Godel21 

For many years there has been debate over the precise significance of 
G6del's Incompleteness Theorem for the field of Artificial Intelli
gence. 22 G6del, especially in his later years, was a reclusive, even secre
tive, man, and the quotation printed above is very nearly the sum total 
of his published words on this important question. The purpose of this 
section will be to tease out the meaning and implications of that quota
tion. 

The section breaks into four subsections. The first, which can be 
skimmed, describes precisely what is meant by a theorem-proving ma
chine. The second develops the argument for the undefinability of truth 
a bit further, and shows how G6del reaches the conclusion that humans 
can never write down a complete description of how they think about 
mathematics. The third subsection explains how machines too complex 
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to design can nevertheless evolve, and the final subsection advocates a 
mystical answer to the question, "What is consciousness?" 

FORMAL SYSTEMS AND MACHINES 

Quite generally, a formal system is a set of symbols together with 
rules for employing them. A formal system has four components: (1) 
alphabet, (2) spelling and grammar, (3) axioms, and (4) rules of infer
ence. 

The alphabet is simply a supply of symbols. If one wishes to be quite 
abstract, he can get by with "0" and "I" as his only symbols. But nor
mally one allows the upper-case and lower-case English and Greek al
phabets, the punctuation symbols, the blank space, the usual logical 
symbols, the numerals and other mathematical symbols, and so on. 

The spelling rules specify which strings of symbols are to be regarded 
as noun phrases (terms) and which strings are to be regarded as verb 
phrases (relations). The grammar rules specify which sorts of verbs and 
nouns can be meaningfully combined to make simple sentences, and 
how one can go on to build up compound sentences, sentences with 
quantifiers, and multi-sentence statements. A statement formed in ac
cordance with the spelling and grammar rules is called well-formed. 

The formal system singles out a certain set of well-formed statements 
as axioms or fundamental assumptions. The rules of inference specify 
the precise ways in which axioms can be changed and combined to 
"prove" the theorems of the formal system. 

To be more precise, the well-formed statement A is said to be proved 
by the formal system if and only if there is a finite proof sequence Mb 
... ,Mn of well-formed statements such that each of the Mi is either 
an axiom or is obtained from some of the previous M/s by one of the 
rules of inference, and such that the last sentence Mn is actually A. Now, 
the theorems of the formal system are those well-formed statements A 
for which there exists a proof sequence ending with A. 

The theorems of a formal system are already latently present in the 
$ystem's axioms and rules of inference. Normally the formal system it
self can be finitely described, but it will be able to prove infinitely many 
theorems. So a formal system can be thought of as a very compact way 
of summarizing a large body of fact. 

All the theorems of classical mathematics, for instance, can be proved 
from the axioms and rules of inference of the formal system obtained by 
combining the propositional calculus, the predicate calculus, and the 
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axioms ofZF (Zermelo-Fraenkel set theory). This formal system can be 
completely described in a few printed pages. There is, thus, a sense in 
which everything we know about mathematics is coded up in a few 
pages of print. 

No other entire branch of science has allowed itself to be fully' codi
fied as a formal system yet, but there are many successful piecemeal ef
forts in this direction. The rules for how many electron shell~ a given 
atom has, the laws of heredity, the theory of electromagnetism, special 
relativity . . . all these can be expressed as formal systems yi~lding 
certain bodies of fact. 

Usually the alphabet of a formal system will include something that 
can be used as a negation symbol. One normally only considers formal 
systems that are consistent, where this means that for no statement S 
can we obtain both S and the negation of S as theorems. This is a natural 
requirement because a formal system is, in practice, intended to sum
marize a collection of facts that obtain in some one possible world or 
part of a world . . . and it could never happen that S and the negation 
of S are both true facts. 

Normally, one also requires that the formal systems we consider be 
put in an unambiguous and finitely describable form. When we say that 
a formal system is finitely describable, we mean that there are three def
inite finite procedures, WELL, AXIOM, and RULE, determining the 
system as follows. 

Given any string S of symbols drawn from the system's alphabet, 
WELL can be applied to determine whether or not S is a well-formed 
statement and AXIOM can be applied to determine whether or not S is 
an axiom. The finite procedure RULE can be applied to any well
formed statement in combination with any finite set of well-formed 
statements to determine whether or not the former follows from the 
latter according to any single rule of inference. 

Without getting too technical, the essential aspect of the algorithmic 
procedures, WELL, AXIOM, and RULE, must be that they are (a) ut
terly mechanical in application and (b) always give an unequivocal YES 
or NO answer after some finite amount of time. 

A finitely describable formal system T is sometimes best thought of as 
a theorem-listing machine. Given the formal system T based on the triple 
of algorithms (WELL, AXIOM, RULE), we can construct a machine Mr 
that will print out all of T's theorems, one after another. 

Before describingMr , we should first note that given a fixed alphabet 
there is an utterly mechanical procedure for generating all possible 
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"words" or strings of symbols drawn from that alphabet. If, for example, 
the alphabet were the lower-case English alphabet, one could first list, 
in dictionary order, all one-letter words, then, in dictionary order, all 
two-letter words, then, in dictionary order, all three-letter words, and 
so on and on. 

Now, MT will operate by looping through the following list of in
structions to generate three ever-growing stores St, We and Th, consist
ing, respectively, of possible strings, well-formed statements, and theo
rems. At the same time, MT will print the theorems out. 

1. Generate the next possible string and add it to store St. 
2. Check the most recent string with the procedure WELL. If YES, then add 

the string to the store We. 
3. Check the most recent well-formed sentence with procedure AXIOM. If 

YES, then add the sentence to the store Th. 
4. Use the procedure RULE to check, one by one, each member of We for 

derivability from the set Th. Add each sentence for which the answer is 
YES to the store Th, and print each of these new theorems on the output 
tape. 

5. Return to (1). 

There is a general theorem of recursive function theory stating that 
not only can any formal system be viewed as a machine, the converse is 
true as well. That is, given any digital computer M with unlimited mem
ory, we can find a formal system T M such that the possible outputs of M 
are exactly the possible theorems of T M' This holds not only for ma
chines that simply print out long lists of theorems, but also for machines 
that exhibit branching behavior patterns, and even for machines that in
tereact with their environment. 

A typical machine is non ·deterministic in the weak sense that it does 
have branching futures. M begins in an initial state (compare axioms), 
and then passes through a series of transitions according to pro
grammed rules (compare rules of inference). M can be nondeterministic 
in the sense that for certain states S there are a variety of allowable 
"next states" S1,S;, ... ,S:. I want to make the point that even if one 
allows the choice of next state to be made randomly (say, by counting 
clicks on a Geiger counter), the machine's range of possible outputs is 
still equivalent to the set of possible theorems of some fixed formal sys
tem. 

This is the case because, in and of itself, a formal system does not 
actually generate a list of its theorems. A formal system is, strictly 
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speaking, a gestalt or starting state from which one can move out along 
various possible proof sequences to reach various possible theorems. 
The essential form of a formal system is thus more like a tree than a 
line. At the base of the tree we have the axioms and growing out from 
them we have all one-step proofs, and so on. At each node or fork of 
this tree is a theorem-a possible output. 

Suppose, however, that we have a machine M that interacts with its 
environment. M then can be thought of as embodying a behavior func
tion of the form M (h, i) = o. "h" stands for the history of what has hap
pened to M since it was turned on, "i" stands for the stimulus or input at 
the present time, and "0" stands for a response or output that M may 
give to stimulus i, having had history h. Note that, as mentioned above, 
it is permissible that for given hand i there be several possible o's. But 
now if we assume that the h's, i's, and o's can be specified by strings of 
symbols, then it is not hard to see that the behavior of machine M can 
be coded up in some formal system T M that has a variety of strings of 
the form "M(h, i) = 0" as its theorems. 

THE LIAR PARADOX AND THE 

NON-MECHANIZABILITY OF MATHEMATICS 

Let us now return to the idea of a theorem-listing machine, a finitely 
described device that prints out an endless list of statements. Ob
viously, the best possible theorem-listing machine would manage to 
print out all and only the true statements expressible in, let us say, the 
English language plus the customary printers' symbols. Such a Universal 
Truth Machine would be a fine thing indeed. Once we had devised its 
finite procedures, WELL, AXIOM, and RULE, we could set it to run
ning and simply lean back and watch the- printout. If you were curious 
about the truth of some well-formed statement S, you would only have 
to sit there and wait until either S, or the negation of S, was printed out. 

Before going any further, we should be a bit more precise about what 
sorts of string S will count as (well-formed) statements for which one 
can expect an unequivocal true or false decision. 

A first point is that we do not necessarily expect a statement to con
sist of a single grammatical unit. That is, a statement can consist of sev
eral sentences, a whole paragraph, a book, or even a large number of 
books. We desire only that the entire welter of symbols embody a sin
gle assertion that is in fact either true or false. We will, however, not 
allow infinitely long strings of symbols as statements, for a statement 
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should be, at least in principle, unambiguously and finitely communica
ble. 

A second point is that a string such as "x is smaller than y" is not, in 
itself, a statement. For without being told what x and yare, no one could 
ever say that this string expressed either a truth or a falsehood. So a 
statement should not include any undefined terms or relations. 

But now we have'a rather nasty problem. What about the phrase "is 
smaller than" in the example above? Must the meaning of that too be 
explained before we have a definite statement? But if every term and 
relation, every noun and verb, must be explained, then we seem to face 
a real mess. A full statement will take on the form of an initial assertion, 
followed by definitions of the words used in the first definitions, fol
lowed by definitions of the words used in the second definitions, and so 
on. 

Well ... why not? Such are the joys of abstract speculation! By 
way of preventing unnecessary regresses, we specify that within any ex
panded statement, no word's definition need be repeated. Since there 
are only finitely many words and word-creation schemata in English, the 
process should normally terminate. There may, however, be some cases 
in which the full expansion of a statement becomes infinite, and in such 
a case we will just have to write the statement off as non-well-formed, 
not really a statement. 

Someone might object that a fully expanded statement will consist of 
circular sequences of definitions and will thus be useless. To this there 
are two responses. First, any circular definition more complicated than 
"x is x" does convey some information. Euclid's circular definitions-of 
space as the set of all points and of a point as a region of space that has 
no parts-tells us that a point, whatever it is, cannot be made up of a 
number of component points. Second, the fact that one is using strings 
of symbols enables one to exhibit certain concepts without really having 
to define them. Take, for instance, the concept of the length of a string 
of symbols. "xxx" is a longer string than "a", and by multiplying such 
examples (perhaps schematically) the meaning of string length can be 
made evident.23 

So let us expand our statements to be self-explanatory. When we are 
done, a statement such as "the square root of two is irrational" will have 
blossomed into a hefty volume of mathematics, and "all men are mor
tal" will have expanded to include a definition of most of the words in 
the English language. 

But the simple listing of dictionary definitions will not always be 
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enough to make a statement definite enough to be susceptible to a 
true/false determination. In order to evaluate a statement such as 
"Jimmy Carter is good," one needs to know which criterion of "good
ness" is intended. Does the statement assert that Jimmy Carter teaches 
Bible School, that Jimmy Carter should have been reelected, or that the 
flesh of Jimmy Carter is sweet and tasty? In filling the bare assertion out 
to a full statement, one of the many possible options must be chosen. 

Let us return now to the concept of a UTM (Universal Truth Ma
chine.) What we want is a finitely programmed device that will print out 
all the true statements, and no false statements. It is easy to prove that 
there can be no such UTM. (We repeat the argument from the section 
"Godel's Incompleteness Theorem.") 

For, say that you have a candidate UTM based on the triple of finite 
procedures (WELL, AXIOM, RULE). Now, since WELL, AXIOM, and 
RULE are entirely finite and mechanical, one should be able to con
struct a well-formed statement G saying, "The UTM based on the triple 
(WELL, AXIOM, RULE) will never print out this statement"24 

If your UTM ever prints out G, then G will be false-so the UTM 
will have printed out a false sentence. But this would be impossible, as 
the UTM is to print out only true sentences. Therefore the UTM will 
never print out G. And therefore, G is in fact true. But now we have a 
true sentence that will never be printed out by our candidate UTM
which is therefore not truly universal. 

Truth, in short, is not finitely describable. This fact provided the res
olution of the Liar paradox discussed in "What is Truth?" Consider the 
string of symbols B, "This string of symbols does not express a well
formed statement that is true." Clearly B cannot in fact be expanded to 
make a well-formed statement that is true-because if such a statement 
if true, then it isn't. The reason B can't be made well-formed is that if we 
expand B to include a complete explication of all the words it uses, then 
B will have to include a complete explication of what it means for a fi
nite statement to be "true." But, as we have just seen, this word "true" 
does not admit of any finite explication! So B is one of those statements 
that, if expanded to be completely understandable, becomes infinitely 
long. Now, an infinitely long string of symbols is not allowable as a 
statement, so there is really no paradox here. If B were a finite state
ment, then B would be true if and only if B were not true . . . but B is 
infinite, and that is the end of it. B gives the feel of a paradox, as does 
the similar string, "This sentence is not true," but this is simply an illu
sion on a par with a man suspending himself by a piano wire and saying 
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he can fly. In the case of B, the "piano wire" is infinitely long, and B is 
not really a statement at all. 

So the concept of truth for finite statements is itself infinite. One 
might now be tempted to ask if there might be some higher notion of 
truth that can arbitrate the truth of every statement, whether finite, infi
nite, or transfinite? Not in this world. Looked at another way, the mes
sage of the Liar paradox is that one can never define truth in such a way 
as to apply to statements involving the concept of truth being defined. 

Let me illustrate this with an example. There is in Rome a church, 
Santa Maria in Cosmedin, outside of which stands a huge stone disc. 
The face of the disc is carved in bas-relief to depict the visage of a hairy, 
bearded man. The mouth, located at about waist-level, is shaped some
thing like a letter slot. Legend has it that God himself has decreed that 
anyone who sticks a hand in the mouth slot and then utters a false state
ment will never be able to pull the hand back out. But I have been 
there, and I stuck my hand in the mouth and said, "I will not be able to 
pull my hand back out." (May God forgive me!) 

It is perhaps not really so surprising that there is no set of rules that 
will suffice to generate all the possible truths. There is something about 
the fact that the rules exist in the world they attempt to describe that 
forbids this. What perhaps is surprising is that the same phenomenon 
also holds true for the small and orderly world of number theory. 

The natural numbers, along with the equality relation and the opera
tions of plus and times, do not seem very complicated. Even if one 
cannot get a finite description of all true statements, one might hope to 
get at least a finite description of all the true facts about natural num
bers. But, according to Godel's 1930 Incompleteness Theorem, this is 
also impossible. 

Godel's two Incompleteness Theorems state that all formal systems 
of a certain kind are subject to two related limitations. His results apply 
to any formal system T that is (i) finitely describable, (ii) consistent, and 
(iii) strong enough to prove the basic facts about whole-number arith
metic. 

Godel's First Incompleteness Theorem states that no such formal system 
T is capable of deciding every statement about natural numbers. That is, 
for any such T there will be a fairly simple sentence about natural num
bers such that neither this sentence nor its negation ever appears as a 
theorem of T. We already have seen the idea of the proof, as follows. 

Let MT be the theorem-listing machine that prints out all the theo
rems of T. Suppose G(T) is the sentence saying, "MT will never print 
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this sentence." Now, as we saw in the discussion of Universal Truth Ma
chines, G(T) must in fact be a sentence that is true; but that MT never 
prints out. 

The hard part is to show that G (T) can actually be put in the form of a 
sentence about natural numbers. Godel did this by a process called 
Godel-numbering, something like the coding process described in "The 
Library of Babel." When Godel is done, the self-referential sentence 
G (T) saying, "T cannot prove G (T)," has been converted into a sen
tence of pure mathematics stating that a certain polynomial equation 
has no solutions in the whole numbers. 

The upshot is that any finitely describable consistent theory T pro
vides an incomplete description of the natural numbers; for given any 
such T there will be a sentence G (T) about natural numbers that T can 
neither prove nor disprove.25 

Now for the Second Incompleteness Theorem. Recall that the condition, 
"T is consistent" means that for no sentence S does T prove both Sand 
the negation of S. This condition can be abbreviated as Con(T), and by 
using Godel-numbering again we can convert Con(T) into a purely 
number-theoretic sentence, once again a sentence saying that a certain 
Diophantine equation has no solution. 

Insofar as the theory T embodies a correct description of the mathe
matical universe, we might expect Con(T) to be a fairly obvious and 
readily deducible fact. But the Second Incompleteness Theorem tells us 
that ifT is a theory satisfying conditions (i) through (iii), then T cannot 
prove Con(T). 

The proof works by going back and formalizing the proof of Godel's 
First Incompleteness Theorem inside the system T. Once we do this, 
we have proved "Con(T) implies G(T)". But now, since T cannot prove 
G (T), it must be that T cannot prove Con(T) either! 

We are now in a position to understand the first part of the quote 
from G6del that stands at the head of this paper. As mentioned above 
in "Conversations with Godel," Godel took the viewpoint that the natu
ral numbers, the transfinite sets, and all other mathematical objects are 
immaterial, but actually existing, entities. By a process that Godel called 
mathematical intuition, humans come to learn certain facts about the 
universe of mathematics, and we also come to learn certain correct 
methods of reasoning from given facts to further facts. Mathematical in
tuition is to be thought of as a process just as reliable as ordinary sense 
perception.26 

Now, since the facts and methods of reasoning that we learn are cor-
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rect descriptions of an actually existing mathematical universe, there is 
no possibility of ever producing a contradiction in mathematics. On the 
basis of true mathematical facts and correct mathematical reasoning, we 
will never find ourselves proving that, say, zero is not equal to zero. In 
other words, whenever we can produce a description K of our present 
body of mathematical knowledge, then we can be sure that Con(K) is 
true. 

Now, say that we are able to come up with a finite description of a 
formal systemK that summarizes our entire present body of mathemati
cal knowledge. On the one hand, by the considerations of the last para
graph, we know that Con(K) is true. On the basis of our finite descrip
tion of K we can even apply GOdel numbering and come up with a 
specific true number-theoretic sentence Con(K). But, on the other hand, 
since K satisfies conditions (i) through (iii), the Second Incompleteness 
Theorem tells us that K cannot prove Con(K)! 

It is for this reason that Godel says the human mind is incapable of 
mechanizing all of its mathematical intuitions. For to mechanize our in
tuitions is to produce a finite description of a formal system K. But as 
soon as we see this finite description, our mathematical intuition shows 
us a fact, Con(K), which the mechanized system does not prove. So it is 
not true that the mechanized system K proves all facts that we can per
ceive through our mathematical intuition. 

ARTIFICIAL INTELLIGENCE VIA EVOLUTIONARY 

PROCESSES 

Let us now consider the second part of Godel's remark: He remarks 
that even though we cannot write the program for a theorem-proving 
machine that is equivalent to human mathematical intuition, it is possi
ble that such a machine could exist and even be empirically discover
able. 

Let us suppose that there is a machine R that is equivalent to human 
mathematical intuition. A first fact to be established is that we could 
never understand R's program. Let us make this point quite clear. 

(i) Being a theorem-proving machine, R is finitely describable. (ii) 
Since R is equivalent to our a priori consistent mathematical intuitions 
about the mathematical universe, R is consistent. (iii) For the same rea
sons, R is of course strong enough to prove the basic facts of whole
number arithmetic. Therefore, by the Second Incompleteness Theo
rem, R cannot prove Con(R). 
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Now, since R is in fact exactly equivalent to human mathematical in
tuition, it must be that the humans can never prove Con(R) either. This 
can only be because the humans can never understand the finite de
scription of R well enough to prove that R is, in fact, equivalent to their 
own mathematical intuitions, which are known, by a sort of higher-level 
intuition, to be consistent. The grounds for our lack of understanding 
of R's program will, presumably, lie in the program's length and sub
tlety. 

But how could such an utterly incomprehensible machine actually be 
produced, when we know that we could never understand it, let alone 
build it? 

The answer is evolution. Before his premature death in 1957, John 
von Neumann worked out the basic theory of self-reproducing auto
mata.27 There is, in principle, no difficulty in designing robots that are 
capable of building factories to produce other robots. There is also no 
difficulty in arranging things so that the old robots can copy their own 
programs onto the processors of the new robots. It is simply a matter of 
assembling the hardware, and then replicating one's software onto the 
new hardware. 

A current IBM design goal is the construction of super-cooled com
puters that will fit inside an 8 x 8 x 10 centimeter box, and have a 
256,000 word cache memory (workspace) and a 64 million word main 
memory. Each bit will be represented by a quantum of magnetic flux 
generated by a persistent current in a super-conducting Josephson junc
tion. It is perhaps not too much to hope that the following generation of 
computers will be able to enter the 1010 word range characteristic of 
human brains. 

Now imagine equipping a few thousand robots with these liquid-he
lium-temperature silicon brains and setting them loose on the moon. 
Their prime directive is to mine, smelt, fabricate, and assemble the ma
terials necessary to build more robots. They find the moon congenial: 
the low temperatures, the abundant solar energy, the lack of corrosive 
water vapOr or gaseous oxygen, the abundance of silicon. They are fruit
ful, and they multiply. 

Assuming that they are programmed to place high priority on self-re
production, there will be an inevitable competition for the raw materials 
and finished supplies with an attendant effect of natural selection. In ad
dition, we can ensure that their programs undergo regular mutations. 
This could be done by placing somewhere in the base program an im
perative never to copy oneself exactly. Each time a program was trans-
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ferred, a substantial number of changes would be made in it, these 
changes to be determined randomly, let us say by counting cosmic rays, 
or simply by waving a powerful magnet over the new scion's head. 

Actually, a large part of evolutionary diversity arises not from actual 
mutating gene change, but rather from the shuffling of genes inherent 
in sexual reproduction. Presumably something along these lines could 
be arranged, with two (or more) robots "sexually reproducing" together 
by pooling their hardware resources and shuffling together various of 
their subprograms to produce a new program for the little scion. 

Rather than immediately sending billions of dollars worth of hard
ware to the Moon, one would in practice begin a project of this nature 
in the laboratory. It would not even be initially necessary to deal with 
mobile hardwares capable of physical self-reproduction. Instead, as a 
first stage, I would envisage some thousands of AI programs competing 
(perhaps on the basis of scores on certain tests) for the right to be repli
cated, with one copy always incorporating some randomly determined 
mutations. It seems possible that the process could be speeded up 
enough for significant evolutionary effects to emerge after only a few 
years run-time. 

Once the programs had gotten intricate enough to be incomprehensi
ble, or understandable only with great difficulty, they could be packed 
into the factory-building robots and shipped off to the Moon. The eco
nomic incentive for this is, of course, that we would like to be able to 
exploit the Moon's resources, and it is possible that robots would have a 
better cost to productivity ratio than human colonists. 28 

As the robots on the Moon continue to evolve, there is always the 
danger that an unfortunate series of lethal mutations might force them 
into extinction. One would like perhaps to guard against lethal mutation 
by leaving certain core life-support sections of their programs inviola
ble. A problem with this is that a mutation that is lethal now may not be 
lethal to future variants of the species, and vice versa. Lungs, for in
stance, are very bad for a fish, but very good for an amphibian. 

But assuming all goes well, that God, perhaps, will guide the robots' 
evolution as He may have guided ours, then we could expect that there 
would eventually be a large and autonomous robot civilization on the 
Moon, and that some of the robots there might interest themselves in 
mathematics. It is at this point that there is a real possibility that there 
could arise a theorem-proving machine R (a robot mathematician) 
whose abilities are, in fact, equal to the resources of human mathemati
cal intuition. 
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There is no reason why R could not print out his program for us, per
haps in some extremely compact and coded form (compare sperm 
cells!). But, as was discussed above, we would not be able to understand 
this program, nor would we be able to prove to our satisfaction that R 
was consistent. The interesting thing is that even though we cannot un
derstand the program of R, we are able to set up the physical conditions 
that lead to R's coming into existence. 

ROBOT CONSCIOUSNESS 

With the paradigm of the last subsection in mind, it now seems evi
dent that there could be robots whose general behavior was the same as 
the behavior of human beings. These robots would be thinking beings 
who had evolved on a substrate of metal and silicon chips, just as we are 
thinking beings who have evolved on a substrate of amino acids and 
other carbon-based compounds. Would one be justified in saying that 
these highly evolved robots possess consciousness in the same sense 
that humans do? 

Upon lengthy introspection, most people will agree that the individ
ual person consists of three distinct parts: (a) the hardware, the physical 
body and brain; (b) the software, the memories, skills, opinions, and be
havior in general; (c) consciousness, the sense of self or personal iden
tity, pure awareness, the spark of life, or even the soul. 

I would like to argue that any component of parts (a) or (b) can be 
replaced or altered without really affecting (c). My purpose in arguing 
this way will be to show that there is nothing about part (c) that is spe
cific to the individual. 

Let us begin with the hardware. If one gets an artificial leg, kidney, or 
heart, one is still the same person. I maintain that it is possible to envis
age a time when one could even get a new artificial brain. This could be 
done by, let us say, holographically recording the physical, electrical, 
and biochemical structure of the brain, and then transferring this struc
ture isomorphically onto a large silicon-chip system or onto some ap
propriate module of culture-grown tissue. Presumably one would expe
rience such a transfer only as a brief period of unconsciousness after 
which one would go on thinking much the same as one had before. The 
whole process would be comparable to putting a given program into a 
new computer.29 

Now for the software. It is an utterly familiar feeling to look back on 
the way one was behaving a year, a month, or an hour ago and to be 
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amazed. One's personality is always changing, and one is always learning 
new things and forgetting old ones. There is also the extreme example 
of brainwashing. We are inclined to say that a person's essential identity 
is unchanged, even if he has been given a completely false set of memo
ries. 

What then remains for part (c)? I contend that the sum total of the 
individual consciousness is the bare feeling of existence, expressed by 
the primal utterance, I am. Anything else is either hardware or software, 
and can be changed or dispensed with. Only the single thought I am ties 
me to the person I was twenty years ago. 

The curious thing is that you must express your individual conscious
ness in the same words that I use: I am. I am me. I exist. The philosopher 
Hegel was very struck by this fact, and deemed it an instance of "the 
divine nature of language." 

What conclusion might one draw from the fact that your essential 
consciousness and my essential consciousness are expressed in the same 
words? Perhaps it is reasonable to suppose that there really is only one 
consciousness, that individual humans are simply disparate faces of what 
the classical mystic tradition calls the One. 

But we can go farther than this. The essence of consciousness is, 
.really, nothing more than simple existence. I am. Why should the pos
session of this sort of consciousness be denied to anything that does 
exist? Aquinas has said that God is pure existence unmodified. Is it not 
evident that there is a certain single something-call it God, or the One, 
or pure existence-that pervades the world as it is? Consider the Zen 
phrasing of this: The universal rain moistens all creatures. 30 Or think of 
the world as a stained-glass window with light shining through every 
part. 

To exist is to have consciousness. The other things one might feel are 
necessary for consciousness are more or less complicated sorts of hard
ware and software, patterns of mass and energy. But no pattern can be 
conscious until it exists, until it is brought into reality. Existence is, fi
nally, the only thing required for consciousness. A rock is conscious. 
This piece of paper is conscious. And so, of course, is a robot, both be
fore and after his behavior evolves to our level. 

Traditionally, those who have asserted the equivalence of men and 
(possible) machines have been positivists, mechanists, materialists. 
They put their viewpoint this way: "Men are no better than machines." 
But if one only changes the emphasis, then this equivalence can become 
the expression of a deep belief in the universality and reality of con
sciousness: "Machines can be as good as men!" 
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BEYOND MECHANISM? 

There seem to be three possible viewpoints regarding questions 
about human and robot souls. Mechanism: Neither men nor robots are 
anything but machines, and there is no reason why man-like machines 
cannot exist. Humanism: Men have souls and machines do not, there
fore no robot can be quite like a man. Mysticism: Everything, whether 
man or machine, participates in the Absolute, therefore it should be pos
sible for man-like machines to exist. Perhaps "mysticism" is not really a 
good name for this last view, but let it stand. 

In the last section I argued for the third viewpoint, under which 
"having a soul" is a concept automatically satisfied by anything that 
exists. But, since this view leads to a conclusion identical to that of 
mechanism, the reader may feel that I have ducked the real issue. One 
feels oneself to be "more than just a machine." Is there any possible 
justification for this belief short of recourse to an all-pervading Abso
lute? 

In two classic papers, Alan M. Turing developed a powerful argu
ment for mechanism: All that we can know about another person's 
mind is based on observing his behavior (i.e., by conversing with him, 
reading his writings, and so on); and there seems to be, in principle, no 
reason why there could not be a machine whose "conversation" is just 
like a person's.31 

Now, it might be objected that such an argument does not account 
for private mental phenomena, such as mental images, purposes, emo
tions, and the like. But a determined mechanist can say that what we call 
a mental image is merely a model or simulation such as computers often 
use, that a purpose is simply an assignment of utility values to certain 
internal states, and that emotions are just ways of assigning values to 

external phenomena as well. 
An even stronger argument for the mechanist position can be formu

lated by asserting that: 1) The activities of the mind are isomorphic to 
certain electro-chemical processes in the brain; and 2) The brain func
tions basically like a digital computer.32 

These assertions can be restated: 1) There is no mind apart from mat
ter; and 2) The brain is finite. The idea is that, given 1) and 2), we can be 
sure that the operation of the mind is a finite law-like process; and any 
such process can, in fact, be modelled by a large enough digital com
puter. 

Assumption 1 is often questioned by those who believe in telepathy 
and other forms of ESP. These investigators have pointed out various 
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unusual occurrences or perceptions that do not seem to fit in with the 
idea that the mind is simply a phenomenon taking place in the limited 
confines of the skull. I really do not know what to make of the claims 
made for ESP. Like any other person, I have experienced my share of 
what Jung calls synchronicities: meaningful concidences, true premoni
tions, and lucky guesses.33 But the desire for results is so strong, and the 
opportunities for deception so great, that the most extreme caution is 
necessary. 

One of the things most lacking in ESP research is any reasonable the
ory of how the mind could, in fact, go beyond the confines of the 
brain.34 As I suggested at the end of Chapter 2, it would be nice if Can
tor's two-substance theory were true, for then we could perhaps have 
the mind or "astral body" made up of some higher-level substance quite 
different from matter. But there is no evidence for such a theory-it is 
still only an idea for an idea. 

A recent development in physics that could lead to some interesting 
developments is the experimental disproof of the Bell Inequality.35 
What the experiments indicate is that there is a very real sense in which 
particles that have interacted continue to affect each other long after 
the interaction has taken place ... and in an instantaneous way! If this 
is indeed true, then the universe would of necessity behave like a single 
organic whole, leading to the possibility of choosing to identify one's 
mind with the cosmos rather than with some individual brain. But, as I 
pointed out at the end of the last section, there is no reason why such a 
form of higher consciousness would not be open to robots as well. Of 
course, then robots would not be "machines" in the narrow, finitistic 
sense intended by the mechanists. 

Going back to the argument for mechanism, what about assumption 
2? As was discussed in the section "Infinities in the Small," it is certainly 
possible that matter is infinitely divisible. If this were indeed true, then 
any material object, such as a human brain, would in fact be infinitely 
complex. Perhaps we really do think infinite thoughts, and it is simply 
an accidental property of this limited scale level that our descriptions of 
them come out finite. Sometimes I actually am able to believe this for a 
few minutes, keeping in mind Cantor's remark that "the infinite even 
inhabits our minds."36 

"I can't believe that!" said Alice. 
"Can't you?" the Queen said in a pitying tone. "Try again: draw a long 
breath, and shut your eyes." 
Alice laughed. "There's no use trying." she said: "one can't believe im
possible things." 
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"I daresay you haven't had much practice," said the Queen. "When I was 
your age, I always did it for half-an-hour a day. Why sometimes I've 
believed as many as six impossible things before breakfast."37 

Perhaps the mechanists are right. But it is certainly worthwhile to 
keep an open mind, even if this means occasionally seeing how it feels 
to believe something that is "impossible." 

PUZZLES AND PARADOXES 
(Answers, P.(301) 

1. Consider the sentence S: "THIS SENTENCE CAN NEVER BE 
PROVED." Show that if S is meaningful, then S is not provable, and that 
therefore you can see that S must be true. But this GOnstitutes a "proof" of 
S. How can the paradox be resolved?38 

2. Consider the following argument for the unreality of death: a) A person's 
mind and personality is equivalent to his software, that is, to the program
ming of his brain; b) Any software structure can be coded up by some large 
set of natural numbers; c) Every set of numbers exists eternallx as a mathe
matical abstraction independent of the physical universe; d) Therefore each 
individual's personality is immortal. Why is it that this type of immortality 
does not seem like enough? 

3. Consider this somewhat stronger argument for the immortality of artists: a) 
In a great work of art, an artist codes up a large part of his software, his 
personal feelings about life; b) When one deeply immerses oneself in a 
work of art, one takes on, for a few moments, the actual software coded up 
by that work; c) Therefore every time one truly appreciates a work of art, 
one is, for the moment, isomorphic to the artist, and the artist is thus 
(briefly) reincarnated over and over. If there were, a hundred years from 
now, someone exactly like you, would it make a difference to you? Would 
this be any different from being frozen for a hundred years and then resus
citated? 

4. Consider the following fanciful example of self-reproduction (due to Doug 
Hofstadter). "Imagine that there is a nickelodeon in the local bar that, if 
you press buttons II-U, will playa song whose lyrics go this way: Put an
other nickel in, in the nickelodeon,/All I want is ll-U, and music, music, music." 
Assuming that everything goes well, some state of some system will occur 
over and over here. Specify the state and the complete system. 

S. There is a word game sometimes called "word golf" that embodies a simple 
analogy of a formal system. One starts with a given word (say, LOVE) that 
serves as the initial "axiom." The "rule of inference" is that at each step one 
can change one letter of the word in hand, provided the change produces a 
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new English word. The "theorems" following from a given "axiom" word 
are those words that can be reached by a series of transformations accord
ing to the rule of inference. Thus HATE is a theorem, or consequence, of 
LOVE. The "proof" of this is the sequence LOVE, ROVE, RAVE, HAVE,. 
HATE. The reason it is called "word golf" is that one tries to find "proofs" 
with the shortest possible number of steps. If you allow the somewhat ob
scure word LA VE, then the derivation above can be shortened by a step to 
LOVE, LAVE, LATE, HATE. How many steps do you need to turn COLD 
into WARM, BEER into WINE, FISH into FOWL? 

6. In this chapter we discussed a UTM (Universal Truth Machine) that would 
print out all true statements. In the section "What is Truth," a sort ofTSM 
(Truth Sorting Machine) was discussed. The TSM was to look at any book 
and decide, after a longer or shorter interval of time, whether or not the 
book was true. We have proved that neither a UTM nor a TSM can 
exist. BUT, ignoring this fact for now, show that, with a few modifications, 
any UTM could be converted into a TSM, and any given TSM could be 
converted into a UTM. 

7. Present day computers are, both with respect to hardware and with respect 
to software, far superior to the computers of thirty years ago. Show that this 
improvement can be viewed as a sort of robot evolution, and point out what 
processes have played the roles of reproduction, selection, and mutation. 

8. The passage from GOdel quoted at the beginning of "Towards Robot Con
sciousness" goes on to make a further point: "Either the human mind sur
passes all machines (to be more precise, it can decide more number-theo
retical questions than any machine) or else there exist number-theoretical 
questions undecidable for the human mind."40 Explain how this is really 
just a restatement of the result that no machine can answer all number-the
oretical questions. 



CHAPTER FIVE 

THE ONE AND 
THE MANY 

Think of Everything-the whole physical universe past and present, 
all the other possible universes, all the possible thoughts, all the mathe
matical sets-or can one think about it? The classical One-Many prob
lem is this question: Can Everything be regarded as a unity, as a single 
definite thing? Is the world a One or a Many? 

The first section of this chapter contains a brief account of some as
pects of the classical One/Many problem. The problem allows itself to 
be stated in terms of set theory, so the following section, "What Is a 
Set?," introduces the general notion of set, and "The Universe of Set 
Theory" describes various ways in which the One/Many problem arises 
in set theory. The final section of the chapter, "Interface Enlighten
ment," describes a certain sort of metasolution to the problem, where 
meta solution means a solution obtained by looking at the problem from 
a higher level standpoint. Such solutions are not always satisfying-one 
type of metasolution to a chess problem is to overturn the board! 

THE CLASSICAL ONE/MANY PROBLEM' 

There are two forms of the One/Many problem: i) How many kinds 
of things are there; ii) How many things are there? The natural first an
swer is that there are many different kinds of things and many different 
things. 
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There is, however, a perennial desire to reduce the world's diverse 
phenomena to a single basic kind, to believe that ultimately all things 
are built of the same stuff. Matter, sensation, thought, and form have all 
been candidates for Urstoff The belief that there is ultimately only one 
kind of thing in the world is called monism of kinds. Materialism and ide
alism are both monisms of kinds; the monism of kinds that asserts that 
everything is a set will be considered in "The Universe of Set Theory."2 

Instead of uniting things from the bottom up, one can work from the 
top down, starting with the assertion that "All is One." Monism of sub
stance asserts that everything is a part or manifestation of a higher unity 
that is usually called the Absolute. 

It is, of course, obvious that the word or concept "Everything" serves 
to form the world at least superficially into a One. In the same way, the 
bare concept "set" makes a One of the universe of set theory, but with
out answering the real question of whether this universe is in any sense 
a definite completed object. The heart of question ii) is whether or not 
the world is One in some organic sense, rather than in the sense of mere 
wordplay. 

Perhaps the principal reason for believing that the world is an organic 
One is the sort of mystical insight that Lovejoy somewhat slightingly 
refers to as "monistic or pantheistic pathos."3 The fact that it is occa
sionally possible to feel an all-encompassing unity in the world is, how
ever, not conclusive, as it is equally possible to feel a diversity in the 
world that defies unification. 

