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Preface

The present book stands between the fundamental elaborations on elastic
waves in solids (e.g., Achenbach 1973; Auld 1973; de Hoop 1995) and emerg-
ing applications for ultrasonic nondestructive testing (e.g., Rose 1999; Schmerr
1998; Schmerr and Song 2007). The latter emphasize engineering viewpoints
in contrast to the more physical and mathematical elastic wave propagation
theory. As a consequence, we consider the following chapters to be a missing
link, on one hand elaborating on the physics and mathematics of ultrasound
propagation in solids and on the other hand exemplifying it on standard non-
destructive testing problems. As a typical example, worldwide, engineers tend
to argue with plane wave knowledge, speaking of longitudinal and transverse
ultrasonic beams, thus ignoring that plane waves represent rather idealized
and artificial solutions of wave equations exhibiting their polarization as a
consequence of their respective wave speeds and their underlying physical na-
ture as pressure and shear waves, and they are not beams! These arise from
an approximate solution of wave equations or as exact solutions of approxi-
mated wave equations. Of course, ultrasonic nondestructive testing may often
be roughly understood in terms of plane waves and beams; yet, the key is-
sues are transducer radiation, defect scattering and imaging, respectively, and
this has to be thoroughly formulated with the help of—physically spoken—
point source synthesis or—mathematically spoken—utilizing representation
integrals with Green functions. Again recognizing the book as a missing link,
we introduce Green functions for the simplest scalar acoustic case, always
accompanied by intuitive interpretations, and approach the relevant tensorial
elastodynamic case step by step. Apropos tensors: We avoid the often used but
somewhat confusing index notation and rely on our electromagnetic heritage
of a coordinate free formulation as introduced by Chen (1983). Yet, we do not
leave the reader alone; we provide the rules of this calculus as a mathematical
introduction.

Another specific feature of this book comprises the utilization of numerical
computational tools to explain specific wave propagation phenomena and to
compare the results with those obtained by—mostly approximate—analytical
formulations.

Finally, we are thankful to the late Paul Höller, founding director of the
Fraunhofer Institute for Nondestructive Testing in Saarbrücken, Germany,
who was responsible for our switch from electromagnetics to elastodynam-
ics, as well as many colleagues from the German Society for Nondestructive
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Testing (DGZfP) and the Federal Institute for Materials Research and
Testing (BAM), Berlin, Germany, for their continuous stimulation, support,
and interest.

Karl-Jörg Langenberg



Authors

Prof. Dr. rer. nat. Karl-Jörg Langenberg was educated in physics at
the University of the Saarland, Saarbrücken, Germany, where he earned his
Doctor of Natural Sciences (Dr. rer. nat.) and his venia legendi. A subse-
quent three-year period as principal scientist at the Fraunhofer Institute for
Nondestructive Testing, Saarbrücken, Germany, ended with the acceptance of
the Chair for Electromagnetic Theory at the University of Kassel, Germany.
Dr. Langenberg is a Fellow of IEEE.
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1
Contents

1.1 Introduction

Ultrasonic nondestructive testing (US-NDT) relies on the excitation, propa-
gation, and scattering of elastic waves in solids; this topic is absolutely non-
trivial, regarding neither its physics nor its mathematical formulation. One of
the reasons is that elastic waves occur in two modes (in isotropic materials):
pressure and shear waves (longitudinal and transverse waves) with different
wave speeds. This fact considerably complicates the interpretation of ultra-
sonic signals and makes a “common sense interpretation” often impossible;
the support of mathematical and numerical modeling of elastic wave propa-
gation is definitely required. Then, heuristically introduced concepts such as
“ultrasonic beams” or “reflector” can be precisely defined.

For example, US-NDT uses the term “pressure” being measured and dis-
played as an A-scan; as a matter of fact, the real meaning of it is the field
quantity p(R, t) at a given location characterized by the vector of position R
as a function of time t. This pressure is a scalar quantity that is uniquely
determined by only one number (with a physical unit). Yet the fundamental
physical field quantity of elastic waves is the vector displacement u(R, t) with,
in general, three scalar components that defines the symmetric deformation
tensor S(R, t) with six scalar components, and the latter one is related to the
symmetric stress tensor T(R, t) through Hooke’s law as constitutive equation.
This reveals that the physics of elastic waves has to be described by a theory
of space- and time-dependent scalar, vector, and tensor fields. In the follow-
ing chapters, we will outline this theory with relevance to US-NDT and we
will illustrate it by examples. Therefore, a certain amount of mathematical
calculus is necessary, but we will always try to depict the meaning of abstract
formalisms.

At first, we define spatially dependent scalar, vector, and tensor fields and
their algebraic conjunction; we continue to talk about space and time varia-
tions of these fields, in particular about gradients, divergence, and curl den-
sities. The time variable t is opposed by the (circular) frequency variable ω

as a conjugate variable; the frequency “content” of a pulsed signal, its spec-
trum, is quantified by the Fourier transform. To describe an ultrasonic beam,
we additionally need the Fourier transform with regard to spatial (Cartesian)
coordinates. Elastic ultrasonic waves are excited by “transducers”; the relation

1
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between a sound field and its sources is given by Green functions that are
nothing more than the respective fields from idealized point sources. Hence,
for a mathematical formulation, such point sources have to be thoroughly de-
fined, which introduces Dirac’s delta function; yet, this “function” is not a
function at all but a distribution that requires a closer explanation.

Having provided these mathematical tools, we turn our attention to four
fundamental NDT-relevant problems; propagation of elastic waves in isotropic
and anisotropic materials—idealized as plane waves and elementary waves
from point sources—radiation from volume and surface sources, scattering by
material inhomogeneities and imaging of those, say: material defects.

In the following, we discuss the flow chart of Figure 1.1 that guides us
through the subsequent chapters like a thread.

1.2 Contents Flow Chart

Linear elastodynamics is based upon the Newton–Cauchy equation of motion—
relating the time variation of the linear momentum density with the source
density of the stress tensor and prescribed force densities—and, additionally,
the deformation rate equation as definition of the time derivative of the defor-
mation tensor through the symmetric part of the gradient dyadic of the parti-
cle velocity; the prescribed source of that equation is the injected deformation
rate. At material jump discontinuities, both equations reduce to transition
conditions for the components of the particle velocity and the vector trac-
tion as projection of the stress tensor to the surface normal vector. Because
both equations contain different field quantities, they cannot be immediately
combined: Material properties have to be introduced before that relate field
quantities in terms of constitutive equations and those do not follow from the
governing equations, they have to be postulated instead knowing the physical
properties of the underlying materials. As a consequence of the constitutive
equations, we obtain elastodynamic governing equations as a coupled system of
first-order partial differential equations. Nevertheless, constitutive equations
must not violate basic physical principles, for example, elastodynamic energy
conservation; as a result, the involved material tensors like the forth rank stiff-
ness (compliance) tensor in the linear nondissipative Cauchy–Hooke law have
to satisfy various symmetries. According to the requirements of US-NDT, the
resulting governing equations of elastodynamics have now to be solved; the
closer the actual model problem is to reality—for example, defect imaging
in a dissimilar weld—the more unlikely a solution with “paper and pencil,”
that is, to say with analytical methods, is at hand. A request for numerical
methods arises that could either be utilized after some preparatory analytical
work or be directly operated on the governing differential equations. Our own
numerical tool of the second category is called elastodynamic finite integration
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technique (EFIT) that needs nothing but the governing equations, prescribed
sources, given materials, and transition conditions. In the chapters to follow,
we will often discuss results obtained with the EFIT-code, yet we will not go
into the details of the method because it is well documented in the literature
(Fellinger 1991; Fellinger et al. 1995; Marklein 1997, 2002; Langenberg et al.
2002; Bihn 1998).

The formal structure of the governing equations of linear elastodynamics is
identical to those of linear acoustics—Newton and dilatation rate equations—
and Maxwell’s equations as governing equations of electromagnetism; apart
from the physical content of the fields, only the spatial derivatives are differ-
ent, and Maxwell’s equations are special insofar as the curl-operator appears
in both equations. Based on these similarities, the solutions also exhibit sim-
ilarities and, therefore, we find it appropriate to include chapters on the fun-
damental solutions of acoustics and electromagnetism: plane waves, Green
functions, and Huygens’ principle. That is not only of interest for NDT
applications; moreover, scalar acoustic fields often serve us to “simplify”
the somewhat complex vector and tensor calculus of elastodynamics. Last
but not least: two-dimensional horizontally polarized shear waves are strictly
scalar.

The governing equations of elastodynamics as a coupled system of partial
differential equations of first order for the particle velocity and the stress tensor
can be decoupled in a partial differential equation of second order each for vari-
ous materials: The resulting wave equations for the particle velocity v(R, t) are
generally the basis for further considerations, the one for linear nondissipative
homogeneous isotropic materials being the simplest one. In that case, a further
decoupling in terms of pressure and shear waves through Helmholtz potentials
is possible. The “simple” equation for the particle velocity is complemented
by those for linear nondissipative inhomogeneous and/or anisotropic materi-
als; the influence of dissipation is also discussed. For piezoelectric materials,
the equations of elastodynamics are coupled to Maxwell’s equations, result-
ing in a piezoelectric wave equation for elastic waves if Maxwell’s equations
are reduced to their electroquasistatic approximation. Details can be found in
Marklein’s dissertation (1997).

The fundamental solutions of the v(R, t) wave equation for linear nondis-
sipative homogeneous isotropic materials—plane waves and elementary waves
from point sources in terms of Green functions—are basically the source of
US-NDT terminology: longitudinal and transverse waves, ultrasonic beams,
and point source synthesis. Plane waves, for instance, are fundamental to
comprehend elastic wave propagation in general, but beyond that, they are
building blocks for the mathematical description of realistic sound fields. Plane
waves are the simplest solutions of the homogeneous wave equation, the wave
equation containing no given sources; with the ansatz “plane waves with pla-
nar phase fronts,” this equation looks like an eigenvalue problem: their phase
velocities are the eigenvalues and their polarization vectors are the eigenvec-
tors. For isotropic materials, two of the three eigenvalues coincide, they refer
to secondary plane waves, while the remaining eigenvalue stands for primary
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waves, because they arrive first at a specific point of observation due to their
larger phase velocity. The polarization of plane primary waves is longitudi-
nal whereas the polarization of both plane secondary waves is independently
transverse to the direction of propagation because of the coinciding eigen-
values. Therefore, the US-NDT terminology “longitudinal/transverse” can be
synonymously used to “primary/secondary” as long as plane waves are under
concern. But even more general due to its applicability to sound fields of trans-
ducers is the terminology “pressure/shear” because primary waves are always
pressure waves and secondary waves are always shear waves in homogeneous
isotropic materials. For nondissipative homogeneous isotropic materials, phase
and amplitude fronts of plane waves either coincide for homogeneous plane
waves or they are orthogonal to each other for inhomogeneous plane waves.
The latter ones appear when plane waves are reflected at planar boundaries
of elastic half-spaces, they represent evanescent surface waves.

Reflection, mode conversion, and transmission of elastic plane waves—
either pressure or shear waves with vertical or horizontal polarization—at pla-
nar boundaries of nondissipative homogeneous isotropic half-spaces is an
important analytically solvable canonical US-NDT problem that is extensively
discussed in the respective chapter; moreover, it is an example of the decou-
pling of the two shear wave polarizations in two spatial dimensions. Using this
opportunity, we will critically emblaze the term “sound pressure”, even though
it can be properly defined via the stress tensor, it is by no means a field quan-
tity that satisfies boundary or transition conditions at jump discontinuities of
material properties.

A “finely tuned” superposition of evanescent pressure and shear waves on
the stress-free boundary of an elastic half-space yields Rayleigh surface waves
as special solutions of the homogeneous wave equation.

We refer to the literature regarding modal propagation of horizontally
polarized shear or Lamb waves in wave guides (Rose 1999).

Due to their infinitely extended phase and amplitude fronts, plane waves
contain infinite elastodynamic energy; they are physically nonrealizable. Nev-
ertheless, they are useful to model realistic sound fields in terms of spatial
plane wave spectra, in particular, if one does not know Green’s functions
analytically, for example, in case of the nondissipative homogeneous isotropic
half-space with stress-free surface: Only Green’s functions spatial elastic plane
wave spectra can be analytically derived to be evaluated with the method of
stationary phase yielding the Miller–Pursey factors for far-field computations
of piezoelectric transducer sound fields.

Application of the paraxial approximation to spatial plane wave spec-
tra leads us to the mathematical representation of Gaussian beams—at first
scalar—ultrasound beams. Yet, the generalization to pulsed Gaussian beams
or Gaussian wave packets runs into problems: It is better to solve a paraboli-
cally approximated time domain wave equation exactly. Such beam solutions
can also be found for weekly inhomogeneous and even anisotropic materials,
and they replace no longer existent plane waves; being mathematically more
complex, they give more physical insight.
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Until now, no sources of elastic waves have been taken into account, the
keyword “Green functions” brings them into play. Yet before we explicitly
introduce them we refer to various wave equations for more complex mate-
rials. Nondissipative homogeneous anisotropic materials also allow for plane
wave solutions, removing the degeneracy of coinciding shear wave eigenval-
ues: One finds three independent wave modes with different phase veloci-
ties. The pertinent polarizations are no longer longitudinal or transverse but
quasilongitudinal and quasitransverse, forming an orthogonal trihedron with
a uniquely defined orientation that is prescribed by the anisotropy under con-
cern. Additionally, the physical property of pressure and shear waves is also
lost: Quasilongitudinal plane waves are only quasipressure waves—for weakly
anisotropic materials, they degrade into pressure waves—and quasitransverse
plane waves are only quasishear waves that also degrade into shear waves for
weak anisotropy. The most important consequences of anisotropy for US-NDT
are the following ones: The phase velocities of the three wave modes depend
upon the propagation direction of the phase and the direction of energy
propagation—defined by the elastodynamic Poynting vector yielding the
energy velocity vector—does no longer coincide with the direction of phase
propagation, that is to say the energy velocity is no longer orthogonal to the
phase front. A 45◦ shear wave transducer designed for isotropic—ferritic—
steel radiates into a completely different direction in an anisotropic material!
As a consequence, the magnitude and direction of the energy velocity is pri-
mary for the propagation velocity of an ultrasonic impulse. We discuss details
of anisotropy consequences only for the simplest case, i.e., materials that are
anisotropic in a direction orthogonal to an isotropy plane, the so-called trans-
versely isotropic materials. These are approximately realized by austenitic
steel and carbon fiber reinforced composites. We present results even for reflec-
tion, mode conversion, and transmission of plane waves at the planar boundary
between isotropic and transversely isotropic half-spaces. Existence of physi-
cally possible wave modes is always verified with the energy velocity diagram,
not with the slowness diagram as in the isotropic case; evanescence of inho-
mogeneous waves is also defined with respect to the energy velocity direction.

Wave equations for nondissipative inhomogeneous materials, either isotro-
pic or anisotropic, exhibit an additional complexity as spatial derivatives—del
operator calculations—have also to be applied to the material parameters;
these are Lamé constants for isotropic materials and the stiffness tensor for
anisotropic materials. The ansatz of plane waves is no longer working! Ini-
tially, one tries a generalization in terms of locally plane waves with nonlinear
spatially dependent phase and amplitude. To avoid the laborious vector and
tensor calculus for elastic waves, it is advisable to investigate first a similar
ansatz for scalar acoustic waves in materials with a spatially varying sound
velocity; if the material properties are only slowly changing within a wave-
length, a differential equation for the phase—the eikonal equation—and a dif-
ferential equation for the amplitude—the transport equation—can be derived.
Solutions of the eikonal equation constitute the nonplanar surfaces of constant
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phase with the orthogonal phase vector that defines a ray trajectory. It is note-
worthy that a Taylor expansion of the phase yields a beam propagating along
the ray trajectory. Now one can move on to elastic wave rays and beams.
There are parallels to plane waves in homogeneous materials: Inhomogeneous
isotropic materials support the independent propagation of longitudinal and
transverse beams along primary and secondary ray trajectories; inhomoge-
neous anisotropic materials require the addition “quasi” to the polarizations,
and propagation occurs along the ray trajectory for the energy. The pertinent
pulsed solutions are (Gaussian) wave packets.

The partial derivatives of the material parameters in the wave equation
for inhomogeneous (an)isotropic materials “disappear” if the inhomogeneity
has compact support, i.e., is restricted to a finite volume: In that case, all
these terms can be collected on the right-hand side of the equation, where the
prescribed (primary) sources reside anyway, thus defining secondary sources
that replace the inhomogeneity, they are equivalent to it, hence the termi-
nology equivalent sources is introduced. As a consequence, the field scattered
by the inhomogeneity can be formally calculated in the same manner as the
one for the primary sources. This solution is formal in the sense that the
equivalent sources depend on their own scattered field, which is not explicitly
known; therefore, the equivalent sources must first be calculated as solutions
of integral equations.

The consideration of dissipation is achieved via the “design” of appropri-
ate constitutive equations. Yet basic physical principles must not be violated;
for instance, causality directly implies the frequency dependence of the mate-
rial parameters and, hence, dispersion of pulsed waves. Surfaces of constant
phase and amplitude of plane waves in homogeneous dissipative materials may
coincide, accounting for an attenuation in propagation direction, or they may
include an arbitrary angle not equal to 90◦. These inhomogeneous plane waves
are excited in dissipative half-spaces by plane waves under arbitrary angles of
incidence: The attenuation is orthogonal to the half-space surface and not in
the direction of propagation as it is true for homogeneous plane waves.

Up to now, we only considered idealized solutions of homogeneous wave
equations, but we came already close to the description of radiated sound
fields introducing the concept of ultrasonic beams. Yet, ultrasound must be
excited; therefore, the mathematical dependence between prescribed sources—
force densities and deformations rates—and their pertinent radiation field is
required. (We always allow for both sources to prepare for a consistent deriva-
tion of Huygens’ principle.) Again, the answer is in terms of idealized so-
lutions of inhomogeneous wave equations: Point-sources are prescribed and
their radiation field is calculated as so-called Green functions; based on the
linearity of the elastodynamic governing equations, Green functions constitute
a point source synthesis for the radiation field of spatially extended sources,
i.e., extended sources are broken apart into point-sources and their respec-
tive fields are superimposed. Physically, Green functions of elastodynamics
are nothing but elastodynamic elementary waves emanating from point-like
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force densities and deformation rates; because compact support inhomo-
geneities can be replaced by secondary or equivalent sources, it is anticipated
that scattered fields can also be calculated utilizing point source synthesis;
hence, it turns out that Green functions ultimately constitute the mathemat-
ical building blocks of two fundamental problems of US-NDT: the radiation
and the scattering problem. This underlines their eminent importance, and
therefore we discuss Green functions in thorough detail.

To calculate elastodynamic Green functions explicitly, the vector differen-
tial operators applied to the particle velocity in terms of wave equations have
to be inverted in order to formally relate the particle velocity to the given
sources on the right-hand side of the wave equations. This task is split into
the inversion of the derivatives and the inversion of the vector operators. The
latter are not present in the pressure wave equation for scalar acoustic waves,
and therefore it might be wise to calculate and discuss the scalar Green func-
tion at first. As a matter of fact, this is tackled for time harmonic and pulsed
point sources in two and three spatial dimensions, because an actual US prob-
lem can often be modeled two dimensionally. With the resulting scalar point
source synthesis, we are ready to turn to elastodynamics: It is exposed that the
scalar Green function is again the key concept, we “simply” have to bring the
inverted vector operations into play and we have to account (in homogeneous
isotropic materials) for the excitation of primary pressure and secondary shear
waves emanating from point sources, that is to say, we need two scalar Green
functions for elementary waves with different wave speeds. Resulting are ten-
sor Green functions differing whether we want to calculate the particle velocity
originating from a point force density or from a point deformation rate.

In the first case, a second rank Green tensor is required and in the second
case a third rank Green tensor; both contain a pressure and a shear term. The
different tensor operations on the primary and secondary scalar Green func-
tions determine the spatially dependent amplitudes of the—inhomogeneous
isotropic materials spherical—elementary waves, i.e., their far-field point char-
acteristics. We explicitly point out that pressure elementary waves are only
longitudinal in the far-field and the same is true for shear elementary trans-
verse waves. If there is a request not only for the point source synthesis of the
particle velocity from given sources but also for the stress tensor, the third
rank Green tensor to calculate the contribution from force densities is needed
once more, but additionally, a forth rank tensor representing the contribution
from deformation rates has to be introduced. Based on the knowledge of the
mathematical structure of elastodynamic elementary waves in terms of Green
functions, we can now formulate the point source synthesis of primary volume
sources; in homogeneous isotropic materials of infinite extent, the result is a
volume integral extending over the sources multiplied by “matching” Green
functions. These representations give rise to far-field approximations in two
and three spatial dimensions defining elastodynamic radiation patterns. Sur-
face sources are special cases of volume sources, and if they are residing in an
infinite elastic space, they come already close to the US-NDT aperture radiator
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(close: because, in reality, the aperture—the piezoelectric transducer—sits on
a stress-free surface); therefore, several examples of that kind will be discussed
and, as always in this book, also for pulsed excitation.

Green functions represent physical wave fields satisfying a homogeneous
wave equation in a half-space that does not contain the point source. We
already mentioned that such wave fields can be decomposed into spatial spec-
tra of plane waves yielding spatial plane wave spectra even for spherical ele-
mentary waves; mathematically spoken, Green functions have representations
in terms of two-dimensional inverse Fourier integrals (Weyl integral represen-
tations). Those will be extremely useful to calculate sound fields in elastic
half-spaces with planar stress-free surfaces, i.e., transducer radiation fields.

As a matter of fact, the generally applied radiating sources for US-NDT
are aperture radiators residing on the surfaces of components being usually
considered as stress free. Therefore, the sound fields of such transducers have
to satisfy an appropriate boundary condition that is not inherent in our pre-
vious point source synthesis because it implies Green functions of infinite
space; Green functions have to be found that are compatible with the bound-
ary condition! For scalar acoustic waves, the solution is comparatively simple:
The adequate Green functions, at least for planar surfaces, can be calculated
imaging a point source at the surface. Due to mode conversion, this is not pos-
sible for elastic waves and, hence, explicit analytic expressions for the relevant
Green tensors are not available: Only Weyl-type integral equations can be
developed! Utilizing the method of stationary phase, these integral represen-
tations are evaluated in the far-field, yielding the Miller–Pursey point source
characteristics; thus, an approximate point source synthesis can be constituted
being also applicable to calculate the near-field of aperture radiators on stress-
free surfaces. A fundamental task of US-NDT has been solved! What remains
is the computation of fields scattered by finite volume inhomogeneities, i.e.,
defects in the widest sense; again, elementary waves described by Green func-
tions prove to be essential to formulate Huygens’ principle for scattered fields.

Interesting enough, a radiation or scattered field can even be calculated if
the primary or secondary sources are not explicitly known; instead, the field
on an arbitrary surface enclosing the sources is known. Christiaan Huygens
has formulated his principle in the 17th century: Elementary waves—spherical
waves—emanate form each point on such a surface being weighted with the
pertinent amplitude; the field outside the closed surface is composed by the
envelope of all elementary waves. In addition, Huygens claims that the elemen-
tary waves superimpose to a null field in the interior . We state that: Elemen-
tary waves are given by Green functions, and, therefore, a wave equation-based
theory must exist to derive Huygens’ principle mathematically. This theory
is advantageously shaped for scalar acoustic waves first, inspiring physical
meaning to Green’s second formula: Outside the closed surface containing
the sources in the interior, the field is found as an integral over the surface,
extending the “principle” of Huygens in the sense that not only isotropic spher-
ical waves but also dipole waves—elementary waves with a dipole radiation



K12611 Chapter: 1 page: 10 date: January 13, 2012

10 Ultrasonic Nondestructive Testing of Materials

characteristics—have to be accounted for. For scalar acoustic waves, the first
ones are weighted with the normal derivative of the pressure and the sec-
ond ones with the pressure itself. Surprisingly, this integral yields zero values
in the interior of the surface as has been heuristically claimed by Huygens.
Huygens’ principle initially constitutes an equivalence principle: The surface
integration over field values is equivalent to the integration over sources. Yet,
its real value is getting obvious if scattered fields have to be computed; if the
Huygens-surface encloses a scatterer where the surface field has to satisfy cer-
tain boundary conditions—the scatterer surface may be sound soft or rigid—
the Huygens-surface is contracted to the scatterer surface, inserting explicitly
the boundary conditions and thus canceling either the pressure or its nor-
mal derivative in the integral. The remaining term can then be considered
as an equivalent (secondary) source of the scattered field. Yet, as it is true
for equivalent volume sources, this equivalent surface source depends upon
the (scattered) field itself, requiring its calculation at first. This is achieved if
the Huygens integral representation is again subject to the boundary condi-
tion, resulting in an integral equation for the equivalent source. Having solved
it, the field can be calculated with the Huygens integral anywhere outside
the scatterer. The inherent surface integral equation in Huygens’ principle is
obviously prestage to a point-source synthesis of scattered fields, satisfying
boundary conditions on scatterers.

Now we take considerable advantage from having consequently considered
both sources of elastodynamic fields—forces and deformation rates—because
they appear simultaneously as field-dependent equivalent surface sources mul-
tiplied by the pertinent Green tensors in the elastodynamic version of Huy-
gens’ principle, revealing that these tensors represent the elementary waves of
elastodynamics. Modeling crack scattering for US-NDT purposes often allows
us to postulate stress-free surfaces, canceling the equivalent source “surface
force density” and leaving us with the surface deformation rate as a source of
the elementary wave related to the third rank Green tensor. For this remaining
equivalent source, we obtain surface integral equations. Note: The radiation
field of a piezoelectric transducer is modeled through specification of the pri-
mary surface source force density on a stress-free surface whereas the field
scattered by an inhomogeneity of finite volume with a stress-free surface is
modeled through calculation of Huygens-type equivalent surface deformation
rates, which means that radiation and scattered fields are composed of com-
pletely different elementary waves; for radiation fields, it is the second rank
Green tensor, and for scattered fields, it is the third rank Green tensor!

As an example, we derive the surface integral equation for a two-
dimensional crack model and present results of a numerical solution.

To reduce the numerical cost for calculation of fields scattered by arbitrary
geometries (with stress-free surfaces), we discuss a widely spread approxima-
tion for determination of equivalent sources, namely, the Kirchhoff approxi-
mation originating from electromagnetics. The scatterer surface is subdivided
into patches, and the pertinent secondary deformation rate source is obtained
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from reflection and mode conversion of plane waves at planar boundaries.
Based explicitly on this Kirchhoff approximation, we formulate a standard
system model for US-NDT: transmitting transducer, scatterer, and receiving
transducer.

In case the finite inhomogeneity is neither a crack nor a void but an
inclusion—potentially inhomogeneous anisotropic—it must be modeled as a
penetrable scatterer. Looking at our flow chart, we discover that equivalent
volume sources serve this purpose. Even though they are field dependent
similar to the Huygens’ surface equivalent sources they can, nevertheless, be
inserted into a volume source integral, yielding a data equation likewise to the
Huygens’ integral. In a second step, the equivalent sources must be calculated;
the volume integral is written down for observation points in the interior
of the scatterer, resulting in an object equation, the so-called Lippmann–
Schwinger integral equation—a volume integral equation—complementing the
surface integral equations for stress-free scatterers. The object equation must
generally be solved numerically; yet, an approximation is also at hand, the
so-called Born approximation: The initially unknown field in the interior of
the scatterer is replaced by the known incident field being certainly permis-
sible for weak scatterers. Even for penetrable scatterers embedded in inho-
mogeneous isotopic materials, a point source synthesis to calculate scattered
fields can be derived.

A limited number of canonical scattering geometries (with stress-free
surfaces)—cylinder and sphere—allow for an analytical solution of the under-
lying surface integral equation utilizing a matching coordinate system and
solving the wave equation in terms of eigenfunctions—cylindrical and spher-
ical functions. We will carry out this solution and discuss numerical results.
Such analytical solutions for canonical problems—implying scattering by a
wedge—can be utilized to calculate scattered fields by superposition of the
fields coming from an ensemble of characteristic scattering centers into which
the scatterer has been decomposed; this is often possible for high frequencies,
the pertinent technique is called geometric theory of diffraction (GTD) that
is well documented in the literature (Achenbach et al. 1982).

It remains to discuss the intrinsic problem of US-NDT: imaging material
defects. The synthetic aperture focusing technique (SAFT) is established as
a solution using heuristic arguments that can nevertheless be embedded into
a thorough inverse scattering theory yielding simultaneously effective algo-
rithmic alternatives—FT-SAFT applying mostly Fourier transforms. Again,
Green functions turn out to be the basic principle!

It is obvious that plane waves and Green functions provide the theoretical
fundament for US-NDT.
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2
Mathematical Foundations

2.1 Scalar, Vector, and Tensor Fields

2.1.1 Vector of position

To characterize a specific point in space, for example, on the surface of a spec-
imen, we necessitate coordinates; the simplest ones are Cartesian coordinates
“length, width, height” being denoted by x, y, z or x1, x2, x3 (xi, i = 1, 2, 3),
respectively. Figure 2.1 shows a (right-handed1) Cartesian coordinate system
with the particular coordinates x0, y0, z0 of a spatial point P0(x0, y0, z0). The
location of that point is known if the three figures x0, y0, and z0 are known
under the assumption of an arbitrary but fixed coordinate origin and the ar-
bitrary but fixed orientation of the coordinate axes. Figure 2.1 also displays
that P0 can be equally characterized by the knowledge of cylindrical r0,ϕ0, z0
or spherical coordinates R0,ϑ0,ϕ0. The following coordinate transforms are
immediately obvious:

x0 = r0 cos ϕ0,

y0 = r0 sinϕ0, (2.1)
z0 = z0;

x0 = R0 sinϑ0 cos ϕ0,

y0 = R0 sinϑ0 sinϕ0, (2.2)
z0 = R0 cos ϑ0.

Given the coordinate origin O—compare Figure 2.2—we can equally spec-
ify the location of P0 through the direction and length of the so-called vector
of position2 R. This is graphically descriptive, yet the question arises how to
characterize R mathematically. We consider Figure 2.3, where the directions

1Heinrich Hertz (1890) writes that: We assume that the coordinate system of the x, y, z
is of the kind that, if the direction of the positive x is towards you and the direction of the
positive z is upward, then the y grow from left to right.

2To distinguish them from scalars, vectors are denoted by fat characters with a single
underline; that way, we have the possibility to denote tensors of second and higher rank
by underlining fat characters according to the tensor rank; consequently, the second rank
deformation tensor reads S and the forth rank stiffness tensor c.

13
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x0

y0

z0

O

x

y

z

ϑ0 R0

r0ϕ0

P0(x0, y0, z0)

FIGURE 2.1
Cartesian coordinates; cylinder and spherical coordinates.

O

R

P0

FIGURE 2.2
Vector of position R.

of Cartesian coordinate axes are given by three orthogonal unit vectors3 ex,
ey, ez; per definition, a unit vector has length one. This system of three unit
vectors is called an orthonormal trihedron. By drawing the vector of position R

3Except for some standard unit vectors (e.g., ex, ey , ez ,n), we characterize them by a
hat, hence, for example, R̂ = R/R.
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O

x

y

z

z

x

y

P (x, y, z)

R

ex

ey

ez

r

FIGURE 2.3
Vector of position R in Cartesian coordinates.

to the point P (x, y, z) with coordinates x, y, z, we immediately recognize that
the projections of R on the pertinent coordinate axes are equal to the coor-
dinates of the point: The (scalar) components of the vector of position are
coordinates of that point which it characterizes. Now we construct the three
vectors xex, yey, and zez; they are directed as the orthonormal trihedron;
therefore, they are equally orthogonal but no longer normalized to one, their
lengths being4 x, y, and z. Defining the addition of two vectors R1 and R2 as
in Figure 2.4, we find that the vector r as depicted in Figure 2.3 is obviously
given as

r = xex + yey (2.3)

and, hence, the vector of position R as

R = r + zez

= xex + yey + zez; (2.4)

4We implicitly assumed that x, y, z are greater than zero; for example, if we had x < 0,
the length of xex would be |x|.
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O

R1

R2

R1 + R2

FIGURE 2.4
Addition of two vectors.

x, y, z are scalar components and xex, yey, zez are vector components of R.
Talking subsequently about “components,” we always mean scalar compo-
nents. According to Pythagoras’ theorem, we obtain the length r—the mag-
nitude of r = |r|—according to

r =
√

x2 + y2 (2.5)

and the length R—the magnitude R = |R|—of the vector of position R ac-
cording to

R =
√

r2 + z2

=
√

x2 + y2 + z2. (2.6)

The length—the magnitude—of a vector is always denoted by the same char-
acter, yet not fat. The magnitude |R| of the vector of position for the point
P is obviously identical with the radial spherical coordinate R of P .

The theory of elastic waves often requires to distinguish between two vec-
tors of position R and R′ (Figure 2.5); R′, the vector of position for the source
point Q (also denoted by RQ), varies in a source volume where the forces and
deformation rates radiating elastic waves are nonzero, and R, the vector of
position for the observation point P (also denoted by RP ), is that point where
the pertinent elastic wave is currently observed. In homogeneous isotropic ma-
terials, the Green function relating the source density at R′ and the particle
velocity at R depends only on the distance between R and R′. Allocating

R′ = x′ex + y′ey + z′ez (2.7)

with x′, y′, z′ as coordinates to the source point R′, we obtain

R − R′ = (x − x′)ex + (y − y′)ey + (z − z′)ez (2.8)

and consequently applying Pythagoras’ theorem

|R − R′| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2 (2.9)

analogous to (2.6).
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O
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y

z

z

z′

x′

y′

x

y

R′ R

R − R′

FIGURE 2.5
Distance between observation point R and source point R′.

2.1.2 Scalar and vector fields

In Figure 2.6, a measurement point PM (R) = PM (x, y, z) on the surface of a
specimen is given by the pertinent vector of position R; Figure 2.7 sketches an
A-scan, for instance, the sound pressure5 p(R, t) measured at PM as a function
of time t. We consider p(R, t) as a scalar field quantity and consulting (2.4),
we know that this function depends on the three spatial coordinates and time,
it is a function of four variables. The detailed notation would be p(x, y, z, t),
yet in short-hand, we write p(R, t).

An elastic wave in a solid primarily consists of displacements of infinitesi-
mally small volume elements, the so-called displacement u(R, t) at the point R
and time t; it is by nature a vector field quantity because the volume elements
are displaced in terms of direction and magnitude. Figure 2.8 illustrates such
a displacement. To define the (scalar) Cartesian components ux, uy, uz of u,
we draw a displaced (dashed) coordinate system with origin at the posi-
tion vector R and project u on the respective coordinate axes. The resulting

5Section 9.1.1 reveals that a something like a sound pressure in a solid with µ �= 0 (λ, µ:
Lamé constants) can only properly be defined for plane waves, hence, strictly speaking, it
cannot be measured.
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PM (R) = PM (x, y, z)

O

R

FIGURE 2.6
Measurement point on the surface of a specimen.

t

p (R, t)

FIGURE 2.7
Measured sound pressure A-scan.

(Cartesian) component representation reads similar to (2.4):

u(R, t) = u(x, y, z, t)
= ux(R, t) ex + uy(R, t) ey + uz(R, t) ez

= ux(x, y, z, t) ex + uy(x, y, z, t) ey + uz(x, y, z, t) ez. (2.10)

We abide by the following: Each (cartesian) component of the vector displace-
ment depends upon each (cartesian) coordinate. It is this property of vector
fields that requires the definition of certain differential operators—gradient,
divergence, and curl—to calculate physically meaningful spatial variations of
fields (Section 2.2).

The magnitude u(R, t) of u(R, t) is obtained similar to (2.6):

u(R, t) =
√

u2
x(R, t) + u2

y(R, t) + u2
z(R, t). (2.11)
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R

ux(R, t)

uy(R, t)

uz(R, t)

u(R, t)

O

FIGURE 2.8
Particle displacement vector.

2.1.3 Vector products

We distinguish three different product of vectors named according to the re-
spective result:

• Scalar product

• Vector product

• Dyadic product.

Scalar product: The scalar (dot) product A · B of two vectors A and B
is denoted by a dot and it can be intuitively illustrated. Figure 2.9 depicts a
vector A being projected onto a unit vector ê with the result

A · ê = A cos φ, (2.12)

if φ is the angle between A and ê. Replacing ê by a vector B with magni-
tude B, the generalization of (2.12) reads as

A · B = B · A
= AB cos φ (2.13)

and defines the (commutative) scalar product A · B.
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A

ê

A cos φ = A · ê

φ

FIGURE 2.9
Illustration of the scalar product.

We obviously have A · B = 0 if A and B are orthogonal to each other;
consequently, the orthogonality of two vectors is guaranteed finding the value
zero of their scalar product.

The orthonormal trihedron of cartesian coordinates has the property:

ex · ey = 0,

ex · ez = 0, (2.14)
ey · ez = 0;

ex · ex = 1,

ey · ey = 1, (2.15)
ez · ez = 1.

Numbering cartesian coordinates according to xi, i = 1, 2, 3, with the trihe-
dron exi

, i = 1, 2, 3, and utilizing the Kronecker symbol

δij =
{

1 for i = j
0 for i �= j,

(2.16)

we can write the six equations of (2.14) and (2.15) as a single equation:

exi
· exj

= δij for i, j = 1, 2, 3. (2.17)

The scalar product is useful to calculate the components of a vector A, for
example, in Cartesian coordinates; with (2.12), it follows per definition

Ax = A · ex,

Ay = A · ey, (2.18)
Az = A · ez.
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Now we calculate

A · B = (Ax ex + Ay ey + Az ez) · (Bx ex + By ey + Bz ez) (2.19)

with the (Cartesian) component representation of A and B and formally find
by distributive multiplication and utilization of (2.17) observing the commu-
tative property of the scalar product

A · B = AxBx + AyBy + AzBz. (2.20)

That way, we have the possibility to find the value of the scalar product if
Cartesian components of the respective vectors are given. Similarly, the angle
between two vectors with nonzero magnitudes is obtained as

cos φ =
A · B
AB

=
AxBx + AyBy + AzBz√

A2
x + A2

y + A2
z

√
B2

x + B2
y + B2

z

. (2.21)

The square root of the scalar product A · A obviously yields the magni-
tude of A:

A =
√

A · A
=
√

A2
x + A2

y + A2
z ; (2.22)

in addition, we obtain

Â =
A
A

=
A√
A · A

=
Ax

A
ex +

Ay

A
ey +

Az

A
ez (2.23)

as the unit vector Â in the direction of A. If applied to the vector of position,
(2.23) provides

R̂ =
x√

x2 + y2 + z2
ex +

y√
x2 + y2 + z2

ey +
z√

x2 + y2 + z2
ez. (2.24)

We quote another two—abbreviated—notations for the scalar product.
The serially numbered version of (2.18)

Axi = A · exi
for i = 1, 2, 3 (2.25)

and equally for B results in

A · B =
3∑

i=1

Axi
Bxi

(2.26)
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instead of (2.19). If we agree that the xi—as in this case—are cartesian co-
ordinates, we can continue, according to Axi =⇒ Ai, Bxi

=⇒ Bi, abbreviat-
ing (2.26):

A · B =
3∑

i=1

AiBi. (2.27)

Einstein’s summation convention goes even further omitting the summation
sign in (2.27):

A · B = AiBi. (2.28)

Equation 2.28 is translated as: If an index on one side of an equation—in this
case i—appears at least twice and is not found on the other side, a summa-
tion from i = 1 to i = 3 is understood, the index is contracted;6 if the index
also appears on the other side, it is not contracted. This summation conven-
tion is extensively applied in the literature on elastodynamics (e.g., Achenbach
1973; de Hoop 1995); nevertheless, we generally prefer the coordinate-free rep-
resentation A · B instead of (2.28), because it is much more practical for ana-
lytical derivations; yet, in case numbers are requested as a result of a physical
problem, one must rely on coordinates.

Once again, we consider a specimen as in Figure 2.6 and imagine that a
point-like piezoelectric “transducer” at the measurement point PM (R) exclu-
sively measures the component of the particle displacement u(R, t) normal to
the surface (Figure 2.10). To characterize this “normal component” un(R, t)

PM(R)

O

R

un(R, t)
u(R, t)

n

FIGURE 2.10
Normal component of the particle displacement.

6Therefore, a dot product (scalar product) A · B implies contraction of adjacent indices
of the scalar components of the vectors in the immediate neighborhood of the dot.
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A

B F = C

C = A × B

π
2

π
2

φ

FIGURE 2.11
Definition of the vector product.

mathematically, we define a unit vector n being orthogonal to the surface of
the specimen.7 Per definition, we have

un(R, t) = u(R, t) · n = n · u(R, t). (2.29)

Being difficult to simultaneously measure the tangential components of
u(R, t), the normal component un(R, t) for “all” points R on a measurement
surface SM and all times t is generally the maximum obtainable informa-
tion in US-NDT. In connection with imaging methods, we will learn how to
process it.

Vector product: The definition of the vector product A × B—that is,
A cross B—is illustrated in Figure 2.11. Two vectors A and B span a rhom-
boid with the area

F = AB sinφ; (2.30)

the vector C with magnitude F being right-handed8 orthogonal to the rhom-
boid area is called the vector product

C = A × B (2.31)

of A and B. Because of its definition implying right-handedness, the vector
product is not commutative; we rather have9

B × A = −A × B. (2.32)

7This unit vector multiply appears with the same meaning, hence, the hat is omitted.
To calculate it, the surface must be suitably parameterized.

8The orthogonality of C to the rhomboid area only defines the shaft of the arrow rep-
resenting C. With regard to the tip, there is the choice “upward” or “downward.” The
arbitrary decision is “up” specified by the right-hand rule: If the cranked fingers of the right
hand point from A to B, the vector product C = A × B should point into the direction of
the thumb of the right hand. Because of this choice, the vector product yields a so-called
axial or pseudo-vector.

9Compare Footnote 8.
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Obviously, two vectors are parallel or antiparallel if their cross product
vanishes. It follows:

ex × ex = 0,

ey × ey = 0, (2.33)
ez × ez = 0.

The symbol 0 denotes the null vector, that is to say a vector with zero cartesian
scalar components. We immediately verify

ey × ez = ex,

ex × ey = ez, (2.34)
ez × ex = ey.

Distributive multiplication of the component representations of A and B uti-
lizing (2.33) and (2.34) yields

C = (Ax ex + Ay ey + Az ez) × (Bx ex + By ey + Bz ez)
= (AyBz − AzBy) ex + (AzBx − AxBz) ey + (AxBy − AyBx) ez (2.35)

for the components of C.
Orthogonality of the cross product to its vector factors has as a

consequence

A · (A × B) = 0,

B · (A × B) = 0. (2.36)

The product

A · (B × C) = C · (A × B) = B · (C × A) (2.37)

is nothing but the volume of the parallelepiped spanned by A,B,C.
The relation

n × u(R, t) = utan(R, t) (2.38)

defines the vector of the particle displacement tangential to the surface being
characterized by the normal vector n, i.e., its tangential “component.” For
instance, electromagnetic ultrasonic transducers or laser vibrometers are able
to measure this particular component. Note: The vector tangential compo-
nent utan(R, t) is orthogonal to n and u(R, t), it is not in the plane spanned
by n and u(R, t) as it is true for the vector tangential component ut(R, t)
(Equation 2.97; Figure 2.12).

Dyadic product: Now, we define a dyadic product of two vectors where the
intuitive interpretation only follows after its definition and application, hence
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we proceed formally and put two vectors adjacent to each other without dot
or cross in terms of their cartesian component representation:

AB = (Ax ex + Ay ey + Az ez)(Bx ex + By ey + Bz ez). (2.39)

Distributive multiplication produces the pertinent dyadic products of the unit
vectors:

AB = AxBx exex + AxBy exey + AxBz exez

+ AyBx eyex + AyBy eyey + AyBz eyez

+ AzBx ezex + AzBy ezey + AzBz ezez (2.40)

=
3∑

i=1

3∑
j=1

Axi
Bxj

exi
exj

(2.41)

= AxiBxj exi
exj

(summation convention). (2.42)

Summation convention means that summation from 1 to 3 on the right-hand
side affects the indices i and j appearing twice on that side.

The vector with the component representation

A = Ax ex + Ay ey + Az ez (2.43)

can be written as a single-column matrix (column vector)

A =

⎛⎝Ax

Ay

Az

⎞⎠ (2.44)

or as a single-row matrix (row vector)

AT =
(
Ax Ay Az

)
, (2.45)

being the transpose—indicated by the upper index T—of the single-column
matrix.10 The unit vectors in (2.43) refer to the position of the scalar compo-
nent in the pertinent matrix scheme. Similarly, we can choose the scheme

AB =

⎛⎝AxBx AxBy AxBz

AyBx AyBy AyBz

AzBx AzBy AzBz

⎞⎠ (2.46)

of a 3×3-matrix for the dyadic product (2.40)—the dyadic AB. Obviously,
the dyadic products exi

exj
, i, j = 1, 2, 3, indicate the position of the element

Axi
Bxj

in the matrix if we agree upon the choice of the first index as row
index and the second index as column index. We adhere that in this sense
a dyadic possesses nine scalar components in contrast to the three scalar

10We only must know the coordinate system for the components.
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components of a vector; nevertheless, in the present case, the nine components
are determined by the six vector components of the two vectors forming the
dyadic product. From the definition of the dyadic product, we deduce that it
is not commutative:

AB �= BA. (2.47)

The dyadic product yields a descriptive meaning when applied via a dot
product (contraction) from left or right to a vector. Hence, we try to interpret
the operation

AB · C (2.48)

or

C · AB (2.49)

writing AB · C in components

AB · C =
3∑

i=1

3∑
j=1

Axi
Bxj

exi
exj

·
3∑

k=1

Cxk
exk

(2.50)

and using (2.17) to calculate

AB · C =
3∑

i=1

3∑
j=1

3∑
k=1

Axi
Bxj

Cxk
exi

exj
exj

· exk︸ ︷︷ ︸
= δjk

=
3∑

i=1

3∑
k=1

Axi
Bxk

Cxk
exi

⇑
due to δjk only the term j = k

remains from the j-summation

=
3∑

i=1

Axi exi︸ ︷︷ ︸
= A

3∑
k=1

Bxk
Cxk︸ ︷︷ ︸

= B · C
= A(B · C)
= (B · C)A. (2.51)

The left-sided contraction of a dyadic product with a vector is nothing but the
contraction of the indices of the adjacent vectors—in this case, B and C; the
scalar product B · C shows up as a scalar factor of the remaining vector A,
the left factor of the dyadic product.
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In complete analogy, we compute

C · AB = (C · A)B, (2.52)

and obviously we find

AB · C �= C · AB. (2.53)

The dyadic operator AB rotates the vector C into the direction of the vec-
tor A according to AB · C and the vector C into the direction of the vector B
according to C · AB.

Commercially available shear wave transducers radiate transverse waves
under various angles applying normal forces to surfaces: The related particle
displacement as a vector has quite different directions that do not comply
with the normal to the surface. Therefore, the transformation force =⇒ wave
must be mathematically procured by a dyadic operator; in the case of point-
like forces, it is just Green’s dyadic. Its explicit mathematical structure is
required to model sound fields of piezoelectric transducers.

