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FOREWORD

 FOREWORD

The history of Physics in Europe is one of brilliance and the sun 
is still shining, indeed it is getting ever brighter, despite the 

economic problems. The European Physical Society is a composite 
of all the national physical societies and it occupies an important 
role in providing advice to its members and a forum for discussion.

Its house journal, Europhysics News, is an exciting small publication, 
packed with interesting articles about conferences, national societies, 
highlights from European journals and ‘features’. In addition there has 
been, for the past decade, a page entitled ‘Physics in Daily Life’. The 
present volume is a collection of these pages and is a feast of erudition 
and humour, by way of the excellent accompanying cartoons as well 
as the subject matter.

It is easy for those of us steeped in our disciplines, of astrophysics, 
condensed matter, nuclear physics, or whatever, to think that 
‘everyday physics’ is child’s play compared with the deep subtleties 
of our chosen subjects. Surely, if we can understand the mysteries 
of parallel universes, the behaviour of superconductors or exotic 
atomic nuclei, the V-shaped pattern of a duck’s wake in the lake at 
the local Wildfowl Park will be a ‘piece of cake’. However, it would 
be wise, before telling ones child/grandchild/lady or gentleman 
friend or… to read the contribution ‘Brave Ducks’ herein. Quite 
fascinating…
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In a similar vein, the Astrophysicist who knows all about the recently 
found bubbles in the interstellar medium just outside the heliopause, 
and the Local Bubble in which the solar system is immersed, had 
better read the ‘Bubbles and Balloons’ piece before setting himself 
or herself up as an authority on such matters at the next Christmas 
Children’s Party.

Michael Faraday, that physicist of genius, whose discoveries led to 
the electrical power industry amongst many other things, lectured 
for one hour on the physics and chemistry of the candle fl ame. 
He probably knew the points made in ‘Amazing Candle Flames’ 
(contribution number 39) but I didn’t. Henceforth, my over-dinner 
description of the candle fl ames at the table will be the envy of my 
guests – even the physicists and chemists amongst them (unless they 
happen to belong to the EPS).

Turning to our activities on the high seas, where many of us use 
our SKI funds (‘Spending the kids’ inheritance’) to take exotic cruises, 
we have the oft-sought ‘green fl ash’ from the sun as it sinks below 
the horizon. Wearing our tuxedos and leaning over the rail with our 
new-found friends, we have languidly explained what we should have 
seen as the sun gently disappeared (only occasionally does it make 
an appearance). Beware, however, your explanation may not be quite 
right – ‘Fun with the setting sun’ (contribution number 17) will put 
you right. Even one’s description of why the sea sometimes looks 
blue may turn out to have been wrong! Better to take with you an 
absorption curve for water, from 400-700 nm, to nonchalantly fi sh 
out of your pocket at the appropriate moment.

Now to taxi-drivers, most are sources of information, freely 
imparted, and their views are strongly held. In order to keep one step 
ahead it would be wise to dip into our compendium and produce 
such gems as ‘Hearing the Curtain’ (contribution number 16) which 
relates to the reason why we all like to sing in the bath. The driver 
will be enthralled when you explain that the sound absorption 
properties of the curtains are the same whether they are drawn shut 
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or quite open. Indeed it may lead to some interesting descriptions 
of sights that the taxi driver himself has witnessed during his late 
night excursions.

So, what about this collection? For me, at least, it scores 10/10 
and I recommend it to all who have an interest in the physical 
world and explanations of what seem to be – but are often not – 
simple phenomena. Not only that, but buy it for your friends and 
relatives.

Arnold Wolfendale

(Sir Arnold Wolfendale FRS is a Past-President of the EPS. He is 
emeritus Professor of Physics in Durham University, UK)
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1
 The human engine 

(and how to keep it cool)

We don’t usually think of ourselves in that way, but each of us 
is an engine, running on sustainable energy. It differs from 

ordinary engines in more than just the fuel. The human engine 
cannot be shut off; for instance, it keeps idling even if no work is 
required. This is needed to keep the system going, to keep our heart 
pumping, for example, and to keep the temperature around 37 °C. 
Because – and here is another difference – our human engine works 
in a very small temperature range.
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It’s interesting to look at this a bit more quantitatively. Our daily 
food has an energy content of 8 to 10 MJ. That, incidentally, is 
equivalent to a quarter of a litre of gasoline, barely enough to keep 
our car going on the highway for about 2 minutes. Those 8 to 10 MJ 
per day represent just about 100 W on a continuous basis. Only a 
small fraction is needed to keep our heart pumping, as we can easily 
estimate from a pΔV consideration (p being on the order of 10 kPa 
and ΔV on the order of 0.1 litre, with a heart beat frequency of around 
1 Hz).

In the end, those 100 W are released as heat: by radiation, 
conduction and evaporation. Under normal conditions, sitting 
behind our desk in our usual clothing in an offi ce at 20 °C, radiation 
and conduction are the leading terms, while evaporation gives only a 
small contribution. But when we start doing external work, on a home 
trainer, for example, the energy consumption goes up, and so does 
the heat production. Schematically, the total energy consumption Ptot 
vs. external work Pwork is shown in the fi gure, where an effi ciency of 
25% has been assumed. Thus, if we work with a power of 100 W, we 
increase the total power by 400 W, and the heat part Pheat by 300 W.

Now our body must try to keep its temperature constant. That’s 
not trivial: if we don’t change clothing, or switch on a fan to make the 
temperature gradients near our skin somewhat larger, the radiation 
and conduction terms cannot change much. They are determined 
by the difference between the temperature of our skin and clothing 
on the one hand, and the ambient temperature on the other. When 
working hard, we increase that difference only slightly. Granted, due 
to the enhanced blood circulation, our skin temperature will get 
closer to that of our inner body, but the limit is reached at 37 °C.

Fortunately, there is also the evaporation term. Sweating comes 
to our rescue, as also, of course, does drinking! Each additional 
100 W of released heat that has to be compensated by evaporation 
requires a glass of water per hour (0.15 litre, to be more precise). 
The various terms are schematically shown in the figure.

One conclusion: heavy exercise requires evaporation. Don’t try to 
swim a 1000 m world record if your pool is heated to 37 °C. You might 
not live to collect your prize, because where would the heat go?
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Image 1.1 | Total energy production, heat production and heat release vs. external 
mechanical power, schematically.
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2
 Moving around effi ciently

Ever considered the effi ciency of a human being moving from A 
to B? Not by using a car or a plane, but just our muscles. Not 

burning oil, but food. 
Many physicists will immediately shout: A bike! Use a bicycle! It is 

because we all know from experience that using wheels gets us around 
about fi ve times as fast as going by foot with the same effort.

But just how effi cient is a bike ride? First, we have to examine the 
human engine. The power we produce is easily estimated by climbing 
stairs. If we want to do that on a more or less continuous basis, one 
step per second is a reasonable guess. Assuming a step height of 15 cm 
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and a mass of 70 kg, this yields a power of roughly 100 W. Mountain 
climbers will fi nd the assumed vertical speed quite realistic, since it 
takes us about 500 m high in an hour, and that is pretty tough exercise.

Riding our bike is pretty much like climbing the stairs: same 
muscles, same pace. In other words, we propel our bike with about 
100 W of power. But that is not the whole story. The effi ciency of 
our muscles comes into play. For this type of activity, the effi ciency is 
not so bad (a lot better than e.g. weight lifting). We may reach 25%. 
The total energy consumption needed for riding is therefore around 
400 W.

What does this tell us about the overall transport effi ciency? How 
does this compare with other vehicles? Now it’s time to do a back-of-
the-envelope calculation. If we express 400 W of continuous energy 
use in terms of oil consumption per day, we fi nd pretty much exactly 
one litre per day, given that the heat of combustion for most types 
of oil and gasoline is about 35 MJ per litre. In other words: if, for 
the sake of the argument, we ride for 24 hours continuously without 
getting off our bike, we have used the equivalent of 1 litre of gasoline 
for keeping moving. How far will that get us? That, of course, depends 
on the type of bike, the shape of the rider, and other parameters. If we 
take a speed of 20 km/h as a fair estimate, the 24 hours of pedaling 
will get us as far as 480 km. In other words: a cyclist averages about 
500 km per litre.

That’s not bad, compared to a car, or even a motorbike. So, we 
should all ride our bike if we want to conserve energy? Careful, there 
is a catch. We have been moving on food, not gasoline or oil. And it 
takes a lot more energy to get our food on the table than its energy 
content may suggest. A glass of milk, for example, takes roughly 0.1 
litre of oil, and a kg of cheese even about 1 litre. It’s because the 
cow has to be milked, the milk has to be cooled, transported, heated, 
bottled, cooled again, transported again, etc. It’s the same (or worse) 
for cheese, meat, etc.

Conclusion: Riding our bike is fun. It’s healthy. It keeps us in good 
shape. And, if we have to slim down anyway, it conserves energy. 
Otherwise – I hate to admit it – a light motorbike, if not ridden too 
fast, might beat them all.
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3
 Hear, hear

Even a tiny cricket can make a lot of noise, without having to 
‘refuel’ every other minute. It illustrates what we physicists 

have known all along: audible sound waves carry very little energy. 
Or, if you wish, the human ear is pretty sensitive – if the sound 
waves are in the right frequency range, of course. 

Exactly how our ears respond to sound waves has been sorted 
out by our biophysical and medical colleagues, and is illustrated 
by the familiar isophone plots that many of us remember from 
the textbooks. They are reproduced here for convenience.
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Image 3.1 | Isophone curves, with vertical scales in dB (left) and W/m2 (right).

Each isophone curve represents sound that seems to be equally 
loud for the average person.

The fi gure reminds us that the human ear is not only rather sensitive, 
but that it also has an astonishingly large range: 12 orders of magnitude 
around 1 kHz. This is, in a way, a crazy result, if we think of noise 
pollution. It means that, if we experience noise loud enough to reach 
the threshold of pain, and we assume that the sound intensity decays 
with distance as 1/r2, we would have to increase the distance from the 
source r by a factor of 106 to get rid of the noise. Or, if we stand at 
10 m from the source, we would have to walk away some 10 000 km.

Here we have assumed that the attenuation can be neglected, since 
we have been taught that sound wave propagation is an adiabatic 
process. Obviously, real life isn’t that simple. There are several 
dissipative terms. For example, think of the irreversible heat leaks 
between the compressed and the expanded air. An interesting feature 
here is that the classical absorption coeffi cient is proportional to the 
frequency squared, which makes distant thunder rumble. Then there 
is attenuation by obstacles. In addition, there is the curvature of the 
earth, and the curvature of the sound waves themselves, usually away 
from the earth due to the vertical temperature gradient. Without loss 
terms like these, forget a solid sleep.
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A second feature worth noticing is the shape of the curves. Whereas 
the pain threshold curve is relatively fl at, the threshold of hearing 
increases steeply with decreasing frequency below 1 kHz. If we turn 
our audio amplifi er from a high to a low volume, we tend to loose the 
lowest frequencies. The ‘loudness control’ is intended to compensate 
for this.

Finally, it is interesting to notice the magnitude of the sound 
intensity. How much sound energy do we produce when we speak? 
Let us assume that the listener hears us speak at an average sound 
level of 60 dB, which corresponds to 10–6 W/m2 as seen from the 
right-hand vertical scale. Assuming that the listener is at 2 m, the 
energy is ‘smeared out’ over some 10 m2. This means that we produce, 
typically, 10–5 W of sound energy when we talk. That is very little 
indeed. During our whole life, even if we talk day and night and we 
get to live 100 years, we will not talk for more than 106 hours. With the 
above 10–5 W, this means a total energy of 10 Wh. Even at a relatively 
high price of € 0.50/kWh, this boils down to less than one cent for 
life-long speaking. Cheap talk, so to speak.
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4
 Drag‘n roll

Whether we ride our bike or drive our car, there is resistance 
to be overcome, even on a flat road; that much we know. But 

when it comes to the details, it’s not that trivial. Both components 
of the resistance – rolling resistance and drag – deserve a closer 
look. Let’s first remember the main cause of the rolling resistance. 
It’s not friction in the ball bearings, provided they are well greased 
and in good shape. It’s the tires, getting deformed by the road. In a 
way, that may be surprising: the deformation seems elastic, it’s not 
permanent. But there is a catch here: the forces for compression 
are not compensated for by those for expansion of the rubber 
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(there is some hysteresis, if you wish). The net work done shows 
up as heat.

The corresponding rolling resistance is, to a reasonable 
approximation, independent of speed (which will become obvious 
below). It is proportional to the weight of the car, and is therefore 
written: Froll = Cr mg, with Cr the appropriate coefficient. Now 
we can make an educated guess as to the value of Cr. Could it 
be 0.1? No way: this would mean that it would take a slope of 
10% to get our car moving. We know from experience that a 1% 
slope would be a better guess. Right! For most tires inflated to the 
recommended pressure, Cr = 0.01 is a standard value. By the way: 
for bicycle tires, with pressures about twice as high, Cr can get as 
low as 0.005.

The conclusion is that, for a 1000 kg car, the rolling resistance 
is about 100N.

What about the drag? In view of the Reynolds numbers involved 
(Re ≈ 106) forget about Stokes with its linear dependence on 
speed v.

Image 4.1 | Rolling resistance, air resistance (‘drag’) and their sum, for a 1000 kg model car.
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Instead, we should expect the drag FD to be proportional to ½ ρv2, 
as already suggested by Bernoulli’s law (ρ is the air density). On a 
vehicle with frontal area A, one can write FD = CD·A·½ρv2. Now, CD is 
a complicated function of speed, but for the relevant v-range we may 
take CD constant. For most cars, the value is between 0.3 and 0.4. 

