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Introduction

Statistical thinking will one day be as necessary a qualification for efficient citizenship as the ability
to read and write.
H.G. WELLS

Anyone who is involved in medical research should always keep in mind that science is
a search for the truth and that, in doing so, there is no room for bias or inaccuracy in sta-
tistical analyses or interpretation. Analyzing the data and interpreting the results are the
most exciting stages of a research project because these provide the answers to the study
questions. However, data analyses must be undertaken in a careful and considered way
by people who have an inherent knowledge of the nature of the data and of their inter-
pretation. Any errors in statistical analyses will mean that the conclusions of the study
may be incorrect.! As a result, many journals may require reviewers to scrutinize the
statistical aspects of submitted articles, and many research groups include statisticians
who direct the data analyses. Analyzing data correctly and including detailed documen-
tation so that others can reach the same conclusions are established markers of scientific
integrity. Research studies that are conducted with integrity bring personal pride, con-
tribute to a successful track record and foster a better research culture, advancing the
scientific community.

In this book, we provide a step-by-step guide to the complete process of analyzing and
reporting your data — from creating a file to entering your data to how to report your
results for publication. We provide a guide to conducting and interpreting statistics in
the context of how the participants were recruited, how the study was designed, the
types of variables used, and the interpretation of effect sizes and P values. We also guide
researchers, through the processes of selecting the correct statistic, and show how to
report results for publication. Each chapter includes worked research examples with real
data sets that can be downloaded and used by readers to work through the examples.

We have included the SPSS commands for methods of statistical analysis, commonly
found in the health care literature. We have not included all of the tables from the SPSS
output but only the most relevant SPSS output information that is to be interpreted.
We have also included the commands for obtaining graphs using SigmaPlot, a graphing
software package that is frequently used. In this book, we use SPSS version 21 and
SigmaPlot version 12.5, but the messages apply equally well to other versions and other
statistical packages.

We have written this book as a guide from the first principles with explanations of
assumptions and how to interpret results. We hope that both novice statisticians and
seasoned researchers will find this book a helpful guide.

In this era of evidence-based health care, both clinicians and researchers need to
critically appraise the statistical aspects of published articles in order to judge the impli-
cations and reliability of reported results. Although the peer review process goes a long
way to improving the standard of research literature, it is essential to have the skills
to decide whether published results are credible and therefore have implications for
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current clinical practice or future research directions. We have therefore included critical
appraisal guidelines at the end of each chapter to help researchers to evaluate the results
of studies.

Features of this book

Easy to read and step-by-step guide

Practical

Limited use of computational or mathematical formulae

Specifies the assumptions of each statistical test and how to check the assumptions
Worked examples and corresponding data sets that can be downloaded from the
book’s website

SPSS commands to conduct a range of statistical tests

SPSS output displayed and interpreted

Examples on how to report your results for publication

Commands and output on how to visually display results using SPSS or SigmaPlot
Critical appraisal checklists that can be used to systematically evaluate studies and
research articles

Glossary of terms

e List of useful websites such as effect size and sample size on-line calculators, free
statistical packages and sources of statistical help.

New to this edition

In this second edition, the significant changes include updating all the IBM Statistics
SPSS commands and output using version 21. As the versions of SPSS are very similar,
the majority of the commands are applicable to previous and future versions. Similarly,
we have updated the commands and the output for SigmaPlot to version 12.5. We have
also included additional sections and discussions on statistical power, the sample size
required and the different measures of etfect size and their interpretations.

There is an additional chapter on the analysis of longitudinal data, where the outcome
is measured repeatedly over time for each participant. We have included both statistical
methods that can be used to analyze these types of data — repeated measures and linear
mixed models. In Chapter 12 on survival analysis, we have included a section on Cox’s
regression, which provides an estimate of survival time while adjusting for the effects
of other explanatory or predictor variables.

In reporting study findings, it is important that they are presented clearly and con-
tain the necessary information to be interpreted by readers. Although disciplines and
journals may differ slightly in the information that require to be reported, we provide
examples of how to report the information required for most publications, both in a
written and in a tabular format, as well as visually such as by graphs. Finally, we have
updated the glossary and the links to useful websites and resources.

There is a saying that ‘everything is easy when you know how’ — we hope that this
book will provide the ‘know how’ and make statistical analysis and critical appraisal
easy for all researchers and health care professionals.



Introduction  xi

Belinda Barton
Head of Children’s Hospital Education Research Institute (CHERI) and Psychologist, The
Children’s Hospital at Westmead, Sydney, Australia

Jennifer Peat
Honorary Professor, Australian Catholic University and Research Consultant, Sydney,
Australia

Reference

1. Altman DG. Statistics in medical research. In: Practical statistics for medical research. Chapman and
Hall: London, 1996.






Acknowledgements

We extend our thanks to our colleagues, hospitals and universities for supporting us. We
also thank all of the researchers and students who attend our classes and consultations
and provide encouragement and feedback. Mostly, we will always be eternally grateful
to our friends and our families who inspired us and supported whilst we were revising
this book.

xiii






About the companion website

This book is accompanied by a companion website:
www.wiley.com/go/barton/medicalstatistics2e

The website includes:
e Original data files for SPSS

XV


http://www.wiley.com/go/barton/medicalstatistics2e




CHAPTER 1

Creating an SPSS data file and
preparing to analyse the data

There are two kinds of statistics, the kind you look up and the kind you make up.
REX STOUT

Objectives

The objectives of this chapter are to explain how to:

e create an SPSS data file that will facilitate straightforward statistical analyses
ensure data quality

manage missing data points

move data and output between electronic spreadsheets

manipulate data files and variables

devise a data management plan

select the correct statistical test

critically appraise the quality of reported data analyses

1.1 Creating an SPSS data file

Creating a data file in SPSS and entering the data is a relatively simple process. In the
SPSS window located on the top left-hand side of the screen is a menu bar with head-
ings and drop-down options. A new file can be opened using the File - New — Data
commands located on the top left-hand side of the screen. The SPSS IBM Statistics Data
Editor has two different screens called the ‘Data View’ and ‘Variable View’. You can eas-
ily move between the two views by clicking on the tabs located at the bottom left-hand
side of the screen.

1.1.1 Variable View screen

Before entering data in Data View, the features or attributes of each variable need to
be defined in Variable View. In this screen, details of the variable names, variable types
and labels are stored. Each row in Variable View represents a new variable and each

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.
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column represents a feature of the variable such as type (e.g. numeric, dot, string, etc.)
and measure (scale, ordinal or nominal). To enter a variable name, simply type the name
into the first field and default settings will appear for almost all of the remaining fields,
except for Label and Measure.

The Tab, arrow keys or mouse can be used to move across the fields and change the
default settings. In Variable View, the settings can be changed by a single click on the
cell and then pulling down the drop box option that appears when you double click on
the domino on the right-hand side of the cell. The first variable in a data set is usually a
unique identification code or a number for each participant. This variable is invaluable
for selecting or tracking particular participants during the data analysis process.

Unlike data in Excel spreadsheets, it is not possible to hide rows or columns in
either Variable View or Data View in SPSS and therefore, the order of variables in the
spreadsheet should be considered before the data are entered. The default setting for
the lists of variables in the drop-down boxes that are used when running the statistical
analyses are in the same order as the spreadsheet. It can be more efficient to place
variables that are likely to be used most often at the beginning of the spreadsheet
and variables that are going to be used less often at the end.

Variable names

Each variable name must be unique and must begin with an alphabetic character. Vari-
able names are entered in the column titled Name displayed in Variable View. The names
of variables may be up to 64 characters long and may contain letters, numbers and some
non-punctuation symbols but should not end in an underscore or a full stop. Variable
names cannot contain spaces although words can be separated with an underscore.
Some symbols such as @, # or $ can be used in variable names but other symbols such
as %, > and punctuation marks are not accepted. SPSS is case sensitive so capital and
lower case letters can be used.

Variable type

In medical statistics, the most common types of data are numeric and string. Numeric
refers to variables that are recorded as numbers, for example, 1, 115, 2013 and is the
default setting in Variable View. String refers to variables that are recorded as a com-
bination of letters and numbers, or just letters such as ‘male” and ‘female’. However,
where possible, variables that are a string type and contain important information that
will be used in the data analyses should be coded as categorical variables, for example,
by using 1= male and 2 = female. For some analyses in SPSS, only numeric variables
can be used so it is best to avoid using string variables where possible.

Other data types are comma or dot. These are used for large numeric variables
which are displayed with commas or periods delimiting every three places. Other
options for variable type are scientific notation, date, dollar, custom currency and
restricted numeric.

Width and decimals

The width of a variable is the number of characters to be entered for the variable. If the
variable is numeric with decimal places, the total number of characters needs to include
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the numbers, the decimal point and all decimal places. The default setting is 8 characters
which is sufficient for numbers up to 100,000 with 2 decimal places.

Decimals refers to the number of decimal places that will be displayed for a numeric
variable. The default setting is two decimal places, that is, 51.25. For categorical vari-
ables, no decimal places are required. For continuous variables, the number of decimal
places must be the same as the number that the measurement was collected in. The
decimal setting does not affect the statistical calculations but does influence the number
of decimal places displayed in the output.

Labels

Labels can be used to name, describe or identify a variable and any character can be
used in creating a label. Labels may assist in remembering information about a variable
that is not included in the variable name. When selecting variables for analysis, variables
will be listed by their variable label with the variable name in brackets in the dialogue
boxes. Also, output from SPSS will list the variable label. Therefore, it is important to
keep the length of the variable label short where possible. For example, question one of a
questionnaire is ‘How many hours of sleep did you have last night?’. The variable name
could be entered as ql (representing question 1) and the label to describe the variable
ql could be ‘hrs sleep’. If many questions begin with the same phrase, it is helpful to
include the question number in the variable label, for example, ‘ql: hrs sleep’.

Values

Values can be used to assign labels to a variable, which makes interpreting the output
from SPSS easier. Value labels are most commonly used when the variable is categorical
or nominal. For example, a label could be used to code ‘Gender’ with the label ‘male’
coded to a value of 1 and the label ‘female’ coded to a value of 2. The SPSS dialogue
box Value Labels can be obtained by single clicking on the Values box, then clicking on
the grey domino on the right-hand side of the box. Within this box, the buttons Add,
Change and Remove can be used to customize and edit the value labels.

Missing
Missing can be used to assign user system missing values for data that are not avail-
able for a participant. For example, a participant who did not attend a scheduled clinical
appointment would have data values that had not been measured and which are called
missing values. Missing values are not included in the data analyses and can some-
times create pervasive problems. The seriousness of the problem depends largely on the
pattern of missing data, how much is missing and why it is missing.!

For a full stop to be recognized as a system missing value, the variable type must
be entered as numeric rather than a string variable. Other approaches to dealing with
missing data will be discussed later in this chapter.

Columns and align

Columns can be used to define the width of the column in which the variable is displayed
in the Data View screen. The default setting is 8 and this is generally sufficient to view
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the name in the Variable View and Data View screens. Align can be used to specify the
alignment of the data information in Data View as either right, left or centre justified
within cells.

Measure

In SPSS, the measurement level of the variable can be classified as nominal, ordinal
or scale under the Measure option. The measurement scales used which are described
below determine each of these classifications.

Nominal variables

Nominal scales have no order and are generally categories with labels that have been
assigned to classify items or information. For example, variables with categories such as
male or female, religious status or place of birth are nominal scales. Nominal scales can
be string (alphanumeric) values or numeric values that have been assigned to represent
categories, for example 1 = male and 2 = female.

Ordinal variables

Values on an ordinal scale have a logical or ordered relationship across the values and
it is possible to measure some degree of difference between categories. However, it is
usually not possible to measure a specific amount of difference between categories. For
example, participants may be asked to rate their overall level of stress on a five-point
scale that ranges from no stress, mild, moderate, severe or extreme stress. Using this
scale, participants with severe stress will have a more serious condition than participants
with mild stress, although recognizing that self-reported perception of stress may be
subjective and is unlikely to be standardized between participants. With this type of
scale, it is not possible to say that the difference between mild and moderate stress is
the same as the difference between moderate and severe stress. Thus, information from
these types of variables has to be interpreted with care.

Scale variables

Variables with numeric values that are measured by an interval or ratio scale are
classified as scale variables. On an interval scale, one unit on the scale represents the
same magnitude across the whole scale. For example, Fahrenheit is an interval scale
because the difference in temperature between 10 °F and 20 °F is the same as the dif-
ference in temperature between 40 °F and 50 °F. However, interval scales have no true
zero point. For example, 0 °F does not indicate that there is no temperature. Because
interval scales have an arbitrary rather than a true zero point, it is not possible to
compare ratios.

A ratio scale has the same properties as ordinal and interval scales, but has a true
zero point and therefore ratio comparisons are valid. For example, it is possible to say
that a person who is 40 years old is twice as old as a person who is 20 years old and
that a person is 0 years old at birth. Other common ratio scales are length, weight and
income.
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Role

Role can be used with some SPSS statistical procedures to select variables that will be
automatically assigned a role such as input or target. In Data View, when a statistical
procedure is selected from Analyze a dialogue box opens up and variables to be analysed
must be selected such as an independent or dependent variable. If the role of the vari-
ables has been defined in Variable View, the variables will be automatically displayed in
the destination list of the dialogue box. Role options for a variable are input (indepen-
dent variable), target (dependent variable), both (can be an input or an output variable),
none (no role assignment), partition (to divide the data into separate samples) and split
(this option is only used in SPSS Modeler). The default setting for Role is input.

1.1.2 Saving the SPSS file

After the information for each variable has been defined, the variable details entered in
the Variable View screen can be saved using the commands shown in Box 1.1. When
the file is saved, the name of the file will replace the word Untitled at the top left-hand
side of the Data View screen. The data can then be entered in the Data View screen and
also saved using the commands shown in Box 1.1. The data file extension is .sav. When
there is only one data file open in the Data Editor, the file can only be closed by exiting
the SPSS program. When there is more than one data file open, the SPSS commands
File — Close can be used to close a data file.

Box 1.1 SPSS commands for saving a file

SPSS Commands

Untitled — SPSS IBM Statistics Data Editor
File — Save As
Save Data As
Enter the name of the file in File name
Click on Save

1.1.3 Data View screen

The Data View screen displays the data values and is similar to many other spreadsheet
packages. In general, the data for each participant should occupy one row only in the
spreadsheet. Thus, if follow-up data have been collected from the participants on one or
more occasions, the participants” data should be an extension of their baseline data row
and not a new row in the spreadsheet. However, this does not apply for studies in which
controls are matched to cases by characteristics such as gender or age or are selected as
the unaffected sibling or a nominated friend of the case and therefore the data are paired.
The data from matched case—control studies are used as pairs in the statistical analyses
and therefore it is important that matched controls are not entered on a separate row
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but are entered into the same row in the spreadsheet as their matched case. This method
will inherently ensure that paired or matched data are analysed correctly and that the
assumptions of independence that are required by many statistical tests are not violated.
Thus, in Data View, each column represents a separate variable and each row represents
a single participant, or a single pair of participants in a matched case—control study, or a
single participant with follow-up data. This data format is called ‘wide format’. For some
longitudinal modelling analyses, the data may need to be changed to ‘long format’, that
is, each time a point is represented on a separate row. This is discussed in Chapter 6.

In Data View, data can be entered and the mouse, tab, enter or cursor keys can be used
to move to another cell of the data sheet. In Data View, the value labels button which
is displayed at the top of the spreadsheet (17th icon from the left-hand side), with an
arrow pointing to ‘1’ and another arrow pointing to ‘A’ can be used to switch between
displaying the values or the value labels that have been entered.

1.2 Opening data from Excel in SPSS

Data can be entered in other programs such as Excel and then imported into the SPSS
Data View sheet. Many researchers use Excel or Access for ease of entering and man-
aging the data. However, statistical analyses are best executed in a specialist statistical
package such as SPSS in which the integrity and accuracy of the statistics are guaranteed.

Opening an Excel spreadsheet in SPSS can be achieved using the commands shown
in Box 1.2. In addition, specialized programs are available for transferring data between
different data entry and statistics packages (see Section Useful Websites).

Box 1.2 SPSS commands for opening an Excel data file

SPSS Commands

Untitled — SPSS IBM Statistics Data Editor
File — Open — Data
Open Data
Click on Files of type to show Excel (*.xIs, *.xIsx,*xIsm)
Look in: find and click on your Excel data file
Click Open
Opening Excel Data Source
Check that the correct Worksheet within the file is selected
Tick ‘Read variable names from the first row of data’ (default setting)
Click OK

If data are entered in Excel or another database before being exported into SPSS, itisa
good idea to use variable names that are accepted by SPSS to avoid having to rename the
variables. For numeric values, blank cells in Excel are converted to the system missing
value, that is a full stop, in SPSS.

Once in the SPSS spreadsheet, features of the variables can be adjusted in Variable
View, for example, by changing column widths, entering the labels and values for cate-
gorical variables and checking that the number of decimal places is appropriate for each
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variable. Once data quality is ensured, a back-up copy of the database should be archived
at a remote site for safety. Few researchers need to resort to their archived copies but,
when they do, they are an invaluable resource.

The spreadsheet that is used for data analyses should not contain any information
that would contravene ethics guidelines by identifying individual participants. In the
working data file, names, addresses and any other identifying information that will not
be used in data analyses should be removed. Identifying information that is required
can be recoded and de-identified, for example, by using a unique numerical value that
is assigned to each participant.

1.3 Categorical and continuous variables

While variables in SPSS can be classified as scale, ordinal or nominal values, a more
useful classification for variables when deciding how to analyse data is as categorical
variables (ordered or non-ordered) or continuous variables (scale variables). These clas-
sifications are essential for selecting the correct statistical test to analyse the data and are
not provided in Variable View by SPSS. Categorical variables have discrete categories,
such as male and female, and continuous variables are measured on a scale, such as
height which is measured in centimetres.

Categorical values can be non-ordered or ordered. For example, gender which is coded
as 1 = male and 2 = female and place of birth which is coded as 1 =local, 2 = regional
and 3 = overseas are non-ordered variables. Categorical variables can also be ordered,
for example, if the continuous variable length of stay was recoded into categories of 1 =
1-10 days, 2 = 11-20 days, 3 = 21-30 days and 4 = >31 days, there is a progression
in magnitude of length of stay. A categorical variable with only two possible outcomes
such as yes/no or disease present/disease absent is referred to as a binary variable.

1.4 Classifying variables for analyses

Before conducting any statistical tests, a formal, documented plan that includes a list of
hypotheses to be tested and identifies the variables that will be used should be drawn
up. For each question, a decision on how each variable will be used in the analyses,
for example, as a continuous or categorical variable or as an outcome or explanatory
variable, should be made.

Table 1.1 shows a classification system for variables and how the classification influ-
ences the presentation of results. An outcome or dependent variable is a variable is
generally the outcome of interest in the study that has been measured, for example,
cholesterol levels or blood pressure may be measured in a study to reduce cardiovascu-
lar risk. An outcome variable is proposed to be changed or influenced by an explanatory
variable. An explanatory or independent variable is hypothesized to affect the outcome
variable and is generally manipulated or controlled experimentally. For example, treat-
ment status defined as whether participants receive the active drug treatment or inactive
treatment (placebo) is an independent variable.

A common error in statistical analyses is to misclassify the outcome variable as an
explanatory variable or to misclassify an intervening variable as an explanatory variable.
It is important that an intervening variable, which links the explanatory and outcome
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Table 1.1 Names used to identify variables

Axis for plots, data

Variable name Alternative name/s analysis and tables
Outcome variables Dependent variables (DVs) y-axis, columns
Intervening variables Secondary or alternative y-axis, columns

outcome variables

Explanatory variables Independent variables (IVs) X-axis, rows
Risk factors
Exposure variables
Predictors

variable because it is directly on the pathway to the outcome variable, is not treated
as an independent explanatory variable in the analyses.? It is also important that an
alternative outcome variable is not treated as an independent risk factor. For example,
hay fever cannot be treated as an independent risk factor for asthma because it is a
symptom that is a consequence of the same allergic developmental pathway.

In part, the classification of variables depends on the study design. In a case—control
study in which disease status is used as the selection criterion, the explanatory variable
will be the presence or absence of disease and the outcome variable will be the exposure.
However, in most other observational and experimental studies such as clinical trials,
cross-sectional and cohort studies, the disease will be the outcome and the exposure or
the experimental group will be an explanatory variable.

1.5 Hypothesis testing and P values

Most medical statistics are based on the concept of hypothesis testing and therefore an
associated P value is usually reported. In hypothesis testing, a ‘null hypothesis’ is first
specified, that is a hypothesis stating that there is no difference, for example, there is
no difference in the summary statistics of the study groups (placebo and treatment).
The null hypothesis assumes that the groups that are being compared are drawn from
the same population. An alternative hypothesis, which states that there is a difference
between groups, can also be specified. The P value is then calculated, that is, the prob-
ability of obtaining a difference as large as or larger than the one observed between the
groups, assuming the null hypothesis is true (i.e. no difference between groups).

A P value of less than 0.05, that is a probability of less than 1 chance in 20, is usu-
ally accepted as being statistically significant. If a P value is less than 0.05, we accept
that it is unlikely that a difference between groups has occurred by chance if the null
hypothesis was true. In this situation, we reject the null hypothesis and accept the
alternative hypothesis, and therefore conclude that there is a statistically significant dif-
ference between the groups. On the other hand, if the P value is greater than or equal
to 0.05 and therefore the probability with which the test statistic occurs is greater than 1
chance in 20, we accept that the difference between groups has occurred by chance. In
this case, we accept the null hypothesis and conclude that the difference is not attributed
to sampling.
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In accepting or rejecting a null hypothesis, it is important to remember that the P
value only provides a probability value and does not provide absolute proof that the
null hypothesis is true or false. A P value obtained from a test of significance should
only be interpreted as a measure of the strength of evidence against the null hypothesis.
The smaller the P value the stronger the evidence against the null hypothesis.

1.6 Choosing the correct statistical test

Selecting the correct test to analyse data depends not only on the study design but
also on the nature of the variables collected. Tables 1.2—1.5 show the types of tests
that can be selected based on the nature of variables. It is of paramount importance
that the correct test is used to generate P values and to estimate a size of effect. Using
an incorrect test will inviolate the statistical assumptions of the test and may lead to
inaccurate or biased P values.

Table 1.2 Choosing a statistic when there is one outcome variable only

Number of times

measured in each

Type of variable participant Statistic SPSS menu
Binary Once Incidence or prevalence and 95%  Descriptive statistics;
confidence interval (95% ClI) Frequencies
Twice McNemar’s chi-square; Kappa Descriptive statistics; Crosstabs
Continuous Once Tests for normality Non-parametric tests; One
sample; Kolmogorov-Smirnov
Descriptive statistics; Explore;
Plots; Normality plots with
tests
One-sample t-test Compare means; One-sample
t-test
Mean, standard deviation (SD) Descriptive statistics; Explore
and 95% CI
Median (Mdn) and inter-quartile  Descriptive statistics; Explore
(IQR) range
Twice Paired t-test Compare means;

Mean difference and 95% Cl

Measurement error

Mean-versus-differences plot

Intra-class correlation coefficient

Paired-samples t-test

Compare means;
Paired-samples t-test

Compare means;
Paired-samples t-test

Graphs; Legacy Dialogs;
Scatter/Dot

Scale; Reliability Analysis

Three or more

Repeated measures ANOVA

General linear model;
Repeated measures
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Table 1.3 Choosing a statistic when there is one outcome variable and one explanatory variable

Type of Type of Number of levels
outcome explanatory  of the categorical
variable variable variable Statistic SPSS menu
Categorical  Categorical Both variables are Chi-square Descriptive statistics;
binary Crosstabs
Odds ratio or relative Descriptive statistics;
risk Crosstabs
Logistic regression Regression; Binary
logistic
Sensitivity and Descriptive statistics;
specificity Crosstabs
Likelihood ratio Descriptive statistics;
Crosstabs
At least one of the Chi-square Descriptive statistics;
variables has more Crosstabs
than two levels
Chi-square trend Descriptive statistics;
Crosstabs
Kendall’s correlation Correlate; Bivariate
Categorical  Continuous Categorical variable is ~ ROC curve ROC curve
binary
Survival analyses Survival;
Kaplan—Meier
Categorical variable is ~ Spearman'’s Correlate; Bivariate
multi-level and correlation coefficient
ordered
Continuous  Categorical Explanatory variable Independent samples Compare means;
is binary t-test Independent samples
t-test
Mean difference and Compare means;
95% Cl Independent samples
t-test
Explanatory variable Analysis of variance Compare means;
has three or more One-way ANOVA
categories
Continuous  Continuous No categorical Regression Regression; Linear

variables

Pearson’s correlation

Correlate; Bivariate

1.7 Sample size requirements

The sample size is one of the most critical issues in designing a research study because
it affects all aspects of interpreting the results. The sample size needs to be large enough
so that a definitive answer to the research question is obtained. This will help to ensure
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Table 1.4 Choosing a statistic for one or more outcome variables and more than one

explanatory variable

Type of outcome

Type of explanatory Number of levels of

variable/s variable/s categorical variable Statistic SPSS menu
Continuous — only Both continuous Categorical Multiple Regression; Linear
one outcome and categorical variables are regression

binary

Categorical

At least one of the
explanatory

variables has three
or more categories

Two-way analysis

General linear

Both continuous
and categorical

One categorical
variable has two
or more levels

Continuous — outcome
measured more than

once

Both continuous
and categorical

Categorical
variables can have
two or more levels

No outcome variable

Both continuous
and categorical

Categorical
variables can have

of variance model; Univariate
Analysis of General linear
covariance model; Univariate
Repeated General linear
measures model; Repeated
analysis of measures
variance Mixed Models;
Linear
Factor analysis Dimension

reduction: Factor

two or more levels

Table 1.5 Parametric and non-parametric equivalents

Parametric test

Non-parametric equivalent

SPSS menu

Mean and standard deviation
Pearson’s correlation
coefficient

One-sample sign test

Two sample t-test
Independent t-test

Analysis of variance

Repeated measures analysis of
variance

Median and inter-quartile
range

Spearman’s or Kendall’s
correlation coefficient

Wilcoxon signed rank test
Sign test or Wilcoxon matched
pair signed rank test
Mann-Whitney U

Kruskall-Wallis one-way test

Friedman’s two-way ANOVA
test

Descriptive statistics; Explore

Correlate; Bivariate

Non-parametric tests; One
Sample

Non-parametric tests; Related
samples

Non-parametric tests;
Independent samples

Non-parametric tests;
Independent samples

Non-parametric tests; Related
samples

generalizability of the results and precision around estimates of effect. However, the
sample has to be small enough so that the study is practical to conduct. In general,
studies with a small sample size, say with less than 30 participants, can usually only
provide imprecise and unreliable estimates.
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P values are strongly influenced by the sample size. The larger the sample size the
more likely a difference between study groups will be statistically significant. Box 1.3
provides a definition of type I and type Il errors and shows how the size of the sample can
contribute to these errors, both of which have a profound influence on the interpretation
of the results. In addition, type I and II error rates are inversely related because both are
influenced by sample size — when the risk of a type I error is reduced, the risk of a
type II error is increased. Therefore, it is important to carefully calculate the sample
size required prior to the study commencing and also consider the sample size when
interpreting the results of the statistical tests.

Box 1.3 Type I and type II errors
Type I errors

e are false positive results

e occur when a statistical significant difference between groups is found but no
clinically important difference exists

e the null hypothesis is rejected in error

e usually occur when the sample size is very large

Type II errors

e are false negative results

e a clinical important difference between groups does exist but does not reach sta-
tistical significance

e the null hypothesis is accepted in error

e usually occur when the sample size is small

1.8 Study handbook and data analysis plan

The study handbook should be a formal documentation of all of the study details that is
updated continuously with any changes to protocols, management decisions, minutes
of meetings and so on. This handbook should be available for anyone in the team to
refer to at any time to facilitate considered data collection and data analysis practices.
Suggested contents of data analysis log sheets that could be kept in the study handbook
are shown in Box 1.4.

Box 1.4 Data analysis log sheets

Data analysis log sheets should contain the following information:

e Title of proposed paper, report or abstract

e Author list and author responsible for data analyses and documentation
Specific research questions to be answered or hypotheses to be tested
Outcome and explanatory variables to be used

Statistical methods

Details of database location and file storage names

Journals and/or scientific meetings where results will be presented
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Data analyses must be planned and executed in a logical and considered sequence to
avoid errors or misinterpretation of results. In this, it is important that data are treated
carefully and analysed by people who are familiar with their content, their meaning and
the interrelationship between variables.

Before beginning any statistical analyses, a data analysis plan should be agreed upon
in consultation with the study team. The plan can include the research questions or
hypotheses that will be tested, the outcome and explanatory variables that will be used,
the journal where the results will be published and/or the scientific meeting where the
findings will be presented.

A good way to handle data analyses is to create a log sheet for each proposed paper,
abstract or report. The log sheets should be formal documents that are agreed to by all
stakeholders and that are formally archived in the study handbook. When a research
team is managed efficiently, a study handbook is maintained that has up-to-date docu-
mentation of all details of the study protocol and the study processes.

1.9 Documentation

Documentation of data analyses, which allows anyone to track how the results were
obtained from the data set collected, is an important aspect of the scientific process. This
is especially important when the data set will be accessed in the future by researchers
who are not familiar with all aspects of data collection or the coding and recoding of the
variables.

Data management and documentation are relatively mundane processes compared to
the excitement of statistical analyses but are essential. Laboratory researchers document
every detail of their work as a matter of course by maintaining accurate laboratory books.
All researchers undertaking clinical and epidemiological studies should be equally dili-
gent and document all of the steps taken to reach their conclusions.

Documentation can be easily achieved by maintaining a data management book with
a log sheet for each data analysis. In this, all steps in the data management processes
are recorded together with the information of names and contents of files, the coding
and names of variables and the results of the statistical analyses. Many funding bodies
and ethics committees require that all steps in data analyses are documented and that
in addition to archiving the data, the data sheets, the output files and the participant
records are kept for 5 years or up to 15 years after the results are published.

1.10 Checking the data

Prior to beginning statistical analysis, it is essential to have a thorough working knowl-
edge of the nature, ranges and distributions of each variable. Although it may be tempt-
ing to jump straight into the analyses that will answer the study questions rather than
spend time obtaining descriptive statistics, a working knowledge of the descriptive statis-
tics often saves time by avoiding analyses having to be repeated for example because
outliers, missing values or duplicates have not been addressed or groups with small
numbers are not identified.

When entering data, it is important to crosscheck the data file with the original records
to ensure that data has been entered correctly. It is important to have a high standard of
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data quality in research databases at all times because good data management practice is
a hallmark of scientific integrity. The steps outlined in Box 1.5 will help to achieve this.

Box 1.5 Data organization

The following steps ensure good data management practices:

e Crosscheck data with the original records

e Use numeric codes for categorical data where possible

Choose appropriate variable names and labels to avoid confusion across variables
Check for duplicate records and implausible data values

Make corrections

Archive a back-up copy of the data set for safe keeping

Limit access to sensitive data such as names and addresses in working files

It is especially important to know the range and distribution of each variable and
whether there are any outliers or extreme values (see Chapter 2) so that the statistics
that are generated can be explained and interpreted correctly. Describing the charac-
teristics of the sample also allows other researchers to judge the generalizability of the
results. A considered pathway for data management is shown in Box 1.6.

Box 1.6 Pathway for data management before beginning statistical analysis

The following steps are essential for efficient data management:

e Obtain the minimum and maximum values and the range of each variable

e Conduct frequency analyses for categorical variables

e Use box plots, histograms and other tests to ascertain normality of continuous
variables

Identify and deal with missing values and outliers

Recode or transform variables where necessary

Rerun frequency and/or distribution checks

Document all steps in a study handbook

1.11 Avoiding and replacing missing values

Missing values must be omitted from the analyses and not inadvertently included as data
points. This can be achieved by proper coding that is recognized by SPSS as a system
missing value. The default character to indicate a missing value is a full stop. This is
preferable to using an implausible value such as 9 or 999 which was commonly used in
the past. If these values are not accurately defined as discrete missing values in Missing
column displayed in Variable View, they are easily incorporated into the analyses, thus
producing erroneous results. Although these values can be predefined as system missing,
this coding scheme is discouraged because it is inefficient, requires data analysts to be
familiar with the coding scheme and has the potential for error. If missing values are
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Table 1.6 Classification of variables in the file surgery.sav

Variable label Type SPSS measure Classification for analysis decisions
ID Numeric Scale Not used in analyses

Gender String Nominal Categorical/non-ordered

Place of birth String Nominal Categorical/non-ordered

Birth weight Numeric Scale Continuous

Gestational age Numeric Ordinal Continuous

Length of stay Numeric Scale Continuous

Infection Numeric Scale Categorical/non-ordered
Prematurity Numeric Scale Categorical/non-ordered
Procedure performed Numeric Nominal Categorical/non-ordered

required in an analysis, for example to determine if people with missing data have the
characteristics as people with complete data, the missing values can easily be recoded to
a numeric value in a new variable.

The file surgery.sav, which contains the data from 141 babies who underwent surgery
at a paediatric hospital, can be opened using the File - Open — Data commands. The
classification of the variables as shown by SPSS and the classifications that are needed
for statistical analysis are shown in Table 1.6.

In the spreadsheet, the variable for ‘place of birth” is coded as a string variable. The
command sequences shown in Box 1.7 can be used to obtain frequency information of
this variable, where L = local, O = overseas and R = regional.

Box 1.7 SPSS commands for obtaining frequencies

SPSS Commands

surgery.sav — SPSS IBM Statistics Data Editor
Analyze — Descriptive Statistics — Frequencies
Frequencies
Highlight Place of birth and click into Variable(s)
Click OK

Frequency table
Place of Birth

Frequency Percent Valid per cent Cumulative per cent

Valid 9 6.4 6.4 6.4
L 920 63.8 63.8 70.2
0 9 6.4 6.4 76.6
R 33 23.4 23.4 100.0

Total 141 100.0 100.0
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The nine children with no information of birthplace are included in the valid and
cumulative percentages shown in the Frequency table. If the variable had been defined
as numeric, the missing values would have been omitted.

When collecting data in any study, it is essential to have methods in place to pre-
vent missing values in, say, at least 95% of the data set. Methods such as restructuring
questionnaires in which participants decline to provide sensitive information or train-
ing research staff to check that all fields are complete at the point of data collection
are invaluable in this process. In large epidemiological and longitudinal data sets, some
missing data may be unavoidable. However, in clinical trials, it may be unethical to col-
lect insufficient information about some participants so that they have to be excluded
from the final analyses.

If the number of missing values is small and the missing values occur randomly
throughout the data set, the cases with missing values can be omitted from the anal-
yses. This is the default option in most statistical packages and the main effect of this
process is to reduce statistical power, that is the ability to show a statistically significant
difference between groups when a clinically important difference exists. Missing values
that are scattered randomly throughout the data are less of a problem than non-random
missing values that can affect both the power of the study and the generalizability
of the results. For example, if people in higher income groups selectively decline to
answer questions about income, the distribution of income in the population will not
be known and analyses that include income will not be generalizable to people in
higher income groups. When analysing data, it is important to determine whether data
is missing completely at random, missing at random, or missing not at random.>

In some situations, it may be important to replace a missing value with an estimated
value that can be included in analyses. In longitudinal clinical trials, it has become com-
mon practice to use the last score obtained from the participant and carry it forward
for all subsequent missing values — this is commonly called last observation carried for-
ward (LOCF) or last value carried forward (LVCF). In other studies, a mean value (if the
variable is normally distributed) or a median value (if the variable is non-normal dis-
tributed) may be used to replace missing values. This can be undertaken in SPSS using
the commands Transform — Replace Missing Values.

These simple imputation solutions are not ideal — for example, LOCF can result in
reducing the variance of the sample and can also lead to biased results.> Other more
complicated methods for replacing missing values have been described and should
be considered.*

1.12 SPSS data management capabilities

SPSS has many data management capabilities which are listed in the Data and Transform
menus. A summary of some of the commands that are widely used in routine data
analyses are shown in Table 1.7. How to use the commands to select a subset of variables
and recode variables is shown below. Also, the use of these commands is demonstrated
in more detail in the following chapters.
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Table 1.7 Data management capabilities in SPSS

Menu Command Purpose
Data menu Identify duplicate cases Labels primary and duplicate cases as defined by
specified variables.

Sort cases Sorts the data set into ascending or descending order
using one or more variables.

Merge files Allows the merge of one or more data files using a
variable common to both sets. Additional cases or
variables can be added.

Restructure Changes data sets from wide format (one line per
subject) to long format (multiple lines per subject, for
example, when there are multiple time points), and
vice versa.

Split file Separates the file into separate groups for analysis.

Select cases

By using conditional expressions, a subgroup of cases
can be selected for analysis based on one or more
variables. Arithmetic operators and functions can also
be used in the expression.

Transform menu Compute

Creates a new variable based on transformation of
existing variables or by using mathematical functions.

Recode

Reassigns values or collapses ranges into the same or a
new variable.

Visual binning

A categorical variable can be created from a scale
variable. Variables can be grouped into ‘bins’ or
interval cut off points such as quantiles or tertiles.

Date and time wizard

Used to create a date/time variable, to add or subtract
dates and times. The result is presented in a new
variable in units of seconds and needs to be back
converted to hours or days.

Replace missing values

Replaces missing values with an option to use various
methods of imputation.

1.12.1 Using subsets of variables

When conducting an analysis, it is common to want to use only a few of the vari-
ables. A smaller subset of variables to be used in analyses can be selected as shown
in Box 1.8. When using a subset, only the variables selected are displayed in the data
analysis dialogue boxes. This can make analyses more efficient by avoiding having to
search up and down a long list of variables for the ones required. Using a subset is espe-
cially useful when working with a large data set and only a few variables are needed
for a current analysis. To see the whole data set again simply use the SPSS commands

Utilities — Show All Variables.
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Box 1.8 SPSS commands for defining variable sets

SPSS Commands

surgery.sav — IBM SPSS Statistics Data Editor
Utilities — Define Variable Sets
Define variable sets
Enter Set Name e.g. Set_1
Highlight Variables required in the analyses and click them into Variables in Set
Click on Add Set
Click Close
surgery.sav — IBM SPSS Statistics Data Editor
Utilities — Use Variable Sets
Click Uncheck all
Tick Set 1
Click OK

1.12.2 Recoding variables and using syntax

In the frequency statistics conducted above, place of birth was coded as a string variable
and the missing values were treated as valid values and included in the summary statis-
tics. To remedy this, the syntax shown in Box 1.9 can be used to recode place of birth
from a string variable into a numeric variable.

Box 1.9 Recoding a variable into a different variable

SPSS Commands

surgery.sav — SPSS IBM Statistics Data Editor
Transform — Recode — Into Different Variables
Recode into Different Variables
Highlight Place of birth and click into Input Variable — Output Variable
Enter Output Variable Name as place2,
Enter Output Variable Label as Place of birth recoded/ Click Change
Click Old and New Values
Recode into Different Variables: Old and New Values
0ld Value — Value=L, New Value — Value=1/Click Add
0ld Value — Value =R, New Value — Value =2/Click Add
Old Value — Value=0, New Value — Value=3/Click Add
Click Continue
Recode into Different Variables
Click OK (or Paste/Run — All)

The paste command is a useful tool to provide automatic documentation of any
changes that are made. The paste commands writes the recoding to a Syntax screen
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that can be saved or printed for documentation and future reference. Using the Paste
command for the above recode provides the following documentation.

RECODE place ('I'=1) ('R’=2) ("0’=3) INTO place2.
VARIABLE LABELS place2 "Place of birth recoded’.
EXECUTE.

After recoding, the value labels for the three new categories of place2 that have been
created can be added in the Variable View window. In this case, place of birth needs to be
defined as 1 = Local, 2 = Regional and 3 = Overseas. This can be added by clicking on the
Values cell and then double clicking on the grey domino box on the right of the cell to
add the value labels. Similarly, gender which is also a string variable can be recoded into a
numeric variable (gender2) with Male = 1 and Female = 2. After recoding variables, it is
important to check that the number of decimal places is correct. This process will ensure
that the number of decimal places is appropriate on the SPSS data analysis output.

1.12.3 Dialog recall

A useful function in SPSS to repeat recently conducted commands is the Dialog Recall
button. This button recalls the most recently used SPSS commands. The Dialog Recall
button is the fourth icon at the top left-hand side of the Data or Variable View screen or
the sixth icon in the top left-hand side of the SPSS Output Viewer screen.

Using the Dialog Recall button to obtain Frequencies for place 2, which is labelled ‘Place
of birth recoded’, the following output is produced.

Frequencies

Place of Birth Recoded

Frequency Per cent Valid per cent Cumulative per cent

Valid Local 90 63.8 68.2 68.2
Regional 33 23.4 25.0 93.2
Overseas 9 6.4 6.8 100.0
Total 132 93.6 100.0

Missing  System 9 6.4

Total 141 100.0

The frequency of place of birth shown in the Frequencies table show that the recod-
ing sequence was executed correctly. When the data are recoded as numeric, the nine
babies who have missing data for birthplace are correctly omitted from the valid and
cumulative percentages.

1.12.4 Displaying names or labels

There are options to change how variables are viewed when running the analyses or
how to display the variable names on SPSS output. By using the command Edit — Options
— General you can select whether variables will be displayed by their variable names or
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their labels in the dialog command boxes. There is also an option to select whether
variables are presented in alphabetical order, in the order they are entered in the file or
in measurement level. Under the command Edit — Options — Output, there are options
to select whether the variable and variable names will be displayed as labels, values or
both on the output.

1.13 Managing SPSS output
1.13.1 Formatting SPSS output

There are many output formats in SPSS. The format of the frequencies table obtained
previously can easily be changed by double clicking on the table and using the com-
mands Format — TableLooks. To obtain the output in the format below, which is a classical
academic format with no vertical lines and minimal horizontal lines that is used by
many journals, highlight Academic under TableLooks. The column widths, font and other
features can also be changed using the commands Format — Table Properties. By click-
ing on the table and using the commands Edit — Copy, or by clicking on the table and
right clicking the mouse and selecting ‘Copy’, the table can be copied and pasted into a
word file.

Place of birth (recoded)

Frequency Percent Valid per cent Cumulative per cent

Valid Local 90 63.8 68.2 68.2
Regional 33 23.4 25.0 93.2
Overseas 9 6.4 6.8 100.0
Total 132 93.6 100.0

Missing ~ System 9 6.4

Total 141 100.0

1.13.2 Exporting output and data from SPSS

Output can be saved in SPSS and printed directly from SPSS. However, output sheets
can also be exported from SPSS into many different programs including Excel, Word or
.pdf format using the commands shown in Box 1.10. A data file can also be exported to
Excel using the File — Save as — Save as type: Excel commands.

Box 1.10 Exporting SPSS output into an Excel, Word, PowerPoint or PDF
document
SPSS Commands

Output — SPSS IBM Statistics Viewer
File — Export
Export Output
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Objects to Export: Click All, All visible or Selected to indicate part of output to export

Document: Click on Type to select output file type; File Name: enter the file name;
click Browse to select the directory to save the file

Click OK

1.14 SPSS help commands

SPSS has two levels of extensive help commands. By using the commands Help — Topics
— Index, the index of help topics appears in alphabetical order. By typing in a keyword,
followed by enter, a topic can be displayed. At the end of the Help options, the next major
heading is Tutorial, which is a step by step guide how to perform certain SPSS procedures
such as ‘using the data editor’, ‘working with output’, or ‘working with syntax’. There
is also the ‘Statistics Coach’, which displays the SPSS commands to be used for some
statistical tests and corresponding example outputs.

There is also another level of help that explains the meaning of the statistics shown
in the output. For example, help can be obtained for the above frequencies table by
doubling clicking on the left-hand mouse button to outline the table with a hatched
border and then single clicking on the right-hand mouse button on any of the statistics
labels. This produces a dialog box with What’s This? at the top. Clicking on What's This?
provides an explanation of the highlighted statistical term. Clicking on Cumulative Percent
opens up a dialog box providing the explanation that this is ‘The percentage of cases with
non-missing data that have values less than or equal to a particular value’.

1.15 Golden rules for reporting numbers

Throughout this book the results are presented using the rules that are recommended
for reporting statistical analyses in the literature.’>~7 Numbers are usually presented as
digits except in a few special circumstances as indicated in Table 1.8. When reporting
data, it is important not to imply more precision than actually exists, for example, by
using too many decimal places. Results should be reported with the same number of
decimal places as the measurement, and summary statistics should have no more than
one extra decimal place. A summary of the rules for reporting numbers and summary
statistics is shown in Table 1.8.

1.16 Notes for critical appraisal

When critically appraising statistical analyses reported in the literature, that is when
applying the rules of science to assess the validity of the results from a study, it is
important to ask the questions shown in Box 1.11. Results from studies in which out-
liers are treated inappropriately, in which the quality of the data is poor or in which
an incorrect statistical test has been used are likely to be biased and to lack scien-
tific merit. The CONSORT, which stands for Consolidated Standards of Reporting Trials
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Table 1.8 Golden rules for reporting numbers

Rule

Correct expression

In a sentence, numbers less than 10 are words

In the study group, eight participants did not
complete the intervention

In a sentence, numbers 10 or more are numbers

There were 120 participants in the study

Use words to express any number that begins a
sentence, title or heading. Try and avoid starting
a sentence with a number

Twenty per cent of participants had diabetes

Numbers that represent statistical or
mathematical functions should be expressed in
numbers

Raw scores were multiplied by 3 and then
converted to standard scores

In a sentence, numbers below 10 that are listed
with numbers 10 and above should be written as
a number

In the sample, 15 boys and 4 girls had diabetes

Use a zero before the decimal point when
numbers are less than 1

The P value was 0.013

Do not use a space between a number and its per
cent sign

In total, 35% of participants had diabetes

Use one space between a number and its unit

The mean height of the group was 170cm

Report percentages to only one decimal place if
the sample size is larger than 100

In the sample of 212 children, 10.4% had diabetes

Report percentages with no decimal places if the
sample size is less than 100

In the sample of 44 children, 11% had diabetes

Do not use percentages if the sample size is less
than 20

In the sample of 18 children, 2 had diabetes

Do not imply greater precision than the
measurement instrument

Only use one decimal place more than the basic
unit of measurement when reporting statistics
(means, medians, standard deviations, 95%
confidence interval, inter-quartile ranges, etc.),
for example, mean height was 143.2cm

For ranges use ‘to’ or a comma but not *-’ to avoid
confusion with a minus sign. Also use the same
number of decimal places as the summary statistic

The mean height was 162cm (95% Cl 156 to 168)
The mean height was 162cm (95% Cl 156, 168)

The median was 0.5 mm (inter-quartile range
-0.11t00.7)

The range of height was 145-170cm

P values >0.05 should be reported with two
decimal places

There was no significant difference between
groups (P = 0.35)

P values between 0.001 and 0.05 should be
reported to three decimal places

There was a significant difference in blood
pressure between the two groups (t = 3.0, df =
45, P=0.004)

P values shown on output as 0.000 should be
reported as <0.0001

Children with diabetes had significantly lower
levels of insulin than control children without
diabetes (t = 5.47, df =78, P < 0.0001)
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developed by the CONSORT Group also provides a useful checklist to determine whether
appropriate study information for a randomized controlled trial (RCT) has been reported
(see http://www.consort-statement.org/home/).

Box 1.11 Questions for critical appraisal

Answers to the following questions are useful for checking the integrity of statistical

analyses:

e Have details of the methods and statistical packages used to analyse the data been
reported?

e Are the variables classified correctly as outcome and explanatory variables?

e Are any intervening or alternative outcome variables mistakenly treated as
explanatory variables?

e Are missing values and outliers treated appropriately?

e Is the sample size large enough to avoid type II errors?
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CHAPTER 2
Descriptive statistics

It is wonderful to be in on the creation of something, see it used, and then walk away and smile
at it.
LADY BIRD JOHNSON, U.S. FIRST LADY

Objectives

The objectives of this chapter are to explain how to:

e assess whether a continuous variable has a normal distribution

e decide whether to use a parametric or non-parametric test

e present summary statistics for continuous variables

e decide whether parametric tests have been used appropriately in the literature

Before beginning the statistical analyses of a continuous variable, it is essential to exam-
ine the distribution of the variable for skewness (symmetry), kurtosis (peakedness),
spread (range of the values) and outliers (data values that are extreme compared to
the rest of the data). If a variable has significant skewness or kurtosis or has univari-
ate outliers, or any combination of these, it will not be normally distributed, that is,
the distribution histogram will not conform to a bell shape. Information about each of
these characteristics determines whether parametric or non-parametric tests need to be
used and ensures that the results of the statistical analyses can be accurately explained
and interpreted. A description of the characteristics of the sample also allows other
researchers to judge the generalizability of the results. A typical pathway for beginning
the statistical analysis of continuous data variables is shown in Box 2.1.

Box 2.1 Data analysis pathway for continuous variables

The pathway for conducting the data analysis of continuous variables is as follows:
e check the range (minimum and maximum values) of each variable

e check for the presence and pattern of any missing data

e check for the presence of univariate/multivariate outliers: deal with outliers

e conduct checks of normality

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/barton/medicalstatistics2e
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e transform variables with non-normal distributions or recode into categorical vari-
ables, for example, quartiles or quintiles

e rerun distribution checks for transformed variables

e document all steps in the study handbook

2.1 Parametric and non-parametric statistics

Statistical tests can be either parametric or non-parametric. Parametric tests assume that
the continuous variable being analysed has a normal distribution in the population.
To check this assumption, the distribution of the variable for a sample, which is an
estimate of the population, must be examined. In general, parametric tests can be used
if a continuous variable is normally distributed variable. Other assumptions that may
also be specific to a parametric test must also be checked before analysis.

In general, parametric tests are preferable to non-parametric tests because a larger
variety of tests are available and, as long as the sample size is not very small, they provide
approximately 5% more power than non-parametric rank tests to show a statistically
significant difference between groups.! For non-parametric tests or distribution free tests
no assumptions are made about the distribution of data. Results from non-parametric
tests can be a challenge to present in a clear and meaningful way because summary
statistics such as ranks are not intuitive to interpret as are the summary statistics from
parametric tests. Summary statistics from parametric tests such as the mean (average
value of the sample) and standard deviation are always more readily understood and
more easily communicated than the equivalent median (a data value which half of the
highest values lie above and half of the lowest values lie below), inter-quartile range or
the rank statistics from non-parametric tests.

2.2 Normal distribution

A normal distribution such as the distribution shown in Figure 2.1 is classically a
bell-shaped curve that is bilaterally symmetrical. If a variable is normally distributed,
then the mean and the median values will be approximately equal. A standard normal
distribution has a mean value equal to 0 and a standard deviation equal to 1. A standard
deviation is a measure of spread or dispersion from the mean value. The larger the
standard deviation, the more dispersion or variability there is within the sample.

If a normal distribution is divided into quartiles, that is, four equal parts, the exact
position of the cut-off values for the quartiles is at 0.68 standard deviation above and
below the mean. Other features of a normal distribution are that the area of one stan-
dard deviation on either side of the mean as shown in Figure 2.1 contains 68% of the
values in the sample and the area of 1.96 standard deviations on either side of the mean
contains 95% of the values. These properties of a normal distribution are critical for
understanding and interpreting the output from parametric tests.
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2.3 Skewed distributions

If a variable has a skewed distribution, the mean will be a biased estimate of the centre
of the data as shown in Figure 2.2. A variable that has a classically skewed distribution is
length of stay in hospital because many patients have a short stay and few patients have
a very long stay. When a variable has a skewed distribution, it can be difficult to predict
where the centre of the data lies or the range in which the majority of data values fall.
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For a variable that has a positively skewed distribution with a tail to the right, the
mean will usually be larger than the median as shown in Figure 2.2. For a variable with
a negatively skewed distribution with a tail to the left, the mean will usually be lower
than the median because the distribution will be a mirror image of the curve shown
in Figure 2.2. These features of non-normal distributions are helpful in estimating the
direction of bias in critical appraisal of studies in which the distribution of the variable
has not been taken into account when selecting the statistical tests.

Typically, the median and inter-quartile range are used to describe data that are skewed
or data from very small sample sizes. The data of the distribution is divided into four
sections or quartiles. The median is the second quartile, with 50% of the measurements
having a larger value than this point and 50% of the measurements having a smaller
value than this point. The lower bound for the inter-quartile range is the first quar-
tile, where 25% of the measurements are below this point. The upper bound for the
inter-quartile range is the third quartile, where 75% of the measurements are below
this point. Therefore, the inter-quartile range is the range or distance between the first
and third quartile.

Exploratory analyses

The file surgery.sav contains data from 141 babies who were referred to a paediatric
hospital for surgery. The distributions of three continuous variables in the data set, that
is, birth weight, gestational age and length of stay can be examined using the commands
shown in Box 2.2.

Box 2.2 SPSS commands to obtain descriptive statistics and plots

SPSS Commands

surgery — SPSS IBM Statistics Data Editor
Analyze — Descriptive Statistics — Explore
Explore
Highlight variables Birth weight, Gestational age, and Length of stay and click into
Dependent List
Display: tick Both (default)
Click on Statistics
Explore: Statistics
Click on Descriptives (default), Confidence Interval for Mean: 95% (default)
Click on Outliers
Click Continue
Explore
Click on Plots
Explore: Plots
Boxplots — select Factor levels together (default)
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Descriptive — untick Stem and leaf (default), tick Histogram and tick Normality plots
with tests
Click Continue
Explore
Click on Options
Explore: Options
Missing values — tick Exclude cases pairwise, Click Continue
Explore
Click OK

In the Options menu in Box 2.2, Exclude cases pairwise is selected. This option provides
information about each variable independently of missing values in the other variables
and is the option that is used to describe the entire sample. The default setting for Options
is Exclude cases listwise but this will exclude a case from the data analysis if there are miss-
ing data for any one of the variables entered into the Dependent List. The option Exclude
cases listwise for the data set surgery.sav shows that there are 126 babies with complete
information for all three continuous variables and 15 babies with missing information
for one or more of the three variables. Multivariate statistics refers to the analysis of mul-
tiple variables at the same time. Therefore, the information for these 126 babies would
be important for describing the sample if multivariate statistics that only include babies
without missing data are planned. The characteristics of these 126 babies would be used
to describe the generalizability of a multivariate model but not the generalizability of
the sample.

The Case Processing Summary table with the Exclude cases pairwise option shows that
two of the 141 babies have missing birth weights, eight babies have missing gestational
age and nine babies have missing length of stay data. This information is important if
bivariate statistics (when only two variables are analysed at the same time) will be used
in which as many cases as possible are included. The Descriptives table shows the sum-
mary statistics for each variable. In the table, all statistics are in the same units as the
original variables, that is, grams for birth weight, weeks for gestational age and days for
length of stay. The exceptions are the variance, which is in squared units, and the skew-
ness and kurtosis values, which are in units that are relative to a normal distribution.

Case Processing Summary

Cases

Valid Missing Total

N Percent N  Per cent N Per cent

Birth weight 139 98.6
Gestational age 133 94.3
Length of stay 132 93.6

1.4 141 100.0
5.7 141 100.0
6.4 141 100.0

o 00N
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Descriptives

Statistic Std. error

Birth weight Mean 2463.99 43.650

95% confidence interval Lower bound 2377.68

for mean Upper bound 2550.30

5% trimmed mean 2452.53

Median 2425.00

Variance 264,845.695

Std. deviation 514.632

Minimum 1150

Maximum 3900

Range 2750

Inter-quartile range 755

Skewness 0.336 0.206

Kurtosis -0.323 0.408
Gestational age Mean 36.564 0.1776

95% confidence interval Lower bound 36.213

for mean Upper bound 36.915

5% trimmed mean 36.659

Median 37.000

Variance 4.195

Std. deviation 2.0481

Minimum 30.0

Maximum 41.0

Range 11.0

Inter-quartile range 2.0

Skewness -0.590 0.210

Kurtosis 0.862 0.417
Length of stay Mean 38.05 3.114

95% confidence interval Lower bound 31.89

for mean Upper bound 44.21

5% trimmed mean 32.79

Median 27.00

Variance 1280.249

Std. deviation 35.781

Minimum 0

Maximum 244

Range 244

Inter-quartile range 22

Skewness 3.212 0.211

Kurtosis 12.675 0.419

2.4 Checking for normality

There are several ways of checking whether a continuous variable is normally dis-
tributed. Many measurements such as height, weight and blood pressure may be
normally distributed in the community but may not be normally distributed if the study
has a selected sample or a small sample size. In practice, several checks of normality need
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Table 2.1 Comparisons between mean and median values

Per cent
Variable Mean — median difference Interpretation
Birth weight 2464.0 — 2425.0 =39.0¢g 1.5% Values almost identical, suggesting a
normal distribution
Gestational age 36.6 — 37.0 = —0.4 month 1.1% Values almost identical, suggesting a
normal distribution
Length of stay 38.1 - 27.0 = 11.1 days 29.1% Discordant values, with the mean

higher than the median indicating
skewness to the right

to be undertaken to obtain a good understanding of the shape of the distribution of each
variable in the study sample. It is also important to identify the position of any outliers to
gain an understanding of how they may influence the results of any statistical analyses.

The proximity of the mean to the median can indicate possible skewness. A quick
informal check of normality is to examine whether the mean and the median values are
close to one another. From the Descriptives table, the differences between the median
and the mean can be summarized as shown in Table 2.1. The percent difference is calcu-
lated as the difference between the mean and the median as a percentage of the mean.

In Table 2.1, the differences between the mean and median values of birth weight
and gestational age are small, thereby suggesting a normal distribution but the large
difference between the mean and median values for length of stay suggests that this
variable has a non-normal distribution.

2.4.1 Using the standard deviation to check for normality

An inherent feature of a normal distribution is that 95% of the data values lie between
—1.96 standard deviation and +1.96 standard deviations from the mean as shown in
Figure 2.1. That is, most data values should lie in the area that is approximately two
standard deviations above and below the mean. A good approximate check for normality
is to double the standard deviation of the variable and then subtract and also add this
amount to the mean value. This will give an estimated range in which 95% of the values
should lie. The estimated range should be slightly within the actual range of data values,
that is the minimum and maximum values. The estimated 95% range for each variable
is shown in Table 2.2.

For birth weight and gestational age, the estimated 95% range is within or close to the
minimum and maximum values from the Descriptives table. However, for length of stay,
the estimated 95% range is not a good approximation of the actual range. The estimated
lower value is invalid because it is negative and the estimated upper value is significantly
below the maximum value. This is a classical indication of a skewed distribution. If the
two estimated values are lower than the actual minimum and maximum values, as in
this case, the distribution is usually skewed to the right, indicating positive skewness.
If the two estimated values are much higher than the actual minimum and maximum
values, the distribution is usually skewed to the left indicating negative skewness.
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Table 2.2 Calculation of 95% range of variables

Calculation of range Estimated Minimum and
Variable (mean + 2 SD) 95% range maximum values
Birth weight 2464 + (2 x 514.6) 1434 to 3493 1150 to 3900
Gestational age 36.6 + (2 x 2.0) 32.6 to 40.6 30.0 to 41.0
Length of stay 38.1 + (2 x 35.8) -33.51t0 109.7 0to 244

A rule of thumb is that a variable with a standard deviation that is larger than one
half of the mean value is non-normally distributed, assuming that negative values are
impossible.? Thus, the mean length of stay of 38.1 days with a standard deviation almost
equal to its mean value is an immediate alert to evidence of non-normality.

2.4.2 Skewness

Further information about the distribution of the variable can be obtained from the
skewness and kurtosis statistics in the Descriptives table. A perfectly standard normal
distribution has skewness and kurtosis values equal to zero. Skewness values that are
positive indicate a tail to the right and skewness values that are negative indicate a tail
to the left. Values between —1 and +1 indicate an approximate bell-shaped curve and
values from —1 to —3 or from +1 to +3 indicate that the distribution is tending away from
a bell shape with >1 indicating moderate skewness and >2 indicating severe skewness.
Any values above +3 or below —3 are a good indication that the variable is not normally
distributed.

The Descriptives table shows that the skewness values for birth weight and gestational
age are between —1 and +1 suggesting that the distributions of these variables are within
the limits of a normal distribution. However, the high skewness value of 3.212 for length
of stay confirms a non-normal distribution with a tail to the right.

2.4.3 Kurtosis

A kurtosis value above 1 indicates that the distribution tends to be peaked and a value
below 1 indicates that the distribution tends to be flat. As for skewness, a kurtosis value
between —1 and +1 indicates normality and a value between —1 and —3 or between +1
and +3 indicates a tendency away from normality. Values below —3 or above +3 strongly
indicate non-normality. For birth weight and gestational age, the kurtosis values are
small and are not a cause for concern. However, for length of stay the kurtosis value is
12.675, which indicates that the distribution is peaked in a way that is not consistent
with a bell-shaped distribution.

2.4.4 Critical values

Further tests of normality are to divide skewness and kurtosis values by their standard
errors as shown in Table 2.3. In practice, dividing a value by its standard error produces
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Table 2.3 Using skewness and kurtosis statistics to test for a normal distribution

Skewness Critical value Kurtosis Critical value

(SE) (skewness/SE) (SE) (kurtosis/SE)
Birth weight 0.336 (0.206) 1.63 —0.323 (0.408) -0.79
Gestational age —0.590 (0.210) -2.81 0.862 (0.417) 2.07
Length of stay 3.212 (0.211) 15.22 12.675 (0.419) 30.25

a critical value that can be used to judge probability. A critical value that is outside the
range of —1.96 to +1.96 indicates that a variable is not normally distributed. The critical
values in Table 2.3 suggest that birth weight has a normal distribution with critical values
for both skewness and kurtosis within the critical range of +1.96 and gestational age is
deviating from a normal distribution with values outside the critical range. Length of
stay is not normally distributed with large critical values of 15.22 and 30.25.

Extreme Values

Case number Value
Birth weight Highest 1 5 3900
2 54 3545
3 16 3500
4 50 3500
5 141 3500
Lowest 1 4 1150
2 103 1500
3 120 1620
4 98 1680
5 38 1710
Gestational age Highest 1 85 41.0
2 11 40.0
3 26 40.0
4 50 40.0
5 52 40.0°
Lowest 1 2 30.0
2 79 31.0
3 38 31.0
4 4 31.0
5 117 31.5
Length of stay Highest 1 121 244
2 120 211
3 110 153
4 129 138
5 116 131
Lowest 1 32 0
2 33 1
3 12 9
4 22 1
5 16 11

20nly a partial list of cases with the value 40.0 are shown in the table
of upper extremes.
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2.4.5 Extreme values

By requesting outliers as shown in Box 2.2, the five largest and five smallest values of
each variable and the corresponding case numbers or data base rows are obtained and
are shown in the Extreme Values table. It is important to identify outliers and extreme
values that cause skewness. However, the valuesin the Extreme Values table are the
minimum and maximum values in the data set and these may not be influential outliers.

2.4.6 Outliers

Outliers are data values that are extreme when compared to the other values in the data
set. There are two types of outliers: univariate outliers and multivariate outliers. A uni-
variate outlier is a data point that is very different to the rest of the data for one variable.
An outlier is measured by its distance from the remainder of the data in units of the stan-
dard deviation, which is a standardized measure of the spread of the data. For example,
an IQ score of 150 would be a univariate outlier because the mean IQ of the population
is 100 with a standard deviation of 15. Thus, an IQ score of 150 is 3.3 standard deviations
away from the mean, whereas the next closest value may be only 2 standard deviations
away from the mean resulting in a significant gap between the two data points.

A multivariate outlier is a case that is an extreme value on a combination of variables.
For example, a boy aged 8 years with a height of 155 cm and a weight of 45 kg is very
unusual and would be a multivariate outlier. It is important to identify values that are
univariate and/or multivariate outliers because they can have a substantial influence on
the distribution and mean of the variable and can influence the results of analyses and
thus the interpretation of the findings.

Univariate outliers are easier to identify than multivariate outliers. For a continuously
distributed variable with a normal distribution, about 99% of scores are expected to lie
within three standard deviations above and below the mean value. Data points outside
this range are classified as univariate outliers. Sometimes a case, that is, a univariate
outlier for one variable will also be a univariate outlier for another variable. Poten-
tially, these cases may be multivariate outliers. Multivariate outliers can be detected by
inspecting the residuals around a model or by using statistics called leverage values or
Cook’s distances, which are discussed in Chapter 5, or Mahalanobis distances, which are
discussed in Chapter 7.

There are many reasons why outliers occur. Outliers may be errors in data recording,
incorrect data entry values that can be corrected, or genuine values. When outliers are
from participants from another population with different characteristics to the intended
sample, they are called contaminants. This happens, for example, when a participant
with a well-defined illness is inadvertently included as a healthy participant. Occa-
sionally, outliers can be excluded from the data analyses if they are contaminants or
biologically implausible values. However, deleting values simply because they are out-
liers is usually unacceptable and it is preferable to find a way to accommodate the values
without causing undue bias in the analyses.

The methods for dealing with outliers are summarized in Table 2.4. Identitying and
dealing with outliers is discussed further throughout this book. It is important that the
methods used to accommodate outliers are reported so that the generalizability of the
results is clear.
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Table 2.4 Methods for dealing with outliers

Method Outcome

Exclude Subjective judgement that reduces the generalizability of the
results

Code closer to data Reduces influence while maintaining the full data set

Transform the data A transformation, for example, taking logarithms, may

reduce outliers

Retain Use non-parametric analyses

2.4.7 Statistical tests of normality

By requesting normality plots in Analyze — Descriptive Statistics — Explore (Box 2.2), the
following tests of normality are obtained:

Tests of Normality

Kolmogorov-Smirnov?® Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Birth weight 0.067 139 0.200* 0.981 139 0.056
Gestational age 0.151 133 0.000 0.951 133 0.000
Length of stay 0.241 132 0.000 0.643 132 0.000

*This is a lower bound of the true significance.
aLilliefors significance correction.

The Tests of Normality table provides the results of two tests: a Kolmogorov—Smirnov
statistic with a Lilliefors significance correction and a Shapiro—Wilk statistic. A limitation
of the Kolmogorov—Smirnov test of normality without the Lilliefors correction is that
it is very conservative and is sensitive to extreme values that cause tails in the distribu-
tion. The Lilliefors significance correction makes this test a little less conservative. The
Shapiro—Wilk test has more statistical power to detect a non-normal distribution than
the Kolmogorov—Smirnov test.> The Shapiro—Wilk test is often used when the sample
size is less than 50 but can also be used with larger sample sizes. The Shapiro—Wilk test
is based on the correlation between the data and the corresponding normal scores. The
values of the Shapiro—Wilk statistic range between zero, which indicates non-normality
of the data and a value of one which indicates normality.

A distribution that passes these tests of normality provides extreme confidence that
parametric tests can be used. However, variables that do not pass these tests may not
be so non-normally distributed that parametric tests cannot be used, especially if the
sample size is large. This is not to say that the results of these tests can be ignored but
rather that a considered decision using the results of all the available checks of normality
needs to be made.

For both the Shapiro—Wilk and Kolmogorov—Smirnov tests, a P value less than 0.05
provides evidence that the distribution is significantly different from normal. The P
values are shown in the column labelled Sig. in the Tests of Normality table. Birth
weight marginally fails the Shapiro—-Wilk test but the P values for gestational age



Descriptive statistics 35

and length of stay show that they have potentially non-normal distributions. The
Kolmogorov—Smirnov test shows that the distribution of birth weight is not signifi-
cantly different from a normal distribution with a P value greater than 0.2. However,
the Kolmogorov—Smirnov test indicates that the distributions of both gestational age
and length of stay are significantly different from a normal distribution at P < 0.0001.
These tests of normality do not provide any information about why a variable is not
normally distributed and therefore, it is always important to obtain skewness and kur-
tosis values using Analyze — Descriptive Statistics — Explore and to request plots in order
to visually inspect the distribution of data and identify any reasons for non-normality.

2.4.8 Histograms and plots

A histogram shows the frequency of measurements and the shape of the data and there-
fore provides a visual judgement of whether the distribution approximates to a bell
shape. Histograms also show whether there are any gaps in the data which is common
in small data sets, whether there are any outlying values and how far any outlying
values are from the remainder of the data.

The normal Q-Q plot shows each data value plotted against the value that would
be expected if the data came from a normal distribution. The values in the plot are
the quantiles of the variable distribution plotted against the quantiles that would be
expected if the distribution was normal. If the variable was normally distributed, the
points would fall directly on the straight line. Any deviations from the straight line
indicate some degree of non-normality.

The detrended normal Q-Q plots show the deviations of the points from the straight
line of the normal Q-Q plot. If the distribution is normal, the points will cluster ran-
domly around the horizontal line at zero with an equal spread of points above and below
the line. If the distribution is non-normal, the points will be in a pattern such as J or an
inverted U distribution and the horizontal line may not be in the centre of the data.

The box plot shows the median as the black horizontal line inside the box and the
inter-quartile range as the length of the box. The inter-quartile range indicates the 25th
to 75th percentiles, that is, the range in which the central 25-75% (50%) of the data
points lie. The whiskers are the lines extending from the top and bottom of the box.
The whiskers represent the minimum and maximum values when they are within 1.5
times above or below the inter-quartile range. If values are outside this range, they are
plotted as outlying values (circles) or extreme values (asterisks).

Any outlying values that are between 1.5 and 3 box lengths from the upper or lower
edge of the box are shown as open circles, and are identified with the corresponding
number of the data base row. Extreme values that are more than three box lengths
from the upper or lower edge of the box are shown as asterisks. Extreme and/or outlying
values should be checked to see whether they are univariate outliers. If there are several
extreme values at either end of the range of the data or the median is not in the centre
of the box, the variable will not be normally distributed. If the median is closer to the
bottom end of the box than to the top, the data are positively skewed. If the median is
closer to the top end of the box, the data are negatively skewed.

Finally, from the commands in Box 2.2, descriptive and normality plots were requested
for each variable. All of the plots should be inspected because each plot provides different
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information. In Figure 2.3 the histogram for birth weight shows that this distribution is
not strictly bell shaped but the normal Q-Q plot follows an approximately normal distri-
bution apart from the tails, and the box plot is symmetrical with no outlying or extreme
values. These features indicate that the mean value will be an accurate estimate of the
centre of the data and that the standard deviation will accurately describe the spread.
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Figure 2.3 Histogram and plots of birth weight.
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Figure 2.3 (continued)

In Figure 2.4 the histogram for gestational age shows that this distribution has a small
tail to the left and only deviates from normal at the lower end of the normal Q-Q plot.

The box plot for this variable appears to be symmetrical but has a few outlying values
at the lower end of the data values.
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Detrended normal Q-Q plot of gestational age
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In contrast, in Figure 2.5 the histogram for length of stay has a marked tail to the right
so that the distribution deviates markedly from a straight line on the normal Q-Q plot.
On the detrended normal Q-Q plot, the pattern is similar to a U shape. The box plot
shows some outlying values and many extreme values at the upper end of the distribu-
tion. The outliers and/or extreme values can be identified by their ID or case number.
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Figure 2.5 Histogram and plots of length of stay.
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Detrended normal Q-Q plot of Length of stay

4 4
o
3_
o
©
E o]
[]
f=
£
o
-g 1 oC@% o
2 ] o
a ) o @
% 0®
0 3\' °
%e‘%
-1 4
T T T T T T
0 50 100 150 200 250
Observed value
250 - *121
120
*
200 A
110
150 1 "29
125;
116 M 22
jie:
100 - 108813
0128
50 4
0. L

Length of stay

Figure 2.5 (continued)

41



42 Chapter 2

2.4.9 Kolmogorov-Smirnov test

In addition to the above tests of normality, a Kolmogorov—Smirnov test can be obtained
as shown in Box 2.3. The hypothesis of this test is that the distribution of the data is a
particular distribution such as normal, uniform or exponential. To check for normality, a
normal distribution is used for the Kolmogorov—Smirnov test. This test is less powerful
in detecting normality than the Shapiro—Wilk test.*

Box 2.3 SPSS commands to conducting a one sample of normality

SPSS Commands

surgery — SPSS IBM Statistics Data Editor
Analyze — Nonparametric Tests — One Sample
One-Sample Nonparametric Tests
Click on the Objective tab, tick Automatically compare observe data to hypothesized
Click on the Fields tab, select Use custom field assignments
Under Fields — highlight Birth weight, Gestational age, Length of stay and click into
Test Fields using the arrow
Click on the Settings tab, select Choose Tests, tick Customize tests, tick Test observed
distribution against hypothesized (Kolmaogorov-Smirnov test), click on Options
Kolmogorov-Smirnov Test Options
Tick Normal, under Distribution Parameters, tick Use sample data (default), click OK
One-Sample Nonparametric Tests
Select Test Options, tick Exclude cases test-by-test (default)

Click Run
Hypothesis Test Summary
Null Hypothesis Test Sig. Decision
The distribution of Birth weight is One-Sample Retain the
1 normal with mean 2,463.986 and Kolmogorov-  .557 null
standard deviation 514.63. Smirnov Test hypothesis.
The distribution of Gestational age ~ One-Sample Reject the
2 is normal with mean 36.564 and Kolmogorov-  .005 | null
standard deviation 2.05. Smirnov Test hypothesis.
The distribution of Length of stay is One-Sample Reject the
3 normal with mean 38.053 and Kolmogorov-  .000 null
standard deviation 35.78. Smirnov Test hypothesis.

Asymptotic significances are displayed. The significance level is .05.

The P values for the test of normality in the One-Sample Kolmogorov—Smirnov Test
table are different from Kolmogorov—Smirnov P values obtained in Analyze — Descrip-
tive Statistics — Explore because the one-sample test shown here is without the Lilliefors
correction. Without the correction applied this test, which is based on slightly different
assumptions about the mean and the variance of the normal distribution being tested
for fit, is extremely conservative. Once again, the P values suggest that birth weight is
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Table 2.5 Summary of whether descriptive statistics and plots indicate a normal distribution

Skewness and  Critical K-S Overall

Mean — median Mean + 2 SD kurtosis values test Plots decision
Birth weight Probably Yes Yes Yes Yes Probably Yes
Gestational age Yes Yes Yes No No  Probably Yes
Length of stay No No No No No No No

normally distributed (P = 0.557) but gestational age and length of stay have P values
that are statistically significant at less than 0.05 providing evidence that these variables
do not have a normal distribution.

2.4.10 Deciding whether a variable is normally distributed

The information from the descriptive statistics and normality plots can be summarized
as shown in Table 2.5. In this table, ‘Yes’ indicates that the check for normality provides
evidence that the data follows an approximately normal distribution and ‘No’ indicates
that the check for normality provides evidence that the data does not have a normal
distribution.

Clearly, the results of tests of normality are not always in agreement. By considering
all of the information together, a decision can be made about whether the distribution
of each variable is approximately normal to justify using parametric tests or whether
the deviation from normal is so marked that non-parametric or categorical tests need
to be used. These decisions, which sometimes involve subjective judgements, should be
based on all processes of checking for normality.

Table 2.5 shows that parametric tests are appropriate for analysing birth weight
because of checks of normality provide very strong evidence that this variable is
normally distributed. The variable gestational age is approximately normally distributed
with some indications of a small deviation. However, the mean value is a good estimate
of the centre of the data. Parametric tests are robust to some deviations from normality if
the sample size is large, say greater than 100 as is this sample. If the sample size had been
small, say less than 30, then this variable would have to be perfectly normally distributed
rather than approximately normally distributed before parametric tests could be used.

Length of stay is clearly not normally distributed and therefore this variable needs to be
either transformed to normality to use parametric tests, analysed using non-parametric
tests or transformed to a categorical variable. There are a number of factors to consider in
deciding whether a variable should be transformed. Parametric tests generally provide
more statistical power than non-parametric tests. However, if a parametric test does not
have a non-parametric equivalent then transformation is essential.

2.5 Transforming skewed variables

Transformation of a variable may allow parametric statistics to be used if the trans-
formed variable follows a normal distribution. However, difficulties arise sometimes in
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interpreting the results because few people think naturally in transformed units. For
example, if length of stay is transformed by calculating its square root, the results of
parametric tests will be presented in units of the square root of length of stay and will
be more difficult to interpret and to compare with results from other studies.

Various mathematical formulae can be used to transform a skewed distribution to
normality. When a distribution has a marked tail to the right-hand side, a logarithmic
transformation of scores is often effective.” The advantage of logarithmic transforma-
tions is that they provide interpretable results after being back transformed into original
units.® Other common transformations include square roots and reciprocals.” When
data are transformed and differences in transformed mean values between two or more
groups are compared, the summary statistics will not apply to the means of the original
data but will apply to the medians of the original data.®

Length of stay can be transformed to logarithmic values using the commands shown
in Box 2.4. The transformation LG10 can be clicked in from the Functions box and the
variable can be clicked in from the variable list. Either base e or base 10 logarithms can
be used but base 10 logarithms are a little more intuitive in that 0 =1 (10°), 1 =10 (10%),
2 =100 (10?), and so on and are therefore a little easier to interpret and communicate.
Since logarithm functions are defined only for values greater than zero, any values that
are zero in the data set will naturally be declared as invalid and registered as missing
values in the transformed variable.

Box 2.4 SPSS commands for computing a new variable

SPSS Commands

surgery — SPSS IBM Statistics Data Editor
Transform — Compute Variable
Compute Variable
Target Variable = LOS2
Select Arithmetic for Function group and Select Lgl0 for Functions and Special
Variables
Click on the arrow located to the left hand side of Functions and Special Variables to
enter LG10 as Numeric Expression
Click Length of stay into Numeric Expression using the arrow to insert between the
brackets so LG10(lengthst)
Click OK

On completion of the logarithmic transformation, an error message will appear in
the output viewer of SPSS specifying any case numbers that have been set to system
missing. In this data set, case 32 has a value of zero for length of stay and has been
transformed to a system missing value for logarithmic length of stay. To ensure that all
cases are included, for cases that have zero or negative values, a constant can be added
to each value to ensure that the logarithmic transformation can be undertaken.® For
example, if the minimum value is —2.2, then a constant of 3 can be added to all values.
This value can be subtracted again when the summary statistics are transformed back
to original units.
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Whenever a new variable is created, it should be labelled and its format adjusted. The
log-transformed length of stay can be reassigned in Variable View by adding a label ‘Log
length of stay’ to ensure that the output is self-documented. In addition, the number of
decimal places can be adjusted to an appropriate number, in this case three and Measure
can be changed to Scale. Once a newly transformed variable is obtained, its distribution
must be checked again using the Analyze — Descriptive Statistics — Explore commands
shown in Box 2.2, which will provide the following output.

Explore

Case Processing Summary

Cases
Valid Missing Total

N Per cent N Per cent N Per cent

Log length of stay 131 92.9 10 7.1 141 100.0

The Case Processing Summary table shows that there are now 131 valid cases for
log-transformed length of stay compared with 132 valid cases for length of stay because
case 32, which had a zero value, could not be transformed and has been assigned a
system missing value.

Descriptives

Statistic Std. Error

Log length of stay Mean 1.47250 0.026227

95% confidence interval Lower bound 1.42061

for mean Upper bound 1.52439

5% trimmed mean 1.46440

Median 1.43136

Variance 0.090

Std. deviation 0.300183

Minimum 0.000

Maximum 2.387

Range 2.387

Inter-quartile range 0.301

Skewness -0.110 0.212

Kurtosis 4.474 0.420

The Descriptives table shows that mean log length of stay is 1.4725 and the median
value is 1.4314. The two values are only 0.0411 units apart, which suggests that the
distribution is now much closer to being normally distributed. Also, the skewness value
is now closer to zero, indicating no significant skewness. The kurtosis value of 4.474
indicates that the distribution remains peaked, although not as markedly as before. The
values for two standard deviations below and above the mean value, that is, 1.4725 +
(2x0.3) or 0.87 and 2.07, respectively, are much closer to the minimum and maximum
values of 0 and 2.39 for the variable.
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Following transformation, the extreme values should be the same because the same
data points are still the extreme points. However, since case 32 was not transformed and
was replaced with a system missing value, this case is now not listed as a lowest extreme
value and the next extreme value, case 28 has been listed.

Extreme Values

Case number  Value

Log length of stay  Highest 1 121 2.387
2 120 2.324

3 110 2.185

4 129 2.140

5 116 2.117

Lowest 1 33 0.000

2 12 0.954

3 22 1.041

4 16 1.041

5 28 1.079

Dividing skewness by its standard error, that is, —0.110/0.212, gives the critical value
of —0.52, indicating a normal distribution. However, dividing the kurtosis by its stan-
dard error, that is, 4.474/0.42, gives the critical value of 10.65, confirming that the
distribution remains too peaked to conform to normality. In practice, peakness is not
as important as skewness for deciding when to use parametric tests because deviations
in kurtosis do not bias mean values.

Tests of Normality

Kolmogorov-Smirnova? Shapiro-Wilk

Statistic  df Sig. Statistic  df  Sig.

Log length of stay 0.097 131 0.004 0.916 131 0.000

aLilliefors significance correction.

In the Tests of Normality table, the results of the Kolmogorov—Smirnov and Shapiro-
Wilk tests indicate that the distribution remains significantly different from a normal
distribution at P = 0.004 and P < 0.0001, respectively.

The histogram for the log-transformed variable shown in Figure 2.6 conforms to a
bell-shaped distribution better than the original variable except for some outlying values
in both tails and a gap in the data on the left. Such gaps are a common feature of data
distributions when the sample size is small but they need to be investigated when the
sample size is large as in this case. The lowest extreme value for log length of stay is a
univariate outlier. Although log length of stay is not perfectly normally distributed, it
will provide less biased P values than the original variable if parametric tests are used.

2.5.1 Back transformation

Care must be taken when transforming summary statistics in log units back into
their original units.® In general, it is best to carry out all statistical tests using the
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transformed scale and only transform summary statistics back into original units in
the final presentation of the results. Thus, the interpretation of the statistics should be
undertaken using summary statistics of the transformed variable. When a logarithmic
mean is anti-logged it is called a geometric mean. The standard deviation (spread)
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Figure 2.6 Histogram and plots of log length of stay.



48

Chapter 2

Detrended normal Q-Q

plot of log length of stay
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Figure 2.7 Pathway for the analysis of continuous variables.

cannot be back transformed to have the usual interpretation although the 95%
confidence interval can be back transformed and will have the usual interpretation.

2.6 Data analysis pathway

The pathway for the analysis of continuous variables is shown in Figure 2.7.

Skewness, kurtosis and outliers can all distort a normal distribution. If a variable has a
skewed distribution, it is sometimes possible to transform the variable to normality using
a mathematical algorithm so that the data points in the tail do not bias the summary
statistics and P values, or the variable can be analysed using non-parametric tests.

If the sample size is small, say less than 30, data points in the tail of a skewed distribu-
tion can markedly increase or decrease the mean value so that it no longer represents
the actual centre of the data. If the estimate of the centre of the data is inaccurate, then
the mean values of two groups will look more alike or more different than the central
values actually are and the P value to estimate their difference will be correspondingly
reduced or increased. It is important to avoid this type of bias.

2.7 Reporting descriptive statistics

In all research studies, it is important to report details of the characteristics of the study
sample or study groups to describe the generalizability of the results. For this, statistics
that describe the centre of the data and its spread are appropriate. Therefore, for variables
that are normally distributed, the mean and the standard deviation are reported. For
variables that are non-normally distributed, the median (Mdn) and the inter-quartile
range (IQR) are reported.