It is possible to argue for monism of substance in various ways. One 
idea is that ultimately everything in the world is related to everything 
else, and that the Absolute is the means or essence of this interrelated
ness. Here the Absolute serves as a sort of connective tissue that fixes 
the individuals of the world into their perceived relational structure. 

Another approach is to argue that any two things are, in a sense, the 
same; and that the Absolute is the one endlessly diversifying thing that 
exists. 

But it is at least questionable whether such an Absolute actually 
exists, and pluralism of substance remains a reasonable position. This 
position is forcefully presented by William James in A Pluralistic Uni
verse: 

". . . the pluralistic view which I prefer to adopt is willing to believe that 
there may ultimately never be an all-form at all, that the substance of 
reality may never get totally collected, that some of it may remain outside 
of the largest combination of it ever made, and that a distributive form of 
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reality, the each-form, is logically as acceptable and empirically as proba
ble as the all-form commonly acquiesced in as so obviously the self-evi
dent thing. "4 

Not to keep the reader in suspense, I should come out with my posi
tion on the One/Many problem. But this is not so simple. In certain 
ways I agree with James, that there really is no ultimate single universe. 
But on the other hand, I do feel that the simple predicate, "exists," does 
tie everything together into a unity that it is, in principle, possible to 
experience directly. Rationally the universe is a Many, but mystically it 
is a One. The question that really interests me is this: How do we recon
cile the Absolute as One with the Absolute as Many? How do we fit to
gether the world of feeling and the world of thought? 

But the reader should not hope for any final, tidy answer to this as
pect of the One/Many problem. No one knew more about it than Plato. 
Most of the Parmenides and the Sophist deal with the One and the Many. 
In section 15 of Phi/ebus, Plato's last dialogue, he has the aging Socrates 
deliver this wry, weary, wise summary of what he knows about the One 
and the Many: 

We say that the one and many become identified by thought, and that 
now, as in time past, they run about together, in and out of every word 
which is uttered, and that this union of them will never cease, and is not 
now beginning, but is, as I believe, an everlasting quality of thought it
self, which never grows old. Any young man, when he first tastes these 
subtleties, is delighted, and fancies that he has found a treasure of wis
dom; in the first enthusiasm of his joy he leaves no stone, or rather no 
thought, unturned, now rolling up the many into the one, and kneading 
them together, now unfolding and dividing them; he puzzles himself first 
and above all, and then he proceeds to puzzle his neighbours, whether 
they are older or younger, or of his own age that makes no difference; 
neither father nor mother does he spare; no human being who has ears is 
safe from him, hardly even his dog, and a barbarian would have no 
chance of escaping him, if an interpreter could only be found. 5 

WHAT IS A SET? 

It is impossible to improve upon Cantor's succinct 1883 definition: 
"A set is a Many which allows itself to be thought of as a One."6 One of 
the most basic human faculties is the perception of sets. Consider this 
random pattern of X's. 
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Figure 76. 

As you idly gaze at the picture, your brain searches out and notices 
various subpatterns, various constellations of X' s. On the upper right is 
a rough hexagon. Running from lower left to upper right is an approxi
mate line. Running from upper left to lower right is a double camel's 
hump of sorts. Triangles, a question mark, a tennis racquet, and so on. 

When you think about your associates and acquaintances you tend to 
organize your thought by sorting these people into overlapping sets: 
friends, women, scientists, drinkers, gardeners, sports fans, parents, etc. 
Or the books that you own, the recipies that you know, the clothes you 
have-all of these bewildering data sets are organized, at the most 
primitive level, by the simple and automatic process of set formation, of 
picking out certain multiplicities that allow themselves to be thought of 
as unities. 

Do sets exist even if no one thinks of them? The numbers 2, 47,48, 
333, 400, and 1981 have no obvious property in common, yet it is 
clearly possible to think of these numbers all at once, as I am now doing. 
But must someone actually think of a set for it to exist? 

This is really a version of the old chestnut, does a falling tree make a 
noise if there is no one there to hear it? The "tennis racquet" was present in 
the pattern of X's, even before I noticed it. By circling it, I do not bring 
it into existence, I merely point it out as an objectively existing feature 
of the external world. 

Even if no one ever notices some given set, it still exists as a certain 
possible thought or perception. In the same way, the lonely falling 
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tree's sound exists as a certain possible perception, a condition of the 
world expressible as, if a person were present he would hear a crash. 

The basic simplifying assumption of Cantorian set theory is that sets 
are there already, regardless of whether anyone does or could notice 
them. A set is not so much a "Many which allows itself to be thought of 
as a One" as it is a "Many which would allow itself to be thought of as a 
One, if someone with a large enough mind cared to try." For the set 
theorist, the bust of Venus is already present in every block of marble. 
And a set M consisting of ten billion random natural numbers exists 
even though no human can ever see M all at once. A set is the form of a 
possible thought, where "possible" is to be taken in the broadest sense. 

At this point one might well ask if there is anything that is not a set, 
or if there are any "thoughts" that are not possible. The answer, surpris
ingly, is yes. We can imagine that some sets might be members of them
selves, and some might not be. So one might expect to be able to dis
cuss a set R defined to be the set of all sets that are not members of 
themselves. In symbols we would have R = {x:x ¢ x}. 

On the surface there seems to be no reason why R should not be a 
Many which allows itself to be thought of as a One. But now ask this 
question: Is R a member of R? Is R E R? 

A little thought makes it evident that if R is a member of R, then R 
(not being a set that is not a member of itself) is not a member of R. And 
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if R is a set and not a member of R, then R (being a set that is not a 
member of itself) is a member of R. 

So if R is a set, then we have a contradictory state of affairs with R 
being in itself if and only if it is not in itself. So we are forced to con
clude that R is, in fact, not a set. R is a Many which does not allow itself 
to be thought of as a One. 

But why not? Why can't R be a set? The reason seems to be that R is 
too big. 

In set theory we normally assume that no set is a member of itself 
anyway. This principle, called the genetic formation of sets principle, em
bodies the idea that a set S exists by virtue of two logical steps: i) a 
bunch of possible members x are in existence; ii) some of these x's can 
be combined into a unity to form S. The idea is that if we had S E S, 
then trying to separate out the steps i) and ii) would lead to an infinite 
regress, with i) depending on ii) (since S is one of the possible members 
x of S), and with ii) depending on i) (since S can't exist unless its mem
bers exist). There is nothing directly contradictory here, but it is cer
tainly more pleasant to speak only of sets that are logically built up from 
simpler sets and objects. 

Note that if no set is a member of itself, then the collection V of all 
sets is the same as the collection R of all sets that are not members of 
themselves. Now we know that R is not a set, so if R = V, then we also 
know that V is not a set. This is one way to prove that the universe of set 
theory is a Many that does not allow itself to be thought of as a One. 

Of course, since we have stipulated that no set is a member of itself, 
there is a simpler way to see that V is not a set. For if V were a set we 
would have V being a set that is a member of itself (since every set is a 
member of V). So the reason that R is not a set is not because its defini
tion has something to do with self-reference, but rather, that R is big 
like V, the class of all sets. 

Set theorists use the expression "class" to mean a collection or multi
plicity of any kind. A class mayor may not be unifiable into a set. If not, 
we call it aproper class. Thus, V is a proper class. V is a Many which does 
not allow itself to be thought of as a One. 

Cantor was well aware of the distinction between sets and collections 
that are proper classes. He wrote about it in a famous 1899 letter to 
Dedekind: 

If we start from the notion of a definite multiplicity of things, it is nec
essary, as I discovered, to distinguish two kinds of multiplicities. 

For a multiplicity can be such that the assumption that all its elements 
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'are together' leads to a contradiction, so that it is impossible to conceive 
of the multiplicity as a unity, as 'one finished thing: Such multiplicities I 
call Absolutely Infinite or inconsistent multiplicities. 

As we can readily see, the 'totality of everything thinkable,' for exam
pie, is such a multiplicity . . .7 

The reader may recall that Cantor's last point was discussed in the sec
tion "The Absolute Infinite." If we assume that "thought" means "ration
ally communicable thought built up from simpler forms," then it is evi
dent that for any universe T of possible thoughts, the thought of T as a 
whole will be a new thought not lying in T. So any attempt to think of 
everything thinkable leads to an (Absolutely) infinite sequence of ap
proximations that do not seem to converge to anything definite. 

This pattern is important, since it is an exact duplicate of what hap
pens when one tries to form a "set of all sets." Any proposed universe U 
of all sets is, if conceivable, actually a set. But then, since U is not a 
member of U, U is evidence that U is not the set of all sets after all. 

The upshot is that if there is a single limiting class V of all sets, then V 
must be in some way vague or inconceivable, so that it resists being uni
fied into a set. V is a Many that does not allow itself to be thought of as a 
One. 

But is this really true? Am I not speaking of "V" as if it were, in fact, a 
single definite thing, the universe of set theory? Is V then really a Many 
or a One? This difficult knot is the One/Many problem. 

In the next section I will try to inject some life into this question by 
giving a better description of what we presently know about V. But first 
we should notice how similar the One/Many question about V is to 
other questions that have cropped up. 

At the end of "The Berry Paradox," we came to the conclusion that 
"nameability is unnameable." More specifically, we were discussing the 
first number Uo that cannot be humanly named. The problem here is 
that on the one hand, there is a non-unifiable multiplicity of all the 
names, of all the numbers less than Uo; 'while on the other, there is the 
specific concept of "nameability" and the specific natural number uo. 
How is it that we talk about" nameability" when the concept admits no 
definition? How do we talk about the class V of all sets when V is, in 
fact, not a single definite thing? 

At the risk of being repetitious, let me point out the other places 
where this pattern has already arisen. 

In "Richard's Paradox" we saw that the real numer coding up all the 
nameable real numbers is not nameable. Yet in a sense we named it in 
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the process of discussing it. In "What Is Truth," and again in "Godel's 
Incompleteness Theorem," we observed that mathematical truth is not 
mathematically definable. We have a single unified concept of truth 
guiding our efforts, and yet this concept exists not as any single defini
tion but only as the non-unifiable multiplicity of all true statements. In 
"Towards Robot Conciousness" we saw that although a person feels 
himself to be a One, he can never grasp or know any unified description 
of his behavior. A person can describe his actions and personality only 
as an altnost random multitude of particulars, even though the most pri
mal datum of consciousness is unity. 

There is even a hint of the One/Many problem when one regards the 
simple infinite set N of all natural numbers. For, if a person feels that 
only finite sets exist, then he cannot see how the multiplicity N can ever 
be formed into a single finished thing. And, by the same token, he will 
have trouble believing in the reality of w as a single definite number. 
These doubts about N are fundamental to the school of thought called 
intuitionism. For the intuitionist there are no completed actually infi
nite sets-there are only potentially infinite sets. One could perhaps, 
cha.racterize the intuitionist position as equating the simple infinity w 
with the inconceivable Absolute Infinite n.8 But as there seems to be 
no logical reason why there cannot be sets that are infinite, yet small 
enough to conceive of, we will continue to follow Cantor in discussing 
them. 

THE UNIVERSE OF SET THEORY 

Figure 78 is the standard picture of the universe of set theory. Run
ning up the middle we have a spine consisting of all the ordinals. Be
yond all the ordinals, clothed in clouds of glory, rests n, the Absolute 
Infinite. Or perhaps this is just a trick of lighting, for whether n really 
exists is yet another version of the One/Many problem. 

PURE SETS AND THE PHYSICAL UNIVERSE 

At the bottom of our picture of the universe of set theory is a singular 
point called the empty set. First there is nothing at all and then there is 
something-the idea of forming a set. The empty set is variously called 
{}, ~, or o. The empty set is something, but inside it is nothing. Think-
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V9 is the universe 
of classical 
set theory. 

V., includes every possible 
finite pattern. 

V6 has about (Googol)"OO 
members. 

Present-day set theorists 
use a universe about 

this big. 

All ordinary mathematics takes place in 
V.,+w. 

Vw includes every humanly conceivable 
finite pattern. 

o Vo is the empty universe. 

Figure 78. 
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ing about it reminds one of what has been called the ultimate philo
sophical question: Why is there something instead of nothing?9 Why does 
anything at all exist? No one really knows, but the fact that something 
does exist is the one absolutely incontrovertible known fact about the 
world. 

Why does the empty set exist? No one knows, but there it is, the raw 
idea of set formation, an objective aspect of the world around us. 

Fanning out above the empty set in an ever-widening "V" we have 
sets of greater and greater complexity. The various levels are called par
tial universes or V Q' s. It turns out that for each set x one can specify its 
complexity by an ordinal numer called the rank of x. In general, V Q is the 
set of all sets with rank less than a. 

When one speaks of sets in ordinary life, one means sets of objects. 
But in mathematics we need only speak of pure sets, that is, sets whose 
members are other pure sets. The simplest pure set is the empty set. 
The next simplest is the set whose only member is the empty set. This 
set is variously called {{}}, {<p}, or 1. Note that {{}} differs from {} in the 



198 INFINITY AND THE MIND 

same way that a set with one apple in it differs from the one apple itself. 
{{}} holds something in its outer brackets and D holds nothing. Right 
below, we have written out some simple sets, with lines indicating set 
membership. 

Rank 3: {{{ {} }}} {{ {{} H , {{}, {{H H {{} , {{} , { {}} }} 

Rank 2: {{A}}~r-? 

t~ Rank 1: 

Rank 0: 

It may seem awkward and silly to make something out of nothing in 
this way, but it is certainly economical. The pure sets are built up out of 
thin air and the simple idea of forming collections. This is enough. 
Every conceivable tree of membership relations can be represented by 
the membership relation inside some set of sets. 

By way of stressing this, I have drawn in Figure 79 all the possible 
membership relations one could have among four objects or sets. (I get 
thirty-one-I think that's all of them.) The dots stand for the different 
objects, and if dot A is supposed to be a component of dot B we draw B 
at a higher level than A, and with a line coming from A up to B. Drawn 
in this way, the dots group themselves into levels in a way analogous to 

the set theoretic grouping by rank. We can describe the level pattern in 
numbers, as is done in the figure. 

Can each of these patterns be realized as some set of pure sets? Yes. 
Let me describe in detail how to do this. For each natural number n, let 
n'" be the set that is written as n + 1 left-hand brackets followed by 
n + 1 right-hand brackets. 

0" 1" 2" 3'" 
{} {{H {{ {} }} {{{ {}}}} 

Note that for any n greater than zero, n'" has exactly one member: 
(n - 1)". We can use even-numbered n"'s as the "dots" for our set pat
terns. The ad vantage is that each set in {O"', 2 "', 4", 6 "', ... } is distinct and 
not a member of any of the others. (Some light on the idea of "rank of a 
set" can be shed by the observation that for each n, n" is the simplest set 
of rank n.) So we will use these sets as "atoms" or labels, for distinct 
bottom layer dots. 
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4 . . . . 
3-1 /. ./1 .~ . 
2-2 V I I VI 1><1 

2-1-1 ). o. JJ 0) A C\ ~ 
1-3 'V 

1-2-1 V <V <) <1> 
1-1-2 Y 'i ~ 

1-1-1-1 ! ~ ~ d 4 ~ ~ ~ 
Figure 79. 

~ 
{O", {O", 2"}} 

looks like (lj'\') 
0" 2" 

So, we can say that the pattern ~iS realized as the set of four sets, {O·, 
2*, {O*, 2*}, {O·, {O*, 2*m, which can also be written as m, {{{m, m, 
{mm, {{}, m, {{{mm, a pure set of rank six. 

We can also use the n* sets to enforce splits. 
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The 2* and 4* are put in to make the top dots differ. So the pat
tern V is realized as {O*, {O*, 2*}, {O., 4*}}. 

Now let us take a more complicated pattern, my initial. 

mO", r}' 4"}, {{O", 2"}, 6"}} 

{{O", 2"}, ~{{O'" 2"}, 6"} 

)O",2( 
b~2" 

looks like 

So, writing it out in pure-set terms, one might say that the initial "R" is 
coded as {O, {{{}}}, {{}, {{U}}}, {{U, {{{}}}}, {{{{{}}}}}}, {{O, {{O}}}, 
{{{{{{O}}}}}}}, {{{o, {{m}}, {{{{U}}}}} , {{o, {{m}}, {{{{{{O}}}}}}}}}. Strictly 
speaking, one could leave the commas out. They are just there to im
prove the readability! 

There is no intrinsic significance to the kind of coding technique I 
have just been discussing. There are better ways to code up patterns as 
sets. But these examples will have given a taste of the main idea, which 
is this: Any conceivable pattern at all can be coded up by sets. 

The slogan, "a set is the form of a possible thought," cuts both ways. 
On the one hand, a multiplicity is a set precisely when it can be viewed 
as the form of some possible unifying thought. And on the other, any 
possible thought can have its form coded up as a set. 

The truth of this last observation is borne out by the fact that nearly 
every mathematics book starts with a section on sets. Natural numbers 
can be coded as sets something like the n* discussed above. Fractions, 
infinite decimals, functions, relations, number fields, etc., can all be 
coded up one way or another as sets. Everything in mathematics (except 
for the proper classes, of course) can be represented as a set. 

And consider this: If reality is physics, if physics is mathematics, and 
if mathematics is set theory, then everything is a set.1O I am a set, my 
thoughts are sets, my emotions are sets. Occasionally I devote some 
time to trying to believe these conclusions in an immediate, experiential 
way. If everything is a set, then only pure form exists, which is nice. The 
whole physical universe could be a single large set U. 

N ow let us turn back to the picture of the universe of set theory that 
we began with in this section. Moving up the spine of ordinals, we get 
sets of higher and higher rank. In general, Va +1 consists of all the possi
ble subsets of Va. It is possible to prove that for any finite n, V n+1 will 
have n2 members (where n2 means two tetrated to the n, as was de
scribed in "From Omega to Epsilon-Zero"). 
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Evidently, it is hopeless ever to write down or think of all the sets of 
rank six. But, of course, there are many individual sets of higher rank 
that we can think of, for instance, the set 100·. 

The number W was "defined" in the section "The Berry Paradox" as 
the first natural number greater than every humanly nameable finite 
number. Obviously, if we can name a set, we can name its rank, so there 
will be no humanly nameable finite sets of rank greater than W. In a 
sense, all possible human thoughts lie in V w. Of course, we can point to 

sets beyond this, to V co, for instance. 
There is no real paradox in this if you believe that sets exist objec

tively and outside of human activities. When a person says he is talking 
about V co, his brain-state can be coded up as a set in V w' But he is still 
talking about the real V w' Brigitte Bardot is not flat just because her 
photograph is two-dimensional. 

V w is, incidentally, the set of all "hereditarily finite" sets, that is, those 
sets that can be written out explicitly with a finite number of left-hand 
brackets, commas, and right-hand brackets. V w is, of course, infinite, of 
cardinality ~o to be precise. Each natural number is coded up inside V w' 

V w+t is very much larger, of cardinality 21<0, or c. Each real number 
can be coded up as a set inside V w+t. 

A real-valued function of the sort studied in calculus can be thought 
of as a set of pairs of real numbers. Most of the theorems of calculus say 
things about various sets of functions. It is not difficult to see that by the 
time we get to V co+w, we will have sets representing all of the things or
dinary mathematics discusses. 

Before discussing the rest of the picture, let us pause for an interest
ing question. Say that U is the set coding up our physical universe. How 
far up would one expect to find U? 

This is really a restatement of the question asked in "Coding the 
World": How much information is in the universe? If the universe is 
completely finite, then U is a set somewhere in V co, perhaps in V googol. 

And even if it is infinite, we wouldn't expect it to be so very far out
surely U must lie in V w+w' 

It seems strange to have our physical universe being just a little set U 
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floating around in the big universe V of all possible sets. Under this 
viewpoint, all the possible universes would be sets in V. Is it really rea
sonable to have an idea like V be so much bigger than the real world? 

There is always the possibility, discussed in "Higher Physical Infini
ties," that the collection V coding up the physical universe is very much 
larger than we had suspected. If there were many parallel universes to 

be included, if matter were transfinitely divisible, if time were transfini
tely long-in any of these cases, it might actually be possible to have V 
too big to be a set, too big to fit inside V. In this case V would be Abso
lutely infinite, a Many that does not allow itself to be thought of as a 
One. 

Of course, our daily experience flies in the face of any suggestion that 
V is so very big. But there is a traditional philosophical principle, the 
Principle of Plenitude, which suggests that the physical universe should 
be as rich as the set theoretic universe of pure Platonic forms. Insofar as 
any physical structure can be coded up as a set, we already expect V to 

be as large or larger than u. The Principle of Plenitude insists that V 
must be as large or larger than V as well, leading to the conclusion that 
V and V are equally large. 

A more extreme statement of this would be to insist that V and V are 
identical, but this is really pretty hard to swallow. An argument in this 
direction might be begun by remarking that we should understand V to 

include all the alternate universes as well as our own perceived uni
verse. And one could then point out that a possibly existing alternate 
universe is really an abstract form no different than a set. 

But it seems more reasonable to view our physical universe as a defi
nite point V inside V. I find this congenial, as I feel the range of possible 
thoughts to be very great. A person with a different temperament, how
ever, might go to the other extreme and argue that V is inside U.u 

PROPER CLASSES AND METAPHYSICAL ABSOLUTES 

For the various reasons discussed in "What Is a Set? ," we know that 
the class V of all sets is not a set. V is not the form of a possible thought. 
This means that whenever a person believes himself to be thinking of 
the true V, he is deluded. 

The situation regarding V is exactly analogous to our situation rela
tive to the metaphysical or theological Absolute. Virtually all thinkers 
who have discussed the Absolute concur on one point: the Absolute is 
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not rationally knowable. As was already mentioned in the "Absolute In
finite" section of Chapter 1, St. Gregory puts it this way: "No matter 
how far our mind may have progressed in the contemplation of God, it 
does not attain to what He is, but to what is beneath Him"12 

Ernst Zermelo, one of the founders of modern set theory, makes a 
similar observation about sets: "Any specifically described model of set 
theory can in some way be viewed as a set, that is, as an element of a 
higher model of set theory. "13 

This idea has been formalized in. modern set theory as the Reflection 
Principle: Given any proposed description DESC of V, there will be a 
partial universe Va that satisfies DESC as well. Any specifically de
scribed universe of set theory turns out to be only one of the Va sets, 
and not the whole universe. The mind does not attain to God, but to 
what is beneath Him. 

To make clear that this is not just pious phrase-mongering, let me try 
to expose the mechanism underlying the Reflection Principle. Say that 
one is trying to think of V, of all the sets. Initially one might think only 
of the finite sets, that is, of the members of V w' But then one realizes 
that V w itself can be viewed as a set. Classical set theory dealt with all 
the sets of rank smaller than 0, the first "strongly inccessible cardinal" 
(See the "Large Cardinals" section of Excursion I.) But at some point it 
became apparent that the universe of classical set theory is just a single 
large set Vo. 

At any stage in the development of set theory, people are working 
with a great many larger and larger sets. But there is always some ordi
nal a lying beyond any ordinal yet named. When one realizes this, one 
names a. One realizes that the old universe was a set Va, and begins 
working in a larger universe. 

The process is comparable to a process of trying to think of all possi
ble thoughts. At any time one has many thoughts present in one's con
sciousness. But now, by moving to a higher level of self-consciousness, 
one can group all of the past thoughts together into a new thought T. T 
and the old thoughts make up a new and enlarged state of conscious
ness, and by once again stepping outside oneself, a new and still higher 
thought T* appears. 

There seems to be no end to this process. It is a sort of Hegelian dia
lectic, endlessly moving out toward the Absolute universe of all possi
ble sets or thoughts. To be quite precise, one could characterize the 
process in terms of thesis-antithesis-synthesis by saying the thetic com
ponent is one's instantaneous unconscious description of the Absolute, 
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the antithetic component is the conscious formalization of this descrip
tion, and the synthetic component is the formation of a new unconscious 
description of the Absolute that incorporates one's earlier descriptions 
and the awareness that they are inadequate. We could call such a pro
cess an intellectual history. 

To say the Absolute is a One is to say that there is some unique limit
ing point or concept at the end of any such history. To say the Absolute 
is a Many is to say that there is only the working out of the endless se
quence of approximations, with no single guiding notion at the end. 

A model for these two views might be found in two infinite series: 
Zeno's series, 1 + 1;2 + ~ + Ys + . . .; and Grandi's series, 
1 - 1 + 1 - 1 + . . . . We feel that as we take into account more and 
more terms of the Zeno series we are getting closer and closer to a defi
nite limiting value: 2. But adding together more and more terms of the 
Grandi series only leads to an endless dithering between 0 and 1. 

If a is a limit ordinal (i.e., an ordinal such as w with no immediate 
predecessor), then the partial universe Va has no last ordinal. But if a 
has the form {3 + 1, then Va does have a last ordinal, which is {3. Should 
we regard the full universe V as the limit of the first kind of partial uni
verses, or as the limit of the second? Should we say that there is no last 
ordinal, or that the last ordinal is !1? 

The approach toward any ideal perhaps can be viewed as an intellec
tual history consisting of more and more sophisticated concepts. The 
ideal might be the ethical notion of Virture, the theological notion of 
God, the mathematical notion of V, the logical notion of Truth, the ar
tistic notion of Beauty, or the spiritual notion of Love. 

As a person develops he moves out to higher and higher transfinite 
levels. Although one cannot think of each natural number, to grasp the 
general idea of natural numbers is to jump out to V w. In terms of Love, 
or mutual knowledge, we could say that if A and B have a perfect under
standing of each other, then A knows that B knows that A knows that B 
knows that . . . ,and so on. If A and B realize all that, then they too 
are moving out past level w. 

Actually, one need not deal with such high-flown concepts to en
counter a form of the One/Many problem. As Plato says, the One and 
the Many run about together in every word uttered. To mention the 
hoariest of introductory philosophy examples, what do I mean when I 
say "table"? I do have a single underlying notion of "tableness," yet if I 
try to specify in words what a table is, I am swept into an endless se
quence of refinements, taking in three-legged tables, ankle-height 
tables, tables attached to the wall, car hoods used as tables, operating 
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tables, etc. We use words as units, as Ones, yet spelling out in detail 
what a given word means sinks us into an endlessly proliferating Many. 

Perhaps if time could stop, one could get to the Absolute. But time 
goes on, and after one thinks he has seen the Absolute, he goes on to 
talk about it, and this talk becomes another idea, another step on the 
path outward. Whatever number I name, you can add one to. No one 
has the last word. The Reflection Principle formalizes this idea. 

So in terms of things we can describe in words, the Absolute is an 
indescribable Many. It is possible to stop there. But many people, my
self included, feel that there is a single underlying Absolute staring us in 
the face-call it pure existence, call it "this." As Wittgenstein says, 
"There are, indeed, things that cannot be put into words. They make 
themselves manifest. They are what is mystical."14 

There is a kind of second-order One/Many problem that arises here. 
Are all the different Absolutes the same? Are God, Truth, Beauty, the 
Class of all Sets, the Mindscape, the Good, and so on, really different 
facets of some single ultimate ONE? This is certainly debatable. If all 
wisdom leads to the same thing, then why are there so many different 
religions, different schools of thought, and different ways of seeking en
lightenment? Is a jogger looking for the same thing that a writer is? 

This problem actually has an analogue in set theory. In set theory we 
have two different Absolutes: Infinity, represented by n, and Every
thing, represented by V. n can be thought of as the class of all ordinals, 
while V is the class of all sets. Now every ordinal can be represented as a 
set, so on the crudest level, V is larger than n. But, in pursuing the 
equivalence of all Absolutes, we could instead..,!!.sk ileach set is coded 
up by some ordinal, or if in terms of cardinality n = V. Is Infinity as big 
as Everything? 

No one really knows. The assertion n = V means that there is a one
to-one correspondence between the class of all ordinals and the class of 
all sets. But since such a correspondence is itself a proper class, it is hard 
to be sure it exists. When the assumption that there is such a correspon
dence is explicitly made, set theorists call it the Axiom 0/ Global Choice, 
or, in a stronger form, the Axiom 0/ Ordinal Definability. (See also the 
end of "The Continuum" in Excursion I, where a relationship between 
Global Choice and Cantor's Continuum Problem is pointed out.) 

I think it is highly significant that the deepest problems of metaphys
ics can be given explicit set theoretic formulations. Godel once ex
pressed the view that present-day philosophy is in a state comparable to 
that of physics before Newton. Perhaps the ultimate role of set theory 
will be to do for philosophy what calculus did for physics. 
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INTERFACE ENLIGHTENMENT 

One/Many 

Actual Infinite Potential Infinite 
Platonism Formalism 

Truth Provability 
Thoughts Words 
Semantics Syntax 
Minds Machines 

Nameable Reals Random Reals 

Sets Proper Classes 

n V 
~1 C 

Mysticism: 

00 = 0 
Way of Unity = Inward Way 

Rationality 
Brahman = Atman 
Everything = I Am 

Right Brain Left Brain 
Prajna Vijnana 

Sarori 
Interface Enlightenment 

We have come to the end of this book. In the table above, I have laid 
out the things I want to say. What we have here is basically a Pytha
gorean-style table of opposites. As the heading indicates, the general 
distinction between the left and right entries is similar to the distinction 
between the One and the Many. There are various kinds of ways of op
posing the One and the Many, and these various ways are grouped to
gether by the horizontal dividing lines. At the very bottom, running 
from one side to the other, is the phrase "Interface Enlightenment." 
This is the point we want to reach. But first let us work our way down 
the table. The "One/Many in Logic and Set Theory" section discusses 
the upper half of the table. "Mysticism and Rationality" explores the 
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little box under Mysticism. And "Satori" gives a description of satori as 
the "j" in the One/Many problem. 

ONE/MANY IN LOGIC AND SET THEORY 

As has been mentioned several times, a mathematical Platonist is 
someone who believes in the objective, external existence of infinite 
sets, whereas a mathematical formalist believes that all we really have is 
various finite descriptions of mathematical theories. Intuitionism is 
sometimes presented as a synthesis between these views, but this is not 
really the case. As far as their views of infinity go, the intuitionist and 
the formalist are on much the same side, believing only in potential in
finities (as opposed to actual infinities). 

I have put the actual infinite on the One side of the table. For to look 
at a set such as N (the set of all natural numbers) as a single definite 
object is to think of an actually infinite set. And, on the other hand, to 
regard N as an ungraspable Many is to treat N as a potentially infinite, 
never-to-be-completed set. 

In the next grouping, truth, thoughts, semantics, and minds are 
paired up against provability, words, syntax, and machines. The distinc
tion between truth and provability is what is stressed by Godel's In
completeness Theorem. If we have correct axioms, then the provable 
statements will all be true, but not all the true statements will be 
provable. We cannot dispense with provability in favor of truth because 
we have no finite definition of what "truth" means. Truth is a kind of 
Absolute, a single guiding notion that directs our many different 
choices of axioms. Truth is the One that the Many types of provability 
try to approximate. 

Moving to the next line, let me point out that truth is a type of 
thought that cannot be fully expressed by words. We all know what it is 
to think, but there is no way to explain exactly how we do it. As we saw 
in various ways in Chapter 3, there is no' finite way to describe exactly 
how thoughts are turned into words and vice versa. If we think of the 
totality of human intellectual experience as a unity, then the various at
tempts to describe it in words make up a multitude of partial approxi
mations. 

Logicians often discuss this kind of distinction as a distinction be
tween semantics and syntax. If we regard language as a system of sym
bols describing a fixed reality, then we have a semantic view of lan
guage. If, on the other hand, we regard language as a game played 
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according to certain rules, then we have a syntactic view of language. 
Given a mathematical sentence S, the question "is S true in the mathe
matical universes we have in mind?" is a semantic question; and the 
question "is S provable from the axiom systems we use?" is a syntactic 
question. These two types of question are studied in the subbranches of 
logic called, respectively, Model Theory and Proof Theory. 

In the initial stages of research, mathematicians do not seem to func
tion like theorem-proving machines. Instead, they use some sort of 
mathematical intuition to "see" the universe of mathematics and deter
mine by a sort of empirical process what is true. This alone is not 
enough, of course. Once one has discovered a mathematical truth, one 
tries to find a proof for it. In the later stages of research one does try to 
behave like a machine in writing up a definite program or proof for 
deriving the desired truth. 

The fact that I am putting minds on one side and machines on the 
other does not mean that I am "for" the concepts on the left and 
"against" the concepts on the right. I see, in each case, both sides as 
valid and essential. The only kind of thinking I am really opposed to is 
that which would say only the One or only the Many is real. In making 
the mind-machine distinction I want to bring out my belief that there is 
more to consciousness than the simple working out of some biochemi
cal program of the brain. Or, to put the same point a bit differently, I 
want to say that we can think both mystically and rationally. The pair 
"mysticism-rationality" is discussed below, but I might remark here that 
I have put mysticism and mind on the One side because I regard the 
characteristic feature of the mystically conscious mind to be its ability to 
experience itself directly as part of a unified Absolute. 

The nameable reals-random reals pair characterizes a somewhat dif
ferent aspect of the One/Many relationship. A random real number is 
an infinite sequence of digits with no unifying rule for writing it out. So 
in this sense, it is a Many, which is not a One like some nameable real 
whose decimal expansion obeys a single definite rule. 

Of course, if we took some definite unnameable real number T (say, 
for instance, that T codes up truth), it could be argued that T, as know
able through higher intuition, is a One, and that it is the various inade
quate names for T that make up the Many. This only shows that some 
distinctions can be cast into One/Many form in various ways. 

Some of the same ambiguity is present in the set-proper class line. 
Certainly a set is a unity, a One; and a proper class is a Many that cannot 
be thought of as a One. Yet on a higher level, we could say that a single 
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proper class (like On, the class of all ordinals), is a One that is approxi
mated by Many different sets. 

n 

v 

Figure 80. 

The next group, O-V and ~l-C, brings out a still higher-order One/ 
Many distinction. If we treat the class of all ordinals as the single Abso
lutely Infinite "number" 0, then we can ask about the relation between 
o and the much wider class V of all sets. In terms of vertical growth, 0 
and V are as long as possible. But there is a view of set theory that re
gards the sets as arising from a horizontal process of growth out from 
the spine of ordinals. If horizontal growth is kept to a minimum, one gets 
Godel's universe L of "constructible sets." But it is generally believed 
that the universe is very much wider than L. (See Excursion I). 

o is a One in the sense of being a form of a simple concept (Infinity), 
while V is a Many in the sense of being the form of a complex concept 
(All Sets). 

If we restrict our attention to countable sets, then the O-V pair turns 
into the ~l-C pair of Cantor's Continuum Problem. The reason is that 
there are exactly c countable sets, and exactly ~1 countable levels of in
finity. In a way, Cantor's Continuum Problem is a type of One/Many 
question. 

MYSTICISM AND RATIONALITY 

Mysticism is an extreme form of monism. The central teaching of 
mysticism is simplicity itself: All is One. The essence of the mystic tradi-
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tion is not really any special philosophical system, but, rather, the direct 
and immediate apprehensio!J. of one's personal identity with God. 

It should be kept in mind that "mysticism" does have a precise mean
ing as a certain strand of thought, or type of behavior, that has been 
present through the millenia in both Eastern and Western cultures. 
Mysticism is not to be confused with occultism, which has to do with 
strange rites, secret formulas, and so on. Mysticism has no direct rela
tionship with astrology, devil worship, fortune-telling, drug abuse, 
health food, or ESP. Mysticism is just the simple awareness of the direct 
identity of the individual soul and the Absolute. 

The characteristic feature of mysticism is the breaking down of dis
tinctions. Obviously, this is not an unqualified good. If I can't tell my 
hand from my sandwich, then I may bite myself. Opposed to the human 
tendency towards mysticism we have rationality. Too much rationality 
quickly becomes inane and boring. What is needed is some kind of 
bridge between the two. This will be discussed in the next subsection. 

But first I would like to give the reader two examples of mystical 
thought. The first is related to a distinction Rudolf Otto makes in his 
book, Mysticism East and West. l5 Otto describes two different types of 
meditation that people practice in order to feel united with the Abso
lute: the Inward Way and the Way of Unity. These two ways corre
spond, respectively, to moving towards a consciousness of Nothing and 
Everything, of 0 and 00. 

The Inward Way involves trying to stop thinking thoughts, stop having 
emotions, stop muddying the mental waters. One strives toward the Void 
that underlies all things. A formula used by the Indians for this activity 
is "Neti, neti," meaning "Not that, not that." One tries to stop thinking, 
to stop thinking about stopping, to stop thinking about thinking about 
stopping, and so on. Sometimes it works. The Way of Unity involves 
trying to include more and more of the world in one's field of con
sciousness. One strives toward a sympathetic union with Everything. 
This activity could be characterized b)' the phrase, "And that too." 

The metamystical thought I want to describe here is this: The Way of 
Unity and the Inward Way have the same goal. Nothing is the same as 
Everything. 

Consider a geometrical analogy. Think of normal consciousness as a 
circle with radius 1. The Inward Way involves continually shrinking the 
field of consciousness-say by endlessly halving it. The Way of Unity 
involves repeatedly expanding the field of consciousness-say by dou
bling. If we consider "inverting the plane in the unit circle," which is to 
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Figure 81. 

say, pairing up each point (x,y) with (l/x, lIy), we can see that for each 
halving step inward there is a corresponding doubling step outward. 
What if we regard 0 and (Xl as being the same place? This could be ac
complished, for instance, by first shrinking the plane to the inside of a 
circle and by then bending the circle into the shape of a torus, as in 
"Temporal Infinities." 