Utilizing the matrix representations (2.46) and (2.44) of AB and C, we
find AB · C as a single-column matrix resulting from matrix multiplication:⎛⎝AxBx AxBy AxBz

AyBx AyBy AyBz

AzBx AzBy AzBz

⎞⎠⎛⎝Cx

Cy

Cz

⎞⎠=

⎛⎝(BxCx + ByCy + BzCz)Ax

(BxCx + ByCy + BzCz)Ay

(BxCx + ByCy + BzCz)Az

⎞⎠
= (BxCx + ByCy + BzCz)

⎛⎝Ax

Ay

Az

⎞⎠. (2.54)

Analogously, we find C · AB as a single-row matrix:

(Cx, Cy, Cz)

⎛⎝AxBx AxBy AxBz

AyBx AyBy AyBz

AzBx AzBy AzBz

⎞⎠
= (CxAx + CyAy + CzAz)

(
Bx By Bz

)
. (2.55)

The explicit calculation of AB · C (or C · AB) becomes most obvious
utilizing the summation convention

AB · C = AiBj exi
exj

· Ck exk

= AiBjCk exi
exj

· exk︸ ︷︷ ︸
= δjk

= Ai exi
BkCk. (2.56)

We nicely see that the dot product contracts adjacent indices, i.e., one index—
in this case, j—disappears.

It is evident that

AB × C (2.57)
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and

C × AB (2.58)

become meaningful through (2.51): AB × C is the dyadic (!) product of the
vector A with the (axial) vector B × C, and C × AB is the dyadic DB mit
D = C × A.

Linear independence: Three vectors A1,A2,A3 are linearly independent if

α1 A1 + α2 A2 + α3 A3 = 0 (2.59)

only holds for α1 = α2 = α3 = 0. Therefore, linear dependence implies that the
three vectors span a triangle.

Complex valued vectors: The frequency spectrum11 u(R,ω) of the time-
dependent particle displacement u(R, t) apparently is a vector field

u(R,ω) = ux(R,ω) ex + uy(R,ω) ey + uz(R,ω) ez, (2.60)

whose components are frequency spectra of the components of u(R, t) (Equa-
tion 2.10). Yet, frequency spectra generally are complex valued functions of
the (real) variable ω (Section 2.3) with consequences regarding algebraic oper-
ations like, for instance, computing the magnitude of u(R,ω). If we calculate

u(R,ω) · u(R,ω) = u2
x(R,ω) + u2

y(R,ω) + u2
z(R,ω), (2.61)

the single terms

u2
xi

(R,ω) = u2
xiR(R,ω) − u2

xiI(R,ω) + 2juxiR(R,ω)uxiI(R,ω),
i = 1, 2, 3, (2.62)

are complex numbers with real

uxiR(R,ω) = �{uxi(R,ω)}, i = 1, 2, 3, (2.63)

and imaginary part

uxiI(R,ω) = �{uxi(R,ω)}, i = 1, 2, 3, (2.64)

of uxi
(R,ω). As a consequence, (2.61) is no longer the square of the “length”

of the complex valued vector u(R,ω). However, if we investigate the so-called
Hermite product

u(R,ω) · u∗(R,ω) = |ux(R,ω)|2 + |uy(R,ω)|2 + |uz(R,ω)|2, (2.65)

11For physical quantities, we use the same character u for the (spatially dependent) time
function u(R, t) and for the (spatially dependent) spectrum u(R, ω) and distinguish them
through explicit indication of the variable t or ω, respectively; often one finds û, ũ, ū,
U for the spectrum. Note that the physical dimension of u(R, ω) is equal to the physical
dimension of u(R, t) multiplied by the physical dimension “time.”
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where u∗(R,ω) has the complex conjugate components of u(R,ω), then the
magnitudes of the complex numbers uxi(R,ω) appearing in (2.64)

|uxi(R,ω)| =
√

�{uxi
(R,ω)}2 + �{uxi

(R,ω)}2, i = 1, 2, 3, (2.66)

are real valued.
Generalizing (2.22), we define the real positive length of a complex vector C

according to
|C| =

√
C · C∗. (2.67)

2.1.4 Tensor fields

Tensor components: Compared to a vector A with single index compo-
nents Axi a dyadic AB has doubly indexed components AxiBxj ; therefore,
we stipulate the notation

D = AB (2.68)

with two underlines for D. In lieu of characterizing D by the doubly indexed
matrix elements Dxixj = AxiBxj as a dyadic product Axi and Bxj according
to (2.40), we may generalize

D =

⎛⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠ ; (2.69)

that way, we interpret the matrix elements Dxx, Dxy, Dxz, . . .—the nonre-
ducible components Dxixj , i, j = 1, 2, 3—as components of a tensor of second
rank:12

D =
3∑

i=1

3∑
j=1

Dxixj exi
exj

= Dxixj exi
exj

(summation convention)
= Dij exi

exj
(summation convention). (2.70)

Contraction of tensors with vectors: Let us perform some calculus, for
instance, the left-sided contraction of the vector C with the tensor D

C · D = E, (2.71)

that is to say, we search the components of the resulting vector E. With the
components Cxk

of C and the components of Dxixj of D, we obtain

12A second rank tensor may be represented by a matrix of its (scalar) components,
yet a matrix must not necessarily be a tensor: Tensor components transform like vector
components in a prescribed manner if the coordinate system is changed (e.g., Morse and
Feshbach 1953; Chen 1983)!
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C · D =
3∑

k=1

Cxk
exk

·
3∑

i=1

3∑
j=1

Dxixj
exi

exj

=
3∑

k=1

3∑
i=1

3∑
j=1

Cxk
Dxixj exk

· exi︸ ︷︷ ︸
= δki

exj

=
3∑

j=1

(
3∑

i=1

CxiDxixj

)
exj

= CiDij exj
(summation convention). (2.72)

With the summation convention notation, E has the components13

Ej = CiDij ; (2.73)

the dot in C · D contracts adjacent indices, namely the index C with the
first index of D. Analogously, we calculate—this time exclusively utilizing the
summation convention—

D · C = Dij exi
exj

· Ck exk

= DijCk exi
exj

· exk︸ ︷︷ ︸
= δjk

= DikCk exi
; (2.74)

the dot in D · C again contracts adjacent indices, yet this time the second
index of D with the C-index. Therefore, the product D · C has

∑3
k=1 DikCk

as i-component. We state that in general

D · C �= C · D (2.75)

holds. Equation 2.75 comes with an equality sign only if the contractions from
right and from left, namely over the first and over the second index of D, are
equal; this implies

Dik = Dki, (2.76)

because then (summation convention understood)

DikCk = DkiCk = CkDki (2.77)

holds.

Symmetric tensors: A tensor with the property (2.76) is symmetric: The
matrix representation does not change mirroring components at the main

13On the right-hand side of (2.73), summation over i is understood but not over j because j
appears on both sides: j counts the components of E resulting in three (j = 1, 2, 3) equations
hidden in (2.73).
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diagonal—inverting rows and columns, i.e., inverting indices. Indicating the
mirroring by an upper index T for “transpose,” we have

D = DT (2.78)

for a symmetric tensor D. Mirroring at the main diagonal of the tensor matrix

D = Dij exi
exj

(summation convention) (2.79)

implies in components inverting places according to

D21 = Dij exj
exi

(summation convention). (2.80)

The former second vector exj
in the dyadic product exi

exj
appears now in

first place and vice versa, indicated by D21. Renaming (2.80) according to
i =⇒ j, j =⇒ i, results in

D21 = Dji exi
exj

(summation convention)

= DT, (2.81)

meaning that the former places exi
exj

in the component scheme (2.79) contain
the mirrored matrix elements Dji. Therefore, symmetry of a tensor equally
implies

D = D21. (2.82)

Inverting component places with the upper index notation is conveniently
applied for tensors of higher order when the transpose is meaningless.

Simultaneously, transposing D obviously allows for the exchange of the
contractions

D · C = C · DT = C · D21. (2.83)

Therefore, a symmetric tensor is characterized by

D · C = C · D. (2.84)

An arbitrary tensor D can be used to construct a symmetric tensor through

D
s
=

1
2
(D + D21); (2.85)

D
s

is the symmetric part of D. Because of (D21)21 = D—twofold mirroring
at the main diagonal—the symmetry of D

s
is obvious. The factor 1/2 can be

understood postulating a priori symmetry of D.

Antisymmetric tensors: The antisymmetric part D
a

of D with the
property

D21
a

= −D
a

(2.86)
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is obtained according to

D
a

=
1
2
(D − D21). (2.87)

Note: The requirement (2.86) implies zero values of all main diagonal ele-
ments of D

a
.

The cartesian components of the rotation vector 〈D〉 of a second rank
tensor is defined as

〈D〉 = Dij exi
× exj

(summation convention), (2.88)

where the appliance to a dyadic product

〈AB〉 = AiBj exi
× exj

(summation convention)
= A × B (2.89)

explains the terminology. Through calculation of the cartesian components,
we can show that the construction of—I is the unit tensor; see below—

1
2

〈D21〉 × I = D
a

(2.90)

always yields the antisymmetric part D
a
of D. As a matter of fact, (2.90) is

the most general representation of an antisymmetric tensor. Applied to a
dyadic product AB, we have

1
2

〈AB〉 × I = AB a

=
1
2

(B × A) × I; (2.91)

its antisymmetric part is equal to the null tensor if and only if A and B are
parallel.

Tensor fields: The symmetric deformation tensor S(R, t) and the symmet-
ric stress tensor T(R, t) represent important tensor fields in NDT, because
spatial and time variations of the particle velocity characterize the space- and
time-dependent deformation state of a solid, and sources of stresses result
in acceleration of volume elements, that is to say second time derivatives of
particle velocities and, hence, waves.

Unit tensor of second rank: The unit matrix of matrix calculus corre-
sponds to the unit tensor of second rank (Identity tensor):

I =
3∑

i=1

3∑
j=1

δij exi
exj

= δij exi
exj

(summation convention)

= exi
exi

(summation convention)
= exex + eyey + ezez; (2.92)
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obviously, in the matrix representation of I, only the main diagonal elements
are nonzero and all are equal to one:

I =

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ . (2.93)

Accordingly, in circular cylindrical and spherical coordinates, we have

I = er er + eϕ eϕ + ez ez, (2.94)
I = eR eR + eϑ eϑ + eϕ eϕ. (2.95)

The symmetric unit tensor has the property

I · A = A · I = A. (2.96)

Vector components tangential to a surface: With n, we denote the
normal to a surface at point R; then

ut(R, t) = (I − nn) · u(R, t) (2.97)

apparently yields a vector component of u(R, t) tangential to the surface (Fig-
ure 2.12) because

n · ut(R, t) = n · (I − nn) · u(R, t)
= (n − n · nn) · u(R, t)
= 0. (2.98)

The tangential component utan(R, t) defined according to (2.38) relates to
ut(R, t) in the following way (Figure 2.12):

ut(R, t) =−n × utan(R, t), (2.99)

π/2

π/2

O

R
ut(R, t)

u(R, t)utan(R, t)n

FIGURE 2.12
Vector components tangential to a surface.
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utan(R, t) = n × ut(R, t)
= n × u(R, t). (2.100)

The vector tangential component ut(R, t) lies in the plane spanned by n and
u(R, t), whereas utan(R, t) is orthogonal to it.

Contraction of tensors with tensors: Certainly, contractions of adjacent
indices of two tensors (second or higher rank) can be equally accomplished:
for instance,

D · C = exi
DijCjk exk

(summation convention)

= DijCjk exi
exk

(summation convention) (2.101)

yields another tensor of second rank with (xixk)-components
∑3

j=1 DijCjk:
The second index of D is contracted with the first index of C, and the result-
ing tensor has the first index of D as first index and the second index of C
as second index. In contrast, calculating C21 · D21 also implies contraction of
the first index of C with the second index of D, yet the resulting tensor has
the second index of C as first index and the first index of D as second index.
Consequently,

(C21 · D21)21 = D · C (2.102)

or

(D · C)21 = C21 · D21. (2.103)

Double contraction of tensors with tensors: Double contractions are
performed subsequently with adjacent indices:14

D : C = DijCjk exi
· exk

(summation convention)
= DijCji (summation convention), (2.104)

that is to say, after the contraction (2.101) (upper dot of :) the adjacent
indices i and k are also contracted (lower dot of :). The result of the double
contraction of two tenors of second rank is a scalar, namely, the “double scalar
product” of the second index of D with the first index of C and the first index
of D with the second index of C. Therefore, D : I or I : D, respectively, double
contracts to

D : I = I : D = Dxx + Dyy + Dzz; (2.105)

14Another definition used by Auld (1973) reads as

D : C = DijDkl exi
exj

: exk
exl

= DijCkl (exi
· exk

)(exj
· exl

)

= DijCij .
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the sum of the main diagonal elements of the matrix representation of D is
called the trace of the tensor D:

D : I = traceD. (2.106)

With the scalar product A · A, we define the magnitude—the length—
of a vector that is intuitively independent of the choice of the coordinate
system (the components of A are not!); similarly, the trace of a tensor is not
coordinate dependent.

Unit tensors of rank four: The elastic properties of solid materials must be
characterized by constitutive equations; these do not follow from the governing
equations of elastodynamics, they have to be postulated based on experimental
results and physical considerations. One of the most important constitutive
equations is Hooke’s law relating the deformation state of a solid with its stress
state in a linear way; to achieve this, a tensor of rank four—the compliance or,
alternatively, the stiffness tensor—is required (Section 4.2). Per definitionem,
for isotropic materials, the components of this fourth rank tensor must be
independent of the coordinate system.15 The most general isotropic tensor of
rank four is constructed as follows:

I = α1 Iδ + α2 I+ + α3 I−, (2.107)

where

Iδ = I I

= δijδkl exi
exj

exk
exl

(summation convention)

= exi
exi

exk
exk

(summation convention), (2.108)

I+ =
1
2
(I I1342 + I I1324), (2.109)

I− =
1
2
(I I1342 − I I1324); (2.110)

I I1342 = δijδkl(exi
exj

exk
exl

)1342 (summation convention)

= δijδkl exi
exk

exl
exj

(summation convention)

= exi
exj

exj
exi

(summation convention), (2.111)

I I1324 = δijδkl(exi
exj

exk
exl

)1324 (summation convention)

= δijδkl exi
exk

exj
exl

(summation convention)

= exi
exj

exi
exj

(summation convention); (2.112)

15The electromagnetic properties of materials may be characterized by permittivity and
permeability tensors of second rank; in that case, isotropy prevails if these constitutive
tensors are proportional to the unit tensor I because I has the representation (2.92) as
sum of the dyadic products of the orthonormal trihedron vectors in any coordinate system
(Chen 1983; Equations 2.94 and 2.95).
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the αi, i = 1, 2, 3, denote arbitrary constants. The tensors I I1342, I I1324, Iδ,

I+, I− have the following properties:

I I1342 : D = D : I I1342 = D, (2.113)

I I1324 : D = D : I I1324 = D21, (2.114)

Iδ : D = D : Iδ = I traceD, (2.115)

I+ : D = D : I+ = D
s
, (2.116)

I− : D = D : I− = D
a
. (2.117)

Inverse, adjoint, and determinant of a second rank tensor: As men-
tioned earlier, the second rank Green tensor rotates the direction of a point
force (density) at the source point r′ into the direction of the particle velocity
at the observation point R. Therefore, Green’s tensor must be inverted—apart
from the wave propagation from source to observation point—to calculate the
particle velocity originating from a force density: We face the fundamental
problem of NDT generalizing inversion to scattering of ultrasonic waves by
material inhomogeneities (Chapter 16).

The inverse (second rank) tensor D−1 of a second rank tensor D , if ex-
isting, has the property

D · D−1 = D−1 · D = I. (2.118)

That way the relation
D · A = B (2.119)

can be inverted according to

A = D−1 · B. (2.120)

D−1 can be calculated in terms of (Chen 1983)

D−1 =
adjD
detD

, (2.121)

where adjD denotes the adjoint tensor of D whose matrix representation
reads as follows:16

adjD =

⎛⎝DyyDzz − DyzDzy DzyDxz − DzzDxy DxyDyz − DxzDyy

DzxDyz − DyxDzz DxxDzz − DxzDzx DxzDyx − DxxDyz

DyxDzy − DzxDyy DxyDzx − DxxDzy DxxDyy − DxyDyx

⎞⎠;

(2.122)

16The coordinate-free representation of the adjoint tensor and its components utilizes
the completely antisymmetrical third rank permutation tensor by Levi–Cività (Chen 1983;
de Hoop 1995); yet in the present elaboration, it is not urgently needed.
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with

detD = DxxDyyDzz + DxyDyzDzx + DyxDzyDxz

− DxzDyyDzx − DxyDyxDzz − DxxDzyDyz, (2.123)

we refer to the determinant of D. Obviously, inversion of a tensor necessarily
requires detD �= 0; if this is not true, the tensor is singular. Chen (1983) gives
many formulas to calculate determinants and adjoints of tensors with given
algebraic structure; we cite them in our Appendix “Collection of Formulas.”

Complex valued tensors: A tensor D is complex valued if its components
are complex numbers; this is generally true for the Fourier spectra of tensor
fields, for instance, the Fourier spectrum T(R,ω) of the stress tensor T(R, t).
The Hermite-conjugate tensor D+ is obtained via transposition and simulta-
neous insertion of complex-conjugate components :

D+ = D∗
ij exj

exi
(summation convention)

= D∗
ji exi

exj
(summation convention). (2.124)

A complex valued tensor is called Hermitian if17

D+ = D. (2.125)

Analogously to (2.67), we define the “magnitude” of a complex valued (second
rank) tensor:

|D| =
√

D : D+. (2.126)

Then

D̂ =
D
|D| (2.127)

turns out to be a “unit tensor” with magnitude 1.

Eigenvalue problems: Phase velocities of elastic plane waves in isotropic
and anisotropic materials result as eigenvalues from an eigenvalue problem
that originates from the time and space Fourier transformed wave equation;
the longitudinal polarization of primary plane pressure and the transverse
polarization of secondary plane shear waves in isotropic materials are conse-
quences of the orientation of the eigenvectors of the eigenvalue problem.

Eigenvalues α of a second rank tensor D are defined as18 those factors of
a vector A if the rotation D · A exceptionally results in a (may be complex
valued) length change of A: One states the eigenvalue problem

D · A = αA (2.128)

17The main diagonal elements are real valued, the off-diagonal elements are complex
conjugate.

18Eigenvalue problems are also formulated for n × n-matrices with n > 3.
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and understands “exceptional” in the sense that this can only be true for se-
lected vectors A—the eigenvectors—that are allocated to the pertinent eigen-
values. Eigenvalues and eigenvectors are solutions of (2.128).

By writing (2.128) according to

(D − αI) · A = 0, (2.129)

we see that the components of eventually existing eigenvectors must be solu-
tions of the system of homogeneous equations

(Dxx − α)Ax + DxyAy + DxzAz = 0,

DyxAx + (Dyy − α)Ay + DyzAz = 0, (2.130)
DzxAx + DzyAy + (Dzz − α)Az = 0

with the coefficient matrix D − αI. Systems of homogeneous equations only
have nontrivial—nonzero—solutions if and only if the determinant of the co-
efficient matrix vanishes. Hence, we require

det (D − αI) = 0. (2.131)

With (2.123), we find the explicit representation of (2.131) as a third-degree
polynomial for the eventually existing eigenvalues; Chen (1983) gives the fol-
lowing short-hand notation:

α3 − α2 traceD + α trace adjD − detD = 0. (2.132)

This so-called characteristic polynomial (characteristic for D) exhibits (im-
plying real valued components of D)

• Either three not necessarily different real valued zeroes19

• Or one real valued and two complex conjugate zeroes.

For real symmetric (and complex Hermitian) tensors, only the first alternative
is true: Their eigenvalues are always real valued! If the tensor is additionally
positive definite, the eigenvalues are positive. The tensor D is positive definite
if the quadratic form R · D · R is greater than zero for R > 0 and zero only if
R = 0 holds.

In order to predict properties of eigenvectors Ai, i = 1, 2, 3, belonging to
the eigenvalues αi, i = 1, 2, 3, results concerning the structure of tensor ad-
joints for vanishing tensor determinants are required. We cite Chen (1983):
For det (D − αi I) = 0 either D − αi I or adj (D − αi I) is the dyadic product
of two vectors, a so-called linear tensor; in the first case, adj (D − αi I) is the
null tensor. If D − αi I is a dyadic, any vector orthogonal to the right factor
of this dyadic is an eigenvector to the eigenvalue αi of D, and if adj (D − αi I)
is a dyadic (and not the null tensor), the eigenvector to the eigenvalue αi is
proportional to the left factor of that dyadic.

19The eigenvalue α = 0 only exists for detD = 0, which means that the noninvertibility
of a tensor (a matrix) can also be recognized by a vanishing eigenvalue.
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For real valued symmetric tensors D, the eigenvectors are real valued,
and if they belong to different (real valued) eigenvalues, they are orthogo-
nal to each other. It is exactly this result that we meet when we calculate the
phase velocities and polarizations of plane waves in anisotropic materials (Sec-
tion 8.3): The wave tensor is real valued and symmetric, its eigenvalues—the
phase velocities—are real valued and distinct, the eigenvectors are real valued
and orthogonal to each other. For isotropic materials (Section 8.1), we face a
so-called degeneracy: Two eigenvectors are equal, hence any vector orthogonal
to the eigenvector belonging to the third eigenvalue is an eigenvector to the
identical eigenvalues. In the terminology of NDT: The polarization of trans-
verse waves is arbitrary with regard to the polarization of longitudinal waves.

2.2 Vector and Tensor Analysis

Propagation of elastic waves implies the variation of vector fields—e.g.,
u(R, t)—and tensor fields—e.g., S(R, t), T(R, t)—in space and time. What
are the possibilities to forge appropriate mathematical equations for these
physical variations? Fortunately, we are no longer in the situation of Isaac
Newton who had to invent the necessary calculus beforehand; we can shop for
vector and tensor analysis.

2.2.1 Del-operator: Gradient dyadic, gradient,
divergence, and curl

Gradient dyadic: The variation of a scalar function f(x) with x is charac-
terized by its derivative20

f ′(x) = lim
∆x→0

f(x + ∆x) − f(x)
∆x

def=
df(x)

dx
. (2.133)

Yet, the vector field quantity u(R, t) has three scalar components each depend-
ing on three coordinates (Equation 2.10); therefore, in total, nine so-called
partial derivatives can be calculated:

∂ux(x, y, z, t)
∂x

,
∂uy(x, y, z, t)

∂x
,

∂uz(x, y, z, t)
∂x

;

∂ux(x, y, z, t)
∂y

,
∂uy(x, y, z, t)

∂y
,

∂uz(x, y, z, t)
∂y

;

∂ux(x, y, z, t)
∂z

,
∂uy(x, y, z, t)

∂z
,

∂uz(x, y, z, t)
∂z

.

(2.134)

20As far as the mathematical conditions for the existence of derivatives are concerned, we
refer to the literature (e.g.: Burg et al. 1990).



K12611 Chapter: 2 page: 40 date: January 18, 2012

40 Ultrasonic Nondestructive Testing of Materials

Additionally, three partial derivatives of the components with regard to time
may be under concern:

∂ux(x, y, z, t)
∂t

,
∂uy(x, y, z, t)

∂t
,

∂uz(x, y, z, t)
∂t

. (2.135)

The three time derivatives can be organized as a vector—the vector v(R, t)
of the particle velocity—

∂u(R, t)
∂t

def=
∂ux(R, t)

∂t
ex +

∂uy(R, t)
∂t

ey +
∂uz(R, t)

∂t
ez (2.136)

= v(R, t) (2.137)

and the nine spatial derivatives constitute a second rank tensor

∇u(R, t) def=

⎛⎜⎜⎜⎜⎜⎜⎝

∂ux(R, t)
∂x

∂uy(R, t)
∂x

∂uz(R, t)
∂x

∂ux(R, t)
∂y

∂uy(R, t)
∂y

∂uz(R, t)
∂y

∂ux(R, t)
∂z

∂uy(R, t)
∂z

∂uz(R, t)
∂z

⎞⎟⎟⎟⎟⎟⎟⎠ (2.138)

with the above matrix representation. Comparing this matrix representa-
tion with the one for the dyadic product (Equation 2.46), the interpretation
∇u(R, t) as a dyadic product of the vector differential operator21

∇ = ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z
(2.139)

with the vector u(R, t) is self-evident. Because of the upside down Greek letter
capital delta ∇ is called del-operator; it is not underlined due to the fact
that it is not a vector but a vector operator. The product ∇u(R, t) is called
gradient dyadic of u(R, t). The notion “gradient” is immediately plausible if
we tentatively apply ∇ to a scalar field quantity, for instance, the acoustic
pressure p(R, t).

Gradient: Applying the del-operator to p(R, t), we formally receive

∇p(R, t) = ex

∂p(R, t)
∂x

+ ey

∂p(R, t)
∂y

+ ez

∂p(R, t)
∂z

, (2.140)

21We purposely write the differential operator components behind the vectors of the
orthonormal trihedron, because it is coercively necessary in other than cartesian coordinates;
formally, we obtain, for instance, the (xixj)-component of ∇u(R, t) as

exi

∂

∂xi
(uxj exj

) = exi

∂uxj

∂xi
exj

=
∂uxj

∂xi
exi

exj
,

where the first equality sign holds because of the coordinate independence of the vectors
of the orthonormal trihedron. However, for non-cartesian coordinates, the vector compo-
nents of u and therefore the pertinent j-unit vectors have to be differentiated with the ith
coordinate (Section 2.2.4).
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FIGURE 2.13
Definition of the gradient.

i.e., a vector. Evidently, this vector can be calculated for any spatial point R
(and any time t); it has a magnitude and a direction as sketched in Figure 2.13.
Let us now consider a close-by spatial point R + dR that is dislodged from
R by an infinitesimal vector dR; generally, the field quantity p will then have
changed by the infinitesimal value

dp = p(R + dR, t) − p(R, t). (2.141)

This change dp can be calculated as total differential—sum of products of
p-changes in the respective coordinate directions with the infinitesimal coor-
dinate changes—

dp =
∂p(R, t)

∂x
dx +

∂p(R, t)
∂y

dy +
∂p(R, t)

∂z
dz, (2.142)

which can be written as

dp = ∇p(R, t) · dR, (2.143)

with dx,dy,dz denoting the components of dR. Combining (2.143) with
(2.141) yields

p(R + dR, t) = p(R, t) + ∇p(R, t) · dR. (2.144)

Now we choose two particular spatial directions dR:

• dR orthogonal to the vector ∇p(R, t): The scalar product ∇p(R, t) · dR is
equal to zero, that is to say, the variation of p(R, t) orthogonal to ∇p(R, t)
is zero!

• dR parallel to the vector ∇p(R, t): The scalar product ∇p(R, t) · dR is
maximum, that is to say, the variation of p(R, t) in the direction of
∇p(R, t) is maximum!
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We conclude that: In any spatial point, the vector ∇p(R, t) points into that
direction which coincides with the strongest variation of the field quantity;
hence, it is called the gradient of p(R, t) with the occasional notation

∇p(R, t) = grad p(R, t). (2.145)

Let Sg be a—really existing or mathematically virtual—closed surface with
outward normal n; projecting the gradient ∇p(R, t) as calculated at a par-
ticular point on this surface onto the direction of the normal, we obtain the
so-called normal derivative

n · ∇p(R, t) def=
∂p(R, t)

∂n
, R ∈ Sg, (2.146)

of the scalar field p(R, t).
The normal derivative plays an important role in Huygens’ principle for

scalar fields (Section 15.1.2) because its knowledge on the total surface Sg

together with the knowledge of p(R, t) on Sg is sufficient for the knowledge
of p(R, t) interior or exterior of Sg depending on whether the sources of the
field p(R, t) are located interior or exterior of Sg.

Apparently, the matrix scheme (2.138) of the gradient dyadic of a vector
field exhibits the gradients of the scalar components of the field as column
vectors:

∇u(R, t) =
(
∇ux(R, t) ∇uy(R, t) ∇uz(R, t)

)
, (2.147)

so that we have a dyadic ∇u(R, t) at hand that contains the complete infor-
mation about the variation of the vector field u(R, t) at any spatial point and
for any time. As a matter of fact, the symmetric part of the gradient dyadic
∇u(R, t) defines the deformation tensor S(R, t) (Section 3.1).

Divergence: The gradients of the scalar components of u(R, t) originate
from the respective aggregation of the components of the gradient dyadic
∇u(R, t). There are two other possibilities to combine components of
∇u(R, t) in a way that the resulting expressions give evidence of the physical
properties of the vector field u(R, t). The first possibility yields the divergence
(source density) of the vector field. We compose the trace of the gradient
dyadic according to

trace ∇u(R, t) =
∂ux(R, t)

∂x
+

∂uy(R, t)
∂y

+
∂uz(R, t)

∂z
(2.148)

and state that we can write it formally as a contraction of the del-operator
with u(R, t):

∇ · u(R, t) =
∂ux(R, t)

∂x
+

∂uy(R, t)
∂y

+
∂uz(R, t)

∂z
. (2.149)
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FIGURE 2.14
Definition of the divergence of a vector field.

One calls

∇ · u(R, t) = divu(R, t) (2.150)

divergence of the vector field; the reason will be made plausible below.
In Figure 2.14, a closed surface Sg is sketched that encloses the volume V ;

the vector R indicates the center of gravity of this volume. The outward
normal of Sg at the point R′ is given by n′. We consider a (stationary) vector
field v that might represent the flow velocity of an incompressible fluid. At R′

on Sg, v(R′) should have the direction as indicated, that is to say, the flow
exhibits a component parallel and a component orthogonal to the surface.
Evidently, the orthogonal component22—the normal component n′ · v(R′)—
measures the flux through the surface; summation—i.e., integration—of this
local flux over Sg yields the total flux of the vector field through Sg:23

flux of v through Sg =
∫ ∫

Sg

n′ · v(R′) dS′; (2.151)

here, dS′ denotes the infinitesimal surface element of Sg at R′. This flux of v
through Sg is a number that may be positive, negative, or zero: If positive, we
observe a loss of fluid in the volume V , and due to the incompressibility of the
stationary flow, this must be equivalent to the existence of a (net-)source in
the interior of Sg that exhibits the same intensity. Accordingly, a negative flux
is tantamount to a (net-)drain (sink) in the interior of Sg, and a vanishing flux
means that there are neither sources nor sinks in V or, equivalently, sources
and sinks cancel each other, and the outward and inward fluxes are equal.

With the flux, we define a global property of a vector field; with the di-
vergence, we do that locally. The global definition of the flux would change
into a local definition via a series of volumes contracting to the point R;

22The parallel component is subsequently considered to define the curl of a vector field.
23Concerning the explicit calculation of such a surface integral, we refer to the literature

(e.g., Burg et al. 1990; Langenberg 2005).
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yet, in the limit of an arbitrarily small volume, the flux integral (2.151) would
yield a zero value because of the arbitrarily small integration surface. As a
remedy, we normalize the flux to the respective volume—thus defining a flux
density—yielding the indefinite expression “zero over zero” that might have a
finite value; in that case, it defines the positive or negative source density—the
divergence—of the vector field locally at R:

divv(R) = lim
V →0

1
V

∫ ∫
Sg

n′ · v(R′) dS′. (2.152)

The above recipe to calculate a divergence is rather intuitive yet it lacks
practicability: It would be better to do it based on the components of v! To
achieve this, the series of integrals is evaluated for a cubic volume fitting into
a cartesian coordinate system; then, the limit is calculated with the help of
the midpoint theorem (Burg et al. 1990): We find

divv(R) =
∂vx(R)

∂x
+

∂vy(R)
∂y

+
∂vz(R)

∂z

= ∇ · v(R). (2.153)

The “generalization” to time-dependent vector fields is given by equa-
tion (2.149).

The mathematical evaluation of the physically significant divergence def-
inition as contraction of the del-operator with a vector24 immediately allows
for generalizations, for instance, the divergence of the tensor according to

∇ · T(R, t) def= divT(R, t)

=
∂Txixj (R, t)

∂xi
exj

(summation convention)

=
(

∂Txx(R, t)
∂x

+
∂Tyx(R, t)

∂y
+

∂Tzx(R, t)
∂z

)
ex

+
(

∂Txy(R, t)
∂x

+
∂Tyy(R, t)

∂y
+

∂Tzy(R, t)
∂z

)
ey

+
(

∂Txz(R, t)
∂x

+
∂Tyz(R, t)

∂y
+

∂Tzz(R, t)
∂z

)
ez. (2.154)

If T(R, t) denotes the stress tensor divT(R, t) defines, according to Cauchy,
a force density inherent to the solid that is the origin, according to Newton,
for particle accelerations: We found the Newton–Cauchy governing equation
of elastodynamics!

24Obviously, this contraction does not commute like a scalar product because u(R, t) · ∇
is meaningless.
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Curl: Apparently, after the contraction application of the del-operator, it is
only a small step to the cross product application according to

∇ × u(R, t) =
(

∂uz(R, t)
∂y

− ∂uy(R, t)
∂z

)
ex

+
(

∂ux(R, t)
∂z

− ∂uz(R, t)
∂x

)
ey

+
(

∂uy(R, t)
∂x

− ∂ux(R, t)
∂y

)
ez. (2.155)

At first, we observe that we have “discovered” another possibility to combine
the elements of the gradient dyadic ∇u(R, t): The elements directly below
the main diagonal are subtracted from their mirror elements and declared as
z- and x-components, respectively, of a vector, and subtraction of the upper
right corner element from the lower left corner element yields the missing
y-component of this so-called rotation (curl) vector of the gradient dyadic
[compare (2.89)]:

〈∇u(R, t)〉 = ∇ × u(R, t). (2.156)

The rotation vector 〈∇u(R, t)〉 even has the physical meaning25 of a rotation
or curl density of u(R, t). We recall Figure 2.14, to illustrate the source density
divv(R) of a stationary incompressible fluid, we added up the normal com-
ponents of v(R) in terms of a flux integral; now we integrate the tangential
components according to (2.38) to define a “curl” integral:

curl of v on Sg =
∫ ∫

Sg

n′ × v(R′) dS′. (2.157)

Normalization to the volume V and performance of the limit V −→ 0 intu-
itively yields a local curl density of v(R):

curlv(R) = lim
V →0

1
V

∫ ∫
Sg

n′ × v(R′) dS′. (2.158)

Calculation of the integral and the limit in Cartesian coordinates for a cubic
volume actually provides (Burg et al. 1990)

curlv(R) = ∇ × v(R), (2.159)

namely (2.155) according to

∇ × u(R, t) = curlu(R, t), (2.160)

25With

∇u a = −1
2

(∇ × u) × I,

we can calculate the antisymmetric part ∇u a of the gradient dyadic ∇u according to (2.91).
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“generalizing” once again to a spatially and time-dependent vector field. Since
we add up vectors in terms of tangential components in the integral (2.158), it
is obvious that curlv(R) is a vector; we can envisage this vector just like the
angular momentum of a small v-vortex, which, as it is well-known, is oriented
orthogonally to the vortex surface.26

2.2.2 Application of the del-operator to products of field
quantities, chain rules, delta-operator

Application of the del-operator to products of field quantities: Many
possibilities exist to construct products of field quantities and, depending on
the version of the result—scalar, vector, and tensor—the del-operator can be
applied as gradient, divergence, or curl. Often needed results can be found in
the formula collections of respective books; a very comprehensive collection is
appended to this elaboration.

Some examples particularly useful for the derivation of plane wave solu-
tions of the governing equations of elastodynamics and for the mathematical
formulation of Huygens’ principle, and the energy conservation theorem will
be explicitly discussed.

The simplest product is the product of two scalar field quantities Φ(R, t)
and Ψ(R, t); We investigate the gradient of this product:27

∇(ΦΨ) = Ψ∇Φ + Φ∇Ψ. (2.161)

To prove this equation, the product rule of differential calculus is applied to
the partial derivatives as contained in ∇; afterward, the single terms are com-
bined to ∇-operations.

We consider Ψ in (2.161) as ith scalar component of a vector A, calculate

∇(ΦΨi) = Ψi∇Φ + Φ∇Ψi, i = 1, 2, 3, (2.162)

and combine the three vector equations to the dyadic

∇(ΦA) = (A∇Φ)21 + Φ∇A, (2.163)

bearing in mind that the first index must be the ∇-index.
Again, we replace Ψ in (2.161) by a vector A, this time calculating the

divergence using the summation convention:

26This is exceptionally descriptive with Ampère’s theorem stating the following for mag-
netic fields H(R) of stationary current densities J(R):

curlH(R) = J(R);

an infinitely long current carrying wire is surrounded by circular magnetic field lines: The
curl density curlH(R) of the magnetic field is oriented in the direction of the current
density J(R).

27We ignore the arguments to enhance the facility of inspection.
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∇ · (ΦA) = exi
· ∂

∂xi
(ΦAxj

exj
)

= exi
· exj︸ ︷︷ ︸

= δij

(
∂Φ

∂xi
Axj + Φ

∂Axj

∂xi

)

=
∂Φ

∂xi
Axi + Φ

∂Axi

∂xi

= (∇Φ) · A + Φ∇ · A. (2.164)

Without the summation convention, this result is also found, only the number
of symbols to write is larger. Up to the last but one line a calculus as above
is more or less trivial, and only the combination to explicit del-operations as
in the last line requires some thinking.

The curl of the product ΦA is taken from the collection of formulas:28

∇ × (ΦA) = Φ∇ × A − A × ∇Φ. (2.165)

We continue with the gradient of the scalar product of two vectors:

∇(A · B) = exi

∂

∂xi
(Axj

Bxj
)

= exi

(
∂Axj

∂xi
Bxj

+ Axj

∂Bxj

∂xi

)
= exi

∂Axj

∂xi
Bxj + exi

∂Bxj

∂xi
Axj

= (∇A) · B + (∇B) · A; (2.166)

obviously, the gradient dyadics of the respective vectors appear. Writing down
the last line of (2.166), we have to be careful with the contraction of the
correct indices of the gradient dyadic: In ∇(A · B), the vector index is the
index of ∇ and this must also be true for the final result.

The divergence of the dyadic product of two vectors is calculated as
follows:

∇ · (AB) = exi
· ∂

∂xi
(Axj

Bxk
exj

exk
)

= exi
· exj︸ ︷︷ ︸

= δij

exk

(
∂Axj

∂xi
Bxk

+ Axj

∂Bxk

∂xi

)

= exk

(
∂Axi

∂xi
Bxk

+ Axi

∂Bxk

∂xi

)
=

∂Axi

∂xi
Bxk

exk
+ Axi

∂Bxk

∂xi
exk

= (∇ · A)B + A · ∇B. (2.167)

28Without the Levi–Cività tensor, the calculation is somewhat circumstantial.



K12611 Chapter: 2 page: 48 date: January 18, 2012

48 Ultrasonic Nondestructive Testing of Materials

A last example, the vector S(R, t) of the elastodynamic energy flow
density—the elastodynamic counterpart to the electromagnetic Poynting vec-
tor (Section 4.3)—is defined as such S(R, t) = −v(R, t) · T(R, t); according to
the law of energy conservation, its (positive or negative) local source density—
its divergence—must be equivalent to the local increase or loss of elastody-
namic energy density. Providently, we calculate

∇ · (A · D) = exi
· ∂

∂xi
(Axj Dxjxk

exk
)

= exi
· exk︸ ︷︷ ︸

= δik

(
∂Axi

∂xi
Dxjxk

+ Axj

∂Dxjxk

∂xi

)

=
∂Axj

∂xk
Dxjxk

+ Axj

∂Dxjxk

∂xk

= (∇A) : D + A · ∇ · D21. (2.168)

Chain rules for gradient, divergence, and curl: The mathematical rep-
resentation of a time harmonic plane wave contains the function

e jk k̂·R (2.169)

with k > 0 being a constant and k̂ a unit vector. Based on the time harmonic
scalar Green function

e jk|R−R′|

4π|R − R′| , (2.170)

the dyadic Green function of elastodynamics is derived. Both examples are
functions—exponential function eφ1 and hyperbolic function 1/φ2—whose ar-
guments φ1,φ2 are functions of the vector of position. Gradient calculation of
(2.169) and (2.170), therefore, requires an “interior derivative”; the counter-
part of differential calculus is the chain rule, and here, we present the chain
rules for gradient, divergence, and curl:

∇Φ[φ(R)] =
∂Φ(φ)

∂φ
∇φ(R); (2.171)

∇ · A[φ(R)] =
∂A(φ)

∂φ
· ∇φ(R); (2.172)

∇ × A[φ(R)] = − ∂A(φ)
∂φ

× ∇φ(R); (2.173)

∇A[φ(R)] =
[
∂A(φ)

∂φ
∇φ(R)

]21
. (2.174)

With the short-hand notation φ(R) = jk k̂ · R, we calculate with the help
of the summation convention:

∇e jk k̂·R = ∇eφ(R)

= eφ(R)∇φ(R)
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= e jk k̂·R jk ∇(k̂ · R)

= e jk k̂·R jk exi

∂

∂xi
(k̂xj xj)

= e jk k̂·R jk k̂xjexi

∂xj

∂xi︸︷︷︸
= δij

= e jk k̂·R jk k̂xi
exi

= jk k̂ e jk k̂·R. (2.175)

To assess the gradient of the scalar Green function (2.170), we utilize the
gradient product rule (2.161) according to

∇ e jk|R−R′|

4π|R − R′| =
1

4π|R − R′|∇e jk|R−R′|

+ e jk|R−R′| ∇ 1
4π|R − R′| , (2.176)

introduce φ(R) = |R − R′|, and find with the gradient chain rule:

∇ e jk|R−R′|

4π|R − R′| =
1

4πφ(R)
∇e jkφ(R) + e jkφ(R) ∇ 1

4πφ(R)

=
jk

4πφ(R)
e jkφ(R) ∇φ(R) − e jkφ(R) 1

4πφ2(R)
∇φ(R)

= jk
R − R′

4π|R − R′|2 e jk|R−R′| − R − R′

4π|R − R′|3 e jk|R−R′|

=
R − R′

|R − R′|
e jk|R−R′|

4π|R − R′|
(

jk − 1
|R − R′|

)
, (2.177)

because

∇φ(R) = ∇|R − R′|
=

R − R′

|R − R′| , (2.178)

as it is readily computed in cartesian coordinates using (2.9).29 Two facts are
worth being noticed:

• The gradient of the magnitude of the distance between source and obser-
vation point |R − R′| is the unit vector in (R − R′)-direction.

29Note: Due to the use of the gradient product and chain rules, we need coordinates to
calculate ∇|R − R′|.
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• The gradient of the scalar Green function—the elastodynamic Green dyadic
results from a double gradient of the scalar Green function!—reproduces
the scalar Green function, and it contains an additional term proportional
to the inverse distance between source and observation point: If this dis-
tance is very large (whatever that means at the moment), this term may
be eventually disregarded. To calculate far-fields of transducers, this sim-
plification is tremendously useful.

Delta-operator: We consider the gradient ∇p(R, t) of a scalar field and
compute the divergence:

∇ · ∇p(R, t) =
∂

∂x

(
∂p(R, t)

∂x

)
+

∂

∂y

(
∂p(R, t)

∂y

)
+

∂

∂z

(
∂p(R, t)

∂z

)
=

∂2p(R, t)
∂x2 +

∂2p(R, t)
∂y2 +

∂2p(R, t)
∂z2

def= ∆p(R, t). (2.179)

A scalar differential operator ∆ results that contains double partial derivatives
with regard to x, y, z:

∆ =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 ; (2.180)

it is called “delta- or Laplace operator.” In connection with the second time
derivative of p(R, t) according to

∆p(R, t) − 1
c2

∂2p(R, t)
∂t2

= 0, (2.181)

it constitutes an important term in any wave equation, here: a scalar wave
equation for the acoustic pressure p(R, t), which contains the constant c as
(phase-)velocity of acoustic waves.

However, in contrast to acoustics, elastic waves are vector waves in terms
of the particle velocity u(R, t); therefore, we try to apply the delta-operator
to a vector field according to

∆u(R, t) = ex ∆ux(R, t) + ey ∆uy(R, t) + ez ∆uz(R, t) (2.182)

and state the vector ∆u(R, t) = ∇ · ∇u(R, t)—the divergence of the gradient
dyadic of u(R, t)—as result, whose three (Cartesian) components

ex · ∆u(R, t) = ∆ux(R, t), (2.183)
ex · ∆u(R, t) = ∆uy(R, t), (2.184)
ez · ∆u(R, t) = ∆uz(R, t) (2.185)

are applications of the delta-operator to scalar field quantities. We emphasize
that the component representation (2.183) through (2.185) is only correct in
Cartesian coordinates (Section 2.2.4)!
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Apart from the fact that u(R, t) satisfies a vector wave equation, we will
ascertain (Chapter 7) that the additional term ∇∇ · u(R, t) (gradient of the
divergence of u(R, t)) with second spatial derivatives appears.30 We calculate
its components:

∇∇ · u(R, t) = ex

(
∂2ux(R, t)

∂x2 +
∂2uy(R, t)

∂x∂y
+

∂2uz(R, t)
∂x∂z

)
+ ey

(
∂2ux(R, t)

∂y∂x
+

∂2uy(R, t)
∂y2 +

∂2uz(R, t)
∂y∂z

)
+ ez

(
∂2ux(R, t)

∂z∂x
+

∂2uy(R, t)
∂z∂y

+
∂2uz(R, t)

∂z2

)
. (2.186)

The two differential operators ∇∇ · u(R, t) and ∇ · ∇u(R, t) = ∆u(R, t)
can be combined to a single vector differential operator:

∇∇ · u(R, t) − ∇ · ∇u(R, t) = ∇ × ∇ × u(R, t). (2.187)

Two identities of multiple del-operator applications deserve particular at-
tention:31 The curl of a gradient field is always equal to the null vector, and
the divergence of a curl field is always equal to zero:

∇ × (∇Φ) ≡ 0, (2.188)
∇ · (∇ × A) ≡ 0. (2.189)

Nota bene: These two equations hold for any scalar field Φ(R, t) and any
vector field A(R, t).

2.2.3 Gauss’ theorem, Gauss’ integral theorems,
Green’s formulas

Gauss’ theorem: With (2.152), we defined a local source density of a vector
field via the limit of a normalized flux integral. For a small but still finite
volume V , we can write (2.152) according to

V divv(R) �
∫ ∫

Sg

n′ · v(R′) dS′; (2.190)

The flux of v through Sg is proportional to an averaged source density mul-
tiplied by the volume. Even not a proof of Gauss’ theorem, it is intuitively
clear that, for an arbitrary volume V , the flux through its surface Sg equals
the (net-)source density of v in V , namely, the added up positive and nega-
tive “divergences” v:∫ ∫ ∫

V

divv(R) dV =
∫ ∫

Sg

n · v(R) dS; (2.191)

30In contrast to scalar acoustics, we expect pressure and shear waves.
31The physical terms “pressure” and “shear” waves become plausible that way

(Section 7.2).
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the distinction of the integration variables in the surface and the volume in-
tegral is no longer necessary because the integration itself defines the regime
of variation of R. Equation 2.191 is the Gauss theorem holding for any vec-
tor field v(R) that satisfies the respective mathematical assumptions (Burg
et al. 1990).