The total resistance is now shown in the fi gure, for a mid-size 
model car (m=1000 kg, Cr = 0.01, CD= 0.4 and A=2 m2).

It is funny to realize that the vertical scale immediately tells us 
the energy consumption. Since 1 N is also 1 J/m, we fi nd that at 
100 km/h this is approximately 500 kJ/km for this car. Assuming an 
engine effi ciency of 20%, this corresponds to about 7 litres of gas 
per 100 km. At still higher speeds, the fi gure suggests a dramatic 
increase in the fuel consumption. Fortunately, it’s not that bad, since 
the engine effi ciency goes up, compensating part of the increase.

What about the engine power P? Since P = F·v, we fi nd at 100 km/h 
about 15 kW. That’s a moderate value. But note that, at high speed 
where drag is dominant, the power increases almost as v3! Should we 
want to drive at 200 km/h, the engine would have to deliver 8-fold 
the power, or 120 kW. That’s no longer moderate, I would say, and 
I’m sure the police will agree…
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5
 Old ears

If you are under, say, 35, you might as well stop reading: you should 
have no reason to worry about your ears. But for many of us who 

are somewhat older, a noticeable hearing loss may become a bit 
cumbersome every now and then. And as it turns out, the loss is 
worst where it hurts most: in the high frequency regime.

Let us fi rst look at the data. In the fi gure, hearing loss data are given 
as a function of frequency for a large sample of people at various 
ages (Courtesy: Dr. Jan de Laat, Leiden University Medical Center). 
And indeed, already at age 60, the loss of high-frequency tones is 
frightening: over 35 dB at 8 kHz, increasing about 10 dB for every
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Figure 5.1 | Average hearing loss as a function of frequency, for persons aged 30 – 85.

5 years of age. Once we’re 80, we’ll be practically deaf for 8 kHz 
and up.

Why is hearing loss at the higher frequencies so bad? When listening 
to our stereo at home, we can turn up the treble a bit for compensation, 
no problem. And in a person to person conversation, we don’t really 
have problems either, until we are having this conversation at some 
cocktail party. Then we notice: the background noise makes things 
worse.

One aspect playing a role here concerns consonants like p, t, k, 
f and s. They contain mainly high-frequency information, and will 
therefore easily be masked, or will get mixed up. Another aspect 
relates to the role of sound localization in selecting one conversation 
out of a background noise (sometimes referred to as the ‘cocktail 
party effect’). We are pretty good at localizing sound: up to 1-2o in 
the forward direction (see William M. Hartmann in Physics Today, 
November 1999, p. 24 ff).

We use two mechanisms to do that. First, by using the phase- (or 
arrival time) difference between the two ears: the Interaural Time 
Difference (ITD). Of course, the information is unambiguous only if 
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the wave length is large compared to the distance between our ears. 
ITD is therefore effective only at the lower frequencies, say, below 
1.5 kHz. However, in ordinary rooms and halls, refl ected sound 
often dominates, especially for low frequencies. This is because the 
acoustical absorption decreases with decreasing frequency for almost 
all refl ecting surfaces. As a result, the ITD becomes unreliable in such 
situations, and the low frequencies are not much of a help to spatially 
isolate one conversation from the noise.

Fortunately, we have a second mechanism, which uses the intensity 
difference between the two ears for sound coming from aside: the 
Interaural Level Difference (ILD). We remember that sound waves 
become effectively diffracted when their wavelength is much shorter 
than our head: the head casts a shadow, so to speak. Therefore, ILD 
works well above, say, 3 kHz.

Alas, look at the graph: the high-frequency region is where old ears 
have problems. So the ILD doesn’t work too well either. In the end, 
we may have to resort to what deaf people do all along: use our eyes, 
and see the talking…
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6
 Fresh air

Whether at home or in the offi ce: we feel comfortable when the 
temperature is around 20 °C and the humidity around 50%. 

There‘s some interesting physics here, especially in wintertime, when 
we have to heat and – almost inevitably – to humidify the outside air. 
The humidity aspect is a trivial consequence of the steepness of the 
H2O vapour pressure.

At 0 °C and 20 °C, we fi nd 6 and 23 mbar, respectively, almost a 
factor of 4 difference as seen in the fi gure. Therefore, when it freezes 
outside, the humidity cannot exceed some 25% inside, since the water 
content of the incoming air does not change by being heated. This is 



FRESH AIR

PHYSICS IN DAILY LIFE26

so unless we add water to the room. The air-conditioning industry 
does that routinely in our labs and offi ces.

How hard is it to humidify the air in our home? In the stationary 
state this depends, of course, on the degree of ventilation. For a 
back-of-an-envelope calculation we use the rule of thumb that, for 
simple liquids including water, there is a factor of 1000 between the 
density of the liquid and that of the vapour if assumed at standard 
temperature and pressure. A litre of water, therefore, gives roughly 
1 m3 of vapour if it were at 1 bar (it gives 1.244 m3 at STP, to be 
precise). Using the above 23 mbar at 20 °C we fi nd, for a room of 
100 m3 volume, that it takes about 1 litre to increase the humidity 
by 50% for a single load of air. If we assume a refreshment rate of 
once every hour, we see that humidifi cation is effective only if we 
are prepared to pour a lot of water into our home daily, or we have 
to minimize ventilation.

Figure 6.1 | Vapour pressure curve of water.
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But ventilation is a must, if we don’t want to run into health 
problems. In this context, an interesting physics aspect comes up. 
Suppose we instantaneously replace the air in our living room by 
cold outside air while keeping the heating off. Will the room be 
much colder after we wait for the new equilibrium to be reached? 
The answer is: very little, and it is easy to se why. It’s all a matter 
of heat capacities, of course. But there is wooden furniture, brick 
walls, glass, metals etc. in the room, which seems to make an estimate 
pretty hopeless. However, if we’re only interested in an approximate 
value, there is an easy way out. If specifi c heats are taken not per mass 
but per volume, values for most solids and liquids are pretty much 
alike (around 2-3 MJ.K–1.m–3). The reason is simple. We remember 
that atoms may differ enormously in mass, but they do not differ 
so much in ‘size’: the atomic number densities are rather equal in 
solids. Moreover, the contribution of each atom to the specifi c heat 
is roughly the same (around 3k, with k Boltzmann’s constant). For 
gases, of course, we have to take the above factor 1000 in the ratio of 
the densities into account.

Conclusion: when estimating heat capacities, a litre of liquid or 
solid and a m3 of a gas at ambient temperature and pressure are 
pretty comparable.

So much for the rule of thumb. We can return now to our room. It 
is clear that the volume of the ‘solid’ content of the room is far larger 
than 1/1000 of the air volume, even if we are honest and count only 
half of the wall thickness. This shows that, indeed, the temperature 
of the room will be hardly affected by a single load of fresh air. This 
trivial exercise also suggests that opening the refrigerator for a second 
or so puts about as much heat into the fridge as putting a tomato 
inside.
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7
 Diffraction-limited photographs

The optical performance of lenses, even in cheap cameras, is 
remarkably good these days. We don’t have to worry too much 

about aberrations, even if we ‘open up’ and use the full lens aperture. 
Due to the steady progress in lens making over the years, our cameras 
– certainly the more expensive ones – are being gradually pushed to 
the diffraction-limited optics situation.

How does diffraction limit the resolution of our pictures? It all 
depends, of course, on the focal length of the lens (which we usually 
know) and the aperture, or effective lens diameter (which we may be 
unable to determine). 
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Fortunately, life turns out to be simple. Let us look at the textbook 
formula for diffraction through a circular aperture. When trying to 
image a point source on our fi lm, we fi nd that the radius of the 
resulting Airy disk is 1.22 λf/D, with λ the wavelength, f the focal 
length and D the aperture (the funny numerical factor 1.22 results 
from integration over rectangular strips).

The nice thing now is that the ratio f/D is the ‘F-stop’ value, which 
we recall having used on our non-automatic camera as one of the 
two parameters determining the exposure. The well-known series of 
values is 2; 2.8; 4; 5.6; 8; 11; 16; 22, spaced by √2, of course, in order 
to have double exposure between consecutive values.

Now, precisely how seriously are we limited by diffraction? Let us 
take a worst-case scenario, and assume that there is plenty of light 
such that the F-stop 22 is chosen. The formula for the Airy disk 
radius yields r = 15 μm for the middle of the visible spectrum. In 
other words: we get a 30 μm diameter spot on the fi lm, rather than 
a point. If we are using traditional, pre-digital-era 35 mm fi lm, we 
may want to enlarge the 24 by 36 mm frame by a factor of 10 in 
order to have a nice size picture. This means that the diffraction 
spots become 0.3 mm in diameter, and are no longer negligibly 
small. The conclusion is that, if we use high-quality optics in our 
camera, it may be wise to open up the lens much further and use 
smaller F-stop values.

Now let us compare this to our digital camera: Is it the number of 
pixels that poses the limit to the resolution, or is it still diffraction? 
Using the above worst-case scenario with an Airy disk radius of 
r = 15 μm, and assuming the Rayleigh criterion for just-resolvable 
diffraction patterns (i.e., a spacing by r is adequate to distinguish 
two adjacent ones from one another), we find that, on a 24 by 
36 mm frame, we can store some 1600 × 2400 just-resolvable spots. 
If we were to image that pattern on our digital camera, and if we 
assume – somewhat arbitrarily – that the number of pixels on 
the chip must equal the number of the just-resolvable spots, we 
need almost 4 Megapixels. This is just about the performance of a 
standard digital camera. However, if we move from the F = 22 to 
the other extreme of F = 2, the diffraction-limited spot size shrinks 
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by a factor of 10. If the digital camera is to keep up with that, it 
has to increase its pixel number by a factor of 100.

So, when it comes to digital cameras, there is still room for 
improvement.
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8
 Time and money

Back in 1905, when Einstein was working on relativity in which 
‘time’ plays such an important role, he would have never guessed 

that time would be measured with such an astonishing accuracy just 
a century later. As an example, think of GPS satellite clocks: to enable 
us to navigate with accuracies on the order of metres, their clocks 
have to be precise within nanoseconds. And in laboratories around 
the globe, laser-cooled Cesium and Rubidium fountain clocks reach 
an incredible fractional accuracy of about 6×10–16. This translates 
into errors no larger than 20 ns in one year (which, coincidentally, 
contains almost exactly π×107 seconds).
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But also in everyday life, things have changed dramatically. Most of 
us remember the pre-quartz era, when clocks rarely agreed to within 
a few minutes, and watches had to be adjusted every two days or so. 
Indeed, one had to resort to the radio if one wanted to know the 
exact time. By contrast, modern quartz clocks and watches routinely 
have accuracies better than 1 in 106: some 30 seconds in a year. And, 
except for the switch-over to daylight saving time, adjustment is rarely 
necessary.

At what cost, in terms of kWh and Euros, do we read our daily 
time so accurately? The electrical energy consumption, even for a 
traditional analog clock operating on 230 V, is very small of course, as 
we can tell from the negligible amount of heat released. The electrical 
power for such a clock is typically on the order of 1W, and since a year 
has about 104 hours, it consumes about 10 kWh per year. In terms of 
money, that’s about a Euro per year.

Now let us look at our digital watch. It typically operates on a 
silver oxide battery of 1.55 V having a charge of roughly 25 mAh. 
If we assume that the battery runs for at least two years, a back-of-
the-envelope calculation shows that the watch operates on a power 
of less than 2 microwatt. That is very little indeed: it is six orders of 
magnitude less than an analog clock connected to the mains.

What about the cost? Such batteries cost, typically, 2 Euros, or a 
Euro per year of operation. Now lo and behold: isn’t that what the 
analog counterpart in our home would cost?

The conclusion is simple. Our digital watches are very accurate and 
extremely effi cient. However, the energy in their battery is extremely 
expensive, of the order of 50 000 Euros/kWh. But whatever type of 
clock we use for knowing the time as accurately as we do, the cost is 
1 Euro at most for an entire year. If Einstein were alive today, he would 
probably agree: that’s a lot of time for very little money.
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9
 Blue skies, blue seas

For the sky, it’s simple. Most physicists know that the blue colour 
of the sky is due to the1/λ4 dependence of Rayleigh scattering. 

But what about the blue of the sea? Could it be simply reflection 
of the blue skies by the water surface? That certainly cannot be the 
main story: even if the sky is cloudy, clear water from mountain 
lakes and seas can look distinctly blue. Moreover: those of us who 
like to dive and explore life under water will have noticed that, a 
few metres under the surface, bluish colours tend to dominate. 
Indeed, if we use an underwater camera and take pictures of those 
colourful fish, we notice that the nice red colours have almost 
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completely disappeared. And – unlike our eyes – cameras don’t lie. 
We need a flash to bring out the beautiful colours of underwater 
life. In other words: absorption is the key: sunlight looses much of 
its reddish components if it has to travel through several metres 
of water. Or ice, for that matter: remember the bluish light from 
ice caves or tunnels in glaciers. And even the light scattered back 
from deep holes in fresh snow is primarily blue.

What causes the selective absorption of visible light by water? 
Spectroscopists know that the fundamental vibrational bands of 
H-atoms bound to a heavier atom, such as in H2O, are typically 
around 3 μm. This is way too long to play a role in the visible region. 
But wait: because of the large dipole moment of H2O, overtone and 
combination bands also give an appreciable absorption. And they 
happen to cover part of the visible spectrum, up from about 550 nm, 
as seen in the fi gure. 