Identifying the Inward Way with the Way of Unity is an example of 
the way mysticism breaks down distinctions. In Spacetime Donuts I de
scribe a person who experiences this: 

One evening after a good day's work, Vernor went out into the garden 
behind the Library. There was a large tree there, and he was able to climb 
to its fork, some five meters up, by clinging to the grooves in the tree's 
bark and inching upwards. Once he was up in the first fork it was easy to 
move up the fatter of the two branches to a comfortable perch some fif
teen meters above the ground. He was barefoot and felt perfectly secure. 

A fine rain was falling, so fine that it had not yet penetrated the tree's 
leaves. Set back from the City like this, in his leafy perch in the library 
garden, it was possible to listen to the incoming honks, roars and clanks 
as a single sound, the sound of the City. 

He noticed a hole in the branch some two meters above his head, and 
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inched up, hugging the thick, smooth branch. It was a bee-hive in there 
-a wild musky odor came out of the hole along with a steady, highly 
articulated ·Z'. A few bees walked around the lip of the hole, patrolling, 
but they were unalarmed by Vernor's arrival. He felt sure that they could 
feel his good vibes. 

A soft breeze blew the misty rain in on him, and he slid back down to 
the crotch he had been resting in. Closing his eyes, he began working on 
his head. There seem to be two ways in which to reach an experience of 
enlightenment-one can either expand one's consciousness to include 
Everything, or annihilate it so as to experience Nothing. 

Vernor tried to do both at once. 
On the one hand, he moved towards Everything by letting his feeling 

of spatial immediacy expand from his head to include his whole body, 
then the tree branch and the bees, then the garden, the city and the night 
sky. He expanded his time awareness as well, to include the paths of the 
rain drops, his last few thoughts, his childhood, the tree's growth, and the 
turning of the galaxy. 

On the other hand, he was also moving towards Nothing by ceasing to 
identify himself with anyone part of space at all. He contracted his time 
awareness towards Nothing by letting go of more and more of his indi
vidual thoughts and sensations, constantly diminishing his mental busy
ness. 
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The overall image he had of this activity was of two spheres, one ex
panding outwards towards infinity, and the other contracting in towards 
zero. The large one grew by continually doubling its size, the smaller 
shrank by repeatedly halving its size . . . and they seemed to be end
lessly drawing apart. But with a sudden feeling of freedom and air Ver
nor had the conviction that the two spheres were on a direct collision 
course-that somehow the sphere expanding outwards and the sphere 
contracting inwards would meet and merge at some attainable point 
where Zero was Infinity, where Nothing was Everything}6 

So, the Void and Everything can perhaps, in a momentary way, be 
experienced as the same. Of course, a thoroughly rational person could 
dismiss Vernor's experience as wishful thinking or a type of hallucina
tion. I do not wish to dismiss it, yet I do not want to claim that it is 
absolutely true. I just want to make clear what mystical thought in
volves. 

Let us look at a second example, again an instance of the mystical ten
dency to break down distinctions. In a long essay called "What is Life," 
the great physicist Erwin Schrodinger comes up with the following ar
gument: Given that i) my body functions as a pure mechanism accord
ing to laws of nature, and that ii) I know by direct experience that I am 
directing the motions of my body, it follows that iii) I am the one who 
directs the atoms of the world in their motions. Schrodinger remarks, 
". . . it is daring to give to this conclusion the simple wording that it 
requires. In Christian terminology to say: 'Hence I am God Almighty' 
sounds both blasphemous and lunatic."17 

But Schrodinger defends this conclusion, pointing out that it is 
just an example of the equation fundamental to the Upanishads: 
Atman = Brahman. "Atman" (which is related to the German word 
atmen, to breathe) is the Sanskrit word for the individual soul. In the 
sense described in "Robot Consciousness," an individual's Atman is his 
sense of "I Am." "Brahman" is a word meaning something like our "Ab
solute," the eternal, all-pervading "is-ness" of the world. 

Along the same lines, consider the famous Old Testament passage 
(Exodus 3, 13-14): 

"Then Moses said to God, 'If I come to the people of Israel and say to 
them, "The God of your fathers has sent me to you," and they ask me, 
"What is his name?" what shall 1 say to them?' God said to Moses, 'I AM 
WHO I AM.' And he said, 'Say this to the people of Israel, "I AM has 
sent me to you." , " 

What is God's name? "I AM." 
These mystical ideas are certainly true on one level. Yet on another 
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level, on the rational level, they are not true at all. I am not God. I am 
an insignificant mortal living out my allotted span. How can both things 
be true? How can I be the One, the I AM, the Absolute ... and yet be 
only a face in the crowd, a single individual among Many others? 

SATORI 

No one has written more eloquently on Zen than D. T. Suzuki. I 
would like to begin this section by describing what he says in his essay, 
"The Meaning of Satori."18 
Suzuki distinguishes between two ways of knowing the world. Prajna is 
intuitive, immediate knowledge of the world-what we might call a 
mystical grasping of the world in its unity. A characteristic feature of 
pranja knowledge is that it avoids distinguishing between the knower 
and the known, the subject and object. Prajna knowledge is not taught, 
it is communicated. 

Vijnana is discursive, analytical knowledge of the world-what we 
call rational thought. V ijnana knowledge stands apart from the thing 
known, a subject examining an external object. Vijnana knowledge can 
be written down and learned. Suzuki says something that is very rele
vant: 

Vijnana can never reach infinity. When we write the numbers 1,2,3, 
etc., we never come to an end, for the series goes on in infinity. By add
ing together all those individual numbers we try to reach the total of the 
numbers, but as numbers are endless this totality can never be reached. 
Prajna on the other hand, intuits the whole totality instead of moving 
through 1,2,3, to infinity; it grasps things as a whole. It does not appeal 
to discrimination, it grasps reality from inside, as it were. 19 

The point is not that mystical, unitive,prajna-type knowledge is pref
erable. Both types of knowledge are real, and both are important. But it 
is very hard-perhaps impossible-for us to see the world in both ways at 
once. At any instant we see the world either as One or as Many. 

Moving from Many to One tends to be a gradual process, the result of 
some kind of deliberate calming of the mind. But the passage from One 
to Many is usually sudden. At a given instant you may be sunk into a 
complete unity with the world. And then an instant later you are talking 
about your experience, standing outside yourself, making distinctions. 
The difficult thing is to catch the instant when you are still between One 
and Many, what I earlier called the "j" in the One/Many problem. Ac
cording to Suzuki this instant is the ft.eeting enlightenment that Zen 
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calls satori. "The oneness dividing itself into subject-object and yet re
taining its oneness at the very moment that there is the awakening of a 
consciousness-this is satori."20 

This sort of satori is fleeting, but not rare. One could almost say that 
the natural rhythm of thought is a oscillation between One and Many. 
As you look around the room there are constant microlapses of atten
tion. You reach out and merge with the world, then draw back and ana
lyze. At one instant there is only is-ness, at the next there is a person 
cataloging his perceptions. One-Many-One-Many ... at a rate of, say, 
three cycles per second. 

Many 

I ~ I \ls Time • 

One 

Figure 83. 

We could draw a picture something like Figure 83, indicating a per
son who repeatedly sinks down into blissful union with the One, only, 
each time, to snap back to ordinary rational consciousness. The points 
labelled "S" might be the satori points. 

There is a sense in which waking up each morning is a satori. On a 
good day (no alarms, no clock to punch) you float up from sleep into an 
idle state of is-ness, not even thinking who or where you are. But this is 
too good to last ... whisk clickety-click, and you're planning your 
day. Is it possible to notice the moment of switch over? 

I am thinking of satori as "interface enlightenment." The interface 

s 

Figure 84. 
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need not really be between One and Many-it could be between al
most any A and not-A. As·a rule it is not possible to think both A and 
not-A. But we do change our minds. We move among a great variety of 
incompatible mental states. These moves occur suddenly, like abrupt 
jumps. Sometimes, as we jump, we think to glance down and see, with
out prejudice, A and not-A as two different regions of the same Mind
scape. 

Benjamin Paul Blood 
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Benjamin Blood wrote at some length about this type of experi
ence.21 He would equip himself with a handkerchief soaked in ether, 
hold it to his face, sink into unconsciousness, and then, as his nerveless 
hand fell away, he would wake back up. The experience of moving 
abruptly from artificial trance to normal awareness struck him as cen
tral, and he wrote something very interesting about it: 

I think most persons who shall have tested it will accept this as the 
central point of the illumination: [i] that sanity is not the basic quality of 
intelligence, but is a mere condition which is variable, and like the hum
ing of a wheel, goes up or down the musical gamut according to a physical 
activity; [ii] and that only in sanity is formal or contrasting thought, while 
the naked life is realized only outside of sanity altogether; [iii] and it is 
the instant contrast of this 'tasteless water of souls' with formal thought as 
we "come to," that leaves in the patient an astonishment that the awful 
mystery of Life is at last but a homely and a common thing, and that aside 
from mere formality the majestic and the absurd are of equal dignity.22 

Up until now I have been describing the interface between One and 
Many as something that one moves back and forth through in time. This 
is a bit misleading. In Suzuki's words, "Satari is no particular experience 
like other experiences of our daily life. Particular experiences are expe
riences of particular events while the satari experience is the one that 
runs through all experiences. "23 The One and the Many run about to
gether in and out of every word ever uttered. 

On the one hand you have pure undifferentiated reality, the God 
within you; and on the other hand you have your hand, as distinct from 
a foot, or a carrot. The world is both One and Many at once. I do not 
want to say that they are the same, and I do not want to say that they are 
different . . . for to assert either position begins an endless argument. 

1 = 2 
(1 = 2) = (l ~ 2) 

«(1 = 2) = (l ~ 2») = «(1 = 2 ~ (1 ~ 2)) 
• 

• • 

s 

2 
1 f 2 
(1 = 2) ~ (1 ~ 2) 
«(1 = 2) = (1 ~ 2)) ~ «(1 = 2) ~ (1 ~ 2 

• 
• 
• 

The argument can be illustrated as follows. Imagine a mystically 
thinking person who says "the One and the Many are really the same," 
and a rationally thinking person who says "the One and the Many are 
essentially different." We represent the first position by the number 1 
(for only one thing) and the second by the number 2 (for two different 
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things). Now, the mystic can tell the rationalist, "Ah, but don't you see, 
our two positions are really the same." 1 = 2. The rationalist replies, 
"They are not the same. The fact that we disagree proves that there are 
differences." 1 "I- 2. "Bur," counters the mystic, "arguing that things are 
one and arguing that they are many are really different aspects of the 
same one mind." (1 = 2) = (1 "I- 2). "Au contra ire, my dear friend," 
says the rationalist. (1 = 2) "I- (1 = 2). And so on. Better not to start, 
better to stay silent at S! But silence does get boring. 

In the language of quantum mechanics we might speak of the One 
and the Many as complementary, mutually exclusive aspects of reality. 

"In fact, here again we are not dealing with contradictory, but with com
plementary pictures of the phenomena, which only together offer a natu
ral generalization of the classical mode of description. . . . Complemen
tarity bears a deep-going analogy to the general difficulty in the 
formation of human ideas, inherent in the distinction between subject 
and object."24 

The world is One and the world is Many. The One/Many split is the 
heartbeat of the universe, the charged tension that makes things hap
pen. 

What does all this have to do with the preceding discussions of logic 
and set theory? There are two key points to be made, both having to do 
with the symbiotic relationship between modern exact philosophy and 
the more traditional view of philosophy as a search for ultimate truth. 

First, it is important to realize that such traditional questions as "Can 
we know the Absolute?," "Is Reality One or Many?," or "What is 
Truth?" are real questions that can be investigated in an exact way. An 
unfortunate effect of the early logical positivism was that for many years 
professional philosophers tended to dismiss the ultimate metaphysical 
questions as woolly at best and meaningless at worst. I hope the many 
examples I have given of precise metamathematical instances of the "big 
questions" will convince even the most skeptical that these questions, 
far from being meaningless, can lead to good and exciting mathematical 
philosophy of the highest order. 

Second, I believe that traditional metasolutions of the big questions 
in terms of mysticism, enlightenment, and so on, can be of value to the 
thinker who is faced with one or another of the antinomies that crop up 
in modern logic and set theory. Only someone who can feel what the 
solution to a problem might be like is in a position to develop the lan
guage to describe a further step in the right direction. 
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1. A Platonic form is sometimes viewed as the One underlying thing that its 
Many instances have in common. In Parmenides (132), Plato points out how 
this can lead to an infinite regress.25 All large things have something in com
mon, let us say their participation in the form Largeness. But now any large 
thing has something in common with the form Largeness, let us say their 
mutual participation in. . . . Complete the argument, and compare this to 
the way in which the forming of a collection of sets into a definite unity 
intended to be the universe of set theory leads, not to the full universe, but 
only to another set. 

2. There is a sort of One/Many problem in physics. If the universe exists as a 
sequence of distinct "nows," then space-time is Many. But if we assert that 
the passage of time is an illusion, then we have space-time as a One. But 
what if there are many parallel space-times? Is there any way to view these 
parallel worlds as a One, as aspects of a higher superspace? Could there be 
Many superspaces? 

3. Von Neumann suggested representing ordinal numbers as sets in the fol
lowing way. Each ordinal a is to be identified with a set a' = {b':b is an 
ordinal less than a}. Thus, for instance, 3 is represented as 3' =: {O', 1', 2'}. 
In terms of pure sets, 0' is n, and I' = {O'} = {{}}. Write out 3' and 4' as 
pure sets. 

4. Set theorists usually represent the ordered pair <a, b> of sets a and b ~s 
the set {{a}, {a, b n. If a and b are in V n, then what is the first m that has 
<a, b> in it? A rational numberq is customarily represented as the set of all 
the ordered pairs <m', n'>, where m and n are in ratioq to each other. Thus 
~ is represented as the set{<2', 3'>, <4', 6'>, <6',9'>, ... }. In which 
Va are the "rational numbers" first found? A real numberr is commonly rep
resented as the ordered pair of sets <U, L>, with U equal to the set of all 
(representations of) rational numbers less than or equal to r, and L equal to 
the set of all "rational numbers" greater than r. In what Va will these sets be 
found? 

5. Many Zen stories deal with the difficulty of expressing a position that is 
somehow neither A nor not-A. How would you answer the master in this 
story: "Shuzan held out his short staff and said, 'If you call this a short staff, 
you oppose its reality. If you do not call it a short staff, you ignore the fact. 
Now what do you wish to call this?' "26 



Georg Cantor 



EXCURSION I 

THE TRANSFINITE 
CARDINALS 

In this excursion into mathematics we make a detailed tour of the 
transfinite cardinals. The first section describes the way in which one 
argues from (i) the existence of the Absolute Infinite, and (ii) the Re
flection Principle, to get (iii) the existence of the infinite numbers we 
need. The second section describes exactly how one works with these 
infinite numbers. 

In the "Continuum" section we examine a number of sets having the 
cardinality c of the set of points on a mathematical line; then we discuss 
the difficult question of where c lies in the hierarchy of alefs. 

The "Large Cardinals" section attempts something new: a popular ac
count of the modern theory of very large infinite numbers. 

ON AND ALEF-ONE 

I mentioned in "From Pythagorean ism to Cantorism" and in Chapter 
5 that it is possible to represent all mathematical objects as sets. How 
are we to represent ordinals as sets? 

The solution is simple, yet subtle. The ordinal a is identified with the 
set {b: b < a} of all ordinals less than a. Thus ° = {b: b < o} = <p, 1 = {b: 
b < 1} = {a} = {0}, 2 = {a, 1} = {<p, {<PH, 3 = {a, 1, 2} = {<p, {<p}, 
{<p, {<pm, w = {a, 1,2, ... }, w + 1 = {a, 1, 2, ... w}, w + w = 
{a, 1, 2, ... w, w + 1, w + 2, ... }, and w2 = {a, 1, 2, ... w, 
w + 1, ... w'2, w·2 + 1, ... w-3, ... }. 



222 INFINITY AND THE MIND 

This is remInISCent of the process depicted in Figure 32, where 
Whee lie Willie actually makes it out to level w. Note that the use of 
vanishing points makes it possible to fit an infinite thought balloon into 
a finite frame. If Wheelie Willie were to think back on all the thoughts 
he had during that one breath, he would be at level w + 1. 

Viewing an ordinal as identical with the set of all smaller ordinals 
makes many things more convenient. Given that b < a + 1 if and only 
if (b < a or b = a), we can see that if a has the form {O, 1 
... w, ... s, ... }, then a + 1 is {O, 1, ... w, ... s, ... a}. In 
other words, a + 1 = a U {a}. 

If a = lim(an), then b < a iff b is less than one of the an's. (The for
ward implication follows since a is the least ordinal greater than all the 
an; and the reverse implication holds since a is greater than all the an.) 
Therefore, a = {b: b < a} = {b: b < an for some n} = {b: b < ao} U 
{b: b < at} U {b: b < a2} U ... = ao U at U a2 U ... = lJnan. That 
is, lim(an) is obtained just by taking the union of all the sets an. 

The set lim an 

The set a. 

Figure 85. 

This method can be applied to any set A of ordinals, regardless of 
whether or not this set can be arranged into a natural-number-indexed 
increasing sequence. In view of this fact, we introduce a new symbol sup 
A, which stands for the first ordinal greater than every member of A. If 
A has a greatest member, then sup A is simply that member plus one; 
otherwise, sup A is the union of all the ordinals lying in A. 

As in "The Alefs," two sets Sand T are said to have the same cardinal 
number if and only if a one-to-one correspondence can be set up be-
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~ee!!. the members of S and the members of T. This relation is written 
S = T. One way of thinking of it is to say that Sand T have the same 
cardinality if we can turn S into T just by altering the members of S one 
at a time. 

It turns out that cardinality is a genuinely significant concept, since, 
on the one hand, not all infinite sets have the same cardinality; and, on 
the other hand, lots of apparently very different infinite sets do have the 
same cardinality. For example, wand w'2 are quite different ordinals. 
But, as mentioned in "The Alefs," they have the same cardinality. That 
is, w = w + w. 

In general, we say that a set S is countable iff its cardinality is no 
greater than the cardinality of w. That is, S is countable if S is empty, Sis 
finite, or S = w. ("Iff," by the way, is the logicians' abbreviation for "if 
and only if." The import of "P iff Q" is that P and Q are logically equiva
lent. "Iff" is, thus, a sort of equals sign.) 

One of the things I would like to do in this section is to justify the 
existence of the ordinal ~1' which is not countable. 

In "From Omega to Epsilon-Zero," we used two principles of ordinal 
generation: I) Given any ordinal a, there is a least ordinal greater than a, 
called a + 1; and II) Given any increasing sequence an of ordinals, 
there is a least ordinal greater than all the an, called lim(an). 

There is an important fact about ordinals hidden away in principle I. 
This is the fact that no ordinal is less than itself. For if we had some ordi
nal a such that a < a, then there could be no least ordinal greater than 
a. The reason is that if a < a, then whenever we have b with a < b, we 
can form the inequality a < a < b to demonstrate that there is an ordi
nal between a and b . . . so that b is not the least ordinal greater than a. 

Now principles I and II can be combined to form the following 
strong principle III: For every set A of ordinals, there is a least ordinal 
greater than every member of A, called sup A. Principle III is not really 
meaningful unless we have specified what sorts of sets A of ordinals 
exist. The basic principle of set existence" is that a collection will be a set 
unless this is for some reason impossible. 

As is mentioned in Chapter 5, Russell's collection R = {x: x e x} of 
all sets that are not members of themselves cannot be a set, for if R is a 
set, then we have the contradiction R E R if and only if R e R. Again, 
if we make the customary assumption that no set x is an element of it
self, then the collection V of all sets is not a set. For if it were, then V 
would be a set such that V E V. 

Let On be the collection of all ordinals. If On is a set, then by III there 
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is an ordinal n = sup On. But this is impossible, for if n is an ordinal, 
then n is an element of the collection On of all ordinals, implying that 
n < sup On = n. But, as was shown above, it is a basic property of or
dinals that no ordinal can be less then itself. 

Thus, the assumption that On is a set leads to the contradiction that 
the ordinal n is less than itself, where n = sup On. This fact was discov
ered by Cesare Burali-Forti in 1897, and earlier by Cantor. Neverthe
less, we do have have some kind of concept of all the ordinals, and we 
sometmes use the symbol On to stand for this concept taken as a multi
plicity, and the symbol n to stand for this concept taken as a unity. 
Note that On = {a: a < n}, so that under the identification introduced 
above On and n seem to be the same. 

What is n? n is what people are talking about when they speak of 
infinity in the sense of something subject to no limitation of any kind. n 
is Absolute Infinity. Absolutes are by their very nature not rationally or 
objectively knowable in full. An Absolute can be fully known only by 
entering into it as subject, and to identify your subject (self) with the 
Absolute is to give up your sense of personal identity. You have to take 
off your shoes before entering the temple. 

A set is a form or thought that can be known in an objective way, that 
can be mentally handled and investigated without abandoning one's role 
of observer. Principle III is actually a Reflection Principle, a way of ex
pressing the transcendence of the Absolutely Infinite collection On. For 
III says that no set of ordinals A reaches all the way out to n. III says 
that given any set A of orqinals, we can always find some ordinal (which, 
as ordinal, is less than n) bigger than every member of A. For any set A 
of ordinals there is an ordinal sup A, between A and the unattainable n. 

If only Principle I is used, then one gets just w, the collection of finite 
ordinals, also known as the first number class. The second number class is 
the collection of all the additional ordinals that can be obtained by re
peatedly using principles I and II, where principle II is applied only to 
countable sequences {an}. Given that the limit of a countable sequence 
of countable ordinals is countable (which will be proved in the next sec
tion), we can see that the second number class is just {a: a = w}, the 
collection of all countable infinite ordinals. 

Now, unless we expressly assume that every set and every ordinal is 
countable, there is no reason why the second number class should not 
be a set. Granted that it is very difficult to imagine larger and larger 
countable ordinals (recall how much trouble we had even with Eo). But, 
on the other hand, the idea of an arbitrary ordinal that can be reached 
by repeated applications of principles I and II is pretty clear. 
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There are actually some people who insist that every set is count
able ... this is characteristic of Brouwer, for instance. 1 But if we are 
quite objective about sets and assume that a set is a form that exists re
gardless of any human ability to grasp it, then it seems that there is really 
no reason why the second number class should not be a set. The situa
tion here is to be contrasted with the collection On of all sets that are 
ordinals. The assumption that the second number class is a set seems 
harmless, but the assumption that On is a set leads directly to contradic
tion. 

So, accepting the belief that the second number class is a set, we must 
conclude that the second number class does not exhaust On, for no set 
can exhaust the Absolute. That is, we can find an ordinal ~1 = sup (sec
ond number class) that lies between n and all of the countable ordinals. 
As a set, ~1 = {D, 1, ... w, ... w·2, ... w2 , ••• wW, ... eo, 
... a, ... }, where the last " ... " is the biggie. ~1 does not lie in the 
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second number class (since if it did, it would be less than itself), and it is 
not countable, (since if we had ~1 = {ao, aI, a2, ... }, we would have 
~1 = sup {ao, aI, a2, ... } implying that ~l is in the second number 
class, which is a contradiction). 

~1 lies beyond any countable sum of ordinals less than itself. We can 
only reach ~1 by adding together ~l ordinals (ones would do). So there 
is a .certain sense in which ~l cannot be reached from below. In general, 
an ordinal a that cannot be represented as the sum of less than a ordi
nals less than a is called regular, and we will see more of the regular ordi
nals in the "Large Cardinals" section below. For now it is interesting to 
note that of all the ordinals up to ~1' only 0, 1,2, cu, and ~l are regular. 

o is regular since it is not the sum of less than zero ordinals less than 
zero (which doesn't even make sense). 1 is not the sum of no ordinals 
less than one, since 1 cannot be obtained by adding no zeros together. 2 
is not the sum of less than 2 ordinals less than 2, since 2 cannot be ob
tained either by adding up one 0 or by adding up one 1. No successor 
ordinal a + 1 that is greater than 2 is regular, for any such a + 1 is the 
sum of two (which is assumed to be less than a + 1) ordinals less than 
a + 1 (that is, the ordinals a and 1.) cu is regular since it can never be 
obtained by adding together finitely many finite numbers. And, finally, 
~1 is regular since to add together less than ~1 ordinals less than ~l is to 
add together countably many countable ordinals, which always just 
gives another countable ordinal less than ~l (as will be proved in the 
next section). 

So, the fact that Xl is regular certainly makes it hard to grasp, but 
there is a sense in which it is no worse, really than 2. If all you know of 
is 1, then all you can imagine is one 1 . . . and you cannot see how to 
get to 2. If all you know of is finite numbers, then all you can imagine is 
finite sets of finite numbers added together ... and you cannot see 
how to get to cu. Finally, if all you know is countable ordinals, then all 
you can imagine is countable limits of countable ordinals . . . and you 
cannot see how to get to Xl' 

CARDINALITY 

Two_setsJ: and T are said to have the same cardinal number (abbre
viated S = T) iff there i~ a one-to-one function that maps the set S onto the 
set T. We can think of S = T as meaning that one can turn S into T by 
changing the appearance and arrangement of the elements of S, but 
without destr~ing, merging, creating, or splitting elements. 

We define S s T to mean that there is a one-to-one function map-
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Eing..!!te set S into (bur not necessarily onto) the set T. We can think of 
S :s T as meaning that S can be turned into a portion of T, or, alterna
tively, that there is a copy of S contained in T. 

If wt:.. were talkiJ.}S on.!y abouL finite sets, it would go without saying 
that if S :s T and T :s S, then S = T. But it is dangerous to jump to 
conclusions about infinite sets, for they often have very unexpected and 
counterintuitive properties. As it turns out, it is possible to prove that 
for every two setsS and T, ifS :s T and T :s S, then! = T. This proof is 
the content of what is usually called the Schroder-Bernstein Theorem, 
and it goes like this. 

o ® of 
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Figure 88 (A-C). 
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Say thatf is a one-to-one function taking S onto a copy of S inside T, 
and that g is a one-to-one function taking T onto a copy of T inside S. 
What we need is to find a one-to-one function h that will take S onto all 
ofT. 

By usingf and g to bounce back and forth between Sand T indefi
nitely, we can build up an infinitely nested sequence of copies inside 
each of the sets, as pictured in Figure 89. 

h --

Figure 89. 

Now, let h be the function that pairs up the numbered regions as in
dicated in the picture. That is, h(x) is equal to f(x) on the odd-num
bered regions, and on the even-numbered regions we take h(x) to be 
the unique y such that g(y) = x. There may be a region of S and of T 
that is not in any of the numbered regions. It is possible to show thatf 
will pair up these two extra regions (pictured as black triangles above) in 
a one-to-one "onto" way. So, putting all this together, we get a one-to-
one map h from] onto T.2 _ _ 

The relation S < T is defined to be the conjunction S :::;; T and 
S f:. T. That is, S < T holds if there is a one-to-one map from S into T, 
but no map from S onto T. 

The theory of transfinite cardinal numbers would not be interesting 
unless we had infinite sets of differing cardinalities. What I would like 
to discuss next is a systematic process for obtaining larger and larger 
cardinal numbers. But first it is necessary to decide just what a cardinal 
number is. 
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N orice that the isolated cardinal number S is not initially defined. In
stead, one starts with describing the circumstances under which car4inal 
numbers are equal to or less than each other. The cardinal number S is a 
doubly abstract entity arrived at b"y ignoring the appearance and the ar
rangement of the elements of S. S is a pure form with no content. 

It is hard to form the proper sort of image of such an abstract con
cept, since we are in the habit of imagining forms by imposing them on 
particular contents. But this habit can be broken. Just as we can imagine 
the concept "man" without thinking of any particular man, we can imag
ine the concept "three" without thinking of any particular set of three 
elements. 

It is, however, convenient to have ~ uniform way of finding a concrete 
representation of a cardinal number S, and we are usually rather casual 
about the distinction between the abstract concept =s and its standard set 
representation. _ _ 

The standard representation ofS is the least ordinal a such that S = a. 
That is, the cardinal number S is identified with the least ordinal a such 
that there is a one-to-one correspondence betweeg S and a (viewed as 
the set {b: b < a} of all ordinals less than a). Again, S is the smallest ordi
nal a such that S can be listed as a sequence of elements of order type a. 
(The question of whether or not there is such an ordinal a for any given 
set S will be taken up below.) 

The cardinal number N is commonly called Xo. Note that under the 
identification just introduced, Xo = w; note also that since we identify 
an ordinal with the set of its predecessors, w = N. Strictly speaking 
w = Nand Xo = N; for w is obtained from the natural numbers in their 
natural order by thinking only of their abstract arrangement, and Xo is 
obtained from the natural numbers by thinking only of their abstract 
numerousness. But once one understands this point, one does not want 
to stumble over it every second, and from now on N, w, and Xo will be 
treated as synonyms with different shades of meaning. 

We add, multiply, and exponentiate cardinal numbers by rules quite 
different from the rules for adding, multiplying, and exponentiating or
dinal numbers (although, of course, the rules give the same results for 
finite numbers). If K and A are cardinal numbers, we calculate the cardi
nality K + A by finding two sets K and L such that K = K, L = A, 
and K and L have no elements in common; and then letting K + A = 
K U L. Recall that for ordinal numbers k and I the ordinal k + I was 
found by taking the order type of the ordering obtained by placing a 
copy of I after a copy of k. To see the difference between the two types 
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of addition, note that to evaluate 3 + 2 by cardinal addition you stick 
out three fingers of your left hand and two fingers of your right, and 
then find the smallest ordinal whose set of predecessors can be put into 
a one-to-one correspondence with the set of fingers you have out. To 
evaluate 3 + 2 by ordinal addition you count up to three and then 
count two numbers further. 

Although w + w f:. w, we do have Xo + Xo = Xo. (The understanding 
is that we use ordinal addition on the ordinal symbols and cardinal addi
tion on the cardinal symbols.) To see this last fact, let 0 be the set of all 
odd natural numbers, let E be the set of all even natural numbers, and 
let N be (as usual) the set of all natural numbers. Now, 0, E, and N all 
have the same 

0={1,3,5,7,9, 2k+ 1, .} 
t t t t t t 

N = {O, 1,2,3,4, k .} 
t t t t t t 

E = {O, 2, 4, 6, 8, ,2 k , .. .} 

cardinal number Xo, as is evident from the picture above. Since 0 and E 
~s of cardinality Xo that have no elements in common, Xo + Xo = 
lJtTE = N = Xo. 

The fact that an infinite set can have the same cardinality as a proper 
subset of itself, and that adding a transfinite cardinal to itself can give 
you the same number back are a little surprising. As I mentioned in 
Chapter 1, this aspect of infinite cardinalities so puzzled pre-Cantorian 
thinkers that they generally believed it was hopeless to attain a theory 
of infinite cardinalities much more sophisticated than: "All infinities are 
equal." 

The proof that Xo + Xo = Xo can be used on any infinite cardinal 
number 1(. Keep in mind that we are thinking of cardinal numbers as 
certain special sorts of ordinal numbers. In particular, if I( is an infinite 
cardinal, then it will be a limit (as opposed to successor) ordinal. This 
follows since i) if I( is a cardinal number, thenK t X for any ordinal 
A < 1(; and ii) if a + 1 is an infinite ordinal, then a + 1 = 71. 

Ore = {1, 3, 5, 7, ... w + 1, W + 3, ... ,Eo + 1, Eo + 3, ... ,A. + 2k + 1, ... } 
iiii iii i i 