Table 2.6 Baseline characteristics of the
study sample

Characteristic N M (SD)

Birth weight 139  2464.09 (514.6)
Gestational age 133 36.6 weeks (2.0)
Length of stay 132 27.0 days (21.8 days)?

2Mdn (IQR)
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Statistics of normally distributed variables that describe precision, that is, the standard
error and 95% confidence interval, are more useful for comparing groups or making
inferences about differences between groups. Table 2.6 shows how to present the char-
acteristics of the babies in the surgery.sav data set. In presenting descriptive statistics,
no more than one decimal point greater than in the units of the original measurement
should be used.’

2.8 Checking for normality in published results

When critically appraising journal articles, it may be necessary to transform a measure
of spread (standard deviation) to a measure of precision (standard error of the mean),
or vice versa, for comparing with results from other studies. The standard error of the
mean provides an estimate of how precise the sample mean is as an estimate of the
population mean.

Computing a standard deviation from a standard error, or vice versa, is simple because
the formula is:

Standard deviation (SD
Standard error (SE) = andard deviation ( ),where n is the sample size

\/Z

Also, by adding and subtracting two standard deviations from the mean, it is possi-
ble to roughly estimate whether the distribution of the data conforms to a bell-shaped
distribution. For example, Table 2.7 shows summary statistics of lung function with the
mean and standard deviation in a sample of children with severe asthma and in a sample
of healthy controls. In this table, FEV, is forced expiratory volume in the first second of
expiration, that is, how much air is exhaled during a forced breath in the first second.
It is rare that this value would be below 30%, even in a child with severe lung disease.

In the active group, the lower value of the 95% range of per cent predicted FEV, is
37.5% — (2 X 16.0)%, which is 5.5%. Similarly, the lower value of the 95% range for
the control group is 6.0%. Both of these values for predicted FEV, are implausible and
are a clear indication that the data are skewed. Therefore, the standard deviation is not
an appropriate statistic to describe the spread of the data and parametric tests should
not be used to compare the groups.

If the lower estimate of the 95% range is too low, the mean will be an overestimate of
the median value. If the lower estimate is too high, the mean value will be an underesti-
mate of the median value. In Table 2.7, the variables are significantly skewed with a tail

Table 2.7 Mean lung function value of children with asthma and
healthy controls

Asthma group  Control group

(n = 50) (n = 50)
M + SD M + SD P value
FEV, (% predicted value) 37.5+16.0 36.0 + 15.0 0.80

FEV,, forced expiratory volume in 1s.
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to the right-hand side. In this case, the median and inter-quartile range would provide
more accurate estimates of the centre and spread of the data and non-parametric tests
would be needed to compare the groups.

2.9 Notes for critical appraisal

Questions to ask when assessing descriptive statistics published in the literature are
shown in Box 2.5.

Box 2.5 Questions for critical appraisal

The following questions should be asked when appraising published results:

e Have several tests of normality been considered and reported?

e Are appropriate statistics used to describe the centre and spread of the data?

e Do the values of the mean +2 SD represent a reasonable 95% range?

e If a distribution is skewed, has the mean of either group been underestimated or
overestimated?

If the data are skewed, have the median and inter-quartile range been reported?
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CHAPTER 3

Comparing two independent
samples

Do not put faith in what statistics say until you have carefully considered what they do not say.
WILLIAM W. WATT

Objectives

The objectives of this chapter are to explain how to:

e conduct an independent two-sample, parametric or non-parametric test

e assess for homogeneity of variances

e calculate and interpret effect sizes and 95% confidence intervals

e report the results in a table or a graph

e understand sample size requirements

e critically appraise the analysis of data from two independent groups in the literature

3.1 Comparing the means of two independent samples

A two-sample z-test is a parametric test used to estimate whether the mean value of
a normally distributed outcome variable is significantly different between two groups
of participants. This test is also known as a Student’s ¢-test or an independent samples
t-test. Two-sample ¢-tests are classically used when the outcome is a continuous variable
and when the explanatory variable is binary. For example, this test would be used to
assess whether mean height is significantly different between a group of males and a
group of females.

A two-sample ¢-test is used to assess whether two mean values are similar enough to
have come from the same population or whether their difference is large enough for the
two groups to have come from different populations. Rejecting the null hypothesis of a
two-sample t-test indicates that the difference in the means of the two groups is large
and is not due to either chance or sampling variation.

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.
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3.1.1 Assumptions of a two-sample t-test

The assumptions that must be met to use a two-sample ¢-test are shown in Box 3.1.

Box 3.1 Assumptions for using a two-sample z-test

The assumptions that must be satisfied to conduct a two-sample ¢-test are:

e the groups must be independent, that is, each participant must be in one group
only

e the measurements must be independent, that is, a participant’s measurement can
be included in their group once only

e the outcome variable must be on a continuous (interval or ratio) scale

e the outcome variable must be normally distributed in each group

e the variances between groups are approximately equal, that is, homogeneity of
variances (if data fail this assumption an adjustment to the ¢ value is made)

The first two assumptions in Box 3.1 are determined by the study design. To conduct
a two-sample ¢-test, each participant must be on a separate row of the spreadsheet and
each participant must be included in the spreadsheet only once. In addition, one of the
variables must indicate the group to which the participant belongs.

The fourth assumption that the outcome variable must be normally distributed
in each group must also be met. If the outcome variable is not normally distributed
in each group, a non-parametric test such a Mann—-Whitney U test (described later in
this chapter) or a transformation of the outcome variable will be needed. However,
two-sample ¢-tests are fairly robust to some degree of non-normality if the sample size
is large and if there are no influential outliers. The definition of a ‘large’ sample size
varies, but there is common consensus that ¢-tests can be used when the sample size of
each group contains at least 30—50 participants. If the sample size is less than 30 per
group, or if outliers significantly influence one or both of the distributions, or if the
distribution is clearly non-normal, then a two-sample ¢-test should not be used.

In addition to testing for normality, it is also important to inspect whether the variance
in each group is similar, that is, whether there is homogeneity of variances between
groups. Variance (the square of the standard deviation) is a measure of spread and
describes the total variability of a sample. Data points in the sample can be described
in terms of their distance (deviation) from their mean value.

If the variance is different between the two groups, there is heterogeneity of variances
and the degrees of freedom and ¢ value associated with a two-sample #-test are calculated
differently. In this situation, a fractional value for degrees of freedom is used and the
t-test statistic is calculated using individual group variances. In SPSS, Levene’s test for
equality of variances is automatically calculated as part of the two-sample ¢-test and the
information is displayed in the SPSS output. If the Levene’s test result is statistically
significant (P < 0.05), this provides evidence that the data do not show homogeneity of
variance and the variability of the two groups is not equal.
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3.2 One- and two-sided tests of significance

When a hypothesis is tested, it is possible to conduct a one-sided (one-tailed) or a
two-sided (two-tailed) test. A one-sided test is used to test an alternative hypothesis
of an effect in only one direction (i.e. mean,; > mean, or mean, < mean,), for example,
an active treatment is better than placebo. A two-sided test is used to test an alternative
hypothesis of whether one mean value is smaller or larger than another mean value
(i.e. mean; # mean,). That is, there is a difference in either direction between the two
populations from which the samples were selected.

Assuming that the null hypothesis of no difference between population means is true,
in 95% of the cases the observed ¢ values would fall within the critical ¢ value range
and differences would be due to sampling error. Observed ¢ values that fall outside this
critical range, which occurs in 5% of the cases, represent an unlikely ¢ value to occur
when the null hypothesis is true; therefore, the null hypothesis is rejected.

For two-sided tests, the probability of the test statistic occurring in either the upper or
lower tail of the distribution is calculated. As shown in Figure 3.1, for a two-sided test,
2.5% of the rejection region is placed in the positive tail of the distribution (i.e. mean, >
mean,) and 2.5% is placed in the negative tail (i.e. mean, < mean,). When a one-sided
test is used, the 5% rejection region is placed only in one tail of the distribution. For
example, if the hypothesis mean,; > mean, was being tested, the 5% rejection region
would be in the positive end of the tail. This means that for one-sided tests, P values on
the margins of significance are reduced and the difference is more likely to be significant
than a two-sided test.

Rejection Rejection
region region
2.5% 2.5%

\ /

-1.96 0 1.96

Figure 3.1 Statistical model and rejection regions for a two-tailed ¢-test with P = 0.05.
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In the majority of studies, two-sided tests of significance are used. In health care
research, it is important to allow for the possibility that extreme results could occur
by chance and could occur equally often in either direction. In clinical trials, this would
mean evidence for a beneficial or harmful effect. Two-sided tests are more conserva-
tive than one-sided tests in that the P value is higher, that is, less significant. Therefore,
two-tailed tests reduce the chance that a between-group difference is declared statisti-
cally significant in error, and thus that a new treatment is incorrectly accepted as being
more effective than an existing treatment.

In most clinical studies, the use of one-tailed tests is rarely justified because we should
expect that a result could be in either direction. If a one-sided test is used, the direc-
tion should be specified in the study design prior to data collection. However, it is most
unusual for researchers to be certain about the direction of effect before the study is
conducted and, if they were, the study would probably not need to be conducted at all.!
For this reason, one-tailed statistics are rarely used.

3.3 Effect sizes

Effect size is a term used to describe the size of the difference in mean values between
two groups relative to the standard deviation. Effect sizes can be used to describe the
magnitude of the difference between two groups in either experimental or observational
study designs.

Effect sizes are measured in units of the standard deviation. The standard deviation
around each group’s mean value indicates the spread of the measurements in each group
and is therefore a useful unit for describing the distance between the two mean values.
The advantage of using an effect size to describe the difference between study groups
is that unlike 95% confidence intervals and P values, the effect size is not related to
the sample size. Effect sizes also allow comparisons across multiple outcome measures
regardless of whether different measurements or scales have been used or whether there
is variability between the samples.

To compare two mean values the following three effect sizes are commonly used.

3.3.1 Cohen’sd

Many journals request that Cohen’s 4 is reported because Cohen developed well-
accepted interpretations of this size of the effect which help to guide understanding
of the magnitude of between group differences. Cohen’s 4 statistic is computed as the
difference between two mean values divided by the population standard deviation as
tfollows:

(Mean, — Mean, )
SD

Effect size = where SD denotes the standard deviation

If the variances of the two groups are similar, then the standard deviation of either
group can be used in calculating Cohen’s 4.? Otherwise the pooled standard devia-
tion, which is the average of the standard deviations of the two groups, is used. The
pooled standard deviation is the root mean square of the two standard deviations and
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Figure 3.2 Mean values of two groups that are one standard deviation apart.

is calculated as follows:

- [(SDHSD%)]
Pooled standard deviation = —
where SD, is the standard deviation of group 1 and SD, is the standard deviation of
group 2.

Cohen’s d should only be used when the data are normally distributed and this statistic
is most accurate when the group sizes and the group standard deviations are equal.
Figure 3.2 shows the distribution of a variable in two groups that have mean values
that are one standard deviation apart, that is, an effect size of 1 SD.

Table 3.1 shows the interpretation of Cohen’s 4 and the per cent overlap between
the groups for each effect size. In general, an effect size less than 0.2 is considered small,

Table 3.1 Effect sizes for Cohen’s 4 and per
cent overlap

Per cent overlap

Effect size Cohen's d of the two groups
Small 0.20 85%
Medium 0.50 67%

Large 0.80 53%
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0.3-0.5 is considered medium and 0.8 and over is considered large.’ The classification of
Cohen’s d effect size should be considered a guideline and effect sizes should be evaluated
in the context of the research and other similar interventions or studies. For example,
effect sizes for educational research may be much smaller than that observed in medical
or clinical research. A typical effect size of classroom-based educational interventions
identified from a synthesis of over 300 meta-analyses on student achievement is 0.40.*
Therefore, in this context, a classroom education intervention with an effect size equal
to 0.70 may be considered to be large.

3.3.2 Hedges’s g

Cohen’s d can over-estimate the effect size when the sample size is small because in
this situation, the estimate of the means and SDs are less representative of the true
population compared to larger samples. Therefore, when the sample size is not large, an
adjusted 4 value called Hedges’s g is computed. This gives a slightly smaller, less biased
estimate of the population effect size than is provided by Cohen’s d. Hedges’s g is also
calculated from means and SDs of the two groups but is adjusted for unequal sample
size or unequal SDs as follows:

meanl — mean2

Hedges's g =

V(1 =DSD? + (1= D)D)/, + 1, = 2

Alternative, Hedges’s g can be estimated from Cohen’s 4 as follows:
d
Vg +ny) /() +ny —2)

Hedges's g =

3.3.3 Glass’s A (delta)

If the study has an experimental group (i.e. a group in which a treatment or intervention
is being tested) and this is being compared to a control group, then the effect size Glass’s
should be used. This is calculated as Cohen’s 4 but the SD of the control group is used
instead of using the pooled SD from the two groups. This makes sense if the control
SD is considered to be a better estimate of the population SD than the experimental
group SD. If the sample size of the control group is large, the standard deviation will be
an unbiased estimate of the population who have not received the new treatment or
intervention. In an experimental study, Glass’s gives a more reliable estimate of effect
size for the population to which the results will be inferred.>

The effect size as estimated by Glass’s can be considered the average percentile ranking
of the experimental group relative to the control group. Therefore, an effect size of 1
indicates that the mean of the experimental group is at the 84th percentile of the control
group.?

3.4 Study design

Two-sample f-tests can be used to analyse data from any type of experimental or
non-experimental study design where the explanatory variable can be classified into
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two groups, for example, males and females, cases and controls, and intervention
and non-intervention groups. For a two-sample t-test, there must be no relation or
dependence between the participants in each of the two groups. Therefore, two-sample
t-tests cannot be used to analyse scores from follow-up studies where data from
participants are obtained on repeated occasions for the same measure or for matched
case—control studies in which participants are treated as pairs in the analyses. In these
types of studies, a paired ¢-test should be used as described in Chapter 4.

3.5 Influence of sample size

It is important to interpret significant P values in the context of the size of the difference
between the groups and the sample size. The size of the study sample is an important
determinant of whether a difference in means between two groups is statistically sig-
nificant. Ideally, studies should be designed and conducted with a sample size that is
sufficient for a clinically important difference between two groups to become statisti-
cally significant. In addition to specialized computer programs, there are a number of
resources that can be used to calculate the sample size required to show that a nom-
inated effect size is statistically significant and assess the power of a study (see Useful
Websites). Power is a term that refers to the sample size required to avoid a type II
error, that is, incorrectly accepting the null hypothesis of no difference when a clinically
important difference between the groups exists.

If the study is expected to have small effect size and/or a lower level of significance
is used (e.g. P = 0.01), then a large sample size will be needed to detect the effect with
sufficient power.? In general, with power equal to 80% and a level of significance equal
to 0.05, 30 participants per group are needed to show that a large effect size of 0.75 of
one standard deviation is statistically significant, 64 per group for a moderate effect size
of 0.5 and over 200 per group for a small effect size of less than 0.3.6

When designing a study, a power analysis should be conducted to calculate the sample
size that is needed to detect a predetermined effect size with sufficient statistical power.
If the sample size is too small, then type II errors may occur, thatis, a clinically important
difference between groups will not be statistically significant.

In observational studies, the two groups may have unequal sample sizes. In this sit-
uation, a two-sample t-test can still be used but in practice leads to a loss of statistical
power, which may be important when the sample size is small. For example, a study
with three times as many cases as controls and a total sample size of 100 participants
(75 cases and 25 controls) has roughly the same statistical power as a balanced study
with 76 participants (38 cases and 38 controls).® Thus, the unbalanced study requires
the recruitment of an extra 24 participants to achieve the same statistical power.

Research question

The data file babies.sav contains the information of birth length, birth weight and head
circumference measured at 1 month of age in 256 babies. The babies were recruited
during a population study in which one of the inclusion criteria was that the babies had
to have been a term birth. The research question and null hypothesis are shown below.
Unlike the null hypothesis, the research question usually specifies the direction of effect
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that is expected. Nevertheless, a two-tailed test should be used because the direction of
effect could be in either direction and if the effect is in a direction that is not expected,
it is usually important to know this especially in experimental studies. Therefore, the
alternate hypothesis is that there is a difference in either direction between the two
populations from which the samples were selected.

In this example, all three outcome measurements (birth length, birth weight and head
circumference) are continuous and the explanatory measurement (gender) is a binary
group variable.

Questions: Are males longer than females?
Are males heavier than females?
Do males have a larger head circumference than females?

Null hypothesis: There is no ditference between males and females in length.
There is no difference between males and females in weight.
There is no difference between males and females in head
circumference.

Variables: Outcome variables = birth length, birth weight and head
circumference (continuous)

Explanatory variable = gender (categorical, binary)

If the data satisfy the assumptions of ¢-tests (see Box 3.1), then the appropriate statistic
that is used to test differences between groups is the ¢ value. If the ¢ value obtained from
the two-sample t-test falls outside the ¢ critical range and is therefore in the rejection
region, the P value will be small and the null hypothesis will be rejected. In SPSS, the
P value is calculated so it is not necessary to check statistical tables to obtain ¢ critical
values. When the null hypothesis is rejected, the conclusion is made that the difference
between groups is statistically significant and did not occur by chance. It is important to
remember that statistical significance not only reflects the size of the difference between
groups but also the sample size. Thus, small unimportant differences between groups can
be statistically significant when the sample size is large.

Before differences in outcome variables between groups can be tested, it is important
that all of the assumptions specified in Box 3.1 are checked. In the data file babies.sav,
each participant appears only once in their group, therefore the groups and the mea-
surements are independent. In addition, all three outcome variables are on a continuous
scale for each group, so the first three assumptions shown in Box 3.1 are satisfied. To
check the fourth assumption, that the outcome variable is normally distributed, descrip-
tive statistics need to be obtained for the distribution of each outcome variable in each
group rather than for the entire sample. It is also important to check for univariate out-
liers, calculate the effect size and test the fifth assumption, homogeneity of variances.
It is essential to identify univariate outliers that tend to bias mean values of groups and
make them more different or more alike than median values show they are. Box 3.2
shows how to obtain the descriptive information for each group in SPSS.

The Case Processing Summary table indicates that there are 119 males and 137
females in the sample and that none of the babies have missing values for any of
the variables.
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The first check of normality is to compare the mean and median values provided by
the Descriptives table and summarized in Table 3.2. The differences between the mean
and median values are small for birth weight and relatively small for birth length and
for head circumference.

Box 3.2 SPSS commands to obtain descriptive statistics

SPSS Commands

babies.sav — IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Explore
Explore
Highlight Birth weight, Birth length, and Head circumference and click
into Dependent List
Highlight Gender and click into Factor List
Click on Plots
Explore: Plots
Boxplots: select Factor levels together (default)
Descriptive: untick Stem and leaf (default) and tick Histogram, tick Normality
plots with tests, Spread vs Level with Levene test: select None (default)
Click Continue
Explore
Click on Options
Explore: Options
Missing Values — select Exclude cases pairwise
Click Continue
Explore
Display: tick Both (default)
Click OK

Case Processing Summary

Cases
Valid Missing Total

Gender N Per cent N Per cent N Per cent
Birth weight (kg) Male 119 100.0 0 0.0 119 100.0

Female 137 100.0 0 0.0 137 100.0
Birth length (cm) Male 119 100.0 0 0.0 119 100.0

Female 137 100.0 0 0.0 137 100.0
Head circum- Male 119 100.0 0 0.0 119 100.0
ference (cm) Female 137 100.0 0 0.0 137 100.0

Information from the Descriptives table indicates that the skewness and kurtosis values
are all less than or close to +1, suggesting that the data are approximately normally
distributed. Calculations of normality statistics for skewness and kurtosis in Table 3.2
show that the critical values of kurtosis/SE for birth length for both males and females
are less than —1.96 and outside the normal range, indicating that the distributions of
birth length are relatively flat. The head circumference of females is negatively skewed
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Gender Statistic Std. error
Birth weight (kg) Male Mean 3.4430 0.03030

95% confidence Lower bound 3.3830

interval for mean Upper bound 3.5030

5% trimmed 3.4383

mean

Median 3.4300

Variance 0.109

Std. deviation 0.33057

Minimum 2.70

Maximum 4.62

Range 1.92

Inter-quartile 0.47

range

Skewness 0.370 0.222

Kurtosis 0.553 0.440
Female Mean 3.5316 0.03661

95% confidence Lower bound 3.4592

interval for mean Upper bound 3.6040

5% trimmed 3.5215

mean

Median 3.5000

Variance 0.184

Std. deviation 0.42849

Minimum 2.71

Maximum 4.72

Range 2.01

Inter-quartile 0.56

range

Skewness 0.367 0.207

Kurtosis -0.128 0.411

Birth length (cm) Male Mean 50.333 0.0718

95% confidence Lower bound 50.191

interval for mean Upper bound 50.475

5% trimmed 50.342

mean

Median 50.500

Variance 0.614

Std. deviation 0.7833

Minimum 49.0

Maximum 51.5

Range 2.5

Inter-quartile 1.0

range

Skewness -0.354 0.222

Kurtosis -0.971 0.440
Female Mean 50.277 0.0729

95% confidence Lower bound 50.133

interval for mean Upper bound 50.422
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Descriptives

Gender Statistic Std. error

5% trimmed mean 50.264

Median 50.000

Variance 0.728

Std. deviation 0.8534

Minimum 49.0

Maximum 52.0

Range 3.0

Inter-quartile 1.5

range

Skewness -0.117 0.207

Kurtosis -1.084 0.411
Head circumference Male Mean 34.942 0.1197
(cm) 95% confidence Lower bound 34.705

interval for mean Upper bound 35.179

5% 34.967

trimmed mean

Median 35.000

Variance 1.706

Std. deviation 1.3061

Minimum 31.5

Maximum 38.0

Range 6.5

Inter-quartile 2.0

range

Skewness -0.208 0.222

Kurtosis 0.017 0.440

Female Mean 34.253 0.1182

95% confidence Lower bound 34.019

interval for mean Upper bound 34.486

5% trimmed 34.301

mean

Median 34.000

Variance 1.914

Std. deviation 1.3834

Minimum 29.5

Maximum 38.0

Range 8.5

Inter-quartile 1.5

range

Skewness -0.537 0.207

Kurtosis 0.850 0.411

because the critical value of skewness/SE of —2.59 is less than —1.96 and outside
the normal range. Also, the distribution of head circumference for females is slightly
peaked because the critical value of kurtosis/SE for this variable is outside the normal
range of +1.96.

From the Descriptives table, it is possible to also compute effect sizes and estimate
homogeneity of variances as shown in Table 3.3. The effect sizes using the pooled stan-
dard deviation are small for birth weight, very small for birth length and medium for
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Table 3.2 Checking whether data have a normal distribution

Mean — Skewness Skewness/SE Kurtosis Kurtosis/SE
Gender median (SE) (critical value) (SE) (critical value)
Birth weight Male 0.013  0.370(0.222) 1.67 0.553 (0.440) 1.26
Female 0.032 0.367 (0.207) 1.77 -0.128 (0.411) —-0.31
Birth length Male —-0.167 —0.354 (0.222) -1.59 —0.971 (0.440) -2.21
Female 0.277 -0.117 (0.207) -0.57 —1.084 (0.411) -2.64
Head circumference Male —-0.058 —0.208 (0.222) —-0.94 0.017 (0.440) 0.04
Female  0.253 -0.537 (0.207) -2.59 0.850 (0.411) 2.07

Table 3.3 Effect sizes and homogeneity of variances

Difference in Effect Maximum and Variance

means and SD size (d) minimum variance ratio
Birth weight 3.443 - 3.532/0.38 0.23 0.184, 0.109 1:1.7
Birth length 50.33 — 50.28/0.82 0.06 0.728,0.614 1:1.2
Head circumference 34.94 — 34.25/1.35 0.51 1.914, 1.706 1:1.1

head circumference. The variance of birth weight for females compared to males is
0.109-0.184 or 1:1.7. This indicates that females have a wider spread of birth weight
scores, which is shown by similar minimum values for males and females (2.70 vs
2.71kg) but a higher maximum value for females (4.62 vs 4.72kg). For birth length
and head circumference, males and females have similar variances with ratios of 1:1.12
and 1:1.1, respectively.

The Tests of Normality table shows that with P values less than 0.05, the distri-
bution of birth weight for males and females is not significantly different from a
normal distribution and therefore passes these tests of normality. However, both the
Kolmogorov—-Smirnov and Shapiro—Wilk tests of normality indicate that birth length
and head circumference for males and females are significantly different from a normal
distribution.

Tests of Normality

Gender Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Birth weight (kg) Male 0.044 119 0.200* 0.987 119 0.313
Female 0.063 137 0.200* 0.983 137 0.094
Birth length (cm) Male 0.206 119 0.000 0.895 119 0.000
Female 0.232 137 0.000 0.889 137 0.000
Head circumference (cm) Male 0.094 119 0.012 0.977 119 0.037
Female 0.136 137 0.000 0.965 137 0.001

*This is a lower bound of the true significance.
aLilliefors significance correction.
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Figure 3.3 Histograms and plot of birth weight by gender.
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Figure 3.3 (continued)

The histograms shown in Figure 3.3 indicate that the data for birth weight of males
and females follow an approximately normal distribution with one or two outlying val-
ues to the right hand side. The box plots shown in Figure 3.3 indicate that there is
one outlying value for males and two outlying values for females that are 1.5-3 box
lengths from the upper edge of the box. Both groups have outlying values at the high
end of the data range that would tend to increase the mean value of each group. To
check whether these outlying values are univariate outliers, the mean of the group is
subtracted from the outlying value and then divided by the standard deviation of the
group. This calculation converts the outlying value to a z score. If the absolute value
of the z score is greater than 3, then the value is a univariate outlier. If the sample
size is very small, then an absolute z score greater than 2 should be considered to be a
univariate outlier.”

For the birth weight of males, the outlying value is the maximum value of 4.62 and
is case 249. By subtracting the mean from this value and dividing by the standard devi-
ation, thatis, ((4.62 —3.44)/0.33), a z value of 3.58 is obtained indicating that case 249
is a univariate outlier. This score is an extreme value compared to the rest of the data
points and should be checked to ensure that it is not a transcribing or data entry error.
On checking, it was found that the score was entered correctly and came from a minor-
ity ethnic group. There is only one univariate outlier and the sample size is large and
therefore it is unlikely that this outlier will have a significant influence on the summary
statistics. If the sample size is large, say at least 100 cases, then a few cases with z scores
greater than the absolute value of 3 would be expected by chance.”
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If there were more than a few univariate outliers, a technique that can be used to
reduce the influence of outliers is to transform the scores so that the shape of the dis-
tribution is changed. The outliers will still be present on the tails of the transformed
distribution, but their influence will be reduced.? If there are only a few outliers, another
technique that can be used is to change the score for the outlier so it is not so extreme,
for example, by changing the score to one point larger or smaller than the next extreme
value in the distribution.’

For illustrative purposes, the case that is a univariate outlier for birth weight of males
will be changed so that it is less extreme. Using the Analyze — Descriptive Statistics —
Explore commands and requesting outliers as shown in Box 2.2, the next extreme value
is obtained, which is case 149 with a value of 4.31. If a value of 1 were added to the
next extreme value this would give a value of 5.31, which would be the changed value
for the univariate outlier, case 249. However, this value is higher than the actual value
of case 249, therefore this technique is not suitable. An alternative is that the univariate
outlier is changed to a value that is within three z scores of the mean. For birth weight
of males, this value would be 4.43, that is, (0.33 x 3) + 3.44. This value is lower than
the present value of case 249 and slightly higher than the next extreme value, case 149.
Therefore, the value of case 249 is changed from 4.62 to 4.43. This information should
be recorded in the study handbook and the adjustment of the score reported in any
publications.

After the case has been changed, the Descriptives table for birth weight of males should
be obtained with new summary statistics. This table shows that the new maximum value
for birth weight is 4.43. The mean of 3.4414 is almost the same as the previous mean
of 3.4430, and the standard deviation, skewness and kurtosis values of the group have
slightly decreased, indicating a slightly closer approximation to a normal distribution.

For the birth weight of females, cases 131 and 224 are outlying values and are also from
the same minority ethnic group as case 249. Case 131 is the higher of the two values
and is the maximum value of the group with a value of 4.72, which is 2.77 standard
deviations above the group mean and is not a univariate outlier. Therefore, case 224 is
not a univariate outlier and the values of both cases 131 and 224 are retained.

Another alternative to transforming data or changing the values of univariate outliers
is to omit the outliers from the analysis. If there were more univariate outliers from
the same minority ethnic group, the data points could be included so that the results
could be generalized to all ethnic groups in the recruitment area. Alternatively, all data
points from the minority group could be omitted regardless of outlier status although
this would limit the generalizability of the results.

The decision of whether to omit or include outlying values is always difficult. If the
sample was selected as a random sample of the population, omission of some participants
from the analyses should not be considered.

The histograms shown in Figure 3.4 indicate that birth length of males and females
does not follow a classic normal distribution and explains the kurtosis statistics for males
and females in the Descriptives table. The birth length of both males and females has
a narrow range of only 49 to 52 cm as shown in the Descriptives table. The histograms
show that birth length is recorded to the nearest 0.5 of a centimetre for both male and
female babies males (Figure 3.4). This rounding of birth length may be satisfactory for
obstetric records but it would be important to ensure that observers measure length
to an exact standard in a research study. Since birth length has only been recorded to
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the nearest centimetre, summary statistics for this variable should be reported using no
more than one decimal place.

Descriptives

Gender Statistic Std. error
Birth weight (kg) Male Mean 3.4414 0.02982

95% confidence Lower bound 3.3824

Interval for mean Upper bound 3.5005

5% trimmed mean 3.4383

Median 3.4300

Variance 0.106

Std. deviation 0.32525

Minimum 2.70

Maximum 4.43

Range 1.73

Inter-quartile range 0.4700

Skewness 0.235 0.222

Kurtosis 0.028 0.440
Female Mean 3.5316 0.03661

95% confidence Lower bound 3.4592

Interval for mean Upper bound 3.6040

5% trimmed mean 3.5215

Median 3.5000

Variance 0.184

Std. deviation 0.42849

Minimum 2.71

Maximum 4.72

Range 2.01

Inter-quartile range 0.5550

Skewness 0.367 0.207

Kurtosis -0.128 0.411

The box plots shown in Figure 3.4 confirm that females have a lower median birth
length than males but have a wider absolute range of birth length values as indicated
by the length of the box. This suggests that the variances of each group may not be
homogeneous.

The histograms for head circumference shown in Figure 3.5 indicate that the data are
approximately normally distributed although there is a slight tail to the left for females.
This is confirmed by the box plot in Figure 3.5 that shows a few outlying values at the
lower end of the distribution, indicating that a few female babies have a head circum-
ference that is smaller than most other babies in the group. The smallest value is case
184 with a head circumference of 29.5, which has a z score of 3.44 and is a univariate
outlier. The next smallest value is case 247 with a value of 30.2, which has a z score of
2.93. There is only one univariate outlier, which is expected in this large sample as part
of normal variation. It is unlikely that this one outlier will have a significant impact on
summary statistics, so it is not adjusted and is included in the data analyses. The maxi-
mum value for head circumference of females is case 108 with a value of 38, which has
a zvalue of 2.71 and is not a univariate outlier.
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Figure 3.4 Histograms and plot of birth length by gender.
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Table 3.4 Summary of whether descriptive statistics indicates a normal distribution in each
group

Mean — Overall

median Skewness Kurtosis K-S test Plots decision

Birth weight Males Yes Yes Yes Yes Yes Yes
Females Yes Yes Yes Yes Yes Yes

Birth length Males Yes Yes No No No Yes
Females Probably Yes No No No Yes

Head Males Yes Yes Yes No Yes Yes
circumference Females Probably No No No Yes Yes

Finally, after the presence of outliers has been assessed and all tests of normality have
been conducted, the tests of normality can be summarized as shown in Table 3.4. In the
table, ‘Yes’ indicates that the distribution is within the normal range and ‘No’ indicates
that the distribution is outside the normal range.

Based on all checks of normality, the birth weight of males and females is normally
distributed so a two-sample #-test can be used. The distribution of birth length of males
and females has a flat shape but does not have any outliers. While birth length of
both males and females has some kurtosis, this has less impact on summary statistics
than if the data were skewed. The variable head circumference is normally distributed
for males but for females has some slight skewness caused by a few outlying values.
However, the mean and median values for females are not largely different. Also,
in the female group there is only one outlier and the number of outlying values is
small and the sample size is large, and a #-test will be robust to these small deviations
from normality. Therefore, the distribution of each outcome variable is approximately
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Figure 3.5 Histograms and plot of head circumference by gender.
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Figure 3.5 (continued)

normally distributed for both males and females, and a two-sample #-test can be used
to test between group differences.

3.6 Two-sample t-test

A two-sample ¢-test is basically a test of how different two group means are in terms
of their variance. Clearly, if there was no difference between the groups, the difference
to variance ratio would be close to zero. The f value becomes larger as the difference
between the groups increases in respect to their variances. An approximate formula for
calculating a ¢ value, when variances are equal is

(X1 - Xz)

\/ (sp/m, +sp/n5)

where x is the mean, sf) is the pooled variance and 7 is the sample size of each group.
Thus, ¢ is the difference between the mean values for the two groups divided by the
standard error of the difference. When variances of the two groups are not equal, that
is when Levene’s test for equality of variances is significant, individual group variances,
and not the pooled variance, are used in calculating the ¢ value. Box 3.3 shows the SPSS
commands to obtain a two-sample ¢-test in which the numbered coding for each group
has to be entered.

The first Group Statistics table shows summary statistics, which are identical to the
statistics obtained in Analyze — Descriptive Statistics — Explore. However, there is no infor-
mation in this table that would allow the normality of the distributions in each group
or the presence of influential outliers to be assessed. Thus, it is important to always
obtain full descriptive statistics using the Explore command to check for normality prior
to conducting a two-sample ¢-test.

=
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Box 3.3 SPSS commands to obtain a two-sample ¢-test

SPSS Commands

babies.sav — IBM SPSS Statistics Data Editor
Analyze — Compare Means — Independent Samples T Test
Independent-Samples T-Test
Highlight Birth weight, Birth length and Head circumference and click
into Test Variable(s)
Highlight Gender and click into Group Variable
Click on Define Groups
Define Groups
Use specified values: Enter coding: 1 for Group 1 and 2 for Group 2
Click Continue
Independent-Samples T-Test
Click OK

T-Test

Group Statistics

Gender N Mean Std. deviation Std. error mean
Birth weight (kg) Male 119 3.4414 0.32525 0.02982

Female 137 3.5316 0.42849 0.03661
Birth length (cm) Male 119 50.333 0.7833 0.0718

Female 137 50.277 0.8534 0.0729
Head circumference (cm) Male 119 34.942 1.3061 0.1197

Female 137 34.253 1.3834 0.1182

In the Independent Samples Test table, the first test is Levene’s test of equal variances.
A Pvalue for this test that is less than 0.05 indicates that the variances of the two groups
are significantly different and therefore that the ¢ statistics calculated assuming variances
are not equal should be used. The variable birth weight does not pass the test for equal
variances with a P value of 0.007 but this was expected because the statistics in the
Descriptives table showed a 1:1.7, or almost twofold, difference in variance (Table 3.3).
For this variable, the statistics calculated assuming variances are not equal is appropriate.
However, both birth length and head circumference pass the test of equal variances and
the differences between genders can be reported using the ¢ statistics that have been
calculated assuming equal variances.

For birth weight, the appropriate ¢ statistic can be read from the line Equal variances not
assumed. The t statistic for birth length and head circumference can be read from the line
Equal variances assumed. The t-test P value indicates the likelihood that the differences in
mean values occurred by chance. If the likelihood is small, that is, the P value is less than
0.05, the null hypothesis can be rejected. For birth weight, the P value for the difference
between the genders does not reach statistical significance with a P value of 0.057. This
P value indicates that there is a 5.7%, or 57 in 1000, chance of finding this difference if
the two groups in the population have equal means.
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Independent Samples Test

Levene’s test

for equality
of variances t-Test for equality of means
95% confidence
interval
of the
difference
Sig. Mean Std. error
(two-  diff- diff-
F Sig. t df tailed) erence erence Lower Upper
Birth Equal variances 7.377 0.007 -1.875 254 0.062 —0.09021 0.04812 -0.18498 0.00455
weight assumed
(kg)
Equal variances —-1.911 249.659 0.057 -0.09021 0.04721 -0.18320 0.00277
not assumed
Birth Equal variances 2.266 0.133 0.538 254 0.591 0.0554 0.1030 -0.1473 0.2581
length assumed
(cm)
Equal variances 0.541 253.212 0.589 0.0554 0.1023 -0.1461 0.2569
not assumed
Head Equal variances 0.257 0.613 4.082 254 0.000 0.6895 0.1689 0.3568 1.0221
circum- assumed
ference
(cm)
Equal variances 4.098 252.221 0.000 0.6895 0.1682 0.3581 1.0208

not assumed

For birth length, there is clearly no difference between the genders with a P value
of 0.591. For head circumference, there is a highly significant difference between the
genders with a P value of <0.0001. The head circumference of female babies is signifi-
cantly different from the head circumference of male babies. This P value indicates that
there is less than a 1 in 1000 chance of this difference being found by chance if the null
hypothesis is true.

3.7 Confidence intervals

Confidence intervals are invaluable statistics for estimating the precision around a sum-
mary statistic such as a mean value and for estimating the magnitude of the difference
between two groups. For mean values, the 95% confidence interval is calculated as
follows:

Confidence interval (CI) = mean + (1.96 X SE)

where SE = standard error.

Thus, using the data from the Group Statistics table provided in the SPSS output for a
t-test, the confidence interval for birth weight for males would be calculated as follows:

95%confidence interval = 3.441 + (1.96 X 0.0298) = 3.383, 3.499
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Table 3.5 Interpretation of 95% confidence intervals

Relative position of the 95% Statistical significance
confidence intervals in two group between groups

Do not overlap Highly significant difference

Just touch Significant at approximately P < 0.01

Overlap by less than 25% of the average length of the two Significant at approximately P < 0.05
intervals

Overlap, but one summary statistic is not within the confidence Possibly significant, but not highly
interval for the other group

Overlap so that one confidence interval crosses the summary Definitely not significant
statistics of the other group

These values correspond approximately to the 95% confidence interval lower and
upper bounds shown in the Descriptives table. To calculate the 99% confidence interval,
the critical value of 2.57 instead of 1.96 would be used in the calculation. This would give
a wider confidence interval that would indicate the range in which the true population
mean lies with more certainty.

The confidence intervals of two groups can be used to assess whether there is a signif-
icant difference between the two groups. If the 95% confidence interval of one group
does not overlap with the confidence interval of another, there will be a statistically
significant difference between the two groups. The interpretation of the overlapping of
confidence intervals when two groups are compared is shown in Table 3.5.

3.7.1 Interpreting the overlap of 95% confidence intervals

Figure 3.6 shows the mean values of an outcome measurement, say per cent change
from baseline, in three independent groups. The degree of overlap of the confidence
intervals reflects the P values. For the comparison of group I versus III the confidence
intervals do not overlap and the group means are significantly different at P < 0.0001.
For the comparison of group I versus II, the confidence intervals overlap to a large extent
and the group means are not significantly different at P = 0.52. For the comparison of
group II versus III, where one summary statistic is not within the confidence interval
of the other group, the difference between group means is marginally significant at
P=0.049.

In the data set, babies.sav the means and confidence intervals of the outcome variable
for each group can be summarized as shown in Table 3.6. The degree of overlap of the
95% confidence intervals confirms the between group P values.

Finally, in the Independent Samples Test table, the mean difference and its 95% con-
fidence interval were also reported. The mean difference is the difference between the
mean values for males and females. The direction of the mean difference is determined
by the coding used for gender. With males coded as 1 and females as 2, the differences are
represented as males — females. Therefore, this section of the table indicates that males
have a mean birth weight, that is, 0.09021 kg lower than females but a mean birth
length, that is, 0.0554 cm longer and a mean head circumference, that is, 0.6895 cm
larger than females. For reporting, these figures would be rounded to no more than two
decimal places.
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Figure 3.6 Interpretation of the overlap between 95% confidence intervals.

Table 3.6 Summary of mean values and interpretation of 95% confidence intervals

M (95% Cl) Males M (95% Cl) Females Overlap of CI Significance

Birth weight 3.44 (3.38, 3.50) 3.53 (3.46, 3.60) Slight P=10.06
Birth length 50.3 (50.1, 50.5) 50.3 (50.1, 50.4) Large P=10.59
Head circumference  34.9 (34.7, 35.2) 34.3 (34.0, 34.5) None P < 0.0001

Obviously, a zero value for a mean difference would indicate no difference between
groups. Thus, a 95% confidence interval around the mean difference that contains the
value of zero, as it does for birth length, suggests that the two groups are not significantly
different. A confidence interval that is shifted away from the value of zero, as it is for
head circumference, indicates with 95% certainty that the two groups are different.
The slight overlap with zero for the 95% confidence interval of the difference for birth
weight reflects the marginal P value.

3.8 Reporting the results from two-sample t-tests

A summary of the types of statistics that is used to describe centre, spread and precision
is shown in Table 3.7.

The results from two-sample ¢-tests can be reported as shown in Table 3.8. In addition
to reporting the P value for the difference between genders, it is important to report the
characteristics of the groups in terms of their mean values and standard deviations, the
effect size and the mean between group difference and 95% confidence interval. Except
for effect size, these statistics are all provided on the SPSS #-test output.
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Table 3.7 Summary statistics to describe normal and skewed distributions

Statistic Normal distribution Skewed distribution
Centre Mean (M) Median (Mdn)
Spread Standard deviation (SD) Variance (SD2) Inter-quartile (IQR) range

Precision Standard error (SE) = SD/\/n
95% confidence interval (95% Cl) = 1.96 x SE

Table 3.8 Summary of birth details by gender

Males Females Effect Mean difference
mean (SD) mean (SD) size (SD) and 95% ClI P value
Birth weight (kg) 3.44 (0.33) 3.53(0.43) 0.23 —0.09 (-0.18, —0.003) 0.06
Birth length (cm) 50.3 (0.78) 50.3 (0.85) 0.06 0.06 (-0.15, 0.26) 0.59
Head circumference (cm) 34.9 (1.31) 34.3 (1.38) 0.51 0.69 (0.36, 1.02) <0.0001

The P values show the significance of the differences, but the effect size and mean
difference give an indication of the magnitude of the differences between the groups.
As such, these statistics give a meaningful interpretation to the P values.

3.8.1 Reporting results in a graph

Graphs are important tools for conveying the results of research studies. The most infor-
mative figures are clear and self-explanatory. For mean values from continuous data,
dot plots are the most appropriate graph to use. In summarizing data from continuous
variables, it is important that bar charts are used only when the distance from zero has
a meaning and therefore when the zero value is shown on the axis.

Box 3.4 SPSS commands to draw a dot plot

SPSS Commands

babies.sav —IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Error Bar

Error Bar
Click Simple, tick Summaries for groups of cases (default)
Click Define

Define Simple Error Bar: Summaries for Groups of Cases
Highlight Birth weight and click into Variable
Highlight Gender and click into Category Axis
Click OK

Box 3.4 shows how to create a dot plot with error bars in SPSS. The commands in
Box 3.4 can then be repeated for birth length and head circumference to produce the
graphs shown in Figure 3.7. Note that the scales on the y-axis of the three graphs shown
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Figure 3.7 Dot plots of birth weight, birth length and head circumference by gender.
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Figure 3.7 (continued)

in Figure 3.7 are different and therefore it is not possible to compare the graphs with
one another or combine them.

However, in each graph shown in Figure 3.7, the degree of overlap of the confidence
intervals provides an immediate visual image of the differences between genders. The
graphs show that female babies are slightly heavier with a small overlap of 95% confi-
dence intervals and that they are not significantly shorter because there is a large overlap
of the 95% confidence intervals. However, males have a significantly larger head cir-
cumference because there is no overlap of confidence intervals. The extent to which the
confidence intervals overlap in each of the three graphs provides a visual explanation
of the P values obtained from the two-sample ¢-tests.

3.8.2 Drawing a figure in SigmaPlot

For publication quality, the differences between groups can be presented in a graph
using SigmaPlot. In the example below, only the data for head circumference are plotted
but the same procedure could be used for birth weight and length. First, the width
of confidence interval has to be calculated using the Descriptives table obtained from
Analyze — Descriptive Statistics — Explore.

Width of 95%CI = mean — lower bound of 95%CI
Thus, the width of the confidence interval for head circumference is as follows:

Width of 95%CI = 34.94 — 34.71 = 0.23(males)
=34.25 - 34.02 = 0.23(females)
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Figure 3.8 Mean head circumference at 1 month by gender.

The numerical values of the mean and the width of the 95% confidence interval are
then entered into the SigmaPlot spreadsheet as follows and the commands in Box 3.5
can be used to draw a dot plot as shown in Figure 3.8.

Column 1 Column 2
34.94 0.23
34.25 0.23

Box 3.5 SigmaPlot commands for drawing a dot plot

SigmaPlot Commands

Data 1*
At top of the screen Click on Graph — Create Graph
Click on Scatter Plot in sub-menu
Click on Simple Scatter — Error Bars in Scatter Group
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Single Y, click Next
Create Graph — Select Data
Data for Y = use drop box and select Column 1
Data for Error = use drop box and select Column 2,
Click Finish




80 Chapter 3

Once the plot is obtained, the graph can be customized by changing the axes, axis
labels, graph colours and so on using options under the menu Graph Page — the fourth
tab at the top of the screen.

Alternatively, the absolute mean differences between males and females could be pre-
sented in a graph. Birth length and head circumference were measured in the same scale
(cm) and therefore can be plotted on the same figure. Birth weight is in different units
(kg) and would need to be presented in a different figure.

The width of the confidence intervals is calculated from the mean difference and lower
95% confidence interval of the difference, as follows:

Width of 95%CI for birth length = 0.055 — (—0.147) = 0.202
Width of 95%CI for head circumference = 0.689 — 0.357 = 0.332

These values are then entered into the SigmaPlot spreadsheet as follows:

Column 1 Column 2
0.055 0.202
0.689 0.332

Box 3.6 shows how a horizontal scatter plot can be drawn in SigmaPlot to produce
Figure 3.9. The decision whether to draw horizontal or vertical dot plots is one of per-
sonal choice; however, horizontal plots have the advantage that longer descriptive labels
can be included in a way that they can be easily read.

Box 3.6 SigmaPlot commands for horizontal dot plot

SigmaPlot Commands

Data 1*

Click on Create Graph tab at top of the screen

Click on Scatter in sub-menu

Click on Simple Scatter — Error Bars in Scatter group
Create Graph — Error Bars

Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format

Highlight Many X, click Next
Create Graph — Select Data

Data for X1 = use drop box and select Column 1

Data for Error 1 = use drop box and select Column 2
Click Finish

3.9 Rank-based non-parametric tests

Rank-based non-parametric tests are used when the data do not conform to a normal
distribution. If the data are clearly skewed, if outliers have an important effect on the
mean value or if the sample size in one or more of the groups is small, say between 20
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Figure 3.9 Mean difference in body length and head circumference between males and females
at 1 month of age.

and 30 cases, then a rank-based non-parametric test should probably be used. These tests

rely on ranking and summing the scores in each group and may lack sufficient power to

detect a significant difference between two groups when the sample size is very small.
The non-parametric test that is equivalent to a two-sample ¢-test is the Mann—Whitney

U test. The Mann—Whitney U test is based on the ranking of measurements from two

samples to estimate whether the samples are from the same population. In this test, no

assumptions are made about the distribution of the measurements in either group.
The assumptions for the Mann—Whitney U test are shown in Box 3.7.

Box 3.7 Assumptions for Mann—Whitney U test to compare two independent
samples

The assumptions for the Mann—Whitney U test are:
e the data are randomly sampled from the population
e the groups are independent, that is, each participant is in one group only

Research question

The spreadsheet surgery.sav, which was used in Chapter 2, contains the data for 141
babies who attended hospital for surgery, their length of stay and whether they had an
infection during their stay.

Question: Do babies who have an infection have a longer stay in hospital?
Null hypothesis: ~ That there is no difference in length of stay between babies who have
an infection and babies who do not have an infection.

Variables: Outcome variable = length of stay (continuous)
Explanatory variable = infection (categorical, binary)

Descriptive statistics and the distribution of the outcome variable length of stay in each
group can be inspected using the commands shown in Box 3.2 with length of stay as
the dependent variable and infection as the factor.
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The Descriptives table shows that the mean and median values for length of stay for
babies with no infection are 33.20 and 22.50, respectively, 10.70 units apart and for
babies with an infection, the values are 45.52 and 37.00, or 8.52 units apart. The vari-
ances are unequal at 1098.694 for no infection and 1492.804 for infection, that is, a
ratio of 1:1.4. The skewness statistics are all above 2 and the kurtosis statistics are also

high, indicating that the data are peaked and are not normally distributed.

Case Processing Summary

Cases
Infection Valid Missing Total
N Per cent N Per cent N Per cent
Length of stay No 80 94.1 5 5.9 85 100.0%
Yes 52 92.9 4 7.1 56 100.0%
Descriptives
Infection Statistic Std. error
Length of stay No Mean 33.20 3.706
95% Confidence Lower bound 25.82
interval for mean Upper bound 40.58
5% trimmed 28.25
mean
Median 22.50
Variance 1098.694
Std. deviation 33.147
Minimum 0
Maximum 244
Range 244
Inter-quartile 20
range
Skewness 4.082 0.269
Kurtosis 21.457 0.532
Yes Mean 45.52 5.358
95% confidence Lower bound 34.76
interval for mean Upper bound 56.28
5% trimmed 40.36
mean
Median 37.00
Variance 1492.804
Std. deviation 38.637
Minimum 11
Maximum 211
Range 200
Inter-quartile 29
range
Skewness 2.502 0.330
Kurtosis 7.012 0.650
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The P values for the Kolmogorov—Smirnov and the Shapiro—Wilk tests are shown in
the column labelled Sig. and are less than 0.05 for both groups, indicating that the data
do not pass these tests of normality in either group.

Tests of Normality

Infection Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Length of stay No 0.252 80 0.000 0.576 80 0.000
Yes 0.262 52 0.000 0.707 52 0.000

aLilliefors significance correction.

The histograms and plots shown in Figure 3.10 confirm the results of the tests of
normality. The histograms show that both distributions are positively skewed with tails
to the right. The Q-Q plot for each group does not follow the line of normality and
is significantly curved. The box plots show a number of extreme and outlying values.
The maximum value for length of stay of babies with no infection is 6.36 z scores above
the mean, while for babies with an infection the maximum value is 4.28 z scores above
the mean.

The normality statistics for babies with an infection and babies without an infection
are summarized in Table 3.9, with ‘No’ indicating that the distribution is outside the
normal range.

For both groups, the data are positively skewed and could possibly be transformed to
normality using a logarithmic transformation. Without transformation, the most appro-
priate test for analysing length of stay is a rank-based non-parametric test, which can
be obtained using the commands shown in Box 3.8.

Box 3.8 SPSS commands to obtain a non-parametric test for two independent
groups

SPSS Commands

surgery.sav — IBM SPSS Statistics Data Editor
Analyze — Nonparametric Tests — Independent Samples
Nonparametric Tests: Two or More Independent Samples
Click on the Objective tab, tick Automatically compare distributions
across groups (default)
Click on the Fields tab, tick Use custom field assignments (default)
Under Fields — highlight length of stay and click into Test Fields,
highlight Infection and click into Groups
Click on the Settings tab, select Choose tests, tick Customize tests,
tick Mann—Whitney U (2 samples)
Click Run
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Figure 3.10 Histograms and plots of length of stay by infection.
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Table 3.9 Summary of statistics to assess whether data are within normal limits or outside
normal range

Group Mean — median Skewness Kurtosis Shapiro-Wilk test K-S test Plots Overall decision

No No No No No No No No
Yes No No No No No No No

3.9.1 Mann-Whitney U test

The Mann-Whitney U test is based on ranking the data values as if they were from a
single sample. For illustrative purposes, a random subset of 20 cases with valid length
of stay is shown in Table 3.10. Firstly, the data are sorted in order of magnitude and
ranked. Data points that are equal share tied ranks. Thus, the two data points of 13
share the ranks of 7 and 8 and are rated at 7.5 each. Similarly, the four data points
of 17 share the ranks from 17 to 20 and are ranked at 18.5 each, which is the mean
of the four rankings. Once the ranks are assigned, they are then summed for each of
the groups.

Table 3.10 Ranking data to compute non-parametric statistics

ID Length of stay Infection group Rank Group 1 Rank Group 2

32 0 1 1

33 1 1 2

12 9 1

16 1 1 4.5

22 1 4.5

28 12 6

20 13 1 7.5

27 13 1 7.5

10 14 1 10.5

1 14 1 10.5

24 14 1 10.5

25 14 10.5

14 15 1 14.5

19 15 1 14.5

23 15 14.5

30 15 1 14.5

13 17 1 18.5

15 17 1 18.5

17 17 1 18.5

21 17 2 18.5
Sum of ranks 156 54

N 15 5

Mean 10.5 10.8
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The Hypothesis Test Summary table shows that the P = 0.004 and provides evidence
that there is a significant difference in the distributions of the two groups.

Hypothesis Test Summary

Null Hypothesis Test Sig. Decision
Independent-
The distribution of Length of stay is Samples Reject the
1 the same across categories of Mann- .004 null
Infection. Whitney U hypothesis.
Test

Asymptotic significances are displayed. The significance level is .05.

Non-parametric tests

By double clicking on the Hypothesis Test Summary table, the Model Viewer screen
will open. The Model View has a two panel views, with the Hypothesis Test Summary
table shown on the left hand side, referred to as the Main View. On the right side,
the linked Auxiliary View is displayed which shows the following population pyramid
chart and test table. The chart displays back-to-back histograms for each category of the
group, that is, ‘No’ infection and ‘Yes” infection. The number of cases in each group and
the mean rank of each group are also reported. The mean rank are for each group is
reported. The mean ranks provide an indication of the direction of effect but because
the data are ranked, the dimension is different from the original measurement and is
therefore difficult to communicate.

Independent-Samples Mann-Whitney U Test

Infection
No Yes
3001 N_s0 N <52 300
z Mean Rank = 58.88 Mean Rank = 78.23 Y
% 200 - 200 3
k) 5
£ 100 100 9,
2 »
S od Lo 2

T T T T T T T T T
50.0 40.0 30.0 20.0 10.0 0.0 10.0 20.0 30.0 40.0 50.0

Frequency Frequency
Total N 132
Mann-Whitney U 2,690.000
Wilcoxon W 4,068.000
Test Statistic 2,690.000
Standard Error 214.535
Standardized Test Statistic 2.843
Asymptotic Sig. (2-sided test) .004
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Table 3.11 Length of stay for babies with infection and without

infection
Infection Infection
absent (n = 80) present (n=52)
Mdn (IQR) Mdn (IQR) P value
Length of stay (days) 22.5 (20) 37.0 (29) 0.004

The Mann—Whitney U and the Wilcoxon W that are obtained from SPSS are two
derivations of the same test and are best reported as the Mann—Whitney U test. The
asymptotic significance value is reported when the sample size is large, say more than
30 cases. The difference between the groups could be reported in a table as shown in
Table 3.11.

Another approach to non-normal data is to divide the outcome variable into cat-
egorical centile groups as discussed in Chapter 8. Decision about whether to use
non-parametric tests, to transform the variable or to categorize the values requires
careful consideration. The decision should be based on the size of the sample, the
effectiveness of the transformation in normalizing the data and the ways in which the
relationship between the explanatory and outcome variables is best presented.

3.10 Notes for critical appraisal

Questions to ask when assessing descriptive statistics published in the literature are
shown in Box 3.9.

Box 3.9 Questions for critical appraisal

The following questions should be asked when appraising published results:

e are any cases included in a group more than once, for example, are any follow-up
data treated as independent data?

e is there evidence that the outcome variable is normally distributed in each group?

o if the variance of the two groups is unequal, has the correct P value, that is, the
P value with equal variances not assumed, been reported?

e are the summary statistics appropriate for the distributions?

e are there any influential outliers that could have increased the difference in mean
values between the groups?

e are mean values presented appropriately in figures as dot plots or are histograms
used inappropriately?

e are mean values and the differences between groups presented with 95% confi-
dence intervals?
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CHAPTER 4
Paired and one-sample ¢-tests

A statistician is a person who likes to prove you wrong, 5% of the time.
TAKEN FROM AN INTERNET BULLETIN BOARD

Objectives

The objectives of this chapter are to explain how to:

e analyse paired or matched data

e use paired t-tests and one-sample t-tests

e interpret results from non-parametric paired tests

e calculate an effect size

e report changes or differences in paired data in appropriate units

In addition to two-sample (independent) ¢-tests, there are also two other parametric
t-tests that can be used to analyse continuous data, that is, paired ¢-tests and one-sample
(single sample) #-tests. All three types of t-test can be one-tailed or two-tailed tests.
However, one-tailed ¢-tests are rarely used in health sciences research.

4.1 Paired t-tests

A paired t-test is used to estimate whether the means of two related measurements are
significantly different from one another. This test is used when two continuous variables
are related because they are collected from the same participant at different times, from
different sites on the same person at the same time or from cases and their matched
controls.! Examples of paired study designs are

data from a longitudinal study;

measurements collected before and after an intervention in an experimental study;
differences between related sites in the same person, for example limbs, eyes or
kidneys;

matched cases and controls.

For a paired t-test, there is no explanatory (group) variable. The outcome of interest
is the difference in the outcome measurements between each pair or between each case

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.
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Companion website: www.wiley.com/go/barton/medicalstatistics2e

920



http://www.wiley.com/go/barton/medicalstatistics2e

Paired and one-sample f-tests 91

and its matched control, that is, the within-pair differences. When using a paired ¢-test,
the variation between the pairs of measurements is the most important statistic and the
variation between the participants, as when using a two-sample ¢-test, is of little interest.
The null hypothesis for a paired #-test is that the mean of the differences between the
two related measurements is equal to zero, that is, no difference.

4.1.1 Data sheet layout

For related measurements, the data for each pair of values must be entered on the
same row of the spreadsheet. Thus, the number of rows in the data sheet is the same
as the number of participants when the outcome variable is measured more than once
for each participant or is the number of participant-pairs when cases and controls are
matched. When each participant is measured on two or more occasions, the sample
size is the number of participants. In a matched case—control study, the number of
case—control pairs is the sample size and not the total number of participants. For this
reason, withdrawals, loss of follow-up data and inability to recruit matched controls
reduce both power and the generalizability of the paired ¢-test because participants
with missing paired values or cases who are not matched with controls are excluded
from the analyses.

4.1.2 Assumptions for a paired t-test

Independent two-sample ¢-tests cannot be used for analysing paired or matched data
because the assumption that the two groups are independent, that is, data are col-
lected from different or non-matched participants, would be violated. Treating paired
or matched measurements as independent samples will artificially inflate the sample
size and lead to inaccurate analyses.

The assumptions for using paired ¢-tests are shown in Box 4.1.

Box 4.1 Assumptions for a paired #-test

For a paired t-test, the following assumptions must be met:
e the outcome variable must be on a continuous scale
o the differences between the pairs of measurements are normally distributed

The data file growth.sav contains the body measurements of 277 babies measured at
1 month and at 3 months of age.

The decision of whether to use a one- or two-tailed test must be made when the study
is designed. If a one-tailed #-test is used, the null hypothesis is more likely to be rejected
than if a two-tailed test is used (Chapter 3). In general, two-tailed tests should always
be used unless there is a good reason for not doing so and a one-tailed test should only
be used when the direction of effect is specified in advance.? In this example, it makes
sense to test for a significant increase in body measurements because there is certainty
that a decrease will not occur and there is only one biologically plausible direction of
effect. Therefore, a one-tailed test is appropriate for the alternate hypothesis.
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Questions: Does the weight of babies increase significantly in a 2-month growth
period?
Does the length of babies increase significantly in a 2-month growth
period?
Does the head circumference of babies increase significantly in a
2-month growth period?

Null The weight of babies is not different between the two time periods.
hypotheses: The length of babies is not different between the two time periods.
The head circumference of babies is not different between the two time
periods.
Variables: Outcome variables = weight, length and head circumference measured

at 1 month of age and 3 months of age (continuous)

4.1.3 Testing the assumptions of a paired t-test

To test the assumption that the differences between the two outcome variables are
normally distributed, the differences between measurements taken at 1 month and at
3 months must first be computed as shown in Box 4.2.

Box 4.2 SPSS commands to transform variables

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Transform — Compute Variable
Compute Variable
Target Variable = diffwt
Numeric Expression = Weight at 3mo — Weight at 1mo
Click Type € Label
Compute Variable: Type and Label
Tick Label and enter Weight 3mo-1mo
Click Continue
Compute Variable
Click OK

By clicking on the Reset button in Compute Variable, all fields will be reset to empty
and the command sequence shown in Box 4.2 can be used to compute the following
variables:

diffleng = Length at 3mo — Length at 1mo, and
diffhead = Head circumference at 3mo — Head circumference at 1mo

In Data View, once the new variables are created, they should be labelled, have
the number of decimal places adjusted to be appropriate, and the measurement level
option correctly entered as Scale. The distribution of these differences between the
paired measurements can then be examined using the commands shown in Box 4.3 to
obtain histograms. Alternatively, the SPSS Chart Builder can be used to create and edit
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histograms. The SPSS Chart Builder can be used to create a number of different charts
include bar, line pie and scatter/dot.

Box 4.3 SPSS commands to obtain frequency histograms

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Histogram
Histogram
Variable = Weight 3mo-1mo
Tick Display normal curve
Click OK

While only histograms have been obtained in this example, in practice a thorough
investigation of all tests of normality should be undertaken using Analyze — Descriptive
Statistics — Explore and other options discussed in Chapter 2.

The command sequence in Box 4.3 can then be repeated with the difference variables
Length 3m-1mo and Head 3mo-1mo to produce the histograms shown in Figure 4.1.
The histograms indicate that the difference variables for weight and length are fairly
normally distributed. The distribution of scores for the difference variable for head cir-
cumference is quite skewed. The checks of normality as discussed in Chapter 2 indicate
that this variable is not normally distributed. Therefore, a non-parametric test is more
appropriate to analyse this variable, which is discussed later in this chapter.
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Figure 4.1 Histograms of differences between babies at 1 month and 3 months for weight, length
and head circumference.
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Research example

The SPSS commands to conduct a paired samples ¢-test to examine whether there has
been a significant increase in weight and length are shown in Box 4.4. By entering the
data variables at 3 months before the data variables at 1 month, the direction of the
summary statistics will be in the appropriate direction and have the correct signs.

Box 4.4 SPSS commands to obtain a paired samples #-test

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Analyze — Compare Means — Paired-Samples T Test
Paired-Samples T-Test
Highlight Weight at 3mo and click into Variable 1 then highlight Weight at Imo and
click into Variable 2 in the Paired Variables box
Highlight Length at 3mo and click into Variable 1 then highlight Length at 1mo and
click into Variable 2 in the Paired Variables box
Highlight Head circumference at 3m and click into Variable 1 and highlight Head
circumference at Imo and click into Variable 2 in the Paired Variables box
Click OK

T-Test

Paired Samples Statistics

Mean N Std. deviation Std. error mean
Pair 1 Weight at 3 months (kg) 6.131 277 0.7741 0.0465
Weight at 1 month (kg) 4.415 277 0.6145 0.0369
Pair 2 Length at 3 months (cm) 61.510 277 2.7005 0.1623
Length at 1 month (cm) 54.799 277 2.3081 0.1387

The Paired Samples Statistics table provides summary statistics for each variable but
does not give any information that is relevant to the paired ¢-test. The Paired Samples
Correlations table shows the correlations between each of the paired measurements.
This table is not relevant because it does not make sense to test the hypothesis that two
related measurements are associated with one another.

Paired Samples Correlations

N Correlation Sig.
Pair 1 Weight at 3 months (kg) and 277 0.768 0.000
weight at 1 month (kg)
Pair 2 Length at 3 months (cm) and 277 0.703 0.000

Length at 1 month (cm)
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Paired Samples Test

Paired differences
95% confidence

Std Std interval of
devia-  error the Difference Sig. (two-
Mean tion mean  Lower Upper t df tailed)
Pair 1 Weight at 3 1.7167 0.4961 0.0298 1.6580 1.7754 57.591 276 0.000
months (kg)—
Weight at 1
months (kg)
Pair2 Length at3 6.7105 1.9635 0.1180 6.4782 6.9427 56.881 276 0.000
months (cm)—
Length at 1
month (cm)

The Paired Samples Test table provides important information about the z-test results.
The second column, which is labelled Mean, gives the main outcome measurement that
is the mean within-pair difference. When conducting a paired ¢-test, the means of the
differences between the pairs of measurements are computed as part of the test.

4.1.4 Interpretation of the results

The mean paired differences column in the Paired Samples table indicates that at 3
months, babies were on an average 1.717 kg heavier in weight and 6.71 cm longer in
length than at 1 month of age. These mean values provide an indication that babies
increased in measurements over a 2-month period. However, they do not provide infor-
mation as to whether this increase was statistically significant.

The 95% confidence intervals of the differences are calculated as the mean paired dif-
ferences + (1.96 * SE of mean paired differences). These are shown in the Paired Samples
Test table and do not contain the value of zero for any variable, which also provides
evidence that the difference in body size between 1 and 3 months is statistically signif-
icant. The ¢ value is calculated as the mean differences divided by their standard error.
Because the standard error becomes smaller as the sample size becomes larger, the ¢
value increases as the sample size increases for the same mean difference. Thus, in this
example with a large sample size of 277 babies, relatively small mean differences are
highly statistically significant.

In the last column in the Paired Samples Test table, labelled Sig. (two-tailed), the P val-
ues for a two-tailed test are reported and highly statistically significant with P <0.0001.
However, the alternative hypothesis for this study was one-tailed; therefore, the P val-
ues have to be adjusted by halving them. The P values are <0.0001 so that halving them
will also render a highly significant P value. The P values (one-tailed) from the paired
t-tests for all three variables indicate that each null hypothesis should be rejected and
that there is a significant increase in body measurements between the two time periods.
As with any statistical test, it is important to decide whether the size of mean difference
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Table 4.1 Growth in weight and length from 1 month to 3 months in 277 term babies

1 month 3 months Mean difference

Mean (SD) Mean (SD) (95% CI) P value Effect size
Weight 4.42 (0.61) 6.13 (0.77) 1.72 (1.66, 1.78) <0.0001 3.46
Length 54.80 (2.31) 61.51 (2.70) 6.71 (6.48, 6.94) <0.0001 3.42

between measurements would be considered clinically important in addition to being
statistically significant.

4.1.5 Calculating the effect size

For paired data, the effect size Cohen’s 4 is calculated as the mean difference divided by
the standard deviation. For weight, the effect size is 1.717/0.496 = 3.46 and for length,
the effect size is 6.710/1.964 =3.42. These effect sizes are very large but are expected in
babies studied in a critical growth period. The results from this study could be reported
as shown in Table 4.1. The means and standard deviations are reported to two decimal
places, which is one more decimal place above the number that the original measure-
ments were taken in.

4.2 Non-parametric test for paired data

A non-parametric equivalent of the paired #-test is the Wilcoxon signed rank test, which
is also called the Wilcoxon matched pairs test. This test is used when lack of normality
in the differences of the scores is a concern, that is when the differences did not come
from a normally distributed population, or when the sample size is small. The Wilcoxon
signed rank test is used to test the null hypothesis that the median of the differences
between pairs of observations is equal to zero.

The assumptions of the Wilcoxon signed rank test are (i) that the paired differences are
independent and (ii) the differences come from a distribution in which the differences
between paired measurements are symmetrically distributed around the median value.
For this test, the number of outliers should not be large relative to the sample size. When
the sample size is small, symmetry may be difficult to assess.

In this test, the absolute differences (i.e. sign of the difference is ignored) between
paired scores are ranked. Then the ranks where there is a positive difference between the
two observations are summed. Similarly, the ranks where there is a negative difference
between the two observations are summed. Difference scores that are equal to zero,
indicating no difference between pairs, are excluded from the analysis. The smaller of
the two summed totals is the test statistic, which is used to determine whether the null
hypothesis should be rejected. This test is not suitable when a large proportion of paired
differences are equal to zero because this effectively reduces the sample size.

The difference variable for head circumference (diffhead) in the growth.sav data set
did not have a normal distribution and can be analysed using the Wilcoxon signed rank
test, which can obtained using the SPSS commands in Box 4.5.
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Box 4.5 SPSS commands to conduct a non-parametric paired test

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Analyze — Nonparametric Tests — Related Samples
Nonparametric Tests: Two or More Related Samples
Click on the Objective tab, tick Automatically compare observed data to hypothesized
(default)
Click on the Fields tab, tick Use custom field assignments (default)
Under Fields — highlight Head circumference at 1 mo and click into Test Fields,
highlight Head circumference at 3 mo and click into Test Fields
Click on the Settings tab, Select Choose Tests (default), tick Customize tests
and tick Wilcoxon matched-pair signed-rank (2 samples)

Click Run
Hypothesis Test Summary

Null Hypothesis Test Sig. Decision

The median of differences Related- Reject the
1 between Head circumference  Samples null

at 1 mo (cm) and Head Wilcoxon .000 hypothesis.
circumference at 3 mo (cm) Signed Rank
equals 0. Test

Asymptotic significances are displayed. The significance level is .05.

Non-parametric tests

The P value that is displayed in the Hypothesis Test Summary table is computed based
on the ranks of the absolute values of the differences between 1 month and 3 months.
The test statistics with a P value of <0.0001 shows that the alternative hypothesis should
be accepted and that the median of the paired differences does not equal zero and that
observations increased or decreased over time (two-tailed test).

By double clicking on the Hypothesis Test Summary table, the Model Viewer window
is opened and the following information is obtained (see page 99).

The histogram displays the size of the rank difference between pairs of observation
and the frequency of the difference. The difference is calculated as the head circumfer-
ence scores at 3 months minus the head circumference scores at 1 month, as shown
underneath the histogram. The number of negative ranks where the head circumfer-
ence at 3 months is lower than that at 1 month is reported as negative differences in
the histogram. The number of positive ranks where head circumference at 3 months is
higher than that at 1 month of age is reported as positive differences. The zero ranks,
that is, no difference between observations is not reported in the histogram. As the leg-
end next to the bar chart indicates no babies have a negative rank, that is, a lower head
circumference at 3 months than at 1 month of age, as expected. The legend also shows
that there are no ties, that is, no babies with the same difference scores. Although this
legend does not provide any useful information for communicating the size of effect, it
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does indicate the direction of the effect, with the head circumference of babies increasing
from 1 month to 3 months of age.

Related-Samples Wilcoxon signed rank test

[ Positive differences
120.0 (N = 277)
100.0 | z\llvega(t)l)ve differences
> .
S 80.0- (Number of ties = 0)
3
g 60.0
w
40.0
20.0
I s
0.0

T 1
1.00 2.00 3.00 4.00 500 6.00 7.00 8.00
Head circumference at 3 mo (cm) — Head circumference

at 1 mo (cm)
Total N 277
Test statistic 38,503.000
Standard error 1,330.486
Standardized test statistic 14.470
Asymptotic sig. (two-sided test) .000

In reporting the results of this non-parametric test, the median and interquartile range
rather than the mean and standard deviation would be reported since the mean differ-
ence may be a biased measure of central tendency when the data are not normally
distributed. In addition to reporting the total sample size and the P value, the Z statistic
of 14.47, which is the standardized W value obtained from the Wilcoxon signed-ranks
test should be reported.

4.3 Standardizing for differences in baseline measurements

With paired data, the absolute differences between the pairs may not be of interest. It
is often important that the differences are standardized for between-subject differences
in baseline values. One method is to compute a per cent change from baseline. Another
method is to calculate the ratio between the follow-up and baseline measurements. It is
important to choose a method that is appropriate for the type of data collected and that
is easily communicated.
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For babies” growth, per cent change is a simple method to standardize for differences
in body size at baseline, that is, at 1 month of age. The commands shown in Box 4.6
can be used to compute per cent growth in weight, and similarly for length and head
circumference.

Box 4.6 SPSS commands to compute per cent changes

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Transform — Compute Variable

Compute Variable
Target Variable = perwt
Numeric Expression = (Weight at 3mo — Weight at Imo) * 100/Weight at Imo
Click Type € Label

Compute Variable: Type and Label
Tick Label and enter Percent change in weight
Click Continue

Compute Variable
Click Paste

*Syntaxl — IBM SPSS Syntax Editor
Select Run — All

The paste and run commands list the calculations in the syntax window as shown
below. This information can then be printed and stored for documentation. Once the
computations are complete, the new variables need to be labelled in the Variable View
window.

COMPUTE perwt=(weight3m - weightlm)*100/weightlm.
VARIABLE LABELS perwt 'Percent change in weight'.
EXECUTE.

COMPUTE perleng=(length3m - length1lm)*100/lengthIm.
VARIABLE LABELS perleng "Percent change in length’.
EXECUTE.

COMPUTE perhead=(head3m - head1m)*100/head1m.
VARIABLE LABELS perhead 'Percent change in head’.
EXECUTE.

An assumption of paired ¢-tests is that the differences between the pairs of measure-
ments are normally distributed; therefore, the distributions of the per cent changes
need to be examined. The histograms shown in Figure 4.2 can be obtained using the
commands shown in Box 4.3. The histograms for per cent change in weight and head
circumference have a small tail to the right, but the sample size is large and the tails are
not so marked that the assumptions for using a paired ¢-test would be violated. How-
ever, the distributions should be fully checked for normality using Analyze — Descriptive
Statistics — Explore as discussed in Chapter 2.
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Figure 4.2 Histograms of per cent change in weight, length and head circumference.
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Figure 4.2 (continued)

4.4 Single-sample t-test

The research question has now changed slightly because rather than considering abso-
lute differences between time points, the null hypothesis being tested is whether the
mean per cent changes over time are significantly different from zero. With differences
converted to a per cent change, the two paired values are now converted to a single con-
tinuous outcome variable. Thus, a one-sample #-test, which is also called a single-sample
t-test, can be used to test whether there is a statistically significant difference between
the mean per cent change and a fixed value such as zero.

A one-sample -test is more flexible than a paired #-test, which is limited to testing
whether the mean difference is significantly different from zero. A one-sample ¢-test
can be used to test if the population mean is equal to a specified value. For example,
to test if the sample has a different mean from the population mean of 100 points if
the outcome being measured is IQ, or from 40 hours if the outcome measured is the
average working week. A one-sample f-test is a parametric test and the assumptions
are that firstly, the data are normally distributed and secondly, the observations are
independent. Also, the outcome must be an interval or ratio scale of measurement. If
the assumptions of a one sample z-test are not satisfied, a non-parametric equivalent
test, that is, a Wilcoxon signed rank test may be conducted. This rank test is available in
SPSS using the following commands Analyze — Nonparametric Tests — One Sample.

Computing per cent changes provides control over the units that the changes are
expressed in and their direction of effect. However, if the differences computed in
Box 4.2 were used as the outcome and a one-sample #-test was used to test for a
difference from zero, the one-sample ¢-test would give exactly the same summary
statistics and P values as the paired ¢-test simply because the paired t-test automatically
computes mean differences and tests for a difference from zero.
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For the research question, the command sequence shown in Box 4.7 can be used to
compute a one-sample z-test to test whether the per cent changes in weight, length and
head circumference are significantly different from zero.

Box 4.7 SPSS commands to conduct a one-sample z-test

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Analyze — Compare Means — One-Sample T Test
One-Sample T Test
Highlight the variables Per cent change in weight, Per cent change in length and
Per cent change in head circumference and click into the Test Variable(s) box
Test Value = 0 (default setting)
Click OK

T-Test
One-Sample Statistics
N Mean Std. deviation Std. error mean
Per cent change in weight 277 39.726 12.9322 0.7770
Per cent change in length 277 12.298 3.7413 0.2248
Per cent change in head 277 8.277 2.7115 0.1629

The One-Sample Statistics table gives more relevant statistics with which to answer
the research question because the mean within-participant per cent changes and their
standard deviations are provided. The means in this table show that the per cent increase
in weight over 2 months is larger than the per cent increase in length and head circum-
ference.

One-Sample Test

Test value =0

95% confidence interval
of the difference

Sig. (two- Mean
t df tailed) difference Lower Upper
Per cent change in weight 51.126 276 0.000 39.7264 38.197 41.256
Per cent change in length 54.708 276 0.000 12.2980 11.856 12.741
Per cent change in head 50.803 276 0.000 8.2767 7.956 8.597

In the One-Sample Test table, the ¢ values are again computed as mean difference
divided by the standard error and, in this table, are highly significant for all measure-
ments. The highly significant P values are reflected in the 95% confidence intervals,
none of which contain the zero value. The outcomes are now all in the same units,
that is per cent change, and therefore growth rates between the three variables can be
directly compared. This was not possible before when the variables were in their origi-
nal units of measurement. As before, Cohen’s 4 can be calculated as the mean divided
by the standard deviation using the values reported in the One-Sample Statistics table.
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Table 4.2 Mean body measurements and per cent change between 1 and 3 months in 277

babies

1 month 3 months Per cent increase

Mean (SD) Mean (SD) and 95% Cl P value
Weight (kg) 4.42 (0.62) 6.13 (0.77) 39.7 (38.2, 41.3) <0.0001
Length (cm) 54.8 (2.3) 61.5(2.7) 12.3(11.9, 12.7) <0.0001
Head circumference (cm) 37.9(1.4) 41.0 (1.4) 8.3(7.9, 8.6) <0.0001

These effect sizes of 4 for percentage change are 3.07 for weight, 3.29 for length and
3.06 for head circumference. These differ slightly from the effect sizes computed for a
paired ¢-test because the variables are now in different standardized units and the mean
difference and per cent increase have different standard deviations. The effect sizes rank
length as having the largest effect size, whereas weight has the largest per cent increase.

This summary information can be reported as shown in Table 4.2. In some disciplines
such as psychology, the t value is also reported with its degrees of freedom, for example
as t (276) = 51.13 with the effect size of 4 = 3.07. However, since the only interpreta-
tion of the ¢ value and its degrees of freedom is the P value, it is often excluded from
summary tables.

Research question

The research question can now be extended to ask if certain groups, such as males and
females, have different patterns or rates of growth.

Questions: Over a 2-month period:
Do males increase in weight significantly more than females?
Do males increase in length significantly more than females?

Do males increase in head circumference significantly more than

females?
Null Over a 2-month period:
hypothesis: There is no difference between males and females in weight growth.

There is no difference between males and females in length growth.

There is no difference between males and females in head
circumference growth.

Variables: Outcome variables =per cent increase in length, weight and head
circumference (continuous)
Explanatory variable = gender (categorical, binary)
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The research question then becomes a two-sample ¢-test again because there is a con-
tinuously distributed variable (per cent change) and a binary group variable with two
levels that are independent (male, female). Once again, the distributions of per cent
change should be fully checked for normality using Analyze — Descriptive Statistics —
Explore as discussed in Chapter 2 and that test assumptions have been satisfied before
conducting a two-sample or independent #-test. The SPSS commands shown in Box 3.3
can be used to obtain the following output.

T-Test

Group Statistics

Std. Std. error

Gender N Mean deviation mean
Per cent change in Male 148 42.0051 13.26558 1.09042
weight Female 129 37.1121 12.06764 1.06250
Per cent change in Male 148 12.6818 3.30790 0.27191
length Female 129 11.8577 4.15334 0.36568
Per cent change in head Male 148 8.2435 2.50656 0.20604

Female 129 8.3147 2.93850 0.25872

The means in the Group Statistics table show that males have a higher increase in
weight and length, but a slightly lower increase in head circumference than females.
These statistics are useful for summarizing the magnitude of the differences in each
gender.

In the Independent Samples Test table, the Levene’s test of equality of variances shows
that the variances are not significantly different between genders for weight (P=0.374)
and head circumference (P=0.111). For these two variables, the Equal variances assumed
rows in the table are used. However, the variance in per cent change for length is signif-
icantly different between the genders (P=0.034) and therefore the appropriate ¢ value,
degrees of freedom and P value for this variable are shown in the Equal variances not
assumed row. An indication that the variances are unequal could be seen in the previ-
ous Group Statistics table, which shows that the standard deviation for per cent change
in length is 3.3079 for males and 4.1533 for females. An estimate of the variances can
be obtained by squaring the standard deviations to give 10.94 for males and 17.25 for
females, which is a variance ratio of 1:1.6.

Thus, the Independent Samples Test table shows that per cent increase in weight is
significantly different between the genders at P=0.002, per cent increase in length
does not reach significance between the genders at P=0.072 and per cent increase in
head circumference is not clearly not different between the genders at P=0.828. This
is reflected in the 95% confidence intervals, which do not cross zero for weight, cross
zero marginally for length and encompass zero for head circumference.
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Independent Samples Test

Levene’s test

for equality
of variances t-Test for equality of means
95% confidence
Sig. Std. interval of
(two- Mean error the difference
F Sig. t df  tailed) difference difference Lower Upper
Per cent  Equal 0.792 0.374 3.193 275 0.002 4.89304 1.53240 1.87633 7.90976
change in variances
weight assumed
Equal 3.214 274.486 0.001 4.89304 1.52247  1.89583 7.89025
variances
not
assumed
Per cent  Equal 4518 0.034 1.837 275 0.067 0.82410 0.44873 -0.05928 1.70748
change in variances
length assumed
Equal 1.808 243.779 0.072 0.82410 0.45569 -0.07350 1.72170
variances
not
assumed
Per cent  Equal 2561 0.111 -0.217 275 0.828 -0.07114 0.32717 -0.71521 0.57294
change in variances
head assumed
Equal —0.215 253.173 0.830 -0.07114 0.33074 -0.72248 0.58021
variances
not
assumed

4.5 Testing for a between-group difference

If no between-gender differences were found, the summary statistics for the entire sam-
ple could be presented. However, the growth patterns for weight are different between
males and females. One-sample ¢-tests can be used to test whether the mean per cent
increase is significantly different from zero for each gender. This can be achieved using
the Split File option shown in Box 4.8. After the commands have been completed, the
message Split File On will appear in the bottom right hand side of the Data Editor screen.
The advantage of using Split File rather than Select Cases is that the SPSS output will be
automatically documented by group status.

Box 4.8 SPSS commands to split data into separate groups for analysis

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Data — Split File
Split File
Click Compare groups
Highlight Gender and click over into Groups Based on
Click OK
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The one-sample ¢-test for each gender can then be obtained using the commands
shown in Box 4.7 to produce the following output.