Gauss’ integral theorems: Writing (2.191) according to∫ ∫ ∫
V

∇ · v(R) dV =
∫ ∫

Sg

n · v(R) dS, (2.192)

the formal content of this equation is revealed: Replace the operation ∇· in the
volume integral by n· in the surface integral. Formulated as such, the follow-
ing pendants to Gauss’ theorem—Gauss’ integral theorems—are immediately
at hand: ∫ ∫ ∫

V

∇Φ(R) dV =
∫ ∫

Sg

nΦ(R) dS; (2.193)∫ ∫ ∫
V

∇v(R) dV =
∫ ∫

Sg

nv(R) dS; (2.194)∫ ∫ ∫
V

∇ × v(R) dV =
∫ ∫

Sg

n × v(R) dS; (2.195)∫ ∫ ∫
V

∇ · D(R) dV =
∫ ∫

Sg

n · D(R) dS. (2.196)

By the way, the integral theorem (2.195) has already been used to define the
curl integral,32 and the theorem (2.193) similarly serves to define the gradi-
ent. The integral theorems (2.194) and (2.196) are required to transform the
differential style of the governing equations of elastodynamics into an integral
style, thus providing the basis for the EFIT as a numerical method to compute
elastodynamic fields (Fellinger 1991; Marklein 1997).

Stokes’ integral theorem: Gauss’ theorem is complemented by Stokes’ the-
orem (in a similar way: Stokes’ integral theorems):∫

Cg

v(R) · dR =
∫ ∫

S

n · rotv(R) dS. (2.197)

Here, dR denotes the infinitesimal vector tangential to the arbitrary closed
integration path Cg, that is to say, the line integral adds up all tangential
components of the vector field v along the integration path. If such an in-
tegral is nonzero, the vector field exhibits vortices, and, as a matter of fact,
Stokes’ theorem claims that the result of this integration exactly equals the

32Or: The integral definition of the curl yields an intuitive explanatory statement of the
integral theorem (2.195).
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surface integral of the curl density of v where S is the membrane surface
spanned by Cg (it may be arbitrarily distorted). Ampère’s law (Footnote 26)
provides a physically intuitive example for Stoke’s theorem, and it is indeed
particularly useful for the theory of electromagnetic fields.

Green’s integral formulas: Gauss’ theorem (2.192) serves to derive the
first and the second Green formulas; Green’s second formula is the basis for
the mathematical specification of Huygens’ principle for scalar fields (Section
15.1.2). As a consequence, Huygens’ principle is no longer a principle but an
implication of the wave equation.

We specify

v(R) = Φ(R)∇Ψ(R) (2.198)

in (2.192); here, Φ(R) and Ψ(R) denote arbitrary scalar functions. We utilize
(2.164) and calculate

∇ · v(R) = ∇ · [Φ(R)∇Ψ(R)]
= ∇Φ(R) · ∇Ψ(R) + Φ(R) ∆Ψ(R). (2.199)

Insertion into (2.192) yields Green’s first formula:∫ ∫ ∫
V

[Φ(R) ∆Ψ(R) + ∇Φ(R) · ∇Ψ(R)] dV =
∫ ∫

Sg

Φ(R)
∂Ψ(R)

∂n
dS.

(2.200)
We have used (2.146) for n · ∇Ψ(R).

Green’s second formula is obtained if the above procedure is applied to

v(R) = Ψ(R)∇Φ(R), (2.201)

subtracting the result from (2.200):∫ ∫ ∫
V

[Φ(R) ∆Ψ(R) − Ψ(R) ∆Φ(R)] dV

=
∫ ∫

Sg

[
Φ(R)

∂Ψ(R)
∂n

− Ψ(R)
∂Φ(R)

∂n

]
dS. (2.202)

Now, we simply have to provide a physical meaning for the fields Φ and Ψ

and to interpret (2.202) in terms of wave theory to obtain Huygens’ principle
as a mathematical formulation: It is the ∆-operator appearing in the wave
equation (2.181) and in both Green formulas suggesting this.

2.2.4 Cylindrical and spherical coordinates

In isotropic materials, phase surfaces of waves emanating from a point source
are spherical; in general, the amplitude is direction dependent. Insofar, the
mathematical characterization of these wave fronts does not fit into the
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cartesian coordinate system that has only been used until now; the utilization
of spherical coordinates is mandatory (transducer sound fields originate from
the superposition of spherical waves)! Additionally, cylindrical coordinates are
often useful, for instance, to characterize a specimen like a pipe mathemat-
ically. Therefore, we briefly refer to essential differences of such orthogonal
curvilinear coordinates as compared to cartesian coordinates.

Circular cylindrical coordinates r, ϕ, z are nothing but polar coordi-
nates r, ϕ in the xy-plane combined with the cartesian component z. Cartesian
coordinates are spanned by a trihedron of orthogonal unit vectors ex, ey, ez;
(scalar) vector components result from the projection (scalar products) of a
vector to the orthonormal trihedron vectors, and therefore the definition of a
similar orthonormal trihedron for cylindrical coordinates is appropriate. We
refer to Figure 2.15: For simplicity, we only sketch the xy-plane—the unit vec-
tor ez characterizes the cylinder coordinate z—and identify a point • in this
plane through the radial coordinate r and the angular coordinate ϕ, counted
from the x-axis; we have 0 ≤ r < ∞ and 0 ≤ ϕ ≤ 2π. The relation between
r, ϕ and x, y is given by coordinate transform equations (2.1):

x = r cos ϕ, (2.203)
y = r sinϕ. (2.204)

The cartesian x- and y-coordinates are spanned by ex and ey, and because
the pertinent x- and y-coordinate lines are straight, the unit vectors ex and ey

r

O y

x

ϕ

ϕ

ϕ

ex

ex

er

ey

ey

eϕ

FIGURE 2.15
Orthogonal unit vectors for circular cylindrical coordinates.
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always have the same direction, which also holds for the point with coordinates
r, ϕ: ex and ey indicate for any point in the xy-plane the direction of varia-
tion of the respective coordinate. Unit vectors er and eϕ for the cylindrical
coordinates r and ϕ similarly should point into those directions of pertinent
coordinate variations. Consequently, er points into radial direction and eϕ

into the direction tangential to a circle with radius r, of course in the direc-
tion of increasing ϕ. We stated that: A vector is defined by its length and
direction, both parameters can be computed given the cartesian components
of the vector; this must also be true for the unit vectors er and eϕ. We obtain
their cartesian components through projection to the unit vectors ex and ey:

er = (er · ex) ex + (er · ey) ey, (2.205)
eϕ = (eϕ · ex) ex + (eϕ · ey) ey. (2.206)

In Figure 2.15, we immediately read off these projection:33

er = cos ϕ ex + sinϕ ey, (2.207)
eϕ = −sinϕ ex + cos ϕ ey, (2.208)

if we assume per definitionem that er and eϕ are unit vectors; yet, with (2.23),
we immediately prove this fact. The calculation of

er · eϕ = 0 (2.209)

confirms orthogonality of er and eϕ; trivially, ez is orthogonal to both. Appar-
ently, with er, eϕ, ez, we have found the right-handed orthonormal trihedron
for circular cylindrical coordinates! The spatial dependence of this trihedron,
in this case, the dependence on ϕ, represents the essential difference with
regard to cartesian coordinates.

With er, eϕ, ez, the components Ar, Aϕ, Az of a vector A in cylindrical
coordinates can be defined:

A = Ar er + Aϕ eϕ + Az ez, (2.210)

where

Ar = A · er,

Aϕ = A · eϕ, (2.211)
Az = A · ez. (2.212)

With A = Ax ex + Ay ey + Az ez and (2.207) and (2.208), we immediately
obtain equations to transform cartesian components Ax, Ay, Az into circular
cylindrical components Ar, Aϕ, Az:

Ar = Ax cos ϕ + Ay sinϕ,

Aϕ = − Ax sinϕ + Ay cos ϕ, (2.213)
Az = Az,

33Clearly, Equations 2.207 and 2.208 can be formally derived from the coordinate trans-
form equations (2.203) and (2.204) (Langenberg 2005).
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and the matrix notation of these equations⎛⎝Ar

Aϕ

Az

⎞⎠ =

⎛⎝ cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

⎞⎠⎛⎝Ax

Ay

Az

⎞⎠ (2.214)

directly reveals how to obtain the transform of circular cylindrical components
Ar, Aϕ, Az into cartesian components Ax, Ay, Az; the coefficient matrix has to
be inverted. The property of orthogonality of this matrix yields the inverse to
be equal to the transpose:⎛⎝ cos ϕ sinϕ 0

− sinϕ cos ϕ 0
0 0 1

⎞⎠−1

=

⎛⎝ cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

⎞⎠T

=

⎛⎝cos ϕ − sinϕ 0
sinϕ cos ϕ 0

0 0 1

⎞⎠ .

(2.215)

With the help of this matrix, we can also show that the value of the scalar
product of two vectors A and B is independent of the coordinate system:

ArBr + AϕBϕ + AzBz = AxBx + AyBy + AzBz. (2.216)

The elastodynamic energy densities are defined as scalar product of two vec-
tors and the double contraction of two second rank tensors, respectively (Sec-
tion 4.3), and therefore their independence from the coordinate system is
ensured. Here, we meet the cue: tensors in other than cartesian coordinates.
For example, the rϕ-component of a tensor of second rank D is defined by:34

Drϕ = er · D · eϕ

= D : eϕer; (2.217)

as a consequence, the following transform equation corresponding to (2.214)
is obtained:⎛⎝Drr Drϕ Drz

Dϕr Dϕϕ Dϕz

Dzr Dzϕ Dzz

⎞⎠
=

⎛⎝ cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

⎞⎠⎛⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠⎛⎝cos ϕ − sinϕ 0
sinϕ cos ϕ 0

0 0 1

⎞⎠ .

(2.218)

Applying the summation convention to (2.218), we can rapidly show that
the double contraction of two second rank tensors is also independent of the
coordinate system (the double contraction is, just like the scalar product, only
a number).

34Numbering cylindrical coordinates r, ϕ, z in terms of ξi, i = 1, 2, 3, we obtain all tensor
components as

Dξiξj
= eξi

· D · eξj
, i, j = 1, 2, 3;

the short-hand notation Dξiξj
= Dij requires the understanding of the underlying coordi-

nate system.
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In principle, all facts are at hand to investigate consequences of coordi-
nate changes for the analysis of scalar, vector, and tensor fields. The essential
tool of this analysis is the del-operator whose components possess a physical
dimension, namely the unit m−1, under the assumption that x, y, z are (carte-
sian) coordinates with unit m (meter) (Equation 2.139). In case of cylindrical
coordinates, ∂/∂r and—of course—∂/∂z exhibit this unit, yet ∂/∂ϕ does not.
Therefore, we must supply the unit m to the differential variation along the
ϕ-coordinate line, replacing ∂ϕ by the differential arc length variation ∂s =
r∂ϕ on a circle with radius r. Consequently, the del-operator in circular cylin-
drical coordinates reads as

∇ = er

∂

∂r
+ eϕ

1
r

∂

∂ϕ
+ ez

∂

∂z
. (2.219)

As a matter of fact, the same representation is mathematically obtained if the
so-called scale factors of the orthogonally curvilinear cylindrical coordinates
are introduced.35 With (2.219) and (2.210), it is finally clear what we have
to cope with doing analysis in other than cartesian coordinates; for instance,
calculation of the divergence of a vector field A(R) = A(r, ϕ, z) in cylindrical
coordinates requires the computation of

∇ · A(R) =
(
er

∂

∂r
+ eϕ

1
r

∂

∂ϕ
+ ez

∂

∂z

)
·[

Ar(r, ϕ, z) er(ϕ) + Aϕ(r, ϕ, z) eϕ(ϕ) + Az(r, ϕ, z) ez

]
=

∂Ar(r, ϕ, z)
∂r

+ eϕ · 1
r

∂

∂ϕ

[
Ar(r, ϕ, z) er(ϕ)

]
+ eϕ · 1

r

∂

∂ϕ

[
Aϕ(r, ϕ, z) eϕ(ϕ)

]
+

∂Az(r, ϕ, z)
∂z

=
∂Ar(r, ϕ, z)

∂r
+

Ar(r, ϕ, z)
r

eϕ · ∂er(ϕ)
∂ϕ︸ ︷︷ ︸

= eϕ

+
1
r

∂Aϕ(r, ϕ, z)
∂ϕ

+
Aϕ(r, ϕ, z)

r
eϕ · ∂eϕ(ϕ)

∂ϕ︸ ︷︷ ︸
= −er

+
∂Az(r, ϕ, z)

∂z

=
∂Ar(r, ϕ, z)

∂r
+

Ar(r, ϕ, z)
r

+
1
r

∂Aϕ(r, ϕ, z)
∂ϕ

+
∂Az(r, ϕ, z)

∂z

=
1
r

∂rAr(r, ϕ, z)
∂r

+
1
r

∂Aϕ(r, ϕ, z)
∂ϕ

+
∂Az(r, ϕ, z)

∂z
(2.220)

35For circular cylindrical coordinates, the scale factors read as

hr = 1,

hϕ = r,

hz = 1.
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according to (2.150)—we explicitly refer to the dependence of the unit vectors
er(ϕ), eϕ(ϕ) upon ϕ which, therefore, must be differentiated too—: It is often
mentioned that the divergence-∇-operator is written as

∇ = er

1
r

∂

∂r
r + eϕ

1
r

∂

∂ϕ
+ ez

∂

∂z
; (2.221)

yet, this is only true if it is agreed upon that (2.221) is only applied to
the scalar components Ar, Aϕ, Az. With that in mind, it is correct to state
that the gradient-∇-operator exhibits a different representation than (2.221),
and the curl-∇-operator does not at all have a component representation in
other than cartesian coordinates. Yet, consequently staying with (2.219) thus
always agreeing to differentiate the vector components—compare (2.210)—we
even obtain

∇ × A(R) =
(
er

∂

∂r
+ eϕ

1
r

∂

∂ϕ
+ ez

∂

∂z

)
×
[
Ar(r, ϕ, z) er(ϕ) + Aϕ(r, ϕ, z) eϕ(ϕ) + Az(r, ϕ, z) ez

]
(2.222)

and correct results for all other ∇-applications. Corresponding formulas are
listed in the Appendix.

Spherical coordinates: As already mentioned, ultrasonic radiation fields
exhibit demonstrative features only in spherical coordinates. As it is obvious
from the simpler example of cylindrical coordinates, it is basically sufficient to
know the coordinate transform equations and, already derived from them, the
cartesian component representation of the orthonormal trihedron. Coordinate
transform equations can be taken from Figure 2.16: The polar coordinate r in
the xy-plane depends on the magnitude of the vector of position, the spherical
coordinate R, via

r = R sinϑ, (2.223)

where ϑ denotes the coordinate “polar angle”; in connection with (2.203),
(2.204), and another look at Figure 2.16, we obtain

x = R sinϑ cos ϕ,

y = R sinϑ sinϕ, (2.224)
z = R cos ϑ;

the spherical coordinate ϕ is called “azimuth angle”. The orientation of the
right-handed orthonormal trihedron ordered according to eR, eϑ, eϕ can also be
extracted from Figure 2.16, as well as the projections to cartesian coordinates:
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O

x

y

z

R

eR

eϕ

eϑ

r

ϑ

ϕ

FIGURE 2.16
Orthonormal trihedron of spherical coordinates R,ϑ,ϕ.

eR = (eR · ex) ex + (eR · ey) ey + (eR · ez) ez

= sin ϑ cos ϕ ex + sinϑ sinϕ ey + cos ϑ ez,

eϑ = (eϑ · ex) ex + (eϑ · ey) ey + (eϑ · ez) ez

= cos ϑ cos ϕ ex + cos ϑ sinϕ ey − sinϑ ez, (2.225)
eϕ = (eϕ · ex) ex + (eϕ · ey) ey + (eϕ · ez) ez

= − sinϕ ex + cos ϕ ey.

We explicitly refer to
eR = R̂, (2.226)

that is to say, the vector of position has the component representation

R = R sinϑ cos ϕ ex + R sinϑ sinϕ ey + R cos ϑ ez (2.227)

in the cartesian orthonormal trihedron.
The system of Equations 2.225 defines the transform matrix for vector

and tensor components, i.e., the transformation of the cartesian components
Ax, Ay, Az of a vector A into its spherical components

A = AR eR + Aϑ eϑ + Aϕ eϕ (2.228)
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according to:⎛⎝ AR

Aϑ

Aϕ

⎞⎠ =

⎛⎝sinϑ cos ϕ sinϑ sinϕ cos ϑ

cos ϑ cos ϕ cos ϑ sinϕ − sinϑ

− sinϕ cos ϕ 0

⎞⎠⎛⎝Ax

Ay

Az

⎞⎠ . (2.229)

Again, the inverse of the transform matrix is equal to its transpose, immedi-
ately yielding the inversion of (2.229) and the transform equation for tensor
components similar to (2.218).

The same arguments as in the cylinder coordinate paragraph lead us to
the representation of the del-operator in spherical coordinates:36

∇ = eR

∂

∂R
+ eϑ

1
R

∂

∂ϑ
+ eϕ

1
R sinϑ

∂

∂ϕ
; (2.230)

single and multiple gradients, divergences, and curls can then be calculated;
the respective formulas may be taken from the Appendix.

2.3 Time and Spatial Spectral Analysis with
Fourier Transforms

The so-called kernel of the Fourier transform

F (ω) = F{f(t)}
=
∫ ∞

−∞
f(t) e jωt dt (2.231)

of a time function f(t) into a spectrum F (ω) is an exponential function e jωt

with imaginary argument,37 that is to say, the spectrum is generally complex.
Therefore, we include a brief discussion of complex numbers before we turn
to the Fourier transform.

36The scale factors in spherical coordinates read as

hR = 1,

hϑ = R,

hϕ = R sin ϑ.

37In communication theory, the Fourier transform is often defined with the complex con-
jugate kernel e−jωt; yet, the theory of acoustic, elastic, and electromagnetic waves prefers
the above ansatz because the respective Green function (2.170) then appears with the
positive sign in the exponent. For real-valued time functions, the wave theoretical and com-
munication theoretical spectra are apparently complex conjugate to each other. Caution
is appropriate if mapping equations are under concern that explicitly contain the imagi-
nary unit.
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2.3.1 Complex numbers and complex valued functions
of a complex variable

The equation

x2 + 1 = 0 (2.232)

does not have a solution in the space of real numbers x; therefore, we define
solutions38

x1/2 = ±j =
√−1 (2.233)

with the imaginary unit39 j. Now j is utilized as building block for complex
numbers

z = x + jy, (2.234)

which are attributed a real part with the real valued number x

�z = x (2.235)

and an imaginary part with the real valued number y

�z = y; (2.236)

the imaginary part counts the imaginary units j as “imaginary part” of z.
With (2.234), a complex number has two “components” in a xy-“coordinate
system,” that is called the complex Gauss plane that exhibits a phasor (Fig-
ure 2.17), pointing from the origin to the complex number z under the phase
angle ϕ . The complex number

z∗ = x − jy (2.237)

is called conjugate complex to z, its phase angle is −ϕ or 2π − ϕ, respectively.
Addition and subtraction of two complex numbers z1 = x1 + jy1, z2 = x2 +

jy2 is trivially defined as

z1 ± z2 = x1 ± x2 + j(y1 ± y2). (2.238)

Their multiplication is easily calculated noting j2 = −1:

z1z2 = x1x2 − y1y2 + j(x1y2 + x2y1); (2.239)

special cases are obtained as

z2 = x2 − y2 + 2jxy (2.240)

and

zz∗ = x2 + y2. (2.241)

38As soon as we define the nth root of a complex number, we find that the square root√−1 has always two values, namely +j and −j; both are solutions of Equation 2.232.
39In the engineering sciences, in particular in electrical engineering, the notation j is

commonly used whereas in physics, it is called i; to distinguish the imaginary unit j from
the counting index j, we use a roman character.
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Complex z-plane

ℜz = x

z = y

z* = x − jy

z = x + jyy

x

ϕ

−ϕ2π − ϕ
0

FIGURE 2.17
Complex number z and complex conjugate number z∗ in the Gauss plane with
real axis �z and imaginary axis �z.

Evidently, the product zz∗ is real valued; Figure 2.17 reveals that the magni-
tude |z| of z according to

|z| =
√

zz∗ (2.242)

is exactly the length of the phasor. That way, |z| and ϕ may serve as “polar
coordinates” for z, supplying the complementary representation40

z = |z| cos ϕ + j |z| sinϕ. (2.243)

The magnitude calculation according to (2.242) is also utilized to base the
division of two complex numbers on something well-known:

z1

z2
=

z1z
∗
2

z2z∗
2

=
x1x2 + y1y2 + j(y1x2 − x1y2)

x2
2 + y2

2
. (2.244)

40Obviously, we have tan ϕ = y/x, providing a way to calculate ϕ from the real and
imaginary part via the inverse function of the tangent; yet, the arc tangent is multivalued,
requesting case distinctions with regard to the signs of x:

ϕ =
{

PV arctan y/x for x > 0
PV arctan y/x + π for x < 0 .

“PV” stands for principal value; we have −π/2 < ϕ < π/2.
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With (2.240) all powers zn are defined allowing for the immediate con-
struction of a polynomial

P (z) = a0 + a1z + a2z
2 + a3z

3 + · · · + anzn (2.245)

(eventually with complex coefficients) as a function of a complex variable. The
next step leading to a “complex analysis”—the theory of complex functions
of a complex variable—is the power series:

f(z) =
∞∑

n=0

anzn; (2.246)

immediately, the question arises for those values of z ensuring convergence of
the series. This question has a very general answer41 (Behnke and Sommer
1965) that will not be discussed in detail. We rather present the way to ob-
tain a complex valued pendant of the real valued power series expansions for
examples like the exponential, sine, and cosine functions: We replace the real
variable x through the complex variable z! Hence:

ex =
∞∑

n=0

xn

n!
=⇒ ez =

∞∑
n=0

zn

n!
, (2.247)

sinx =
∞∑

n=0

(−1)n x2n+1

(2n + 1)!
=⇒ sin z =

∞∑
n=0

(−1)n z2n+1

(2n + 1)!
, (2.248)

cos x =
∞∑

n=0

(−1)n x2n

(2n)!
=⇒ cos z =

∞∑
n=0

(−1)n z2n

(2n)!
; (2.249)

all these power series converge in the open z-plane, namely for all values of z
except42 z = ∞. From these power series, the following relations are deduced:

e±jz = cos z ± j sin z, (2.250)

cos z =
e jz + e−jz

2
, (2.251)

sin z =
e jz − e−jz

2j
, (2.252)

cos jz =
ez + e−z

2
def= cosh z, (2.253)

1
j

sin jz =
ez − e−z

2
def= sinh z. (2.254)

All the relations that we know from the real valued functions—addition the-
orems, derivatives, etc.—can be transferred to the complex regime; among

41The power series (2.246) converges in the z-plane within the largest circle around z = 0,
exhibiting no singularity of the function that it represents.

42As a matter of fact, in the theory of complex functions of a complex variable the single
point ∞ is defined.
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others, we find the following separations of sin z and cos z into real and imag-
inary parts:

sin z = sin(x + jy)
= sin x cosh y + j cos x sinh y, (2.255)

cos z = cos(x + jy)
= cos x cosh y − j sinx sinh y. (2.256)

The reflection of plane elastic waves at the plane boundary between two ma-
terials with different elastic properties exhibits critical angles of incidence if
the sine of the transmission angle of the longitudinal wave and the transverse
wave, respectively, gets larger than 1, being possible via analytic continuation
of this angle into a complex plane and utilization of the above relations.

The complex exponential function is 2π-periodic on the imaginary axis:

ez+j2πk = ez, k = 0,±1,±2, . . . . (2.257)

From (2.253) and (2.254), we have

e±z = cos jz ∓ j sin jz, (2.258)

that is to say,

e±jϕ = cos ϕ ± j sinϕ, (2.259)

finally, yielding the representation

z = |z| e jϕ (2.260)

of a complex number in terms of magnitude |z| and phase (argument) arg z = ϕ

if we observe (2.243). Then, the construction of the integer nth power

zn = |z|n e jnϕ (2.261)

is exceptionally simple as it is true for multiplication and division:

z1z2 = |z1||z2| e j(ϕ1+ϕ2), (2.262)
z1

z2
=

|z1|
|z2| e j(ϕ1−ϕ2). (2.263)

Besides integer powers, we can also construct nth roots

n
√

z = n
√

|z| e j ϕ
n (2.264)

observing (2.260); however, we have to recognize nonuniqueness because of
the 2π-periodicity of the exponential function; this will be explained for the
square root. Certainly,

√
z =

√
|z| e j ϕ

2 (2.265)
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Complex plane

z = ejϕ

ϕ
ϕ/2ϕ/2 + π

0

z : k = 1√

z : k = 0√

FIGURE 2.18
Nonuniqueness of the complex square root.

is the square root of the the complex number z, because the square of (2.265)
again yields z;

√
z according to (2.265) is a complex number with the argument

0 ≤ arg
√

z ≤ π, because it results from bisection of the phase angle 0 ≤ ϕ ≤
2π of z. Yet, the bisection also maps the periodicity interval 2π ≤ ϕ + 2π ≤ 4π

of the exponential function e jϕ into the basic interval from 0 to 2π, namely
into the part π ≤ arg

√
z ≤ 2π. In other words: Besides (2.265)

√
z =

√
|z| e j ϕ

2+jπ

= −
√

|z| e j ϕ
2 (2.266)

is a square root of z too. Both square roots—(2.265) and (2.266)—can be
reconciled according to

√
z =

√
|z| e j ϕ

2+jπk, k = 0, 1. (2.267)

For k = 0, we obtain (2.265) and for k = 1 (2.266). Figure 2.18 illustrates
the nonuniqueness43 of the square root. Accordingly, the nth root is n-fold
nonunique; in real valued space, this is not “visible,” because the exponential
function is only periodic on the imaginary axis.

In dissipative materials, elastic waves experience attenuation in propaga-
tion direction that is characterized by the imaginary part of the complex wave
number k; yet, the square of the wave number z = k2 is related to the material

43One half of a
√

z-plane already originates from a whole z-plane, thus forcing the whole√
z-plane to supply from two z-planes and this is nonunique. Uniqueness of the square root

is ensured if we precisely agree how to combine the two z-planes in terms of a so-called
Riemann plane.
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parameters, thus requiring the real and imaginary part of
√

z = k as a func-
tion of x = �k2 and y = �k2 if real and imaginary parts of z = x + jy are
given. We find

�k = ±
√

1
2

(√
x2 + y2 + x

)
, (2.268)

�k = ±
√

1
2

(√
x2 + y2 − x

)
, (2.269)

where the signs have to be chosen based on physical arguments—attenuation
in propagation direction.

2.3.2 Time domain spectral analysis

Certainly, the Fourier integral (2.231) does not exist for arbitrary time func-
tions f(t); a sufficient condition is the absolute integrability of f(t). But this
does not imply that the spectrum F (ω) is absolutely integrable with the con-
sequence that the inverse Fourier integral

f(t) = F−1{F (ω)}
=

1
2π

∫ ∞

−∞
F (ω) e−jωt dω (2.270)

may not exist. Yet, if a time function f(t) yields an existing Fourier trans-
form F (ω) leading again to the respective time function via inversion accord-
ing to (2.270)—the mathematical assumptions are detailed, for instance, by
Doetsch (1967)—we call it a correspondence and write

f(t) ◦—• F (ω). (2.271)

A brief remark regarding negative frequencies: For real valued time functions
f(t)—components of physical wave fields are real valued—we have

F (−ω) = F ∗(ω), (2.272)

i.e., negative frequencies do not contain any new spectral information. Mea-
surements (or calculations) of a spectrum for positive frequencies yields real
valued time functions after Fourier inversion complementing the spectrum
according to (2.272).

The general properties of spectra are best discussed with examples.

Examples
1. Rectangular impulse qT (t):
The Fourier transform of the rectangular impulse of duration 2T symmetric
to the origin (Figure 2.19)

qT (t) =
{

1 for |t| < T
0 for |t| > T

(2.273)

is calculated via elementary integration (Figure 2.19):

F{qT (t)} =
2 sinTω

ω
. (2.274)
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qT(t)

1

t
T−T

2 sin Tω
ω

2T

ω
– 2π

T
2π
T

– π
T

π
T

FIGURE 2.19
Rectangular impulse symmetric to the origin and spectrum.

We regognize the following:

• A time function of limited duration has an infinitely broadband spectrum;
this—and the opposite—is always true.

• The so-called sinc-function (2.274) exhibits zeroes at ω = ±nπ/T , n =
1, 2, 3, . . .. Thus we can define a bandwidth B (of the “main lobe”) through
B = 2π/T ; with decreasing T , this bandwidth B increases and vice versa:
Long impulses have a small bandwidth, short impulses have a large band-
width, which is called the uncertainty relation.

• The sinc-function (2.274) is not absolutely integrable; therefore, the inver-
sion integral has to be defined as a Cauchy principle value, the result is
not (2.273) but a rectangular impulse possessing the value 1/2 for t = ±T ,
whereas (2.273) is not defined for these times.

2. RCN(t)-impulse:
To visualize simulation results, we often use a standard impulse that is called
RCN(t)-impulse; RC stands for raised cosine and N for the number of oscil-
lations of duration T0 corresponding to the carrier (circular) frequency ω0 ac-
cording to T0 = 2π/ω0:

RCN(t) =

⎧⎪⎪⎨⎪⎪⎩
(
1 + cos

ω0

N
t
)

︸ ︷︷ ︸
= eN(t)

cos ω0t for − N
π

ω0
≤ t ≤ N

π

ω0

0 else

. (2.275)

Obviously, the total duration of RCN(t) is NT0, the amplitudes of the
ω0-oscillations are modulated according to a raised cosine, the envelope eN(t).
Figure 2.20 illustrates an RC2(t)- and an RC4(t)-impulse together with the
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t t

ω ω

|RC4(ω)||RC2(ω)|

ω0 ω0

RC2(t) RC4(t)

FIGURE 2.20
RC2(t)- and RC4(t)-impulses together with the magnitudes of their spectra
for ω > 0. (For ω < 0 the spectra have to be symmetrically complemented.)

magnitudes of their spectra (we use the same letter for the spectra distin-
guishing them from the time functions by the argument)

RCN(ω) = (−1)N+1 sin
(

N
π

ω0
ω

)
×
[

ω

ω2 − (N+1
N

)2
ω2

0

− 2ω

ω2 − ω2
0

+
ω

ω2 − (N−1
N

)2
ω2

0

]
(2.276)

calculated via elementary evaluation of the Fourier integral recognizing (2.251)
and e±jNπ = (−1)N . Apparently, the spectra magnitudes are maximum at
ω = ω0; increasing the number of oscillations of the RCN(t)-impulse keeping
T0 constant decreases the spectral bandwidth (uncertainty relation!).

3. Exponential function symmetric to the origin:
In connection with the reflection of pulsed plane SV-waves at the stress-free
boundary of a half-space, we need the inverse Fourier transform of e−αz|ω| for
α > 0, z > 0 (Section 9.1.2); we calculate

F−1{e−αz|ω|} =
1

2π

∫ ∞

−∞
e−αzsign(ω)ω e−jωt dω

=
1

2π

∫ 0

−∞
eαzω−jωt dω +

1
2π

∫ ∞

0
e−αzω−jωt dω

=
1
π

αz

α2z2 + t2
. (2.277)
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Therefore,

1
π

αz

α2z2 + t2
◦—• e−αz|ω|. (2.278)

In Section 9.1.2, the limit z −→ 0 is of interest:

lim
z→0

1
π

αz

α2z2 + t2
= δ(t). (2.279)

4. Gaussian impulse:
We cite the correspondence

e−αt2 ◦—•
√

π

α
e− ω2

4α (2.280)

as an example for time functions and spectra being of the same type: a
Gaussian function. Again, this correspondence reflects the uncertainty relation.

As far as further correspondences are of interest, we refer to tables (Doetsch
1967; Erdélyi 1954). Sometimes, the relation

F (t) ◦—• 2πf(−ω) (2.281)

is useful; it results from the symmetry of Fourier and inverse Fourier transform:
Consider a given spectrum F (ω) of a time function f(t) as a time function
and it follows that its Fourier transform is equal to the original time function
with the argument −ω (times 2π).

Standard functions in field theory—for example, the unit-step function
u(t), the sign function sign(t) = 2u(t) − 1, the complex exponential function
e±jω0t, and the hyperbolic function t−1—are not absolutely integrable; hence,
Fourier transforms can only be defined in the space of (tempered) distributions
(Doetsch 1967). We anticipate (Section 2.4.3) that:

F{u(t)} = πδ(ω) + j PV
1
ω

, (2.282)

F{sign(t)} = 2j PV
1
ω

, (2.283)

F{e±jω0t} = 2πδ(ω ± ω0), (2.284)
F{cos ω0t} = π[δ(ω − ω0) + δ(ω + ω0)], (2.285)
F{sinω0t} = jπ[δ(ω − ω0) − δ(ω + ω0)], (2.286)

F
{

πδ(t) − jPV
1
t

}
= 2πu(ω), (2.287)

F
{

PV
1
t

}
= jπ sign(ω); (2.288)

here, δ(ω) is the delta-“function” (delta-distribution), and PV means compu-
tation of the inverse Fourier integral of ω−1 (or the Fourier integral of t−1) in
the sense of Cauchy’s principal value.
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Fourier transformation rules are of tremendous importance for our
applications.

2.3.3 Fourier transformation rules

Certain operations on time functions—for instance, time shift, differentiation,
and convolution—often have simpler counterparts in the spectral domain. In
the following, we cite these so-called transformation rules.

Similarity rule: Be F (ω) the Fourier transform of f(t); then F (ω/a)/|a| is
the Fourier transform of f(at), where a �= 0 is a real valued parameter. We
write

f(at) ◦—• 1
|a| F

(ω

a

)
. (2.289)

Therefore, measuring a time axis with the unit µs instead of s, we must change
the dimension of the frequency axis from Hz to MHz: a is equal to 10−6.

Shifting rule: Shifting a time function by ±t0 on the t-axis yields a modu-
lation of the spectrum with e∓jt0ω:

f(t ± t0) ◦—• e∓jt0ω F (ω). (2.290)

Note: Former real valued spectra (e.g., Equation 2.274) turn into complex
spectra, that is to say, the rectangular impulse qT (t − T ) starting at the origin
has the complex spectrum 2e,jTω sinTω/ω.

Modulation rule: The symmetry between Fourier transform and inverse
Fourier transform generally brings symmetric transformation rules, i.e., the
modulation of a time function results in a spectral shift with the modulation
frequency:

f(t) e±jω0t ◦—• F (ω ± ω0). (2.291)

Differentiation rule: Governing equations of any wave phenomena are par-
tial differential equations in space and time, they exhibit spatial and time
derivatives of field quantities. In case of linear governing equations, time
derivatives can be advantageously eliminated transforming field quantities into
their pertinent Fourier spectra applying the differentiation rule. Under certain
assumptions (the time function and its derivatives must vanish for t −→ ±∞
(Doetsch 1967)), we have:

f (n)(t) ◦—• (−jω)n F (ω), n = 1, 2, 3, . . .. (2.292)

Integration rule: For n = 1, the “inversion” of (2.292) reads as∫ t

−∞
f(τ) dτ ◦—• F (ω)

(−jω)
, (2.293)
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where the assumption F (0) = 0, i.e., the zero average of f(t) has to be guar-
anteed (Doetsch 1967).

Convolution rule: The convolution integral

f(t) = g(t) ∗ h(t)
= h(t) ∗ g(t)

=
∫ ∞

−∞
h(t − τ)g(τ) dτ (2.294)

of two time functions g(t) and h(t) is mapped into the product of the spectra
G(ω) and H(ω) through the Fourier transform:

g(t) ∗ h(t) ◦—• G(ω)H(ω). (2.295)

Spectral convolution rule: The spectral convolution rule symmetric to
(2.295) reads as

g(t)h(t) ◦—• 1
2π

G(ω) ∗ H(ω), (2.296)

where

G(ω) ∗ H(ω) = H(ω) ∗ G(ω)

=
∫ ∞

−∞
H(ω − ω′)G(ω′) dω′. (2.297)

2.3.4 Analytic signal and Hilbert transform

The Hilbert transform (Doetsch 1967; with different signs: Hahn 1997)

f(t) = H{g(τ)}
= − 1

π
PV
∫ ∞

−∞

g(τ)
t − τ

dτ (2.298)

is an integral transform with convolution kernel; the inverse integral

g(τ) = H−1{f(t)}
=

1
π

PV
∫ ∞

−∞

f(t)
τ − t

dt (2.299)

looks completely similar apart from the sign; again PV stands for principal
value, namely Cauchy’s principal value. The Hilbert transform plays an im-
portant role in the field of the Fourier transform.
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The convolution kernel of the Hilbert transform implies

F{f(t)} = F (ω)
= F{H{g(τ)}}
= − 1

π
F
{

PV
1
t

∗ g(t)
}

= − 1
π

F
{

PV
1
t

}
G(ω)

= − j sign(ω)G(ω) (2.300)

in connection with the convolution rule (2.295) of the Fourier transform and
the correspondence (2.288). For the Fourier spectra of two Hilbert transforms,
the Hilbert transform reveals itself as a filter with the frequency response
−j sign(ω), that is to say, G(ω) is multiplied by −j for positive frequencies
and by j for negative frequencies. The relation (2.300) can be utilized to
calculate a pair of Hilbert transforms analytically or numerically:

f(t) = F−1{−j sign(ω)F{g(t)}}. (2.301)

With (2.300) and the correspondences (2.285) and (2.286), we immedi-
ately show

H{sinω0τ} = cos ω0t, (2.302)
H{cos ω0τ} = − sinω0t, (2.303)

hence,

e−jω0t = cos ω0t + jH{cos ω0τ}. (2.304)

If a(t) ≥ 0 is defined as amplitude modulation a(t) cos ω0t of a real valued
carrier oscillation with (circular) frequency ω0 and bandlimited spectrum
A(ω) ≡ 0 for44 |ω| > ωmax < ω0, we can even prove

H{a(τ) sinω0τ} = a(t) cos ω0t, (2.305)
H{a(τ) cos ω0τ} = − a(t) sinω0t (2.306)

and therefore

a(t) e−jω0t = a(t) cos ω0t + jH{a(τ) cos ω0τ}. (2.307)

The amplitude modulated real valued carrier oscillation turns into a complex
valued carrier oscillation through the imaginary complement of its Hilbert
transform exhibiting the modulation—the envelope—as magnitude.

44Even though the RCN(t)-impulse is time limited, we can approximately take the as-
sumptions concerning a(t) for eN(t) as granted.
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If a(t) is not bandlimited, the Hilbert transform of, for example, a(t) sinω0t
shows up correction terms

H{a(τ) sinω0τ} = a(t) cos ω0t − F−1{A(ω − ω0)u(−ω)}
− F−1{A(ω + ω0)u(ω)} (2.308)

that refer to the nonvanishing spectral parts of A(ω − ω0) for negative fre-
quencies and of A(ω + ω0) for positive frequencies.

We generalize (2.307) in terms of the so-called analytic signal (Gabor 1946)

f+(t) = f(t) + jH{f(τ)} (2.309)

and define |f+(t)| as envelope of f(t). This is advantageously utilized for ultra-
sonic signal processing with imaging algorithms (Langenberg et al. 1993).

We already mentioned that real valued time functions have spectra with
no additional information for negative frequencies; what would happen if this
information is completely deleted? We consider spectra F (ω) that are equal
to zero for ω < 0 according to the identity

F (ω) = F (ω)u(ω). (2.310)

Formal Fourier transform of (2.310) applying the convolution rule

f(t) = f(t) ∗ F−1{u(ω)} (2.311)

yields

f(t) =
1
2

f(t) − j
2π

f(t) ∗ PV
1
t

(2.312)

together with (2.287) and (2.361), hence

f(t) = −j
1
π

PV
∫ ∞

−∞

f(τ)
t − τ

dτ (2.313)

as a Hilbert transformation rule. In (2.313), f(t) cannot be real valued why
we separate into real and imaginary parts:

�{f(t)} =
1
π

PV
∫ ∞

−∞

�{f(τ)}
t − τ

dτ, (2.314)

�{f(t)} = − 1
π

PV
∫ ∞

−∞

�{f(τ)}
t − τ

dτ. (2.315)

Therefore, we have

f(t) = �{f(τ)} + jH{�{f(τ)}} (2.316)

or

f+(t) def= f(t) + jH{f(τ)} (2.317)
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with f(t) as real valued time function. Time functions with zero spectra for
ω < 0 are complex valued, yet the imaginary part is not independent from
the real part, it is its Hilbert transform: f+(t) according to (2.317) denotes an
analytic signal, the spectrum F{f+(t)} is constrained to positive frequencies,
whence the notation f+(t) comes from.

How does the spectrum of f+(t) depend on F (ω), the spectrum of f(t)?
We calculate

F{f+(t)} = F{f(t)} + jF
{

− 1
π

∫ ∞

−∞

f(τ)
t − τ

dτ

}
= F{f(t)} + jF

{
− 1

π
f(t) ∗ PV

1
t

}
(2.288)

= F (ω) + F (ω)sign (ω)

=
{

2F (ω) for ω > 0
0 for ω < 0.

(2.318)

We analytically obtain the inverse Fourier transform

f+(t) =
1
π

∫ ∞

0
F (ω) e−jωt dω

= F−1
+ {F (ω)}. (2.319)

Disregarding negative frequencies in (2.319) even permits to define f+(t) for
complex times with negative imaginary part, because the integral (2.319) is
an analytic function of t, whence the terminology analytic signal comes from.
In the limit of real t-values, we have the representation (2.317) for f+(t). For
example, (2.319) allows for the definition of f+(t − jγ) with γ > 0 according to

f+(t − jγ) =
1
π

∫ ∞

0
F (ω)e−γωe−jωt dω (2.320)

= �
{

1
π

∫ ∞

0
F (ω)e−γωe−jωt dω

}
+ j�

{
1
π

∫ ∞

0
F (ω)e−γωe−jωt dω

}
def= fγ(t) + jH{fγ(τ)} (2.321)

with the real valued time function fγ(t) because Fourier inversion of a spec-
trum F (ω)e−γω without negative frequencies defines an analytic signal, in
this case, the separation of f+(t − jγ) into real and imaginary parts. Uti-
lizing f+(t) = e−jω0t with ω0 > 0 as an analytic signal, we obtain F (ω) =
πδ(ω − ω0) and consequently

f+(t − jγ) =
∫ ∞

0
δ(ω − ω0)e−γωe−jωt dω

= e−γω0e−jω0t, (2.322)
fγ(t) = e−γω0 cos ω0t, (2.323)

H{fγ(τ)} = − e−γω0 sinω0t, (2.324)
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a result that we could have simply found by insertion in this particular case.
Yet, (2.320) even holds for arbitrary F (ω), which will become important in
connection with pulsed ultrasonic beams (Section 12.2).

The symmetry between Fourier and inverse Fourier transform suggests
that causal time functions—time functions with zero values for t < 0—possess
spectra with real and imaginary parts being Hilbert transforms of each other.
As a matter of fact, we immediately find through Fourier transform of the
“causality condition”

f(t) = f(t)u(t), (2.325)

application of the spectral convolution rule, utilization of the correspondence
(2.282), and the convolution relation (2.361)

�{F (ω)} = − 1
π

PV
∫ ∞

−∞

�{F (ω′)}
ω − ω′ dω′, (2.326)

�{F (ω)} =
1
π

PV
∫ ∞

−∞

�{F (ω′)}
ω − ω′ dω′. (2.327)

As far as the mathematical assumptions are concerned, which have to be
satisfied to ensure validity of (2.314), (2.315) and (2.326), (2.327), respectively,
we again refer to Doetsch (1967); essentially, time and spectral causality have
to be complemented by quadratic integrability (finite energy) of the time
function and its spectrum.

If F (ω) represents the complex valued spectrum of a material parameter in
a linear constitutive equation, Equations 2.326 and 2.327 are called Kramers–
Kronig relations (Langenberg 2005). As a consequence, the phase velocity and
the attenuation of a wave are not independent of each other: Materials without
losses are basically not existent.

We often meet (complex) spectra F (ω) with F (−ω) = F ∗(ω) in the theory
of wave propagation that are multiplied by a frequency-independent factor
according to F (ω)e jϕ (Section 9.1.2). Yet, if a real valued time function should
correspond to F (ω)e jϕ, we have to complement F (ω)e jϕ sign(ω) for negative
frequencies with the outcome

F−1{e jϕ sign(ω) F (ω)} = cos ϕ f(t) − sinϕ H{f(τ)}; (2.328)

the resulting real valued time function also contains the Hilbert transform of
f(t) = F−1{F (ω)}.

2.3.5 Spatial domain spectral analysis

Evidently, the spelling of the Fourier variable is arbitrary why the notation

F (Kx) =
∫ ∞

−∞
f(x) e−jKxx dx, (2.329)

f(x) =
1

2π

∫ ∞

−∞
F (Kx) e jKxx dKx (2.330)



K12611 Chapter: 2 page: 76 date: January 18, 2012

76 Ultrasonic Nondestructive Testing of Materials

is also permitted. Utilization of x as original space variable suggests a carte-
sian spatial coordinate, thus allowing for the interpretation of (2.329) as spa-
tial spectrum of the spatially dependent function f(x); therefore, Kx has the
dimension of a reciprocal length, hence the unit m−1. Note: Additionally ex-
ploiting the arbitrariness of the sign in the kernel of Fourier and inverse Fourier
transform, we simultaneously changed it with regard to (2.231) and (2.270);
there are good reasons for that, yet, at the moment, we will not discuss them.
We only refer to the fact that utilization of the complex conjugate kernels has
consequences for the transformation rules of the spatial Fourier transform: In
(2.290), (2.291), and (2.292), we have to replace j by −j.

In wave theory, spatial functions are functions of three cartesian coordi-
nates; therefore, we can Fourier transform φ(x, y, z) subsequently with regard
to x, y, and z denoting the Fourier variables by Kx, Ky and Kz:

Φ(Kx, Ky, Kz) =
∫ ∞

−∞

[∫ ∞

−∞

[∫ ∞

−∞
φ(x, y, z) e−jKxx dx

]
× e−jKyy dy

]
e−jKzz dz, (2.331)

φ(x, y, z) =
1

2π

∫ ∞

−∞

[
1

2π

∫ ∞

−∞

[
1

2π

∫ ∞

−∞
Φ(Kx, Ky, Kz) e jKxx dKx

]
× e jKyy dKy

]
e jKzz dKz. (2.332)

Combining x, y, z to the vector of position

R = xex + yey + zez (2.333)

allows for a similar procedure for the Fourier variables Kx, Ky, Kz:

K = Kxex + Kyey + Kzez; (2.334)

this leads to the short-hand notation of (2.331) and (2.332):

Φ(K) = F3D{φ(R)}
=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ(R) e−jK·R d3R, (2.335)

φ(R) = F−1
3D {Φ(K)}

=
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Φ(K) e jK·R d3K (2.336)

as three-dimensional Fourier and inverse Fourier transform with the vector
variables R and K; the image space of the spatial Fourier transform is called
K-space.