K = {O, 1,2,3, ... w, W + 1, ... ,Eo, Eo + 1, ... ,A. + k, ... } 
~~~~ ~ ~ ~! ! 

Ere = {O, 2,4,6, ... W, W + 2, ... , Eo, EO + 2, ... ,A. + 2k , ... } 

Now, we define an arbitrary ordinal to be even if it is a limit ordinal or 
if it is a limit ordinal plus some even natural number, and odd if it is a 
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limit ordinal plus some odd natural number. Letting OK and EK be the 
sets of all ordinals less than K that are, respectively, odd and even, we 
obtain K + K = OK U EK = K = K. 

Given any two cardinals K and A, if K is infinite and if A :::;; K, then K :::;; 

K + A :::;; K + K = K. But if K :::;; K + A, and K + A :::;; K, then we can use 
the Schroder-Bernstein Theorem to conclude that K + A = K, In other 
words, the addition of transfinite cardinals is extremely boring: K + A is 
just the larger of K and A, 

<0,0> <0,1> <0,2> ["O12l . 
<1,0> <1,1> <1,2> - ~ 2, 3 = 6, card mal style 

I '-_0_, _1, __ 0'_, _1_', __ 0_",_1_"...,j1_1 ..... 0 __ 1 _2 _3_4_5~ 2 . 3 = 6, 
ordinal style 

Cardinal multiplication is defined as follows, If K and A. are cardinals, 
we define K'A to be K X A., where K X A is the Cartesian cross product of 
K and A, which is the set {<u, v>: u E K & v E A} of all ordered pairs 
with first component from K and second component from A.. 

(0,0) (0,1) (0,2) 

(1,0) (1,1) (1,2) 

(2,0) (2,1) (2,2) 

(3,0) (3,1) (3,2) 

~ 

(0,3) E:1 
(1,3) 

(2,3) 

(3,3) 

B . . • 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

~l 
I 

• I 
• I 

• I __________________________ 1 

------------------------~ 

(A) (8) 

Figure 90 (A-B). 

The product XO'Xo equals Xo, as is demonstrated in Figure 90 by ex
hibiting a one-to-one correspondence between w x wand W, The idea 
is that if you just keep filling in pairs of numbers on the left, and filling 
numbers on the right, then you will just fill the two quarter-planes. The 
one-to-one correspondence is obtained by taking any given pair of 
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numbers on the left onto the number occupying the corresponding po
sition on the right. 

~'Ko=wxw=1+3+5+7+"'=~=Xo 
1 3 5 7 9 11 

w X W = {(O,O),(O,n,(1,O), 
(1,1), (0,2), (1,2), (2,0), (2,1), 
(2,2), (0,3), (1,3), (2,3), (3,0), 

(3,1),(3,2),(3,3), ... } 

o 
2 

4 

6 

8 

10 

12 

-f+ 
I 

it 
.... 

Figure 9l. 

-~ , 

If a and b are numbers, we let max (a, b) be the maximum of the two 
values a and b. For instance, max (1, 2) = 2, max (3, 3) = 3, max 
(w, 12) = w. We can also demonstrate w X w = W, by listing w X w as a 
sequence of length w. One way of doing this that is almost (but not 
quite) the same as the method illustrated in Figure 90 is to list <a, b> 
before <c, d> if i) max (a, b) < max (c, d); or ii) max (a, b) = max (c, d) 
and a <"c; or iii) max (a, b) = max Cc, d) and a = c and b < d. Under 
this ordering, we list w X w as indicated in Figure 91. 

This proof can be generalized to show that for any transfinite cardinal 
K, K'K = K. That is, if one arranges the members of K X K according to 

the ordering defined in the last paragraph, then one gets a sequence of 
order type K. A corollary of this result is that for any two infinite cardi
nals K and A, K'A = max (K, A). So the addition and the multiplication of 
transfinite cardinals are both boring. Now let us go back and establish 
one more property of the countable ordinals: The sum of countably 
many countable ordinals is countable. (This property was used in the 
last section.) 

A non-empty set M is said to be countable if M ::5: Xo. It is not hard to 
see that M is countable iff there is a function from w onto M listing all 
the members of M (possibly with repetitions in the case when M is fi
nite). 

Now to prove that the union of countably many countable sets 
is countable. Let UnAn mean Ao U At U Az U .... If for each nEw 
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Figure 92. 

we have a set An and a function In mapping cu onto An, then we can 
get a function g mapping cu onto UnAn by letting g(k) = la (b), where 
<a, b> is the kth pair in the listing of cu X cu Just given. Thus g lists 
U,.An as {fo(O),Io(1),h(O),j~(2),/l(2),h(O),h(1),h(2),1o(3), .... } 

The second number class, called (II) by Cantor, is the smallest collec
tion of ordinals having the following three properties: i) cu E (II); ii) if 
a E (II), then a + 1 E (II); and iii) if an E (II) for each n E cu, then 
U an E (II). Since 6J = Xo, Xo + 1 = Xo, and XO'Xo = Xo, it is evident 
that every member of (II) has cardinality Xo. 

"On and Alef-One" defined Xl = sup (II). Xl is the first uncountable 
cardinal. It is uncountable since if Xl were countable, then Xl would be 
the sup or lim or union of countably many members of (II), thus a mem
ber of (II), and thus less than itself, which is a contradiction. It is the 
first since every ordinal less than Xl is countable. 

Now, suppose that we set X2 = {a: (j :5 Xl}' Evidently, X2 is the first 
cardinal greater than Xl. For, on the one hand, Rl :5 X2 , since the iden
tity m~ maps Xl into X2 in a one-to-one fashion; on the other hand, 
R"; f. R;, since if the two were equal, then ~ would be an ordinal a such 
that a < a, and this cannot happen. So, Xl < X2 • Viewed as a set, we 
have X2 = {O, 1, 2, ... cu2 , ••• cuw , ••• Eo, ... Xl> .... Xl + cu, 
... Xl + Xl> ... Xll(" .... } (Note that here we are talking about 
ordinal addition, multiplication, and exponentiation. Thus, "Xl + Xl" 
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means the order type of the arrangement obtained by lining up two 
copies of Xl, one after the other.) 

One should keep in mind that we regard a cardinal number as a spe
cial sort of ordinal number. That is, a cardinal number is an ordinal a 
such that for all b before, a, b < a. Now, it turns out that there are n 
different transfinite cardinal numbers, which form the multiplicity {Xa: 
a E On}. For each ordinal a, the cardinal Xa is defined as follows: 
i) Xa = w if a = 0; ii) Xa = {c: C:5 Xb} if a = b + 1; and iii) Xa = sup {Xb : 

b < a} if a is a limit ordinal. As an example of case iii), note that X", = 
{O, 1, ... Xo, ... Xl, ... X2 , ••• X3 , ••• }. 

These alefs are obtained in a very abstract way. One might wonder 
whether or not they really exist. This question was touched upon in the 
last section. Given that we accept the principle III)-that whenever A is 
a set of ordinals, there is a least ordinal sup A greater than every mem
ber of A -the question becomes whether or not such things as {a: 
7i < Xl} or {Xa: a < w} are sets. 

Well, what is a set? In Cantor's words, "A set is a Many that allows 
itself to be thought of as a One." [See Note 1, Chapter 5]. Clearly, {a: 
a < Xl} exists as a Many or multiplicity. The question is whether or not 
this multiplicity can exist as a One-a single finished thing, a unity, a 
set. 

The question is meaningful since there are some multiplicities that 
can, by their very nature, not exist as unities. Such Absolutely Infinite 
multiplicities as all rational thoughts, the class V of all sets, or the class 
On of all ordinals, cannot be unities-for if they are unities, then they 
are rational thoughts or sets, and contradictions arise. These contradic
tions stem from the fact that a rational thought, set, or ordinal is not 
supposed to be a component of itself. 

Cantor spoke of the Absolutely Infinite multiplicities as "inconsistent 
multiplicities." By this he meant that these are multiplicities that cannot 
exist as unities because such a unification would lead to an inconsistency 
or contradiction. A multiplicity that can exist as a single completed ob
ject is a "consistent multiplicity," or set. 

With all this in mind, we are now in a position to understand Cantor's 
phrasing of, and answer to, the question of whether or not the alefs 
really exist. The passage translated below appears in a letter that Cantor 
wrote to Dedekind on August 28, 1899. 

One can ask how I know that the well-ordered sets or sequences that 
correspond to the cardinal numbers Xo, XI, . . . X." . . . XK" • • • are 
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really sets in the sense of "consistent multiplicities." Is it not possible that 
these multiplicities are 'inconsistent,' and that the contradiction arising 
from the assumption that these multiplicities exist as unified sets has sim
ply not been noticed yet? My answer to this is that the same question can 
be raised about finite sets, and that if one thinks about it carefully it be
comes evident that no proof of the consistency of finite multiplicities is 
possible either. In other words: the fact of the consistency of finite multi
plicities is a simple unprovable truth which could be called "the axiom of 
arithmetic," (in the old sense of the words). In the same sense, the consis
tency of those multiplicities which have aIefs as cardinalities is "the axiom 
of the extended transfinite arithmetic."3 

Clearly, there are many different things in the world and in the Mind
scape. There is actually a philosophical position, called extreme nomi
nalism, that denies the existence of even finite sets. But such a position 
strikes one as simply perverse in the face of the fact that everyone rou
tinely perceives unities in multiplicities. Understanding any sentence 
involves taking the multiplicity of the words in it and grasping them as a 
unity. 

In defense of sets such as Xl, Cantor seems to be claiming a direct and 
simple perception of the reality of such sets in the Mindscape. There is 
something very appealing about this defense, but it cannot be said to be 
conclusive. 

A weakness in "the axiom of the extended transfinite arithmetic" lies 
in the difficulty of directly perceiving the sets corresponding to the 
transfinite alefs. Cantor anticipated this objection, and in another place 
remarks that a number such as X2 is actually much easier to perceive than 
is some random natural number of ten million digits.4 Cantor's position 
has become more and more tenable over the years, as many people have 
come to understand and work with the alefs without encountering con
tradiction. But to have said what he did in 1899 is a striking example of 
intellectual courage. 

Cardinal addition and multiplication are rather uninteresting, since if 
K and A are both infinite cardinals, then A + K and A'K are both just 
equal to the maximum of A and K. Cardinal exponentiation is another 
story entirely. The problem of determining the precise value of the sim
plest nonfinite cardinal exponentiation, 21<°, has been with us for a hun
dred years now, and there is still no definitive solution in sight. 

If A and K are ordinals, we say that a K-sequence from A is a process 
that successively picks K members of A in a row. We can think of such a 
sequence as being a function s with domain K and range::;; A. That is, for 
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each ordinal a E K, sea) is the unique b E A that fills the ath slot of the 
sequence. A slightly different way of thinking of a K-sequence from A is 
to think of it as an ordered K-tuple of members of A. Thus, < 0, 3, 1 > 
would be a 3-sequence from 4, <0, 2,4, ... 1,3, 5, ... > would 
be an w + w-sequence from w, and < 0, 1, 0, 1, 0, . . . > would be an 
w-sequence from 2. Note that we can think of this last sequence as a 
function s such that s(n) = ° if n is even and s(n) = 1 if n is odd. 

The set of all K-sequences from A is usually called KA. (This notation 
has nothing to do with the notation for tetration used in "From Omega 
to Epsilon-Zero.") If K and A~re cardinals, we define the cardinal expo
nent i\K to be the cardinality ~ of the set of all K-sequences from A. One 
motivation for this definition 

K lambdas 

A ones A ones A ones . . 
A K = '(1 + CD + 1 + . ; . <CD + 1 + 1 + .) . (1 + 1 + CD + .) . 

is that if we think of A K as the product of K sums of A ones, then each of 
the AK products of K ones that appears in the final product is obtained by 
choosing one 1 from each of the K sets of A ones. And this process is 
represented by a member of KA. Another way of putting it is that there 
should be AK members of KA, since an arbitrary K-sequence from A. is 
formed by choosing among A elements K times in a row, which can be 
done A' A' A' . . . ways, where the product indicated is supposed to 
have K members. 

On December 7, 1873, Georg Cantor proved the first part of his 
most famous theorem, now known as Cantor's Theorem: For every car
dinal K, K < 2K. It is quite easy to see that K ::; 2\ since we can get a 
one-to-one map C from K into the set K2 of all K-sequences of zeros and 
ones. This is done by letting each a E K correspond to the sequence Ca , 

which has zeros everywhere except in the ath place. Viewed as a func
tion, the sequence Ca is defined by saying ca(b) = 1 if b = a, and 
ca(b) = ° if b I: a. Viewed as a K-tuple, C2, for instance, would be < 0,0, 
1,0,0, ... 0, ... >. 

The real difficulty in proving Cantor's Theorem is to prove that 
K I: 2K. This is done by showing that there can be no map from the set K 

onto the set K2. Or, put differently, we must show that whenever we 
have mapped K onto a set S = {sa; a E K} contained in K2, there will 
always be ad E K2 such that deS. 



So = < [QJ, 0, 0, . 
S 1 = < 1, [1], 1, . 
S2 = <0, 1, [QJ, . 

S.., = < 1,0, 1, 
S"'+1 = <0, 1, 1, . 

Sa = < 1,0, 1, 
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.0,0, . 

. 1, 1, . 

. 0,1, . 

.0, . 
1, 

. 0, . 

> 
> 
> 

[1],1, ... 1, ... > 
. 0, @]' . 1, ... > 

. 0, 1, .. [QJ, ... > 

{ 
1 if sa(a) = ° 

d(a) = ° if Sa (a) = 1 

That is, 

d(a) = 1 - sa(a) 

d = < 1, 0, 1, ... 0, 1, ... 1, ... > 

The method of proving that there is such a d is called a diagonal argu
ment. Alternatively, we sometimes say that d is found by diagonalizing 
over S. The method is to make sure that d is different from each mem
ber of S by making sure, for each a Ex, that d differs from Sa in the ath 
place. This is done by defining d as the function from K into 2 such that 
d(a) = 1 if sa(a) = 0 and d(a) = 0 if sa(a) = 1. Given that 1 - 0 = 1 
and 1 - 1 = 0, we can abbreviate this as d(a) = 1 - sa(a). 

We have now shown that K ~ 2K and that K I: 2K , so we can conclude 
that K < 2K. Thus, ~o < 21<°, ~1 < 21<" and so on. Note that we now have 
two ways of passing from a cardinal K to a larger cardinality. On the one 
han..Q., we can mimic the passage from ~a to ~a+1 by defining K+ to be 
{b: lj ~ K}. If K is a cardinal number, then K+ is the first cardinal greater 
than K. (It is the first since every ordinal before K+ has cardinality ~ K, 

and it is greater since if it were not, then it would be a member of itself.) 
On the other hand, we can also obtain a cardinal greater than K by pass
ing from K to 2K. 

We know that 2K is greater than K, and we know that K+ is the least 
cardinal greater than K. SO we can conclude that K+ ~ 2K. Can anything 
more be said about the relationship of these two cardinals? In his Gen
eralized Continuum Hypothesis (GCH), Cantor made the guess that for 
all K, 2K = K+. Another way of putting GCH is: for all a, 21<a = ~a+1' 
On the basis of what is pr~sently known about sets, there is no way to 
prove or disprove GCH. 
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In order to get a better understanding of this curious state of affairs, 
we will focus our attention on the special case of GCH called the Con
tinuum Hypothesis (CH). CH is the statement 21<o = ~1' 

THE CONTINUUM 

The continuum problem is the problem of determining which, if any, 
~a is equal to 21(°. In order really to understand what this problem in
volves, it is a good idea to look first at a number of different sets that 
have the cardinality 21(°: the power set of omega, the binary tree, the 
unit interval, the real line, the plane, and three-dimensional mathemati
cal space. 

First of all, there is the set {x: x ~ w} of all sets of natural numbers. 
This set is called the power-set 0/ omega, abbreviated 'l}w. Typical mem
bers of'l}w would be the empty set 0; such finite sets of natural numbers 
as {5}, {6, 28, 496,8128, 33550336}, {n: n S WOO}, and {n: there has 
been a United States presidential election in which one of the candi
dates received n votes}; such infinite but finitely describable sets of 
numbers as w, {n E w: n is even}, {n E w: n > WOO}, and {n E w: a 
string of ten consecutive sevens appears somewhere in the decimal rep
resentation of n}; and probably some completely patternless infinite sets 
of numbers that do not have any finite description. (The question of 
whether there actually are any such patternless sets was discussed in 
"Random Reals.") 

It turns out that g}lw is 21<°. This can be proved by constructing a one
to-one map X from 'l}w onto "'2 as follows. Given any set of natural 
numbers M, we let XM be the w-sequence that has a one in the nth place 
if n EM, and a zero in the nth place if n eM. Thus, if E is the set of all 
even numbers, then XE has the form < 0, 1, 0, 1, 0, 1, . . . >. Another 
example: 

M = {a, 2, 3, 8, 11, 14, 15,22, ... } 
XM= <1,0, 1, 1,0,0,0,0, 1,0,0, 1,0,0, 1, 1,0,0,0,0,0,0, 1, ... > 

To prove that X is one-to-one, note that if K and M are different sets of 
natural numbers, then there has to be some natural number t that is in 
only one of the two sets K and M. But then XK(t) f XM(t), so XK and XM 
are different sequences. To prove that X maps 'l}.., onto all of "'2, note 
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that if s is any member of w2, and if S is the set {n E cu: s(n) = I} of the 
numbers of the slots where s has a one, then XS = s. 

For any set x we can form the set gJx of all possible subsets of x and 
the set X2 of all functions from x into 2. The.,M"gument just given can be 
generalized easily to prove that for any x, z2 = gJx. I should perhaps 
mention here that there is some question as to whether the infinite 
power sets (such as gJcu) really are sets, or whether they are perhaps Ab
solutely Infinite inconsistent multiplicities that canot really exist as a 
unity. The fact that gJcu is uncountable certainly makes it difficult to 

grasp, but such difficulties did not prevent us from accepting the exis
tence of such sets as Xl. 

It is fairly reasonable to believe that for any 1(, gJl( is a set. This 
position can be justified by the following argument. To pick out a sub
set of 1(, you walk from zero out through the ordinals with a pair of 
brackets in your left hand. Every ordinal that appeals to you is plucked 
and tossed into the brackets. After I( steps you will have build up one of 
the possible members of gJl(. To the extent that we have the idea of 
totally free activity, we have the idea of carrying out such a sequence of I( 
choices in an arbitrary way. The idea of an arbitrary sequence of I( choices 
serves, then, as the unifying idea that forms the multiplicity {y: y ~ I(} 
into a unity or set. 

Incidentally, this way of thinking of gJl( also makes it clear why gJl( 
should be 2K. The decision for each a E I( on whether or not to include 
a is a binary decision, a choice between two alternatives. How many 
ways are there to make I( binary decisions in a row? Two times itself I( 
times, or 2K. Note that this reasoning also works in finite cases. Thus, 
gJ3 has 23 elements, for if we regard 3 as being the set {a, 1, 2} then 
gJ3 = {0, {O}, {l}, {2}, {I, 2}, {a, 2}, {a, 1Ho, 1, 2}}. 

The diagonal argument proof that for cardinals 1(, I( I- 2K can be 
adapted to prove that for any set x, 'K I- gJx. This is done by showing 
that no function I can map x ont() gJx, since for any I mapping x into PAc, 
the setD, = {y E x:y fE.f(y)} is not in the range of/. Why not? Because 
if we assume that there is some member of x, let us say d, such that 
I(d) = D" then we can derive a contradiction, leading to the conclusion 
that the initial assumption that there is such a d is erroneous. And what 
is the contradiction? Well, if I(d) = {y Ex: y fE. I(y)}, then it is fairly 
evident that d E I(d) ++ d fE. I(d). 

In any event, we have now more than amply demonstrated that both 
W2 and gJcu have the same cardinality 2Ko, which we have shown (twice) 
to be greater than Xo. We now examine a way of depicting W2. 
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Figure 93. 

Depicted in Figure 93 is the infinite binary tree. The tree is con
structed by letting a path move upward, forking infinitely many times. 
By continually halving distances, we fit in (IJ forks below the horizontal 
line. We can imagine each point on this line as being a "leaf" that lies at 
the end of one of the infinitely zigzagged branches up through the tree. 
A branch that goes all the way up through the tree is given by an (IJ-se
quence of binary decisions. If one takes a pencil and traces a branch up 
through the tree as drawn, then one can describe one's path by an (IJ-se
quence such as < Left, Right, Right, Left, Right, . . . >. Now, it is 
clear that if we replace "Left" by "0" and "Right" by "1," then each such 
path can be identified with a member of W2 with the set of all branches 
up through the binary tree. 

In a certain sense, the picture of the binary tree is not really a picture 
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of w2, since it is only the various finite initial segments of branches that 
we see in the tree. The possible paths through the tree exist more con
ceptually than visually. This is an important distinction. For although 
the number of paths up through the tree is the uncountable cardinal2Ko , 

the number of nodes in the tree is just Xo. A node is a fork in the tree, a 
point where a left-right decision is made. If we start counting the nodes 
in order of height, we see that there are 1 + 2 + 4 + 8 + 16 + 
. . . = Xo nodes in all. One can systematically label the nodes by listing 
all O-sequences of zeros and ones, all I-sequences, all 2-sequences, and 
so on, to get 0, <0>, < 1 >, <0,0>, <0,1 >, < 1,0>, < 1,1 >, 
. . . ,which is readily seen to be a countable list. 

The distinction between the countable set of nodes and the uncount
able set of branches is sometimes overlooked by philosophers of sci
ence who are not mathematicians. I am thinking in particular of Richard 
Schlegel, who in his otherwise valuable book, Completeness in Science, 
makes two false statements about situations involving binary trees. 
These two errors concern topics of interest to us, so I will discuss them 
here. 

In the first instance, Schlegel argues that if matter is infinitely divisi
ble, then there will be an uncountable number of particles present in 
each piece of matter. 5 But this is not true at all. For if we think of the 
infinite binary tree as representing a piece of matter that is infinitely di
vided, subdivided, etc., then it is clear that the subparticles of the origi
nal piece of matter correspond to the nodes of the tree, rather than to 
the branches through the tree. For example, if a speck is made of two 
molecules and each molecule is made of two atoms, and each atom is 
made of two elementary particles, and so on indefinitely ... then the 
total number of particles in the speck is the number of molecules (2), 
plus the number of atoms (4), plus the number of elementary particles 
(8), and so on. Schlegel makes the mistake of assuming that there is 
some ultimate particle at the end of each cu-sequence of splittings, when 
one would much more reasonably expect that, at the end of an cu-se
quence of halving, there will be no matter at all left-only a bare spatial 
location. 

Schlegel makes another (related) blunder in his discussion of the 
steady-state cosmology (page 139). Recall that the basic assumption of 
the steady-state cosmology is that new hydrogen atoms tend to appear 
spontaneously in empty space every so often. Without really changing 
anything, we can put this assumption differently: Atoms reproduce 
themselves by "fission" every so often. That is, if one keeps a hydrogen 
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atom locked in a safe for a year and then looks inside, one will find two 
hydrogen atoms. According to the steady-state cosmology, the universe 
has no beginning in time. It has been here forever. So, for a past infinity 
of years, we have had atoms reproducing themselves over and over. 

Schlegel jumps to the false conclusion that (assuming we are in such a 
steady-state universe) we are at the top of a binary tree, and that, there
fore, there are uncountably many atoms (2 KO of them). This seems to 
lead to a contradiction, since there would not be room in a normal Eu
clidean space for uncountably many atoms of finite size. 

o 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

2 10 14 

o 8 12 16 

o 8 16 

Figure 94. 

But in a steady-state universe with splitting atoms and infinite past we 
would not be at the top of a standard binary tree. Instead, we would be 
at the top of the sort of object drawn in Figure 94. (Note, by the way, 
that this is basically Figure 18 drawn upside down.) Schlegel falsely 
claims that a diagram like Figure 94 must have 2Ko points on the top line 
because each point lies above an infinite series of binary forks. The 
whole difference between this and the true binary tree is that this one is 
drawn backwards. There will always just be Xo nodes on each line of the 
reverse tree of Figure 94. In general, the nth line down in the past will 
contain a node corresponding to each multiple of 2n. 

To return to the main line of discussion, let us investigate a very fa
miliar uncountable set-the real number line. In general, a real number 
consists of a plus or minus sign, a natural number K and an e E W I0. That 
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is, a real number has the form ±K.eOele2ea ... , where each e, is a 
digit between 0 and 9. Sometimes we abbreviate this by writing ±K.e. 

An annoying feature of this representation of real numbers is that any 
real number that ends with an infinite string of nines is identical with 
some real number ending with an infinite string of zeros. For instance, 
10.23999 ... = 10.24000 ... and .999 ... = 1.000 .... This 
fact can be justified either algebraically or geometrically. 

lOx = 9.99 . 
x = .999 

9x = 9 
x = 1 

The algebraic justification is a bit of sleight of hand that we have al
ready mentioned in "From Pythagoreanism to Cantorism." The trick 
works because a sequence of 1 + cu nines is no longer than a sequence 
of cu nines. The geometric justification is that if we start at 0 and repeat-

.99 

II 
o .9 1 

Figure 95. 

edly go 9/10 of the remaining distance to 1, then after cu steps we will be 
at 1. This is just a different version of Zeno's paradox (in which "1/2" 

usually appears in place of "9/10"). There are some conceptions of the 
number lines under which we would not choose to identify 
.999 ... with 1.000 ... , instead preferring to say that the former is 
an infinitesimal amount less than the latter (see "Infinitesimals and Sur
real Numbers"). But we will not do this now. 

In order to avoid having two notations for the same number, we take 
R to be the set of all objects of the form ±K.e, where K E cu, e E wI0, 
and e does not end with an infinite string of nines. We are in the habit of 
identifying the set R with the set of all points on a line. This is a useful 
pictorial device, but it should not be taken too literally. As long as we 
are dealing with an ideal (as opposed to physical) line, there is no diffi
culty in finding a distinct point to correspond to each distinct real ±K.e. 
But there is some question as to whether the collection of only these 
named points really makes up a fully continuous line. Let me amplify. 

The discrete and the continuous represent fundamentally different 
aspects of the mathematical universe. One could, perhaps, go so far as 
to say that it is the left brain that counts up pebbles, but it is the right 
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brain that perceives continuous expanses of space. (I am thinking here of 
the recent psychological research involving "split-brain" experiments. 
The brain's left hemisphere controls such digital processes as speech 
and counting; the right hemisphere handles such analogue processes as 
singing and space perception.) The left-brain would be on the "Many" 
side of the table in "Interface Enlightenment," the right-brain with the 
HOne." 

Insofar as a set is a collection of distinct elements, it is basically a dis
crete sort of thing. Because we do allow ourselves to use infinite sets, 
we can represent the points on a line rather well by these discrete ob
jects. But there is still some question as to whether a continuous line is 
really just a set of discretely given points. 

As was discussed in "Infinitesimals and Surreal Numbers," Zeno's 
paradox of the arrow hits on this point. Consider an arrow that flies 
through the air for a minute. Say this continuous stretch of time is really 
just a set of durationless time-instants. Now, at anyone of these instants 
the arrow is not moving, since motion is not an instantaneous property. 
Therefore, the arrow is never moving. So how, Zeno asks, did it get 
from here to there? (There actually is a way out of this argument that I 
have never seen published: according to Special Relativity, an arrow in 
motion experiences a relativistic length contraction proportional to its 
speed. So, in fact, the arrow's state of motion is instantaneously observ
able!) The basic question of how a continuous line can be made up of 
points of no length remains. The radical solution explored in the section 
"Infinitesimals and Surreal N umbers" is the idea that an Absolutely C on
tinuous line can, in fact, never be fully exhausted by any set of discrete 
points, no matter how large such a set might be. 

x f x 
-4 '/'6 
-3 '/B 
-2 '/4 
-1 '12 

0 1 
'/2 V2 
1 2 
2 4 

4 
R 

=- 1R• 

I f(x) = 2" I 

-3 -2 -1 

Figure 96. 
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But we will go ahead and represent R by a line, remembering only 
not to take this e!cture too seriously. What is the cardinality ofR? Note, 
first of all, that R = 'ji+, where R+ is the set of all real numbers greater 
than zero. This fact is demonstrated by the function! given by ! (x) = 
2x , since this! provides a one-to-one map from R onto R+. If (0, 1) is 

x (x) 

1(0.1) 
~/'O '0/1, 

~ 1 '/2 • 
2 '/3 

R+ 

3 '/4 

I g(x) =_1_ 
1 + x 

gl')~-----. __ +==J i ;~ 
1 x 2 3 

Figure 97. 

the set {x ~ R: O~x <.1l2f all the reals between zero and one, then 
we can show thatF = (D,l). This is done by considering a function g 

that maps R+ one-to-one onto (0, 1). G is defined by g(x) = 1/1 + x. 

a' b' c' 

Figure 98. 

So, the unit line segment has exactly as many points as does the entire 
real line. This can also be proved more directly. Suppose that we take a 
unit line segment and bend it into a right-angled V shape, placing the 
bottom of the V at the point 1 - y'lTs on the y-axis. Now, by drawing 
lines from the point 1 on the y-axis that pass through the V -shaped seg
ment and the infinite real line, we can set up a one-to-one correspon-
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dence between the set of points on the unit segment and the set of 
points on the endless real line. Any two distinct points band c corre
spond to distinct points b' and c' and any given point a' on the real line 
corresponds to a point a on the segment. 

One might naturally ask what the cardinality of the real line is. For 
now, we will use the symbol "c" to stand for R. It can be shown with 
certainty that Xo < c. Cantor first proved that Xo < c on December 7, 
1873. We know this because he communicated his proof to his friend 
Dedekind in a letter the next day.6 Cantor's first proof of the un
countability of the reals was a bit different from the diagonal argu
ment now used, and this proof will be sketched. The fact that there can 
'be no one-to-one correspondence set up between the sets Nand R is 
the first really interesting fact about the transfinite cardinal numbers, 
and it can rightly be said that set theory was born on that December day 
a little more than a century ago. 

Figure 99. 

r, 
I J · 

o 

One must show that there can never be a countable listing '0, '1> '2, 
'3, . . . of real numbers that is exhaustive. That is, we must show that 
given any countable set of real numbers having the form {'n: n EN}, 
there is some real number d that is different from all of the, n's. Cantor's 
first proof of this is simple to present, although a knowledge of the 
Heine-Borel Theorem is necessary fully to grasp why it works. Cantor's 
first proof proceeded as follows: Find a closed interval 10 that fails to 
contain '0, then find a closed subinterval II of 10 such that II misses '1 ; 
continue in this manner, obtaining an infinite nested sequence of closed 
intervals, I 0 ~ I 1 ~ I 2 ~ • • • , that eventually excludes everyone of 
the 'n; now, let d be a point lying in the intersection of all the In's; d is a 
real number different from all of the, n' 

If c is not Xo, then which, if any, alef is it? 
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The problem of determining where c fits into the hierarchy of alefs is 
called Cantor's Continuum Problem, and the assertion that c = ~1 is 
known as Cantor's Continuum Hypothesis, or simply CH. Cantor be
lieved strongly that c = ~1' Kurt G6del at one time thought that c 
should be ~2' and a few years ago D. A. Martin wrote a paper that might 
be interpreted as suggesting that c is ~3' 7 (Martin himself denies this in
terpretation.) But no one really knows. I myself used to think c = ~n.+. 

,/, - .01000 . .. 'I, = .010101 . ,/, = .1000 . 'I, = .101010 . 

L.J L-J L.J L-J ... Ba.e Two 
. 1/2 '/4 '1, t/lli 

Figure 100. 

I would like to postpone discussing the continuum problem just a bit 
longer. As the reader has probably already suspected, c = 21<°, and I 
would now like to establish this fact. The easiest way to do this is to 
look at Figure 100. If we think of that horizontal line segment above the 
tree as being the segment [0, 1] = {x E R: 0 ::s x ::s I}, then we can 
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think of each path up through the binary tree as corresponding to a 
unique point on this segment. It is not too hard to see that, in general, a 
sequence s E Ql2 produces a path through the tree leading to the point 
so/2 + sl/4 + ... + s,,/2,,+1 + .... If we go to binary notation, this 
can be written more simply as .so Sl S2 ••• TWO, or .sTWO, (where the 
"TWO" means that we are to interpret the expansion in terms of 
powers of two instead of powers of ten.) 

Here we have illustrated the way that various members of Ql2 corre
spond to members of the interval [0, 1]. Unfortunately, the map that 
takes each S E Ql2 into ,STWO E [0, 1] is not one-to-one, since, for exam
ple, .0111 ... TWO = 1/2 = .1000 ... TWO (Zeno again!). But if we 
ignore the set of all the members ofQl2 ending with an infinite repetition 
of ones, then the map is one-to-one. It turns out that we can harmlessly 
ignore this set since it is countable, and both Ql2 and [0, 1] are uncount
able. So, without going into any more detail, we now claim that c = 21(0. 

Cantor originally thought that the cardinality c of the real line would 
be Xl, the cardinality of the set of all points in the plane would be X2 , 

the cardinality of the set of all the points in three-dimensional space 
would be X3 , and so on. But as it turns out, all of these continua, or con
tinuous sets of points, have the same cardinality c. Quite formally, we 
can see rather quickly that the plane should have c points. Why? Well, 
since the plane is the set of all ordered pairs of real numbers, it has cardi
nality c'c = 21(0·21Co = 21(0+1(0 = 21(0 = c. 

P(.11345 ... , .80291 ... ) 

p • 

. 1810324951 

Figure 101. 

A meatier proof is obtained if we set up a one-to-one correspondence 
between the set of points inside the unit square (including the points on 
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the left and bottom edges, but excluding the points on the top and right 
edges) and the set of points in the half-open unit interval [0, 1). The 
trick.is to match a point P inside the square with the point p. on the 
unit interval, where the decimal expansion of p. is obtained by shuffling 
the expansions of the two coordinates of P. Two members of [0, 1) can be 
merged to produce a single memberof[O, 1) because 2·w = w. Now, it is 
not too hard to see that the plane is made of Xo of the half-edged unit 
squares and that the line is made of Xo of the half-open unit segments, 
so the plane and the line have the same cardinality. 

p 
• 

Figure 102. 

A more visual and less analytic correspondence between the points of 
the line segment and the points of the square can be set up as follows. 
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Start with the line segment. Then pass to the set of all paths through the 
binary tree, as indicated in Figure 100. Jiggle the tree around a bit, and 
the set of all paths through the tree will actually cover the square. How 
do you jiggle the tree? The idea is to pick it up by the root and dangle it 
over a unit square. Move down the tree successively rotating each fork 
by 90 degrees around the vertical. If you look down from above on 
what you then have, it will resemble Figure 102. Another way of think
ing of this picture is as the choice tree of a sky diver falling down toward 
a square field and making alternate east-west and north-south decisions. 
You can reach any point in the square by an w-sequence of such deci
sions. For example, to hit P you would start out with < East, North, 
West, South, West, North, ... >. This choice sequence could readily 
be represented by a member < 1,1,0,0,0, 1, ... > of w2, with the 
understanding that in the even slots zero is west and one is east, and in 
the odd slots zero is south and one is north. 

This type of argument can be extended to show that the set of points 
in a unit cube also has size 2/(°, for any position in the cube can be speci
fied by an w-sequence of binary decisions alternating among east-west, 
north-south, and up-down. 

So now we know that the set of points in a mathematical line segment 
is just as large as the set of points in an infinite mathematical space. If 
the real numbers system really does capture the essence of continuity, 
then this little segment (-) has as many points as there are space-time 
locations in all of endless space and time. The cardinality of these sets 
can be called either c or 2/(°, and we know that this cardinality is greater 
than Xo. 

Now we must face the question of which one, if any, of the alefs is 
equal to c. A superficial reason for expecting c to be an alef is that c = 
2/(°, and one feels the cardinal exponentiation of cardinals should lead to 

other cardinals. But 2/(° is not actually defined in any way that naturally 
l~ads to a specific alef. (This is as opposed to the ordinal exponentiation 
2W = lim 2n = w.) 

The usual justification for believing that there is some Xa such that c = 

Xa is as follows. Imagine walking out through the ordinals with the real 
line, R, in your left hand. Every time you pass an ordinal, you pick out 
another point from R. The real picked at step 'Y is called r y. Now, R is 
just a set, and On is Absolutely Infinite, so you will run out of reals long 
before you run out of ordinals. In other words, there will- be a p such 
that the set {ry: 'Y E p} exhausts R. It is then evident that R is the least p 
such that R can be listed as {r y: 'Y E p}. Note that this least p must be a 
cardinal, i.e., p will be an Xa for some a. So we end up with c = Xa. 
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There are two weak points in this argument. First, it could be that the 
structure of R is so uniform that one simply cannot find a way to keep 
picking out new members of R indefinitely. This could happen if, for 
instance, there were a set I ~ R of indiscernibles-members of R that 
look so much like each other that you can never manage to find a proce
dure that will list them all one after another. 

To this, one can reply that regardless of whether one has a rule for 
picking out members of R, it is abstractly possible to do so endlessly. 
The existence of sets does not depend on the existence of rules, names 
or descriptions, and since it is abstractly possible to pair reals up with 
ordinals indefinitely, there must be a set that does so. Fine. 

What about the second objection to the argument that c = Xa for 
some a? This is the objection that perhaps one never does run out of 
reals-perhaps c 2:: O. It is at least conceivable that the process of dis
covering new reals never ends, that q>w is Absolutely Infinite. The idea 
here would be that the universe of set theory experiences endless hori
zontal growth (by adding more reals), as well as endless vertical growth 
(by adding more ordinals). In this case, q>w, R, and W2 would not be sets 
in the usual sense of the word, and q>R would be even worse. 

But this seems a little unnatural since one is so inclined to feel that 
{y: y ~ w} is a set, a "Many that allows itself to be thought of as a One." 

In short, we can have either c = Xa for some a, C -1= Xa for any a but 
q>w still a set, or c 2:: nand q>w not a set. The latter two possibilities are 
usually formally ruled out by assuming, respectively, the axiom of 
choice and the power set axiom. 

These two axioms make up part of the axioms of Zermelo-Fraenkel 
set theory, known as ZFC. It will suffice here to say that ZFC codifies 
the most widespread beliefs of mathematicians about sets. If we agree 
to believe in the axioms of ZFC, then we can prove that there must be 
some ordinal a such that c = Xa' 

c is often called "the cardinal of the continuum," since the word "con
tinuum" is used to denote a continuous region of mathematical space, 
SUdl as a line, area, or volume. In 1883, Cantor published the remark 
that he hoped to soon produce a proof that the cardinality of the contin
uum is the same as that of the second number class.s This is the contin
uum hypothesis, c = Xl, also called CH. Cantor never managed to 
prove CH. 

In 1940, Kurt G6del was able to show that CH is consistent with 
ZFC. He showed that one can never prove c "" Xl from the axioms of 
ZFC.9 This does not mean that Cantor was right-it only means that he 
was not provably wrong on the basis of ZFC. 
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In 1963, Paul Cohen proved that the negation of CH is consistent 
with ZFC He showed that one can never prove c = Xl from the axioms 
of ZFClO This does not mean that Cantor was wrong-it only means 
that we cannot prove that he was right, using only the axioms of ZFC 

These proofs can be briefly summarized as follows. What G6del did 
was to describe a possible universe in which all of the axioms of ZFC 
hold true and in which ~w = Xl' This is L, the universe of "constructi
ble sets." Cohen, on the other hand, described various possible uni
verses in which all of the axioms of ZFC hold and r!/Jw = X2, or X3 , or 