T-Test

One-Sample Statistics

Gender N Mean Std. deviation Std. error mean
Male Per cent change in weight 148 42.0051 13.26558 1.09042

Per cent change in length 148 12.6818 3.30790 0.27191

Per cent change in head 148 8.2435 2.50656 0.20604
Female Per cent change in weight 129 37.1121 12.06764 1.06250

Per cent change in length 129 11.8577 4.15334 0.36568

Per cent change in head 129 8.3147 2.93850 0.25872

One-Sample Test

Gender Test value =0
95% confidence interval
Sig. (two- Mean of the difference
t df tailed) difference  Lower Upper
Male Per cent change in weight 38.522 147 0.000 42.00513 39.8502 44.1601
Per cent change in length  46.640 147 0.000 12.68183 12.1445 13.2192
Per cent change in head 40.010 147 0.000 8.24352 7.8363 8.6507
Female Per cent change in weight 34.929 128 0.000 37.11209 35.0098 39.2144
Per cent change in length  32.426 128 0.000 11.85773  11.1342 12.5813
Per cent change in head 32.138 128 0.000 8.31466 7.8027 8.8266

The One-Sample Statistics table gives the same summary statistics as obtained in the
two-sample ¢-test. The One-Sample Test table provides a P value for the significance of
the per cent change from baseline for each gender and also gives the 95% confidence
intervals around the mean changes. Another alternative to obtaining summary means
for each gender is to use the commands shown in Box 4.9, but with the Split File option
removed.

Box 4.9 SPSS commands to obtain summary mean values

SPSS Commands

growth.sav — IBM SPSS Statistics Data Editor
Data — Split File
Split File
Click Analyze all cases, do not create groups
Click OK
growth — SPSS Data Editor
Analyze — Compare Means — Means
Means
Click variables for weight, length, head circumference at 1 month (weightIm,
lengthlm, headlm) and at 3 months (weight3m, length3m, head3m) and all three
percent changes (perwt, perlen, perhead) into the Dependent List box
Click Gender over into the Independent List box
Click OK
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Table 4.3 Mean body measurements and per cent change between 1 and 3 months in 148 male
and 129 female babies

P value P value for

for change difference

1 month 3 months Per cent change from between
Mean (SD) Mean (SD) and 95% ClI baseline genders
Weight (kg) Male 4.53 (0.66) 6.39(0.78) 42.0(39.9,44.2) <0.0001 0.002
Female 4.28 (0.53) 5.84 (0.65) 37.1(35.0, 39.2) <0.0001
Length (cm) Male 55.2 (2.6) 62.2 (2.6) 12.7 (12.1, 13.2) <0.0001 0.072

Female 54.3 (1.9) 60.7 (2.6) 11.9(11.1, 12.6) <0.0001

Head Male 38.3(1.3) 41.4 (1.1) 8.2(7.8,8.7) <0.0001 0.828
Circumference Female 37.5(1.3) 40.6 (1.5) 8.3 (7.8, 8.8) <0.0001
(cm)

The results could be reported as shown in Table 4.3. Although a one-tailed P value
is used for the significance of increases in body size because we only expect babies
to increase in body size, a two-tailed P value is used for between-gender comparisons
because the direction of effect between genders is not certain.

4.5.1 Plotting the results

When plotting summary statistics of continuous variables, the choice of whether to
use bar charts or dot points is critical. Bar charts should always begin at zero so that
their lengths can be meaningfully compared. When the distance from zero has no
meaning, mean values are best plotted as dot points. For example, mean length would
not be plotted using a bar chart because no baby has a zero length. However, bar
charts are ideal for plotting per cent changes where a zero value is plausible. The
results can be plotted as bar charts in SigmaPlot (Figure 4.3) by entering the data as
follows and using the commands shown in Box 4.10. The means for males are entered
in column 1 and the 95% confidence interval width in column 2. The values for
females are entered in columns 3 and 4. The column titles should not be entered in the
spreadsheet cells.

Column 1 Column 2 Column 3 Column 4
42.0 2.1 37.1 2.1
12.7 0.6 11.9 0.6

8.2 0.4 8.3 0.4
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Box 4.10 SigmaPlot commands for graphing per cent change results

SigmaPlot Commands

Data 1*
Click on Create Graph tab at top of the screen
Click on Bar in sub-menu
Click on Grouped Horizontal Bar — Error Bars in Bar Group
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Many X, click Next
Create Graph — Select Data
Data for Set 1 = use drop box and select Column 1
Data for Error 1 = use drop box and select Column 2
Data for Set 2 = use drop box and select Column 3
Data for Error 2 = use drop box and select Column 4
Click Finish

1 Males
Females
Head 7708
circumference W
Length 00008
W
Weight =
=
0 1IO 2|0 3|0 4|0

Per cent (%) increase in body size

Figure 4.3 Per cent increase in growth from age 1 to 3 months.

The graph can then be customized by changing the axes, fills, labels etc in Graph —

Graph Properties menus.

4.6 Notes for critical appraisal

Questions to ask when assessing statistics from paired or matched data are shown in

Box 4.11.
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Box 4.11 Questions for critical appraisal

The following questions should be asked when appraising published results from

paired or matched data:

e Has an appropriate paired ¢-test or single sample test been used?

e Do the within-pair differences need to be standardized for baseline differences,
that is, presented as per cent changes or ratios?

e Are the within-pair differences normally distributed?

e If summary statistics are reported, are they in the same units of change so that
they can be directly compared if necessary?

e Have rank-based non-parametric tests been used for non-normally distributed
differences?

e Have descriptive data been reported for each of the pair of variables in addition
to information of mean changes?
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CHAPTER 5
Analysis ol variance

I discovered, though unconsciously and insensibly, that the pleasure of observing and reasoning
was a much higher one that that of skill and sports.
CHARLES DARWIN

Objectives

The objectives of this chapter are to explain how to:

e decide when to use an analysis of variance (ANOVA) test

e conduct and interpret the output from a one-way or a factorial ANOVA using SPSS
e understand between-group and within-group differences
classify factors into fixed, interactive or random effects

test for a trend across the groups within a factor
understand sample size requirements

calculate effect size

perform post-hoc tests

build a multivariate analysis of covariance (ANCOVA) model
report the findings from an ANOVA model

check the assumptions of ANOVA and ANCOVA

When data are normally distributed, a two-sample ¢-test can only be used to assess
the significance of the difference between the mean values of two independent groups.
To compare differences in the mean values of three or more independent groups simul-
taneously, an analysis of variance (ANOVA), which is a parametric test, can be used.
Thus, ANOVA is suitable when the outcome measurement is a continuous normally dis-
tributed variable and when the explanatory variable is categorical with three or more
groups. An ANOVA model can also be used for comparing the effects of several categor-
ical explanatory variables at one time or for comparing differences in the mean values
of one or more groups after adjusting for a continuous variable, that is, a covariate. This
is referred to as an analysis of covariance (ANCOVA). A covariate is any variable that
correlates with the outcome variable. For example, ANCOVA would be used to test for
the effects of gender and socioeconomic status on weight after adjusting for height.

Both ANCOVA and ANCOVA are applications of the general linear model (GLM). In
general, GLM is used to build a model to predict an outcome variable from one or more
explanatory variables which may be categorical or continuous variables. The GLM may
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be univariate with only one explanatory variable or multivariate with a number of
explanatory variables. Therefore, in GLM, the outcome is expressed as a function of
the model and prediction error. In the univariate case, where there is only one out-
come variable, the linear model consists of weights or coefficients, an intercept and a
prediction error.

5.1 Building ANOVA and ANCOVA models

For both ANOVA and ANCOVA, the theory behind the model must be reliable in that
there must be biological plausibility or scientific reason for the effects of the factors being
tested. In this, it is important that the factors are independent and not closely related to
one another. For example, it would not make sense to test for differences in mean values
of an outcome between groups defined according to education and socioeconomic status
when these two variables are related to each other. Once the results of an ANOVA are
obtained, they can only be generalized to the population if the data were collected from
a random sample, and a significant P value can only be used to indicate association and
cannot be taken as evidence of causality.

When building an ANOVA or ANCOVA model, it is important to build the model in a
logical and considered way. The process of model building is as much an art as a science.
Descriptive and summary statistics should always be obtained first to provide a good
working knowledge of the data before beginning the bivariate analyses or multivariate
modelling. In this way, the model can be built up in a systematic way, which is preferable
to including all variables in the model and then deciding which variables to remove, that
is, using a backward elimination process. Table 5.1 shows the steps that can be used in
the model building process.

Table 5.1 Steps in building an ANOVA model

Type of analysis SPSS procedure Purpose

Univariate analyses Explore Examine cell sizes
Obtain univariate means
Test for normality

Bivariate analyses Crosstabulations Ensure adequate cell sizes
One-way ANOVA Estimate differences in means and
homogeneity of variances
Examine trends across groups within a

factor
Multivariate analyses Factorial ANOVA Test several explanatory factors or adjust
ANCOVA for covariates

Test normality of residuals
Test influence of multivariate outliers

5.2 ANOVA models
5.2.1 Assumptions for ANOVA models

The assumptions for ANOVA, which must be met in all types of ANOVA models, are
shown in Box 5.1.
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Box 5.1 Assumptions for using ANOVA

The assumptions that must be met when using one-way or factorial ANOVA are as

follows:

e the participants must be independent, that is each participant appears only once
in their group

e the groups must be independent, that is each participant must be in one group

only

the outcome variable is normally distributed

all cells have an adequate sample size

the cell size ratio is no larger than 1:4

the variances are similar between groups (homogeneity of variance)

the residuals are normally distributed

there are no influential outliers

The first two assumptions are similar to the assumptions for two-sample ¢-tests (see
Section 3.1) and any violation will invalidate the analysis. In practice, this means that
each participant should appear on one data row of the spreadsheet only and thus will
be included in the analysis only once. When cases appear in the spreadsheet on more
than one occasion then repeated measures ANOVA or a linear mixed model should be
used as described in Chapter 6.

When an ANOVA is conducted, the data are divided into cells according to the number
of groups in the explanatory variable. Small cell sizes, that is, cell sizes less than 10, are
always problematic because of the lack of precision in calculating the mean value for the
cell. The minimum cell size in theory is 10 but in practice 30 is preferred. In addition to
creating imprecision, low cell counts lead to a loss of statistical power. The assumption
of a low cell size ratio is also important for example if one cell has 10 cases and another
cell has 60 cases then the ratio would be 1:6. A cell size imbalance of more than 1:4
across the model would be a concern.

It may be difficult to avoid small cell sizes in non-experimental studies because it is not
possible to predict the number of cases in each cell prior to data collection. Even in exper-
imental studies in which equal numbers can be achieved in some groups, drop-outs
and missing data can lead to unequal cell sizes. If small cells are present, they can be
re-coded or combined into larger cells but only if it is possible to meaningfully interpret
the re-coding. Alternatively, the group with small cells can be omitted from the analysis
although this will lead to a loss of generalizability.

Both the assumptions of a normal distribution and equality of the variance of the out-
come variable between cells should be tested before ANOVA is conducted. However,
as with a #-test, ANOVA is robust to some deviations from normality of distributions
and some imbalance of variances. The assumption that the outcome variable is nor-
mally distributed is of most importance when the sample size is small and/or when
univariate outliers increase or decrease mean values between cells by an important
amount and therefore influence perceived differences between groups. The main effects
of non-normality and unequal variances, especially if there are outliers, are to bias the
P values. However, the direction of the bias may not be clear.
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When variances are not significantly different between cells, the model is said to be
homoscedastic (also referred to as homogeneity of variance). The assumption of equal
variances is of most importance when there are small cells, say cells with less than 30
cases, when the cell size ratio is larger than 1:4 or when there are large differences in
variance between cells, say larger than 1:10. The main effect of unequal variance is to
reduce statistical power and thus lead to type II errors (i.e. failure to reject the null
hypothesis). Equality of variances should be tested in bivariate analyses before running
an ANOVA model and then reaffirmed in the final model.

5.2.2 Within- and between-group variance

To interpret the output from an ANOVA model, it is important to have a concept of the
mathematics used in conducting the test. In one-way ANOVA, the data are divided into
their groups as shown in Figure 5.1 and a mean for each group is computed. Each mean
value is considered to be the predicted value for that particular group of participants. In
addition, a grand mean is computed as shown in Table 5.2. The grand mean which is
also shown in Figure 5.1, is the mean for all of the data and will only be the average of
the three group means when the sample size in each group is equal.

Group 1 Group 2 Group 3

Frequency

Mean 1 Mean 2 \ Mean 3

Grand mean

Figure 5.1 Concept of an ANOVA model.

Table 5.2 Means computed in one-way ANOVA

Group, Group, Group, Total sample

Group mean, Group mean, Group mean, Grand mean
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The ANOVA analysis is then based on calculating the difference of each participant’s
observed value from their group mean, which is regarded as their predicted value, and
also the difference from the grand mean. Thus, the following calculations are made for
each participant:

Within-group difference = group mean — observed measurement

Between-group difference = grand mean — observed measurement

The within-group difference is the variation of each participant’s measurement from
their own group mean and is thought of as the explained variation. The between-group
difference is the variation of each participant’s measurement from the grand mean and
is thought of as the unexplained variation. An important assumption in ANOVA is that
the within-group differences, which are also called residual or error values, are normally
distributed.

In calculating ANOVA statistics, the within-group differences for the participants are
squared and then the squared differences are summed to compute the within-group
variance, which is denoted as the ‘Sum of Squares within Groups’ (SS,,). The
between-group difference for each participant is also squared and these squared
differences are then summed to compute the between-group variance, which is
denoted as the ‘Sum of Squares between Groups’ (SSy). The effect of squaring the
values is to remove the effects of negative values, which would balance out the positive
values if the non-squared differences were summed. The ‘Total Variation’ is the sum
of the squares within groups and the sum of squares between groups added together
(SSp =SSy + SSp).

Each sum of squares has a corresponding ‘degrees of freedom” (df), which is the num-
ber of observations that are used in calculating the sum of squares. Each sum of squares
is then divided by its corresponding degrees of freedom, to obtain a mean square. This
gives a ‘mean square within groups’ (MS,y), which is also referred to as mean square
error and a ‘mean square between groups’ (MSg). The mean square values represent
the variation among participants in the same group and the variation between group
means, respectively.

The F value that is calculated for an ANOVA is the mean between-group variance
divided by the mean within-group variance (MS;/MS,), that is, the unexplained vari-
ance divided by the explained variance, and is thus a ratio between mean squares. The F
value indicates whether the between-group variation is greater than would be expected
by chance. The higher the F value, the more significant the ANOVA test because the
groups (factors) are accounting for a higher proportion of the variance. Obviously, if
more of the participants are closer to their group mean than to the grand mean, then
the within-group variance will be lower than the between-group variance and F will be
large. If the within-group variance is equal to the between-group variance, then F will
be equal to approximately 1 indicating that there is no significant difference in means
between the groups of the factor (i.e. null hypothesis is true).

If there are only two groups in a factor and only one factor, then a one-way ANOVA
is equivalent to a two-sample t-test and F is equal to #2. This relationship holds because ¢
is calculated from the mean divided by the standard error (SE) in the same units as the
original measurements whereas F is calculated from the variance, which is in squared
units.
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5.3 One-way analysis of variance

A one-way ANOVA is used when the effect of only one categorical variable with more
than two nominal or ordinal levels (explanatory variable) on a single continuous vari-
able (outcome) is explored. For example, when the effect of socioeconomic status, which
has three groups (low, medium and high), on weight is examined. The concept of
ANOVA can be thought of as an extension of a two-sample #-test applied to more than
two groups with similar assumptions. However, the terminology used for ANOVA is
quite different. In ANOVA, the explanatory variable, which is called a factor, has more
than two groups.

The null hypothesis for a one-way ANOVA is that the population means for all groups
are equal. The alternative hypothesis is that at least one mean is significantly different
from one of the others. A factorial ANOVA is used when the effects of two or more cat-
egorical variables (explanatory variables) on a single continuous variable (outcome) are
explored, for example when the effects of gender and socioeconomic status on weight
are examined.

The ANOVA test is called an analysis of variance and not an analysis of means
because this test is used to assess whether the mean values of different groups are far
enough apart in terms of their spread (variance) to be considered significantly different.
Figure 5.1 shows how a one-way ANOVA model in which the factor has three groups
can be conceptualized.

If a factor has four groups, it is possible to compare the groups by conducting three
independent two-sample ¢-tests, that is, to test the mean values of group 1 versus 2,
group 2 versus 3 and group 3 versus 4. However, this approach of conducting multiple
two-sample f-tests increases the probability of obtaining a significant result merely by
chance (a type I error). The probability of a type I error not occurring for each ¢-test
is 0.95 (i.e. 1 —0.05). The three tests are independent; therefore, the probability of a
type I error not occurring over all three tests is 0.95%x0.95 X% 0.95, or 0.86. Therefore,
the probability of at least one type I error occurring over the three two-sample ¢-tests
is 1 —0.86, or 0.14, which is higher than the P level set at 0.05.! A one-way ANOVA is
used to examine the differences between several groups within a factor in one model,
thereby reducing the number of pairwise comparisons and the chance of a type I error
occurring.

5.3.1 Sample size for a one-way ANOVA

In general, when using a one-way ANOVA with three groups, the required sample size
can be estimated on the basis of the effect size Cohen’s 4 calculated between the largest
and smallest mean values. A sample size of approximately 600 per group is required to
show that a small effect size of 0.15 is statistically significant, 160 per group to show
that a medium effect size of 0.3 is statistically significant and 90 per group to show
that a moderate effect size of 0.4 is statistically significant. If the effect size is large at
0.8, only 25 per group are required for significance. This assumes a power of 80%,
a significance level equal to 0.05 and that the groups have equal variance and equal
sample sizes. Deviation from these assumptions will require larger numbers. However,
the larger the number of groups, the smaller the number of participants is required in
each group to maintain statistical power. For example, for a Cohen’s d effect size of
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0.30 to be significant 160 per group is needed if there are three groups, 120 per group
if there are four groups and 96 per group if there are six groups (power = 80%, P <
0.05, two-tailed). Detailed sample size calculation tables for ANOVA are shown on the
StatsToDo website provided in the section of this book, Useful Websites.

Research question

The spreadsheet weights.sav contains the data from a population sample of 550 term
babies who had their weight recorded at 1 month of age. The babies also had their parity
recorded, that is, their birth order in their family.

Question: Are the weights of babies related to their parity?

Null hypothesis: ~ That there is no difference in mean weight between groups defined
by parity.

Variables: Outcome variable = weight (continuous)

Explanatory variable = parity (categorical, four groups)

The first statistics to obtain are the cell means and cell sizes. The number of children in
each parity group can be obtained using the Analyze — Descriptive Statistics — Frequencies
command sequences shown in Box 1.7 with parity entered as the variable.

The Frequency table shows that the sample size of each group is large and all cells
have more than 30 participants. The cell size ratio is 62:192 or 1:3 and does not violate
the ANOVA assumptions. Thus, the ANOVA model will be robust to some degrees of
non-normality, outliers and unequal variances. However, it is still important to validate
the ANOVA assumptions of normality and equal variances between groups. An aware-
ness of any violations of these assumptions before running the model may influence
how the results are interpreted, especially if any P values are of marginal significance.
On the one hand, a small cell with a small variance compared to the other groups has
the effect of inflating the F value, that is, of increasing the chance of a type I error. On
the other hand, a small cell with large variance compared to the other groups reduces
the F value and increases the chance of a type II error.

Frequency table
Parity
Valid Cumulative
Frequency Per cent per cent per cent

Valid Singleton 180 32.7 32.7 32.7
One sibling 192 34.9 34.9 67.6
Two siblings 116 21.1 211 88.7
Three or more siblings 62 1.3 11.3 100.0
Total 550 100.0 100.0

Summary statistics and checks for normality can be obtained using the Analyze —
Descriptive Statistics — Explore command sequence shown in Box 2.2. In this example,
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the dependent variable is weight and the factor is parity. The plots that are most useful
to request are the box plots, histograms and normality plots.

The Descriptives table shows that means and medians for weight in each group are
approximately equal and the values for skewness and kurtosis are all between —1 and
+1, suggesting that the data are close to normally distributed. The variances in each
group are 0.384, 0.351, 0.366 and 0.287, respectively. The variance ratio between the
lowest and highest values is 0.287:0.384, which is 1:1.3.

Descriptives
Parity Statistic  Std. error
Weight (kg) Singleton Mean 42589  0.04617
95% confidence Lower bound 4.1678
Interval for mean Upper bound 4.3501
5% trimmed mean 4.2588
Median 4.2500
Variance 0.384
Std. deviation 0.61950
Minimum 2.92
Maximum 5.75
Range 2.83
Interquartile range 0.95
Skewness 0.046 0.181
Kurtosis —0.542 0.360
One sibling Mean 43887  0.04277
95% confidence Lower bound 4.3043
Interval for mean Upper bound 4.4731
5% trimmed mean 4.3709
Median 4.3250
Variance 0.351
Std. deviation 0.59258
Minimum 3.17
Maximum 6.33
Range 3.16
Interquartile range 0.84
Skewness 0.467 0.175
Kurtosis 0.039 0.349
Two siblings Mean 4.4601 0.05619
95% confidence Lower bound 4.3488
Interval for mean Upper bound 45714
5% trimmed mean 4.4525
Median 4.4700
Variance 0.366
Std. deviation 0.60520
Minimum 3.09
Maximum 6.49
Range 3.40
Interquartile range 0.82
Skewness 0.251 0.225
Kurtosis 0.139 0.446
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Parity Statistic  Std. error
Weight (kg) Three or more Mean 4.4342 0.06798

siblings 95% confidence Lower bound 4.2983

Interval for mean Upper bound 4.5701

5% trimmed mean 4.4389

Median 4.4450

Variance 0.287

Std. deviation 0.53526

Minimum 3.20

Maximum 5.48

Range 2.28

Interquartile range 0.71

Skewness —-0.029 0.304

Kurtosis —-0.478 0.599

The Kolmogorov—Smirnov and the Shapiro—Wilk statistics in the Tests of Normality
table suggest that the data for singletons, babies with two siblings, and babies with three
or more siblings conform to normality with P values above 0.05. However, the data for
babies with one sibling do not appear to conform to a normal distribution based on these
tests because the P values of 0.049 and 0.018 are less than 0.05. However, since these
are conservative tests, failure to pass these statistical tests of normality does not always
mean that ANOVA cannot be used unless other tests also indicate non-normality.

Tests of Normality
Kolmogorov-Smirnova? Shapiro-Wilk
Parity Statistic  df Sig. Statistic  df Sig.
Weight (kg) Singleton 0.038 180 0.200* 0.992 180 0.381
One sibling 0.065 192 0.049 0.983 192 0.018
Two siblings 0.059 116 0.200* 0.990 116 0.579
Three or more 0.070 62 0.200* 0.985 62 0.672
siblings

*This is a lower bound of the true significance.
aLilliefors significance correction.

The histograms shown in Figure 5.2 confirm the tests of normality and show that
the distribution for babies with one sibling has slightly spread tails so that it does not
conform absolutely to a bell-shaped curve. The normal Q-Q plots shown in Figure 5.2
have small deviations at the extremities. The normal Q-Q plot for babies with one sibling
deviates slightly from normality at both extremities. Although the histogram for babies
with three or more siblings is not classically bell shaped, the normal Q-Q plot suggests
that this distribution conforms to an approximately normal bell curve.

The box plots in Figure 5.2 indicate that there are two outlying values, one in the
group of babies with one sibling and one in the group of babies with two siblings. It is
unlikely that these outlying values, which are also univariate outliers, will have a large
influence on the summary statistics and ANOVA results because the sample size of each
group is large. However, the outliers should be confirmed as correct values and not data
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Figure 5.2 Histograms and plots of weight by parity.
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Figure 5.2 (continued)
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Table 5.3 Characteristics of the data set
Characteristic
Independence of observations Yes
Smallest cell size 62
Cell ratio 1:3
Variance ratio 1:1.3
Approximately normal distribution in each group Yes
Number of outlying values 2
Number of univariate outliers 2

entry or data recording errors. Once they are verified as correctly recorded data points,
the decision to include or omit outliers from the analyses is the same as for any other
statistical tests. In a study with a large sample size, it is expected that there will be a
few outliers (see Chapter 2). In this data set, the outliers will be retained in the analyses
and the residuals will be examined for the presence of extreme values (discussed later
in this chapter) to ensure that these outliers do not have an undue influence on the
results. The characteristics of the sample that need to be considered before conducting
an ANOVA test and the features of the data set are summarized in Table 5.3.
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After the assumptions for using ANOVA have been checked and are validated, a
one-way ANOVA can be obtained using the SPSS commands shown in Box 5.2.

Box 5.2 SPSS commands to obtain a one-way ANOVA

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — Compare Means — One-Way ANOVA
One-Way ANOVA
Highlight Weight and click over into Dependent List
Highlight Parity and click over into Factor
Click on Post-hoc
One-Way ANOVA: Post Hoc Multiple Comparisons
Equal Variances Assumed: Tick LSD, Bonferroni and Duncan, click Continue
One-Way ANOVA
Click on Options
One-Way ANOVA: Options
Statistics: Tick Descriptive and Homogeneity of variance test
Tick Means Plot and click Continue
Missing Values: Excludes cases analysis by analysis (default)
One-Way ANOVA
Click OK

The summary statistics in the Descriptives table produced in a one-way ANOVA are
identical to the statistics obtained using the command sequence Analyze — Descriptive
Statistics — Explore. The descriptive statistics provided by the ANOVA commands show
useful summary information but do not give enough details to check the normality of
the distribution of weight in each group.

One way

Descriptives

Weight (kg)

95% confidence

interval for mean

Std. Std. Lower Upper
N Mean  deviation error bound bound Minimum  Maximum

Singleton 180 4.2589 0.61950 0.04617 4.1678 4.3501 2.92 5.75
One sibling 192  4.3887 0.59258 0.04277 4.3043 4.4731 3.17 6.33
Two siblings 116  4.4601 0.60520 0.05619  4.3488 45714 3.09 6.49
Three or 62  4.4342 0.53526 0.06798  4.2983 4.5701 3.20 5.48
more siblings
Total 550 4.3664 0.60182 0.02566 4.3160 4.4168 2.92 6.49

Homogeneity of variances is a term that is used to indicate that groups have the same
or similar variances (see Chapter 3). In the Test of Homogeneity of Variances table, the
P value of 0.590 in the significance column, which is larger than the critical value of
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0.05, indicates that the variances of the groups are not significantly different from one
another.

Test of Homogeneity of Variances

Weight (kg)
Levene statistic df1 df2 Sig.
0.639 3 546 0.590

The ANOVA table shows how the sum of squares is partitioned into between-group
(SSg) and within-group effects (SS,,). The average of each sum of squares is needed to
calculate the F value. Therefore, each sum of squares is divided by its respective degree
of freedom (df) to compute the mean variance, that is, the mean square. The degrees of
freedom for the between-group sum of squares is the number of groups minus 1, that
is, 4 — 1 =3, and for the within-group sum of squares is the number of cases in the total
sample minus the number of groups, that is, 550 — 4 = 546.

ANOVA
Weight (kg)

Sum of squares df Mean square F Sig.
Between groups 3.477 3 1.159 3.239 0.022
Within groups 195.365 546 0.358
Total 198.842 549

In this model, the F value, which is the between-group mean square divided by the
within-group mean square, is large at 3.239 and is significant at P=0.022. Therefore,
the null hypothesis is rejected and we conclude that there is a significant difference in
the mean population values of the four parity groups.

5.4 Effect size for ANOVA

One of the most commonly reported measures of effect size for ANOVA is eta squared
(%), which is an index of the strength of association between a factor and a dependent
variable. Eta squared is the proportion of total variation attributable to the factor. Eta
squared is calculated as the ratio of the factor variance to the total variance and values
range from 0 to 1.

In the example above, the amount of variation in weight that is explained by parity
can be calculated as the between-group sum of squares for weight divided by the total
sum of squares as follows:

n* =SSy/SS;
=3.477/198.842
=0.017

This statistic indicates that only 1.7% of the variation in weight is explained by parity.
Alternatively, eta squared can be obtained using the SPSS commands Analyze — Compare
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Means — Means, clicking on Options and requesting ANOVA table and eta. This will pro-
duce the same ANOVA table as above and include eta squared but does not include a
test of homogeneity or allow for post-hoc testing.

Eta squared can be converted to Cohen’s f which gives an average standardized differ-
ence between the mean values of the groups. This statistic is most accurate when the
group sizes are approximately equal. The formula is as follows:

\/’77
1=n%

Thus for the model above, Cohen’s f = \/0.017/(1 —0.017) = 0.13. For Cohen’s f, a
value of 0.1 is considered a small effect size, 0.25 is considered a medium effect size and
0.4 is considered a large effect size.? From this, we can conclude that parity only has a
small association with weight at 1 month.

However, eta squared is a biased estimate of the strength of association, in that it
overestimates the effects, especially for small sample sizes.> Another measure of effect
size that is less biased is omega squared (w?). While SPSS does not calculate omega
squared for ANOVA, it can be calculated as follows when there are equal sample sizes
in all cells:

Cohen’s f =

w® = SSp — (k—=1) X MS, /(SS; + MS,,), where k is the number of groups.

Thus for this example, if the sample size in all cells had been equal,
@ =3477 - (3 —1)x 0.358 =0.014
(198.842 +0.358)

The omega squared value obtained is slightly lower than the eta squared value.

5.5 Post-hoc tests for ANOVA

Although the ANOVA statistics show that there is a significant difference in mean
weights between parity groups, they do not indicate which group means are signif-
icantly different from one another. Specific group mean differences can be assessed
using planned contrasts, which are decided before the ANOVA is conducted and which
strictly limit the number of comparisons made.* The planned comparisons should
have a theoretical and/or empirical basis so that the comparisons to be made can be
decided upon. Alternatively, post-hoc tests, which may involve all possible comparisons
between group means can be used. Post-hoc tests are often considered to be data dredg-
ing and therefore inferior to the thoughtfulness of planned or a priori comparisons.’
Some post-hoc tests preserve the overall type I error rate, but for other post-hoc tests
the chance of a type I error increases with the number of comparisons made.

It is always better to conduct a small number of planned comparisons rather than
a large number of unplanned post-hoc tests. Strictly speaking, the between-group
differences that are of interest and the specific between-group comparisons that
are made should be decided prior to conducting the ANOVA. In addition, planned
and post-hoc tests should only be requested after the main ANOVA has shown that
there is a statistically significant difference between group means. When the F test
is not significant, it is unwise to explore whether there are any between-group
differences.*



Analysis of variance 129

A post-hoc test may consist of pairwise comparisons, group-wise comparisons or a
combination of both. Pairwise comparisons are used to determine which groups are
statistically significantly different from each other. Group-wise comparisons are used
to identify subsets of means that differ significantly from each other. Post-hoc tests also
vary from being conservative, such as Scheffe’s to being more liberal such as Fisher’s least
significance difference (LSD) where no adjustment is made for multiple comparisons.
A conservative test is one in which the actual P value is larger than the true P level,
and the probability of a type I error occurring will be less than the level of significance
specified (a). Thus, conservative tests may incorrectly fail to reject the null hypothesis
because a larger effect size between means is required for significance. A liberal test is
one in which the actual P value is smaller than the true P value and the probability of a
type I error occurring will be greater than the level of significance specified. Thus, liberal
tests may result in the incorrect acceptance of the null hypothesis. Table 5.4 shows some
commonly used post-hoc tests, their assumptions and the type of comparisons made.

The choice of post-hoc test should be determined by equality of the variances, equality
of group sizes and by the acceptability of the test in a particular research discipline. For
example, Scheffe and Tukey’s honestly significant difference tests are often used in psy-
chological research, Bonferroni in clinical applications and Duncan in epidemiological
studies. The advantages of using a conservative post-hoc test have to be balanced against
the probability of type II errors, that is, missing real differences.® Conservative post-hoc
tests have been criticized because they increase the type II error rate.” One suggestion
which is becoming more widely accepted is that liberal tests such as Fisher’s LSD are
used for exploratory studies and more conservative tests such as Bonferroni are used
for large, clinical confirmatory studies.® Exploratory studies are those in which data is
collected with one or more objectives but the study may also be used to test hypotheses

Table 5.4 Types of comparisons produced by post-hoc tests

Pairwise

Requires equal  Group-wise comparisons

Post-hoc test group sizes subsets with a 95% ClI
Equal variance assumed
Conservative tests
Scheffe No Yes Yes
Tukey’s honestly significant Yes Yes Yes
difference (HSD)
Bonferroni No No Yes
Liberal tests
Student—-Newman-Keuls (SNK) Yes Yes No
Duncan Yes Yes No
Fisher's least significance Yes No Yes
difference (LSD)
Equal variance not assumed

Games Howell No No Yes

Dunnett's C No No Yes
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that are generated by the data. For such studies, a flexible approach to data analyses is
required. On the other hand, confirmatory studies are those which are designed to col-
lect definitive proof of a predefined hypothesis that will be used in final decision making
in clinical settings. Between the two extremes of exploratory studies and confirmatory
studies, there is a wide range of different types of investigations — in all studies it is
important to make a considered decision about what method, if any, is used to control
the type I error rate.

In the ANOVA test for the weights.sav data, the following post-hoc pairwise compar-
isons, Fisher’s LSD and Bonferroni post-hoc tests were requested:

Post-hoc tests

Multiple Comparisons

Dependent variable: weight (kg)

95% confidence

interval
Mean

difference Std. Lower  Upper

(1) Parity (J) Parity (1-)) error Sig. bound bound
LSD Singleton One sibling —-0.12975* 0.06206 0.037 -0.2517 -0.0078
Two siblings -0.20114* 0.07122 0.005 -0.3410 -0.0612
Three or more siblings —0.17525* 0.08809 0.047 -0.3483 —0.0022
One sibling  Singleton 0.12975* 0.06206 0.037 0.0078 0.2517
Two siblings —-0.07139  0.07034 0.311 -0.2096 0.0668
Three or more siblings  —0.04550  0.08738 0.603 -0.2171 0.1261
Two siblings  Singleton 0.20114* 0.07122 0.005 0.0612 0.3410
One sibling 0.07139 0.07034 0.311 -0.0668 0.2096
Three or more siblings 0.02589  0.09410 0.783 -0.1590 0.2107
Three or more siblings Singleton 0.17525* 0.08809 0.047 0.0022 0.3483
One sibling 0.04550 0.08738 0.603 -0.1261 0.2171
Two siblings —0.02589 0.09410 0.783 -0.2107 0.1590
Bonferroni  Singleton One sibling -0.12975  0.06206 0.222 -0.2941 0.0346
Two siblings -0.20114* 0.07122 0.029 -0.3897 -0.0126
Three or more siblings  —0.17525 0.08809 0.283 —0.4085 0.0580
Onessibling  Singleton 0.12975  0.06206 0.222 -0.0346 0.2941
Two siblings —0.07139 0.07034 1.000 -0.2577 0.1149
Three or more siblings —0.04550  0.08738 1.000 -0.2769 0.1859
Two siblings  Singleton 0.20114* 0.07122 0.029 0.0126 0.3897
One sibling 0.07139  0.07034 1.000 -0.1149 0.2577
Three or more siblings 0.02589  0.09410 1.000 -0.2233 0.2751
Three or more siblings Singleton 0.17525  0.08809 0.283 —0.0580 0.4085
One sibling 0.04550  0.08738 1.000 -0.1859 0.2769
Two siblings —0.02589  0.09410 1.000 -0.2751 0.2233

*The mean difference is significant at the 0.05 level.

5.5.1 Fisher’s least significant difference (LSD) post-hoc test

The Fisher’s LSD test is the most liberal post-hoc test because it performs all possible
tests between means. With no adjustments made for multiple comparisons, the results
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of the Fisher’s LSD test amount to multiple ¢-testing. A requirement of this test is that
the overall ANOVA has to be significant.

The Multiple Comparisons table shows the mean difference between each pair of
groups, the significance and the confidence intervals around the difference in means
between groups. SigmaPlot can be used to plot the mean differences and 95% confi-
dence intervals as a scatter plot with horizontal error bars using the commands shown
in Box 3.6 to obtain Figure 5.3. This figure shows that three of the comparisons have
error bars that cross the zero line of no difference. The differences are not statistically
significant using the Fisher’s LSD test. The remaining three comparisons do not cross
the zero line of no difference and are statistically significant as indicated by the P values
in the Multiple Comparisons table.

5.5.2 Bonferroni post-hoc test

The Bonferroni post-hoc comparison is a conservative test in which the critical P value
of 0.05 is divided by the number of comparisons made. Thus, if five comparisons are
made, the critical value of 0.05 is divided by 5 and the adjusted new critical value is
P = 0.01. In SPSS the P levels in the Multiple Comparisons table have already been
adjusted for the number of multiple comparisons. Therefore, each P level obtained from
a Bonferroni test in the Multiple Comparisons table should be evaluated at the critical
level of 0.05.

By using the Bonferroni test, which is a conservative test, the significant differences
between some groups identified by the Fisher’s LSD test are not significant. The mean
values are identical but the confidence intervals are adjusted so that they are wider as
shown in Figure 5.4. The 95% error bars show that only one comparison does not cross
the zero line of difference compared to three comparisons using the LSD test.

2vs3+siblings - {—;—E—F ————————————————

1 vs 3+ siblings ----------------oooo oo 1—E—§—r ——————————————————

1vs 2siblings 4 ----------------mmoo o I—E—§—| —————————————————————

0 vs 3+ siblings -------------------- J—E—é ————————————————————————

0vs 2 siblings -------------------- I—E—}——% ————————————————————————

Ovs1sibling -~ I—E—|§l ————————————————————————
-0.6 -0.4 -0.2 0.0 0.2 0.4

Mean between-group difference (kg)

Figure 5.3 Between-group comparisons with no adjustment for multiple testing.
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Figure 5.4 Between-group comparisons using Bonferroni corrected confidence intervals.

5.5.3 Duncan post-hoc test

The Duncan test shown in the Homogeneous Subsets table is one of the more liberal
post-hoc tests. Under this test, there is a progressive comparison between the largest and
smallest mean values until a difference that is not significant at the P < 0.05 level is found
and the comparisons are stopped. In this way, the number of comparisons is limited. The
output from this test is presented as subsets of groups that are not significantly different
from one another. The between-group P value (0.05) is shown in the top row of the
Homogenous Subtests table and the within-group P values at the foot of the columns.
Thus in the table, the mean values for groups of singletons and babies with one sibling
are not significantly different from one another with a P value of 0.104. Similarly, the
mean values of groups with one sibling, two siblings, or three or more siblings are not

Homogeneous Subsets

Weight (kg)
Subset for alpha = 0.05
Parity N 1 2
Duncan?® Singleton 180 4.2589
One sibling 192 4.3887 4.3887
Three or more siblings 62 4.4342
Two siblings 116 4.4601
Sig. 0.104 0.403

Means for groups in homogeneous subsets are displayed.

2Uses harmonic mean sample size = 112.633.

bThe group sizes are unequal. The harmonic mean of the group sizes is used.
Type | error levels are not guaranteed.
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Figure 5.5 Means plot of weight by parity.

significantly different from one another with a P value of 0.403. Singletons do not appear
in the same subset as babies with two siblings or with three or more siblings which
indicates that the mean weight of singletons is significantly different from these two
groups at the P<0.05 level.

Means plot

A means plot provides a visual presentation of the mean value for each group. The means
plot obtained by the commands in Box 5.2 and shown in Figure 5.5 indicates that there
is a trend for weight to increase with increasing parity and helps in the interpretation of
the post-hoc tests. It also provides visual evidence as to why the group with one sibling
is not significantly different from singletons or babies with two siblings or with three or
more siblings, and why singletons are significantly different from the groups with two
siblings or with three or more siblings.

If the means plot shown in Figure 5.5 was to be published, it would be best plotted
in SigmaPlot with 95% confidence intervals around each mean value included to help
interpret the between-group differences. Also, the line connecting the mean value of
each group should be removed because the four groups are independent of one another.

5.6 Testing for a trend

The increase in weight with increasing parity suggests that it is appropriate to test
whether there is a significant linear trend for weight to increase across the groups
within this factor. A trend test can be performed by rerunning the one-way ANOVA and
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ticking the Polynomial option in the Contrasts box with the Degree: Linear (default) option
used. As the polynomial term implies, an equation is calculated across the model.

One way
ANOVA
Weight (kg)
Sum of squares df Mean square F Sig.
Between groups  (Combined) 3.477 3 1.159 3.239 0.022
Linear term
Unweighted 1.706 1 1.706 4.768 0.029
Weighted 2.774 1 2.774 7.754 0.006
Deviation 0.703 2 0.351 0.982 0.375
Within groups 195.365 546 0.358
Total 198.842 549

If each of the parity cells had the same number of cases then the unweighted lin-
ear term would be used to assess the significance of the trend. However, the cell sizes
are unequal and therefore the weighted linear term is used. The table shows that the
weighted linear term sum of squares is significant at the P=0.006 level. The P value for
the linear term-weighted indicates that the slope of the line through the plot is signifi-
cantly different from zero. That is, there is a significant linear trend in the group means.
The descriptive statistics show that the mean weight increases as parity increases.

5.7 Reporting the results of a one-way ANOVA

In addition to presenting the between-group comparisons shown in Figure 5.3, the
results from the one-way ANOVA can be summarized as shown in Table 5.5. When
reporting the table, it is important to include details stating that weight was approxi-
mately normally distributed in each group and that the group sizes were all large (min-
imum 62) with a cell size ratio of 1:3 and a variance ratio of 1:1.3. The significant
difference in weight at 1 month between children with different parities can be described
as F=3.24, df = 3,546, P = 0.022 with a significant linear trend for weight to increase
with increasing parity (P = 0.006). The degrees of freedom are conventionally shown
as the between-group and within-group degrees of freedom separated with a comma.

Table 5.5 Reporting results from a one-way ANOVA

Parity N Mean (SD) F (df) Pvalue P value trend
Singletons 180 4.26 (0.62) 3.24 (3,546) 0.022 0.006
One sibling 192 4.39(0.59)

Two siblings 116  4.46 (0.61)

Three or more siblings 62 4.43 (0.54)
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Although the inclusion of the F value and degrees of freedom is optional since their only
interpretation is the P value, some journals request that they are reported.

When designing the study, only one post-hoc test should be planned and conducted if
the ANOVA was significant. If the Bonferroni post-hoc test had been conducted, it could
be reported that the only significant difference in mean weights was between singletons
and babies with two siblings (P = 0.029) with no significant differences between any
other groups.

If Duncan’s post-hoc test had been conducted, it could be reported that babies with
two siblings and babies with three or more siblings were significantly different from
singletons (P < 0.05). However, babies with one sibling did not have a mean weight
that was significantly different from either singletons (P = 0.104) or from babies with
two siblings, or with three or more siblings (P = 0.403).

5.8 Factorial ANOVA models

A factorial ANOVA is used to test for differences in mean values between groups when
there are two or more factors, or explanatory variables, with two or more groups each
included in a single multivariate analysis. In SPSS, factorial ANOVA is accessed through
the Analyze — General Linear Models — Univariate command sequence. The term ‘uni-
variate’ may seem confusing in this context but in this case refers to the fact that there
is only one outcome variable rather than only one explanatory variable.

In a factorial ANOVA, the data are divided into cells according to the number of parti-
cipants in each group of each factor stratified by the other factors. The more explana-
tory variables that are included in a model, the greater the likelihood of creating small
or empty cells. The cells can be conceptualized as shown in Table 5.6. The number of
cells in a model is calculated by multiplying the number of groups in each factor. For a
model with three factors that have three, two and four groups, respectively, as shown
in Table 5.6, the number of cells is 3 x 2 x4, or 24 cells in total.

In factorial ANOVA, the within-group differences are calculated as the distance of
each participant from its cell mean rather than from the group mean as in one-way
ANOVA. However, the between-group differences are again calculated as the difference
of each participant from the grand mean, that is, the mean of the entire data set. As with
one-way ANOVA, all of the differences are squared and summed, and then the mean
square is calculated.

Table 5.6 Cells in the analysis of a model with three factors (three-way ANOVA)

FACTOR 1
FACTOR 2 Group 1 Group 2 Group 3

FACTOR 3 Group 1 Group 2 Group 1 Group 2 Group 1 Group 2

Group 1 My My My 21 M2 My 3 My3,1
2 My12 M3.2 M2 my22 Mi32 my32
3 LTI M3 M3 my23 M3 m;33
4

Mi1,4 M4 M1 24 M4 Mi34 LEY
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5.8.1 Fixed factors, random factors and interactions

Fixed or random effect factors can be incorporated in factorial ANOVA models. When
both random and fixed effect factors are included, this is referred to as a mixed model.
Factorial ANOVA is mostly used to examine the effects of fixed factors. A fixed factor is
a factor in which all possible groups or all levels of the factor are included, for example,
males and females or number of siblings. Usually, treatment effects such as a treatment
group and a control group are fixed. With fixed factors, inferences can be made only
to the levels of the factor used in the study. When using fixed factors, the differences
between the specified groups are the statistics of interest.

Factors are considered to be random when only a sample of a wider range of groups or
all possible levels is included. For example, factors may be classified as having random
effects when only three or four ethnic groups are represented in the sample but the
results will be generalized to all ethnic groups in the community. In this case, only
general differences between the groups are of interest because the results will be used
to make inferences to all possible ethnic groups rather than to only the groups in the
sample. That is, inferences from the data are for all levels of the factor in the population
from which the levels were selected.

It is important to classify groups as random factors if the study sample was selected by
recruiting, for example, specific sports teams, schools or doctors’ practices and the results
will be generalized to all sports teams, schools or doctors’ practices or if different sports
teams, schools or doctors” practices would be selected in the future. In these types of
study designs, there is a cluster sampling effect and the group is entered into the model
as a random factor.

The classification of factors as fixed or random effects has implications for interpret-
ing the results of the ANOVA model. In random effect models, any unequal variance
between cells is less important when the numbers in each cell are equal. However,
when there is increasing inequality between the numbers in each cell, then differences
in variance become more problematic. The use of fixed or random effects can give very
different P values because the F statistic is computed differently. For fixed effects, the F
value is calculated as the between-group mean square divided by the error mean square
whereas for random effects, the F value is calculated as the between-group mean square
divided by the interaction mean square.

Sometimes the effect of one fixed factor is modified by another fixed factor. That is,
there is an interaction between factors since the effects of one factor depend on the level
of another factor. The presence of a significant interaction between two or more factors,
or between a factor and a covariate can be tested in a factorial ANOVA model. The inter-
action term is computed as a new variable by multiplying the factors and then included
in the model or can be requested in an SPSS option. Thus, with a factorial ANOVA it is
possible to examine the effect of the explanatory variable (also referred to as the ‘main
effect’), as well as the presence of any interaction effects on the outcome variable. When
there is a significant interaction, the main effects are not interpreted in isolation since
this may lead to erroneous conclusions and the interaction is the most important effect.
To interpret the results in more detail, the interaction can be explored further by exam-
ining the effect of one explanatory variable at a fixed level of the other explanatory
variable, referred to as simple main effects. However, depending on the number of lev-
els of a factor, it is recommended that not all possible simple effects conducted as this
will increase the probability of a Type I error occurring.
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Research question

Differences in weights between genders can be tested using a two-sample ¢-test and dif-
ferences between different parities were tested in the previous example using a one-way
ANOVA. However, maternal education status (Year 10 school, Year 12 school or univer-
sity), in addition to gender and parity can be tested together as explanatory factors in a
three-way ANOVA model. These factors are all fixed factors.

Question: Are the weights of babies related to their gender, parity or maternal
level of education?

Null hypothesis: ~ That there is no difference in mean weight between groups defined
according to gender, parity and level of education

Variables: Outcome variable = weight (continuous)
Explanatory variables = gender (categorical, two groups), parity
(categorical, four groups) and maternal education (categorical, three

groups)

The number of cells in the ANOVA model will be 2 (gender) X 3 (maternal education)
X 4 (parity), or 24 cells. First, the summary statistics need to be obtained to verify that
there are an adequate number of babies in each cell. This can be achieved by splitting
the file by gender which has the smallest number of groups and then generating two
tables of parity by maternal education as shown in Box 5.3.

Box 5.3 SPSS commands to obtain cell sizes

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Data — Split File
Split File
Tick Organise output by groups
Highlight Gender and click into Groups Based on
Click OK
weights — SPSS Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Maternal education and click into Row(s)
Highlight Parity and click into Column(s)
Click OK

The Crosstabulations tables show that even with a large sample size of 550 babies,
including three factors in the model will create some small cells with less than 10 cases
and that there is a large cell imbalance. For males, the cell size ratio is 4:55, or 1:14,
and for females the cell size ratio is 2:45, or 1:23. Without maternal education included,
all cell sizes as indicated by the Total row and Total column totals are quite large. To
increase the small cell sizes, it would make sense to combine the groups of two siblings
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and three or more siblings. This combining of cells is possible because the theory is valid
and because the post-hoc tests indicated that the means of these two groups are not
significantly different from one another. By combining these groups, the smallest cells
will be larger at 8 + 4 or 12 for males and 13 + 2 or 15 for females. The cell ratios will
then be 12:55, or 1:4.6 for males and 15:45, or 1:3 for females. The ratio for males is
close to the assumption of 1:4 and within this assumption for females.

Gender = 1 male

Maternal education * parity crosstabulation?

Count
Parity
One Two Three or more
Singleton sibling siblings siblings Total
Maternal Year 10 15 40 26 17 98
education Year 12 22 16 8 4 50
Tertiary 55 42 22 8 127
Total 92 98 56 29 275
2Gender = male.
Gender = 2 female
Maternal education * parity crosstabulation®
Count
Parity
One Two Three or more
Singleton sibling siblings siblings Total
Maternal Year 10 24 36 21 19 100
education Year 12 19 15 13 2 49
Tertiary 45 43 26 12 126
Total 88 94 60 33 275

aGender = female.

To combine the parity groups, the recode commands shown in Box 1.9 can be used
after removing the Split file option as shown in Box 5.4.

Box 5.4 SPSS commands to remove split file

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Data — Split File
Tick Analyse all cases, do not create groups
Click OK
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The SPSS commands to obtain summary means for parity and maternal education in
males and females separately are shown in Box 5.5.

SPSS Commands

weights.sav —IBM SPSS Statistics Data Editor
Analyze — Compare Means — Means
Means

Independent List
Click OK

Box 5.5 SPSS commands to obtain summary means

Highlight Weight and click into Dependent List
Highlight Gender, Maternal education and Parity recoded (3 levels), click into

The Means tables show mean values in each group for each factor. There is a differ-
ence of 4.59 — 4.14, that is, 0.45 kg between genders, a difference of 4.41 —4.35, that
is, 0.06 kg between the highest and lowest maternal education groups and a difference
of 4.45 —4.26, that is, 0.19 kg between the highest and lowest parity groups. These val-
ues are not effect sizes in units of the standard deviations, so the differences cannot be
directly compared. In ANOVA, effect sizes can be calculated, but the number of groups
and the pattern of dispersion of the mean values across the groups need to be taken
into account.’ However, the absolute differences show that the largest difference is for
gender followed by parity and that there is an almost negligible difference for mater-
nal education. The effect of maternal education is so small that it is unlikely to be a

significant predictor in a multivariate model.

Means
Weight (kg) * gender

Weight (kg)

Gender Mean N Std. deviation
Male 4.5923 275 0.62593
Female 4.1405 275 0.48111
Total 4.3664 550 0.60182

Weight (kg) * maternal education

Weight (kg)

Maternal education Mean N Std. deviation
Year 10 4.3529 198 0.55993
Year 12 4.4109 99 0.69464
Tertiary 4.3596 253 0.59611
Total 4.3664 550 0.60182
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Weight (kg) * parity recoded (three levels)

Weight (kg)

Parity re-coded

(three levels) Mean N Std. deviation
Singleton 4.2589 180 0.61950
One sibling 4.3887 192 0.59258
Two or more siblings 4.4511 178 0.58040
Total 4.3664 550 0.60182

The summary statistics can also be used to verify the cell size and variance ratios. A
summary of this information validates the model and helps to interpret the output from
the three-way ANOVA. The cell size ratio when parity is recoded into three cells has
been found to be adequate. The variance ratio for each factor, for example for parity,
can be calculated by squaring the standard deviations from the Means table. For parity,
the variance ratio is (0.58)2:(0.62)% or 1:1.14.

Next, the distributions of the variables should be checked for normality using the
methods described in Chapter 2 and for one-way ANOVA. The largest difference
between mean values is between genders; therefore, it is important to examine the
distribution for each gender to identify any outlying values or outliers. In fact, the
distribution of each group for each factor should be checked for the presence of any
outlying values or univariate outliers. The SPSS output is not included here but the
analyses should proceed in the knowledge that there are no influential outliers and no
significant deviations from normality for any variable in the model.

5.9 An example of a three-way ANOVA

A three-way ANOVA is defined by three factors; in this example, the factors are gender,
parity and maternal education. The commands for running a three-way ANOVA to test
for the effects of gender (two groups), parity (three groups) and maternal education
(three groups) on weight and to test for a linear trend between weight and levels of
parity are shown in Box 5.6.

Box 5.6 SPSS commands to obtain a three-way ANOVA

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — General Linear Model — Univariate
Univariate
Highlight Weight and click into Dependent Variable
Highlight Gender, Maternal education and Parity recoded (3 levels) and click into
Fixed Factor(s)
Click on Model
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Univariate: Model
Click on Custom
Under Build Term(s): Type, pull down menu and click on Main effects
Highlight gender, education and parityl and click over into Model
Sum of squares: Type III on pull down menu (default)
Tick Include intercept in model (default), click Continue
Univariate
Click on Contrasts
Univariate Contrasts
Factors: Highlight parityl
Change Contrasts: pull down menu, select Polynomial, click Change, click Continue
Univariate
Click on Plots
Univariate: Profile Plots
Highlight gender, click into Horizontal Axis
Highlight parityl, click in Separate Lines, click Add, click Continue
Univariate
Click on Options
Univariate: Options
Highlight gender, education and parityl and click into Display
Means for
Tick Compare main effects
Confidence interval adjustment: LSD (none)(default)
Click Continue
Univariate
Click OK

The results from the three-way ANOVA are shown in the Tests of Between-Subject
Effects table. In the table, the corrected model type III sum of squares is the sum of
squares for the main effects. The first two rows show tests for the corrected model and
intercept which usually are not of interest and can be ignored. The corrected model
sum of squares divided by the corrected total sum of squares, that is, 32.613/198.842
or 0.164, is the variation that can be explained by the model and is the R squared value
shown in the table footnote. This value indicates that gender, maternal education and
parity together explain 0.164 or 16.4% of the variation in weight. This is considerably
higher than the 1.7% explained by parity only in a previous model.

The F values are the within-group mean square divided by the error mean square. The
F values for the three factors show that both gender and parity are significant predic-
tors of weight at 1 month with P<0.0001 and P=0.001, respectively, but that maternal
educational status is not a significant predictor with P=0.373. After combining two of
the parity groups and adjusting for gender differences in the parity groups, the signifi-
cance of parity in predicting weight has increased to P=0.001 compared with P=0.022
obtained from the one-way ANOVA previously conducted.
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Univariate analysis of variance

Tests of Between-Subject Effects

Dependent variable: weight (kg)

Type lll sum

Source of squares df Mean square F Sig.
Corrected model 32.6132 5 6.523 21.346 0.000
Intercept 9012.463 1 9012.463 29,494.120 0.000
GENDER 28.528 1 28.528 93.361 0.000
EDUCATION 0.604 2 0.302 0.989 0.373
PARITY1 4.327 2 2.164 7.080 0.001
Error 166.229 544 0.306

Total 10,684.926 550

Corrected total 198.842 549

@R squared = 0.164 (adjusted R squared = 0.156).

The sums of squares for the model, intercept, factors and the error term when added up
manually equal 9244.764. This is less than the total sum of squares of 10,684.926 shown
in the table, which also includes the sum of squares for all possible interactions between
factors in the model, even though the inclusion of interactions was not requested.

The polynomial linear contrast in the Contrast Results table again shows that there
is a significant linear trend for weight to change with parity at the P<0.0001 level.
Examination of mean weight by parity indicates that there is an increasing linear trend,
with weight increasing as parity increases. The subscript to this Custom Hypothesis Tests
table indicates that the outcome is being assessed over the three parity groups, that is,
the groups labelled 1, 2 and 3. The quadratic term is not relevant because there is no
evidence to suggest that the relationship between weight and parity is curved rather
than linear, and consistent with this, the quadratic contrast is not significant.

Custom Hypothesis Tests

Contrast results (K matrix)

Parity recoded (three levels) Dependent variable
polynomial contrast® " Weight (kg)
Linear Contrast estimate 0.157
Hypothesized value 0
Difference (estimate — hypothesized) 0.157
Std. error 0.042
Sig. 0.000
95% confidence Lower bound 0.074
interval for difference Upper bound 0.240
Quadratic Contrast estimate —0.025
Hypothesized value 0
Difference (estimate — hypothesized) —0.025
Std. error 0.040
Sig. 0.542
95% confidence Lower bound -0.104
interval for difference Upper bound 0.055

@Metric = 1.000, 2.000, 3.000.
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Marginal means

The Estimated Marginal Means table shows mean values adjusted for the other factors
in the model, that is, the predicted mean values. Marginal means that are similar to
the unadjusted mean values provide evidence that the model is robust. If the marginal
means change by a considerable amount after adding an additional factor to the model,
then the added factor is an important confounder or covariate. The significance of
the comparisons in the Pairwise Comparisons table is based on a ¢ value, that is, the
mean difference/SE, for the difference in marginal means without any adjustment for
multiple comparisons.

Estimated Marginal Means

Estimates

Dependent variable: weight (kg)

95% confidence interval

Gender Mean Std. error Lower bound Upper bound
Male 4.603 0.035 4.535 4.672
Female 4.148 0.035 4.079 4.216

Pairwise Comparisons
Dependent variable: weight (kg)

Mean 95% confidence interval
(I) gender (J) gender difference (1 — J) Std. error Sig.2 for difference?
Lower bound Upper bound
Male Female 0.456* 0.047 0.000 0.363 0.548
Female Male —0.456* 0.047 0.000 -0.548 -0.363

Based on estimated marginal means.
*The mean difference is significant at the 0.05 level.
aAdjustment for multiple comparisons: least significant difference (equivalent to no adjustments).

Univariate Tests

Dependent variable: weight (kg)

Sum of squares df Mean square F Sig.
Contrast 28.528 1 28.528 93.361 0.000
Error 166.229 544 0.306

The F tests the effect of gender. This test is based on the linearly independent
pairwise comparisons among the estimated marginal means.

The estimated marginal mean is the mean value of a factor averaged across other levels
of the factors, that is, averaged over all cell means. In this model, the marginal means are
averaged over parity and maternal education. The standard errors are identical in the
two groups because the pooled data for all cases are used to compute a single estimate of
the standard error. For this reason, it is important that the assumptions of equal variance
and similar cell sizes in all groups are met. The marginal mean for males is 4.603 kg
compared to a mean of 4.592 kg in the unadjusted analysis, and for females is 4.148 kg
compared to 4.141 kg in the unadjusted analysis. Thus, the difference between genders
in the adjusted ANOVA analysis is 0.455 kg compared with a difference of 0.452 kg that
can be calculated from the previous Means table.
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Estimated marginal means of weight (kg)

4.80 Parity recoded
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Figure 5.6 Profile plot of marginal means of weight by gender and parity.

Pairwise comparisons for maternal education and parity were also requested although
they have not been included here.

The Profile plot shown in Figure 5.6 indicates that the relative values in mean weights
between groups defined according to parity are the same for both genders. In the plot, if
the lines cross one another this would indicate an interaction between factors. However,
in Figure 5.6, the lines are parallel which indicates that there is no interaction between
gender and parity. Interactions are discussed in more detail in Chapter 7.

5.9.1 Reporting the results of a three-way ANOVA

The results from the three-way ANOVA can be presented as shown in Table 5.7.

The results could be described as follows: ‘Table 5.7 shows the unadjusted mean
weights of babies at 1 month of age by group. The F and P values were derived from
a three-way ANOVA. The cell size was within the assumption of 1:4 for females and
close to this assumption for males and the variance ratio was less than 1:2. There was
a significant difference in weight between males and females and between groups
defined according to parity, but not between groups defined according to maternal
education status. A polynomial contrast indicated that there was a significant linear
trend between weight and levels of parity (P <0.0001). Pairwise contrasts showed that
the difference in marginal means between males and females was 0.46 kg (95% CI 0.36,
0.55, P<0.0001). In addition, the difference in marginal means between singletons and
babies with one sibling was statistically significant at —0.14kg (95% CI —0.25, —0.03,
P=0.015) and the difference between singletons and babies with two or more siblings
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Table 5.7 Mean weights of babies at 1 month of age by gender, parity and
maternal education

Weight (kg)
N Mean (SD) F (df) P value P value trend

Gender
Males 275 4.59 (0.63) 93.36 (1, 544)  <0.0001 -
Females 275 4.14 (0.48)
Parity
Singletons 180 4.26 (0.62) 7.08 (2, 544) 0.001 <0.0001
One sibling 192 4.39 (0.59)

Two or more siblings 178 4.45 (0.58)

Maternal education

Year 10 school 198 4.35 (0.56) 0.99 (2, 544) 0.373 -
Year 12 school 99 4.41 (0.69)
Tertiary education 253 4.36 (0.60)

was statistically significant at —0.22kg (95% CI —0.34, —0.11, P<0.0001). Profile plots
indicated that there was no interaction between gender and parity’.

5.10 Analysis of covariance (ANCOVA)

An ANCOVA is used when the effects of one or more categorical factors (explanatory
variables) on a single continuous variable (outcome or dependent variable) are explored
after adjusting for the effects of one or more continuous variables (covariates). The
ANCOVA analysis first produces a regression of the outcome on the covariate and then
adjusts the cell means for the effect of the covariate. Regression which provides a line of
best fit through the data is discussed in detail in Chapter 7. Adjusting for a covariate has
the effect of reducing the residual (error) term by reducing the amount of noise in the
model. As in regression, it is important that the association between the outcome and
the covariate is linear. In ANCOVA, the residual terms are the distances of each individ-
ual from the regression line and not from the cell mean, thus the residual distances are
smaller than in ANOVA.

The assumptions for ANCOVA are identical to the assumptions for ANOVA but the
additional assumptions shown in Box 5.7 must also be met.

Box 5.7 Additional assumptions for ANCOVA

The following assumptions for ANCOVA must be met in addition to the assumptions
shown in Box 5.1 for ANOVA:

e the measurement of the covariate is reliable

e if there is more than one covariate, there is low collinearity between covariates
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e the association between the covariate and the outcome is linear

e there is homogeneity of the regression, that is, the slopes across the data in each
cell are the same as the slope in the total sample

e there is no interaction between the covariate and the factors

e there are no multivariate outliers

In building the ANCOVA model, the choice of covariates must be made carefully and
should be limited to those that can be measured reliably. Few covariates are measured
without any error but unreliable covariates lead to a loss of statistical power. Covariates
such as age and height can be measured reliably but other covariates such as reported
hours of sleep or time spent exercising may be subject to significant reporting bias.

It is also important to limit the number of covariates to variables that are not signif-
icantly related to one another. As in all multivariate models, multicollinearity, that is
a significant association or correlation between explanatory variables, can result in an
unstable model and unreliable estimates of effect, which can be difficult to interpret.
Ideally, the correlation between covariates (which is discussed in Chapter 7) should be
low with an r value of less than 0.7.

5.10.1 Effect size for ANCOVA

Partial eta squared, which is an estimate of effect size, is the ratio of variance accounted
by a factor to the variance accounted by a factor and its associated error variance. Partial
eta squared is calculated as the sum of squares for the factor divided by the sum of
squares for the factor plus the sum of squares for the error as follows:

Partial n* = SS;/SSy + SSg, where SS;. is the sum of the squares for the error term.

Partial eta squared differs from eta squared (described in Section 5.4), in that, the
latter’s denominator is the sum of the squares total (i.e. total variance). For partial eta
squared, the variances for other factors are partialled out, that is, removed from the total
non-error variation.?

Partial eta squared values for each factor can be directly compared but cannot be added
to indicate how much of the variance of the outcome variable is accounted for by the
explanatory variables. Eta squared values sometimes over-estimate effect because the
values add to over 1.0 when summed and for this reason they are considered a biased
estimate of the true effect size in the population although they are widely used. As for
one-way ANOVA, partial eta squared can be converted to Cohen’s f. In SPSS, partial eta
squared values can be obtained for ANCOVA, factorial ANOVA and repeated measures
ANOVA (see Chapter 6).

Research question

Weight is related to the length of a baby and therefore it makes sense to use ANCOVA
to test whether the significant differences in weight between gender and parity groups
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are maintained after adjusting for length. In testing this, length is added into the model
as a covariate. The SPSS commands for running an ANCOVA model are shown in
Box 5.8. Maternal education has been omitted from this model because the previous
three-way ANOVA showed that this variable does not have a significant relationship
with babies” weights.

Box 5.8 SPSS commands for obtaining an ANCOVA model

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — General Linear Model — Univariate
Univariate
Click on Reset
Highlight Weight and click into Dependent Variable
Highlight Gender and Parity recoded (3 levels) and click into Fixed Factor(s)
Highlight Length, click into Covariate(s)
Click on Model
Univariate: Model
Click on Custom
Under Build Term(s): Type pull down menu and click on Main effects
Highlight gender, parityl and length and click over into Model
Sum of squares: Type I1I on pull down menu (default)
Tick Include intercept in model (default), click Continue
Univariate
Click on Contrasts
Univariate Contrasts
Factors: Highlight parityl
Change Contrast: pull down menu, select Polynomial, click Change, click Continue
Univariate
Click on Options
Univariate: Options
Highlight gender and Parityl, click into Display Means for
Tick Compare main effects
Confidence interval adjustment: using LSD (none)(default)
Tick Estimates of effect size
Click Continue
Univariate
Click OK

The Tests of Between-Subject Effects table shows that by adding a covariate that is
a significant predictor of weight, the explained variation has increased from 16.4% to
55.9% as indicated by the R square value. All three factors in the model are statistically
significant but parity is now less significant at P=0.003 compared to P=0.001 in the
former three-way ANOVA model. These P values, which are adjusted for the covariate,
are more accurate than the P values from the previous one-way and three-way ANOVA
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models. The partial eta squared values are also displayed in the Tests of Between-Subject
Effects table. Length has the largest partial eta squared value and can be calculated using
the figures shown as follows: 79.155 / (79.155 + 87.678) =0.474.

Tests of Between-Subjects Effects

Dependent variable: weight (kg)

Type Il sum Partial eta
Source of squares df Mean square F Sig. squared
Corrected model 111.1642 4 27.791 172.747 0.000 0.559
Intercept 20.805 1 20.805 129.322 0.000 0.192
Gender 8.378 1 8.378 52.074 0.000 0.087
Parity1 1.929 2 0.965 5.996 0.003 0.022
Length 79.155 1 79.155 492.024 0.000 0.474
Error 87.678 545 0.161
Total 10,684.926 550
Corrected total 198.842 549

2R squared = 0.559 (Adjusted R squared = 0.556).

The Contrast Results table shows that the linear trend between weight and parity
remains significant, but slightly less so at P=0.001.

Custom Hypothesis Tests

Contrast results (K matrix)

Parity re-coded (three levels)
Polynomial contrast®

Dependent variable

Weight (kg)
Linear Contrast estimate 0.098
Hypothesized value 0
Difference (estimate — hypothesized) 0.098
Std. error 0.030
Sig. 0.001
95% confidence interval Lower bound 0.039
for difference Upper bound 0.157
Quadratic Contrast estimate -0.035
Hypothesized value 0
Difference (estimate — hypothesized) —0.035
Std. error 0.029
Sig. 0.238
95% confidence interval Lower bound -0.092
For difference Upper bound 0.023

@Metric = 1.000, 2.000, 3.000.

When there is a significant covariate in the model, the marginal means are calculated
with the covariate held at its mean value. Again, the marginal means are predicted
means and not observed means. In this model, the marginal means are calculated at
the mean value of the covariate length, that is, 54.841 as shown in the footnote of the
estimates table. In this situation, the marginal means need to be treated with caution
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because they may not correspond with any situation in real life where the covariate
is held at its mean value and is balanced between groups. In observational studies, the
marginal means from such analyses often have no interpretation apart from group com-
parisons.

Estimated Marginal Means

Estimates

Dependent variable: weight (kg)

95% confidence interval

Gender Mean Std. error Lower bound Upper bound
Male 4.4942 0.025 4.445 4.542
Female 4.2382 0.025 4.190 4.287

aCovariates appearing in the model are evaluated at the following values: Length (cm) = 54.841.

Pairwise Comparisons

Dependent variable: weight (kg)

Mean 95% confidence interval
() gender (J) gender difference (1 - J) Std. error Sig.2 for difference?
Lower bound Upper bound
Male Female 0.255* 0.035 0.000 0.186 0.325
Female Male —0.255* 0.035 0.000 -0.325 -0.186

Based on estimated marginal means.
*The mean difference is significant at the 0.05 level.
aAdjustment for multiple comparisons: least significant difference (equivalent to no adjustments).

Univariate Tests

Dependent variable: weight (kg)

Sum of squares df Mean square F Sig.
Contrast 8.378 1 8.378 52.074 0.000
Error 87.678 545 0.161

The F tests the effect of gender. This test is based on the linearly independent pairwise comparisons
among the estimated marginal means.

5.11 Testing the model assumptions of ANOVA/ANCOVA

It is important to conduct tests to check that the assumptions of an ANOVA or ANCOVA
model have been met. By rerunning the model with different options, statistics can be
obtained to test that the residuals are normally distributed, that there are no influential
multivariate outliers, that the variance is homogeneous and that there are no interac-
tions between the covariate and the factors. Here, the assumptions are being tested only
when the final model is obtained but in practice the assumptions would be tested at
each stage in the model building process. The SPSS commands shown in Box 5.9 can be
used to test the model assumptions.
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Box 5.9 SPSS commands for testing the assumptions of ANOVA/ANCOVA model

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — General Linear Model — Univariate
Univariate
Click on Reset
Highlight Weight and click into Dependent Variable
Highlight Gender and Parity recoded (3 levels) and click into Fixed Factor(s)
Highlight Length, click into Covariate(s)
Click on Model
Univariate: Model
Click on Custom
Under Build Term(s): Type pull down menu and click on Main effects
Highlight gender, parityl and length and click over into Model
Pull down menu, click on All 2-way
Highlight gender, parityl and length, click over into Model
Sum of squares: Type I1I on pull down menu (default)
Tick Include intercept in model (default), click Continue
Univariate
Click on Save
Univariate: Save
Under Predicted Values tick Unstandardized
Under Residuals tick Standardized
Under Diagnostics tick Cook’s distances and Leverage values
Click Continue
Univariate
Click on Options
Univariate Options
Tick on Estimates of effect size, Homogeneity tests, Spread vs level plot
Residual plot, and Lack of fit, click Continue
Univariate
Click OK

5.11.1 Homogeneity of variance

In the Levene’s Test of Equality of Error Variances table, the Levene’s test indicates that
the differences in variances are not significantly different with a P value of 0.085. If
the P value had been significant at < 0.05, the variance ratio (largest variance divided
by the smallest variance) should also be checked to confirm that it is greater than 2.
If the variances are not equal, an option would be to halve the critical P values for
any between-group differences say to P=0.025 instead of P=0.05. This is an arbitrary
decision but would reduce the type I error rate. A less rigorous option would be to select
a post-hoc test that adjusts for unequal variances. Alternatively, regression would be the

preferred method of analysing the data.
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Univariate Analysis of Variance

Levene's test of equality of error variances®

Dependent variable: weight (kg)
F df1 df2 Sig.
1.947 5 544 0.085

Tests the null hypothesis that the error variance of the dependent
variable is equal across groups.

2Design:Intercept + GENDER + PARITY1 + LENGTH + GENDER =
PARITY1 + GENDER # LENGTH + PARITY1  LENGTH

The Sig. column in the Tests of Between-Subject Effects table shows that gender and
length are significant predictors of weight with P<0.0001 and that parity is a marginal
predictor with P=0.057. However, there is a significant interaction between gender and
length at P<0.0001 although there are no significant interactions between gender and
parity (P=0.478) or parity and length (P=0.079).

Tests of Between-Subject Effects

Dependent variable: weight (kg)

Type Ill sum Partial eta
Source of squares df Mean square F Sig. squared
Corrected model 114.7422 9 12.749 81.862 0.000 0.577
Intercept 18.697 1 18.697 120.056 0.000 0.182
GENDER 2.062 1 2.062 13.237 0.000 0.024
PARITY1 0.898 2 0.449 2.884 0.057 0.011
LENGTH 73.731 1 73.731 473.425 0.000 0.467
GENDER * PARITY1 0.230 2 0.115 0.739 0.478 0.003
GENDER * LENGTH 2.434 1 2.434 15.631 0.000 0.028
PARITY1 * LENGTH 0.793 2 0.397 2.547 0.079 0.009
Error 84.099 540 0.156
Total 10,684.926 550
Corrected total 198.842 549

aR squared = 0.577 (adjusted R squared = 0.570).

5.11.2 Interactions

When interactions are present in any multivariate model, the main effects of the vari-
ables involved in the interaction are no longer of interest because it is the interaction
that describes the relationship between the variables and the outcome. However, the
main effects must always be included in the model even though they are no longer of
interest. Inclusion of the interaction between gender and length violates the ANCOVA
model assumption that there is no association between the interaction, the covariate
(length) and the factor (gender). In this case, regression with centred variables would
be the preferred analysis. Alternatively, the ANCOVA could be conducted for males and
females separately although this will reduce the precision around the estimates of effect
simply because the sample size in each model is approximately halved.
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5.11.3 Lack of fit

The lack of fit test divides the total variance into the variance due to the interaction
terms not included in the model (lack of fit) and the variance in the model (pure error).
An F value that is not significant as in this table at P = 0.070 indicates that the model
cannot be improved by adding further interaction terms, which in this case would have
been the three-way interaction term between gender, parity and length. However, any
significant interaction that includes the covariate would violate the assumption of the
model.

Lack of Fit Tests

Dependent variable: weight (kg)

Source Sum of squares df Mean square F Sig. Partial eta squared
Lack of fit 20.907 114 0.183 1.236 0.070 0.249
Pure error 63.192 426 0.148

It is important to examine the variance across the model using a spread-vs-level plot
because the cell sizes in the model are unequal. The spread-vs-level plot shows one point
for each cell. If the variance is not related to the cell means then unequal variances will
not be a problem. However, if there is a relation such as the variance increasing with
the mean of the cell, then unequal variances will bias the F value.

The first spread-vs-level plot shown in Figure 5.7 (see p.153) indicates that the
standard deviation on the y-axis increases with the mean weight of each gender
and parity cell as shown on the x-axis. However, the range in standard deviations is
relatively small, that is, from approximately 0.45-0.65. This ratio of less than 1:2 for
standard deviation, or 1:4 for variance, will not violate the ANOVA assumptions. The
second Spread-vs-Level plot shown in Figure 5.7 shows the same pattern as the first
Spread-vs-Level plot and the spread values of variance on the y axis are the square of
the standard deviation values shown in the first plot (variance = square of standard
deviation).

If the variances are widely unequal, it is sometimes possible to reduce the differences
by transforming the measurement. If there is a linear relation between the variance and
the means of the cells and all the data values are positive, taking the square root or
logarithm of the measurements may be helpful. Transforming variables into units that
are not easy to communicate are last resort methods to avoid violating the assumptions
of ANOVA or ANCOVA. In practice, the use of a different statistical test such as multiple
regression analysis may be preferable because the assumptions are not as restrictive.

5.11.4 Testing residuals: Unbiased and normality

One assumption of ANOVA and ANCOVA is that the residuals are unbiased. This means
that the differences between the observed and predicted values for each participant
are not systematically different from one another. Using the commands in Box 5.9 the
matrix plot shown in Figure 5.8 (see p.154) can be obtained. This plot shows that the
observed and predicted values have a linear relationship with no systematic differences
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Spread vs. level plot of weight (kg)
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Figure 5.7 Spread by standard deviation and variance by level (mean) plot of weight for each
gender and parity group.
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Dependent variable: weight (kg)

Observed

Predicted

Std. Residual

Observed Predicted Std. Residual
Model: Intercept + gender + parity1 + length + length + gender * parity1 + length

Figure 5.8 Matrix plot of observed and predicted values by standardized residuals for weight.

across the range. In addition, the negative and positive residuals balance one another
with a random scatter around a horizontal centre line. If the plot of the observed against
predicted values, as shown in the centre of the top row of Figure 5.8, was funnel shaped
or deviated markedly from the line of identity, which is a diagonal line across the plot,
the assumption of unbiased residuals would be violated.

The assumption that the residuals, that is, the within-group differences, have a nor-
mal distribution can be tested when running the ANOVA model. It is important that
this assumption is satisfied especially if the sample size is relatively small because the
effect of non-normally distributed residuals or of multivariate outliers is to bias the
P values.

When residuals are requested in Save as shown in Box 5.9, the residual for each case
is created as a new variable at the end of the SPSS Data View spreadsheet, with the
variable name of ZRE_1 and variable label of ‘Standardized Residual for weight’. The
distribution of the residuals can be explored in more detail using standard tests of nor-
mality in Analyze — Descriptive Statistics — Explore as shown in Box 2.2, with the new
variable Standardized Residual for weight as the dependent variable.
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Descriptives
Statistic Std. error
Standardized residual for Mean 0.0000 0.04229
95% confidence Lower bound —0.0831
WEIGHT Interval for mean Upper bound 0.0831
5% trimmed mean 0.0014
Median —0.0295
Variance 0.984
Std. deviation 0.99177
Minimum -2.69
Maximum 3.16
Range 5.85
Inter-quartile range 1.32
Skewness 0.069 0.104
Kurtosis 0.178 0.208
Extreme values
Case number  Value
Standardized residual for WEIGHT  Highest 1 256 3.16
2 101 3.08
3 404 3.03
4 32 2.80
5 447 2.73
Lowest 1 252 —-2.69
2 437 —-2.48
3 311 -2.37
4 35 -2.37
5 546 -2.34
Tests of Normality
Kolmogorov-Smirnov? Shapiro-Wilk
Statistic df Sig. Statistic df Sig.
Standardized residual for WEIGHT 0.020 550 0.200* 0.995 550 0.069

*This is a lower bound of the true significance.

aLilliefors significance correction.

The descriptive statistics and the tests of normality show that the standardized resid-
uals are normally distributed with a mean residual of zero and a standard deviation
very close to unity at 0.992, as expected. The histogram and normal Q-Q plot shown in
Figure 5.9 indicate only small deviations from normality in the tails of the distribution.

For an approximately normal distribution, 99% of standardized residuals will by def-
inition fall within three standard deviations of the mean. Therefore, 1% of the sample
is expected to be outside this range. In this sample size of 550 children, it would be
expected that 1% of the sample, that is five children, would have a standardized resid-
ual outside the area that lies between —3 and +3 standard deviations from the mean.
The Extreme Values table shows that residual scores for three children are more than
three standard deviations from the mean and the largest standardized residual is 3.16.
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Figure 5.9 Histogram and plot of standardized residuals by weight.
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Figure 5.10 Distribution of data points and outliers.

The number of outliers is less than would be expected by chance. In addition, all three
outliers have values that are just outside the cut-off range and therefore are not of
concern.

5.11.5 Identifying multivariate outliers: leverage
and discrepancy

To identify multivariate outliers, statistics such as leverage and discrepancy for each data
point can be calculated. Leverage measures how far or remote a data point is from the
remaining data but does not indicate whether the remote data point is on the same line
as other cases or far away from the line. Thus, leverage does not provide information
about the direction of the distance from the other data points.? Discrepancy indicates
whether the remote data point is in line with other data points. Figure 5.10 shows how
remote points or outliers can have a high leverage and/or a high discrepancy.

Cook’s distances are a measure of influence, that is, a product of leverage and discrep-
ancy. Influence measures the change in regression coefficients (see Chapter 7) if the
data point is removed.® A recommended cut-off for detecting influential cases is a Cook’s
distance greater than 4 / (n—k— 1), where 7 is the sample size and & is the number of
explanatory variables in the model. In this example, any distance that is greater than
4/ (550—-3—1), or 0.007, should be investigated. Obviously the larger the sample size
the smaller the Cook’s distance becomes. Therefore in practice, Cook’s distances above
1 should be investigated because these cases are regarded as influential cases or outliers.

A leverage value that is greater than 2(k + 1)/n, where k is the number of explanatory
variables in the model and 7 is the sample size, is of concern. In the working example,
this value would be 2x (3 +1)/550, or 0.015. As with Cook’s distance, this leverage
calculation is also influenced by sample size and the number of explanatory variables
in the model. In practice, leverage values less than 0.2 are acceptable and leverage
values greater than 0.5 need to be investigated. Leverage is also related to Mahalanobis
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distance, which is another technique to identify multivariate outliers when regression
is used (see Chapter 7).°

Cook’s distances and the leverage values obtained from the SPSS commands in Box 5.9
are added to the SPSS Data View spreadsheet with COO_1 and LEV_1 as the variable
names. Cook’s distances can be plotted in a histogram using the SPSS commands shown
in Box 5.10. These commands can be repeated for leverage values.

Box 5.10 SPSS commands to examine potential multivariate outliers

SPSS Commands

Weights.sav — IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Histogram

Histogram
Highlight Cook’s distance for weight, click into Variable
Click OK

The plots shown in Figure 5.11 (see p.159) indicate that there are no multivariate
outliers because there are no Cook’s distances greater than 1 or leverage points greater
than 0.2.

Deciding whether points are problematic will always be context specific and several
factors need to be taken into account including sample size and diagnostic indicators. If
problematic points are detected, it is reasonable to remove them, rerun the model and
decide on an action depending on their influence on the results. Possible solutions are to
recode values to remove their undue influence, to recruit a study sample with a larger
sample size if the sample being tested is small or to limit the generalizability of the model.

5.12 Reporting the results of an ANCOVA

If the model assumptions had all been met, the results of the final ANCOVA model
could be reported in a similar way to reporting the three-way ANOVA. In addition,
it is important to report how any univariate or multivariate outliers were treated in
the analysis and which interactions were tested. The statistics reported should include
information to assure readers that all ANCOVA assumptions had been met and should
include values of partial eta squared or omega squared values to convey the relative
contribution of each factor to the model. Other statistics to report are the total amount
of variation explained and the significance of each factor in the model.

In the present ANCOVA model, because there was a significant interaction between
factors, it is better to analyse the data using regression as described in Chapter 7.

5.13 Notes for critical appraisal

There are many assumptions for ANOVA and ANCOVA and it is important that all
assumptions are tested and met to avoid inaccurate P values. Some of the most impor-
tant questions to ask when critically appraising a journal article in which ANOVA or
ANCOVA is used to analyse the data are shown in Box 5.11.
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Box 5.11 Questions for critical appraisal

The following questions should be asked when appraising published results from

analyses in which ANOVA or ANCOVA has been used:

Have any repeated measures been treated as independent observations?

Is the outcome variable normally distributed?

Does each cell have an adequate number of participants?

Are the variances between cells fairly similar?

Are the residuals normally distributed?