Figure 9.1 | Absorption of light by water.

The strong rise near 700 nm is due to a combination of symmetric 
and asymmetric stretch (3ν1 + ν3), slightly red shifted due to hydrogen 
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bonding (see, e.g., C.L. Braun and S.N. Smirnov, J. Chem. Edu., 1993, 
70(8), 612). We notice that the absorption coeffi cient in the red is 
appreciable: it rises to about 1 m–1 around 700 nm, an attenuation 
by a factor of e at 1 m. It is no wonder that our underwater pictures 
turn out so bluish.

It is interesting to note: the spectrum of D2O is red shifted by about 
a factor 1.4, since the larger mass of the deuterons makes for much 
slower vibrations. It is therefore shifted out of the visible region.

But that is not the whole story about the ‘deep blue sea’. For the 
water to look blue from above, we need backscattering. For shallow 
water, this may be from a sand bottom or from white rock. In this 
case the absorption length is twice the depth. For an infi nitely deep 
ocean, however, we have to rely on scattering by the water itself and 
by possible contaminants. This may even enhance the blue color by 
Rayleigh scattering, as long as the contaminants are small compared 
to the wavelength.

If the water gets really dirty, things obviously become more 
complex. Scattering from green algae and other suspended matter 
may shift the spectrum towards green, or even brown.

But clear water is blue. Unless it’s heavy water, of course…
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10
 Cycling in the wind

When riding our bicycle, wind is bad news, usually. For one thing, 
it spoils our average speed when making a round trip. The 

reason is obvious: we spend more time cycling with headwind than 
with tailwind.

And what about a pure crosswind, blowing precisely at a right angle 
from where we are heading? That cannot possibly hurt the cyclist, one 
might think. Wrong. A crosswind gives rise to a much higher drag. Why 
is that? Don’t we need a force in the direction of motion to do that?

So let us have a look at the relevant forces. The key is that air drag for 
cyclists is proportional to the relative air speed squared (just like for cars, 
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cf. page 20). This v2 dependence spoils our intuitive feeling, as is easily 
seen from a vector diagram. See the fi gure, which illustrates the situation 
of a cyclist ‘heading north’.

Figure 10.1 | Air speed and drag felt by a cyclist, in the absence of wind (left) and with 
a crosswind from the right.

The fi gure says it all. In the wind-free case (left) the cyclist feels an 
air speed equal to his own speed, and experiences a certain drag which 
we may call D. With a strong crosswind blowing from the East, the 
resulting relative air speed is much larger, and so is the drag. In our 
example, the resulting air speed is taken as twice the cyclist’s speed (it 
comes at a 60o angle from the right). Consequently, the resulting drag 
is 4D. So its component in the direction of motion is 2D, or twice 
what it was in the wind-free case.

In order to profi t from the wind, it has to blow slightly from behind. 
Of course, the angle for which the break-even point is reached, depends 
on the wind speed relative to that of the cyclist. In our example, where 
their ratio is √3, the break-even angle is 104.5 degrees, as calculated 
by Fokke Tuinstra from Delft University of Technology. But a pure 
90-degree crosswind always hurts the cyclist.

In fact it’s even worse. Also the relevant frontal area, which 
determines the drag, is increased dramatically. It is no longer that of 
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a streamlined cyclist as seen from the front, but a sin α projection of 
the cyclist plus his bike. And with α being 60o in the example, this 
is practically the full side view of the bicycle and his rider. Even the 
crouched position does not help much in this case.

Clearly, riding our bike in the storm is really brave. It makes good 
exercise. And it yields some funny physics, too.
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11
 Seeing under water

Most physicists realize that the human eye is not made for seeing 
under water. For one thing, if we open our eyes under water to 

see what’s going on, our vision is blurred. The reason is obvious: since 
the index of refraction of the inner eye is practically that of water, we 
miss the refractive power of the strongly curved cornea surface. With 
its 1/f of about 40 diopters it forms an even stronger lens than the 
actual eye lens itself. Could we repair that with positive lenses? There 
is no need for a back-of-the-envelope calculation here: In view of the 
strong curvature of the cornea surface (radius about 8 mm), the idea 
of replacing it by a glass lens in a water environment is beyond hope. 
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We really need to restore the air-water interface in front of the cornea, 
and that is precisely what our diving mask does.

But there is more to it. Under water, our fi eld of vision is reduced 
dramatically. Whereas we normally have an almost 180o fi eld due to 
the refraction at the air-cornea interface, we loose that benefi t once 
we’re under water. The diving mask does not repair that since there is 
the compensating effect at the front of the mask. This is schematically 
indicated in the fi gure.

So, if you happen to be a scuba diver, beware! You have to turn 
your head much further than you may think necessary, if you want 
to be sure that you are not followed by a shark.

Figure 11.1 | Reduced fi eld of vision under water for a person wearing a diving mask, 
schematically.
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12
 Cycling really fast

We remember that the cyclist on a horizontal road has to beat two 
forces (see p. 20). One is the rolling resistance, proportional to 

the total weight (Crmg). The other one is air drag, proportional to the 
frontal area, the air density and the velocity squared (CD·A·½ρv2). The 
two are equal at roughly 15 km/h for a normal bicycle. In view of the 
v2 dependence, drag is by far dominant at record-breaking speeds. If 
you want to go fast, get rid of the drag.

One way to minimize drag is to use super-streamlined, recumbent 
bikes: HPV’s, for Human Powered Vehicles. Their main advantage 
is a reduction of the drag coeffi cient CD to 0.1 which is an order of 
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magnitude smaller than the value for a normal bike. As a result, speeds 
above 90 km/h have been a piece of cake for experienced riders ever 
since the 1980s. Indeed, in the U.S. during the nationwide speed limit 
of 55 mph (88 km/h), several riders earned an ‘honorary speeding 
ticket’ from the California Highway Patrol. More recently, in 1998, 
the landmark of 130 km/h was fi rst reached by the Canadian Sam 
Whittingham.

For the real speed devil that’s not good enough. Why not abolish 
drag altogether, by riding behind a fast car having a large vertical 
board at its rear end (a technique also called Motor Pacing)? This is 
precisely what Dutchman Fred Rompelberg from Maastricht did in 
1995, on the Bonneville Salt Flats in Utah, USA. He set off behind 
a powerful car on a special-design bicycle (but not an HPV) and 
reached a breathtaking 268 km/h. Sure enough, that made him the 
fastest man-on-a-bike ever.

Now let us take this a bit further, by also reducing the rolling 
resistance. Let us do a though-experiment and calculate how fast 
we could ride on the moon. Reasonable input data would be a peak 
power of 750 watt for the rider (which is what a trained cyclist briefl y 
reaches on earth), a mass m = 100 kg (including the space suit), 
Cr = 0.0045 (a typical value for bicycles) and g = 1.62 m/s2. Since the 
rolling resistance is the only force to be overcome, all we have to do 
is solve the equation Crmgv = 750 W.

The resulting speed v turns out to be some 3700 km/h. That is 
really fast: over Mach 3 in terms of the terrestrial speed of sound at 
ambient temperature. But for lack of an atmosphere, we do not have 
to worry about sonic booms on the moon.

Much faster than that, however, may become a problem for 
prospective moon cyclists: 3700 km/h, that is about half the escape 
velocity…
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13
 Water from heaven

Large rain drops fall faster than small ones, that much is obvious for 
any physicist. But let’s be a bit more precise. The terminal velocity 

follows from the balance between the weight of the drop and its air 
resistance. What exactly is the resistance of a drop falling through the 
atmosphere? We have to distinguish two regimes here. 

If the droplets are real small, like cloud droplets (or fog particles, 
if you wish), the Reynolds number is so small that Stokes’ formula 
applies: the air resistance is proportional to viscosity, radius and 
velocity: F = 6πηRv. For a typical cloud droplet having a radius 
of 0.01 mm, we fi nd a terminal velocity of about 1 cm/s. That is 



WATER FROM HEAVEN

PHYSICS IN DAILY LIFE44

very little indeed. But it goes up rapidly with size: since its weight is 
proportional to R3 and the resistance only to R, the terminal velocity 
increases with the square of the size for such droplets. That applies to 
droplets up to about 0.1 mm in diameter, according to the handbooks 
(good old Ludwig Prandtl’s book Führung durch die Strömungslehre, 
for example).

For ordinary raindrops, up from about 1 mm diameter, turbulent 
fl ow dominates. Here the weight is balanced by drag FD = CDπR2.½ ρv2, 
where πR2 is the frontal area, CD is the drag coeffi cient, which is about 
0.5 for a sphere at the relevant Reynolds numbers, and ρ the density 
of air. For a rain drop of 1 mm in diameter, we fi nd a terminal velocity 
of 16 km/h. Note that in this regime the velocity is proportional to the 
square root of the diameter. Consequently, a 3 mm raindrop reaches 
28 km/h. And so on, we would guess. Given the above, we may expect 
that for the biggest drops – 5 mm, say – the terminal velocity is well 
above 35 km/h.

Wrong. Something interesting happens, as already noticed by 
German physicist Philipp Lenard a century ago. Using a vertical wind 
tunnel to balance the drop’s speed, he noticed that drops larger than 
about 3 mm diameter become deformed like small pancakes, and 
have a fl at bottom. Consequently, their frontal area is larger than for 
spherical droplets having the same mass. As a result of the increased 
drag, the terminal velocity hardly goes up any further: for raindrops 
of 4 and 5 mm it reaches an asymptotic value of about 29 km/h, 
practically the speed already reached by the 3 mm drops.

And beyond 5 mm? As soon as the diameter reaches about 5.5 mm, 
forces become so large that surface tension cannot hold the drop 
together, so it breaks up in pieces. So, for raindrops, there is no life 
beyond 5 mm.
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14
 Surviving the sauna

Human beings are not made for living in a 90 °C environment. 
And yet this is the temperature in the average sauna. How do we 

cope with such harsh conditions?
First, we use a towel to sit on, or we touch wood. Touching 

metal at that temperature is no fun at all. Even the glass door feels 
hot, although its thermal conductivity is far below that of metals, 
and its temperature is only about 60 °C, halfway between in and 
outside temperature. Second, the air is dry, which enhances cooling 
by perspiration. Incidentally, the dry air comes for free: due to the 
steepness of the water vapour pressure curve, even if the outside air 
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at, say, 20 °C is 100% humid, the humidity drops to 3% once the 
air is heated to 90 °C. If it freezes outside, that would even drop to 
1%, provided that no water is added.

How fast would our body heat up, if we neglect perspiration? 
Let’s do a back-of-the-envelope calculation. First, let’s look at the 
conduction term. Since the effective air layer surrounding our 
body can be assumed to be around 3 mm thick, assuming a body 
surface area of 1.7 m2 and a temperature difference of 50 K, we fi nd 
some 700 W. Likewise, the radiation term yields about 800 W. So, 
conduction and radiation are roughly equally important, just like in 
normal circumstances. The difference is that they are reversed in the 
sauna. And they are an order of magnitude larger, due to the larger 
temperature difference and the fact that we have... eh… adapted 
our clothing. So the total heat load on our body is 1.5 kW, which 
corresponds to the power of an electric heater!

How fast will our body start to heat up? Taking a fair estimate for 
the heat capacity of our body of 200 kJ/K, we fi nd a heating rate of 
0.5 K per minute – as long as perspiration is negligible.

This is a sure way to disaster. So after a few minutes the sweating 
should begin. And it does, fortunately, even before we notice that 
our skin gets wet. Keeping up with the 1.5 kW heat load by sheer 
sweating would require 2.2 litre per hour. Our body will not be able 
to evaporate that much without forced air circulation.

Being physicists, we surely want to do a small experiment. Why 
not put some water on the stove, and see what happens? This 
makes us feel even hotter, and the question is why. Here is an 
educated guess. At least four contributions can be identified. First, 
the 100 °C steam coming off the stove is somewhat hotter than 
the sauna air. Second, it causes forced convection, which will heat 
our body even more, particularly if our skin is still dry. Third, the 
humidity goes up, which makes perspiration more difficult. And 
fourth: the thermal conductivity of water vapour is slightly higher 
than that of dry air, since water molecules are a bit lighter (and 
therefore faster) than N2 or O2. Which of those contributions is the 
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dominant one may be something to sort out next time we are in 
the sauna1. After all, there is time enough to do some calculations 
and experiments.

But don’t forget to keep an eye on the hourglass…

1. See also p. 59: The sauna – revisited.
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15
 Black vs. white

Does a dark-painted front door get hotter in the sun than a white-
painted one?

“Of course”, says a layman, pointing out that a black surface 
absorbs solar radiation much better than a white one. “Should make 
no difference” says another layman with some science background, 
adding that a surface that absorbs well must also emit well. A 
physicist overhearing the conversation nods vaguely, remembering 
things like microscopic reversibility and detailed balance. But his 
intuition tells him it is not that simple. What precisely is happening 
here?
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Let’s do the experiment. On a bright and sunny day with little or 
no wind, we fi nd the temperature of a white door to be 43 °C, and 
that of a dark green door 66 °C. The difference is clear: beyond the 
shadow of any doubt, the fi rst layman was right. 

Of course. It is obvious that the white paint remains cooler. The 
door surfaces absorb in the visible region of the EM spectrum, but 
emit in the infrared. According to Wien’s law, the wavelengths differ 
– roughly speaking – by a factor of 20, viz., the ratio between the 
temperature of the sun’s surface and our ambient temperature of 
300 K. That means that we are dealing with 0.5 μm for the incoming 
light vs. 10 μm for the IR emission.

