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PREFACE

Biomaterials refers to subtype materials, which are defined mainly by their medical
applications as synthetic tissue implants. In the past two decades, rapid growth has
been witnessed in the fields of science and engineering and toward production of
biomaterial-based components. Despite this fact, only a few textbooks on biomate-
rial science are available and designed for undergraduate’ training. Biomaterials: An
Introduction by Park and Lakes was first published in 1979. The successive second
and the third editions were published in 1992 and 2007, respectively. Up to 2004, this
was the only commercially available textbook on biomaterials until a multiauthored
textbook, Biomaterials Science: An Introduction to Materials in Medicine, edited by
B. D. Ratner, A. S. Hoffman, F. J. Schoen, and J. E. Lemons came into the market. To
date, however, Park and Lakes’ book remains the only commercially available bioma-
terials textbook that is suitable for undergraduate students.

In addition, this textbook has been developed from my lecture notes prepared
during my teaching of biomaterials in universities. The book is easy to study and
provides a substantial introduction to fundamental science relating to biomaterials,
such as materials science, biology, and medicine, among others. The book is designed
efficiently to serve the needs of junior students (typically at second year level majoring
in any natural sciences or engineering). It begins by introducing basic concepts and
principles and critically analyzes the important properties of biomaterials. Gradually,
the book presents students with an opportunity to build up skills and knowledge that
will enable them to select and design biomaterials used in medical devices.

APPROACH

Biomaterials is a multidisciplinary subject that involves materials science, engineering,
cell biology, and medicine. Covering all the aspects involved in these subjects in a
comprehensive and timely manner is often a daunting task; this textbook, however,
provides the reader with an appropriate balance between the depth and breadth of the
topics covered. The book is equally simple and sufficient, enabling students to under-
stand the most important biomaterials and bioengineering concepts and principles at
various levels within the broad academic spectrum. This approach has been derived
from my many years of experience in a multidisciplinary research environment.
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I, a physicist-turned-biomedical engineer, have had the privilege to developed the
most relevant knowledge and skills of life science, most of which nonmedical students
should possess in order to appreciate the study of biomedical science. In addition, hav-
ing worked closely with cell biologists, physicians and surgeons, I was able to develop
an understanding that medical professionals can best grasp the concepts and principles
of biomaterial science and engineering when the discussions use their own technical
terminologies and jargon.

The other crucial aspect of the book is its organic combination of the principles
of materials science and medical sciences in a unique and comprehensive way that
most biomaterial books have not achieved. Moreover, there are more general and
closely related concepts and principles among materials science, engineering,
and medical science; nonetheless, these are always considered separate disciplines
and often described using different terminologies. This textbook makes an intro-
duction of the properties and principles of biomaterials from the perspective of
clinical applications. In this sense, materials students can enjoy new information
that has not been given in any of the traditional science course books; similarly,
medical students are enabled to easily understand the concepts and principles of
materials science. Furthermore, the book covers aspects of biomedical science from
a materials point of view. This approach enables students majoring in materials sci-
ence or engineering to equally understand the fundamentals of biometric materi-
als’ behavior at their respective biological levels for any given application. Medical
students also earn the privilege of obtaining fresh information that is seldom found
in any traditional medical program. I, therefore, believe that this concept would
be of great significance to students both in the biomedical and bioengineering
disciplines.

Consequently, the textbook is based on philosophical teachings that have been per-
fected over the years through observations and experiments in engineering schools.
Learning is thus achieved primarily in the relevant context. It is imperative for students
to view the relevant applications of materials relative to their daily livelihood. The
book is tailored to bridge the gap between a student’s mind and the knowledge found
in the subject, hence making the learning process relevant. Besides, effective learning
is mostly achieved through analogy, by comparing various features of biomaterial sci-
ence. Students pursuing this program are many, majoring in different disciplines. The
students are, therefore, well placed to understand the principles and concepts of the
nonmajored discipline if the new information is discussed relative to their majored
discipline.

ORGANIZATION

The textbook has been organized into three parts. Part I discusses biomaterials, Part II
medical science, and Part III discusses evaluation and regulation of medical devices.
Part I commences with an overview on engineering and materials science, then pro-
ceeds to focus on the definitions of biomaterials and biocompatibility, concluding
with a summary of these subjects. Subsequently, Chapters 4 through 11 provide spe-
cific emphasis on metallic, ceramic, polymeric, and composite biomaterials. Part II
begins with an overview of medical science vis-a-vis materials science (Chapter 12).
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Chapters 13 through 18 describe anatomy, histology, and cell biology, respectively. The
objective of these chapters, therefore, is to highlight health issues and diseases where
biomaterials can easily find medical applications. The interactions between the bioma-
terials and the living body constitute the last chapter (Chapter 19) of Part II. In Part III,
the penultimate chapter of the book, Chapter 20, evaluates medical devices while the
final chapter, Chapter 21, looks into their respective regulations.
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CHAPTER 1

BIOMATERIALS SCIENCE
AND ENGINEERING

LEARNING OBJECTIVES

After a careful study of this chapter, you should be able to do the following:

1. Understand the scope of materials science and engineering.

2. Appreciate the multilevel structures in materials and the critical level that clas-
sifies materials into metallics, ceramics, and polymers.

3. Be very familiar with three crystalline structures: FCC, BCC, and HCP, in iron,
cobalt, titanium, and their alloys.

4. Briefly describe the properties of the aforementioned three types of materials
and the common issue of each type.

5. Describe the definitions of biomedical materials, biomaterials, and biological
materials.

6. Describe the definition of biocompatibility.

1.1 MATERIALS SCIENCE AND ENGINEERING

It is common to subdivide the discipline of materials science and engineering into two
subdisciplines: materials science and materials engineering. To understand the bound-
ary and relationship of these two subdisciplines, let us start by looking into materials
around us and question why we use materials. The world is comprised of materials that
play essential roles in virtually all aspects of our everyday life. Our houses are built
from stone, concrete, steel, and glass materials; our clothing is produced from natural
(e.g., cotton) or synthetic (e.g., nylon) polymers, and even the food we produce is com-
posed of biological polymers. Human beings are also composed of complex biological
materials, derived from raw materials in the environment we occupy.

We select a material (e.g., glass) for a specific application (e.g., window) because
the material has a special property (e.g., transparency) that satisfies our needs
(e.g., day light). In essence, the properties of any material are determined by its struc-
ture. The discipline materials science is concerned with the study of relationships
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Figure 1.1
The interrelationship between structure, properties, and processing depicted as a schematic
illustration.

between structure and property of materials (Figure 1.1). However, raw materials
generally possess unsatisfactory properties and seldom meet the demands of appli-
cations. Hence, we seek to change the structure of natural materials so that they
can provide us with desired properties and perform expected functions. Materials
engineering is all about how to design and manipulate the structure of a material
to produce desired properties via processing (Figure 1.1). Historically, it is the large
amount of experimental work in materials engineering that led to the establishment
of materials science. Nowadays, it is materials science that guides the innovation in
materials engineering.

1.2 MULTILEVELS OF STRUCTURE AND CATEGORIZATION
OF MATERIALS

Condensed materials (i.e., liquids and solids) exhibit structure on more than one length
scale (Figure 1.2):

e Atomic structure (i.e., the structure within an atom)

e Lattice structure (i.e., the agglomeration network of atoms)

* Microscopic structure (e.g., defects and grain boundary, which can only be
viewed under microscopes)

* Macroscopic (bulk) structure (e.g., deformation and fracture, which can be
viewed by the naked eye)

The atomic structure determines the nature of chemical bonds at the lattice level,
which in turn produces the specific properties of the material. The types of chemical
bonds are listed in Figure 1.3, and the major characteristics of chemical bonds are sum-
marized in Table 1.1. It is the structure at the atomic and molecular lattice levels that
primarily defines material properties and classifies most solid matter into three basic
types: metallic, ceramic, and polymeric. Metallic bonding forms metals and alloys, with
single or multiple elements arranged in geometric lattices, surrounded by electrons.
Either ionic or rigid covalent (electron shared) bonding can result in brittle ceram-
ics (e.g., NaCl and diamond). In polymers, rotational covalent bonds between atoms
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Multilevel structures of materials and primarily related properties.
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Types of atomic and molecular bonding.

produce flexible, long molecules, and the molecular chains are glued together by sec-
ondary chemical bonds, such as hydrogen and/or van der Waals bonding.
Crystallographic structure refers to a unique arrangement of atoms or molecules in
a solid. The arrangement can be either regular (crystal) or random (glass). The most
frequently occurring crystalline structures in metals include face-centered cubic (FCC)
(Figure 1.4a), body-centered cubic (BCC) (Figure 1.4b), and hexagonal closely packed
(HCP) (Figure 1.4¢). FCC and HCP are the most closely packed structures, with a
packing fraction (the volume fraction of space occupied by atoms) being 74%. BCC is
secondarily densely packed, with a packing fraction being 68%. To demonstrate these
three-dimensional (3D) crystal structures with a see-through effect, atoms or molecules
are often represented by a small point. The structure formed by all these points is
known as a lattice structure. Remember that the actual arrangements of atoms are as
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Table 1.1
Characters of Chemical Bonds in Various Substances

Bonding Melting  Directionality/

Length  Energy Point Electron
Bonding Type Substance (nm)  (kJ/mol) (°O) Location
Metallic Hg 0.264 68 -39 Nondirectional/
SR R N Al 0.242 314 660 Free
* 0 0C N Fe 0.264 406 1538
0000000000 W 0324 849 3410
Covalent Si 0.222 450 1410 Directional/
o locally shared
)
. . C (Diamond)  0.145 713 >3550
. |"_'_
=, o | —
[ ] [ ]
N
"
Y < O
—Tor
lonic NaCl 0.236 640 801 Nondirectional/
- MgO 0.175 1000 2800 transferred
NH, 0.285 35 -189 Directional/
H,O 0.197 51 -101 localized
van der Waals Ar 0.376 7.7 -78 Nondirectional/
;i‘l‘l_"_\ .’?Eﬂﬁ“: Cl, 0.350 31 0 localized
(-;.___/I(\H__-—")
¥ 4 Attraction
High-density High-density
clouds clouds
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Figure 1.4

The three most common crystalline (lattice) structures in metals. Students should be very famil-
iar with these three structures, as iron-, cobalt-, and titanium-based alloys, three predominant
metallic implant materials used in orthopedics, are in these three structures. (a) Face-centered
cubic (FCC) examples: y-Fe (austenitic) and B-Co (austenitic); (b) body-centered cubic (BCC)

examples: a-Fe (ferrite) and B-Ti; (c) hexagonal closely packed (HCP) examples:a-Ti and o-Co.

close as those in the first row of Figure 1.4, rather than as apparently separated as those
in the second row. The lattice diagrams are invented simply for ease in studying 3D

crystallographic structures.

Microscopic structure refers to various defects existing in lattices (Figure 1.5), including

the following:

These defects can be categorized, according to their geometric dimensions, into
point, line, area/planar, and volume/3D defects, as listed in Figure 1.6. Microstructures
have significant influences on mechanical properties (typically, ultimate tensile

Vacancies and their aggregation (i.e., microvoids). A vacancy defect is a lattice
site from which an atom is missing.

Alloying (substitutional or interstitial) atoms and their precipitates (second-
phase particles). A substitutional defect is an impurity atom that occupies a
regular atomic site in the crystal structure. An interstitial defect is an atom that
occupies a site in the crystal structure at which there is usually not an atom.
Dislocations G.e., line defects). A dislocation is a linear defect around which
some of the atoms of the crystal lattice are misaligned.