Are there any outliers that would tend to inflate or reduce differences between

groups or that would distort the model and the standard errors, and therefore the

P values?

e Does the model include any unreliable covariates or covariates that do not have
a linear relationship with the outcome?

e If there is an increase in means across the range of a factor, has a trend test been
used?

e Have tests of homogeneity and collinearity been included?

e Would regression have been a more appropriate statistical test to use?

e Do the P values reflect the differences between cell means and the group sizes?
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CHAPTER 6
Analyses of longitudinal data

All that really belongs to us is time; even he who has nothing else has that.
BALTASAR GRACIAN (1601 -1658)

Objectives

The objectives of the chapter are to explain how to:

e decide which type of model to use to analyze data collected in a longitudinal study where
repeated or multiple measurements on participants are obtained

e obtain and interpret the results of repeated measures ANOVA and linear mixed models

e check that the assumptions for repeated measures ANOVA and linear mixed models are met

e report results in a graph or a table

e critically appraise analyses of longitudinal data reported in the literature

In longitudinal studies, the outcome is measured repeatedly over time for each
participant. Time is commonly measured as weeks, months or years but may be
represented by other estimates such as age or school grade. For example, to assess the
efficacy of a treatment for the relief of asthma, a participant’s forced expiratory volume
(FEV) is measured at weekly intervals for 1 month. When the outcome variable is
continuous, two of the statistical methods that can be used to investigate changes in
outcome and trends over time, both within and between study groups are:

i. a general linear model using the repeated measures option in SPSS which provides
both a multivariate analysis of variance (MANOVA) and a univariate repeated mea-
sures analysis of variance (ANOVA); or

ii. a linear mixed model

The choice of method that is most suited for modelling a particular longitudinal data set
requires careful consideration because different models may produce different estimates,
standard errors and associated P values for the same data set.

6.1 Study design

Repeated measures ANOVA and linear mixed models are ideal for analyzing data
from cohort or experimental studies which have a prospective or longitudinal design.

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/barton/medicalstatistics2e

161



http://www.wiley.com/go/barton/medicalstatistics2e

162 Chapter 6

Cohort studies are often used to compare the health outcomes of groups of people
whose exposures are different and as such have the advantage that they can be used
to demonstrate possible causation in that the exposure can be measured before the
outcome develops. For analyzing data from cohort studies, models which offer the
ability to compare differences at time points and/or between-exposure groups are
ideal. Repeated measures ANOVA and linear mixed models can also be used to analyze
data from randomized controlled trials and other experimental and non-experimental
studies in which data of outcomes in different treatment groups is collected at baseline
and at ongoing time points typically following a treatment intervention.

6.2 Sample size and power

To obtain accurate estimates of effect and unbiased P values in a model, it is important
that the sample size, cell size and accuracy of the measurements are adequate to support
the model. Estimates of the sample size required to support longitudinal data analyses
vary. In general, the sample size should be calculated on the basis of the number of vari-
ables to be tested in the model including the outcome (dependent) variable. A rough rule
of thumb for the multivariate approach (i.e. MANOVA) is that the sample size should be
greater than a + 10 participants, where a is the number of levels for repeated measures.!
However, larger numbers are preferable in order to increase precision by reducing the
size of the standard errors. The number of participants needs to be much larger than
the number of repeat measures because when the number of measurements exceeds
the number of participants, the model used to analyze the data will have low statistical
power. Calculation of the sample size required for repeated measures and linear mixed
models can be complex and there are a few computing packages available (see Useful
Websites). However, the calculation of power and sample size is not available for all
types of mixed models. Generally the information that is required to calculate sample
size for repeated measures or longitudinal analysis is an estimated effect size, the num-
ber of repeated measures and an estimate of the correlations among pairs of the repeated
measures.

Cell size, that is the number of participants in each group of a fixed factor or in each
sub-group if there are two or more factors, is an important consideration. If the cell size
ratio between the smallest and largest cells is larger than 1:4, the ANOVA assumptions
will not be met. Bias in estimates of effect from ANOVA models will increase as the cell
imbalance increases but this not an important consideration in linear mixed models. In
ANOVA, small cells are problematic because the mean and variance cannot be estimated
accurately for the cell. Groups with small numbers may need to be combined with other
groups if the theory is logical. If combining cells is not logical, groups with small cell sizes
can be omitted from the model, although this may reduce the generalizability of the
results. When the sample size is small, alternative outcome measurements such as area
under the curve or average values should be considered rather than using a repeated
measures or longitudinal analysis.?

The method used to develop a multivariate model can have an important influence
on the results. Including all potentially predictive variables into a single model may
introduce multicollinearity and may result in a number of small or empty cells and
therefore reduce the statistical power. A sequential approach in which variables are
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added into the model one at a time in order of clinical importance or univariate evidence
of effect conserves power because variables can be removed from the model if they are
not significant predictors. At each step, the model can be examined for fit and signs
of mulitcollinearity which can provide important insights into relationships between
explanatory variables and developmental pathways.

Any degree of error in measuring a variable is likely to increase variance and reduce
statistical power. On the other hand, variables that explain a significant proportion of
the variance and improve the fit of a model increase statistical power. There is obviously
a trade-off between including all variables that improve the fit of a model and reducing
the number of variables in order to maximize cell sizes and the precision that can be
gained from the sample size.

6.3 Covariates

Covariates included in repeated measures or linear mixed models may be fixed covari-
ates or time varying covariates. For example, when weight increase of infants is mod-
elled, body length is an important covariate. In longitudinal data sets in which the
covariate is measured at each time point the measurements may be highly correlated,
and a time varying covariate such as age will also increase with time. In repeated mea-
sures ANOVA, time varying covariates can be included or the covariate measured at a
single time point, usually the first time point, may be included. In linear mixed models,
if a covariate such as body length is included for each time point, the default option
is that the mean value of the covariate across the model will be used. Repeated mea-
sures ANOVA and mixed models will give different results when a covariate is included
because the covariate for a single time point is used in repeated measures ANOVA,
whereas the mean covariate value across the time points for each participant is used
in a linear mixed model.

6.4 Assumptions of repeated measures ANOVA and mixed
models

The assumptions that must be met to use both repeated measures ANOVA and a linear
mixed model are shown in Box 6.1.

Box 6.1 Assumptions for using repeated measures ANOVA and linear mixed
models

e the participants must be independent, that is, each participant is in only one level
of each group and does not influence another participant’s score;

e the factors must be independent, that is, fixed factors and covariates must not be
highly related to one another;

e the outcome variable is normally distributed within each cell at each time point;

e the residuals across the model are normally distributed;

e there are no influential univariate or multivariate outliers
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Additional assumptions for univariate repeated measures ANOVA

e there is sphericity across the model, that is, the variance of pairs of measures is
constant
e there is homogeneity, that is, the variances in the groups are equal.

The assumptions of normality should always be tested although both repeated mea-
sures ANOVA and mixed models are fairly robust to some degree of non-normality as
long as there are no influential outliers. If the assumption of normality of residuals is
not met, the direction of bias is not always clear. This may not be too important if the P
value is large and clearly non-significant or if the P value is small and clearly significant.
However, bias is a major problem if the P value is close to the margin of significance or
the sample size is small.

Outliers can have an important effect on the perceived differences between groups
by making the groups seem more different or more alike. In both repeated measures
ANOVA and linear mixed models, the residuals can be saved to the spreadsheet to test
for normality of distribution and to identify outliers with a high residual value. The
direction of bias caused by outliers is usually to artificially skew the mean value of a
group in the direction of the outlier. Influential outliers can be recoded with a nominal
value to remove their influence — a value that is commonly used is one that is marginally
outside the range of the remainder of the data.> Alternatively, outliers can be omitted
from the model although this may have implications for the generalizability of the results
(see Section 2.5).

6.5 Repeated measures analysis of variance

Repeated measures ANOVA is a traditional method of modelling longitudinal data based
on methods for factorial ANOVA and adapted for repeat measures. An advantage of this
method is that the results are readily understood and easily communicated. However,
a disadvantage is that no allowance is made for measurements taken closer together in
time to be more correlated than measurements taken further apart. In practice, repeated
measures ANOVA is most suited to data sets in which the outcome measurement has
an equal variance at all time points and in which pairs of measurements from each
participant are equally correlated regardless of the time interval between them.

In common with one- and two-way ANOVA, the variation in a repeated measures
ANOVA model is partitioned into ‘between-subject’ and ‘within-subject” factors (see
Section 5.2.2). The within-subject factor, which is related to time, is generally of most
interest as the outcome variable. However, differences in between-subject fixed fac-
tors such as gender or treatment group can also be tested. When a repeated measure
ANOVA is requested in SPSS, the output includes both multivariate results (MANOVA)
and univariate results (ANOVA). However, sometimes the results of the univariate and
multivariate repeated measures tests will disagree. The multivariate test statistics are
based on transformed variables, not the original variables. In addition, the presence of
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outliers, sample size and violations of the test assumption may influence the test results.
If sphericity is present then the univariate test is more powerful .4

6.5.1 Assumptions of sphericity and homogeneity

When using repeated measures ANOVA, there is a core assumption of sphericity across
the model. Sphericity requires that the variances of the differences for all pairs of
repeated measures are constant. Sphericity should be checked for when there are three
or more repeated measures conditions. The assumption of sphericity can be tested using
Mauchly’s test which gives an estimate of epsilon (e€), a measure of sphericity. This
statistic has a value of 1 when sphericity is met and values less than 1 indicate further
deviation from sphericity. However, the Mauchly’s test is influenced by the sample
size, in that, in small samples this test often fails to detect departures from sphericity
and in large samples over detects sphericity.” If the P value is statistically significant
(P<0.05), this provides evidence that the variances of the differences are not equal
and the assumption of sphericity is not met.

Another assumption is that the variances of the repeated measures are the same in
each group, that is, there is homogeneity. This assumption is tested using Box’s M which
is very sensitive to non-normality. For this test, a P value larger than 0.001 provides
evidence of homogeneity.

The F test of the univariate model is robust to some violations of the assumption of
normality of residuals but not to the sphericity assumption. When sphericity is not met,
the Fvalue is inflated and the P value is biased towards significance. In this situation, the
estimate of sphericity is adjusted using the Greenhouse-Geisser or the less conservative
Huynh-Feldt methods. With these methods, the degrees of freedom are multiplied by
the estimate of sphericity, consequently the degrees of freedom are decreased, making
the Fratio more conservative. It is recommended that when the epsilon value is greater
than 0.75 the Huynh-Feldt estimate is used and when the value is less than 0.75 the
Greenhouse-Geisser is used.’ If the F test is not significant then no adjustment is needed.
Data that violate sphericity can be analyzed using MANOVA since the assumption of
sphericity is not required for multivariate repeated measures.

6.5.2 Multivariate test

In SPSS, the repeated measures ANOVA commands automatically provide a MANOVA
test. In MANOVA, the outcome variables are transformed into linear combinations of
the differences between the repeated measures and the transformed scores are then
weighted to form contrasts. Thus, the original outcome values across time are trans-
formed to contrast values and the model is applied only to these variables. This method
of transtorming the data bypasses the problem of dealing with covariance between time
points rather than addressing it directly as in a linear mixed model.

An advantage of MANOVA is that the test of sphericity does not need to be met. Thus,
if the test of sphericity is violated, the P value obtained from the MANOVA can be used,
but only if the results can be appropriately interpreted. A disadvantage of MANOVA is
that the order of the data points has no influence on the results and therefore trends
over time cannot be addressed. Using MANOVA may not be congruent with the study
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aims and, in some situations MANOVA is too general and may lack power to detect
group differences when they exist (i.e. there is a high probability of type II error).

6.5.3 Univariate test

Univariate ANOVA is the test most commonly used for repeated measures data sets.
When repeated measures ANOVA is requested in SPSS, interactions between the fixed
factors and time (e.g. group X time interactions) are automatically included in the uni-
variate tests although no centering is performed to exclude the effects of multicollinear-
ity between the interaction and its derivatives. Interactions that are statistically signifi-
cant indicate that the pattern of change over time is different between groups.

6.5.4 Missing values

Missing values limit the use of repeated measures ANOVA because participants with
one or more missing values are excluded from the analysis. Thus missing values reduce
the effective sample size, compromise statistical power and affect the generalizability
of the results. If the number of missing values is small and the values are randomly
missing, they can be replaced with a nominal value such as a mean value or the last
value carried forward for each participant. However, as discussed earlier (see Section
1.14), these methods for replacing missing values may lead to biased results and other
techniques should be considered.®

6.5.5 Data layout

In SPSS, for repeated measures ANOVA the data file needs to be in the ‘wide’ format with
only one row per participant and each column is a repeated response for that participant
organized along the same row.

6.5.6 Group comparisons

Several types of contrasts, that is, group comparisons can be undertaken in repeated
measures ANOVA. The most appropriate test should be decided a priori. In SPSS, the
following tests of contrasts are available:

e Repeated, which tests the means at adjacent time points against one another, for
example, time 1 vs time 2, time 2 vs time 3 and so on.

e Difference, which tests the mean at each time point against the previous time point,
for example, time 2 vs 1, time 3 vs 2 and so on.

e Simple, which tests each time point against the first or final time point, for example,
time 1 vs the last time point, time 2 vs the last time point and so on.

e Helmert, which tests each time point against the mean of all later time points. This
test is appropriate to test for an increase in values followed by a plateau. The time
point at which the increase is no longer significant indicates where the plateau
begins.
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e Polynomial, which tests for a trend across the time points. Tests of significance for a
linear trend through the data and for orders such as quadratic effects are included.

e Deviation, which tests each time point against the mean of all time points, for example,
time 1 vs mean, time 2 vs mean and so on.

For pairwise post hoc comparisons, the Tukey’s test is powerful when sphericity is met.
When sphericity is violated, the Bonferroni is recommended since it maintains the type
I error rate.”

6.5.7 Advantages and disadvantages of repeated measures
ANOVA

The advantages of using repeated measures ANOVA are that:

summary means plots can be requested to facilitate the interpretation of P values;
tests of homogeneity and sphericity are automatically reported;

an estimate of the effect size (eta-squared) can be requested;

several types of contrasts are available to interpret between-group differences.

The disadvantages of repeated measures ANOVA analyses are that:

e participants with missing values for any time point are omitted;

e they only estimate and compare the group means, and do not provide information
about individual growth;

e the correlation between repeated measures is not modelled;

e no allowance is made for the variance to change over time;

e the results become unreliable as the number of repeat measures relative to the num-
ber of participants increases.

Research question

The data set ‘BMD_study_wide_file’ contains the data from 60 elderly people who were
enrolled in a randomized controlled trial in which the intervention group underwent a
4 week programme to increase bone density and the control group received a placebo
treatment. Bone mineral density (BMD) was measured at three time points (baseline, 6
months and 1 year).

Question: Was the intervention effective in increasing BMD at 6 months and
were any changes sustained at 1 year?

Null hypothesis:  That there was no difference in BMD between the intervention and
control groups at any time point.

Variables: Outcome variable = BMD measured over time (continuous);
Explanatory variable = group (categorical)

The SPSS command sequence Analyze — Descriptive Statistics — Frequencies can be used
to ascertain cell sizes.
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Group
Cumulative
Frequency Per cent Valid per cent per cent
Valid Control 28 46.7 46.7 46.7
Intervention 32 53.3 53.3 100.0

Total 60 100.0 100.0

The number of people in the two groups is almost equal at 28 and 32 so the cell ratio
of approximately 1 does not violate the model assumptions. Boxplots using the SPSS
command sequence Graphs — Legacy Dialogs — Boxplot — Simple can be used to examine
how BMD is related to group at each time point to gain a working knowledge of the
data. The boxplots in Figure 6.1 show that the median BMD was slightly lower in the
intervention group than in the control group at baseline but the two groups have a
similar range of values as would be expected in a randomized trial. At the 6-month and
1-year’s follow-up, the median BMD is higher in the intervention group. There are no
extreme univariate outliers in the data. The two outlying values with ID numbers of
52 and 49 have BMD values that are approximately 2.5 standard deviations from the
mean and therefore are not of concern (see Section 2.5). Outlying values with common
IDs across time periods such as ID number 52 suggest valid cases rather than recording
errors. The outlying values are few and are not extreme and therefore the values are
left unchanged in the analyses.

The command sequence to obtain repeated measures ANOVA is shown in Box 6.2.
These commands require that the data set is structured in the ‘wide’ format.

Box 6.2 SPSS commands to obtain repeated measures ANOVA

SPSS Commands

BMD_study_wide file — IBM SPSS Statistics Data Editor
Analyze — General Linear Model — Repeated Measures
Repeated Measures Define Factor(s)
Within-Subject Factor Name — change ‘factorl’ to ‘Time’
Number of Levels — enter ‘3’
Click Add
Click Define
Repeated Measures
Highlight BMD.1, BMD.2 and BMD.3 and click into Within-Subjects
Variables (Time) box
Highlight Group and click into Between-Subjects Factor(s) box
Click on Plots
Repeated Measures: Profile Plots
Highlight Time, click into Horizontal Axis
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Highlight Group, click into Separate Lines, click Add
Click Continue
Repeated Measures
Click on Save
Repeated Measures: Save
Select Standardized for Residuals
Click Continue
Repeated Measures
Click on Options
Repeated Measures: Options
Highlight Group, Time and Group *Time and click into ‘Display Means for’
Tick ‘Compare main effects’
Confidence interval adjustment: Bonferroni
Under Display, tick ‘Estimates of effect size” and ‘Homogeneity tests’
Click Continue
Repeated Measures
Click OK

The Between-Subjects Factors box shown below indicates that only 21 controls and
26 intervention participants have been included in the analysis. The remaining 13 par-
ticipants have missing data and have been omitted. The Box’s M test is significant at
P=0.002 indicating an unequal variance across groups in the model however the P value
is not <0.001 and therefore the deviation from homogeneity is not a major concern. It
can be seen in Figure 6.1 that the whiskers are larger in the intervention group than in
the control group and the median is higher, so a significant P value is expected.

Between-Subjects Factors

Value label N
Group 1 Control 21
2 Intervention 26

Box's Test of Equality of Covariance Matrices®

Box's M 22.186
F 3.424
df1 6
daf2 12925.711
Sig. 0.002

Tests the null hypothesis that the observed
covariance matrices of the dependent variables are
equal across groups.

2Design: Intercept + Group.

Within-Subjects Design: time.
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Figure 6.1 Boxplots of BMD.
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Figure 6.1 (continued)
Multivariate Tests®
Hypothesis Error Partial Eta-
Effect Value F df df Sig. Squared
Time Pillai’s trace 0.490 21.137° 2.000 44.000 0.000 0.490
Wilk’s 0.510 21.137° 2.000 44.000 0.000 0.490
lambda
Hotelling’s 0.961 21.137° 2.000 44.000 0.000 0.490
trace
Roy’s largest 0.961 21.137b 2.000 44.000 0.000 0.490
root
Time * Pillai’s trace 0.433 16.823b 2.000 44.000 0.000 0.433
Group
Wilk’s 0.567 16.823 2.000 44.000 0.000 0.433
lambda
Hotelling’s 0.765 16.823b 2.000 44.000 0.000 0.433
trace
Roy’s largest 0.765 16.823P 2.000 44.000 0.000 0.433
root

Within-Subjects Design: Time.
2Design: Intercept + Group.
PExact statistic.

The Multivariate Tests table shows four similar multivariate tests of the within-subjects
effect, which is a form of MANOVA. In this example, all four tests have the same level
of significance. Generally, the Wilk’s lambda is reported. The values for Wilk’s lambda
indicate a significant effect of time on BMD (P < 0.0001) and also a significant interaction
between time and group (P<0.0001). A significant interaction indicates that effect of
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one variable depends on the level of another variable. That is, the effect of time on
BMD depends upon the group. As an estimate of effect size the multivariate partial
eta-squared was requested, which is the ratio of variance accounted by a factor to the
variance accounted by a factor and its associated error. Partial eta-squared differs from
eta-squared (described in Section 5.4), in that, the latter’s denominator is the sum of the
squares total (i.e. total variance). In this, it is important to note that partial eta-squared
cannot be interpreted as explaining or accounting for the total variance. However, both
eta-squared and partial eta-squared can be biased and have a number of limitations.®

The Mauchly’s test of sphericity has P=0.009 which is just less than 0.01 and
indicates unequal variance of the differences between the two groups. However, the
Greenhouse-Geisser and Huynh—Feldt epsilon values are high and greater than 0.75.
Therefore, the Huynh-Feldt estimates shown in the Tests of Within-Subjects Effects
table are the appropriate statistics to report for this model.

Mauchly’s Test of Sphericity®
Measure:MEASURE_1

Epsilon®
Within-subjects Mauchly’s Approx. Greenhouse- Huynh- Lower
effect w chi-square df Sig. Geisser Feldt bound
Time 0.809 9.320 2 0.009 0.840 0.888 0.500

Tests the null hypothesis that the error covariance matrix of the orthonormalized transformed
dependent variables is proportional to an identity matrix.

Within-subjects design: time.

2May be used to adjust the degrees of freedom for the averaged tests of significance. Corrected tests
are displayed in the tests of Within-Subjects Effects table.

bDesign: Intercept + Group.

Tests of Within-Subjects Effects
Measure:MEASURE_1

Type Ill sum Mean Partial

Source of squares df square F Sig. eta-squared
Time Sphericity 0.024 2 0.012 28.237 0.000 0.386

assumed

Greenhouse- 0.024 1.679 0.015 28.237 0.000 0.386

Geisser

Huynh-Feldt 0.024 1.776 0.014 28.237 0.000 0.386

Lower bound 0.024 1.000 0.024 28.237 0.000 0.386
Time * Sphericity 0.018 2 0.009 21.198 0.000 0.320
Group assumed

Greenhouse- 0.018 1.679 0.011 21.198 0.000 0.320

Geisser

Huynh-Feldt 0.018 1.776 0.010 21.198 0.000 0.320

Lower bound 0.018 1.000 0.018 21.198 0.000 0.320
Error Sphericity 0.039 90 0.000
(Time) assumed

Greenhouse- 0.039 75.574 0.001

Geisser

Huynh-Feldt 0.039 79.916 0.000

Lower bound 0.039 45.000 0.001
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In the univariate Tests of Within-Subject Effects table, it can be seen that the
Huynh-Feldt correction has reduced the degrees of freedom by multiplying them by
epsilon (e.g. time effect 2x0.888=1.776). With the adjustment, there is a significant
effect of time on BMD (P<0.0001) and a significant interaction between time and
group (P<0.0001). Since the interaction is significant, interpreting the main effects
will not lead to an accurate understanding of the results. In general, a significant main
effect should not be interpreted when there is a significant interaction that involves
that main effect.

The Tests of Within-Subjects Contrasts table shows that there is a significant linear
trend for BMD and there is a significant linear trend for the time by group interaction
(P<0.0001). Although the P values for the quadratic trends are also significant, the
partial eta-squared is lower indicating that the linear trend is a better fit. The results of
the trend contrasts should be interpreted with caution and the plots of the data should
also be examined.

Tests of Within-Subjects Contrasts
Measure:MEASURE_1

Type lll sum Mean Partial

Source Time of squares df square F Sig. eta-squared
Time Linear 0.015 1 0.015 39.619 0.000 0.468

Quadratic 0.009 1 0.009 19.259 0.000 0.300
Time * Linear 0.013 1 0.013 33.248 0.000 0.425
group

Quadratic 0.006 1 0.006 11.693 0.001 0.206
Error Linear 0.017 45 0.000
(time)

Quadratic 0.022 45 0.000

The Levene’s test which can be used to check for homogeneity of variance, shows that
the error variances pass the test of equality at baseline and 1 year in that the P val-
ues are not significant. However, the error variances are not equal at the 6 month time
point. While ANOVA is relatively robust to non-normality, it is less robust to violations
of homogeneity. This is a violation of the model assumptions and the results should be
interpreted with caution. In reporting the results of the model, the violation of homo-
geneity should be reported. Alternatively, transformation of all data can be undertaken
to stabilize the variances between the groups.

Levene's Test of Equality of Error Variances®

F df1 df2 Sig.
BMD_baseline 1.837 1 45 0.182
BMD_6 months 7.248 1 45 0.010
BMD_1 year 3.052 1 45 0.087

Tests the null hypothesis that the error variance of the dependent variable is equal
across groups.

2Design: intercept +group.

Within-Subjects Design: time.
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The repeated measures Tests of Between-Subject ANOVA table shows that over time
(i.e. averaged across all time points) there was a significant difference in BMD between
the treatment groups with P=0.033.

Tests of Between-Subjects Effects

Measure:MEASURE_1
Transformed variable: average

Type Ill sum Mean Partial
Source of squares df square F Sig. eta-squared
Intercept 102.935 1 102.935 16781.865 0.000 0.997
Group 0.030 1 0.030 4.854 0.033 0.097
Error 0.276 45 0.006

The SPSS commands for repeated measures ANOVA provides comparisons of the esti-
mated marginal means of each group, at each time point and at the group by time
interaction. These means are predicted means, not observed means, and are based on
the specified linear model. The estimated marginal means below are for the main effect
of group, with pairwise comparisons corrected for multiple comparisons using the Bon-
ferroni adjustment. The Pairwise Comparisons table shows that there is a significant
difference in overall BMD between the control and intervention group (P=0.033), with
the mean estimates indicating that the intervention group has a higher BMD than the
control group. The Univariate Tests is an ANOVA test for the comparison and is similar
to the result from the pairwise comparisons (P=0.033) since there are only two groups.

Estimated marginal means

1. Group

Estimates

Measure: MEASURE_1

95% Confidence interval

Group Mean Std. error Lower bound Upper bound
Control 0.845 0.010 0.825 0.865
Intervention 0.874 0.009 0.856 0.892

Pairwise Comparisons

Measure: MEASURE_1

Mean 95% Confidence interval for difference?
difference
() Group (J) Group -7 Std. error  Sig.® Lower bound Upper bound
Control Intervention  —0.029° 0.013 0.033 —-0.056 —-.0003
Intervention Control 0.029 0.013 0.033 0.003 0.056

Based on estimated marginal means.
2Adjustment for multiple comparisons: Bonferroni.
bThe mean difference is significant at the 0.05 level.
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Univariate Tests
Measure: MEASURE_1

Sum of squares df Mean square F Sig. Partial eta-squared
Contrast 0.010 1 0.010 4.854 0.033 0.097
Error 0.092 45 0.002

The F tests the effect of Group. This test is based on the linearly independent pairwise comparisons
among the estimated marginal means.

The estimated marginal means below are for the main effect of time, that is, the lev-
els of BMD at each time point which are averaged across the groups. The Pairwise
Comparisons table shows there was a significant difference in BMD between Time 1
(baseline) and Time 2 (6 months) (P < 0.0001); and Time 1 (baseline) and Time 3 (1 year)
(P<0.0001). There was no significant difference between Time 2 and Time 3 (P=0.63).
The Multivariate Test also indicates that there is a significant time effect but does not
provide information about which time points are different from one another.

2. Time

Estimates

Measure: MEASURE_1

95% Confidence interval

Time Mean Std. error Lower bound Upper bound
1 0.841 0.006 0.828 0.853
2 0.871 0.008 0.854 0.888
3 0.866 0.007 0.853 0.880

Pairwise Comparisons

Measure: MEASURE_1

95% Confidence interval for difference®

Mean difference

() Time (J)Time ((B59)] Std. error  Sig.® Lower bound Upper bound
1 2 -0.030° 0.005 0.000 -0.043 -0.017
3 -0.026° 0.004 0.000 -0.036 -0.015
2 1 0.0302 0.005 0.000 0.017 0.043
3 0.005 0.004 0.626 -0.004 0.014
3 1 0.0262 0.004 0.000 0.015 0.036
2 —-0.005 0.004 0.626 -0.014 0.004

Based on estimated marginal means.
2The mean difference is significant at the 0.05 level.
b Adjustment for multiple comparisons: Bonferroni.

The Group by Time table indicates the estimated marginal means of each group at
each time point.



176  Chapter 6

Multivariate Tests

Value F Hypothesis df Error df Sig. Partial eta-squared
Pillai’s trace 0.490 21.1372 2.000 44.000 0.000 0.490
Wilk’s lambda 0.510 21.1372 2.000 44.000 0.000 0.490
Hotelling's trace 0.961 21.1372 2.000 44.000 0.000 0.490
Roy’s largest root 0.961 21.1372 2.000 44.000 0.000 0.490

Each F tests the multivariate effect of Time. These tests are based on the linearly independent pairwise
comparisons among the estimated marginal means.
aExact statistic.

3. Group * Time

Measure: MEASURE_1

95% Confidence interval

Group Time Mean Std. error Lower bound Upper bound
Control 1 0.842 0.009 0.824 0.861

2 0.847 0.012 0.822 0.872

3 0.844 0.010 0.825 0.864
Intervention 1 0.839 0.008 0.823 0.856

2 0.895 0.011 0.872 0.917

3 0.888 0.009 0.870 0.906

To interpret the significant interaction between time and group, simple effects tests (or
simple main effects) are conducted. This test examines the main effect of one explana-
tory variable at a fixed level of the other explanatory variable (as discussed in Section
5.8.1). A simple effects test can be used to examine the effect of group at each level of
time, that is, whether there is a difference between the groups at each time point. This
comparison is usually of most interest. Simple effects analysis in SPSS cannot be tested
directly in SPSS and command syntax has to be used. This analysis can be obtained by
using the ‘Paste’ option in the SPSS dialog box to save the syntax from the SPSS com-
mand sequence shown in Box 6.2 and then replacing the EMMEANS lines with the
following:

JEMMEANS = TABLES (Group*Time) COMPARE (Group)

When the SPSS syntax is run (by clicking on the green arrow), the SPSS output will
include the Pairwise Comparisons table shown below which compares group differences
within each time point, as well as the Univariate Tests which report the F values for
the tests of simple effects. Another simple effects test is to compare time points within
each group. This can be obtained by the using following syntax line (SPSS output not
included):

/EMMEANS =TABLES(Group*Time) COMPARE (Time).
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Estimated marginal means

Group * time

Estimates

Measure:MEASURE_1

95% Confidence interval

Group Time Mean Std. error Lower bound Upper bound
Control 1 0.842 0.009 0.824 0.861

2 0.847 0.012 0.822 0.872

3 0.844 0.010 0.825 0.864
Intervention 1 0.839 0.008 0.823 0.856

2 0.894 0.011 0.872 0.917

3 0.888 0.009 0.870 0.906

Pairwise Comparisons
Measure: MEASURE_1

95% Confidence Interval
for Difference®

o (1)) Mean difference
Time Group Group (1-)) Std. error  Sig.? Lower bound Upper bound
1 Control Intervention 0.003 0.012 0.796 —-0.021 0.028
Intervention Control —0.003 0.012 0.796 -0.028 0.021
2 Control Intervention —0.047° 0.017 0.007 —0.081 -0.014
Intervention Control 0.047° 0.017 0.007 0.014 0.081
3 Control Intervention —0.044b 0.013 0.002 -0.070 -0.017
Intervention Control 0.044b 0.013 0.002 0.017 0.070

Based on estimated marginal means.
2Adjustment for multiple comparisons: least significant difference (equivalent to no adjustments).
bThe mean difference is significant at the 0.05 level.

Univariate Tests

Measure: MEASURE_1

Time Sum of squares df Mean square F Sig. Partial eta-squared
1 Contrast 0.000 1 0.000 0.068 0.796 0.001
Error 0.078 45 0.002
2 Contrast 0.026 1 0.026 8.069 0.007 0.152
Error 0.145 45 0.003
3 Contrast 0.022 1 0.022 10.799 0.002 0.194
Error 0.092 45 0.002

Each F tests the simple effects of Group within each level combination of the other effects shown. These
tests are based on the linearly independent pairwise comparisons among the estimated marginal means.
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In the Pairwise Comparisons table, the mean differences are computed from the
marginal (predicted) means and provide a guide to relative ditferences between the
groups at each time point. This table shows that BMD was not significantly different
between groups at baseline (time 1) with a small mean difference of 0.003 and
P=0.796. In a randomized trial such as this, baseline values are expected to be balanced
between the groups. However, the mean BMD is significantly different between groups
at 6 months post-intervention (time 2) with P=0.007 indicating treatment efficacy
and the difference is maintained at 1 year (time 3) with P=0.002. This P value is
slightly more significant than at 6 months even though the mean difference is slightly
smaller because the standard error is smaller. In this table, no adjustment has been
made for multiple comparisons. A multiple comparisons procedure such as the Holm
(a modified Bonferroni procedure), which is uniformly better and more powerful than
the Bonferroni can be used.’

Examination of the P values for the simple effects shown in the Univariate Tests
table indicates that at baseline (time 1) there was no significant difference between
the intervention and control group. There is a significant difference between the groups
at post-intervention and 1 year follow-up. In this example, with only two groups in
a factor and only one factor, the P values shown in the Univariate Tests table are the
same as shown in the Pairwise Comparisons table (see Section 5.2.2). The F values and
corresponding P values are used to report the simple effects tests.

The profile plot (see Figure 6.2) obtained from the SPSS commands in Box 6.2 can
also be used to interpret the data. Figure 6.2 shows the marginal means at each time
point and indicates balanced groups at time 1, little change in BMD in the control group
over time and an increase in BMD in the intervention group which was sustained to one
year follow-up. The profile plot shows that the lines cross and are not parallel indicating
an interaction.

The residuals are saved to the spreadsheet with a separate residual for each time point.
The distribution of the residuals for all three time points (denoted as ZRE_1, ZRE_2
and ZRE_3 in the SPSS spreadsheet) should be checked for normality to ensure that
the model is valid. The residuals can be plotted using the command sequence Graphs
— Legacy Dialogs — Histogram. The residuals for BMD at time 1 are shown in Figure 6.3.
The residuals are approximately normally distributed conforming to a bell-shaped curve
and importantly with no data points more than 3 standard deviations. The residuals at
time points 2 and 3 are similar (histograms not shown).

Reporting the results of repeated measures ANOVA

There are many mean values and P values that can be reported from a repeated measures
ANOVA analysis. In this example, the research question was to explore whether there
were any differences between the control and intervention groups at the three time
points and therefore it is appropriate to report the within group differences at each
time point as shown in Table 6.1. The P values for the group by time interaction can be
reported in the text or as a footnote to the table.

When reporting the results of a repeated measures ANOVA, the means and standard
deviation (or standard error), sample size, the significant main effects or interactions are
generally included. In addition, the results of the simple effects tests with corresponding
F and P values are reported with any post hoc comparisons. In this example, the results
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Figure 6.2 Profile plot of BMD by time and group.

Table 6.1 Results of repeated measures ANOVA

Control group Intervention group
BMD BMD
Mean (SE) Mean (SE) Mean difference
Time point n=21 n=26 (95% ClI) P value
Baseline 0.84 (0.01) 0.84 (0.01) —0.003 (-0.028, 0.021) 0.80
6 months 0.85 (0.01) 0.89 (0.01) 0.047 (0.014, 0.081) 0.007
1 year 0.84 (0.01) 0.89 (0.01) 0.044 (0.017, 0.070) 0.002

Note: Estimated marginal means reported.

of the simple effects tests are not reported since the post hoc comparisons have the same
P values and provide additional information on the direction and size of the difference.

Alternatively, the results could be reported as ‘A repeated measures ANOVA was con-
ducted to compare the BMD of elderly people who received an intervention programme
to those who received the placebo treatment. A total of 60 elderly people were ran-
domized to receive either the 4 week intervention or placebo. BMD was measured at
baseline, 6 months and 1 year later. Complete data was available at all time points



180 Chapter 6

10 4 — Mean = 7.17E-15
Std. Dev. = 0.989
N =47
8 -
TN

Frequency
[}

|

™~
e

AN

-2.00 -1.00 0.00 1.00 2.00 3.00
Standardized residual for BMD.1

Figure 6.3 Histogram of standardized residuals.

for 21 people who received the placebo treatment and 26 people who received the
intervention. Mauchly’s test indicated that the assumption of sphericity had been vio-
lated, therefore the Huynh-Feldt corrected tests are reported. There was a significant
interaction between time and group (F (1.78, 79.92) =21.20, P < 0.0001). Post hoc com-
parisons indicated that that there was no difference between the two groups at base-
line (P=0.80). There was a significant difference between the two groups at 6 months
and 1 year, with intervention group having higher BMD levels than the control group
(P=0.007 and P=0.002 respectively)’.

The profile plot shown in Figure 6.2 can be redrawn to publication quality in SigmaPlot
with error bars included. The SigmaPlot commands for producing the plot with error
bars are shown in Box 6.3. The spreadsheet for the summary data that are entered into
SigmaPlot are as shown below where column 2 shows the mean values for the control
group, column 3 is the width of the 95% CI for the control group, column 4 is the
mean values for the intervention group and column 5 is the width of the 95% CI for
the intervention group:

Column 1 Column 2 Column 3 Column 4 Column 5
Baseline 0.842 0.0158 0.839 0.0188
6 months 0.847 0.0162 0.895 0.0288

1year 0.845 0.0153 0.888 0.0213
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Figure 6.4 Mean (SE) BMD levels from baseline to 1 year for the intervention and control group.

Once the plot is obtained using the command sequence shown in Box 6.3 it can be
customized using the options to produce the plot shown in Figure 6.4. Because the data
are longitudinal and are collected from a single cohort, it is valid to link the mean values
with lines to show how the mean values in the cohort change over time. By comparing
the 95% confidence intervals, it can clearly be seen that there is no significant difference
between the groups at baseline but that the mean values are significantly different for

the two groups at both the 6 months and 1 year follow-up times.

Box 6.3 SigmaPlot commands for drawing a line and dot plot

SigmaPlot commands

Data 1*
At top of the screen Click on Graph — Create Graph
Click on Line/Scatter Plot in sub-menu
Click on Simple Line and Scatter — Error Bars in Scatter Group
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight XY pair, click Next
Create Graph — Select Data
Data for X =use drop box and select Column 1
Data for Y= use drop box and select Column 2
Data for Error = use drop box and select Column 3
Click Finish
Graph Page
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Click on Add Plot
Add Plot - Type

Click on Line and Scatter Plot in sub-menu
Add Plot - Style

Click on Line and Simple Scatter — Error Bars in Scatter Group
Add Plot - Style

Click on Simple Error Bars
Add plot — Error Bars

Symbol Values = Worksheet Columns (default), click Next
Add Plot — Data Format

Highlight XY pair, click Next
Add Plot — Select Data

Data for X =use drop box and select Column 1

Data for Y =use drop box and select Column 4

Data for Error=use drop box and select Column 5

Click Finish

6.6 Linear mixed models

A core feature of longitudinal data is that the measurements for each participant are
almost always positively correlated with each another. When modelling changes over
time, these within-subject correlations can be taken into account. If within-subject cor-
relations are ignored, as in repeated measures ANOVA, then the statistical power of the
study may be reduced and the P value may be biased towards non-significance.

In mixed models, within-subject correlations are modelled using the covariance struc-
ture. The covariance structure is built on the variance around the outcome measurement
at each time point and on the correlations between measurements taken at different
times from the same participant. Obviously, two measurements from the same partici-
pant would be expected to be correlated because they share common contributions. In
addition, measurements taken closer together are expected to be more correlated than
measurements taken further apart because influential factors are likely to be similar at
close time points but may change over longer periods of time.

In general, linear mixed models are both more theoretically correct and more flexible
than repeated measures ANOVA for analysing longitudinal data. The term ‘mixed’ is
used because both fixed and random factors are included. Fixed factors are assumed
to have the same effect for all subjects whereas the effects of random factors such as
the individual regression intercepts are assumed to vary from subject to subject. Other
random factors can be factors used in sampling, for example, when a school is the unit
of sampling children or a hospital is the unit of sampling patients. In this chapter, such
random factors are not discussed. A fixed factor is a factor in which all possible groups
or all levels of the factor are included; for example, males and females or number of
siblings (see Section 5.9.1).

Mixed models are adapted from regression methods in which variances in the
intercepts and slopes from individual participants are modelled using maximum
likelihood (ML) methods. Because the data for each participant is summarized using a
regression approach, the number of time points for each participant can be unequal.
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An appealing aspect of mixed models is that they are more flexible than ANOVA meth-
ods for accommodating study designs with unequal numbers of participants in each
group (or cell). Also, there is no requirement that each participant has the same num-
ber of observations and there are no requirements for sphericity or homogeneity of
variance across time intervals. However, for valid results that can be generalized to a
population, any missing data must ideally be ‘missing completely at random (MCAR)’,
or at least, missing at random (MAR). For MCAR, the probability of an observation
missing is not related to observed or unobserved measurements; for example, a person
moving to another city. For MAR, the missing of an observation is related to the observed
data; for example, in measuring the weight of participants, it is found that females are
less likely to report their weight. That is, the probability that weight is missing depends
on the gender of the person.

6.6.1 Covariance structures

Before undertaking the analysis, a covariance structure that is appropriate for the data
set needs to be selected. Because covariance patterns vary widely, the first step in build-
ing the model is to find an appropriate covariance structure to fit the data. Even if a
reasonable assumption about the covariance structure can be made, it is a good idea to
test the model against one with a standard structure; for example, ‘variance components’
or ‘unstructured’ covariance.

Some covariance structures that are commonly used are as follows:

e Variance components comprise one of the simplest covariance structures. This struc-
ture assumes that the random effects are independent and the variances of the random
effects are equal.

Unstructured (UN) is a general structure that makes no assumptions about equal vari-

ances or correlations in the data. However, this structure is often too general and is

best used when the data are balanced and complete and when there is equal spacing
between time points;

e Autoregressive first order (AR(1)) assumes that measurements taken close together in
time are more correlated than measurements taken far apart. That is, the correlation
between measurements will decrease as the time between them increases. This is
often the case in studies such as randomized controlled trials in which the outcome
changes over time;

e Compound symmetry (CS) specifies that the measurements have the same variance at
all times and that all pairs of measurements from the same person have the same cor-
relation, that is, there is constant variation and covariance. This structure is equivalent
to repeated measures ANOVA when the data are complete. This is a restrictive covari-
ance structure and is best suited for when there is large between-subject variation.

The best structure to use is ascertained by running models with different covariance
structures and then comparing the —2 log likelihood (—2LL) value, which is an esti-
mate of the fit of a model. Because —2LL is the sum of the squared errors, a smaller
—2LL indicates a better fit. When models have the same variables, subtracting the —2LL
values between models is equivalent to a chi-square value with 1 degree of freedom.
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A significant chi-square value indicates that the model with the lower —2LL is a sig-
nificantly better fit. This method is similar to using the ‘R square change’ option in
multiple regression (see Section 7.3). Once the most appropriate covariance structure is
identified, the time and factor effects in the model can be tested.

6.6.2 Advantages and disadvantages of mixed models

The advantages of linear mixed models are that:

e Within-subject correlations in data from the same participant and variances that
change over time (i.e. unequal variances) can be modelled in the covariance
structure;

Estimates of standard errors are valid;

Cell imbalance is not a problem;

Missing data points do not exclude participants from the analysis;

Interactions are not automatically included;

There is no requirement for sphericity or homogeneity of variance across the model.

The disadvantages of using mixed models in SPSS are that:

e No estimate of effect size such as eta-squared is available;
e No means plots are directly available.

6.6.3 Data layout

Linear mixed models are accessed via the SPSS command sequence Analyze — Mixed
Model — Linear and the data file needs to be in the ‘long” format with each time point
for a participant on a separate line and the lines for the same participant linked by a
common factor such as an identification (ID) number. The data set can be converted
from the ‘wide’ to the ‘long’ format (or vice versa) using the SPSS command sequence
Data — Restructure.

Before undertaking a linear mixed model analysis, the ‘BMD_study_wide_file’ previ-
ously used, which is in the ‘wide’ format has to be restructured into the ‘long” format
with each BMD value on a separate line using the SPSS commands shown in Box 6.4.

Box 6.4 SPPS commands to restructure data from wide format to long format

SPSS Commands

BMD_study_wide_file.sav — IBM SPSS Statistics Data Editor

Data — Restructure

Restructure Data Wizard
What do you want to do? Select ‘Restructure selected variables to cases’
Click Next
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Restructure Data Wizard — Step 2 of 7
How many variables do you want to restructure? Select ‘One’
(for example, wl, w2, and w3)
Click Next
Restructure Data Wizard — Step 3 of 7
Case Group Identification: select ‘Use case number’; Name: id’
Variables to be Transposed: change ‘transl’ to ‘BMD’ in the Target Variable box
Highlight BMD.1, BMD.2 and BMD.3 and click into the area below the
Target Variable box
Highlight Group and click into Fixed Variable(s)
Click Next
Restructure Data Wizard — Step 4 of 7
How many variables do you want to create? Select ‘One’
Click Next
Restructure Data Wizard — Step 5 of 7
What kind of index values? Select Sequential numbers: Index Values: 1,2.3
Click Next
Restructure Data Wizard — Step 6 of 7
Handling of Variables not Selected: select Drop variable(s) from the new data file
System Missing or Blank Values in all Transposed Variables: select Create a case in the
new file Click Next
Restructure Data Wizard - Finish
What do you want to do? Select Restructure the data now
Click Finish, Click OK

Once the restructure is complete, use the SPSS commands ‘File — Save As’ to save the
data file under a new name: ‘BMD_study_long_file’. Using ‘File — Save’ will overwrite
the original wide data file. In the ‘long’” format, each repeat measure is located on a
new row. Since the BMD of participants was assessed on three occasions, there are
three data rows for each participant. The fixed variable labels will be transferred to the
new ‘long’ file but the restructured variables will need to be relabelled. This data file
now has 180 lines and only the single data points with missing values will be excluded
from the analysis. The ‘time’ variable is now labelled as a variable named ‘Index1’
with values 1, 2 and 3. These can be relabelled with the variable name ‘Time” and the
variable labels as BMD_baseline, BMD_6 month and BMD_1 year respectively under
the SPSS Variable View.

6.6.4 Obtaining a plot

The SPSS linear mixed model procedure does not produce a plot of the data however
one can be obtained for a file in long format using the command sequence shown in
Box 6.5.



186 Chapter 6

Box 6.5 SPSS Commands to obtain an error bar graph for data in the long format
SPSS Commands

BMD_study_long_file.sav — IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Error Bar
Error Bar
Select ‘Clustered’
Data in Chart Are: select Summaries for groups of cases
Click ‘Define’
Define Clustered Error Bar: Summaries for Groups of Cases
Highlight BMD and click into Variable
Highlight Time and click into Category Axis
Highlight Group and click into Define Clusters by
Bars Represent: Confidence interval for mean; Level 95 %
Click OK

Figure 6.5 is similar to the SigmaPlot figure shown in Figure 6.4. In these figures,
the 95% confidence intervals convey additional information that is not provided in
Figure 6.2. The mean BMD in the intervention group has significantly increased in that
the 95% CIs at 6 months and 1 year do not overlap with those at baseline. However,
there has been no change in the control group with the 95% CI at each time point
overlapping. It is important to obtain a figure such as this so that the P values from the
post hoc tests in the linear mixed model can be correctly interpreted. At baseline, the
mean BMD values are not very different between groups and the large overlap of 95%
CIs show that the means are not significantly different. However, at both 6 months and
1 year, the two groups have significantly different mean BMD values with confidence
intervals that do not overlap.

6.6.5 Building a mixed model

The type of covariance structure used can either be selected on theoretical grounds or
different covariance structures can be tested to determine which one provides a model
with the best fit. For this, a good model building strategy is to begin with a model using
a basic covariance structure and then to test whether different covariance structures
improve the fit. Once the covariance structure that provides the best fit is decided, the
effects of adding further variables can be tested in subsequent models.

There are two options in SPSS for estimating parameters in the model: ML and
restricted maximum likelihood (REML). In ML, the regression coefficients and the
variance components are included in the likelihood function so the fit of entire model
is described. In REML, variance components are calculated after the fixed effects have
been removed from the model and describe the fit of the random effects.!? In estimating
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Figure 6.5 Error bar graphs (95% CI) of BMD by time and group.

the variance components, REML is less biased than ML. In most cases, the difference
between the estimates produced by the two methods is minimal.!® However, for small
samples or when the number of fixed effects is large, REML is preferred.!'! When com-
paring models with different fixed effects and variance components, ML must be used.’

The SPSS command sequence shown in Box 6.6 can be used to obtain a linear mixed
model on the BMD data to test for differences between times and groups, as well as
interactions. Since there are three measurements for each participant it is appropriate
to include time as a repeated measure and also as a fixed factor.

Box 6.6 SPSS commands to conduct a linear mixed model

SPSS Commands

BMD_study_long_file.sav — IBM SPSS Statistics Data Editor
Analyze — Mixed Models — Linear
Linear Mixed Models: Specify Subjects and Repeated




188 Chapter 6

Highlight id and click into Subjects box
Highlight Time and click into Repeated box
Repeated Covariance Type: select Unstructured
Click Continue
Linear Mixed Models
Highlight BMD and click into Dependent Variable box
Highlight Group and Time and click into Factor(s) box
Click on Fixed
Linear Mixed Models: Fixed Effects
Fixed Effects: select Build terms (default) and select ‘Factorial’ (default) and
highlight Group and Time and click Add
Click Include intercept (default) and Sum of squares: Type III (default)
Click Continue
Linear Mixed Models
Click on Estimation
Linear Mixed Models: Estimation
Method: select Maximum Likelihood (ML)
Click Continue
Linear Mixed Models
Click on Statistics
Linear Mixed Models: Statistics
Model Statistics: tick Parameter estimates and Tests for covariance parameters
Confidence interval: 95% (default)
Click Continue
Linear Mixed Models
Click on EM Means
Linear Mixed Models: EM Means
Highlight Group, Time and Group *Time and click into Display Means for
Click Continue
Linear Mixed Models
Click on Save
Linear Mixed Models: Save
Predicted Values € Residuals: tick Residuals, click Continue
Linear Mixed Models
Click OK

In the Model Dimension table the number of levels in the model is displayed, which
is similar to the degrees of freedom. The number of parameters in the model will vary
according to the covariance structure selected. The Number of Subjects column shows
that 60 patients are included in the model compared with only 47 who were included
in the repeated measures ANOVA model.
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Mixed model analysis

Model Dimension?

Number of Covariance Number of Subject Number of

levels structure parameters variables subjects
Fixed Effects Intercept 1 1
Group 2 1
Time 3 2
Group * Time 6 2
Repeated Effects Time 3 Unstructured 6 id 60
Total 15 12

2Dependent variable: BMD.

Information Criteria?

-2 Log likelihood —705.284
Akaike's Information Criterion (AIC) -681.284
Hurvich and Tsai’s Criterion (AICC) —679.258
Bozdogan'’s Criterion (CAIC) —631.868
Schwarz's Bayesian Criterion (BIC) —643.868

The information criteria are displayed in smaller-is-better forms.
2Dependent variable: BMD.

The Information Criteria table allows different models to be compared and displays
fit indices. For these indices, the lower the number, the better the model fits the data.
The -2 restricted log likelihood (—2LL) which is —705.284 is a basic estimate of fit. The
other criterion measures shown in this table are modifications to the —2LL value made
for more complex models. When fitting models, the likelihood value can be increased by
adding parameters; however, this may result in overfitting. To overcome this, a penalty
adjustment is made to the likelihood for the number of parameters included in the
model. Akaike’s Information Criterion (AIC) adjusts the —2LL by twice the number of
parameters in the model and should be used if the sample size is large. When the sam-
ple size is small, the corrected Akaike’s Information Criterion (AICC) should be used.
As the sample size increases, the AIC will be similar to the AICC. The Bozdogan’s Cri-
terion (CAIC) adjusts the —2LL by the number of parameters times one plus the log of
the number of cases. The Schwarz’s Bayesian Criterion (BIC) adjusts the —2LL by the
number of parameters times the log of the number of cases. Both the BIC and CAIC
make a greater penalty adjustment to the —2LL than the AIC.

This basic model can then be rerun with a different covariance structure to determine
whether the fit can be improved. When the model was rerun with an autoregressive
covariance structure (AR(1)) or using compound symmetry, the —2LL indicated a loss
of fit. When a model has a higher —2LL and therefore a poorer fit, the standard errors
around estimated mean values will be larger and therefore less precise.

The Type II Tests of Fixed Effects are overall tests of significance for the predictor
variables included in the model, accounting for the other predictors in the model.
The Fixed Effects table shows that there is a significant difference between the groups
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(P=0.041), that BMD changes significantly with time (P<0.0001) and that there is
a significant interaction between group and time (P<0.0001). As with the repeated
measures ANOVA, the significant interaction between group and time are the more
important findings. The significant interaction was expected following the error bar
graph (Figure 6.4), which shows that the two groups have very different changes over
time. If the interaction was not significant, it could be removed and the linear mixed
model rerun.

Fixed effects

Type Ill Tests of Fixed Effects®

Source Numerator df Denominator df F Sig.

Intercept 1 60.256 24733.683 0.000
Group 1 60.256 4.341 0.041
Time 2 55.199 20.478 0.000
Group * Time 2 55.199 21.580 0.000

2Dependent variable: BMD.

Estimates of fixed effects®

95% Confidence interval

Parameter Estimate Std.error  df t Sig. Lower bound Upper bound
Intercept 0.879760 0.007638 61.115 115.186 0.000 0.864488 0.895032
[Group=1] —-0.037278 0.011189 61.261 -3.332 0.001 -0.059650 —0.014906
[Group=2] ob 0 . . . . .
[Time=1] —0.045166 0.004957 58.793 -9.112 0.000 -0.055085 —0.035247
[Time=2] 0.005786  0.004484 53.584 1.290 0.202 -0.003205 0.014778
[Time=3] 0P 0 . . . . .
[Time=1] * [Group=1] 0.046685 0.007269 59.005 6.422 0.000 0.032139 0.061230
[Time=2] * [Group=1] -0.002835 0.006681 54.046 -0.424 0.673 -0.016229 0.010559
[Time=3] * [Group=1] QP 0

[Time=1] * [Group=2] 0P 0

[Time=2] * [Group=2] 0P 0

[Time=3] * [Group=2] 0P 0

2Dependent variable: BMD.
bThis parameter is set to zero because it is redundant.

In the Estimates of Fixed Effects table, the maximum likelihood estimates of the fixed
effect parameters (or regression coefficients) are reported in the column labelled Esti-
mate. In SPSS, the highest value of a ‘group’ variable or the last value of the ‘time’
variable is the default reference group. In this table, the reference group is the control
group. Therefore, the estimate of group 1 indicates that on average, the value of BMD
value is 0.037 units lower in Group 1 (control) than in Group 2 (intervention). For time,
the reference category is time 3, which is BMD at 1 year. The P value of 0.202 indicates
that the predicted mean for 6 months (time 2) was not significantly different from the
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predicted mean at 1 year. The predicted mean at baseline (time 1) is significantly lower
than at 1 year with P<0.0001. On average, the BMD value at baseline is 0.045 lower
than that at 1 year, with the 95% CI for the difference —0.055 to —0.035 units.

There was also a significant interaction of Time 1 by Group 1 with a P value <0.0001
indicating that the difference in the slope between the control group and intervention
group is significantly different from baseline to 1 year. There was no significant interac-
tion of Time 2 by Group 1 with a P value of 0.67 indicating that the rate of change over
time from 6 months to 1 year was similar for the groups. This is shown in Figure 6.4
where the lines from 6 months to lyear are approximately parallel.

The degrees of freedom are an approximation and therefore do not have integer val-
ues. The Estimates of Fixed Effects table is useful for estimating effect sizes. The coeffi-
cients can be interpreted much like regression coefficients in that the predicted BMD for
a patient in Group 1 at Time 1 (baseline) is calculated from the values in the Estimate
column as follows:

Predicted BMD = Intercept + [Group = 1] + [Time = 1] + [Time 1] * [Group 1]
=0.8798 + (—0.0373) + (—0.0452) + (0.0467)
=0.844

This is the value shown in the following Estimated Marginal Means table for
Group * Time.

The Estimates of Covariance Parameters table displays the estimates of variance
parameters which define an unstructured 3 x 3 variance-covariance matrix. > UN
(1,1) corresponds to the value in the first row and first column of the matrix is the
variance for the error term at time 1 (baseline). Similarly, UN (2,2) and UN (3,3) are
the estimated variance at time 2 (6 months) and time 3 (1 year). The other estimates
in the table represent the covariances between time points. UN (2,1) is the covariance
between error terms at the second (6 month) and first (baseline) time points. UN
(3,1) is the covariance between the third (1 year) and first (baseline) time points.
Similarly, UN (3,2) is the covariance between the third (1 year) and second (baseline)
time points.

Covariance parameters

Estimates of Covariance Parameters?

95% Confidence interval

Parameter Estimate Std.error WaldZ Sig. Lower bound Upper bound

Repeated Measures UN (1,1) 0.001468 0.000268 5.477  0.000 0.001026 0.002099
UN (2,1) 0.001544 0.000330 4.680 0.000 0.000897 0.002190
UN(2,2) 0.002793 0.000521 5.365 0.000 0.001938 0.004024
UN(3,1) 0.001274 0.000269 4.736  0.000 0.000747 0.001801
UN (3,2) 0.002037 0.000396 5.142  0.000 0.001261 0.002814
UN (3,3) 0.001834 0.000336 5.451 0.000 0.001280 0.002628

2Dependent variable: BMD.
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In the Covariance Parameters table, SPSS also reports the Wald tests of the null
hypotheses that each parameter is equal to 0. All diagonal elements of the matrix UN
(1,1), UN (2,2) and UN (3,3) are all significantly different from 0 indicating that the
measurements at each time point are not independent. However, likelihood ratio tests
may be more suitable for testing covariance parameters, assuming the sample size is
large.!? The Estimate values in the table can also be used to calculate the correlation
between time points. For example, the covariance UN (2,1) can by divided by the
square root of UN (1,1) X UN (2,2) to provide an estimate of the correlation between
the time points. Here the correlation equals 0.001544/\/(0.001468 % 0.002793)=0.76
indicating a high degree of correlation between the first and second time point.
Similarly, a correlation value of 0.90 can be obtained for UN (3,2) by dividing this
value by the square root of UN (3,3) multiplied by UN (2,2). This high correlation
value suggests that there is very little change from 6 months to 1 year. The estimated
marginal means are also reported for each group, at each time point and group by time
interaction. As with repeated measures ANOVA, these are the means that are predicted
from the model and are not the actual means.

Estimated marginal means

1. Group?

95% Confidence interval
Group Mean Std. error df Lower bound Upper bound
Control 0.844 0.008 60.365 0.828 0.860
Intervention 0.867 0.007 60.130 0.852 0.881

2aDependent variable: BMD.

2. Time?®

95% Confidence interval
Time Mean Std. error df Lower bound Upper bound
BMD_baseline 0.839 0.005 60.000 0.829 0.849
BMD_6 month 0.865 0.007 59.839 0.852 0.879
BMD_1 year 0.861 0.006 61.261 0.850 0.872

2Dependent variable: BMD.

3. Group * Time?

95% Confidence interval

Group Time Mean Std. error df Lower bound Upper bound

Control BMD_baseline 0.844 0.007 60.000 0.830 0.858
BMD_6 month 0.845 0.010 60.324 0.825 0.866
BMD_1 year 0.842 0.008 61.389 0.826 0.859

Intervention BMD_baseline 0.835 0.007 60.000 0.821 0.848
BMD_6 month 0.886 0.009 59.281 0.867 0.904
BMD_1 year 0.880 0.008 61.115 0.864 0.895

2aDependent variable: BMD.
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As with repeated measures ANOVA, a significant interaction can be examined further
by conducting simple effects tests that compare groups at each time point. The SPSS
command syntax can be obtained by using the ‘Paste’ option in the SPSS dialog box and
then replacing the EMMEANS line with the following:

/EMMEANS =TABLES(Group*Time) COMPARE (Group)

When the model is run using the syntax, the comparison tables shown below which
compare group differences within each time point will be obtained. To compare time
points within each group the following line can be added (SPSS output not displayed

here):

JEMMEANS = TABLES (Group*Time) COMPARE (Time).

Pairwise Comparisons®

95% Confidence
interval for
difference?

Mean
difference Lower Upper

Time (I) Group (/) Group ((EY)] Std. error df Sig.® bound bound
BMD_ Control Intervention 0.009 0.010 60.000 0.347 -0.010 0.029
baseline

Intervention Control —0.009 0.010 60.000 0.347 -0.029 0.010
BMD_s6 Control Intervention —0.040¢ 0.014 59.839 0.005 -0.068 -0.012
month

Intervention Control 0.040¢ 0.014 59.839 0.005 0.012 0.068
BMD_1 Control Intervention —0.037¢ 0.011 61.261 0.001 -0.060 -0.015
year

Intervention Control 0.037¢ 0.011 61.261 0.001 0.015 0.060

Based on estimated marginal means.

2Dependent variable: BMD.

b Adjustment for multiple comparisons: least significant difference (equivalent to no adjustments).
“The mean difference is significant at the 0.05 level.

Univariate Tests®

Time Numerator df Denominator df F Sig.
BMD_baseline 1 60.000 0.900 0.347
BMD_6 month 1 59.839 8.395 0.005
BMD_1 year 1 61.261 11.100 0.001

Each F tests the simple effects of Group within each level combination of the other
effects shown. These tests are based on the linearly independent pairwise
comparisons among the estimated marginal means.

2Dependent variable: BMD.
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As with repeated measures ANOVA, the means and pairwise comparisons are predicted
values. However, they are important for interpreting relative differences between the
groups. The Pairwise Comparisons table shows the mean difference between the groups
at each time point and indicates that there was no significant difference between groups
at baseline (mean difference 0.009, 95% CI —0.010, 0.029, P=0.35). However, the dif-
ference between the two groups is statistically significant at the 6 month follow-up
(mean ditference —0.040, 95% CI —0.068, —0.012, P=0.005) and 1 year follow-up
(mean difference —0.037, 95% CI —0.060, —0.015, P=0.001).

In the Univariate Tests table the P values of the simple effects tests are the same as
shown in the Pairwise Comparisons table (see Section 5.2.2).

The residuals should be checked for normality to ensure that the model is valid.
Because each covariance matrix provides different residuals, the residuals should be
checked after the most appropriate covariance matrix has been decided. Each residual
is the observed data value minus the predicted value. The residuals can be saved to the
sheet while running the model and plotted as a histogram shown in Figure 6.6 using
the SPSS command sequence Graphs — Legacy Dialogs — Histogram with Residuals as the
variable and selecting Display normal curve.
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Figure 6.6 Histogram of residuals.
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In this model, there are no residuals that are univariate outliers. Although the dis-
tribution is slightly skewed to the left, this should not bias the model or violate the
assumptions.

6.6.6 Reporting the results of a linear mixed model

The results of a linear mixed model can be reported in a similar format as a repeated
measures ANOVA (see Table 6.1 and Figure 6.4).

6.6.7 Comparison of results: Repeated measures ANOVA and
mixed model

Although both repeated measures ANOVA and mixed models may use some similar
terms and produce some common results, the methods in which the data are modelled
is essentially quite different. If there are no missing data, the cell size ratio is low and
the variances and correlations between time points are equal then repeated measures
ANOVA and mixed models give the same results. However, when the cell size ratio is
large or an inappropriate correlation structure is used in the mixed model, the results
from the two methods are unlikely to agree. The P values between the two models may
also differ because the models use a different subset of participants. Only 47 participants
were included in the ANOVA but 60 are included in the mixed model. Linear mixed
models are the preferred method for analyzing data from randomized trials because the
inclusion of all available data from participants maintains the balance of confounders
that the randomization process was designed to achieve.

Mixed model results with an appropriate covariance structure are preferred because
repeated measures ANOVA is only optimal when the assumptions are met. In general, a
linear mixed model with an appropriate covariance structure has higher statistical power
to test for effects. Because the output from all types of models that are used to analyze
longitudinal data can be difficult to interpret, it is important that the interpretation of
between-group differences and P values is also based on the transparent effects that can
be demonstrated using summary plots and post hoc analyses.

6.7 Notes for critical appraisal

For repeated measures ANOVA and linear mixed models, it is important that the assump-
tions for each test are met to avoid inaccurate results. When critically appraising a
journal article in which the results from an analysis of longitudinal data are reported,
some of the most important questions to ask are shown in Box 6.7.

Box 6.7 Questions for critical appraisal

The following questions should be asked when appraising published results from
analyses in which repeated measures ANOVA or linear mixed mode has been used:
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Does each cell have an adequate number of participants?

Are there any variables in the model that are collinear with other independent
variables?

Are there any outliers that would tend to inflate or reduce differences between
groups or that would distort the model and therefore the P values?

e Are the residuals normally distributed?
e Have plots been included to help interpret the P values produced by the post hoc

tests?
Do the P values reflect the differences between cell means and the group sizes?

For repeated measures ANOVA:

Have the requirements of sphericity and homogeneity been met?
Does the omission of people with missing data values affect the generalizability
of the results?

For linear mixed models:

e Has an appropriate covariance structure been used?
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CHAPTER 7
Correlation and regression

Angling may be said to be so like mathematics that it can never be fully learnt.
IZAAK WALTON (1593 -1683)

Objectives

The objectives of this chapter are to explain how to:

e examine a linear relationship between two continuous variables

e interpret parametric and non-parametric correlation coefficients
build a regression model that satisfies the assumptions of regression
use a regression model as a predictive equation

include binary and dummy group variables in a multivariate model
plot regression equations that include binary group variables
include more than one continuous variable in a multivariate model
test for multicollinearity and interactions between variables
identify and deal with outliers and remote points

explore non-linear fits for regression models

understand sample size requirements

calculate effect size

critically appraise the literature when regression models are reported

7.1 Correlation coefficients

A correlation coefficient describes how closely two variables are related, that is, the
amount of variability in one measurement that is explained by another measurement.
The range of a correlation coefficient is from —1 to +1, where the maximum values
indicate that one variable has a perfect linear association with the other variable and
that both variables are measuring the same entity without error. In practice, this rarely
occurs because even if two instruments are intended to measure the same entity both
usually have some degree of measurement error.

A positive correlation coefficient indicates that both variables increase in value
together and a negative coefficient indicates that one variable decreases in value
as the other variable increases. It is important to note that a significant associa-
tion between two variables does not imply that they have a causal relationship. A
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correlation coefficient of zero indicates a random relationship and the absence of a
linear association. However, a correlation coefficient that is not significant does not
imply that there is no relationship between the variables because there may be a
non-linear relationship such as a curvilinear or cyclical relationship.

Correlation coefficients are rarely used as important statistics in their own right. An
inherent limitation is that correlation coefficients reduce complex relationships to a
single number that does not adequately explain the relationship between the two vari-
ables. Another inherent problem is that the statistical significance of the test is often
over-interpreted. The P value is an estimate of whether the correlation coefficient is
significantly different from zero so that a small correlation of no clinical importance
can become statistically significant, especially when the sample size is large. In addition,
outliers, the range of the data as well as the relationship between the two variables
influence the correlation coefficient.

7.1.1 Types of correlation coefficients

There are three types of bivariate correlations. The type of correlation that is used to
examine a linear relationship is determined by the nature of the variables.

Pearson’s correlation coefficient (r) is a parametric correlation coefficient that is used
to measure the linear association between two continuous variables that are both
normally distributed. The Pearson’s correlation coefficient (also known as the Pearson
product-moment correlation coefficient) for a sample is denoted as r and represented
in the population as p. The sample correlation coefficient can be squared to give the
coefficient of determination (R?), which is an estimate of the per cent of variation in
one variable that is explained by the other variable.

The assumptions for using Pearson’s correlation coefficient are shown in Box 7.1

Box 7.1 Assumptions for using Pearson’s correlation coefficient

The assumptions that must be satisfied to use Pearson’s correlation coefficient are:
both variables must be continuous and normally distributed

the sample must have been selected randomly from the general population

the observations are independent of one another

the relationship between the two variables is linear

the variance is constant over the length of the data

If the assumption of random selection is not met, the correlation coefficient does not
describe the true association between two variables that would be found in the general
population. In this case, it would not be valid to generalize the association to other
populations or to compare the r value with results from other studies.

Spearman’s p (rho) is a rank correlation coefficient that is used for two ordinal variables
or when one variable has a continuous normal distribution and the other variable is
categorical or non-normally distributed. When this statistic is computed, the categorical
or non-normally distributed variable is ranked, that is, sorted into ascending order and
numbered sequentially, and then a correlation of the ranks with the continuous variable
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that is equivalent to Pearson’s r is calculated. This test is a non-parametric test, so it can
be used with variables that have a non-normal distribution.

Kendall’s T (tau) is used for correlations between two categorical or non-normally dis-
tributed variables. This test is non-parametric test of the measure of correlation between
two ranked variables. In this test, Kendall’s 7 is calculated as the number of concordant
pairs minus the number of disconcordant pairs divided by the total number of pairs.
Kendall’s tau-b is then adjusted for the number of pairs that are tied.

Research question

The spreadsheet weights.sav, which was used in Chapter 5, contains the data from a
population sample of 550 term babies who had their weight recorded at 1 month of age.

Question: Is there a linear association between the weight, length and head
circumference of 1-month-old babies?

Null hypothesis: ~ That there is no linear association between weight, length and head
circumference of babies at 1 month of age.

Variables: Weight, length and head circumference (continuous)

The variables weight, length and head circumference are all continuous variables that
have an approximately normal distribution. Therefore their relationships to one another
can be examined using Pearson’s correlation coefficients. The null hypothesis is that the
population correlation coefficients from which the sample was derived from are equal to
zero, indicating no linear relationship between the variables. The alternative hypothesis
(two-tailed) is that the correlation coefficients do not equal zero, so they may be greater
than or less than zero.

Before computing any correlation coefficient, it is important to obtain scatter plots
to obtain an understanding of the nature of the relationships between the variables.
Box 7.2 shows the SPSS commands to obtain the matrix of scatter plots.

Box 7.2 SPSS commands to obtain scatter plots between variables

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Scatter/Dot
Scatter/Dot
Click on Matrix Scatter and click on Define
Scatterplot Matrix
Highlight Weight, Length, Head circumference, click over into Matrix Variables
Click OK

The matrix in Figure 7.1 shows each of the variables plotted against one another. The
number of rows and columns is equal to the number of variables selected. Each variable
is shown once on the x-axis and once on the y-axis to give six plots, three of which are
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circumference
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Figure 7.1 Scatter plot of weight by length by head circumference.

mirror images of the other three plots. In Figure 7.1, the scatter plot between weight
and length is shown in the middle box on the top row, the scatter plot between weight
and head circumference is in the right hand box on the top row, and the scatter plot
between length and head circumference is in the third column of the middle row. All
scatter plots in Figure 7.1 slope upwards to the right indicating a positive association
between the two variables. If an association was negative, the scatter plot would slope
downwards to the right.

The scatter plots indicate that there is a reasonable, positive linear association for all
bivariate combinations of the three variables. It is clear that weight has a closer rela-
tionship with length than with head circumference in that the scatter around the plot
is narrower.

7.1.2 Obtaining correlations in SPSS

To obtain the correlation coefficients (two-tailed) between the three variables, the SPSS
commands shown in Box 7.3 can be used. Normally only one type of coefficient would
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be requested but to illustrate the difference between the correlation coefficients, all three
are requested in this example. In the SPPS output, the correlation matrix shown below
reports the r values, P values and sample size for each correlation. If a left diagonal line
was drawn through the matrix, it can be seen that the information above the diagonal
line is the same as the information below the line.

Box 7.3 SPSS commands to obtain correlation coefficients
SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — Correlate — Bivariate
Bivariate Correlations
Highlight Weight, Length, Head circumference, click over into Variables
Under Correlation Coefficients, tick Pearson (default), Kendall'’s tau-b and Spearman
Under Test of Significance, tick Two-tailed (default)
Tick Flag significant correlations (default)
Click OK

Correlations

Correlations

Head
circumference
Weight (kg) Length (cm) (cm)
Weight (kg) Pearson correlation 1 0.713** 0.622**
Sig. (two-tailed) 0.000 0.000
N 550 550 550
Length (cm) Pearson correlation 0.713** 1 0.598+*
Sig. (two-tailed) 0.000 0.000
N 550 550 550
Head circumference  Pearson correlation 0.622** 0.598** 1
(cm) Sig. (two-tailed) 0.000 0.000
N 550 550 550

**Correlation is significant at the 0.01 level (two-tailed).

If the P value is less than the level of significance, typically 0.05, the null hypothesis
is rejected and we can conclude that there is a linear relationship between the two
variables. The correlation values would have a single asterisk if they were significant at
the P<0.05 level. In the table, the coefficients that are significant at the P<0.01 level
are identified with two asterisks.

A comparison of the Pearson correlations (r values) in the Correlations table shows
that the best predictor of weight is length with an r value of 0.713 compared to a weaker,
but moderate association between weight and head circumference with an r value of
0.622. Head circumference is related to length with a slightly lower r value of 0.598.
Despite their differences in magnitude, the correlation coefficients are all highly sig-
nificant at the P<0.0001 level emphasizing the insensitive nature of the P values for
selecting the most important predictors of weight.
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The correlation coefficient, 7, can be squared to obtain the coefficient of determination,
R?, which indicates the per cent of variance in one variable that can be explained by the
other variable. R? will be discussed in more detail later in this chapter.

In the Non-parametric Correlations table, the Kendall’s tau-b coefficients are all lower
than the Pearson’s coefficients indicating that there are some tied ranks in the data
set, that is, babies with the same weight and length as one other. A value of 0.540 for
the correlation between weight and length indicates that 54% of ranks are concordant
and 46% are discordant. The Spearman’s coefficients are similar in magnitude to the
Pearson’s correlation coefficients.

Non-parametric Correlations

Correlations

Head
circumference
Weight (kg) Length (cm) (cm)
Kendall's Weight (kg) Correlation coefficient 1.000 0.540** 0.468**
tau-b Sig. (two-tailed) 0.000 0.000
N 550 550 550
Length (cm) Correlation coefficient 0.540** 1.000 0.454**
Sig. (two-tailed) 0.000 0.000
N 550 550 550
Head circumference Correlation coefficient 0.468** 0.454** 1.000
(cm) Sig. (two-tailed) 0.000 0.000
N 550 550 550
Spearman’s Weight (kg) Correlation coefficient 1.000 0.711* 0.626**
Rho Sig. (two-tailed) 0.000 0.000
N 550 550 550
Length (cm) Correlation coefficient 0.711** 1.000 0.596**
Sig. (two-tailed) 0.000 0.000
N 550 550 550
Head circumference Correlation coefficient 0.626** 0.596** 1.000
(cm) Sig. (two-tailed) 0.000 0.000
N 550 550 550

**Correlation is significant at the 0.01 level (two-tailed).

Partial correlations can also be conducted using the following SPSS commands, Analyze
— Correlate — Partial. With this type of correlation, the linear relationship between two
variables can be examined, while controlling or holding constant the effects of another
confounding variable. The null hypothesis for a partial correlation is that there is no
linear relationship between two variables after controlling for the effects of a confound-
ing variable. For example, partial correlations could be conducted for the association
between weight and head circumference after controlling for body length. The assump-
tions for a partial correlation are the same as for Pearson’s correlation shown in Box 7.1.

7.1.3 Effect size for correlations

The absolute value of the Pearson’s correlation coefficient indicates the strength of the
relationship between two variables. Cohen defines an r value of 0.1 as a small effect
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Table 7.1 Total sample size required for
detecting a significant correlation coefficient
value (two-tailed)

a=0.05,

Correlation Power =80%
coefficient (r) N required
0.1 780

0.2 200

0.3 85

0.4 50

0.5 30

0.6 20

0.7 15

size, an r value of 0.3 a medium effect size and an r value of 0.5 as a large effect size.!
It is important to note that the P value is influenced by the size of the effect and the
sample size. Therefore, both the effect size and the sample size should be considered
when interpreting P values and statistical significance. A relatively small effect size of
0.2 will be statistically significant with a large sample size, but may not be clinically
important. Conversely, a large effect size will be statistically significant with a relatively
small sample size. Table 7.1 shows the sample size required to detect a correlation coeffi-
cient, r, which is statistically different from zero (two-tailed), with power equal to 80%
and P<0.05.2

7.1.4 Influence of the range of the variable

The influence on r values when using a selected sample with a smaller range of val-
ues rather than a random sample can be demonstrated by repeating the analysis using
only part of the data set. Using the following SPSS commands Analyze — Descriptive
Statistics — Descriptives shows that length ranges from a minimum value of 48.0 cm to
a maximum value of 62.0 cm. To examine the correlation in a selected sample, the data
set can be restricted to babies less than 55.0 cm in length using the commands shown
in Box 7.4.

Box 7.4 SPSS commands to calculate a correlation coefficient for a subset of the
data

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Data — Select Cases
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Select Cases
Select If condition is satisfied — Click on If box
Select Cases: If
Highlight Length and click over into white box
Type in <55 following length
Click Continue
Select Cases
Click OK

When Select Cases is used, the row number of cases that are not selected to be included
in the analysis appear in the SPSS Data View with a diagonal line through them. In
addition, a filter variable to indicate the status of each case in the analysis is generated
at the end of the spreadsheet with the coding 0 =not selected and 1 =selected. Also the
text Filter On is shown in the bottom right hand side of the SPSS Data View screen.

To examine the relationship between the variables for only babies less than 55.0 cm
in length, Pearson’s correlation coefficients can be obtained by reusing the commands
shown in Box 7.2.

Correlations

Correlations

Head
circumference
Weight (kg) Length (cm) (cm)
Weight (kg) Pearson correlation 1 0.494** 0.504**
Sig. (two-tailed) 0.000 0.000
N 272 272 272
Length (cm) Pearson correlation 0.494** 1 0.390**
Sig. (two-tailed) 0.000 0.000
N 272 272 272
Head circumference (cm) Pearson correlation 0.504** 0.390%* 1
Sig. (two-tailed) 0.000 0.000
N 272 272 272

**Correlation is significant at the 0.01 level (two-tailed).

When compared with Pearson’s r values from the full data set, the correlation coeffi-
cient between weight and length is substantially reduced from 0.713 to 0.494 when the
upper limit of length is reduced from 62 cm to 55 cm. However, the top centre plot in
Figure 7.1 shows that the relationship between weight and length in the lower half of the
data is similar to the total sample. In general, r values are higher when the range of the
explanatory variable is wider even though the relationship between the two variables
is unchanged. For this reason, only the coefficients from random population samples
have an unbiased value and can be compared with one another.

Once the correlation coefficients are obtained, the full data set can be reselected using
the command sequence Data — Select Cases — All cases.
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7.1.5 Reporting correlation coefficients

In reporting correlation coefficients for publication, the type of correlation conducted,
the value of the correlation coefficient (2 or 3 decimal places), the P value and the
sample size should be reported. In reporting Pearson’s correlation coefficient in this
example, it could be reported as ‘The weight of babies at 1 month was significantly
related to their length (r=0.71, P<0.001, n=550) and also to their head circumfer-
ence (r=0.32, P<0.001, n=550). There was also a significant association between
the length of babies and their head circumference (r=0.60, P<0.001, n=550). These
results indicate that as the length of babies increases, so does their head circumference
and weight’.

7.2 Regression models

Regression models are used to measure the extent to which one or more explanatory
variables predict an outcome variable. In this, a regression model is used to fit a straight
line through the data, where the regression line is the best predictor of the outcome
variable using one or more explanatory variables.

There are two principal purposes for building a regression model. The most common
purpose is to build a predictive model, for example, in situations in which age and
gender are used to predict normal values in lung size or body mass index (BMI).
Normal values are the range of values that occur naturally in the general population. In
developing a model to predict normal values, the emphasis is on building an accurate
predictive model.

The second purpose of using a regression model is to examine the effect of an explana-
tory variable on an outcome variable after adjusting for other important explanatory
factors. These types of models are used for hypothesis testing. For example, a regression
model could be built using age and gender to predict BMI and could then be used to test
the hypothesis that groups with different exercise regimes have different BMI values.

7.2.1 Relationship between regression and ANCOVA

The mathematics of regression is identical to the mathematics of analysis of covariance
(ANCOVA). However, regression provides more information than ANCOVA in that a
linear equation is generated that explains the relationship between the explanatory
variables and the outcome. By using regression, additional information about the rela-
tionships between variables and the between-group differences is obtained. Regression
can also be a more flexible approach because some of the assumptions such as those
relating to cell and variance ratios are not as restrictive as the assumptions for ANCOVA
(see Chapter 5). However, in common with ANCOVA, it is important to remember that
regression gives a measure of association at one point in time only, that is, at the time
the measurements were collected, and a significant association does not infer causality.

Although the mathematics of regression is similar to ANOVA in that the explained
and unexplained variations are compared, some terms are labelled differently. In regres-
sion, the distance between an observed value and the overall mean is partitioned into
two components — the variation about the regression, which is also called the residual
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Figure 7.2 Calculation of the variation in regression.

variation, and the variation due to the regression.> Figure 7.2 shows how the variation
for one data point, shown as a circle, is calculated.

The variation about the regression is the explained variation and the variation due to
the regression is the unexplained variation. As in ANOVA, these distances are squared
and summed and the mean square is calculated. The F value, which is calculated as the
regression mean square divided by the residual mean square, ranges from 1 to a large
number. If the two sources of variance are similar, there is no association between the
variables and the F value is close to 1. If the variation due to the regression is large
compared to the variation about the regression, then the F value will be large indicating
a strong association between the outcome and explanatory variables.

When there is only one explanatory variable, the equation is called a simple lin-
ear regression. When there is more than one explanatory variable in the model, the
equation is called a multiple linear regression.

7.2.2 The regression equation

When there is only one explanatory variable, the equation of the best fit for the regres-
sion line is as follows:
y=a+bx

where ‘y” is the value of the outcome variable, ‘x’ is the value of the explanatory variable,
‘a’ is the intercept of the regression line and ‘b’ is the slope of the regression line. This is
a classic equation for a straight line. With a regression model, an estimation of the best
fitting straight line through the data that minimizes the residual variation is calculated.



Correlation and regression 207

In practice, the slope of the line, as estimated by ‘}’, represents the unit change in
the outcome variable ‘y” with each unit change in the explanatory variable ‘x". If the
slope is positive, ‘y” increases as ‘x” increases and if the slope is negative, ‘y" decreases
as ‘x’ increases. The intercept is the point at which the regression line intersects with
the y-axis when the value of ‘x" is zero. This value is part of the regression equation but
does not usually have any clinical meaning. The fitted regression line passes through
the mean values of both the explanatory variable ‘x” and the outcome variable ‘y’.

When using regression, the research question must be framed so that the explanatory
and outcome variables are classified correctly. An important concept is that regression
predicts the mean y value given the observed x value and in this, the error around the
explanatory variable is not taken into account. Therefore, measurements that can be
taken accurately, such as age and height, are good explanatory variables. Variables that
are difficult to measure accurately or are subject to bias, such as birth weight recalled
by parents when the baby has reached school age, should be avoided as explanatory
variables.

7.2.3 Assumptions for regression

To avoid bias in a regression model or a lack of precision around the regression coeffi-
cients, the assumptions for using regression that are shown in Box 7.5 must be tested
and met. In regression, mean values are not compared as in ANOVA so that any bias
between groups as a result of non-normal distributions is not as problematic. Regression
models are robust to moderate degrees of non-normality provided that the sample size
is large and that there are few multivariate outliers in the final model. In general, the
residuals but not the outcome variable have to be normally distributed. Also, the sam-
ple does not have to be selected randomly because the regression equation describes the
relation between the variables and is not influenced by the spread of the explanatory
variable. However, it is important that the final prediction equation is only applied to
populations with the same characteristics as the study sample.

Box 7.5 Assumptions for using regression
The assumptions that must be met when using regression are as follows:

Study design

e The sample is representative of the population to which inference will be made.

e The sample size is sufficient to support the model.

e The data have been collected in a period when the relationship between the out-
come and the explanatory variable/s remains constant.

e All important explanatory variables (covariates) are included.