Bracewell (1978) cites some correspondences for (2.335) and (2.336); in
particular, the three-dimensional Fourier transform of the “ball” u(a − R) of
radius R is given by the three-dimensional generalization of the sinc function:

F3D{u(a − R)} = 4π
sin aK − aK cos aK

K3 . (2.337)
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In addition, we have in the sense of distributions

F3D{e±jk·R} = (2π)3δ(K ∓ k) (2.338)

as generalization of (2.284). Anticipating that e jk·R (together with the time
function e−jω0t) is a time harmonic plane wave propagating in k-direction
(Section 8.1.2), we know that, consulting (2.338), its spatial spectrum is given
by a δ-singularity at K = k in K-space: According to (2.284), the time har-
monic oscillation e−jω0t is assigned one spectral line at the circular oscillation
frequency ω = ω0, and according to (2.338), the spatially harmonic oscilla-
tion e jk·R is assigned a δ-point spectrum at the (vectorial) spatial frequency
K = k; the Fourier vector K points into the direction of the phase propaga-
tion vector k of the plane wave with the length k = ω/c. Therefore, varying
the propagation direction at fixed frequency varies K on the so-called Ewald
sphere K = k.

In the following, we cite the three-dimensional versions of relevant trans-
formation rules.

Shifting rule

φ(R ± R′)
3D◦—• Φ(K) e±jK·R′

. (2.339)

Modulation rule
φ(R) e±jk·R 3D◦—• Φ(K ∓ k). (2.340)

Differentiation rule
∇φ(R)

3D◦—• jKΦ(K). (2.341)

Convolution rule

φ(R) ∗ ∗ ∗ ψ(R)
3D◦—• Φ(K)Ψ(K), (2.342)

where

φ(R) ∗ ∗ ∗ ψ(R)

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ(R − R′)ψ(R′) d3R′

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
φ(x − x′, y − y′, z − z′)ψ(x′, y′, z′) dx′dy′dz′. (2.343)

Wave field quantities are often vector or even tensor functions; their three-
dimensional Fourier transform, for instance,

V(K) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
v(R) e−jK·R d3R, (2.344)

consequently must be understood component wise.
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2.4 Delta Function

2.4.1 Delta function as distribution

The physicist Paul Dirac was hoping to “invent” a function δ(x) that is zero
everywhere except for x = 0 in a sense of being “strongly infinite” for x = 0
in order to sift the value φ(0) from the integral∫ ∞

−∞
δ(x)φ(x) dx = φ(0). (2.345)

The relation (2.345) is called the sifting property of the delta function (Dirac
function, Dirac impulse). Yet, integration calculus tells us that a function with
the property (2.345) does not exist with the consequence of defining either a
distribution space to which δ belongs, thus providing a strictly mathematical
sense to a functional like (2.345) (Doetsch 1967), or we symbolically under-
stand (2.345) in an intuitive engineering sense according to∫ ∞

−∞
δ(x)φ(x) dx

s= φ(0) (2.346)

trying to define rules of calculation—algebra and analysis—based on (2.346)
for an appropriate δ-“function” (Dudley 1994; Langenberg 2005). If the re-
sulting properties of δ comply with the mathematical theory of distributions,
we do not have arguments against (2.346). We then symbolically speak of the
delta function even though we have the delta distribution in mind.

It is already clear from (2.345), and in particular from (2.346), that we can-
not allocate a value to the delta function for x = 0. This exhibits similarities
to the analysis of functions that are not differentiable at jump discontinuities;
their derivatives do not have a value at those points. For example, let us con-
sider the unit-step function u(x) (Figure 2.21); for x �= 0, we have u′(x) = 0,
and for x = 0, the discontinuous function u(x) is not differentiable, that is to
say, u′(x) does not have a value for x = 0 (Figure 2.21). The rule of partial
integration

x x x

δ(x)

Du(x)u′(x)

u′(0)
not ex.

u(x)

1 1

FIGURE 2.21
Unit-step function, derivative, and distributional derivative.
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a

f ′(x)g(x) dx = f(x)g(x)
∣∣∣b
a

−
∫ b

a

f(x)g′(x) dx (2.347)

tells us that, in particular for a vanishing integrated part f(x)g(x)|ba, we can
transfer the differentiation from f(x) onto g(x); advantage: A nondefined op-
eration on f(x) may be absolutely permitted on g(x). Substantiating this
idea for the unit-step function, we first choose “test functions” g(x) =⇒ φ(x)
yielding a vanishing integrated part, in particular for infinite integration limits
due to φ(±∞) = 0; the resulting relation∫ ∞

−∞
u′(x)φ(x) s= −

∫ ∞

−∞
u(x)φ′(x) dx (2.348)

can obviously only be understood in the above-mentioned symbolic sense
because—we may turn it over and over again—the left-hand side of (2.348)
does not exist. Nevertheless, it can be assigned a meaning through the right-
hand side: ∫ ∞

−∞
u′(x)φ(x) dx

s= φ(0), (2.349)

because

−
∫ ∞

−∞
u(x)φ′(x) dx = −

∫ ∞

0
φ′(x) dx

= − φ(x)
∣∣∣∞
0

= φ(0). (2.350)

This new meaning is expressed by the notation∫ ∞

−∞
Du(x) φ(x) dx

s= φ(0) (2.351)

of the distributional derivative Du(x) von u(x). This distributional derivative
of u(x) is not the (conventional) derivative of u(x), but its symbolic (distribu-
tional) generalization. Since φ(x) denotes an arbitrary test function (a mem-
ber of the well-defined space of test functions), the comparison of (2.351) with
(2.346) reveals that apparently we have

δ(x) = Du(x). (2.352)

The symbolic graphical representation of (2.352) can also be found in Fig-
ure 2.21: δ(x) as an arrow with a unit “amplitude.”

2.4.2 Delta distribution calculus

Computational rules for δ(x) (and other distributions) are always found fol-
lowing the above scheme: Transfer of a nondefined operation onto the test
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x
x = x0

1 δ(x – x0)

FIGURE 2.22
Illustration of the δ-function.

function. Intuitively, δ(x − x0) is displayed as a “unit arrow” at x = x0 (Fig-
ure 2.22); symbolically calculating, we find that:∫ ∞

−∞
δ(x − x0)φ(x) dx

s=
∫ ∞

−∞
δ(x)φ(x + x0) dx

s= φ(x0). (2.353)

Analogously, we can show that αδ(x) is illustrated by a δ-arrow with
α-“amplitude” according to∫ ∞

−∞
αδ(x)φ(x) dx

s= αφ(0). (2.354)

For real valued a �= 0, we find

δ(ax) =
1
|a| δ(x), (2.355)

indicating that δ(ax) with dimensionless variable x has the reciprocal unit
of the dimension of the parameter a, in other words, δ(t) has the unit s−1

if t denotes time, and δ(x) has the unit m−1 if x is a spatial coordinate. In
addition, (2.355) implies

δ(−x) = δ(x). (2.356)

The δ(x − x0)-distribution can be utilized to sample a function α(x):∫ ∞

−∞
α(x)δ(x − x0)φ(x) dx

s=
∫ ∞

−∞
δ(x − x0)α(x)φ(x) dx

s= α(x0)φ(x0)
s= α(x0)

∫ ∞

−∞
δ(x − x0)φ(x) dx

s=
∫ ∞

−∞
α(x0)δ(x − x0)φ(x) dx; (2.357)
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consequently,45

α(x)δ(x − x0) = α(x0)δ(x − x0) (2.358)

yielding

(x − x0) δ(x − x0) = 0. (2.359)

The δ-distribution can also be differentiated in the distributional sense:∫ ∞

−∞
Dδ(x)φ(x) dx

s= −φ′(0). (2.360)

For simplicity, we write Dδ(x) = δ′(x).
Even the convolution of δ(x) with a function α(x) can be symbolically

calculated with the sifting property:46

δ(x) ∗ α(x) s=
∫ ∞

−∞
δ(x − x′)α(x′) dx′

= α(x); (2.361)

further, we have

α(x) ∗ δ(x − x0) = α(x − x0). (2.362)

We are now getting rather bold if we put α(x) = δ(x − x0) in (2.361) claim-
ing that

δ(x) ∗ δ(x − x0) = δ(x − x0) (2.363)

holds and even

δ(x − x1) ∗ δ(x − x2) = δ(x − x1 − x2). (2.364)

Of course, the above relations can be mathematically proven using distribution
theory (Doetsch 1967).

2.4.3 Delta function and Fourier transform

Similar to (2.361), we can define the Fourier transform of the δ-function using
the sifting property for plausibility [consult Doetsch (1967) for Fourier trans-
form of distributions]: ∫ ∞

−∞
δ(t − t0) e jωt dt

s= e jt0ω; (2.365)

45The following is not correct: α(x)δ(x − x0) = α(x0).
46Since α(x) must not necessarily be a test function, we have circumvented the distribu-

tional path [look at Doetsch (1967) for a correct calculation].
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it follows:

δ(t) ◦—• 1, (2.366)
δ(t ± t0) ◦—• e∓jt0ω. (2.367)

If, on the other hand, inverse Fourier transforming 2πδ(ω ± ω0) yields

1
2π

∫ ∞

−∞
2πδ(ω ± ω0) e−jωt dω

s= e±jω0t, (2.368)

accordingly, in the distributional sense

e±jω0t ◦—• 2πδ(ω ± ω0) (2.369)

should hold. Utilizing Euler’s formulas (2.251) and (2.252), we obtain the
correspondences (2.285) and (2.286) and

1 ◦—• 2πδ(ω). (2.370)

Similar to (2.369) and (2.370), the Fourier transforms of u(t) and sign(t)
only exist symbolically or in the distributional sense. To find them, we first
calculate F{t−1} accounting for the singularity of t−1 in terms of a Cauchy
principal value of the integral:

F
{

1
t

}
def= F

{
PV

1
t

}
= PV

∫ ∞

−∞

1
t

e jωt dt

def= lim
ε→0

(∫ ∞

ε

1
t

e jωt dt +
∫ −ε

−∞

1
t

e jωt dt

)
= lim

ε→0

∫ ∞

ε

1
t

(
e jωt − e−jωt

)
dt

= 2j lim
ε→0

∫ ∞

ε

sinωt

t
dt

= 2j
∫ ∞

0

sinωt

t
dt

= 2j

⎧⎪⎨⎪⎩
π

2
for ω > 0

−π

2
for ω < 0

= jπ sign(ω). (2.371)

The last but one equality sign of (2.371) holds on behalf of the definition of
the sine integral. With sign(ω) = 2u(ω) − 1, it follows from (2.371)

F
{

1
2

δ(t) − j
2π

PV
1
t

}
= u(ω). (2.372)
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With the symmetry relation (2.281), we further obtain from (2.371):

sign(t) ◦—• 2j PV
1
ω

, (2.373)

u(t) ◦—• πδ(ω) + j PV
1
ω

. (2.374)

2.4.4 Three-dimensional delta function

If the variable in δ(x) corresponds to a cartesian coordinate, an enhancement
to δ(y) and δ(z) is immediately at hand to define a spatial point source with
the three-dimensional sifting property:∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(x)δ(y)δ(z)φ(x, y, z) dxdydz

s= φ(0, 0, 0). (2.375)

Nota bene: Because each integral in (2.375) must be considered symbolically
(in the distributional sense: as a functional), δ(x)δ(y)δ(z) is only a symbolical
product of δ-functions. With δ(R) = δ(x)δ(y)δ(z), we introduce the short-hand
notation ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(R)φ(R) d3R s= φ(0) (2.376)

and generalize to∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ(R − R′)φ(R) d3R s= φ(R′). (2.377)

It is important for the sifting property (2.377) that R′ is located within the
integration region, which is always true for infinite integration limits, but not
if the integration extends only over a finite region V of IR3:∫ ∫ ∫

V

δ(R − R′)φ(R) d3R′ s=
{

φ(R′) for R′ ∈ V
0 for R′ �∈ V.

(2.378)

Ultimately, the extinction theorem of Helmholtz’ integral formulation of Huy-
gens’ principle turns out to be a consequence of (2.378) (Section 15.1.2).

With (2.377), the correspondences

δ(R)
3D◦—• 1, (2.379)

δ(R ± R′)
3D◦—• e±jK·R′

, (2.380)

e±jk·R 3D◦—• (2π)3δ(K ∓ k) (2.381)

of the three-dimensional Fourier transform are rapidly plausible.
As far as the representation of δ(R) in other than cartesian coordinates is

concerned, we refer to Langenberg (2005).
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2.4.5 Singular function of a surface

The singular function γ(R) of a closed surface S has the multidimensional
sifting property to reduce a volume integral to a surface integral (Bleistein
1984; Bamler 1989):∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
γ(R)φ(R) dV =

∫ ∫
S

φ(R) dS. (2.382)

To make that plausible and to define γ(R), we recall that the distributional
derivative of the unit-step function has the same sifting property as the
δ-function (Equation 2.352). We start to consider an example of a closed sur-
face, a sphere of radius a; the interior of the sphere is given by its characteristic
function

u(a − R) =
{

1 for R < a
0 for R > a

(2.383)

with a dependence of the radial variable R as displayed in Figure 2.23.
Obviously,

eR · ∇u(a − R) = −δ(a − R) (2.384)

yields a δ-function, being singular on the whole surface of the sphere; this
singular function γa(R) = δ(a − R) of the sphere has the desired property∫ 2π

0

∫ π

0

∫ R

0
δ(a − R)φ(R,ϑ,ϕ) R2 sinϑ dRdϑdϕ︸ ︷︷ ︸

= dV

=
∫ 2π

0

∫ π

0
φ(a,ϑ,ϕ) a2 sinϑ dϑdϕ︸ ︷︷ ︸

= dS

(2.385)

according to (2.382).

R

1

u(a − R)

a R

1

a

eR · ∇u(a − R)

FIGURE 2.23
Illustration of the singular function of a spherical surface.
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We generalize as follows; at first, we define

Γ(R) =
{

1 for R ∈ V
0 for R �∈ V

(2.386)

as a characteristic function of a volume V with surface S and outer normal
n; then, we construct

γ(R) = −n · ∇Γ(R) (2.387)

the singular function of S as generalization of (2.384); it definitely has the
property (2.382). With

γ(R) = −∇Γ(R), (2.388)

we denote the vector singular function of S.
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3
Governing Equations of Elastodynamics

Maxwell’s equations of electromagnetism cannot be proven in terms of a the-
oretical derivation from even more fundamental equations; they compose the
brilliant design of a theory that must, of course, describe experimental ob-
servations without contradictions, and as such, they are axiomatically put on
top in order to draw conclusions to be validated experimentally.47 In a simi-
lar sense, we put the governing equations of elastodynamics (3.1) and (3.2)—
Newton–Cauchy’s equation and the deformation rate equation—axiomatically
at the beginning, but we present physical arguments in the subsequent sec-
tion because, different from Maxwell’s equations, they can be deduced from
the physical laws of mechanics under the continuum hypothesis, the geometric
linearization of small particle displacements, and the neglect of products of
field quantities, that is to say, in a linear approximation.

3.1 Newton–Cauchy Equation of Motion
and Deformation Rate Equation in the
Time and Frequency Domain

We write the governing equations of elastodynamics in the following form:

∂j(R, t)
∂t

= ∇ · T(R, t) + f(R, t), (3.1)

∂S(R, t)
∂t

=
1
2
{
∇v(R, t) + [∇v(R, t)]21

}
+ h(R, t). (3.2)

They linearly relate the subsequent elastodynamic field quantities:

• Linear momentum vector j(R, t),

• Symmetric stress tensor T(R, t) of second rank,

• Symmetric deformation tensor S(R, t) of second rank,

• Particle velocity vector v(R, t);

47The classical example is Heinrich Hertz’ experiment to excite the electromagnetic waves
that are predicted by Maxwell’s theory.

87
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the quantities

• Force density f(R, t) and

• Injected deformation rate h(R, t) as a symmetric second rank tensor

denote prescribed48 volume sources that are the physical origin of the elasto-
dynamic field as inhomogeneities of the governing equations.

To solve (3.1) and (3.2), we need physically based mathematical relations
between the field quantities, so-called constitutive equations (Chapter 4). This
is similarly true for Maxwell’s equations except in vacuum.

With the definition of Fourier spectra of field and source quantities ac-
cording to

j(R,ω) =
∫ ∞

−∞
j(R, t) e jωt dt, (3.3)

T(R,ω) =
∫ ∞

−∞
T(R, t) e jωt dt, (3.4)

S(R,ω) =
∫ ∞

−∞
S(R, t) e jωt dt, (3.5)

v(R,ω) =
∫ ∞

−∞
v(R, t) e jωt dt, (3.6)

f(R,ω) =
∫ ∞

−∞
f(R, t) e jωt dt, (3.7)

h(R,ω) =
∫ ∞

−∞
h(R, t) e jωt dt, (3.8)

we move to the governing equations of elastodynamics

−jω j(R,ω) = ∇ · T(R,ω) + f(R,ω), (3.9)

−jωS(R,ω) =
1
2
{
∇v(R,ω) + [∇v(R,ω)]21

}
+ h(R,ω) (3.10)

in the frequency domain. Note: The spectral quantities contain the factor
“second” in their unit, in contrast to the time domain quantities; nevertheless,
we stick to the physical terminology of the time domain quantities; instead
of calling h(R,ω) the Fourier transformed injected deformation rate, we stay
with the term injected deformation rate.

With the solutions of (3.9) and (3.10) for ω ≥ 0 and the continuation
relation (2.272) for negative frequencies, we retrieve the real valued quantities
in the time domain as solutions of (3.1) and (3.2)

48If, for example, f(R, t) denotes the Lorentz force density produced by an EMAT, it is
not really “prescribed,” but it must be calculated with Maxwell’s equations, which means
that this step has already been performed.
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j(R, t) =
1

2π

∫ ∞

−∞
j(R,ω) e−jωt dt, (3.11)

T(R, t) =
1

2π

∫ ∞

−∞
T(R,ω) e−jωt dt, (3.12)

S(R, t) =
1

2π

∫ ∞

−∞
S(R,ω) e−jωt dt, (3.13)

v(R, t) =
1

2π

∫ ∞

−∞
v(R,ω) e−jωt dt, (3.14)

f(R, t) =
1

2π

∫ ∞

−∞
f(R,ω) e−jωt dt, (3.15)

h(R, t) =
1

2π

∫ ∞

−∞
h(R,ω) e−jωt dt (3.16)

via inverse Fourier integrals. Therefore, it is our choice whether we work in
the spectral or in the time domain, a fact that is extensively exploited in the
present elaboration; roughly speaking, it is often easier to calculate in the
frequency domain and to interpret results in the time domain.

Alternative to the Fourier transform of (3.1) and (3.2), we can make the
ansatz of real valued time harmonic fields with circular frequency ω0 > 0, for
instance, using the example of the momentum density:

j(R, t) =⇒ j(R, t, ω0) = �{j(R,ω0) e−jω0t
}

. (3.17)

Here, following the terminology of electrical engineering, j(R,ω0) is called the
(complex valued) phasor. This results in the governing equations

−jω0j(R,ω0) = ∇ · T(R,ω0) + f(R,ω0), (3.18)

−jω0 S(R,ω0) =
1
2
{
∇v(R,ω0) + [∇v(R,ω0]21

}
+ h(R,ω0) (3.19)

for the phasors. However, if we select two spectral lines ω = ±ω0, ω0 > 0 out
of the Fourier spectrum of j(R,ω) and combine them according to

j(R,ω,ω0)
def= πj(R,ω)δ(ω − ω0) + πj∗(R,ω)δ(ω + ω0)
= πj(R,ω0)δ(ω − ω0) + πj∗(R,ω0)δ(ω + ω0), (3.20)

we obviously obtain the real valued time harmonic field quantity via Fourier
inversion with the correspondence (2.284):

F−1 {j(R,ω,ω0)
}

=
1
2
j(R,ω0) e−jω0t +

1
2
j∗(R,ω0) e jω0t

= �{j(R,ω0) e−jω0t
}

= j(R, t, ω0); (3.21)
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ω0-phasors and conjugate complex ω0-phasors (multiplied by π) are noth-
ing but the amplitudes of spectral lines of real valued time harmonic field
quantities at ω = ±ω0, and as such, they represent a discrete sample out of
the continuous Fourier spectrum.

3.2 Physical Foundations

3.2.1 Mass conservation

To physically justify the governing equations of elastodynamics (3.1) and (3.2),
we essentially follow de Hoop (1995), yet we do not use the index notation
with summation convention but the coordinate-free notation, which, according
to our opinion, is more transparent.

De Hoop starts with the continuum hypothesis that a particle distribution
at R for time t—R is the vector of position in a fixed reference system—can
be described through a (piecewise) continuous particle density n(R, t) that
is defined as the number of particles Nε(R, t) per (small) reference volume
Vε(R). The macroscopic (particle) drift velocity v(R, t) is introduced as aver-
age value of the velocity vectors of single particles in Vε(R), so to average out
chaotic (thermal) contributions. The calculation of the time variation of the
total number N(t) of particles in a volume V (t) on the basis of

N(t) =
∫ ∫ ∫

V (t)
n(R, t) dV (3.22)

immediately yields the conservation theorem∫ ∫ ∫
V (t)

∂n(R, t)
∂t

dV +
∫ ∫

S(t)
n(R, t)v(R, t) · dS = 0 (3.23)

for the particle flow n(R, t)v(R, t) provided particles are neither created nor
annihilated;49 here, S(t) is the surface50 of V (t) and dS its vector differential
surface element. Evidently, n(R, t)v(R, t) · dS∆t is the (average) number of
particles passing dS during the time interval ∆t, thus changing the particle

49Otherwise, the right-hand side of (3.23) would not be zero but the difference between
creation and annihilation rates (de Hoop 1995).

50The time dependence of V (t) and S(t) is understood as follows: During the time interval
∆t, the surface S(t) changes to S(t + ∆t) according to v(R, t)∆t, where v(R, t) is the vector
drift velocity v(R, t) of the particle density of each surface point of S(t). If particles are
neither created nor annihilated, particle conservation mean that the time variation of the
total number of particles within this time-dependent volume V (t) is equal to zero. The
conservation theorem (3.23) expresses this fact in the following way: If the particle density
n(R, t) does not change in the volume V (t) for fixed time t, it must be compensated by the
particle flow n(R, t)v(R, t) normal to S(t).
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density in V (t). Because (3.23) must hold for each volume V (t), application
of Gauss’ theorem yields the continuity equation

∂n(R, t)
∂t

+ ∇ · [n(R, t)v(R, t)] = 0 (3.24)

for the particle flow.
In elastodynamics, we are particularly interested in the material proper-

ties of the particles,51 hence de Hoop now defines the (volume) mass density
ρ(R, t) as volume average of the single particle masses (of an arbitrary particle
type). If the single masses (of this type) are all equal to m, it follows

ρ(R, t) = m n(R, t) (3.25)

for the mass density and

j(R, t) = ρ(R, t)v(R, t) (3.26)

for the mass flow density (momentum density of linear momentum: drift mo-
mentum as average of the particle momentum times particle density) that
originates as a macroscopic quantity via averaging from the microscopic vec-
tor particle momentum. Where required, we have to sum over the various
particle types to find the total mass density and the total mass flow density.

From particle conservation according to (3.23), we immediately deduce
mass conservation∫ ∫ ∫

V (t)

∂ρ(R, t)
∂t

dV +
∫ ∫

S(t)
j(R, t) · dS = 0, (3.27)

and from the continuity equation (3.24) for the particle flow, we obtain the con-
tinuity equation for the mass flow (of the particle type under consideration):

∂ρ(R, t)
∂t

+ ∇ · j(R, t) = 0. (3.28)

If Ψ(R, t) denotes any function attributed to a particle, de Hoop calculates
the total time variation of Ψ(R, t) in V (t) according to52

d
dt

∫ ∫ ∫
V (t)

Ψ(R, t) dV =
∫ ∫ ∫

V (t)

∂Ψ(R, t)
∂t

dV

+
∫ ∫

S(t)
Ψ(R, t)v(R, t) · dS, (3.29)

51In electromagnetism, it is the electric and magnetic properties.
52Note: Following Footnote 50, V (t) is a very special time-dependent volume whose time

variation must be differentiated on the left-hand side of (3.29); how is told by the right-hand
side of (3.29).
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assuming vanishing particle creation and annihilation. Equation 3.29, modified
according to

d
dt

∫ ∫ ∫
V (t)

Ψ(R, t) dV =
∫ ∫ ∫

V (t)

{
∂Ψ(R, t)

∂t
+ ∇ · [v(R, t)Ψ(R, t)]

}
dV,

(3.30)

with the help of Gauss’ theorem is called Reynold’s transport theorem. If an
operator δ/δt according to

d
dt

∫ ∫ ∫
V (t)

Ψ(R, t) dV =
∫ ∫ ∫

V (t)

δΨ(R, t)
δt

dV (3.31)

is introduced [de Hoop writes Ψ̇(R, t)], (3.30) implies the definition

δΨ(R, t)
δt

=
∂Ψ(R, t)

∂t
+ ∇ · [v(R, t)Ψ(R, t)]. (3.32)

3.2.2 Convective time derivative

Now, Ψ(R, t) should denote any (scalar) macroscopic physical quantity (e.g.,
mass, density, cartesian linear or angular momentum components, and kinetic
energy) that is attributed to a particular particle type; the time variation of
Ψ(R, t)-total of all particles contained in V (t) results from Reynold’s transport
theorem (3.29) explicitly incorporating the particle conservation law:

d
dt

∫ ∫ ∫
V (t)

n(R, t)Ψ(R, t) dV =
∫ ∫ ∫

V (t)

∂

∂t
[n(R, t)Ψ(R, t)] dV

+
∫ ∫

S(t)
n(R, t)Ψ(R, t)v(R, t) · dS.

(3.33)

Applying Gauss’ theorem, evaluating the time and spatial derivatives, and
recognizing the particle continuity equation, (3.24) yields

d
dt

∫ ∫ ∫
V (t)

n(R, t)Ψ(R, t) dV =
∫ ∫ ∫

V (t)
n(R, t)

DΨ(R, t)
Dt

dV, (3.34)

where the derivative operator D/Dt stands as a short-hand notation for

D
Dt

=
∂

∂t
+ v(R, t) · ∇. (3.35)

With dR = v(R, t)dt and the truncated Taylor expansion

Ψ(R + dR, t + dt) � Ψ(R, t) +
[
∂Ψ(R, t)

∂t
+ v(R, t) · ∇Ψ(R, t)

]
dt

� Ψ(R, t) +
DΨ(R, t)

Dt
dt (3.36)
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in space and time, we immediately recognize that D/Dt has the meaning of a
convective derivative: It denotes the time variation for an observer simultane-
ously traveling with the drift velocity.

We subsequently apply the calculation instruction (3.34) to different real-
izations of Ψ(R, t).

Particle mass: Ψ(R, t) = m: Because Dm/Dt ≡ 0, we have

d
dt

∫ ∫ ∫
V (t)

n(R, t) m dV =
d
dt

∫ ∫ ∫
V (t)

ρ(R, t) dV = 0, (3.37)

and this is nothing but the mass conservation (3.27) in a different notation.53

Cartesian component of the particle linear momentum: Ψ(R, t) =
m v(R, t) · exi

:

d
dt

∫ ∫ ∫
V (t)

n(R, t) mv(R, t) · exi
dV

=
∫ ∫ ∫

V (t)
n(R, t) m

Dv(R, t) · exi

Dt
dV ; (3.38)

combining all three components to the momentum vector results in the cal-
culation instruction for the time variation of the total momentum of the vol-
ume V (t):

d
dt

∫ ∫ ∫
V (t)

ρ(R, t)v(R, t) dV =
∫ ∫ ∫

V (t)
ρ(R, t)

Dv(R, t)
Dt

dV. (3.39)

Cartesian component of the particle angular momentum: Ψ(R, t) =
m R × v(R, t) · exi

: We immediately write down the vector combination of
the components:

d
dt

∫ ∫ ∫
V (t)

ρ(R, t)R × v(R, t) dV =
∫ ∫ ∫

V (t)
ρ(R, t)

D[R × v(R, t)]
Dt

dV.

(3.40)
On behalf of

D[R × v(R, t)]
Dt

=
∂[R × v(R, t)]

∂t
+ v(R, t) · ∇[R × v(R, t)], (3.41)

we must calculate
∂R × v(R, t)

∂t
=

∂R
∂t︸︷︷︸

= 0

×v(R, t) + R × ∂v(R, t)
∂t

(3.42)

53With (3.25) and (3.22), the left-hand side of (3.37) yields the time variation of the total
mass in the time varying volume V (t); according to Footnote 50, this volume exactly moves
with the mass flow on S(t), whence, recognizing mass conservation, the time variation of
the total mass in the time varying volume must be zero.
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and54

∇[R × v(R, t)] = (∇R) × v(R, t) − [∇v(R, t)] × R

= I × v(R, t) − [∇v(R, t)] × R, (3.43)

respectively,

v(R, t) · ∇[R × v(R, t)] = v(R, t) · [I × v(R, t)] − v(R, t) · [∇v(R, t)] × R

= v(R, t) × v(R, t)︸ ︷︷ ︸
= 0

+R × [v(R, t) · ∇]v(R, t).

(3.44)

Note that the (×R)-vector product in (3.43) refers to the right-factor
v(R, t) of the gradient dyadic ∇v(R, t); therefore, in (3.44), we may write
R× (accordingly changing the sign), because only the first index of ∇v(R, t)
is used up by the [v(R, t)]-scalar product, whence R× can only refer to v(R, t)
in ∇v(R, t). Consequently, we find

D[R × v(R, t)]
Dt

= R × ∂v(R, t)
∂t

+ R × [v(R, t) · ∇]v(R, t)

= R × Dv(R, t)
Dt

, (3.45)

and that is why

d
dt

∫ ∫ ∫
V (t)

ρ(R, t)R × v(R, t) dV =
∫ ∫ ∫

V (t)
ρ(R, t)R × Dv(R, t)

Dt
dV

(3.46)

results as time variation of the total angular momentum associated with V (t).

3.2.3 Linear momentum conservation: Newton–Cauchy
equation of motion

Newton says “force is equal to mass times acceleration,” therefore, the time
variation of the total momentum of all particles in V (t) is equal to the sum of
all forces acting on the particles. Figure 3.1 depicts a solid body volume VM

with surface SM—a specimen or part—from which we select a partial vol-
ume V (t) with surface S(t). Contact forces of the surrounding material act
on S(t), for example, the surface force density dFS on dS; according to

t =
dFS

dS
, (3.47)

54Similar product rules are collected in the Appendix; they are proven via calculation in
cartesian coordinates with the recommendation to use the summation convention and the
Levi–Cività tensor.
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S (t)

V (t)
dSdV

f dV

n

t dS

VM

SM

FIGURE 3.1
Newton–Cauchy equation of motion.

we define the traction vector t as surface force density (dimension: force/
surface) for dS −→ 0. Simultaneously, volume forces dFV may act on volume
elements dV that may be assigned to volume force densities (dimension: force/
volume)

f =
dFV

dV
(3.48)

for dV −→ 0.
The collective motion of all particle types with the same drift velocity is

characteristic for a solid; hence, the total momentum of V (t), as it appears on
the left-hand side of Newton’s law

d
dt

∫ ∫ ∫
V (t)

ρ(R, t)v(R, t) dV =
∫ ∫

S(t)
t(R, t) dS +

∫ ∫ ∫
V (t)

f(R, t) dV

(3.49)

is understood as the sum of the single momentum of each particle type; on
the right-hand side stands the sum of all forces. With (3.39), we finally obtain
the version∫ ∫ ∫

V (t)
ρ(R, t)

Dv(R, t)
Dt

dV =
∫ ∫

S(t)
t(R, t) dS +

∫ ∫ ∫
V (t)

f(R, t) dV

(3.50)

of the momentum conservation law. To assume a common integrand of all
integrals, as it was true for the particle and mass conservation, [(3.23) =⇒
(3.24), (3.27) =⇒ (3.28)], we must relate the traction t(R, t) depending on
the orientation of dS to the outer normal n expressing this orientation; we
postulate the linear (Cauchy) relation

t(R, t) = n · T(R, t) (3.51)
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via a tensor of second rank T(R, t)—the stress tensor—to obtain the integral
version Newton–Cauchy equation of motion∫ ∫ ∫

V (t)
ρ(R, t)

Dv(R, t)
Dt

dV =
∫ ∫ ∫

V (t)
∇ · T(R, t) dV

+
∫ ∫ ∫

V (t)
f(R, t) dV (3.52)

after applying Gauss’ theorem; accordingly, the differential form reads

ρ(R, t)
Dv(R, t)

Dt
= ∇ · T(R, t) + f(R, t), (3.53)

because (3.52) must hold for each arbitrary volume V (t).
In general and in particular in ultrasonic NDT, the volume forces f(R, t)

are considered as outer—prescribed—forces that are independent of the stress
and motion field and, therefore, appear as inhomogeneities in the Newton–
Cauchy equation of motion.

The notation
d
dt

∫ ∫ ∫
V (t)

j(R, t) dV (3.54)

for the time variation of the total linear momentum of a volume V (t) in
Newton’s law

d
dt

∫ ∫ ∫
V (t)

j(R, t) dV =
∫ ∫

S(t)
t(R, t) dS +

∫ ∫ ∫
V (t)

f(R, t) dV (3.55)

yields the generalization

d
dt

∫ ∫ ∫
V (t)

j(R, t) dV =
∫ ∫ ∫

V (t)

[
∇ · T(R, t) + f(R, t)

]
dV (3.56)

of the Newton–Cauchy equation of motion (3.52), because, for instance, in
geophysics, applications exist where the reduction of j(R, t) to a mass flow
density according to (3.26) is not adequate to describe macroscopic physical
phenomena.

With (3.31) and (3.32), Equation 3.56 reads in differential form

δj(R, t)
δt

= ∇ · T(R, t) + f(R, t) (3.57)

as generalization of (3.53).

3.2.4 Angular momentum conservation:
Stress tensor symmetry

The moment N of a force F is defined as

N = R × F; (3.58)
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hence, conservation of angular momentum for the total number of particles
(sum over all particle types) in V (t) is written according to recognizing (3.46)

d
dt

∫ ∫ ∫
V (t)

ρ(R, t)R × v(R, t) dV =
∫ ∫

S(t)
R × t(R, t) dS

+
∫ ∫ ∫

V (t)
R × f(R, t) dV

=
∫ ∫ ∫

V (t)
ρ(R, t)

D[R × v(R, t)]
Dt

dV.

(3.59)

In the following calculation, we change the order of vectors in all vector prod-
ucts of (3.59)—it is getting more obvious that way—the resulting minus signs
being canceled. In the surface integral of (3.59), we replace t(R, t) by (3.51)
and then we have to calculate ∇ · [T(R, t) × R] after applying Gauss’ law:55

∇ · [T(R, t) × R] = [∇ · T(R, t)] × R + T21(R, t)
.× ∇R

= [∇ · T(R, t)] × R + T21(R, t)
.× I

= [∇ · T(R, t)] × R + 〈T21(R, t) 〉
= [∇ · T(R, t)] × R − 〈T(R, t)〉. (3.60)

Equation 3.59 changes into∫ ∫ ∫
V (t)

ρ(R, t)
Dv(R, t)

Dt
× R dV

=
∫ ∫ ∫

V (t)
[∇ · T(R, t) + f(R, t)] × R dV

−
∫ ∫ ∫

V (t)
〈T(R, t)〉 dV, (3.61)

55The expression A
.× B is understood as (summation convention notation!)

A
.× B = AijBkl (exi

× exl
) exj

· exk

= AikBkl exi
× exl

,

i.e., so to speak, the “vector product” of the first index of A with the second index of B
after contraction of the second index of A with the first one of B. With B = I, we obtain

A
.× I = Ail exi

× exl

= 〈A 〉;

〈A〉 denotes the so-called rotation vector of the second rank tensor A (Equation 2.88). It
follows:

〈A21〉 = A21 .× I = Ali exi
× exl

= −Ali exl
× exi

= −〈A〉.
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and considering the momentum conservation law (3.50), we finally obtain

〈T(R, t)〉 ≡ 0 (3.62)

as a consequence of the angular momentum conservation law.
According to (2.85) and (2.87), we decompose T into a symmetric and

antisymmetric part

T = T
s
+ T

a

=
1
2
(
T + T21)+

1
2
(
T − T21) ; (3.63)

with Footnote 55, it follows

〈T〉 = 〈T
a
〉, (3.64)

because 〈T
s
〉 ≡ 0; yet, the rotation vector of an antisymmetric tensor T

a
is

only identically zero, if T
a

is the null tensor 0: T must be symmetric!
If the angular momentum conservation law (3.59) basically contains pre-

scribed volume moments, the symmetry of T is accordingly broken (Auld
1973); this is true for electrically or magnetically prepolarized materials
(ferroelectrica or ferromagnetica) in electric or magnetic fields (Langenberg
2005). Within the frame of linear elastodynamics, such effects may be ne-
glected, thus approximately keeping the symmetry of the stress tensor.

The generalization of (3.56) of Newton–Cauchy’s equation of motion does
not immediately exhibit the symmetry of T, why de Hoop makes it “visible”
through

d
dt

∫ ∫ ∫
V (t)

j(R, t) dV

=
∫ ∫ ∫

V (t)

{
1
2
∇ · [T(R, t) + T21(R, t)

]
+ f(R, t)

}
dV. (3.65)

The main diagonal elements Txixi of the (symmetric) stress tensor are
called normal stresses and the off diagonal elements Txixj , i �= j are called
shear stresses.

3.2.5 Deformation rate equation

Using the concept of the drift velocity, we calculate the relative change of
position of two mass points within the time interval ∆t; this will result in
the concept of the (linear) deformation rate of a solid. In Figure 3.2, the two
points are denoted by PR and PQ; during the time interval ∆t, they move
with their drift velocities v(R, t) and v(Q, t) to PR′ and PQ′ , respectively,
thus relating the new vectors of position R′ and Q′ at time t + ∆t with the
old vectors of position R and Q at time t through
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v(R, t) ∆t

v(Q, t) ∆t

PR′

PR

PQ′

PQ

Q′ – R′

Q′

Q
O

Q – R

R
R′

FIGURE 3.2
Relative change of position of two mass points PR and PQ during the time
interval ∆t.

−R′ � R + v(R, t) ∆t, (3.66)
Q′ � Q + v(Q, t) ∆t; (3.67)

the error associated with these truncated Taylor expansions tends to zero with
∆t −→ 0. On the other hand, we can calculate v(Q, t) from v(R, t) for small
values of |Q − R| according to

v(Q, t) � v(R, t) + (Q − R) · ∇v(R, t); (3.68)

the next term in the Taylor expansion (3.68) would be quadratic in |Q − R|.
The velocity of the relative change of the distance Q − R of the mass points—
the deformation rate—is consequently obtained in a linear approximation:

lim
∆t→0

(Q′ − R′) − (Q − R)
∆t

= v(Q, t) − v(R, t)

= (Q − R) · ∇v(R, t). (3.69)

A linear velocity of the solid common to both points is canceled that way.
Within the linear approximation (3.69), the “deformation rate”—we use quo-
tation marks because the “real” deformation rate is even defined without the
rotation velocity of the solid56—is obviously completely specified by the gra-
dient dyadic ∇v(R, t) of the drift velocity. In the following, we want to show
that ∇v(R, t) actually contains the rotation of PR around O and how we can
“subtract” it.

56As far as soccer is concerned: We are neither interested in the drive nor in the spin of
the ball.
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The track velocity w(R, t) of the point PR rotating around O with spatially
constant angular velocity Ω(t) is given by

w(R, t) = Ω(t) × R; (3.70)

in the present connection, we are interested how to calculate w(R, t) from
∇w(R, t). Therefore, we investigate57

∇ × w(R, t) = ∇ × [Ω(t) × R]
= − Ω(t) · ∇R + (∇ · R)Ω(t)
= − Ω(t) + 3Ω(t)
= 2Ω(t) (3.71)

and insert it into (3.70):

w(R, t) =
1
2

[∇ × w(R, t)] × R

=
1
2

{[w(R, t)∇] · R − [∇w(R, t)] · R}

=
1
2

R · {∇w(R, t) − [∇w(R, t)]21}
= R · [∇w(R, t)]a; (3.72)

it follows: After a similar projection as in (3.69), the antisymmetric part of
∇w(R, t) is responsible for the rotation track velocity that does not yield
a local deformation. Therefore, we define the symmetric part [∇v(R, t)]s =
1
2{∇v(R, t) + [∇v(R, t)]21} as second rank deformation rate tensor:

D(R, t) =
1
2
{
∇v(R, t) + [∇v(R, t)]21

}
. (3.73)

In the Newton–Cauchy equation of motion the right-hand side ∇ ·
T(R, t) + f(R, t) is the origin of the time variation δ/δt of the linear mo-
mentum density j(R, t); here, the deformation rate D(R, t) is the origin of
the time variation δ/δt of the accordingly defined deformation S(R, t) that
turns out to be a symmetric second rank tensor. This deformation is causally
induced by stresses; in addition, we can introduce a source term58 −h(R, t)

57The direct calculation

∇w(R, t) = ∇[Ω(t) × R]

= − (∇R) × Ω(t)

= − I × Ω(t)

= − Ω(t) × I

with Ω(t) × I yields the general representation of an antisymmetric tensor where Ω can be
calculated according to Ω = − 1

2 〈∇w21〉 = 1
2 〈∇w〉. This is the same result as (3.71).

58In contrast to de Hoop, we formally choose −h(R, t) as source term in order to have the
source terms f and h on the right-hand sides with the same sign as it is true for Maxwell’s
equations (6.1) and (6.2).



K12611 Chapter: 3 page: 101 date: January 18, 2012

Governing Equations of Elastodynamics 101

as prescribed—symmetric—deformation rate tensor finally resulting in the
deformation rate equation:

δS(R, t)
δt

=
1
2
{
∇v(R, t) + [∇v(R, t)]21

}
+ h(R, t). (3.74)

Utilizing the I+-tensor of rank four according to (2.109), we can write (3.74)

in short-hand notation:

δS(R, t)
δt

= I+ : ∇v(R, t) + h(R, t). (3.75)

3.2.6 Linear elastodynamics: Newton–Cauchy equation
of motion and deformation rate equation

The continuum hypothesis and the particle conservation law guided us to
Reynold’s transport theorem (3.30); its utilization in Newton’s conservation
law for the linear momentum resulted in the Newton–Cauchy equation of
motion (3.56) after introduction of the stress tensor instead of the traction.
A similar formulation of the angular momentum conservation law together
with the constitutive equation (3.26) provided the symmetry of the stress
tensor. For the physical justification of the deformation rate equation (3.74),
we needed the geometric linearization of the deformation rate (3.69) and the
elimination of the rotation of the solid with the consequence of the symmetry
of the deformation rate tensor. Writing the governing equations of elastody-
namics (3.56) and (3.74) explicitly utilizing the operator (3.32) according to

∂j(R, t)
∂t

+ ∇ · [v(R, t)j(R, t)] = ∇ · T(R, t) + f(R, t), (3.76)

∂S(R, t)
∂t

+ ∇ · [v(R, t)S(R, t)] =
1
2
{
∇v(R, t) + [∇v(R, t)]21

}
+ h(R, t),

(3.77)

we nicely recognize the nonlinearity of these equations regarding the elasto-
dynamic field quantities. In NDT with ultrasound, the amplitudes of field
quantities are generally rather small, allowing for the neglect of the relevant
terms. This approximation results in the linear equations

∂j(R, t)
∂t

= ∇ · T(R, t) + f(R, t), (3.78)

∂S(R, t)
∂t

=
1
2
{
∇v(R, t) + [∇v(R, t)]21

}
+ h(R, t) (3.79)

of elastodynamics that are—as already introduced as Equations 3.1 and 3.2—
the basis of further evaluations. The subsequent step now consists in the
combination of these equations: The keywords are “constitutive equations”
(Chapter 4).
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3.3 Transition and Boundary Conditions

3.3.1 Discontinuous material properties: Homogeneous and
inhomogeneous transition conditions

Even without any knowledge of the precise elastic properties of materials, we
are able to specify the conditions for elastodynamic fields at jump disconti-
nuities of materials: These conditions immediately follow from the governing
Equations 3.1 and 3.2.

We refer to the sketch in Figure 3.3: The homogeneous or inhomogeneous,
isotropic or anisotropic, dissipative or nondissipative material (1) contains an
“inclusion” V with material properties (2) that may equally be arbitrary than
those of material (1), they should just vary discontinuously on the surface S of
the inclusion; n denotes the outer normal59 on S. Now we select a “very small”
piece ∆S on S—it should be considered as planar—and coat it with a volume
Vi with surface Si and outer normal ni; Vi simultaneously contains material
(1) as well as material (2) (Figure 3.3a). In the following, we investigate the
volume integrals∫ ∫ ∫

Vi

∂j(R, t)
∂t

dV =
∫ ∫ ∫

Vi

∇ · T(R, t) dV +
∫ ∫ ∫

Vi

f(R, t) dV, (3.80)∫ ∫ ∫
Vi

∂S(R, t)
∂t

dV =
1
2

∫ ∫ ∫
Vi

{
∇v(R, t) + [∇v(R, t)]21

}
dV

+
∫ ∫ ∫

Vi

h(R, t) dV (3.81)

of the governing equations of elastodynamics (3.1) and (3.2) having in mind
the limit i −→ ∞ of a series of volumes Vi similar to the transition from

ni

n

n

–n

n

RS

O

Vi

(1) (2)

(a) (b)

(1) (2)

Si

i

V V
S S

∆S

∞

∆S(1)

∆S(2)

FIGURE 3.3
Derivation of transition conditions.

59We postulate that S exhibits only “rounded” edges and corners with an existing normal.
Furthermore, we assume particle motions on S so small that S can be considered as time
invariant.
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Figure 3.3a to b; in this limit, the volumes should approach the geometry of
a flat box adapting more and more to ∆S from both sides, finally resulting
in an outer surface ∆S(1) and an inner surface ∆S(2) whose pertinent (outer)
normals n and −n originate from ni for i −→ ∞. Applying Gauss’ theorems
to the first integrals on the right-hand sides of (3.80) and (3.81), we have to
evaluate the limit i −→ ∞ in the equations∫ ∫ ∫

Vi

∂j(R, t)
∂t

dV =
∫ ∫

Si

ni · T(R, t) dS +
∫ ∫ ∫

Vi

f(R, t) dV, (3.82)∫ ∫ ∫
Vi

∂S(R, t)
∂t

dV =
1
2

∫ ∫
Si

[niv(R, t) + v(R, t)ni] dS

+
∫ ∫ ∫

Vi

h(R, t) dV. (3.83)

Let us first consider the volume integrals of elastodynamic fields on the
left-hand side: If the fields are “physically reasonable,” i.e., without mathe-
matical singularities, the integrals tend to be zero with vanishing integration
volume.60

The surface integrals in (3.82) and (3.83) tend to integrals over ∆S(1) and
∆S(2) for i −→ ∞, where the normal −n on ∆S(2) accounts for the negative
sign:

lim
i→∞

∫ ∫
Si

ni · T(R, t) dS =
∫ ∫

∆S(1)
n · T(R, t) dS −

∫ ∫
∆S(2)

n · T(R, t) dS,

(3.84)

lim
i→∞

1
2

∫ ∫
Si

[niv(R, t) + v(R, t)ni] dS =
1
2

∫ ∫
∆S(1)

[nv(R, t) + v(R, t)n] dS

− 1
2

∫ ∫
∆S(2)

[nv(R, t) + v(R, t)n] dS. (3.85)

According to the mean value theorem of integral calculus (Burg et al. 1990)
we always find a vector of position RS on ∆S—it equally resides on ∆S(1)

and ∆S(2) due to the adaptation of ∆S(1) and ∆S(2) to ∆S—which satisfies∫ ∫
∆S(j)

n · T(R, t) dS = n · T(j)(RS , t)∆S, (3.86)

1
2

∫ ∫
∆S(j)

[nv(R, t) + v(R, t)n] dS =
1
2

[
nv(j)(RS , t) + v(j)(RS , t)n

]
∆S,

j = 1, 2; (3.87)

with T(j)(RS , t), v(j)(RS , t) we denote the limits of field quantities T(R, t),
v(R, t) if R tends to RS in material (1) or (2).