Stacking faults (planar defects). A stacking fault is an interruption in the stack-
ing sequence of the crystal structural planes.

Grain boundaries and phase interfaces. A grain boundary is the interface
between two grains (also called crystallites) in a polycrystalline material.
A phase interface is the boundary between two phases in a multiphase material.
Microvoids and microcracks.
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Figure 1.5
Schematic microstructures of various defects.
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Figure 1.6
Categorization of defects in solid materials.

strength and elongation at break), but not on physical properties (e.g., Young’s
modulus, electromagnetic and optical properties). Nonetheless, their impacts on
mechanical properties are limited within each type of material such that in general,
a modification in microstructures will not change one material into any other of the
main material types.

Macroscopic/bulk structures are the results of the performance of a material, which
can be used to indicate the relationships between structures and properties and reveal
the mechanisms of intended or unexpected performance.
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1.3 FOUR CATEGORIES OF MATERIALS

As mentioned earlier, solid materials have been grouped into three basic classifications:
metals, ceramics, and polymers. This scheme is primarily based on chemical makeup
and bonding, that is, the structures at the atomic and lattice levels. Most materials fall
into one distinct grouping or another. In addition, there is a fourth type of material, the
composites. These materials are primarily physical combinations of two or more of the
aforementioned three basic materials classes. This section provides a brief description
of each in terms of representative characteristics and biomedical applications, aiming
to highlight the most common and critical issues of each material type.

1.3.1 Metallics

Materials in this category are composed of one or more metallic elements (e.g., Fe, Ni,
Al, Cu, Zn, and Ti), and often also nonmetallic elements (e.g., C, N, and O) in relatively
small amounts. Atoms in metals and their alloys are arranged in a very orderly man-
ner. Metallic bonding is found in metals and their alloys, and a simple model has been
established for this chemical bonding, described as follows. The valance electrons of
metallic atoms are delocalized and form an electron cloud, in which metal ions are
embedded; metallic bonding is the electrostatic attractive forces between the negatively
charged electron cloud and the positively charged metal ions (Table 1.1). In other
words, the free electrons act as a glue to hold the metal ion cores. Metallic bonding is
typified by conduction valence electrons and a nondirectional character.

Some characteristic behaviors of metallic materials can be interpreted by the nature
of metallic bonding. Metals are good conductors of both electricity and heat, as a result
of their free valence electrons (Figure 1.7a). In contrast, ionically and covalently bonded
materials are typically electrical and thermal insulators, due to the absence of large
numbers of free electrons. The nondirectional nature of metallic bonding gives metal

(@)

Figure 1.7

(a) Conductive (electrically and thermally). (b) Tough (combined strength and ductility). (c)
Strong and ductile. (d) Corroded. (a—c) Typical properties of metals and alloys and related appli-
cations; (d) the most common issue of metallic materials, corrosion.



Biomaterials: A Basic Introduction

atoms (Hg is an exception) the capacity to compact closely and to slide past each other
without causing permanent rupture. Locally, bonds can easily be broken and replaced
by new ones after the deformation. This gives rise to the typical mechanical properties
of metals: ductility and toughness. The application of keys (Figure 1.7b) requires the
material to have a satisfactory combination of ductility and strength, which cannot be
provided by either polymers or ceramics. The former are plastic but soft, the latter are
strong but brittle. 7oughness is a property quantifying the combination of strength and
ductility. The excellent toughness of Fe-based alloys ensures the mechanical safety of
structures like the Eiffel Tower (Figure 1.7¢).

However, the conduction valence electrons in metals also impart metals and alloys
with corrosion (Figure 1.7d). Corrosion is a common problem for metals and alloys in
wet and/or salty environments, such as sea, earth, circulated water, damp atmospheres,
or living tissue. Metal atoms react spontaneously with oxygen, hydrogen protons, and
ionic salts over time to form metal oxides, which form micro- and macrostructural
defects in the bulk metal. Body tissue fluids provide an aggressive environment to
metallic implants, as they contains all three of these reactive elements (oxygen, hydrogen
protons, and ionic salts). Hence, corrosion of alloys is the most serious issue during
the long-term performance of a permanently implanted metallic material. As a mat-
ter of fact, corrosion resistance of metallic implant materials determines the long-term
success of a metallic implant. This issue will be discussed in greater detail in Chapter 2.
Figure 1.8 demonstrates four examples of medical applications of metallic materials.

o nalon Kol

=
=
=

Figure 1.8

Medical applications of alloys. (a) Tooth filling made of amalgam. (b) Fixation screw made of
stainless steel. (c) Pacemaker case made of a Ti alloy. (d) Self-expandable coronary stent made of
TiNi. (e) Harrington rod, a spinal corrective device, made of stainless steels. (f) Total hip replace-
ment prosthesis made of a Co alloy. (d: Modified graphic from the WikimediaCommons, http,)/
commons.wikimedia.org/produced by the National Institutes of Health.)
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1.3.2 Ceramics

The term ceramics encompasses a variety of inorganic compounds of metallic and
nonmetallic elements, including oxides (e.g., Al,Os, SiO,, and ZrO,), nitrides (e.g., SisN,),
carbides (e.g., Si0), and various salts (e.g., NaCl and Ca,(PO,),). Some elements, such as
carbon or silicon, are considered ceramics as well. Ceramic materials may be fully crys-
talline, partially crystalline, or fully amorphous G.e., glass) in structure. Traditionally,
the definition of ceramics was restricted to inorganic crystalline materials, as opposed
to the noncrystalline glasses; this definition is still widely used in practice. Nowadays,
the definition of ceramics is expanded to include amorphous glass materials, which are
called noncrystalline ceramics.

In ceramics, atoms are bonded covalently (e.g., oxides, nitrides and carbides, dia-
mond and silicon), and/or ionically (e.g., salts). Covalent bonds between identical atoms
(as in silicon) are nonpolar, that is, electrically uniform, while those between unlike
atoms are polar, that is, one atom is slightly negatively charged and the other is slightly
positively charged. This partial ionic character of covalent bonds increases with the
difference in the electronegativities of the two atoms.

Covalent and ionic bonds are typified by localized valence electrons and a lack of
tolerance to lattice deformation, which are responsible for the characteristic behaviors
of ceramics. Ceramics are generally electrical and thermal insulators (Figure 1.9a,b)
because of the absence of large numbers of conduction electrons. The delocalization of
electrons also makes ceramics inert and thus resistant to chemical and electrochemical
(i.e., corrosive) attack, as compared to metallic materials. Many ceramics are indeed
relatively inert, at room temperature, under dry atmosphere, over long time intervals
(Figure 19¢). However, with increasing temperature, specific chemical composition

(e)

Figure 1.9

Typical properties of ceramics and related applications. (a) Thermal insulators. (b) Inert (resistant
to corrosion). (c) Electrical insulators. (d) Thermally stable (furnace chamber). (e) Hard (resis-
tant to wearing and friction). (f) Brittle.
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(e.g., bioactive ceramics) or environment (e.g., body fluid), the propensity to degrada-
tion could be considerable. The strong ionic and covalent bonding (indicated by high
bonding energy and high melting point) makes many ceramics (e.g., ZrO,) thermally
stable and thus an ideal choice of material to work at high temperature (Figure 1.9d),
compared with metals and alloys.

Mechanically, ceramics are typically rigid and hard (Figure 19e), which are also
attributed to their strong chemical bonds. Ceramics are generally much more brittle
(Figure 1.9f) than metals and can have stiffness (modulus of elasticity) and strength
similar to metallic materials, particularly in compression. But in a tensile or bend-
ing test, they are likely to fail at a much lower applied stress. The reason for this
is twofold. First, the surfaces of ceramics nearly always contain microcracks, which
magnify the applied stress (called stress concentration). Second, ionic and covalent
bonds each lack tolerance to lattice deformation. The covalent bonding lacks toler-
ance to the deviation in directionality. Covalent bonds themselves are directional,
meaning that atoms so bonded prefer specific orientations relative to one another.
Any deviation from this specific direction is forbidden. Ionic bonding lacks tolerance
in terms of neighboring, which means that atoms prefer to neighbor with oppositely
charged atoms. If the correct directionality or neighboring is disturbed by deformation
(Figure 1.10), there will be a huge tension (energy) increase locally such that the sepa-
ration of atoms (i.e., fracture) is the only path to release the energy. This explains the
brittle fracture behavior of ceramics. While advances in materials engineering have
transformed a few formerly brittle ceramics into materials tough enough to withstand
engine environments, brittleness issues remain with the majority of ceramics.

@ (b)

F . ar- . on . cr . ar . ar . ar- . 'cr. . ar
_______ @ . ar . ar . 1‘._"“" . . cr . ar . cr .
‘.c1.c1.c1<::! .c1.c1.c1.c1
c1.c1.c1.c1. .c1.c1.c1.
(© (d)
Figure 1.10
Schematic illustration showing that covalently and ionically bonded ceramics lack tolerance of

deformation in their lattice structures. (a) Diamond structure (C, Si, Ge). (b) Forbidden direc-
tionality of diamond lattice. (c) NaCl structure. (d) Forbidden neighboring of NaCl lattice.
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(c)

Figure 1.11

Medical applications of ceramics. (a) Corrective glasses. (b) Implantable teeth made of Al,O;.
(c) ALO; bead of total bip prosthesis (note: the stem is made of an alloy). (d) Bioglass-ceramic
bone scaffold.

In addition to those representative applications illustrated in Figure 1.9, ceramics have
also found applications in the field of biomedical devices, such as corrective glasses,
implantable teeth, ceramic bone fillers, and heads of total hip prostheses (Figure 1.11).

1.3.3 Polymers

The terms polymer and polymeric material encompass very broad classes of com-
pounds, both natural and synthetic, organic (mostly) and inorganic (e.g., sol-gel-
derived SiO,, a sol-gel polymer), with an extraordinary variety of properties. They play
ubiquitous roles in everyday life, from those of familiar synthetic plastics, rubbers and
resins used in day-to-day work and home life, to the natural biological polymers fun-
damental to biological structure and function (Figure 1.12). Some of the common and
familiar synthetic polymers are polyethylene (PE), nylon, poly(vinyl chloride) (PVO),
polycarbonate (PC), polystyrene, and silicone rubber. In this book, we use the term
polymer to refer to organic polymers.

Chemically, polymers are based on carbon, hydrogen, and other nonmetallic ele-
ments (e.g., N, O, and Si). These materials are typically composed of very large mol-
ecules, which are chain- or network-like with a backbone of carbon atoms. The atoms
within polymer chains are covalently bonded. Long chains are physically associated
with each other, intertwining and entangling. Neighboring chains are also chemically
bonded with each other, via either secondary weak bonding (such as in thermoplastics)
or primary covalent bonding (cross-linking, such as in rubbers and resins). Although the
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Figure 1.12

Naturally occurring polymers. (a) Plants (b) Animals (c) Human. (c: From the WikimediaCommons,
bttp.Jfcommons.wikimedia.org/.)

o covalent bond between the backbone atoms is strong and directional, it is also free to
rotate about the bonding axis. This rotation freedom allows a polymer chain to bend,
twist, coil, and kink.