Independence

e All observations are independent of one another.
e There is low multicollinearity between explanatory variables.
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Model building

e The relation between the explanatory variable/s and the outcome variable is
approximately linear.

The explanatory variables correlate with the outcome variable.

The residuals are normally distributed.

The variance is homoscedastic, that is, constant over the length of the model.
There are no multivariate outliers that bias the regression estimates.

Under the study design assumptions shown in Box 7.5, one assumption is that the
data are collected in a period when the relationship remains constant. For example, in
building a model to predict normal values for blood pressure, the data must be collected
when the participants have been resting rather than exercising and participants taking
anti-hypertensive medications should be excluded. It is also important that all known
covariates such as age and gender are included in the model before testing the effects of
new variables in the model.

The two assumptions of independence between observations and explanatory vari-
ables are important. When explanatory variables are significantly related to each other,
a decision needs to be made about which variable to include and which variable to
exclude.

The remaining assumptions about the nature of the data can be tested when building
the model. In this chapter, the assumptions are tested after obtaining a parsimonious
model but in practice the assumptions should be tested at each step in the model building
process.

7.2.4 R value and effect size

In linear regression, the R value which is calculated is the multiple correlation coeffi-
cient and is the correlation between the observed and predicted values of the outcome
variable. The value of R will range between 0 and 1. R can be interpreted in a similar way
to Pearson’s correlation coefficient. In simple linear regression, R is the absolute value
of Pearson’s correlation coefficient between the outcome and explanatory variable.

The R square (R?) value is the square of the R value (i.e. R X R) and is called the coeffi-
cient of determination. R square has a valuable interpretation in that it indicates the per
cent of the variance in the outcome variable that can be explained or accounted for by
the explanatory variables. Hence, it is a measure of the ‘goodness of fit” of the regression
line to the data. The adjusted R square value is the R value adjusted for the number of
explanatory variables included in the model and can therefore be compared between
models that include different numbers of explanatory variables.

The R value for the model is equivalent to r when there is one explanatory variable in
the model and can be used as a measure of effect size. Alternatively, Cohen’s f discussed
in Chapter 5 can be extended to simple linear and multiple regressions using the R?
value rather than an eta squared value as follows:

R2

Cohen’s f = m
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7.2.5 Sample size required

One of the assumptions is that the sample size is sufficient to support the regression
model. The sample size required to support a model depends on both the R value of
the model and the number of variables that are included. Table 7.2 shows the number
of participants required in models with 1 to 4 independent predictors. The sample size
requirement increases with the number of predictor variables. More detailed estimates
are available in web-based programs; for example, the StatsToDo website detailed in the
‘Useful Websites” section.

Table 7.2 Sample size requirement for regression analyses

1 predictor 2 predictor 3 predictor 4 predictor
R value variable variables variables variables
0.2 190 230 265 290
0.3 80 100 115 125
0.4 45 55 65 70

Research question

Using the spreadsheet weights.sav, regression analysis can be used to answer the fol-
lowing research question:

Question: Can body length be used to predict weight at 1 month of age?
Null hypothesis: ~ That there is no relationship between length and weight at 1 month.
Variables: Outcome variable = weight (continuous),

Explanatory variable =length (continuous)

The SPSS commands to obtain a regression equation for the relationship between
length and weight are shown in Box 7.6.

Box 7.6 SPSS commands to obtain regression estimates

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — Regression — Linear

Linear Regression
Highlight Weight, click into Dependent box
Highlight Length, click into Independent(s) box
Method = Enter (default)
Click OK

In the Model Summary table it can be seen that the R square value is approximately
equal to the square of the R value, that is, 0.713 x0.713, which is the coefficient of
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determination. The R square value of 0.509 indicates a modest relationship in that
50.9% of the variation in weight is explained by length. On the basis of Cohen’s classi-
fication described in Section 7.1, the value of 0.713 would be a large effect size.

Converting R square to Cohen’s f = \/0.509/(1 —0.509) = 1.02. This is also a large
effect size and from this, it can be concluded that body length has an important associ-
ation with weight at 1 month. In the Model Summary table, the standard error of the
estimate of 0.42229 is the standard error around the outcome variable weight at the
mean value of the explanatory variable length and as such gives an indication of the pre-
cision of the model. Generally, the more precise the model is, the smaller the standard
error.

Regression

Model Summary

Adjusted Std. error of
Model R R square R square the estimate
1 0.7132 0.509 0.508 0.42229

aPredictors: (constant), length (cm).

In the ANOVA table, the F value is calculated as the unexplained variation due to
the regression divided by the explained variation about the regression, or the residual
variation. Thus, Fis the regression mean square of 101.119 divided by the residual mean
square of 0.178, or 568.08. The resulting F value of 567.043 in the table is slightly differ-
ent as a result of rounding errors and is highly significant at P <0.0001 indicating that
there is a significant linear relationship between length and weight. This also indicates
that the regression model overall significantly predicts weight.

ANOVA?
Model Sum of squares df Mean Square F Sig.
1 Regression 101.119 1 101.119 567.043 0.000P
Residual 97.723 548 0.178
Total 198.842 549

aDependent variable: weight (kg).
bpredictors: (constant), length (cm).

In the Model table, the null hypotheses being tested are firstly that the Constant value
(the Intercept or value a in the regression model) is equal to zero and secondly, that the
regression coefficient or slope of the line (the value b in the regression model) is equal
to zero. The ¢ values, which are calculated by dividing the beta values (unstandardized
coefficient B) by their standard errors, are a test of whether each regression coefficient
is significantly different from zero and as such are equivalent to a one-sample ¢-test.
If the regression coefficient is equal to zero this means that for a unit change in the
explanatory variable, the predicted value of the outcome variable remains the same.
That is, the explanatory variable does not significantly predict the outcome variable.

In this example, both the constant (intercept) and slope of the regression line are sig-
nificantly different from zero at P<0.0001 which is shown in the column labelled ‘Sig’.
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The Coefficients table shows the unstandardized coefficients that are used to formulate
the regression equation in the form of y =a+ bx as follows:

Weight = —5.412 + (0.178 X Length)

The Constant value of —5.412 is the y intercept, that is, the predicted value of weight is
when x (length) equals zero. The regression coefficient, » equals 0.178 and indicates that
for each unit increase in length, weight will increase by 0.178 kg since the regression
coefficient b is a positive value.

Coefficients?

Unstandardized Standardized
coefficients coefficients
Model B Std. error Beta T Sig.
1 (Constant) -5.412 0.411 -13.167 0.000
Length (cm) 0.178 0.007 0.713 23.813 0.000

aDependent variable: weight (kg).

Because length is the only explanatory variable in the model, the standardized beta
coefficient, which indicates the relative contribution of a variable to the model, is the
same as the R value shown in the first table. For length, the square of the ¢ value is equal
to the F value in the ANOVA table, that is, the square of 23.813 is equal to 567.043.

7.2.6 Generalizability of regression

Regression equations can only be generalized to samples with the same characteristics as
the study sample. Thus, this regression model only describes the relation between weight
and length in 1-month-old babies who were term births because premature birth was an
exclusion criterion for study entry. The model could not be used to predict normal pop-
ulation values because the data are not from a random population sample, which would
include premature births. However, the model could be used to predict the normal birth
weight values for term babies.

7.2.7 Plotting a regression line

The SPSS commands shown in Box 7.7 can be used to obtain a scatter plot of the
observed values of weight plotted against length and to draw the regression line with
mean prediction intervals.

In Figure 7.3, the 95% mean prediction interval around the regression line is a 95%
confidence interval, that is, the area in which there is 95% certainty that the true
regression line lies. This interval band is slightly curved because the errors in estimat-
ing the intercept and the slope are included in addition to the error in predicting the
outcome variable.* The error in estimating the slope increases as the difference between
the predicted value and the actual value of the explanatory variable increases, resulting
in a curved 95% confidence band around the sample regression line. In Figure 7.3, the
95% confidence interval is narrow as a result of the large sample size.
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Box 7.7 SPSS commands to obtain a scatter plot with a regression line

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Scatter/Dot
Scatter/Dot
Select Simple Scatter and click Define
Highlight Weight and click into Y Axis box
Highlight Length and click into X Axis box
Click OK
Output 1 [Document 1] — IBM SPSS Statistics Viewer
Double click on the scatter plot
Chart Editor
Select Elements and select Fit Line at Total
Properties
Click the Fit Line tab and select Linear for Fit Method
Confidence Intervals: select Mean and enter 95% (default)
Select Attach label to line (default)

Click Apply
Click Close
7.00 - R? Linear = 0.509
o
o
6.00 -

5.00 A

Weight (kg)

4.00 -

2.00 -

48.0 51.0 54.0 57.0 60.0
Length (cm)

Figure 7.3 Scatter plot of weight on length with regression line and 95 % mean confidence interval.
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Figure 7.4 Scatter plot of weight on length with regression line and 95% individual confidence
interval.

By repeating the same commands shown in Box 7.7 and in the Fit Line tab, selecting
Confidence Intervals: Individual Figure 7.4 can be obtained. The 95% individual prediction
interval is in which 95% of the data points lie is the distance between the 2.5 and
97.5 percentiles. This interval is used to predict normal values. Clearly, any definition
of normality is specific to the context but normal values should only be based on large
sample sizes, preferably of at least 200 participants.’

7.2.8 Reporting a simple linear regression

If the regression model assumptions have been satisfied, the results of the simple linear
regression can be reported as the plot shown in Figure 7.3 in addition to the equation
that defines the relationship, that is,

Weight = —5.412 + (0.178 x Length)

In addition it would be important to report that the R? of the model is 0.51, and that
the effect size Cohen’s fis equal to 1.02.

7.3 Multiple linear regression

A regression model in which the outcome variable is predicted from two or more
explanatory variables is called a multiple linear regression. Explanatory variables may
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be continuous or categorical. For example, it is common to use height and age, both
of which are continuous variables, to predict lung size or to use age and gender, a
continuous and a categorical variable, to predict BMI. For multiple regression, the
equation that explains the line of best fit, that is, the regression line, is

y=a+bx; +byx5+byxs+ ...

where ‘a’ is the intercept and ‘b;’ is the slope for each explanatory variable. In effect, b,
b, bs, etc. are the weights assigned to each of the explanatory variables in the model.
In multiple regression models, the coefficient for a variable can be interpreted as the
unit change in the outcome variable with each unit change in the explanatory variable,
when all of the other explanatory variables are held constant.

Multiple regression is used when there are several explanatory variables that predict
an outcome or when the effect of an observational or experimental factor is being tested.
For example, height, age and gender could be used to predict lung function and then the
effects of other potential explanatory variables such as current respiratory symptoms or
smoking history could be tested. In multiple regression models, all explanatory variables
that have an important association with the outcome should be included.

7.3.1 Building a multiple regression model

Multiple linear regression models should be built up gradually through a series of uni-
variate, bivariate, and multivariate methods. In multiple regression, each explanatory
variable should ideally have a significant correlation with the outcome variable but
the explanatory variables should not be highly correlated with one another, that is
collinear. In addition, models should not be over-fitted with a large number of vari-
ables that increase the R square by small amounts. In over-fitted models, the R square
may decrease when the model is applied to other data.

Decisions about which variables to remove or include in a model should be based
on expert knowledge and biological plausibility in addition to statistical considerations.
These decisions often need to take cost, measurement error and theoretical constructs
into account in addition to the strength of association indicated by R values, P values and
standardized coefficients. The ideal model should be parsimonious, that is comprised of
the smallest number of variables that predict the largest amount of variation.

Once a decision has been made about which explanatory variables to test in a model,
the distribution of both the outcome and the continuous explanatory variables should
be examined using methods outlined in Chapter 2, largely to identify any univariate
outliers. The assumptions of regression should also be checked. The order in which the
explanatory variables are entered into the regression model is important because this
can make a difference to the amount of variance that is explained by each variable,
especially when explanatory variables are significantly related to each other.¢

7.3.2 Methods of multivariate modelling

There are three major methods of entering the explanatory variables that include stan-
dard, stepwise or sequential (forward or backward).” In standard (or forced entry) multi-
ple regression, called the ‘enter’ method in SPSS, all variables are entered into the model
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together and the unique contribution of each variable to the outcome variable is cal-
culated. However, an explanatory variable that is correlated with the outcome variable
may not be a significant predictor when the other explanatory variables have accounted
for a large proportion of the variance so that the remaining variance is small.> Therefore,
it is important to consider the overall correlation and also the unique contribution of
the explanatory variable.”

In stepwise multiple regression, the order of the explanatory variables is determined
by the strength of their correlation with the outcome variable or by predetermined sta-
tistical criteria. The stepwise procedure can be forward selection, backward deletion or
stepwise, all of which are available options in SPSS. In forward selection, variables
are added one at a time until the addition of another variable accounts only for a
small amount of variance. In backward selection, all variables are entered and then
are deleted one at a time if they do not contribute significantly to the prediction of
the outcome. Forward selection and backward deletion may not result in the same
regression equation.* Stepwise is a combination of both forward selection and back-
ward deletion in which variables are added one at a time and retained if they satisfy set
statistical criteria but are deleted if they no longer contribute significantly to the model.”

In sequential multiple regression, which is also called hierarchical regression, the order
of entering the explanatory variables is determined by the researcher using logical or
theoretical factors, or by the strength of the correlation with the outcome variable.
When each new variable is entered, the variance contributed by the variable, possible
multicollinearity with other variables and the influence of the variable on the model
are assessed. Variables can be entered one at a time or together in blocks and the sig-
nificance of each variable, or each variable in the block, is assessed at each step. This
method delivers a stable and reliable model and provides invaluable information about
the inter-relationships between the explanatory variables.

Another method of entry in SPSS is remove, in which all variables in a block are
removed in a single step.

7.3.3 Sample size considerations

For multiple regression, it is important to have an adequate sample size. A simple rule
that has been suggested for predictive equations is that the minimum number of cases
should be at least 100 or, for stepwise regression, that the number of cases should be at
least 40 X m, where m is the number of variables in the model.” More precise methods for
calculating sample size and power are available.® To avoid underestimating the sample
size for regression, the sample size calculations should be based on the regression model
itself and not on correlation coefficients.

It is important not to include too many explanatory variables in the model relative
to the number of cases because this can inflate the R? value. When the sample size is
very small, the R? value will be artificially inflated, the adjusted R? value will be reduced
and the imprecise regression estimates may have no sensible interpretation. If the sam-
ple size is too small to support the number of explanatory variables being tested, the
variables can be tested one at a time and only the most significant included in the final
model. Alternatively, a new explanatory variable can be created that is a composite of
the original variables, for example, BMI could be included instead of weight and height.
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A larger sample size increases the precision around the estimates by reducing the stan-
dard errors and often increases the generalizability of the results. The sample size needs
to be increased if a small effect size is anticipated, if the distribution of any of the vari-
ables is skewed or if there is substantial measurement error in any variable. All of these
factors tend to reduce statistical power to demonstrate significant associations between
the outcome and explanatory variables.

It is important to achieve a balance in the regression model with the number of
explanatory variables and sample size, because even a small R value will become statis-
tically significant when the sample size is very large. Thus, when the sample size is large
it is prudent to be cautious about type I errors. When the final model is obtained, the
clinical importance of estimates of effect size should be used to interpret the coefficients
for each variable rather than reliance on P values.

7.3.4 Multicollinearity

Collinearity is a term that is used when two explanatory variables are significantly
related to one another. The issue of collinearity is only important for the relationships
between explanatory variables and naturally does not need to be considered in
relationships between the explanatory variables and the outcome. Multicollinearity
will occur in the regression model if two or more explanatory variables are significantly
related to one other.

Regression is more robust to some degrees of multicollinearity than ANOVA but the
smaller the sample size and the larger the number of variables in the model, the more
problematic collinearity becomes. Important degrees of multicollinearity need to be rec-
onciled because they can distort the regression coefficients and lead to a loss of precision,
that is inflated standard errors of the beta coefficients, and thus to an unstable and unre-
liable model. In extreme cases of collinearity, the direction of effect, that is the sign, of
a regression coefficient may change.

Correlations between explanatory variables cause logical as well as statistical prob-
lems. If one variable accounts for most of the variation in another explanatory variable,
the logic of including both explanatory variables in the model needs to be considered
since they are approximate measures of the same entity. The correlation (r) between
explanatory variables in a regression model should not be greater than 0.70.7 For this
reason, the decision of which variables to include should be based on theoretical con-
structs rather than statistical considerations based on regression estimates. Variables that
can be measured with reliability and with minimum measurement error are preferred,
whereas measurements that are costly, invasive, unreliable or removed from the main
causal pathway are less useful in predictive models.

The amount of mulitcollinearity in a model is estimated by the variance inflation
factor (VIF), which is calculated as 1/(1 — R?) where R? is the squared multiple corre-
lation coefficient. In essence, VIF measures how much the variance of the regression
coefficient has been inflated due to multicollinearity with other explanatory variables.’
In regression models, P values rely on an estimate of variance around the regression
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Table 7.3 Relation between R, tolerance
and variance inflation factor (VIF)

R Tolerance VIF

0.25 0.94 1.07
0.50 0.75 1.33
0.70 0.51 1.96
0.90 0.19 5.26
0.95 0.10 10.26

coefficients, which is proportional to the VIF and thus if the VIF is inflated, the P
value may be unreliable. A VIF that is large, say greater than or equal to 4, is a sign of
mulitcollinearity and the regression coefficients, their variances and their P values are
likely to be unreliable.

In SPSS, mulitcollinearity is estimated by tolerance, that is 1 — R?. Tolerance has an
inverse relationship to VIF in that VIF = 1/tolerance. Tolerance values close to zero indi-
cate mulitcollinearity.” In regression, tolerance values less than 0.2 are usually consid-
ered to indicate mulitcollinearity. The relation between R, tolerance and VIF is shown
in Table 7.3. A tolerance value below 0.5, which corresponds with an R value above 0.7
is of concern.

Mulitcollinearity can be estimated from examining the standard errors and the tol-
erance values as described in the examples below, or multicollinearity statistics can be
obtained in the Statistics options under the Analyze — Regression — Linear commands.

7.3.5 Multiple linear regression: Testing for group differences

Regression can be used to test whether the relation between the outcome and explana-
tory variables is the same across categorical groups, say males and females. Rather than
split the data set and analyze the data from males and females separately, it is often more
useful to incorporate gender as a binary explanatory variable in the regression model.
This process maintains statistical power by maintaining sample size and has the advan-
tage of providing an estimate of the size of the difference between the gender groups.
Binary variables are often included in a regression model in experimental studies in
which a continuous outcome variable is adjusted for a continuous baseline variable
before testing for a between-group difference.!® In observational studies, a binary vari-
able can be added to a regression model to compute the mean difference between two
groups after adjusting for a covariate. It is simple to include a categorical variable in a
regression model when the variable is binary, that is, has two levels only. Binary regres-
sion coefficients have a straight forward interpretation if the variable is coded 0 for the
comparison group, for example, a factor that is absent or a reply of no, and 1 for the
group of interest, for example, a factor that is present or a reply that is coded yes.
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Research question

The spreadsheet weights.sav used previously in this chapter will be used to answer the
following research questions.

Questions: Do length, gender or the number of siblings influence the weight of
babies at one month of age? Does the length of babies by gender
influence the weight of babies differently?

Variables: Outcome variable = weight (continuous)

Explanatory variables =length (continuous), gender (category, two
levels) and parity (category, two levels)

In this model, length is included because it is an important predictor of weight. In
effect, the regression model is used to adjust weight for differences in length between
babies and then to test the null hypothesis that there is no difference in weight between
groups defined by gender and parity.

The Transform — Recode commands shown in Box 1.9 can be used to recode gender
into a new variable labelled gender2 with values 0 and 1, making an arbitrary decision
to code male gender as the comparison group (i.e. male =0, female = 1). Similarly, parity
can be re-coded into a new variable, parity2 with the value 0 for singletons unchanged
and with values of 1 or greater re-coded to 1 using the Range option from 1 through 3.
Once re-coded, values and labels for both variables need to be added in the Variable View
screen and the numbers in each group verified as correct using the frequency commands
shown in Box 1.7. It is important to always have systems in place to check for possible
recoding errors and to document re-coded group numbers in any new variables.

In this chapter, regression equations are built using the sequential method. To add
variables to the regression model in blocks, the commands shown in Box 7.8 can be
used with the enter method and block option. Prior bivariate analysis using f-tests
for gender and one-way ANOVA for parity (not shown) indicated that the association
between gender and weight is stronger than the association between parity and weight.
Therefore, gender is added in the model before parity. Using the sequential method, the
statistics of the two models are easily compared, multicollinearity between variables
can be identified and reasons for any inflation in standard errors and loss of precision
become clear.

Box 7.8 SPSS commands to generate a regression model with a binary
explanatory variable

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — Regression — Linear
Linear Regression
Highlight Weight, click into Dependent box
Highlight Length, click into Independent(s) box
Under Block 1 of 1, click Next
Highlight Gender recoded, click into Independent(s) box in Block 2 of 2
Method = Enter (default)
Click Statistics
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Linear Regression: Statistics
Select Estimates for Regression Coefficients (default) and tick Model fit (default) and R
squared change, click Continue
Click OK

The Model Summary table indicates the strength of the predictive or explanatory vari-
ables in the regression model. The first model contains length and the second model
contains length and gender. Because there are a different number of variables in the two
models, the adjusted R square value is used when making direct comparisons between
the models. The adjusted R square value can be used to assess whether the fit of the
model improves with inclusion of the additional variable, that is, whether the amount
of explained variation increases.

Model Summary

Change statistics

R Adjusted  Std. error of R square F Sig. F
Model R Square  Rsquare the estimate change Change dflt df2 change
1 0.7132  0.509 0.508 0.42229 0.509 567.043 1 548 0.000
2 0.741° 0.549 0.548 0.40474 0.041 49.543 1 547 0.000

aPredictors: (constant), length (cm).
bPredictors: (constant), length (cm), gender re-coded.

By comparing the adjusted R square of Model 1 generated in Block 1 with the adjusted
R square of Model 2 generated in Block 2, it is clear that adding gender improves the
model fit because the adjusted R square increases from 0.508 to 0.548. This indicates
that 54.8% of the variation is now explained. It is important to know whether the
R square increases by a significant amount. The R Square Change and the Change
Statistics indicates that in Model 1 with length only, R? changes from 0 to 0.509 and
in Model 2 with gender re-coded included as a predictor, R? increases by 0.041. The
corresponding P values shown in the column labelled Sig. F Change are less than 0.05
and are significant indicating the amount of variation accounted for by the model has
significantly increased.

ANOVA?

Model Sum of squares df Mean square F Sig.

1 Regression 101.119 1 101.119 567.043 0.000°
Residual 97.723 548 0.178
Total 198.842 549

2 Regression 109.235 2 54.617 333.407 0.000°¢
Residual 89.607 547 0.164
Total 198.842 549

2Dependent variable: weight (kg).
bPredictors: (constant), length (cm).
¢Predictors: (constant), length (cm), gender re-coded.
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In the ANOVA table, the regression mean square decreases from 101.119 in Model 1
to 54.617 in Model 2 when gender is added because more of the unexplained variation
is now explained. With high F values, both models are clearly significant as expected.

In the Coefficients table, the standard error around the beta coefficient for length
remains at 0.007 in both models indicating that the model is stable. An increase of more
than 10% in a standard error indicates multicollinearity between the variables in the
model and the variable being added.

Coefficients?

Unstandardized Standardized
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) -5.412 0.0411 -13.167 0.000
Length (cm) 0.178 0.007 0.713 23.813 0.000
2 (Constant) -4.563 0.412 -11.074 0.000
Length (cm) 0.165 0.007 0.660 22.259 0.000
Gender re-coded -0.251 0.036 -0.209 -7.039 0.000

aDependent variable: weight (kg).

Wiith two explanatory variables in the model, the regression line will be of the form
ofy = a+ b x, + byx,, where x, is length and x, is gender. Substituting the variables and
the unstandardized coefficients from the Coefficients table, the equation for model is
as follows:

Weight = —4.563 + (0.165 X Length) — (0.251 X Gender)

Because males are coded zero, the final term in the equation is removed for males. The
term for gender indicates that, after adjusting for length, females are 0.251 kg lighter
than males. In effect this means that the y intercept is —4.563 for males and —4.814
(i.e. —4.563 —0.251) for females. Thus, the lines for males and females are parallel but
females have a lower y-axis intercept.

The unstandardized coefficients cannot be directly compared to assess their relative
importance because they are in the original units of the measurements. However, the
standardized coetficients indicate the relative importance of each variable in comparable
standardized units (z scores). The Coefficients table shows that length with a standard-
ized coefficient of 0.660 is a more significant predictor of weight than gender with a
standardized coefficient of 0.209. As with an R value, the negative sign is an indication
of the direction of effect only. The standardized coefficients give useful additional infor-
mation because they show that although both predictors have the same P values, they
are not of equal importance in predicting weight.

The Excluded Variables table shows the model with gender omitted. The ‘Beta In’ is
the standardized coefficient that would result if gender is included in the model and
is identical to the standardized coefficient in the Coefficients table above. The partial
correlation is the unique contribution of gender to predicting weight after the effect of
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length is removed and is an estimate of the relative importance of this predictive variable
in isolation from length. The collinearity statistic tolerance is close to 1 indicating that
the predictor variables are not closely related to one another and that the regression
assumption of independence between predictive variables is not violated.

Excluded Variables?

Collinearity
Partial statistics
Model Beta In t Sig. correlation Tolerance
1 Gender re-coded —-0.209>  —7.039 0.000 —0.288 0.936

2Dependent variable: weight (kg).
bPredictors in the model: (constant), length (cm).

7.3.6 Plotting a regression line with one categorical
explanatory variables

To plot a regression equation, it is important to ascertain the range of the explanatory
variable values because the line should never extend outside the absolute range of the
data. To obtain the minimum and maximum values of length for males and females
the SPSS commands Analyze — Compare Means — Means can be used with length as
the dependent variable and gender2 as the independent variable, and Options clicked to
request minimum and maximum values. This provides the information that the length
of male babies ranges from 50 to 62 cm and that the length of female babies ranges from
48 to 60.5 cm.

Table 7.4 shows how an Excel spreadsheet can be used to compute the coordinates for
the beginning and end of the regression line for each gender. The regression coetficients
from the equation are entered in the first three columns, and the minimum and max-
imum values for length and indicators of gender are entered in the next two columns.
The predicted weight is then calculated using the equation of the regression line and the
calculation function in Excel.

Table 7.4 Excel spreadsheet to calculate regression line coordinates

Column 6
Column 1 Column 2 Column 3 Column 4 Column 5 predicted
a b1 b2 length gender2 weight
-4.563 0.165 -0.251 50 0 3.687
-4.563 0.165 -0.251 62 0 5.667
-4.563 0.165 -0.251 48 1 3.106

-4.563 0.165 -0.251 60.5 1 5.169




222 Chapter 7

The line coordinates from columns 4 and 6 can be copied and pasted into SigmaPlot
to draw the graph using the commands shown in Box 7.9. The SigmaPlot spreadsheet
should have the lower and upper coordinates for males in columns 1 and 2 and the
lower and upper coordinates for females in columns 3 and 4 as follows:

Column 1 Column 2 Column 3 Column 4
50.0 3.69 48.0 3.1
62.0 5.67 60.5 5.17

Box 7.9 SigmaPlot commands to plot regression lines

SigmaPlot commands

Data 1*
Click on Create Graph tab at top of the screen
Click on Line in sub-menu
Click on Simple Straight Line in Line Group
Create Graph — Data Format
Data format = Highlight ‘XY Pair’, click Next
Create Graph — Select Data
Highlight Column 1, click into Data for X
Highlight Column 2, click into Data for Y
Click Finish

The second line for females can be added using Graph Page — Add Plot and using the
same command sequence shown in Box 7.9, except that the Data for X is column 3
and the Data for Y is column 4. The resulting graph can then be customized using the
many options in Graph Page. The completed graph shown in Figure 7.5 is a method for
presenting summary results in a way that shows the relationship between weight and
length and the size of the difference between the genders.

7.3.7 Regression models with two explanatory
categorical variables

Having established the relationship between weight, length and gender, the re-coded
binary variable parity2 can be added to the model. Using the commands shown in
Box 7.8, length and gender re-coded can be added as independent variables into Block 1
of 1 and parity re-coded (binary) as an independent variable into Block 2 of 2 to obtain
the following output.

The Model Summary table shows that adding parity to the model improves the
adjusted R square value only slightly from 0.548 in Model 1 to 0.556 in Model 2, and
that is, 55.6% of the variation is now explained. However, the Change Statistics with P
value less than 0.05 indicates that this small increase is significant.
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Figure 7.5 Equations for predicting weight at 1 month of age in term babies.
Regression
Model Summary
Change statistics
R Adjusted R Std. error of R square F Sig. F
Model R square square the estimate change change dft df2 change
1 0.741° 0.549 0.548 0.40474 0.549 333.407 2 547 0.000
2 0.747° 0.559 0.556 0.40088 0.009 11.597 1 546 0.001

2Predictors: (constant), gender re-coded, length (cm).
bPredictors: (constant), gender re-coded, length (cm), parity re-coded (binary).

In the ANOVA table, the mean square decreases from 54.617 in Model 1 to 37.033 in

Model 2 because more of the unexplained variation is now explained.

ANOVA?

Model Sum of squares df Mean square F Sig.

1 Regression 109.235 2 54.617 333.407 0.000°
Residual 89.607 547 0.164
Total 198.842 549

2 Regression 111.098 3 37.033 230.443 0.000°¢
Residual 87.744 546 0.161
Total 198.842 549

2Dependent variable: weight (kg).
bPredictors: (constant), gender re-coded, length (cm).
¢Predictors: (constant), gender re-coded, length (cm), parity re-coded (binary).
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In the Coefficients table, the standard error for length remains at 0.007 in both models
and the standard error for gender decreases slightly from 0.036 in Model 1 to 0.035 in
Model 2 indicating that the model is stable. The unstandardized coefficients indicate that
the equation for the regression model is now as follows:

Weight = —4.572 + (0.164 X Length) — (0.255 X Gender) + (0.124 X Parity)

Coefficients?

Unstandardized Standardized
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) -4.563 0.412 -11.074 0.000
Length (cm) 0.165 0.007 0.660 22.259 0.000
Gender re-coded -0.251 0.036 -0.209 -7.039 0.000
2 (Constant) -4.572 0.408 -11.203 0.000
Length (cm) 0.164 0.007 0.655 22.262  0.000
Gender re-coded -0.255 0.035 -0.212 —-7.200 0.000
Parity re-coded (binary) 0.124 0.036 0.097 3.405 0.001

2Dependent variable: weight (kg).

When parity status is singleton, that is, parity equals zero, the final term of the regres-
sion equation will return a zero value and will therefore be removed for singleton babies.
Therefore, the model indicates that, after adjusting for length and gender, babies who
have siblings are on average 0.124 kg heavier than singleton babies.

The standardized coefficients in the Coefficients table show that length and gender are
more significant predictors than parity in that their standardized coefficients are larger.
These coefficients give a useful estimate of the size of effect of each variable when, as in
this case, the P values are similar.

Excluded Variables?

Collinearity

statistics
Model Beta in t Sig.  Partial correlation  Tolerance
1 Parity re-coded (binary) 0.097° 3.405 0.001 0.144 0.997

2Dependent variable: weight (kg).
bPredictors in the model: (constant), gender re-coded, length (cm).

The Excluded Variables table shows that tolerance remains high at 0.997 indicating
that there is no collinearity between variables.

7.3.8 Plotting regression lines with two explanatory
categorical variables

The regression lines plotted for a single binary explanatory variable are shown in
Figure 7.5. To include the second binary explanatory variable of sibling status in the
graph, two line coordinates are computed for each of the four groups, that is males
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Table 7.5 Excel spreadsheet for calculating coordinates for regression lines
with two binary explanatory variables

Column 8

Column 1 Column 2 Column 3 Column 4 Column5 Column 6 Column 7 predicted

a b1 b2 b3 length gender2 parity2  weight
-4.572 0.164 -0.255 0.124 50 0 0 3.63
-4.572 0.164 -0.255 0.124 62 0 0 5.60
-4.572 0.164 -0.255 0.124 49 1 0 3.21
-4.572 0.164 -0.255 0.124 58.5 1 0 4.77
-4.572 0.164 -0.255 0.124 50 0 1 3.75
-4.572 0.164 -0.255 0.124 62 0 1 5.72
-4.572 0.164 -0.255 0.124 48 1 1 3.17
-4.572 0.164 -0.255 0.124 60.5 1 1 5.22

with no siblings; males with one or more siblings; females with no siblings and females
with one or more siblings. To obtain the minimum and maximum values for each of
these groups, the data can be split by gender using the Split File command shown in
Box 4.8 and then the SPSS commands Analyze — Compare Means — Means can be used
with length as the dependent variable and parity2 as the independent variable and
Options clicked to request minimum and maximum values.

Again, Excel can be used to calculate the regression coordinates using the regression
equation and with an indicator for parity included in an additional column. The Excel
spreadsheet from Table 7.5 and the commands from Box 7.9 can be used to plot the
figure in SigmaPlot with additional lines included using Add Plot under Graph Page.

The coordinates from columns 5 and 8 can be copied and pasted into SigmaPlot and
then split and rearranged to form the following spreadsheet of line coordinates.

Line 1—-X Line1-Y Line2-X Line2-Y Line3-X Line3-Y Line4-X Line4-Y

50.0 3.63 49.0 3.21 50.0 3.75 48.0 3.17
62.0 5.60 58.5 477 62.0 5.72 60.5 5.22

The SigmaPlot commands shown in Box 7.9 but with Multiple Straight Lines selected
under the Line Group sub-menu can be used to draw the four regression lines as shown
in Figure 7.6. Plotting the lines is a useful method to indicate the size of the differences
in weight between the four groups.

7.3.9 Including multi-level categorical variables

The previous model includes categorical variables with only two levels, that is, binary
explanatory variables. A categorical explanatory variable with three or more levels can
also be included in a regression model but first needs to be transformed into a series of
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Figure 7.6 Regression lines by gender and parity status for predicting weight at 1 month of age in
term babies.

binary variables. Simply adding a variable with three or more levels would produce a
regression coefficient that indicates the effect for each level of the variable. If the effects
for each level are unequal, the regression assumption that there is an equal (linear) effect
across each level of the variable will be violated. Thus, multi-level categorical variables
can be used only when there is a linearity of effect over the categories. This assumption
of linearity is not required for ANOVA.

7.3.10 Dummy variables

When there are different effects across three or more levels of a variable, the problem of
non-linearity can be resolved by creating dummy variables, which are also called indica-
tor variables. It is not possible to include a dummy variable for each level of the variable
because the dummy variables would lack independence and create multicollinearity.
Therefore for k levels of a variable, there will be k— 1 dummy variables, for example,
for a variable with three levels, two dummy variables will be created. It is helpful in
interpreting the results if each dummy variable has a binary coding of 0 or 1.

The variable parityl with three levels from Chapter 5, that is parity coded as babies
with 0, 1 or 2 or more siblings, can be recoded into dummy variables using Transform —
Recode into Different Variables.

paritydl: Old Value = 1 — New Value = 1 (1 sibling)(same value as previously)
0ld Value: All other values — New Value = 0

parityd2: Old Value = 2 — New Value = 1 (2 or more siblings)
0ld Value: All other values — New Value = 0
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Clearly a dummy variable for singletons is not required because if the values of pari-
tyd1 and parityd2 are both coded 0, the case is singleton. Dummy variables are invalu-
able for testing the effects of ordered groups that are likely to be different, for example,
lung tunction in groups of non-smokers, ex-smokers and current smokers. It is essen-
tial that dummy variables are used when groups are non-ordered; for example, when
marital status is categorized as single, married or divorced.

Using the SPSS commands shown in Box 7.8, length and gender2 can be added into
the model as independent variables into Block 1 of 1 and the dummy variables parityd1
and parityd2 added in Block 2 of 2. Related dummy variables must always be included in
a model together because they cannot be treated independently. If one dummy variable
is significant in the model and a related dummy variable is not, they must both be left
in the model together.

In the Model Summary table, the adjusted R square value shows that the addition of
the dummy variables for parity improves the fit of the model only slightly from 0.548
to 0.556, that is, by 0.8%.

Model Summary

Change statistics

R Adjusted R Std. error of R square F Sig. F
Model R square square the estimate change change df1 df2 change
1 0.7412 0.549 0.548 0.40474 0.549 333.407 2 547 0.000
2 0.748 0.559 0.556 0.40109 0.010 5.996 2 545 0.003

aPredictors: (constant), gender re-coded, length (cm).
bPredictors: (constant), gender re-coded, length (cm), dummy variable — parity = 1, dummy
parity — parity > 2.

In the Coefficients table, the P values for the unstandardized coefficients show that
both dummy variables are significant predictors of weight with P values of 0.008 and
0.001, respectively. However, the low standardized coefficients and the small partial
correlations in the Excluded Variables table show that the dummy variables contribute
little to the model compared to length and gender.

Coefficients?

Unstandardized Standardized
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) -4.563 0.412 -11.074  0.000
Length (cm) 0.165 0.007 0.660 22.259 0.000
Gender re-coded -0.251 0.036 -0.209 -7.039 0.000
2 (Constant) —-4.557 0.409 -11.144 0.000
Length (cm) 0.164 0.007 0.654 22.182  0.000
Gender re-coded -0.255 0.035 -0.212 -7.216  0.000
Dummy variable — parity =1 0.111 0.042 0.088 2.678 0.008
Dummy variable — parity > 2 0.138 0.043 0.108 3.249  0.001

2Dependent variable: weight (kg).
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Excluded variables?

Collinearity
statistics
Model Beta In t Sig.  Partial correlation  tolerance
1 Dummy variable —parity=1 0.034> 1.188 0.236 0.051 0.999
Dummy parity — parity >2 0.063° 2.183 0.029 0.093 0.994

2Dependent variable: weight (kg).
PPredictors in the model: (constant), gender re-coded, length (cm).

Using the values in the Coefficients table, the regression equation is now as follows:
Weight = —4.557 + (0.164 X Length) — (0.255 X Gender) + (0.111 X Parityd1)
+ (0.138 X Parityd2)

Because of the binary coding used, the final two terms in the model are rendered zero for
singletons because both dummy variables are coded zero. The coefficients for the final
two terms indicate that after adjusting for length and gender, babies with one sibling are
on average 0.111kg heavier than singletons, and babies with two or more siblings are
on average 0.138 kg heavier than singletons.

7.3.11 Multiple linear regression with two continuous
variables and two categorical variables

Any combination of continuous and categorical explanatory variables can be included
in a multiple linear regression model. The previous regression model with one conti-
nuous and two categorical variables, that is, length, gender and parity, can be further
extended with the addition of second continuous explanatory variable, that is, head
circumference.

Research question

Using the file weights.sav, the research question can be extended to examine whether
head circumference contributes to the prediction of weight in 1 month-old babies after
adjusting for length, gender and parity. The final predictive equation could be used to
generate normal values for term babies, to calculate z scores for babies” weights, or to
calculate per cent predicted weights.

Model Summary

Change statistics

R Adjusted R Std. error of R square F Sig. F
Model R square square the estimate change change dft df2 change
1 0.7472  0.559 0.556 0.40088 0.559 230.443 3 546 0.000
2 0.772°  0.596 0.593 0.38406 0.037 49.864 1 545 0.000

aPredictors: (constant), parity re-coded (binary), gender re-coded, length (cm).
bpredictors: (constant), parity re-coded (binary), gender re-coded, length (cm), head circumference (cm).
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The regression model obtained previously can be built on to test the influence of the
variable, head circumference. The model in which parity2 was included as a binary vari-
able is used because including parity with three levels coded as dummy variables did not
substantially improve the fit of the model. Using the SPSS commands shown in Box 7.8,
length, gender2 and parity2 can be added in Block 1 of 1 and head circumference in
Block 2 of 2 to generate the following output.

The Model Summary table shows that the adjusted R square increases slightly from
55.6 to 59.3% with the addition of head circumference. The Change Statistics indicates
that the increase in R? from Model 1 to Model 2 is significant. In the Coefficients table, all
predictors are significant and the standardized coefficients show that length contributes
to the model to a greater degree than head circumference, but that head circumference
makes a larger contribution than gender or parity.

Coefficients?

Unstandardized Standardized
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) -4.572 0.408 -11.203  0.000
Length (cm) 0.164 0.007 0.655 22.262  0.000
Gender re-coded —0.255 0.035 -0.212 —7.200 0.000
Parity re-coded (binary) 0.124 0.036 0.097 3.405 0.001
2 (Constant) —6.890 0.511 -13.496 0.000
Length (cm) 0.130 0.009 0.520 15.243  0.000
Gender re-coded -0.196 0.035 -0.163 -5.624  0.000
Parity re-coded (binary) 0.093 0.035 0.073 2.638 0.009
Head circumference (cm) 0.110 0.016 0.249 7.061 0.000

2Dependent variable: weight (kg).

However, the tolerance statistic in the Excluded Variables has fallen to 0.598 indicating
some collinearity in the model. This is expected because the initial Pearson’s correlations
showed a significant association between length and head circumference with an r value
of 0.598. As a result of the mutlicollinearity, the standard error for length has inflated
from 0.007 in Model 1 to 0.009 in Model 2, a 29% increase. The benefit of explaining
an extra 3.7% of the variation in length has to be balanced with this loss of precision.

Excluded Variables®

Collinearity

statistics
Model Beta In t Sig. Partial Correlation Tolerance
1  Head circumference (cm) 0.249>  7.061  0.000 0.290 0.598

2Dependent variable: weight (kg).
bPredictors in the Model: (constant), parity re-coded (binary), gender re-coded, length (cm).

Deciding which variables to include in a model can be difficult. Head circumference
is expected to vary with length as a result of common factors that influence body size
and growth. In this situation, head circumference should be classified as an alternative
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outcome rather than an independent explanatory variable because it is on the same
developmental pathway as length. Each model building situation will be different but
it is important that the relationships between the variables and the purpose of building
the model are always carefully considered.

7.4 Interactions

An interaction occurs when there is a multiplicative rather than additive relationship
between two explanatory variables, that is, when the effect of one explanatory variable
depends on the value of another variable. Interactions can occur between continuous
and categorical variables. An additive effect of a binary variable was shown in Figure 7.5
where the lines for each gender had the same slopes so that they were parallel. If an
interactive effect is present, the two lines would have different slopes and would cross
over or intersect at some point.

To test for the presence of an interaction, the two variables are multiplied to create a
cross-product term, which is included in the multiple regression model. In the following
equation, the fourth term represents an interaction between length and gender. Also,
once again, coding of binary variables as 0 and 1 is helpful for interpreting interactions.
The last two terms in the model will be zero when gender is coded 0. When gender is
coded as 1, the third term will add a fixed amount to the prediction of the outcome
variable and the fourth interactive term will add an amount that increases as length
increases, thereby causing the regression lines for each gender to increasingly diverge.
The regression equation for a model with an interaction term would be as follows:

Weight = a + (b, X Length) + (b, X Gender) + (b5 X Length X Gender)

It is preferable to explore evidence that an interaction is present rather than testing for
all possible interactions in the model. Testing for all interactions will almost certainly
generate some spurious but significant P values.!! Interactions naturally introduce
mulitcollinearity into the model because the interaction term correlates with both of
its derivatives. This will result in an unstable model, especially when the sample size
is small. To avoid multicollinearity, the explanatory variables and their interaction can
be centered before inclusion in the regression model,” which will be discussed later in
this chapter.

7.4.1 Identifying interactions

Interactions between variables can be identified by plotting the dependent variable
against the explanatory variable for each group within a factor. The regression plots
can then be inspected to assess whether there is a different linear relationship across the
groups. By using the SPSS Split File option with groups based in gender (see Box 4.8)
and the commands shown in Box 7.7 and not requesting Confidence Intervals, the plots
shown in Figures 7.7 and 7.8 can be obtained.

The regression equations for weight and length shown in Figure 7.7 indicate that the
y intercept is different for males and females as expected from the former regression
equations. When the values of the data points are a long way from zero, as in these plots,
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Figure 7.8 Scatter plots of weight on head circumference for male and female babies with regres-

sion line.
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the y intercepts have no meaningful interpretation although they can indicate that the
slopes are different. However, the slope of the line through the points is similar at 0.19
for males and 0.13 for females. This similarity of slopes suggests that there is no impor-
tant interaction between length and gender in predicting weight. The graphs can be
repeated to investigate a possible interaction between head circumference and gender.

The plots for weight and head circumference shown in Figure 7.8 indicate that the
intercept is different between the genders at —6.75 for males and —3.22 for females.
Moreover, the slope of 0.30 for males is 50% higher than the slope of 0.20 for females
as shown by the different slopes of the regression lines through the plots. If plotted on
the same figure, the two regression lines would intersect at some point indicating an
interaction between head circumference and gender.

7.4.2 Including interactions in the model

The interaction term can be computed for inclusion in the model as shown in Box 7.10.
In practice, head circumference would be omitted from the model because of its
collinearity with length but it is included in this model solely for demonstrating the
effect of an interaction term. The model is obtained using the commands shown in
Box 7.8 and by adding length, gender2, parity2 and head circumference into Block 1 of
1 and the interaction term headxgen into Block 2 of 2.

Box 7.10 SPSS command to compute an interaction term

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Transform — Compute Variable
Compute Variable
Target Variable = headxgen
Numeric Expression = Head circumference*Gender recoded
Click OK

The Model Summary table shows that the interaction term only slightly improves the
fit of the model by increasing the adjusted R square from 0.593 to 0.597. The Change
Statistics columns indicate that this increase is significant.

Model Summary

Change Statistics

R Adjusted R Std. errorof R square F Sig. F
Model R square square the estimate change change dft df2 change
1 0.7722 0.596 0.593 0.38406 0.596 200.766 4 545 0.000
2 0.775*  0.601 0.597 0.38211 0.005 6.587 1 544 0.011

2Predictors: (constant), head circumference (cm), parity re-coded (binary), gender re-coded, length (cm).
bpredictors: (constant), head circumference (cm), parity re-coded (binary), gender re-coded, length (cm),
head by gender interaction.
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In the Coefficients table, the interaction term in Model 2 is significant with a P value of
0.011 and therefore must be included because it helps to describe the true relationship
between weight, head circumference and gender. If an interaction term is included then
both derivative variables, that is, head circumference and gender, must be retained in
the model regardless of their statistical significance. Once an interaction is present, the
coefficients for the derivative variables have no interpretation except that they form an
integral part of the mathematical equation.

Coefficients?

Unstandardized Standardized
coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) -6.890 0.511 -13.496 0.000
Length (cm) 0.130 0.009 0.520 15.243 0.000
Gender recoded -0.196 0.035 -0.163 -5.624 0.000
Parity recoded (binary) 0.093 0.035 0.073 2.638 0.009
Head circumference (cm) 0.110 0.016 0.249 7.061 0.000
2 (Constant) —-8.086 0.689 -11.731 0.000
Length (cm) 0.128 0.009 0.512 15.034 0.000
Gender recoded 2.282 0.966 1.898 2.362 0.019
Parity recoded (binary) 0.093 0.035 0.073 2.651 0.008
Head circumference (cm) 0.144 0.020 0.326 7.063 0.000
Head by gender interaction —-0.065 0.025 —-2.040 -2.567 0.011

aDependent variable: weight (kg).

The Coefficients table shows that inclusion of the interaction term inflates the standard
error for head circumference from 0.016 in Model 1 to 0.02 in Model 2 and significantly
inflates the standard error for gender from 0.035 to 0.966. These standard errors have
inflated as a result of the collinearity with the interaction term and, as a result, the
tolerance value in the Excluded Variables table is very low and unacceptable at 0.001,
also a sign of mutlicollinearity. In addition, while the change in R square from Model
1 to Model 2 was significant, it is important to assess the clinical significance of this
increase, in conjunction with a less precise model. This example highlights the trade-off
between building a stable predictive model and deriving an equation that describes an
interaction between variables. Multicollinearity caused by interactions can be removed
by centering'? which is described later in this chapter.

Excluded Variables®

Collinearity

Statistics
Model Beta In t Sig. Partial Correlation  Tolerance
1 Head by gender interaction -2.040® -2.567 .011 -.109 .001

2Dependent variable: weight (kg)
bPredictors in the model: (constant), head circumference (cm), parity re-coded (binary),
gender re-coded, length (cm).
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The final model with all variables and the interaction term included could be consid-
ered to be over-fitted. By including variables that explain little additional variation and
by including the interaction term, the model not only becomes complex but the preci-
sion around the estimates is sacrificed and the regression assumptions of independence
are violated. Head circumference should be omitted because of its relation with length
and because it explains only a small additional amount of variation in weight. Thus, the
interaction term is also omitted. The final model with only length, gender and parity is
parsimonious. Once the final model is reached, the remaining regression assumptions
should be confirmed.

7.5 Residuals

The residuals are the distances between each data point and the value predicted by the
regression equation, that is, the variation about the regression line shown in Figure 7.2.
The residual distances are converted to standardized residuals that are in units of
standard deviations from the regression. Standardized residuals are assumed to have
a normal or approximately normal distribution with a mean of zero and a standard
deviation of 1.

Given the characteristics of a normal distribution, it is expected that 5% of stan-
dardized residuals will be outside the area that lies between —1.96 and + 1.96 standard
deviations from the mean (see Figure 2.1). In addition, 1% of standardized residuals are
expected to lie outside the area between —3 and +3 standard deviations from the mean.

As the sample size increases, there will be an increasing number of potential outliers.
In this sample size of 550 babies, it is expected that five children will have a standardized
residual that will be outside the area that lies between —3 and +3 standard deviations
from the mean.

An assumption of regression is that the residuals are normally distributed. The residual
for each case can be saved to a data column using the Save option and the plots of the
residuals can be obtained while running the model as shown in Box 7.11. The normality
of the residuals can then be inspected using Analyze — Descriptive Statistics — Explore as
discussed in Chapter 2.

Box 7.11 SPSS commands to test the regression assumptions

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — Regression — Linear
Linear Regression
Highlight Weight, click into the Dependent box
Highlight Length, Gender recoded, Parity recoded (binary), click into the
Independent(s) box
Click on Statistics
Linear Regression: Statistics
Under Regression Coefficients, tick Estimates (default)
Tick Model fit (default) and Collinearity diagnostics
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Under Residuals, tick Casewise diagnostics — Outliers outside 3 standard deviations
(default), click Continue
Linear Regression
Click Plots
Linear Regression: Plots
Under Scatter 1 of 1, highlight *ZPRED and click into X, highlight
*ZRESID and click into Y
Under Standardized Residual Plots, tick Histogram and Normal probability plot
Click Continue
Linear Regression
Click on Save
Linear Regression: Save
Under Predicted Values, tick Standardized
Under Residuals, tick Standardized
Under Distances, tick Mahalanobis, Cook’s and Leverage values
Click Continue
Linear Regression
Click OK

The Coefficients table shows the variables in the model and the high-tolerance values
confirm their lack of multicollinearity. The Casewise Diagnostics table shows the cases
that are more than three standard deviations from the regression line. There is only one
case that has a standardized residual that is more than three standard deviations from
the regression, that is, the baby with a weight of 5.23 kg compared with a predicted
value of 3.9783 kg and with a standardized residual of 3.122.

Regression

Coefficients?

Unstandardized Standardized Collinearity
coefficients coefficients statistics
Model B Std. error Beta t Sig. Tolerance VIF
1 (Constant) -4.572 0.408 -11.203 0.000
Length (cm) 0.164 0.007 0.655 22.262  0.000 0.933 1.071
Gender recoded  -0.255 0.035 -0.212 —7.200 0.000 0.935 1.069
Parity recoded 0.124 0.036 0.097 3.405  0.001 0.997 1.003

aDependent variable: weight (kg).

Casewise diagnostics?

Case number Std. residual Weight (kg) Predicted value Residual

404 3.122 5.23 3.9783 1.25169

2Dependent variable: weight (kg)



Correlation and regression 237

The Residuals Statistics table shows the minimum and maximum predicted values. The
predicted values range from 3.159 to 5.707 kg and the unstandardized residuals range
from 1.079 kg below the regression line to 1.252 kg above the regression line. This is the
minimum and maximum distances of babies from the equation, which is the variation
about the regression.

Residuals Statistics®

Minimum Maximum Mean Std. Deviation N
Predicted value 3.1594 5.7069 4.3664 44985 550
Std. predicted value -2.683 2.980 0.000 1.000 550
Standard error of predicted value 0.027 0.060 0.034 0.006 550
Adjusted predicted value 3.1413 5.7047 4.3665 44988 550
Residual -1.07912 1.25169 0.00000 .39978 550
Std. residual —-2.692 3.122 0.000 997 550
Stud. residual —-2.706 3.130 0.000 1.001 550
Deleted residual —1.09043 1.25807 -.00008 40276 550
Stud. deleted residual -2.722 3.156 .000 1.003 550
Mahal. distance 1.469 11.372 2.995 1.529 550
Cook’s distance 0.000 0.028 0.002 0.003 550
Centered leverage value 0.003 0.021 0.005 0.003 550

aDependent variable: weight (kg).

The standardized predicted values and standardized residuals shown in the Residuals
Statistics table are expressed in units of their standard deviation and have a mean of
zero and a standard deviation of approximately or equal to 1, as expected when they
are normally distributed.

The histogram and normal P-P plot shown in Figure 7.9 indicate that the distribution
of the residuals deviates only slightly from a classically bell-shaped distribution.

The variance around the residuals can also be used to test whether the model vio-
lates the assumption of homoscedasticity, that is, equal variance over the length of the
regression model. Residual plots are a good method for examining the spread of vari-
ance. The scatter plot in Figure 7.9 shows that there is an equal spread of residuals across
the predicted values indicating that the model is homoscedastic.

7.6 Outliers and remote points

Outliers are data points that are more than three standard deviations from the regression
line. Outliers in regression are identified in a similar manner to outliers in ANOVA.
Univariate outliers should be identified before fitting a model but multivariate outliers,
if present, are identified once the model of best fit is obtained. Outliers that cause a
poor fit degrade the predictive value of the regression model; however, this has to be
balanced with loss of generalizability if the points are omitted.

Multivariate outliers are data values that have an extreme value on a combination of
explanatory variables and exert too much leverage and/or discrepancy (see Chapter 5).
Data points with high leverage and low discrepancy have no effect on the regression
line but tend to increase the R square value and reduce the standard errors. On the
other hand, data points with low leverage and high discrepancy tend to influence the
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Figure 7.9 Histogram and plots of standardized residuals for regression on weight.
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Figure 7.9 (continued)

intercept but not the slope of the regression or the R square value and tend to inflate the
standard errors. Data points with both a high leverage and a high discrepancy influence
the slope, the intercept and the R square value. Thus, a model that contains problematic
data points with high leverage and/or high discrepancy values may not generalize well
to the population.

Multivariate outliers can be identified using Cook’s distances and leverage values
as discussed in Chapter 5. The Residuals Statistics table shows that the largest Cook’s
distance is 0.028, which is below the critical value of 1, and the largest leverage value is
0.021, which is below the critical value of 0.05 indicating that there are no influential
outliers in this model. In regression, Mahalanobis distances can also be inspected.
Mahalanobis distances are evaluated using critical values of chi-square with degrees
of freedom equal to the number of explanatory variables in the model. To adjust for
the number of variables being tested, Mahalanobis distances are usually considered
unacceptable at the P<0.001 level, although the influence of any values with P<0.05
should be examined.

To plot the Mahalanobis distances, which have been saved to a column at the end
of the data sheet, the SPSS commands Graphs — Histogram can be used to obtain
Figure 7.10. Any Mahalanobis distance that is greater than 16.266, that is, a chi-square
value for P<0.001 with three degrees of freedom (because there are three explanatory
variables in the model), would be problematic. The graph shows that no Mahalanobis
distances are larger than this. This is confirmed in the Residual Statistics table, which
shows that the maximum Mahalanobis distance is 11.372.

If multivariate outliers are detected they can be deleted but it is not reasonable to
remove troublesome data points simply to improve the fit of the model. In addition,
when one extreme data point is removed another may take its place so it is important to
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Figure 7.10 Histogram of Mahalanobis distances for weight.

recheck the data after deletion to ensure that there are no further multivariate outliers.
Alternatively, the data can be transformed to reduce the influence of the multivariate
outlier or the extreme data point can be re-coded to a less extreme value. However, a
multivariate outlier depends on a combination of explanatory variables and therefore
the scores would have to be adjusted for each variable. Any technique that is used to
deal with multivariate outliers should be recorded in the study handbook and described
in publications.

7.7 Validating the model

If the sample size is large enough, the model can be built using one-half of the data
and then validated with the other half. If this is the purpose, the sample should be
split randomly. Other selections of 60%—80% for building the model and 40-20% for
validation can be used. A model built using one part of the data and validated using the
other part of the data provides good evidence of stability and reliability. However, both
models must have an adequate sample size and must conform to the assumptions for
regression to minimize collinearity and maximize precision and stability.
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7.8 Reporting a multiple linear regression

When reporting a multiple linear regression, a table is a concise and practical way to
present the results. Information to include in a regression table are the unstandardized
coefficients (95% CI) and corresponding standard errors, standardized beta coefficients,
R? as a measure of a goodness of fit, the P values and the sample size.

In the research example, the most parsimonious model is the model with length, gen-
der and parity as the significant predictive variables. With a hierarchical regression, this
information should be reported at each step of the model as shown in Table 7.6. The
R? for the initial model and the change in each step of the model in R? (represented
by AR?) is also reported. The 95% confidence intervals around the beta coefficients can
be obtained by clicking on “Statistics’ in the linear regression page and then ticking the
option ‘Confidence Intervals’ under the ‘Regression Coefficients’ section. For gender, the beta
coefficient shows the between-group difference after adjusting for length and parity.
Similarly the beta coefficient for parity is the mean difference between babies with no
siblings or one or more siblings after adjusting for length and gender.

In addition, information regarding how any outliers were dealt with, the method of
entry used (e.g. stepwise) and for blockwise entry (or hierarchical), the reason why
variables were selected to be entered into the model in that sequence should be reported.
Also indicate whether the variables were tested for the presence of interactions and
whether the model was validated.

Table 7.6 Reporting a hierarchical regression model with 3 explanatory

variables
Predictor b (95% Cl) SEB B P value
Step 1
Intercept -5.41 (-6.22, -4.61) 0.41 <0.0001
Length 0.18 (0.16, 0.19) 0.01 0.71 <0.0001
Step 2
Intercept —4.56 (-5.37, —=3.75) 0.41 <0.0001
Length 0.17 (0.15, 0.18) 0.01 0.66 <0.0001
Gender? —0.25 (-0.32, -0.18) 0.04 -0.21 <0.0001
Step 3
Intercept —-4.57 (-5.37, -3.77)
Length 0.16 (0.15, 0.18) 0.66 <0.0001
Gender? —-0.26 (-0.32, —0.19) -0.21 <0.0001
Parity® 0.12 (0.05, 0.20) 0.10 0.001

Note. R?=0.71 for step1; AR?=0.04 for step 2; AR?> =0.01 for step 3.
2Coded 0=male, 1=female.
bCoded 0=no siblings, 1=1 or more siblings.
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7.9 Non-linear regression

If scatter plots suggest that there is a curved relationship between the explanatory and
outcome variables, then a linear model may not be the best fit. Other non-linear models
that may be more appropriate for describing the relationship can be examined using the
SPSS commands shown in Box 7.12. Logarithmic, quadratic and exponential fits are the
most common transformations used in medical research when data are skewed or when
a relationship is not linear.

Box 7.12 SPSS commands for examining the equation that best fits data

SPSS Commands

weights.sav — IBM SPSS Statistics Data Editor
Analyze — Regression — Curve Estimation
Curve Estimation
Highlight Weight, click into Dependent(s) box
Highlight Length, click into Independent Variable box
Tick Include constant in equation (default) and Plot models (default)
Under Models, tick Linear (default), Logarithmic, Quadratic and Exponential
Click OK

In the Model Summary table, the Parameter Estimates for the Constant (the intercept)
and the regression coefficients are reported. The equation of each model is as follows:

Linear: Weight = a + (b1 X Length)

Logarithmic: Weight = a + (b1 X log,Length)

Quadratic: Weight = a + (b, X Length) + (b, X Length?)

Exponential: Weight = a + (b, x ¢'"8™)

Curve fit

Model Summary and Parameter Estimates
Dependent variable: weight (kg)

Equation Model summary Parameter estimates

R Square F df1 df2 Sig. Constant b1 b2
Linear 0.509 567.043 1 548 0.000 -5.412 0.178
Logarithmic 0.508 566.399 1 548 0.000 —34.875 9.802
Quadratic 0.509 283.034 2 547 0.000 —6.626 0.222 0.000
Exponential 0.503 555.229 1 548 0.000 0.458 0.041

The independent variable is length (cm).
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The R square values show that the linear and the quadratic models have the best
fit with R square values of 0.509 closely followed by the logarithmic model with an R
square of 0.508. The plots in Figure 7.11 show that the curves for the four models only
deviate at the extremities of the data points, which are the regions in which prediction
is less certain. Because the linear model is easier to communicate, in practice it would

be the preferable model to use.

Model Summary

Change statistics

R Adjusted R Std. error of R square F Sig. F
Model R square square the estimate change change df1 df2 change
1 0.7132 0.509 0.508 0.42229 0.509 567.043 1 548 0.000
2 0.713 0.509 0.507 0.42266 0.000 0.030 1 547 .863

2Predictors: (constant), length (cm).
bPredictors: (constant), length (cm), length squared.

If it was important to use the quadratic model, say to compare with other quadratic
models in the literature, then the square of length can be computed as lensq using the
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SPSS commands Transform — Compute using the formula lensq=Ilength xlength. The
quadratic equation can be obtained using the commands shown in Box 7.8, with length
added as independent variable into Block 1 of 1 and the square of length (lensq) into
Block 2 of 2.

The Model Summary and Coefficients tables show that the R square and the regression
coefficients are very similar to that reported for the curve fit procedure with a quadratic
model. However, the standard error for length has increased from 0.007 in Model 1 to
0.256 in Model 2.

Coefficients?

Unstandardized Standardized

coefficients coefficients
Model B Std. error Beta t Sig.
1 (Constant) -5.412 0.411 -13.167 0.000
Length (cm) 0.178 0.007 0.713 23.813 0.000
2 (Constant) -6.626 7.053 -0.939 0.348
Length (cm) 0.222 0.256 0.890 0.868 0.386
Length squared 0.000 0.002 -0.177 -0.172 0.863

2Dependent variable: weight (kg).
In addition, length is no longer significant in Model 2 and the Excluded Variables table

shows that tolerance is very low at 0.001 indicating that the explanatory variables are
highly related to one other.

Excluded Variables?

Collinearity
Statistics
Model Beta In t Sig. Partial Correlation Tolerance
1 Length squared -0.177° -0.172 0.863 —-0.007 0..001

2Dependent variable: weight (kg).
PPredictors in the model: (constant), length (cm).

Collinearity can occur naturally when a quadratic term is included in a regression
equation because the variable and its square are related. A scatter plot using the SPSS
commands Graphs — Legacy Dialogs — Scatter/Dot — Simple Scatter to plot length squared
against length demonstrates the direct relationship between the two variables as shown
in Figure 7.12.

7.10 Centering

To avoid collinearity in quadratic equations, a mathematical solution of centering, that
is, subtracting a constant from the data values, can be applied.!? The constant that
minimizes collinearity most effectively is the mean value of the variable. Using the
following SPSS commands Descriptive Statistics — Descriptives shows that the mean of
length is 54.841 cm. Using the commands Transform — Compute the mean value is used
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Figure 7.12 Scatter plot of length by length squared.

to compute a new variable for length centered (lencent) as ‘length — 54.841" and then
to compute another new variable, which is the square of lencent (lencntsq).

A scatter plot of length centered and its square in Figure 7.13 shows that the rela-
tionship is no longer linear simply because subtracting the mean value gives half of the
values a negative value but then squaring all values returns a positive value again. The
relation is thus U-shaped and no longer linear.

The regression can now be re-run using the commands shown in Box 7.8 but with
length centered in Block 1 of 1 and its square in Block 2 of 2.

The Model Summary table shows that when length is centered, the adjusted R square
value remains much the same from Model 1 to Model 2, with the Change Statistics also
indicating no significant increase in the R value.

Model Summary

Change statistics

R Adjusted R Std. error of R square F Sig. F
Model R square square the estimate change change dft df2 change
1 0.7132 0.509 0.508 0.42229 0.509 567.043 1 548 0.000
2 0.713°  0.509 0.507 0.42266 0.000 0.030 1 547 0.863

aPredictors: (constant), length centered.
bpredictors: (constant), length centered, length centered squared.

The Coefficients table shows the standard error for length is similar at 0.007 in Model
1 and 0.008 in Model 2. In addition, the unstandardized coefficients are now significant
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and the tolerance value is high at 0.973. The unstandardized coefficient for the square
term is close to zero with a non-significant P value indicating its negligible contribution
to the model. The equation for this regression model is as follows:

Weight = 4.369 + (0.179 X (Length — 54.841) + (0.0001 x (Length — 54.841)%)

This centered model is a more stable quadratic model than the model given by the curve
fit option and is therefore more reliable for predicting weight or for testing the effects
of other factors on weight. However, length centered squared would not be included in
the final regression model since it is not a significant predictor and is only reported here
for illustrative purposes.

Coefficients?

Unstandardized
coefficients

Standardized
coefficients

Model B Std. error Beta t Sig.

1 (Constant) 4.366 0.018 242.494 0.000
Length centered 0.178 0.007 0.713 23.813 0.000

2 (Constant) 4.369 0.022 194.357 0.000
Length centered 0.179 0.008 0.714 23.499 0.000
Length centered squared  0.000 0.002 —0.005 -0.172  0.863

2Dependent variable: weight (kg).
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The technique of centering can also be used to remove collinearity caused by interac-

tions which are naturally related to their derivatives.”

Excluded Variables®

Collinearity

statistics
Model Beta In t Sig. Partial correlation Tolerance
1 Length centered squared —0.005°> -0.172 0.863 —-0.007 0.973

2Dependent variable: weight (kg).
bPredictors in the model: (constant), length centered.

7.11 Notes for critical appraisal

When critically appraising a paper that reports simple or multiple linear regression anal-
yses, the questions that should be asked are shown in Box 7.13.

Box 7.13 Questions to ask when critically appraising a regression analysis

The following questions should be asked when appraising published results from

analyses in which regression has been used:

e Was the sample size large enough to justify using the model?

e Are the variables located on the correct axis, with the outcome on the y-axis and
the explanatory variable on the x-axis?

e Were any repeated measures from the same participants treated as independent
observations?

e Were all of the explanatory variables measured independently from the outcome
variable?

e Have the explanatory variables been measured reliably?

e Is there any collinearity between the explanatory variables that could reduce the
precision of the model?

e Are there any multivariate outliers that could influence the regression estimates?

e Is evidence presented that the residuals are normally distributed?

e Are there sufficient data at the extremities of the regression or should the predic-
tion range be shortened?
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CHAPTER 8
Rates and proportions

When the methods of statistical inference were being developed in the first half of the twentieth
century, calculations were done using pencil, paper, tables, slide rules and with luck a very expensive
adding machine.!

MARTIN BLAND, STATISTICIAN

Objectives

The objectives of this chapter are to explain how to:

e use the correct summary statistics for rates and proportions

e present categorical baseline characteristics correctly

crosstabulate categorical variables and obtain meaningful percentages
conduct a test of chi-square and select the correct chi-square value

plot percentages and interpret 95% confidence intervals

manage cells with small numbers

use trend tests for ordered exposure variables

convert continuous variables with a non-normal distribution into categorical variables
calculate the number needed to treat

calculate significance and estimate effect size for paired categorical data
calculate sample size requirements

critically appraise the literature in which rates and proportions are reported

8.1 Summarizing categorical variables

Categorical variables are summarized using statistics called rates and proportions. A rate
isanumber used to express the frequency of a characteristic of interest in the population,
such as 1 case per 10,000. In some cases, the rate is applied to a time period such as per
annum. Frequencies can also be described using summary statistics such as a percentage,
for example, 20% or a proportion, for example, 0.2. Rates, percentages and proportions
are frequently used for summarizing information that is collected with forced choice
response formats (e.g. tick box options) or Likert scales (e.g. disagree/neither agree or
disagree/agree) on questionnaires.

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.
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Obtaining information about the distribution of the categorical variables in a study
provides a good working knowledge of the characteristics of the sample. The spread-
sheet surgery.sav contains data from a sample of 141 consecutive babies who were
admitted to hospital to undergo surgery. The SPSS commands shown in Box 8.1 can
be used to obtain frequencies and histograms for the categorical variables prematurity
(1 =Premature; 2=Term) and gender2 (1 =Male and 2 =Female). The frequencies for
place of birth were obtained in Chapter 1.

Box 8.1 SPSS commands to obtain frequencies and histograms

SPSS Commands

surgery.sav — IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Frequencies
Frequencies
Highlight Prematurity and Gender recoded, click into Variable(s) box
Click on Charts
Frequencies: Charts
Chart Type: Tick Bar charts; Chart Values: Tick Frequencies (default) and click
Continue
Frequencies
Click Ok

Frequency table

Prematurity

Frequency Per cent Valid per cent Cumulative per cent
Valid Premature 45 31.9 31.9 31.9
Term 96 68.1 68.1 100.0
Total 141 100.0 100.0
Gender Recoded
Frequency Per cent Valid per cent Cumulative per cent
Valid Male 82 58.2 58.2 58.2
Female 59 41.8 41.8 100.0
Total 141 100.0 100.0

The valid per cent column in the first Frequency table indicates that 31.9% of babies
in the sample were born prematurely and that 68.1% of babies in the sample were term
births. The per cent and valid per cent columns are identical because all children in the
sample have information of their birth status, that is, there are no missing data. In jour-
nal articles and scientific reports when the sample size is greater than 100, percentages
such as these are reported with one decimal place only. When the sample size is less
than 100, no decimal places are used. If the sample size was less than 20 participants,
percentages would not be reported (see Chapter 1) although they are included on the
SPSS output.
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Figure 8.1 Number of babies by prematurity status and by gender.

The valid per cent column in the second Frequency table indicates that there are more
males than females in the sample (58.2% vs 41.8%).

The bar charts shown in Figure 8.1 are helpful for comparing the frequencies visually
and may be useful for a poster or a talk. However, these types of bar charts are not
suitable for presenting sample characteristics in journal articles or other publications
because accurate frequency information cannot be read from them and they are ‘space
hungry’ for the relatively small amount of information provided.

8.2 Describing baseline characteristics

The baseline characteristics of the sample could be described as shown in Table 8.1 or
Table 8.2. If the percentage of male children is included, it is not necessary to report
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Table 8.1 Baseline characteristics

Characteristic Per cent (n)
Total number 141
Male 58.2% (82)

Place of birth

Local 63.8% (90)
Regional 23.4% (33)
Overseas 6.4% (9)
No information 6.4% (9)
Premature birth 31.9% (45)

Table 8.2 Baseline characteristics

Characteristic Sample size (N) Per cent (n)
Male 141 58.2% (82)
Place of birth 132
Local 68.2% (90)
Regional 25.0% (33)
Overseas 6.8% (9)
Premature birth 141 31.9% (45)

the percentage of female children because this is the complement that can be easily
calculated. Similarly, it is not necessary to include percentages of both term and pre-
mature birth since one can be calculated from the other. In some journals, observed
numbers are not included in addition to percentages because the numbers can be calcu-
lated from the percentages and the total number of the sample. However, other journals
request that the number of cases and the sample size, for example, 82/141, is reported
in addition to percentages.

Although confidence intervals around percentage figures can be computed, these
statistics are more appropriate for comparing rates in two or more different groups, as
discussed later in this chapter, and not for describing the sample characteristics.

8.3 Incidence and prevalence

When describing frequencies, it is important to use the correct term. A common mistake
is to describe prevalence as incidence, or vice versa, although these terms have different
meanings and cannot be used interchangeably.

Incidence is a term used to describe the number of new cases with a condition divided
by the population at risk. Prevalence is a term used to describe the total number of cases
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with a condition divided by the population at risk. The population at risk is the number
of people during the specified time period who were susceptible to the condition. The
prevalence of an illness in a specified period is the number of incident cases in that
period plus the previous prevalent cases and minus any deaths or remissions.

Both incidence and prevalence are usually calculated for a defined time period; for
example, for a 1-year or 5-year period. When the number of cases of a condition is
measured at a specified point in time, the term ‘point prevalence’ is used. The terms
incidence and prevalence should be used only when the sample is selected randomly
from a population such as in a cross-sectional or cohort study. Obviously, the larger
the sample size, the more accurately the estimates of incidence and prevalence will be
measured.

When the sample has not been selected randomly from the population such as in some
case-control or experimental studies, the terms percentage, proportion or frequency are
more appropriate.

8.4 Chi-square tests

A chi-square test (denoted as y2) is used to assess whether the distribution of a categori-
cal variable is significantly different between two or more groups. Tests of chi-square are
used to determine whether there is an association between two categorical variables.
In health research, a test of chi-square is frequently used to assess whether disease
(present/absent) is associated with exposure (yes/no). For example, a chi-square test
could be used to examine whether the absence or presence of an illness is independent
of whether a child was or was not immunized. Chi-square tests are appropriate for most
study designs but the results are influenced by the sample size.

The data for chi-square tests are summarized using crosstabulations as shown in
Table 8.3. These tables are sometimes called frequency or contingency tables. Table 8.3
is called a 2x2 table because each variable has two levels. Tables can have larger
dimensions when either the exposure or the disease has more than two levels.

In a contingency table, one variable (usually the exposure) forms the rows and the
other variable (usually the disease) forms the columns. For example, the exposure
immunization (no, yes) would form the rows and the illness (present, absent) would
form the columns. The four internal cells of the table show the counts for each of the
disease/exposure groups; for example, cell ‘a” shows the number who satisty exposure
present (immunized) and disease present (illness positive).

As in all analyses, it is important to identify which variable is the outcome variable
and which variable is the explanatory variable. This is important for setting up the

Table 8.3 Crosstabulation for estimating chi-square

Disease absent Disease present Total
Exposure absent d c c+d
Exposure present b a a+b

Total b+d a+c Total
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crosstabulation table to display the percentages that are appropriate for answering the
research question. This can be achieved by either:

e entering the explanatory variable in the rows, the outcome in the columns and using
row percentages, or

e entering the explanatory variable in the columns, the outcome in the rows and using
column percentages.

A table set up in either of these ways will display the per cent of participants with the
outcome of interest in each of the explanatory variable groups. In most study designs,
the outcome is an illness or disease and the explanatory variable is an exposure or an
experimental group. However, in case—control studies in which cases are selected on
the basis of their disease status, the disease may be treated as the explanatory variable
and the exposure as the outcome variable.

8.4.1 Assumptions

The assumptions for using a chi-square test are shown in Box 8.2.

Box 8.2 Assumptions for using chi-square tests

The assumptions that must be met when using a chi-square test are that:
e cach observation must be independent
e cach participant is represented in the table once only

A major assumption of chi-square tests is independence, that is, each participant must
be represented in the analysis once only. Thus, if repeat data have been collected, for
example, if data have been collected from hospital inpatients and some patients have
been readmitted, a decision must be made about which data, for example, from the first
admission or the last admission, are used in the analyses.

The expected frequency in each cell is an important concept in determining P val-
ues and deciding the validity of a chi-square test. The formula for calculating expected
frequencies is given in Section 8.4.3. For each cell, a certain number of participants
would be expected given the frequencies of each of the characteristics in the sample.
When the expected frequency of cell is less than 5, the significance tests of the Pear-
son’s chi-square distribution becomes inaccurate due to the small sample size. Thus, the
Pearson’s or continuity-corrected chi-square values should be used only when 80% of
the expected cell frequencies exceed 5 and all expected cell frequencies exceed 1.

8.4.2 Which chi-square test and P value to report?

When a chi-square test is requested, most statistics programs provide a number of
chi-square values on the output. The chi-square statistic that is conventionally used
depends on both the sample size and the expected cell counts as shown in Table 8.4.
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Table 8.4 Type and application of chi-square tests

Statistic Application
Pearson’s chi-square Used when the sample size is very large, say over 1000
Continuity correction Applied to 2 x 2 tables only and is an approximation to Pearson'’s for a smaller

sample size, say less than 1000

Fisher’s exact test Must always be used when one or more cells in a 2x2 table have a small
expected number of cases

Linear-by-linear Used to test for a trend in the frequency of the outcome across an ordered
exposure variable

However, these guidelines are quite conservative and if the result from a Fisher’s exact
test is available, it could be used in all situations because it is a gold standard test,
whereas Pearson’s chi-square and the continuity correction tests are approximations.
Fisher’s exact test is generally calculated for 2 x 2 tables and, depending on the program
used, may also be produced for crosstabulations larger than 2 x 2.

In a 2 X 2 contingency table, the Pearson’s chi-square produces smaller P values than
Fisher’s exact and a type I error may occur.? A correction made to the calculation of
Pearson’s chi-square (Yates continuity correction) increases the P value. However, this
correction tends to overestimate the P value and a type II error may occur.? Therefore,
the Yates correction should generally not be applied except if the sample size is small.
The linear-by-linear test is a trend test and is most appropriate in situations in which
an ordered exposure variable has three or more categories and the outcome variable is
binary.

When conducting a chi-square test in SPSS, the significance level is calculated using
the ‘asymptotic’ method, which means that P values are calculated based on the assump-
tion that the data has a large enough sample size to conform to a certain distribution.
If the sample size is small or some cells have a low count, the ‘exact” P values should be
reported since the asymptotic P values will be unreliable. The exact calculation based
on the exact distribution of the test statistics provides a reliable P value irrespective of
the sample size or distribution of the data.

8.4.3 Calculating chi-square values

Chi-square values are calculated from the number of observed and expected frequencies
(or counts) in each cell of the crosstabulation. The observed count is the actual count in
the sample and is shown in each cell of the crosstabulation. The expected count is the
expected value due by chance alone and is calculated for each cell as the:

Row total X Column total
Grand total

For cell a in Table 8.3, the expected number is ((a + b) X (a + ¢))/Total

The chi-square statistic compares the observed count in each cell to the count which
would be expected under the assumption of no association between the row and column
classifications. The Pearson chi-square value is calculated by the following summation
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from all cells:

) > (Observed count — Expected count)?
Chi-squared value =

Expected count

The continuity corrected (Yates) chi-square is calculated in a similar way but with a cor-
rection made for a smaller sample size. The null hypothesis for a chi-square test is that
there is no significant difference between the observed frequencies and expected fre-
quencies. Obviously, if the observed and expected values are similar, then the chi-square
value will be close to zero and therefore will not be significant. The larger the observed
and expected values are from one another, the larger the chi-square value becomes and
the more likely the P value will be significant.

Research question

The data set surgery.sav contains data from babies who were admitted to hospital for
surgery. This sample was not selected randomly and therefore only percentages will
apply and the terms incidence and prevalence cannot be used. However, chi-square tests
are valid to assess whether there are any between-group differences in the proportion
of babies with certain characteristics.

Question: Are males who are admitted for surgery more likely than females to
have been born prematurely?

Null hypothesis: ~ That the proportion of males in the premature group is equal to the
proportion of females in the premature group.

Variables: Outcome variable = prematurity (categorical, two levels)
Explanatory variable = gender (categorical, two levels)

The command sequence to obtain a crosstabulation and chi-square test is shown in
Box 8.3.

Box 8.3 SPSS commands to obtain a chi-square test

SPSS Commands

surgery.sav — IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Gender recoded and click into Row(s)
Highlight Prematurity and click into Column(s)
Click Statistics
Crosstabs: Statistics
Tick Chi-square, click Continue
Crosstabs
Click Cells
Crosstabs: Cell Display
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Counts: tick Observed (default),
Percentages: tick Row
Noninteger Weights: tick Round cell count (default)
Click Continue
Crosstabs
Click OK

The Crosstabulation table shows that the two variables each have two levels to create
a 2 x 2 table with four cells. The table shows that 40.2% of males in the sample were
premature compared with 20.3% of females, that is, the rate of prematurity in the males
is almost twice that in the females. In the Crosstabulation table, the smallest cell has an
observed count of 12. The expected number for this cell is 59 x45/141, or 18.83 as
shown in the footnote of the Chi-Square Tests table.

Crosstabs

Gender Recoded * Prematurity Crosstabulation

Prematurity

Premature Term Total
Gender recoded Male Count 33 49 82
% within gender recoded 40.2% 59.8% 100.0%
Female Count 12 47 59
% within gender recoded 20.3% 79.7% 100.0%
Total Count 45 96 141
% within gender recoded 31.9% 68.1% 100.0%
Chi-Square Tests
Asymp. Sig. Exact sig. Exact sig.
Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-square 6.2562 1 0.012
Continuity correction® 5.374 1 0.020
Likelihood ratio 6.464 1 0.011
Fisher’s exact test .017 .009
Linear-by-linear association 6.212 1 0.013
N of valid cases 141

20 cells (0.0%) have expected count less than 5. The minimum expected count is 18.83.
bComputed only for a 2x 2 table.

In the Chi-Square Tests table, the third column’s heading is ‘Asymp. Sig. (two-sided)’,
which indicates the significance level for a two-sided test calculated asymptotically. In
this example, the sample size is too small for the chi-square distribution to approxi-
mate the exact distribution of the Pearson statistic and so the Pearson chi-square value
should not be reported. The continuity correction (Yates) results in a P value of 0.020,
which is slightly higher than the P value of 0.017 for the Fisher’s exact test. The Fisher’s
exact test would be reported in this study because the sample size is only 141 children.
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This test is two-tailed and the corresponding value indicates that the difference in rates
of prematurity between the genders is statistically significant at P=0.017. This result
can be reported as ‘Fisher’s exact test indicated that there was a significant difference in
prematurity between males and females (40.2% vs 20.3%, P=0.02)".

8.4.4 Sample size requirements

Whether a difference in a rate between two groups is statistically significant is heavily
influenced by the sample size. The larger the difference between the rates in two groups,
the smaller the sample size required to show a statistically significant difference.

Table 8.5 shows the sample size needed in each group to detect a significant differ-
ence between two prevalence rates (power=80%, P<0.05).> The table shows that, in
general, a large 30% difference between two groups in a 2 X 2 chi-square test will be
statistically significant when the sample size is larger than 35 participants per group, a
20% difference will be statistically significant when the sample size is larger than 60
participants per group and a 10% difference will be statistically significant when the
sample size is larger than 160 participants per group. Online programs such as GPower
and StatsToDo which can be used for estimating more accurate sample size requirements
for chi-square tests are listed in the Useful Websites section.

Table 8.5 Approximate sample size required per group to show that a
difference in prevalence rates is statistically significant (power=80%,
P<0.05, two-tailed) using a chi-square test

Difference between two rates

Lower rate 10% 20% 30% 40%
5% 160 60 35 25
10% 220 80 40 25
20% 320 100 45 30
30% 380 110 50 30
40%-50% 410 110 50 30

8.4.5 Confidence intervals

When between-group differences are compared, the summary percentages are best
reported with 95% confidence intervals. It is useful to include the 95% confidence
intervals when results are shown as figures because the degree of overlap between
them provides an approximate significance of the differences between groups. The
interpretation of the degree of overlap is discussed in Chapter 3 (also see Table 3.5).
Many statistics programs do not provide confidence intervals around frequency statis-
tics. However, 95% confidence intervals can be easily computed using an Excel spread-
sheet. The standard error around a proportion is calculated as \/[p(l —-p)/n] where p is
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the proportion expressed as a decimal number and # is the number of cases in the group
from which the proportion is calculated. The standard error (SE) around a proportion
is rarely reported but is commonly converted into a 95% confidence interval which is
p+(SEx1.96).