What remains is the investigation of the Vi-integrals over the prescribed
sources f(R, t), h(R, t): In the following, we distinguish two cases.

60There is nothing to accumulate (integrate) in a zero volume.
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Homogeneous transition conditions: Continuity of the traction vec-
tor, the surface deformation rate tensor, and the particle displace-
ment vector: The given source functions f(R, t), h(R, t) should represent
volume sources without singularities; then they do not contribute to the limit
of Equations (3.80) and (3.81) for i −→ ∞, and hence the governing equations
of elastodynamics (3.82) and (3.83) are reduced to the homogeneous transition
conditions due to (3.84), (3.85), (3.86), and (3.87):

n · T(1)(RS , t) − n · T(2)(RS , t) = 0, RS ∈ S, (3.88)

nv(1)(RS , t) + v(1)(RS , t)n − nv(2)(RS , t) − v(2)(RS , t)n = 0, RS ∈ S;
(3.89)

we could divide by the small but finite surface element ∆S unfolding the
independence of the resulting equations from the arbitrary partial surface ∆S
of S ensuring that RS in (3.88) and (3.89) may finally be a vector of position
of any point on S. The homogeneous transition conditions (3.88) and (3.89)
therefore require the continuity of the traction vector n · T(R, t) as surface
traction density and the tensor nv(R, t) + v(R, t)n as surface deformation
rate if R moves from one side of S in material (1) to the other side of S in
material (2), even if the material properties exhibit a jump discontinuity on S.
The governing elastodynamic equations do not tell anything regarding other
field vector and tensor components.

The homogeneous transition condition (3.89) can even be simplified. We
write (3.89) short-hand

nv + vn = continuous (3.90)

and take subsequent projections of this tensor equation into the direction of
the normal on S and tangential to S. Hence:

n · (nv + vn) = v + v · nn

= vt + 2v · nn = continuous; (3.91)

we have replaced v by the sum v = vt + vn of the tangential vector

vt = (I − nn) · v
and the normal vector

vn = v · nn.

Then, we calculate the projection

(I − nn) · (nv + vn) = (v − v · nn)︸ ︷︷ ︸
= vt

n = continuous; (3.92)

requiring the continuity of vt; therefore, the continuity of vn is required in
combination with (3.91). Both facts result in the homogeneous transition
condition
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v(1)(RS , t) − v(2)(RS , t) = 0, RS ∈ S, (3.93)

namely, the continuity of the particle velocity vector. To deduce the continuity
of the particle displacement vector, we need an additional argument (de Hoop
1995):

Due to the relation

v(R, t) =
∂u(R, t)

∂t
(3.94)

between particle velocity and particle displacement, the transition condition
(3.93) is equivalent to

∂u(1)(RS , τ)
∂τ

=
∂u(2)(RS , τ)

∂τ
, (3.95)

therefore, time integration yields∫ t

0

∂u(1)(RS , τ)
∂τ

dτ = u(1)(RS , t) + u(1)(RS , 0)

= u(2)(RS , t) + u(2)(RS , 0). (3.96)

It makes sense to postulate that elastodynamic fields are “switched on” at a
certain time instant being identically zero for smaller times; consequently, we
choose the time origin as far in the past that u(1)(RS , 0) = u(2)(RS , 0) ≡ 0
holds, i.e., we deal with causal fields. According to (3.96), we conclude the
continuity of the particle displacement vector for those fields:

u(1)(RS , t) − u(2)(RS , t) = 0, RS ∈ S. (3.97)

Of course, the homogeneous transition conditions (3.88) and (3.97) also
hold for the Fourier spectra:61

n · T(1)(RS ,ω) − n · T(2)(RS ,ω) = 0, RS ∈ S, (3.98)

u(1)(RS ,ω) − u(2)(RS ,ω) = 0, RS ∈ S. (3.99)

Inhomogeneous transition conditions: Definition of surface source
densities: As announced, for the second case, we allow for the existence of

61At first sight, it looks as if (3.99) follows from the Fourier transformed equation (3.93)
without any further assumptions; yet (3.93) leads to the Fourier transformed equation

ω
[
u(1)(RS , ω) − u(2)(RS , ω)

]
= 0,

and the conclusion can only read

u(1)(RS , ω) − u(2)(RS , ω) = u0(RS)δ(ω)

with an arbitrary vector u0(RS) because ωδ(ω) = 0. An inverse Fourier transform and
the comparison with (3.96) reveals that u0(RS)/2π = u(1)(RS , t = 0) − u(2)(RS , t = 0) so
that only causal fields in the time domain yield u0(RS) ≡ 0.
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prescribed surface source densities on S besides singularity-free volume source
densities. In terms of mathematics surface source densities can be considered
as “amplitudes” of δ-singular volume source densities on S62 according to—we
use the singular function γS(R) of the surface S:

fS(R, t) = t(R, t)γS(R), (3.100)
h

S
(R, t) = g(R, t)γS(R), (3.101)

because, only in that case, the Vi-volume integration of fS and h
S

yields a
finite value: ∫ ∫ ∫

Vi

fS(R, t) dV =
∫ ∫ ∫

Vi

t(R, t)γS(R) dV

=
∫ ∫

∆S

t(R, t) dS

= t(RS , t)∆S; (3.102)

the last sign of equality implies the application of the mean value theorem of
integral calculus. Similarly, we obtain∫ ∫ ∫

Vi

h
S
(R, t) dV = g(RS , t)∆S. (3.103)

With (3.102), (3.103), and (3.104) through (3.107), the inhomogeneous tran-
sition conditions

n · T(1)(RS , t) − n · T(2)(RS , t) = −t(RS , t), RS ∈ S, (3.104)
1
2

[
nv(1)(RS , t) + v(1)(RS , t)n − nv(2)(RS , t) − v(2)(RS , t)n

]
= −g(RS , t), RS ∈ S, (3.105)

for the traction vector and the tensor of the surface deformation rate are
obtained provided surface sources on S are—no matter how—prescribed. Such
prescribed sources yield a discontinuity of the field quantities involved.

We might read the inhomogeneous transition conditions (3.104) and
(3.105) from left to right: If the traction vector n · T(R, t) and the tensor
nv(R, t) + v(R, t)n are—for any reasons—discontinuous on a surface S, such
a discontinuity defines surface source densities. This interpretation will be ex-
tremely helpful to understand Huygens’ principle in elastodynamics (Section
15.1.3).

The spectral versions of (3.104) and (3.105) apparently read as

n · T(1)(RS ,ω) − n · T(2)(RS ,ω) = −t(RS ,ω), RS ∈ S, (3.106)

62The dimension (of the components) of t is force/area and the dimension (of the com-
ponents) of g is length/second because the dimension of γS is length−1.



K12611 Chapter: 3 page: 107 date: January 18, 2012

Governing Equations of Elastodynamics 107

1
2

[
nv(1)(RS ,ω) + v(1)(RS ,ω)n − nv(2)(RS ,ω) − v(2)(RS ,ω)n

]
= −g(RS ,ω), RS ∈ S; (3.107)

the Fourier spectrum of the surface deformation tensor (nu + un)/2 is ob-
tained from (3.106):

1
2

[
nu(1)(RS ,ω) + u(1)(RS ,ω)n − nu(2)(RS ,ω) − u(2)(RS ,ω)n

]
= − j

ω
g(RS ,ω), RS ∈ S. (3.108)

The “simple version” (3.99) does no longer exist in the case of inhomogeneous
transition conditions.

3.3.2 Infinite discontinuity of material properties:
Boundary conditions

Vacuum is infinitely compliable regarding its elastic properties; therefore, it
does not allow for the propagation of elastic waves. The same is true for
idealized materials with infinite mass density. We refer to the terminology
of acoustics and speak of perfectly soft and perfectly rigid materials. If our
inclusion V is supposed to be made of such a material, v(2)(R, t) and T(2)(R, t)
are identically zero in V . As a stress-free boundary condition, the perfectly
soft material consequently enforces its surface to be free of stresses—more
precisely: free of tractions—

n · T(RS , t) = 0, RS ∈ S, (3.109)
1
2

[nv(RS , t) + v(RS , t)n] = − g(RS , t), RS ∈ S, (3.110)

because the infinitely compliable surface allows for deformations (surface de-
formation rates), yet, it does not support tractions (surface force densities).
Complementary to the boundary of a perfectly soft material, a perfectly
rigid material yields the boundary condition of a surface free of deformation
rates:63

n · T(RS , t) = − t(RS , t), RS ∈ S, (3.111)
v(RS , t) = 0, RS ∈ S. (3.112)

In Figure 3.4, the two perfect boundary conditions are compared to each other.
It is quite clear that the stress-free boundary condition is particularly relevant
for NDT because it simulates the surface of parts or specimens (in vacuum)

63For g(RS , t) ≡ 0, the sum of the dyadic products nv and vn is equal to zero if v is
equal to zero.
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Perfectly
soft

material

(a) (b)

n · T = 0
1
2 (n v + v n) = –g v = 0

Perfectly
rigid

material

V n nV

S S

n · T = –t

FIGURE 3.4
Boundary conditions on the surface of perfectly soft (a) and perfectly rigid (b)
materials.

and—approximately—air-filled inclusions and perfect cracks (for infinitely flat
volumes).

Evidently, the earlier discussed boundary conditions consist of one homo-
geneous and one inhomogeneous condition. It is by no means a formal question
whether both boundary conditions may be homogeneous, e.g., whether we can
arbitrarily prescribe g(RS , t) in (3.110) and t(RS , t) in (3.111), respectively,
even assuming them to be zero. The answer is no! A stress-free surface must be
deformed, and a deformation-free surface must exhibit stresses provided elas-
tic waves are present in the material outside V , because, via the enforcement
of the boundary conditions, the waves induce the surface sources. Otherwise
spoken, exclusively homogeneous boundary conditions are only possible for
elastodynamic fields that are zero in entire infinite space. This is an immediate
consequence of Huygens’ principle for elastodynamic waves as a mathematical
solution of the governing equations (Section 15.1.3).

3.3.3 Boundary between elastic and fluid materials:
Homogeneous and inhomogeneous transition
conditions

US-NDT often applies fluid immersed transducers, thus accounting for a
boundary between an elastic and a fluid material. How should we modify the
transition conditions (3.88), (3.97) and (3.104), (3.105), respectively, in this
case? Figure 3.5 displays on the left-hand side the relevant governing equa-
tions for the solid material (1) and the fluid material (2) [Equations (3.1),
(3.2) and (5.1), (5.2)]. We formally remove the incompatibility between both
systems of equations introducing a stress tensor T(R, t) = −p(R, t) I for the
fluid as well as taking the trace S(R, t) = traceS(R, t) of the tensor deforma-
tion rate equation of the solid and defining h(R, t) = traceh(R, t) because the
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∂S ∆

∆

∆

∂t
1
2

(1): solid

(2): fluid

(1): solid

(2): fluid

v

p + f
T = –pI

n n
S S

· v + h

∆v h trace21

=

=

∂t

∂S
∂t

∆· v + h

∆· T + f

=

=

∂t

∂S
∂t

∆· v + h

∆· T + f

=
∂t

∆· T + f

=
∂t

=∂S
∂t

∂j

∂j ∂j

∂j

FIGURE 3.5
Derivation of transition conditions for a boundary between elastic and fluid
materials.

respective equation for the fluid only has information about the cubic dilata-
tion64 S(R, t) . That way, we have arrived at the right-hand part of Figure 3.5
and can now proceed as in Figure 3.3. We immediately obtain the following
inhomogeneous transition conditions [also compare Schmerr (1998)]:

n · T(1)(RS , t) + p(2)(RS , t)n = − t(RS , t), RS ∈ S, (3.113)

n · v(1)(RS , t) − n · v(2)(RS , t) = − h(RS , t), RS ∈ S, (3.114)

because n · T(2)(RS , t) = −p(2)(RS , t)n · I = −p(2)(RS , t); t(RS , t) and
h(RS , t) represent prescribed tractions and surface dilatation rates, respec-
tively. The vector equation (3.113) is appropriately separated into normal
and tangential components relative to S:

n ·
[
n · T(1)(RS , t)

]
+ p(2)(RS , t) = − n · t(RS , t), RS ∈ S, (3.115)

(I − nn) ·
[
n · T(1)(RS , t)

]
= − tt(RS , t), RS ∈ S, (3.116)

where tt = (I − nn) · t denotes the tangential part of the prescribed traction.
If there are no surface sources prescribed on the boundary, we obtain the

homogeneous transition conditions

n ·
[
n · T(1)(RS , t)

]
+ p(2)(RS , t) = 0, RS ∈ S, (3.117)

(I − nn) ·
[
n · T(1)(RS , t)

]
= 0, RS ∈ S, (3.118)

n · u(1)(RS , t) − n · u(2)(RS , t) = 0, RS ∈ S, (3.119)

64One defines 1
3 I traceS(R, t) as (isotropic) dilatation (de Hoop 1995).
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where we switched again to the particle displacement vector as in the tran-
sition from (3.93) to (3.97). Actually, the relations (3.117) through (3.119)
separate into homogeneous transition conditions for the normal components
of the vectors u(RS , t) and n · T(RS , t) and one boundary condition for the
vector tangential component n · T(RS , t).

The time harmonic version of (3.117) through (3.119) looks formally
similar.

3.3.4 Boundary between two elastic materials with fluid
coupling: Homogeneous and inhomogeneous
transition conditions

According to (3.118), shearing forces on the surface of an elastic material are
not transmitted into the adjacent fluid; therefore, the transition conditions
for fluid coupled elastic materials should account for it. Figure 3.6 illustrates
such a coupling with a fluid layer (f): We postulate homogeneous transi-
tion conditions (3.117) through (3.119) for both boundaries S1 and S2, where
RS1

∈ S1 and RS2
∈ S2. For a very thin fluid layer RS1

� RS , RS2
� RS ,

n1 = n, n2 = −n holds, reducing both transition systems to a single one via
elimination of p(f)(RS , t) and n · u(f)(RS , t):

n ·
[
n · T(1)(RS , t)

]
− n ·

[
n · T(2)(RS , t)

]
= 0, RS ∈ S, (3.120)

n · u(1)(RS , t) − n · u(2)(RS , t) = 0, RS ∈ S, (3.121)

(I − nn) ·
[
n · T(1)(RS , t)

]
= 0, RS ∈ S, (3.122)

(I − nn) ·
[
n · T(2)(RS , t)

]
= 0, RS ∈ S. (3.123)

n1 · u(1)(RS1, t) – n1 · u( f )(RS1, t) = 0

n2

(1)

(2)

(f)

n1
n

S1
S

S2

(I – n1n1) · n1 · T(1)(RS1, t) = 0

n1 · n1 · T(1)(RS1, t) + p(f )(RS1, t) = 0

n2 · u(2)(RS2, t) – n2 · u( f )(RS2, t) = 0

(I – n2n2) · n2 · T(2)(RS2, t) = 0

n2 · n2 · T(2)(RS2, t) + p(f )(RS2, t) = 0

FIGURE 3.6
Derivation of (homogeneous) transition conditions for fluid coupled elastic
materials.
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The normal component of the traction vector t = n · T is continuously trans-
mitted as well as the normal component of the displacement u, whereas
the shear components of the traction vector are indeed also continuous, yet
they undergo a zero pass. The independence of Equations 3.122 and 3.123 is
particularly obvious if, for instance, in material (1), tangential surface force
densities are prescribed according to (3.116): They are not transmitted into
material (2). Therefore, the inhomogeneous version of (3.120) through (3.123)
should suggestively read as

n ·
[
n · T(1)(RS , t)

]
− n ·

[
n · T(2)(RS , t)

]
= −n · t(RS , t), RS ∈ S,

(3.124)

n · u(1)(RS , t) − n · u(2)(RS , t) = −h(RS , t), RS ∈ S, (3.125)

(I − nn) ·
[
n · T(1)(RS , t)

]
= 0, RS ∈ S, (3.126)

(I − nn) ·
[
n · T(2)(RS , t)

]
= 0, RS ∈ S, (3.127)

where n · t and h could be differences of prescribed surface source densities
on S1 or S2, respectively.

Sometimes the transition conditions as discussed here are “simply written
down”; yet, we emphasized that they may not only but also must be derived
from the governing equations.
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4
Constitutive Equations, Governing
Equations, Elastodynamic Energy
Conservation

4.1 Constitutive Equations

The governing equations of elastodynamics, be they linear or not, express facts
concerning the time and spatial variations of field quantities (Equations 3.57
and 3.75):

δj(R, t)
δt

= ∇ · T(R, t) + f(R, t), (4.1)

δS(R, t)
δt

= I+ : ∇v(R, t) + h(R, t). (4.2)

Apparently, Newton–Cauchy’s equation of motion (4.1) contains field quanti-
ties different from the deformation rate equation (4.2) requesting, in the most
general form, composition operators j, S according to

δj(R, t)
δt

= j
[
v(R, t),T(R, t)

]
, (4.3)

δS(R, t)
δt

= S
[
v(R, t),T(R, t)

]
, (4.4)

the so-called constitutive equations (de Hoop 1995). They have to be based
on physical arguments, in particular, they do not follow from the governing
equations. Yet, modeling a solid should satisfy the criteria “close to reality”
and “simplicity.” Due to the latter, the dependence of the operators j and S
on both field quantities is usually sacrificed. We approximate

δj(R, t)
δt

= j [v(R, t)] , (4.5)

δS(R, t)
δt

= S
[
T(R, t)

]
. (4.6)

Considering (3.39), we specify

δj(R, t)
δt

= ρ(R) · Dv(R, t)
Dt

, (4.7)

113
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δS(R, t)
δt

= s(R) :
DT(R, t)

Dt
(4.8)

and linearize according to δ/δt =⇒ ∂/∂t, D/Dt =⇒ ∂/∂t

∂j(R, t)
∂t

= ρ(R) · ∂v(R, t)
∂t

, (4.9)

∂S(R, t)
∂t

= s(R) :
∂T(R, t)

∂t
(4.10)

with the consequence

j(R, t) = ρ(R) · v(R, t), (4.11)

S(R, t) = s(R) : T(R, t). (4.12)

The constitutive equations (4.7) and (4.8) and the linear constitutive equa-
tions (4.11) and (4.12), define a second rank mass density tensor ρ(R) and
the forth rank compliance tensor s(R). Both tensors characterize a time in-

variant instantaneously reacting inhomogeneous locally reacting anisotropic
material: time invariant, because they do not explicitly depend on time, and
instantaneously reacting, because j(R, t) and S(R, t) depend on v(R, t) and
T(R, t), respectively, only at the same time t. In a similar sense, the material
(4.11) and (4.12) is spatially invariant (inhomogeneous) and locally reacting:
inhomogeneous, because ρ(R) and s(R) depend on the vector of position R

and locally reacting, because j(R, t) and S(R, t) at point R depend on v(R, t)
and T(R, t), respectively, only at the same point. The material is anisotropic
because the variation of one (cartesian) component of v and T yields varia-
tions of all other components of j and S, that is to say, the relative orientation,
for example, of v and j, depends on the direction of v: The material exhibits
a macroscopic inner structure.

Specializations of (4.11) and (4.12) are homogeneity and isotropy (Section
4.2.2) of the material. Other important generalizations comprise noninstan-
taneously reacting materials for a mathematical description of the physical
phenomenon of dissipation (Section 4.4).

4.2 Linear Nondissipative Materials:
Cauchy–Hooke Law

4.2.1 Anisotropic materials, Voigt notation,
transversely isotropic materials

Anisotropic materials: Symmetries of the compliance tensor: Even
though there are several reasons in geophysics to introduce a mass density
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tensor (de Hoop 1995), we disregard this in our further elaboration of wave
propagation and consider the mass density ρ(R) as a scalar quantity:

j(R, t) = ρ(R)v(R, t). (4.13)

The actual Hooke law is the linear relation between the elongation of a spring
and the applied weight. Here, we denote each linear relation between stress
tensor and deformation tensor (or vice versa) as (Cauchy–) Hooke’s law:

S(R, t) = s(R) : T(R, t). (4.14)

The constitutive equations (4.13) and (4.14) characterize a linear time in-
variant instantaneously reacting inhomogeneous anisotropic locally reacting
material. Due to the symmetry of T(R, t), the compliance s(R) must be sym-

metric with regard to the last two indices and due to the symmetry of S(R, t),
it must be symmetric with regard to the first two indices:

s1234 = s1243 = s2143 = s2134; (4.15)

the index notation of (4.15) reads

sijkl = sijlk = sjilk = sjikl. (4.16)

In Section 4.3.1, we will show that the elastodynamic energy conservation for
instantaneously reacting (nondissipative) materials additionally enforces the
symmetry

s1234 = s3412 ⇐⇒ sijkl = sklij . (4.17)

Stiffness tensor: Very often, the stiffness tensor c(R) is used instead of the

compliance tensor; it is defined through inversion of (4.14):

T(R, t) = c(R) : S(R, t); (4.18)

due to (2.116) and the symmetry of S and T, we must have

c(R) : s(R) = s(R) : c(R) = I+. (4.19)

Obviously, c has to satisfy the same symmetries as s.

Voigt notation: A forth rank tensor has 81 components represented by a
3×3-matrix whose nine elements are 3×3-matrices themselves. The symmetry
of s and c with regard to the two first indices reduces the number of indepen-

dent components to 54, the additional symmetry with regard to the last two
indices to 36. Due to the symmetry (4.17), there remain only 21 independent
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components. Those can be inserted—for example, for the stiffness tensor—into
a 6×6-matrix according to:65

C =

⎛⎜⎜⎜⎜⎜⎜⎝
c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.20)

This is called the Voigt notation of the stiffness tensor (similarly: of the com-
pliance tensor). Note that C is a matrix, not a tensor! The symmetry of
S and T leaves six independent components to both tensors that can be num-
bered according to

⎛⎝Txx Txy Txz

Txy Tyy Tyz

Txz Tyz Tzz

⎞⎠ =⇒
⎛⎝T1 T6 T5

T6 T2 T4
T5 T4 T3

⎞⎠ =⇒

⎛⎜⎜⎜⎜⎜⎜⎝
T1
T2
T3
T4
T5
T6

⎞⎟⎟⎟⎟⎟⎟⎠ = T , (4.21)

⎛⎝Sxx Sxy Sxz

Sxy Syy Syz

Sxz Syz Szz

⎞⎠ =⇒

⎛⎜⎜⎝
S1

1
2S6

1
2S5

1
2S6 S2

1
2S4

1
2S5

1
2S4 S3

⎞⎟⎟⎠ =⇒

⎛⎜⎜⎜⎜⎜⎜⎝
S1
S2
S3
S4
S5
S6

⎞⎟⎟⎟⎟⎟⎟⎠ = S (4.22)

and combined to 6×1-matrices (column “vectors”). Then, Hooke’s law reads66⎛⎜⎜⎜⎜⎜⎜⎝
T1
T2
T3
T4
T5
T6

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
c11 c12 c13 c14 c15 c16
c12 c22 c23 c24 c25 c26
c13 c23 c33 c34 c35 c36
c14 c24 c34 c44 c45 c46
c15 c25 c35 c45 c55 c56
c16 c26 c36 c46 c56 c66

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
S1
S2
S3
S4
S5
S6

⎞⎟⎟⎟⎟⎟⎟⎠

⇐⇒
T (R, t) = C (R)S(R, t),

Tα(R, t) = Cαβ(R)Sβ(R, t),

α, β = 1, . . . , 6.

(4.23)

Yet, in this elaboration, we prefer the tensor version of (4.18) and (4.14), re-
spectively, because it can immediately be written in coordinates via projection
onto an orthonormal trihedron of any coordinate system.

65The explicit transformation of the cijkl, i, j, k, l = 1, 2, 3, into Cαβ, α, β = 1, . . . , 6, can
be found in Helbig (1994).

66The summation convention is generalized insofar as summation from 1 to 6 is performed
over Greek indices appearing twice.
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As references for stiffness anisotropy, we mention Auld (1973), Ben-
Menahem and Singh (1981), Royer and Dieulesaint (2000), and Helbig (1994).

Transversely isotropic materials: According to the crystal symmetries of
solids, models for anisotropy with increasing complexity can be formulated.
The simplest one67 accounting for crystals with hexagonal symmetry is the
model of transverse isotropy perpendicular to a preference direction â, where
five elastic constants λ⊥,λ‖,µ⊥,µ‖, ν (instead of the 21 for the general case)
are involved (Spies 1992, 1994):

ctriso(R) = λ⊥Iδ + 2µ⊥I+

+ [λ⊥ + 2µ⊥ + λ‖ + 2µ‖ − 2(ν + 2µ‖)]â â â â

+ (ν − λ⊥)(I â â + â â I)

+ (µ‖ − µ⊥)(I â â1324 + â â I1324 + I â â1342 + â â I1342). (4.24)

The inhomogeneity of ctriso(R) may show up in the elastic constants λ⊥(R),

µ⊥(R), λ‖(R), µ‖(R), ν(R) and in the spatial dependence of the preference
direction â(R). An example for spatially independent constants yet a spatially
dependent preference direction is the crystal orientation within an austenitic
weld (Langenberg et al. 2000); by the way, in that case, only four independent
constants are required because ν = λ⊥ − µ⊥ + µ‖ must hold (Neumann et al.
1995). For â = ex—thus disregarding the spatial dependence of the preference
direction—the stiffness tensor (4.24) reads in Voigt notation:

C triso(R)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

λ‖(R) + 2µ‖(R) ν(R) ν(R) 0 0 0
ν(R) λ⊥(R) + 2µ⊥(R) λ⊥(R) 0 0 0
ν(R) λ⊥(R) λ⊥(R) + 2µ⊥(R) 0 0 0

0 0 0 µ⊥(R) 0 0
0 0 0 0 µ‖(R) 0
0 0 0 0 0 µ‖(R)

⎞
⎟⎟⎟⎟⎟⎟⎠ ;

(4.25)

apparently, the relation of the Lamé parameters with the Voigt parameters
depends on the coordinate system because, for â = ez we obtain

C triso(R)

=

⎛
⎜⎜⎜⎜⎜⎜⎝

λ⊥(R) + 2µ⊥(R) λ⊥(R) ν(R) 0 0 0
λ⊥(R) λ⊥(R) + 2µ⊥(R) ν(R) 0 0 0
ν(R) νR) λ‖(R) + 2µ‖(R) 0 0 0

0 0 0 µ‖(R) 0 0
0 0 0 0 µ‖(R) 0
0 0 0 0 0 µ⊥(R)

⎞
⎟⎟⎟⎟⎟⎟⎠ ;

(4.26)

67Even simpler is a hypothetic uniaxial model (Lindell and Kiselev 2000):

cuni = αIδ + βI+ + γâ â â â.



K12611 Chapter: 4 page: 118 date: January 18, 2012

118 Ultrasonic Nondestructive Testing of Materials

Further coordinate-free representations of stiffness tensors for higher de-
grees of anisotropy of different crystal classes (cubic, orthorhombic, and tetrag-
onal) including their Voigt notations can be found in Marklein (1997).

4.2.2 Isotropic materials

By definition, the stiffness tensor for isotropic materials must have a repre-
sentation that does not exhibit any macroscopic structural parameters; fur-
thermore, its double contraction with the symmetric deformation tensor must
yield a symmetric stress tensor. This is generally achieved with the forth rank
tensor I according to (2.107) with α3 = 0; typically, we write

ciso(R) = λ(R) Iδ + 2µ(R) I+

= λ(R) I I + µ(R)(I I1342 + I I1324) (4.27)

with the Lamé constants λ(R) and µ(R). Consequently, Hooke’s law reads as

T(R, t) = ciso(R) : S(R, t)

= λ(R) I traceS(R, t) + 2µ(R)S(R, t). (4.28)

The compliance tensor siso(R) has a structure analogous to (4.27):

siso(R) = Λ(R)Iδ + 2M(R)I+, (4.29)

where68 (de Hoop 1995)

Λ(R) = − λ(R)
2µ(R)[3λ(R) + 2µ(R)]

, (4.30)

M(R) =
1

4µ(R)
. (4.31)

The stiffness tensor (4.27) is written as a Voigt matrix as follows:

C iso(R) =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ(R) + 2µ(R) λ(R) λ(R) 0 0 0
λ(R) λ(R) + 2µ(R) λ(R) 0 0 0
λ(R) λ(R) λ(R) + 2µ(R) 0 0 0

0 0 0 µ(R) 0 0
0 0 0 0 µ(R) 0
0 0 0 0 0 µ(R)

⎞
⎟⎟⎟⎟⎟⎟⎠

.

(4.32)

68These formulas are reciprocal:

λ(R) = − Λ(R)
2M(R)[3Λ(R) + 2M(R)]

,

µ(R) =
1

4M(R)
.
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4.2.3 Elastodynamic governing equations

With the constitutive equations (4.11) and (4.12), we obtain the elastody-
namic governing equations:

ρ(R) · ∂v(R, t)
∂t

= ∇ · T(R, t) + f(R, t), (4.33)

s(R) :
∂T(R, t)

∂t
=

1
2
{
∇v(R, t) + [∇v(R, t)]21

}
+ h(R, t). (4.34)

They describe the propagation of elastic waves in linear time invariant in-
stantaneously and locally reacting inhomogeneous anisotropic nondissipative
materials.

4.3 Elastodynamic Energy Conservation Theorem
for Nondissipative Materials in the Time
and Frequency Domains

4.3.1 Elastodynamic Poynting vector in the time domain

Convincing reasons exist in elastostatics to define (Ben-Menahem and Singh
1981)

w(R) =
1
2

S(R) : T(R) (4.35)

as a potential deformation energy density that is locally contained in a static
deformation-stress field S(R),T(R). To generalize it to elastodynamics, we
tentatively use Equation 4.35 for time-dependent deformations and stresses
S(R, t),T(R, t); in addition, we have to account for the kinetic energy density
of the time varying motion of the material particles, finally leading to the
Hamiltonian expression as an ansatz for the elastodynamic energy density
(Ben-Menahem and Singh 1981):

wel(R, t) =
1
2

j(R, t) · v(R, t) +
1
2

S(R, t) : T(R, t). (4.36)

An energy (conservation) law expresses a balance for the energy density:
If the latter locally changes with time, energy is either flowing or created/
annihilated. Therefore, we investigate the time derivative of (4.36):

∂wel(R, t)
∂t

=
1
2

∂j(R, t)
∂t

· v(R, t) +
1
2

j(R, t) · ∂v(R, t)
∂t

+
1
2

∂S(R, t)
∂t

: T(R, t) +
1
2

S(R, t) :
∂T(R, t)

∂t
. (4.37)
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Now we should bring the elastodynamic governing equations into play to ac-
count for elastodynamics, i.e., for the time and spatial variations of elastic
fields; after all, we want to characterize the time and spatial energy flow.
In fact, the (linearized) governing equations immediately tell us something
about ∂j/∂t and ∂S/∂t, yet the same is only true for ∂v/∂t and ∂T/∂t if we
add constitutive equations. With

j(R, t) = ρ(R)v(R, t), (4.38)
S(R, t) = s(R) : T(R, t), (4.39)

we postulate a linear time invariant instantaneously and locally reacting
nondissipative (nondispersive) inhomogeneous anisotropic material to obtain

wel(R, t) =
1
2

ρ(R)v(R, t) · v(R, t) +
1
2

s(R) : T(R, t) : T(R, t)

=
1
2

ρ(R)|v(R, t)|2 +
1
2

s(R) : T(R, t) : T(R, t) (4.40)

instead of (4.36) and, therefore, instead of (4.37):

∂wel(R, t)
∂t

= ρ(R)
∂v(R, t)

∂t
· v(R, t) +

1
2

s(R) :
∂T(R, t)

∂t
: T(R, t)

+
1
2

s(R) : T(R, t) :
∂T(R, t)

∂t
, (4.41)

where we have combined the first two terms of (4.37). Yet, the last two terms
can only be combined if the commutation

s(R) :
∂T(R, t)

∂t
: T(R, t) = s(R) : T(R, t) :

∂T(R, t)
∂t

(4.42)

is allowed, and this requests the symmetry

s1234 = s3412 ⇐⇒ sijkl = sklij (4.43)

of the compliance tensor. With the symmetry (4.43), Equation 4.41 reads as

∂wel(R, t)
∂t

= ρ(R)
∂v(R, t)

∂t
· v(R, t) + s(R) :

∂T(R, t)
∂t

: T(R, t). (4.44)

Final insertion of the governing equations (4.33) and (4.34) leads us to—we
utilize the symmetry of T(R, t)—

∂wel(R, t)
∂t

= ∇ · T(R, t) · v(R, t) + ∇v(R, t) : T(R, t)

+ f(R, t) · v(R, t) + h(R, t) : T(R, t). (4.45)
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The last two terms on the right-hand side of the above equation are identified
as time variation of an energy density

∂wQ(R, t)
∂t

= f(R, t) · v(R, t) + h(R, t) : T(R, t), (4.46)

that is locally “injected” into the stress-motion field T(R, t),v(R, t) by pre-
scribed force densities f and deformation rates h; consequently, the first two
terms on the right-hand side of Equation 4.45 must have the meaning of an
energy density flow. To make it obvious, we combine them as a divergence of
a vector69

S(R, t) = −v(R, t) · T(R, t) (4.47)

according to

−∇ · S(R, t) = ∇v(R, t) : T(R, t) + ∇ · T(R, t) · v(R, t), (4.48)

exploiting the symmetry of T. The result is the energy conservation law of
elastodynamics:

∂wel(R, t)
∂t

= −∇ · S(R, t) +
∂wQ(R, t)

∂t
(4.49)

for nondissipative materials. The minus sign in (4.47) is based on the follow-
ing argument: If the vector S(R, t) should represent a physical energy flow
density, e.g., an energy per time and per area: a surface power density, a lo-
cally positive divergence of S(R, t) refers to an “escape” of energy, that is to
say, ∂wel(R, t)/∂t must be negative if vanishing energy delivery is assumed:
∂wQ(R, t)/∂t ≡ 0; correspondingly, a locally negative divergence of S(R, t)
for ∂wQ(R, t)/∂t ≡ 0 results in a local increase of energy density. The vector
S(R, t) is the elastodynamic analogon to the Poynting vector for electromag-
netic waves; hence, it is sometimes called the elastodynamic Poynting vector.

The above derivation of the energy conservation law starts from a physi-
cally plausible definition of elastodynamic energy density utilizing the govern-
ing equations of elastodynamics together with specially selected constitutive
equations; as a consequence, a physically meaningful definition of the elas-
todynamic Poynting vector S(R, t) according to (4.47) arises; yet, S(R, t) is
not uniquely defined that way because the curl of any arbitrary vector could
be added without changing the energy conservation law. Nevertheless, the
definition (4.47) of S(R, t) has always proved of value.

Proceeding conversely to the above derivation, the symmetry stipulation
(4.43) for the compliance tensor is mandatory in order to formulate the

69We have

∇ · (v · T) = ∇v : T + ∇ · T21 · v.
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elastodynamic energy density consistently: With (4.48), we take the nega-
tive divergence of the elastodynamic Poynting vector S(R, t) as postulated
as an energy flow density, write ∇v : T 1

2 [∇v + (∇v)21] : T relying on the
symmetry of T, and insert the governing equations (3.1) and (3.2) without
specifying constitutive equations:

−∇ · S(R, t) =
∂S(R, t)

∂t
: T(R, t) +

∂j(R, t)
∂t

· v(R, t)︸ ︷︷ ︸
!=

∂wel(R, t)
∂t

− −h(R, t) : T(R, t) − f(R, t) · v(R, t)︸ ︷︷ ︸
= −∂wQ(R, t)

∂t

. (4.50)

That way, −∇ · S(R, t) defines the time variation of the elastodynamic energy
density in a conservation law but not—like (4.36)—the energy density itself.
To be consistent with (4.37) following from Equation 4.36, we have to claim the
symmetry (4.43) under the assumption of the special constitutive equations
(4.38) and (4.39). We emphasize that: The elastodynamic energy conservation
law in the time domain enforces the symmetry s(R)1234 = s(R)3412 of the

compliance tensor and the respective symmetry c(R)1234 = c(R)3412 of the

stiffness tensor for nondissipative (time invariant instantaneously reacting)
materials. For dissipative materials, (4.36) must indeed be modified.

4.3.2 Complex valued elastodynamic Poynting vector
in the frequency domain

The elastodynamic Poynting vector in the time domain being defined as a
product of two (real valued) time functions corresponds to a convolution inte-
gral in the frequency domain, more precisely: three convolution integrals for
the three components of S:

S(R,ω) = − 1
2π

∫ ∞

−∞
v(R,ω′) · T(R,ω − ω′) dω′. (4.51)

Realizing that real valued time harmonic time functions have δ-functions as
spectral lines and, hence, that the above convolution of δ-functions again re-
sults in δ-functions, we expect the Poynting vector of time harmonic fields to
be equally time harmonic since Fourier inversion of a δ is time harmonic; the
resulting phasor should then be proportional to the product of the phasors of
v(R, t) and T(R, t).

Therefore, we put [compare (3.17)]

v(R, t, ω0) = �{v(R,ω0) e−jω0t
}

, (4.52)

T(R, t, ω0) = �{T(R,ω0) e−jω0t
}

(4.53)
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and calculate the spectra

v(R,ω,ω0) = πv(R,ω0)δ(ω − ω0) + πv∗(R,ω0)δ(ω + ω0), (4.54)
T(R,ω,ω0) = πT(R,ω0)δ(ω − ω0) + πT∗(R,ω0)δ(ω + ω0). (4.55)

With (2.364), we compute according to (4.51):

S(R,ω,ω0) = − 1
2π

∫ ∞

−∞
v(R,ω′,ω0) · T(R,ω − ω′,ω0) dω′

= − π

2
v(R,ω0) · T(R,ω0) δ(ω − ω0) ∗ δ(ω − ω0)︸ ︷︷ ︸

= δ(ω − 2ω0)

− π

2
v(R,ω0) · T∗(R,ω0) δ(ω − ω0) ∗ δ(ω + ω0)︸ ︷︷ ︸

= δ(ω)

− π

2
v∗(R,ω0) · T(R,ω0) δ(ω + ω0) ∗ δ(ω − ω0)︸ ︷︷ ︸

= δ(ω)

− π

2
v∗(R,ω0) · T∗(R,ω0) δ(ω + ω0) ∗ δ(ω + ω0)︸ ︷︷ ︸

= δ(ω + 2ω0)

, (4.56)

and indeed obtain three spectral lines at ω = 0,±2ω0. Consequently, the
Poynting vector for time harmonic fields reads as

S(R, t, ω0) = �
{

−1
2

v(R,ω0) · T∗(R,ω0)
}

+ �
{

−1
2

v(R,ω0) · T(R,ω0) e−2jω0t

}
. (4.57)

In case of time averaging

1
T0

∫ T0

0
S(R, t, ω0) dt = �

{
−1

2
v(R,ω0) · T∗(R,ω0)

}
, (4.58)

the term oscillating with 2ω0 in (4.57) vanishes because∫ T0

0
e−2jω0t dt = 0, (4.59)

and only the dc-term prevails. The result of time averaging is the real part of
the phasor

SK(R,ω0) = −1
2

v(R,ω0) · T∗(R,ω0) (4.60)
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as product of phasors that can obviously be regarded as a spectral alternative
to (4.47), allowing ω0 to be an arbitrary frequency70 ω if the phasors are
identified as spectral amplitudes according to (3.20). We call

SK(R,ω) = −1
2

v(R,ω) · T∗(R,ω) (4.61)

the complex elastodynamic Poynting vector, and we know with (4.58) that its
real part gives us the time averaged energy density flow of real valued time
harmonic fields.

To formulate an energy conservation law for time averages of real valued
time harmonic fields, we first have to define the corresponding time harmonic
energy density of time harmonic fields on the basis of (4.57) analogous to (4.57)

wel(R, t, ω0)

= �
{

1
4

j(R,ω0) · v∗(R,ω0) +
1
4

S(R,ω0) : T∗(R,ω0)
}

+ �
{[

1
4

j(R,ω0) · v(R,ω0) +
1
4

S(R,ω0) : T(R,ω0)
]

e−2jω0t

}
.

(4.62)

Taking the time derivative of (4.62) and subsequently the time average

1
T0

∫ T0

0

∂wel(R, t, ω0)
∂t

dt ≡ 0, (4.63)

we find it to be always zero, independent of any postulated constitutive equa-
tions. For vanishing phasors of the volume force density f(R,ω0) and the de-
formation rate h(R,ω0), averaging the energy conservation law (4.49) yields

∇ · � {SK(R,ω0)} = 0 (4.64)

for time harmonic fields. This is surprising because the material could be dissi-
pative, and this should have a locally negative divergence of the time averaged
energy flow density as consequence. Yet, the result (4.64) is definitely plau-
sible for nondissipative materials as described by the constitutive equations
(4.38) and (4.39). It follows that: The definition (4.62)—and (4.36)—is by no
way the ultimate wisdom for dissipative materials.

70In electrical engineering, the factor 1/2 is sometimes deleted defining effective values of
phasors, e.g.,

veff(R, ω0) =
v(R, ω0)√

2
.

By the way, starting from S(R, t) = −T(R, t) · v(R, t) would have resulted in SK(R, ω0) =
−T(R, ω0) · v∗(R, ω0)/2, the complex conjugate value; yet, the physically meaningful real
part of SK(R, ω0) remains unchanged.
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As before in the time domain, we start from (4.50) and calculate the mean
values for time harmonic fields:

− ∇ · � {SK(R,ω0)}

= �
{

− jω0

2
S(R,ω0) : T∗(R,ω0) − jω0

2
j(R,ω0) · v∗(R,ω0)

}
− �

{
1
2

h(R,ω0) : T∗(R,ω0) +
1
2

f(R,ω0) · v∗(R,ω0)
}

, (4.65)

where we compute the phasor, for example, of ∂S(R, t, ω0)/∂t, according to

∂S(R, t, ω0)
∂t

= �{−jω0 S(R,ω0) e−jω0t
}

; (4.66)

for the sake of completeness, we also take prescribed force densities and defor-
mation rates into account. Yet, even for f = 0, h = 0, there may be “something
left” on the right-hand side of Equation 4.65. Yet, the constitutive equations

j(R,ω0) = ρ(R)v(R,ω0), (4.67)
S(R,ω0) = s(R) : T(R,ω0) (4.68)

of a nondissipative material at frequency ω0 should yield—as in Equation
4.64—

�
{

− jω0

2
s(R) : T(R,ω0) : T∗(R,ω0) − jω0

2
ρ(R)v(R,ω0) · v∗(R,ω0)

}
= 0.

(4.69)

Since v(R,ω0) · v∗(R,ω0) = |v(R,ω0)|2 is always real, we only have to check
the first term. We can write

�z =
1
2
(z + z∗) (4.70)

for the real part of a complex number, and therefore we should have

− jω0

4
s(R) : T(R,ω0) : T∗(R,ω0) +

jω0

4
s(R) : T∗(R,ω0) : T(R,ω0) = 0,

(4.71)
and this is true if s(R) satisfies the symmetry

s(R)1234 = s(R)3412. (4.72)

Under the assumption (4.72), the elastodynamic energy conservation law
for real valued time harmonic fields and for nondissipative materials results
as a time average:

∇ · � {SK(R,ω0)} = �
{

1
2

f(R,ω0) · v∗(R,ω0) +
1
2

h(R,ω0) : T∗(R,ω0)
}

.

(4.73)
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For the time averaged energy density

1
T0

∫ T0

0
wel(R, t, ω0) dt = 〈wel(R, t, ω0)〉 (4.74)

of real valued time harmonic fields, we consequently obtain

〈wel(R, t, ω0)〉 =
ρ(R)

4
|v(R,ω0)|2 +

1
4

s(R) : T(R,ω0) : T∗(R,ω0)o

=
ρ(R)

4
|v(R,ω0)|2 +

1
4

S(R,ω0) : c(R) : S∗(R,ω0), (4.75)

because under the assumption (4.72), the expression s(R) : T(R,ω0) :

T∗(R,ω0) and, hence, S(R,ω0) : c(R) : S∗(R,ω0) are always real.

Replacing phasors by spectral amplitudes, we have (4.73) for the Fourier
spectra:

∇ · � {SK(R,ω)} = �
{

1
2

f(R,ω) · v∗(R,ω) +
1
2

h(R,ω) : T∗(R,ω)
}

.

(4.76)

4.4 Linear Dissipative Materials

Several models for elastodynamic dissipation are discussed in the literature
(e.g., Auld 1973; Ben-Menahem and Singh 1981; de Hoop 1995). Here, we do
not aim at their physical basis, but we especially discuss the consequences of
any kind of dissipation for the propagation of elastic waves.

4.4.1 Maxwell model

Maxwell model: As a complete formal analogon to the conductivity en-
ergy losses of electromagnetic fields—for instance, as given by Ohm’s law:
Jl(R, t) = σ

e
(R) · E(R, t)—we postulate respective losses of elastodynamic

energy by the additional linear Maxwell terms K(R) · v(R, t) and Γ(R) :

T(R, t) in the constitutive equations (4.9) and (4.10) (Ben-Menahem and
Singh 1981; de Hoop 1995):

∂j(R, t)
∂t

= ρ(R) · ∂v(R, t)
∂t

+ K(R) · v(R, t), (4.77)

∂S(R, t)
∂t

= s(R) :
∂T(R, t)

∂t
+ Γ(R) : T(R, t). (4.78)

Here, K(R) is the second rank tensor coefficient of a friction force and Γ(R)

the forth rank tensor coefficient of an inverse viscosity called inviscidness
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that—per definitionem—must satisfy the symmetries Γ1234 = Γ1243 = Γ2143 =

Γ2134; K must not satisfy any symmetry conditions.