In general, polymers are relatively inert chemically and unreactive in a large num-
ber of environments due to the lack of free electrons. This is the scientific reason for
white pollution, referring to the massive amount of inert material (such as disposable
plastic grocery bags provided in supermarkets), rather chemically active contaminants
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Figure 1.13

(a) Plastic plug and socket. (b) Soft and light clothes. (c) Plastic containers (PE). (d) Elastic tire.
(e) Rigid Lego™. (f) Oxidation-induced cracks in medical tubing. (a—e) Typical properties of
polymers and related applications; (f) the most common issue of polymeric materials, thermal
instability and oxidization.

in the environment. Moreover, polymers generally have low electrical conductivity
(Figure 1.132) and are nonmagnetic. Mechanically, polymers are very dissimilar to the
metallic and ceramic materials. Many polymers are very soft and compliant due to
the flexibility of polymer chain (Figure 1.13b). If the association between neighboring
polymer chains is physical tangling and/or secondary weak chemical bonding, the
polymers can be extremely ductile and pliable (plastic) such that they can easily be
formed into complex shapes (Figure 1.130). If polymer chains are bonded via covalent
bonding, the cross-linking produces either elastic rubbers or rigid polymers, depend-
ing on the degree of cross-links. A low degree of cross-links gives rise to flexible
rubber (Figure 1.13d), and highly cross-linked polymers are relatively rigid and hard
(Figure 1.13e). One major drawback to the polymers is their tendency to soften and/or
decompose at modest temperatures, or to degrade (or age) via oxidation or hydrolysis
over a long time interval in ambient conditions. Polymer oxidation has caused accidents
involving medical devices (Figure 1.13f). Figure 1.14 illustrates a few applications of
polymers as medical devices.

1.3.4 Composites

A composite is composed of two or more constituent materials of the three basic
classes, that is, metallics, ceramics, and polymers. The design goal of a compos-
ite is to achieve a combination of properties that is not displayed by any sin-
gle material alone, with the advantages of each of the component materials being
incorporated and the disadvantages being minimized. A large number of synthetic
composite types exist, which are classified according to the combination of metals,
ceramics, and polymers, as listed as in Table 1.2. White tooth fillings and artificial
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Figure 1.14
Medical applications of polymers. (a) Degradable surgical suture. (b) Contact lens. (c) Medical
gloves.

Table 1.2
Classification of Composites

Polymer—matrix composites (PMC)
Metal-reinforced
Ceramic-reinforced

Metal-matrix composites (MMC)
Ceramic-reinforced

Ceramic—matrix composites (CMC)
Ceramic fiber-reinforced

bone pastes/cements (Figure 1.15) are typical medical applications of synthetic
composites. There are also a few naturally occurring composites, such as wood and
bone (Figure 1.16). Bone is a polymer-based ceramic-reinforced composite, where
the protein molecule collagen is the polymer, and calcium phosphate hydroxyapa-
tite, Ca,,(PO,);(OH),, is the ceramic.
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Composite white filling

Figure 1.15
Medical applications of composite bone cement. (a) White tooth filling. (b) Bone cement to treat
diseased spines. (c) Bone paste to repair damaged skulls.
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()

Figure 1.16

Naturally occurring composites. (a) Wood, a composite of cellulose and lignin; in porous wood
such as balsa, air can be considered a third component. (b) Bone, a composite of polymer
(collagen protein) and ceramic (calcium phosphate hydroxyapatite).

1.4 DEFINITIONS OF BIOMATERIALS, BIOMEDICAL
MATERIALS, AND BIOLOGICAL MATERIALS

Before defining biomaterials, let us look at a few applications of biomaterials
(Figure 1.17). The common feature of these applications is that these biomaterials are
used in intimate contact with living body tissue. In the scientific field of biomate-
rials, a biomaterial is defined as “a substance that has been engineered to take a
form which, alone or as part of a complex system, is used to direct, by control of
interactions with components of living systems, the course of any therapeutic or
diagnostic procedure.” In most cases, a biomaterial is any biocompatible material,
natural or man-made, that is used to replace or assist part of an organ or its tissue,
while in intimate contact with living tissue. The prefix bio of biomaterials refers
to biocompatible, rather than biological or biomedical as misunderstood by many
people intuitively.

However, the term biomaterial is used within different definition boundaries in
the scientific and legal communities. In the legal field, medical devices are defined as
“any instrument, apparatus, implement, machine, appliance, implant, in vitro reagent
or calibrator, software, material or other similar or related articles, intended by the
manufacture to be used, alone or in combination, for human beings for one or more
of the specific purposes of diagnosis, prevention, monitoring, treatment, investiga-
tion, supporting or sustaining life, control of conception, and disinfection of medical
devices,” and a biomaterial is defined as a component of a medical device [1]. In this
textbook, the term biomedical material is used to represent a component of any bio-
medical device applied either with or without intimate contact with living tissue, and
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(b)

Figure 1.17
Four applications of biomaterials. (a) Tooth implants (Ti alloys). (b) Artificial finger joint (polyethylene).
(Continued)
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(c)

Figure 1.17 (Continued)
Four applications of biomaterials. (c) Surgical suture (polyesters). (d) Total shoulder replacement
(alloys).

the definition of biomaterials prevalent in the scientific community is used to describe
biocompatible materials used with intimate tissue contact.

According to the aforementioned definition, the materials used for contact lenses
(Figure 1.18a2) and total hip replacement (Figure 1.18¢) are biomaterials, whereas
those used for corrective eyewear (Figure 1.18b) and artificial leg prostheses
(Figure 1.18d) are biomedical devices, typically not dealt with in the scientific field
of biomaterials.

A biomaterial can be either synthetic or naturally occurring, such as bone and
cotton. In general, we refer to naturally occurring materials as biological materials.
Figure 1.19 demonstrates the definition boundaries of biomedical materials, biomateri-
als, and biological materials.

1.5 BIOCOMPATIBILITY

Since a biomaterial is designed to be used in intimate contact with living tissue, it is
essential that the implanted material does not cause any harmful effects to host tissues
and organs. Williams [2] suggests that biocompatibility refers to the ability to perform
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(c) (d)

Figure 1.18

A graphical depiction of biomaterials and nonbiomaterials used in medical devices. Contact
lenses (a), corrective eyewear (b), total hip-joint replacements (c), and a whole-leg prostheses
(d) are considered as medical devices; however, (a) and (c) are examples of biomaterials,

whereas (b) and (d) are constructed from biomedical materials, but usually of no concern to the
scientific field of biomaterials.

Biomedical materials

Implanted biomaterials Nonimplaﬁted materials
Synthetic biomaterials
Biological materials

Figure 1.19

The definition boundaries of biomedical materials, biomaterials, and biological materials.
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Biocompatibility of a device

Biocompatibility of Biocompatibility of non-material
biomaterials related designs

Chemical impacts

Physical impacts

Figure 1.20
Contributors to the biocompatibility of a medical device.

with an appropriate host response in a specific application. The requirements for this
biocompatibility are complex and strict, varying with specific medical applications.
A material used satisfactorily in orthopedic surgery may be inappropriate for car-
diovascular applications because of its thrombogenic properties. Biocompatibility of
biomaterials is further classified according to their ability to induce cell or tissue death
(cytotoxicity), to induce cancer formation (carcinogenicity), to damage genes (muta-
genicity), to induce immune responses (pyrogenicity and allergenicity), or to induce
blood clotting (thrombogenicity). Taking all of these types of biocompatibility prob-
lems into account, a universally prevalent definition of biocompatibility has been pro-
vided by the US Food and Drug Administration (FDA) [1], to the effect that the material
induces no measurable harm to the host. Put simply, no harm to the host body defines
biocompatibility.

Therefore, the biocompatibility of a medical device covers both the compatibility
of the materials used and how the device has been engineered (e.g., geometric,
mechanical, and/or electrical properties) (Figure 1.20). Indeed, many clinical failures
of joint replacements, for example, are due to suboptimal mechanics of the device,
rather than problems of the materials properties [3]. These nonmaterial issues are
beyond the scope of this book. For our purposes, the biocompatibility of implant
materials includes not only the chemical interactions of the implanted material
with the host physiological system (e.g., corrosion of alloys, oxidation of polymers,
and toxicities of metal ions) but the physical impact of the implanted material on
the surrounding tissues (mechanical properties of the material), though the for-
mer is the common and primary concern of material biocompatibility. In general,
chemical impact is the foremost aspect of the biocompatibility evaluation on new
biomaterials.

In this book, we confine our discussion on biocompatibility to the chemical inter-
actions of materials with the biological system and physical interactions based on the
mechanical properties of the biomaterial. Within this concept, the chemical impact of
an implant biomaterial is directly determined by its inertness in a biological environ-
ment and the performance of released species, including ions and molecules. The
mechanical properties of an implant biomaterial are more relevant to the complex
dynamic features of the tissue structure. Ideally, both aspects of material biocompat-
ibility are engineered in parallel.
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Table 1.3
Major Characteristics of Four Materials Types
Metallic Ceramic Polymeric Composite
Characters ~ Metallic bonding  lonic bonding Covalent bonding  Physical
of chemical within molecular  mixture
bonding chain
Delocalized Localized electrons Localized
electrons electrons
Nondirectional Nondirectional Directional
Zero tolerance to Rotational
wrong atomic
neighboring
Covalent bonding Secondary weak
Localized electrons  bonds between
Directional chains
Typical Conductive Nonconductive Nonconductive Combination
properties  Tough Inert (corrosion resistant)  Inert of component
Ductile and strong Thermally stable Soft, flexible materials
Strong and hard Plastic or elastic
Major Corrosion Brittle Thermally unstable Expensive
problems Oxidation (aging) ~ processing

1.6 CHAPTER HIGHLIGHTS

1. Materials science is the study of relationships between structures and properties.
Materials engineering is all about designing and engineering materials’ struc-
tures to produce desired properties via processing.

2. The structures at the atomic and molecular lattice levels determine properties
and divide all materials into metallics, ceramics, or polymers.

3. Three common lattice (crystallographic) structures: FCC, BCC, and HCP
(Figure 1.4).

4. Major characters of chemical bonds and representative properties of four mate-
rials types (Table 1.3).

5. Biomaterial is any biocompatible material, which is used to replace or assist
part of an organ or its tissue, while in intimate contact with living tissue.
Biomedical material represents a component of any biomedical device applied
with or without intimate contact with living tissue.

Biological material refers to a naturally occurring material.

6. No harm to the host body defines biocompatibility.

ACTIVITIES

1. Become familiar with the societies and organizations of materials science and
engineering. http://guides.lib.udel.edu/content.php?pid=163409&sid=1730512.

2. Visit American Society for Testing and Materials (ASTM): http://www.astm.org/.

3. Visit ASM International, formerly known as the American Society for Metals:
http://www.asminternational.org/.
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SIMPLE QUESTIONS IN CLASS

1. Which level of microstructure categorizes materials into metallic, ceramic, and
polymer?
a. Structure associated with grain size
b. Length of molecular chains in materials
¢. Chemical bonding between atoms and/or molecules
d. Microstructure associated with various defects
2. What is the most common issue associated with metallic materials?
a. Corrosion
b. Nonconductivity
c. Brittleness
d. Hardening
3. What is the most common issue associated with ceramic materials?
a. Corrosion
b. Nonconductivity
c. Brittleness
d. Hardening
4. What is the most common issue in the application of polymeric materials?
a. Softness
b. Nonconductivity
c. Brittleness
d. Oxidation
5. Which of the following descriptions is true for the definition of biocompatibility?
a. The ability to heal an injured or diseased organ or tissue.
b. The capacity to encourage damaged tissue to regenerate.
c¢. It is not about therapeutic performance. A material is considered to be biocom-
patible, as long as it has no harm on the host body.
d. Therapeutic function.
6. Which material in the following medical devices is a biomaterial in the scientific
community of biomaterials?