An Excel spreadsheet in which the percentage is entered as its decimal equivalent in
the first column and the number in the group is entered in the second column can be
used to calculate confidence intervals as shown in Table 8.6.

The formula for the standard error is entered into the formula bar of Excel as sqrt
(px (1 =p)/n) and the formula for the width of the confidence interval is entered as
1.96 X SE. This width, which is the dimension of the 95% confidence interval that is
entered into SigmaPlot to draw bar charts with error bars, can then be both subtracted
and added to the proportion to calculate the 95% confidence interval values shown in
the last two columns of Table 8.6.

The calculations are undertaken in proportions (decimal numbers) but are easily con-
verted back to percentages by multiplying by 100, that is, by moving the decimal point
two places to the right. Using the converted values, the result could be reported as ‘the
percentage of male babies born prematurely was 40.2% (95% CI129.6—50.8%). This was
significantly different than the percentage of female babies born prematurely which was
20.3% (95% CI 10.0-30.6%) (P=0.02)". The P value of 0.02 for this comparison is the
rounded value derived from the P value of 0.017 in the Chi-Square Tests table.

Because the value of ‘n’ is integral in the denominator of the calculation of confidence
intervals, the larger the sample size, the smaller the confidence will be, indicating greater
precision in the result. Table 8.7 shows how the sample size influences the width of

Table 8.6 Excel spreadsheet to compute 95% confidence intervals around proportions

Proportion N SE Width Cl lower Cl upper
Male 0.402 82 0.054 0.106 0.296 0.508
Female 0.203 59 0.052 0.103 0.100 0.306

Table 8.7 Approximate sample size required to calculate 95% confidence intervals around a
prevalence rate with the precision (width) shown (power=_80%, P<0.05, two-tailed)

Width of 95% confidence interval

Prevalence 2% 3% 4% 5% 7.5% 10%
5% 460 200 110 70 35 35
10% 870 380 220 140 65 40
15% 1200 550 300 200 90 50
20% 1500 700 400 250 110 60
30% 2000 900 500 300 140 70

40% 2200 1000 600 380 160 90
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95% confidence intervals.> The sample size required to calculate a rate with a 95%
confidence interval of specified width is shown in Table 8.7. The precision depends on
both the prevalence rate and the sample size. In general, a large sample size is required
to reduce 95% confidence intervals below a width of 5%.

8.4.6 Creating a figure using SigmaPlot

The summary statistics from Table 8.6 can be entered into SigmaPlot by first using the
commands File — New and then entering the percentages in column 1 and the width of
the confidence interval, also converted to a percentage in column 2.

Column 1 Column 2
40.2 10.6
20.3 10.3

The SigmaPlot commands for plotting these summary statistics as a figure are shown
in Box 8.4.

Box 8.4 SigmaPlot commands to draw simple histograms

SigmaPlot commands

Data 1*
Click on Create Graph tab at top of the screen
Click on Bar in sub-menu
Click on Horizontal Bar - Error Bars in Bar Group
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Single X, click Next
Create Graph — Select Data
Data for Bar = use drop box and select Column 1
Data for Error = use drop box and select Column 2
Click Finish

The graph can then be customized using the options under Graph Page to produce
Figure 8.2 (see p.261). The lack of overlap between the confidence intervals is an
approximate indication of a statistically significant difference between the two groups
(see Table 3.5 for interpretation).

8.5 2x3 Chi-square tables

In addition to the common application of analyzing 2 X 2 tables, chi-square tests can also
be used for larger tables, for example 2 X 3 tables, in which one variable has two levels
and the other variable has three levels.
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Figure 8.2 Per cent of male and female babies born prematurely.

Research question

Question: Are the babies born in regional centres (away from the hospital
or overseas) more likely to be premature than babies born in
local areas?

Null hypothesis: That the proportion of premature babies in the group born locally
is not different to the proportion of premature babies in the
groups born regionally or overseas.

Variables: Place of birth (categorical, three levels and) prematurity
(categorical, two levels)

In this research question, there is no clear outcome or explanatory variable because
both variables in the analysis are characteristics of the babies. This type of question is
asked when it is important to know about the inter-relationships between variables in
the data set. If prematurity has an important association with place of birth, this may
need to be taken into account in multivariate analyses.

The SPSS commands shown in Box 8.3 can be used with place of birth recoded entered
into the rows, prematurity entered into the columns and row percentages requested.

The row percentages in the Crosstabulation table show that there is a difference in
the frequency of prematurity between babies born at different locations. The per cent
of babies who are premature is 32.2% from local centres, 18.2% from regional centres
and 55.6% from overseas centres. This difference in percentages fails to reach signifi-
cance with a Pearson’s chi-square value of 5.170 and a P value of 0.075. As mentioned
previously, Pearson’s chi-square may underestimate the P value when the sample size is
small. For tables such as this that are larger than 2 x 2, an Exact chi-square test should
be used when an expected count is low (see Section 8.7).



262 Chapter 8

Crosstabs

Place of birth (recoded) * Prematurity Crosstabulation

Prematurity

Premature Term Total
Place of birth Local Count 29 61 920
(recoded) % within place of birth 32.2% 67.8% 100.0%
(recoded)
Regional Count 6 27 33
% within place of birth 18.2% 81.8% 100.0%
(recoded)
Overseas Count 5 4 9
% within place of birth 55.6% 44.4% 100.0%
(recoded)
Total Count 40 92 132
% within place of birth 30.3% 69.7% 100.0%
(recoded)
Chi-Square Tests
Value df Asymp. sig. (two-sided)
Pearson chi-square 5.170° 2 0.075
Likelihood ratio 5.146 2 0.076
Linear-by-linear association 0.028 1 0.866
N of valid cases 132

a1 cell (16.7%) has expected count less than 5. The minimum expected count is 2.73.

In the crosstabulation, the absolute difference in per cent of premature babies between
regional and overseas centres is quite large at 55.6%—18.2% or 37.4%. The finding of
a non-significant P value in the presence of this large between-group difference could
be considered a type II error as a consequence of the small sample size. In this case,
the sample size is too small to demonstrate statistical significance when a large differ-
ence of 37.4% exists. If the sample size had been larger, then the P value for the same
between-group difference would be significant. Conversely, the difference between the
groups may have been due to chance and a larger sample size might show a smaller
between-group difference.

8.6 Cells with small numbers

A major problem with the previous analysis is the small numbers in some of the cells.
There are only nine babies in the overseas group. The row percentages illustrate the
problem that arises when some cells have small numbers. The five premature babies
born overseas are 55.6% of their group because each baby is 1/9th or 11.1% of the
group. When a group size is small, adding or losing a single case from a cell results
in a large change in frequency statistics. Because there are some small group sizes, the
footnote in the Chi-Square Tests table indicates that one cell in the table has an expected
count less than five.
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Using the formula shown previously (section 8.4.3), the expected number of prema-
ture babies referred from overseas is 9 xX40/132 or 2.73. This minimum expected cell
count is printed in the footnote below the Chi-Square Tests table. If a table has less than
five expected observations in more than 20% of cells, the assumptions for the chi-square
test are not met. The warning message suggests that the P value of 0.075 is unreliable
and probably an overestimate of significance.

Small cells cannot be avoided at times; for example, when a disease is rare. However,
cells and groups with small numbers are a problem in all types of analyses because
their summary statistics are often unstable and difficult to interpret. When calculating
a chi-square statistic, most packages will give a warning message when the number of
expected cases in a cell is low.

Pearson’s chi-square tests may be valid when the number of observed counts in a cell
is zero as long as the expected number is greater than 5 in 80% of the cells and greater
than 1 in all cells. If expected numbers are less than this, then an exact chi-square based
on alternative assumptions should be used.

8.7 Exact chi square test

An exact chi-square can be obtained for the 3 X 2 table above by clicking on the Exact but-
ton located in the top right hand corner of the Crosstabs dialogue box, and selecting Monte
Carlo, entering 95% for Confidence level and Number of samples equal to 10,000 (default).
The following table is obtained when the Monte Carlo method of computing the exact
chi-square is requested. The Monte Carlo P value is based on a random sample of a
probability distribution rather than a chi-square distribution which is an approximation.
When the Monte Carlo option is selected, the P value will change slightly each time the
test is run on the same data set because it is based on a random sample of probabilities.

Chi-Square Tests

Monte Carlo Sig. (2-sided)

Monte Carlo Sig. (1-sided)

95% Confidence

95% Confidence

interval interval
Asymp.
sig. (2- Lower Upper Lower Upper
Value df sided) Sig. bound bound Sig. bound  bound
Pearson 5.1702 2 0.075 0.075°  0.070 0.081
Chi-square
Likelihood ratio 5.146 2 0.076 0.100°  0.094 0.106
Fisher's exact test ~ 5.072 0.075>  0.070 0.081
Linear-by-linear 0.028¢ 1 0.866 0.879° 0.872 0.885 0.481°  0.472 0.491
association
N of valid cases 132

a1 cells (16.7%) have expected count less than 5. The minimum expected count is 2.73.
bBased on 10,000 sampled tables with starting seed 624387341.

‘The standardized statistic is —0.168.

The Chi-Square Tests table shows that the asymptotic significance value of P=0.075
is identical to the exact significance value obtained previously, that is, P=0.075. The
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two-sided test should be used because the direction of effect could have been either
way, that is, the proportion of premature babies could have been higher or lower in any
of the groups.

An alternative to using exact methods is to merge the group with small cells with
another group but only if the theory is valid. It is usually sensible to combine groups
when there are less than 10 cases in a cell. Alternatively, the group can be omitted from
the analyses although this will reduce the generalizability of the results.

8.8 Number of cells that can be tested

The number of viable cells for statistical analysis usually depends on sample size. As
a rule of thumb, the maximum number of cells that can be tested using chi-square is
the sample size divided by 10. Thus, a sample size of 160 could theoretically support
16 cells such as an 8 x 2 table, a 5x 3 table or a 4 x4 table. However, this relies on an
even distribution of cases over the cells, which rarely occurs. In practice, the maximum
number of cells is usually the sample size divided by 20. In this data set, this would be
141/20 or approximately seven cells which would support a 2x2 or 2 x 3 table. These
tables would be viable as long as no cell size is particularly small.

The pathway for analyzing categorical variables when some cells have small numbers
is shown in Figure 8.3.

Groups can be easily combined to increase cell size if the recoding is intuitive. However,
if two or more unrelated groups need to be combined, they could be described with
a generic label such as ‘other” if neither group is more closely related to one of the
other groups in the analysis. In the data set surgery.sav, it makes sense to combine the
regional group with the overseas group because both are distinct from the local group.
The SPSS commands to recode a variable into a ditferent variable were shown in Box 1.9
in Chapter 1 and can be used to transform place2 with three levels into a binary variable
called place3 (local, regional/overseas). To ensure that all output is self-documented, it
is important to label each new variable in Variable View after re-coding and to verify
the frequencies of place3 using the commands shown in Box 1.7.

Non-ordered | Cells with small Exact methods
categories i numbers
Categorical Combine
data cells
A
Each cell has Pearson’s or
sufficient » continuity corrected
numbers chi-square
Combine cells Non-parametric
cgtfeorﬁgs P> with small statistics or chi-square
9 numbers trend

Figure 8.3 Pathway for analyzing categorical variables when some cells have small numbers.
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Frequencies
Place of Birth (Binary)

Valid Cumulative
Frequency Per cent per cent per cent

Valid Local 90 63.8 68.2 68.2
Regional or overseas 42 29.8 31.8 100.0
Total 132 93.6 100.0

Missing  System 9 6.4

Total 141 100.0

Having combined the small overseas group of nine children with the regional group of
33 children, the new combined group has 42 children. To answer the research question,
the Crosstabulation table and tests of chi-square can be obtained by repeating the SPSS
commands shown in Box 8.3 to compute a 2x 2 table with the binary place of birth
variable entered into the rows.

The Crosstabulation table shows that 32.2% of babies in the sample from the local area
were premature compared to 26.2% of babies from regional centres or overseas. The
Chi-Square Tests table shows Fisher’s exact test P value of 0.546 which is not significant.
This value, which is very different from the P value of 0.075 for the 3 x 2 table, is more
robust because all cells have adequate sizes. With the small cells combined into larger
cells, the footnote shows that no cell has an expected count less than five and thus the
assumptions for chi-square are met.

Crosstabs

Place of Birth (Binary) * Prematurity Crosstabulation

Prematurity

Premature Term Total
Place of birth Local Count (binary) % within place of birth 29 32.2% 6167.8% 90 100.0%
(binary)
Regional or overseas Count % within place of birth (binary) 11 26.2% 3173.8% 42 100.0%
Total Count % within place of birth (binary) 40 30.3% 9269.7% 132 100.0%
Chi-Square Tests
Asymp. Sig. Exact Sig. Exact Sig.

Value df (2-sided) (2-sided) (1-sided)
Pearson Chi-square 0.4932 1 0.482
Continuity correction® 0.249 1 0.618
Likelihood ratio 0.501 1 0.479
Fisher’s exact test 0.546 0.312
Linear-by-linear association 0.490 1 0.484
N of valid cases 132

a0 cells (0.0%) have expected count less than 5. The minimum expected count is 12.73.
bComputed only for a 2 x 2 table

Using the Excel spreadsheet created previously in Table 8.6, the percentages can be
added as proportions and the confidence intervals calculated as shown in Table 8.8.
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Table 8.8 Excel spreadsheet to compute confidence intervals around proportions

Proportion N SE Width Cl lower Cl upper
Local 0.322 90 0.049 0.097 0.225 0.419
Regional or overseas 0.262 42 0.068 0.133 0.129 0.395

8.9 Reporting chi-square tests and proportions

Generally, when reporting the results of chi-square test for publication, the chi-square
value (if required), the total sample size, the P value and the degrees of freedom should
be included. In addition, the odds ratio (as discussed in Chapter 9) can also be reported
for 2 x 2 tables to indicate the size of the association between the two variables. In the
example above, the results can be presented as ‘Of the 132 babies, 29 of the 90 babies
who were born locally were premature (32.2%) and 11 of the 42 were born regionally
or overseas were premature (26.2%). A chi-square test indicated that there was no
significant association between prematurity and place of birth (P=0.55)".

When presenting crosstabulated information of the effects of explanatory factors for a
report, journal article or presentation, it is usual to present the results in tables with the
outcome variable presented in the columns and the risk factors or explanatory variables
presented in the rows as shown in Table 8.9.

The chi-square analyses show that the number of males and females referred for
surgery is significantly different but that the per cent of premature babies from regional
or overseas areas is not significantly different from the per cent of premature babies
in the group born locally. The results of these analyses could be presented as shown in
Table 8.9.

Table 8.9 Factors associated with prematurity in 141 children attending
hospital for surgery

Risk factor Per cent premature and 95% Cl P value
Male 40.2% (29.6, 50.8) 0.02
Female 20.3% (10.0, 30.6)

Born in local area 32.2% (22.5, 41.9) 0.55
Born in regional area or overseas 26.2% (12.9, 39.5)

The overlap of the 95% confidence intervals in this table is consistent with the P values
and shows that there is only a minor overlap of 95% confidence intervals between
genders but a large overlap of 95% confidence intervals between regions.

8.9.1 Differences in percentages

When comparing proportions between two groups, it can be useful to express the size
of the absolute difference in proportions between the groups. A 95% confidence inter-
val around this difference is valuable in interpreting the significance of the difference
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Table 8.10 Excel spreadsheet to compute confidence intervals around a difference in
proportions

P, n, p, n, 1-p, 1-p, Difference SE Width Cllower Cl upper

Gender 0.402 82 0.203 59 0.598 0.797 0.199 0.075 0.148 0.051 0.347
Place 0.322 90 0.262 42 0.678 0.738 0.06 0.084 0.164 -0.104 0.224

Note: p=proportion

Table 8.11 Risk factor for prematurity in 141 children attending for surgery

Per cent Difference and 95%
Risk factor premature confidence interval P value
Male 40.2% 19.9% (5.1, 34.7) 0.02
Female 20.3%
Born locally 32.2% 6.0% (-10.4, 22.4) 0.55
Born regionally/overseas 26.2%

because if the interval does not cross the line of no difference (zero value) then the
difference between groups is statistically significant.

The Excel spreadsheet shown in Table 8.10 can be used to calculate the differences in
proportions, the standard error around the differences and the width of the confidence
intervals. The difference in proportions is calculated as p, —p, and the standard error
of the difference as \/((Pl X (1 =p)/n)+ (p, X (1 —p,)/n,)), where p, is the proportion
and 7, is the number of cases in one group and p, is the proportion and 7, is the number
of cases in the other group. The width of the confidence interval is calculated as before
as SEx 1.96.

The results from the above analyses can be presented as shown in Table 8.11 as an
alternative to the presentation shown in Table 8.9. In Table 8.9, the precision in both
groups could be compared but Table 8.11 shows the absolute difference between the
groups. This type of presentation is useful, for example, when comparing percentages
between two groups that were studied in different time periods and the outcome of
interest is the change over time.

The 95% confidence interval for the difference between genders does not contain the
zero value of no difference as expected because the P value is significant. On the other
hand, the confidence interval for the difference between places of birth contains the
zero value indicating there is little difference between groups and that the P value is not
significant.

8.10 Large contingency tables

Small crosstabulations such as 2 x 2 tables are relatively straightforward to interpret but
when using larger crosstabulations, such as 2 x 3 tables, it can be difficult to interpret the
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P value without further sub-analyses, as shown when answering the following research
question.

Research question

Question: Are babies who are born prematurely more likely to require different
types of surgical procedures than term babies?

Null hypothesis: ~ That the proportion of babies who require each type of surgical
procedure in the group born prematurely is the same as in the group
of term babies.

Variables: Outcome variable = procedure performed (categorical, three levels)
Explanatory variable = prematurity (categorical, two levels)

In situations such as this where the table is 3 X2 because the outcome has three lev-
els, both the row and column cell percentages can be used to provide useful summary
statistics for between-group comparisons. The commands shown in Box 8.3 can be used
with prematurity as the explanatory variable entered in the rows and procedure per-
formed as the outcome variable in the columns. In addition, the column percentages
can be obtained by clicking on Cells in the Crosstabs dialog box and ticking Column under
Percentages.

Crosstabs

Prematurity * Procedure Performed Crosstabulation

Procedure performed

Abdominal Cardiac Other Total

Prematurity Premature Count 9 23 13 45
% within prematurity 20.0% 51.1% 28.9% 100.0%
% within procedure 17.0% 41.1% 40.6% 31.9%
performed
Term Count 44 33 19 96
% within prematurity 45.8% 34.4% 19.8% 100.0%
% within procedure 83.0% 58.9% 59.4% 68.1%
performed
Total Count 53 56 32 141
% within prematurity 37.6% 39.7% 22.7% 100.0%
% within procedure 100.0% 100.0% 100.0%  100.0%
performed

Chi-Square Tests

Asymp. sig.

Value Df (two-sided)
Pearson chi-square 8.7182 2 0.013
Likelihood ratio 9.237 2 0.010
Linear-by-linear association 6.392 1 0.011

N of valid cases 141

20 cell (0.0%) has expected count less than 5. The minimum expected count is 10.21.
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The row percentages in the Crosstabulation table show that fewer of the premature
babies required abdominal procedures than the term babies (20.0% vs 45.8%) and that
more of the premature babies had cardiac procedures than the term babies (51.1% vs
34.4%). In addition, more of the premature babies than the term babies had other pro-
cedures (28.9% vs 19.8%). Since the contingency table is now larger than 2x 2, the
Fisher’s exact test is not produced and the Pearson’s chi-square test is used. The signifi-
cance of these differences from the Chi-Square Tests table is P=0.013. However, this P
value does not indicate the specific between-group comparisons that are significantly
different from one another. In practice, the P value indicates that there is a signifi-
cant difference in percentages within the table but does not indicate which groups are
significantly different from one another. In this situation where there is no ordered
explanatory variable, the linear by linear association has no interpretation.

The column percentages shown in the Crosstabulation table can be used to interpret
the 2 X 2 comparisons. These percentages show that rates of surgery types in premature
babies are abdominal vs cardiac surgery 17.0% vs 41.1%, abdominal vs other surgery
17.0% vs 40.6% and cardiac vs other surgery 41.1% vs 40.6%. To obtain P values for
these comparisons, the Data — Select Cases — If condition is satisfied option can be used
to select two groups at a time and compute three separate 2 X 2 tables. For the three
comparisons above, this provides P values of 0.011, 0.031 and 1.0, respectively.

The original P value from the 2 X 3 table was significant because the rate of prematurity
was significantly lower in the abdominal surgery group compared to both the cardiac
and other surgery groups. However, there was no significant difference between the car-
diac vs other surgery group. This process of making multiple comparisons increases the
chance of a type I error, that is, finding a significant difference when one does not exist.
A preferable method is to compute confidence intervals as shown in the Excel spread-
sheet in Table 8.6 and then examine the degree of overlap. The computed intervals are
shown in Table 8.12.

The rates and their confidence intervals can then be plotted using SigmaPlot as shown
in Box 8.5. The data sheet has the proportions and confidence interval widths converted
into percentages for the premature babies in columns 1 and 2 and for the term babies
in columns 3 and 4 as follows:

Column 1 Column 2 Column 3 Column 4
17.0 10.1 83.0 10.1
41.1 12.9 58.9 12.9
40.6 17.0 59.4 17.0

Table 8.12 Excel spreadsheet to compute confidence intervals around proportions

Proportion N SE Width Cl lower Cl upper
Abdominal-premature 0.17 53 0.052 0.101 0.069 0.271
Cardiac-premature 0.411 56 0.066 0.129 0.282 0.540
Other-premature 0.406 32 0.087 0.170 0.236 0.576
Abdominal-term 0.83 53 0.052 0.101 0.729 0.931
Cardiac-term 0.589 56 0.066 0.129 0.460 0.718

Other-term 0.594 32 0.087 0.170 0.424 0.764
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Box 8.5 SigmaPlot commands for plotting multiple bars

SigmaPlot Commands

Data 1*
Click on Create Graph tab at top of the screen
Click on Bar in sub-menu
Click on Grouped Horizontal Bar - Error Bars in Bar Group
Create Graph - Style
Highlight Grouped Error Bars, click Next
Create Graph — Error Bars
Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format
Highlight Many X, click Next
Create Graph — Select Data
Data for Set 1 =used drop box and select Column 1
Data for Error 1 =used drop box and select Column 2
Data for Set 2 =used drop box and select Column 3
Data for Error 2 =used drop box and select Column 4
Click Finish

Figure 8.4 shows clearly that the 95% confidence intervals of the bars for the
per cent of the abdominal surgery group who are term or premature babies do not
overlap either of the other groups and therefore the percentages are significantly
different as described by the P values. The per cent of premature babies in the cardiac
surgery and other procedure groups are almost identical as described by the P value
of 1.0 (see p.269).
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Figure 8.4 Percentage of surgical procedures in premature and term babies.
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8.11 Categorizing continuous variables

In addition to 2 X2 and 2 x 3 tables, chi-square tests can also be used to analyze tables
of larger dimensions as shown in the following research question. However, the same
assumptions apply and the sample size should be sufficient so that small cells with few
expected counts are not created.

Research question

Question: Do babies who have a cardiac procedure stay in hospital longer than
babies who have other procedures?

Null hypothesis: ~ That length of stay is not different between children who undergo
different procedures.

Variables: Outcome variable =length of stay (categorized into quintiles)

Explanatory variable =procedure performed (categorical, three
levels)

In the data set, length of stay is a right skewed continuous variable (see Chapter 2).
As an alternative to using rank-based non-parametric tests, it is often useful to divide
non-normally distributed variables such as this into categories. Box 8.6 shows the SPSS
commands that can be used to divide length of stay into quintiles, that is, five groups.
The sample is divided with four cutpoints to give five roughly equal sized groups.

Box 8.6 SPSS commands to categorize variables

SPSS Commands

surgery.sav — IBM SPSS Statistics Data Editor
Transform — Visual Binning
Visual Binning
Highlight Length of stay and click into Variables to Bin box
Click Continue
Enter new variable name LOSquintiles into Binned Variable box
Change variable label Length of Stay (Binned) to Length of stay quintiles
Click on Make Cutpoints
Make Cutpoints
Tick Equal Percentiles Based on Scanned Cases
Number of Cutpoints: enter 4
Tick Apply
Visual Binning
Click on Make Labels to automatically label the new variable with cutpoint ranges
Tick OK
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Information about the sample size of each quintile and the range of values in each
quintile band can be obtained using the following SPSS commands Analyze — Descriptive
Statistics — Frequencies to obtain the following output:

Length of stay quintiles

Valid Cumulative
Frequency Per cent per cent per cent
Valid <19 30 21.3 22.7 22.7
20-22 24 17.0 18.2 40.9
23-30 26 18.4 19.7 60.6
31-44 26 18.4 19.7 80.3
45+ 26 18.4 19.7 100.0
Total 132 93.6 100.0
Missing System 9 6.4
Total 141 100.0

In the length of stay quintiles table, it can be seen that the length of stay in hospital
for 24 babies was between 20 and 22 days long. The ranges are important for describing
the quintile values when reporting the results. The number of cases in some quintiles is
unequal because there are some ties in the data.

Procedure performed * Length of stay quintiles Crosstabulation

Length of stay quintiles

<19 20-22 23-30 31-44 45+ Total

Procedure Abdominal  Count 5 8 15 1 9 48
performed % within procedure 10.4% 16.7% 31.3% 22.9% 18.8% 100.0%
performed
Cardiac Count 15 13 7 12 6 53
% within procedure 28.3% 24.5% 13.2% 22.6% 11.3% 100.0%
performed
Other Count 10 3 4 3 1 31
% within procedure 32.3% 9.7% 129% 9.7% 35.5% 100.0%
performed
Total Count 30 24 26 26 26 132
% within procedure 22.7% 182% 19.7% 19.7% 19.7% 100.0%
performed

Chi-Square Tests

Asymp. Sig.
Value df (2-sided)
Pearson chi-square 20.6432 8 0.008
Likelihood ratio 21.086 8 0.007
Linear-by-linear association 0.595 1 0.440

N of valid cases 132

20 cells (0.0%) have expected count less than 5. The minimum expected count is 5.64.
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The SPSS commands for obtaining crosstabulations shown in Box 8.3 can now be
used to answer the research question. In the crosstabulation, the procedure performed
is entered into the rows as explanatory variable and length of stay quintiles are entered
in the columns as the outcome variable. The row percentages are selected in Cells.

It is very difficult to interpret large tables such as this 3 x 5 table. The crosstabulation
has 15 cells, each with fewer than 20 observed cases. Although some cells have only
two or three cases, the Chi-Square Tests footnote shows that no cells have an expected
number less than 5, so that the analysis and the P value are valid. Although the P value
is significant at P=0.008, no clear trends are apparent in the table. If the cardiac and
abdominal patients are compared, the abdominal group has fewer babies in the lowest
quintile and the cardiac group has slightly fewer babies in the highest quintile. In the
group of babies who had other procedures, most babies are either in the lowest or in
the highest quintiles of length of stay. Thus, the P value is difficult to interpret without
any further sub-group analyses and the interpretation of the statistical significance of
the results is difficult to communicate. Again, in such a large table, the linear-by-linear
statistic has no interpretation and should not be used. A solution to removing small
cells for this research question would be to divide length of stay into two groups only,
perhaps above and below the median value or above and below a clinically important
threshold, and to examine the per cent of babies in each procedure group who have
long or short stays.

8.12 Chi-square trend test for ordered variables

Chi-square trend test, which in SPSS is called a linear-by-linear association, is suitable
when the exposure variable can be categorized into ordered groups, such as quintiles
for length of stay, and the outcome variable is binary. The linear-by-linear statistic then
indicates whether there is a trend for the outcome to increase or decrease as the exposure
increases.

Research question

Question: Is there a trend for babies who stay longer in hospital to have a higher
infection rate?

Null hypothesis: That infection rates do not change with length of stay.

Variables: Outcome variable =infection (categorical, two levels)
Explanatory/exposure variable =length of stay (categorized into
quintiles, ordered)

In this research question, it makes sense to test whether there is a trend for the per cent
of babies with infection to increase significantly with an increase in length of stay. The
SPSS commands shown in Box 8.3 can be used with length of stay quintiles in the rows,
infection in the columns and the row percentages requested.

The Crosstabulation table shows that the per cent of children with infection increases
with length of stay quintile, from 23.3% in the lowest length of stay quintile group to
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57.7% in the highest quintile group. The Pearson chi-square indicates that there is a
significant difference in percentages between some groups in the table with P=0.033.
From this, it can be inferred that the lowest rate of infection in the bottom quintile is
significantly different from the highest rate in the top quintile but not that any other
rates are significantly different from one other. More usefully, the linear-by-linear asso-
ciation indicates that there is a significant trend for infection to increase with increasing
length of stay at P=0.002.

Length of stay quintiles * Infection Crosstabulation

Infection Total
No Yes
Length of stay <19 Count 23 7 30
quintiles % within Length of stay 76.7% 23.3% 100.0%
quintiles
20-22 Count 17 7 24
% within Length of stay 70.8% 29.2% 100.0%
quintiles
23-30 Count 17 9 26
% within Length of stay 65.4% 34.6% 100.0%
quintiles
31-44 Count 12 14 26
% within Length of stay 46.2% 53.8% 100.0%
quintiles
45+ Count 11 15 26
% within Length of stay 42.3% 57.7% 100.0%
quintiles
Total Count 80 52 132
% within Length of stay 60.6% 39.4% 100.0%
quintiles
Chi-Square Tests
Asymp. Sig.
Value df (2-sided)
Pearson chi-square 10.462° 4 .033
Likelihood ratio 10.578 4 .032
Linear-by-linear association 9.769 1 .002
N of valid cases 132

20 cells (0.0%) have expected count less than 5. The minimum expected count is 9.45.

8.12.1 Reporting the results

When presenting the effects of an ordered exposure variable on several outcomes in a
scientific table, the exposure groups are best shown in the columns and the outcomes
in the rows. Using this layout the per cent of babies in each exposure group can be
compared across a line of the table. The data from the Crosstabulation table above can
be presented as shown in Table 8.13. If other outcomes associated with length of stay
were also investigated, further rows could be added to the table.
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Table 8.13 Rates of infection by length of stay

Length of stay in quintiles

1 2 3 4 5 P value
Range (days) 0-19 20-22 23-30 31-44 45-244 P value for trend
Number in group 30 24 26 26 26
Percentage with infection 23.3% 29.2% 34.6% 53.8% 57.7% 0.033 0.002

To obtain a graphical indication of the magnitude of the trend across the data, a
clustered bar chart can be requested using the SPSS commands shown in Box 8.7. If
the number of cases in each group is unequal, as in this data set, then percentages
rather than numbers must be selected in the Bars Represent option so that the height
of each bar is standardized for the different numbers in each group and can be directly
compared.

Box 8.7 SPSS commands to obtain a clustered bar chart

SPSS Commands

surgery.sav — IBM SPSS Statistics Data Editor

Graphs — Legacy Dialogs — Bar
Bar Charts

Click Clustered, tick Summaries for groups of cases (default), click Define
Define Clustered Bar: Summaries for Groups of Cases

Bars Represent: Tick % of cases

Highlight Infection and click into Category Axis

Highlight Length of stay quintiles and click into Define Clusters by

Click OK

In Figure 8.5, the group of bars on the left hand side of the graph shows the decrease
in the per cent of babies who did not have infection across length of stay quintiles.
The group of bars on the right hand side shows the complement of the data, that is,
the increase across quintiles of the per cent of babies who did have infection. A way of
presenting the data to answer the research question would be to draw a bar chart of the
per cent of children with infection only as shown on the right hand side of Figure 8.5.
This type of chart can be drawn in SigmaPlot using the commands shown in Box 8.4
with a vertical bar chart without error bars rather than a horizontal bar chart selected.
Using the SigmaPlot commands Analysis — Regression Wizard with the option Linear under
the equation category Polynomial will provide a trend line across the bars as shown as in
Figure 8.6.
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80.0% — Length of stay quintiles
W< 19
[ 20-22
[123-30
W 31-44
[145+
60.0% —
=
(]
o
o 40.0% —
o
20.0%
.0% -
No Yes

Infection
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Figure 8.6 Rate of infection across length of stay quintiles.
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8.13 Number needed to treat (NNT)

In interpreting the results from clinical trials, clinicians are often interested in how many
patients need to be administered a treatment to prevent one adverse event. An adverse
event is any unfavourable or undesirable effect that an individual experiences during
the clinical trial (or period of observation) which may or may not be associated with the
treatment. This statistic, which is called number needed to treat (NNT), can be calculated
from clinical studies in which the effectiveness of an intervention is compared in two
groups; for example, a standard treatment group and a new treatment group. For 2 x 2
crosstabulations, a chi-square test is used to indicate significance between the groups, or
a difference in proportions is used to indicate whether the new treatment group has a
significantly lower rate of adverse events than the standard treatment group. However,
in clinical situations, these statistics, which describe the general differences between two
groups, may not be the major results of interest. In a clinical setting, the statistic NNT
provides a number that can be directly applied to individual patients and may therefore
be more informative.

To calculate NNT, two categorical variables each with two levels are required in order
to compute a 2 X 2 crosstabulation. One variable must indicate the presence or absence
of the adverse event; for example, an outcome such as death or disability, and the other
variable must indicate group status (exposure), for example, whether patients are in the
intervention or control group.

Research example

The file therapy.sav contains data for 200 patients, half of whom were randomized to
receive standard therapy and half of whom were randomized to receive a new therapy.
The two outcomes that have been collected are the presence or absence of stroke and
the presence or absence of disability. Each outcome variable is a binary yes/no response.
Using the commands shown in Box 8.3, the following 2 x 2 tables for each outcome can
be obtained. To calculate NNT, the outcome is entered as the rows, the treatment group is
entered in the columns and column percentages are requested. In the cross-tabulation
stroke is entered in row and treatment group is entered in column in the Crosstabs
commands.

Crosstabs

Stroke * Treatment Group Crosstabulation

Treatment group

New Standard
therapy treatment Total
Stroke No complications Count 85 79 164
% within treatment group 85.0% 79.0% 82.0%
Stroke Count 15 21 36
% within treatment group 15.0% 21.0% 18.0%
Total Count 100 100 200

% within treatment group 100.0% 100.0% 100.0%
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 1.220° 1 0.269
Continuity correction® 0.847 1 0.357
Likelihood ratio 1.224 1 0.269
Fisher's exact test 0.358 0.179
Linear-by-linear association 1.213 1 0.271

N of valid cases 200

a0 cell (0.0%) has expected count less than 5. The minimum expected count is 18.00.
bComputed only for a 2 x 2 table.

The first Crosstabulation table shows that the rate of stroke is 15% in the new treat-
ment group compared to 21.0% in the standard treatment group. The Chi-Square Tests
table shows the Fisher’s exact test chi-square value of P=0.358 which indicates that
this difference in rates is not statistically significant. However, the statistical significance
of between-group rates, which depends largely on sample size, may not be of primary
interest in a clinical setting.

8.13.1 Calculating NNT

From the table, NNT is calculated from the absolute risk reduction (ARR), which is sim-
ply the difference in the per cent of patients with the outcome of interest between the
groups. From the Crosstabulation table for stroke:

ARR =21.0% — 15.0% = 6.0%

then converted to a proportion, which in decimal format is 0.06, and the reciprocal is
taken to obtain NNT:
NNT = 1/ARR = 1/0.06 = 16.67

Obviously, NNT is always rounded to the nearest whole number. This indicates that 17
people will need to receive the new treatment to prevent one extra person from having
a stroke.

Crosstabs

Disability * Treatment Group Crosstabulation

Treatment group

New Standard
therapy treatment Total
Disability No disability Count 82 68 150
% within treatment group 82.0% 68.0% 75.0%
Disability Count 18 32 50
% within treatment group 18.0% 32.0% 25.0%
Total Count 100 100 200

% within treatment group 100.0% 100.0% 100.0%
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 5.227°2 1 0.022
Continuity correction® 4.507 1 0.034
Likelihood ratio 5.281 1 0.022
Fisher's exact test 0.033 0.017
Linear-by-linear association 5.201 1 0.023

N of valid cases 200

a0 cell (0.0%) has expected count less than 5. The minimum expected count is 25.00.
bComputed only for a 2 x 2 table.

The second Crosstabulation table shows that the rate of disability is 18% in the new
treatment group compared to 32.0% in the standard treatment group. The Fisher’s exact
test chi-square value with P=0.033 shows that this new treatment achieves a significant
change in the rate of disability. The calculation of NNT is as follows:

ARR = 32.0% — 18.0% = 14.0%
NNT = 1/ARR = 1/0.14 = 7.14

This indicates that seven people will need to receive the new treatment to prevent
one extra person having a major disability. The larger the difference between groups
as shown by a larger ARR, the fewer the number of patients who need to receive the
treatment to prevent the occurrence of one additional adverse event. Methods for cal-
culating confidence intervals for NNT, which must be a positive number, are reported
in the literature.*

Occasionally in clinical trials there may be no adverse events in one group. If the
Crosstabs procedure is repeated again, with the variable indicating survival (death)
entered as the outcome in the rows, the shown table is produced.

Crosstabs

Death * Treatment Group Crosstabulation

Treatment group

New Standard
therapy treatment Total
Death Survived Count 100 92 192
% within treatment group 100.0% 92.0% 96.0%
Died Count 0 8 8
% within treatment group 0.0% 8.0% 4.0%
Total Count 100 100 200

% within treatment group 100.0% 100.0% 100.0%
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 8.3332 1 0.004
Continuity correction® 6.380 1 0.012
Likelihood ratio 11.424 1 0.001
Fisher's exact test 0.007 0.003
Linear-by-linear association 8.292 1 0.004

N of valid cases 200

aTwo cells (50.0%) have expected count less than 5. The minimum expected count is 4.00.
bComputed only for a 2 x 2 table.

The Crosstabulation shows that death occurs in 8% of the standard treatment group
compared to 0% in the new treatment group. The Fisher’s exact test chi-square value
with P=0.007 indicates that this a significant association between survival and type
of treatment received. When no adverse events occur in a group, as for deaths in the
new treatment group this does not mean that no deaths will ever occur in patients who
receive the new treatment. One way to estimate the proportion of patients in this group
who might die is to calculate the upper end of the confidence interval around the zero
percentage. To compute a confidence interval around a percentage that is less than 1%
requires exact methods based on a binomial distribution. However, a rough estimate
of the upper 95% confidence interval around a zero percentage is 3/n where 7 is the
number of participants in the group. From the Crosstabulation table, the upper 95%
confidence interval around no deaths in the new therapy group would then be 3/100,
or 3%. This is an approximate calculation only and may yield a conservative estimate.
The true binomial interval is 3.6 %. For more accurate estimates, a binomial confidence
calculator is available at StatPages (see Useful Websites).

8.13.2 How to report NNT

When reporting NNT, it is usual to show the rates of the events in the two treatment
groups in addition to the P value from the chi-square tests. Table 8.14 shows how the
results can be reported.

Table 8.14 Reporting the results from an experimental study of
treatment effects

Outcome New therapy Standard treatment NNT P value
N 100 100

Stroke 15% 21% 17 0.36
Disability 18% 32% 7 0.03

Death 0% 8% 13 0.01
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8.14 Paired categorical variables: McNemar’s chi-square test

Paired categorical measurements taken from the same participants on two occasions or
categorical data collected in matched case-control studies must be analyzed using tests
for repeated data.

The measurements collected in these types of study designs are not independent and
therefore chi-square tests cannot be used because the assumptions would be violated.
In this situation, McNemar’s test is used to assess whether there is a significant change
in proportions over time for paired data or whether there is a significant difference in
proportions between matched cases and controls. In this type of analysis, the outcome
of interest is the within-person changes (or within-pair differences) and there are no
explanatory variables. McNemar’s test can be used when the outcome variable has a
binary response such as ‘yes’ and ‘no’. McNemar’s test is calculated by examining the
number of the responses that are concordant for positive (yes on both occasions) and
negative (no on both occasions), and the number of disconcordant pairs (yes and no, or
no and yes).

The assumptions for using a paired McNemar’s test are shown in Box 8.8.

Box 8.8 Assumptions for a paired McNemar’s test

For a paired McNemar’s test the following assumptions must be met:

e the outcome variable is binary

e cach participant is represented in the table once only

e the difference between the paired proportions is the outcome of interest

Research question

The file health-camp.sav contains the data from 86 children who attended a camp
to learn how to self-manage their illness. The children were asked whether they knew
how to manage their illness appropriately (yes/no) and whether they knew when to
use their rescue medication appropriately (yes/no) at both the start and completion of
the camp. In this example, McNemar’s test can be used to determine if the children’s
responses before the camp is equal to their responses after the camp.

Question: Did attendance at the camp increase the number of children who
knew how to manage their illness appropriately?

Null hypothesis: That there was no change in children’s knowledge of illness
management between the beginning and completion of the health
camp.

Variables: Appropriate knowledge (categorical, binary) at the beginning and

completion of the camp.

In this research question the explanatory variable is time, which is built into the
analysis, and knowledge at both Time 1 and Time 2 are the outcome variables. The rela-
tionship between the measurements is summarized using a paired 2 x2 contingency
table and McNemar’s test can be obtained using the commands shown in Box 8.9.
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Box 8.9 SPSS commands to obtain McNemar'’s test

SPSS Commands

health-camp.sav — IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Knowledge-Timel and click into Row(s)
Highlight Knowledge-Time2 and click into Column(s)
Click on Statistics
Crosstabs: Statistics
Tick McNemar, click Continue
Crosstabs
Click on Cells
Crosstabs: Cell Display
Counts: tick Observed (default)
Percentages: tick Total
Noninteger Weights: tick Round cell count (default)
Click Continue
Crosstabs
Click OK

In the Crosstabulation table, the total column and total row cells indicate that 34.9%
of children had appropriate knowledge at the beginning of the camp (Yes at Time 1)
and 61.6% at the end of the camp (Yes at Time 2). More importantly, the internal cells
of the table show that 31.4% of children did not have appropriate knowledge on both
occasions and 27.9% did have appropriate knowledge on both occasions. The percent-
ages also show that 33.7% of children improved their knowledge (i.e. went from No at
Time 1 to Yes at Time 2) and only 7.0% of children reduced their knowledge (i.e. went
from Yes at Time 1 to No at Time 2).

Crosstabs

Knowledge-Time 1 * Knowledge-Time 2 Crosstabulation

Knowledge-Time 2

No Yes Total

Knowledge-Time 1 No Count 27 29 56
% of total 31.4% 33.7% 65.1%

Yes Count 6 24 30
% of total 7.0% 27.9% 34.9%

Total Count 33 53 86

% of total 38.4% 61.6% 100.0%
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Chi-Square Tests

Exact Sig.
Value (two-sided)

McNemar test 0.000°
N of valid cases 86

2Binomial distribution used.

The Chi-Square Tests table shows a McNemar P value of <0.0001 indicating that
children’s knowledge of the management of their illness significantly changed after
attending the camp. The percentages from the crosstabulation indicate that their knowl-
edge improved.

When reporting paired information, summary statistics that reflect how many children
improved their knowledge compared to how many children reduced their knowledge
are used. This difference in proportions with its 95% confidence interval can be calcu-
lated using Excel.

In computing these statistics from the Crosstabulation table, the concordant cells are
not used and only the information from the discordant cells is of interest as shown in
Table 8.15. In Table 8.15, the two concordant cells (a and 4) show the number of children
who did or did not have appropriate knowledge at both the beginning and end of the
camp. The two discordant cells (b and ¢) show the number of children who changed
their knowledge status in either direction between the two occasions.

Table 8.15 Presentation of data showing discordant cells

No at Yes at
end of camp end of camp Total
No at beginning of camp 27 29 56
a
c d
Yes at beginning of camp 6 24 30
Total 33 53 n 86

8.14.1 Calculating the change in proportion

The counts in the discordant cells are used in calculating the change as a proportion and
the SE of difference from the cell counts as follows:

(b—o

Difference in proportions =

2
SE of difference = 1 XA[b+c— ((h—c) >
n n

For large sample sizes, the 95% confidence interval around the difference in propor-
tions is calculated as 1.96 X SE. These statistics can be computed using the discordant
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Table 8.16 Excel spreadsheet to compute differences for paired data

p, Yes-  p, Yes-  Total 95% Cl
Time 2 Time 1 N Difference SE width Cl lower Cl upper
Knowledge 0.616 0.349 86 0.267 0.062 0.122 0.145 0.390

Note: p =proportion

cell counts in an Excel spreadsheet as shown in Table 8.16 and the proportions for
appropriate knowledge at the beginning of the camp (Yes at Time 1) and end of the
camp (Yes at Time 2). The table shows that the increase in knowledge converted back to
a percentage is 26.7% (95% CI 14.5, 39.0). The 95% confidence interval does not cross
the zero line of no difference which reflects the finding that the change in proportions
is statistically significant.

Research question

A second outcome that was measured in the study was whether children knew when to
use their rescue medication appropriately. The SPSS commands shown in Box 8.9 can
be used to obtain a McNemar’s test for this outcome by entering medication-time 1 into
the rows and medication-time 2 into the columns of the crosstabulation. Again, only
the total percentages are requested.

In the Crosstabulation table, the percentages in the discordant cells indicate a small
increase in knowledge of 15.1% to 12.8% or 2.3%. The Chi-Square Tests table shows
that this difference is not significant with a P value of 0.839.

Crosstabs

Medication-Time 1 * Medication-Time 2 Crosstabulation

Medication-Time 2

No Yes Total

Medication-Time 1 No Count 17 13 30
% of total 19.8% 15.1% 34.9%

Yes Count 11 45 56
% of total 12.8% 52.3% 65.1%

Total Count 28 58 86
% of total 32.6% 67.4% 100.0%

Chi-Square Tests

Exact sig.
Value (two-sided)

McNemar test 0.8392
N of valid cases 86

aBinomial distribution used.

The Excel spreadsheet shown in Table 8.16 can be used to obtain the paired difference
and its 95% confidence interval as proportions as shown in Table 8.17. The increase in
knowledge is 2.3% (95% CI —8.8%, 13.5%). The 95% confidence interval crosses the
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Table 8.17 Excel spreadsheet to compute differences for paired data

p, Yes- P, Yes- Total 95% Cl cl al
Time 2 Time 1 N Difference SE width lower upper
Medication 0.674 0.651 86 0.023 0.057 0.112 -0.088 0.135

Note: p =proportion

zero line of no difference reflecting the finding that the change in proportions is not
statistically significant.

8.14.2 Reporting the results of paired data

The analyses show that the number of children who knew how to manage their ill-
ness significantly changed after camp, with almost one third of the group reporting
increased knowledge after attending the camp. The number of children who knew when
to use their rescue medication slightly changed but not significantly on completion of
the camp. These results could be presented as shown in Table 8.18. By reporting the
per cent of children with knowledge on both occasions, the per cent increase and the P
value, all information that is relevant to interpreting the findings is included.

Table 8.18 Changes in knowledge of management and medication use in
86 children following camp attendance

Knowledge Knowledge on % increase and
prior completion 95% CI P value
Management 34.9% 61.6% 26.7% (14.5, 39.0) <0.0001
Medication use 65.1% 67.4% 2.3% (-8.8, 13.5) 0.84

8.15 Notes for critical appraisal

There are many ways in which crosstabulations can be used and chi-square values can
be computed. The P values often depend on the sample size and can be biased by cells
with only a small number of expected counts. When critically appraising an article that
presents categorical data analyzed using univariate statistics or crosstabulations, it is
important to ask the questions shown in Box 8.10.

Box 8.10 Questions for critical appraisal

The following questions should be asked when appraising published results from
analyses in which crosstabulations are used:

e Has any participant been included in an analysis more than once?

e Have the correct terms to describe rates or proportions been used?

e Is the correct chi-square value presented?
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Could any small cells have biased the P value?

Are percentages reported so that the size of the difference is clear?

Have 95% confidence intervals for percentages been reported?

If two groups are being compared, is the difference between them shown?

If the exposure variable is ordered, is a trend statistic reported?

Is it clear how any ‘missing data” have influenced the results?

Are the most important findings reported as a figure?

If the results of a trial to test an intervention are being reported, is NNT presented?
If the data are paired, has a paired statistical test been used?
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CHAPTER 9
Risk statistics

Clinicians have a good intuitive understanding of risk and even of a ratio of risks. Gamblers have
a good intuitive understanding of odds. No one (with the possible exception of certain statisticians)
intuitively understands a ratio of odds."-?

Objectives

The objectives of this chapter are to explain how to:

e decide whether odds ratio or relative risk is the appropriate statistic to use
e use logistic regression to compute adjusted odds ratios

e report and plot unadjusted and adjusted odds ratios

e change risk estimates to protection and vice versa

e calculate 95% confidence intervals around estimates of risk

o critically appraise the literature in which estimates of risk are reported

9.1 Risk statistics

Chi-square tests indicate whether two binary variables such as an exposure and an out-
come measurement are independent or are significantly related to each other. However,
apart from the P value, chi-square tests do not provide a statistic for describing the
strength of the relationship. Two risk statistics that are useful for measuring the mag-
nitude of the association between two binary variables measured in a 2 X2 table are
the odds ratio and the relative risk. Both of these statistics are estimates of risk and, as
such, describe the probability that people who are exposed to a certain factor will have
a disease compared to people who are not exposed to the same factor.

The odds ratio is the odds of the outcome occurring in one group divided by the odds
of the outcome occurring in another group. Relative risk is the ratio of the probability
of the outcome occurring in one group (i.e. exposed) to the probability of the outcome
occurring in another group (i.e. non-exposed). The choice of using an odds ratio or a
relative risk depends on both the study design and whether bivariate or multivariate
analyses are required.

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
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9.2 Study design

Both odds ratio and relative risk are widely used in epidemiological and clinical research
to describe the risk of people having a disease (or an outcome) in the presence of an
exposure, which may be an environmental factor, a treatment or any other type of
explanatory factor. Odds ratios have the advantage that they can be used in any study
design, including experimental and case—control studies in which the proportion of
cases is unlikely to be representative of the proportion in the population. Thus, odds
ratio are commonly used to measure the effect size. In addition, direct comparisons
of effect can be made between different study designs and odds ratios from different
studies can be compared and combined, and are often used to report the results of sys-
tematic reviews and meta-analyses. Odds ratios can be adjusted for the effects of other
related exposures in multivariate analyses in which case the summary estimates are
called ‘adjusted” odds ratios, which are discussed later in this chapter.

The relative risk statistic relies on the probability of the outcome in the sample being
the same as the probability of the outcome in the population. Therefore, relative risk
can be calculated when the sample has been selected randomly or when a representative
sample has been enrolled. Random samples are often enrolled in cross-sectional studies,
some cohort studies and clinical trials. As such, relative risk is commonly calculated in
these types of studies and when only bivariate analyses are required. In non-random
samples, the probability of outcome will be altered by the selection criteria and therefore
the relative risk will not represent the population risk. Thus, relative risk should only
be calculated from a sample that has the same characteristics as the population from
which it is drawn and in which the proportion of people with the outcome represents
the population prevalence rate of the disease.

Odds ratios should not be used to estimate the relative risk. The odds ratio will always
overestimate the effect when interpreted as a relative risk and the degree of overesti-
mation will increase as the effect becomes larger.> Only when the outcome of interest
is low (<10%) does the odds ratio approximate to the risk ratio.?

9.3 0Odds ratio

The odds ratio is the odds of a person having a disease if exposed to the risk factor divided
by the odds of a person having a disease if not exposed to the risk factor. Conversely,
an odds ratio can be interpreted as the odds of a person having been exposed to a factor
when having the disease compared to the odds of a person having been exposed to a fac-
tor when not having the disease. This converse interpretation is useful for case—control
studies in which participants are selected on the basis of their disease status and their
exposures are measured. In this type of study, the odds ratio is interpreted as the odds
that a case has been exposed to the risk factor of interest compared to the odds that a
control has been exposed.

9.3.1 Assumptions

The assumptions for using odds ratio are exactly the same as the assumptions for using
chi-square tests shown in Box 8.2 in Chapter 8.
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Table 9.1 Table to measure the relation between a disease and

an exposure

Disease present Disease absent Total
Exposure present a b a+b
Exposure absent c d c+d
Total a+c b+d N
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9.3.2 Calculating odds ratio

The way in which tables to calculate risk statistics are classically set up in the clinical
epidemiology textbooks is shown in Table 9.1.

The odds ratio is a ratio of the probability of an event occurring to the probability
of an event not occurring.* The odds ratio is calculated by comparing the odds of an
event in one group (e.g. exposure present) to the odds of the same event in another
group (e.g. exposure absent). From Table 9.1, the odds of the disease in the exposed
group compared to the odds of the disease in the non-exposed group can be calculated
as shown below. This calculation shows why an odds ratio is sometimes called a ratio of
cross-products.

(a/b) _(axd)

Odds ratio (OR) = /) = %0

9.3.3 Coding

A problem arises in calculating odds ratio and relative risk using some statistical packages
because the format of the table that is required to compute the correct statistics is dif-
ferent from the format used in clinical epidemiology textbooks. To use SPSS to compute
these risk statistics, the variables need to be coded as shown in Table 9.2.

Table 9.2 Possible coding of variables to compute risk

Code Alternate code Condition Interpretation

1 0 Disease absent Outcome negative
2 1 Disease present Outcome positive

1 0 Exposure absent Risk factor negative
2 1 Exposure present Risk factor positive

This will invert the table shown in Table 9.1 but as shown later in this chapter, this
will allow the odds ratio to be read directly from the SPSS output generated in both the
Analyze — Frequencies Crosstabs and the Analyze — Regression — Binary Logistic menus.

If the reverse notation is used as in Table 9.1, the odds ratio and relative risk statistics
printed by SPSS have to be inverted to obtain the correct direction of effect. The options
are to either:
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i. code the data as shown in Table 9.2 and in Table 8.3, which inverts the location of
cells in Table 9.1 but not the statistics or
ii. code the data as shown in Table 9.1 which inverts the statistics but not the table.

In this chapter, the first option is used so that the layout of the tables is as shown in
Table 8.3.

9.3.4 Interpreting the odds ratio

Both odds ratio and relative risk are invaluable statistics for describing the magnitude of
the relationship between the exposure and the outcome variables because they provide a
size of effect that adds to the information provided by the chi-square value. A chi-square
test indicates whether the difference in the proportion of participants with and without
disease in the exposure present and exposure absent groups is statistically significant,
but an odds ratio quantifies the relative size of the difference between the groups.

Odds ratio is a less valuable statistic than relative risk because it represents the odds of
disease, which is not as intuitive as the relative risk. Although the odds ratio is not the
easiest of statistics to explain or understand, it is widely used for describing an association
between an exposure and a disease because it can be calculated from studies of any
design, including cross-sectional, cohort studies, case—control studies and experimental
trials as shown in Table 9.3.

Odds ratio has the advantage that it can be used to make direct comparisons of results
from studies of different designs and, for this reason, odds ratios are often used in
meta-analyses. The odds ratio and the relative risk are always in the same direction
of risk or protection. However, the odds ratio does not give a good approximation of the
relative risk when the exposure and/or the disease are relatively common.®> The odds
ratio is always larger than relative risk and therefore generally overestimates the true
association between variables.

The calculation of the odds ratio from the data shown in Table 9.4 is as follows:

Odds ratio = (a/b)/(c/d)
=(40/25)/(60/75)
=(8/5)/(4/5)

=2.0

Table 9.3 Study type and statistics available

Type of study Odds ratio Relative risk
Cross-sectional Yes Yes

Cohort Yes Sometimes
Case—control Yes No

Clinical trial Yes Sometimes
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Table 9.4 2 x2 crosstabulation of disease and exposure

Disease absent Disease present Total
Exposure absent 75 60 135
d C
a
Exposure present 25 40 65
Total 100 100 200

When an odds ratio equals 1.0 then the odds that people with and without the disease
have been exposed is equal and the exposure presents no difference in risk. An odds ratio
of 2.0 can be interpreted as the odds that an exposed person has the disease present are
twice that of the odds that a non-exposed person has the disease present. That is, if a
person who is exposed to a risk factor and a person who is not exposed to the same risk
factor are compared, a gambler would break even by betting 2:1 that the person who
had been exposed would have the disease. However, this interpretation is not intuitive
for most researchers and clinicians.

An odds ratio calculated in this way from a 2 X 2 table is called an unadjusted odds ratio
because it is not adjusted for the effects of possible confounders. Odds ratios calculated
using logistic regression are called ‘adjusted odds ratios” because they are adjusted for
the effects of the other variables in the model.

The size of odds ratio that is important is often debated and in considering this the
clinical importance of the outcome and the number of people exposed need to be taken
into account. An odds ratio above 2.0 is usually important. However, a smaller odds
ratio between 1.0 and 2.0 can have public health importance if a large number of people
are exposed to the factor of interest. For example, approximately 25% of the 5 million
children aged between 1 and 14 years living in Australasia have a mother who smokes.
The odds ratio for children to wheeze if exposed to environmental tobacco smoke is
1.3, which is close to 1.0. On the basis of this odds ratio and the high exposure rate,
a conservative estimate is that 320 000 children have symptoms of wheeze as a result
of being exposed, which amounts to an important public health problem.® If only 5%
of children were exposed or if the outcome was more trivial, the public health impact
would be less important.

Research question

The spreadsheet asthma.sav contains data from a random cross-sectional sample of
2464 children aged 8 to 10 years in which the exposure of allergy to housedust mites
(HDM), the exposure to respiratory infection in early life, the characteristic gender and
the presence of the disease (asthma) were measured in all children.
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Question: Are HDM allergy, early infection or gender independent risk factors
for asthma in this sample of children?

Null hypothesis: ~ That HDM allergy, respiratory infection in early life and gender are
not independent risk factors for asthma.

Variables: Outcome variable = Diagnosed asthma (categorical, two levels)

Explanatory variables (risk factors) =allergy to HDM (categorical,
two levels), early infection (categorical, two levels) and gender
(categorical, two levels).

The SPSS commands shown in Box 9.1 can be used to obtain the crosstabulations
for the three risk factors and their risk statistics. In calculating risk, the risk factors are
entered in the rows, the outcome in the columns and the row percentages are requested.
Each explanatory variable is crosstabulated separately with the outcome variable so
three different crosstabulation tables are produced.

Box 9.1 SPSS commands to obtain risk statistics

SPSS Commands

asthma.sav —IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Allergy to HDM, Early infection, and Gender and click into Row(s)
Highlight Diagnosed asthma and click into Column(s)
Click Statistics
Crosstabs: Statistics
Tick Chi-square, tick Risk, Click Continue
Crosstabs
Click Cells
Crosstabs: Cell Display
Counts: tick Observed (default)
Percentages: tick Row
Noninteger Weights: tick Round cell count (default), click Continue
Crosstabs
Click OK

Crosstabs

Allergy to HDM * Diagnosed asthma Crosstabulation

Diagnosed asthma

No Yes Total
Allergy to HDM No Count 1414 125 1539
% within allergy to HDM 91.9% 8.1% 100.0%
Yes Count 529 396 925
% within allergy to HDM 57.2% 42.8% 100.0%
Total Count 1943 521 2464

% within allergy to HDM 78.9% 21.1% 100.0%
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The Crosstabulation table for allergy to HDM and asthma shows that in the group of chil-
dren who did not have HDM allergy 8.1% had been diagnosed with asthma and in the
group of children who did have HDM allergy 42.8% had been diagnosed with asthma.

The Pearson’s chi-square value in the Chi-Square Tests table is used to assess signif-
icance because the sample size is in excess of 1000. The P value is highly significant
at P<0.0001 indicating that the frequency of HDM allergy is significantly different
between the two groups and there is an association between HDM allergy and asthma.
The odds ratio can be calculated from the crosstabulation table as (396/529)/(125/1414),
which is 8.468. This is shown in the Risk Estimate table, which also gives the 95% con-
fidence interval.

Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 416.9512 1 0.000
Continuity correction® 414.874 1 0.000
Likelihood ratio 411.844 1 0.000
Fisher's exact test 0.000 0.000
Linear-by-linear 416.782 1 0.000
association
N of valid cases 2464

20 cell (0.0%) has expected count less than 5. The minimum expected count is 195.59.
bComputed only for a 2 x 2 table.

In the Risk Estimate table the odds ratio for the association between a diagnosis of
asthma and HDM allergy is large at 8.468 (95% CI 6.765-10.60) reflecting the large
difference in percentages of outcome given exposure and thus a strong relation between
the two variables in this sample of children. The 95% confidence interval does not con-
tain the value of 1.0, which represents no difference in risk, and therefore is consistent
with an odds ratio that is statistically significant.

The cohort statistics reported below the odds ratio can also be used to generate relative
risk, which is explained later in this chapter.

Risk Estimate

95% confidence

interval
Value Lower Upper
Odds ratio for allergy to HDM (no/yes) 8.468 6.765 10.600
For cohort diagnosed asthma=no 1.607 1.516 1.702
For cohort diagnosed asthma =yes 0.190 0.158 0.228

N of valid cases 2464

The Crosstabulation table for early infection and asthma shows that of the children
diagnosed with asthma, 19.7% did not have a respiratory infection in early life compared
with 27.5% of the group who did have an early respiratory infection. Although the
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difference in percentages in this table (27.5% vs 19.7%) is not as large as for HDM
allergy, the Pearson’s chi-square value in the Chi-Square Tests table shows that this
difference is similarly highly significant at P < 0.0001.

Crosstabs

Early infection * Diagnosed asthma Crosstabulation

No Yes Total
Early infection No Count 1622 399 2021
% within early infection 80.3% 19.7% 100.0%
Yes Count 321 122 443
% within early infection 72.5% 27.5% 100.0%
Total Count 1943 521 2464
% within early infection 78.9% 21.1% 100.0%
Chi-Square Tests
Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 13.247° 1 0.000
Continuity correction® 12.784 1 0.000
Likelihood ratio 12.599 1 0.000
Fisher's exact test 0.000 0.000
Linear-by-linear association 13.242 1 0.000
N of valid cases 2464

a0 cell (0.0%) has expected count less than 5. The minimum expected count is 93.67.
bComputed only for a 2 x 2 table.

However, the Risk Estimate table shows that the odds ratio for the association between
a diagnosis of asthma and an early respiratory infection is much lower than for HDM
allergy at 1.545 (95% CI 1.221-1.955). Again, the statistical significance of the odds
ratio is reflected in the 95% confidence interval, which does not contain the value of
1.0, which represents no difference in risk.

Risk Estimate

95% Confidence

interval
Value Lower Upper
Odds ratio for early infection (no/yes) 1.545 1.221 1.955
For cohort diagnosed asthma=no 1.108 1.042 1.178
For cohort diagnosed asthma =yes 0.717 0.602 0.854

N of valid cases 2464

For gender, the Crosstabulation table shows that 18.8% of females had a diagnosis
of asthma compared with 23.4% of males. At P=0.005, the Pearson’s chi-square value
in the Chi-Square Tests table is less significant than for the other two variables. In
the Risk Estimate table, the odds ratio of 1.319 is also smaller (95% CI 1.085-1.602),
reflecting the smaller difference in proportions in diagnosed asthma between the two
gender groups.
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Gender * Diagnosed asthma Crosstabulation
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Diagnosed asthma

No Yes Total
Gender Female Count 965 223 1188
% within gender 81.2% 18.8% 100.0%
Male Count 978 298 1276
% within gender 76.6% 23.4% 100.0%
Total Count 1943 521 2464
% within gender 78.9% 21.1% 100.0%
Chi-Square Tests
Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 7.7512 1 0.005
Continuity correction® 7.478 1 0.006
Likelihood ratio 7.778 1 0.005
Fisher's exact test 0.006 0.003
Linear-by-linear association 7.747 1 0.005
N of valid cases 2464

20 cell (0.0%) has expected count less than 5. The minimum expected count is 251.20.

bComputed only for a 2x 2 table.

Risk Estimate

95% Confidence

interval
Value Lower Upper
Odds ratio for gender (female/male) 1.319 1.085 1.602
For cohort diagnosed asthma=no 1.060 1.017 1.104
For cohort diagnosed asthma =yes 0.804 0.689 0.938
N of valid cases 2464

9.3.5 Reporting odds ratios

The results from these tables can be presented as shown in Table 9.5. When reporting an
odds ratio or relative risk, the per cent of cases with the outcome in the two comparison
groups of interest are included. It is often useful to rank explanatory variables in order

of the magnitude of risk.

Odds ratios larger than 1.0 are reported with only one decimal place because the pre-
cision of 1/100th or 1/1000th of an estimate of risk is not required. The decision of
whether to include a column with the chi-square values is optional since the only inter-
pretation of the chi-square value is the P value. From the table, it is easy to see how the
odds ratio describes the strength of the associations between variables in a way that is

not discriminated by the P values.
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Table 9.5 Unadjusted associations between risk factors and diagnosed asthma in a random
sample of 2464 children aged 8—10 years

% diagnosed

% diagnosed asthma in Unadjusted
Risk factor asthma in non-exposed odds ratio
(exposure) exposed group group and 95% Cl Chi-square P value
Allergy to HDM 42.8% 8.1% 8.5 (6.8, 10.6) 417.0 <0.0001
Early infection 27.5% 19.7% 1.5(1.2, 2.0) 13.2 <0.0001
Gender 23.4% 18.8% 1.3(1.1,1.6) 7.8 0.005

9.4 Protective odds ratios

An odds ratio greater than 1.0 indicates that the risk of disease in the exposed group is
greater than the risk in the non-exposed group. If the odds ratio is less than 1.0, then
the risk of disease in the exposed group is less than the risk in the non-exposed group.

Whether odds ratios represent risk or protection largely depends on the way in which
the variables are coded. For example, having HDM allergy is a strong risk factor for diag-
nosed asthma in the study sample but if the coding had been reversed with not having
HDM allergy coded as 2, then not having HDM allergy would be a strong protective
factor. For ease of interpretation, comparison and communication, it is usually better to
present all odds ratios in the direction of risk rather than presenting some odds ratios as
risk and some as protection.

To illustrate this, the commands shown in Box 1.9 in Chapter 1 can be used to reverse
the coding of HDM allergy from 2 = exposure to 1 = exposure and from 1 =no exposure
to 2=no exposure. In this example, the new variable is called hdm2 and its values
have been added in Variable View before conducting any analyses. The SPSS commands
shown in Box 9.1 can then be used with allergy to HDM re-coded as the row variable,
diagnosed asthma as the column variable and the row percentages requested.

Crosstabs

Allergy to HDM - Re-coded * Diagnosed Asthma Crosstabulation

Diagnosed asthma Total
No Yes
Allergy to HDM - Allergy Count 529 396 925
re-coded % within allergy to 57.2% 42.8% 100.0%
HDM - re-coded
No Allergy Count 1414 125 1539
% within allergy to 91.9% 8.1% 100.0%
HDM - re-coded
Total Count 1943 521 2464
% within allergy to 78.9% 21.1% 100.0%

HDM - re-coded
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 416.9512 1 0.000
Continuity correction® 414.874 1 0.000
Likelihood ratio 411.844 1 0.000
Fisher's exact test 0.000 0.000
Linear-by-linear association 416.782 1 0.000

N of valid cases 2464

a0 cell (0.0%) has expected count less than 5. The minimum expected count is 195.59.
bComputed only for a 2x 2 table.

Risk Estimate

95% Confidence

Value interval
Lower Upper
Odds ratio for allergy to HDM - re-coded 0.118 0.094 0.148
(allergy/no allergy)
For cohort diagnosed asthma=no 0.622 0.588 0.659
For cohort diagnosed asthma =yes 5.271 4.386 6.334
N of valid cases 2464

The per cent of children with diagnosed asthma in the exposed and unexposed groups
and the P value are obviously exactly the same as before. The only difference in the
Crosstabulation table is that the rows have been interchanged. The odds ratio is now a
protective factor of 0.118 (95% 0.094-0.148) rather than a risk factor of 8.468 (95%
CI 6.765-10.60) as it was in the first analysis.

9.4.1 Changing the direction of risk statistics

Summary statistics of odds ratio can easily be changed from protection to risk or vice
versa by calculating the reciprocal value, that is

odds ratio (risk) = 1/o0dds ratio (protection)
=1/0.118
= 8.474

When recalculated, the upper confidence interval becomes the lower confidence inter-
val and vice versa.

Figure 9.1 shows an odds ratio expressed as a risk factor or as a protective factor. The
x-axis is a logarithmic scale because odds ratios are derived from logarithmic values. In
Figure 9.1, the dotted line passing through 1 indicates the line of no effect, that is, no
difference in risk. When a factor is coded as risk or protection, the effect size is the same
because on a logarithmic scale the odds ratios are symmetrical on either side of the line
of unity.
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Figure 9.1 Effect of an exposure on a disease shown as both a protective factor and as a risk factor.

Ways in which the direction of risk can be changed during the analysis are to recode
the dependent variable so that the category for which risk is of interest is coded with
a higher number than the reference category. Alternatively, when running a binary
logistic regression, the reference category can be changed under ‘Categorical, Change
Contrast’.

9.5 Adjusted odds ratios

A problem with odds ratios calculated from 2 x 2 crosstabulations is that some explana-
tory factors may be related to one another. If cases with one factor present also tend
to have another factor present, the effects of both factors will be included in each odds
ratio. Thus, each odd ratio will be artificially inflated with the effect of the associated
exposure; that is, confounding will be present. Logistic regression is used to calculate the
effects of risk factors as independent odds ratios with the effects of other confounders
removed. These odds ratios are called adjusted odds ratios.

Figure 9.2 shows the percentage of cases with disease in each of three exposure groups.
In group 1, participants had no exposure, in group 2 participants had exposure to factor
I and in group 3 participants had exposure to factor I and factor II. If an unadjusted
odds ratio were used to calculate the risk of disease in the presence of exposure to factor
1, then in a bivariate analysis, groups 2 and 3 would be combined and compared with
group 1. The effect of including cases also exposed to factor Il would inflate the estimate
of risk because their rate of disease is higher than for cases exposed to factor 1. Logistic
regression is used to mathematically separate out the independent risk associated with
exposure to factor I or to factor II.

9.5.1 Binary logistic regression

Binary logistic regression is not really a regression analysis in the classic sense of the term
but is a mathematical method to measure the effects of explanatory variables (or risk fac-
tors) on a binary outcome variable while adjusting for inter-relationships between them.
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Figure 9.2 Rate of disease in group not exposed and in groups exposed to factor I or to both factors
Iand II.

In binary logistic regression, the variables that affect the probability of the outcome are
measured as odds ratios, which are called adjusted odds ratios.

Logistic regression is primarily used to determine which explanatory variables inde-
pendently predict the outcome, when the outcome is a binary variable.” The outcome
variable could be a condition or a disease; for example, the presence or absence of
asthma, or the occurrence or absence of a heart attack. In linear regression, the values
of the outcome variables are predicted form one or more explanatory variables (see
Chapter 7). In logistic regression, since the outcome is binary, the probability of the
outcome occurring is calculated based on the given values of the explanatory variables.
Logistic regression is similar to the linear regression in that a regression equation can be
used to predict the probability of an outcome occurring. However, the logistic regression
equation is expressed in logarithmic terms (or logits) and therefore regression coeffi-
cients must be converted to be interpreted.

Although the explanatory variables or predictors in the model can be continuous or
categorical variables, logistic regression is best suited to measure the effects of exposures
or explanatory variables that are binary variables. Continuous variables can be included
but logistic regression will produce an estimate of risk for each unit of measurement.
Thus, the assumption that the risk effect is linear over each unit of the variable must be
met and the relationship should not be curved or have a threshold value over which the
effect occurs. In addition, interactions between explanatory variables can be included.

9.5.2 Assumptions of logistic regression

The assumptions for using logistic regression are shown in Box 9.2. The assumptions for
the chi-square test as shown in Box 8.2 in Chapter 8 must also be met.
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Box 9.2 Assumptions for using logistic regression

The assumptions that must be met when using logistic regression are as follows:

e the sample is representative of the population to which inference will be made

e the sample size is sufficient to support the model

e the data have been collected in a period when the relationship between the out-
come and the explanatory variable/s remains constant

¢ all important explanatory variables are included

e the explanatory variables do not have a high degree of collinearity with one
another

e if an ordered categorical variable or a continuous variable is included as an
explanatory variable, the effect over levels of the factor must be linear

e alternate outcome and intervening variables are not included as explanatory vari-
ables

9.5.3 Study design and sample size

Logistic regression is most suitable for studies with a large randomly selected sample
such as cross-sectional or cohort studies but is also appropriate for use in studies with a
non-random population such as case—control and experimental studies. Logistic regres-
sion is not suitable for matched or paired data or for repeated measures because the
measurements are not independent — in these situations, conditional logistic regression
is used. In addition, variables that are alternative outcome variables because they are
on the same pathway of development as the outcome variable must not be included as
independent risk factors.

A large sample size is usually required to support a reliable binary logistic regression
model because a cell is generated for each unit of the variable. The data are divided into
a multi-dimension array of cells in exactly the same way as for factorial ANOVA shown
in Table 5.6 but the outcome variable is also included in the array. If three variables
each with two levels are included in the analysis, for example, an outcome and two
explanatory variables, the number of cells in the model will be 2 x 2 x 2, or eight cells.
As with chi-square analyses, a general rule of thumb is that the number of cases in any
one cell should be at least 10. When there are empty cells or cells with a small number
of cases, estimates of risk can become unstable and unreliable. Thus, it is important to
have an adequate sample size to support the analysis.

9.5.4 Model building

Although SPSS provides automatic forward and backward stepwise processes for build-
ing multivariate models, it is more informative to build a logistic regression model using
the same sequential method described for multiple regression in Chapter 7. Using this
method, variables are added to the model one at a time in order of the magnitude of the
chi-square association, starting with the largest estimate. At each step, changes to the
model can be examined to assess multicollinearity and instability in the model.

If an a priori decision is made to include known confounders, these can be entered
first into the logistic regression and the model built up from there. Alternatively,
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confounders can be entered at the end of the model building sequence and only
retained in the model if they change the size of the coefficients of the variables already
in the model by more than 10%.

At each step of adding a variable to the model, it is important to compare the P values,
the standard errors and the odds ratios in the model from Block 1 of 1 with the values
from the second model in Block 2 of 2. A standard error that increases by an impor-
tant amount, say by more than 10% when another variable is added to the model, is
an indication that the model has become less precise. In this situation, the model is
less stable as a result of two or more variables having some degree of multicollinear-
ity and thus sharing variation. The effect of shared variation is to inflate the standard
errors. If this occurs, then one of the variables must be removed. If the standard error
decreases, the model has become more precise. This indicates that the variable added
to the model is a good predictor of the outcome and explains some of the variance. As
with any multivariate model, the decision of which variable to remove or maintain is
based on biological plausibility for the effect and decisions about the variables that can
be measured with most accuracy. A commonly used criterion for retaining variables in
amodel is a P value<0.1.8

Occasionally in logistic regression, complete separation can occur where the outcome
variable can be perfectly predicted by one or more explanatory variables. For example,
this may occur when predicting an age-related disease (e.g. Alzheimer’s) and the
explanatory variable is age coded in categories (e.g. 1 =25-40 years, 2=41-55 years
and 3 =56-70 years). All people with the disease are 56 years and older and all people
aged less than 56 do not have the disease. Therefore, age group 3 predicts the presence
of the disease and the age groups of 1 and 2 predict the absence of the disease. Here, the
outcome groups (presence or absence of a disease) can be separated by the explanatory
variable. Complete separation results in large standard errors as a result of overfitting
the regression model.’

9.5.5 Assessing the model and predictors

In logistic regression, to test the goodness of fit of the model to the data, Cox and Snell
R square and Nagelkerke R square can be examined. The Cox and Snell R square is
similar to the multiple correlation coefficient in linear regression and measures the
strength of the association. This coefficient which takes sample size into consideration
is based on log likelihoods and cannot reach its maximum value of 1.8 The Nagelkerke
R square is a modification of the Cox and Snell so that a value of 1 can be obtained.
Consequently, the Nagelkerke R square is generally higher than Cox’s and has values
that range between 0 and 1.

To evaluate the contribution of an explanatory variable to the model, the Wald statis-
tic can be used. This statistic has a chi-square distribution and is the result of dividing
the B value by its standard error and then squaring the result. This value is used to cal-
culate the significance (P) value for each factor in the model. In logistic regression, the
constant is used in the prediction of probabilities but does not have a practical interpre-
tation. It should be noted that when the absolute value of the B coefficient is large, the
standard error increases which results in the Wald statistic being underestimated.’ Con-
sequently, the occurrence of Type II errors is increased. In this case, other methods such
as a sequential method of entering variables should be used to assess the contribution
of the variable to the model.
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Research question

The risk factors for asthma in the research question can now be examined in a multivari-
ate model by building a logistic regression using the SPSS commands shown in Box 9.3.
On the basis of the magnitude of the chi square values, the variable allergy to HDM will
be entered first, then early infection and finally gender.

Box 9.3 SPSS commands to build a logistic regression model

SPSS Commands

asthma.sav —IBM SPSS Statistics Data Editor
Analyze — Regression — Binary Logistic
Logistic Regression
Highlight Diagnosed asthma and click into Dependent
Highlight Allergy to HDM and click into Covariates
Method = Enter (default)
Under Block 1 of 1, click Next
Highlight Early infection and click into Covariates under Block 2 of 2
Method = Enter (default)
Click on Options
Logistic regression: Options
Under Statistics and Plots, tick CI for exp(B):95%
Tick Include constant in model (default)
Click Continue
Logistic Regression
Click OK

The Omnibus Tests of Model Coefficients reports the chi-square value for the overall
model, as well as the change from the previous model and the corresponding signifi-
cance level. In this model, the comparison model is no predictors, with only the constant
(intercept) included. The level of block is significant (P<0.001), indicating that the
model has improved significantly by including the variable, allergy to HDM.

Logistic regression

Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step 1 Step 411.844 1 0.000
Block 411.844 1 0.000
Model 411.844 1 0.000

In the Model Summary table, the Nagelkerke R square indicates that 23.9% of the vari-
ation in diagnosed asthma is explained by HDM allergy. The Variables in the Equation
table shows the model coefficients but the interpretation of the coefficients is different to
those obtained in linear regression. The B estimate for HDM allergy of 2.136 is the odds
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ratio in units of natural logarithms, that is, to the base e. A positive coefficient indicates
that the predicted odds increase as the explanatory variable increases. A negative coef-
ficient indicates that the predicted odds decrease as the explanatory variable increases.
The standard error of this estimate in log units is 0.115. When adding further variables
to the model, it is important that this standard error does not inflate by more than 10%.
The actual odds ratio of 8.468 is shown as the anti-log (or exponential, ¢’) of the B esti-
mate in the column labelled Exp(B). This value indicates the changes in odds associated
with a unit increase in the explanatory variable and when there is only one explanatory
variable in the model is the same as the estimate from the 2 X 2 crosstabulation.

Model Summary

Step —2 Log likelihood Cox & Snell R square Nagelkerke R square
1 2130.3372 0.154 0.239

2Estimation terminated at iteration number 5 because parameter estimates changed by less than 0.001.

Variables in the Equation

95% C.l.for
EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper
Step 1° hdm 2.136 0.115 347.771 1 0.000 8.468 6.765 10.600

Constant —-4.562 0.198 530.349 1 0.000 0.010

2Variable(s) entered on step 1: hdm.

The Omnibus Tests of Model Coefficients table indicates the change in the chi-square
value from the previous model and whether this change is significant. The P value is of
0.022 is significant and indicates that the fit of the model to the data has significantly
improved by including infection as an explanatory variable.

Omnibus Tests of Model Coefficients

Chi-square df Sig.

Step 1 Step 5.275 1 0.022
Block 5.275 1 0.022

Model 417.119 2 0.000

The Model Summary table from Block 2 shows that the Nagelkerke R square has
increased slightly from 0.239 to 0.242 and the odds ratio for HDM allergy has decreased
slightly from 8.467 to 8.360. Importantly, the standard error for HDM allergy has
remained unchanged at 0.115 indicating that the model is stable. The odds ratio for
infection, which is the exponential of the beta coetficient (B) 0.307, that is 1.360, is
significant at P=0.02. This estimate of risk is reduced compared to the unadjusted
odds ratio of 1.545 obtained from the 2 x 2 table because the effect of confounding is
removed.
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Model Summary

Step —2 Log likelihood Cox & Snell R Square Nagelkerke R Square

1 2125.062° 0.156 0.242

2Estimation terminated at iteration number 5 because parameter estimates changed by less than 0.001.

Variables in the Equation

95% C.l.for
EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper
Step 12 Hdm 2.123 0.115 342.608 1 .000 8.360 6.677 10.468
Infect 0.307 0.133 5.369 1 .020 1.360 1.049 1.764

Constant —-4.911 0.252 380.375 1 .000 .007

aVariable(s) entered on step 1: infect.

The effect of gender can be added to the model using the commands shown in Box 9.3
by entering the variables allergy to HDM and early infection for the stable model in Block
1 of 1 and entering gender in Block 2 of 2.

Logistic regression

Omnibus Tests of Model Coefficients

Chi-square df Sig.
Step 1 Step 0.274 1 0.600
Block 0.274 1 0.600
Model 417.393 3 0.000
Model Summary
Step —2 Log likelihood Cox & Snell R Square Nagelkerke R Square
1 2124.7882 0.156 0.242

aEstimation terminated at iteration number 5 because parameter estimates changed
by less than 0.001.

Variables in the Equation

95% C.l.for
EXP(B)
B S.E. Wald df Sig. Exp(B) Lower Upper
Step 12 hdm 2.118 0.115 338.103 1 0.000 8.313 6.633 10.419
infect 0.302 0.133 5.155 1 0.023 1.353 1.042 1.756
gender 0.058 0.110 0.274 1 0.600 1.059 0.854 1.314
Constant —4.985 0.289 297.409 1 0.000 0.007

aVariable(s) entered on step 1: gender.

The Omnibus Tests of Model Coefficients table shows that the chi-square value has
slightly changed, which is not significant indicating that adding gender to the model did
not improve the fit of the model. The addition of gender does not change the R square
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statistics in the Model Summary table and hardly changes the odds ratio for HDM allergy
in the Variables in the Equation table. The odds ratio for HDM allergy falls slightly from
8.360 to 8.313 and there is no change in the standard error of 0.115. The odds ratio for
infection falls slightly from 1.360 to 1.353, again with no change in the standard error of
0.133. Gender which was a significant risk factor in the unadjusted analysis at P=0.005
is no longer a significant predictor with P=0.60. The unadjusted odds ratio for gender
was 1.319 in bivariate analyses compared to the adjusted value which is now 1.059.

The reduction in this odds ratio suggests that there is a degree of confounding between
gender and HDM allergy or infection. The extent of the confounding can be investi-
gated using the SPSS commands in Box 8.3 in Chapter 8 with allergy to HDM and early
infection entered in the rows, gender entered in the columns and column percentages
requested to produce the following output.