Governing equations of elastodynamics; attenuation and dispersion
of plane waves: With the constitutive equations (4.77) and (4.78), the elas-
todynamic governing equations read as:

ρ(R) · ∂v(R, t)
∂t

= ∇ · T(R, t) − K(R) · v(R, t) + f(R, t), (4.79)

s(R) :
∂T(R, t)

∂t
= I+ : ∇v(R, t) − Γ(R) : T(R, t) + h(R, t), (4.80)

where it is clear that K · v is in fact a field-induced force density term that,
due to the negative sign, counters the prescribed driving force density, i.e.,
it decelerates. Similarly, Γ : T is directed opposite to the prescribed deforma-

tion rate.
Another time derivative of (4.79) and subsequent insertion of (4.80) yields

Equation 7.3 augmented by dissipation terms:

∇ · c(R) : ∇v(R, t) − ρ(R) · ∂2v(R, t)
∂t2

− K(R) · ∂v(R, t)
∂t

− ∇ · c(R) : Γ(R) : T(R, t)

= −∂f(R, t)
∂t

− ∇ · c(R) : h(R, t). (4.81)

To survey the consequences of dissipation terms for the propagation of plane
waves, we consider the homogeneous equation (4.81) simplifying it by putting
the Γ-term equal to zero:

∇ · c(R) : ∇v(R, t) − ρ(R) · ∂2v(R, t)
∂t2

− K(R) · ∂v(R, t)
∂t

= 0; (4.82)

after Fourier transforming with regard to t, we can combine ρ(R) and K(R)
to a complex (frequency-dependent) material tensor ρ

c
(R):

∇ · c(R) : ∇v(R,ω) + ω2
[
ρ(R) + j

K(R)
ω︸ ︷︷ ︸

= ρ
c
(R).

]
· v(R,ω) = 0 (4.83)

We specialize to a homogeneous isotropic dissipative material accord-
ing to71

71In (4.85), K is not the magnitude of the Fourier vector K but the scalar friction coef-
ficient K = K I.
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c(R) = λ Iδ + 2µ I+, (4.84)

ρ
c
(R) =

(
ρ + j

K

ω

)
I

= ρc I (4.85)

and choose, as in Section 8.1, the z-axis as propagation direction of a plane
wave with ∂/∂x ≡ ∂/∂y ≡ 0; taking components of (4.83) yields

(λ + 2µ)
d2vz(z,ω)

dz2 + ω2ρcvz(z,ω) = 0, (4.86)

µ
d2vx,y(z,ω)

dz2 + ω2ρcvx,y(z,ω) = 0 (4.87)

as generalization of (8.9) and (8.35) to dissipative materials. The definition of
complex wave numbers

kPc(ω) = ω

√
ρc

λ + 2µ

= �kPc(ω) + j�kPc(ω), (4.88)

kSc(ω) = ω

√
ρc

µ

= �kSc(ω) + j�kSc(ω) (4.89)

reveals that plane ω0-time harmonic primary and secondary waves [compare
(8.24) and (8.45)]

vz(z, t) = vz(ω0) e jz	kPc(ω0)e−z
kPc(ω0)e−jω0t, (4.90)
vx,y(z, t) = vx,y(ω0) e jz	kSc(ω0)e−z
kSc(ω0)e−jω0t (4.91)

propagating, for example, in +z-direction are now exponentially attenuated
in propagation direction for z > 0 according to the imaginary parts of the
complex wave numbers (provided the correct—positive!—sign of imaginary
parts has been chosen). The physical origin of the attenuation is the friction
coefficient K in ρc, it is responsible for dissipation.

Besides dissipation, K is also conveyed to dispersion because the complex
wave numbers are no longer proportional to frequency as it was true for the
lossless case; the phase velocities

cP,S(ω0) =
ω0

�kP,Sc(ω0)
(4.92)

become frequency dependent in dissipative materials! Consequently, an
impulse traveling in a dissipative material experiences a distortion with
increasing72 z. Apropos impulse propagation: To apply an inverse Fourier

72The numerical example for electromagnetic Maxwell-dispersion in Langenberg (2005)
can be quantitatively assigned to the present elastodynamic case.
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transform leading into the time domain, we consider frequency dependent
functions, for example ρc(ω), as complex spectra; yet, their time functions are
only physically realistic if they are causal and contain finite energy. According
to Section 2.3.4, we must assume that �ρc(ω) and �ρc(ω) fulfill Kramers–
Kronig relations, i.e., they should be Hilbert transform pairs. As a matter of
fact, this is not true for the Maxwell model (4.85) (Langenberg 2005), hence
it may only be used within limited frequency ranges.

4.4.2 Elastodynamic energy conservation law:
Dissipation energy

Elastodynamic energy conservation law in the time domain: Elas-
todynamic dissipation must reflect itself in an elastodynamic energy conser-
vation law. We refer to (4.50) and insert the Maxwell constitutive equations
(4.77) and (4.78) [we immediately exploit the symmetry (4.15) of s and Γ]:

−∇ · S(R, t) = T(R, t) : s(R) :
∂T(R, t)

∂t
+ v(R, t) · ρ(R) · ∂v(R, t)

∂t︸ ︷︷ ︸
=

∂wel(R, t)
∂t

+ T(R, t) : Γ(R) : T(R, t) + v(R, t) · K · v(R, t)︸ ︷︷ ︸
=

∂wd(R, t)
∂t

− h(R, t) : T(R, t) − f(R, t) · v(R, t)︸ ︷︷ ︸
= −∂wQ(R, t)

∂t
.

(4.93)

The first bottom bracket in (4.93) defines the time variation of the (nondissi-
pative) instantaneous elastodynamic energy density73 and the second bottom
bracket apparently defines the time variation of the elastodynamic dissipation
energy density. Combining terms according to

∂w(R, t)
∂t

=
∂wel(R, t)

∂t
+

∂wd(R, t)
∂t

(4.94)

as the time variation of the total energy density, we obtain the concise formu-
lation of the energy conservation law:

∂wQ(R, t)
∂t

− ∇ · S(R, t) =
∂w(R, t)

∂t
. (4.95)

73That can be calculated via time derivation of the (nondissipative) instantaneous elas-
todynamic energy density itself (Equation 4.40), considering the symmetry of ρ and the

symmetry (4.43) of s.
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The sum of a positive local energy flow and the time variation of energy
induced from outside results in a local increase of the total energy density,
namely the increase of kinetic and deformation energy density as well as the re-
placement of losses due to dissipation. As a dissipation term, ∂wd(R, t)/∂t ≥ 0
must be positive; this yields the requirement of non-negative definiteness of
the tensors K and Γ and [not the symmetries K = K21 and Γ1234 = Γ3412 as

claimed by Auld (1973)].
From (4.94) follows (4.93) for causal fields via time integration, recognizing

the symmetries ρ = ρ21, s1234 = s3412:

w(R, t) =
1
2

v(R, t) · ρ(R) · v(R, t) +
1
2

T(R, t) : s(R) : T(R, t)

+
∫ t

0

[
T(R, τ) : Γ(R) : T(R, τ) + v(R, τ) · K(R) · v(R, τ)

]
dτ.

(4.96)

That is to say, the elastodynamic energy density (4.40) as instantaneous en-
ergy density of nondissipative materials must be amended by the dissipation
energy density for dissipative materials; the definition (4.96) replaces the def-
inition (4.36) for actual constitutive equations of dissipative materials. As
a consequence, the contradiction formulated with (4.63) is resolved writing
(4.96) for real time harmonic fields with subsequent time averaging.

Elastodynamic conservation law in the frequency domain: For real
time harmonic fields, the time averaging of Poynting’s theorem (4.93) results
in [compare (4.65)]

− ∇ · �{SK(R,ω0)}

= �
{
− jω0

2
T(R,ω0) : s(R) : T∗(R,ω0) − jω0

2
v(R,ω0) · ρ(R) · v∗(R,ω0)

}
+ �

{
1
2

T(R,ω0) : Γ(R) : T∗(R,ω0) +
1
2

v(R,ω0) · K(R) · v∗(R,ω0)
}

− �
{

1
2

h(R,ω0) : T∗(R,ω0) +
1
2

f(R,ω0) · v∗(R,ω0)
}

(4.97)

for the phasors and the Fourier spectra, respectively. On behalf of the sym-
metries ρ = ρ21, s1234 = s3412, the first term on the right-hand side of (4.97)

is equal to zero leading to the elastodynamic energy conservation law in the
frequency domain:

1
2

�{h(R,ω) : T∗(R,ω) + f(R,ω) · v∗(R,ω)
}− ∇ · �{SK(R,ω)}

=
1
2

�
{
T(R,ω) : Γ(R) : T∗(R,ω) + v(R,ω) · K(R) · v∗(R,ω)

}
.

(4.98)
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Evidently, the equation〈
∂w(R, t, ω0)

∂t

〉
=
〈

∂wd(R, t, ω0)
∂t

〉
(4.99)

resolves the contradiction (4.63).

4.4.3 Rayleigh and Kelvin–Voigt model

The (linear) Rayleigh model postulates dissipative constitutive equations

j(R, t) = ρ(R) · v(R, t) + K(R) · u(R, t), (4.100)

T(R, t) = c(R) : S(R, t) + η(R) :
∂S(R, t)

∂t
, (4.101)

where K(R), as for the Maxwell model, is a tensor friction coefficient and
η(R) a tensor viscosity that satisfies the symmetries η1234 = η1243 = η2143 =

η2134 because S and T are symmetric. If we write (4.101) according to the

“normal form”

S(R, t) = s(R) : T(R, t) − τ(R) :
∂S(R, t)

∂t
(4.102)

of a constitutive equation, the relaxation tensor arises (its elements have the
dimension of time)

τ(R) = s(R) : η(R) (4.103)

with the symmetries τ1234 = τ1243 = τ2143 = τ2134, suggesting to call (4.102)

a Kelvin–Voigt relaxation model (Ben-Menahem and Singh 1981).
With the definition of the deformation rate ∂S(R, t)/∂t = I+ : ∇v(R, t),

we obtain the governing equations

ρ(R) · ∂v(R, t)
∂t

= ∇ · T(R, t) − K(R) · v(R, t) + f(R, t), (4.104)

s(R) :
∂T(R, t)

∂t
= I+ : ∇v(R, t) + τ(R) : ∇∂v(R, t)

∂t
+ h(R, t) (4.105)

for Rayleigh-dissipative materials (4.100) and (4.102). Inserting the constitu-
tive equations into (4.50) defines the time variation of the dissipation energy
density analogously to (4.93)

∂wd(R, t)
∂t

= −T(R, t) : τ(R) : ∇∂v(R, t)
∂t

+ v(R, t) · K(R) · v(R, t).

(4.106)
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Insertion of the governing equations into each other generates the differ-
ential equation

∇ · c(R) : ∇v(R, t) + ∇ · η(R) : ∇∂v(R, t)
∂t

− K(R) · ∂v(R, t)
∂t

− ρ(R) · ∂2v(R, t)
∂t2

= −∂f(R, t)
∂t

− ∇ · c(R) : h(R, t) (4.107)

for the particle velocity that has the formal advantage over the special Kelvin–
Voigt relaxation (4.81) to be decoupled from T(R, t). The Fourier transform
with regard to t

∇ ·
[
c(R) − jωη(R)

]
: ∇v(R,ω) + ω2

[
ρ(R) + j

K(R)
ω

]
· v(R,ω)

= jωf(R,ω) − ∇ · c(R) : h(R,ω) (4.108)

reveals once again that dissipation terms yield complex frequency-dependent
material parameters. Consequence: Elastic waves in Rayleigh-dissipative ma-
terials experience attenuation and dispersion. Marklein (1997) offers a detailed
elaboration of plane waves with homogeneous isotropic Kelvin–Voigt dissipa-
tion (K = 0).

4.4.4 Relaxation models

It was Boltzmann who already proposed relaxation models

∂j(R, t)
∂t

= ρ(R) · ∂v(R, t)
∂t

+
∫ t

0
µ(R, t − τ) · ∂v(R, τ)

∂τ
dτ, (4.109)

∂S(R, t)
∂t

= s(R) :
∂T(R, t)

∂t
+
∫ t

0
χ(R, t − τ) :

∂T(R, τ)
∂τ

dτ (4.110)

as dissipation terms in linear constitutive equations (Ben-Menahem and Singh
1981; de Hoop 1995); here, µ(R, t) denotes the tensor inertia and χ(R, t) the

tensor compliance kernel within the respective convolution integral; for χ,

the usual commutation of the first and the last two indices holds. Note: Pos-
tulating the reasonable causality of fields and relaxation kernels, the limits
of the convolution integrals become 0 and t, that is to say, ∂j(R, t)/∂t and
∂S(R, t)/∂t depend at time t only upon the past of the fields and not upon
the future. In contrast to the instantaneous terms, the relaxation terms in
(4.109) and (4.110) represent a noninstantaneously reacting material, yet it is
still time invariant because the relaxation kernels are functions of t − τ and
not of “t comma τ”. Insertion of (4.109) and (4.110) into (4.50) identifies the
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noninstantaneous reaction as dissipation yielding the nonnegative definiteness
of the tensors µ and χ.

Causal relaxation kernels µ(R, t), χ(R, t) with finite energy (Section 2.3.4)

must have complex spectra µ(R,ω), χ(R,ω), real and imaginary parts of the

tensor components must even be Hilbert transform pairs, Kramers–Kronig
relations must hold. Therefore, the relaxation models again yield complex
(frequency-dependent) material parameters to describe dissipation (and dis-
persion) in the frequency domain, yet in contrast to the Maxwell and Rayleigh–
Kelvin–Voigt models, they are physically consistent.

Starting from basic physical principles—for instance, causality and finite
energy—Karlsson and Kristensson (1992) were able to prove for the electro-
magnetic case that relaxation models represent the most general form of linear
dissipative constitutive equations and they derive the properties of the respec-
tive material tensor functions.

4.5 Piezoelectricity and Magnetostriction

4.5.1 Piezoelectricity

Piezoelectric effect: A rather extensive elaboration of elastic–electromagne-
tic (piezoelectric) waves in piezoelectric materials together with numerous ref-
erences can be found in Marklein (1997).

A crystal shows the piezoelectric effect if exterior mechanical stresses re-
sulting in deformations create electric charge densities. A precondition is that
the crystal does not exhibit a symmetry center (Figure 4.1); therefore, it is
always anisotropic.

Consequently, the creation of electrical stresses resulting in deformations
through electrical forces—electrical field strengths—is called the inverse piezo-
electric effect.

Piezoelectric governing and constitutive equations: The piezoelectric
effect relates mechanical and electrical field quantities, resulting in governing
equations as a combination of the elastodynamic governing equations (3.1) and
(3.2) as well as Maxwell’s equations (6.1) through (6.4); always concentrating
on time-dependent phenomena, we have to account for the complete Maxwell
equations, we only put magnetic source terms equal to zero:

∂j(R, t)
∂t

= ∇ · T(R, t) + f(R, t), (4.111)

∂S(R, t)
∂t

= I+ : ∇v(R, t) + h(R, t), (4.112)
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FIGURE 4.1
Crystal models with (top) and without (bottom) symmetry center. (With a
center, the sum of all electric dipole moments p(i)

e
with and without mechanical

stresses is always zero; without a symmetry center, a finite dipole moment may
result from mechanical stresses.)

∂D(R, t)
∂t

= ∇ × H(R, t) − Je(R, t), (4.113)

∂B(R, t)
∂t

= −∇ × E(R, t), (4.114)

∇ · D(R, t) = �e(R, t), (4.115)
∇ · B(R, t) = 0. (4.116)

As usual, a system of governing equations has to be complemented by consti-
tutive equations that should, in the case of piezoelectricity, result in a coupling
of elastic and electromagnetic waves: We are talking about piezoelectric waves.

For a physical justification of piezoelectric constitutive equations, we
briefly refer to the physical background of the constitutive equation D(R, t) =
ε0εr

(R) · E(R, t) (Equation 6.51); it expresses the electric polarizability of
matter via electric Coulomb forces (Equation 6.16). The result of this micro-
scopic polarizability, that is to say, the mutual displacement of (positive) ions
and electrons or the orientation of already existing statistically distributed
electric dipole moments, is the macroscopic polarization vector Pe(R, t) with
polarization volume charges created by Coulomb forces as negative sources:

∇ · Pe(R, t) = −�Pol(R, t). (4.117)
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In vacuum, the electric field strength E(R, t) and the electric flux density
D(R, t) solely express different concepts to characterize the presence of electric
charges (Sommerfeld 1964); therefore, they are related by the electric field
constant of vacuum ε0 with the physical dimension charge per voltage per
length (Equation 6.10). However, in an electrically polarizable material, we
define

D(R, t) = ε0E(R, t) + Pe(R, t); (4.118)

with the linear ansatz

Pe(R, t) = ε0χ
e
(R) · E(R, t) (4.119)

of a time invariant instantaneously and locally reacting electrically polarizable
inhomogeneous anisotropic material, we obtain the permittivity tensor ε

r
(R)

according to

ε
r
(R) = I + χ

e
(R) (4.120)

resulting from the electric susceptibility χ
e
(R).

Corresponding to the direct piezoelectric effect, additional electric volume
charges �Pi(R, t) can be created by exterior deformations (stresses) represent-
ing negative sources of the piezoelectric polarization vector:

∇ · PPi(R, t) = −�Pi(R, t). (4.121)

With the repeated linear ansatz

PPi(R, t) = e(R) : S(R, t) (4.122)

of a time invariant instantaneously and locally piezoelectric polarizable inho-
mogeneous anisotropic material, the constitutive equation of the direct piezo-
electric effect results:

D(R, t) = ε0ε
S
r
(R) · E(R, t) + e(R) : S(R, t). (4.123)

Here, the third rank tensor e(R) contains the (adiabatic) piezoelectric stress
constants that, on behalf of the symmetry of S, satisfies the symmetry relation

e(R) = e132(R); (4.124)

the first index of e(R) is sort of the electric index. The permittivity ten-

sor εS
r
(R) in (4.123) receives the upper index S: It is measured for constant

deformation tensor (and constant entropy: adiabatic).
As an alternative to (4.123), we can consider the exterior stresses as origin

of the direct piezoelectric effect:

D(R, t) = ε0ε
T
r

(R) · E(R, t) + d(R) : T(R, t), (4.125)
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where the third rank tensor d(R) contains the (adiabatic) piezoelectric strain
constants; it satisfies the symmetry

d(R) = d132(R). (4.126)

The permittivity tensor εT
r

(R) must be measured for constant stress tensor
(and constant entropy).

Postulating Hooke’s law (4.14) between T and S for vanishing electric field
strength, we have:

d(R) = e(R) : sE(R) (4.127)

or, respectively,

e(R) = d(R) : cE(R). (4.128)

Therefore, the requirement of constant electric field strength to measure the
compliance tensor sE(R) is a consequence of the “piezoelectrically augmented”

Hooke law

S(R, t) = sE(R) : T(R, t) + d231(R) · E(R, t) (4.129)

as a formulation of the inverse piezoelectric effect that also exhibits the piezo-
electric strain constants; however, the “electric index” of d has to be con-
tracted with E. The “stress tensor alternative” to (4.129) reads as

T(R, t) = cE(R) : S(R, t) − e231(R) · E(R, t), (4.130)

where the minus sign becomes plausible if (4.130) is inserted into (4.129) and
if (4.127) and the symmetries of e, sE, and cE as well as (4.19) are utilized.

With the constitutive equation (4.129) of the inverse and the constitutive
equation (4.123) of the direct piezoelectric effect as well as

j(R, t) = ρ(R)v(R, t), (4.131)
B(R, t) = µ0H(R, t), (4.132)

the piezoelectric governing equations read

ρ(R)
∂v(R, t)

∂t
= ∇ · T(R, t) + f(R, t), (4.133)

sE(R) :
∂T(R, t)

∂t
= I+ : ∇v(R, t) − d231(R) · ∂E(R, t)

∂t
+ h(R, t),

(4.134)

ε0ε
S
r
(R) · ∂E(R, t)

∂t
= ∇ × H(R, t) − e(R) :

∂S(R, t)
∂t

− Je(R, t),

(4.135)
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µ0
∂H(R, t)

∂t
= −∇ × E(R, t), (4.136)

ε0∇ ·
[
εS
r
(R) · E(R, t)

]
= −∇

[
e(R) : S(R, t)

]
+ �e(R, t), (4.137)

∇ · H(R, t) = 0. (4.138)

Evidently, this is a coupled elastodynamic electromagnetic system of governing
equations.

Homogeneous piezoelectric wave equations: The coupling term
d231(R) · ∂E(R, t)/∂t in (4.134) may be interpreted as electromagnetically
induced negative source of deformation rate; equally, e(R) · ∂S(R, t)/∂t is
an elastodynamically induced electric current density with a divergence that
actually is, according to a continuity equation, equal to the negative time
derivative of the elastodynamically induced electric volume charge density
appearing in (4.137).

To define piezoelectric plane waves, we consider a homogeneous anisotropic
piezoelectric material; with the above cited physical interpretation of the cou-
pling terms in (4.134) and (4.135), we can immediately refer to (7.15) and
(6.75) to write down the following homogeneous wave equations:

∇ · cE : ∇v(R, t) − ρ
∂2v(R, t)

∂t2
= ∇ · e231 · ∂E(R, t)

∂t
, (4.139)

−∇ × ∇ × E(R, t) − ε0µ0ε
S
r

· ∂2E(R, t)
∂t2

= µ0e : I+ : ∇∂v(R, t)
∂t

; (4.140)

we have used e231 = cE : d231, necessitating (4.128) and the symmetries of

e, d, and cE. The system of coupled wave equations (4.139) and (4.140) has

now to be solved.

Electroquasistatic approximation of the piezoelectric wave equa-
tions: Elastic and electromagnetic (monochromatic) waves exhibit rather dif-
ferent wavelengths for the same frequency because the phase velocities differ
by several orders of magnitude. However, the dimensions of piezoelectric de-
vices (piezoelectric transducers) are matched to elastic waves; hence, they are
generally much smaller than the wavelengths of electromagnetic waves; for
this reason, Equations 4.139 and 4.140 are advantageously solved with the
electroquasistatic (EQS) approximation neglecting the time derivative of the
vector potential in the representation (6.112) of the electric field strength:

E(R, t) = −∇Φ(R, t). (4.141)

Therefore, the source-free divergence equation (4.137) immediately yields via
time derivation:

ε0∇ · εS
r

· ∇∂Φ(R, t)
∂t

= ∇ · e : I+ : ∇v(R, t); (4.142)
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within the frame of the EQS approximation, this equation is equivalent to
equation (4.140) if the divergence of the latter is calculated and a time inte-
gration (of causal fields) is performed. Note: Equation 4.142 is Poisson’s equa-
tion of electrostatics (Blume 1991) for the time derivative of a time-dependent
scalar potential.

Equation 4.139 within the quasistatic approximation

∇ · cE : ∇v(R, t) − ρ
∂2v(R, t)

∂t2
= −∇ · e231 · ∇∂Φ(R, t)

∂t
(4.143)

represents—together with (4.142)—the electroelastically coupled system of
differential equations of EQS-approximated piezoelectric waves. As usual, the
Fourier transform with respect to time leads to the corresponding time har-
monic equations

∇ · cE : ∇v(R,ω) + ρω2v(R,ω) = jω∇ · e231 · ∇Φ(R,ω), (4.144)

−jωε0∇ · εS
r

· ∇Φ(R,ω) = ∇ · e : I+ : ∇v(R,ω). (4.145)

Piezoelectric plane waves: Piezoelectrically stiffened stiffness tensor:
In Section 8, we take the particle displacement as the basis to derive plane
elastic waves; the corresponding Equations 4.144 and 4.145 read as

∇ · cE : ∇u(R,ω) + ρω2u(R,ω) = − ∇ · e231 · ∇Φ(R,ω), (4.146)

ε0∇ · εS
r

· ∇Φ(R,ω) = ∇ · e : I+ : ∇u(R,ω). (4.147)

The solution ansatz of homogeneous plane waves (Sections 8.1.2 and 8.3)

u(R,ω) =⇒ u(R,ω, k̂) = u(ω, k̂) e±j k̂·R
c(k̂)

ω (4.148)

for the frequency spectrum of the elastodynamic particle displacement with
the (phase) propagation direction k̂ and the phase velocity c(k̂) transforms
(4.146) and (4.147) into[

1

c2(k̂)
k̂ · cE · k̂ − ρ I

]
· ω2u(R,ω, k̂) = ∇ · e231 · ∇Φ(R,ω) (4.149)

ε0∇ · εS
r

· ∇Φ(R,ω) =
ω2

c2(k̂)
k̂ · e : I+ : k̂ u(R,ω, k̂). (4.150)

Applying a three-dimensional spatial Fourier transform, we obtain

ε0K · εS
r

· KΦ(R,ω) =
ω2

c2(k̂)
k̂ · e : I+ : k̂ u(ω, k̂)(2π)3δ

[
K ∓ ω

c(k̂)
k̂

]
(4.151)
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from (4.150); Fourier inversion yields

Φ(R,ω) =
1

c2(k̂)
k̂ · e : I+ : k̂ u(ω, k̂)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
δ

[
K ∓ ω

c(k̂)
k̂

]

× e jK·R

ε0
1
ω
K · εS

r
· 1

ω
K

d3K. (4.152)

The factor ω2 in (4.151) has been purposely distributed between the K-factors
of the integration denominator (4.152) to indicate that we do not have a
problem to apply the sifting property of the δ-Distribution even for ω = 0:74

Φ(R,ω) =⇒ Φ(R,ω, k̂) =
k̂ · e : I : k̂ u(ω, k̂)

ε0k̂ · εS
r

· k̂︸ ︷︷ ︸
def= Φ(ω, k̂)

e±j k̂·R
c(k̂)

ω
, (4.153)

that is to say, the scalar electric potential behaves just like a plane wave with
the same phase velocity as the elastic wave (4.148): It is enforced by the elastic
wave through the piezoelectric effect. With the symmetry (4.124) of e, we can

write Φ(R,ω, k̂) as follows:

Φ(R,ω, k̂) =
k̂ · e · k̂

ε0k̂ · εS
r

· k̂ · u(R,ω, k̂). (4.154)

The electric field strength related to the potential results from the negative
gradient

E(R,ω, k̂) = ∓j
ω

c(k̂)
k̂

k̂ · e · k̂
ε0k̂ · εS

r
· k̂ · u(R,ω, k̂) (4.155)

as a longitudinal enforced field strength; it does not exist without the “elastic
companion.”

To calculate the phase velocity c(k̂) and the polarization û(k̂) of the piezo-
electric wave according to the factorization u(ω, k̂) = u(ω)û(k̂) as postulated
in Sections 8.1.2 and 8.3, we take advantage of (4.149) with (4.154); analogous
to (8.61) and (8.204), we obtain[

1
ρ

k̂ · cE · k̂ − c2(k̂) I
]

· u(R,ω, k̂) = −1
ρ

k̂ ·
e231 · k̂ k̂ · e
ε0k̂ · εS

r
· k̂ · k̂ · u(R,ω, k̂),

(4.156)

74Since εS
r

must be positive-definite due to the expression (6.57) for the electromagnetic

instantaneous energy density, it follows that K · εS
r

· K is larger than zero and zero only for
K = 0; yet, K = 0 corresponds to ω = 0.
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and this is the conventional eigenvalue problem

Dpiezo(k̂) · û(k̂) = c2(k̂) û(k̂) (4.157)

for the real valued symmetric tensor

Dpiezo(k̂) =
1
ρ

k̂ ·
⎛⎝cE +

e231 · k̂ k̂ · e
ε0k̂ · εS

r
· k̂

⎞⎠ · k̂ (4.158)

with the real valued eigenvalues c2(k̂) and the real valued eigenvectors û(k̂).
In (4.158), it appears

cpiezo = cE +
e231 · k̂ k̂ · e
ε0k̂ · εS

r
· k̂ (4.159)

as the piezoelectrically stiffened stiffness tensor.
For piezoelectric crystals with transverse isotropy and the preference di-

rection â, i.e., for the stiffness tensor (4.24), the permittivity tensor (Equa-
tion 6.53),

εe
r

= ε
S
⊥ I + (ε

S
‖ − ε

S
⊥) â â (4.160)

and the piezoelectric coupling tensor

e = η1â I + η2(I â + I â132) + η3â â â, (4.161)

the phase and energy velocity diagrams have been calculated by Marklein
(1997). Since the resulting wave tensor Wpiezo(k̂, c2) exhibits the same math-
ematical structure as in the transverse isotropic case without piezoelectricity
(Equation 8.247), we can stick to the (orthogonal) polarizations SH, qP, and
qSV (Section 8.3).

4.5.2 Magnetostriction

The magnetization of a ferromagnet may yield strains of a crystal and vice
versa; it is called linear magnetostriction—similar to the electrostriction, the
real magnetostriction is a nonlinear effect—or piezomagnetism (Landau et al.
1984; Auld 1973). Analogous to (4.123) and (4.130), we postulate piezomag-
netic constitutive equations (Wilbrand 1989; IEEE Committee 1973):

B(R, t) = µ0µ
S

r
(R) · H(R, t) + m(R) : S(R, t), (4.162)

T(R, t) = cH(R) : S(R, t) − m231(R) · H(R, t). (4.163)

The term −∇ · [m231(R) · H(R, t)] turns out to be a magnetostrictive volume
force density depending on the magnetic field that additionally appears as an
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inhomogeneity in the elastodynamic governing equations: The magnetoelastic
coupling of magnetostriction is able to create elastic waves in ferromagnets.
This applies to the construction of so-called electromagnetic-acoustic trans-
ducers (EMATs); however, the impact of Lorentz forces is superimposed that
are otherwise solely utilized to excite ultrasound without mechanical contact
in nonferromagnetic materials.
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5
Acoustics

Before we draw conclusions for the propagation of elastic waves from the
elastodynamic governing equations augmented by constitutive relations, we
will refer to the governing equations of acoustics and electromagnetics (Chap-
ter 6) complemented by plane waves as well as source field and scattered
field representations. On one hand, US-NDT likes to think in the terminology
of (scalar) acoustics, and on the other hand, coupling mechanisms between
elastic and electromagnetic phenomena—electromagnetic-acoustic transduc-
ers, piezoelectric transducers, and laser excitation of ultrasound—are of fun-
damental importance. In addition, microwave methods gain more and more
attention—e.g., the application of ground probing radars for NDT of con-
crete (Krieger et al. 1998; Mayer et al. 2003)—suggesting a comparison of
the theoretical foundations of electromagnetic and elastic waves. Yet, as al-
ready mentioned, we will only cite and not derive facts, eventually providing
plausible arguments.

5.1 Governing Equations of Acoustics

Based on the mechanical physical properties of fluids and gases, the governing
equations of acoustics (acoustodynamics) are derived within certain approxi-
mations (Morse and Ingard 1968; de Hoop 1995):

∂j(R, t)
∂t

= − ∇p(R, t) + f(R, t), (5.1)

∂S(R, t)
∂t

= ∇ · v(R, t) + h(R, t). (5.2)

Formally, these equations result from (3.1) and (3.2) if the stress tensor is
replaced by the isotropic pressure tensor according to75 T(R, t)

75We decompose T according to

T =
1
3

I traceT +
(
T − 1

3
I traceT

)

= σ I +
(
T − 1

3
I traceT

)
into the isotropic stress tensor σ I and the deviatoric stress tensor and neglect the latter;
then we put p = −σ.

143
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T(R, t) =⇒ P(R, t) = −p(R, t) I (5.3)

and bringing the scalar cubic dilatation S(R, t) and the scalar injected dilata-
tion rate h(R, t) into play via the trace of (3.2):

S(R, t) =⇒ S(R, t)=traceS(R, t), (5.4)
h(R, t) =⇒ h(R, t)=traceh(R, t). (5.5)

Calculating the acoustic Poynting vector (the acoustic energy density flow)

S(R, t) = v(R, t)p(R, t) (5.6)

and inserting the acoustic governing equations (5.1) and (5.2) yield the acous-
tic energy conservation law

∂wak(R, t)
∂t

= −∇ · S(R, t) +
∂wQ(R, t)

∂t
, (5.7)

where the time derivative of the acoustic energy density

∂wak(R, t)
∂t

=
∂j(R, t)

∂t
· v(R, t) − ∂S(R, t)

∂t
p(R, t) (5.8)

for the constitutive equations (5.22) and (5.23) of linear nondissipative acous-
tic “materials” coincides with the time derivative of the acoustic energy
density

wak(R, t) =
1
2

j(R, t) · v(R, t) − 1
2

p(R, t)S(R, t); (5.9)

regarding dissipative materials, we refer to the elastodynamic case in Sec-
tion 4.4 and to Marklein (1997). The term

∂wQ(R, t)
∂t

= f(R, t) · v(R, t) − h(R, t)p(R, t) (5.10)

in (5.7) denotes the time variation of the energy density injected from exterior.

5.2 Transition and Boundary Conditions

The inhomogeneous transition conditions

n [p(1)(RS , t) − p(2)(RS , t)] = t(RS , t), RS ∈ S, (5.11)
n · [v(1)(RS , t) − v(2)(RS , t)] = − g(RS , t), RS ∈ S, (5.12)
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for the boundary R = RS ∈ S, representing a jump discontinuity of material
properties immediately follow from the governing equations (5.1) and (5.2);
t(RS , t) and g(RS , t) are prescribed surface force densities and prescribed
surface dilatation rates. For vanishing prescribed surface sources, we obtain
the homogeneous transition conditions

p(1)(RS , t) − p(2)(RS , t) = 0, RS ∈ S, (5.13)
n · [v(1)(RS , t) − v(2)(RS , t)] = 0, RS ∈ S, (5.14)

of pressure continuity and continuity of the normal component of the particle
velocity. From the arguments based on Equations 3.95 and 3.96, we conclude
the continuity of the normal component of the displacement

n · [u(1)(RS , t) − u(2)(RS , t)] = 0, RS ∈ S (5.15)

from Equation 5.14.
In case the material (2) does not allow for the propagation of acous-

tic waves, Equations 5.11 and 5.12 reduce to the (perfectly) soft (Dirichlet)
boundary condition

p(RS , t) = 0, RS ∈ S, (5.16)

with the consequence of definition of an induced surface dilatation rate ac-
cording to

n · v(RS , t) = −g(RS , t), RS ∈ S; (5.17)

alternatively, a (perfectly) rigid boundary condition

n · v(RS , t) = 0, RS ∈ S, (5.18)

with the consequence of definition of an induced surface force density

n p(RS , t) = t(RS , t), RS ∈ S, (5.19)

or

p(RS , t) = n · t(RS , t), RS ∈ S, (5.20)

respectively, can be defined. Differentiating (5.18) with respect to time and
utilization of the homogeneous equation (5.11) (vanishing prescribed surface
source densities), Equation 5.18 is written as Neumann’s boundary condition
for the pressure:

n · ∇p(R, t)
∣∣∣
R=RS

= 0, RS ∈ S. (5.21)
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5.3 Wave Equations in the Time and Frequency Domains

With constitutive equations76

j(R, t) = ρ(R)v(R, t), (5.22)
S(R, t) = − κ(R)p(R, t) (5.23)

for linear inhomogeneous nondissipative acoustic “materials”—κ(R) is the
(adiabatic) compressibility—we obtain the acoustic complements of (4.33) and
(4.34):

ρ(R)
∂v(R, t)

∂t
= − ∇p(R, t) + f(R, t), (5.24)

−κ(R)
∂p(R, t)

∂t
= ∇ · v(R, t) + h(R, t); (5.25)

through mutual insertion:

∇ ·
[

1
ρ(R)

∇p(R, t)
]

− κ(R)
∂2p(R, t)

∂t2
= ∇ ·

[
1

ρ(R)
f(R, t)

]
+

∂h(R, t)
∂t

,

(5.26)

respectively, through explicit differentiation

∆p(R, t) − ρ(R)κ(R)
∂2p(R, t)

∂t2
− [∇ ln ρ(R)] · ∇p(R, t)

= −[∇ ln ρ(R)] · f(R, t) + ∇ · f(R, t) + ρ(R)
∂h(R, t)

∂t
(5.27)

or even repeated utilization of (5.24)

∆p(R, t) − ρ(R)κ(R)
∂2p(R, t)

∂t2
+

∂v(R, t)
∂t

· ∇ρ(R)

= ∇ · f(R, t) + ρ(R)
∂h(R, t)

∂t
(5.28)

76Formally, Equation 5.23 results from Hooke’s law S(R, t) = s(R) : T(R, t) through cal-

culation of the trace—traceS = I : S—and neglect of the deviatoric stress tensor; then, the
compressibility κ(R) is given according to

κ(R) = I : s(R) : I

with the compliance tensor s(R). Hence, the minus sign in (5.23) has nothing to do with

the compressibility but with the relation stress versus pressure.
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as well as77

∇
[

1
κ(R)

∇ · v(R, t)
]

− ρ(R)
∂2v(R, t)

∂t2
= −∂f(R, t)

∂t
− ∇

[
1

κ(R)
h(R, t)

]
,

(5.29)

respectively, through explicit differentiation

∇∇ · v(R, t) − ρ(R)κ(R)
∂2v(R, t)

∂t2
− [∇ ln κ(R)]∇ · v(R, t)

= [∇ ln κ(R)]h(R, t) − ∇h(R, t) − κ(R)
∂f(R, t)

∂t
(5.30)

or even repeated utilization of (5.25)

∇∇ · v(R, t) − ρ(R)κ(R)
∂2v(R, t)

∂t2
+

∂p(R, t)
∂t

∇κ(R)

= −∇h(R, t) − κ(R)
∂f(R, t)

∂t
. (5.31)

The differential operators for p(R, t) in (5.27) or (5.28), respectively, and
for v(R, t) in (5.30) or (5.31), respectively, contain “extra terms” ∇ρ(R) or
∇ ln ρ(R) and ∇κ(R) or ∇ ln κ(R) [the operators in (5.28) and (5.31) are
not even decoupled] that are considerably annoying solving the differential
equations. Therefore, to find arguments for appropriate approximations (Born
approximation), they are transferred to the right-hand sides as additional
inhomogeneities in terms of equivalent sources (Section 5.6).

For homogeneous materials, the differential equations (5.28) and (5.31)
immediately decouple:

∆p(R, t) − κρ
∂2p(R, t)

∂t2
= ∇ · f(R, t) + ρ

∂h(R, t)
∂t

, (5.32)

∇∇ · v(R, t) − κρ
∂2v(R, t)

∂t2
= −∇h(R, t) − κ

∂f(R, t)
∂t

. (5.33)

With (2.187), we alternatively obtain regarding (5.33):

∆v(R, t) + ∇ × ∇ × v(R, t) − κρ
∂2v(R, t)

∂t2
= −∇h(R, t) − κ

∂f(R, t)
∂t

.

(5.34)

77Obviously, Equation 5.29 also results specializing (7.3) to

c(R) = κ−1(R)I I

and

h(R, t) =
1
3

h(R, t)I.
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From the governing equation (5.24) for ρ(R) = ρ, we gain the so-called com-
patibility relation78 via calculation of the curl:

∇ × ∂v(R, t)
∂t

=
1
ρ
∇ × f(R, t) (5.35)

transferring the double curl term in (5.34) into an inhomogeneity on the right-
hand side:

∆v(R, t) − κρ
∂2v(R, t)

∂t2
= −∇h(R, t) − κ

∂f(R, t)
∂t

− 1
ρ
∇ ×

∫ t

0
f(R, τ) dτ.

(5.36)

The differential equations for the pressure (5.32) and the particle velocity
vector (5.36) emerge as d’Alembert wave equations or, via Fourier transform

∆p(R,ω) + ω2κρ p(R,ω) = ∇ · f(R,ω) − jωρh(R,ω), (5.37)

∆v(R,ω) + ω2κρv(R,ω) = −∇h(R,ω) − 1
jωρ

[
ω2κρ f(R,ω)

− ∇ × f(R,ω)
] (5.38)

as Helmholtz equations (reduced wave equations). We complement (5.38) with
the Fourier transformed differential equation (5.33) as alternative:

∇∇ · v(R,ω) + ω2κρv(R,ω) = −∇h(R,ω) + jκωf(R,ω). (5.39)

5.4 Solutions of the Homogeneous Acoustic Wave
Equations in Homogeneous Materials:
Plane Longitudinal Pressure Waves

The homogeneous acoustic Helmholtz equations read

∆p(R,ω) + k2p(R,ω) = 0, (5.40)
∆v(R,ω) + k2v(R,ω) = 0, (5.41)

where the wave number k according to

k = ω
√

κρ (5.42)

has been introduced as short-hand notation. One special solution of (5.40) is
obtained as:

p(R,ω) = p(ω) e±jk·R, (5.43)

78For (causal) solutions of the homogeneous wave equation, we have ∇ × v(R, t) = 0; as
a consequence, plane acoustic waves are longitudinally polarized.
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provided the wave number vector k satisfies the dispersion relation

k · k = k2 = ω2κρ (5.44)

or the slowness vector s = k/ω, respectively, the dispersion relation

s · s = κρ. (5.45)

Choosing particularly

k = kk̂ (5.46)

with arbitrary real valued unit vector k̂, the phase propagation vector, the
Fourier inversion of (5.43) yields

p(R, t) = p

(
t ∓ k̂ · R

c

)
(5.47)

with

p(t) = F−1{p(ω)} (5.48)

a homogeneous79 real valued plane pressure wave, provided the initially arbi-
trary spectral amplitude p(ω) is constrained to

p(−ω) = p∗(ω); (5.49)

with

c =
1√
κρ

, (5.50)

we have denoted the phase velocity of this wave.80 The (±)-sign in the phase
of (5.43) or the (∓)-sign in the phase of (5.47), respectively, determines the
propagation direction: The negative (positive) sign in (5.47) results in a propa-
gation in positive (negative) k̂-direction; based on our choice of the sign in the
kernel of the Fourier transform, the positive (negative) sign in (5.43) results
in a propagation in the positive (negative) k̂-direction.

Inserting (5.43) into the Fourier transformed governing equation (5.24)
yields the particle velocity for the pressure wave

v(R,ω) = ± 1
Z

p(ω)︸ ︷︷ ︸
= v(ω)

e±jkk̂·R k̂ (5.51)

79The planes of constant phase and constant amplitude coincide and are orthogonal to
the phase propagation direction k̂.

80The derivation and interpretation details can be found in Sections 8.1.1 and 8.1.2.
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as a special solution of (5.41), where

Z = ρ c (5.52)

denotes the acoustic impedance—the wave impedance—of the ρc-material.
Apparently, the pressure wave is longitudinally polarized in the particle ve-
locity. Contracting with k̂, we obtain from (5.51)

p(R,ω) = ±Z v(R,ω) · k̂, (5.53)

thus relating the Fourier transformed pressure and the Fourier transformed
scalar particle motion velocity v(R,ω) · k̂ of a plane wave. Turning to the
Fourier transformed particle displacement (Equation 3.94) according to
v(R,ω) = −jωu(R,ω), Equation 5.53 reads as

p(R,ω) = ∓jωZ u(R,ω) · k̂,

= ∓jωZ u(ω) e±jkk̂·R, (5.54)

where −jωu(ω) = v(ω) = p(ω)/Z. Equation 5.54 represents—apart from the
factor ∓j—the scalar pressure displacement relation as cited by Krautkrämer
and Krautkrämer (1986). Yet this factor is important if we cross over to the
real valued field quantities in the space time domain:

v(R, t) = ± 1
Z

p

(
t ∓ k̂ · R

c

)
k̂, (5.55)

p(R, t) = ±Z v(R, t) · k̂, (5.56)

p(R, t) = ±Z
∂u(R, t)

∂t
· k̂. (5.57)

A relation similar to (5.53) holds for the far-field of acoustic source fields
(Section 13.1.4).

5.5 Acoustic Source Fields in Homogeneous Materials:
Point Source Synthesis with Green Functions

5.5.1 Green functions for pressure sources

To solve the inhomogeneous—scalar—Helmholtz equation (5.37) in a homo-
geneous infinitely extended κρ-material, we confine ourselves at first to a unit-
point source located at the arbitrarily chosen point R′, the so-called source
point, that is to say, we consider the Helmholtz equation

∆G(R,R′,ω) + k2G(R,R′,ω) = −δ(R − R′) (5.58)

for the Fourier spectrum of the three-dimensional scalar Green function
G(R,R′,ω) of homogeneous infinite space. The δ-function (δ-distribution)
represents the mathematical model of a point source, and the minus sign is
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just convention. The solution of (5.58) relevant to us is the time harmonic
outward bound spherical wave (Section 13.1; Langenberg 2005; Becker 1974;
de Hoop 1995; King and Harrison 1969; DeSanto 1992)

G(R,R′,ω) = G(R − R′,ω)

=
e jk|R−R′|

4π|R − R′| . (5.59)

With (5.59), the solution of (5.37) can immediately be written down:81

p(R,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[−∇′ · f(R′,ω) + jωρ h(R′,ω)
]
G(R − R′,ω) d3R′,

(5.60)

because the application of the (∆ + k2)-operator onto p(R,ω) with regard to
R can be pulled under the integral, yet it only applies to the variable R in
Green’s function, and with (5.58) as well as the sifting property of the delta-
distribution, we actually obtain (5.37). The physical interpretation (Section
13.1) of this mathematical representation of the pressure source field turns
out to be a [−∇′ · f(R′,ω) + jωρ h(R′,ω)]-weighted synthesis of R′-point
sources:82 From each source point, R′ a [−∇′ · f(R′,ω) + jωρ h(R′,ω)]-
weighted time harmonic elementary spherical wave emerges whose amplitudes
and phases are superimposed for each observation point R. The travel time
t(R,R′) = |R − R′|/c of the elementary spherical waves from the source point
R to the observation point R′ only depends on the magnitude of their mutual
distance.

In general, the source volume VQ is finite—the sources are equal to zero
outside VQ—yielding a finite integration volume V in (5.60) that completely
contains VQ in its interior83 (V ⊃ VQ):

p(R,ω) =
∫ ∫ ∫

V ⊃VQ

[−∇′ · f(R′,ω) + jωρ h(R′,ω)
]
G(R − R′,ω) d3R′.

(5.61)

81In cartesian coordinates, this is a three-dimensional convolution integral.
82The method to calculate source fields with Green functions is a point source synthesis.
83An alternative distributional calculation goes as follows: With the characteristic func-

tion ΓQ(R) of VQ, we explicitly confine f(R′, ω) =⇒ f(R′, ω)ΓQ(R′) on VQ with the con-
sequence having to differentiate in the distributional sense according to

∇′ · f(R′, ω) =⇒ [∇′ · f(R′, ω)]ΓQ(R′) − n′
Q · f(R′, ω)γQ(R′),

hence the singular function γQ(R) of the surface SQ of VQ emerges. Consequently, inter-
gration over infinite space yields∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
[−∇′ · f(R′, ω)] G(R − R′, ω) d3R′ =⇒∫ ∫ ∫

VQ

[−∇′ · f(R′, ω)] G(R − R′, ω) d3R′ +
∫ ∫

SQ

n′
Q · f(R′, ω) G(R − R′, ω) dS′;

Equation 5.62 and the application of Gauss’ theorem to VQ finally results in the respective
term in (5.63).
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With

∇′ · [f(R′,ω)G(R − R′,ω)]
= [∇′ · f(R′,ω)]G(R − R′,ω) + f(R′,ω) · ∇′G(R − R′,ω), (5.62)

we can express [∇′ · f ]G by f · ∇′G. The integral over ∇′ · [fG] can be trans-
formed into a surface integral over the surface S of V with Gauss’ theorem
producing n′ · [fG] = [n′ · f ]G; according to our assumption, we have f ≡ 0 on
S (also holding for the normal components of f), hence this integral vanishes.
The remaining volume integrals over V can equally be extended over VQ:

p(R,ω) =
∫ ∫ ∫

VQ

[ jωρ h(R′,ω)G(R − R′,ω)

+ f(R′,ω) · ∇′G(R − R′,ω)] d3R′. (5.63)

In this integral representation of the pressure source field, the sources
h(R′,ω) and f(R′,ω) appear explicitly . One says that (de Hoop 1995):
The inhomogeneity h(R′,ω) of the pressure rate equation (5.25) requires
the scalar Green function Gph(R − R′,ω) = jωρG(R − R′,ω), whereas the
inhomogeneity f(R′,ω) of the equation of motion (5.24) requires the vec-
tor Green function Gpf (R − R′,ω) = ∇′G(R − R′,ω) = −∇G(R − R′,ω)
(compare Figure 5.1). The point source synthesis defined as such superim-
poses spherical waves G(R − R′,ω) with direction-independent amplitude and
phase and spherical waves ∇′G(R − R′,ω) with direction-dependent ampli-
tude and phase, the so-called “dipole waves” (Langenberg 2005).