(a) (b)

PROBLEMS AND EXERCISES

1. Describe the typical properties of metals, ceramics, and polymers and the common
issue of each type of materials. Explain the structural mechanisms behind each
common issue.
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2. Calculate the atomic packing fraction (or called factor) of FCC, BCC, and HCP

structures of pure metals.

3. What is a dislocation? List five more microscopic defects in bulk materials. Which

of the following properties are most sensitive to dislocation structures in materials?
a. Young’s modulus
b. Yield strength
¢. Conductivity
d. Transparency
4. Discuss the following three questions:
a. Why are door keys always made of metal, rather than ceramics or polymers?
b. What properties of metals make them the choice of materials of door keys?
¢. Among many metals, why are copper alloys better than Fe-alloys for the applica-
tion of keys? (Tip: you need to discuss this question from both materials science
and economic points of view.)

. Define biomaterials, biomedical materials, and biological materials.

. Give two pairs of new examples (different from those used in Chapter D of mate-
rials used in medical devices, one of each pair being a biomaterial of interest to
the biomaterials scientific community and the other nonbiomaterial but biomedical
material. The two examples of each pair must be used in the treatments for the
clinical issues of the same organs or tissues (e.g., contact lens and glasses). You are
encouraged to search on the Internet, and you may use images to illustrate and
refer to the figures with a short description.

[©) V)]
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CHAPTER 2

TOXICITY AND
CORROSION

LEARNING OBJECTIVES

After a careful study of this chapter, you should be able to do the following:

1. Describe the concept of trace elements and understand their biological roles
and toxicities.

. Predict the corrosion tendency of metals in body fluid using galvanic series.

. Describe the corrosive nature of body fluid.

. Read Pourbaix diagrams.

. Predict the possible events when metals are immersed in the body fluid using
galvanic series and Pourbaix diagrams.

6. Describe the strategies to minimize corrosion/toxicity of metallic implants in
the body.

N 0 N

2.1 ELEMENTS IN THE BODY

As highlighted in Chapter 1, a biomaterial must be nontoxic to the host body. A simple
strategy to be nontoxic is to be nonreactive under biological conditions (bioinert). In
reality, no material is completely inert in a living body over a reasonable period of
time. Sooner or later, ions or small molecules will be released from implants, introduc-
ing foreign body effects on the functional living (physiological) system. In the selection
of nontoxic materials, an immediate thought may be those chemicals and elements
naturally existing in the body. Hence, let us look at our body first.

Most of the human body is made up of water, H,O, with cells containing 65-90 wt.%
water. In a baby’s body, there is approximately 75%—-80% water. As an individual
grows older, this percentage reduces to approximately 60%-65% for men and 50%-—
60% for women. Therefore, it is not surprising that most of a human body’s mass is
oxygen and carbon. A list of elements commonly found in the human body is given
in Table 2.1. Approximately 96% of the weight of the body results from the elements
oxygen, carbon, hydrogen, and nitrogen, which are the building blocks of both water
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Table 2.1
Elements in the Human Body

Trace
Element O C H N Ca P K S Na ClI Mg Element

Wt.% 65.0 18.5 95 33 15 1.0 04 03 02 02 0.1 <0.01
At.% 255 95 63.0 14 031 022 006 005 03 0.03 0.1 <0.01

and proteins. The rest (~4%) of the mass of the body exists largely either in bone and
teeth as minerals (Ca, Mg, and P) or in blood and extracellular fluid as major electro-
lytes (Na, K, and CD (Table 2.2).

In addition, there are a number of elements that are needed in extremely low quan-
tities (<0.01%) for the proper growth, development and physiology of the body. These
elements are referred to as trace elements or micronutrients, a list that is continually
increasing (Table 2.3).

Table 2.2

Macro Elements and Their Primary Roles in the Human Body

Macro Elements Roles

O,C H,N In water and the molecular structures of proteins

Ca Structure of bone and teeth; role in cell signaling, metabolism, tissue
maintenance

P Structure of bone and teeth. Required for ATP, the energy carrier in animals.

Mg Important in bone structure. Deficiency results in tetany (muscle spasms)
and can lead to a calcium deficiency.

Na Major electrolyte of blood and extracellular fluid. Required for maintenance
of pH and osmotic balance, nerve and muscle function.

K Major electrolyte of blood and intracellular fluid. Required for maintenance
of pH and osmotic balance, nerve and muscle function.

Cl Major electrolyte of blood and extracellular and intracellular fluid. Required
for maintenance of pH and osmotic balance.

S Element of the essential amino acids methionine and cysteine. Contained in

the vitamins thiamine and biotin. As part of glutathione, it is required for
detoxification. Poor growth due to reduced protein synthesis and lower
glutathione levels potentially increasing oxidative or xenobiotic damage
are consequences of low sulfur and methionine and/or cysteine intake.

Table 2.3

List of Known Trace Elements in the Human Body?
Barium Cobalt Lithium Strontium
Beryllium Copper Manganese Tungsten
Boron Iron Molybdenum Zinc
Caesium Fluorine Nickel

Chromium lodine Selenium

@ These elements are all toxic at bigh levels.
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2.2 BIOLOGICAL ROLES AND TOXICITIES
OF TRACE ELEMENTS

Trace elements are essential for the proper growth, development, and maintenance
of the health and normal function of the body. Too little trace elements will result
in diseases, even leading to morbidity and death. Figure 2.1 illustrates four trace-
element-deficiency diseases: anemia, osteoporosis, thyroid imbalance, and prema-
ture graying of hair, which are due to deficiency in iron, boron, iodine, and copper,
respectively. The primary biological functions of some trace elements are summa-
rized in Table 2.4.

Normal bone Osteoporosis

Figure 2.1
(a) Iron-deficiency anemia; (b) boron-deficiency osteoporosis; (Continued)
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(c) (d)

Figure 2.1 (Continued)
(¢) thyroid gland enlargement caused by iodine deficiency; and (d) premature bhair graying due
to lack of copper.

However, an excessive level of any trace element in the body will cause adverse
effects on its physiology. Nickel, chromium, and cobalt, for example, are a major cause
of contact dermatitis. Table 2.5 lists the percentage of population who suffer from metal
allergies.

The toxicity of nickel, chromium, and cobalt also causes internal diseases. Cobalt-
containing dust, for example, caused lung diseases in workers of the metallurgical
industry. In 1966, the addition of cobalt compounds to stabilize beer foam in Canada
caused cardiomyopathy, which came to be known as beer drinker’s cardiomyopathy.
The carcinogenicity of chromate dust was known as early as 1890, when the first
publication described the elevated cancer risk of workers in a chromate dye company.
Table 2.6 lists the primary toxicities of some trace elements due to an excessive level.
The nontoxicity (i.e., biocompatibility) of the pure metals used in metallic biomaterials
and their alloys are compared in Figure 2.2.

In summary, many metal elements are required by the human body as micronu-
trients. However, it is also important to bear in mind that these trace elements are all
toxic at levels higher than required, especially if they are not cleared properly.

2.3 SELECTION OF METALLIC ELEMENTS
IN MEDICAL-GRADE ALLOYS

The toxicity of a metallic biomaterial stems from the toxicity of the released metal
ions and associated compounds. In principle, nontoxic elements should be selected
as alloying elements, when it comes to developing a new biomedical implant
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Table 2.4

Some Trace Elements and Their Primary Roles in the Human Body

Trace

Elements Biological Roles Trace-Element-Deficiency Diseases

Fe Contained in heme groups of hemoglobin ~ Anemia is the primary consequence
and myoglobin which are required for of iron deficiency.
oxygen transport in the body, as well as
many other metabolic enzymes and Fe-S
proteins. Part of the cytochrome p450
family of enzymes.

Cu Contained in enzymes of the ferroxidase Copper deficiency can result in
system which regulates iron transport in anemia and premature hair
the blood and facilitates release from graying.
storage.

Mn Major component of the mitochondrial Manganese deficiency can lead to
antioxidant enzyme manganese improper bone formation and
superoxide dismutase. reproductive disorders.

Required for production of thyroxine Deficient iodine intake can cause
which plays an important role in goiter, an enlarged thyroid gland.
metabolic rate.

Zn Important for reproductive function due to  Zinc deficiency can lead to diarrhea,
its role in FSH (follicle stimulating wasting of body tissues and
hormone) and LH (leutinizing hormone). anorexia.

Important in prostate gland health.

Se Contained in the antioxidant enzyme Human deficiency causes
glutathione peroxidase and heme cardiomyopathy and is known as
oxidase. Keshan’s disease.

Co Contained in vitamin B,. Cobalt deficiency can lead to vitamin

B,, deficiency with anemia.

Mo Contained in the enzyme xanthine Molybdenum deficiency, a rare
oxidase. Required for the excretion of human disease, can lead to
nitrogen in uric acid in birds. accumulation of toxic levels of

sulfite and neurological damage.

Cr A cofactor in the regulation of sugar levels.  Chromium deficiency may cause

hyperglycemia (elevated blood
sugar) and glucosuria (glucose
in the urine).

F Bones and teeth, with apatites. Dental problems if not enough.

Table 2.5
Metal Sensitivity

Percent Metal-Sensitive (%)

General population
Patients with stable total joint replacements
Patients with loose total joint replacements

10
25
60
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Table 2.6

Toxicities of Some Trace Elements in the Human Body

Trace Elements Toxicities

Fe Excess iron levels can enlarge the liver, may provoke diabetes and cardiac

failure. The genetic disease hemochromatosis results from excess iron
absorption. Similar symptoms can be produced through excessive
transfusions required for the treatment of other diseases.

Cu Excess copper levels cause liver malfunction and are associated with genetic
disorder Wilson’s disease.
Mn An excess of manganese can lead to poor iron absorption.
I Excessive iodine intake can cause goiter (an enlarged thyroid gland).
Zn An excess of zinc may cause anemia or reduced bone formation.
Se An excess of selenium can lead to selenosis.
Co An excess may cause cardiac failure.
Mo An excess can cause diarrhea and growth reduction.
Cr Elevated levels of some forms of chromium, such as Cr(VI), can be
carcinogenic.
F Bone brittleness and increased risk of fracture.
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Figure 2.2
(a) Cytotoxicity of some pure metals. (b) The relationship between polarization resistance and
biocompatibility of pure metals, cobalt—chromium alloy, and stainless steels.

material. It follows that materials using elements that naturally occur in the body
are likely to be more compatible than elements naturally excluded by the body.
Hence, trace elements including Fe, Co, Mo, Cr, Zn, Mn, and W should be given
priority in the selection of alloy elements. However, trace elements are all toxic at
levels higher than required. As such, their use must be combined with high corro-
sion resistance design.
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Nonetheless, there are also a number of metal elements that are virtually nontoxic,
with unknown biological roles in the body. The excellent biocompatibility of these
elements, which include Zr, Ti, Nb, Ta, Pt, Ag, and Au, is due to their high stability
(i.e., superb resistance to corrosion) in physiological environments. Hence, these ele-
ments are also frequently used in medical-grade, especially titanium-based, alloys.
Since the 1990s, an increasing number of new metallic implant materials have been
developed using these inert elements, such as p-titanium (Ti-Mo-Zr-Fe) and magnesium
(Mg-Nd-Zn-Zr) alloys.

In short, chemical impacts (i.e., systemic toxicity) of a metallic material on the host
body are directly determined by its corrosion resistance. Hence, improving the biocom-
patibility of metallic biomaterials is best achieved by the minimization of corrosion.
The rest of this chapter is devoted to the corrosion behaviors of metals and the strate-
gies to minimize corrosion (and thus toxicity) of implant biomaterials.