X",+lO, or almost anything else. Now, none of their possible uni
verses is believed to be the real universe of set theory. But the existence 
of these possible universes shows that as far as the axioms of ZFC are 
concerned, either CH or the negation of CH is O.K. 

The situation is a little like asking what Scarlett O'Hara did after the 
end of Gone with the Wind . .. one can consistently write a sequel in 
which she gets back together with Rhett, and one can consistently write 
a sequel in which she never sees Rhett again. But the book itself does 
not give us enough information to draw either of these conclusions with 
certainty. In the same sense, ZFC is not a complete enough description 
of the universe of set theory to tell us what the power of the continuum 
is. 

Since 1963, there have been a variety of suggestions for new axioms 
that could be added to ZFC The only widely accepted new axioms are 
various axioms of infinity (to be discussed in the next section) and an 
axiom called Martin's Axiom (after D. A. Martin, although it was R. M. 
Solovay who first used the axiom). But none of these axioms decides 
what the value of cis. 

In the late 1960s, Kurt G6del did suggest some new axioms that 
would decide the size of c. These were the so-called w-square and Xl -

square axioms. (The w-square axiom says that there is a set S S "'w such 
that & = Xl> and for every f E "'w there is agE S such that! < bep g, as 
defined in "Transfinite Numbers"). At first it was thought that these 
axioms, plus one other, implied that c = X2 • But then Gaisi Takeuti 
showed that on the basis of the two square axioms alone, one can prove 
that c = Xl' 11 At present, there are no very popular axioms that imply 
that c i= Xl, so it may be that CH will come to be accepted in the future. 

One might hope that simply by thinking about c and Xl> one could 
decide whether or not CH is plausible. In 1934, Waclaw Sierpinski did 
something like this in assembling a book of eighty-eight statements 
equivalent to CH.12 But none of these statements is obviously true or 
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false-though in his famous 1947 essay, "What is Cantor's Continuum 
Problem? ," G6del claimed that some of the equivalents of the contin
uum hypothesis were "highly implausible."13 

I have always been intrigued by the following approach to the contin
uum problem. 14 Define He to be the set of "hereditarily countable 
sets." x is in He iff x is countable and all its members are in He. He is 
what the universe V would look like if there were no such thing as un
countable sets. It is not hard to show that He = c. Relative to the small 
universe He, the class On of all ordinals is Xl' So the continuum prob
lem can be phrased this way: "Relative to the universe He of heredi
tarily countable sets, is V = On? Is 'Everything' the same size as . Abso
lute Infinity'?" This formulation may seem far-fetched, but it could be 
that one of the reasons set theory is stalemated by the continuum prob
lem is that we have not yet made enough attempts to identify the prob
lem with some problems outside of pure mathematics. 

LARGE CARDINALS 

Abstractly speaking, an ordinal is a generalized number that can be 
"counted up to" by a process of repeatedly taking the next step after all 
the preceding steps. Usually, an ordinal a is identified with the set {b: 
b < a} of all ordinals less than a. This is because as soon as the collec
tion of steps {b: b < a} can be grasped as a unity, the single next step a 
automatically exists as a definite thing. Thus, conceiving of the first infi
nite ordinal is really the same thing as forming the multiplicity of all fi
nite ordinals into the unity, or set, {O, 1, 2, . . .}. w exists as a single 
meaningful concept exactly to the extent to which all the natural num
bers exist together in a single unified set. 

Imagine all the ordinals lined up one after another like an endless 
path reaching out toward ... what? I use the symbol 0 to stand for 
the end of the path, the last ordinal, the Absolute Infinite, "that than 
which no greater can be conceived." If 0 is really the greatest ordinal, 
then the collection of all the steps or ordinals before 0 is just On, the 
class of all ordinals. 0 exists as a single meaningful concept exactly to 
the extent that all the ordinals exist together in a single unified entity. 
But this seems to be a rather small "extent." 

For if 0 exists as a single definite step attainable by repeatedly taking 
"the next step," then 0 is an ordinal, which means that 0 < 0, since 
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every ordinal is less than O. But no ordinal can be less than itself (since 
you can never "count up to" something if you have to count up to it 
before you can count up to it). Another way of putting this is to say that 
On cannot be a set, since there are so many ordinals that it is impossible 
in principle that they could ever exist together in a single unified entity. 

So there is certainly a strong sense in which 0 is not really an ordinal 
and On is not really a unified collction. But yet, but yet . . . I am able 
to throw around the symbols "0" and "On" pretty casually, and on the 
face of it, it seems to make sense to say "0 has such-and-such a prop
erty" (indeed, I just finished saying "0 is not really an ordinal"). Why 
not just go ahead and talk about 0 as if it existed as a single definite 
object, as a sort of imaginary ordinal. Strictly speaking, 0 is not an ordi
nal because it is too big, but it turns out that most of the kinds of things 
that we say about ordinals seem meaningful when they are said about O. 

Talking about 0 is an extremely useful and productive thing for set 
theorists to do. Georg Cantor, the founder of set theory, had quite a bit 
to say about 0; and in the last ten or fifteen years this type of discussion 
has again become respectable. The fact that set theorists are able to talk 
meaningfully about 0 is a bit surprising, since 0 does not (strictly 
speaking) exist. The problem of how we do talk about such inconceiv
able things as the Absolute Infinite is an extremely deep and beautiful 
question in the foundations of set theory. But it is better just to go 
ahead and start talking about 0 here, leaving aside a deeper analysis of 
how this is done. Let me only remark that this question is really another 
variation of the One-Many problem. As ungraspable Absolute, 0 is 
Many, yet as a single guiding idea it is One. 

The large cardinals we will be discussing in this section are ordinals 
that share many of the properties of O. In general, the more properties 
of 0 that a cardinal shares, the larger it is. _ 

Recall that an ordinal a is said to be a cardinal if we do not have b = a 
for any predecessor b of a. Insofar as 0 is an (imaginary) ordinal, it is 
also a car.£l.ina1..For if b is one of O's predecessors, then we do not expect 
to have li = IT, because if there were a one-to-one function f from b 
onto n, then we would have On = {/(a): a < b}, implying the contra
dictory conclusion that On exists as a set, a unity specified by the unity b 
and the function f. So 0 must be a cardinal. 

The same argument can be extended a little to conclude that 0 is a 
regular cardinal, where a cardinal K is said to be regular if K cannot be 
written as the sup of less than K ordinals less than K. For if 0 were not 
regular, then we would have some ordinal A.. and some set {ab: b < A..} of 
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n 

sup{ab : b < A} 

a., A sequence 

o 
Figure 103. 

X ordinals such that 0 = sup {ab: b < X}. But this would mean that the 
Absolutely Infinite could be conceived of in terms of sets, specifially as 
the supremum of a set of ordinals, which goes against the fundamental 
assumption that 0 must lie beyond every possible description in terms 
of sets. 

In the ZF set theory, the statement "0 is regular" is introduced as an 
explicit assumption called the Axiom 0/ Replacement. Informally, the 
Axiom of Replacement is meant to say that if x is a set and / is a func
tion, then {/(y): y Ex} is also a set. The name of this axiom stems from 
the fact that we can think of the set {/(y): y E x} as being formed by 
replacing each member y of x by its image /(y). For example, it is the 
axiom of replacement that is invoked to reason from the assumption 
that Xl is a set to the 

{O, 1, 2, ... Cd, ••• Cd + Cd, ••• Eo, •.. a, •.• } 
{~o, ~l' ~2' ••• ~"" ••. ~"'+"" ... ~ ... , ... ~Ol' ••• } 

conclusion that {Xa: a E Xl} is also a set, a conclusion, that enables one 
to be sure that Xl(l = sup {Xa: a E Xl} is a set as well. 

Now, it is evident that the Axiom of Replacement should imply that 
o is regular, since it guarantees that if X is a set that is an ordinal and if 
for each b E X, ab is a set that is an ordinal, then {ab: b E X} is also a 
set-so sup {ab: b E X} is an ordinal that is also a set, and thus is less 
than O. 

The Axiom of Replacement is really a weak form of the Reflection 
Principle: For every conceivable property of ordinals P, if 0 has prop-
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erty P, then there is at least one ordinal K < 0 that also has property P. 
The justification of the Reflection Principle is quite simple: If there 
were some conceivable property P of ordinals such that 0 were the only 
ordinal with property P, then 0 would be conceivable (as the unique 
ordinal with property P). Therefore, any conceivable property P en
joyed by 0 must also be enjoyed by ordinals less than O. 

"Conceivable property," incidentally, is supposed to mean a property 
that is expressible in terms of sets and language of some kind. One does 
not expect the Reflection Principle to hold for a property that goes 
" 0 is the class of all ordinals," for although "0 is the class of all ordi
nals" is true, we do not expect it to be true of any ordinal less than O. 
The point is that the property of being the class 0/ all ordinals is not 
viewed as a conceivable property. That is, saying that 0 is the unique 
thing that is the class of all ordinals does not provide a description of 0 
in terms of things simpler than itself. 

The fact that 0 is regular can be seen to follow from the Reflection 
Principle. For given an ordinal X < 0, and a function determining an 
ordinal ab for each b < X, then 0 can be seen to satisfy the property "for 
each b < X, 0 is greater than ab." Now, this property is what we call a 
conceivable property, since it is expressed solely in terms of the given 
set X and the given function that finds an ordinal ab for each b < X. 
Therefore, the Reflection Principle applies, so there must be some ordi
nal K such that, the statement "For each b < X, K is greater than ab" 

holds true. But then we know that sup {ab: b < X} :s; K < 0, which im
plies that 0 cannot be reached by taking the sup of a set of X ordinals. 

Not only is 0 regular, 0 does not have the form K+ for any cardinal K. 

That is, 0 is not the next cardinal greater than any cardinal. This fact is 
sometimes expressed by saying that 0 is a limit cardinal, rather than a 
successor cardinal. So 0 cannot be reached from below by taking the sup 
of any sequence shorter than 0, since 0 is regular; and 0 cannot be 
reached from below by the process of passing from K to K+ • • • since 
o is a limit cardinal. 

A cardinal that has these two properties is called an inaccessible cardi
nal. That is, we say that a cardinal 8 is inaccessible if i) 8 is regular, and 
ii) whenever K is less than 8, K+ is less than 8 as well. ~o is an inaccessi
ble cardinal since it is regular and since it is not a successor cardinal (be
cause if K < ~o, then K is finite and K+ is just K + 1). It is difficult to 
come up with any other inaccessible cardinals. ~1 is regular, but it can be 
described as ~o +. ~w is not equal to K+ for any K, but it can be described 
as sup {~n: nEw}. 
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Now, n is an inaccessible cardinal greater than No, so if we apply the 
Reflection Principle we can conclude that there are other inaccessible 
cardinals greater than No. The first one is usually called 6 (pronounced 
"theta"). Since set theorists habitually start counting with zero (rather 
than one), they often call w the Oth inaccessible, and call 6 the 1st inac
cessible. 

6 is called inaccessible because it is really very hard to get to 6 from 
below. 6 cannot be reached by taking the limit of less than 6 cardinals, 
and 6 cannot be reached by the operation of taking the next cardinal. If 
we ask which alef is equal to 6, we get the unhelpful answer that 6 = N9 • 

An interesting way of thinking of 6 is to pursue an analogy between 
the 

o 1 2 W Xl 
o W Xl () P 

two sequences listed above. I have w corresponding to 1 because these 
two numbers occur at the two most significant transition points: the 
transition from nothing (0) to something, and the transition from finite 
to infinite. Under the first definition of regular (K is regular if K is not 
the sum of less than K ordinals less than K) all of the cardinals in the two 
sequences are regular. Nt corresponds to 2 because 2 = 1 + and Nt = w+. 
That is, 2 and Nt are the first two typical regular successor cardinals. 6 
corresponds to w because w is the first regular limit cardinal after 2, and 
(} is the first regular limit cardinal after w. The meaning of the symbol p 
(pronounced "rho") will be explained shortly. 

The point of this analogy is that the passage from w to Nt to 6 is some
thing like the passage from 1 to 2 to w. Just as w is the first infinite cardi
nal, (} is the first large cardinal (in the sense that set theorists use the 
word large). 

The Reflection Principle says that for any conceivable property P, if 
n has property P, then there is at least one ordinal K < n that also has 
property P. If we examine the justification of the Reflection Principle 
given above, it becomes evident that the Reflection Principle can ac
tually be strengthened to this: For any conceivable property P, if n has 
property P, then there are n ordinals less than n that have property P. 
For otherwise, n could be conceived of as the ath ordinal with property 
P for some (set-sized, and thus, conceivable) ordinal a. 

So we see that there are actually n inaccessible cardinals less than n. 
Now, apply the reflection principles to: [TIl is inaccessible and there 
are ITIJ inaccessible cardinals less than [QJ. This yields a cardinal v 
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such that: 0 is inaccessible and there are ~ inaccessible cardinals less 
than 0. 

Such a J) is called hyperinaccessible. Another way of defining it is to say 
that J) is hyperinaccessible if i) and ii) J) is inaccessible, and iii) whenever 
K is less than J), then the first inaccessible greater than K is less than II as 
well. 

If we were to define a function Oa that listed all the inaccessibles and 
limits of inaccessibles, we would discover that if J) is hyperinaccessible, 
then II = 0". This is analogous to the fact that for any inaccessible cardi
nal K, K = ~K' A hyperinaccessible cannot be reached from below by 
taking the sup of any smaller set of ordinals (since it is regular), nor can 
it be reached by jumping from cardinal to cardinal (since it is a limit 
cardinal), nor can it be reached by jumping from inaccessible to inacces
sible (since it is the limit of inaccessibles). 

We can formulate a notion of a-hyperinaccessibility for each ordinal a 
as follows. The O-hyperinaccessibles are simply the inaccessibles. The 
I-hyperinaccessibles are what we just called the hyperinaccessibles. In 
general, we will say that II is a + I-hyperinaccessible if J) is an a-hy
perinaccessible that is preceded by v a-hyperinaccessibles; and for limit 
ordinals A, we say that II is A-hyperinaccessible if II is a-hyperinaccessible 
for every a < A. 

Note that: [Q] is a-hyperinaccessible for every ordinal a < (IT]. If 
we apply the Reflection Principle to this property of n, we discover that 
there must be inaccessible cardinals J.1, such that: ~ is a-hyperinacces
sible for every a < ~. Such a J.1, is called hyper-hyper-inaccessible. Note 
that if J.1, is hyper-hyper-inaccessible, then IL simply cannot be reached 
from below by using the concept of hyperinaccessibility, since for every 
a < J.1" IL is the J.1,th a-hyperinaccessible. 

For convenience, we start writing "hyper-inaccessible" instead of 
"hyper-hyper-inaccessible." We can define a notion of a-hyper-inacces
sibility for each a in a way analogous to how a-hyper-inaccessibility was 
defined. For instance, J.1, will be I-hyper2-inaccessible if J.1, is inaccessible 
and there are J.1, hyper-inaccessibles less than IL. Continuing, we can say 
J.1, is hyper-inaccessible if J.1, is a-hyper2-inaccessible for all a < J.1,. Then 
we can get a notion of hype~-inaccessibility for every a; and then (why 
not) we can define IL to be super-hyper-inaccessible if J.1, is inaccessible 
and is preceded by J.1, hype~-inaccessibles for every a < IL. Clearly, 
there is no end to this process, since for any sequence of n degrees of 
inaccessibility, n will be inaccessible and will be preceded by n inacces
sibles of the ath degree for all a < n, and applying the Reflection Prin
ciple to this fact always gives inaccessibles of the next level. 
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What we want to do now is somehow to jump past all of these various 
degrees of inaccessibility to a whole new level of large cardinals. Infor
mally, the way to do this is to take as a property of n the fact that n 
ordinals of each of the degrees of inaccessibility can be found below n, 
apply the Reflection Principle, and get large cardinals p that are pre
ceded by p inaccessibles, p hyperinaccessibles, p super-hyper-inaccessi
bles, and so on. These cardinals are called Mahlo cardinals, after Paul 
Mahlo, who discovered them in 1912. 

Formally, we say that p is a Mahlo cardinal if p is inaccessible and when
ever I is a set of ordinals such that there are p members of I less than p, 
then there is an inaccessible cardinal K < P such that there are K mem
bers of I less than K. Putting it another way, pis Mahlo if p satisfies this 
Fixed-Point Reflection Principle: for every fixed-point property P, if p 
enjoys property P, then there is a K < P such that K enjoys property P. 
We say that Pis afixed-point property if P has the form" 0 is inaccessi
ble, and there are 0 ordinals less than 0 that have property I," 
where [ can be any property of ordinals at all. It is not hard to see that 
the Fixed-Point Reflection Principle is a weak form of the full Reflec
tion Principle, since the former applies only to fixed-point properties, 
while the latter applies to all conceivable properties. 

How do we know that any Mahlo cardinals less than n exist? By using 
the Reflection Principle! Given" [!!] satisfies the Fixed-Point Reflec
tion Principle," we can apply the full Reflection Principle to conclude 
that there must be some p < n, such that p satisfies the Fixed-Point 
Reflection Principle. 

A note of caution must be sounded here. In order for the argument 
given in the last paragraph to be valid, we must be sure that" 0 satis
fies the Fixed-Point Reflection Principle" is a conceivable property. We 
can see that it is by putting it this way:" 0 is inaccessible, and if I is a 
collection of 0 ordinals less than 0 , then there is an inaccessible 
cardinal K < 0 such that there are K members of I less than K." The 
hardest thing one has to do in order to conceive of some cardinal p as 
having this property is to grasp the concept of" arbitrary subcollection I 
of p": This is not hard; insofar as we understand the symbol r; 0, we 
understand the phrase "[ is a collection of ordinals less than 0 ." Con
ceiving of "r;p" is nothing like trying to conceive of "arbitrary set with p 
as a member," which is impossible. 

The last paragraph was, a "note of caution," because one must realize 
that the Reflection Principle cannot be applied to ,,[!!] satisfies the full 
Reflection Principle." Why not? Well, if this were possible, then you 
could get a KO < n such that Ko satisfying the full Reflection Principle; 
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and then applying the same argument to KO' you would get a Kl < Ko 

satisfying the full Reflection Principle. Continuing through each finite 
stage, you get a set K = {Kn: n E CI)} of ordinals such that ... < Kn 
< ... < K2 < Kl < Ko. Now, this is impossible, since every set of ordi
nals must have a smallest member. So, satisfying the full Reflection 
Principle is not a conceivable property of ordinals, for if it were, we 
could get a set K of ordinals that had no least member, and this contra
dicts the nature of ordinals. But what is the reason why satisfying the full 
Reflection Principle is not a conceivable property of ordinals? The rea
son is that the notion "arbitrary conceivable property of ordinals" is not 
itself conceivable. 

All the rational thoughts cannot be rationally thought of at once, and 
all the conceivable properties cannot be conceived of at one stroke. The 
full Reflection Principle gives a true and understandable statement 
whenever some particular conceivable property is plugged in for P. But 
there is a sense in which the full Reflection Principle in its full generality 
cannot be truly conceived of or understood, for we cannot ever con
ceive of all the conceivable properties at once. This is as it should be, 
for n may very well be the only ordinal that satisfies the full Reflection 
Principle, and we know that we cannot conceive of n. 

The collection of all fixed-point properties is conceivable, and that is 
why the Reflection Principle can be applied to get Mahlo cardinals. 
There are various other standard conceivable collections of properties 
for which the same kind of argument can be carried out. Large cardinals 
obtained in this way are called indescribable cardinals, and they are gen
erally quite a bit bigger than the first Mahlo cardinal. 

Returning to the Mahlo cardinals for a minute, let us use the symbol 
Po, or just p, to stand for the first Mahlo cardinal. The thing that makes 
p very hard to get to from below is that for no property I can p be de
scribed as the first inaccessible K such that there are K cardinals less than 
K having property I. 

Let's go back to the two analogous sequences of cardinals introduced 
a few pages back. We had p corresponding to ~l because the process of 
building up higher and higher degrees of inaccessibility in an effort to 
get from (J to p is so reminiscent of the process of building up higher 
and higher countable ordinals in an effort to get from CI) to ~l' The anal
ogy is particularly clear if we think of the former in terms of producing 
more and more rarified subsets of p, and the latter in terms of building 
up an ~rsequence of functions from NN under the <bep ordering. An
other analogy between p and ~l is that ~l has the "fixed-point" property 



THE TRANSFINITE CARDINALS 261 

that whenever I is a set of Xl ordinals less than Xl, there is an ordinal 
a < Xl such that there are a members of I less than a. 

All of the definitions of large cardinals given so far could have been 
strengthened by strengthening the definition of inaccessible cardinals. 
One defines a strongly inaccessible cardinal as a cardinal 8 such that i) 8 is 
regular, and ii·) whenever K is less than 8, then 2K is less than 8 as well. 
If 2K were always equal to K+ (GCH), then of course inaccessibility and 
strong inaccessibility would be equivalent. But it is, in principle, possi
ble that 21<0 could already be as large as p, the first Mahlo cardinal. There 
is, indeed, no upper bound known on the size of the continuum. But 
since K < n implies 2K < n, we can apply the same type of reasoning as 
before to get strongly inaccessible, strongly hyperinaccessible, and 
strongly Mahlo cardinals. 

There are a great variety of large cardinals after the Mahlo cardinals. 
First come the indescribable cardinals, then the ineffable cardinals, par
tition cardinals, Ramsey cardinals, measurable cardinals, strongly com
pact cardinals, supercompact cardinals, and, finally, the extendible car
dinals. Many people are actively engaged in research on these and other 
types of large cardinals, and one could easily fill a book with facts about 
large cardinals, I will discuss only the measurable and extendible cardi
nals here. ls 

o 1 2 W ~1 

o W ~1 (J P 
o K A 

The first measurable cardinal is usually called K. K is so much bigger 
than all the cardinals discussed so far that it seems more appropriate to 
start a new line of analogies for K. The jump to measurable cardinals is 
not really analogous to any jump other than the jumps from 0 to 1 and 
from 0 to (r). As a matter of fact, it turns out that technically speaking, 
both 1 and (r) are measurable cardinals, so we should perhaps call K the 
first measurable cardinal after (r). 

Measurable cardinals were formaliy defined in 1930 by Stanislaw 
Ulam, co-inventor of the hydrogen bomb. But it was not until around 
1960 that mathematicians realized how big and how strange measurable 
cardinals really are. The most curious thing about measurable cardinals 
is that once one knows that they exist, one is forced to the conclusion 
that there are many more sets of natural numbers than one had pre
viously suspected. It is as if the discovery of some far away galaxy forced 
us to the conclusion that there are some additional types of microorga-
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nisms present in our bodies. Specifically, if a measurable cardinal exists, 
then there is a set of integers, called O~ that is not in Godel's universe 
L of constructible sets. 

So what are measurable cardinals? A cardinal I( is said to be measure
able if there is a certain method of deciding which subsets of I( are dense 
and which subsets of I( are sparse. The "dense" subsets of I( are also 
known as big subsets, or nodal subsets.1s The "sparse" subsets of I( are 
also known as small subsets, or non-nodal subsets. 

The method for picking out the dense, big nodal subsets of I( is sim
ply represented by taking the set .N of all the dense, big, nodal subsets 
of 1(. I( is measurable if we can find such an .N that is I(-complete, mean
ing that the intersection of less than I( of the members of .N is also a 
member of 1(. 

Formally, we say that I( is measurable if there is a set M C i(fJ1( such 
that a) no subsets of I( with cardinality less than I( are in M; b) the inter
section of less than I( members of M is also a member of M; c) for every 
A C 1(, either A or the complement A' = {a E 1(: a e: A} of A is in M 
(but not both). Viewing M as a notion of bigness, a) says that A is big 
only if A has I( members; b) says that the big subsets of I( are so dense 
that less than I( of them will always have a big overlap; and c) says that 
every subset of I( is either big or small. M is called a I(-(omplete ultrafilter 
on 1(. 

To fix the ideas, let us again use I( to mean the first measurable cardi
nal greater than w; and let us use M to stand for a K-complete ultrafilter 
on K. (There are actually a variety of such ultrafilters on K. The more 
natural ones are called normal ultrafilters and resemble each other very 
closely. We assume that M is one of these normal ultrafilters.) What sort 
of sets are in M? Take, for instance, the set Card of all cardinals less 
than 1(, and the complementary set Card' of all ordinals less than I( that 
are not cardinals. Which of these two sets is to be viewed as big and 
dense? 

In one sense it seems that Card' is the bigger of the two sets, since the 
infinite cardinals are very far apart and everything in between them is a 
member of Card'. On the other hand, Card does have the same cardi
nality I( as Card', so it really is not smaller. In fact, Card E M. Set 
theorists think of Card as consisting of the typical ordinals less than 1(, 

and regard the members of Card' as being just so much packing material 
(excelsior and styrofoam peanuts) surrounding the valuable Card. Again 
you might be inclined to say that most ordinals are not inaccessible car
dinals. But as it turns out, the set Inac of all inaccessible cardinals less 
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Figure 104. 

than K is a member of M as well, and the cardinals that are not inaccessi
ble are just packing material surrounding Inac. 

The guiding rule is that if P is a conceivable property weaker than 
.. 0 is a measurable cardinal," then K enjoys property P iff the set 
{a E K: P(a)} of all ordinals less than K having property P is in M. That 
is, since a measurable cardinal such as K is strongly inaccessible, the set 
of all strongly inaccessibles less than K is big, dense, nodal-a member 
ofM. 

Incidentally, the proofs that a measurable cardinal must be strongly 
inaccessible and that because of this, the set of strongly inaccessibles 
less than a measurable cardinal must be nodal . . . these proofs are not 
easy, and I will not try to give them here. But I will try to explain why 
measurable cardinals exist. 

Basically, it is a matter of convincing oneself that n is measurable, 
and then applying the Reflection Principle to conclude that there are 
K < n that are measurable as well. The idea is simple. Since n does not 
really exist as a single finished thing, an X ~ n can exist only insofar as 
X corresponds to some property. That is, if X ~ n, then there must be 
some conceivable property P of ordinals such that X is the class {a E n: 
P(a)} of all ordinals less than n having property P. Now, we say that this 
class is nodal, or big or dense, if P is a property enjoyed by n. And if we 
let }( be the collection of all the nodal subclasses of n, then it turns out 
that }( is a normal ultrafilter on n. 

This argument has been tossed around by a number of people over 
the last ten years or so, and it has still not received universal accept
ance .17 The weak point in the argument is that one feels that there could 
be some X ~ n that were just random, messy classes corresponding to 
no particular properties of ordinals. Analogy with set-sized ordinals 
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tempts one to believe this. For instance, we know that there are un
countably many subsets of w; but we are tempted to believe that insofar 
as a finitely conceivable property of natural numbers has a finite de
scription, there are only countably many such properties, leading to the 
conclusion that not every set of natural numbers corresponds to some 
finitely conceivable property of natural numbers. So why should every 
X ~ n correspond to some conceivable property or ordinals? 

There are two responses. First of all, it is really not so evident that 
there are indeed only countably many finitely conceivable properties of 
natural numbers. The whole issue of whether or not there are more 
properties than there are sets is quite complex, as we saw in Chapter 3. 
Secondly, one must realize that n really is different from any set-sized 
ordinal. Although we can talk of n, it is not really a single finished 
thing, so one should not expect that there will automatically be a whole 
lot of subclasses of n. If n is so big that it can never be thought of as 
finished, then one cannot really talk about randomly picking out n ordi
nals. Instead, one must accept that a subclass of n exists only if there is 
some conceivable property to hold it together. 

So, if you swallow that, then you can go ahead and say that n is mea
surable, where a class of ordinals is thought of as big, dense, or nodal iff 
this class corresponds to a property of ordinals that is enjoyed by n. 
The mode of thought employed here (where n is thought of one min
ute as a Many, as a bare concept, and is thought of the next minute as a 
One, as an object that mayor may not have a certain property P) is a bit 
odd, and perhaps even a little shady. Although I find it intelligible, it 
seems reasonable to call this type of talk doubletalk. An extreme exam
ple of this kind of dualistic way of thinking of the universe of set theory 
occurs in W. N. Reinhardt's justification of the extendible cardinals. 

The extendible cardinals are the largest cardinals that set theorists 
know of at present. If one strengthens the definition of extendible car
dinals slightly, one obtains the definition of oo-extendible cardinals, 
which are provably inconsistent. This is to say that it is impossible for 
oo-extendible cardinals to exist if the class of all sets is indeed a model of 
ZFC set theory. Because of this, there are some very real doubts as to 
whether even the extendible cardinals really exist; many people feel 
that if such large cardinals do exist, they will be the largest large cardi
nals that can ever be found. There is an attractive doubletalk argument 
for the existence of extendible cardinals, so they probably are really out 
there. But it would be repeating history to think that with the extendi
ble cardinals we have reached the end of the line. The universe of set 
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theory is infinitely elusive; if there is one thing we can be sure of, it is 
that the set theories of the future will be vastly more inclusive than any
thing we have ever dreamed of. 

It is interesting to note that the smaller large cardinals have much 
grander names than the really big ones. Down at the bottom you have 
the self-styled inaccessible and indescribable cardinals loudly celebrat
ing their size, while above, one of the largest cardinals quietly remarks 
that it is measurable, and the largest cardinals known simply point out 
past themselves with the comment that they are extendible. 

A precise characterization of extendible cardinals would take us too 
far afield, but let me attempt a somewhat poetic description of them. 

Once again, think of the ordinals as an endless mountain you are 
climbing. Say that you have climbed as far as the first extendible cardi
nal, usually called A. Glancing up, you pick out some landmark that is 
(necessarily) short of the peak. You are near the lip of a cliff, and walk 
over to look down at the ordinals you have already climbed past. Far 
below, you can make out the first inaccessible and the first measurable 
cardinals, but closer to you there are so many cardinals of this kind that 
it is hard to pick anyone of them out. The part of the cliff nearest to 
you is rough with cardinalities and interrupted by frequent ledges, but 
the pattern is so repetitive that there is really no single distinguishing 
feature near you. There are plenty of ledges as big as the one you are 
resting on, but it is hard to comprehend how the monotony of the climb 
could have been endured. 

A large eagle floats nearby on the mountain drafts, flexing the finger
like tips of his wings as he circles. You lie down to rest, merging into an 
empty peacefulness. You feel yourself snatched up and carried up the 
mountain, far beyond the landmark you had spotted earlier . . . or is it 
a dream? 

You stand up and look around again, but there is no sign of the eagle. 
You glance up and see what seems to be the same landmark at the same 
distance_ as before; then you go to look down the mountain again. You 
can still make out the first inaccessible and the first measurable cardinals 
far below, but now you are trying to tell whether or not you really have 
been moved up the mountain. There are a number of ledges below, but 
there is no way to tell whether any of them is the one where you were 
before the eagle carried you up . . . if indeed he did carry you up at 
all. 



Kurt Godel 



EXCURSION II 
.. 

GODEL'S 
INCOMPLETENESS 

THEOREMS 

In this excursion we will examine a semiformal proof of Godel's In
completeness Theorems. Even at this modest level of precision, the 
proof takes on a somewhat technical appearance, but this is unavoidable 
if we are to understand some of the finer points of Godel's proof. 

In the "Formal Systems" section a number of preliminary notions are 
discussed: the idea of a formal system, the distinction between syntax 
and semantics, and the notions of consistency and completeness. This is 
all done with reference to the description of a particular formal system: 
Peano Arithmetic. 

In the "Self-Reference" section we see how to go about generating 
mathematical sentences that refer to themselves, and in the "Godel's 
Proof" section we have the actual proofs of Godel's theorems, along 
with a discussion of the precise circumstances under which these theo
rems apply. 

The final section contains an exact mathematical analysis of a vague 
metaphysical problem, in this case the problem of whether machines 
can think. 

FORMAL SYSTEMS 

Godel's two Incompleteness Theorems state that all formal systems 
of a certain kind are subject to two limitations. By a formal system we 
mean a set of mathematical axioms and a set of rules and procedures by 
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which one combines axioms to produce proofs of theorems. Godel's re
sults apply to any formal mathematical system T that is i) finitely de
scribable, ii) consistent, and iii) as strong as Peano arithmetic. The two 
Godel theorems state that any such system T is, firstly, incom
plete . . . in the sense that there will be some statement about the addi
tion and multiplication of natural numbers that can neither be proved 
nor disproved by T; and that any such T is, secondly, unable to establish 
its own consistency . . . in the sense that T is unable to prove that no 
contradiction can be derived from T. 

It is the burden of this section to define more precisely the various 
technical expressions used in the last paragraph. We will begin by devel
oping the notion of a formal system, simultaneously describing a partic
ular formal system: Peano Arithmetic. 

Quite generally, a formal mathematical system is a system of symbols 
together with rules for employing them. A formal system has four com
ponents. 1) A basic "alphabet" of symbols to be used. Any finite se
quence of the fundamental symbols is called a formula. But most of 
these arbitrary strings of symbols are useless, and one has: 2) A criterion 
for determining which strings of symbols are "grammatical." These 
grammatical strings are called meaningful formulas. To obtain a formal 
system, one then takes: 3) A particular set of meaningful formulas as the 
axioms of the system. Lastly, one adopts: 4) A few rules of inference that 
describe the allowable ways of combining axioms to provide proofs of 
other meaningful formulas. 

To be more precise, a proof from the formal system T isa sequence of 
meaningful formulasM 1 , •.. ,Mn such that each of the Mi is either an 
axiom ofT or is obtained from some of the previous M/s by one of the 
rules of inference. A formula F is said to be provable from T if there is 
such a proof sequence that ends with F. 

We will now illustrate these notions by describing the formal system 
P for arithmetic invented by Giuseppe Peano in 1889. Peano was one of 
the first to use what we now call symbolic logic. He introduced, for in
stance, the use of the symbols "(3x)" to mean "there is an x such 
that ... "; and he habitually wrote out all of his lecture notes in his new 
symbolism. He was teaching at a military academy at the time, and his 
students were so incensed by his formalistic approach to mathematics 
that they rebelled (despite his promise to pass them all) and got him 
fired. Subsequently he found a more congenial setting at the University 
of Turin.l 

Anyone who has ever seen a formal system should feel free to skip 
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the following description of P. Anyone who has never seen a formal sys
tem will have some difficulty in understanding the description, so he 
too should skip it, or at most, skim it. The description of P is here pri
marily as an exhibit. 

The basic symbols used in P are of three sorts: logical and punctua
tion symbols, variable symbols, and special arithmetical symbols. The 
logical symbols are seven in number: - , V, &, ~, ~, 3, and V. These 
symbols are pronounced, respectively, "not," "or," "and," "implies," "if 
and only if," "there exists," and "for all." The four punctuation symbols 
are the round and square parentheses: (,), [, and]. Since the sentences 
in P may be arbitrarily complicated, one needs an infinite number of 
variable symbols: m, n, p, q, x, y, z, VO, Vl1 V2, . . . The symbols peculiar 
to the study of arithmetic are five in number: 0, S, +, X and =. These 
symbols are pronounced: "zero," "the successor of," "plus," "times," 
and "equals." 

We have completed phase one of specifying the formal system P by 
giving the basic symbols used in this system. The only symbols likely to 
be unfamiliar to the non-mathematician are the successor symbol "S" 
and the quantifiers "V" and "3". 

In general, if n is some natural number, Sn is supposed to be the next 
natural number. In other words, the set to, 1,2,3, ... } can be thought 
of as the set to, SO, SSO, SSSO, ... }. As we will see, both + and x can 
be defined in terms of the extremely basic notion S of taking the next 
larger natural number. The meaning of the quantifiers will become evi
dent from the following examples of meaningful formulas and their in
tended meanings. 

(Vx) (3y) [y = Sx] 

(Vx) (3y) [x = OVx = Sy] 

SSO + SSO = SSSO 
x + Sy = S(x + y) 

(3y) [x = SSO x y] 

(3y) [x = SSO + y] 
(Vy) (Vz) [x = y x z --+ (y = xVz = x)] 

(Vn) (3p) (3x) (Vy) (Vz) 

[p = n + x and (p = y x z --+ (y = pVz = p»] 

Every natural number has a succes
sor. 

Every natural number is either zero 
or the successor of some other 
number. 

Two plus twO is three. 
x plus the successor of y is the suc

cessor of x plus y. 
There is ay such thatx is two timesy 

(i.e., x is even). 
X is greater than or equal to two. 
Whenever x is factored, one of the 

factors is x itself (i.e., x is prime). 
For every n, there is a prime number 

p that is greater than n (i.e., there 
are infinitely many primes). 
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The meaningful formulas of the formal system P are built up in two 
stages. First we define the notion of a term, and then we use this notion 
to define the meaningful formulas. The definition of term has three 
parts: 1) Every variable symbol is a term. 2) If sand t are terms, then so 
are S(t), (s) + (t), and (s) x (t). (The purpose of the parentheses is to 

avoid ambiguous terms such as SO + 0, which could mean either 
S(O + 0), or (SO) +0. In practice, we almost always omit the parenthe
ses, relying on the rule that S, + and x are to be executed in that 
order.) 3) A string of symbols is a term only if it can be obtained 'by 
repeated applications of 1) and 2). Sx, SSO, V13 x S(SSO + SO) are all 
terms, but xO, SSS, and SO+ are not. 

Now we can define the notion of meaningful formula of P in three 
steps: 1) If sand t are terms, then s = t is a meaningful formula. 2) If A 
and B are meaningful formulas, then so are -(A), (A VB), (A&B), and 