By the way, the integral representation (5.63) holds for all observation
points, either in the exterior or in the interior of VQ: For R ∈ VQ, a convergent
improper integral emerges (Martensen 1968).

5.5.2 Green functions for velocity sources

Evidently, a solution with structure (5.60) of the vector Helmholtz equation
(5.38) utilizing the scalar Green function G(R,R′,ω) can be written down for
each scalar component. Yet, to arrive at a representation equivalent to (5.63),
it is recommended to define a second rank Green tensor of the vector equation
(5.39) according to

∇∇ · G
v
(R,R′,ω) + k2G

v
(R,R′,ω) = −I δ(R − R′). (5.64)

As usual (Section 13.1), it is advisable to calculate the solution of (5.64) with
the help of the three-dimensional spatial Fourier transform; we immediately
obtain

(KK − k2 I) · G̃
v
(K,R′,ω) = I e−jK·R′

, (5.65)
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and the application of two Chen formulas for the calculation of det (KK −
k2 I) and adj (KK − k2 I) (Chen 1983; Appendix “Formula Collection”) re-
sults in

G̃
v
(K,R′,ω) = − 1

k2

(
I − KK

K2 − k2

)
e−jK·R′

. (5.66)

Fourier inversion with twofold application of the differentiation theo-
rem (2.341) yields [compare de Hoop (1995)]

G
v
(R,R′,ω) = G

v
(R − R′,ω)

= − 1
k2 I δ(R − R′) − 1

k2 ∇∇ e jk|R−R′|

4π|R − R′| (5.67)

= − 1
k2 I δ(R − R′) − 1

k2 ∇′∇′ e jk|R−R′|

4π|R − R′| . (5.68)

Two important remarks regarding the mathematical structure of (5.67) are
appropriate:

• For R �= R′, the “strange” δ-term84 is irrelevant and the ∇∇-Differenti-
ation applied to the nonsingular scalar Green function for R �= R′ does
not cause any problems (for simplicity, we choose R′ = 0):

G(0)
v

(R,ω) def= − 1
k2 ∇∇ e jkR

4πR
, R �= 0 (5.69)

=
[
R̂ R̂ − j

kR
(I − 3R̂ R̂) +

1
k2R2 (I − 3R̂ R̂)

]
e jkR

4πR
.

• In the resulting source representation85

v(R,ω) =
∫ ∫ ∫

V ⊃VQ

G
v
(R − R′,ω) · [∇′h(R′,ω) − jωκ f(R′,ω)

]
d3R′

=
∫ ∫ ∫

V ⊃VQ

[
∇′h(R′,ω) − jωκ f(R′,ω)

] · G
v
(R − R′,ω) d3R′

(5.70)

of the particle velocity, we can basically choose source points exterior
and interior of the finite source volume. For source points in the ex-
terior, the above item is relevant, yet for source points in the inte-
rior, the δ-term in (5.67) is relevant on one hand, and on the other
hand, the ∇∇-differentiation of the singular scalar Green function for

84We present arguments for its necessity in the last paragraph of this subsection.
85We apply the differential operator (5.33) to the first row of (5.70), shift it under the

integral—it applies only to R—and use (5.64). Since G
v

is symmetric, we can interchange
the factors in the integrand.
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R′ = R causes problems: We conclude from Equation 5.58 that a twofold
∇-differentiation of the singular scalar Green function has to be inter-
preted in a distributional sense, it might yield δ-terms. In addition, the
last term in (5.69) is obviously ∼ R−3, and the integral (5.70) over such
a (hyper)singular term does not converge in the usual sense (Martensen
1968), yet under certain assumptions86 (Langenberg 2005) in the sense of
a Cauchy PV. A detailed investigation87 of this singularity topic leads to

G
v
(R − R′,ω) = − 1

k2 I δ(R − R′)

+ PV G(0)
v

(R − R′,ω) +
1

3k2 I δ(R − R′)

= − 2
3k2 I δ(R − R′) + PV G(0)

v
(R − R′,ω). (5.71)

To transform (5.70) into a structure comparable to (5.63), we advanta-
geously utilize the three-dimensional Fourier transform—we have G̃

v
(K,ω) =

G̃
v
(K,R′ = 0,ω)—:

ṽ(K,ω) = jK h̃(K,ω) · G̃
v
(K,ω)︸ ︷︷ ︸

= h̃(K,ω)
jK

K2 − k2

−jωκ f̃(K,ω) · G̃
v
(K,ω). (5.72)

It follows:88

v(R,ω) =
∫ ∫ ∫

VQ

[− jωκ f(R′,ω) · G
v
(R − R′,ω)

− h(R′,ω)∇′G(R − R′,ω)
]
d3R′. (5.73)

This integral representation of the particle velocity field again explicitly ex-
hibits the sources f(R′,ω) and h(R′,ω). One says that (de Hoop 1995):
The inhomogeneity f(R′,ω) of the equation of motion (5.24) requires the
dyadic Green function Gvf (R − R′,ω) = −jωκG

v
(R − R′,ω) and the in-

homogeneity h(R′,ω) of the pressure equation (5.25) requires the vector
Green function Gvh(R − R′,ω) = −∇′G(R − R′,ω) = ∇G(R − R′,ω) =
−Gpf (R − R′,ω). Figure 5.1 displays this assignment graphically.

86The (small) exclusion volume around the singularity point R′ = R ∈ VQ must be spher-
ical. If not, a new definition of the PV is required (van Bladel 1991). This is particularly
important if (5.70) must be numerically calculated via a discretization of the source volume
because the geometry of the underlying voxels becomes important.

87In 1961, van Bladel referred to this problem for the first time while investigating the
dyadic Green function for electromagnetic waves presenting a heuristic solution (van Bladel
1961). In the meantime, this result has been multiply assured.

88The minus sign in −h∇′G originates from the application of the differentiation and
convolution theorems of the three-dimensional Fourier transform to the bracketed term in
(5.72) yielding ∇[h(R, ω) ∗ G(R, ω)] at first.
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v = ∫ ∫ ∫ VQ (–jωκf · Gυ – h∇′G) dV ′

p = ∫ ∫ ∫ VQ(jωρhG + f · ∇′G) dV ′

–jωρv = –∇p + f

jωκp = ∇ · v + h

FIGURE 5.1
Assignment of Green functions for homogeneous isotropic acoustic materials
to the source terms f and h.

For source points in the exterior of VQ, we can also use the time harmonic
version

v(R,ω) =
1

jωρ
∇p(R,ω) (5.74)

of (5.24) to calculate v(R,ω) from (5.63) via application of the gradient: For
R �= R′, the gradient can be shifted under the integral without convergence
problems, thus transforming it into −∇′. The result is (5.73).

Green functions can be equally defined for inhomogeneous ρ(R)κ(R)-
materials; nevertheless, analytical expressions are only available for special
cases: A typical example is the one-dimensionally layered material (Chew
1990). This is the reason that the practical point source synthesis compu-
tation of source fields is usually constrained to homogeneous ρκ-materials.

5.5.3 Justification of the distributional term appearing
in the second rank Green tensor of acoustics

Footnote 84 already announced that there are arguments to justify the δ-term
in (5.67). For R ∈ VQ,

v(R,ω) =
1

jωρ
∇p(R,ω) − 1

jωρ
f(R,ω) (5.75)

must hold. With the source field representation (5.63) of the pressure that is
also valid for R ∈ VQ, we obtain for v(R,ω) according to (5.75):

v(R,ω) =
1

jωρ
∇
∫ ∫ ∫

VQ

[
∇′G(R − R′,ω) · f(R′,ω)

+ jωρh(R′,ω)G(R − R′,ω)
]
d3R′ − 1

jωρ
f(R,ω).

(5.76)
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Definitely realizing that the convergence of the VQ-integral over the resulting
∇′∇′G-term must be carefully investigated, we shift ∇ =⇒ −∇′ under the
integral:

v(R,ω) =
1

jωρ

∫ ∫ ∫
VQ

[− ∇′∇′G(R − R′,ω) · f(R′,ω)

− jωρh(R′,ω)∇′G(R − R′,ω)
]
d3R′ − 1

jωρ
f(R,ω).

(5.77)

Considering ∫ ∫ ∫
VQ

δ(R − R′) I · f(R′,ω) d3R′ = f(R,ω) (5.78)

for R ∈ VQ, we can add the isolated f -Term in (5.77) according to

v(R,ω) =
1

jωρ

∫ ∫ ∫
VQ

{[−∇′∇′G(R − R′,ω) − δ(R − R′) I︸ ︷︷ ︸
= k2G

v
(R − R′,ω)

] · f(R′,ω)

− jωρh(R′,ω)∇′G(R − R′,ω)
}

d3R′ (5.79)

to a second rank Green tensor that reveals itself as k2G
v
(R′′,ω) in comparison

to (5.73).
The Green functions in (5.63) do not contain an additional δ-term; why,

because for R ∈ VQ, we have

p(R,ω) =
1

jωκ
∇ · v(R,ω) +

1
jωκ

h(R,ω) (5.80)

analogous to (5.75). If we equally insert (5.73), the pendant to (5.77) reads as

p(R,ω) =
∫ ∫ ∫

VQ

[
∇′ · G

v
(R − R′,ω) · f(R′,ω)

+
1

jωκ
h(R′,ω)∆′G(R − R′,ω)

]
d3R′ +

1
jωκ

h(R,ω).

(5.81)

Equation 5.58 shows that the h-term outside the integral is canceled for
R ∈ VQ, it must not be accounted for by an “extra” δ-term; furthermore,
we conclude with (5.67) utilizing (5.58) that ∇′ · G

v
= ∇′G holds, finally

realizing the development of (5.63) from (5.81) that is valid for R ∈ VQ.
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h(R′, ω)
t = n′c p(R′, ω)

n′c

g = –n′c · v(R′, ω)

p = pi + ps

R

O

v = vi + vs

f(R′, ω)

VQ

R′

pi, vi

ps, vs

–pi, –vi

Sc

ρ, κ

Vc

FIGURE 5.2
Acoustic scattering problem: surface sources for Huygens’ principle.

5.6 Huygens’ Principle for Acoustic Scattered Fields
in Homogeneous Materials

5.6.1 Huygens’ principle

In the presence of a scattering body with volume Vc and surface Sc—its ma-
terial properties must not be specified at the moment—the source field, now
called incident field pi(R,ω), vi(R,ω), has to be complemented by a scattered
field ps(R,ω), vs(R,ω): The incident field “is not aware” of the scattering
body and, therefore, cannot satisfy the necessary boundary or transition con-
ditions on Sc; hence, these conditions enforce the existence of a scattered field
in that way that they are fulfilled by the total field p(R,ω), v(R,ω) as the
superposition of the incident and the scattered field89 (Figure 5.2). Huygens’
principle postulates a point source synthesis of the scattered field in terms of
elementary spherical waves that are weighted with the field values on Sc; they
superimpose to the scattered field in the exterior of Vc and they cancel the
incident field in the interior of Vc, yielding a zero total field (extinction theo-
rem). The exact mathematical derivation for scalar wave fields (Section 15.1.2)

89Per definitionem, the sources of the incident field are defined as prescribed sources
without any feedback to the scattered field: VQ does not represent a scattering body for the
scattered field. Of course, this is an idealized model.
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reveals90 that besides spherical waves with direction-independent amplitude
and phase dipole waves have to be included, and it renders more precisely the
field weights of spherical and dipole waves in terms of the Helmholtz integral
(representation theorem). Here, we want to present stringent but heuristic
arguments going back to Larmor (1903) for electromagnetic waves: Postulat-
ing the extinction theorem, we start with a zero field volume Vc; then the
transition conditions (5.11) and (5.12) define field-dependent surface sources

t(R′, t) = n′
c p(R′, t), (5.82)

g(R′, t) = −n′
c · v(R′, t) (5.83)

for R′ ∈ Sc, where n′
c denotes the outward normal in the source point on Sc.

Exactly, those surface sources are the sources of the scattered field (Figure
5.2)! Therefore they are called equivalent or secondary sources. Hence, we
utilize the source field representation (5.63) reduced to91 on Sc and insert the
time harmonic surface sources (5.82) and (5.83):

ps(R,ω) =
∫ ∫

Sc

[− jωρn′
c · v(R′,ω)G(R − R′,ω)

+ p(R′,ω)n′
c · ∇′G(R − R′,ω)

]
dS′. (5.84)

With (5.74), we can represent the first term in (5.84) by the normal derivative
of the pressure:

ps(R,ω) =
∫ ∫

Sc

[
p(R′,ω)∇′G(R − R′,ω)

− G(R − R′,ω)∇′p(R′,ω)
] · n′

c dS′; (5.85)

this is the exact version of Huygens’ principle, i.e., the Helmholtz integral
as a point source synthesis of the scattered field.92 Note: The Helmholtz
integral (5.85)—namely, the integral representation (5.84)—actually yields
the extinction theorem p(R,ω) = pi(R,ω) + ps(R,ω) = 0 for R ∈ Vc, hence
ps(R,ω) = −pi(R,ω) for R ∈ Vc; as a consequence, this point source synthesis
is only meaningful in the exterior of Vc.

Excluding observation points on Sc in (5.85) and (5.84), respectively, due
to the singularity of Green’s function, we do not face mathematical problems
applying (5.74) to (5.84) to obtain the formulation in terms of a point source

90It turns out that Huygens’ principle is a mathematical consequence of the Helmholtz
equation.

91We define volume sources multiplying the surface sources (5.82), (5.83) with the singular
function γc(R) of Sc, thus transforming the volume integral of the source field representation
into a surface integral (Section 2.4.5).

92We recognize the right-hand side of the second Green formula (2.202) that is used to
derive the representation (5.85).
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synthesis for the scattered particle velocity field:

vs(R,ω) =
∫ ∫

Sc

[
n′

c · v(R′,ω)∇′G(R − R′,ω)

− 1
jωρ

p(R′,ω)n′
c · ∇′∇′G(R − R′,ω)

]
dS′

=
∫ ∫

Sc

[
n′

c · v(R′,ω)∇′G(R − R′,ω)

− jωκ p(R′,ω)n′
c · G

v
(R − R′,ω)

]
dS′. (5.86)

Obviously, the same result is obtained if we use (5.82) and (5.83) in (5.73).

5.6.2 Acoustic fields scattered by inhomogeneities with soft
and rigid boundaries, Kirchhoff approximation

Even though the point source synthesis is physically intuitive it is useless for
actual scattering bodies: Two unknown quantities appear under the integral,
i.e., the boundary values n′

c · v(R′,ω), p(R′,ω) or n′
c · ∇′p(R′,ω), p(R′,ω),

respectively, of the total field whose scattered contribution should be calcu-
lated beforehand with (5.84) and (5.85). How do we proceed to compute the
boundary values? We execute the limit R −→ Sc with the integral representa-
tions! Admittedly, this has to be performed with “great care” due to the sin-
gularity of Green’s function; it turns out that the term with ∇′G(R − R′,ω)
indeed causes problems that are nevertheless solvable. We obtain for instance
with (5.85) (Colton and Kress 1983; Langenberg 2005):

ps(R,ω) =
1
2

p(R,ω)

+
∫ ∫

Sc

[
p(R′,ω)∇′G(R − R′,ω) − G(R − R′,ω)∇′p(R′,ω)

]
· n′

c dS′, R ∈ Sc. (5.87)

Replacing ps on the left-hand side by p − pi, we find

1
2

p(R,ω) = pi(R,ω)

+
∫ ∫

Sc

[
p(R′,ω)∇′G(R − R′,ω) − G(R − R′,ω)∇′p(R′,ω)

]
· n′

c dS′, R ∈ Sc, (5.88)

as an integral equation relation between the two unknown quantities; this
reveals that they are not independent upon each other, prescribing one of
them makes the other one calculable. Meaningful, even though idealized
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assumptions now come into play through the actual physical nature of the
scatterer: The volume Vc cannot only be kept “Huygens field-free” but phys-
ically field-free by prescribing the boundary condition for either a soft or a
rigid scatterer.

The Dirichlet boundary condition (5.16) characterizes the acoustically soft
scatterer; inserted into (5.88) results in an integral equation of the first kind
(the unknown quantity appears only under the integral)∫ ∫

Sc

G(R − R′,ω)∇′p(R′,ω) · n′
c dS′ = pi(R,ω), R ∈ Sc, (5.89)

for the normal derivative n′
c · ∇′p(R′,ω) of the pressure or the weighted nor-

mal component jωρn′
c · v(R′,ω) of the particle velocity, respectively. That

way, the surface deformation (5.17) basically becomes calculable.
The Neumann boundary condition (5.18) characterizes the acoustically

rigid scatterer; inserted into (5.88) results in an integral equation of the second
kind (the unknown quantity also appears outside of the integral)

1
2

p(R,ω) −
∫ ∫

Sc

p(R′,ω)n′
c · ∇′G(R − R′,ω) dS′ = pi(R,ω), R ∈ Sc,

(5.90)
for the pressure on Sc.

Only few scattering geometries allow for an analytic solution of the integral
equations (5.89) and (5.90) (Bowman et al. 1987); in general, we have to rely
on numerical methods that have been developed as the method(s) of moments
to simulate electromagnetic fields (Harrington 1968; Wilton 2002); nowadays,
also fast multipole methods are under concern (Chew et al. 2002; Michielssen
et al. 2002).

The integral equation of the second kind is accessible to a very intuitive
physical interpretation—and, hence, to a plausible approximation: Elementary
dipole waves originate from each point R′ of the surface Sc that are “recorded”
at each observation point R on Sc, that is to say, the integral in (5.90) repre-
sents the radiation interaction of the surface points of the scatterer. If physical
arguments can be found to neglect this interaction, an approximate solution
of (5.90) turns out to be

p(R,ω) � 2pi(R,ω), R ∈ Sc. (5.91)

This is Kirchhoff’s approximation of physical optics93 (PO: Section 15.2.3).
Are there any surfaces Sc for which (5.91) is exact? Yes, planar surfaces:
Because ∇′G(R − R′,ω) ∼ R − R′ is a vector oriented within the planar
surface the normal n′

c is always perpendicular to it, the scalar product

93Even though light is an electromagnetic vector wave a scalar notation is often sufficient.
The Helmholtz integral consequently describes light diffraction physically as a wave phe-
nomenon, thus distinguishing it from geometrical optics. Today the notation “PO” explicitly
stands for the approximation (5.91) of scalar wave fields.
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n′
c · ∇′G(R − R′,ω) is identically zero with the intuitive consequence: The

Kirchhoff approximation might be a useful approximation if the surface of the
scatterer is only weakly curved relative to the wavelength; the Kirchhoff ap-
proximation is a high frequency approximation! Therefore, convex scatterers
with a closed surface exhibit, just like the infinitely large planar perforated
screen as the originally Kirchhoff approximated problem, an illuminated and
a shadow side complementing (5.91) with the requirement: p(R,ω) = 0 on the
shadow side of Sc. Inserting this Kirchhoff approximation into the integral rep-
resentation (5.84), we obtain a PO-approximation of a point source synthesis
for the scattered field that can immediately be evaluated because the incident
field is supposed to be known. The generalization to elastodynamics reveals
itself as one of the simulation methods of US-NDT (Section 15.5). Therefore,
we discuss a comparison between exact and Kirchhoff-approximated scattered
fields referring to Figures 5.3 and 5.4 to point out the differences for an NDT-
relevant example. For simplicity, we choose a two-dimensional problem; the
scatterer is supposed to be a planar “crack” of width 2a with a Neumann
boundary condition, the incident field is supposed to be a plane impulse wave.
Such a two-dimensional strip may be considered as the limiting case of a
cylinder with elliptic cross-section. The eigenfunctions in elliptic cylindrical
coordinates are Mathieu functions (Schäfke 1967); the coefficients of a series

FIGURE 5.3
Acoustic scattered impulses in different far-field directions of an acoustically
rigid two-dimensional strip illuminated by a plane wave under 45◦: exact cal-
culation.
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FIGURE 5.4
Acoustic scattered impulses in different far-field directions of an acoustically
rigid two-dimensional strip illuminated by a plane wave under 45◦: Kirchhoff
approximation.

expansion of p(R,ω), R ∈ Sc, in terms of Mathieu functions can be exactly
calculated with the integral equation (5.90); the resulting representation of the
scattered field according to (5.84) becomes particularly simple if the far-field
approximation for R � a and R � λ—λ being the wavelength—is inserted
for the normal derivative of the (two-dimensional) Green function (Section
13.1.3). Continuing as such for each frequency in the spectrum of the incident
impulse pi(t), we can calculate the impulsive scattered field via Fourier inver-
sion of (5.84). We have chosen an RC2(t)-pulse for pi(t) in both figures (Fig-
ure 2.20); we have displayed the impulsive scattered far-field ps(R, t − R/c)
retarded with regard of the coordinate origin (in the middle of the strip) for
different directions as function of time. Typical features of this scattered field
are the following:

• In reflection direction, only a single scattered impulse is observed;

• In backscattering direction (for example), we nicely recognize the two crack
tip impulses with opposite phase and unequal amplitude;

• In particular between reflection and backscattering direction, we observe
small trailing impulses: They can be traced back to the radiation interac-
tion of the crack tips (so-called resonances).
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The results obtained with the Kirchhoff approximation—the evaluation of
the integral (5.84) is trivial—as displayed in Figure 5.4 essentially differ with
regard to the following:

• The crack tips always exhibit equal amplitudes and

• The radiation interaction impulses are missing (per definitionem).

However, the reflected impulse is exactly reproduced. This means in the time
harmonic language: The main lobes in the scattered far-field are sufficiently
accurate within the Kirchhoff approximation whereas this is not true for the
side lobes. This general statement always holds.

Relying on the point source representation (5.86) for the particle velocity,
we can derive an integral equation of the second kind for the Dirichlet problem:

1
2

nc · v(R,ω) +
∫ ∫

Sc

n′
c · v(R′,ω)nc · ∇G(R − R′,ω) dS′,

R ∈ Sc = nc · vi(R,ω), (5.92)

that similarly allows for the justification of the Kirchhoff approximation for
acoustically soft scatterers.

For the Neumann problem, Equation 5.86 yields the integral equation of
the first kind:

− jωρnc · vi(R,ω)

= PVε

∫ ∫
Sc

p(R′,ω)ncn
′
c : ∇′∇G(R − R′,ω) dS′, R ∈ Sc; (5.93)

here, the specially defined principal value PVε indicates (Langenberg 2005)
that some thoughts have to be devoted to the double normal derivative of the
singular Green function.

5.6.3 Acoustic fields scattered by penetrable
inhomogeneities, Born approximation

Specifying the scatterer as penetrable for acoustic waves principally allows for
a homogeneous or inhomogeneous material filling of Vc. For the first case, the
homogeneous equation (5.40) has to be solved with the corresponding mate-
rial parameters matching it to the solution in the exterior via the transition
conditions. Conveniently, another Helmholtz integral representation is chosen
for the interior solution94 with the Green function of the homogeneous interior
material (it differs from the exterior Green function with respect to the wave
number); by the way, the extinction theorem for this representation tells us
that it produces a null field in the exterior. On behalf of the transition con-
ditions (5.13) and (5.14), we now need the respective integral representations

94Due to the extinction theorem, the exterior integral representation does not interfere
with the solution in the interior.
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(5.86) in the exterior and in the interior as solutions of (5.41). With the limits
R −→

ext
Sc (from the exterior) in the integral representations of the exterior

field and R −→
int

Sc (from the interior) in the integral representations of the

interior field, we finally obtain a coupled system of two integral equations for
the unknown Huygens surface sources.

An alternative procedure is applicable to homogeneous as well as inhomo-
geneous95 material fillings of Vc; only the knowledge of the Green function of
the homogeneous exterior material is required. The basis is the embedding of
an inhomogeneous ρ(i)(R)κ(i)(R)-volume into the homogeneous ρκ-material
as sketched in Figure 7.2 (for the elastic case). With the characteristic func-
tion Γc(R) of Vc, we define rho- and kappa-contrast functions:

χρ(R) =
1
ρ

[
ρ(i)(R) − ρ

]
Γc(R), (5.94)

χκ(R) =
1
κ

[
κ(i)(R) − κ

]
Γc(R), (5.95)

which are evidently zero outside Vc. Within the general differential equations
(5.26) and (5.29) for p(R,ω) and v(R,ω) of the inhomogeneous ρ(R)κ(R)-
material, we only have to put

ρ(R) = ρ [1 + χρ(R)] =
{

ρ for R �∈ Vc

ρ(i)(R) for R ∈ Vc,
(5.96)

κ(R) = κ [1 + χκ(R)] =
{

κ for R �∈ Vc

κ(i)(R) for R ∈ Vc
(5.97)

and to arrange the resulting terms in (5.26) and (5.29) in a way96 that only
the differential operators (5.32) and (5.33) of the homogeneous embedding
material remain on the left-hand side of the differential equations:

∆p(R, t) − κρ
∂2p(R, t)

∂t2
= ∇ · [f(R, t) + f ρ(R, t)

]
+ ρ

∂

∂t
[h(R, t) + hκ(R, t)] , (5.98)

∇∇ · v(R, t) − κρ
∂2v(R, t)

∂t2
= − ∇ [h(R, t) + hκ(R, t)]

− κ
∂

∂t

[
f(R, t) + f ρ(R, t)

]
. (5.99)

The terms

f ρ(R, t) = Γc(R)
[
ρ − ρ(i)(R)

] ∂v(R, t)
∂t

, (5.100)

hκ(R, t) = − Γc(R)
[
κ − κ(i)(R)

] ∂p(R, t)
∂t

(5.101)

95If the Green functions are known, the above method also works.
96Note: We first formulate contrast function representations according to (5.96) and (5.97)

for 1/ρ(R) and 1/κ(R) only to undo it subsequently.



K12611 Chapter: 5 page: 165 date: January 18, 2012

Acoustics 165

appear as secondary volume sources representing the scatterer equivalently.
Note: Just like Huygens surface sources, they are dependent on the total field.
This becomes immediately clear if we formally consider the right-hand sides of
(5.98) and (5.99) as inhomogeneities and apply—after the Fourier transform
with respect to t—the point source synthesis method with the Green functions
of the homogeneous ρκ-material:

p(R,ω) =
∫ ∫ ∫

VQ

[
jωρh(R′,ω)G(R − R′,ω)

+ f(R′,ω) · ∇′G(R − R′,ω)
]
d3R′

+
∫ ∫ ∫

Vc

[
jωρhκ(R′,ω)G(R − R′,ω)

+ f ρ(R
′,ω) · ∇′G(R − R′,ω)

]
d3R′, (5.102)

v(R,ω) =
∫ ∫ ∫

VQ

[− jωκf(R′,ω) · G
v
(R − R′,ω)

− h(R′,ω)∇′G(R − R′,ω)
]
d3R′

+
∫ ∫ ∫

Vc

[− jωκf ρ(R
′,ω) · G

v
(R − R′,ω)

− hκ(R′,ω)∇′G(R − R′,ω)
]
d3R′. (5.103)

In each case, we obtain two volume integrals extending over VQ �⊂ Vc with
the true sources—they are only nonvanishing in VQ—and over Vc with the
secondary sources—those are only nonvanishing in Vc �⊂ VQ. Obviously, the
integral representations (5.102) and (5.103) typify a separation of the total
field p(R,ω), v(R,ω) into an incident field

pi(R,ω) =
∫ ∫ ∫

VQ

[
jωρh(R′,ω)G(R − R′,ω)

+ f(R′,ω) · ∇′G(R − R′,ω)
]
d3R′, (5.104)

vi(R,ω) =
∫ ∫ ∫

VQ

[− jωκf(R′,ω) · G
v
(R − R′,ω)

− h(R′,ω)∇′G(R − R′,ω)
]
d3R′ (5.105)

and a scattered field

ps(R,ω) =
∫ ∫ ∫

Vc

[
jωρhκ(R′,ω)G(R − R′,ω)

+ f ρ(R
′,ω) · ∇′G(R − R′,ω)

]
d3R′, (5.106)

vs(R,ω) =
∫ ∫ ∫

Vc

[− jωκf ρ(R
′,ω) · G

v
(R − R′,ω)

− hκ(R′,ω)∇′G(R − R′,ω)
]
d3R′. (5.107)
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It is for this reason that the secondary sources (5.100) and (5.101) as they enter
the scattering integrals (5.106), (5.107) depend upon the total field p(R,ω),
v(R,ω), that is to say, the volume point source synthesis for the field scattered
by a penetrable body is, at that point, useless for its explicit calculation as
it is true for the Huygens surface point source synthesis (5.84) and (5.86) for
the scattered field of a perfectly rigid or soft body. Yet, the calculation of
the total field in Vc equally relies on the solution of integral equations. Here
we can immediately write down this system of so-called Lippmann–Schwinger
integral equations, because we only have to realize that (5.102) holds in all
space, especially in the interior of Vc:

p(R,ω) = pi(R,ω) +
∫ ∫ ∫

Vc

[
jωρhκ(R′,ω)G(R − R′,ω)

+ f ρ(R
′,ω) · ∇′G(R − R′,ω)

]
d3R′, R ∈ Vc.

(5.108)

Merely, some care has to be taken into account with (5.103) due to the singu-
larity G

v
as it was already discussed; yet, Equation 5.71 tells us the explicit

source point behavior of G
v
(R − R′,ω) for R = R′ ∈ Vc that we only must

have in mind evaluating the integral equation

v(R,ω) = vi(R,ω) +
∫ ∫ ∫

Vc

[− jωκf ρ(R
′,ω) · G

v
(R − R′,ω)

− hκ(R′,ω)∇′G(R − R′,ω)
]
d3R′, R ∈ Vc.

(5.109)

Note: We obtain two coupled integral equations if a nonvanishing contrast
of the scatterer with respect to the embedding material exists in the density
and in the compressibility. Furthermore: A contrast only in the density results
in a single vector integral equation—the Lippmann–Schwinger integral equa-
tion (5.109)—whereas a single contrast in the compressibility yields the single
scalar Lippmann–Schwinger equation (5.108).

As it is true for the surface integral equation (5.90), both volume integrals
in (5.108) and (5.109) stand for the radiation interaction in the interior of the
scatterer; if this interaction is only weak, we may approximate

p(R,ω) � pi(R,ω), (5.110)
v(R,ω) � vi(R,ω) (5.111)

for R ∈ Vc for insertion into (5.106) and (5.107). This is called Born’s ap-
proximation. The validity of the Born approximation can only be globally
expressed: It is a low frequency approximation for low contrast (Chew 1990).

The actual consequence of Born’s and Kirchhoff’s approximation can be
discussed with the help of (5.108) for vanishing density contrast; in that case,
the scalar Lippmann–Schwinger equation reads as
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p(R,ω) = pi(R,ω) + k2
∫ ∫ ∫

Vc

χκ(R′)p(R′,ω)G(R − R′,ω) d3R′, R ∈ Vc.

(5.112)

This integral equation can be nicely abbreviated according to

(I − Vc){p}(R,ω) = pi(R,ω) (5.113)

if a volume scattering operator

Vc{p}(R,ω) = k2
∫ ∫ ∫

Vc

χκ(R′)p(R′,ω)G(R − R′,ω) d3R′, R ∈ Vc,

(5.114)

and an identity operator I with I{p}(R,ω) = p(R,ω) are introduced. The
formal solution of (5.113) is obtained inverting the operator I − Vc accord-
ing to

p(R,ω) = (I − Vc)−1{pi}(R,ω), R ∈ Vc. (5.115)

It is now explicitly evident that the contrast χκ as present in Vc enters the
interior total field nonlinearly and, therefore, also the exterior field:97 This is
the genuine difficulty solving a scattering problem even though the governing
equations are linear. So, what is the essence of the Born approximation? It
linearizes the scattering problem for penetrable scatterers because it simply
deletes Vc in (5.115)!

In the same manner, the Kirchhoff approximation effectively linearizes
scattering by a perfectly soft or rigid body. In addition, even the equally non-
linear inverse scattering problem, i.e., the problem to retrieve scatterers from
the knowledge of the (measured) scattered field is linearized through Born’s
and Kirchhoff’s approximations; that is why the imaging method termed syn-
thetic aperture focusing technique (SAFT) exactly implies this linearization.
(Langenberg 1987; Langenberg et al. 1993a; Langenberg et al. 1999a; Lan-
genberg 2002). Not least, Kirchhoff’s and Born’s approximations are valued
because the nonlinear inversion essentially causes trouble (e.g.: van den Berg
1999; Belkebir and Saillard 2001).

The linearizations according to Born and Kirchhoff, even though physically
plausible, are physically absurd: Born’s approximation violates energy conser-
vation and Kirchhoff’s approximation violates reciprocity (Langenberg 2002).

97If we add something to the geometry or to the material parameters of Vc, the field does
not change additively.
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6
Electromagnetism

6.1 Maxwell Equations, Poynting Vector, Lorentz Force

6.1.1 Maxwell equations

The basis of (macroscopic) electromagnetism are Maxwell’s equations

∂D(R, t)
∂t

= ∇ × H(R, t) − Je(R, t), (6.1)

∂B(R, t)
∂t

= − ∇ × E(R, t) − Jm(R, t), (6.2)

∇ · D(R, t) = �e(R, t), (6.3)
∇ · B(R, t) = �m(R, t) (6.4)

for the field quantities

• Electric field strength E(R, t),

• Magnetic field strength H(R, t),

• Electric flux density D(R, t),

• Magnetic flux density B(R, t)

and the source quantities

• Electric current density Je(R, t),

• Magnetic current density Jm(R, t),

• Electric charge density �e(R, t),

• Magnetic charge density �m(R, t).

A real physical meaning can only be devoted to the electric current density
Je(R, t) defined as transport of electric charge; attributing an electric charge
q to a specific particle density n(R, t) instead of a mass according to (3.25),
we obtain the electric current density

�e(R, t) = q n(R, t), (6.5)

169
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and Je(R, t) is analogously to the mechanical momentum density (Equa-
tion 3.26) defined as the corresponding transport quantity

Je(R, t) = �e(R, t)v(R, t). (6.6)

Accordingly, mass conservation (3.28) yields charge conservation

∇ · Je(R, t) +
∂�e(R, t)

∂t
= 0 (6.7)

in terms of a continuity equation (de Hoop 1995). If magnetic charges would
physically exist, we could define the magnetic current density

Jm(R, t) = �m(R, t)v(R, t) (6.8)

similarly to (6.6), and we would obtain the continuity equation

∇ · Jm(R, t) +
∂�m(R, t)

∂t
= 0. (6.9)

As a matter of fact, magnetic charge and current densities are only auxiliary
quantities primarily resulting from symmetry considerations for Maxwell’s
equations.

Nevertheless, we find that electric-physical phenomena—interatomic elec-
tric loop currents correspond to magnetic moments whose time derivatives
are equivalent to magnetic current densities—can be interpreted as magnetic-
physical phenomena; furthermore, the jump discontinuity of the tangential
component of the electric field strength on an arbitrary closed surface de-
fines a magnetic surface current density that plays an important role within
Huygens’ principle (Langenberg 2005).

The divergence relations (6.3) and (6.4) are referred to as compatibility
relations, because they follow from the “proper” Maxwell equations (6.1) and
(6.2) for causal fields with (6.7) and (6.9) (de Hoop 1995); nevertheless, they
must be explicitly satisfied by any physical Maxwell field.

6.1.2 Vacuum Maxwell equations

In contrast to acoustic and elastic waves, electromagnetic waves even propa-
gate in vacuum. In vacuum, field strengths and flux densities are related by
the “constitutive equations”

D(R, t) = ε0E(R, t), (6.10)
B(R, t) = µ0H(R, t), (6.11)

where the magnetic field constant µ0 = 4π · 10−7 H/m and the electric field
constant ε0 appear; the latter is given by the definition of the speed of light
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(in vacuum) c0 = 299792458 m/s through ε0 = 1/(µ0c
2
0) � 8.8541878 · 10−12

F/m. Maxwell’s equations read in this case

ε0
∂E(R, t)

∂t
= ∇ × H(R, t), (6.12)

µ0
∂H(R, t)

∂t
= −∇ × E(R, t), (6.13)

∇ · E(R, t) = 0, (6.14)
∇ · H(R, t) = 0, (6.15)

where the field strengths E(R, t) and H(R, t) (for a stationary observer rel-
ative to the R-coordinate system) are defined as forces on an infinitesimally
small probing charge q moving with a velocity v(R, t) that does not disturb
the field. The total force is the sum of the Coulomb force applied by E and
the Lorentz force applied by H (Section 6.1.4):

F(R, t) = qE(R, t) + qµ0v(R, t) × H(R, t). (6.16)

Of course, sources must be the origin of electromagnetic fields; very often,
they reside as prescribed (field-independent) charge and current densities in
a spatially restricted source volume VQ to be added to Maxwell’s equations
(6.12) through (6.15) in vacuum:

ε0
∂E(R, t)

∂t
= ∇ × H(R, t) − Je(R, t), (6.17)

µ0
∂H(R, t)

∂t
= −∇ × E(R, t) − Jm(R, t), (6.18)

∇ · E(R, t) =
1
ε0

�e(R, t), (6.19)

∇ · H(R, t) =
1
µ0

�m(R, t). (6.20)

In nonvacuum, the source volume is embedded in matter, and we have to
rely on Maxwell equations (6.1) through (6.4) where the relation between D
and E, respectively, B and H has to be specified by constitutive equations.

6.1.3 Poynting’s theorem

We define the vector of electromagnetic energy flux density (energy per time
and area), the Poynting vector, as

S(R, t) = E(R, t) × H(R, t). (6.21)

Taking the divergence and insertion into Maxwell equations (6.1) through (6.4)
results in Poynting’s energy conservation law
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−H(R, t) · Jm(R, t) − E(R, t) · Je(R, t)︸ ︷︷ ︸
=

∂wQ(R, t)
∂t

−∇ · S(R, t)

= H(R, t) · ∂B(R, t)
∂t

+ E(R, t) · ∂D(R, t)
∂t︸ ︷︷ ︸

=
∂wem(R, t)

∂t

, (6.22)

where ∂wem(R, t)/∂t defines the time variation of electromagnetic energy
density that is also obtained in vacuum (and in linear nondissipative ma-
terials with symmetric ε

r
- and µ

r
-tensors: Section 6.3) if the energy density

defined for electro/magneto-statics

wem(R, t) =
1
2

E(R, t) · D(R, t) +
1
2

H(R, t) · B(R, t) (6.23)

is differentiated with regard to time. In (6.23), ∂wQ(R, t)/∂t denotes the
time variation of the externally applied energy density; to ensure its posi-
tiveness, the prescribed current densities must be opposite to the fields.

For real valued time harmonic fields and after time averaging,

SK(R,ω) =
1
2

E(R,ω) × H∗(R,ω) (6.24)

defines the complex Poynting vector, and the energy conservation law (6.22)
takes the form

∇ · �{SK(R,ω)} = −1
2

�{E(R,ω) · J∗
e(R,ω) + H(R,ω) · J∗

m(R,ω)}
(6.25)

for linear nondissipative materials with symmetric ε
r
- and µ

r
-tensors.

6.1.4 Lorentz force

Electromagnetic fields bear forces on charges and currents (moving charges);
due to these effects, they have actually been discovered (the electrically
charged amber gave its Greek name to electricity). Forces appear in a conser-
vation law for the momentum: Equation 3.78 is one of the governing equations
of elastodynamics. To find an electromagnetic pendant to (3.78), we must first
define an electromagnetic momentum density in a way that its time derivative
yields a respective conservation law together with an electromagnetic stress
tensor and an electromagnetic force density on the basis of Maxwell equations.
We immediately verify that a product of D(R, t) and B(R, t) has the phys-
ical dimension of a momentum density formally defining a momentum den-
sity vector through a vector product D(R, t) × B(R, t). Investigating its time
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derivative in vacuum, we immediately obtain utilizing Maxwell equations—we
exclusively consider electric charges and electric currents:

ε0µ0
∂

∂t
[E(R, t) × H(R, t)] = −µ0H(R, t) × [∇ × H(R, t)] − ε0E(R, t)

× [∇ × E(R, t)] − µ0Je(R, t). (6.26)

Analogous to (3.78), we must try to create the divergence of a second rank
tensor on the right-hand side of (6.26) via adequate conversions; we succeed
if we introduce the electromagnetic vacuum stress tensor (Maxwell’s stress
tensor)

T
em

(R, t) = ε0E(R, t)E(R, t) + µ0H(R, t)H(R, t)

−
[ε0

2
|E(R, t)|2 +

µ0

2
|H(R, t)|2

]
I. (6.27)

The result turns out to be the electromagnetic momentum conversation law
(in vacuum)

ε0µ0
∂

∂t
[E(R, t) × H(R, t)] = ∇ · T

em
(R, t) − f em(R, t) (6.28)

with the force density

f em(R, t) = ρe(R, t)E(R, t) + µ0Je(R, t) × H(R, t). (6.29)

In (6.29), the first term represents the Coulomb force density and the second
term the Lorentz force density, the latter being the essential basis for the
construction of EMATs.

A unique separation of the right-hand side of (6.28) into ∇ · T
em

and
f em is not possible for electrically and/or magnetically polarizable materials:
Maxwell equations only define the sum of both terms. Nevertheless, with a
certain arbitrariness explicit expressions for T

em
and f em can also be obtained

(Jackson 1975).

6.2 Transition and Boundary Conditions

From Maxwell equations (6.1) and (6.2), inhomogeneous transition conditions

n × [H(1)(RS , t) − H(2)(RS , t)] = Ke(RS , t), (6.30)

n × [E(1)(RS , t) − E(2)(RS , t)] = − Km(RS , t) (6.31)

can immediately be deduced for a surface R = RS ∈ S separating two mate-
rials with a jump discontinuity of electromagnetic properties; Ke(RS , t) and
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Km(RS , t) are electric and magnetic surface current densities that are related
to the time variation of surface charge densities ηe,m(RS , t) via the surface
divergence operator ∇S according to

∇S · Ke,m(RS , t) +
∂ηe,m(RS , t)

∂t
= 0, (6.32)

provided the materials separated by S are nonconducting, because, in that
case, the surface charges may drift into the material(s) as volume currents.
Exactly, those surface charge densities appear in the compatibility transition
conditions

n · [D(1)(RS , t) − D(2)(RS , t)] = ηe(RS , t), (6.33)

n · [B(1)(RS , t) − B(2)(RS , t)] = ηm(RS , t) (6.34)

that follow from the compatibility relations (6.3) and (6.4). If there are no
prescribed surface currents, the homogeneous transition conditions

n × [H(1)(RS , t) − H(2)(RS , t)] = 0, (6.35)

n × [E(1)(RS , t) − E(2)(RS , t)] = 0, (6.36)

n · [D(1)(RS , t) − D(2)(RS , t)] = 0, (6.37)

n · [B(1)(RS , t) − B(2)(RS , t)] = 0, (6.38)

are obtained that involve the continuity of the tangential components of E and
H and—as compatibility—the normal components of D and B. Therefore, to
maintain discontinuities of these field components surface currents and charges
are indispensable: Postulating a field-free “material” (2) according to Huygens’
principle yields the definition of tangential components of E and H and normal
components of D and B in material (1)—we can omit the index—in terms of
surface current and charge densities:

n × H(RS , t) = Ke(RS , t), (6.39)
n × E(RS , t) = −Km(RS , t), (6.40)
n · D(RS , t) = ηe(RS , t), (6.41)
n · B(RS , t) = ηm(RS , t), (6.42)

that exactly maintain this discontinuity; the normal points away from the
null-field. Idealized realizations of field-free materials may be materials with
infinite electric or infinite magnetic conductivity; they either allow only for
electric current and charge densities or magnetic current and charge densities
resulting in the homogeneous boundary conditions

n × E(RS , t) = 0, (6.43)
n · B(RS , t) = 0 (6.44)
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for infinite electrically conducting surfaces S, which exactly define those sur-
face current and charge densities:

n × H(RS , t) = Ke(RS , t), (6.45)
n · D(RS , t) = ηe(RS , t). (6.46)

Equivalently, infinite magnetically conducting surfaces are characterized by
the boundary conditions

n × H(RS , t) = 0, (6.47)
n · D(RS , t) = 0 (6.48)

that define magnetic surface current and charge densities according to

n × E(RS , t) = −Km(RS , t), (6.49)
n · B(RS , t) = ηm(RS , t). (6.50)

6.3 Constitutive Equations: Permittivity
and Permeability; Dissipation:
Susceptibility Kernels and Conductivity

6.3.1 Permittivity and permeability

With

D(R, t) = ε0εr
(R) · E(R, t), (6.51)

B(R, t) = µ0µ
r
(R) · H(R, t), (6.52)

we postulate electromagnetic constitutive equations for a linear time invariant
instantaneously and locally reacting inhomogeneous anisotropic material, thus
defining the (dimensionless) permittivity tensor of second rank ε

r
(R) and the

(dimension-less) permeability tensor of second rank µ
r
(R). Generalizations—

D also depends upon B and B upon E—are called bianisotropic materi-
als (Karlsson and Kristensson 1992). Isotropic materials are characterized
by two numbers, the scalar permittivity εr(R) (dielectric constant) and
the scalar permeability µr(R), where ε

r
(R) = εr(R) I, µ

r
(R) = µr(R) I. The

time derivative of the electromagnetic energy density (6.23) with the above
constitutive equations is only consistent with the respective time derivative
appearing in Poynting’s theorem (6.22) if ε

r
(R) and µ

r
(R) are symmetric

tensors.
With regard to permittivity anisotropy, we distinguish uniaxial materials

according to

ε
r

= ε⊥ I + (ε‖ − ε⊥) ĉ ĉ (6.53)
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as well as biaxial materials according to (Chen 1983)

ε
r

= α I + β(n̂ m̂ + m̂ n̂). (6.54)

For corresponding inhomogeneous anisotropic materials, the permittivities
ε⊥, ε‖, α, β and the preference directions ĉ, n̂, and m̂ are spatially dependent.

6.3.2 Susceptibility kernels

Dissipation is introduced into linear constitutive equations via susceptibility
kernels χ

e,m
(R, t) within relaxation terms (Karlsson and Kristensson 1992):

D(R, t) = ε0εr
(R) · E(R, t) + ε0

∫ t

0
χ

e
(R, t − τ) · E(R, τ) dτ, (6.55)

B(R, t) = µ0µ
r
(R) · H(R, t) + µ0

∫ t

0
χ

m
(R, t − τ) · H(R, τ) dτ. (6.56)

For causal fields and kernels the convolution integrals extend from 0 to t;
the dissipative material characterized by (6.55) and (6.56) is still time invari-
ant because the susceptibility kernels only depend upon t − τ. Simple models
for the susceptibility kernels are related to the names of Lorentz and Debye
(Langenberg 2005).