2.4 CORROSION OF METALS
2.4.1 Why Do Metals Corrode?

The lowest free energy state of many metals in an oxygenated and hydrated environ-
ment is in the form of a metal oxide, which is the natural state of elements in ores.
After a series of processing steps (Figure 2.3), the metal elements in final products are
no longer in the lowest free energy state. During the service of a metallic implant,
which is typically in an oxygenated and hydrated environment, metal elements will
always tend to revert to their natural form as ores, a process called corrosion.

Billets (or called ingots)

. bt K5

Components

During use
Corrosion

End-user products

Customers

Figure 2.3
Processing of metals.
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2.4.2 Corrosion Tendencies of Dissimilar Metals: Electrode Potentials

Corrosion occurs when metal atoms give away electrons and become positive ions.
The metal ions go into solution or combine with oxygen or other species in solution
to form a compound that flakes off or dissolves. To reiterate, the ionization of metal
atoms is the first step of corrosion.

Different atoms have different tendencies to be ionized. Assume we place a piece
of magnesium and copper in a beaker of pure water (Figure 2.4). With the magnesium
plate, the magnesium atoms will tend to shed electrons and go into solution as mag-
nesium ions, and the electrons will be left behind on the magnesium. The negatively
charged magnesium will be closely surrounded by a layer of positive ions in the solu-
tion. Concurrently, some of magnesium ions could reclaim their electrons and reattach
to the metal. A dynamic equilibrium will be established when the rate at which ions
leave the surface is exactly equal to the rate at which they join it again. At the equilib-
rium state, there will be a constant negative charge on the magnesium, and a constant
number of magnesium ions present in the solution around it. The same process will
happen with the copper plate as well. However, copper is less reactive than magne-
sium and has a lesser tendency to release ions. At an equilibrium state, there will be
less charge on the copper, and fewer copper ions in solution. Hence, at the equilibrium
state, the magnesium plate will be more negatively charged than the copper one.

The difference in electric potentials across a metal/solution interface is commonly
referred to as an electrode potential. Theoretically, the electrode potential can be mea-
sured as voltage and used to indicate the tendency of electrons to flow away, that is,
the tendency of the metal to be ionized. Unfortunately, that voltage, that is, the abso-
lute value of electrode potential, is impossible to measure. Practically, we measure
the relative electrode potential. That is, we measure the electrode potential versus a
standard reference electrode. The hydrogen electrode is universally accepted as the
primary standard, against which all electrode potentials are compared in their standard
states, which is unit activity (~1 M) for ions and 1 atm pressure for gases at 25°C. Under
these standard conditions, the electrode potential of hydrogen is arbitrarily defined as
E° = 0.000 V. In addition to this standard hydrogen electrode (SHE), saturated calomel
electrode (SCE) is another widely used reference electrode, based on mercury.

Magnesium Copper
ofMe e i
... AV B

Figure 2.4
Electrical double layer (EDL) around metals in pure water, showing that an electrode potential
exits across the metal/Solution interface.
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By measuring electrode potentials relative to the SHE, a series of (relative) standard
electrode potentials have been measured for metals immersed in their own ions at
unit activity (Table 2.7). This standard electrode potential series is also known as the
standard electrochemical series or the electromotive force series (emf). The electrode
potential series defines the corrodibility of metals. The lower the standard electrode
potential value of a metal, the higher is the corrosion tendency of that metal. In another
words, metals near the top of the emf series are less prone to corrosion. Metals located
near the positive end of the emf series are referred to as “noble” metals, while metals
near the negative end of the emf scale are called “active” metals.

Table 2.7

Standard Electrode Potentials at 25°C
Reaction E° (V vs. SHE)
AUt + 3e” = Au +1.498 noble
P2t + 2e- — Pt +1.18 1
Pd** + 2e- - Pd +0.951
Hg?* + 2e- — Hg +0.851
Agr+e — Ag +0.800
Cut+e — Cu +0.521
Cu®t +2e - Cu +0.342
2H* + 2e- - H, 0.000
Pb?* + 2e~ — Pb -0.126
Sn?* + 2e~ = Sn -0.138
Mo3* + 3e~ - Mo -0.200
NiZ* + 2e- = Ni -0.257
Co** +2e - Co -0.28
Cd?* +2e - Cd —-0.403
Fe?* + 2e~ — Fe -0.447
Ga*t + 3e~ —» Ga -0.549
Ta’t + 3e- > Ta -0.6
Cr¥* + 3e- - Cr -0.744
Zn** + 2e- — Zn -0.762
Nb3*+ + 3e- — Nb -1.100
Mn?* + 2e= - Mn -1.185
Zr* + 4e- - Ze —-1.45
Hf** + 4e- — Hf -1.55
TiZ*+2e > Ti -1.630
AP+ + 3e= = Al -1.662
Ut +3e - U -1.798
Be?t + 2e~ — Be -1.847
Mg?* + 2e- - Mg -2.372
Na* + e~ — Na -2.71
Ca’ +2e — Ca -2.868
Kt +e — K -2.931}
Li*+e — Li —3.040 active

Source: Vanysek, P, in CRC Handbook of Chemistry and Physics,
D.R. Lide, ed., CRC Press, Boca Raton, FL, 2001, pp. 8-21.
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While appreciating the indicative role of standard electrode potentials, one must
bear in mind the following limitations of the emy series [2]:

1. The emf series applies to pure metals in their own ions at unit activity. This
set of conditions is important in the development of the concept of elec-
trode potentials, but these conditions are quite restrictive and are not those
found in most practical situations. Although the electrode potential for a metal
immersed in a solution of its ions at concentrations other than unit activity can
be calculated based on its standard electrode potential (at unit activity) by the
Nernst equation, there is still the restriction in the emf series that the solution
contains cations of only the metal of interest.

2. The relative ranking of metals in the emf series is not necessarily the same
(and is usually not the same) in other aqueous solutions (such as physiological
fluids, seawater, groundwater, sulfuric acid). Thus, the emf series cannot be
used reliably to predict the corrosion tendencies of coupled metals in other
environments.

3. The emf series applies to pure metals only and not to metallic alloys.

4. The relative ranking of metals in the emf series gives corrosion tendencies
(subject to the restrictions mentioned earlier) but provides no information on
corrosion rates.

Any metal or alloy placed in a corrosive environment has its own electrode potential,
called the corrosion potential E..,,. The galvanic series (in seawater) is an ordered list-
ing of experimentally measured corrosion potentials in natural seawater for both pure
metals and alloys. Note that the electrode potentials in the galvanic series in Figure 2.5
are measured relative to a saturated calomel electrode (SCE), whereas standard elec-
trode potentials are always referred to as the standard hydrogen electrode (SHE). The
conversion between the electrode potentials measured against the two reference elec-
trodes is given by the following:

Evs. SHE = Evs. SCE + 0.242 2D

In principle, the galvanic series for seawater should not be used to predict corro-
sion tendencies in solutions that vary in composition, such as HCI solution, which
is strongly acid. The use of the galvanic series in seawater is more appropriate for
similar aqueous solutions, in terms of acidity and ionic species. For instance, the
galvanic series in seawater may be applied (with some caution) to the behavior of
metals and alloys used for joint replacements in the human body [2]. This is because
a commonly used simulated physiological fluid known as Ringer’s solution contains
a mixture of dissolved NaCl, KCI, and CaCl, (~0.12 M sodium/0.13 M chlorides). Thus,
body fluids and Ringer’s solution can be considered a dilute version of seawater
(~0.54 M sodium, 0.47 M chlorides). So, the galvanic series for seawater can be used
as a first approximation, although data in Ringer’s solution itself should be used if
available. As per the standard electrode potential series, any galvanic series gives no
information about corrosion rates, but only about corrosion tendencies [2].

2.4.3 Factors Affecting Electrode Potentials

Actual electrode potentials are affected by several variables including (1) the nature of
the metal, (2) the chemical nature of the aqueous solution, (3) the presence of oxide
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Figure 2.5
The galvanic series in seawater. (Redrawn from LaQue, F.L.: Marine Corrosion, Chapter 6. 1975.
Copyright Wiley-VCH Verlag GmbH & Co. KGaA, New York. Reproduced with permission.)

films on the metal surface, (4) the presence of adsorbed gases on the metal surface,

-.0.5 -1.0
EinVvs. SCE

0.0

and (5) the presence of mechanical stress on the metal [3].

2.4.4 Galvanic Corrosion

When two dissimilar metals are immersed in an electrolyte and electrically connected,
one metal corrodes preferentially to another, a process called Galvanic corrosion. In
Galvanic corrosion, the anodic metal will have a higher corrosion rate in the couple
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than in the freely corroding (uncoupled) condition. Galvanic corrosion is usually not a
desired occurrence. It can be minimized by the following methods [5]:

1. Select combinations of metals as near to each other as possible in the galvanic
series.

2. Insulate the contact between dissimilar metals whenever possible.

3. Apply organic coatings, but coat both members of the couple or coat only the
cathode. Do not coat only the anode, because if a defect (holiday) develops in
the organic coating, an accelerated attack will occur because of the unfavor-
able effect of a small anode area and a large cathode area.

4. Avoid the unfavorable area effect of having a small anode coupled to a large
cathode.

5. Install a third metal which is anodic to both metals in the galvanic couple
(“sacrificial” anode).

2.4.5 Corrosion Possibility of a Metal under Different
Conditions: Pourbaix Diagrams

In the freely corroding (uncoupled) condition, corrosion possibility of a metal can be
predicted by its thermodynamically stable state under specific electric potential applied
on the metal and the pH value of the environment. Note: the actual electric potential of
a metal is not necessarily its electrode potential, as you can apply an electric potential
to a metal using an external electric power supply.

To illustrate the stable (equilibrium) states for a given metal at various conditions of
electric potential and pH, Marcel Pourbaix developed a useful potential-pH diagram,
called a Pourbaix diagram (Figures 2.6 and 2.7). Pourbaix diagrams are phase diagrams
for corrosion scientists, to illustrate all possible equilibrium G.e., stable) states of a
metal element over the entire range of pH and electric potential values in an aqueous
environment. More specifically, these diagrams indicate certain regions of potential
and pH where the metal undergoes corrosion, and other regions of potential and pH
where the metal is protected from corrosion. Pourbaix diagrams are available for over
70 different metals [6].

Pourbaix diagrams are typically produced for standard conditions, that is, room tem-
perature (25°C) and 1 atm. For the construction of a Pourbaix diagram, students can
refer to the textbooks and websites provided on the reading list for this chapter. The
goal of this section is to learn how to read a Pourbaix diagram, which you will practice
as a biomaterial engineer.