(A ++ B); and if w is a variable symbol, then (3w) [A] and (Vw) [A] are 
meaningful formulas as well. 3) A string of symbols is a meaningful for
mula only if it can be obtained by repeated applications of 1) and 2). 
(The round parentheses are used to separate "clauses," and the square 
parentheses are used to indicate the formula to which a quantifier or 
group of quantifiers applies.) We saw a number of examples of mean
ingful formulas above. 

A variable symbol w is said to be free in a formula A if w occurs in A, 
and if (3w) and (Vw) do not occur before w in A. If a meaningful formula 
A has no free variables, it is called a sentence, and can be regarded as 
making a statement about natural numbers that is either true or false. 

If a meaningful formula A has exactly one free variable w, then we 
sometimes stress this by writing A as A(w). Given any such A(w) and 
any term t, we write A[t] to stand for the formula obtained by replacing 
every occurrence ofw inA by t. For instance, ifE(x) is the formula (3y) 
[x = sso x y] stating that x is even, then E[SSSSO] is the true sentence 
(3y) [SSSSO = SSOxy] stating that 4 is even, and E[SSSO] is the false sen
tence stating that 3 is even. 

We are now ready to state the axioms of the formal system P. These 
axioms fall into four groups: the L group, axioms having to do with the 
use of the logical symbols; the Q group, which concerns the use of the 
quantifiers; the E group, involving the symbol "=", and the P group, 
which comprises what is traditionally thought of as Peano's axioms for 
arithmetic. 

Every formal mathematical system includes groups L, Q, and E among 
its axioms. For this reason, these axioms are often not explicitly men-
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tioned when a formal theory is given. I mention them here for the sake 
of completeness. 

A B -A AVB A&B A .... B A-B 

T T F T T T T 

T F F T F F F 

F T T T F T F 

F F T F F T T 

Figure 105. 

If A, B, C, etc., are formulas, we can form various combinations of 
them using the logical connectives - , V, &, -+, and~. The meaning of 
these logical connectives can be expressed by exhibiting how the truth
values of compound formulas depend on the truth-values of the compo
nent parts. (Figure 105). Some combinations will be true regardless of 
the truth or falsity of the component parts. Such necessarily true combi
nations are called tautologies. A V -A, (A -+ B) ~ (-B -+ - A), and 
(A VB) ~ - (-A & - B) are examples of tautological forms. x = 0 
V - (x = 0) and «'9'y)[ - (x = 5y)] -+ x = 0) ~ (-(x = 0) -+ - ('9'y) 
[- (x = 5y)]) are specific instances of the first two of these tautological 
forms. 

A V B ++ - ( -A & -B ) 

T T T T T F F F 

T T F T T F F T 

F T T T T T F F 

F F F T F T T T 

Figure 106. 

There is a fixed finite procedure by which one can check if a given 
string of symbols is a tautology. One simply constructs a truth table and 
sees if the statement in question is true no matter what the truth values 
of the component statements are. So there really is no imprecision or 
hidden complexity in taking the axiom group L to be: L) All tautologies. 
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Alternatively, one can give eight basic tautologies from which all 
other tautologies follow according to the Modus Pomens rule of proof 
to be given below. But I will not state the eight basic tautologies here. 
Group Q consists of three schemas that clarify the meaning of the quan
tifiers: 

Schema Ql) If A(w) is a meaningful formula, w is a variable, and t is a term: 
(Vw) [A(w)] - A[t]. 

Schema Q2) If A(w) is a meaningful formula, w is a variable, and t is a term: 
A[t] - (3w) [A(w)]. 

Schema Q3) If w is a variable and A(w) is a meaningful formula, then 
A(w) - (Vw) [A(w)]. 

Schema Q3) is the only one that is a bit surprising. Q3) is sometimes 
called the Generalization Rule, and makes the point that if we can prove 
A(w) holds for a variable w, then, since no special properties of ware 
used, we have really proved (Vw) [A(w)] i.e., for all w, A holds). 
And now for Group E. 

Schema El) For any term t, t = t. 
Schema E2) For any terms sand t, t = s - s = t 
Schema E3) For any meaningful formula A(w) with a free variable w, and for 

any terms sand t, t = s - (A[t] - A[s)). 

Each of these schemas actually stands, again, for a countably infinite 
number of axioms. Thus, Schema E 1) is really all of the axioms 0 = 0, 
o + 0 = 0 + 0, S(SO + 0) = S(SO + 0), and so on. But rather than 
writing out each one of these axioms here, we schematically represent 
them all at once with the formula t = t. El) and E2) represent what are 
normally called the reflexive and the symmetric properties of the relation 
.. =". The transitive property, (s = t & t = r) - s = r, is derivable from 
E 3)'. E 3) codifies the principle that equals can be substituated for equals. 

The P Group of axioms are as follows: 

PI) ("Ix) [-(Sx = 0)]. 
P2) (Vx) (Vy) [Sx = Sy - x = y]. 
P3a) (Vx) [x + 0 = x]. 
P3b) (Vx) (Vy) [x + Sy = Sex + y)]. 
P4a) (Vx) [x x 0 = 0]. 
P4b) (Vx) (Vy) [x x Sy = (x x y) + x]. 
P5) For each meaningful formula A(w) with a free variable w, 

A[O] - «Vx)[A[x] - A[Sx]] - (Vy) [A(y]]). 
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o SSO 

sssso ~ 
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0- SO _ S~O 

SSSSSO 

"'SSSSO 
Violates P2) 
for 
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Violates P1) 
for 
S(SSSO) = 0 

S(SO) = S(SSSSO) 
but 
SO F SSSSO 

(A) (8) 

Figure 107. 

The purpose of the first two axioms is to guarantee that none of the 
terms 0, SO, SSO, SSSO, . . . are equal to each other. PI) rules out the 
possibility of the sequence bending around into a circle with sno = 0 
for some n. P2) rules out the possibility of the sequence bending into a 
loop that hooks in somewhere past O. P3a) and P3b) constitute a so
called recursive definition of + in terms of S. The definition has the form 
n + 0 = n n + Sm = S(n + m). To see how it works in action, con
sider how one uses it to get 3 + 2 = 5. 

SSSO + SSO = S(SSSO + SO), by P3b) 
= S(S(SSSO + 0», by P3b) 
= S(S(SSSO», by P3a) 
= SSSSSO, dropping the parentheses. 

P4a) and P4b) define x recursively in terms of + : 
{ n x 0 = 0 

n x Sm = (n X m) + m. 
To see this in action, we show 3 x 2 = 6. 

SSSO x SSO = (SSSO x SO) + SSSO, by P4b) 
= «SSSO x 0) + SSSO) + SSSO, by P4b) 
= (0 + SSSO) + SSSO, by P4a) 
= SSSO + SSSO, by P3a) 
= SSSSSSO, as can be checked with P3). 
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Schema P5) is called the Induction Schema and is actually a countable 
infinity of axioms. With the discussion of the Library of Babel in mind, 
it is not difficult to see that there are actually w different meaningful 
formulas with one free variable. For each such A[w], the Induction 
Schema asserts that If 0 has the property A and if for any x, x + 1 has 
property A whenever x has property A, then every y has property A. 

To see a simple example of how this schema is used, consider how 
one proves (Vy)[O + y = y], a fact that is necessary in proving the full 
commutative law (Vx) (Vy)[x + y = Y + x]. To prove (Vy)[O + Y = y], 
we prove i) 0 + 0 = 0 and ii) (Vx )[0 + x = x ~ 0 + Sx = Sx], and 
apply an instance of the Induction Schema. i) follows from P3a) by the 
Q axiom, stating that (Vw)A[w] ~ A[t] for any formula A, variable w, 
and term t. ii) is proved by letting x be any number, assuming 
o + x = x, and then proceeding as follows: 

o + Sx = S(O + x) by P3b) 
= S(x) by hypothesis 
= Sx by elimination of parentheses. 

There is only one rule of inference used in proofs from the formal 
system P, called Modus Ponens: if A and B are meaningful formulas, one 
can infer B from (A ~ B) and A. This is a very familiar form of reason
ing, since in practice, one very commonly proves a statement B by first 
proving A and then proving that B is a necessary consequence of A. 

We will assume that all of the formal systems we consider have MP as 
their only rule of inference. This is really no restriction, since in the 
presence of MP, any rule of the form "Infer B from AI, A 2 , ••• ,An" 
can be replaced by the axiom, "AI ~ (A2 ~ C ... (An ~ B) ... »." 

A proof from P consists of a sequence M I, ... Mn of formulas such 
that for each M j with 1 sis n, either a) M j is an axiom from group L, 
Q, E, or P; or b) there are j and k such that j s k s i and M j follows 
from M j and Mk by MP, i.e., Mk is CMj ~ Mj). 

Writing out formal proofs is a very cumbersome process. We write 
out as an example the formal proof of (Vy) [0 + Y = y]. 

1. ("Ix) [x + 0 = x] P3a. 
2. ("Ix) [x + 0 = 0]--+ 0 + 0 = 0 Instance ofQ1. 
3. 0 + 0 = 0 MP (1&2). 
4. 0 + x = x --+ (0 + Sx = S(O + x) --+ 0 + Sx = Sx) Instance of E3. 
5. (0 + x = x --+ (0 + Sx = S(O + x) --+ 0 + Sx = Sx» 

--+ (0 + Sx = S(O + x) --+ (0 + x = x --+ 0 + Sx = S,,» Instance of L. 
6. 0 + Sx = S(O + x) --+ (0 + x = x --+ 0 + Sx = Sx) MP (4&5). 
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7. (Vx) (Vy) [x + Sy = Sex + y)] 
8. (Vx) (Vy) [x + Sy = sex + y)] ~ 

(Vy)[O + Sy = S(O + y)] 
9. (Vy) [0 + Sy = S(O + y)] 

10. (Vy) [0 + Sy = S(O + y)] ~ 0 + Sx = S(O + x) 
11.0+Sx=S(0+x) 
12. 0 + x = x ~ 0 + Sx = Sx 
13. (0 + x = x ~ 0 + Sx = Sx) ~ (Vx) 

[0 + x = x ~ 0 + Sx = Sx] 
14. (Vx) [0 + x = x ~ 0 + Sx = Sx] 
15. 0 + 0 = 0 ~ «Vx)[O + x = x 
~ 0 + Sx = Sx] ~ (V y) [0 + Y = y]) 

16. (Vx) [0 + x = x ~ 0 + Sx = Sx] ~ Vy)[O + Y = y] 
17. (Vy) [0 + y = y] 
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P3b. 

Instance of Q 1. 
MP (7&8). 
Instance of Q 1. 
MP (9&10). 
MP (6&11). 

Instance of Q3. 
MP (12&13). 

Instance of P5. 
MP (3&15). 
MP (14&16). 

This concludes the description of the formal system P. 
Fully formalized proofs have a nitpicking, obsessive quality. But by 

the same token, they are satisfyingly solid and self-explanatory. 
Nothing is left to the imagination, and the validity of a formal proof can 
be checked simply by looking at the patterns of symbols. Given the 
basic symbols, the rules of term and formula formation, the axioms and 
axiom schemas, and the rules of inference, one can check whether or not 
a sequence of strings of symbols is a proof in a wholly mechanical fash
Ion. 

In their book, Godel's Proof, Nagel and Newman make an interesting 
comparison between a calculus (their word for formal system) and the 
game of chess: 

Chess is played with 32 pieces of specified design on a square board 
containing 64 square subdivisions, where the pieces may be moved in 
accordance with fixed rules. The game can obviously be played without 
assigning any 'interpretation' to the pieces or to their various positions on 
the board . . . The pieces and the squares of the board correspond to 
the elementary signs of the calculus; the legal positions of pieces on the 
board, to the formulas of the calculus; the initial positions of pieces on 
the board, to the axioms or initial formulas of the calculus; the subse
quent positions of pieces on the board, to formulas derived from the 
axioms (i.e., to the theorems); and the rules of the game, to the rules of 
inference (or derivation) for the calculus."2 

It would greatly simplify things if human discourse could be regarded 
as the working out of some formal system. One would no longer have to 
wonder about the meanings of words, but could instead judge the valid
ity of people's arguments by checking them against a fixed, finitely de-



276 INFINITY AND THE MIND 

scribable set of rules and axioms. Leibniz dreamed of finding such a uni
versal system, the Characteristica universalis, and envisioned a day when 
disagreeing parties would simply get out the rules, saying, "Let us calcu
late." However, from "What Is Truth?" we know that there can be no 
finite description of how to generate all true books, for there can be no 
truth machine. 

It is sometimes useful to think of a formal system as a machine, rather 
than a game. The purpose of a formal system is to generate proofs of 
theorems, and we can identify a formal system T with a certain machine 
that prints out the list To, T 1, T 2, . . • of all the theorems proved by 
the system in question. 

One could construct such a machine for P as follows. Build a compo
nent that successively prints out the volumes of the Total Library. Build 
another component that examines each successive volume to see if it is 
a proof from P. Whenever a proof from P is found, the last formula in 
the proof is added to the list of theorems. This machine is completely 
finite, for although there are infinitely many axioms in P, these axioms 
are schematically described in a finite way. 

There are two features that one would like a formal system T to have: 
completeness and consistency. We say that T is complete if for every sen
tence A in the language ofT, either A or -A is a theorem proved by T. 
We say that T is consistent if no contradictions are proved by T. 

To bring out more vividly the meaning of these two metamathemati
cal concepts, let us think about how these concepts apply to less formal 
systems. Many novels are primarily collections of statements about 
some individual. If we take English as the language, and take the usual 
rules of inference, then a novel can be thought of as a set of axioms con
cerning some Johnny X. A novel is a complete description of Johnny X if 
it enables one to answer any possible question about him. 

Most novels are not complete. Did Raskolnikov get big laughs in Si
beria? You'll never find out for sure by reading Crime and Punishment. 
How tall is Vernor Maxwell? No way to know just by reading Spacetime 
Donuts. One might despair of finding or writing a complete novel, but 
there is one way to do it. Consider a novel whose only sentence is, 
"Johnny X does not exist at all." In this case we can answer every possi
ble question about Johnny X. Is he five feet nine? No. How many cells 
are there in his body? None. There are other possibilities of complete 
descriptions as well. "Johnny X is the three vertex points of an equi
lateral triangle having no particular space-time-scale location" would 
seem to serve as a complete description as well. 
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P (Peano arithmetic) would be a complete theory if every sentence in 
the language of P could be either proved or disproved by P. As we will 
see, Godel proved that P is not complete. Specifically, he proved that 
there is a sentence having the form (VVI) . . . (Vvn) [F[Vh . . . , 
vn] I- 0] that P can neither prove nor refute, F being a polynomial with 
integer coefficients. This is not entirely a bad thing, for if P were com
plete, then one would no longer need mathematicians very much. 

Why not? If P were complete, then we could build a finite machine 
that would answer every question we could ask about the natural num
bers. If, for instance, we want to know whether Goldbach's conjecture 
B is true or false, we might build the machine that lists all of p's theo
rems and wait for either B or -B to show up in the list.3 If P were com
plete, then one would know with assurance that sooner or later either B 
or ~B would be proved by P. But since P is not complete, we cannot 
rule out the possibility that we might sit watching the printout forever, 
and that neither B nor ~ B would ever appear as a theorem of P. (A 
curious sidelight here is that if P cannot prove - B, then B is in fact 
true! This follows, since if there were an even number not the sum of 
two primes, then P could exhibit this number, thus proving ~B.) We 
will have more to say about the significance of the incompleteness of P. 

A novel is a consistent description of Johnny X if it does not logically 
lead to a statement of the form A & ~A. A novel containing the sen
tences "Johnny X was a perfectiy normal-looking human being. One 
morning while he was tying his shoes, he reached under the bed with his 
third arm and found a glass eye" is not consistent. For insofar as being a 
normal-looking human being entails having two arms, we can see that 
this novel leads to the contradiction: "Johnny X has three arms and 
Johnny X does not have three arms." 

Any statement of the form (A & ~ A) ~ D can be seen to be a tautol
ogy according to the truth-table definitions of" &," "~," and "~." So if 
a formal system proves a contradiction (A & ~ A), then by Modus 
Ponens it proves D for any sentence D whatsoever. In other words, ifT 
can prove a contradiction, then the whole system T more or less breaks 
down and produces "proofs" of every sentence in the language of T. If 
P were inconsistent, then it would be of no help in deciding if Gold
bach's conjecture B is true or not, since P would prove Band P would 
prove ~B. 

The metamathematical statement "P is consistent" is usually abbre
viated as "Con(P)", and can be taken to mean "There is no proof from P 
of the sentence a = SO". (Recall that "SO" just means "I".) As men-
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tioned above, Godel's First Incompleteness Theorem shows that P is 
not complete. His Second Incompleteness Theorem shows that P 
cannot prove Con(P). 

It is not immediately evident that Con(P) is a sentence in the lan
guage of P, but we will show in the next section that there is, in fact, a 
way of coding up formulas by the method called Godel numbering, which 
enables us to find a sentence in the language of P that expresses the 
same thing as Con(P). So although we have every reason to think that P 
is in fact consistent, it is impossible to prove this fact on the strength of 
the assumptions that P embodies. 

Early in the 1900s a number of paradoxes were found in logic and set 
theory: the Burali-Forti paradox, the Russell paradox, the Berry para
dox, and Richard's paradox. There was a widespread suspicion among 
mathematicians and philosophers that the use of actual infinites must 
inevitably lead to contradiction. But nevertheless, mathematical prac
tice seemed to demand the use of such infinite objects as the set of all 
natural numbers, the set of all real numbers, and the transfinite ordinals. 

In this setting, David Hilbert delivered his classic paper of 1925, "On 
the Infinite." Hilbert was one of the most versatile mathematicians of 
this century, doing important work in analysis, function theory, number 
theory, geometry, and the foundations of mathematics. He was far too 
familiar with the properties of infinite sets to be willing simply to strike 
out all references to them. Yet he felt that mathematics should some
how be based on completely finite considerations. 

Hilbert proposed a formalist foundation of mathematics. That is, he 
suggested that we can view mathematics as the activity of deriving cer
tain strings of symbols from certain other strings of symbols according 
to certain rules. Thus, although a book on set theory appears to be dis
cussing highly infinite entities, it is possible to maintain that all the book 
really does is to exhibit ways of transforming certain strings of symbols 
(the axioms of set theory) into certain other strings of symbols (the the
orems of set theory.) 

The study of how these strings of symbols can be manipulated com
prises what Hilbert termed proof theory. In order to avoid reintroducing 
infinities and having to start all over again, Hilbert required that only 
finitistic methods be used in his proof theory (where a method is finitis
tic only if it involves no infinite searches and can be exhaustively speci
fied in a finite number of words). Hilbert felt that it should be possible 
to formalize all of mathematics and to find a finitist proof of the consis
tency of mathematics. This project became known as Hilbert's Program, 
and in 1925 Hilbert felt that the solution was near: 
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In the present situation, however, this problem of consistency is per
fectly amenable to treatment. As we can immediately recognize, it re
duces to the question of seeing that '1 I- l' cannot be obtained as an end 
formula from our axioms by the rules in force, hence that '1 I- l' is not a 
provable formula. And this is a task that fundamentally lies within the 
province of intuition just as much as does in contentual number theory 
the task, say, of proving the irrationality of fl, that is of proving that it is 
impossible to find two numerals a and b satisfying the relation a2 = 2b2, a 
problem in which it must be shown that it is impossible to exhibit two 
numerals having a certain property. Correspondingly, the point for us is 
to show that it is impossible to exhibit a proof of a certain kind.4 

As mentioned above, we use Con(P) to stand for the sentence, 
"There is no proof from P of 0 = SO." Godel's Second Incompleteness 
Theorem.shows that Con (P) cannot be proved on the basis of the proof 
methods embodied in P. This was a real blow for Hilbert's Program, 
although as Godel himself pointed out, it is conceivable that there 
might be finitary proofs of Con(P) that cannot be represented in P,5 

Of course, for a Platonist, the consistency of P is evident-one sim
ply notes that all the axioms of P are true when interpreted in the set cv 
of all natural numbers with the usual definitions of + and x. Now, it is 
possible to show that the rules of logic preserve truth, so if all the 
axioms of P are true in the natural numbers, then all the theorems of P 
must be true in the natural numbers as well. 0 = SO is not true of the 
natural numbers, so it is therefore impossible that the sentence could be 
a theorem of P. Thus we know that "there is no proof from P of 0 = 
SO," is true; so we know Con(P). 

Of course, "seeing" that the Induction Schema is true in the set of 
natural numbers is anything but a finitary procedure. Around 1940 
Gerhart Gentzen was able to establish a result stating that the infinite 
process just outlined was in some sense equivalent to visualizing all of 
the ordinals up to the ordinal Eo that we discussed in "From Omega to 
Epsilon-Zero."6 

It is really Godel's First Incompleteness Theorem, however, that 
deals a death blow to the formalist Hilbert Program. This theorem es
tablishes not only that P is incomplete, but that there is no finitely given 
formalized theory that can correctly answer all questions about the ad
dition and multiplication of natural numbers. 

Hilbert was not explicitly opposed to the Platonist view that infinite 
mathematical objects have a stable existence in the Mindscape. Indeed, 
he referred to Cantor's class of all sets as a "paradise" from which he 
refused to be expelled. Nevertheless, Hilbert did believe that talk 
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about actual infinites was a luxury that could be dispensed with. He 
thought that it was possible to find a complete formal system for mathe
matics, and that mathematics could then be viewed as a finitary symbol 
game based on this complete system. And in this he was wrong. No fi
nitely given system can exhaust the riches of the actual infinite. The 
practicing mathematician's direct intuitions of infinite sets cannot be 
dispensed with. 

For it is by way of this direct perception of the infinite that mathema
ticians discover new axioms to be added to the old formal system. The 
working out of the logical consequences of given axioms can be viewed 
as a wholly finitary process. But deciding which axioms to work out con
sequences from is a creative, in finitary process that cannot be mechanis
tically accounted for. 

SELF-REFERENCE 

Godel's First Incompleteness Theorem is proved by finding a sen
tence G p in the language of P that expresses the metamathematical sen
tence, HG p is not provable from P." In other words G is to represent the 
self-referential sentence, "This sentence is not provable from P." The 
reader may enjoy already figuring out for himself why G p must be true 
but not provable from P. 

How are we to express the sentence G in the severely restricted lan
guage of P? There are two difficulties. First, we must figure out how to 
represent the rather complex concept "provable from P" in terms of 
simple sentences about addition and multiplication. Second, we must 
find a way of making sentences in the language of P refer to themselves 
(after all, the locution "this sentence is ... " is not available in the for
mal language of P.) 

The first difficulty is resolved by means of a trick called Godel num
bering. We find a way of assigning a code number to each sentence in 
the language of P, and then it turns out that the property "n is the 
Godel number of a sentence provable from P" is actually representable 
in the system P. The resolution of the second difficulty is by means of a 
kind of diagonal argument, which will be explained below. 

But first we should describe the G6del numbering process in some 
detail. Here, as in everything involving formal systems, it is easy to get 
bogged down in technical fine points, and the reader who is bored or 

confused should feel free to skim. 
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There are infinitely many ways in which one could set up a GOdel 
numbering. Here we will ,use a coding like that introduced in "The Li
brary of Babel." We start out by assigning a code number with no zeros 
in it to each symbol in the language of P. 

-1 [11 P 21 
V2 ] 12 q 22 
&3 S13 x 23 
~4 + 14 Y 24 
++5 x 15 z 25 
36 = 16 $10 26 
'tI7 017 $11 27 
( 8 m 18 $12 28 
)9 n 19 .. 

Any string A of the basic symbols is coded up by the number r A' ob
tained by first replacing each symbol by its code number and then 
separating these symbol code numbers by single zeros. Thus, rSSSO' is 
13013013017, since 13 is the code number of S and 17 is the code 
number of o. Again, it is not hard to check that the axiom ('Ix) 
[x + 0 = x] is coded up as 80702309011023014017016023012. 

The definitions of the terms, formulas and axioms of P that were 
given in the last section can all be reformulated so as to apply to the 
code numbers. For instance, the definition of "term" can be mimicked 
to define a property Trm(x) of numbers such that Trm(x) holds iff x is 
r t' for some term t. This is done as follows: 1) if n ~ 17 and there are 
no zeros in the decimal expansion of n, then Trm(n); 2) if Trm(n) and 
Trm(m), then Trm(13080n09), Trm(80n0901408Om090), and 
Trm(80n0901508Om09); and 3) Trm(x) only if x is obtained by a finite 
sequence of applications of 1) and 2). 

In the same vein, we can define a predicate Fm(x) that holds only for 
the code numbers of meaningful formulae; and we can find a predicate 
Axp(x) such that Axp(x) holds if and only if x = rA' for some axiom A 
of the formal system P. 

We can extend the notion of G6del numbering to sequences of sen
tences in the following way. Say that A 1> A 2 , • • • ,An is a sequence of 
sentences in the language of P. We can code up this sequence by first 
replacing each Ai by its code number [Ai] and then by separating these 
code numbers by double zeros. Thus, the sequenceA1>A2' ... ,An is 
coded up by the natural number rAI' 00 rA2' 00 ... 00 rAn'. 

Since one can judge quite mechanically if a given sequence of sen-
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tences constitutes a proof from P, there is a predicate Provp(m,n) that 
holds precisely when m codes up a proof of the sentence coded up by n. 
At this point we can see how to transform the English sentence, a) "A is 
provable by the formal system P," into an equivalent statement about 
natural numbers: b) "(3m) [Provp[m, rA 1 ]]." We can see that a) +-+ b) as 
follows. If there is a proof from P of A, then the proof can be coded by 
some number, so (3m) [Provp[m, rA' ]]. Conversely, if (3m) [Provp[m, 
r A' ]] is true, then there must actually be some natural number M such 
that Provp{M, rA'}, and M can be decoded to find a proof of A from P. 

Now we wish to take the process a step further. Instead of asking 
about the truth of various number-theoretic statements, we would like 
just to ask about the derivability of various strings in the formal system 
P. Keep in mind that although P is inspired by the natural numbers, in 
and of itself P is not really about anything. P is, rather, a set of rules for 
deriving certain strings of symbols. 

It was the hope of Hilbert and other formalists that all reference to 
"truth" could be replaced by reference to "provability" from P or from 
some improved formal system T. To a certain extent these hopes are 
justified. 
For instance, not only does ('1m) ('In) [m + n = n + m] express a true 
fact about numbers, but it is also a string that is derivable from P. Not 
only does 2 + 3 = 5 express a true fact about numbers, but the related 
string S20 + S30 = S50 of P is derivable from P (this string can be 
written out in full as SSO + SSSO = SSSSSO). In fact, all of the facts 
about natural numbers that are familiar to the average person can be 
converted into strings that can be proved from P. But, as we will see, it 
is possible with a certain amount of effort to find a string G p that ex
presses a true fact about numbers which cannot be proved from P. 

I might remark here that even if the formalist program were, per im
possibile, successful, the slippery notion of "truth" would still not be per
manently banished. For to say, instead of "A is true," "A is provable 
from P," is to say, as noted before, '''(3m) [Provp[m, rA"1 ]]' is 
true" . . . and we are back where we started. There would be some 
slight gain in this reduction, since to check the truth (3m) [Provp[m, 
r A ']] requires only one infinite search through the natural numbers, but 
still, the dependence on the existence of the set CI) as a definite entity has 
not been avoided. 

But let's see how we are to find the sentence Gp that rules out even 
such a partial reduction in our dependence on the actual infinite. The 
bulk of GOdel's 1931 paper is devoted to showing that the predicate 
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Provp(m, n) can be represented in the formal system P. That is to say, 
Godel shows indirectly that there must be a formula Prov' p in the lan
guage ofP such that for any m and n, Provp[m, n] ++ ("Prov' p[smO,sno]" 
is provable from P) and - Provp [m, n] ++ (" - Prov' p [smo, sno]" is prov
able from P). The proof that there is such a formula has to be indirect, 
for to write Prov' p out in the limited language of P would take hundreds 
of pages. Nevertheless, GOdel's proof leaves not the slightest doubt 
that one could indeed write Prov' p out, if one really wanted to. 

We mentioned before that we can express the English metamathema
tical statement a) "A is provable from P" by the number-theoretic state
ment b)" '(3m) [Provp[m, rA ']]' is true." We know that a) if and only if 
b). How do these statements relate to c) "'(3m) [Prov'p[m, S'A'O]], is 
provable from P"? It is not too hard to see that if a), then c). For if A is 
provable from P, then there is an M coding up the proof of A, so that 
Provp[M, rA']. Since Prov'p represents Provp in the sense mentioned 
above, we know that Prov' p [SMO, S' A '0] is provable from P. Applying an 
instance of Schema Q 2) of the system P and applying the rule of Modus 
Ponens, we see that' (3m )[Prov' p [m, S' A '0]]' is provable from P as well. 
Thus we have shown that a) implies c). 

The converse implication can conceivably fail. That is, it could hap
pen that P proves (3m)[Prov'p[m, S'A'O]], even though it also proves 
'-Prov'p[SMO, S'A'O], for each specific natural number M. In this case, P 
is claiming that there is a proof of A, and at the same time showing that 
each possible proof of A one considers is no good. There is something 
wrong with a theory that does such a thing-we will see in the next sec
tion that such a theory is called Cl)-inconsistent. 

Frequently one can gloss over the distinction between Provp and 
Prov' p and the distinction between M and SMO. We will begin to be 
more casual shortly, but one last formally precise remark should be 
made. In English we express the consistency of P by, "There is no proof 
from P of '0 = SO'." This can expressed equivalently in number-theore
tic terms as "'- (3m) [Provp[m, 17016013017]]' is true." (Recall that 
rO = SO' is 17018013017.) Corresponding to this number-theoretic 
sentence, we can form the following string, known as Con(P), in the 
language of P: -(3m)[Prov'p[m, S17018030170]]. In the next section we 
will discover the rather startling result that P is consistent if and only if P 
cannot prove Con(P)! 

The result just mentioned is Godel's Second Incompleteness Theo
rem, which follows rather easily once his First Incompleteness Theorem 
is proved. As was promised in the last paragraph, we will no longer 
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maintain the tedious distinctions between Prov' p and Provp, and be
tween M and SMQ, as what we are about to do is already confusing 
enough as it is. 

What we want to do is to find a formula G p such that G p ~ ~ (3m) 
[Provp[m, rG p ']] is both true and provable in P. To do this we define a 
formula D(n) as follows: 

D(n) ~ (If n is the Godel number of a formula A with one free vari
able, then A [n] is not provable from P.) Thus, D(n) holds if either n is 
not the Godel number of any formula with one free variable or if n is 
r A 1 for some A with one free variable, and the sentence A [n], obtained 
by putting the number n in for the variable, is a sentence that is not 
provable from P. More technically, we could define D(n) ~ - (3m) 
[Provp[m, Sub(n,n )]] where Sub(n, n) is the Godel number of the sen
tence, if any, obtained by plugging in n for the free variable in the for
mula coded up by n. 

Now it is possible to represent Provp, Sub, and D in the language of 
P, so there is a number d that is the Godel number r D (n )' of the for
mula D that has one free variable n. The sentence Gp that we seek is 
simply D[d]. 

Now D[d] says that iF A 1 = d, then A[d] is not provable from P. But, 
in fact, rD' = d, so D[d] says that D[d] is not provable from P. So, G p 

asserts its own unprovability from P. If you try to write out G p in En
glish you get an infinite sentence: "P cannot prove that P cannot prove 
that P cannot prove that .... " If you think of G p this way it is perfectly 
clear that G p ++ (P cannot prove that G p), since all we are doing on the 
right is putting an extra "P cannot prove" in front of an w-sequence of 
them (and recall that 1 + w = w). 

It was the great achievement of Godel's 1931 paper to show how to 
construct such a sentence G p wholly within the formal system P. There 
are two essential features of P that make this construction possible: i) P 
is finitely describable, and ii) P is a sufficiently rich theory. It is because 
P satisfies i) and ii) that the predicate Provp can be represented by a for
mula of P; and it is because of this representation that the predicate D 
and the sentence G p can be formed in the language of P. 

To elaborate, the import of i) is that it is possible to decide more or 
less mechanically whether a given sequence of formulas is or is not a 
valid proof from P. Put differently, the i) says that there is some 
finitely complex number-theoretic predicate Provp(m, n) that holds if 
and only if m codes up a proof from P of the sentence coded up by n. 
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The import of ii) is that the language of P is rich enough, and the axioms 
of P are strong enough, to ensure that there is a formula Prov' p that rep
resents Provp in the manner mentioned above. 

In a nutshell, it is condition i) that enables us to convert the meta
mathematical notion, "provable from P" into a number-theoretic predi
cate; and it is condition ii) that enables us to represent the truth of this 
number-theoretic predicate by the provability of a certain string in P. 

The whole construction of this section can be carried out for any the
ory T that is i) finitely describable, and ii) as strong as P. So for any such 
T there will be a formula GT in the language ofT asserting its own un
provability from T in the sense GT ~ - (3m) [ProvT[m, rGT']]. 

GODEL'S PROOF 

As in the last section, let T be a finitely given theory about some infi
nitely complex part of the physical or mental universe. We will assume 
in addition that T is consistent. And again, we let GT be the formula in 
the language ofT such that GT ~ - (3m) [ProvT[m, rGT']]. 

GT states that no natural numbers m of a certain kind exist, so it seems 
legitimate to ask whether G T is a true or a false statement about natural 
numbers. Note that GT is true if it is not provable from T, so it seems 
that either GT is true and not provable by T, or GT is false and provable 
by T. Now, if we assume that our theory T does not prove falsehoods, then 
we can already rule out the second option and conclude that it must be 
that GT is a true sentence that is not provable by T. As we will see 
below, ,this conclusion can be reached under the weaker assumption 
that T is consistent. 

In addition to being a true or false statement about natural numbers, 
G T can also be represented as a string of symbols in the language ofT, 
and we can ask whether G T or -GT is provable in the formal system T. 
Recall from "Formal Systems" that in the case where both GT and -GT 

are provable from T, we say T is inconsistent; and in the case where nei
ther G T nor -GT are provable from T, we say T is incomplete, because it 
does not decide GT (in the sense of proving GT or proving -GT). 

There are eight theoretically possible combinations of the truth and 
the provability of G T and -GT , although only three of these combina
tions are actually possible. 
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Both G T and Neither G T nor G T alone is -GT alone 
-GT are provable -G T is provable provable is provable 

G T is True IMPOSSIBLE T is consistent IMPOSSIBLE T is consistent 
and incomplete but (c)-incon-

sistent 

G T is False T is inconsistent IMPOSSIBLE IMPOSSIBLE IMPOSSIBLE 

Why is it completely impossible for G T alone to be provable? The 
reason is that if T proves GT • then T proves -GT as well. For if T 
proves GT • then there is a proof from T of GT , and this proof can be 
coded up by some number M. Now if M codes up a proof ofGT from T, 
then ProvT[M, r G T'] is true. Since T obeys conditions i) and ii), ProvT is 
represented in T, and since ProvJM, rGT'] is in fact true, T can prove 
the string expressing ProVT [M, rGT'] (i.e., P can prove Prov'p[SMO, 
S'Gp'O]). Now, we assume that Schema Q2) is part of T, and use it to 
move from "T proves ProvT[M, rGTi]" to "T proves (3m) [ProvT[m, 
rGT']]". But this last phrase says that T proves -GT, since -GT is just 
(3m) [ProvJm, rGT']]. 

So now we know that ifT proves G T , then T proves -GT • Consider 
these four equivalent statements of this fact: 

1. 1fT proves GT , then T proves -GT . 

2. If T proves G T, then T is inconsistent. 
3. If T is consistent, then T does not prove G T • 

4. If T is consistent, then G T is true. 

Statement 1) implies statement 2), since any theory that proves a 
statement and its negation is inconsistent. Statement 2) implies state
ment 1), since an inconsistent theory proves every statement. State
ments 2) and 3) are equivalent by contraposition, and statements 3) and 
4) are equivalent by the definition of G T • 

We can sum up these facts as follows: ifT is consistent, then GTis true, 
but not provable from T. 

In this situation, we can still ask whether -GT is provable from T. If 
not, then we know that T is incomplete, since it proves neither G T nor 
-GT for the particular sentence G T in the language ofT. 1fT does prove 
-GT then we know that T proves a sentence that is not true ... so 
there is something not quite right about T. 

Again, we could rule out this possibility by assuming that T does not 
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prove anything that is not true, but "truth" is a very slippery concept. 
Instead, we can rule out the case where T proves -GT by requiring that 
T be what is called w-consistent. A theory T is w-consistent if for no 
A(m) do we have T claiming that there is an m satisfying A, without T's 
being actually able to produce one. That is to say, T is w-consistent if for 
no A(m) do we have T proving (3m) [A(m)] and proving each of the 
sentences -A[O], -A[l], -A[2], -A[3], ... 

Now, in the case where T is consistent, GT has no proof from T, so 
each of the sentences -ProVT[O, rGT'], -ProvJl, rGT'], -ProvT[2, 
rG T'], ••• expresses a number-theoretic fact that is provable in T. 1fT 
is w-consistent, then T cannot prove -GT as well, for -GT is the sen
tence (3m) [Prov[m, rGT']], each instance of which T has already dis
proved. 

Now we are in a position to state Godel's First Incompleteness Theorem: 

If T is a formal system such that 

then T is incomplete. 

i. T is finitely given, 
ii. T extends P, 

iii. T is consistent, and 
iv. T is w-consistent, 

Let us say a few words about each of the conditions i) through iv) on 
T. Condition i) means, to be precise, that there is a definite algorithmic 
procedure that can be applied to any number n to determine in a finite 
amount of time whether or not n codes up an axiom ofT. Once we have 
given the language of T and set up a simple coding such as that used in 
the last section, we can actually think of T as a set of natural numbers, 
{n: n codes up an axiom of T}. Condition i) says that this set is what is 
commonly called recursive, or computable. 

What would be an example of a theory not satisfying condition i)? 
Suppose that we took T r to be the set of all the sentences from the lan
guage of P that express true facts about the natural numbers. Tr is com
plete because for any given A, either A is true and A is an axiom of T r 
and thus provable from Tr, or A is false and -A is an axiom ofTr and is 
thus provable from Tr. So for any A, Tr "proves" (with a proof one sen
tence long) either A or -A; and in addition, T r satisfies conditions ii) -
iv). By Godel's First Incompleteness Theorem we can, therefore, con
clude that the set T r 0/ all true number-theoretic statements cannot be finitely 
gIven, 
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Historically, the process of reasoning was just the reverse. That is, 
Godel discovered that truth is undefinable, drew the conclusion that 
there must be a sentence that is true but not provable, and only then set 
out to construct such a sentence (the G T we have already seen). I would 
like to elaborate on this a bit. 

Truth is undefinable in the following precise sense: if T is a formal 
system extendingP, then there is no formula Tru(n) in the language of 
T such that for any sentence A of the language of T, A ~ Tru[rA ']. 
This fact is proved by a reductio ad absurdum argument. This is, one 
shows that if the notion "true statement ofT" could be expressed in the 
language of T, then the liar paradox of "What Is Truth?" would arise. 
For assume that there is a predicate Tru as described above. Then let 
E(n) ~ -Tru[Sub[n, n]] where, as in "Self-Reference," Sub[n, n] is 
r A[n r when r A 1 = n and A has one free variable. Finally, let e = rE' 
and form the sentence E[e] ofT such that E[e] ~ -E[e]. E[e] is true iff 