The optical properties can vary dramatically over such a range. 
And they do. Almost all common surfaces are ‘black’ around 10 μm. 
If we look up their emissivity at such wavelengths, we fi nd values near 
1 for almost anything: common paints have values around or above 
0.9, irrespective of colour. Even water and glass fall into that category, 
with emissivities well above 0.9. Metals, of course, are an exception. If 
they are clean and polished, such that multiple refl ections are avoided, 
their emissivity is around or below 0.05.

But normal paint does not contain metal. The conclusion is, 
therefore, that the difference in temperature between the two doors 
is caused by their different absorption in the visible region. For the 
emission, all paints are equally black, except for Aluminium paints 
which can have emissivities below 0.3.

There is also a lesson here for our home heating. All radiators 
can be considered black, even the white ones: there is no need to 
deviate from our interior decoration taste as long as we stay away 
from Aluminium paint and the like.

What happened to the detailed balance argument? Obviously, 
detailed balance holds, but we have to consider one and the same 
wavelength. If we do, emission and absorption coeffi cients are equal. 
If, for example, copper looks reddish, it must absorb primarily green 
or blue. So, if we make copper emit visible light, e.g., by introducing 
some copper salt into a hot fl ame, detailed balance tells us that it 
should emit green or blue. And sure enough, it does.
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16
 Hearing the curtains

If there is one place in the house that we like to sing in, it’s 
the bath. The reason is the unusually long reverberation time: 

the exponential decay of any sound is slow. It is all described by 
Sabine’s law, which states that the typical decay time of sound in 
a room is proportional to the volume of the room and inversely 
proportional to the total area of surfaces that completely absorb 
the sound (like an open window would, for example).

So, if it comes to reverberation, the bathroom is pretty unique. 
It usually has bare walls, tiles on the floor, and little or no furniture 
that could absorb sound. Even our own clothing may give a much 
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smaller contribution than usual – if it gives any contribution 
at all.

That leaves only the curtains as an effi cient means for absorbing 
the sound, if we assume that we do have curtains in our bathroom. 
So if we really want to enjoy our own singing, we would probably 
be well advised not to close the curtains but leave them open, in 
order to have as small an absorbing surface as possible and hence 
a maximum reverberation time. That seems very plausible, if we 
follow our physical intuition.

Wrong. Whether we have the curtains open or closed makes 
very little difference for the sound absorption, and hence for the 
reverberation. The reason is somewhat subtle: the sound is indeed 
dissipated at surfaces, by friction losses of the sound waves near the 
surface. But, more precisely, we have to consider the microscopic 
surface of the material, which includes the pores. That is the reason 
why porous media like thick draperies, carpets, fi brous mineral wool, 
glass-fi bre and open-cell foam are usually good sound absorbers. And 
for the curtains this means that, as long as the sound waves have 
easy access to the inner surface, it does not matter much whether the 
curtain is spread out over the entire wall or bundled together in a 
corner of the room.

The conclusion therefore must be: with our eyes closed, we can’t 
really tell whether the curtains are open or closed. We do notice, 
however, if they happen to be at the dry cleaner’s.
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17
 Fun with the setting sun

The setting sun plays a few tricks that any physicist will appreciate. 
One of these is well known: the sun appears unusually red 

when setting. It is the 1/λ4 dependence of Rayleigh scattering which 
selectively removes the blue end of the spectrum from the transmitted 
light.

Less well-known is the fact that the sun is not where it seems to 
be, during sunset. In fact, it may be behind the horizon while we still 
see it. We are not talking here about the fi nite speed of light, which 
makes us see the sun about 8 minutes late. We are talking about the 
refraction of the sunlight due to the vertical gradient in the index 
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of refraction, which in turn is caused by the density gradient. If we 
ignore temperature gradients for a second, the density decreases with 
height due to the decreasing atmospheric pressure, by a little over 1% 
for every 100 metre, i.e., n–1(dn/dz) ≈ 1 ×10–4/m. As a result, the light 
rays are bent downward, in the direction of the earth’s curvature. This 
may be seen as the inverse of the well-known ‘highway mirage’, the 
apparent pools lying across the pavement when the sun shines.

Granted, temperature effects can be much larger than the 
barometric pressure effects, which is easily seen if we realize that, for 
constant pressure, we have n–1(dn/dz) = -T–1(dT/dz). But let us look 
at what happens if temperature gradients are negligible, or – even 
nicer – if temperature increases with altitude. Then the temperature 
effect – if any – adds to the barometric pressure effect. Now the light 
rays tend to follow the earth’s curvature, which makes us see the sun 
just after sunset. This effect occurs both at sunrise and at sunset, 
and adds an extra 5 minutes of daylight to each day. Note that the 
fi nite-speed effect mentioned above does not do that; it just gives an 
8-minute offset throughout the day.

Since bending of light rays in the atmosphere is stronger for 
lower-lying rays, there is a second phenomenon: the sun appears to 
be fl attened by about 10%. The fact that we do not always notice this 
is due to the competing effect of temperature.

Finally, there is the somewhat mysterious ‘green fl ash’ that people 
sometimes observe at the moment of sunset. It lasts only for a few 
seconds, and requires somewhat favourable atmospheric conditions. 
Why green, and why only for a few seconds? There are a few things 
here that we have to combine. First the refraction, which makes us 
see sunlight after the actual sunset. Due to dispersion this effect is 
strongest for the blue end of the visible spectrum. This means that we 
expect blue to be visible longest, while the red end of the spectrum has 
long disappeared. But blue light is almost absent in the setting sun, as 
seen above. The result is that the last fl ash of sunlight is dominated 
by green.

The green fl ash: a last good-bye from the setting sun. But at least 
a good-bye in style.
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18
 NOT seeing the light

Back in 1808 the young French soldier Étienne Louis Malus noted 
that there is something funny about refl ections. While looking 

through a crystal of Iceland spar calcite in his Paris apartment, he 
noticed variations in the sunlight refl ected from windows in the Palais 
du Luxembourg across the street when he rotated the crystal. This 
observation, often considered as the discovery of light polarization, 
laid the basis for our Polaroid glasses. Indeed, the most common use 
of Polaroid glasses is aimed at reducing annoying refl ections.

To fully appreciate the issue, let us recall the behaviour of light when 
refl ected from glass, or from water. The refl ectance as a function of 
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incident angle θ (the angle to the normal) is given here for convenience. 
The graph is for the case of glass, but is only marginally different in the 
water case. It shows the refl ectance for the two polarizations parallel 
and perpendicular with respect to the plane of incidence. The dashed 
curve is the average, or the effective refl ectance for non-polarized light.

Image 18.1 | Refl ectance of light from a glass surface vs. incident angle for two polari-
zations and for unpolarized light (dashed curve).

Before entering into a discussion of the two different polarizations, 
it is interesting to notice that for grazing incidence (θ = 90o) the 
refl ectance becomes unity. Therefore, the image of the setting sun 
above a quiet lake appears just as bright as the sun itself, for example.

At the other end of the axis, for light incident along the surface 
normal, the reflectance is a few percent only: for glass having a 
refractive index n = 3/2 we find (n-1)2 / (n+1)2 = (1/5)2 or 4%. For 
water with n = 4/3 we find even less: (1/7)2 or 2% only. Therefore, 
if we look straight into a pond, the reflection of our own face is 
really weak, and there is a fair chance that we can see the fish, 
provided that they are there and that the water is clear.

But we can do better than that by going to angles in between 
these two extremes and using Polaroid glasses. Obviously, our best 
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choice is Brewster’s angle, where one of the two polarizations has zero 
refl ectance, such that the refl ected light is completely polarized. It is 
the angle whose tangent is the index of refraction: θ = 56o for glass 
and 53o for water. Here our Polaroid glasses work perfectly.

So, if we want to make a picture of something behind glass, 
Brewster comes to our rescue, provided that we orient our Polaroid 
fi lter correctly. And, in the case of the pond: using Polaroid glasses we 
can completely get rid of the refl ection of the sky. Use a bit of physics, 
and outsmart the fi sh.
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19
 Thirsty passengers

As a rule of thumb, commercial aircraft consume some 10 cm3 of fuel 
per seat per second. That sounds like a lot. Imagine the whole cabin 

taking a sip each second, with the fl ight attendant beating time. Funny. 
But that’s what the fuel consumption amounts to.

No wonder, one might think: at such tremendous speeds the drag 
must be enormous. Compare that with the slow boats of yesteryear, 
which took a week to cross the Atlantic. They must have been a lot 
less wasteful than those fast planes nowadays.

But wait: shouldn’t we look at fuel consumption per kilometer 
rather than per second? Back to the rule of thumb: 10 cm3 per second 
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is 36 litres an hour, during which the plane fl ies some 900 km. That 
yields 4 litres per 100 km. Modern effi cient aircraft do a bit better 
than the rule of thumb, and arrive at, say, 3 litres per 100 km per seat. 
So, two passengers consuming a joint 6 litres per 100 km are just as 
wasteful as if they were sharing a reasonably effi cient car.

What about the slow boat? Surprise. A large passenger boat or a 
cruise ship consumes about 25 litres per 100 km per passenger. Despite 
its moderate speed, the boat is much worse than the plane, in terms 
of fuel consumption per passenger km. How come? A bit of physics 
leads the way. Of course, the drag is determined not only by speed but 
also by the density of the fl uid. Water and air differ by three orders of 
magnitude. It’s even more than that: since commercial aircraft cruise at 
10 km, and since the density goes roughly as exp(-h/8km), they cruise 
at roughly1/4 of the standard value.

But perhaps the biggest difference is the payload. On a cruise ship, 
the mass of the passengers plus their luggage typically amounts to a 
few tenths of a percent only. The reason, of course, is that a cruise 
ship is a fl oating village, with shops, restaurants, swimming pools 
and the like. Even a huge modern vessel like the Queen Mary 2 with 
its 150 000 tons carries 2600 passengers only. Compare that with a 
big airliner. The total mass of its passengers is well above 10% of the 
aircraft.

Agree: in the interest of energy and the environment, we travel 
way too much. Kerosene is way too cheap, and we fl y way too often. 
But if we have to, crossing the Atlantic by boat would be even worse.
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20
 The sauna – revisited

On page 45 we addressed several aspects of the funny situation 
in which we fi nd ourselves when visiting the sauna. One 

question remained a bit open: What exactly causes the temporary 
heat pulse that we feel when we pour some water on the hot 
stones, thereby temporarily elevating the air humidity? All we 
could produce at the time was the ‘educated guess’ that at least four 
different contributions could play a role. But that did not really 
solve the question satisfactorily. Fortunately, Timo Vesala, professor 
of Meteorology at the University of Helsinki, came to the rescue. 
Having done qualitative observations during a few years in his 
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own sauna twice a week, he solved this non-trivial problem and 
published a paper on the issue2).

Here is the surprise: The latent heat released in the condensation 
of water vapour onto the skin is an important mechanism – perhaps 
the most important one. The reason is that our skin is most probably 
the coldest place in the sauna, and the humidity can easily become 
100% near the skin.

That’s beautiful! We are used to think in terms of evaporation from 
our skin, not condensation. But the sauna is something special, and 
we should think beyond the box. 

To check the validity of the argument, let us assume the sauna 
temperature to be 100 °C (real Finnish sauna’s are somewhere 
between 80 and 110 °C). This eases the analysis since 100% humidity

Image 20.1 | Vapour pressure curve of water.

2. T. Vesala: Phase transitions in Finnish sauna. In: Nucleation and Atmospheric 
Aerosols. Proceedings of the Fourteenth International Conference on Nucleation and 
Atmospheric Aerosols, Eds. M. Kulmala and P.E. Wagner, 403-406. Pergamon, 1996.
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nicely corresponds to a vapour pressure of 1000 mbar. What happens 
can now be easily seen from the vapour pressure curve, reproduced 
here for convenience. 

As pointed out in the previous sauna item (and readily checked 
from the curve), the humidity will automatically be 3% at most if the 
outside air is heated to sauna temperature. This will go up if extra 
H2O is released, for example by perspiration. In practice, the average 
humidity seems to be 8% or so).

From the water vapour pressure curve we see that 8% humidity 
(i.e. 80 mbar in this case) will lead to saturation at about 40 °C. This is 
almost exactly the sauna-warmed temperature of our skin: 43 °C), as 
confi rmed by infrared skin-temperature observations. In other words: 
if the humidity is raised a bit, to 10% for example, condensation onto 
our skin will be inevitable. And this is precisely what happens when 
we throw water on the hot stones.

Timo Vesala has also done a quantitative analysis to assess the 
extent to which condensation contributes to the heat pulse. He fi nds 
that this latent heat fl ux is around 4 kW. This is on the same order 
of magnitude as the ordinary heat fl ux, which is already enhanced 
during the heat pulse by the extra convection (the analysis does not 
include heat exchange by radiation between the body and the hot 
oven).

So, next time you’re in the sauna, you may want to check the 
perspiration experiment.

But if you prefer to just sit and relax: no sweat.



PHYSICS IN DAILY LIFE62

21
 Refueling

We don’t usually think about it when driving down the highway, but 
what will traffi c look like after the fossil-fuel age? How will our 

great-grand-children move ‘in the fast lane’? No longer in a gasoline-
powered car, probably. An all-electric car perhaps? Or a hydrogen car 
powered by fuel cells? Or will they use some synthetic liquid fuel to 
power their engine? Things don’t seem very clear yet.