Crosstabs

Allergy to HDM * Gender Crosstabulation

Gender
Female Male Total
Allergy to HDM No Count 805 734 1539
% within gender 67.8% 57.5% 62.5%
Yes Count 383 542 925
% within gender 32.2% 42.5% 37.5%
Total Count 1188 1276 2464
% within gender 100.0% 100.0% 100.0%
Chi-Square Tests
Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)
Pearson chi-square 27.4992 1 0.000
Continuity correction® 27.064 1 0.000
Likelihood ratio 27.600 1 0.000
Fisher’s exact test 0.000 0.000
Linear-by-linear association 27.487 1 0.000
N of valid cases 2464
20 cell (0.0%) has expected count less than 5. The minimum expected count is 445.98.
bComputed only for a 2 x 2 table.
Crosstabs
Early infection * Gender Crosstabulation
Gender
Female Male Total
Early infection No Count 1016 1005 2021
% within gender 85.5% 78.8% 82.0%
Yes Count 172 271 443
% within gender 14.5% 21.2% 18.0%
Total Count 1188 1276 2464
% within gender 100.0% 100.0% 100.0%
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Chi-Square Tests

Asymp. sig. Exact sig. Exact sig.
Value df (two-sided) (two-sided) (one-sided)

Pearson chi-square 19.065° 1 0.000

Continuity correction® 18.610 1 0.000

Likelihood ratio 19.228 1 0.000

Fisher's exact test 0.000 0.000
Linear-by-linear association 19.058 1 0.000

N of valid cases 2464

a0 cell (0.0%) has expected count less than 5. The minimum expected count is 213.59.
bComputed only for a 2 x 2 table.

9.5.6 Interpretation of confounding effects

The P values for the Pearson chi-square tests indicate that allergy to HDM and early res-
piratory infection are both significantly related to gender. Examination of the Crosstab-
ulation tables shows that males have a higher percentage of allergy and early respiratory
infections compared to females. Thus, gender was a risk factor in the unadjusted esti-
mates because of confounding between gender and the other two risk factors. The
logistic regression shows that once the effects of confounding are removed, gender is
no longer a significant independent risk factor for diagnosed asthma.

The interpretation of this model is that boys have a higher rate of diagnosed asthma
because they have a higher rate of allergy to HDM and a higher rate of early respi-
ratory infection than girls, and not because they are male per se. Separating out the
confounding and identifying the independent effects of risk factors makes an invaluable
contribution towards identifying pathways to disease.

9.5.7 Reporting adjusted odds ratios

When reporting odds ratios from any type of study design, the percentages from which
they are derived must also be reported so that the level of exposure can be used to inter-
pret the findings. In this research question, the data were derived from a cross-sectional
study and thus it is important to report the proportion of children who had asthma in
the groups that were exposed or not exposed to the risk factors of interest as shown in
Table 9.6. In a case—control study, it would be important to report the per cent of par-
ticipants in the case and control groups who were exposed to the factors of interest. It is
also important to report the unadjusted and adjusted values so that the importance of
confounding factors is clear. The adjusted odds ratios from the binary logistic regression
are smaller but provide an estimate that is not biased by confounding.

Odds ratios are multiplicative. Table 9.6 shows that the odds ratio for the associa-
tion between childhood asthma and allergy to HDM is 8.3. However, the odds ratio for
children to have diagnosed asthma if they are exposed to both allergy to HDM and to
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Table 9.6 Unadjusted and adjusted risk factors for children to have asthma

Exposed % Non-exposed % Unadjusted Adjusted odds
Risk factor with asthma with asthma odds ratio (95% Cl) ratio (95% CI) P value
HDM allergy 42.8% 8.1% 8.5 (6.8, 10.6) 8.3(6.6, 10.4)  <0.0001
Early infection 27.5% 19.7% 1.5 (1.2, 2.0) 1.4 (1.0, 1.8) 0.02
Gender 23.4% 18.8% 1.4 (1.1, 1.6) 1.1 (0.9, 1.3) 0.60

an early respiratory infection compared to the odds they are not exposed to either risk
factoris 8.3 x 1.4 or 11.6.

9.5.8 Plotting the results in a figure

The lower and upper endpoints of the 95% confidence intervals have different widths
as a result of being computed in logarithmic units; therefore, they need to be overlaid as
separate plots when using SigmaPlot as shown in Box 9.4. The estimates of odds ratios
and confidence interval widths can be entered into SigmaPlot worksheet with the odds
ratio in column 1, the lower endpoint of the 95% confidence interval in column 2 and
the upper endpoint in column 3 as follows:

Column 1 Column 2 Column 3
8.314 1.678 2.102
1.353 0.310 0.403
1.060 0.206 0.255

The graph can then be plotted using the commands shown in Box 9.4.

Box 9.4 SigmaPlot commands to plot odds ratios

SigmaPlot Commands

Data 1*

Click on Create Graph tab at top of the screen

Click on Scatter in sub-menu

Click on Simple Scatter - Horizontal Error Bars in Scatter Group
Create Graph — Error Bars

Symbol Values = Worksheet Columns (default), click Next
Create Graph — Data Format

Data Format = Highlight Many X, click Next
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Create Graph — Select Data
Data for Bar = use drop box and select Column 1
Data for Error = use drop box and select Column 2
Click Finish
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Figure 9.3 Independent risk factors for diagnosed asthma in children.

The sequence is then repeated in Graph Page — Add Plot with column 1 again as the data
for the bar and column 3 as the data for the error. Once this basic graph is obtained, the
labels, symbols, axes, ticks and labels can be customized under the Graph Page options
menus to obtain Figure 9.3. The x-axis needs to be a logarithmic base 10 scale, the first
plot should have negative error bars only and the second plot should have positive error
bars only. The errors bars can be changed by clicking on a bar and altering the attributes
in the Page Objects box on the right hand side of the screen.

Figure 9.3 shows the relative importance of the odds ratios. Early infection and allergy
to HDM are significant risk factors which are reflected by their 95% confidence intervals
not crossing the line of no effect (unity). For gender, the odds ratio is close to unity and
the confidence intervals lie on either side of the line of unity indicating a possible effect
from protection to risk, which is therefore ambiguous.

9.6 Relative risk

Relative risk is calculated as the ratio of the probability of the outcome occurring in the
exposed group compared to the probability of the outcome occurring in the non-exposed
group. Relative risk can only be used when the sample is randomly selected from the
population and cannot be used in other studies, such as case—control studies or some
clinical trials, in which the percentage of the sample with the disease is determined by
the sampling method.
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9.6.1 Assumptions

The assumptions for using relative risk are the same as for odds ratio (see Section 9.3.1).

9.6.2 Calculating relative risk

Relative risk is calculated as the ratio of the probability of the outcome occurring in the
exposed group compared to the probability of the outcome occurring in the non-exposed
group and is calculated as follows using the coding displayed in Table 9.1:

a/(a+b)

Relative risk (RR) = m

If the summary data shown in Table 9.4 had been collected from a random sample the
relative risk would be calculated as follows, with the recoding of data cells for SPSS:

d/(d+c)
b/(b+ a)
= (40/40 + 25)/(60/60 + 75)

Relative risk =

=0.62/0.44
=14

Thus, the risk estimates are calculated by dividing the per cent of disease positive cases in
one row by the per cent of disease positive cases in the other row. The calculation shows
how the odds ratio of 2.0 calculated previously with the same data can overestimate the
relative risk of 1.4.

9.6.3 Interpreting the relative risk

The advantage of calculating the relative risk is that it is has an intuitive interpretation.
A relative risk of 2 indicates that the prevalence of the outcome (present) in the exposed
group is twice as high as the prevalence of the outcome (present) in the non-exposed
group. That is, people in the exposed group are two times more likely than people in
the non-exposed group to have the disease, indicating that the exposure confers a risk
for disease. A relative risk of 0.5 would indicate that the prevalence of the outcome
(present) in the exposed group is half of the prevalence of the outcome (present) in the
non-exposed group, that is, the exposure confers protection against disease. A relative
risk of 1 indicates equal risk in the two exposure groups and therefore that the outcome
is not related to the exposure.

9.6.4 Requesting relative risk statistics using SPSS

In requesting risk statistics in conjunction with a 2 x 2 table in SPSS, three estimates are
shown in the Risk Estimate table. The first set of statistics is the odds ratio and the next
two sets of estimates are labelled ‘For cohort=No’ and ‘For cohort=Yes’. If the 2x2
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table is set up appropriately, one of these two statistics is the relative risk. If the 2x2
table is not set up appropriately, relative risk has to be computed from the risk estimates.

For obtaining relative risk in SPSS, the crosstabulation table needs to be set up with the
outcome in the columns, the risk factor in the rows and the row percentages requested.
If a table is constructed in this way, then either of the following two options can be used.

Option 1
The risk factor but not the outcome has to be re-coded with the exposure present (yes)
coded as 1 and the exposure absent (no) coded as 2.

On the spreadsheet asthma.sav, allergy to HDM has been recoded in this way into
the variable HDM2. This coding is exactly opposite to the coding needed to easily inter-
pret the output from logistic and linear regressions. This coding scheme will ‘invert’ the
crosstabulation table so that the positive exposure is shown on the top row and no expo-
sure is shown on the row below. This table with HDM allergy recoded, which was shown
previously, is shown again below. The relative risk can then be calculated as the row per-
centage for positive outcome divided by the row percentage for negative outcome, that
is, 42.8/8.1 or 5.28. This statistic is given in the line ‘For cohort = Yes’, with a negligible
difference from the calculated value resulting from rounding of decimal places.

Crosstabs

Allergy to HDM - Re-coded * Diagnosed Asthma Crosstabulation

Diagnosed asthma

No Yes Total
Allergy to Allergy Count 529 396 925
HDM - re-coded % within allergy to 57.2% 42.8% 100.0%
HDM - re-coded
No allergy Count 1414 125 1539
% within allergy to 91.9% 8.1% 100.0%
HDM - re-coded
Total Count 1943 521 2464
% within allergy to 78.9% 21.1% 100.0%

HDM - re-coded

Risk Estimate

95% confidence

interval
Value Lower Upper
Odds ratio for HDM allergy - re-coded (allergy/no allergy) 0.118 0.094 0.148
For cohort diagnosed asthma=no 0.622 0.588 0.659
For cohort diagnosed asthma =yes 5.271 4.386 6.334

N of valid cases 2464

In the Risk Estimate table, ‘For cohort diagnosed asthma=yes’ shows the relative
risk for children to have diagnosed asthma in the presence of HDM allergy is 5.271
(95% CI4.386, 6.334). As with odds ratio, only the number of decimal places that infer
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precision that can be interpreted is reported so the risk estimates from this table would
be reported as a relative risk of 5.3 (95% CI 4.4, 6.3).

Option 2

If the risk factor for exposure is maintained as coded as 1 for exposure absent (no) and 2
for exposure present (yes), then the table that was obtained previously is shown again
below.

Crosstabs

Allergy to HDM * Diagnosed Asthma Crosstabulation

Diagnosed asthma

No Yes Total
Allergy to HDM No Count 1414 125 1539
% within allergy to HDM 91.9% 8.1% 100.0%
Yes Count 529 396 925
% within allergy to HDM 57.2% 42.8% 100.0%
Total Count 1943 521 2464
% within allergy to HDM 78.9% 21.1% 100.0%

Risk Estimate

95% confidence

interval
Value Lower Upper
Odds ratio for allergy to HDM (no/yes) 8.468 6.765 10.600
For cohort diagnosed asthma=no 1.607 1.516 1.702
For cohort diagnosed asthma =yes 0.190 0.158 0.228

N of valid cases 2464

In this case, the relative risk shown in the table is calculated as 8.1/42.8, or 0.190
and is in the direction of protection. The estimate in the direction of risk and the 95%
confidence interval can be computed as the reciprocal of the estimates given for ‘For
cohort diagnosed asthma =yes’ as follows:

1/0.190 = 5.263
1/0.158 = 6.329
1/0.228 = 4.386

Thus, the relative risk for children to have asthma in the presence of HDM allergy is 5.3
(95% CI 4.4, 6.3), which is identical to using the first option.

For both options, the estimate ‘For cohort . . . = no’ is the relative risk of children
having diagnosed asthma in the group that is not exposed to the risk factor of interest.
This statistic is rarely used.
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9.7 Number needed to be exposed for one additional person
to be harmed (NNEH)

In epidemiological studies in which the influence of an exposure is described by an odds
ratio, inclusion of the statistic number needed to be exposed for one additional person
to be harmed’ (NNEH) can be a useful statistic that applies to a person rather than to a
sample. As such, this statistic provides the number of people who need to be exposed
to the risk factor of interest to cause harm to one additional person.

As with calculating NNT in Chapter 8, NNEH is calculated from a 2 x 2 table in which
both the outcome and the exposure are coded as binary variables. The statistic NNEH
can be easily calculated from a 2 X 2 crosstabulation in which the outcome is entered
in the rows, the exposure is entered in the columns and the column percentages are
requested. The statistic NNEH is then calculated from the absolute risk increase (ARI),
which is simply the difference in the proportion of participants with the outcome of
interest in the exposed and unexposed groups. From the tables for asthma and HDM
allergy:

ARI=0.43 -0.08=0.35
NNEH =1/ARI=1/0.35=2.9

This indicates that for every three children with allergy to HDM, one additional child
will be diagnosed with asthma. NNEH is only reported to whole numbers.
For early infection,

ARI=0.275-0.197 = 0.078
NNEH = 1/ARR =1/0.078 = 12.8

This indicates that for every 13 children who have respiratory infection in early life, one
additional child will be diagnosed with asthma. Obviously, the larger the odds ratio, the
fewer the number of people who need to be exposed to cause harm.

9.8 Notes for critical appraisal

When critically appraising an article that reports risk statistics, it is important to ask the
questions shown in Box 9.5.

Box 9.5 Questions to ask when critically appraising the literature in which risk
statistics are presented

The following questions should be asked of studies that report risk statistics:

o If relative risk is reported, was the sample randomly selected?

e Have the proportions of disease in the exposed and non-exposed groups been
reported in addition to the odds ratio or relative risk?

e Is it difficult to compare estimates if some of the factors are presented as risk
factors and others as protective factors?
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e Are confidence intervals presented for all estimates of odds ratio or relative risk?

e Can all of the variables in the model be classified as independent exposure factors
or have alternative outcomes and intervening variables also been included?

e What type of method was used to build the logistic regression model and was
collinearity between variables tested?
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CHAPTER 10
Tests of reliability and agreement

Truth cannot be defined or tested by agreement with ‘the world’; for not only do truths differ for
different worlds but the nature of agreement between a world apart from it is notoriously nebulous.
NELSON GOODMAN, PHILOSOPHER

Objectives

The objectives of the chapter are to explain how to:

e measure the reliability and agreement of categorical information, for example information
collected by questionnaires

e measure the reliability and agreement of continuous measurements

e calculate the sample size needed to measure reliability

e critically appraise the literature that reports tests of reliability and agreement

10.1 Reliability and agreement

In research studies, it is important that the outcome measures used are reliable and
accurate. This is especially important when the results are used to guide clinical prac-
tice and develop or change current treatment practice. In this, measures should have a
high degree of reproducibility, that is, the results between repeated administrations by
either the same raters (also called observers) or at different time points under the same
conditions are very similar.

Measures of reliability and agreement are both used to assess reproducibility. It is
important to distinguish between the terms ‘reliability” and ‘agreement’, since they are
often used interchangeably. The different types of reliability and agreement are shown
in Table 10.1.

10.1.1 Reliability

Reliability is used to measure the ratio of the variability between the same participants
(e.g. by different raters or at different times) to the total variability of all participants
in the sample.! Therefore, reliability describes the ability of a measure to distinguish
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Table 10.1 Definitions of reliability and agreement

Statistic Measurement

Agreement The degree to which scores are similar or different.

Reliability The ability of the measure to differentiate between participants.

Intra-rater (or intra-observer) The degree to which responses of 2 or more different raters are

agreement concordant under the same or similar conditions.

Inter-rater (inter-observer) The degree to which responses of 2 or more different raters are able

reliability to differentiate between participants under the same or similar
conditions.

Test-retest reliability (or The degree to which the measure is able to differentiate between

intra-rater reliability) participants under repeated administration of the measure under

the same or similar conditions. The characteristic being measured in
the participant should not change during that time.

between participants despite the measurement error. In this, the measurement error
is related to the variability between participants.? The reliability of a measure can be
measured as given below:

Variation between participants
Variation between participants + measurement error

Reliability =

For a measure to be reliable, the measurement error should be small relative to the
variability between participants, so that participants can accurately be distinguished.
Clearly, if the scores for two participants are far apart, that is, there is wide between
participant variation, the ability of the measure to distinguish between them will not
be influenced by a measurement error which is small in comparison. However, if the
scores are close together, the measurement error will influence the ability to distinguish
between them and the reliability of the measure will be low. Because reliability statistics
are calculated from the between participant variation, one of their features is that they
are influenced by the heterogeneity of the study sample.? For a measure to be reliable,
the measurement error should be small relative to the variability between participants,
so that participants can accurately be distinguished.

The statistics that are used to describe reliability and agreement and which are dis-
cussed in this chapter are shown in Table 10.2.

Table 10.2 Statistics used to describe reliability and agreement

Reliability Agreement
Categorical measurements Kappa Per cent in agreement
Continuous measurements ICC Measurement error

Cronbach’s alpha Error range

Differences versus means plot

Limits of agreement

ICC = intra-class correlations; SEM = standard error of measurement
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10.1.2 Agreement

Agreement is the degree to which scores are similar or different when two or more mea-
surements are taken from the same participants on different occasions. For example, if
a measurement was taken from the same group of participants on two occasions under
the same conditions (e.g. 1 week apart), statistics of agreement would be used to deter-
mine how close or how different the two measurements are. Test—retest reliability is a
measure of agreement. With agreement, the measurement error is of interest and the
variability within and between participants is not of interest. When the measurement
error is large, small changes in the measurements between the two occasions will not
be detected.?

10.1.3 Study design

Studies that are designed to assess reliability or agreement must be conducted in a setting
in which they do not produce a false impression of the accuracy of the measurement.
Box 10.1 shows the assumptions under which the reliability and/or agreement of cate-
gorical measurements and continuous measurements are tested. All of the assumptions
relate to the study design.

Box 10.1 Assumptions for measuring reliability and/or agreement

The following methods must be incorporated into the study design:

e The method of administration and the conditions must be identical on each occa-
sion.

e At the second administration, both the participant and the raters must be blinded
to prior measurement values.

e The time to the second administration should be short enough so that the
(i) severity of the condition has not changed since the first administration;
(ii) no new treatment or intervention has been implemented between measure-
ments; and (iii) there has been no significant change that could bias the second
administration (e.g. patient’s health has improved or deteriorated).

e If a questionnaire is being tested, the time between administrations must be long
enough for participants to have forgotten their previous responses.

e The setting in which reliability or agreement is established must be the same as
the setting in which the questionnaire or measurement will be used.

e Each participant has the same number of measurements and participants are
selected to represent the entire range of measurements that can be encountered.

If a measure such as a questionnaire is to be used in a community setting, then relia-
bility has to be established in a similar community setting and not for example in a clinic
setting where the patients form a well-defined sub-sample of a population. Patients who
frequently answer questions about their illness may have well-rehearsed responses to
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questions and may provide an artificial estimate of reliability when compared to people
in the general population who rarely consider aspects of an illness or condition that they
do not have.

Questionnaires are widely used in research studies to obtain information about per-
sonal characteristics, illnesses and exposure to environmental factors. For a question-
naire to be a useful research tool, the responses to questions must not have a substantial
amount of measurement error. To measure test—retest reliability, the questionnaire is
given to the same people on two separate occasions. Alternatively, if a questionnaire
is designed to be administered by a clinician or researcher, it is administered on differ-
ent occasions by different raters. An important concept is that the condition that the
questionnaire is designed to measure must not have changed in the period between
administrations and the time period must be long enough for the participants to have
little recollection of their previous responses.

10.2 Kappa statistic

In clinical research, it is important to accurately identify the presence or absence of a dis-
ease or condition. This process may involve clinicians interpreting findings from physical
examinations or imaging techniques such as X-rays. For example, a physician and a radi-
ologist may independently review a series of patients” digital chest X-rays to determine
the presence or absence of tuberculosis. To assess the degree of concordance between
the two clinicians’ ratings, the per cent agreement between the raters could be reported
(e.g. 50% of raters responded ‘yes” on both occasions). However, this percentage could
be misleading since it does not take into account the level of concordance between the
two raters that may occur by chance. The kappa statistic can be used to assess the con-
cordance of responses for two or more raters after taking account of chance agreement.
Kappa is an estimate of the proportion in agreement between raters in excess of the
agreement that would occur by chance.

This statistic can be used to measure reliability between raters or between administra-
tions for both binary and nominal scales.> The interpretation of kappa values is shown
in Table 10.3.* When the observed proportion in agreement is less than that expected

Table 10.3 Kappa value and corresponding
level of agreement*

Kappa value Interpretation

<0.00 Poor

0.00-0.20 Slight agreement
0.21-0.40 Fair agreement
0.41-0.60 Moderate agreement
0.61-0.80 Substantial agreement

0.81-1.00 Almost perfect agreement




318 Chapter 10

by chance, kappa will have a negative value indicating no agreement. A kappa value
that equals 0 indicates that the observed agreement is equal to the chance agreement.

There are different types of kappa statistics. For data with three or more possible
responses or for ordered categorical data, weighted kappa should be used so that the
responses that are further away from concordance are more heavily weighted than those
close to concordance. SPSS does not provide estimates of weighted kappa and therefore
more specialized software is required. In SPSS, Cohen’s kappa is calculated which is
suitable when there are two raters. The assumptions for Cohen’s kappa are that partic-
ipants or items to be rated are independent, and also that the raters and categories are
independent. Kappa values are influenced by the prevalence of the condition or disease
being rated which is demonstrated in the research question below.

10.2.1 Sample size

Before undertaking a study of reliability, the minimum sample size required to detect a
significant kappa value can be calculated. With two observers rating a binary variable
or a questionnaire administered on two occasions, the null hypothesis is that the kappa
value equals zero (two-tailed). For a significance level of 0.05 and power of 80%, the
sample size required to detect a significant kappa value of 0.40 is 50. A sample size of
32 is required for a kappa value of 0.5; 22 for a kappa value of 0.6; 17 for a kappa value
of 0.7; 13 for a kappa value of 0.8; and 10 for a kappa value of 0.9.”

Research question

The file questionnaires.sav contains the data of three questions which required a ‘yes’
or ‘no’ response. The questions were administered on two occasions to the same 50 peo-
ple at an interval of 3 weeks. The research aim was to measure the test—retest reliability
of the questions.

Question: Do the questions have a high level of test-retest reliability?

Null hypothesis: ~ The proportion in agreement is no greater than that expected by
chance (i.e. kappa value = 0).

Variables: Questions (nominal) and time (ordinal)

It is important to establish how reliable questions are because questions that are prone
to a significant amount of random error or bias do not make good outcome or explana-
tory variables. The SPSS commands shown in Box 10.2 can be used to obtain a kappa
statistic.

This command sequence can then be repeated to obtain the following tables and statis-
tics for questions 2 and 3 of the questionnaire.

From the Crosstabulation table for question 1, the per cent in agreement is estimated
from the per cent who are concordant, which is shown on the diagonal of the table
in the No at Time 1-No at Time 2 and Yes at Time 1-Yes at Time 2 cells. Thus, the per
cent in agreement is 40% + 22%, or 62%, which is 0.62 as a proportion. The kappa
value is low at 0.252 indicating only fair agreement after chance is taken into account.
Kappa is always lower than the proportion in agreement. The Symmetric Measures table
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shows that the P value of 0.048 is just significant indicating that the level of agreement is
different from that expected by chance. Since the level of significance is two-tailed, the P
value does not indicate whether the agreement is worse or better than chance. However,
agreement worse than that expected by chance rarely occurs in clinical contexts.

Box 10.2 SPSS commands to measure reliability

SPSS Commands

questionnaires.sav — IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight Question 1-time 1 and click into Row(s)
Highlight Question1-time 2 and click into Columny(s)
Click on Statistics
Crosstabs: Statistics
Tick Kappa, tick Continue
Crosstabs
Click on Cells
Crosstabs: Cell Display
Counts: tick Observed (default)
Percentages: tick Total
Noninteger Weights: tick Round cell counts (default), Click Continue
Crosstabs
Click OK

Crosstabs

Question 1 — Time 1 * Question 1 — Time 2 crosstabulation

Question 1 — time 2

No Yes Total

Question 1 — time 1 No Count 20 15 35
Percentage of total 40.0 30.0 70.0

Yes Count 4 11 15
Percentage of total 8.0 22.0 30.0

Total Count 24 26 50
Percentage of total 48.0 52.0 100.0

Symmetric measures
Value Asymp. std. error? Approx. t° Approx. sig.

Measure of agreement kappa 0.252 0.123 1.977 0.048

N of valid cases 50

2Not assuming the null hypothesis.
bUsing the asymptotic standard error assuming the null hypothesis.

It should be noted that the P value is not a good indication of reliability because its
interpretation is that the kappa value is significantly different from zero. Measurements
taken from the same people on two occasions are closely related by nature and thus
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the P value is expected to indicate some degree of agreement. The standard error is also
reported and can be used to calculate a confidence interval around kappa.

In the Crosstabulation table for question 2, the per cent in agreement is 68% + 10%,
which is 78% or 0.78 as a proportion, and kappa is higher than in the first table (Ques-
tion 1) at 0.337.

Crosstabs

Question 2 — Time 1 * Question 2 — Time 2 crosstabulation

Question 2 — time 2

No Yes Total

Question 2 — time 1 No Count 34 5 39
Percentage of total 68.0 10.0 78.0

Yes Count 6 5 11
Percentage of total 12.0 10.0 22.0

Total Count 40 10 50
Percentage of total 80.0 20.0 100.0

Symmetric measures
Value Asymp. std. error? Approx. t° Approx. sig.

Measure of agreement kappa 0.337 0.159 2.390 0.017

N of valid cases 50

2Not assuming the null hypothesis.
bUsing the asymptotic standard error assuming the null hypothesis.

In the Crosstabulation table for question 3, although the per cent in agreement is
34% + 44%, which is also 78% or 0.78 as a proportion, kappa is higher than that for
Question 2 at 0.556 and the P value increases in significance from 0.017 to <0.001.
Thus, kappa varies for the same proportion in agreement. With a higher per cent of
‘Yes’ replies (56% for question 3 compared with 22% for question 2), kappa increases
from the fair to moderate range.

Crosstabs

Question 3 — Time 1 * Question 3 — Time 2 crosstabulation

Question 3 — time 2

No Yes Total

Question 3 — time 1 No Count 17 5 22
Percentage of total 34.0 10.0 44.0

Yes Count 6 22 28
Percentage of total 12.0 44.0 56.0

Total Count 23 27 50
Percentage of total 46.0 54.0 100.0

Symmetric measures
Value Asymp. std. error? Approx. t° Approx. sig.

Measure of agreement kappa 0.556 0.118 3.933 0.000

N of valid cases 50

2Not assuming the null hypothesis.
bUsing the asymptotic standard error assuming the null hypothesis.
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A feature of kappa is that the value increases as the proportion of ‘No” and ‘Yes’
responses become more equal and when the proportion in agreement remains the
same. This feature is a major barrier to comparing kappa values across measurements
or between different studies. For this reason, the value of kappa, the percentage of
positive responses and the per cent in agreement must all be reported to help assess
reliability and agreement.

10.2.2 Reporting kappa results

Information about the test—retest reliability of the three questions can be reported as
shown in Table 10.4. The kappa value, the per cent in agreement and the P value should
be reported. It is difficult to say which question is the most reliable and has the least
non-systematic bias because all three questions have a different percentage of positive
responses and therefore the kappa values cannot be compared. However, both questions
2 and 3 have a higher per cent in agreement than question 1. The differences in per-
centages of positive responses suggest that the three questions are measuring different
entities.

Table 10.4 Test-retest reliability for three questions administered to 50 people at a 3-week

interval
Percentage of Percentage of

positive positive

responses responses Proportion in Kappa

at time 1 at time 2 agreement 95% ClI P
Question 1 30% 52% 0.62 0.25 (0.01, 0.49) 0.05
Question 2 22% 20% 0.78 0.34 (0.03, 0.65) 0.02
Question 3 56% 54% 0.78 0.56 (0.32, 0.79) <0.001

10.3 Reliability of continuous measurements

Continuous measurements must also have a high degree of reliability to be useful as
a research tool. A measure is reliable if it produces the same value under all possible
situations, that is, with different raters, in different settings and at different times. A
measurement that has poor reliability will not be accurate at measuring the construct
that it has been designed to measure and will also be unstable over repeated adminis-
trations, that is have poor test—retest reliability.

Variations in continuous measurements can result from inconsistent measurement
practices, from equipment variations or from ways in which results are read or
interpreted. These sources can be measured as within-rater (intra-rater) variation,
between-rater (inter-rater) variation, or within-participant variation (see Table 10.1).
Variations that result from the ways in which researchers administer, read, or interpret
tests are within-rater or between-rater variations. Variations that arise from patient
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compliance factors or from biological changes are within-participant variations. To
quantify these measurement errors, the same measurement is taken from the same
participants on two occasions, or from the same participants by two or more raters, and
the results are compared.

10.4 Intra-class correlation

The intra-class correlation coefficient (ICC) can be used to describe the relative extent
to which two continuous measurements taken by different raters or two measurements
taken by the same rater on different occasions are reliable. ICCs are frequently used to
assess inter-rater reliability for ordinal, interval, and ratio scales where there are two or
more raters.

ICC values range from 0 to 1. ICC is calculated as a ratio of the between participant
variance to the ‘between and within” participant variance. If each participant has the
same score on two occasions (i.e. perfect concordance between measurements), there
would be no within-participant variation and all of the variation would be due to dit-
ferences between participants so that the ICC would equal 1. A high value of ICC of
0.95 indicates that 95% of the variance in the measurement is due to the true variance
between the participants. The remaining 5% of the variance is due to measurement
error or the variance within the participants or between the raters.

The advantage of ICC is that, unlike Pearson’s correlation coefficient, a value of unity
is only obtained when the two measurements are identical to one another. The ICC
is a relative measure whose magnitude depends on both the amount of variability in
the sample and the differences between repeated measurements. As such, the ICC is
a measure of the proportion of ‘true’ variance in the sample. However, because ICC
depends on the range of values in a sample, it may not be comparable between studies.
A disadvantage of ICC is that the same instrument may be judged reliable or unreliable
depending on the population in which it is assessed.

10.4.1 Different types of intra-class correlation

There are three classes of the ICC which relate to the study design®:

1. One-way random (ICC (1)) is used when raters are selected at random. That is, there
are different raters and not the same raters are used for all participants. Also different
raters may be used at different sites, however this is uncommon. This ICC does not
separate the effects of rater and participant variation and will always be the lowest
of the ICC values.

2. Two-way random (ICC (2)) is used when the same raters rate each case. Raters in
the sample are considered a random sample from a population of raters. When there
are the same raters for each participant, ICC (2), which controls for raters effects is
used. This is the model most frequently encountered in clinical research when the
same raters carry out measurements on all of the participants. The value of ICC (2)
will always be larger than for ICC (1) because it models two effects — the effect of the
rater and of the participant.
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3. Two-way mixed (ICC (3)) is used when the same raters rate each participant in the
study and only the raters are of interest. This is uncommon because the raters usually
represent an unlimited number of people who could make the observations. The ICC
estimate only applies the raters in the study and hence findings cannot be generalized.
This value will be larger than ICC (1) and ICC (2).

10.4.2 Intra-class correlation notation

The notation that is used to describe the different formulas to calculate ICC is shown
in Table 10.5. The number ‘1’ is added to the ICC when it relates to the reliability of
single raters and ‘k’ is added when the ICC relates to the mean of the raters (where k is
the number of raters). The value for ‘single measures’ statistic is an index of reliability
for typical single raters, which is the most common situation in clinical research. The
‘average measures’ statistic is an index of reliability for different raters averaged together
for example when the measurements are a mean of the measurements obtained by
different raters.

For ICC (2,k) and ICC (3,k), there is an option to use ‘consistency’ or ‘absolute agree-
ment’. Consistency is used when a systematic difference between raters is not of interest.
To determine how well a measurement assesses the true value of a participant, the
option ‘absolute agreement’ is used.

Table 10.5 ICC notation and corresponding
SPSS classification

ICC class SPSS nomenclature

ICC (1,1) One-way random, single measures
ICC (1,k) One-way random, average measures
ICC (2,1) Two-way random, single measures
ICC (2,k) Two-way random, average measures
ICC (3,1) Two-way mixed, single measures

ICC (3,k) Two-way mixed, average measures

Research question
The file observer-weights.sav contains data from 32 babies who had their weight mea-

sured by two nurses who had no knowledge of each other’s measurements.

Question: Do measurements of babies” weights have a high degree of
reliability?
Null hypothesis: ~ The ICC value equals 0 indicating random concordance.

The SPSS commands to obtain ICC are shown in Box 10.3.
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Box 10.3 SPSS commands to measure reliability

SPSS Commands

observer-weights.sav — IBM SPSS Statistics Data Editor
Analyze — Scale — Reliability Analysis
Reliability Analysis
Highlight Weight—observer 1 and Weight—observer 2 and click into Items
Model: Alpha (default)
Click Statistics
Reliability Analysis: Statistics
Tick Intraclass correlation coefficient,
Model: Two-Way Mixed (default)
Type: Absolute Agreement
Confidence Interval: 95% (default), Test Value: 0 (default), click Continue
Reliability Analysis
Click OK

In the Reliability Statistics table, the Cronbach’s alpha is reported. This is a test of
reliability that can be used to assess the internal consistency of a scale. This statistic
measures whether the items of a tool are measuring the same constructs. An acceptable
value for Cronbach’s alpha is 0.7 or 0.8.”7 The value of the Cronbach’s alpha is identical to
the ICC Average Measures when the ICC is calculated using either the two-way mixed
consistency or two-way random consistency models.

Reliability

Reliability Statistics

Cronbach’s alpha N of items
0.996 2

In this example, there are two raters and as shown in the Intraclass Correlation Coef-
ficient table, the ICC (2,1) is 0.992. That is, less than 1% of the variance is explained by
rater differences. The 95% confidence interval around an ICC can be reported but the
significance of the ICC is of little importance because it is expected that two measure-
ments taken from the same person are highly related.

Intra-class Correlation Coefficient

95% confidence interval F test with true Value 0
Intra-class
correlation® Lower bound  Upper bound Value dflt  df2 Sig.
Single measures 0.9922 0.984 0.996 255.480 31 31 0.000
Average measures 0.996¢ 0.992 0.998 255.480 31 31 0.000

Two-way mixed effects model where people effects are random and measures effects are fixed.
aThe estimator is the same, whether the interaction effect is present or not.

bType A intra-class correlation coefficients using an absolute agreement definition.

This estimate is computed assuming the interaction effect is absent, because it is not estimable
otherwise.
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10.4.3 Reporting the results of ICC

When reporting the results of ICC is important to identify which ICC was conducted and
report other relevant results so that detailed information is available.! Where appropri-
ate, measures of agreement can also be reported such as the measurement error or error
range (discussed later in this chapter). The results of the above example can be reported
as ‘The inter-rater reliability was assessed using a two-way mixed, absolute agreement,
single measures ICC to assess the degree of reliability between nurses when weighing
babies. The ICC value was high (ICC = 0.99, 95 CI% 0.98, 1.00, P < 0.001) indicating
a high degree of reliability and suggesting that weight was measured similarly by the
nurses’.

10.5 Measures of agreement

When comparing agreement between continuous measurements, it is not appropriate
to use a correlation coefficient such as Pearson’s correlation coefficient (see Chapter 7)
to measure the strength or linear relationship between two variables because it does not
make sense to test the hypothesis that two measurements taken from the same babies
using the same equipment are related to one another.® A second measurement that is,
for example, twice as large as the first measurement would have perfect correlation but
there would be very poor agreement. In addition, the size of the correlation coefficient
value is influenced by the range of the variable.

The statistics that are used to assess agreement between measurements are shown
in Table 10.2 and are the measurement error, error range, limits of agreement, and
differences versus means (Bland and Altman) plot.

10.5.1 Limits of agreement

Assuming that the difference scores between two measurements are normally dis-
tributed it is expected that the 95% of the scores will lie within the interval calculate
as the mean difference +/— 1.96 standard deviation of the differences (see Chapter 2).
When measuring agreement, this range is called the 95% limits of agreement.

Research question

The file observer-weights.sav contains data from 32 babies who had their weight mea-
sured by two nurses who had no knowledge of each other’s measurements.

Question: Do nurses measurements of babies weight have a high level of
agreement?

Null hypothesis:  There is no agreement between nurses” measurements.

To visually examine the data, the weights measured by both nurses could be plotted
against each other in a scatter plot. To assess the level of agreement between the two
measurements the limits of agreement can be calculated. Using the following SPSS com-
mands Transform — Compute Variable to first calculate the mean of the two measurements
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for each baby using the Mean function located in Functions and Special Variables. Then the
difference between the two measurements is calculated as a simple subtraction, that is
measurement 1 — measurement 2. The subtraction can be in either direction but the
direction must be indicated in the summary results and graphs. The two new variables
are created at the end of the SPSS Data View spreadsheet and should be labelled as
‘mean’ and ‘differences’, respectively.

The size of the error can then be calculated from the standard deviation around the
differences, which can be obtained using the Analyze — Descriptive Statistics — Descriptives
commands with the ‘differences’ variable entered as the Variable(s).

Descriptives

Descriptive statistics

N Minimum Maximum Mean Std. deviation

Differences 32 -0.10 0.15 0.0125 0.06792
Valid N (listwise) 32

The mean of the differences is 0.0125 and gives an estimate of the amount of bias
between the two measurements. In this case, the measurements taken by nurse 1 are
on average 0.0125 kg higher than nurse 2, which is a small difference. A problem with
using the mean of the differences is that large positive ditference values and large nega-
tive difference values are balanced out by one another and therefore negated. However,
the mean +1.96SD can also be calculated from the Descriptive Statistics table. This
range is calculated as 0.0125+ (1.96 X 0.0679), or —0.12 to 0.15 and is called the limits
of agreement.’ The limits of agreement indicate that 95% of the differences between
nurses lie in the range of —0.12kg to 0.15 kg.

10.5.2 Differences-vs-means plot

The mean and difference values can be plotted as a differences-vs-means plot to show
whether there is any systematic bias, that is whether the differences are related to the
size of the measurement as estimated by the mean.!'° The shape of the scatter conveys
important information about the agreement between the measurements. A scatter that
is evenly distributed above and below the zero line of no difference indicates that there
is no systematic bias between the two raters. A scatter that is largely above or largely
below the zero line of no difference or a scatter that increases or decreases with the
mean value indicates a systematic bias between raters.!!

The values for the means and differences can be copied and pasted from SPSS to
SigmaPlot and the figure can be created using the commands shown in Box 10.4. A
recommendation for the axes of differences-vs-means plots is that the y-axis should be
approximately one-third to one-half of the range of the x-axis.!°

The lines for the mean difference and limits of agreement can be added by typing the
x coordinates in column 3 and y coordinates of the lines into columns 4-6 and adding
three line plots by using the SigmaPlot commands Line — Simple Straight Line in Line
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Group — XY Pair options with x as column 3 each time and each y column. The columns
for the coordinate data are as follows:

Column 3 Column 4 Column 5 Column 6
3.5 0.0125 -0.12 0.15
6.0 0.0125 -0.12 0.15

Box 10.4 SigmaPlot commands to create a differences-vs-means plot
SigmaPlot Commands

Data 1*
Click on Create Graph tab at top of the screen
Click on Scatter in sub-menu
Click on Simple Scatter in Scatter Group
Create Graph — Data Format
Under Data format, highlight XY pair, click Next
Create Graph — Select Data
Highlight Column 1, click into Data for X
Highlight Column 2, click into Data for Y
Click Finish

Figure 10.1 shows that there is only a small amount of random error that is evenly scat-
tered around the line of no difference. The figure also shows that most of the differences
are within 0.1 kg. A wide scatter would indicate a large amount of measurement error.
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Figure 10.1 Differences-vs-means plot.
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To determine whether there is systematic error, a Kendall’s correlation coefficient
between the means and the differences can be obtained since the variables are not
normally distributed. The commands shown in Box 7.3 can be used to obtain the cor-
relations shown below. This will show whether the differences are related to the means
of the measurements.

Non-parametric Correlations

Correlations

Differences Mean
Kendall's tau_b Differences Correlation coefficient 1.000 0.045
Sig. (two-tailed) - 0.721
N 32 32
Mean Correlation coefficient 0.045 1.000
Sig. (two-tailed) 0.721 -
N 32 32

The almost negligible correlation of 0.045 with a P value of 0.721 confirms the uni-
formity of variance in the repeated measurements. A systematic bias between the two
measurements could also be inspected using a paired #-test or a non-parametric rank
sums test, depending upon the distribution of the data.

10.5.3 Measurement error

A more useful statistic to describe agreement is to calculate the measurement error from
the standard deviation of the differences of observations in the same participant.® This
is calculated as follows:

SD of differences
V2

_0.06792
1.414

=0.048kg

Measurement error =

This error can then be converted to a range by multiplying by a critical value of 1.96.

Error range = measurement error X critical value
=0.048 x 1.96
=0.09kg

The error range indicates that the average of all possible measurements of a baby’s
weight is within the range of 0.09 kg above and 0.09 kg below the actual measurement
taken. Thus for a baby with a measured weight of 4.01 kg, the average of all possible
weights, which is expected to be close to the true weight, would be within the range
3.92 to 4.10kg. This range can be taken to indicate the range in which the true weight
of the baby lies.
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10.5.4 Reporting measures of agreement

When reporting the results, the differences-vs-means plot gives the most informative
description of agreement with the limits of agreement shown. Additional information
of the mean difference and the error range are direct measures of agreement between
two continuous measurements. The information can be reported as shown in Table 10.6.

Table 10.6 Reliability for weight measured by two different nurses

Mean Limits of
difference agreement Error range ICC
Weight (kg) 0.013 -0.12, 0.15 0.09 0.99

10.6 Notes for critical appraisal

Paired measurements to estimate agreement must be treated appropriately when
analysing the data. When critically appraising an article that presents these types of
statistics, it is important to ask the questions shown in Box 10.5.

Box 10.5 Questions for critical appraisal

The following questions should be asked when appraising published results from

paired categorical follow-up data or data collected to estimate the reliability of ques-

tionnaire responses or continuous measurements:

e Is the sample size large enough to have confidence in the summary estimates?

For reliability of categorical data:

e Is the percentage of positive or negative responses and proportion in agreement
included in addition to kappa?

e Are kappa values inappropriately compared?

For reliability of continuous measurements:

e Have a differences-vs-means plot, the limits of agreement, a 95% range and the
intra-class correlation been reported?

e Is Pearson’s correlation used appropriately?
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CHAPTER 11
Diagnostic statistics

Like dreams, statistics are a form of wish fulfilment.
JEAN BAUDRILLARD (b. 1929), FRENCH SEMIOLOGIST

Objectives

The objectives of the chapter are to explain how to:

e compute sensitivity, specificity and likelihood ratios

e understand the limitations of positive and negative predictive values
e select cut-off points for screening and diagnostic tests

e critically appraise studies that use or evaluate diagnostic tests

In clinical practice it is important to know how well diagnostic tests, such as X-rays,
biopsies or blood and urine tests, can predict that a patient has a certain condition or
disease. The statistics positive predictive value (PPV), negative predictive value (NPV),
sensitivity and specificity are all used to estimate the utility of a test in predicting the
presence or absence of a condition or a disease. A statistic that combines the utility of
sensitivity and specificity is the likelihood ratio (LR). If the outcome of the diagnostic test
is binary, a likelihood ratio can be calculated directly. If the test result is on a continuous
scale, a receiver operating characteristic (ROC) curve is used to determine the cut-off
point that maximizes the LR.

Diagnostic statistics are part of a group of statistics that are used to describe agreement
between two measurements. However, these statistics should be calculated only when
there is a ‘gold standard’ to measure the presence or absence of disease against which the
test can be compared. If a gold diagnostic standard does not exist, a proxy gold standard
may need to be justified.! In this situation, the test being evaluated must not be included
in the definition of the gold standard.! In measuring the diagnostic utility of a test, the
person interpreting the test measurement must be blinded to the disease status of the
patient.

11.1 Coding for diagnostic statistics

For diagnostic statistics, it is best to code the variable indicating disease status as 1 for
disease present as measured by the gold standard or test positive and 2 for disease absent

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.
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Table 11.1 Coding for diagnostic statistics

Disease present Disease absent Total
Test positive a b a+b
Test negative c d c+d
Total a+c b+d N

or test negative. This coding will produce a table with the rows and columns in the order
shown in Table 11.1. In this table, the row and column order is the reverse of that used to
calculate an odds ratio from a 2 x 2 crosstabulation but is identical to the coding shown
in Table 9.1 in Chapter 9, which is frequently used in clinical epidemiology textbooks.

11.2 Positive and negative predictive values

In estimating the utility of a test, PPV is the proportion of patients who are test positive
and in whom the disease is present and NPV is the proportion of patients who are test
negative and in whom the disease is absent. These statistics indicate the probability that
the test will make a correct diagnosis.? Both PPV and NPV are statistics that predict from
the test to the disease and indicate the probability that patients will or will not have a
disease if they have a positive or negative diagnostic test. Intuitively, it would seem that
PPV and NPV would be the most useful statistics; however, they have limitations in their
interpretations.?

The statistics PPV and NPV should only be calculated if the study sample is selected ran-
domly from a population and not if groups of patients and healthy people are recruited
independently, which is often the case. From Table 11.1, the PPV and NPV can be cal-
culated as follows:

a
PPV =
(a+b)
d
NPV =
(c+d)

Research question

The file xray.sav contains the data from 150 patients who had an X-ray for a bone
fracture. A positive X-ray means that a fracture appears to be present on the X-ray,
and a negative X-ray means that there is no indication of a fracture on the X-ray. The
presence or absence of a fracture was later confirmed during surgery. Thus surgery is
the ‘gold standard’ for deciding whether or not a fracture was present. The research aim
is to measure how accurate X-rays are in predicting fractures in people with symptoms
of a bone break. In computing diagnostic statistics, a hypothesis is not being tested so
that the P value for the crosstabulation has little meaning.

Diagnostic statistics of PPV and NPV are computed using the SPSS commands shown
in Box 11.1 with row percentages requested because PPV and NPV are calculated as
proportions of the test positive patients and test negative patients who have the disease.
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In SPSS, PPV and NPV are not produced directly or labelled as such but can be simply
derived from the row percentages. Although the figures are given in percentages, diag-
nostic statistics are more commonly reported as proportions, that is, in decimal form.

Box 11.1 SPSS commands to compute diagnostic statistics

SPSS Commands

xray.sav - IBM SPSS Statistics Data Editor
Analyze — Descriptive Statistics — Crosstabs
Crosstabs
Highlight X-ray results (test) and click into Row(s)
Highlight Fracture detected by surgery (disease) and click into Column(s)
Crosstabs
Click on Cells
Crosstabs: Cell Display
Counts: tick Observed, Percentages: tick Row, Noninteger Weights: tick Round
cell counts (default), click Continue
Click OK

X-ray results (test)* Fracture detected by surgery (disease) Crosstabulation

Fracture detected
by surgery (disease) Total
Present Absent
X-ray results Positive Count 36 24 60
(test) % within X-ray results 60.0% 40.0% 100.0%
Negative Count 8 82 90
% within X-ray results 8.9% 91.1% 100.0%
Total Count 44 106 150
% within X-ray results 29.3% 70.7% 100.0%

From the crosstabulation the row percentages are used and are simply converted to a
proportion by dividing by 100.
.. . . 36
Positive predictive value = 0.60 <1.e. %>

Negative predictive value = 0.91 <i.e. %)

This indicates that 0.60 of patients who had a positive X-ray had a fracture and 0.91
who had a negative X-ray did not have a fracture.

11.2.1 95% confidence intervals for PPV and NPV

To measure the certainty of diagnostic statistics, 95% confidence intervals for PPV
and NPV can be calculated as for any proportion. If the confidence interval around
a proportion contains a value less than zero, exact confidence intervals based on the
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Table 11.2 Excel spreadsheet to calculate 95% confidence intervals

Proportion N SE Width Cl lower Cl upper
PPV 0.6 60 0.063 0.124 0.476 0.724
NPV 0.91 920 0.030 0.059 0.851 0.969

binomial distribution should be used. These can be calculated at StatPages on the web
(see Useful Websites) rather than asymptotic statistics based on a normal distribution.?
The formula for calculating the standard error around a proportion was shown in
Chapter 8. The Excel spreadsheet shown in Table 11.2 can be used to calculate 95%
confidence intervals for PPV and NPV. The confidence interval for PPV is based on the
total number of patients who have a positive test result and the confidence interval for
NPV is based on the total number of patients who have a negative test result.

The interpretation of the 95% confidence interval for PPV is that with 95% confidence,
47.6%—-72.4% of patients with a positive X-ray will have a fracture. The interpretation
of the 95% confidence interval for NPV is that with 95% confidence, 85.1-96.9% of
patients with a negative X-ray will not have a fracture. Confidence intervals should be
interpreted taking the sample size into account. The larger the sample size, the narrower
the confidence intervals will be.

11.2.2 Limitations of PPV and NPV

Although PPV and NPV seem intuitive to interpret, both statistics vary with changes in
the proportion of patients in the sample who are disease positive simply because they are
based on row percentages. Thus, these statistics can only be applied to the study sam-
ple or to a sample with the same proportion of disease-positive and disease-negative
patients. For this reason, PPV and NPV are not commonly used in clinical practice.
Box 11.2 shows why these statistics are limited in their interpretation.

Box 11.2 Limitations in the interpretation of positive and negative
predictive values

Positive and negative predictive values:

e are strongly influenced by the proportion of patients who are disease positive

e increase when the per cent of patients who have the disease in the sample is high
and decrease when the per cent who have the disease is small

e cannot be applied or generalized to other clinical settings with different patient
profiles

e cannot be compared between different diagnostic tests

In practice, the statistics PPV and NPV are only useful in settings in which the per cent
of patients who have the disease present is the same as the prevalence of the disease in
the population. This naturally rules out most clinical settings.
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11.3 Sensitivity and specificity

The statistics that are most often used to describe the utility of diagnostic tests in clinical
settings are sensitivity, specificity and likelihood ratio.*> These diagnostic statistics can
be computed from Table 11.1 as follows:

e a
Sensitivity = @+0
a+c

Specificity = @ j_ D

Likelihood ratio = w

(1 — specificity)

Sensitivity indicates how likely patients are to have a positive test if they have the disease
and specificity indicates how likely the patients are to have a negative test if they do not
have the disease. In this sense, these two statistics describe the proportion of patients
in each disease category who are test positive or negative. Although the usefulness of
these statistics is not as intuitive, sensitivity and specificity have advantages over PPV
and NPV as shown in Box 11.3.

Box 11.3 Advantages of using sensitivity and specificity to describe the application
of diagnostic tests

The advantages of using sensitivity and specificity to describe diagnostic tests are that
these statistics:

e do not alter if the prevalence of disease is different between clinical populations

e can be applied in different clinical populations and settings

e can be compared between studies with different inclusion criteria

e can be used to compare the diagnostic potential of different tests

The interpretation of sensitivity and specificity is not intuitive and therefore to cal-
culate these statistics it is recommended that the notations of true positives (TP), false
positives (FP), true negatives (TN) and false negatives (FN) are written in each quadrant
of the crosstabulation as shown in Table 11.3. The false negative group is the proportion
of patients who have the disease and who have a negative test result, that is, ¢/(a+c).
The false positive group is the proportion of patients who do not have the disease and
who have a positive test result, that is, b/(b+d).

Thus, sensitivity is the rate of TP in the disease-present group (a/a + c) and specificity
is the rate of TN in the disease-absent group (d/b +d).

Ideally, a diagnostic test would have high levels of sensitivity and specificity. However,
this is not possible since there is a trade-off between sensitivity and specificity. As speci-
ficity increases, sensitivity is decreased, and vice versa. ROC curves, which are discussed
later in this chapter, can be used to identify a cut-off value in a continuous measurement
that maximizes the sensitivity and specificity.
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Table 11.3 Terms used in diagnostic statistics

Disease present Disease absent Total
Test positive a b

TP (sensitivity) FP

(true +ve) (false +ve)
Test negative C d

FN TN (specificity)

(false —ve) (true —ve)
Total a+c b+d N

The ‘opposites’ rule applies to remembering the meaning of the terms sensitivity and
specificity because: sensitivity has an ‘n’ in it and this applies to the TP, which includes
a P in the name and specificity has a ‘p” in it and this applies to the TN, which has an N
in the name.

Is this logical? Well no, but the terminology is well established and this reverse code
helps in remembering which term indicates the TN or TP. Reading vertically from
Table 11.3 it can be seen that the rate of false negatives is the complement of the TP for
patients who have the disease. Similarly, the rate of FP is the complement of the TN for
patients who do not have the disease.

11.3.1 SpPin and SnNout

SpPin and SnNout are two clinical epidemiology terms that are commonly used to aid in
the interpretation of sensitivity and specificity in clinical settings.® Although these rules
are used as guides in clinical practice, to rule a disease in or out, both the sensitivity and
specificity must be taken into account.

SpPin stands for Specificity-Positive-in, which means that if a test has a high speci-
ficity (TN) and therefore a low 1 — specificity (FP), a positive result rules the disease
in. A test that is used to diagnose an illness in patients with symptoms of the illness
needs to have a low false positive rate because it will then identify most of the peo-
ple who do not have the disease. Although specificity needs to be high for a diagnostic
test to rule the disease in, it is calculated solely from the group of patients without
the disease.

SnNout stands for Sensitivity-Negative-out, which means that if the test has a
high sensitivity (TP) and a low 1— sensitivity (FN), a negative test result rules the
disease out. A test that is used to screen a population in which many people will
not have the disease needs to have high sensitivity because it will then identify most
of the people with the disease. Although sensitivity needs to be high in a screening
test to rule the disease out, it is calculated solely from the group of patients with
the disease.

The SPSS commands shown in Box 11.1 can be used to compute sensitivity and speci-
ficity but the column percentages rather than the row percentages are requested because
sensitivity is a proportion of the disease-positive group and specificity is a proportion of
the disease-negative group.
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X-ray results (test)* Fracture detected by surgery (disease) Crosstabulation

Fracture detected

by surgery (disease) Total
Present Absent
X-ray results (test) Positive Count 36 24 60
% within fracture 81.8% 22.6% 40.0%
detected by surgery
Negative Count 8 82 90
% within fracture 18.2% 77.4% 60.0%
detected by surgery
Total Count 44 106 150
% within fracture 100.0% 100.0% 100.0%

detected by surgery

The column percentages can be simply changed into proportions by dividing by 100.
Thus, from the above table:

Sensitivity = TP = 0.82
1 — sensitivity = FN = 0.18
Specificity = TN = 0.77
1 — specificity = FP = 0.23
The sensitivity of the test indicates that 82% of patients with a fracture will have a pos-

itive X-ray and the specificity of the test indicates that 77% of patients with no fracture
will have a negative X-ray.

11.3.2 95% Confidence intervals for sensitivity and specificity

The confidence intervals for sensitivity and specificity can be calculated using the spread-
sheet shown in Table 11.2. This produces the intervals shown in Table 11.4. Again, if
the confidence interval of a proportion contains a value less than zero, exact confidence
intervals should be used (e.g. StatPages shown in the Useful Websites).?

The 95% confidence intervals are based on the number of patients with the disease
present for sensitivity and the number of patients with the disease absent for specificity.
Because each 95% confidence interval is based only on a subset of the sample rather

Table 11.4 Excel spreadsheet for calculating confidence intervals around a

proportion

Proportion N SE Width Cl lower Cl upper
0.82 44 0.058 0.114 0.706 0.934
0.18 44 0.058 0.114 0.066 0.294
0.77 106 0.041 0.080 0.690 0.850

0.23 106 0.041 0.080 0.150 0.310
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than on the total sample size, the confidence intervals can be surprisingly wide if the
number in the group is quite small.

The interpretation of the intervals for sensitivity is that with 95% confidence between
70.6% and 93.4% of patients with a fracture will have a positive X-ray. Similarly, the
interpretation for specificity is that with 95% confidence between 69.0% and 85.0% of
patients without a fracture will have a negative X-ray.

11.3.3 Sample size

In calculating the required sample size to estimate sensitivity and specificity, it is impor-
tant to have an adequate number of people with and without the disease. A high sen-
sitivity rules the disease out; therefore, it is essential to enrol a large number of people
with disease present to calculate the proportion of TP with precision. A high specificity
rules the disease in, so it is essential to enrol a large number of people with the disease
absent to calculate the proportion of TN with precision.

It is not always understood that to show that a test can rule a disease out, a large
number of people with the disease present must be enrolled and that to show that a
test is useful in ruling a disease in, a large number of people without the disease must
be enrolled. For most tests, a large number of people with the disease present and with
the disease absent must be enrolled to provide tighter confidence intervals, that is, more
precision around both sensitivity and specificity.

In studies when both the new diagnostic test and the gold standard result in a binary
variable (e.g. test positive and test absent), and an estimation of the disease prevalence
is available, the sample size required for estimating sensitivity and specificity (with 95%
confidence intervals) can be calculated using a nomogram.” A nomogram is a graphical
tool with three or more lines or curves that can be read to estimate a variable, in this
case, the sample size.

11.4 Likelihood ratio

Both sensitivity and specificity can be thought of as statistics that ‘look backwards” in
that they show the probability that a person with a disease will have a positive test rather
than looking ‘forwards” and showing the probability that the person who tests positive
has the disease. Also, sensitivity and specificity should not be used in isolation because
each is calculated from separate parts of the data. To be useful in clinical practice, these
statistics need to be converted to a likelihood ratio that uses data from the total sample
to estimate the relative predictive value of the test. The LR is calculated as follows:

Likelihood of a positive result in people with disease

~ Likelihood of a positive result in people without disease
Sensitivity
1o specificity
TP
" FP
The LR is simply the ratio of the TP to the FP and indicates how likely a positive result

will be found in a person with the disease than in a person without the disease.! This
statistic provides clinical information about an individual because it indicates how likely
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a positive result will be found in a person with the disease compared to a person without

the disease. A positive likelihood ratio greater than 1 indicates that a positive test result

is associated with the presence of the disease, whereas a positive likelihood ratio of less

than 1 indicates that a positive test result is associated with the absence of a disease.
From the previous calculation:

0.82

IR = ————+
(1-0.77)

=3.56
Confidence intervals around LR are best generated using dedicated programs (see the
Diagnostic calculator website in Useful Websites). The LR indicates how much a posi-
tive test will alter the pre-test probability that a patient will have the illness. The pre-test
probability is the probability of the disease in the clinic setting where the test is being
used. The post-test probability is the probability that the disease is present when the
test is positive. To interpret the LR, a likelihood ratio nomogram can be used to convert
pre-test probability of disease into post-test probability.>® Alternatively, the following
formula can be used to convert the pre-test probability (Pre-TP) into a post-test proba-
bility (Post-TP):

(Pre-TP X LR)

(1 +Pre-TP X (LR — 1))

Post-TP =

The size of the LR indicates the utility of the test in diagnosing an illness. As a rule, an
LR greater than 10 is large and means a conclusive change from pre-test to post-test
probability. On the other hand, an LR between 5 and 10 results in only a moderate shift
between pre- and post-test probability, an LR between 2 and 5 results in a small shift but
sometimes reflects an important shift, and an LR below 2 is small and rarely important.*

The advantages of using a likelihood ratio to interpret the results of diagnostic tests
are shown in Box 11.4.

Box 11.4 Advantages of using likelihood ratio as a predictive statistic for
diagnostic tests

The advantages of likelihood ratio are that this predictive statistic:
e allows valid comparisons of diagnostic statistics between studies
e the diagnostic value can be applied in different clinical settings
e provides the certainty of a positive diagnosis

11.5 Receiver Operating Characteristic (ROC) Curves

ROC curves are an invaluable tool for finding the cut-off point in a continuously dis-
tributed measurement that best predicts whether a condition is present, for example
whether patients are disease positive or disease negative.” ROC curves are used to find
a cut-off value that delineates a ‘normal’ from an ‘abnormal’ test result when the test
result is a continuously distributed measurement. ROC curves are plotted by calculating
the sensitivity and specificity of the test in predicting the diagnosis for each value of
the measurement. The curve makes it possible to determine a cut-off point for the
measurement that maximizes the rate of TP (sensitivity) and minimizes the rate of FP
(1 —specificity), and thus maximizes the likelihood ratio.
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Research question

The file xray.sav, which was used in the previous research question, also contains data
for the results of three different biochemical tests and a variable that indicates whether
the disease was later confirmed by surgery. ROC curves are used to assess which test
is most useful in predicting that patients will be disease positive. The null hypothesis is
that the area under the ROC curve equals 0.5, that is, the test’s ability to identity positive
and negative cases is that expected by chance.

Before constructing an ROC curve, the amount of overlap in the distribution
of the continuous biochemical test measurement in both the disease-positive and
disease-negative groups can be explored using the SPSS commands shown in Box 11.5.

Box 11.5 SPSS commands to obtain scatter plots

SPSS Commands

xray.sav - IBM SPSS Statistics Data Editor
Graphs — Legacy Dialogs — Scatter/Dot
Scatter/Dot
Click on Simple Scatter, click on Define
Simple Scatterplot
Highlight BiochemA and click into the Y Axis
Highlight Disease positive and click into the X Axis
Click OK

These SPSS commands can be repeated to obtain scatter plots for the test BiochemB
and BiochemC as shown in Figure 11.1. In the plots, the values and labels on the x-
and y-axes are automatically assigned by SPSS and are not selected labels. For example,
in Figure 11.1 the group labels of 1 for ‘disease present’ and 2 for ‘disease absent” on
the x-axis are not displayed. Although the scatter plots are useful for understanding
the discriminatory value of each continuous variable, they would not be reported in a
journal article.

In the first plot shown in Figure 11.1, it is clear that the values for BiochemA in
the disease-positive group (coded 1) overlap almost completely with the values for
BiochemaA in the disease-negative group (coded 2). With complete overlap such as this,
there will never be a cut-off point that effectively delineates between the two groups.

In the plots for BiochemB and BiochemC as shown in Figure 11.1, there is more sep-
aration of the test measurements between the groups, particularly for BiochemC. The
value of the tests in distinguishing between the disease-positive and disease-negative
groups can be quantified by plotting ROC curves using the commands shown in Box 11.6
to produce Figure 11.2. In the data set, disease positive is coded as 1 and this value is
entered into the State Variable box.
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Figure 11.1 Scatter plots for BiochemA, B and C by disease status.
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Figure 11.1 (continued)

Box 11.6 SPSS commands to plot an ROC curve

SPSS Commands

xray.sav - IBM SPSS Statistics Data Editor
Analyze — ROC Curve
ROC Curve
Highlight BiochemA, BiochemB and BiochemC and click into Test Variable
Highlight Disease positive and click into State Variable
Type in 1 as Value of State Variable
Under Display tick ROC Curve (default), tick With diagonal reference line, and tick
Standard error and confidence interval
Click OK

Area Under the Curve

Test result

variable(s) Area Std. error® Asymptotic sig. Asymptotic 95%confidence interval
Lower bound Upper bound

BiochemA 0.580 0.051 0.114 0.479 0.681

BoichemB 0.755 0.042 0.000 0.673 0.837

BiochemC 0.886 0.028 0.000 0.832 0.940

2Under the non-parametric assumption.
PNull hypothesis: true area=0.5.
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11.5.1 Interpretation of ROC curves

In an ROC curve, sensitivity is calculated using every value of BiochemA in the data set
as a cut-off point and is plotted against the corresponding 1 — specificity at that point,
as shown in Figure 11.2. Thus, the curve is the TP plotted against the FP calculated
using each value of the test as a cut-off point. In Figure 11.2, the diagonal line indicates
where the test would fall if the results were no better than chance at predicting the
presence of a disease; that is no better than tossing a coin. BiochemaA lies close to this
line confirming that the test is poor at discriminating between disease-positive and
disease-negative patients.

The area under the diagonal line is 0.5 of the total area. The greater the area under the
ROC curve, the more useful the measurement is in predicting the patients who have the
disease. A curve that falls substantially below the diagonal line indicates that the test is
useful for predicting patients who do not have the disease.

When the measurement of interest cannot distinguish between two groups (e.g. dis-
ease positive or disease absent), that is, where there is no difference between the two
distributions, the area under the ROC curve will be equal to 0.5 (the ROC curve will
coincide with the diagonal). When there is a perfect separation of the values of the two
groups, that is, no overlapping of the distributions, the area under the ROC curve equals
1 (the ROC curve will reach the upper left corner of the plot). The area under a ROC
curve is less than 0.5 when the measurement predicts a negative test.

ROC curve
1.0
0.8
0.6
2
=
=
c
)
(77}
0.4
0.2 - Source of the
curve
BiochemC
—— BiochemB
—— BiochemA
— Reference line
00 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
1 - specificity

Figure 11.2 ROC curves for Biochem A, B and C.
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The Area Under the Curve table indicates that the area under the curve for BiochemA
is 0.580 with a non-significant P value (asymptotic significance) of 0.114, which shows
that the area is not significantly different from 0.5. The 95% confidence intervals contain
the value 0.5 confirming the P value that shows that this test is not a significant predictor
of disease status.

The ROC curves in Figure 11.2 show that, as expected from the previous scatter
plots, the tests BiochemB and BiochemC detect the disease-positive patients more effec-
tively than BiochemA. In the Area under the Curve table, BiochemC is the superior
test because the area under its ROC curve is the largest at 0.886. Both BiochemB and
BiochemC have an area under the curve that is significantly greater than 0.5 and in
both cases, the P value is<0.0001. The very small amount of overlap of confidence
intervals between BiochemB and BiochemC suggests that BiochemC is a significantly
better diagnostic test than BiochemB, even though the P values are identical.

11.5.2 Calculating cut-off points

To make a choice of the cut-off point that optimizes the utility of the test is often an
expert decision, considering factors such as the sensitivity, specificity, cost and purpose of
the test. In diagnosing a disease, the gold standard test may be a biopsy or surgery, which
is invasive, expensive and carries a degree of risk, for example the risk of undergoing
an anaesthetic. Tests that are markers of the presence or absence of disease are often
used to reduce the number of patients who require such invasive interventions. The
exact points on the curve that are selected as cut-off points will vary according to each
situation and are best selected using expert clinical opinion.

Three different cut-off points on the curve are used for a diagnostic test, a general
optimal test and a screening test. The cut-off point for a screening test is chosen to
maximize the sensitivity of the test and for a diagnostic test is chosen to maximize the
specificity of the test. The cut-off point for a general optimal test is chosen to optimize
the rate of TP while minimizing the rate of FP. All three points can be identified from
the coordinates of the ROC curve. By entering only BiochemC into the Test Variable box
of Analyze — ROC Curve and ticking the box ‘Coordinate Points of the ROC Curve’, the
coordinates of the curve and the ROC curve as shown in Figure 11.3 (label for points
has been manually added) is obtained.

11.5.3 Optimal diagnostic cut-off point

The optimal cut-off point, which is sometimes called the optimal diagnostic point or the
Youden Index, is the point on the curve that is closest to the top of the left hand y-axis
(see Figure 11.3). This is the point at which the true positive rate is optimized and the
false positive rate is minimized. The optimal cut-otf point is shown in Figure 11.3 and the
test cut-off value can be identified from the coordinate points of the curve. The points
from the central section of the SPSS output Coordinates of the Curve have been copied
to an Excel spreadsheet and are shown in Table 11.5. In the table, the Excel function
option has been used to also calculate Specificity and 1 — sensitivity for each point.

To find the coordinates of the optimal diagnostic point, a simple method is to use
a ruler to calculate the coordinate value for 1 — specificity of the optimal cut-off point.
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Figure 11.3 ROC curve for BiochemC with diagnostic, optimal and screening cut-off points.

Once the point is identified on the graph as being the closest point to the top of the y-axis
on the ROC curve, a line can be drawn vertically down to the x-axis. The value for 1 —
specificity is then calculated as the ratio of the distance of the point from the y-axis to the
total length of the x-axis. Using this method, this value is estimated to be 0.167. In the
‘1 — specificity’ column of Table 11.5, there are three values of 0.168, which are closest
to 0.167. For the first value of 0.168, sensitivity equals 0.837 after which it begins to fall
to 0.796 and 0.776. Thus, of the three points, the first point optimizes sensitivity, while
1 — specificity remains constant at 0.168. At this value, specificity is 1 — 0.168 or 0.832.
The value of BiochemC at this coordinate is 24.8, which is the optimal cut-off point.

An alternative method to identify the cut-off point from the Excel spreadsheet is to
use the following arithmetic expression, which uses Pythagoras’ theorem, to identify
the distance of each point from the top of the y-axis. In this calculation, the ‘distance’
has no units but is a relative measure:

Distance = (1 — sensitivity)? + (1 — specificity)?

This value was calculated for all points in Table 11.5 using the function option in Excel.
The minimum distance value is 0.055 for the cut-off point 24.8. Above and below this
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Table 11.5 Excel spreadsheet to identify clinical cut-off points

Sensitivity 1 — Specificity Specificity 1— Sensitivity
Cut-off point true positives false positives true negatives false negatives Distance
14.950 0.980 0.584 0.416 0.020 0.342
15.150 0.980 0.564 0.436 0.020 0.319
15.350 0.980 0.554 0.446 0.020 0.308
15.550 0.980 0.545 0.455 0.020 0.297
15.750 0.980 0.535 0.465 0.020 0.286
15.900 0.959 0.535 0.465 0.041 0.288
16.500 0.959 0.485 0.515 0.041 0.237
17.500 0.939 0.485 0.515 0.061 0.239
18.450 0.939 0.406 0.594 0.061 0.169
19.450 0.939 0.396 0.604 0.061 0.161
20.200 0.939 0.327 0.673 0.061 0.111
20.700 0.918 0.327 0.673 0.082 0.113
21.500 0.857 0.327 0.673 0.143 0.127
22.300 0.857 0.297 0.703 0.143 0.109
22.650 0.837 0.297 0.703 0.163 0.115
22.850 0.837 0.287 0.713 0.163 0.109
23.500 0.837 0.228 0.772 0.163 0.079
24.050 0.837 0.188 0.812 0.163 0.062
24.350 0.837 0.178 0.822 0.163 0.058
24.800 0.837 0.168 0.832 0.163 0.055
25.400 0.796 0.168 0.832 0.204 0.070
26.150 0.776 0.168 0.832 0.224 0.079
26.750 0.776 0.158 0.842 0.224 0.075
28.000 0.735 0.158 0.842 0.265 0.095
29.200 0.714 0.158 0.842 0.286 0.107
29.650 0.694 0.158 0.842 0.306 0.119
29.950 0.673 0.158 0.842 0.327 0.132
30.500 0.673 0.139 0.861 0.327 0.126
31.400 0.612 0.139 0.861 0.388 0.170
31.850 0.612 0.129 0.871 0.388 0.167
32.300 0.612 0.119 0.881 0.388 0.164
33.200 0.612 0.109 0.891 0.388 0.162
34.600 0.592 0.109 0.891 0.408 0.178

35.550 0.592 0.099 0.901 0.408 0.176
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Table 11.5 (continued)

Sensitivity 1 — Specificity Specificity 1— Sensitivity
Cut-off point true positives false positives true negatives false negatives Distance
35.650 0.571 0.099 0.901 0.429 0.193
35.900 0.551 0.099 0.901 0.449 0.211
36.350 0.551 0.079 0.921 0.449 0.208
36.650 0.551 0.069 0.931 0.449 0.206
36.800 0.531 0.069 0.931 0.469 0.225
37.050 0.531 0.050 0.950 0.469 0.223
37.600 0.531 0.040 0.960 0.469 0.222
38.100 0.510 0.040 0.960 0.490 0.241
38.500 0.510 0.020 0.980 0.490 0.240
38.250 0.510 0.030 0.970 0.490 0.241
39.200 0.490 0.020 0.980 0.510 0.261
39.850 0.469 0.020 0.980 0.531 0.282
41.100 0.388 0.020 0.980 0.612 0.375
42.700 0.388 0.010 0.990 0.612 0.375
44.250 0.388 0.000 1.000 0.612 0.375

Figures in bold represent cut-off points for screening, optimal and diagnostic test of Biochem C.

value, the distance increases indicating that the points are further from the optimal
diagnostic point. When the point closest to the top of the y-axis is not readily identified
from the ROC curve, this method is useful for identifying the cut-off value.

11.5.4 Cut-off points for diagnostic and screening tests

The cut-off points that would be used for diagnostic and screening tests can also be
read from the ROC curve coordinates. For a diagnostic test, it is important to maximize
specificity while optimizing sensitivity. From the ROC curve figure, the value that would
be used for a diagnostic test is where the curve is close to the left hand axis, that is where
the rate of FP (1 — specificity) is low and thus the rate of TN (specificity) is high. At the
cut-off point where the test value is 38.5, there is a sensitivity of 0.510 and a low 1 —
specificity of 0.02. At this test value, specificity is high at 0.98 which is a requirement
for a diagnostic test. Ideally, specificity should be 1.0 but this has to be balanced against
the rate of TP. At the three test values that have the same sensitivity of 0.510, the rate of
false positive is higher for the cut-off points of 38.1 and 38.25 than for the cut-off point
of 38.5, which maximizes specificity while optimizing sensitivity. At the cut-off points
below 38.5 where specificity is also 0.98, a significant reduction in TP would occur if the
cut-off point of 41.10 with a sensitivity of 0.388 was selected.

The value that would be used for a screening test is where the curve is close to the top
axis where the rate of TP (sensitivity) is maximized. For a screening test, it is important
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to maximize sensitivity while optimizing specificity. At the cut-off point where the test
value is 15.75, a high sensitivity of 0.98 is attained for a specificity of 0.465 (Table 11.5).
At this point the false negative rate (1 — sensitivity) is low at 0.02 which is a requirement
of a screening test. Ideally, sensitivity should be 1.0 but this has to be balanced against
the rate of FP. The original SPSS output (not shown here) indicates that there are 13 test
values below 15.75 at which sensitivity remains constant at 0.980 but there is a large
gain in the rate of FP across these cut-off points from 0.535 to 0.703. Thus, at several
cut-off values below 15.75, specificity decreases for no change in sensitivity.

For all three cut-off points, the choice of a cut-off value needs to be made using expert
opinion in addition to the ROC curve. In this, the decision needs to be made about how
important it is to minimize the occurrence of false negative or false positive results.

11.5.5 Reporting the ROC curve results

The results from the above analyses could be reported as shown in Table 11.6. The pos-
itive likelihood ratio is computed for each cut-off point as sensitivity/1 — specificity. A
high positive likelihood ratio is more important for a diagnostic test than for a screening
test. The 95% confidence intervals for sensitivity and specificity are calculated using
the Excel spreadsheet in Table 11.2 with the numbers of disease-positive (49) and
disease-negative (101) patients respectively used as the sample sizes.

Table 11.6 Cut-off points and diagnostic utility of test BiochemC for identifying
disease-positive patients

Sensitivity Specificity Positive
Purpose Cut-off value (95% Cl) (95% ClI) likelihood ratio
Screening 15.8 0.98 (0.94, 1.02) 0.47 (0.37, 0.57) 1.8
Optimal 24.8 0.84 (0.74, 0.94) 0.83 (0.76-0.90) 4.9
Diagnostic 38.5 0.51 (0.37, 0.65) 0.98 (0.95, 1.0) 25.5

11.6 Notes for critical appraisal

When critically appraising an article that presents information about diagnostic tests, it
is important to ask the questions shown in Box 11.7. In diagnostic tests, 95% confidence
intervals are rarely reported but knowledge of the precision around measurements
of sensitivity and specificity is important for applying the test in clinical practice. In
addition, estimating sample size in the disease-positive and disease-negative groups
is of paramount importance in designing studies to measure diagnostic statistics with
accuracy.
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Box 11.7 Questions for critical appraisal

The following questions should be asked when appraising studies from which diag-

nostic statistics are reported:

e Was a standard protocol used for deciding whether the diagnosis and the test were
classified as positive or negative?

e Was a gold standard used to classify the diagnosis?

e Was knowledge of the results of the test withheld from the people who classified
patients as having a disease and vice versa?

e How long was the time interval between the test and the diagnosis? Could the
condition have changed through medication use, natural progression, etc., during
this time?

e Are there sufficient disease-positive and disease-negative people in the sample to
calculate both sensitivity and specificity accurately?

e Have confidence intervals been calculated for sensitivity and specificity?
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CHAPTER 12
Survival analyses

The individual source of the statistics may easily be the weakest link. Harold Cox tells a story of his
life as a young man in India. He quoted some statistics to a judge who was an Englishman. The
judge said, Cox, when you are a bit older, you will not quote Indian statistics with that assurance.
The Government are very keen on amassing statistics — they collect them, add them, raise them to
the nth power, take the cube root and prepare wonderful diagrams. But what you must never forget
is that every one of those figures comes in the first instance from the chowkidar (village watchman),
who just puts down whatever he pleases.

JOSIAH CHARLES STAMP (1880-1941)

Objectives

The objectives of the chapter are to explain how to:

e decide when survival analyses are appropriate

e obtain and interpret the results of survival analyses

e ensure that the assumptions for survival analyses are met

e report results in a graph or a table

e critically appraise the survival analyses reported in the literature

Survival analyses are used to investigate the time between entry into a study and
the subsequent occurrence of an event. Although survival analyses were designed to
measure differences in the time to death between study groups, they are frequently
used for time to other events including discharge from hospital; disease onset; disease
relapse or treatment failure; or cessation of an activity such as breastfeeding or use of
contraception.

The time between the starting point of the study and the occurrence of the event is
called the ‘time to event’ or ‘survival time’. With data relating to time, a number of prob-
lems occur. The time to an event is often not normally distributed and follow-up times
for patients enrolled in longitudinal studies may vary, especially when it is impractical
to wait until the event has occurred in all patients. In addition, patients who leave the
study early or who have had less opportunity for the event to occur need to be taken
into account. Survival analyses circumvent these problems by taking advantage of the
longitudinal nature of the data to compare event rates over the study period and not at
an arbitrary time point.!
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© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/barton/medicalstatistics2e

350


http://www.wiley.com/go/barton/medicalstatistics2e

Survival analyses 351

12.1 Study design

Survival analyses are ideal for analyzing event data from prospective cohort studies and
from randomized controlled trials in which patients are enrolled in the study over long
time periods. The advantages of using survival analyses rather than logistic regression
for measuring the risk of the event occurring are that the time to the event is used in
the analysis and that the different length of follow-up for each patient is taken into
account. This is important because a patient in one group who has been enrolled for
only 12 months does not have an equal chance for the event to occur as a patient in
another group who has been enrolled for 24 months. Survival analyses also have an
advantage over logistic regression in that the event rate over time does not have to be
constant.

12.2 Censored observations

In survival analyses, patients who leave the study or do not experience the event are
called ‘censored’ observations. The term censoring is used because, in addition to patients
who survive, the censored group includes patients who are lost to follow-up, who
withdraw from the study or who die without the investigators” knowledge. Classify-
ing patients who do not experience the event for whatever reason as ‘censored’ allows
them to be included in the analysis.

There are three types of censoring: right, left and interval. Right censoring occurs when
participants leave the study or the study ends before the event occurs, if the event has
occurred at all. Therefore participants who do not experience the event during the study,
or withdraw from the study or were lost to follow-up are considered to be right censored.
Right censoring occurs most frequently in medical research.? Left censoring occurs when
the event has already occurred before enrolment or before a study examination has
occurred. This type of censoring rarely occurs.? Interval censoring is when the event
occurs in the interval between two study examinations; for example, if observations are
only taken every 6 months. In this situation, it is not possible to precisely measure when
the event actually occurred and the survival probabilities will be biased upwards.? Left
and interval censoring commonly occur when study examinations of participants are
infrequent.

12.3 Kaplan-Meier survival method

The Kaplan—Meier survival method is a non-parametric estimator of survival function
and is appropriate to use when some of the data are censored.? The survival function is
the probability of surviving to at least a certain time point and the graph of this proba-
bility is the survival curve. The Kaplan—Meier survival method can be used to compare
the survival curves of two or more groups such as comparing a treated group to an
untreated (placebo) group, or males compared to females. With this method, for each
time interval, the probability of the patient surviving at the end of that time interval
given that the patient survived at the start of the interval is calculated.®> Thus, a condi-
tional probability of patients surviving each time interval is calculated. In addition, data
that are censored are also included in the calculation and reduce the number of patients
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at risk at the start of the next time interval. These conditional probabilities for each time
interval are multiplied together to provide an overall or cumulative survival probability.

12.3.1 Assumptions of the Kaplan-Meier survival method

The assumptions for using Kaplan—Meier survival method are shown in Box 12.1. This
method is a non-parametric test and thus no assumptions are made about the distribu-
tions of the variables.

Box 12.1 Assumptions for using survival analysis

The assumptions for using survival analysis are that:

e the participants must be independent, that is, each participant appears only once
in their group

the groups must be independent, that is, each participant is only in one group
all participants are event free when they enrol in the study

the measurement of time to the event is precise

the start point and the event are clearly defined

participants” survival prospects remain constant, that is, participants enrolled
early or late in the study should have the same survival prospects

e the probability of censoring is not related to the probability of the event

In survival analyses, it is essential that the time to the event is measured accurately.
For this, regular observations need to be conducted rather than, for example, surmising
that the event occurred between two routine examinations.?

Both the start point, that is, entry into the study, the inclusion criteria and the event
must be well defined to avoid bias in the analyses. This is especially important when
using survival analyses to describe the natural history of a condition.* Using start points
that are prone to bias, such as patient recall of a diagnosis or attendance at a doctor
surgery to define the presence of an illness, will result in unreliable survival probabilities.

The reason for the event must also be clearly defined. When an event occurs that is
not due to the condition being investigated, careful consideration needs to be given
to whether it is treated as an event or as a withdrawal. In clinical trials, composite
endpoints, for example, an event that combines death, acute myocardial infarction or
cardiac arrest, are often used to test the effectiveness of interventions.>

Patients who are censored must have the same survival prospects as patients who
continue in the study, that is, the risk of the event should not be related to the rea-
sons for censoring or loss to follow-up.?> The factors that influence patients’ survival
prospects, such as different treatment options, should not change over the study period
and patients who experience more sickness in one treatment group should not be pref-
erentially lost to follow-up compared with patients who experience less sickness in
another treatment group. Secular trends in survival can also occur if patients enrolled
early have a different underlying prognosis from those enrolled towards the end of
the study. This would bias estimates of risk of survival in a cohort study but is not so
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important in clinical trials in which randomization balances important prognostic factors
between the groups.

12.3.2 Sample size and data coding

As with all analyses, if the total number of patients in any group is small, say less than
30 participants in each group, the standard errors around the summary statistics will be
large and therefore the survival estimates will be imprecise.