it is false-a contradiction. Therefore we must reject the initial assump
tion that a truth-definition T ru exists. 

Now let Tr be the set of all sentences ofT that are true, and let Pr be 
the set of all sentences ofT that areprovablefrom T. We have just shown 
that the set T r cannot be defined by any formula of T, but by the last 
section we know that the set Pr can be defined by a formula of T. In 
particular, A E Pr ~ (3m) [ProvJm, A]]. Because of this distinction, we 
can be sure that Tr f Pro 

If we assume that all the axioms and rules of inference ofT are true, then 
we can conclude that everything provable from T is true, and that Pr ~ 
Tr. By the last paragraph we know that this containment is proper, i.e., 
Pr c Tr. 

This means that there must be some sentence A in the language of T 
that is true but not provable. Since T does not prove any falsehoods, 
- A cannot be provable either, so A is not decided by T and T is there
fore incomplete. 

Godei says that it was this chain of reasoning that led him to discover 
the First Incompleteness Theorem.7 This heuristic proof differs from 
the 1930 version in that a) the heuristic proof depends on the intelligi
bility of the essentially infinite notion of "truth" in the assumption that 
the axioms ofT are true, whereas the 1930 proof does not use this no
tion, requiring only that T is consistent and w-consistent; and b) the 
heuristic proof shows only that there is some A that is undecidable for T, 
whereas the 1930 proof exhibits the specific undecidable formula G T • 

An example of a theory that might not satisfy condition i) is H, the set 
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of all the sentences in Peano arithmetic that human beings will ever 
learn to be true. Statement ii) certainly holds for H; iii) and probably iv) 
would seem to hold as well if our methods of reasoning are correct. 
Thus, it must be that either i) fails, and there is no finite description of 
human mathematical reasoning, or H is incomplete, and there are some 
number-theoretic statements that will never be decided by our mathe
matics. We will have more to say about H in the next section. 

One last remark on condition i) before moving on to conditions ii) -
iv). It is not actually necessary to assume that the set of axioms ofT is 
recursive-that is, computable in the sense that there is an (idealized) 
machine that will decide for any given string A whether or not A is an 
axiom of T. It is enough to assume that the axioms of T are recursively 
enumerable-that is, listable in the sense that there is a machine that 
will 'print out all of the axioms of T. The essential thing is that in either 
case there is a machine that will print out all the theorems of T. This 
machine can be thought of as working by alternating between two 
modes. In mode one, the machine prints out the next axiom of T. In 
mode two, the machine looks over the list of theorems and prints all the 
statements A for which there is a B such that Band (B ~ A) are in the 
list. 

Condition ii), as it stands, says that the language of T includes all the 
symbols of the language of P, and that every axiom of P is an axiom or 
theorem ofT. This is obviously true for any of the theories, e.g., anal
ysis or set theory, which set out to encompass large parts of mathemat
ics. But it is nevertheless useful to reduce ii) to three precise subcondi
tions: iia) there must be a sequence zo, Z 1, Z2, . • • of terms of the 
language of T such that the relation k = r zn' is a recursive relation of k 
and n; iib) there must be a symbol - and two symbols x, y in the lan
guage of T such that for every recursive relation R(m, n) of two vari
ables there is a formula R'(x, y) of T such that if R[m, n] is true then 
R'[zm, zn] is provable, and if R[m, n] is false, then - R'[zm, zn] is prov
able; the formulas ofT that are the R' for some recursive relation of one 
or two variables are called recursive predicates; iic) there must be a sym
bol 3 such that for any recursive predicate A(x), if A[zn] is provable 
from T for any natural number n, then (3x) [A (x)] is provable from T as 
well. In combination with i), iia)-iic) ensure the existence of a formula 
GT with the desired properties. 

What sorts of theories fail to satisfy ii)? Any theory that has only a 
finite number of terms in its language fails to satisfy iia). Thus, we can 
have a complete theory of the mutual relations of the first thousand nat-
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ural numbers if no numbers greater than one thousand are ever referred 
to. A theory that has no individual terms at all, only variables, cannot 
satisfy iia) and iib). Euclidean geometry, for instance, does not speak 
about any special individual points and lines, but, rather, confines itself 
to general statements about the existence of points, lines, and circles. 
Tarski has shown that it is, in fact, possible to extend Euclidean geome
try to a complete theory-a theory that proves or disproves every gen
eral statement about points, lines, and circles. Again, if DLO is the the
ory describing the less-than relation, <, on the real number line, 
without mentioning any specific reals, then DLO is complete, in the 
sense that every statement about the < relation is decided by DLO. 

To see an example of a theory that satisfies iia) without satisfying iib), 
consider the theory P+. P+ is the same as P, but with all references to 
"x" eliminated. It turns out that P+ is complete in that every statement 
about the addition of natural numbers can be proved or disproved from 
P+. The analogous theory px is also complete. Only when both multipli
cation and addition are present does the theory becomes powerful 
enough to represent every recursive predicate. After that nothing is 
gained by extending P to a system that includes exponentiation as a 
primitive operation as well. Statement iic) simply says that 3 behaves as 
we expect it to, and is true of any normal theory. 

Does Godel's Incompleteness Theorem have anything to say about 
our theories of physics? It would seem not, since most theories of phys
ics do not mention infinitely many individuals or qualities that might be 
used as the Zn. Even if there were a theory U of our universe that sin
gled out an infinite number of particles (or classes of particles or other 
classes of phenomena) with individual names zo, Zu Z2, ... , U would 
still be unlikely to satisfy iib). For there is no reason to suppose that the 
relations S(Zk, Zm, zn) and P(Zk> Zm, zn) that hold if k = m + nand 
k = m X n, respectively, should be represented in the physical theory 
U. To give a more concrete example, suppose that U singled out the 
observer who formulates the theory, and thus the planet Earth; and as
sume that there are infinitely many planets. We might then call Earth zo, 

and for each n let Zn be the term signifying the nth nearest planet to 

Earth. There is no reason to believe that the set {zn: n is prime} of 
planets would be singled out by any property of U. Of course, there 
have been numerologically inclined physicists, such as Kepler and Ed
dington, and it could be that one of them might construct a physics that 
deliberately incorporates P. One might also say that insofar as physics 
includes axioms about measurement, then it must include statements 
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about numbers and again include P. In these cases, Godei's theorem 
does apply, but only in a rather uninteresting way. 

Condition iii) is quite clear. The minimum requirement here is that 
for no recursive predicate R' do we have T proving both R'[zm, zn] and 
- R '[zm, zn]. Of course, we never consciously adopt an inconsistent the
ory since, according to the usual rules of logic, ifT proves A and -A for 
some A, then T proves every sentence B in the language of T. 

Condition iv) actually can be dispensed with. Given i)-iii), a sentence 
RT can be found such that T does not decide RT (i.e., such that T proves 
neither RT nor - RT). RT is constructed more or less like GT, except that 
it says "RT is provable only if there is a shorter proof of -RT." Dis
entangling why T cannot prove RT or - RT will be left for an exercise. 

Now let us say a bit about the sense in which a T satisfying i) - iv) is 
incomplete. Already in 1930, Godel was able to show that G T is equiva
lent to a certain very simple sort of number-theoretic sentence having 
to do with the solvability of a certain polynomial over the natural num
bers. The recent solution of Hilbert's Tenth Problem8 has brought the 
situation to the point where we know, for instance, that there is a poly
nomial D with integer coefficients, eighty variables, and degree eight 
such that G T is equivalent to the statement that the equation D(Xl, 
. . . ,X80) = 0 has no solutions in the natural numbers. This D cannot 
really be explicitly given, because at least one of the coefficients in
volved will be thousands of digits long, basically because it must code 
up a description of the theory T. 

Quite recently, work by Harrington, Paris, and Kirby has led to the 
discovery of a simple and explicit statement Ra about natural numbers 
that is not provable from P.9 By thinking about the infinite set w, one 
can readily see that Ra is true. Nevertheless, Ra cannot be proved from 
Peano's axioms for number theory. There is not, however, any obvious 
method for finding such simple, true, and undecidable sentences for in
complete theories other than P. 

N ow let us move on to Godel's other Incompleteness Theorem. In 
the last section we defined Con(T) to be the number-theoretic sentence 
-(3m) [ProvT[m, rO = 1']]. 

Grjndel's Second I ncompleteness Theorem: 
If T satisfies conditions i), ii), and iii), then T does not prove Con(T). 

The proof consists, basically, of formalizing within T the argument we 
gave earlier for the proposition "if T is consistent, then G T is true." In 
this way one can show that there is a proof from T of (Con(T) ~ G T)' If 
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T could prove Con(T) as well, then we could apply Modus Ponens and 
obtain a proof from T of GT , which is impossible. Therefore, T cannot 
prove Con(T). 

I should stress that the fact that P cannot prove Con(P) does not lead 
most mathematicians to doubt the consistency of P. What we are en
countering here is simply the phenomenon that for any finitely given, 
sufficiently strong consistent theory T, Con(T) is a true sentence that 
the machinery of T is not sufficient to arrive at. 

Note that Con(T) and GT both have the form -(3m) [ProvT[m, k]] 
for some number k. As with G T , Con(T) can be cast in the form of a 
statement about the non-existence of natural number solutions of a cer
tain polynomial equation. Again, the most complicated thing about this 
polynomial will be the coefficient or constant term t that codes up a fi
nite description of the theory T. Since the coding process is more ex
plicit than ordinary language, the number t will be rather unwieldy. 
Still, it is not really unfair to say that an ordinary language description of 
T constitutes an adequate naming of t, for present-day computer tech
nology is sufficient to build a machine that automatically transforms a 
description like that given of P in "Formal Systems" into the corre
sponding code numberp. So one is justified in saying that if a) he under
stands the finite description of a given theory T that is a strong as P, and 
if b) he knows that T is consistent, then c) he knows true number
theoretic facts (namely, G T and Con(T» that T is unable to prove. 

A TECHNICAL NOTE ON MAN-MACHINE 
EQUIVALENCE 

Lucas has argued that no machine M can be identical to human math
ematical intuition H. 10 For the purpose of this note it will be convenient 
to let M 'II< be the set of (Godel numbers of) theorems listed by the mech
anized formal system M. By the same token, H'II< is to be the set of 
(Godel numbers of) sentences that the human mathematical intuition H 
will ever be in a position to assert as truths. Lucas claims that for any 
finitely given M, M'II< I: H'II<. 

His argument can be put as follows: (1) If M'II< k Hot, then H can see 
that M embodies a true formal system. (2) If H knows that M is true, 
then H knows that M is consistent, and Con(M) E H'II<. Godel's Second 
Incompleteness Theorem tells us that Con(M) ~ M'II<. So we can see 
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that if M"" ~ H"", then M"" I: H"". Of course, if M"" rt H"", then 
M "" I: H"" as well. So no M is equivalent to H. 

I would like to formalize the correct intuition underlying this fallacious 
argument. It is to be expected that the human mathematical intuition H 
deals with many extra-mathematical primitives. These primitives func
tion as ideal objects, if you will. I claim that, in particular, H makes use 
of a certain primitive unary predicate T rO of natural numbers. T r(e) is 
intended to mean that the Turing machine Me with index e lists a set of 
(G5del numbers of) mathematical sentences that are true of the mathe
matical universe that H believes himself to be thinking of. (By "Turing 
Machine Me with index e" I mean a theorem-proving machine M T , like 
in "Formal Systems and Machines," whose rules of operation Tare 
coded up by the book Be, like in "The Library of Babel.") 

Using this new predicate, we can formalize the two principles needed 
for a Lucas-style argument. (1) Me"" ~ H"" ---+ Tr(e) E H""; and (2) 
Tr(e) E H"" ---+ Con(e) E H"". Con(e) is, of course, the number-theoretic 
sentence expressing the assertion that Me formalizes a consistent theory. 

The second principle is quite reasonable, and we give it a title: H-Pla
tonism) Tr(e) E H"" ---+ Con(e) E H"". H-Platonism expresses H's belief 
that his Tr-predicate is based on an objectively existing, and therefore 
consistently described, universe of mathematical objects. 

The first principle is unnecessarily strong. I am willing to grant that all 
the sentences in H"" are indeed true, and that if M "" C H "", then M does 
indeed list only true theorems. But T r(e) will actually be in H"" only if 
H can ever be in a position to see Me as a whole. And this is possible 
only if H is capable of naming the large natural number e. So the cor
rect form of (2) is this: (Me "" ~ H"" & e is humanly nameable)---+ 
Tr(e) E H"". 

In "The Berry Paradox," we discussed the existence of a specific natu
ral number UH called the human Berry number. UH is the first number 
that H cannot find a name for. It may be that there are some humanly 
nameable numbers scattered here and there beyond UH. But being less 
than U H can serve as a good first approximation to the concept of being 
humanly nameable. 

With this in mind, let us formulate the following version of the first 
principle necessary for a Lucas-style argument: H-Consciousness) 
(Me"" ~ H"" & e < UH) ---+ Tr(e) E H"". H-Consciousness expresses H's 
belief that he is not just a formal system, but is, rather, a mathematician 
discovering mathematical truths. 

Insofar as H seems to have evolved as the result of a finitely complex 
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sequence of events, it is not unreasonable to expect that a machine Mh 
identical to H could also evolve. Hill' = Mh ill' is compatible with H-Pla
tonism, H-Consciousness and Godel's Theorem, provided that h is 
greater than /tH. Presumably h would also satisfy the stronger condition 
of being humanly unnameable. 

What I think I have achieved here is to show that it is possible to for
malize and make precise an argument involving such seemingly intracta
ble concepts as "human mathematical intuition," "truth," "the mathe
matical universe," and "humanly nameable." 



ANSWERS TO THE 
PUZZLES AND 
PARADOXES 

ANSWERS TO CHAPTER ONE 

1. No, it is not. We can see this by considering a numerical analogy. Let E be 
the "universe" of all even numbers. E contains infinitely many numbers, 
yet it does not contain every possible type of number, to wit, it contains 
no odd numbers. Although an exhaustive collection of planets would 
(probably) have to be infinite, an infinite collection of planets need not be 
exhaustive. 

2. The lamp could in fact be either on or off after infinitely many days. Infor
mation about its state after any finite number of days is not enough to en
able us to extrapolate past infinity. What makes this question interesting is 
that it is possible give an argument that seems to indicate the lamp will be 
on, as well as an argument that seems to indicate the lamp will be off. On: 
"The light starts out off, and then we turn it on. Each time we turn it off 
again, we immediately turn it back on. Therefore it must ultimately be 
on." Off" "Each time we turn the light on, we immediately turn it back off. 
Therefore it must ultimately be off." This type of lamp is called a Thomp
son Lamp, and will be discussed again later with reference to the "Grandi 
Series." 

3. No. There is a temptation to say that if everyone thinks the universe is 
finite, then it really is finite. Indeed, Kant argues something like this in his 
First Antinomy of Pure Reason. But the argument is fallacious. Just be
cause each natural number is finite does not imply that the set of all natu
ral numbers is finite. Looking at this another way, we can point out that if 
there are infinitely many observers, then the combination of their various 
finite perceptions can also be infinite. 
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4. It would mean that you have infinity-plus-one fingers. A curious thing 
about infinity is that you never count up to it. To count an infinite number 
of fingers is to count through every finite stage, but never to come to any 
last finger. If there is an "00 finger," then this comes after an infinity of 
fingers and indicates that you have infinity fingers plus one more. 

5. 1 + 1 could not exist, since it would have to be bigger than 1, which was 
assumed to be the largest possible number. But whenever a number x 
exists, then x + 1 exists as well. So if 1 + 1 does not exist then it must be 
that 1 does not exist. So we see that we can in fact never find a largest 
possible number. This is a version of the "Burali-Forti Paradox," which is 
discussed later. A problem with our conclusion that there can be no larg
est number is that fl, the Absolute Infinite, is supposed to be just that: the 
largest number. One way out of the difficulty is to assert that the largest 
number 0 exists, but that we can never get our hands on it so as to form 
0+1. 

6. In drawing an arbitrary circle we have three degrees of freedom: the 
choice of the x-coordinate of the center, the choice of the y-coordinate of 
the center, and the choice of the radius. So there are 003 circles in the 
plane. An arbitrary ellipse can be drawn with exactly five degrees of free
dom: two for the choice of the center, one for the length of the major axis, 
one for the length of the minor axis, and one for the angle the major axis 
makes with the horizontal. So there are 005 ellipses in the plane. 

7. Yes, if you say that seven is three plus four-and if you agree that three 
and four are finite and that the sum of two finite numbers is finite. The 
kind of argument which is not acceptable would be to say: "Seven is the 
sum of a finite number of ones: 1 + 1 + 1 + 1 + 1 + 1 + 1." For here 
you are assuming that the given string of seven ones is finite, and this is 
just what needs to be proved. By the same token, counting up to seven 
involves seven steps, and could not be used in a proof of the finiteness of 
seven. It is abstractly possible to imagine beings that count up to infinite 
numbers without noticing anything wrong! 

8. 6 X 1060 instants so far. Whether one regards as real those numbers which 
could never physically exist is a debatable topic. My inclination is to say 
that the world of mathematics exists outside of, and independently of, the 
physical world and the actions of human beings. The quantum-mechanical 
lower bound on meaningful time lengths is, by the way, sometimes called 
a "jiffy," as in, ''I'll be back in a jiffy." As mentioned, a jiffy is something 
like 10-44 or 10-43 seconds! A discussion of the "jiffy" is found in Paul 
Davies, Other Worlds, (Simon & Schuster, New York 1980). 

9. The mathematics of infinity is different from that of ordinary numbers. In 
a certain sense (the "ordinal" sense) three-times-infinity really is different 
from infinity. But in the sense intended here (the "cardinal" sense) three-
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times-infinity is precisely equal to infinity. Indeed the example given is a 
proof of this fact. 

10. Full equality: "wowowowowo ... and wowowowowo ... ," with an 
infinite number of wo's in each case. 

ANSWERS TO CHAPTER TWO 

1. Do w miles in the first half hour and w miles in the second half hour. To do 
w miles in one half hour, do the nth mile in the time interval between 
1/2 - 1/2n and 1/2 - 1/2n+1. 

2. 1 + 1/2 + 1/4 + l/S + 1/16 + ... = 2 
1 - 1/2 + 1/4 - l/S + 1/16 - ... = 1/0-1/2) = 1/(3/2) = 2/a 
For a = l/a, the total is 2/a, for a = 2/a, the total is 3. For a = .1, the total is 
1°/9, which can also be written 1.111111. ... If we substitute a = 1 we 
get 1 + 1 + 1 + 1 + ... = 1/0, which is sometimes called 00. So this 
looks fairly reasonable. If we use a = -1, we get 1 - 1 + 
1 - 1 + 1 - ... = 1/2. This sum has an interesting relation to the 
Thompson Lamp of Chapter One, Problem 2). We can think of "adding 
one" as corresponding to turning the lamp on, and "subtracting one" as 
corresponding to turning the lamp off. Now a running total of 1 arises 
when the lamp is in fact on, and a running total of 0 arises when the lamp 
is in fact off. The series for a = - 1 is called the Grandi Series, and one 
can argue that it sums to 1, or one can argue that it sums to O. It is amusing 
that our formula compromises with a "sum" of 1/2. If we put values of a 
below - 1 or above + 1 into our formula, the result is complete nonsense. 
Thus, if we let a = 2, we get the "equation," 1 + 2 + 4 + 8 + 
16+ ... =-1. 

3. This is a bit tricky. One way to do it is to use the two facts that i) there are 
infinitely many prime numbers p, (recall that a prime is a number with no 
divisors other than unity and itself,) and ii) if P and q are distinct primes, 
then for any natural numbers m and n,pn and qm are distinct. Now what we 
do is put the first w guests in the w rooms whose numbers are powers of 2, 
put the next w guests in the w rooms whose numbers are powers of 3, put 
the next w guests in the w rooms whose numbers are powers of 5, ... , 
put the nth w guests in the w rooms whose numbers are powers of the nth 

prime, and so on. Note that using this scheme leaves a lot of rooms empty 
(such as room number 6), but all we wanted was to fit the guests in at all. A 
mapping that leaves no room empty can be constructed by putting the mth 

person from the nth group of omega people into the room with number 
1/2(n2 + m2 + 2mn - 3m - n + 2). 
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4. The register at Hilbert's Hotel must have Xl pages. Recall that Xl is the 
first uncountable ordinal. For any countable ordinal a, it is possible to fit a 
guests into the hotel's w rooms. So to be sure that there is always room to 

sign in, we need a number of pages greater than every countable a, that is, 
we need Xl pages. 

5. The pages of the book would be ordered like the numbers in the set of 
integers: { ... ,- 3,- 2,-1,0,1,2,3, ... }. Condition ii) rules out the 
possibility of having uncountably many pages. Condition iii) indicates that 
after each page there is a next page (for otherwise one would not be able 
to count from illustration to illustration). This rules out the possibility of 
having a dense ordering like, for instance, the set of rational numbers. 
Condition i) implies that the book has infinitely many pages, and that is 
infinite in either direction. The set of integers is in fact the only countable, 
nowhere dense ordering, with no first or last element. In a footnote on p. 
58 of his Labyrinths (New Directions, New York 1964), Borges describes 
a book "containing an infinite number of infinitely thin leaves," ordered 
like the rational numbers. In White Light, I describe a book with as many 
pages as there are real numbers. 

6. w . Xl is equal to Xl, but Xl . w is not. The former statement is true, since 
any initial segment of an ordering of Xl copies of w will have the form 
w . a + n, for some countable a and some finite n. But such ordinals are 
countable and thus less than Xl' So W • ,Xl reaches as far as Xl, but never 
gets past it. Xl . W, on the other hand, is an arrangement of w copies of Xl, 
and thus reaches well past Xl' 

7. Under this definition w is even, as 2 . w = w. w + 4 is also even, as 
2 . (w + 2) = w + 4. Note, by the way, that the sort of "distributivity" 
just used does not work if the order is reversed. That is, 
(w + 2) . 2 = w . 2 + 2. Note also that if we were to change the defini
tion slightly and say that an ordinal number a is even· if for some ordinal 
b, b . 2 = a, then w + w would be the first transfinite ordinal which is 
even·. An even number can be gotten by summing up some number b of 
two's; an even· number can be gotten by summing up two of some num
ber b. The former concept is much more useful, but a confusion between 
the two concepts led some early thinkers to say that w is both even and 
odd. 

8. 0, 1, and 2 are the regular finite numbers. This is discussed in the second 
section of Excursion I. 

9. Let e be any infinitesimal quantity, and consider the line with equation 
y = 1 - e . x. This line differs from the horizontal line y = 1 in that it 
drops an infinitesimal amount lower with each unit of motion to the right. 
If it were to strike the x-axis at some point (1,0), then we would have 
o = 1 - e . I, and thus I = l/e. But now, since e is infinitesimal, we have 
e < l/n for every natural number n, and this implies that l/e > n for 
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every natural number n. So if I = lie, then I is infinite. Thus we see that 
the line y = 1 - e . x satisfies the conditions of i) passing through the 
point (0,1), ii) being different from the line y = 1, and iii) being parallel to 
the x-axis in the sense of never intersecting it at any finite point. 

10. No. Consider a string of length w. Just as there is no last natural number, 
there is no last point on a string of length w. Alternatively, one might con
sider a string whose length corresponds to the half-open interval 
[0,1) = {x: 0 :s: x < I}. The problem here is that there is no real number 
(or surreal number) which comes just before 1. 

ANSWERS TO CHAPTER THREE 

1. 410 = 10<10(101.» > 10<10(101» = 10<10(l01"~ = l()11OOl1ol = googolplex. 
2. 1 is interesting as it is the first number. 2 is interesting for many rea

sons, one of which is that 2 is the only number x such that 
x + x = x . x = XX = Xx. 3 is interesting as the only number which is the 
sum of all the numbers less than itself. 4 is interesting as the first non-trivial 
perfect square. 5 is interesting as it is the first number that is the sum of an 
even and an odd (other than one). 6 is the first number that is the sum of its 
proper divisors. 7 is the first number n so that we cannot construct a regular 
n-gon with ruler and compass. 8 is the first non-trivial perfect cube. 9 is 
interesting because when we move from 8 to 9 we go from 23 to 32• lOis 
interesting since it is equal to 1 + 2 + 3 + 4 + 5. And so on. There is a 
book by Philip J. Davis, The Lore of Large Numbers, (Random House, New 
York, 1961), which includes a list of properties that make all the numbers 
up through 100 more or less interesting. You can, for instance, cheer up a 
friend turning 36 by consulting this list to learn that 36 = 13 + 23 + 33• 

Are all the numbers interesting? Assume that there are some uninteresting 
numbers somewhere up the line. Let U be the first uninteresting number. 
The very first uninteresting number. How strange U is to be the first unin
teresting number, how interesting a number it is! But now U is both inter
esting and uninteresting, a contradiction. Therefore we were mistaken to 
assume that there are any uninteresting .numbers. 
This argument is very much in the style of the Berry'paradox, particularly if 
we realize that for large numbers, "being interesting" is akin to "having a 
short description." 

Since we do ~ot in fact believe that all numbers are interesting, how are we 
to avoid the argument given above? There is no easy answer, but one ap
proach might be to say that i) the property of "being interesting" is vague 
and in fact finitely undefinable, so ii) the property of "being uninteresting" 
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is also finitely undefinable, so iii) we cannot in fact construct the set of all 
uninteresting numbers in order to find its least member U. 

3. The length of the nth hypotenuse is the square root of n + 1. 
4. Yes. You say, "In exactly one minute I am going to shout one word, either 

'YES', or ·NO· ... You then look in the book to see what it predicts you will 
do. The book will predict either i) that you will shout, "YES," or it will 
predict ii) that you will shout, "NO," shout nothing, or do something dif
ferent. In case i) you shout, "NO," and in case ii) you shout "YES," thereby 
disproving the book's prediction. 

One could of course argue that you will never get around to carrying out 
this refutation, or that, even worse, when you attempt it the book correctly 
predicts that you drop dead before shouting anything! And of course, if you 
never saw the book at all, you certainly could not refute it. 
But the point being argued here is not that there could never be a correct 
"Book of Your Life," but rather that if you are shown any purported such 
book you can, in principle, refute it. A dramatization of this appears in 
Chapter 13 of my White Light. There is also a (slightly dishonest) discussion 
of the problem in Chapter 6 of Alvin I. Goodman, A Theory of Human Ac
tion (Prentice-Hall, Englewood Cliffs, N.]., 1970). I call Goodman's discus
sion "slightly dishonest," for in the illustrative story he tells, the protagonist 
makes only one attempt to refute his Book of Life, and this one try is 
spoiled by the protagonist's disingenuous misreading of the time for which 
the prediction is made. 

5. Carroll continues as follows, "'You will devour it!' cried the distracted 
Mother. 'Now," said the wily Crocodile, '1 cannot restore your Baby: for if I 
do, I shall make you speak falsely: and I warned you that, if you spoke 
falsely, I would devour it.' 'On the contrary,' said the yet wilier Mother, 'you 
cannot devour my Baby: for if you do, ·you will make me speak truly, and 
you promised me that, if I spoke truly, you would restore it!''' So what hap
pens then? Given that the Crocodile's "sense of honour outweighed his 
love of Babies," the Crocodile can neither restore nor devour the Baby. He 
thus enters a state of indecision similar to a Truth Machine which has been 
fed a book like in our "What is Truth" section. Perceiving the ·Crocodile·s 
state of dazed inaction, the courageous Mother slides into the Nile and 
snatches her Baby from the beast's dreadful Jaws. Whether she makes it 
back out of the water is, of course, another question. 

6. This sentence is equivalent to our sentence A) THIS SENTENCE IS 
FALSE. For any phrase P, we can imagine forming a longer phrase "P"P by 
putting P in quotes and then putting P again. If, as Hofstadter suggests, the 
phrase is HUBBA, then we get "HUBBA" HUBBA. (What a wonderful 
phrase, by the way, to shout! The first HUBBA is spoken ironically, in 
quotes, but on the second HUBBA you are ecstatic, carried away, and 

quoteless!) If the phrase is IS A SENTENCE FRAGMENT, then you get 
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a true sentence: "IS A SENTENCE FRAGMENT" IS A sErinENcE 
FRAGMENT. If the phrase is IS A BEAUTIFUL HUMAN BEING, then 
you get a false sentence: "IS A BEAUTIFUL HUMAN BEING" IS A 
BEAUTIFUL HUMAN BEING. And if the phrase is APPENDED TO 
ITS OWN QUOTATION IS FALSE, then you get a sentence Q) "AP
PENDED TO ITS OWN QUOTATION IS FALSE" APPENDED TO 
ITS OWN QUOTATION IS FALSE, which actually is asserting that itself, 
Q, is false. 

7. There are numerous possibilities. The best I've thought of is: . . . AND 
ENDED QUITE SUDDENLY AND ENDED QUITE SUDDENLY 
AND ENDED QUITE SUDDENLY. 

8. The best explanation of this regress is Carroll's dialogue itself. Formally, 
what is going on is that we start with A and with A -+ C. Now if we could 
just convert the logical implication symbol "-+" into the imperative phrase 
"forces us to conclude that", then we would have C. But if this is blocked 
by a sceptic, we try to assert it by saying, (A & (A -+ C» -+ C. But the 
same problem arises again. "-+" refers to formal logic, but "forces us to 
conclude that" refers to human behavior, and there is, in the last analysis, 
no reason why symbols on paper can force any kind of behavior! As the 
desperate logician tries harder and harder to do this, he is forced ever 
deeper into a regress, the next step of which would be, (A & (A -+ C) & 

«A & (A -+ C» -+ C» -+ C. 

ANSWERS TO CHAPTER FOUR 

1. As Smullyan points out, the paradox results because "provable" is not de
finable in any absolute and finite sense. In this respect the paradox is quite 
similar to the liar paradox, which is escaped by pointing out that "truth" is 
undefinable. The only precise notion of "provable" which we have is "prov
able by the theory T", where T is some specific, finitely specified formal 
system. And there is no paradox in the fact that "THIS SENTENCE CAN 
NEVER BE PROVED BY T" is at the same time not provable within T, 
yet provable outside T, given the additional assumption that T is consistent. 

2. This is a difficult question, and is to some extent treated in Douglas Hof
stadter's dialog, "A Conversation with Einstein's Brain," in Douglas Hof
stadter and Daniel Dennett, The Mind's I, (Basic Books, New York, 1981). 
Numerous of the other selections in this collection are, by the way, rele
vant to the questions raised here. 
The problem is that one tends to think of the self as being something above 
and beyond one's hardware and software. Yet if the self is, as I have argued, 
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nothing more than pure existence, then one is also immortal-for pure ex
istence continues independently of individuals' deaths, 
Another objection to the idea of immortality as an abstract software pattern 
is that a living person changes as time goes on, yet a coded-up simulation 
would seem to be static, unchanging thing. There is a two-step answer to 
this. Firstly, one could, in principle, imagine a simulation of a person which 
continues changing and interacting with a simulation of the real world. Sec
ondly, such a time-dependent pattern is in fact a fixed object in four-dimen
sional spacetime. This pattern can in turn be coded up as a set. So not only 
would you be coded up in the universe V of all sets, but all of the possible 
continuations of your life would be coded up there as well, even those con
tinuations of your life which extend out to transfinite length. 

3. Unless we believe that the soul is an actual physical component of the body 
(and some people have actually tried to weigh souls by setting dying people 
on delicate scales), then it would seem that an exact replica of yourself is as 
much "you" as is a "you" resurrected from a hundred years of frozen sleep. 
The physical continuity of the body is not really so important, in view of the 
fact that all of our cells are replaced every dozen years or so. But the first 
question posed is not a matter of an exact replica of you, but rather of an 
exact replica of one of your states of mind. Would this make a difference to 
you? 
It would certainly be comforting, in advance of death, to reflect on this sort 
of artistic immortality. And the fact is, that this is one of the only two types 
of physical immortality we can be certain of, the other being genetic im
mortality, in the sense of living in one's descendants. Of course, in neither 
case do you have a ghost of yourself moving around and thinking "I am," 
but if every "I am" is the same, then what's the difference? 
I might add, by way of explaining this line of thought, is that I wrote these 
questions shortly after the murder of John Lennon. Sitting, mourning him 
by listening to "Day in the Life," mouthing the words, twisting my face to 

resemble Lennon's, it occurred to me that in that instant, I was John Len
non, as was anyone else who listened to his music with the same attention. 
This idea is expressed in Thomas Pynchon's Gravity's Rainbow, (Viking 
Press, New York 1973), p. 516. 

"John Dillinger, at the end, found a few seconds' strange mercy in the 
movie images that hadn't quite yet faded from his eyeballs-Clark Gable 
going off unregenerate to fry in the chair, voices gentle out of the 
deathrow steel so long, Blackie . . . there was still for the doomed man 
some shift of personality in effect-the way you've felt for a little while 
afterward in the real muscles of your face and voice, that you were Gable, 
the ironic eyebrows, the proud, shining, snakelike head-to help Dil
linger through the bushwhacking, and a little easier into death." 
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Who, leaving a favorite movie has not momentarily felt like the star? Per
haps, momentarily, you really were. 

4. The state which reoccurs is the playing of the record. Yet in and of itself, 
this state cannot be called self-reproducing: it is parasitic upon the behavior 
of a person. We might perhaps compare the record to a virus which repro
duces by taking over a cell's genetic material to turn the cell into a "virus 
factory." Of course, listening to the song does not destroy a person, it only 
reduces his supply on nickels. The complete system that is reproduced is 
song plus eager listener. 
This example suggests a related notion: that ideas are independently "alive" 
patterns who perpetuate themselves by being thought. Zeno's Paradox, for 
instance, would be viewed as a sort of mind parasite which, by now, you 
have been infected with. 

5. Here are three solutions which I have found. Perhaps the second two can 
be shortened. COLD, CORD, CARD, WARD, WARM. BEER, BEAR, 
BEAD, BEND WEND, WIND, WINE. FISH, DISH, DASH, BASH, 
BASS, BOSS, BOWS, BOWL, FOWL. 

6. Let U be a Universal Truth Machine. We wish to use U as a component in a 
Truth Sorting Machine T u. The method is this. You put U inside a large 
box, and let it begin printing out true statements, some of which will be 
book-length. There is a slot in the box. When someone shoves a book B in 
the slot, a robot picks it up and begins comparing it to the true books which 
U has printed out. If U is truly universal, then U will eventually print out as 
true either B or a book B' which states that B is not true. As soon as one of 
these events occurs, the watchful robot announces the decision by throwing 
B out the True door or the Not-True door. Thus the combination of U, 
box, and robot acts as a Truth Sorting Machine T u. 
Now let T be a Truth Sorting Machine. We wish to use T as a component in 
a Universal Truth Machine U T • The method is this. You put T inside a 
large box, right next to a machine which mechanically prints out all possible 
books, one after the other. Note that to print out all possible books is a 
purely mechanical task: first all the one-letter books, then all the two-letter 
books, etc. For each of these books, T decides whether or not it is true. The 
true books are ejected from a slot as print-out. Eventually any true book 
will be printed deemed true, and issued. Thus the combination of U, box, 
and book printer acts as a Universal Truth Machine UT • 

Note, by the way, that if we were concerned not with "truth" but with 
"provability from P ," where P is some fixed consistent formal system, then 
the equivalence would not hold. That is, if UPM is a machine which lists all 
theorems of P, and if PSM is a machine which decides for any given sen
tence whether or not it is a theorem of P, then PSM is essentially stronger 
than UPM. The reason is that there could some sentence S such that S is not 
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a theorem of P, and S' is not a theorem is P either, (where S' would be, as 
above, a sentence negating S). If we tried to decide whether or not S is a 
theorem of P by watching the UPM, we might begin to suspect that it is not 
a theorem, but we would never be given the theorem S' which definitely 
settles the question. This fact is expressed in technical language by saying 
that the set of theorems of P is "recursively enumerable" (meaning mechan
ically listable), but not "recursive" (meaning that membership in the set can 
be mechanically decided.) 

7. Computers reproduce with our aid. Even if a particular program has arisen 
somewhat randomly, we can have it printed out and passed on to some 
other machine. The basis for selection is simple: we only reuse given hard
ware and software configurations which work accurately, rapidly and in
terestingly. The mutation of programs is carried out primarily with humans 
as agents. Perhaps a given program works, but then someone sees how to 
improve an algorithm and reduce its running-time. The "evolution" view of 
computers is in fact so prevalent that it is common for people to speak of 
"generations" of computers. It is also interesting to note that the day of 
programs too complex for any individual to understand is already here. 
Very large programs, such as the one in charge of launching the space-shut
tle, have been assembled piecemeal by many people, and are now so large 
that it is doubtful if anyone person knows the whole program. Still, this 
seems to an incomprehensibility brought on more by sheer bulk and multi
plication of special cases than by actual complexity. 

8. Begin with this tautologous disjunction: Either the human mind is able to 
solve more problems than any given machine M, or there is some particular 
machine MH which the human mind is not able to surpass. The second alter
native breaks into two subcases: MH is actually equivalent to the human 
mind, or MH proves some things which the human mind cannot prove. In 
the first subcase, Con(MH ) is a humanly unsovable number-theoretic ques
tion. In the second subcase, we take any of the number-theoretic questions 
which MH solves, and humans do not, as an example of something humanly 
unsolvable. So now we have established Godel's claim. 
It is hard to decide just how much content this remark of Godel' s really has. 
The problem is that "the human mind" is not a very well-defined concept. 
Is it to mean an average person's mind? GOdel's mind? The collective minds 
of all who have existed so far? The collective minds of all humans who will 
ever exist? The collective minds of all humans who might ever exist? 