In a Pourbaix diagram, the horizontal axis is the pH value of the aqueous environ-
ment, and the vertical axis is the equilibrium electric potential applied on the metal.
Figure 2.6 is the Pourbaix diagram of water, and the meanings of the two lines (a) and
(b), and three regions are summarized below the figure. These basic oxidation/reduc-
tion reactions for aqueous systems can be superimposed on a Pourbaix diagram of a
metal, together showing under what conditions a metal will corrode. Figure 2.7a is the
Pourbaix diagram of copper superimposed by the water reactions. Figure 2.7b illus-
trates three featured regions of the copper Pourbaix diagram: corrosion, passivation,
and immunity. In the blue or gray regions, Cu** or CuO,** ions are stable respectively,
which means that copper tends to form soluble ions, that is, tends to corrode, under
the conditions of these two regions. In the yellow region, a thin oxide or hydroxide
layer forms on the copper surface, which can protect the metal from anodic dissolution.
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Figure 2.7
Pourbaix diagram of copper. (a) The Pourbaix diagram of copper superimposed by diagram for
water. (b) Three regions: corrosion, passivation, and immunity. (From the WikimediaCommons,
bttp./commons.wikimedia.org/.)
In regions where

e Cu?* or CuO,*~ ion is stable, corrosion is possible

e Copper oxide Cu,O or copper hydroxide Cu (OH), is stable, passivity is possible

e Cu is stable, thermodynamically immune to corrosion
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Table 2.8
How to Read a Pourbaix Diagram

Interpretations

Vertical lines Separate species that are in acid/alkali equilibrium
Nonvertical lines Separate species at redox equilibrium

Horizontal lines  Separate redox equilibrium species not involving hydrogen or
hydroxide ions

Diagonal lines Separate redox equilibrium species involving hydrogen or hydroxide
ions
Dashed lines Enclose the practical region of stability of the aqueous solvent to

oxidation or reduction, i.e., the region of interest in aqueous systems;
outside this region, it is the water that breaks down, not the metal

Redox equilibria Where oxidation and reduction could equally occur and are
completely reversible
Any point of the The most thermodynamically stable form of the metal can be found for
diagram any given potential and pH

This process is called passivation. However, oxide will itself also corrode under certain
conditions. In the green region, the copper atom itself is stable, which means that cop-
per is immune from any forms of corrosion under the conditions of the green region.
More reading details are summarized in Table 2.8.

Figure 2.8 demonstrates four Pourbaix diagrams of metals, including silver (Ag), iron
(Fe), copper (Cw), and titanium (Ti. When no external electric potential is applied to a
metal, as in the scenario of a metallic implant in the body (fluid), the working condi-
tions of the metal are the corrosion potential E.,, of the metal in the body fluid and

~orr
the pH value of the body. For the electric potential, we use the corrosion potential E_,
in seawater as the first approximation (Figure 2.5). As for pH value, the body fluids are
nearly neutral, with pH value 7.2-7.4. However, the pH value of body fluid can vary in
certain tissues, and change dramatically in tissue that has been injured or infected. In
a wound it can be as low as 3.5 due to severe inflammation. In an infected wound the
DPH can increase to 9.0. Table 2.10 also gives a brief estimation of possible events of
these four pure metals in the body, which reveals that iron would tend to corrode in a
wound site due to severe inflammation. Silver is immune from corrosion, and titanium
could be passivated.

Pourbaix diagrams provide a first guide as to the corrosion behavior of a given
metal. Despite their usefulness, however, Pourbaix diagrams are subject to several
important limitations, as follows [2]:

1. Equilibrium is assumed. (But in practical cases, the actual conditions may be

far from equilibrium.)

2. Pourbaix diagrams give no information on actual corrosion rates.

. Pourbaix diagrams apply to single elemental metals only and not to alloys.

. Passivation is ascribed to all oxides or hydroxides, regardless of their actual
protective properties. Corrosion may sometimes proceed by diffusion of ions
through oxide films, a process which is ignored in the construction of the
diagrams.

5. Pourbaix diagrams do not consider localized corrosion by chloride ions.

6. Conventional Pourbaix diagrams apply to a temperature of 25°C.

EENION)
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Pourbaix diagrams of silver (Ag), iron (Fe), titanium (Ti), and copper (Cu). (a) E.,,, = —0.12V
(SCE) = 0.122 V (SHE). When pH = 3.5, 74 or 9.0, Ag is stable. Immunity is possible. (b)
E,,,=—0.466V (SCE) = —-0.224 V (SHE) [7], when pH = 3.5 or 7.4, Fe*? is stable, Corrosion is pos-
sible; when pH = 9.0, Fe,O; is stable, Passivity is possible. (c) E,,,, = 0 V (SCE) = 0.242 V (SHE),
when pH = 3.5, 7.4 or 9.0, TiO, s stable, Passivity is possible. (d) E.,,, = —0.3 V (SCE) = —-0.058 V
(SHE), when pH = 3.5 or 74, Cu is stable, Immunity is possible. When pH = 9.0, Cu,0 is stable,
Passivity is possible.

2.5 ENVIRONMENT INSIDE THE BODY

To thoroughly understand the corrosion behaviors of metallic implants, we must
first look at the nature of aqueous conditions within the tissue. Inside the human
body, the environment is physically and chemically different from the ambient
environment. Consequently, a metal that performs well (is inert or passive) in
the air may suffer a severe corrosion in the body. As a matter of fact, the most
corrosion-resistant stainless steels typically cause chronic allergy and toxic reac-
tions in the host body, which are only diagnosed after a sufficiently long time
postimplantation.

Moreover, different parts of the body have different pH values and oxygen con-
centrations. An implant that performs well in one region of the body may suffer an
unacceptable amount of corrosion in another, due to acidic erosion and oxidation. As
mentioned before, these body fluids are nearly neutral, with pH value 7.2-7.4 at 37°C.
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Table 2.9

Ionic Concentrations (mM) of Human Blood Plasma
lon Human Tissue Fluid Human Blood Plasma
Na+* 142.0 142.0
HCO3- 4.2 27.0

K+ 5.0 5.0
HPO,2- 1.0 1.0

Mg+ 15 1.5

Cl- 147.8 103.0

Ca%* 2.5 2.5

SO, 0.5 0.5

However, the pH value of body fluid can vary in pH during normal and healing states
(e.g. uninjured skin is slightly acidic).

Corrosion is also accelerated by aqueous ions, as commonly seen for metals in ambi-
ent air near coastal areas. Under normal conditions, most human body fluids contain
around 0.9% saline, solutions of mostly Na*, Cl-, and other trace ions (Table 2.9), as well
as amino acids and a range of soluble proteins. There is also trace debris and cellular
material that can result in focal adhesions onto implants. Combined with fluctuations
in ionic strength in relation to high blood pressure, or due to ion deposits, the human
body presents an aggressive and variable environment for any implant.

Furthermore, the internal partial pressure of oxygen is about one quarter of atmospheric
oxygen pressure. While less reactive in terms of oxidation, lower oxygen actually acceler-
ates corrosion of metallic implants by slowing down the formation of protective passive
oxide films on the metal surfaces once an implant is broken or removed. Ideally, corrosion
resistance should be such that the release of metal ions from a metallic implant will be
minimized in the harshest conditions of the body, and remain at a satisfactorily low level
over a long service period (more than 30 years) under normal physiological conditions.

2.6 MINIMIZATION OF TOXICITY OF METAL IMPLANTS

The minimization of toxicity of metallic implants involves alloy design, galvanic cor-
rosion control, and careful surgical procedure. These are summarized in Table 2.10.

Table 2.10
Strategies to Minimize Toxicities of Metallic Implants

1. Select corrosion-resistant materials
e Use appropriate metals (inert or trace elements of the body).
e Design alloys to minimize corrosion.
2. Avoid dissimilar metals
¢ Avoid implantation of different types of metal in the same region.
e In the manufacturing process, provide matched parts from the same batch of the same
variant of a given alloy.
3. Avoid surface damage
* In surgery avoid contact between metal tools and the implant, unless special care is taken.
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CHAPTER HIGHLIGHTS

Most metal elements exist in the body as trace elements. Trace elements can
be tolerated by the body in minute amounts, but cannot be tolerated in large
amounts.

. Corrosion resistance stands in the first place of consideration in the design

of metallic biomaterials, in alignment with the requirement of nontoxicity of
biomaterials.

. The galvanic series for seawater can be used as a first approximation to predict

corrosion tendencies of dissimilar metals in the body fluid.

. Corrosion, passivity, and immunity regions of Pourbaix diagrams.
. The body fluids are nearly neutral, with pH value 7.2-74. However, the pH

value of body fluid can vary, especially in tissue that has been injured or
infected. In a wound it can be as low as 3.5 due to severe inflammation. In an
infected wound the pH can increase to 9.0.

. Strategies to minimize toxicities of metallic implants:

* Select/design corrosion-resistant materials
* Avoid using dissimilar metals in one implant
* Avoid surface damage

LABORATORY PRACTICE 1

Measure corrosion potential E.,, of Ti, Ti-6Al-4V, 310L stainless steel, and Mg

in simulated body fluid and standard tissue culture medium.

SIMPLE QUESTIONS IN CLASS

1. “Biocompatible” means that a material

a.
. Must be biologically harmless
c.

b

d

Must biologically support and foster living tissues

Should be biologically nutritious to cells, tissue, or organs

. Bioactive

2. Which of the following elements is a trace element in the body?

a.
. Magnesium

b

C.

d

Hydrogen

Carbon

. Zinc

3. Are the following statements true (T) or false (F)?

a.

b.

Since trace elements are native to the body, they are always more biocompatible

than those that are nonnative.

Since trace elements are essential to maintain normal functions of the body, they

can be used in medical devices without caution.

. Most trace elements can be tolerated by the body in minute amounts, but cannot

be tolerated in large amounts.

. Elements that are nonnative to the body should not be considered in the devel-

opment of any biomaterials.
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4. What is the first consideration in the design of new metallic biomaterials?
a. Easy to process and thus low cost
b. Mechanical properties
¢. Specific functional properties, such as transparency, conductivity, etc.
d. Biocompatibility

5. Which of the following data can best predict the corrosion tendency of a series of
metals in the body fluid?

. Corrosion potentials in tissue culture medium

. Standard electrode potential series

¢. Galvanic series
d. Corrosion potentials in water

6. Which of the following strategies would not minimize corrosion of metallic
implants?
a. Use inert elements.
b. Use metals of the passivation mechanism.

Use the same alloys regardless of batches.
. Avoid surface damage.

o &

oo

PROBLEMS AND EXERCISES

1. The Pourbaix diagram of manganese is given in the following. Mark each zone
with corrosion, passivation, or immunity:.

2.2

Potential E (V) vs. SHE

2. Fill the blanks in the following description:
The pH value can change in tissue that has been injured or infected.
a. Normal tissue fluid has a pH of about
b. In a wound it can be as low as
¢. In an infected wound the pH can increase to
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3. Search on the Internet (Google, PubMed, and Web of Science are recommended)
and find the pH values of the following organs of the body:
a. Stomach
b. Lung
c. Liver
d. Small intestine

4. Search on the Internet (Google, PubMed, and Web of Science are recommended)
for the electrode potential of Co or Co-based alloys in seawater. Use this electrode
potential as the first approximation to predict the corrosion potential of Co in the
body, based on the following Pourbaix diagram of Co. Analyze what could happen
if a cobalt prosthesis is exposed to the aforementioned three anatomical environ-
ment in Exercise 3 and cite the reference properly.

: | | | I T T T T T

1 ‘..““‘_“ TN .\.w.‘““n;..‘..,.“‘““u.; .
-

0 Co?+ | ‘

0.0 |- i

-02 -
E “““u“ CO(OH)Q ]

-06 | 1

Potential E (V) vs. SHE

—0.8 - T

pH

5. Read the corrosion potential of magnesium on Figure 2.5. The Pourbaix diagram of
magnesium is given in the following. Analyze the corrosion tendency of this metal
in normal body fluid.