Plotting survival curves is not problematic when the study sample is large and the
follow-up time is short. However, when the number of patients who remain at the end
of the study is small, survival estimates are poor. Thus, it is important to end plots when
the number in follow-up has not become too small.

When conducting a Kaplan—Meier survival analysis, the time variable must be contin-
uous such as days, weeks or months; the event variable must be a binary or categorical
variable and the factor variable categorical such as treatment type (treatment/placebo).
Also, the data need to be entered with one binary variable indicating whether or not the
event occurred and a continuous variable indicating the time to the event or the time
to follow-up. The event is usually coded as ‘1" and censored cases coded as ‘0’, although
other coding such as ‘1" and ‘2’ could be used.

Research question

The file survival.sav contains the data from 56 patients enrolled in a randomized
clinical trial of two treatments in which 30 patients received the new treatment and
26 patients received the standard treatment. Patients were monitored daily and a
total of 17 patients died. In this data set, the event is coded as 1 and censored cases
are coded 0.

Question: Is the survival rate in the new treatment group higher than in the
standard treatment group?

Null hypothesis: ~ That there is no difference in survival rates between treatment
groups.

Variables: Outcome variable = death (binary event)
Explanatory variables=time of follow-up (continuous), treatment
group (categorical, two levels)

The commands shown in Box 12.2 can be used to obtain a Kaplan—Meier statistic to
assess whether the survival times between the two treatment groups are significantly
different.

The Case Processing Summary table shows summary statistics of the number in each
group, the number of events and the number and per cent censored. These statistics
show that there were fewer events but more patients who were censored in the new
treatment group.
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Box 12.2 SPSS commands to conduct a Kaplan—Meier survival analysis

SPSS Commands

survival.sav — IBM SPSS Statistics Data Editor
Analyze — Survival — Kaplan-Meier
Kaplan-Meier
Highlight days and click into Time
Highlight event and click into Status
Click on Define Event
Kaplan-Meier: Define Event for Status Variable
Type 1 in Single value box, click Continue
Kaplan-Meier
Highlight Treatment group and click into Factor
Click Compare Factor
Kaplan-Meier: Compare Factor Levels
Test Statistics: tick Log rank, Breslow, Tarone Ware,
Select Pooled over Strata (default), click Continue
Kaplan-Meier
Click Options
Kaplan-Meier: Options
Statistics: tick Survival table(s) (default) and tick Mean and median survival
(default); Plots: tick Survival
Click Continue
Kaplan-Meier
Click OK

Case Processing Summary

Treatment group Total N N of events Censored

N Per cent
New treatment 30 6 24 80.0
Standard treatment 26 1 15 57.7
Overall 56 17 39 69.6

The Survival Table is a descriptive table with the column labelled ‘Time’ indicating the
day the event or censoring occurred. ‘Status’ indicates whether the patient experienced
the event or was censored. ‘Cumulative Proportion Surviving at the Time’ indicates the
proportion of patients surviving from the start of the study until that point in time. For
example, the cumulative survival is 0.7111 at 36 days in group 1 (new treatment) and
0.5630 at 21 days in group 2 (standard treatment). The column labelled ‘N of Cumu-
lative Events’ indicates the total number of patients who have experienced the event
from the start of the study until this time point. For example, in the new treatment
group on day 16, 4 patients had died. The column labelled ‘N of Remaining Cases’
indicates the number of patients remaining at that time who have not experienced the

event or been censored.
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In the Survival Table, it can be seen that the survival probabilities displayed in the
column the ‘Cumulative Proportion Surviving at the Time’ are only calculated when an
event occurs. As mentioned previously (Section 12.3), conditional probabilities at each
event are used to generate the cumulative survival probability. For example, in the new
treatment group, the conditional probability of surviving past day 9 is the number of
patients who were alive at day 9 (end of interval) divided by the number of the patients
who were at risk at the start of the interval (day 8); here this is 26/27 =0.963, which is
shown in the Estimate column of the Survival Table. In the same treatment group, the
conditional probability of surviving past day 12 is 24/25=0.96 (not displayed in SPSS
output). Here the number of cases at risk excludes those who are censored or have
experienced the event. The cumulative survival probability of surviving past day 12 is
0.936 X 0.96=0.924, which is shown in the Estimate column of the Survival Table.

Survival Table

Cumulative proportion N of N of
surviving at the time cumulative  remaining
Treatment group Time Status Estimate Std. Error events cases

New treatment 1 5.000 0 0 29
2 7.000 0 0 28
3 8.000 0 . . 0 27
4 9.000 1 0.963 0.036 1 26
5 9.000 0 . . 1 25
6 12.000 1 0.924 0.051 2 24
7 15.000 1 0.886 0.062 3 23
8 16.000 1 0.847 0.070 4 22
9 16.000 0 4 21
10 16.000 0 4 20
1 19.000 0 4 19
12 20.000 0 4 18
13 23.000 0 4 17
14 24.000 0 4 16
15 25.000 0 4 15
16 29.000 0 4 14
17 31.000 0 . . 4 13
18 32.000 1 0.782 0.090 5 12
19 32.000 0 . . 5 11
20 36.000 1 0.711 0.106 6 10
21 38.000 0 6 9
22 40.000 0 6 8
23 41.000 0 6 7
24 41.000 0 6 6
25 42.000 0 6 5
26 43.000 0 6 4
27 48.000 0 6 3
28 49.000 0 6 2
29 58.000 0 6 1
30 59.000 0 6 0




356 Chapter 12

(Continued)
Cumulative proportion N of N of
surviving at the time cumulative  remaining
Treatment group Time Status  Estimate Std. Error events cases
Standard treatment 1 1.000 1 1 25
2 1.000 1 . . 2 24
3 1.000 1 0.885 0.063 3 23
4 2.000 1 0.846 0.071 4 22
5 3.000 1 0.808 0.077 5 21
6 4.000 1 . . 6 20
7 4.000 1 0.731 0.087 7 19
8 6.000 0 . . 7 18
9 7.000 1 0.690 0.091 8 17
10 17.000 1 0.650 0.094 9 16
11 20.000 0 9 15
12 21.000 1 . . 10 14
13 21.000 1 0.563 .100 11 13
14 31.000 0 11 12
15 31.000 0 11 11
16 32.000 0 11 10
17 33.000 0 1 9
18  33.000 0 11 8
19  36.000 0 11 7
20 39.000 0 11 6
21 40.000 0 11 5
22 40.000 0 11 4
23 41.000 0 1 3
24  43.000 0 11 2
25 50.000 0 11 1
26 65.000 0 11 0
Means and Medians for Survival Time
Treatment group Mean? Median
95% Confidence 95% Confidence
interval interval
Std.  Lower Upper Std. Lower Upper
Estimate error bound bound Estimate error bound bound
New treatment 48.591 3.686 41.367 55.816
Standard treatment 40.001 5.750 28.732 51.270
Overall 46.922 3.621 39.825 54.019

aEstimation is limited to the largest survival time if it is censored.

The Kaplan—Meier method produces a single summary statistic of survival time, that
is, the mean or median. The mean survival time is estimated from the observed times
and is shown for each group in the Means and Medians for Survival Time table. Mean
survival is calculated as the summation of time divided by the number of patients who
remain uncensored. This statistic can be taken to indicate the length of time that a patient
can be expected to survive. Examination of the overlap of 95% confidence intervals for
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the new treatment and standard treatment groups suggests that possibly the difference
between the curves is statistically significant (see Table 3.5 in Chapter 3).

The median survival time is the point at which half the patients have experienced the
event. If the survival curve does not fall to 0.5 (i.e. survival probability of 50%), the
median survival time cannot be calculated. In the above example, since both survival
curves are above 0.5, the median values are not calculated.

12.3.3 Survival statistics

To examine whether there is a statistically significant difference between the survival
curves of two or more groups, there are three tests that are calculated by SPSS, which
are the Log Rank, Breslow and Tarone—Ware tests. The null hypothesis of these tests is
that there is an equal risk of the event in all groups. That is, there is no difference in
the probability of an event at any time between the populations. These tests are similar
to chi-square tests in that the number of observed events is compared with the number
of expected events. All three tests have low power for detecting differences when the
survival curves cross one another.

The Log Rank test weights all time points equally and is the most commonly reported
survival statistic.® This test is most likely to identify a difference when the risk of an event
is constantly higher or lower for one group compared to another.>” The assumptions
of this test are the same as for the Kaplan—Meier method.® The assumption that the
risk of an event in one group compared to the other group does not change over time
is referred to as proportional hazards (see Section 12.4.2). If the survival curves cross
one another, this suggests that the hazards are not proportional. In this situation, the
log rank test will be less powerful and an alternative test should be considered.

The Breslow and Tarone—Ware tests are both weighted variants of the Log Rank test
in that different weightings are given to particular points of the survival curve.” The
Breslow test weights time points by the number of cases at risk at each time point. Thus,
this test gives greater weight to early observations when the sample size is large and is
less sensitive to later observations when the sample size is small. This test is appropriate
when there are few ties in the data, that is, patients with equal survival times. The
Tarone—Ware test weights all time points by the square root of the number of cases at
risk at each time point. This test is a compromise between the Log Rank and the Breslow
tests but is rarely used.

The Overall Comparisons table for the example above and obtained using the com-
mands in Box 12.2 shows how the three tests can lead to different conclusions about
whether there is evidence of a significant difference in the survival rate between groups.
The Log Rank test is not significant at P=0.0705. However, this test is not appropriate
in this situation in which the number of patients remaining after 33-36 days is small
with less than 10 patients in each group.

The Breslow test is significant at P=0.021 and is the most appropriate test to report
because more weight is placed on earlier observations. In this example, the Breslow
P value is more significant than the Log Rank P value because more weight has been
placed on the early observations. If early observations were more similar between groups
and later observations more different, the Log Rank P value would have been more
significant than the Breslow P value.
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Overall Comparisons

Chi-square df Sig.

Log rank (Mantel-Cox) 3.271 1 0.070
Breslow (Generalized Wilcoxon) 5.316 1 0.021
Tarone-Ware 4.388 1 0.036

Test of equality of survival distributions for the different levels of
Treatment group.

12.3.4 Reporting the results of Kaplan-Meier

When reporting data from survival analyses, the P values from the statistical analyses
do not convey information about the size of the effect. In addition to P values, summary
statistics such as the follow-up time of each group, the total number of events and the
number of patients who remain event free are important for interpreting the data. This
information can be reported as shown in Table 12.1.

Table 12.1 Survival characteristics of study sample

Mean survival

Number of Number of Number time in days
Group cases events censored (95% CI)
New treatment 30 6 24 (80.0%) 49 (41, 56)
Standard treatment 26 11 15 (57.7%) 40 (29, 51)

Alternatively, the results can be reported using the following written text ‘The
Kaplan—Meier estimates indicated that the survival rate for 30 patients given the new
treatment was 71% and for the 26 patients given the standard treatment was 56%. The
Breslow test indicated that there was a statistically significant difference between the
two survival rates (P=0.02). The mean survival time for the new treatment group was
48 days and for the standard treatment group was 40 days. Collectively, these results
suggest that the new treatment is more effective than the standard treatment’. In
addition to this text, the Kaplan—Meier curve (see Section 12.3.5) can also be included.

12.3.5 Survival plots

Survival plots of time to event data are frequently used to report the results of clinical
trials.> One of the most common survival plots used are Kaplan—Meier curves.’ In plot-
ting these curves, the data are first ranked in ascending order according to time. A curve
is then plotted for each group by calculating the proportion of patients who remain in
the study and who are censored each time an event occurs. Thus, the curves do not
change at the time of censoring but only when the next event occurs.

The survival plot shows the proportion of patients who are free of the event at each
time point. The steps in the curves occur each time an event occurs and the bars on the
curves indicate the times at which patients are censored. The plots show the survival
time for a typical patient. In the survival plot shown in Figure 12.1 obtained from the
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Figure 12.1 Survival curves for the two treatment groups.

commands in Box 12.2, the standard treatment group, which is the lower curve, has
a poorer survival time than the new treatment group, which is the upper curve. The
sections of the curves where the slope is steep, in this case the earlier parts, indicate the
periods when patients are most at risk for experiencing the event. It is always advisable
to plot survival curves before conducting the tests of significance.

There are several ways to plot survival curves and the debate about whether they
should go up or down and how the y-axis should be scaled continues.’ In SPSS, different
presentations of the survival curve can be obtained by double clicking on the graph in
SPSS Output View, the Chart Editor will be opened and the plot can be edited. Using
the commands Edit — Select X Axis in the Chart Editor, the range of the x-axis and other
properties of the plot such as chart size can be changed.

Plotting survival curves is not problematic when the study sample is large and the
follow-up time is short. However, when the number of patients who remain at the
end is small, survival estimates are poor. It is important to end plots when the number
in follow-up has not become too small. Therefore, in the above example, the curves
should be truncated to 31 days when the number in each group is 10 or more and
should not be continued to 65 days when all patients in the standard treatment group
have experienced the event or are censored.

The scaling of the y-axis is important because differences between groups can be visu-
ally magnified or reduced by shortening or lengthening the axis. In practice, a scale
only slightly larger than the event rate is generally recommended to provide visual
discrimination between groups rather than the full scale of 0-1. However, this can
tend to make the differences between the curves seem larger than they actually are,
for example in a plot in which the y-axis scale ranges from 0.5 to 1.0.
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12.4 Cox regression

A Cox regression model (which is also called a Cox proportional hazards regression)
provides an estimate of survival time while adjusting for the effects of other explanatory
variables (referred to as covariates in this type of model). For example, in predicting an
event such as death, factors such as age of the patient or number of years smoking
cigarettes can be included in a Cox regression model. Compared to the Kaplan—Meier
method where only categorical variables can be used to predict the event, with the Cox
regression analysis a combination of categorical and/or continuous variables can be used
to predict survival. In addition, Cox regression models can also manage censored data.

Cox regression is similar to other regression models such as linear regression or logistic
regression (see Chapters 7 and 9, respectively), in that regression coefficients are gener-
ated, interaction between variables can be examined and adjustment for confounding
factors can be made.” Where linear and logistic regressions models are used respectively
to predict scores for a continuous and a binary variable, Cox regression models are used
to predict the rate of an event.

A rule of thumb is that Cox models should have a minimum of 10 outcome events
per predictor variable. However, there are some circumstances when this rule can be
amended.®

12.4.1 Hazard ratio

Hazard is defined as the immediate risk of event occurrence.’ The hazard rate or function
is the probability that if the event has not occurred, it will occur in the next time interval,
divided by the length of that interval.!° If the time interval is small, the hazard function
represents an instantaneous event rate among participants who have not experienced
the event. In Cox regression analysis, the dependent variable is the hazard function at
a given time.

With a Cox regression analysis, the effect of each covariate is reported as a hazard
ratio. The hazard ratio is computed as the proportion of the rate (or function) of the
hazard in the two groups. The hazard ratio can be used to estimate the hazard rate in
a treatment group compared to the hazard rate in the control group. A hazard ratio of
2 indicates that, at any time point, twice as many patients in the one group experience
an event compared with the other group. It is important to note that a hazard ratio of
2 does not mean that patients in the treated group improved or healed twice as quickly
as patients in the control group. The correct interpretation of a hazard ratio of 2 is that
a patient, who has been treated and has not improved by a certain time, has twice the
chance of improving at the next time point compared to a patient in the control group.'®

In Cox regression model, the hazard function at a given time is predicted by the base-
line hazard function, which estimates the overall risk of the event where all explanatory
variables equal zero. This term is similar to the constant term (i.e. the intercept) in linear
regression. Regression coefficients are also generated for the explanatory variables or
covariates that are included in the model. In building the Cox regression model, as in
multiple linear regression (see Chapter 7), there are a number of different methods
for including covariates in the model. In SPSS, the method options include enter, for-
ward or backward. The enter option can be used to enter variables all at once or to
sequentially add variables in blocks. With forward or backward method, there are three
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different criteria that can be used to determine whether variables are included: con-
ditional, likelihood ratio (displayed as LR in SPSS) or Wald options. The inclusion or
removal of variables is based on the corresponding statistics calculated. As with multi-
ple linear regressions, it is important that both the clinical and statistical significance of
variables be considered in building a parsimonious model.

The hazard ratio is sometimes used interchangeably to mean a relative risk (see
Chapter 9); however, this interpretation is not correct. The hazard ratio incorporates
the change over time, whereas the relative risk can only be computed at single time
points, generally at the end of the study.

12.4.2 Assumptions of Cox regression model

The Cox regression model is a semi-parametric model and no assumptions are made
about the distribution of survival. The assumptions shown in Box 12.1 should be met
for Cox regression, as well as the assumption of proportional hazards. That is, the haz-
ard (rate of the event) in one group should be a constant proportion of the hazard in
the other study group over all time points. This assumption is important since the haz-
ard ratio estimated by the model is for all time points.” To test this assumption, when
there are only two groups and no covariates, a simple test is to plot the Kaplan—Meier
survival curves of the two groups together. If the curves are proportional and approxi-
mately parallel, then the assumption of proportional hazards is met. If the curves cross or
if curves are not parallel and diverge they indicate that the rate of the event between the
two groups is different (e.g. rate for one group increases constantly and the other group
only slowly increases), and that the assumption of proportional hazards is not met. How-
ever, with small data sets the error around the survival curve is increased and therefore
this test may not be accurate.!' In addition, these plots are more complex to inter-
pret with multivariable models. More appropriate methods are the log-minus-log plot'?
and examination of the partial residuals. The log-minus-log of the survival function, is
the In(—In(survival)), versus the survival time. When the hazards are proportional, the
curves should be approximately parallel. The residuals when plotted should be horizon-
tal and close to zero (shown later in the chapter) if the hazards are proportional.

A statistical test can also be conducted to check for proportional hazards. The assump-
tion of proportional hazards is similar to the assumption of homogeneity of regression
in ANCOVA (see Chapter 5), which can be checked by assessing that there is no inter-
action between the covariate and factors (treatment levels).!? In survival analysis, the
assumption of proportional hazards can also be checked by assessing whether there is
an interaction between time and treatment, as well as the covariates.'? This is referred
to an extended Cox regression model.”

Research question

Using the same file used earlier in this chapter, survival.sav which contains the data
from 56 patients enrolled in a randomized clinical trial of two treatments in which 30
patients received the new treatment and 26 patients received the standard treatment. A
total of 17 patients died.
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Question: Are new treatment group or gender independent predictors of
survival?

Null That there is no difference in survival rates between treatment groups

hypothesis: or gender groups.

Variables: Outcome variable = death (binary event)

Explanatory variables =time of follow-up (continuous), treatment
group (categorical, two levels), gender (categorical, two levels)

The commands shown in Box 12.3 can be used to obtain statistics to assess the inde-
pendent effects of the predictor variables.

Box 12.3 SPSS commands to obtain a Cox regression

SPSS Commands

survival.sav — IBM SPSS Statistics Data Editor
Analyze — Survival — Cox Regression
Cox Regression
Highlight days and click into Time
Highlight event and click into Status
Click on Define Event
Cox Regression: Define Event for Status Variable
Type 1 in Single value box, click Continue
Cox Regression
Highlight Treatment group and click into Covariates
Cox Regression
Click Next under Block I of 2
Cox Regression
Highlight Gender and click into Covariates
Click Categorical
Cox Regression: Define Categorical Covariates
Click Gender into Categorical Covariates
Change Contrast: select Indicator as Contrast and tick Change, select ‘Last’ as
Reference Category and click Continue
Cox Regression
Click Save
Cox Regression:Save
Save Model Variables: tick Partial Residuals and click Continue
Cox Regression
Click Options
Cox Regression: Options
Model Statistics: tick CI for Exp(B) 95 %
Display model information: select At each step (default), click Continue
Cox regression
Click OK
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Case Processing Summary

N Per cent
Cases available Event? 17 30.4
in analysis Censored 39 69.6
Total 56 100.0
Cases dropped Cases with missing 0 0.0
values
Cases with negative 0 0.0
time
Censored cases 0 0.0
before the earliest
event in a stratum
Total 0 0.0
Total 56 100.0
2Dependent variable: days.
Categorical Variable Codings®
Frequency (1)
Gender® 1=Male 25 1
2=Female 31 0

aCategory variable: gender (gender).
bIndicator parameter coding.

The Case Processing table shows that 17 patients died and 39 were censored. The
Categorical Variable Codings show the reference category is females as defined by the
‘last reference category’ in the SPSS commands and provides information on how to
interpret the hazard ratios for gender.

Block 1: Method = Enter

Omnibus Tests of Model Coefficients?

Change from Change from
-2 log Overall (score) previous step previous block
likelihood Chi-square df Sig. Chi-square df Sig. Chi-square Df Sig.
123.521 3.230 1 0.072 3.204 1 0.073 3.204 1 0.073

aBeginning Block Number 1. Method =Enter.

The Omnibus Tests of Model Coefficients tests the null hypothesis that all effects are
equal to zero. The table reports the chi-square value for the overall model (a measure of
goodness of fit), as well as the change from the previous model and the corresponding
significance level. In this model, the comparison model is no predictors, with only the
constant (intercept) included. The significance level for the overall score is not signifi-
cant (P=0.072), indicating that including the variable, treatment did not significantly
improve the model.
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Variables in the Equation

95.0% ClI
for Exp(B)
B SE Wald df Sig. Exp(B) Lower Upper

Group 0.885 0.508 3.029 1 0.082 2.422 0.894 6.558

The Variables in the Equation table shows the regression coefficient for treatment
group which is 0.885. This is the logarithm of the hazard ratio for a patient given the
new treatment (coded 1) compared with a patient given the standard treatment (coded
2). In this example, 11 patients died in the standard treatment group and six patients
in the new treatment group. The exponential (anti-log) of this value is 2.422, which is
shown on the column labelled Exp(B). This value indicates that the hazard (i.e. risk of
dying) of a person receiving the new treatment is 2.422 compared to that of a person
receiving the standard treatment. However, the significance level P=0.082 is not sig-
nificant and provides evidence that there is not a statistically significant difference in
survival between the two groups.

Variables not in the Equation?

Score df Sig.

Gender 5.428 1 0.020

aResidual Chi-square =5.428 with 1 df
Sig.=0.020.

The variables not in the equation estimate the change in the model fit if the variable
gender is added to the model, the other two columns give the degrees of freedom, and
P value for the estimated change. This table tells us that gender would improve the fit
of the model, as confirmed in Block 2 below.

At Block 2, gender has been added to the model and the overall goodness of fit of the
model has increased from the previous block, Block 1.

Block 2: Method = Enter

Omnibus tests of model coefficients?

Change from Change from
-2 Log Overall (score) previous step previous block

likelihood Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.

118.102 8.657 2 0.013 5.418 1 0.020 5.418 1 0.020

2Beginning Block Number 2. Method = Enter.

Variables in the Equation

95.0% CI for Exp(B)
B SE Wald df Sig. Exp(B) Lower Upper

Group 0.882 0.508 3.011 1 0.083 2.416 0.892 6.545
Gender 1.173 0.533 4.850 1 0.028 3.233 1.138 9.186
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Covariate Means

Mean
Group 1.464

Gender 446

The Variables in the Equation table shows that the hazard ratio (Exp(B)) for the treat-
ment group is 2.416 with a P value of 0.083 is not significant as it was in Block 1. The
hazard ratio for gender is 3.233 with a significant P value of 0.028. The estimates shown
in the column labelled Exp(B) are the adjusted hazard ratios for other variables included
in the model. In this example, these estimates are the adjusted independent effects of
treatment group and gender. The results indicate gender is an independent predictor of
survival and that females are at a lower risk than males. Since the reference category
was entered as ‘last’, the hazard ratio for being male relative to female is shown. The
hazard ratio of 3.233 indicates that 3.2 times as many males experience a hazard at any
time point compared to females.

To check the assumption of proportional hazards, the log—log plot and the residuals
can be examined. To obtain a log—log plot, the categorical variable of treatment group
needs to be defined as Strata in SPSS. Using the commands shown on Box 12.4 the
log—log plot shown in Figure 12.2 is obtained. The log-minus-log plot shows that the
curves are approximately parallel suggesting that the hazards are proportional.

Box 12.4 SPSS commands to obtain a log minus log plot

SPSS Commands

survival.sav — IBM SPSS Statistics Data Editor
Analyze — Survival — Cox Regression
Cox Regression
Highlight days and click into Time
Highlight event and click into Status
Click on Define Event
Cox Regression: Define Event for Status Variable
Type 1 in Single value box, click Continue
Cox Regression
Highlight Gender and click into Covariates
Click Treatment group into Strata
Cox Regression
Click Plots
Cox Regression: Plots
Plot Type: select log minus log, click Continue
Cox Regression
Click Continue

Partial residuals for each covariate can be generated and saved to the SPSS datasheet
using the commands shown in Box 12.3. To check the residuals, the variables produced
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Figure 12.2 Log-log plot comparing standard treatment and new treatment.

at the end of the SPSS datasheet, partial residuals for group (PR1_1) and partial residual
for gender (PR2_1) can be plotted against a time rank variable. To obtain a time rank
variable the SPSS commands in Box 12.5 can be used. To obtain a scatterplot for each
residual the SPSS commands shown in Box 7.2, with the ranked time variable (Rdays)
plotted on the x-axis and each residual variable plotted separately on the y-axis to obtain
the two residual plots as shown in Figure 12.3. It is also helpful for interpretation to plot
the horizontal reference line at zero. To obtain the reference line, double click on the
plot displayed in SPSS output and the Chart Builder will open, use the commands Edit
— Select Y Axis, click on the Scale tab, tick Display lie at origin and click Apply. If the hazards
are proportional, there should not be a clear trend over time (e.g. significantly increasing
or decreasing over time) and the residuals should be centred close to zero. For the plots
in Figure 12.3, although it is a small data set, there does not appear to be any trend and
the residuals are close to zero. The results from the log-minus-log plot and the residuals
suggest that the assumption of proportional hazards has been met.

Box 12.5 SPSS commands to obtain a rank time variable

SPSS Commands
survival.sav — IBM SPSS Statistics Data Editor
Transform — Rank Cases

Rank Cases
Highlight days and click into Variable(s), click OK
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Figure 12.3 Plots of partial residuals against rank time.
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12.4.3 Reporting the results of Cox regression

In reporting the results of Cox regression the mean or median survival time, the adjusted
hazard ratios and their 95% confidence intervals, and the P values should be reported
as shown in Table 12.2. It is good practice to also report the unadjusted hazard ratios in
addition to the adjusted hazard ratios so that the effects of confounding can be judged.!?

Table 12.2 Independent predictors of survival

Mean survival Mean survival
(95% ClI) in (95% Cl) in Hazard ratio
Group risk group comparison group (95% CI) P value
Treatment (new) 48.6 (41.4, 55.8) 40.0 (28.7, 51.3) 2.42 (0.89, 6.55) 0.08
Gender (female) 30.5 (22.8, 38.3) 55.1 (47.3, 63.0) 3.23(1.14, 9.19) 0.03

12.5 Questions for critical appraisal

The questions that should be asked when critically appraising a journal article that

reports a survival analysis are shown in Box 12.6.

Box 12.6 Questions to ask when critically appraising the literature

The following questions can be asked when critically appraising the literature:

e Is the start point and event clearly defined and free of recall or other bias?

e Has time been measured accurately?

e Have any factors preferentially changed the patient’s survival prospects over the
course of the study?

e Are figures reported appropriately?

e Is the sample size in each group sufficient?
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Adjusted odds ratio Odds ratio which is adjusted for the effects of the other variables
in the model.

Adjusted R square (R?) R? is the square of the R value (i.e. RX R) and is referred to as
the coefficient of determination. The adjusted R? value is adjusted for the number
of explanatory variables included in the regression model. This adjusted value can
be used to compare regression models that have a different number of explanatory
variables included.

Agreement Agreement is the degree to which scores are similar or different when
two or more measurements are taken from the same participants on different occa-
sions. Statistics that can be used to describe agreement include percent in agreement,
differences-vs-means plot and limits of agreement.

Alternative hypothesis In hypothesis testing, a null and alternative hypothesis is speci-
fied. The alternative hypothesis states that there is a difference between the summary
statistics of the populations from which the samples were drawn. The alternative
hypothesis may be a one-sided or two-sided test.

Analysis of variance (ANOVA) A parametric test that can be used to compare differ-
ences in the mean values of three or more independent groups simultaneously. Thus,
ANOVA is suitable when the outcome measurement is a continuous normally dis-
tributed variable and when the explanatory variable is categorical with three or more
groups.

Analysis of covariance (ANCOVA) A parametric test that can be used to compare dif-
ferences in the mean values of one or more groups after adjusting for a continuous
variable, that is, a covariate.

Asymptotic method With this method, the significance levels for the statistical tests are
calculated based on the assumption that the sample size is large and the data conform
to a particular distribution, for example, normal distribution. When this assumption
is not met, exact statistics should be used.

Balanced design Studies with a balanced design have an equal number of observations
in each cell. This can be achieved only in experimental studies or by data selection.
Most observational studies have an unbalanced design with unequal number of obser-
vations in the cells.

Bivariate statistics Tests in which the relationship between two variables is estimated,
for example, an outcome and an explanatory variable.

Boxplot (box-whisker plot) A graphical representation of the data where the black hor-
izontal line inside the box indicates the median and the inter-quartile range is the
length of the box. The whiskers are the lines extending from the top and bottom of
the box. The whiskers represent the minimum and maximum values when they are
within 1.5 times above or below the inter-quartile range.
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Case-control study A study design in which individuals with the disease of interest
(cases) are selected and compared to a control or reference group of individuals with-
out the disease.

Censored observation A term used to indicate that an event did not occur during the
period of observation, in this, the survival time for an individual is censored. The
reasons for censoring could be that the participant withdrew, was lost to follow-up or
did not experience the event during the period of observation.

Centering To avoid collinearity in quadratic equations or when there is an interac-
tion in a model, centering, that is, subtracting a constant (normally the group mean
value) from the data values can be applied. Centering is commonly used in regression
analysis.

Chi-square tests A statistic used to test whether the frequency of an outcome in two or
more groups is significantly different, or that the rows and columns of a crosstabula-
tion table are independent.

Coefficient of determination (R?) Pearson correlation coefficient (r), can be squared to
obtain the coefficient of determination, R?, which indicates the percent of variance in
one variable that can be explained by the other variable.

Collinearity A term used when there is a strong linear relationship between two
explanatory variables.

Complete design A study design is complete when there are one or more observations
in each cell and is incomplete when some cells are empty.

Confidence interval The 95% confidence interval is the interval in which there is 95%
certainty that the true population value lies. Confidence intervals are calculated
around summary statistics such as mean values or proportions. For samples with
more than 30 cases, a 95% confidence is calculated as the summary statistic +
(SEx 1.96), where SE equals standard error. The confidence limits are the values at
the ends of the confidence interval.

Confounder Confounders are nuisance variables that are related to the outcome and to
the explanatory variables and whose effect needs to be minimized in the study design
or analyses so that the results are not biased.

Cook’s distance A measure of influence commonly used in multivariate models to
detect influential observations. Influence measures the change in the model if the
data point is removed. Values greater than 4/(n—k-1) are considered influential (z =
sample size, kK = number of variables in model).

Correlation A correlation coefficient describes how closely two variables are related,
that is, the amount of variability in one measurement that is explained by another
measurement. There are three types of bivariate correlations: Pearson’s correlation
coefficient (r), Spearman’s p (rho) and Kendall’s = (tau).

Covariance structure In linear mixed models, within-subject correlations are modelled
using the covariance structure. The covariance structure is built on the variance
around the outcome measurement at each time point and on the correlations
between measurements taken at different times from the same participant. The
appropriate covariance structure (e.g. autoregressive first order, unstructured) which
describes the structure of the correlation among data points must be determined
before analysis.

Cox regression Provides an estimate of survival time while adjusting for the effects
of one or more explanatory variables (referred to as covariates). For example, in
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predicting death, factors such as age of the patient or number of years smoking
cigarettes can be included.

Cross tabulation (or contingency) table A table used to display the frequency of cases
for two or more categorical variables. The data for chi-square tests are summarized
using crosstabulation tables.

Differences-vs-means plots The means and differences between two measurments can
be plotted as a differences-vs-means plot to show whether there is systematic bias, that
is whether the differences are related to the size of the measurement as estimated by
the mean. The plot is used assess agreement between measurements.

Discrepancy A measure of how much a case is in line with other cases in a multivariate
model.

Dummy (or indicator) variables A series of binary variables typically with values 1 and
0 that have been derived from a multi-level ordinal variable. These variables are
used to identify subgroups or represent an attribute such as a smoker or non-smoker.
Dummy variables are commonly used in regression models.

Effect size A term used to describe the magnitude or strength of the difference, typically
between two groups. Measures of effect size include Cohen’s d, Cohen’s f, eta squared,
and omega squared.

Explanatory variable (independent or predictor variable) A variable that is hypothe-
sized to influence the outcome variable.

Error term See Residual.

Estimated marginal means The estimated mean value of a factor adjusted (averaged)
for all other factors in the model, that is, the predicted mean values.

Eta squared (7?) A measure of the strength of association between the outcome and
the explanatory factor. As such, eta squared is an approximation to R squared. Eta
squared is calculated as the ratio of the factor variance to the total variance. Values
range from 0 to 1 with larger values indicating a stronger association.

Exact statistics With these statistics, the significance levels are calculated based on the
exact distribution of the test statistic. Exact tests are used when the numbers in a cell or
group are small or unbalanced or the data are skewed and therefore the assumptions
for asymptotic statistical tests are violated.

Explanatory variable A variable that is a measured characteristic or an exposure and
that is hypothesized to influence an event or a disease status (i.e. outcome variable). In
cross-sectional and cohort studies, explanatory variables are often exposure variables.

F value An F value is a ratio of variances. For one-way ANOVA, the F value is calculated
as the mean between-group variance divided by the mean within-group variance, that
is, the unexplained variance divided by the explained variance. For factorial ANOVA,
the F value is the within-group mean square divided by the error (residual) mean
square. For regression, the F value is the ratio of the mean regression sum of squares
divided by the mean error sum of squares.

Factorial ANOVA A factorial ANOVA is used to examine the effects of two or more fac-
tors, or explanatory variables, on a single outcome variable. When there are two
explanatory factors, the model is described as a two-way ANOVA, when there are
three factors as a three-way ANOVA, and so on.

Fixed factor A fixed factor is a factor in which all possible groups or all levels of the factor
are included in the model, for example, males and females or number of siblings.
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Hazard ratio In survival analysis, the hazard ratio is the ratio of the hazard rates in two
levels of an explanatory variable. For example, in a clinical trial, the treated population
may die at half the rate per unit time as the control population. The hazard ratio
would be 0.5 indicating that a patient, who has been treated and has not improved
by a certain time, has half the chance of improving at the next time point compared
to a patient in the control group.

Heteroscedasticity Heteroscedasticity indicates that the residuals at each level of the
explanatory variable have unequal variances.

Histogram A graphical representation of the distribution of a continuous variable which
indicates how frequently data points occur in certain intervals.

Homogeneity of variance When the population variances are equal, homogeneity of
variance exists. That is, the variance of one variable is stable at all levels of another
variable. Levene’s test can be used to check for homogeneity of variance, which is an
assumption of two sample ¢-test and ANOVA.

Homoscedasticity Homoscedasticity indicates that the residuals at each level of the
explanatory variable have equal or similar variances. To test for homoscedasticity, a
plot of the standardized residuals by the regression standardized predicted value can
be examined. Homoscedasticity is an assumption of regression analysis.

Incidence Rate of new cases with a condition occurring in a random population sample
in a specified time period, for example, 1 year.

Influence Influence is calculated as leverage multiplied by discrepancy and is used to
assess the change in a regression coefficient when a case is deleted. Cook’s distance is
a measure of influence.

Interaction An interaction occurs when the effects of an explanatory variable on the
outcome variable changes depending upon the level of another explanatory variable.

Inter-quartile range A measure of spread, that is, the width of the band that contains
the middle half of the data that lies between the 25th and 75th percentiles. That is,
the range in which the central 25-75% (50%) of the data points lie.

Interval scale variable A variable with values where differences in intervals or points
along the scale can be made, for example, the difference between 5 and 10 is the same
as the difference between 85 and 90.

Intervening variable A variable that acts on the pathway between an outcome and an
exposure variable.

Intra-class correlation (ICC) ICC describes the relative extent to which two continuous
measurements taken by different raters or two measurements taken by the same rater
on different occasions are reliable. ICC values range from 0 to 1, with a value of 1
indicating perfect concordance between measurements.

Kaplan-Meier survival method This method is a non-parametric estimator of survival
function and is appropriate to use when some data are censored. The survival function
is the probability of surviving to at least a certain time point and the graph of this
probability is the survival curve. The Kaplan—Meier survival method can be used to
compare the survival curves of two or more groups.

Kappa statistic This statistic can be used to assess the concordance of responses for
two or more raters or between two or more occasions after taking account of chance
agreement. Kappa is an estimate of the proportion in agreement between raters in
excess of the agreement that would occur by chance.
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Kurtosis A measure of whether the distribution of a variable is peaked or flat. Measures
of kurtosis between —1 and 1 indicate that the distribution has an approximately
normal bell-shaped curve and values around —2 to +2 are a warning of some degree
of kurtosis. Values below —3 or above +3 indicate that there is significant peakedness
or flatness and therefore that the data are not normally distributed.

Leverage Leverage indicates the influence of a data point on the fit of a regression.
Leverage is a measure of how far a data point is from the mean of that predictor
variable. Leverage values can range from 0 (no influence) to n—1/n, where n equals
the sample size, with values close to 1 highly influential.

Likelihood ratio The likelihood ratio is calculated as the probability of a test result in
people with the disease divided by the probability of the same test result in people
without the disease. A ratio greater than 1 indicates that the test result is associated
with the presence of the disease. Likelihood ratios are commonly used to assess the
utility of a diagnostic test. When the diagnostic test only has two outcomes, sensitivity
and specificity can be used to calculate the likelihood ratios.

Limits of agreement Assuming that the difference scores between two measurements
are normally distributed it is expected that the 95% of the scores will lie within
the interval calculated as the mean difference +/— 1.96 standard deviation of the
differences. When measuring agreement, this range is called the 95% limits of
agreement.

Linear-by-linear (or trend) test A statistic used to test for trends in crosstabulations
where one variable is an ordered variable. This test is used to examine whether there
is a trend for an outcome to increase or decrease across the categories of the ordered
variable. This association is equivalent to testing whether the slope of a regression
through the estimates is different from zero.

Linear mixed model A statistical model that includes both fixed and random effects.
This model is commonly used to analyse data when there are repeated or multiple
measurements on participants.

Log rank test This test can be used to examine whether there is a statistically significant
difference between the survival curves of two or more groups. This tests that there is
no difference in the probability of an event at any time between the groups.

Logistic regression Logistic regression is used to predict a categorical outcome vari-
able from a set of explanatory variables. When the outcome variable is binary, this
is referred to as binary logistic regression. In logistic regression, the odds ratio for an
explanatory variable is adjusted for the other variables in the model.

Mahalanobis distance This is the distance between a case and the centroid of the
remaining cases, where the centroid is the point where the means of the explanatory
variables intersect. Mahalanobis distance is used to identify multivariate outliers
in regression analyses. A case with a Mahalanobis distance above the chi-squared
critical value at P< 0.001 with degrees of freedom equal to the number of explanatory
variables in the model is considered to be a multivariate outlier.

Mann-Whitney U test A non-parametric test which is based on ranking the measure-
ments from two samples to estimate whether the samples are from the same popula-
tion. This test is non-parametric equivalent of a two-sample #-test.

Maximum value The largest numerical value of a variable.

McNemar's chi-square test (paired data) Paired categorical measurements taken from
the same participants on two occasions or categorical data collected in matched
case—control studies can be analysed using this test.
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Mean A measure of the centre or the average value of the data.

Mean square Mean squares are estimates of variance used in analysis of variance and
regression. The mean square is calculated as the sum of the squares divided by their
degrees of freedom.

Measurement error The difference between the true value of the measurement and the
actual value of the measurement. Measurement errors may be due to bias (systematic
errors) and/or random variation. The measurement error can be calculated using the
standard deviation of the differences of observations in the same participant and is
used to describe the level of agreement between observations.

Median The point at which half the measurements lie above and below this value, that
is, the point that marks the centre of the data.

Minimum value The smallest numerical value of a variable.

Multicollinearity Multicollinearity refers to when two or more explanatory variables
are significantly related to one other. Multicollinearity between explanatory variables
inflates the standard errors and causes imprecision because the variation is shared.
Thus, the model becomes unstable (i.e. unreliable).

Multiple linear regression A linear model used to measure the extent to which two or
more explanatory variables predict a continuous outcome variable.

Multivariate statistics Tests in which the relationship between more than two variables
are examined simultaneously.

Negative predictive value The proportion of individuals who have a negative diagnos-
tic test result and who do not have the disease.

Nominal variable A variable with values that do not have any ordering or meaningful
ranking and are generally categories, for example, values to indicate that participants
are retired, employed or unemployed.

Non-parametric tests Statistical tests that have no assumptions about the distribution
of the data.

Normal distribution A probability distribution that describes the likelihood of a value
occurring in the population. A normal distribution is symmetrical about its mean. The
mean and median of a normal distribution are equal.

Null hypothesis A null hypothesis states that there is no difference between the sum-
mary statistics of the populations from which the samples were drawn, that is group
statistics are equal or that there is no relationship between two or more variables. If
the null hypothesis is accepted, this does not necessarily mean that the null hypoth-
esis is true but can suggest that there is not sufficient or strong enough evidence to
reject it.

Number needed to be exposed for one additional person to be harmed (NNEH)
NNEH is the number of people who need to be exposed to the risk factor of interest
to cause harm to one additional person. NNEH is calculated from the absolute risk
increase (ARI), which is the difference in the proportion of participants with the
outcome of interest in the exposed and unexposed groups.

Number needed to treat (NNT) NNT is the number of patients need to be administered
a treatment to prevent one adverse event. NNT are commonly used to assess the effec-
tiveness of treatments. If a treatment had an NNT value equal to 5, this means that
five patients would have to be treated with the drug to prevent one adverse event.

0dds ratio The odds ratio is the odds of a person having a disease if exposed to a risk
factor divided by the odds of a person having a disease if not exposed to the risk factor.
An odds ratio of 2 can be interpreted as the odds that an exposed person has the disease
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present are twice that of the odds that a non-exposed person has the disease present.
Odds ratios are commonly reported in case-control studies.

One sample t-test A parametric test that can be used to test if the sample mean is equal
to a specified value.

One sided (or one tailed) tests When the direction of the effect is specified by the alter-
nate hypothesis, for example, u > 50, a one-tailed test is used. The tail refers to the end
of the probability curve. The critical region for a one signed test is located in only one
tail of the probability distribution. One-sided tests are more powerful than two-sided
tests for showing a significant difference because the critical value for significance is
lower and are rarely used in health care research.

Optimal diagnostic cut-off point (or Youden Index) This is the point on a ROC curve
at which the true positive rate is optimized and the false positive rate is minimized.
Ordinal variable A variable with values that indicate a logical order such as codes to

indicate socioeconomic or educational status.

Outcome (dependent) variable The outcome of interest in a study, that is the variable
that is dependent on or is influenced by other variables (explanatory variables) such
as exposures and risk factors.

Outliers There are two types of outliers: univariate and multivariate. Univariate outliers
are defined as data points that have an absolute z score greater than 3. This term is
used to describe values that are at the extremities of the range of data points or are
separated from the normal range of the data. For small sample sizes, data points that
have an absolute z score greater than 2.5 are considered to be univariate outliers.
Multivariate outliers are data values that have an extreme value on a combination of
explanatory variables and exert too much leverage and/or discrepancy.

P value A P value is the probability of a test statistic occurring if the null hypothesis
is true. P values that are large are consistent with the null hypothesis. On the other
hand, P values that are small, say less than 0.05, lead to rejection of the null hypothesis
because there is a small probability that the null hypothesis is true. P values are also
called significance levels. In SPSS output, P value columns are often labelled ‘Sig.’

Paired t-test A parametric test that is used to estimate whether the means of two con-
tinuous related measurements are significantly different from one another. This test
is used when two measurements are related because they are collected from the same
participant at different times, from different sites on the same person at the same time
or from cases and their matched controls.

Parametric tests Statistical tests which assume that the continuous variables being anal-
ysed has a normal distribution. Parametric tests are preferable to non-parametric tests
because they have more statistical power.

Partial correlation The correlation between two variables after the effects of a third or
confounding variable has been removed.

Planned (a priori) contrasts Specific group differences can be assessed using planned
contrasts, which are decided before data collection commences. The number of
planned contrasts should be limited and have a theoretical and/or empirical basis.
Planned contrasts generally have more statistical power than post-hoc tests.

Population A collection of individuals to whom the researcher is interested in making an
inference, for example, all people residing in a specific region or in an entire country,
or all people with a specific disease.

Positive predictive value The proportion of individuals with a positive diagnostic test
result who have the disease.
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Post-hoc tests After a statistically significant difference is found overall between
groups, post-hoc tests are conducted to identify where particular group differences
exist. Post-hoc testing occurs during the data analyses and typically involves all
possible comparisons between groups.

Power The ability of the study to demonstrate an effect or association if one exists, that
is to avoid type II errors. Statistical power can be influenced by many factors including
the frequency of the outcome, the size of the effect, the sample size and the statistical
tests used.

Prevalence Rate of total cases with a condition in a random population sample in a
specified time, for example 1 year.

Proportional hazards The hazard (rate of the event) in one group should be a constant
proportion of the hazard in the other study group over all time points. Proportional
hazards are an assumption of Cox’s regression.

Protective odds ratio If An odds ratio which is less than 1.0 indicates that the risk of
disease in the exposed group is less than the risk in the non-exposed group. This
suggests that exposure has a protective effect.

Quartiles Obtained by placing observations in an increasing order and then dividing
into four groups so that 25% of the observations are in each group. The cut-off points
are called quartiles. The four groups formed by the three quartiles are called ‘fourths’
or ‘quarters’

Quintiles Obtained by placing observations in an increasing order and then dividing into
five groups so that 20% of the observations are in each group. The cut-off points are
called quintiles.

R square (R? ) See coefficient of determination.

r value Pearson’s correlation coefficient that measures the linear relationship between
two continuous normally distributed variables.

R Multiple correlation coefficient, that is, the correlation between the observed and
predicted values of the outcome variable.

Random factor Factors are considered to be random when only a sample of a wider
range of groups or all possible levels is included. For example, factors may be classified
as having random effects when only three or four ethnic groups are represented in
the sample but the results will be generalized to all ethnic groups in the community.

Range The difference between the lowest and the highest numerical values of a variable,
that is, the maximum value subtracted from the minimum value. The term range is
also often used to describe the values that are the limits of the range, that is, the
minimum and the maximum values, for example, range 0—100.

Rank sum tests Non-parametric tests, which are used when the data do not conform
to a normal distribution, are used to compare distributions of two or more groups by
ranking their measurements as scores, for example, the Mann—Whitney U test.

Ratio scale variable An interval scale variable with a true zero value so that the ratio
between two values on the scale can be calculated, for example, age in years is a ratio
scale variable but calendar year of birth is not.

Receiver operating characteristic (ROC) curve These curves can be used to identify the
cut-off point in a continuously distributed measurement that best predicts whether
a condition is present, for example whether patients are disease positive or disease
negative. ROC curves are plotted by calculating the sensitivity and specificity of the
test in predicting the diagnosis for each value of the measurement.
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Relative risk The ratio of the probability of the outcome occurring in the exposed
group compared to the probability of the outcome occurring in the non-exposed
group. Relative risk can only be used when the sample is randomly selected from the
population. A relative risk of 2 indicates that the prevalence of the outcome in the
exposed group is twice as high as the prevalence of the outcome in the non-exposed
group.

Reliability Reliability is used to measure the ratio of the variability between the same
participants (for example, by different raters or at different times) to the total variabil-
ity of all participants in the sample. Measures of reliability include the statistics kappa
and ICC.

Repeated measures An analysis of variance where multiple measurements of the same
outcome variable has been obtained using the same participants. This may occur
over a time period or under different conditions. For example, the blood pressure
of patients is collected at three time points — baseline, post-treatment, and follow-up
or the blood pressure of participants is measured when they are off medication and
measured again when they are on medication.

Residual The difference between a participant’s value and the predicted value, or mean
value, for the group. This term is often called the error term.

Risk The probability that any individual will develop a disease. Risk is calculated as the
number of individuals who have the disease divided by the total number of individuals
in the sample or population.

Risk factor An aspect of behaviour or lifestyle or an environmental exposure that is
associated with a health-related condition.

Sample Selected and representative part of a population that is used to make inferences
about the total population from which it is drawn.

Sensitivity Proportion of disease-positive individuals who are correctly diagnosed by a
positive diagnostic test result.

Significance level See P value.

Simple linear regression A linear model used to measure the extent to which one
explanatory variable predicts a continuous outcome variable.

Skewness A measure of whether the distribution of a variable has a tail to the left- or
right-hand side. Skewness values between —1 and +1 indicate very little skewness
and values around —2 and +2 are a warning of a reasonable degree of skewness but
possibly still acceptable. Values below —3 or above +3 indicate that there is significant
skewness and that the data are not normally distributed.

SnNout This term is the acronym for Sensitivity-Negative-out, which means that if the
test has a high sensitivity (true positives) and a low 1 — sensitivity (false negatives), a
negative test result rules the disease out.

Specificity The proportion of disease-negative individuals who are correctly identified
as disease free by a negative diagnostic test result.

Sphericity An assumption of repeated measures ANOVA when there are three or more
repeated measures conditions. Sphericity requires that the variances of the differences
for all pairs of repeated measures are constant. The assumption of sphericity can be
tested using Mauchly’s test which gives an estimate of epsilon (e). This statistic has a
value of 1 when sphericity is met.

SpPin This term is the acronym for Specificity-Positive-in, which means that if a test has
a high specificity (true negatives) and therefore a low 1 — specificity (false positives),
a positive result rules the disease in.
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Standard deviation (SD) A measure of spread such that it is expected that 95% of the
measurements lie within 1.96 standard deviations above and below the mean. The
standard deviation is the square root of the variance.

Standardized coefficients Partial regression coefficients that indicate the relative
importance of each variable in the regression equation. These coefficients are in
standardized units similar to z scores and their dimension allows them to be compared
with one another.

Standard error (SE) A measure of precision that is the size of the error around a a sum-
mary statistic. For continuous variables, the standard error around a mean value is
calculated as SD/ \/n. For other statistics such as proportions and regression estimates,
different formulae are used. For all statistics, the SE will become smaller as the sample
size increases for data with the same spread or characteristics.

SE of the estimate This is the approximate standard deviation of the residuals around
a regression line. This statistic is a measure of the variation that is not accounted for
by the regression line. In general, the better the fit, the smaller the standard error of
the estimate.

String variable A variable that generally consists of words or characters but may include
some numbers. This type of variable is also known as an alphanumeric variable.

Survival plot A survival plot such as Kaplan—-Meier curves shows the proportion of
patients who are free of the event at each time interval. The steps in the curves occur
each time an event occurs and the bars on the curves indicate the times at which
patients are censored.

t-value A f-distribution is closely related to a normal distribution but depends on the
number of cases in a sample. A #-value, which is calculated by dividing a mean value
by its standard error, gives a number from which the probability of an event occurring
is estimated from a #-table.

Tolerance A measure of multicollinearity. Tolerance has an inverse relationship to VIF
in that VIF = 1/tolerance. VIF values less than 0.2 indicate multicollinearity.

Transformation If the data do not follow a normal distribution, for example, the distri-
bution is skewed then a transformation can be applied such as taking the logarithm
of the data so that the data follows a normal distribution and parametric tests can be
used.

Trimmed mean The 5% trimmed mean is the mean calculated after 5% of the data
(i.e. outliers) are removed. This method is sometimes used in sports competitions, for
example, skating, when several judges rate performance on a scale.

Two sample t-test (Student’s t-test or an independent samples t-test) A parametric
test used to estimate whether the mean value of a normally distributed outcome
variable is significantly different between two groups of participants.

Two-sided (or two-tailed) tests When the direction of the effect is not specified by the
alternate hypothesis, for example, u # 50, a two-sided test is used. The tail refers to the
end of the probability curve. The critical region for a two-sided test is located in both
tails of the probability distribution. Two-sided tests are used in most research studies.

Type | error A term used when a statistically significant difference between two study
groups is found although the null hypothesis is true. Thus, the null hypothesis is
rejected in error.

Type Il error A term used when a clinically important difference between two study
groups does not reach statistical significance. Thus, the null hypothesis is not rejected
when it is false. Type II errors typically occur when the sample size is small.
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Type sum of squares (SS) Type III SS are used in ANOVA for unbalanced study designs
when all cells have equal importance but no cells are empty. This is the most common
type of study design in health research. Type I SS are used when all cell numbers are
equal, type II is used when some cells have equal importance and type IV is used
when some cells are empty.

Univariate tests Descriptive tests in which the distribution or summary statistics for
only one variable are reported.

Unstandardized coefficients These are the regression coefficients in the equation y =
a+ bx, where ‘a’ is the constant and ‘b’ is the coefficient for explanatory variable.
Variance A measure of spread that is calculated from the sum of the deviations from the

mean, which have been squared to remove negative values.

Variance inflation factor (VIF) A measure of multicollinearity which is calculated as
1/(1 — R?) where R? is the squared multiple correlation coefficient. A VIF >4 is a sign
of multicollinearity.

Wilcoxon signed rank (or matched pairs) test A non-parametric equivalent of the
paired t-test that tests whether the median of the differences between pairs of
observations is equal to zero.

z Score This is the number of standard deviations of a value from the mean. z scores,
which are also known as normal scores, have a mean of zero and a standard devi-
ation of one unit. Values can be converted to z scores for variables with a normal
or non-normal distribution; however, conversion to z scores does not transform the
shape of the distribution.
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A New View of Statistics

http://www.sportsci.org/

A peer-reviewed website that includes comprehensive explanations and discussion
of many statistical techniques including confidence intervals, chi-squared and ANOVA,
plus some Excel spreadsheets to calculate summary statistics that are not available from
commonly used statistical packages.

Binomial confidence intervals

http://statpages.org/confint.html
Website that provides a calculator for computing exact confidence intervals for samples
from the Binomial and Poisson distributions.

CONSORT (CONsolidated Standards of Reporting Trials)
statement

http://www.consort-statement.org/consort-statement/
Guide to the analysis, interpretation and reporting of randomized controlled
trials.

Diagnostic test calculator

http://araw.mede.uic.edu/cgi-bin/testcalc.pl
Online program for calculating statistics related to diagnostic tests such as sensitivity,
specificity and likelihood ratio.

Effect size calculator

http://www.uccs.edu/~Ibecker/

Calculates Cohen’s effect size using means and standard deviations, or ¢ values and
degrees of freedom. Also has detailed information on different effect sizes measures and
how they are calculated.

Effect size illustrator

http://esi.medicine.dal.ca/
An interactive tool that helps with the calculation and practical interpretation of effect
sizes.

Medical Statistics: A Guide to SPSS, Data Analysis and Critical Appraisal, Second Edition.
Belinda Barton and Jennifer Peat.

© 2014 John Wiley & Sons, Ltd. Published 2014 by John Wiley & Sons, Ltd.
Companion website: www.wiley.com/go/barton/medicalstatistics2e
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Epi Info

http://www.cdc.gov/epiinfo/downloads.htm

With Epi Info, a questionnaire or form can be developed, the data entry process can
be customized and data can be entered and analysed. Epidemiologic statistics, tables,
graphs, maps and sample size calculations confidence intervals around a proportion can
be produced. Epi Info can be downloaded free.

Gpower

http://www.gpower.hhu.de/
A comprehensive sample size calculation program for ¢-test, F test, chi-square test, z
test, and some exact tests.

GraphPad Quickcalcs

http://www.graphpad.com/quickcalcs
Online program for calculating many statistical tests for continuous and categorical
data including McNemars, number need to treat (NNT), kappa, and so on.

Help service

http://www.stat-help.com/index.html
A free online statistics help service. The site also has links to education notes, calcula-
tion spreadsheets and statistical software.

HyperStat Online Textbook

http://davidmlane.com/hyperstat/
Provides information on a variety of statistical procedures, with links to other related
Web sites, recommended books and statistician jokes.

IBM SPSS

http://www-947.ibm.com/support/entry/portal/product/spss/spss_statistics?product
Context=1478422152
Download product manuals and troubleshooting documentation for SPSS.

Kappa statistics

http://www.vassarstats.net/kappa.html
This program allows you to calculate Cohen’s kappa and weighted kappa statistics by
entering the numbers into a contingency table.

Martin Bland Web page

http://www-users.york.ac.uk/~mb55/
Web page with links to talks on agreement, cluster designs, and so on, statistics advice
and access to free statistical software. There is a section on the site that shows how to
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compute 95% confidence intervals around a median values. The site also includes an
index to all BMJ statistical notes that are online, a statistics guide for research grant
applicants and a directory of randomization software.

Public Health Archives

http://www.jiscmail.ac.uk/archives/public-health.html
Mailbase to search for information or post queries about statistics, study design issues,
and so on. This site also has details of international courses, and so on.

Quick-R

http://www.statmethods.net/index.html
Useful website on how to use R including how to calculate power using R.

R program

http://www.r-project.org/

R program can be downloaded for free and can be used to conduct a range of sta-
tistical techniques including linear and nonlinear modelling, classical statistical tests,
time-series analysis, classification and clustering. It can also be used to calculate power
for proportions, ANOVA, chi-square, correlations, ¢-tests, linear models (e.g. regression)
and repeated measures.

Random number generator

http://www1.assumption.edu/users/avadum/applets/applets.html
Generates random number sequences for various clinical scenarios.

Raynald’s SPSS Tools

http://www.spsstools.net/
Website with syntax, macros and online tutorials on how to use SPSS and with links
to other statistical websites.

ROC curve calculator

http://www.rad.jhmi.edu/jeng/javarad/roc/JROCFITi.html
This website calculates a ROC curve from data with 95% intervals around the curve.

Running a linear mixed model in SPSS

http://www.ats.ucla.edu/stat/spss/library/spssmixed/mixed/mixed_diet_intro.htm
A website that shows how to run a linear mixed model in SPSS and interpret the
output.

Russ Lenth’s power and sample size page

http://www.stat.uiowa.edu/~rlenth/Power/
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A graphical interface for studying the power of one or more tests including the com-
parison of two proportions, ¢-tests and balanced ANOVA.

Sample size estimation

https://www.statstodo.com/StatsToDoIndex.php
Provides a sample size calculator for many analysis situations including survival anal-
yses and also provides a statistics calculator for many statistical tests.

Sample size estimation for regression equations

http://danielsoper.com/statcalc3/calc.aspx?id=1
Provides a sample size calculator for linear regression analyses with one or more pre-
dictor variables in the equation.

Sealed envelope

https://www.sealedenvelope.com/power/
Provides a sample size calculator for superiority, non-inferiority and equivalence
randomized controlled trials.

Simple Interactive Statistical Analysis (SISA)

http://www.quantitativeskills.com/sisa/
Simple interactive program that provides tables to conduct statistical analysis such as
chi-square and ¢ tests from summary data.

Statistics pages

http://www.statpages.org/
A comprehensive website with educational material, information of free statistical
packages, many statistical calculators and much more.

Stats Calculator

https://www.mccallum-layton.co.uk/tools/statistic-calculators/sample-size-calculator/
A website that allows you to make sample size calculations, estimate confidence inter-
vals around proportions and mean values and conduct some statistical tests.

STROBE (STrengthening the Reporting of OBservational studies
in Epidemiology)

http://www.strobe-statement.org/
A website that provides guidelines for the reporting of results from observational
studies.
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absolute risk reduction (ARR), 278
access, importing data into SPSS, 6
adjusted odds ratios, 295, 298-308
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confounding effects, interpretation of, 306
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model, assessing, 301-6
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analysis of covariance (ANCOVA), 112, 145-9
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assumptions, testing, 149-58
homogeneity of variance, 150-1
interactions, 151
lack of fit test, 152
Levene’s test, 150
multivariate outliers, identifying, 157-8
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testing residuals, unbiased and normality,
152-7
building models, 113
effect size for, 146-9
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analysis of variance (ANOVA), 11, 112-60 see
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post-hoc tests for ANOVA; repeated
measures ANOVA; three-way ANOVA
effect size for ANOVA, 127-8
one-way ANOVA, means computed in, 115
testing for a trend, 133-4
ANOVA models, 113-16 see also factorial ANOVA
models
assumptions for, 113-15
assumptions, testing, 149-58
homogeneity of variance, 150-1
interactions, 151
lack of fit test, 152

Levene’s test, 150
multivariate outliers, identifying, 157-8
testing residuals, unbiased and normality,
152-7

between-group variance, 115-16

building models, 113

concept of, 115

within-group variance, 115-16

back transformation, 46—9

baseline characteristics, 251-2
describing, 251-2

baseline measurements, standardizing for

differences in, 99-102

between-group variance, 115-16

binary logistic regression, 298-9

Bonferroni post-hoc test, 131-2

box plots, 35, 37, 39, 63, 67, 120, 169

Box’s M test, 165

Breslow test, 357

case—control studies, 5, 254, 288
odds ratios, 290, 375
categorical variable, 7, 249-51
coding, 363
non-ordered, 7
ordered, 7
paired, 280-5
proportions, 249
rates, 249
summarizing, 249-51
summary statistics, 249
censoring, 351
interval censoring, 351
left censoring, 351
right censoring, 351
centering, 244-7
2 X 3 chi-square tables, 260-2
chi-square tests, 253—-60 see also McNemar'’s
chi-square test
application of, 255
assumptions, 254
2 % 3 Chi-square tables, 260-2
cells with small numbers, 262-3
confidence intervals, 258—60
exact chi square test, 263-4
for ordered variables, 273-6
reporting, 254-5
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chi-square tests (continued)
research question, 256-8
sample size requirements, 258
type, 255
classification system for variables, 7
clustered bar chart, 275
coding, 289-90
for diagnostic statistics, 331-2
coefficient of determination (r2), 198
Cohen'’s d statistic, 55-7
effect sizes for, 56
Cohen’s kappa, 318
cohort studies
odds ratios, 290
relative risk, 290
collinearity, 216
columns and align, 3-4
confidence intervals, 73-5
interpretation of, 74
overlap of confidence intervals, 74-5
contaminants, 33
continuity corrected chi-square test, 254, 256
continuous measurements, reliability of, 321-2
continuous variables, 7
analysis, pathway for, 24, 49
categorizing, 271-3
comparing two independent samples, 52—-89
correlation, 197-248
data analysis pathway, 49
descriptive statistics, 24-51
exploratory analyses, 27-9
extreme values, 33
kurtosis, 31
normal distribution, 43
outliers, 33-4
paired data, 97-9
regression, 197-248
skewness, 31
Cook’s distances, 33, 157-8, 239
correlation, 197-248 see also interactions;
regression models
effect size for, 202-3
influence of range of variable, 203-4
obtaining correlations in SPSS, 200-2
reporting correlation coefficients, 205
correlation coefficients, 197-205 see also
Pearson’s correlation coefficient (r)
research question, 199-200
types of, 198-200
covariance structures, 183-4
autoregressive first order (AR), 183
compound symmetry (CS), 183
unstructured (UN), 183
variance components, 183
covariates, 163 see also analysis of covariance
(ANCOVA)
Cox regression, 360—8
assumptions of, 361-8
hazard ratio, 360-1
reporting the results of, 368
research question, 361-8
critical appraisal, 22-3, 85
ANOVA/ANCOVA, 158

data analysis, 21

descriptive statistics, 51

diagnostic statistics, 348

paired ¢-tests, 110

risk statistics, 312

survival analysis, 368

tests of agreement, 329

tests of reliability, 329

two independent samples, 88
critical values, 31-2
cross-sectional studies, 8

odds ratios, 290, 290

relative risk, 290
cut-off points

calculating, 344

for diagnostic and screening tests, 347-8

data analysis, preparing for, 1-23
classifying variables for analyses, 7-8
data checking, 13-14
documentation, 13
hypothesis testing, 8-9
missing values, avoiding and replacing, 14-16
P values, 8-9
sample size requirements, 10-12
statistical test, selecting, 9-10
study handbook and data analysis plan, 12-13
data analysis pathway, 49
data analysis plan, 12-13
data checking, 13-14
data collection, 13
data management capabilities in SPSS, 16-20, 17
data menu, 17
dialog recall, 19
names or labels, displaying, 19-20
subsets of variables, 17-18
transform menu, 17
data menu, 17
data opening from Excel in SPSS, 6-7
Data View screen, 5-6
decimals, 2-3
descriptive statistics, 24-51
data analysis pathway, 49
non-parametric statistics, 25
normal distribution, 25-6 see also skewed
distribution
parametric statistics, 25
reporting, 49-50
baseline characteristics, 49
detrended normal Q-Q plots, 35
diagnostic statistics, 331-49 see also likelihood
ratio (LR)
coding for, 331-2, 332
cut-off points, 344, 347-8
negative predictive value (NPV), 331, 332-4
optimal diagnostic cut-off point, 344-7
positive predictive value (PPV), 331, 332-4
receiver operating characteristic (ROC) curves,
339-48
sensitivity, 335-8
specificity, 335-8
terms used in, 336



diagnostic tests, 331, 335
Dialog recall, 19
differences-vs-means plot, 326-8
discrepancy, 157-8
multivariate outliers, 157-8
documentation, 13
dot plots, 76, 78, 80
dummy variables, 226—8
Duncan post-hoc test, 132-3
means plot, 133, 133

etfect size, 55-7
for ANCOVA, 146-9
for ANOVA, 127-8
for correlations, 202-3
R value and, 208-9
error range, 325
eta squared, 127
ethics guidelines, 7
exact chi square test, 263-4
Excel data file, 6-7
data opening from Excel in SPSS, 6-7
Excel spreadsheets
confidence intervals, 258-60, 337
around a proportion, 258
negative predictive value (NPV), 331
positive predictive value (PPV), 331
importing data into SPSS, 6
regression line coordinates calculation, 222,
225
ROC curve clinical cut-off points, 331, 339
explanatory or independent variable, 7-8
explanatory variables, 8, 13, 112, 135, 163, 213
extreme values, 32-3

factorial ANOVA models, 135-40
between-group differences, 135
cells, 118, 135, 135

combining groups, 137

size, 131, 137, 152
F values, 144
fixed factors, 136-40
interactions, 136-40
marginal means, 143-4, 144
normality checks, 152-7
P values, 144
random factors, 136—40
random factors, 136-40
reporting results, 76-7, 134
research question, 137-40
summary means, 167
three-way ANOVA model, 137
variance ratios, 140, 205
within-group differences, 135

false negative error see type II errors

false negatives, 335-6, 348

false positive error see type I errors

false positives, 335, 346

Fisher’s exact test, 255, 257-8

Fisher’s least significant difference (LSD)

post-hoc test, 129, 130-1

follow-up studies, 58
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frequency, 250
histograms, 35-41, 250

Games Howell test, 129
geometric mean, 47
Glass’s A (delta), 57
graphs, 74
SigmaPlot, 77, 221, 260
summary statistics of continuous variables,
109
trend test (linear-by-linear associations)
presentation, 133
two-sample ¢-tests results reporting in, 76-7
Greenhouse-Geisser estimate, 165

hazard ratio, 360-1
Hedges's g, 57
help commands, 21
hierarchical regression see sequential multiple
regression
histograms, 35-41
birth weight, 36-37
Cook’s distances, 158
gestational age, 38—-39
length of stay, 40-41
Mahalanobis distances, 239, 240
normality plots, 119
one-way ANOVA, 134
transformed data, 43
homogeneity of variance, 1501
analysis of covariance (ANCOVA), 112, 145-9
analysis of variance (ANOVA), 112
two independent groups, 112
two-sample ¢-test, 69-73
homoscedasticity analysis of variance (ANOVA),
237
Huynh-Feldt estimate, 165
hypothesis testing, 8—9

incidence, 252-3
independent samples ¢-test see two-sample z-tests
independent ¢-test, 11
individual participants
data entry, 6
ethics guidelines, 7
follow-up data, 5
interactions, 230-235 see also correlation;
regression models
identifying, 230-3
including interactions in the model, 233-5
inter-observer (betweenobserver) variation, 315
inter-quartile range, 25, 35, 49
inter-rater (inter-observer) reliability, 315
interval censoring, 351
interval scale, 4
intervening variables, 7-8
intra-class correlation (ICC), 322-5
notation, 323-4
one-way random (ICC(1)), 322
reporting the results of, 325
two-way mixed (ICC(3)), 323
two-way random (ICC(2)), 322
types of, 322-3
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intra-observer (within-observer) variation, 315
intra-rater (or intra-observer) agreement, 315

Kaplan—Meier survival method, 351-9

assumptions of, 352-3

reporting the results of, 358

research question, 353-7

sample size and data coding, 353-7
Kappa statistic, 317-21

Cohen’s kappa, 318

reporting kappa results, 321
Kendall’s = (tau), 199
Kolmogorov—-Smirnov test, 34-5, 42-3

in deciding normal distribution of a variable,

43

kurtosis, 24, 28, 31, 46, 49

critical values, 32

labels, 3
lack of fit test, 152
last observation carried forward (LOCF), 16
last value carried forward (LVCF), 16
least significant difference (LSD) post-hoc test,
130-1
left censoring, 351
Levene’s test, 150
of equality of error variances, 150-1
leverage, 33
Cook’s distances, 157-8, 159
multivariate outliers, 33, 149, 157-8
likelihood ratio (LR), 331, 338-9
post-test probability (Post-TP), 339
pre-test probability (Pre-TP), 339
Lillefors significance correction, 34
limits of agreement, 325-6
linear-by-linear test, 255
linear mixed models, 182-95 see also mixed
models
building a, 186-95
analysis, 189
covariance parameters, 191
maximum likelihood (ML), 186-7
restricted maximum likelihood (REML),
186-7
covariance structures, 183-4
data layout, 184-5
mixed models, 184
obtaining a plot, 185-6
reporting the results of, 195
linear regression, reporting, 213
Log Rank test, 357
log sheets, 12
logarithmic transformations, 44
logistic regression, 298-9
longitudinal data analysis, 161-96 see also linear
mixed models; repeated measures
ANOVA
assumptions of, 163-4
covariates, 163
critical appraisal checklist, 195-6
sample size and power, 162-3
study design, 161-2

Mahalanobis distances, 33, 239, 240
Mann-Whitney U test, 81, 86—8
marginal means, 143
profile plot of, 144
maximum likelihood (ML), 186-7
McNemar’s chi-square test, 280-5
change in proportion, calculating, 283-5
reporting results of paired data, 285
research question, 281-5
mean, 11, 25, 30, 49-50
comparison from two independent groups, 52
geometric, 47
logarithmic, 47
transformed data, 47
mean square, 122
measurement error, 328-9
critical appraisal, 329
differences-vs-means plot, 326-8
error range, 325, 328
limits of agreement, 325-6
within-subject variation, 322
measurement scales, 4
median, 27, 30, 49, 356
box plots, 63
interquartile range, 99
non-parametric paired test, 99
missing, 3
missing at random (MAR), 183
missing completely at random (MCAR), 183
missing values, 14-16
avoiding, 14-16
replacing, 14-16
mixed models, 182-95 see also linear mixed
models
Monte Carlo method, 263
multicollinearity, 216-17
multi-level categorical variables, 225-6
multiple linear regression, 213-30
building, 214
dummy variables, 226-8
multicollinearity, 216-17
multi-level categorical variables, 225-6
multivariate modeling methods, 21415
plotting
with one categorical explanatory variables,
221-2
with two explanatory categorical variables,
224-5
regression models with two explanatory
categorical variables, 222-4
regression with two continuous variables and
two categorical variables, 228—-30
reporting (1 continuous variable and 2
categorical variables), 241
sample size considerations, 215-16
sequential multiple regression, 215
stepwise multiple regression, 215
testing for group differences, 217-21
multivariate analysis of variance (MANOVA),
161-2, 165-6 see also repeated
measures ANOVA
multivariate outlier, 33
multivariate test, 165-6



Nagelkerke R square, 301-3
names or labels, displaying, 19-20
negative predictive value (NPV), 331, 332-4
confidence intervals for, 333-4
limitations of, 334
nominal scale, 4
nominal variables, 4
non-linear regression, 242-4
non-normal data, 88
rank based non-parametric tests, 81-8
non-parametric equivalents, 11
non-parametric statistics, 25
non-parametric tests, 81 -8 see also rank-based
non-parametric tests
for paired data, 97-9
normal distribution, 25-6, 43 see also histograms;
normality: checking for; plots
characteristics of, 26
Kolmogorov—-Smirnov test in deciding, 43
normal P-P plot, 237, 238
normal Q-Q plot, 35
normality
checking for, 29-43
critical values, 31-2
extreme values, 32-3
kurtosis, 31
mean and median values, comparisons
between, 30
outliers, 33-4
skewness, 31
statistical tests of normality, 34-5
using standard deviation, 30-1
in published results, checking for, 50-1
number needed to be exposed for one additional
person to be harmed (NNEH), 312
number needed to treat (NNT), 277-80
calculating NNT, 278-80
numbers reporting, rules for, 21, 22

odds ratio, 288-96 see also adjusted odds ratios
‘adjusted odds ratios’, 295
assumptions, 288-9
calculating, 289
coding, 289-90
interpreting, 290-5
protective odds ratios, 296—8
risk statistics direction, changing, 297-8
reporting, 295-6
research question, 291-5
one-sample (single sample) ¢-tests, 11, 102—5
between group difference, testing for, 105-10
plotting the results, 109-10
research question, 104-5
one-sided test, 54—5
one-tailed tests, 55, 90-1
one-way ANOVA, 117-27
data set, characteristics of, 125
means computed in, 115
null hypothesis for, 117
reporting the results of, 134-5
research question, 118-27
descriptives table, 119
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frequency table, 118
sample size for, 117-27
one-way random (ICC(1)), 322
optimal diagnostic point, 344
ordered variables, 4
chi-square trend test for, 273-6
reporting the results, 274-6
ordinal scale, 4
outcome variables, 7-8, 8, 53
outliers, 33-4, 237-40
methods for dealing with, 33, 34
multivariate outlier, 33
occurrence, reason for, 33
univariate outliers, 33
output in SPSS, managing, 20-1
exporting output and data from SPSS, 20-1
formatting SPSS output, 20

P values, 8-9, 12
Paired categorical variables, 280-5 see also
McNemar’s chi-square test
paired ¢-tests, 90-7
assumptions for, 91-2
testing, 92-6
baseline measurements, standardizing for
differences in, 99-102
data sheet layout, 91
effect size calculation, 97
interpretation of results, 96-7
parametric equivalents, 11
parametric statistics, 25
partial eta squared, 146, 172
Pearson’s correlation coefficient (r), 11, 198,
198, 202, 204, 205, 208
assumptions for using, 198
Kendall’s = (tau), 199
Spearman’s p (rho), 198
using selected sample, 203
percentages, 249, 252
confidence intervals, 213, 241, 368
around zero percentage, 280
reporting results, 76—7
plots, 35-41
birth weight, 36-7
detrended normal Q-Q plots, 35
gestational age, 38-9
length of stay, 40-1
normal Q-Q plot, 35
point prevalence, 253
pooled standard deviation, 55
positive likelihood ratio, 338-9
positive predictive value (PPV), 331-4
confidence intervals, 333-4
crosstabulation, 280
limitations in interpretation, 334
post-hoc tests for ANOVA, 128-33
Bonferroni post-hoc test, 131-2
comparisons produced by, types, 129
Duncan post-hoc test, 132-3
means plot, 133, 133
Fisher’s LSD post-hoc test, 130-1
post-test probability (Post-TP), 339
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power, 58
power calculation, 58
missing values effect, 15-16
parametric tests, 43
sample sizes, 58
pre/post studies, 339
pre-test probability (Pre-TP), 339
prevalence, 252-3
‘point prevalence’, 253
proportions, 266—7
protective odds ratios, 296—8
published results, normality in, checking for,
50-1

quartiles, 25
questionnaires, 249, 317 see also repeated
measures ANOVA
quintiles, 273, 275
chi-square test, 273
chi-square trend test (linear-by-linear
associations), 273-6

rank-based non-parametric tests, 81-8
Mann-Whitney U test, 81, 86—8
research question, 81-6
rates and proportions, 249-86 see also chi-square
tests; McNemar'’s chi-square test
baseline characteristics, 251-2
categorical variables, 249-51
cells with small numbers, 262-3
continuous variables, categorizing, 271-3
incidence and prevalence, 252-3
large contingency tables, 267-70
number needed to treat (NNT), 277-80
number of cells that can be tested, 264-5
reporting, 266—7
differences in percentages, 266—7
ratio scale, 4
receiver operating characteristic (ROC) curves,
331, 339-48
cut-off points, calculating, 344
interpretation of, 343-4
optimal diagnostic cut-off point, 344-7
reporting, 348
research question, 340-2
reciprocal transformation, 44
recoding variables, 18—19
regression models, 205—13 see also correlation;
interactions; multiple linear regression
and ANCOVA, 205-6
assumptions for, 207-8
generalizability of, 211
R value and effect size, 208—9
regression equation, 206-7
regression line, plotting, 211-13
sample size required, 209-11
simple linear regression, reporting, 213
relative risk, 308-11
assumptions, 309
calculating, 309
interpreting, 309
requesting statistics using SPSS, 309-11

reliability, 314-30
of continuous measurements, 321-2
definitions of, 315
Kappa statistic, 317-21
sample size, 318-21
study design, 316-17
tests of, 314-30
remote points, 237-40
repeated measures ANOVA, 11, 164-82
advantage of, 167-82
assumptions of, 163-64
homogeneity, 165
sphericity, 165
Box’s M test, 165
data layout, 166
diadvantages of, 167-82
Greenhouse-Geisser estimate, 165
group comparisons, 166-7
Huynh-Feldt estimate, 165
Mauchly’s test, 165
missing values, 166
multivariate test, 165-6
reporting the results of, 178-82
univariate test, 166
reporting numbers, 21, 22
residuals, 235-7
restricted maximum likelihood (REML), 186-7
right censoring, 351
risk statistics, 287-313 see also odds ratio;
relative risk
number needed to be exposed for one
additional person to be harmed
(NNEH), 312
study design, 288
role, 5

sample size influence, in two-sample z-tests,
58-69
normal distribution check, 60-5, 63
research question, 58—9
variances, effect sizes and homogeneity of, 63
sample size requirements, 10-12
Type I errors, 12
Type II errors, 12
scale variables, 4—5
interval scale, 4
ratio scale, 4
Scheffe test, 129
screening tests, cut-off points for, 347-8
selecting cases, 194
sensitivity, 335-8
advantages of use, 335
calculation, 344
confidence intervals, 337-8
crosstabulation, 318, 320
ROC curves, 337-48
cut-off points, 343-8
sample size, 338
screening tests, 347-8
SpPin and SnNout, 336-7
sequential multiple regression, 215
Shapiro—-Wilk test, 34, 42, 46, 83
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SigmaPlot survival analyses, 350-69 see also Cox regression;
bar charts, 109, 251 Kaplan—Meier survival method
Bonferroni test, 131 Breslow test, 357
differences-vs-means plot, 326 censored observations, 351
dot plots, 76, 78 Log Rank test, 357
horizontal, 80, 131, 275 study design, 351
least significant difference (LSD) test, 130 survival plots, 358-9
odds ratios, 291 survival statistics, 357-8
two-sample ¢-tests results reporting in, 77-81 Tarone—Ware tests, 357

single-sample #-test see one-sample (single syntax, 18-19

sample) -tests

skewed distribution, 26-9, 26 Tarone-Ware test, 357
descriptives, 29 test—retest reliability (or intra-rater reliability),
exploratory analyses, 27-9 315
transforming skewed variables, 43-9 three-way ANOVA, 140-5

logarithmic transformations, 44 marglpal means, 143

skewness, 31 reporting the results of, 144-5

tolerance, 217, 217, 229
transform menu, 17
transforming skewed variables, 43-9
back transformation, 46-9
log length of stay, 47-8
logarithmic transformations, 44
true negatives, 335
likelihood ratio, 331
ROC curves, 339

SnNout (Sensitivity-Negative-out), 336—7
Spearman’s p (rho), 198
specificity, 335-8
confidence intervals for, 337-8
SnNout (Sensitivity-Negative-out), 336
SpPin (Specificity-Positive-in), 336
sphericity, 165
SpPin (Specificity-Positive-in), 336

spread, 25 .
: . study design, 351
regressmn‘model residuals, 205-12 see also true positives, 335
variance

likelihood ratio, 331
ROC curves, 335
t-tests, 52—89 see also one-sample (single sample)
t-tests; paired f-tests; two-sample z-tests

SPSS data file
creating, 1-6 see also Data View screen;
individual SPSS entries; Variable View

sereen Tukey’s honestly significant difference (HSD),
help commands, 21 129
saving, 5 ) two-sample ¢-tests, 11, 52—89 see also rank-based
square root transformation, 44 non-parametric tests
standard deviation, 49 assumptions of, 53
to check for normality, 30-1 Cohen’s d, 55-7, 56
computation from standard error, 50 confidence intervals, 73—5
effect size calculation, 55 effect sizes, 55—7
estimation of variance, 206 Glass’s § (delta), 57
pooled, 57 Hedges’ g, 57
standard error, 50 one-sided test, 54—5
computation from standard deviation, 50 results from, reporting, 75-81
statistical tests in a graph, 76-7
of normality, 34-5 in SigmaPlot, 77-81
Kolmogorov—Smirnov tests, 34-5, 42-3 sample size influence, 58-69 see also individual
Shapiro-Wilk test, 34-5 entry
selecting, 9-10 study design, 57-8
for one or more outcome variables and t-value, 53
more than one explanatory variable, 11 two-sided tests, 54-5
for one outcome variable and one two-sided tests, 54-5
explanatory variable, 10 two-way mixed (ICC(3)), 323
for one outcome variable only, 9 two-way random (ICC(2)), 322
stepwise multiple regression, 215 Type I errors, 12
Student’s ¢-test see two-sample z-tests Type II errors, 12
Student—Newman-Keuls (SNK) test, 129
Study handbook and data analysis plan, 12-13 Univariate outliers, 33
log sheets, 12
subsets of variables, using, 17-18 values, 3
summary statistics, 25 Variable View screen, 1-6 see also Data View
reporting rules, 21 screen

surgery.sav, 15 columns and align, 3-4
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Variable View screen (continued)

decimals, 2-3
interval scale, 4
labels, 3

measure, 4

missing, 3

nominal variables, 4
ordinal variables, 4
ratio scale, 4

role, 5

scale variables, 4—5
SPSS file, saving, 5
values, 3

variable names, 2
variable type, 2
width of a variable, 2

variables

classifying for analyses, 7-8

outcome or dependent variable, 7-8
explanatory or independent variable, 7-8

intervening variables, 7-8
recoding variables, 18—19
subsets of variables, using, 17-18
variance inflation factor (VIF), 216, 217

Wald statistic, 301
weighted kappa, 318
wide format data, 6
width of a variable, 2
Wilcoxon matched pairs test see Wilcoxon signed
rank test
Wilcoxon signed rank test, 97, 102
assumptions, 97
P values, 98
summary statistics, 93
within-group variance, 115-16
within-subject variation, 322

z scores, 65-6, 83, 220, 228
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