Suppose that we imagine that the human race will never die out, and that 
we take human mathematical knowledge to be the sum total of all the math
ematical facts that will ever be known. If we call this sum total H, then we 
have H arising as the limit of an increasing sequence of sets HI, H 2 , ••• , 

H n , •... Perhaps H will be infinite: not just schematically infinite, but 
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infinite in the strong sense of having not finite description. In this case, 
GOdel's first alternative could perhaps be said to hold. Someone might ob
ject that for very large values of n, H" will in fact be too large for anyone to 
know. But the knowledge in H" could be distributed over a very large num
ber of people. Alternatively, we can imagine the science-fictional example 
of large computers used as cerebral prosthetic devices. (This idea is ex
plored in my novel SPacetime Donuts, where certain future thinkers enlarge 
their mental capacity by plugging their brains in to a giant computer.) 
If H were indeed essentially infinite would that make us better than ma
chines? No, it would not. For one can equally well imagine generation after 
generation of larger and smarter robots evolving to produce a sequence of 
levels of robot mathematical knowledge: Rio R2 , ••• , R", ... which 
approaches in the limit some essentially infinite body of knowledge R. The 
sum-total H of human mathematical knowledge would be greater than the 
knowledge of anyone machine, but it would not necessarily be greater than 
the sum-total R of all machine knowledge. 

ANSWERS TO CHAPTER FIVE 

1. It could be said that what the various large things have in common with the 
form Largeness is that both are instances of still higher-order concept of 
LARGENESS. This can of course be continued indefinitely, just as with the 
Bradley-style regress described in the "What is Truth?" section. The source 
of the difficulty seems to be that any definite, named form is somehow too 
small to capture the extended and intuitively felt concept which it is to em
body. There is something about overarching concepts which makes them 
resist being treated as manageable and limited things. We have a primitive 
concept of what it is to be a set, but if we try to freeze this concept into the 
collection of all sets, we get only some large set which can be transcended. 
This does not necessarily mean that there is no class of all sets, or that there 
is no form Largeness. It means only that these classes and forms are essen
tially beyond rational comprehension. In mathematical philosophy, we de
scribe this situation by saying that such large concepts can be known inten
sionally, but not extensionally. To know a collection "intensionally" is to 
know what is the criterion for membership in it. To know a collection "ex
tensionally" is to be able to visualize it as a completed whole. 

2. If all }>ossible universes exist-and in a sense they must, at least as abstract 
possibilities coded up in V -then it becomes hard to grasp them as a One. 
But we can try, as John Wheeler does in Misner, Thorne & Wheeler, Grav
itation (W.H. Freeman, San Francisco 1973). The idea is to postulate a 
higher-order Superspace in which each of the possible universes is repre-
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sented as a point. If the world has alef-null degrees of freedom, then Super
space will be of countably infinite dimension. If the world has continuum 
many degrees of freedom, then Superspace will be uncountably infinite di
mension. The idea is that we think of each of the dimensions as correspond
ing to one of the choices that must be made in putting together a possible 
spacetime. But now we have already imagined two different sorts of Super
spaces, and we can go on to think of many other sorts: Absolutely Infinitely 
many, in fact. There could be Superspaces in which all of the universes fail 
to have gravity, Superspaces in which each of the universes has time-length 
of alef-two years, and so on. Each of these Superspaces is now a point in a 
Supersuperspace which is as big as the class of all sets. 

3. 3' = m,HH,m,m}}}. 4' = m,{{}},{{},{{}}},m,{{}},{{},H}}}H. Note the simi
larity of these patterns to the thought-balloon patterns shown in the "Abso
lute Infinity" section of Chapter One. 

4. If a and b are in V n, then {a} and {a,b} are subsets of V n and thus in V n+1. So 
now Ha},{a,bH is a subset of V n+1 and is thus an element of V n+2. Each of 
the pairs in the set representing a given rational number lies in the set V w. 

The set of all these pairs is in V w+1. So we would say the "rational numbers" 
lie in V w+1. A set of "rational numbers" is thus a subset of V w+1, and there
fore lies in V w+2. From the first part of this question we know that if U and 
L lie in V w+2, then the ordered pair < U,L> appears two steps higher up
at, that is, V w+4. So one could say that the standard representations of the 
real numbers occur first in the set V w+4. 

5. "One of the disciples came out of the ranks, took the stick away from the 
master, and breaking it in two, exclaimed, 'What is this?' "-D.T. Suzuki, 
An Introduction to Zen Buddhims, (Grove Press, New York 1964), p. 66. 
You, of course, may find your own way of jumping up into the interface. 
This is a sort of One/Many problem, for if you single out the given object 
as "a short staff," you are dividing it from the rest of reality and, in a sense, 
opposing its essential union with the One. If, on the other hand, you say it 
is not a short staff, then you denying the rational analysis of the world into 
parts with the Many makes possible. 
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25. Josiah Royce, The World and the Individual, First Series, Appendix: The 
One, the Many and the Infinite (New York: Macmillan, 1912), pp. 504-
507. 

26. Georg Cantor, Gesammelte Abhandlungen, p. 204. 
27. Ibid., p. 374. 
28. Saint Thomas Aquinas, Summa T heologiae, la. 7.1 
29. Quoted in Allen Woiter, "Duns Scotus on the Nature of Man's Knowl

edge of God," Review of Metaphysics (1.2, 1941), p. 9. 
30. This use of Hegel's terminology was suggested to me by William Small, 

"A Note on Dialectics in Mathematics," Iowa Academy of Science, Vol. 
67, 1960, pp. 389-393. 

31. Richard Dedekind, Essays on the Theory 0/ Numbers (New York: Dover 
Publications, 1963), p. 64. Originally appeared in 1872. 

32. Bernard Bolzano, Paradoxes 0/ the Infinite (London: Routledge and Kegan 
Paul, 1950), pp. 84-85. This book first appeared in 1851, three years 
after Bolzano's death. Bolzano came close to creating modern set theory, 
aithoughhe used a different definition of transfinite numbers than Cantor. 

33. Georg Cantor, Gesammelte Abhandlungen, p. 443. This important letter is 
translated by Stefan Bauer-Mengelberg in. Jean van Heijenoort, ed., From 
Frege to GOdel (Cambridge, Mass., Harvard University Press, 1967), 
p.114. 
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MATHEMATICAL PHYSICAL ABSOLUTE 
INFINITIES INFINITIES INFINITE 

Abraham Robinson No No No 
Plato No Yes No 
Thomas Aquinas No No Yes 
L. E. J. Brouwer No Yes Yes 
David Hilbert Yes No No 
Bertrand Russell Yes Yes No 
Kurt G6del Yes No Yes 
Georg Cantor Yes Yes Yes 
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an interesting pastime to try to find representatives of each of the eight 
possible standpoints. Here is one I worked out in Heidelberg. I should 
caution that most of these thinkers have not explicitly stated an opinion on 
all three kinds of infinity, but each of their standpoints is at least consist
ent with their slot. 

35. Georg Cantor, Gesammelte Abhandlungen, pp. 378-439. 
36. Saint Thomas Aquinas, Summa T heologiae, la. 7.4. 
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Bailliere & Co., 1896), p. 474. This book is primarily a defense of the new 
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14. See Joseph Dauben, "e. S. Peirce's Philosophy of Infinite Sets," Mathe
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24. See Cantor's Gesammelte Abhandlungen, pp. 275-277, or my translation of 
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ert Latta, trans., London: Oxford University Press, 1965). 

26. Jorge Luis Borges, The Book o/Sand (New York: E. P. Dutton, 1977). In a 
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NOTES ON CHAPTER THREE 
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proposes introducing a hierarchy of languages Ln , where "nameable in 
language Ln" is always a concept expressible in Ln+1, but not in Ln. If we 
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8. The "earlier" and "later" Wittgenstein are Wittgenstein as the author of 
the earlier Tractatus Logico-Philosophicus (London: Routledge and Kegan 
Paul, 1961) and of the later Philosophical Investigations (Oxford: Black-



314 INFINITY AND THE MIND 
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eral thoughtful essays on Wittgenstein's Remarks appear in Benacerraf and 
Putnam, eds., Philosophy of Mathematics: Selected Readings (Englewood 
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Computation: Finite and Infinite Machines (Englewood Cliffs, N.].: Pren
tice-Hall, 1967). 

11. If we regard the successive digits of a sequence as the numbers that come 
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cal Thought from Ancient to Modern Times (New York: Oxford University 
Press, 1972), pages 763 and 980. This book is very comprehensive and 
well organized. See also Howard Eves, An Introduction to the History of 
Mathematics (New York: Holt, Rinehart and Winston, 1964). 

15. See G. H. Hardy, Divergent Series (Oxford: Clarendon Press, 1949). 
16. See Jose Benardete, Infinity, and Wesley Salmon, ed., Zeno's Paradoxes. 
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17. Reprinted in Clifton Fadiman, ed., Fantasia Mathematica (New York: 
Simon and Schuster, 1958), pp. 237-247. 

18. Jorge Luis Borges, Labyrinths, pp. 51-58. 
19. Ibid., p. 54. 
20. See "The Continuum," in Excursion I, for an explanation of what c, the 

cardinality of the continuum, is. 
21. I have thought about Richard's paradox for so many years that, I am sorry 
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uum" in Excursion I. 

22. Jules Richard communicated his paradox to the world by means of a letter, 
"The Principles of Mathematics and the Problem of Sets," which is re
printed in Jean van Heijenoort, From Frege to Gjjdel, pp. 142-144. 
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Jack). Bulloff, Thomas C. Holyoke, and S. W. Hahn, eds., Foundations of 
Mathematics: Symposium Papers Commemorating the Sixtieth Birthday of 
Kurt Gjjdel (New York, Springer-Verlag, 1969). 

24. Arthur S. Eddington, Fundamental Theory (Cambridge, England: Cam
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atoms don't last forever. (The question of whether any physical object has 
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has infinite lifetime.) See Steven Weinberg, "The Decay of the Proton," 
Scientific American (June, 1981), pp. 64-75. 

26. See, for instance, Paul A. Benioff, "On the Relationship between Mathe
matical Logic and Quantum Mechanics," Journal of Symbolic Logic 38, 
p.547. 

27. This idea, due to Hugh Everett, is described in Brian S. DeWitt and Neill 
Graham, eds., The Many-Worlds Interpretation of Quantum Mechanics 
(Princeton University Press, 1973). See also Chapter Four of Rudolf v.B. 
Rucker, Geometry, Relativity and the Fourth Dimension and, most recently, 
Douglas R. Hofstadter, "Metamagical Themas," Scientific American (July, 
1981), pp. 18-30. 

28. Herman Melville, Moby Dick, Chapter 119 (New York: New American 
Library, 1961), p. 477. 

29. I discovered this in Alan Ross Anderson, "St. Paul's Epistle to Titus," in: 
Robert L. Martin, ed., The Paradox of the Liar (New Haven: Yale Univer
sity Press, 1970), pp. 1-11. 

30. There is an interesting chapter on the traditional role of infinite regresses 
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in John Passmore, Philosophical Reasoning (New York: Basic Books, 
1969). See also Borges, "Avatars of the Tortoise," in Labyrinths, pp. 202-
212. 

31. Francis Herbert Bradley, Appearance and Reality (New York: Macmillan, 
1899). Josiah Royce, The World and the Individual, First Series, contains a 
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32. Tarski's proof is, in fact, simply a refinement of the proof of GOdel's In
completeness Theorem of 1930 to be discussed in the next chapter. 

33. Sam Loyd, Mathematical Puzzles 0/ Sam Loyd (Martin Gardner, ed., New 
York: Dover, 1959), pp. 116-117. 

34. See Lewis Carroll, Lewis Carrol/'s Symbolic Logic (William Bartley, ed., 
New York: Clarkson Potter, 1977), pp. 425, 426-438. This long book 
includes Carroll's system for solving "sorites problems." These problems 
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Douglas Hofstadter, Giidel, Escher, Bach: An Eternal Golden Braid (New 
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36. John Barth, "Frame-Tale," in: Lost in the Funhouse (New York: Grosset 
and Dunlap, 1969), pp. 1-2. 

37. The model for this paradox is Lewis Carroll's "What the Tortoise said to 
Archilles," in Lewis Carrol/'s Symbolic Logic, pp. 431-434. Douglas Hof
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NOTES ON CHAPTER FOUR 

1. I have drawn the details of GOdel's life from Georg Kreisel's biographical 
memoir, "Kurt GOdel, 1906-1978," which is to be published by the 
Royal Society of London. 

2. This quote is taken from John Passmore's article on "Logical Positivism," 
in The Encyclopedia o/Philosophy, Vol. 5, pp. 52-57. 

3. Ludwig Wittgenstein, Tractatus, 7, p. 151. 
4. This is from paragraph 6.52 of the Tractatus, p. 149. The whole of the 

book's section 6 is more or less mystical in tone, speaking continually of 
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things that can be known but not rationally expressed. A maddening thing 
about Wittgenstein's influence on modern philosophy is that his soaring 
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kann, daruber mu}3 man schweigen," is taken as a valid and permanent in
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6. Kurt Godel, "An Example of a New Type of Cosmological Solution of 
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(1949), pp. 447 -450. 
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Philosophy 0/ Mathematics (Englewood Cliffs, N.J.: Prentice-Hall, 1964), 
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10. See Stanislaw Ulam, Adventures 0/ a Mathematician (New York: Charles 

Scribner's Sons, 1976). Here Ulam quotes von Neumann as saying, "How 
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11. Kurt GOdel, "A Remark on the Relationship Between Relativity Theory 
and Idealistic Philosophy," in: Paul Schilpp, ed., Albert Einstein: Philoso
pher Scientist, Vol. II (New York: Harper & Row, 1959), pp. 557-562. A 
good modern discussion of GOdel's "rotating universe cosmology" can be 
found in S. W. Hawking and G. F. R. Ellis, The Large Scale Structure 0/ 
Space-Time (Cambridge, England: Cambridge University Press, 1973), pp. 
168-170. 

12. Kurt GOdel, "Uber eine Bisher Noch Nicht Benutzte Erweiterung des 
Finiten Standpunktes," Dialectica 12, (1958), pp. 280-287. 

13. A slightly different version of this section is to be published by Science 81 
in April 1982. 

14. The speaker was Simon Kochen. See, "In Memoriam Kurt GOdel," The 
Mathematical Intelligencer (July, 1978), pp. 182-185. 

15. Franz Kafka, The Castle (Willa and Edwin Muir, trans., New York: Knopf, 
1976). I spent a lot of time in Heidelberg reading The Diaries 0/ Franz 
Ka/ka (Max Brod, ed., New York: Schocken Books, 1949), to the point 
where I wrote a story in his style: Rudy Rucker, "The Fifty-Seventh Franz 
Kafka," The Little Magazine (Summer, 1982). 
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16. The manuscript, called "Some Considerations Leading to the Probable 
Conclusion that the True Power of the Continuum is Alef-Two," was 
given to me by my thesis adviser, Erik Ellentuck. See the reference in 
footnote 4) of Chapter Two for more information on this manuscript. 

17. See note 11) above. 
18. For more on time-paradoxes, see Rudolf v.B. Rucker, "Faster than Light, 

Slower than Time," Speculations in Science and Technology 4, (Oct. 1981). 
19. The idea in question was Circular Scale, as discussed in "Infinities in the 

Small." 
20. This section is based on a talk I gave at the Thomas]. Watson Research 

Center of the International Business Machines Corporation and was pre
viously published as a paper under the same title in Speculations in Science 
and Technology 3 (June, 1980), pp. 205-217. My thanks to Gregory Chai
tin and Charles Bennett for inviting me to speak, and to Cobb Anderson, 
who shared some of these ideas with me. 

21. Quoted in Hao Wang, From Mathematics to Philosophy (New York: Hu
manities Press, 1974), p. 324. Wang took the quotation from the unpub
lished text of a Josiah Willard Gibbs Lecture delivered by GOdel in Provi
dence, Rhode Island, on December 26, 1951. 

22. Many relevant essays appear in Alan R. Anderson, ed., Minds and Ma
chines (Englewood Cliffs, N.].: Prentice-Hall, 1964). See also the anno
tated bibliography in Howard Delong, A Profile 0/ Mathematical Logic 
(Reading, Massachusetts: Addison-Wesley, 1971), and above all, Chapter 
X of Hao Wang's From Mathematics to Philosophy. 

23. A very interesting attempt at a completely self-explanatory language ap
pears in Hans Freudenthal, LINCOS: Design 0/ a Language/or Cosmic Inter
course (Amsterdam: North-Holland, 1960). 

24. If one objects to the use of the self-referential phrase, "this statement," in 
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UTM based on (WELL, AXIOM, RULE) never prints out" appended to its 
own quotation yields a statement that the UTM based on (WELL, AXIOM, 
RULE) never prints out. This trick is due to W. V. O. Quine. See note 23, 
Chapter Three, for a reference. 

25. More details on the GOdel proof can be found in Excursion II. For an ut
terly precise treatment see C. Smorynski, "The Incompleteness Theo
rems," in J. Barwise, ed., Handbook 0/ Mathematical Logic (Amsterdam: 
North-Holland, 1977), pp. 821-865. One of the first attempts at a semi
popular treatment of the Incompleteness Theorems appears in E. Nagel 
and]. Newman, Giidel's Proof (New York: New York University Press, 
1958). 

26. See the sections "Infinities in the Mindscape" and "Conversations with 
GOdel" and my paper, "The Actual Infinite," Speculations in Science and 
Technology 3 (April, 1980), pp. 63-76. It should be stressed that many 
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mathematicians and philosophers question the existence of such a nonra
tionalizable mathematical intuition. Unless one believes in the existence 
of this intuition, the GOdel argument sketched in this section will not go 
through. 

27. John von Neumann, Theory o/Self-Reproducing Automata (Urbana: Univer
sity of Illinois Press, 1966). Von Neumann also discusses the themes of 
competition, mutation, and evolution taken up here. In the process of 
studying these ideas I became so interested in them that I wrote a novel 
about robot evolution: Rudy Rucker, Software (New York: Ace Books, 
1982). An excerpt from Software appears in: Douglas Hofstadter and Dan
iel Dennett, The Mind's I (New York: Basic Books, 1981). The theme of 
robot self-reproduction has also been treated in: Edward F. Moore, "Arti
ficial Living Plants," Scientific American (October, 1956), pp. 118-126. 
This article proposes setting self-reproducing robot refineries afloat on 
the open sea. Periodically the extra refineries would be harvested and 
used for their raw materials. 

28. Georg von Tiesenhausen and Wesley A. Darbro, "Self-Replicating Sys
tems-A Systems Engineering Approach," NASA Technical Memorandum 
TM-7B304, (Marshall Space Flight Center, Alabama, 1980). 

29. A convincing dramatization of this notion can be found in John Varley, 
The Ophiuchi Hotline (New York: Dell, 1978). Here the heroine's brain 
patterns are recorded and transferred onto the brain of a new body cloned 
from her old. A different method of hardware replacement is involved in 
the science-fictional concept of matter-transmission. Here a precise de
scription of a person's body is extracted (destroying the body in the pro
cess), coded up, sent via radio (or tachyon) beam, decoded, and used as 
the blueprint for a new and identical body. See Robert Weingard, "On 
Travelling Backward in Time," Synthese 24 (1972), pp. 11 7 -132. 

30. D. T. Suzuki, The Field o/Zen (New York: Harper & Row, 1970), p. 37. 
The actual phrasing goes like this: "Question: 'I am told that one reality 
moistens all beings. What is one reality?' Answer: 'It is raining.''' 

31. See Turing's 1936 technical paper, "On Computable Numbers, with an 
Application to the Entschiedungsproblem, " reprinted in M. Davis, ed., The 
Undecidable (Hewlett, N.Y.: Raven Press, 1965), pp. 116-151, with spe
cial attention to pp. 135-138. See also Turing's brilliant and readable 
1950 paper, "Computing Machinery and Intelligence," reprinted in An
derson's Minds and Machines. The Davis anthology also contains a transla
tion of GOdel's original paper on the Incompleteness Theorem, as well 
as many other important papers. Douglas Hofstadter, "Metamagical 
Themas," Scientific American (May, 1981), dramatizes Turing's imitation 
game in terms of a conversation among three individuals, anyone of 
whom could be male, female, or robot. The reader must guess which is 
which! 
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32. This formulation is taken from Wang's From Philosophy to Mathematics, 
p. 326. In this passage Wang reports that GOdel rejected the first assertion 
as "a prejudice of our time, which will be disproved scientifically (perhaps 
by the fact that there aren't enough nerve cells to perform the observable 
operations of the mind)." 

33. C. G. Jung, Synchronicity (Princeton, New Jersey: Princeton University 
Press, 1973). See also Jung's foreword to The I Ching (Richard Wilhelm 
and Cary Baynes, trans., Princeton, New Jersey, Princeton University 
Press, 1967), pp. xxi-xxxix. 

34. But see E. Wigner's classic paper, "Remarks on the Mind-Body Ques
tion," in I.). Good, ed., The Scientist SPeculates (New York: Basic Books, 
1962), pp. 284-302. See also the (much less responsible) essays in A. Pu
harich, ed., The Iceland Papers (Amherst, Wisconsin: Essentia Research 
Associates, 1979). 

35. Bernard d'Espagnat, "The Quantum Theory and Reality," Scientific Amer
ican (November, 1979), pp. 158-181. 

36. Georg Cantor, Gesammelte Abhandlungen, p. 374. 
37. Lewis Carroll, Through the Looking Glass, Chapter V (New York: Random 

House, 1946), p. 76. 
38. This example is from Raymond Smullyan, What Is the Name of This Book? 

(Englewood Cliffs, New Jersey: Prentice-Hall, 1978), p. 240. This book 
constitutes perhaps the greatest collection of logic puzzles ever assem
bled. Enough ofSmullyan's perverse, quirky personality comes through in 
the puzzles to prevent dryness. There is a great picture of Smullyan on the 
back dust-jacket, in which he looks as if he really doesn't know what the 
name of this book is! 

39. Douglas Hofstadter, Godel, Escher, Bach, p. 500. 
40. See note 21) for the source of this quote. An ambiguity in this remark of 

GOdel's arises because of a certain unclarity in the phrase, "the human 
mind." If we take this to mean the collective minds of all humans who will 
exist, then it may very well be that this "mind" has no finite description
especially if there are infinitely many generations of people who each have 
a brain that has experienced certain random mutations. 

It can be argued that any single mind can also be made indescribably com
plex by incorporating random changes. This is the moral of the cartoon in 
Figure 108. Keep in mind that R is the robot's program, W is Wheelie 
WilHe's program (if he has one), and that for any program T, Con (T) is a 
number-theoretic sentence coding up the assertion that T does not lead to 
contradictions. Wheelie Willie is asserting here that he has no definite 
program, as he allows his mind to change randomly under environmental 
influences. Yet at each instant he does have a program, and, what is worse, 
there is a sort of master program governing the way in which he responds 
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Figure 108. 
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to randomization. When the robot seeks to one-up Wheelie Willie by self
randomization it may be that, although it still has a program, the new pro
gram is too complex for W. W. to grasp. 

NOTES ON CHAPTER FIVE 

1. This subsection appeared in my paper, "The One/Many Problem in the 
Foundations of Set Theory," in Logic Colloquium 76 (Amsterdam: North
Holland, 1977), the proceedings of a conference held in Oxford, England. 
I thank Dana Scott for inviting me. I learned of the distinction between 
monism of kinds and monism of substance in Roland Hall's essay, "Mo
nism and Pluralism," in the Encyclopedia of Philosophy. 

2. Although Cantor himself hints at the connection with a reference to Plato 
on page 204 of his Gesammelte Abhandlungen, it is the philosopher Josiah 
Royce who first makes explicit the connection between set theory and the 
One/Many problem. The reference is Royce's essay, "The One, the Many 
and the Infinite," which appears as an appendix to his The World and the 
Individual, First Series. The main point of this difficult essay seems to be 
that an infinite set is a good model of the Absolute in that it is both One 
and Many ... One by virtue of its finite definition (e.g., "the natural 
numbers"), yet Many by virtue of the human inability to grasp every mem
ber at once. The idea of "self-representative system" discussed in "Infini
ties in the Mindscape" stems from this essay of Royce. 

3. Arthur Lovejoy, The Great Chain of Being (Cambridge, Massachusetts: 
Harvard University Press, 1953), p. 12. 

4. William James, A Pluralistic Universe (New York: Longmans, Green & 

Co., 1909), p. 34. James had a sort of student or friend a man called Ben
jamin Paul Blood, a gentleman-farmer in Utica, New York. Blood was, to 
my knowledge, America's first chemical mystic, a turn-of-the-century Tim 
Leary, if you will. The drug that brought him his revelations was the anaes
thetic substance, ether. Blood attracted James's attention with a pamphlet 
called "The Anaesthetic Revelation and The Gist of Philosophy." A corre
spondence followed, and as is well-known, James made his own experi
ments with ether. The really unusual thing about Blood is that, unlike 
most mystics, he was not a monist. His lifework is a weird and wonderful 
book called Pluriverse (Boston: Marshall Jones, 1920). A good description 
of the Blood-James relationship is found in Hal Bridges, American Mysti
cism: From William James to Zen (Lakemont, Georgia: CSA Press, 1977). 

5. Plato, The Dialogues of Plato, Vol. 2, Philebus 15 (B. Jowett, trans., New 
York: Random House, 1937), pp. 347 -348. 

6. Georg Cantor, Gesammelte Abhandlungen, p. 204: "Unter einer 'Mannigfal-
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tigkeit' oder 'Menge' verstehe ich niimlich allgemein jedes V iete, welches sich als 
Eines denken tasst." In 1895, Cantor restated this definition as follows: "By 
a 'set' we mean any gathering into a whole M of distirict perceptual or 
mental objects m (which are called the 'elements' of M)" (ibid., p. 282). A 
very good discussion of these and other definitions of "set" appears in 
Chapter VI of Wang's From Mathematics to Philosophy. The word "set" also 
has, of course, very many non-mathematical meanings. As a matter of fact, 
"set" has the longest definition of any word appearing in the Oxford En
glish Dictionary! 

7. The quote is taken from the translation published as "Letter to Dedekind" 
in Jean van Heijenoort's anthology, From Frege to Godel, p. 114. This valu
able anthology contains some other important material on the orgins of 
the One/Many problem in set theory, including Cesare Burali-Forti's 
1897, "A Question on Transfinite Numbers," pp. 104-112. This paper is 
the first to point out that the order type 0 of the class of all ordinals is a 
problematic notion since, on the one hand, 0 should be the largest possi
ble number; but on the other, if we actually have 0, what is to stop us 
from forming 0 + 1, showing that 0 was not the largest possible number? 
The only way out of this bind is to assert that the Absolute Infinity 0 
exists only as an "inconsistent multiplicity," so that we never really do have 
o as a definite, conceivable number. (But what, then, am I talking about 
when I say, "O"?) 
Another important paper in the van Heijenoort anthology is Russell's 
1902 "Letter to Frege," pp. 124-125. Frege was a pre-Cantorian set 
theorist of logician who constructed a foundation of mathematics based on 
the assumption that for any property P one could form a definite set, 
called XP, of all the objects with property P. Thus, for instance, the num
ber "two" was defined as "x (there are distinct objects y and z such that x is 
the set with exactly y and z as members)." Now, in 1902, Russell discov
ered that such an unlimited set formation principle leads to the "Russell 
paradox" of the set R of all sets that are not members of themselves 
(R = x(x~x», with R being a member of itself if and only if it is not a 
member of itself. He wrote this to Frege, who was on the point of publish
ing the second of his two volumes of Grundgesetze der Arithmetik. 
Frege's response to Russell also appears in the van Heijenoort anthology 
(pp. 126-129), and is worth quoting as an example of fine scientific de
tachment. One should keep in mind that the Russell paradox, coming 
when it did, essentially destroyed a good part of Frege's lifework. Re
sponding in 1902, Frege wrote: 

Your discovery of the contraction caused me the greatest surprise and, 
I would almost say, consternation, since it has shaken the basis on 
which I intended to build arithmetic. . . . It is all the more serious 
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since not only the foundations of my arithmetic, but also the sole possi
ble foundations of arithmetic, seem to vanish .... In any case, your 
discovery is very remarkable and will perhaps result in a great advance 
in logic, unwelcome as it may seem at first glance. . . . The second vol
ume of my Grundgesetze is to appear shortly. I shall no doubt have to 
add an appendix in which your discovery is taken into account. If only I 
already had the right point of view for that! 

B. For an extended and lucid exposition of intuitionism, see Michael Dum
mett, Elements 0/ Intuitionism (Oxford: Clarendon Press, 1977). Some fur
ther comments of mine on the old formalism-intuitionism-Platonism pup
pet-show can be found in "The Actual Infinite," SPeculations in Science and 
Technology 3 (April, 19BO), pp. 63-76. 

9. See the essays "Why," by Paul Edwards, and "Nothing," by P. L Heath in 
the Encyclopedia 0/ Philosophy, V.B, pp. 296-302, and V.5, pp. 524-525, 
respectively. 

10. Is it truly legitimate to regard the various individual objects in the world 
as sets? Cenain monists of substance would say not, arguing that in order 
to express fully all the aspects of any given thing, it is necessary to bring in 
everything, so that no indivdual thing would embody a conceivable form 
after all. 
There are two other weak points in the view that everything is a set. First 
of all, the experienced fact that things are one way and not another, that I 
am myself and the world is this world-this sort of particularlity does not 
seem to be provided for by saying that I am a certain point in a cenain 
complex relational system. That is, there does not seem to be any way to 
represent set-theoretically the fact that it is this world that really exists. 
This objection could be countered with the claim that every possible world 
really exists. 
A second, related, objection to the view that everything is a set is that the 
set-theoretic model does not seem to account for the fact that the world is 
going on. John Wheeler speaks of this difficulty as it relates to an imagined 
room full of equations intended to represent the physics of the universe: 
"Stand up, look back on all those equations, some perhaps more hopeful 
than others, raise one's finger commandingly, and give the order 'Fly!' Not 
one of those equations will put on wings, take off, or fly. Yet the universe 
'flies:" [Misner, Thorne & Wheeler, Gravitation (San Francisco: W. H. 
Freeman, 1973), p. 120B.] This objection could perhaps be met by the 
assenion that there is nothing more to the "life" of the world than the 
various forms and formations that occur. 

11. This would be a person of strong formalist learnings who denies the ob
jective existence of sets and identifies them simply with states of the 
human brain. He could say that "thinking of such-and-such a set" is simply 
a cenain finite neuronal pattern that occurs occasionally in the physical 
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world. But, and this is the weakness in formalism, he would be unable to 
explain why our discussions of sets seem meaningful, and why certain facts 
about sets force themselves upon us as. being true. The argument against 
formalism is akin to the argument against solipsism: If everything is just a 
dream of mine, then why do things exhibit such an obstinate lack of con
cern for my desires and preconceptions? 
The best spokesman for formalism in recent tUries was Abraham Robin
son: see his "Formalism 64," in Y. Bar-Hillel, ed., Logic, Methodology and 
Philosophy of Science (Amsterdam: North-Holland, 1964), pp. 228-246. 
See also Paul]. Cohen, "Comments on the Foundations of Set Theory ," in 
Dana S. Scott, ed., Axiomatic Set Theory, Proceedings of Symposia in Pure 
Mathematics, XIII, Part 1 (Providence, Rhode Island: American Mathe
matical Society, 1971), pp. 9-15. 
Generally, any thoughtfully written discussion of these foundational 
questions is of value. Happily, the tUrie when philosophers of mathemat
ics would become bitter and angry over the issues seems to be past. Of 
course, Infinity and the Mind could change that! 

12. The quote appears in Fr. Allen Wolter, "Duns Scotus on the nature of 
man's knowledge of God," Review of Metaphysics, I: 2 (1941), p. 9. 

13. This is a translation from the last page of Ernst Zermelo, "Uber Grenzzah
len und Mengenbereiche," Fundamenta Mathematica 16 (1930), pp. 29-
47. 

14. Section 6.522 ofWittgenstein's Tractatus, pp. 149-151. 
15. Rudolf Otto, Mysticism East and West (New York: Macmillan, 1960), pp. 

57-72. The book first appeared in 1932. It is primarily a comparison be
tween the thinking of the thirteenth-century German priest, Meister Eck
hart, and the ninth-century Indian teacher, Sankara. The great Zen master 
Daisetz Teitaro Suzuki also discusses Eckhart in a book called Mysticism: 
Christian and Buddhist (Westport, Connecticut: Greenwood, 1976). 

16. Rudy Rucker, Spacetime Donuts (New York: Ace Books, 1981), Chap
ter 5. 

17. Erwin Schr6dinger, What is Life? & Mind and Matter (Cambridge, En
gland: Cambridge University Press, 1969), p. 93. The essay was first pub
lished in 1944. Schr6dinger is best known for his work in quantum me
chanics. 

18. D. T. Suzuki, The Field of Zen (New York: Harper & Row, 1970), pp. 
21-27. 

19. Ibid., p. 22. 
20. Ibid., p. 24. 
21. See Note 4). 
22. Benjamin Paul Blood, "The Anaesthetic Revelation and the Gist of Phi

losophy" (Privately printed in Amsterdam, New York, 1874), p. 34. Most 
libraries will have a microfilm of the pamphlet in their Americana collec-
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tions. This quote impresses me so much that I also use it in White Light 
(p. 221) to separate a scene in which the hero merges into the White Light 
(i.e., the Absolute) from the next scene, where he is back to his ordinary 
life in a small upstate New York town. A quote similar to Blood's but 
made by Xenas Clark can be found in William James, The Varieties o/Reli
gious Experience (New York: Macmillan, 1961), pp. 306-307. 

23. Op. cit., p. 23. 
24. It is interesting to note that several sorts of One-Many problems arise in 

quantum mechanics. One of the most difficult philosophical issues there is 
to distinguish between an observer and the system he observes. By way of 
pointing out this difficulty, Niels Bohr gives the example of someone who 
picks up a walking stick in a dark room. At first the stick feels like some
thing outside of you-part of the system. But if you then begin feeling 
around the room by moving the stick, you begin to think of the stick as an 
extension of your arm-part of the observer. The quotes are from Niels 
Bohr, Atomic Theory and the Description 0/ Nature (Cambridge, England: 
Cambridge University Press, 1934), pp. 56-91. 
The notorious quantum-mechanical "collapse of the wave-function" can 
be viewed as a passage from the One of a causally developing state in su
perspace, to a choice between Many different strands of definite realities. 
I wrote a story about this: Rudy Rucker, "Schrodinger's Cat," Analog 
(March 30, 1981), pp. 70-84. 

25. Plato, The Dialogues o/Plato, Vol. 2, Parmenides 132, pp. 92-93. See also 
Chapter Two of John Passmore, Philosophical Reasoning (New York: Basic 
Books, 1969) and the discussion of Aristotle's "Third Man" argument in 
"Avatars of the Tortoise," in Jorge Luis Borges, Labyrinths (New York: 
New Directions, 1962). 

26. Gyomay Kubose, Zen Koans (Chicago: Henry Regnery, 1973), p. 5. 

NOTES ON EXCURSION I 

1. L. E. ). Brouwer, Collected Works (Amsterdam: North-Holland, 1975), 
p.133. 

2. This way of illustrating the proof is taken from Alexander Abian, The T he
ory 0/ Sets and Transfinite Arithmetic (Philadelphia: Saunders, 1965). 

3. The letter is printed in the appendix to Herbert Meschkowski, Probleme 
des Unendlichen: Werk und Leben Georg Cantors (Braunschweig: Vieweg, 
1967). 

4. This comment appears in Cantor's "Mitteilungen zur Lehre vom Transfin
iten," reprinted in his Gesammelte Abhandlung, pp. 378-439. 

5. Richard Schlegel, Completeness in Science (New York: Appleton-Century
Crofts, 1967), p. 223. 
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6. The letter appears in Brie/wechsel Cantor-Dedekind (Paris: Hermann, 
1937), edited by E. Noether and). Cavailles. I was one of the only people 
who noticed or observed what one might call the centennial of set theory 
on December 7, 1973. See my letter in the Notices 0/ the American Mathe
matical Society 20 (November, 73), p. 362. 

7. David Anthony Martin, "Hilbert's First Problem: The Continuum Hy
pothesis," in F. Browder, ed., Proceedings 0/ Symposia in Pure Mathematics 
XXVIII (Providence, Rhode Island: American Mathematical Society, 
1976), pp. 81-92. 

8. Gesammelte Abhandlungen, p. 192. 
9. Kurt GOdel, The Consistency 0/ the Continuum Hypothesis (Princeton, New 

Jersey: Princeton University Press, 1940). 
10. Paul). Cohen, Set Theory and the Continuum Hypothesis (New York: Ben-

. jamin, 1966). 
11. Gaisi Takeuti, "GOdel Numbers of Product Space," in Gert H. Muller and 

Dana S. Scott, eds., Higher Set Theory (Heidelberg: Springer Lecture 
Notes #669, 1978). 

12. Waclaw Sierpinski, Hypothese du Continu, (Warsaw, Poland: Monografie 
matematyczne, 1934). 

13. See Benacerraff and Putnam, eds., Philosophy 0/ Mathematics, p. 267. 
14. Rudy Rucker, "On Cantor's Continuum Problem," Journal 0/ Symbolic 

Logic 41, p. 551. This is not a full-length paper; only a short research note. 
Another description of my ideas on the continuum problem can be found 
in White Light, pp. 34-36. 

15. Frank Drake, Set Theory: An Introduction to Large Cardinals (Amsterdam: 
North-Holland, 1974). 

16. The "nodal class" terminology is from Gaisi Takeuti, "The Universe of Set 
Theory," in Bulloff, Holyoke and Hahn, eds., Foundations 0/ Mathematics 
(Springer-Verlag, 1969), pp. 74-128. 

17. See, in particular, William Reinhardt, "Remarks on Reflection Principles, 
Large Cardinals, and Elementary Embeddings," in: Thomas Jech, ed., Axi
omatic Set Theory, Proceedings 0/ Symposia in Pure Mathematics XIII, Part 2 
(Providence, Rhode Island: American Mathematical Society, 1974), pp. 
189-205. See also Hao Wang, "Large Sets," in Butts and Hintikka, eds., 
Logic, Foundations 0/ Mathematics and Computability Theory (Dordrecht, 
Holland: Riedel, 1977), p. 309. 

NOTES ON EXCURSION II 

1. There are many books that describe the building up of formal logical sys
tems. A very good semipopular presentation can be found in Howard De
Long, A Profile 0/ Mathematical Logic (Reading, Massachusetts: Addison 
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Wesley, 1971). A somewhat more technical treatment is found in Joseph 
R. Shoenfield, Mathematical Logic (Reading, Massachusetts: Addison
Wesley, 1967). 

2. Ernest Nagel and James R. Newman, Giidel's Proo/(New York: New York 
University Press, 1958), 34-35. This little book, expanded from a 1956 
article in Scientific American, was for many years the only nontechnical ac
count of GOdel's Incompleteness Theorem. The book by Delong men
tioned above is now to be preferred, as the book by Nagel and Newman is 
in some ways too naive. A detailed and readable account of the GOdel re
sults is also to be found in Douglas Hofstadter's Giidel, Escher, Bach. 

3. Goldbach's conjecture is the statement that every even number greater 
than two is the sum of two prime numbers. (Technically, 1 is not thought 
of as prime, but 2 is, as it has exactly two divisors.) 

4. Reprinted in Jean von Heijenoort, From Frege to Giidel, p. 383. 
5. Kurt GOdel, "On Formally Undecidable Propositions of Principia Mathe

matica and Related Systems," in: Martin Davis, ed., The Undecidable, 
p. 37. This is the text of GOdel's original 1931 paper. 

6. There was no popular accounts of Gentzen's work. A technical account 
with references is Gaisi Takeuti, Proof Theory (Amsterdam: North-Hol
land, 1975). 

7. See Hao Wang, From Mathematics to Philosophy, p. 9, and GOdel's "On 
Undecidable Propositions of Formal Mathematical Systems," pp. 63-65, 
as reprinted in Martin Davis, ed., The Undecidable. 

8. Martin Davis, Yu. Matijacevic, and Julia Robinson, "Hilbert's Tenth 
Problem. Diophantine Equations: Positive Aspects of a Negative Solu
tion," in F. Browder, ed., Proceedings 0/ Symposia in Pure Mathematics 
XXVIII (Providence, Rhode Island: American Mathematical Society, 
1976), pp. 223-378. 

9. Jeff Paris and Leo Harrington, "A Mathematical Incompleteness in Peano 
Arithmetic," in Jon Barwise, ed., A Handbook 0/ Mathematical Logic (Am
sterdam: North-Holland, 1977), pp. 1133-1142. 

10. J. R. Lucas, The Freedom 0/ the Will (Oxford: Clarendon Press, 1970). A 
good listing of articles about the Lucas argument can be found in the anno
tated bibliography of Delong's Profile 0/ Mathematical Logic. 
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