Let us assume for a moment that it will be an all-electric car. Sure, 
there is a problem with the weight of the batteries: even with the 
best battery type now available, the weight of our car would roughly 
double if we want to carry batteries with the equivalent of 50 or 
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so litres of gasoline. But let us be optimistic: let us assume that we 
are able to improve the energy density of batteries by another order 
of magnitude. That would make the extra weight quite acceptable. 
Problem solved, one would think.

But now another interesting aspect comes up. How about refueling? 
When driving long stretches on vacation in our present cars, refueling 
is a piece of cake. We can do it during the coffee break, for example. 
Now let us consider the electric car. Suppose our batteries are running 
low, and it is late afternoon. Fortunately, our hotel is near. No need 
for a gasoline station: there are power outlets in the hotel, and we 
will nicely reimburse the hotel owner. But how long will the charging 
procedure last, if we want to drive another 700 km the next day?

Let us do a back-of-an-envelope calculation. A standard power 
outlet can draw 16 A at most if we don’t want to blow the fuse. At 
220/230 V this yields a power of, say, 3.5 kW.

Compare this with the average car driving on the highway: it uses 
about 15 kW, which is higher by a factor of 4. The conclusion is that 
we need to charge the batteries for roughly 4 hours for every hour 
of driving. Since we want to drive for about 7 hours the next day, we 
need to charge for about 28 hours.

So if our great-grand-child will be driving an electric car, he had 
better pick a hotel that is especially equipped for fast overnight 
charging. And become very good friends with the hotel owner. 
Otherwise: forget about an early start the next morning.

Given the above result, it is interesting to calculate the energy fl ow 
into our present car when we fi ll our tank with gasoline. It turns 
out that we pump about 0.6 litres of gasoline each second. With the 
heat of combustion being about 35 MJ per litre, this translates into 
21 MJ/s = 21 MW (!). In terms of electric power, given a conversion 
effi ciency of 1/3, this is some 7 MW. That is 2000 times as fast as 
charging batteries from a standard electric outlet, see above.

Should our grand-grand-children muse about such numbers when 
driving down the highway, chances are that they’ll look back at us and 
our petroleum age, and think: gee, weren’t those guys lucky…
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22
 Counting fl ames

Ask any layman this simple question: “If you run your hot-water 
tap, you are using energy, right? How many lights do you think 

you could switch on from that energy during the same time?”
The answer will probably be something like: ‘Well, let’s see, I guess 

10, or perhaps even 20”. He or she will be surprised if we say that it 
may be as many as 1000.

The layman does not know that the specifi c heat capacity of water 
is remarkably high. And he or she does not realize the full extent of 
the fi rst law of thermodynamics.
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For us physicists, it’s easy. We could even explain things by counting 
fl ames, knowing that a small fl ame produces about 100 watts. Take a 
match. Its mass is about 0.1 grams and therefore its wood contains 
roughly 2 kJ. Now just assume that it burns for about 20 seconds, 
and there you go: 2000 J / 20 s = 100 W. For a candle we can do the 
same exercise. Find out for how long it will burn, look up the heat of 
combustion of paraffi n or stearine, and again: about 100 W. So the 
rule of thumb is simple: a small fl ame is a heater of about 100 watts.

From here it’s downhill. First let us look at a camping gas cooker, 
or – if we use natural gas at home – at the gas stove. Each burner has 
20 to 30 fl ames, so a burner should produce 2 to 3 kW of heat. And 
sure enough: if we look it up on the internet, Google tells us that our 
guess was right. For a hot water tap, though, that is not enough. If we 
happen to be familiar with gas geysers, we remember that they have 
about 10 rows of 10 fl ames. That makes 100 × 100 W or 10 kW. And 
the gas geyser isn’t even a device of great luxury. It has too small a 
capacity to produce a decent shower, for example. It is therefore safe 
to assume that an average hot water tap will easily exceed those 10 kW.

But let us not overdo things, and stick to 10 kW. And let us for 
simplicity assume that the water is heated electrically, so we can 
directly compare that to electric lighting. An effi cient light source 
producing 600 lumens consumes about 10 W. That is, indeed, a factor 
of 1000 lower than the hot-water tap.

This is a nice little lesson for any layman concerned about energy 
and global warming. Most often, he or she identifi es energy use at 
home with things that turn or things that shine: electric motors or 
lighting.

Wrong. It’s not motion. It’s not light. Heat is our guide.
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23
 Drink or drive

For most of us, the small revolution went unnoticed. When we drive 
our car these days, our gasoline engine is no longer running on fossil 

fuel, i.e., on the solar energy harvest of millions of years ago. For 10% or 
so, it is running on the solar energy harvest of last year: on bio-ethanol, 
that is. For diesel engines, it may be even more than just a few percent. 
In Germany, for example, up to 200 000 cars have been running on 
pure biodiesel lately. And the European Commission’s goal is that 10% 
of all transport fuel should be biofuel by the year 2020.

The EC may have been ill advised to set that goal. We have witnessed 
a dramatic increase in food prices world wide over the last years, and 
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part of that is due to biofuels. Is the whole idea of biofuels just a 
hype, then?

Let us do a back-of-an-envelope calculation. Our daily food amounts 
to about 10 000 kJ/day. In terms of oil or gasoline, that is ¼ litre per 
day, only a small fraction of what our cars needs as a daily diet. In other 
words: If adopted on a world wide scale, this idea is bound to run into 
problems, if we assume that the biofuel competes with food, which is 
what the present, so-called fi rst generation, does.

If we utilize not only the food-related part of plants, but the whole 
harvest of photosynthesis including straw and the like, we can do 
better. But even this ‘second generation’ of biofuels has its limits. The 
basic reason is that the overall effi ciency of natural photosynthesis 
is low. In a typical European climate, it is somewhat below 1% as 
an average over the yearly solar energy infl ux. Which is bad news 
for densely populated and energy-intensive countries. Take the 
Netherlands, for example. Even with an optimistic photosynthesis 
effi ciency of 1%, the area needed for the total energy consumption 
to be based on biomass on a sustainable basis would be more than 
twice the total area of the country. 

Granted, sooner or later we will have to rely on the sun for an 
appreciable part of our energy supply. But can’t we do better than good 
old photosynthesis? Think of photovoltaic cells, for example. Crystalline 
silicon cells routinely have an overall effi ciency of 10 to 15%, while multi-
junction concentrator cells achieved a record 43% in the summer of 2007. 
This suggests that we may be better off relying on high-tech solutions, 
rather than trying to meet the energy demand of the modern energy-
intensive society with methods of the Middle Ages.

In any case: Should we base our future fuel consumption on bio-
ethanol, we sure would run into nasty dilemmas. For example, during 
the reception of the 50th anniversary of the EPS in 2018, we would 
face questions like ‘Shall we have another glass, or shall we drive our 
car for another 300 metres?’
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24
 Feeling hot, feeling cold

Even on a cold day, a bit of sunshine can make a tremendous difference. 
People will say things like ‘It is supposed to be 15 °C according to 

the forecast, but in the sun it’s at least 25’. Although this may contain some 
truth in terms of heat balance, it is, strictly speaking, nonsense. There is 
no such thing as ‘temperature in the sun’. How would one measure that? 
Different types of thermometers hanging in the sun would give widely 
different readings, depending on construction, optical properties and the 
like. The only decent defi nition of air temperature is derived from the 
mean kinetic energy of the molecules: ½ m‹v2› = 3/2 kT. Radiation has 
nothing to do with it.
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But measuring the kinetic energy of the molecules in a gas directly 
is not exactly a piece of cake. Therefore we use an indirect way: the 
thermometer. It’s easy to use, but not always reliable. The problem is 
the low thermal conductivity of air. This makes the thermal contact 
between the air and the thermometer very poor. As a consequence, 
the infl uence of radiation is hard to suppress. If the thermometer 
is in the sun, forget a reliable measurement. But even in the shade, 
indirect radiation will cause our thermometers to be slightly optimistic. 
No wonder that meteorologist have strict rules for determining the 
temperature: thermometers must be placed inside well-ventilated 
casings, which are painted white, placed 1.5 metre above the ground, 
etcetera. If you think about it, it’s almost a miracle that air temperatures 
are accurately measured at all.

Wind is another source of misunderstanding, if it comes to temperature. 
Obviously, if the wind blows around our body (or, in fact, around any 
object that is heated above ambient temperature), the heat losses by 
conduction will increase. The reason is that the insulating layer of air 
– normally a few mm thick – will become thinner once the wind blows. 
The effect is the same as if the air temperature were lower. That seemingly 
lower temperature is often called the ‘wind chill’ factor. Although this 
is a widely known concept, many people are still missing the point. An 
example is the journalist who concluded, using the wind chill table, that 
the water in his car’s radiator would freeze well above the freezing point, 
if only the wind would blow… 

If we think about it, wind chill is an ill-defi ned concept. For one 
thing, it depends upon the clothing that we wear. For example, in the 
limit of infi nite insulation, wind would not bother us at all, and the 
wind chill factor would become meaningless. All we can say for sure 
is that any correction for wind must asymptotically reach a limiting 
value if the wind speed goes to infi nity. Consider bare skin: eventually, 
our skin would assume the air temperature, and the heat losses would 
be limited only by conduction inside our own body. Not an appealing 
prospect, if it freezes outside.

Sun and wind both make the concept of temperature a bit fuzzy. 
Thank heaven that kinetic theory provides us physicists with a reliable 
defi nition, come rain or shine.
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25
 The way we walk

Centuries of evolution have given mankind plenty of time to learn 
how to walk. Walking is a reasonably effi cient way of getting 

around, although not nearly as effi cient as riding a bicycle. A few 
obvious features help us to walk effi ciently: we move our arms and 
legs in antiphase, thus keeping the total angular momentum more 
or less zero. And we swing our legs at almost the natural pendulum 
frequency, which is around 1 Hz for adults. Indeed, traditional 
military marches proceed at 120 steps per minute: exactly 1 Hz. Given 
a standard step length of 83 cm, the corresponding marching speed 
is almost exactly 100 m per minute. Beautiful! This result does not 
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serve to illustrate the superiority of the metric system, but it sure is 
handy to know when hiking.

Energetically speaking, walking on a horizontal surface is a special 
case. We have no external force to overcome, in contrast to climbing 
the stairs, for example, where we have to fi ght gravity to increase 
potential energy; or to rowing and cycling, where we have to overcome 
drag from water or air. Walking is different: even aerodynamic drag 
is negligible (remember that it is proportional to the square of the 
speed). All energy that we produce is dissipated by our own body. 

One may wonder why walking costs any energy at all. In fact, 
experiments show that the metabolic cost of walking, derived from 
oxygen consumption and carbon dioxide production, is about 2.5 W 
per kg of body mass. This is roughly 200 W for an adult. Why is that 
still so much? It is because human walking is mechanically complex. 
It involves the activity of numerous muscles, and various theories are 
being developed to arrive at a comprehensive description.

As innocent physicists we may offer an obvious clue: the effective 
displacement may be horizontal, but our centre of mass must be raised by 
some 4 cm at each step. Could that account for the high metabolic cost? 
This simple explanation, tempting though it may be, is not supported by 
the evidence. Experiments by Arthur D. Kuo at the University of Michigan 
have shown that a walking pattern that reduces the displacement of the 
centre of mass, does not reduce metabolic cost. In fact, it makes the 
metabolic cost go up. Also when the step length is varied beyond our 
natural step length, the cost goes up. In other words: the way we normally 
walk is also the most effi cient one.

The conclusion seems to be inevitable. If we really want to walk 
more effi ciently, we should not try to improve on our steps by thinking 
physics. We shouldn’t even think at all, just walk. And if we are still 
not satisfi ed with the result, there is only one alternative: go home 
and pick up our bicycle…
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26
 Wine temperature

It happens to all of us, once in a while: We go to open up a bottle of 
wine only to discover that the temperature isn’t right. If it is a red 

wine and it’s too cold, it’s easy: we can simply put it in the microwave 
oven for a few seconds (don’t tell the wine maker). But if it’s a white 
wine that is much too warm, we have a problem. All we can do is put 
the bottle in the refrigerator – and be patient. How long will it take 
for the wine to reach the desired temperature? 

Being physicists, we realize that the answer is determined by exponential 
decay of the temperature difference between bottle and refrigerator, with 
the time constant being the thermal relaxation time of a bottle of wine in 
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air. This is not exactly a problem treated in the textbook, but it is easily 
solved. The thermal relaxation time simply equals RC, the product of 
thermal resistance R and heat capacity C. Since C of the wine can be well 
approximated by the value of water, all we need to fi nd out is the thermal 
resistance R of the glass layer between wine and air. This may sound 
cumbersome for an exotic shape like a wine bottle, but an approximation 
in terms of a parallel-plate geometry will do. Therefore we put R = d/kA, 
where d is the glass thickness, k its thermal conductivity coeffi cient and A 
its total outer surface area.

The calculation is easy to do, with d just over 3 mm as determined 
from the weight of an empty bottle, its outer surface area and the 
mass density of glass. The resulting relaxation time is found to be 
almost exactly 3 minutes.

Three minutes! Or even less if we include radiation! That can’t be 
right, as we know from experience. And indeed, it isn’t. The reason is 
that we have grossly underestimated the value of R. We must include 
the thin layer of air surrounding the bottle, which is effectively 
convection-free, and in which thermal transport relies on conduction. 
This layer represents a much larger thermal resistance than the glass 
does. The 3 minutes just calculated must be considered a lower limit. 
The experimental value of the relaxation time of a wine bottle in the 
refrigerator is found to be about 3 hours, corresponding to an effective 
air layer of a few mm thick.

Of course we could speed up the cooling process by putting the 
bottle in iced water rather than air. If natural convection in water and 
wine is suffi ciently effective, we may approach the limit calculated 
above.