0
L:E -1+ 2+
% Mg Mg(OH),
2
Z
5§}
g -2
5
I Mg*
v
M
3 &
T
0 7 14
pH
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6. Compare the relative location of the following pairs of metals in the emf series and
in the galvanic series for seawater.
a. Zinc and chromium (use 316 stainless steels for chromium in the galvanic series
for seawater)
b. Platinum and titanium
¢. Nickel and silver
d. Titanium and aluminum (use aluminum alloys for aluminum in the galvanic
series for seawater)
What does the relative position of these various pairs of metals tell you about the
use of the emf series to predict possible galvanic corrosion in seawater?
7. Avoid surface damage of metallic implants is strongly advised to orthopedists in
surgical operations. Explain the reason behind this clinical good practice.
8. What long-term toxic effects could be caused by the release of nickel and chro-
mium ions?
9. Although magnesium is a macroelement in the body, what disease could be intro-
duced by a long-term overdose of magnesium in the body?
10. Search on the Internet and identify at least two trace elements that are not included
in Table 2.4. Describe their biological roles in maintaining health, and their toxicity
if overdosed.

ADVANCED TOPIC: BIOLOGICAL ROLES
OF ALLOYING ELEMENTS

Aluminum

Aluminum is a naturally abundant element but has little known function in the human
body. Despite its acute toxicity only in very high doses, public awareness of chronic
aluminum toxicity, especially its links to neurological problems [110], has increased,
due to its use in domestic cookware.

Aluminum is involved in the causality of several diseases. By competing with cal-
cium for absorption, increased amounts of dietary aluminum may contribute to the
reduced skeletal mineralization (osteopenia) observed in infants. Aluminum is also
associated with altered function of the blood-brain barrier [117] and brain neurotoxic-
ity [118]. Like other metals, aluminum toxicity is also a major problem in people with
kidney disease [119]. Aluminum intolerance also causes contact dermatitis, digestive
disorders, vomiting, or other symptoms. There are concerns that excessive exposure
to aluminum may increase the risk of breast cancer and Alzheimer’s disease [120-122],
although the use of aluminum cookware has not been shown to lead to aluminum tox-
icity in general and there is no scientific consensus regarding whether or not aluminum
exposure could directly increase disease risk.

Calcium

Calcium is the most abundant mineral and mainly stored in bones and teeth. Other
diverse biological roles in the human body include blood clotting and coactivation
and stabilization of enzymes [139-141]. Compared with other metals, the calcium ion
and its compounds have very low toxicity. This is not surprising given the high natu-
ral abundance of calcium compounds in the body. Calcium poses few serious clinical
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problems, with kidney stones being the most common side effect, and local tissue
calcification sometimes occurring around dead or dying tissue. Acute calcium poison-
ing is rare, although excessive consumption of calcium carbonate supplements can
potentially cause renal failure [142,143]. Consumption of more than 10 g/day of CaCOj,
(= 4 g Ca) raises the risk of developing milk-alkali syndrome [144].

Chromium

Chromium in the Body as a Trace Element Chromium is a member of the transition
metals in group 6, having an electronic configuration of 4s'3d>. As a trace element,
chromium is a cofactor in the regulation of sugar levels in blood. Chromium deficiency
may cause hyperglycemia (elevated blood sugar) and glucosuria (glucose in the urine).
Hence, chromium concentrations in blood, plasma, serum, or urine may be measured
to monitor for safety in exposed individuals [8-10].

Toxicity of Chromium Among a range of possible oxidation states of chromium,
the Cr¥* and Cr® states are the most common forms, with the toxicity depending
on the oxidation state of the metal. Water-insoluble trivalent chromium (III) com-
pounds and chromium metal are not classified to be a health hazard, while the
toxicity and carcinogenic properties of hexavalent chromium (VD have been well
documented [11-13]. The carcinogenicity of chromate dust was known as early
as 1890, when the first publication described the elevated cancer risk of workers
in a chromate dye company [14-16]. Chromium salts (chromates), which are often
used to manufacture leather products, paints, cement, mortar, and anticorrosives,
are also the cause of allergic reactions in some workers. Contact with products
containing chromates can lead to allergic contact dermatitis and irritant dermatitis,
resulting in ulceration of the skin (chrome ulcers) [17,18]. This skin disease is often
found in workers that have been exposed to strong chromate solutions in electro-
plating, tanning, and chrome-producing manufacturers [19-21]. An actual litigation
conducted in 2009 on hexavalent chromium release into drinking water was used
as the plot of 2010 biographical film Erin Brockovich.

Chromium, as well as nickel, is received into the body via the lungs [22], oral intake
[23], skin contact [13], and implants [8]. In the body, chromium (VD is reduced to chro-
mium (IID in the blood before it enters the cells. The chromium (I1D is excreted from
the body via urine. In vitro studies have indicated that high concentrations of chro-
mium (IID in the cell can lead to DNA damage [24-27]. The acute toxicity of chromium
(VD is due to its strong oxidative properties. After it reaches the bloodstream, it dam-
ages the kidneys, liver, and blood cells through oxidation reactions, resulting in hemo-
lysis, which causes renal and liver failure [11,12]. The lethal dose for chromium (VD
ranges between 50 and 150 mg/kg [28]. The World Health Organization-recommended
maximum chromium (VD is 0.05 mg/L [29-31].

Cobalt

Cobalt in the Body as a Trace Element Cobalt is an essential trace element found
principally in the maturation of human and animal red blood cells as a constituent
of vitamin B,, (cyanocobalamin). Vitamin B,, exists with two types of alkyl ligand:
methyl and adenosyl. Methylcobalamin promotes methionine synthesis. Methionine
supply ultimately influences DNA synthesis [73]. Deoxyadenosylcobalamin performs a
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key role in the energy metabolism of ruminants by facilitating the metabolism of pro-
pionate, which is an important precursor of glucose in ruminants [74]. Changes in lipid
[75] and amino acid metabolism [76] during cobalt deficiency have been reported. In
short, vitamin B,, plays a critical role in the extraction of energy from proteins and fats.
Cobalt deficiency causes metabolic deficiencies and poor conception rates.

Toxicity of Cobalt Being an essential trace element, cobalt can also cause serious
adverse health effects at high exposure levels [77,78]. Like chromium and nickel, cobalt
is received into the body via the lungs, oral intake, by skin contact, and from implant
release products. The median lethal dose (LDs,) value for soluble cobalt salts has been
estimated to be between 150 and 500 mg/kg. Hence, for a 100 kg person, the LDy,
would be about 20 g [79,80]. In 1966, the addition of cobalt compounds to stabi-
lize beer foam in Canada caused cardiomyopathy, which came to be known as beer
drinker’s cardiomyopathy [81]. After nickel and chromium, cobalt is a major cause of
contact dermatitis [82]. The toxicity of cobalt-containing dust also caused interstitial
lung disease in workers of the metallurgical industry [83].

With hip replacements made of cobalt alloys, there is in general a local release
of metallic particles, and in some individuals there is a hypersensitivity reaction that
causes more severe damage to the tissues in the immediate vicinity of the prosthe-
sis [84]. Cobalt toxicity has been reported to contribute to the pathology of systemic
and neurological symptoms in some patients with metal-on-metal hip prostheses
after 4-5 years of implantation [85]. The symptoms include painful muscle fatigue
and cramping, dyspnea, inability to perform simple motor tasks, decline in cognitive
function, memory difficulties, severe headaches, and anorexia [85]. It has been recom-
mended that health care providers other than orthopedic specialists be aware that
patients with a cobalt implant are at risk for cobalt poisoning, and might present with
cardiac or some of the listed neurologic symptoms [77,78,80].

Copper

Copper is another essential trace element present in human and animal tissue [146,149].
The human body contains copper at a level of about 1-3 mg/kg of body mass
[150,151]. Copper is absorbed in the gut and then transported to the liver [152,153].
After processing in the liver, copper is distributed to other tissues. Copper is mainly
carried by ceruloplasmin in blood. Copper is absorbed in the body normally about
1 mg/day in the diet and excreted from the body, with some ability to excrete some
excess copper via bile, which carries extra copper out of the liver [154]. Excessive
copper levels in the body have been linked to neurodegenerative diseases including
Alzheimer’s, Menkes, and Wilson’s diseases [155]. Studies have revealed that serum
levels with either high copper and low magnesium or concomitance of low zinc
with either high copper or low magnesium can both increase the mortality risk for
middle-aged men [156].

Iron

Iron in the Body as a Trace Element Iron is a necessary trace element found in almost
all living organisms, ranging from primitive bacteria to humans. Iron is present in all
cells in the human body, and has several vital functions. Many cellular enzymes vital to
life contain iron, such as those that oxidize food nutrients to produce energy [1]. Iron is
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also an essential component of hemoglobin, an iron-containing protein in blood that
binds and carries oxygen to the tissues from the lungs. Tron is absorbed into the body
via oral intake, and its deficiency is one of the most common nutritional deficiencies.
Too little iron can interfere with these vital functions and lead to morbidity and death.
The direct consequence of iron deficiency is iron-deficiency anemia [2].

Toxicity of Iron Large amounts of iron released from metallic implants can cause
excessive levels of iron in the blood. High blood levels of free ferrous iron react
with peroxides to produce free radicals, which are highly reactive and can damage
DNA, proteins, lipids, and other cellular components. Iron typically damages cells
in the heart and liver, which can cause significant adverse effects, including coma,
metabolic acidosis, shock, liver failure, adult respiratory distress syndrome, long-
term organ damage, and even death if left untreated [3-5]. Iron accumulates in the
brain of those with Alzheimer’s and Parkinson’s diseases [6]. Humans experience
iron toxicity above 20 mg of iron/kg of body mass, and 60 mg/kg is considered a
lethal dose [7].

Magnesium

Magnesium is needed for more than 300 biochemical reactions in the body. At the
biochemical level, magnesium is involved in energy metabolism and protein synthe-
sis, maintains normal muscle and nerve function, supports a healthy immune sys-
tem, and keeps bones strong. Magnesium also helps regulate blood sugar levels and
promotes normal blood pressure, playing important roles in preventing and manag-
ing disorders such as hypertension, cardiovascular disease, and diabetes [135,136].
Dietary magnesium is absorbed in the small intestines and is excreted through the
kidneys [135,136]. The kidneys are efficient at excreting excess magnesium and it is
unlikely that the mineral will accumulate to toxic levels, although there is a risk of
renal dysfunction with an overdose of magnesium. A high intake of magnesium can
compete with calcium, and lead to impairment of its absorption [137]. Symptoms of
magnesium overload include diarrhea, difficulty breathing and depression of the cen-
tral nervous system, causing muscle weakness, lethargy, sleepiness, or even hyper-
excitability [138].

Manganese

Manganese is an essential trace mineral, which plays a number of roles in cellular sys-
tems as cofactors for metalloenzymes, including oxidases and dehydrogenases, DNA
and RNA polymerases, kinases, decarboxylases, and sugar transferases [145,140]. In
humans, excessive exposure to Mn has been reported to induce “Manganism,” which
is a neurological disorder similar to Parkinson’s disease [147,148].

Molybdenum

Molybdenum in the Body as a Trace Element Molybdenum is an essential trace ele-
ment for a number of enzymes important to cellular metabolism. The most important
enzymes that require molybdenum are sulfite oxidase, xanthine oxidase, and alde-
hyde oxidase. Sulfite oxidase catalyzes the oxidation of sulfite to sulfate, necessary
for metabolism of sulfur amino acids. Sulfite oxidase deficiency or absence leads to
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neurological symptoms and early death. Xanthine oxidase catalyzes oxidative hydrox-
ylation of purines and pyridines, including conversion of hypoxanthine to uric acid.
Aldehyde oxidase oxidizes purines, pyrimidines, and pteridines, and is also involved
in nicotinic acid metabolism. Low dietary molybdenum leads to low urinary and serum
uric acid concentrations and excessive xanthine excretion [87].