But there is a better way to cool our wine: use a commercial ‘cooling 
jacket’ which contains a cooling gel that has a large latent heat capacity. 
The advantage is that it may be pre-cooled to far below 0 °C and that 
it provides a good thermal contact with the wine bottle.

Obviously, this trick works for any bottle, regardless of its contents. 
But in view of the heavy brain work we have just done, it seems only 
fair to treat ourselves to a delicious Pouilly-Fumé from the Loire, or 
a Pinot blanc from Alsace. At just the right temperature… after only 
8 minutes.
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27
 Over the rainbow

Everybody knows the rainbow, and most physicists know its optical 
background.

But there is one question about rainbows that even most physicists 
cannot answer off-hand: what about the brightness of the sky above 
and below the rainbow?

In order to fi nd the answer, let us fi rst remember how the rainbow 
itself comes about. Geometrical optics will do, if we assume the size 
of rain droplets to be large compared to the wavelength of light. The 
key is that light rays making one internal refl ection inside a raindrop 
have an extreme in their deviation as a function of ‘impact parameter’ 
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if we put it in molecular collision language. That is, outgoing ray no. 
2 in the fi gure makes the largest angle with respect to the horizontal, 
although it has incoming neighbours at either side (a fact that can easily 
be demonstrated by slowly moving a cylindrical glass of water through 
a laser beam). Consequently, when we turn away from the sun and look 
at a rain cloud illuminated by the sun, the refl ected light is extra bright 
at this angle of about 42 degrees with respect to the sun’s rays: the 
rainbow angle. Due to dispersion, the angle is different for each colour, 
and we see a colourful cone of light: the rainbow.

Image 27.1 | Sunrays leaving a raindrop after a single internal refl ection, responsible 
for the main rainbow. Ray 2 illustrates the extreme in the deviation, at the ‘rainbow 
angle’ of 42°.

So far for the rainbow itself. Now what about the brightness of the 
sky next to it? From the fi gure it is obvious that there is also light 
refl ected at angles smaller than 42 degrees, but not at larger angles. 
Conclusion: the sky is brighter inside than outside the rainbow.

But wait: this was only about the primary rainbow. What if there 
is also a secondary rainbow, having an angular radius of about 
52 degrees? We recall that the secondary bow is caused by the extreme 
in the deviation of rays which leave the droplets after two internal 
refl ections. It has inverted colours since the light rays have turned the 
other way around inside the droplets.
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Image 27.2 | Sunrays leaving after two internal refl ections, causing the weak secondary 
rainbow at a 52° angle.

How does the secondary rainbow affect the brightness of the 
sky? Interesting question, but easy to answer if we start by looking 
at rays going through the center of a droplet (impact parameter 
zero, or a ‘head-on collision’). After two internal refl ections, such a 
ray continues to move along its original trajectory. With increasing 
impact parameter, the outgoing rays will gradually move over 
toward the incoming direction until they reach their extreme: the 
(secondary) rainbow angle of 52 degrees. Consequently, they will not 
reach the ‘dark’ area in between the two rainbows. So the conclusion 
emerges that the sky is brightest inside the primary and outside the 
secondary bow. Complicated though it may seem, it reminds us of a 
well-known song. The sky is bright, somewhere over the rainbow. But 
not everywhere.
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28
 New light

The old-fashioned incandescent light bulb with its tungsten 
fi lament is a marvelous piece of technology. If we switch it 

on, it needs only a split second to light up our offi ce, our home 
or our fridge. Sure, this instant reaction is largely due to the low 
heat capacity of the fi lament. But there is more to it than most 
of us realize: the resistance of tungsten, like all ordinary metals, 
has a positive temperature coeffi cient. Indeed, if we calculate the 
resistance from the bulb’s power and the grid voltage, and compare 
it with a direct measurement at ambient temperature, we fi nd that 
the hot fi lament has a larger resistance by a factor of 20 or so. This 
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means that, if we switch the bulb on, the initial power is very high, 
making the bulb rush to its operating temperature in no time at 
all. And the other nice thing is: should the voltage go up for some 
reason (which it did, by the way, from 220 to 230 V over the past 
few decades) the voltage surge will be counteracted by the increased 
resistance. This dampens the power increase, and allows the bulb 
to withstand the surge. Bulbs from the good old ‘70s or ‘80s should 
have no problem adapting to the 21st century.

Alas! The efficiency of the incandescent light bulb is downright 
lousy. It is so poor, that the members of the European Parliament 
recently decided to ban the bulb. They have a point. There is 
no way we can ever make a glowing piece of tungsten into an 
efficient light source. For one thing, the emission peak at 3000 K is 
around 1 μm wavelength, as follows directly from Wien’s law. The 
corresponding emission curve has only a small overlap with our 
eye’s narrow sensitivity curve at around 0.5 μm. And if we go much 
higher than 3000 K, the filament won’t last very long. By invoking 
halogen vapour to redeposit evaporated tungsten back onto the 
filament, we may get a bit closer to the melting point of 3700 K. 
But even if we were able to find a high-melting-point metal which 
could be heated to 6000 K (roughly the effective solar temperature, 
with an emission peak that nicely fits our eye sensitivity), its black-
body radiation curve would still be much broader than the eye 
sensitivity curve, with a lot of energy wasted.

What we need is a smart light source which selectively emits 
radiation that our eyes can see. And which has no fi lament that slowly 
but surely evaporates.

So we turned to gas discharge and invented fl uorescent TL 
lighting long ago, with an effi ciency of 100 lumen per watt, and 
– more recently – its folded version known as the energy saving 
lamp, reaching 50 lm/W. And, of course, the Light Emitting Diode 
as its solid-state counterpart, with a similar effi ciency, depending 
on the type. Compare this to a poor 12 lm/W for the good old 
incandescent bulb! 

We may not always be happy with politics: when it comes to 
lighting, however, we have to admit that ‘Brussels’ has a point. 
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Incandescent light bulbs may be fast and convenient, their 
emission spectrum may be nice and continuous, but in terms 
of efficiency, they are beyond hope. It’s about time to kiss those 
bulbs goodbye.
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29
 Windmill nuisance

Many people dislike them, and some fi nd them downright awful: 
it’s the wind turbines scattered all across Europe these days. 

And let’s be frank: there is nothing quite like the relentless droning 
of rotor blades to spoil the peace and tranquility of the countryside. 
Why do we put those things all over the place? As physicists we 
realize that wind power is proportional to v3, with v the wind speed. 
So it may not be such a great idea to put those turbines on land, let 
alone in the middle of continental Europe where wind speeds are 
typically low. Why not put them off-shore where winds are strong, 
in the North Sea or the Baltic, for example? A few off-shore wind 
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farms have already been put into operation recently, and a number 
of others are planned. Shouldn’t we forget those monsters on shore 
altogether?

Let us have a closer look at the two options. First: wind turbines at 
sea. How many do we need, to begin with? Let us assume we want to 
have the equivalent of, say, 1500 MW, which is typically the electricity 
output of a large conventional or nuclear power plant. Modern wind 
turbines with a rotor diameter of 90 metres can produce 3 MW each. 
One may now be tempted to conclude that we need 500 turbines. 
Wrong. We have to include the load factor, i.e., the average output 
divided by the maximum output. This is typically 30 to 33% for wind 
turbines at sea (and up to 25% on shore). So we need about 1500 
turbines of this type for 1500 MW.

How much space would such a large number of turbines take? Here 
we have to account for the fact that a reasonable spacing is required. If 
wind turbines are too close, they will spoil each other’s wind profi le. 
This not only decreases the power of the wind turbines downstream, 
it also puts extra strain on the construction as a result of turbulence. 
It turns out that a spacing of 7 rotor diameters is a reasonable rule of 
thumb for wind farms. So the total area required is about 800 km2. 
This is consistent with a rule of thumb saying that wind farms at sea 
generate, on average, between 1 and 2 MW per km2, depending on 
type and location. This is, in fi rst approximation, independent of the 
rotor diameter, since both turbine power and spacing scale with the 
square of the diameter. Large turbines obviously take advantage of 
the fact that the wind speed increases with altitude.

Given the size of the seas around Europe, 800 km2 does not sound 
unreasonable. So we should opt for off-shore wind power? 

Perhaps, but off-shore wind turbines have a drawback: building 
and maintaining them at sea is cumbersome, not to mention nasty 
corrosion by the sea water. This makes them roughly twice as expensive 
as turbines on land. Economically speaking, we would be better off 
with wind power on shore. Such turbines, if placed wisely, are almost 
comparable to traditional power plants. And their ‘energy pay-back 
time’ is less than a year. Sounds great, but it does not address our 
aesthetic objections.
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One may wonder: How did our 17th century ancestors perceive the 
windmills that we fi nd so charming in the Dutch landscape today? 
Interesting question. But the answer… is blowing in the wind.



83

30
 Fog and raindrops

As every physicist knows, fog – or mist – is just a collection of tiny 
drops of water, at least if it is caused by nature. What distinguishes 

them from rain is, of course, their size. They are so small that their 
vertical speed is almost negligible. The dramatic effect of size on speed 
is obvious if we realize that for droplets smaller than, say, 0.1 mm, the 
fl ow profi le around the droplet is purely laminar, so the friction F is 
determined by Stokes’ law: F = 6πηRv, with η the viscosity, R the radius 
and v the speed. And since the friction is balanced by weight, which 
is proportional to R3, we see that the speed is proportional to R2. This 
means that small droplets fall very slowly indeed. Take, for example, 
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water droplets of 2 μm diameter, much larger than the wavelength of 
light and therefore still visible. We fi nd that they fall through air at a 
speed of about 0.1 mm per second. That’s not particularly fast: even the 
slightest wind or air turbulence will offset such low speed.

But wait: do we really need turbulence to keep such tiny droplets 
airborne? Isn’t thermal motion suffi cient to keep them from falling? 
Don’t they behave like ordinary molecules in the atmosphere, having a 
height distribution obeying Boltzmann’s law? We can easily check if this 
is the case. We remember that Boltzmann’s law implies a distribution over 
height h decaying as exp(-mgh/kT). In normal atmospheric conditions, 
the 1/e value is reached at a height of around 8000 m. Obviously, for 
particles much heavier than nitrogen or oxygen molecules we must 
settle for a distribution that stays closer to earth. Let us scale down the 
atmosphere for water droplet by a factor of one thousand, choosing a 
1/e-value of 8 m. For this to be the case, the mass of a water droplet 
must be 1000 times that of a nitrogen or oxygen molecule, i.e., it must 
consist of about 1500 water molecules. This is more like a large cluster 
than a droplet. Its diameter can be readily estimated by using the typical 
‘size’ of 0.3 nm for small molecules or atoms in a liquid. In the case 
of water, we can even do a simple calculation if we consider a litre of 
water and use Avogadro’s number. Sure enough, we fi nd pretty exactly 
0.3 nm for the distance between the centres of two neighbouring water 
molecules. From this it follows that the diameter of the cluster is only 
5 nm. This is really small, much smaller than the wavelength of light. 
So we cannot see such clusters, but they surely make effi cient light 
scatterers.

The conclusion? Mini-droplets smaller than about 5 nm would 
stay airborne forever, even in perfectly calm atmospheric conditions. 
They would form a perfect fog that never reaches the ground. If we 
were to walk or cycle through such a fog, it would be our front that 
got wet, not so much our head.

Alas, these mini-droplets do not survive very long. Inevitably, they 
collide and form larger drops. Slowly but surely they will start to fall. 
And by the time we can distinguish individual drops, we can be sure 
that we are walking in the rain.
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 Why planes fl y

Ask any physicist how the wings of an aircraft work, and most 
probably he or she will come up with the popular explanation 

based on Bernoulli’s law. The idea is that the cross section of a wing 
is curved along the upper side, and more or less fl at at the bottom. 
Air hitting the front of the wing, the ‘leading edge’, is split in two, 
and the two air masses meet up again at the rear of the wing, the 
‘trailing edge’. Since the distance along the upper surface is longer, 
the air speed along the upper side must be greater. And according to 
Bernoulli’s law, larger speeds imply lower pressures, and so there is a 
net upward force on the wing.
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It sounds simple and logical. But it’s wrong. We know it must be 
wrong. If this were the correct explanation, how on earth would 
planes be able to fl y upside down?

So what is it that produces lift on a wing? It turns out that all we 
need is for the air fl ow to be defl ected downward by the wing profi le. 
As shown elegantly by Holger Babinsky from Cambridge back in 2003 
(Physics Education 38, p. 497-503), streamline curvature is the key. 
Think of a sailing boat, and forget the mast for a second. The sail can 
be seen as a vertical wing. It works beautifully propelling the boat, 
but its shape is nowhere near that of a traditional wing. There is no 
difference in path length along the two sides of the sail, so the Bernoulli 
explanation invoking different path lengths fails. Yet the sail is very 
effi cient, simply because it creates curvature in the air fl ow. If we work 
it out, we fi nd a simple relation between the curvature of the fl ow and 
the pressure gradient perpendicular to the streamlines: dp/dn = ρv2/R, 
with coordinate n normal to the streamlines, ρ the air density, v the 
speed and R the radius of curvature. The sign is such that the pressure 
decreases toward the center of curvature. This yields a pressure decrease 
at the convex side of the sail, and a pressure increase at the hollow side.

Indeed, thin curved wings like those of a sail are ideal for creating 
streamline curvature. Birds’ wings tend to be like that. For aircraft, 
this is not an attractive option: thin curved wings would not meet 
structural demands and, in addition, would have no useful volume 
for storing fuel. Fortunately, any shape that introduces curvature into 
the fl ow profi le can generate lift, even a symmetrical wing. All we have 
to do is to choose the ‘angle of attack’ appropriately: if the wing is 
slightly tilted upwards, its upper side will create streamline curvature 
as effectively as a thin curved wing would, thus giving by far the 
largest contribution to the lift. Below the wing there are regions of 
different senses of curvature, creating a net effect which is close to 
zero.

So, for a symmetrical wing the amount of lift – positive or negative – 
is purely a matter of adjusting the angle of attack, obviously within 
certain limits. And fl ying upside down is now a piece of cake. If you 
feel like it, of course.
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32
 Heating problems

It’s winter; our house is warm and cozy, but we need fresh air. In 
an earlier daily-life column (Fresh air, page 25) we noticed that if 

we instantly refresh our room with cold outside air while keeping 
the heating off, the temperature will return almost to its original 
value once thermal equilibrium has been re-established. The reason 
is that the heat capacity of the air is small compared to that of all 
the solid-state stuff in our room, certainly if we include part of the 
walls. In turn, this is because the number density of atoms in solids 
is roughly 1000 times the density in air at ambient temperature and 
pressure, while the contribution to the heat capacity of every single 
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atom, whether in a solid, a liquid or a gas, is roughly the same: a few 
times the Boltzmann constant k.

Incidentally: just how instantaneous must the venting be in order for 
the argument to be valid? Obviously, the venting time has to be small 
compared to the thermal relaxation time of the room. But this is not 
simple to assess. For one thing: temperature equilibration of a room is 
not a single-relaxation-time process, given the wide variety in thermal 
relaxation times RC of all the objects in the room (R is the thermal 
resistance and C the heat capacity). The relaxation time of an empty 
wine glass, for example, may be just half a minute; the value for a full 
bottle of wine is about three hours, and that for the walls and other large 
objects may be even longer. In any case, the values are large enough so 
that ‘instantaneously’ refreshing the air is easily achieved. Subsequently, 
convection in combination with the small heat capacity of the air will 
rapidly raise the air temperature almost to its original level. Old-fashioned 
as this procedure may be, from an energy-saving perspective it has an 
advantage over having a continuous draught of cold air through our 
room, since this would make the temperature gradient near our skin 
steeper and make us feel cold.

The process of warming up the air in our room offers an interesting 
physics problem. If we compare the two situations: cold air and warm 
air in our room, in which of the two cases will the total kinetic energy 
of the air molecules in our room be largest, if we ignore convection 
currents? The answer seems obvious: since the mean kinetic energy of 
a gas molecule is directly proportional to temperature (viz., 3/2 kT), 
the total kinetic energy should go up.

But there is a catch. While the temperature goes up, some of the 
air will escape, since the atmospheric pressure will not change, being 
dictated by the outside pressure. And lo and behold, if we may consider 
air as an ideal gas (which is a very good approximation at ambient 
conditions) the density is inversely proportional to the temperature 
at constant pressure. And since the volume of our room remains 
constant, the number of molecules in it also decreases inversely 
proportional to the temperature.

So, the answer may be somewhat surprising: if we heat our room, 
the total kinetic energy of the air in it remains exactly constant.
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 Bubbles and balloons

When blowing soap bubbles as kids, we were probably much too 
fascinated by their beautiful colours to realise that there is some 

interesting physics going on. For one thing, the very existence of the 
bubbles demonstrates the concept of surface tension, since the slight 
overpressure inside the bubble has to be balanced by attractive forces 
in its ‘skin’. And, in the process, it teaches us that, for a given volume, a 
sphere has the smallest surface area.

Blowing up a rubber balloon reveals some additional interesting 
aspects. Since the forces involved are much larger, some of these 
aspects are easily noticed. We have all experienced that the fi rst stage 
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of blowing up a balloon is the hardest. Once the balloon has reached 
a certain volume, things get easier. The pressure needed decreases. 
This is funny, because everyone knows that, if you stretch a piece of 
rubber, the force required increases with length.

To fully understand the behaviour of the balloon, we need to 
know a bit more about the elasticity of rubber. This turns out to be 
signifi cantly different to the normal behaviour of a common elastic 
material, for which Hooke’s law holds: strain (relative change in length) 
is proportional to applied stress. For rubber, things are different. If 
we pull a piece of rubber band apart, we fi nd that, after an initial 
rise in the stress similar to Hooke, there is a relatively fl at plateau 
which ranges from strains of about 50% to 200%. Here the stress 
is reasonably constant. Only at about 400% – four times the initial 
length – does the stress increase steeply, since the macromolecules 
making up the rubber become fully stretched.

Now back to the balloon. Remembering the ‘plateau’ we assume for 
argument’s sake that the ‘surface tension’ τ (force per unit length) is 
constant, just like in the case of soap bubbles. If we now consider a 
spherical balloon to consist of two imaginary halves and write down 
the force balance between the two halves (πR2p = 2πRτ, with p the 
overpressure in the balloon), we fi nd that the pressure needed to keep 
the balloon infl ated is inversely proportional to the radius R. This 
qualitatively explains the fact that blowing-up the balloon gets easier 
once it has reached a certain size. 

This observation calls for a spectacular experiment to amuse your 
audience. Take two balloons, infl ate one of them to roughly one third of 
its maximum size and the other to two thirds. Attach both balloons to 
a piece of tubing while keeping the connection between the two closed 
with your fi nger. Ask the audience what will happen if you let go and 
connect both balloons through the tube. Sure enough, the audience 
expects the balloons to become equally big. After all, this is what happens 
if you take the two connected uninfl ated balloons and pull them apart: 
they will both be stretched to the same size. 

But the audience is wrong. The big balloon gets bigger and the 
smaller one gets smaller. It illustrates the difference between force 
and pressure.
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The funny properties of rubber are also at the heart of the 
remarkable behaviour which we see if we infl ate a long, sausage-
shaped balloon. We fi nd that two ‘phases’ coexist at a single pressure. 
But here the physics is a bit more complicated. Not quite as simple 
as blowing bubbles.
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34
 Funny microwaves

The introduction of the microwave oven (or just ‘microwave’, the 
commonly used pars pro toto) has made our daily lives much 

easier. As physicists we may be a bit misled by the name and think 
of micrometer wavelength. But the standard oven operates at a 
frequency of 2.45 GHz, which corresponds to a wavelength of some 
12 cm. That’s not precisely in the middle of the microwave region. 
This wavelength does explain though that, given the typical oven size, 
standing wave patterns can occur, causing large intensity differences 
over our food. We also realize that we need a convenient absorber in 
our food: water. But the absorption mechanism is not trivial. It is not 
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some intramolecular vibration or rotation mode that we are using. 
Typical rovibrational bands involve much higher energies, such that 
they are even responsible for the strong absorption in the red part of 
the visible spectrum in water. Instead, we use the large dipole moment 
of the water molecule to make it ‘wiggle’ amidst its neighbours. To 
be more precise: we absorb radiation by dielectric loss due to dipole 
relaxation. The microwave region is perfect for that. At much lower 
radiation frequencies the dipoles would follow the fi eld changes and 
there would be no absorption. At very high frequency the dipoles have 
no time to change their orientation, and again nothing much happens. 
In between, where the dipoles lag behind the fi eld, we expect a broad 
absorption curve. As already elucidated by Michael Vollmer in Physics 
Education back in 2004, the microwave frequency employed is not even 
near the maximum of the absorption curve. If that were the case, the 
absorption would be so large that only a thin layer of food would be 
heated. Instead, the frequency used is such that the penetration depth 
is in the order of a few cm, allowing our food to be heated more evenly. 

An interesting consequence of the dipole relaxation mechanism is 
that ice has very little absorption. The molecules are simply too fi xed 
in their lattice positions to follow the oscillating fi eld. This reduces 
the absorption by three to four orders of magnitude.

So much for liquid or solid water in our oven: what about metals? 
Of course, refl ection of the microwaves is almost perfect, due to the 
free electrons which essentially re-radiate the microwaves. Their 
penetration depth into the metal is in the order of 1 μm only. So 
our kitchen should be on perfectly safe ground as long as we keep 
the oven closed. And it should be no problem to leave a spoon in 
our cup of tea. A fork may be risky, though. Its sharp extremities will 
concentrate the electric fi eld lines just like a lightning conductor does, 
and may lead to breakdown, with an interesting but possibly harmful 
light show as a result.

The most spectacular show may be caused by our precious decorated 
china, especially if the decoration is a thin gold layer. The reason is not 
trivial. We must remember the extremely small penetration depth of 
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the microwaves in metals. Inside that thin layer a lot of heat will be 
dissipated. For a solid metal piece like a spoon, this poses no problem. 
Its thermal conductivity and heat capacity are large, so it can easily 
absorb the heat and transfer it to the fl uid in the cup. Alas, our china 
cups are poor thermal conductors, and the heat has nowhere to go 
but to the tiny thermal mass of the metal. So if we absent-mindedly 
put our beautifully decorated cup of tea in the microwave, we may 
have to kiss that cup goodbye…
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 Brave ducks

Remember how hard it was to fi rst break the sound barrier? It took 
several fatal attempts by brave pilots before Charles (‘Chuck’) 

Yeager fi nally managed to fl y faster than the speed of sound on the 
14th of October, 1947. The problem was: by the time an aircraft 
approaches the speed of sound, the sound wave crests pile up in front 
of the plane. It then has to push through this barrier of compressed air 
in order to go faster than the waves. Once it is faster than the sound 
waves, an interesting situation occurs, quite similar to the case of a 
bullet moving at supersonic speed. The wave fronts produced have 
an enveloping circular cone, the ‘Mach cone’. It is easy to see that the 
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half apex angle of the cone, θ, is related to the speed of sound c and 
the speed of the plane v by sin θ = c/v. Since there are no sound waves 
outside the Mach cone, the plane will pass us before we actually hear 
its sound.

Sound waves bear many analogies to water waves. Look at a duck, for 
example, speeding through a deep pond. See the V-shaped pattern of 
waves trailing the swimming duck? Doesn’t it look like he is fi ghting the 
‘wave barrier’ of water in front of him and producing a two-dimensional 
version of the Mach cone? Brave duck!

This certainly is an appealing thought. But it’s wrong. What we 
may perceive as a 2-D version of a ‘Mach cone’ actually consists of 
two envelopes of a feathered pattern of dispersive waves.

Despite the analogies between water waves and sound waves, 
there are a few essential differences. Sound waves in air travel at a 
fi xed speed without dispersion. The phase velocity c is equal for all 
wavelengths and equal to the group velocity. For supersonic fl ight 
this leads to the simple expression for the ‘Mach angle’ given above.

Water waves are much more complicated. They travel at the 
interface of two media, and are governed by gravity. Let us look at the 
deep-water limit, which is a good approximation for the duck as well 
as for ships on the ocean. Unlike sound waves in air, the phase velocity 
of the waves V depends on the wavelength, with long waves traveling 
faster than short waves. They follow the dispersion law V = √(g/k) 
where g is the acceleration of gravity and k the wave number 2π/λ. 
In other words, the speed of the waves is proportional to the square 
root of their wave length. At any speed of the duck or the ship, there 
will be waves running along with the same speed, whereas in the 
supersonic-fl ight case all waves are overtaken by the plane.

The complicated behaviour of the waves behind a duck or a ship in 
deep water was fi rst worked out by Lord Kelvin (William Thomson), 
and is often referred to as ‘Kelvin wake pattern’ or ‘Kelvin ship waves’. 
Kelvin was the fi rst to fi nd that, indeed, the wave pattern is bounded 
at either side by a straight line at an angle of 19.5 degrees with respect 
to the direction of the ship. This sounds like an awkward angle, and 
it results from a rather lengthy derivation. The angle may sound less 
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awkward if we write it down in its precise form, as arcsin (1/3). In 
turn, the 1/3 results from the fact that the phase velocity given above 
is twice the group velocity. But the important thing is: this odd angle 
is fi xed and characteristic for this type of wave. It has nothing to do 
with speed.

Too bad for the duck: In order to produce the V-shaped Kelvin 
wave pattern, he doesn’t have to be brave and swim fast. Let alone 
faster than the ‘speed of sound’.
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36
 Muddy cyclists

When watching the Tour de France or the Giro d’Italia on a not-so-
sunny day, we are confronted with a simple physics problem. Why 

is it that cyclists on a wet road tend to get their back decorated with a 
vertical stripe of mud? Of course, it is due to the water from the road 
picked up by the tire. Centrifugal forces throw it off the tire somewhere in 
the upper part of its trajectory, and the forward speed launches it towards 
the poor cyclist’s back. But why does the water leave the tire somewhere 
around the highest point? A superfi cial analysis of the wheel’s motion 
may give us a clue. Any point along the rim traces out a cycloid, and its 
speed varies from zero to twice the speed of the bike. So isn’t the answer 
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simply: it is because the speed of the tire rim is highest at its highest point, 
and so is the centrifugal force?

Reasonable as this may sound, it is entirely beside the point. Sure, 
it is the centrifugal force that counts. But that is the same everywhere 
along the wheel rim, given a certain speed. The fact that there is a linear 
motion superimposed on the wheel’s rotation is irrelevant.

It is even quite the opposite, which we realize if we take gravity 
into account. Gravity tends to make the drops fall off much earlier, 
much closer to the road, whereas it tends to make the water stick to 
the tire near the top. We must conclude that the cyclist’s back gets wet 
not because of, but despite the fact that the relevant tire part is near 
its highest position.