The human body contains about 0.07 mg of molybdenum per kilogram of weight
[88], with higher concentrations occurring in the liver and kidneys, and lower con-
centrations in the vertebrae. Molybdenum is also present within human tooth enamel
and may help prevent its decay [89]. Dietary molybdenum deficiency has been asso-
ciated with increased rates of esophageal cancer in a geographical band from China
to Iran [90], possibly due to low soil levels that end up in crops. Compared to the
United States, which has a greater supply of molybdenum in the soil, people living
in deficient areas have about 16 times greater risk for esophageal squamous cell
carcinoma [90].

Toxicity of Molybdenum Molybdenum is much less toxic than many other metals
(e.g., Co, Cr, and N of industrial importance. Molybdenum does not constitute a
hazard to human beings either in trace concentrations occurring naturally, because
of environmental pollution, or from exposure to higher concentrations encountered
in industrial processes and applications [87,91,92]. Nevertheless, molybdenum dusts
and fumes generated by mining or metal working can be toxic with chronic exposure.
Low levels of prolonged exposure can cause irritation to the eyes and skin. Direct
inhalation or ingestion of molybdenum and its oxides should be avoided. Hence, pre-
cautions are recommended to avoid repeated exposure of humans to molybdenum
compounds, especially in dusts and fumes of molybdenum metal and molybdenum
trioxide powders [91,93,94].

Acute toxicity has not been reported in humans, such as accidental deaths due to
molybdenum poisoning in industry. However, studies on rats show a median lethal
dose (LDs) as low as 180 mg/kg for some molybdenum compounds. There is virtually
no chronic toxicity data for molybdenum in humans, but animal studies have shown
that chronic ingestion of more than 10 mg/day of molybdenum can cause diarrhea,
growth retardation, infertility, low birth weight, and gout, also affecting the lungs,
kidneys, and liver [91,95]. Chronic exposure to molybdenum and its compounds is
blamed for some symptoms including fatigue, headaches, and joint pains [91,94,96].

Studies on the concentrations of chromium, cobalt, and molybdenum in patients
with metal-on-metal total hip replacement and hip resurfacing arthroplasty showed
that the level of molybdenum in serum is generally low, compared with Cr and Ni
[97,98]. So far, no data are reported on systemic toxicity of molybdenum, with regard
to metallic implants.

Nickel

Nickel in the Body as a Trace Element The biological role of nickel as an essential
trace element was recognized in the 1970s [32,33]. Nickel exists in urease, an enzyme
that assists in the hydrolysis of urea. In blood, nickel is mainly bound to the albumin
fraction, but also to some other proteins of serum [34]. Most of the nickel is eliminated
into urine (90%). The concentrations of nickel in human tissues are estimated to be
(mg/kg of dry weight): 173 in lung, 62 in kidney, 54 in heart, 50 in liver, 44 in brain, 37
in spleen, and 34 in pancreas [35].
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Nickel deficiency has been found to have a number of deleterious effects and result
in pathological consequences in goats, rats, and chicks, including reduced growth,
weight loss, increased perinatal mortality [36], skin changes (pigmentation and para-
keratosis), and uneven hair development [37]. Animals with nickel deficiency have been
found to have impaired metabolism of iron, fats, glucose, and glycogen [38,39]. Nickel
deficiency interferes with the incorporation of calcium into the skeleton and decreases
the length/width ratios of chick tibias and femurs. It also suppresses the activity of
enzymes in the heart, liver, and kidneys, leading to the degeneration of cardiac and
skeletal muscle [37,38,40—43].

Toxicity and Carcinogenicity of Nickel Similar to chromium, the toxicology of
nickel was initially revealed by contact-allergy-related dermatitis, causing itchy and
red skin due to its use in ear-piercing [44,45]. The amount of nickel allowed in prod-
ucts that come into contact with human skin is regulated by the European Union, and
nickel has been previously recognized as one of the most important allergens by the
American Contact Dermatitis Society [46]. In the United States, the minimal risk level
of nickel and its compounds is set to 0.2 ug/m? for inhalation during 15-364 days
[47,48]. Diseases caused by the toxicology of nickel include [49] acute pneumonitis
from inhalation of nickel carbonyl [50], chronic rhinitis, and sinusitis from inhalation
of nickel aerosols, cancers of nasal cavities and lungs in nickel workers, and [49] der-
matitis and other hypersensitive reactions from cutaneous and parental exposures to
nickel alloys [51].

The toxicity and carcinogenesis are related to certain nickel-containing compounds
rather than pure Ni?* jons. Nickel sulfide fume and dust are known to be carcinogenic
[52]. Nickel carbonyl, [Ni(CO),, is an extremely toxic gas. Inhaled Ni;S, caused adeno-
mas and carcinomas of the lungs in rats, but nickel oxide did not [53]. In the body,
Ni?* jons may cross the cell membrane using the Mg?** ion transport mechanism. Once
Ni?* is inside the cell, it binds to cytoplasmic ligands and it does not accumulate in the
cell nucleus at the concentrations needed to have a genetic effect [54,55]. In addition,
soluble Ni?* is rapidly cleared in the body. Hence, there is no direct efficient delivery
of Ni?* to the target site within the cell nucleus to cause carcinogenic effects in the
body [53].

A mechanism by which a nickel compound may be harmful is due to its ability to
cross cell membranes (endocytosis). Some of the characteristics of nickel compounds
that increase their ability to be endocytosed include its crystalline nature, negative sur-
face charge, 2—4 pm range particle size, and low solubility [56]. Ni;S,, which shows low
solubility in vivo, may act by this mechanism [57]. When the nickel compound par-
ticles are endocytosed by target cells, the endocytic vesicles are acidified by fusion with
lysosomes and Ni** is released. Deleterious changes, such as the formation of oxygen
radicals and subsequent DNA damage can occur, a known mechanism for initiating
tumorigenesis [58,59].

Experiments have shown that nickel is harmful to cultured bone cells, but to
a lesser level than cobalt or vanadium [60]. Tests have shown cobalt, nickel, and
chromium to have a potential for carcinogenicity [61]. Pure nickel implanted intra-
muscularly or inside bone has been found to cause severe local tissue irritation and
necrosis [62,63]. Malignant fibrous histiocytomas or fibrosarcomas are also associ-
ated with the ability to retain nickel [64]. Released metal ions due to the corrosion of
the implants can also migrate into distant organs, and are more readily able to cross
cell membranes. Systemic toxicity may be caused by the accumulation, processing,
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and subsequent reaction of the host to corrosion products [65-67]. When high-dose
nickel salts were injected into mice, accumulation of nickel was observed in the
liver, kidney, and spleen, causing local deleterious effects [68]. Increased nickel con-
centrations have also been found in tissues adjacent to stainless steel implant mate-
rials (116 and 1200 mg/L) as well as in some distant organs [65,69]. Other factors,
such as infection and mechanical damage (wearing/friction), may further encourage
nickel release, raising the concentration retained local to the implant site [70-72].

Niobium

While niobium has little known biological roles in humans, some niobium-containing
compounds are toxic, including niobates and niobium chloride, two chemicals that
are water soluble [123]. One recent study actually found niobium to be one of the
more toxic metal ions, along with cobalt, tested for their ability to induce DNA dam-
age and cause immune cell death [124]. As more information becomes available,
this element should be treated with care, especially when several alloying elements
are used.

Silver

Silver has no known biological roles, and possible health effects of silver are a disputed
subject [131-133]. Although silver itself is nontoxic, most silver salts are, and some may
be carcinogenic [134]. Silver ions can bind to sulfur groups in intermolecular bonds in
some biomolecules.

Tantalum

Pure tantalum has excellent resistance to corrosion in a large number of acids, most
aqueous solutions of salts, organic chemicals, and in various combinations and mix-
tures of these agents. The corrosion resistance of tantalum is approximately the same as
that of glass. Tantalum has no known biological role [125], and is nontoxic. Compounds
containing tantalum are rarely encountered in the natural environment. Tantalum is
among the most biocompatible metals used for implantable devices [126]. There is
some evidence linking tantalum to local sarcomas [127] and toxicity of its oxide to
alveolar cells.

Titanium

Titanium is not found in the human body, and does not play any known biological
role in the human body [105], and is nontoxic even in large doses. When quantities of
up to 0.8 mg of titanium were ingested by humans on a daily basis, most titanium was
found to pass through without being digested or absorbed [106]. Titanium implants
are not rejected by the body, and generally make good physical connections with
the host bone. In vitro, titanium can however inhibit osteogenic differentiation of
mesenchymal stem cells [107] and may cause genetic alterations in connective tissue
[108]. Titanium particles also have size-specific biological effects on white blood cells
in vivo [109].
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Tungsten

Tungsten (atomic number 74) is chemically very similar to molybdenum (atomic
number 42). However, the biological role of tungsten has only recently been discov-
ered in prokaryotes, but not as yet in eukaryotes [99,100]. Tungsten is insoluble in
water and only very slightly soluble in nitric and sulfuric acids. The toxicity of tungsten
is very low; however, implantable materials made from this metal degrade very rapidly
in the body, and remain in the serum, probably as tungsten particles [101]. Despite this,
no ill-effects were observed in patients given 25-80 g powdered tungsten metal by
mouth as a substitute for barium in radiological examinations [102]. Moreover, the fact
that patients can rapidly recover both from seizures and renal failure while high levels
of tungsten persisted for several weeks in the patient’s serum and urine suggests that
there was no causal relation between the tungsten and toxicity. The excretion of tung-
sten is very rapid with a biological half-life of a few hours for soft tissues [102]. Directly
implanted tungsten also showed very low toxicity, even though significant levels could
be detected after implantation [103]. While the potential health effects of tungsten
remain to be fully defined, some researchers recommend caution [104].

Vanadium

Vanadium plays a less defined biological role in the human body [110,111], and can
have both negative and positive cellular responses [109], with toxicity mainly from its
compounds such as oxides [112]. Animal trials show that oral or inhalation exposures
to vanadium and vanadium compounds result in cancer formation, and various adverse
effects on the respiratory system, blood parameters, liver, neurological system, and
other organs [113,114]. There is lack of reports on the toxicity of vanadium as alloy-
ing elements in Ti alloy implants, although a case study has suggested a possible link
between vanadium release and failed implants [115].

Zinc

Zing, as a trace mineral in the human body, is also essential for hundreds of biological
enzymes, and transcription factors that are often coordinated with amino acids [157]. Zn
is less detrimental than Mn, Al (see Advanced Topics and Chapter 5), and Cu, because
Zn is readily absorbable by biological functions within the cell [157]. Like Ca, excessive
amounts of Zn have the potential to be corrosive in nature if ingested [158]. In a biologi-
cal system, zinc (Zn?) ions can form ZnCl,, which has been shown to damage parietal
cells lining the stomach.

Zirconium

Zirconium, which exists in the body at only 1 mg on average, does not play a natural
biological role in humans. The daily intake of zirconium is approximately 50 pg. Short-
time exposure to zirconium powder can cause irritation, and inhalation of zirconium
compounds can cause skin and lung granulomas. Persistent exposure to zirconium
tetrachloride results in increased mortality in rats and guinea pigs and a decrease of
blood hemoglobin and red blood cell in dogs [128-130]. Nonetheless, zirconium metal
exhibits the highest biocompatibility of all metals in the body (Figure 2.2), and zirco-
nium compounds are of low toxicity.
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The minerals we need. The human body and a sturdy building have many elements—that
is, minerals—in common, including calcium, iron, potassium, copper, molybdenum