This raises the question: at exactly what speed does the cyclist 
get spattered with mud? We should realize that the drops leaving 
the tire precisely at its top position are rather innocent. They will 
leave horizontally, pass under the saddle and never make it to the 
cyclist’s back. The real culprits are those drops that come off earlier, 
somewhere around 45 degrees before they reach the top, or even 
around 60 degrees before the top.

Now things get a bit complicated, since parameters like the exact 
position of the rider relative to the wheel come into play. Moreover, 
it is not suffi cient to have centrifugal and gravitational forces balance. 
The water drops coming off the tire rim need some extra speed to be 
launched upward, in order to reach the cyclist’s back.

A calculation for a standard cyclist and ignoring the drag on the 
droplets, done by Fokke Tuinstra from Delft University of Technology, 
shows that the drops which most likely make it to the rider’s back will, 
indeed, leave the tire reasonably early, at around 60o before the top. 
They will hit the rider’s back as soon as his speed exceeds some 12 km/h. 
If he rides a standard-size bicycle, that is. The reason is the crucial role 
of the wheel diameter. Given a certain speed v of the cyclist, the balance 
between centrifugal force and gravitation, v2/R = g, shows that smaller 
wheels make things worse.

So, if you happen to be on your way to an important meeting 
wearing your business suit on a folding bike, you better make sure 
that the bike has an effective mud-guard over its back wheel. 
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37
 Flying (s)low

When thinking about energy-effi cient travel, why not use our 
imagination and try to construct a vehicle that has zero 

resistance? In fact, we do not have to invent it. It already exists. It’s 
the airship, or zeppelin, named after its developer, the German count 
Ferdinand Graf von Zeppelin. It does not need high speeds to stay 
airborne, in contrast to a plane. Neither does it have the annoying 
rolling resistance of a car. So this looks like the ideal way of transport, 
viewed from a perspective of energy.
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Or does it? All the above may be true if we just want the zeppelin 
to fl oat at a fi xed spot. But what happens to its effi ciency once it 
starts moving?

We can easily make a back-of-an-envelope estimate. All we have to do 
is to work out the air resistance of the airship, keeping in mind that the 
resistance (in newtons) is equivalent to the energy dissipated per unit 
distance (in joules per metre, or kJ/km if you wish). To keep it simple, 
let us compare the airship with a car. This is a fair comparison: in 
contrast to a plane at high altitude, a car moves through air at ambient 
pressure, just like a zeppelin. After all, zeppelins are bound to fl y low, 
since Archimedes’ law would not allow them much lift in thin air.

And if we consider speeds of 100 km/h at the very least (just think 
of a zeppelin in a headwind!) the rolling resistance of the car can be 
ignored, since it makes only a minor contribution at such high speed.

So let us look at the air resistance, or drag. We may remember that it is 
given by F = CDA(½ ρv2), where CD is the drag coeffi cient, A the frontal 
surface area, ρ the air density and v the speed. For a fair comparison 
we should take the value of A per passenger in both cases. For a car, 
this is about 0.5 m2. For a zeppelin we may take the dimensions of 
the Hindenburg, the airship that made history when it tried to land in 
New Jersey back in 1937. It had a diameter of 41 metres and carried 
about 100 passengers. This yields a frontal area of 13 m2 per passenger. 
Obviously, there is no way that this can compete with a car. Even if we 
take into account that the value of CD for the cigar-shaped zeppelin 
may be lower than the value for a car by a factor of three (0.1 vs. 0.3, 
say), the airship loses by an order of magnitude.

We can check our estimate using the Hindenburg’s technical data. 
It had a top speed of 135 km/h and its engines had a power P of 
3560 kW in total. If we work it out, realizing that P = Fv we fi nd that, 
indeed, a car beats the airship by a factor of 7 or 8.

If we remember that a full airplane is about half as fuel-effi cient as 
a full car, we conclude that a plane is also superior to the zeppelin by 
a wide margin, even though its speed is much higher.
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This may come as a surprise, but the reason is obvious. For one 
thing, the airship has this enormous volume, giving rise to large air 
resistance. Secondly, the density of the air through which it moves is 
larger by a factor of 4 compared with the air at cruising altitude of 
a plane. 

The conclusion is inevitable. There is no bright future for the 
airship, even if the price of energy goes soaring. Unless we really take 
our time and go slow.



103

38
 Funny ice

Water is a great substance, especially when it freezes. It becomes 
slippery and is fun to skate on. But why is it that ice is so 

slippery? It is not because it’s fl at. Glass, for example, is fl at but not 
slippery. What we need is a layer of water to turn a fl at surface into a 
slippery one. And sure enough, if we skate on ice we skate on a thin 
layer of water.

So where does the water come from? Many people think it’s 
because of the pressure that the skater puts on the ice. After all, 
pressure lowers the melting point, and a skater’s weight on a tiny 
skate makes quite a lot of pressure. But if you do the calculation 
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this turns out to change the melting temperature by a few tenths of 
a degree at most. So this explanation is wrong. Hardly surprising, 
when you consider that a hockey puck with its negligible weight 
slides so well across the ice.

In fact, we don’t need pressure at all. There is always a thin layer 
of liquid water on the ice, up to some 70 nanometres thick if the 
temperature is just below freezing point. Basically this is because the 
molecules in the uppermost layer lack neighbours at one side, so they 
are not as tightly bound as the molecules in the bulk. Therefore ice 
is wet, and that allows us to glide so beautifully almost without any 
resistance.

So much for the skating fun. What about the freezing process, 
if we consider still water that is not fl owing? Of course, we need 
sub-zero air temperatures to do the trick. And as long as the water 
temperature is above 4 °C, natural convection mixes the water, since 
warmer layers near the bottom are lighter and rise. But once the water 
is at 4 °C, it has reached its highest density, so the coldest water near 
the surface is lightest and remains on top. Convection stops, and the 
freezing process can begin. Since this situation is reached sooner in 
shallow than in deep water, this explains why shallow water freezes 
more easily.

If the air temperature rises again, is there something special about 
melting of the ice layer? For reasons of symmetry we may expect that 
the melting process is just as fast as the freezing, if the temperature 
differences are supposed to be equal and opposite.

Wrong. During freezing in still cold air, the air layer just above 
the ice is warmer than the rest of the air. Natural convection now 
helps to cool the ice. By contrast, if the ice is melting due to rising 
air temperature, the ice is relatively cold, so the cold air next to it will 
have no tendency to rise. Convection will not set in to increase heat 
transport. We conclude that melting is slower than freezing.

Skaters hate to see the ice disappear. Fortunately, as long as the 
air temperature remains sub-zero and if we can ignore radiation, 
the thickness of the ice layer should remain unchanged. Or does it? 
We realize that, even below 0 °C, there is a fi nite vapour pressure, so 
water molecules will go directly from the solid to the gaseous phase, 
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by sublimation. Many skaters will conclude that this is bad news, since 
it will decrease the thickness of the ice layer.

Wrong again. Sublimation cools the ice surface, the heat involved 
being the sum of melting and vaporization heat. This is almost an 
order of magnitude larger than just the melting heat, so the net effect 
is that this process makes the ice layer grow faster at the bottom than 
it disappears at the top.

So if you think that everything about water and its phase transitions 
is trivial, you’re on thin ice…
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39
 Amazing candle fl ames

Granted: a candle fl ame is a lousy source of light. For an energy 
user of some 100 W, its light production doesn’t even come 

close to any modern light source. But other than that, it represents 
an ingenious piece of technology. 

Before going into details, we should realize that, when talking 
about fl ames, we are talking about chemical reactions in the gas phase. 
We can even illustrate this in a simple way by blowing out a candle, 
and re-lighting it by sticking a burning match into the stream of 
smoke above the hot wick. So, we cannot simply light a chunk of 
candle wax by a match, because its vapour pressure is far too low. Take 



107

AMAZING CANDLE FLAMES

paraffi n, by far the most common wax used in candle production. It 
consists of a mixture of hydrocarbons, for example CnH2n+2 with n 
typically around 22 to 25. Such molecules have vapour pressures at 
ambient temperature far below 10–6 bar, much too low to be ignited 
and – fortunately – low enough for the candles to be stored almost 
indefi nitely. So, for igniting paraffi n we must get closer to its boiling 
point, which is somewhere in the range of 350 to 430 °C. 

This is precisely what we achieve by having a wick with some 
paraffi n absorbed. Its heat capacity is so small that its temperature 
can be raised by a burning match in just a second.

The wick is the heart of the candle. Its heat not only melts the 
wax just below it, it also acts as a fuel pump by drawing up liquid 
wax by capillary action, thereby regulating the fl ame. And if we look 
carefully after lighting a candle, we notice that the fl ame is large at 
fi rst, then gets smaller by lack of fuel, and only burns in its full glory 
once it manages to melt a layer of wax. The wick is usually made of 
braided cotton threads, treated with some inorganic compound to 
prevent afterglow once the fl ame is extinguished. Its construction has 
a decisive impact on the performance of the candle, including the 
stance of the wick and its ability to self trim. It may contain a zinc or 
tin core to help it stay upright when the surrounding wax liquefi es. 

The operation of the candle teaches us, in passing, that the heat 
of combustion is much greater than the heat of melting and the heat 
of vaporization combined. It is one of the elementary physics lessons 
hidden in a candle.

Obviously, the operation of the candle depends on natural 
convection to remove the combustion products and supply fresh 
oxygen. Indeed, in microgravity a lit candle burns only for a short 
while before extinguishing – or almost extinguishing – by lack of 
oxygen. Here is another physics lesson: diffusion at ambient pressure 
is a very slow process.

The fl ame itself represents a series of steps: vaporization of the wax, 
pyrolysis into gaseous hydrocarbon fragments, hydrogen and solid 
carbon particles (‘soot’) and, fi nally, burning of the carbon particles 
in the luminous cone which is the whole purpose of the candle to 
begin with. In case of incomplete combustion of these C-particles 
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– for example, if there is lack of oxygen, or if a gust of wind decreases 
the fl ame’s temperature to below 1000 °C – the fl ame will emit soot 
and spoil the fun.

The temperature in the luminous cone is around 1200 °C. Now it 
becomes clear just why a candle is such an ineffi cient light source. 
Not only is more than 80% of the heat convected up and away from 
the fl ame. The remaining 20% does not provide very effi cient lighting 
either. If we assume that the burning carbon particles at 1200 °C 
behave like a Planck radiator, Wien’s law tells us that its emission peak 
is at approximately 2 μm wavelength. Given the narrow eye sensitivity 
curve centered around 0.5 μm, the conclusion is inevitable. Candles 
provide interesting science, but hardly any light.
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 Capricious sun-time

At what time of the day does the sun reach its highest point, or 
culmination point, when its position is exactly in the South? The 

answer to this question is not so trivial. For one thing, it depends on 
our location within our time zone. For Berlin, which is near the Eastern 
end of the Central European time zone, it may happen around noon, 
whereas in Paris it may be close to 1 p.m. (we ignore the daylight saving 
time which adds an extra hour in the summer).

But even for a fi xed location, the time at which the sun reaches 
its culmination point varies throughout the year in a surprising way. 
In other words: a sundial, however accurately positioned, will show 
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capricious deviations through the seasons: the solar time on the 
sundial will almost always run slow or fast with respect to the ‘mean 
solar time’ on our watch. It’s all determined by the rotation of the 
earth around its axis, combined with its orbit around the sun.

The fi rst thing we realise is that, from one day to the next, the 
earth needs to rotate a bit more than 360 degrees for us to see the 
sun in the South again. The reason is obvious. During a day, the earth 
moves a bit further in its orbit around the sun and thus needs to turn 
a little extra to bring the sun back to the same place (remember that 
the rotational direction of the earth around its axis and of its orbit 
around the sun are both counterclockwise). Now, if the earth were 
well-behaved, and would move in a circular orbit around the sun, 
with its rotational axis perpendicular to its orbital plane, this would 
be the end of the story.

But there are two complications, both of which cause deviations. 
The fi rst one is the elliptical orbit of the earth. In fact, the earth is 3% 
closer to the sun at the beginning of January than at the beginning 
of July. So, the globe must rotate just a bit longer in January to have 
the sun back in the South than in July; just think of Kepler’s law. 
The result is that the solar time will gradually deviate from the time 
on our watch. We expect this ‘eccentricity effect’ to show a sine-like 
behaviour with a period of a year.

There is a second, even more important complication. It is due 
to the fact that the rotational axis of the earth is not perpendicular 
to the ecliptic, but is tilted by about 23.5 degrees. This is, after all, 
the cause of our seasons. To understand this ‘tilt effect’ we must 
realise that what matters for the deviation in time is the variation 
of the sun’s horizontal motion against the stellar background during 
the year. In mid-summer and mid-winter, when the sun reaches its 
highest and lowest point of the year, respectively, the solar motion is 
fully horizontal, so its effect on time is large. By contrast, in spring 
and autumn, the sun’s path also has a vertical component, which is 
irrelevant here. But it makes the horizontal component smaller in 
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these parts of the year, and so also its effect on time. This gives rise 
to a sine-like deviation having a period of half a year.

Figure 40.1 | Difference between solar time and ‘mean solar time’, and the separate 
contributions of the two underlying effects.

The two contributions are shown in the graph. Superposition of 
these ‘single and double frequency’ curves yields the total deviation of 
the ‘solar noon’ from the ‘mean solar noon’ on our watch. We see that 
around February 11 the sun is about 15 minutes later than average, 
and around November 3 about 15 minutes earlier.

So, a sundial in our front yard may be quite charming, but 
understanding its readings requires a scientist.
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