The instantaneous reaction terms in (6.55) and (6.56) enter the electro-
magnetic (instantaneous) energy density

wem(R, t) =
ε0

2
E(R, t) · ε

r
(R) · E(R, t) +

µ0

2
H(R, t) · µ

r
(R) · H(R, t),

(6.57)

whereas the relaxation terms define the time derivative of the dissipation
energy density

∂wd(R, t)
∂t

= ε0E(R, t) · ∂

∂t

∫ t

0
χ

e
(R, t − τ) · E(R, τ) dτ + µ0H(R, t)

· ∂

∂t

∫ t

0
χ

m
(R, t − τ) · H(R, τ) dτ; (6.58)

that is why χ
e,m

must be nonnegative definite (but not symmetric). Poynting’s

energy theorem now reads as

∂wQ(R, t)
∂t

− ∇ · S(R, t) =
∂wem(R, t)

∂t
+

∂wd(R, t)
∂t

, (6.59)

where wem(R, t) + wd(R, t) turns out to be the electromagnetic energy density
in dissipative materials; wd(R, t) emerges from causal integration of (6.58).
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After time averaging, we obtain for time harmonic fields

− 1
2

�{H(R,ω) · J∗
m(R,ω) + E(R,ω) · J∗

e(R,ω)} − ∇ · SK(R,ω)

=
ε0

2
�{E(R,ω) · [−jωχ

e
(R,ω) · E(R,ω)]∗}

+
µ0

2
�{H(R,ω) · [−jωχ

m
(R,ω) · H(R,ω)]∗}

=
ωε0

2
�{jχ∗

e
(R,ω) : E(R,ω)E∗(R,ω)}

+
ωµ0

2
�{jχ∗

m
(R,ω) : H(R,ω)H∗(R,ω)}

=
ωε0

4

{
E(R,ω) · �{χ

e
(R,ω)} · E∗(R,ω)

+ E∗(R,ω) · �{χ
e
(R,ω)} · E(R,ω)

+ j[E(R,ω) · �{χ
e
(R,ω)} · E∗(R,ω)

− E∗(R,ω) · �{χ
e
(R,ω)} · E(R,ω)

}
+

ωµ0

4

{
H(R,ω) · �{χ

m
(R,ω)} · H∗(R,ω)

+ H∗(R,ω) · �{χ
m

(R,ω)} · H(R,ω)

+ j[H(R,ω) · �{χ
m

(R,ω)} · H∗(R,ω)

− H∗(R,ω) · �{χ
m

(R,ω)} · H(R,ω)
}

. (6.60)

Note: The right-hand side of (6.60) is by no means a separation into real
and imaginary parts; it is real valued. It becomes obvious from (6.60) that
real and imaginary parts of susceptibility kernel spectra, being by the way
mutual Hilbert transforms, must be responsible for dissipation. For isotropic
kernels—χ

e,m
(R, t) = χe,m(R, t) I—we have

− 1
2

�{H(R,ω) · J∗
m(R,ω) + E(R,ω) · J∗

e(R,ω)} − ∇ · SK(R,ω)

=
ωε0

2
�{χe(R,ω)}|E(R,ω)|2 +

ωµ0

2
�{χm(R,ω)}|H(R,ω)|2; (6.61)

and similarly

− 1
2

�{H(R,ω) · J∗
m(R,ω) + E(R,ω) · J∗

e(R,ω)} − ∇ · SK(R,ω)

=
ωε0

2
�{χ

e
(R,ω)} : E∗(R,ω)E(R,ω)

+
ωµ0

2
�{χ

m
(R,ω)} : H∗(R,ω)H(R,ω); (6.62)

for the symmetric kernels of a reciprocal material—χ
e,m

(R, t) = χ21
e,m

(R, t).

In both cases, only the susceptibility kernels account for dissipation.
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6.3.3 Conductivity

It is well known that the (finite) electric conductivity of a material complies
with an ohmic resistor that transforms electromagnetic energy into thermal
energy. In general, these losses are accounted for by a conduction current term

Je(R, t) =⇒ Je(R, t) + Jl(R, t) (6.63)

that complements the electric current density in Maxwell equation (6.1).
Ohm’s law

Jl(R, t) = σ
e
(R) · E(R, t) (6.64)

with the real valued second rank tensor of electric conductivity σ
e
(R) postu-

lates a linear instantaneous reaction between electric field strength and con-
duction current density. The same result—complemented by the real valued
second rank tensor σ

m
(R) of magnetic conductivity—is obtained with the

constitutive equations

∂D(R, t)
∂t

= ε0εr
(R) · ∂E(R, t)

∂t
+ σ

e
(R) · E(R, t), (6.65)

∂B(R, t)
∂t

= µ0µ
r
(R) · ∂H(R, t)

∂t
+ σ

m
(R) · H(R, t) (6.66)

of the Maxwell model of electric–magnetic conductivity [compare the Maxwell
model (4.77) and (4.78) of elastodynamic dissipation]. The time variation of
electromagnetic energy density

∂w(R, t)
∂t

= E(R, t) · ∂D(R, t)
∂t

+ H(R, t) · ∂B(R, t)
∂t

(6.67)

then contains the term ∂we,m(R, t)/∂t as it results from (6.57) as well as the
term of the time variation of the dissipation energy density:

∂w(R, t)
∂t

=
ε0

2
ε
r
(R) :

∂

∂t
[E(R, t)E(R, t)] +

µ0

2
µ

r
(R) :

∂

∂t
[H(R, t)H(R, t)]︸ ︷︷ ︸

=
∂wem(R, t)

∂t

+ σ
e
(R) : E(R, t)E(R, t) + σ

m
(R) : H(R, t)H(R, t)︸ ︷︷ ︸

=
∂wd(R, t)

∂t
.

(6.68)

Therefore, the conductivity tensors must be nonnegative definite.
If we write (6.65) and (6.66) for Fourier spectra of fields

D(R,ω) = ε0

[
ε
r
(R) + j

σ
e
(ω)

ε0ω︸ ︷︷ ︸
= ε

c
(R)

]
· E(R,ω), (6.69)
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B(R,ω) = µ0

[
µ

r
(R) + j

σ
m

(ω)

µ0ω︸ ︷︷ ︸
= µ

c
(R)

]
· H(R,ω), (6.70)

we define ε
c
(R), µ

c
(R) as complex material tensors with frequency-dependent

imaginary parts; a consequence will be wave attenuation and dispersion in
conducting materials. Note: Real and imaginary parts of (6.69) and (6.70) do
not show up as Hilbert transform relations, not even if ε

r
(R),µ

r
(R) and

σ
e,m

(R) are defined complex valued and frequency-dependent as required
by Hilbert transforms (Langenberg 2005). Therefore, strictly speaking, the
Maxwell model of conductivity is nonphysical; it even leads to discrepancies
regarding dispersion of electromagnetic pulses (Langenberg 2005).

Utilizing (6.68), Poynting’s theorem reads for real valued time harmonic
fields after time averaging:

− 1
2

�{E(R,ω) · J∗
e(R,ω) + H(R,ω) · J∗

m(R,ω)} − ∇ · SK(R,ω)

=
1
2

�{σ
e
(R) : E∗(R,ω)E(R,ω) + σ

m
(R) : H∗(R,ω)H(R,ω)} (6.71)

and for scalar conductivities σ
e,m

(R) = σe,m(R) I, respectively,

− 1
2

�{E(R,ω) · J∗
e(R,ω) + H(R,ω) · J∗

m(R,ω)} − ∇ · SK(R,ω)

=
1
2

σe(R)|E(R,ω)|2 +
1
2

σm(R)|H(R,ω)|2. (6.72)

6.4 Wave Equations in the Time and Frequency Domains

6.4.1 Wave equations in the time domain

From Maxwell’s equations

ε0εr
(R) · ∂E(R, t)

∂t
= ∇ × H(R, t) − Je(R, t), (6.73)

µ0µ
r
(R) · ∂H(R, t)

∂t
= −∇ × E(R, t) − Jm(R, t) (6.74)

for linear time invariant instantaneously (nondissipative) and locally reacting
inhomogeneous anisotropic materials, we deduce vector wave equations for the
field strengths via mutual insertion:

− ∇ ×
[
µ−1

r
(R) · ∇ × E(R, t)

]
− ε0µ0εr

(R) · ∂2E(R, t)
∂t2

= µ0
∂Je(R, t)

∂t
+ ∇ ×

[
µ−1

r
(R) · Jm(R, t)

]
, (6.75)
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− ∇ ×
[
ε−1
r

(R) · ∇ × H(R, t)
]

− ε0µ0µ
r
(R) · ∂2H(R, t)

∂t2

= ε0
∂Jm(R, t)

∂t
− ∇ ×

[
ε−1
r

(R) · Je(R, t)
]
; (6.76)

That way, Maxwell equations are physically decoupled, yet not without con-
stitutive equations.

For inhomogeneous anisotropic materials, Equations 6.75 and 6.76 do not
really lead somewhere, why we assume “simple” homogeneous isotropic ma-
terials with εr and µr in the following:

∇ × ∇ × E(R, t) +
1
c2

∂2E(R, t)
∂t2

= −µ0µr
∂Je(R, t)

∂t
− ∇ × Jm(R, t),

(6.77)

∇ × ∇ × H(R, t) +
1
c2

∂2H(R, t)
∂t2

= −ε0εr
∂Jm(R, t)

∂t
+ ∇ × Je(R, t),

(6.78)
where

c =
1√

ε0εrµ0µr
(6.79)

denotes the (phase) propagation velocity of electromagnetic waves within the
εrµr-material. The double curl can be transformed according to ∇ × ∇× =
∇∇ · −∆ into the delta operator and the divergence of field strengths; addi-
tionally, utilizing the compatibility relations (6.3) and (6.4) for εrµr-materials
equations (6.77) and (6.78) convert into d’Alembert vector wave equations:

∆E(R, t) − 1
c2

∂2E(R, t)
∂t2

= µ0µr
∂Je(R, t)

∂t
+ ∇ × Jm(R, t) +

1
ε0εr

∇�e(R, t), (6.80)

∆H(R, t) − 1
c2

∂2H(R, t)
∂t2

= ε0εr
∂Jm(R, t)

∂t
− ∇ × Je(R, t) +

1
µ0µr

∇�m(R, t). (6.81)

We point out that both equations are symmetric; this is a consequence of
the symmetry of Maxwell equations—in both equations the curl operator ap-
pears as spatial derivative—which is neither true in acoustics (Equations 5.32
and 5.33) nor in elastodynamics (Equations 7.21 and 13.211).

In that sense, Maxwell’s equations are degenerate, and, as a consequence,
the occurring Green functions do not exhibit explicit δ-terms. For electrically
homogeneous isotropic conducting materials (we put σm = 0), the Maxwell
model (6.65) yields additional terms with the first time derivative of the field
strengths, e.g., for (6.80) and (6.81):

∆E(R, t) − 1
c2

∂2E(R, t)
∂t2

− µ0µrσe
∂E(R, t)

∂t

= µ0µr
∂Je(R, t)

∂t
+ ∇ × Jm(R, t) +

1
ε0εr

∇�e(R, t), (6.82)
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∆H(R, t) − 1
c2

∂2H(R, t)
∂t2

− µ0µrσe
∂H(R, t)

∂t

= ε0εr
∂Jm(R, t)

∂t
− ∇ × Je(R, t) +

1
µ0µr

∇�m(R, t). (6.83)

6.4.2 Wave equations in the frequency domain

Via Fourier transform with regard to t, we obtain vector Helmholtz equations
from (6.80) and (6.81)

∆E(R,ω) + k2E(R,ω)

= −jωµ0µrJe(R,ω) + ∇ × Jm(R,ω) +
1

ε0εr
∇�e(R,ω), (6.84)

∆H(R,ω) + k2H(R,ω)

= −jωε0εrJm(R,ω) − ∇ × Je(R,ω) +
1

µ0µr
∇�m(R,ω), (6.85)

where
k =

ω

c
= ω

√
ε0εrµ0µr (6.86)

denotes the wave number that is proportional to frequency.
As a homogeneous equation

∇ × ∇ × E(R,ω) − k2E(R,ω) = 0, (6.87)

the Fourier transformed version of (6.77) has advantages over

∆E(R,ω) + k2E(R,ω) = 0, (6.88)

because the solutions of (6.87) are definitely divergence-free (div curl ≡ 0),
whereas this physically necessary condition must be additionally stipulated
for the solutions of (6.88). In addition: As a consequence being divergence-
free plane electromagnetic waves are transversely polarized.

There are also advantages with (6.77) as an inhomogeneous equation be-
cause only the current densities appear; moreover, a dyadic differential oper-
ator results from the evaluation of the double curl according to98[

(∆ + k2) I − ∇∇
] · E(R,ω) = −jωµ0µrJe(R,ω) + ∇ × Jm(R,ω) (6.89)

that has to be inverted with the method of Green’s function to calculate source
fields.

If dissipation occurs on behalf of a homogeneous isotropic electric con-
ductivity, the square of the real valued wave number k2 = ω2ε0εrµ0µr in the
Helmholtz equations (6.84) and (6.89) has to be replaced by the square of the
complex wave number

k2
c (ω) = ω2ε0εrµ0µr + jωµ0µrσe. (6.90)

98The divergence stays on the left-hand side.
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As a result, neither �kc(ω) nor �kc(ω) is proportional to frequency, leading
not only to dissipation based wave attenuation but also, due to �kc(ω) �= 0,
wave dispersion. For the limit of very large conductivity defined by σe/ω �
ε0εr, the real part k2

c (ω) can be neglected for comparatively low frequencies,
thus defining eddy current fields; the differential equation (6.82)—the term
with the second time derivative is missing—is no longer a wave equation but
a diffusion equation. Therefore, we must be careful to use terms for wave
propagation—e.g., far-field—for eddy current fields.

6.5 Solutions of Homogeneous Electromagnetic Wave
Equations in Homogeneous Isotropic Materials:
Plane Transverse Electromagnetic Waves

6.5.1 Nondissipative materials

Solutions of the homogeneous vector Helmholtz equation

∆E(R,ω) + k2E(R,ω) = 0 (6.91)

must satisfy the compatibility relation ∇ · E(R,ω) = 0; the special solution
“plane wave”

E(R,ω) = E(ω) e±jk·R (6.92)

therefore requires the dispersion relation

k · k = ω2ε0εrµ0µr (6.93)

for the wave vector and the orthogonality condition

E(ω) · k = 0 (6.94)

for the vector amplitude E(ω). For example, we satisfy99 (6.93) by

k = kk̂. (6.95)

According to (6.94), the electric field strength E(ω) is not allowed to have
components in k̂-direction; by choosing two orthogonal unit vectors ĥ and v̂

99The complex vector k = 
k + j�k also satisfies (6.93) if


k · �k = 0,

(
k)2 − (�k)2 = k2.

These are exactly the conditions for evanescent plane waves in nondissipative materials
(Figure 9.7).
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that are orthogonal to k̂, we obtain a right-handed orthogonal trihedron
ĥ, v̂, k̂ with regard to the propagation direction +k̂ to consider

E(ω) = Eh(ω)ĥ + Ev(ω)v̂ (6.96)

as a two-component so-called Jones vector, where Eh(ω) = |Eh(ω)|e jφh(ω),
Ev(ω) = |Ev(ω)|e jφv(ω) denote two arbitrary complex vector components in
the polarization basis ĥ, v̂.

From the time harmonic Maxwell equation (6.1), we obtain the magnetic
field as it belongs to (6.92):

H(R,ω) =
1

jωµ0µr
∇ × E(R,ω)

= ± 1
Z

k̂ × E(ω)︸ ︷︷ ︸
= H(ω)

e±jkk̂·R, (6.97)

where

Z =
√

µ0µr

ε0εr
(6.98)

denotes the wave impedance of the εrµr-material. The vector amplitude of
the magnetic field

H(ω) = k̂ × E(ω)

= −Ev(ω)ĥ + Eh(ω)v̂ (6.99)

is orthogonal to k̂ and also orthogonal to E(ω) due to H(ω) · E(ω) = 0: A
plane electromagnetic wave in an εrµr-material is electromagnetically trans-
versely polarized. The energy transport occurs in ±k̂-direction because the
complex Poynting vector is given by

SK(R,ω) = ±|Eh(ω)|2 + |Ev(ω)|2
2Z

k̂. (6.100)

The notation

E(R,ω) = Eh(ω) e jkk̂·R
[
ĥ +

Ev(ω)
Eh(ω)

v̂
]

(6.101)

of (6.92) with (6.96) defines as

A(ω) =
Ev(ω)
Eh(ω)

= |A(ω)| e j∆φ(ω) (6.102)

the complex polarization number, where ∆φ(ω) = φv(ω) − φh(ω) represents
the phase difference of both orthogonal field strength components. For
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E(ζ = 0, t)

–φh

ωt

E(ζ = 0, t = 0)

h^

k^

v̂

FIGURE 6.1
Right circular polarization.

A = 0, we obviously have linear ĥorizontal polarization and for100 A = ∞
(Eh(ω) = 0), we have linear v̂ertical polarization. For A = j (|A| = 0 ; ∆φ =
π/2), the tip of the real valued time harmonic E-field vector

E(R, t) = �
{

Eh(ω) e jkk̂·R e−jωt(ĥ + jv̂)
}

= |Eh|[cos(ωt − kk̂ · R − φh)ĥ + cos(ωt − kk̂ · R − φh − π

2
)︸ ︷︷ ︸

= sin(ωt − kk̂ · R − φh)

v̂]

(6.103)

moves on a circle with angular velocity ωt and the initial phase −φh as a
function of time in a fixed plane k̂ · R = ζ = const orthogonal to the propa-
gation direction, for example, in the plane ζ = 0: In electrical engineering, it
is called right circular polarization because the movement is in the direction
of the bent fingers of the right hand if the thumb points into propagation
direction k̂ (Figure 6.1). Watching the wave from behind E(ζ = 0, t) moves
clockwise yielding the terminology cw-polarization for right circular. That
way, each value of the polarization number A(ω) in a complex plane defines
a characteristic polarization—in general, right or left elliptical polarization

100In the complex A-plane there is one point ∞ (Behnke and Sommer 1965).
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with arbitrary ellipse orientation relative to the ĥ v̂-basis—we call it the
polarization diagram (Langenberg 2005). The change in polarization state
of an electromagnetic wave through reflection, diffraction, or scattering is vis-
ible in the change of polarization number, i.e., in the transformation of the
Jones vector of the incident (plane) wave into the Jones vector of the scat-
tered wave101; this transformation is described by 2×2-matrices, the Jones
and Sinclair matrices, where the difference is simply in the polarization state
of the incident and the scattered waves. These matrices contain the total in-
formation about the scatterer, therefore, their algebraic analysis provides an
excellent tool for nondestructive testing with microwaves (Cloude 2002).

First of all, the polarization of electromagnetic waves is a concept for time
harmonic waves. For arbitrary time dependence, the Fourier inversion of (6.92)
with (6.96) according to—we assume Eh,v(−ω) = E∗

h,v(ω)—

E(R, t) = Eh

(
t ∓ k̂ · R

c

)
ĥ + Ev

(
t ∓ k̂ · R

c

)
v̂ (6.104)

allows for a simple interpretation only if we put Eh(t) = Ev(t) assuming linear
polarization. If this is not true, we have to switch to time averages (Langenberg
2005).

6.5.2 Dissipative materials

We imply an electrically homogeneous isotropic conducting εrµr-material with
conductivity σe. With (6.90), the dispersion relation (6.93) reads as

k · k = k2
c (ω)

= ω2ε0εrµ0µr + jωµ0µrσe, (6.105)

i.e., the wave vector is complex, it may102 be chosen as

k = kc(ω)k̂. (6.106)

Calculation of the complex root yields (Equations 2.268 and 2.269)

�kc(ω) = k

√√√√1
2

[
1 +

√
1 +
(

σe

ωε0εr

)]
, (6.107)

101In the far-field of the scatterer, the scattered field is locally a plane wave.
102The general solution of (6.105) is given by: k = 
k + j�k with

(
k)2 − (�k)2 = ω2ε0εrµ0µr,


k · �k =
1
2

ωµ0µrσe,

where, in contrast to Footnote 99, we must have 
k · �k �= 0; this case occurs for the
transmitted wave if a plane electromagnetic wave impinges on a conducting material: The
propagation direction of the phase satisfies Snell’s law for 
k, where �k is always orthogonal
to the surface (Langenberg 2005). For 
k parallel to �k, we meet the case as above.
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�kc(ω) = k

√√√√1
2

[
−1 +

√
1 +
(

σe

ωε0εr

)]
, (6.108)

where this choice of the sign in the plane wave (6.92) according to—we have
k̂ · R = ζ—

E(ζ,ω) = E(ω)e jζ	kc(ω)e−ζ
kc(ω) (6.109)

ensures an exponential attenuation in +ζ-direction in the half-space ζ > 0.
Because (6.107) and (6.108) are no longer proportional to frequency as in the
nondissipative material, the impulsive wave corresponding to (6.109) experi-
ences dispersion [a numerical example can be found in (Langenberg 2005)].
This fact must be recognized calculating travel times (for example, for elec-
tromagnetic waves propagating in humid masonry).

6.6 Electromagnetic Source Fields in Homogeneous
Isotropic Materials, Electromagnetic Tensor
Green Functions

The differential equation (6.89) with its dyadic differential operator immedi-
ately reveals that the definition of a (time harmonic) dyadic Green function
through the differential equation[

(∆ + k2) I − ∇∇
] · G

e
(R,R′,ω) = −I δ(R − R′) (6.110)

is meaningful; it is denoted as the electric Green dyadic G
e
(R,R′,ω), be-

cause it should finally relate the electric current density with the electric field
strength in terms of a point source synthesis. With the same arguments as
in Section 13.1.1, we conclude that G

e
(R,R′,ω) = G

e
(R − R′,ω) holds. Be-

fore we further elaborate the idea of a dyadic Green function to utilize it
successfully within the electromagnetic Huygens principle, we cite the usual
procedure with electromagnetic potentials as it is applied in the theory of
electromagnetic source fields (antenna fields).

6.6.1 Electric scalar potential and magnetic vector
potential

We concentrate on electric current and charge densities being nonzero only in
the source volume VQ and “solve” the resulting Maxwell compatibility relation
(6.4) with zero divergence of B(R, t) through the ansatz

B(R, t) = ∇ × A(R, t) (6.111)
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of a magnetic vector potential A(R, t). Maxwell equation (6.2) subsequently
proposes the representation

E(R, t) = −∇Φ(R, t) − ∂A(R, t)
∂t

(6.112)

of the electric field strength by a scalar potential Φ(R, t), where the mi-
nus sign of ∇Φ comes from the voltage definition in electrostatics. The re-
maining equations (6.1) and (6.3) finally yield d’Alembert wave equations for
εrµr-materials:

∆Φ(R, t) − 1
c2

∂2Φ(R, t)
∂t2

= − 1
ε0εr

�e(R, t), (6.113)

∆A(R, t) − 1
c2

∂2A(R, t)
∂t2

= − µ0µrJe(R, t) (6.114)

if the potentials are related by the so-called Lorenz condition

∇ · A(R, t) +
1
c2

∂Φ(R, t)
∂t

= 0; (6.115)

this is always possible in terms of a gauge transform of the potentials103

(Langenberg 2005). Equations 6.113 and 6.114 reveal that the electric current
and charge densities explicitly appear as sources of the potentials, and: We
have reduced the vector wave equations (6.80) and (6.81) for the field strengths
to one vector wave equation and one scalar wave equation. The solution

Φ(R, t) =
1

4πε0εr

∫ ∫ ∫
VQ

�e

(
R′, t − |R−R′|

c

)
|R − R′| d3R′ (6.116)

of (6.113) (Equation 13.59) is found with the scalar Green function in the time
domain (Equation 13.25). To solve (6.114), we write down the three scalar
components of this equation, solve each one separately with the scalar Green
function, and combine the three solutions afterward to a vector104

A(R, t) =
µ0µr

4π

∫ ∫ ∫
VQ

Je

(
R′, t − |R−R′|

c

)
|R − R′| d3R′. (6.117)

The solutions (6.116) and (6.117) are called retarded potentials. Their Fourier
spectra

Φ(R,ω) =
1

4πε0εr

∫ ∫ ∫
VQ

�e(R′,ω)
e jk|R−R′|

|R − R′| d3R′, (6.118)

A(R,ω) =
µ0µr

4π

∫ ∫ ∫
VQ

Je(R
′,ω)

e jk|R−R′|

|R − R′| d3R′ (6.119)

103Originally, the Lorenz condition is due to Ludvig Lorenz, yet very often it is associated
with the name of Hendrik Antoon Lorentz (Sihvola 1991; Nevels and Shin 2001).
104The spatially independent cartesian trihedron can come out of the volume integral as

well as enter it.
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form the basis to calculate the Fourier spectra of the fields:

B(R,ω) = ∇ × A(R,ω), (6.120)
E(R,ω) = − ∇Φ(R,ω) + jωA(R,ω); (6.121)

with regard to (6.121), there is the alternative105 “Maxwell equation (6.1)”:

E(R,ω) =
j

ωε0εrµ0µr
[∇ × B(R,ω) − µ0µrJe(R,ω)]

=
jω
k2 [∇ × ∇ × A(R,ω) − µ0µrJe(R,ω)]︸ ︷︷ ︸

= ∇∇ · A − ∆A − µ0µrJe(R,ω)
= ∇∇ · A + k2A

= jω
(
I +

1
k2 ∇∇

)
· A(R,ω). (6.122)

Due to the Lorenz convention, the single vector potential is evidently sufficient.

6.6.2 Electric second rank Green tensor

With (6.119), Equation 6.122 yields the source field representation:

E(R,ω) = jωµ0µr

(
I +

1
k2 ∇∇

)
·
∫ ∫ ∫

VQ

Je(R
′,ω)

e jk|R−R′|

4π|R − R′| d3R′

= jωµ0µr

∫ ∫ ∫
VQ

Je(R
′,ω) ·

(
I +

1
k2 ∇∇

)
e jk|R−R′|

4π|R − R′| d3R′

= jωµ0µr

∫ ∫ ∫
VQ

Je(R
′,ω) · G

e
(R − R′,ω) d3R′, (6.123)

where

G
e
(R − R′,ω) =

(
I +

1
k2 ∇∇

)
e jk|R−R′|

4π|R − R′|

=
(
I +

1
k2 ∇′∇′

)
e jk|R−R′|

4π|R − R′| (6.124)

denotes106 the symmetric second rank electric tensor, the electric dyadic Green
function, because the differentiation under the integral causes no problems
for R �∈ VQ; G

e
(R − R′,ω) is a dyadic Green function because it describes

time harmonic electromagnetic (spherical) elementary waves that originate
from the source point R′ ∈ VQ, resulting in the electric field strength of the

105We can equally introduce the gradient of the time harmonic version of the Lorenz
convention (6.125) into (6.121).
106Due to the symmetry of the differential operator, we can perform the contraction with

Je in (6.123) with regard to either the first or the second index.
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Je-source through the Je(R
′,ω)-weighted (point source) synthesis according

to (6.123). Actually, the field strength

EPSe(R,ω) = jωµ0µrG e
(R,ω) · ĵ

e
= jωµ0µr ĵe · G

e
(R,ω) (6.125)

of a Je-unit point source

Je(R,ω) = ĵ
e
δ(R) (6.126)

located in the coordinate origin yields Green’s dyadic multiplied by jωµ0µr

and contracted by ĵ
e
.

The physical meaning of the electric second rank Green tensor must be
mathematically reflected in terms of a differential equation for G

e
(R − R′,ω);

apparently, Equation 6.110 is this differential equation because the appli-
cation of the respective differential operator to (6.123) immediately reveals
that (6.123) is indeed a solution of (6.89) for Jm ≡ 0. Applying a three-
dimensional spatial Fourier transform, we show (compare Section 13.2.1) that
Green’s dyadic (6.124) is a solution of (6.110). Insofar, the correct source point
behavior of G

e
is given by (6.124); however, we have to be careful applying the

explicit ∇∇-differentiation to the scalar Green function that is singular for
R = R′. As already stated in Section 5.5, we obtain for a spherical exclusion
volume (van Bladel 1961; van Bladel 1991; Chew 1990; Langenberg 2005)

G
e
(R − R′,ω) = PV G(0)

e
(R − R′,ω) − 1

3k2 I δ(R − R′) (6.127)

with

G(0)
e

(R,ω) =
[
I − R̂ R̂ +

j
kR

(I − 3R̂ R̂) − 1
k2R2 (I − 3R̂ R̂)

]
e jkR

4πR
.

(6.128)

Here, PV is a well-defined Cauchy principal value to evaluate the integral
(6.123) that is even—and especially—existent for the R−3-term in (6.128).
For R �= R′, we evidently have

G
e
(R − R′,ω) = G(0)

e
(R − R′,ω). (6.129)

6.6.3 Far-field approximation

With the “substitution” of ∇ =⇒ jkR̂ (Equation 13.47), we obtain from
(6.124), and therefore from (6.123), the far-field approximation

Efar(R,ω) =
e jkR

R
He

E(R̂,ω) (6.130)

with the vector radiation pattern

He
E(R̂,ω) = jω

µ0µr

4π
(I − R̂ R̂) ·

∫ ∫ ∫
VQ

Je(R
′,ω)e−jkR̂·R′

d3R′ (6.131)
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of the electric field strength. Obviously, we have

Efar(R,ω) · R̂ = 0, (6.132)

i.e., electromagnetic waves are transversely polarized with respect to the
propagation direction R̂ in the far-field of an arbitrary current distribution
because the far-field magnetic field strength resulting from (6.2)

Hfar(R,ω) =
e jkR

R
He

H(R̂,ω) (6.133)

with

He
H(R,ω) =

jk
4π

R̂ ×
∫ ∫ ∫

VQ

Je(R
′,ω)e−jkR̂·R′

d3R′ (6.134)

equally satisfies the orthogonality

Hfar(R,ω) · R̂ = 0; (6.135)

in addition, the transformation (I − R̂ R̂) · Je = (R̂ × Je) × R̂ yields the
orthogonality

Efar(R,ω) = ZHfar(R,ω) × R̂, (6.136)

that is to say, R̂,Efar, and Hfar form a right-handed orthogonal trihedron: The
electromagnetic far-field of an arbitrary electric current distribution locally
behaves as a plane wave. In the next section, we will see that this also holds
for the source fields of magnetic current densities; as a consequence, scattered
fields with induced current densities as sources must also have this property.
Accordingly, we can define a polarization base for incident and scattered fields
to describe the change in polarization state due to scattering by scattering
matrices, Jones and Sinclair matrices, respectively (Ulaby and Elachi 1990;
Langenberg 2005).

6.6.4 Hertzian dipole

In antenna theory, the point source (6.126) is especially named for historical
reasons: Hertzian dipole. Due to (6.128), its electric field (6.125) exhibits near-,
transition-, and far-fields. The latter one has the structure

EPSe,far(R,ω) = jω
µ0µr

4π

e jkR

R
(I − R̂ R̂) · ĵ

e
; (6.137)

with the choice ĵ
e

= ez, the electric field component EPSe,far
ϑ (R,ω) is the only

one being nonzero; it is proportional to sinϑ, that is to say, the Hertzian dipole
does not radiate in the direction of its axis.
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6.6.5 Magnetic second-rank Green tensor

The differential equation (6.89) for the electric field strength shows not only
the electric current density on the right-hand side but also the curl of the
magnetic current density. Alternative to the last paragraph, we put Jm ≡ 0
to obtain the solution of (6.89)

E(R,ω) = −
∫ ∫ ∫

VQ

[
∇′ × Jm(R′,ω)

] · G
e
(R − R′,ω) d3R′, (6.138)

utilizing the electric Green dyadic. With the identity

(∇′ × Jm) · G
e

= ∇′ · (Jm × G
e
) + Jm · (∇′ × G

e
) (6.139)

and the same arguments as in Section 5.5, we can shift the curl operator in
(6.138) to G

e
:

E(R,ω) = −
∫ ∫ ∫

VQ

Jm(R′,ω) · ∇′ × G
e
(R − R′,ω) d3R′, (6.140)

thus producing the magnetic second rank Green tensor

G
m

(R − R′,ω) = −∇′ × G
e
(R − R′,ω)

= ∇ × G
e
(R − R′,ω)

= ∇ × [G(R − R′,ω) I]

= ∇G(R − R′,ω) × I

= −∇′G(R − R′,ω) × I (6.141)

with the properties

G21
m

(R − R′,ω) = − G
m

(R − R′,ω), (6.142)

G
m

(R − R′,ω) = − G
m

(R′ − R,ω). (6.143)

The superposition of (6.123) and (6.140) finally results in the solution of (6.89)
for Je �= 0 and Jm �= 0:

E(R,ω) =
∫ ∫ ∫

VQ

[
jωµ0µrJe(R

′,ω) · G
e
(R − R′,ω)

+ Jm(R′,ω) · G
m

(R − R′,ω)
]
d3R′. (6.144)

That way, we can immediately write down the solution of the Fourier trans-
formed wave equation (6.81) for the magnetic field strength:

H(R,ω) =
∫ ∫ ∫

VQ

[
jωε0εrJm(R′,ω) · G

e
(R − R′,ω)

− Je(R
′,ω) · G

m
(R − R′,ω)

]
d3R′. (6.145)

In contrast to acoustics and elastodynamics, we need only two Green ten-
sors (functions) in electromagnetics; this is a consequence of the symmetry of
Maxwell equations (6.1) and (6.2). Figure 6.2 graphically displays this issue.
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E = ∫ ∫ ∫ VQ (–jωµ0µrJe · Ge + Jm · Gm) dV ′

H = ∫ ∫ ∫ VQ (jωε0εrJm · Ge – Je · Gm) dV ′

–jωε0εrE = ∇ × H – Je

–jωµ0µrH = –∇ × E – Jm

FIGURE 6.2
Assignment of Green functions in homogeneous isotropic electromagnetic ma-
terials to the source densities Je and Jm.

6.7 Electromagnetic Scattered Fields; Electromagnetic
Formulation of Huygens’ Principle

6.7.1 Electromagnetic formulation of Huygens’ principle

The mathematical formulation of Huygens’ principle comprises the represen-
tation theorem—the representation of a wave field on one side of a (mathe-
matically virtual) closed surface Sg by the boundary values on Sg—and the
extinction theorem—the extinction of the wave field on the respective other
side of the surface (Sections 5.6 and 15.1.2): The representation of the field
outside Sg enforces a null-field inside Sg and vice versa.

Going back to Larmor (1903), we can define the boundary values of the
wave field with the transition conditions (6.30) and (6.31). For example, we
keep the interior of Sg, characterized by the index (2), field-free; then

n × H(RS , t) = Ke(RS , t), RS ∈ Sg, (6.146)
n × E(RS , t) = − Km(RS , t), RS ∈ Sg, (6.147)

explicitly define surface current densities maintaining the jump discontinuity
from the interior null-field to the exterior E(R, t),H(R, t)-field; per defini-
tionem, the normal points from (2) to (1), that is to say, into the exterior
of Sg and consequently away from the null-field. Let Sg now be a physi-
cally existing surface Sc of a scattering body embedded in an εrµr-material
that is illuminated by the incident field Ei,Hi of a source distribution; that
way, Ke and Km become sources of the scattered field Es,Hs superimpos-
ing to the incident field in the exterior of Sc as the total field E = Ei + Es,
H = Hi + Hs and compensating the incident field in the interior of Sc, thus
leaving the total field there as a null-field (Figure 6.3). Therefore, the source
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Je

Jm

VQ
R′

Ei , Hi

Vc

–Ei , –Hi

Es , Hs

E = Ei + Es
H = Hi + Hs

R

O

Km = –n′c × E
Ke = n′c × H

εr , µr

Sc

n′c

FIGURE 6.3
Electromagnetic scattering problem: Surface currents for Huygens’ principle.

field representations (6.144) and (6.145) can be considered as the basis to cal-
culate the time harmonic scattered field Es(R,ω),Hs(R,ω) if we insert the
volume source densities

Je,m(R′,ω) = Ke,m(R′,ω) γc(R′), R′ ∈ Sc, (6.148)

which reduce the volume integrals (6.143) and (6.145) to surface integrals

Es(R,ω) =
∫ ∫

Sc

[
jωµ0µrKe(R

′,ω) · G
e
(R − R′,ω)

+ Km(R′,ω) · G
m

(R − R′,ω)
]
dS′

=
∫ ∫

Sc

[
jωµ0µrn′

c × H(R′,ω) · G
e
(R − R′,ω)

− n′
c × E(R′,ω) · G

m
(R − R′,ω)

]
dS′, (6.149)

Hs(R,ω) =
∫ ∫

Sc

[
jωε0εrKm(R′,ω) · G

e
(R − R′,ω)

− Ke(R
′,ω) · G

m
(R − R′,ω)

]
dS′

= −
∫ ∫

Sc

[
jωε0εrn′

c × E(R′,ω) · G
e
(R − R′,ω)

+ n′
c × H(R′,ω) · G

m
(R − R′,ω)

]
dS′ (6.150)

due to the sifting property (2.382) of the singular function γc(R′) of Sc. We
have found the mathematical formulation of Huygens’ principle for electro-
magnetic waves! The particular mathematical version (6.149) and (6.150)
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comes “naturally” as a point source synthesis involving Green tensors and
electric and magnetic current densities (that is the reason why we need both
current densities from the beginning!), revealing that the wave field bound-
ary values in (6.149) and (6.150) can only be tangential components of field
strengths. The analytical derivation of (6.149) and (6.150) was given by Franz
(Langenberg 2005), we speak of the Franz–Larmor version. Even though be-
ing physically compelling, there are numerical problems on behalf of the hyper
singularity of G

e
; therefore, transformations come into play—Stratton–Chu

version—that only contain the scalar Green function (Langenberg 2005).
Incidentally, in the sense of an equivalence principle, the surface current

densities Ke and Km, even if they flow on a mathematically virtual surface,
are equivalent to a physically present scatterer; it could be removed without
affecting the scattered field.

6.7.2 Electromagnetic fields scattered by perfect electrical
conductors: EFIE and MFIE

The scattered field integrals (6.149) through (6.150) are insofar only a formal
solution of the electromagnetic scattering problem as they contain unknown
sources: n′

c × E and n′
c × H are tangential components of the total field107

that also contain tangential components of the scattered field to be calcu-
lated. As in the scalar acoustic case (Section 5.6), integral equations are for-
mulated via the limit R −→ Sc for the observation point R in the tangential
components resulting from (6.149) to (6.150). Taking enough care regarding
the hyper singularity of G

e
—a special PVε-principle value has to be defined

(Langenberg 2005)—we obtain for R′ ∈ Sc

−1
2

Km(R,ω) = nc × Ei(R,ω)

+ PVεnc ×
∫ ∫

Sc

[
jωµ0µrKe(R

′,ω) · G
e
(R − R′,ω)

+ Km(R′,ω) · G
m

(R − R′,ω)
]
dS′

(6.151)

from (6.149), respectively,

1
2

Ke(R,ω) = nc × Hi(R,ω)

+ PVεnc ×
∫ ∫

Sc

[
jωε0εrKm(R′,ω) · G

e
(R − R′,ω)

− Ke(R
′,ω) · G

m
(R − R′,ω)

]
dS′ (6.152)

107The jump discontinuity from the null-field to the E,H-field has been postulated for the
total field.
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from (6.150). Both integral equation relations (6.151) and (6.152) reveal
that Ke and Km are dependent upon each other. Concentrating therefore
on the practically important case—of course an idealization—of a perfectly
electrically conducting scatterer, we have Km ≡ 0; that way, Equation 6.151
is reduced to the electric field integral equation (of the first kind: EFIE):

jωµ0µrPVεnc ×
∫ ∫

Sc

Ke(R
′,ω) · G

e
(R − R′,ω) dS′

= −nc × Ei(R,ω), R ∈ Sc, (6.153)

and Equation 6.152 to the magnetic field integral equation (of the second kind:
MFIE):

1
2

Ke(R,ω) + nc ×
∫ ∫

Sc

Ke(R
′,ω) · G

m
(R − R′,ω) dS′

= nc × Hi(R,ω), R ∈ Sc, (6.154)

each time for the unknown electric current density Ke. In (6.154), we can
refrain from the PVε-evaluation due to the missing dyadic Green function.

Only few geometries—among them the perfectly conducting sphere—allow
for an analytic solution of the integral equations (6.153) and (6.154), and
even in the case of the sphere, this solution shows up as an infinite series of
spherical harmonics (Stratton 1941; Bowman et al. 1987) whose evaluation is
by no means trivial. For a perfectly electrically conducting sphere of radius a
located in vacuum and illuminated by a plane wave with linear polarization

Ei(R,ω) = F (ω) e jk0k̂i·R Ê0 (6.155)

and a Gaussian spectrum

F (ω) =
√

π

α
e− ω2

4α (6.156)

the ϑ- and ϕ-far-field components of the electric Gaussian impulsive scat-
tered field are displayed in Figure 6.4; we have k̂i = −ez, Ê0 = ex, and
α = 177.85 c2

0/a2. For angles ϑ in the vicinity of the backscattering direc-
tion, we nicely recognize the specularly reflected Gaussian impulse (in the
ϑ-component with reversed sign) followed by the scattering contributions from
the vicinity of the specular point; further pulses are identified as due to the
current impulses that have circulated the sphere, they are called creeping
waves108 (Hönl et al. 1961).

If there is no analytical solution for either the EFIE or the MFIE at
hand, we have to rely on numerical methods: the classical method of moments

108This terminology is due to W. Franz and it should not be utilized a second time—
compare creeping wave transducer—for another physical phenomenon.
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FIGURE 6.4
ϑ-Component of the electric scattered far-field in the time domain for different
ϑ and ϕ = 0 (left); ϕ-component of the electric scattered far-field in the time
domain for different ϑ and ϕ = π/2 (right).

(Harrington 1968; Poggio and Miller 1987; Wilton 2002) or the more recently
developed fast multipole methods (Chew et al. 2002; Michielssen et al. 2002).

6.7.3 Kirchhoff approximation

As for the scalar acoustic case (Section 5.6), Kirchhoff’s approximation of
physical optics (compare Footnote 93) may be an equally useful approxima-
tion for the scattering of electromagnetic waves (high-frequency fields; convex
scatterers). The integral equation (6.154) immediately suggests to neglect the
radiation interaction integral—it is exactly zero for plane surfaces Sc—and to
utilize

KPO
e (R,ω) = 2nc × Hi(R,ω) (6.157)

as PO-approximated surface current density for R on the illuminated side
of Sc; for R on the shadow side, we put KPO

e (R,ω) ≡ 0. In particular in the
theory of electromagnetic wave inverse scattering, the Kirchhoff approxima-
tion plays a crucial role to linearize the problem (Langenberg et al. 1994;
Langenberg et al. 1999b).

Calculating the Gaussian impulse scattered far-fields of a perfectly elec-
trically conducting sphere within the Kirchhoff approximation reveals that
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this approximation, apart from small differences in the vicinity of specular
reflection, does not provide any creeping waves.

6.7.4 Electromagnetic fields scattered by penetrable
inhomogeneities: Lippmann–Schwinger
integral equation

The scattering of electromagnetic waves by a penetrable scatterer can be
formally solved defining equivalent volume sources analogously to acoustics
(Section 5.6) (Langenberg 2005). We consider a homogeneous anisotropic
ε(i)
r

(R)µ(i)
r

(R)-scatterer of volume Vc in an εrµr-embedding material that
also contains the source volume VQ with Je,m(R,ω) �= 0. Similar to (5.94)
and (5.95), we define contrast tensors109

χ
e
(R) =

1
εr

[
ε(i)
r

(R) − εr I
]
Γc(R), (6.158)

χ
m

(R) =
1
µr

[
µ(i)

r
(R) − µr I

]
Γc(R) (6.159)

that are equal to the null tensor outside Vc due to the characteristic func-
tion Γc(R) of Vc. In the differential equations (6.75) and (6.76) for E(R, t)
and H(R, t) for the homogeneous anisotropic ε

r
(R)µ

r
(R)-material, we now

insert110

ε
r
(R) = εr

[
I + χ

e
(R)
]

=

{
εr for R �∈ Vc

ε(i)
r

(R) for R ∈ Vc

(6.160)

µ
r
(R) = µr

[
I + χ

m
(R)
]

=

{
µr for R �∈ Vc

µ(i)
r

(R) for R ∈ Vc

(6.161)

109The χ
e,m

(R)-tensors are the susceptibility tensors of an ε(i)
r

(R)µ(i)
r

(R)/εrµr-material.
110It is convenient to represent the inverse material tensors

ε−1
r

(R) =
1
εr

[
I + ı

e
(R)

]
,

µ−1
r

(R) =
1

µr

[
I + ı

m
(R)

]

also by “inverse” contrast tensors (contrast functions of inverse material tensors)

ı
e
(R) = εr

[
ε−1
r

(R) − 1
εr

I
]

,

ı
m

(R) = µr

[
µ−1

r
(R) − 1

µr
I
]

.
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and sort terms in a way that, on the left-hand side of the resulting differential
equations, only the differential operators (6.77) and (6.78) of the homogeneous
isotropic embedding material appear:

∇ × ∇ × E(R, t) +
1
c2

∂2E(R, t)
∂t2

= −µ0µr
∂

∂t
[Je(R, t) + Jec(R, t)]

− ∇ × [Jm(R, t) + Jmc(R, t)] , (6.162)

∇ × ∇ × H(R, t) +
1
c2

∂2H(R, t)
∂t2

= −ε0εr
∂

∂t
[Jm(R, t) + Jmc(R, t)]

+ ∇ × [Je(R, t) + Jec(R, t)] ; (6.163)

the terms

Jec(R, t) = − ε0εrΓc(R)

[
I − ε(i)

r
(R)

εr

]
· ∂E(R, t)

∂t

= ε0εrχ
e
(R) · ∂E(R, t)

∂t
, (6.164)

Jmc(R, t) = − µ0µrΓc(R)

⎡⎣I −
µ(i)

r
(R)

µr

⎤⎦ · ∂H(R, t)
∂t

= µ0µrχ
m

(R) · ∂H(R, t)
∂t

(6.165)

result as equivalent secondary volume sources representing the scatterer. They
are equally dependent upon the total field as Huygens’ surface sources. After
Fourier transforming the differential equations (6.162) and (6.163) with re-
spect to time, we find the integral representations for the incident field (Equa-
tions 6.144 through 6.145)

Ei(R,ω) = jωµ0µr

∫ ∫ ∫
VQ

Je(R
′,ω) · G

e
(R − R′,ω) d3R′

+
∫ ∫ ∫

VQ

Jm(R′,ω) · G
m

(R − R′,ω) d3R′, (6.166)

Hi(R,ω) = jωε0εr

∫ ∫ ∫
VQ

Jm(R′,ω) · G
e
(R − R′,ω) d3R′

−
∫ ∫ ∫

VQ

Je(R
′,ω) · G

m
(R − R′,ω) d3R′, R ∈ IR3, (6.167)

with Green tensors G
e

and G
m

of the homogeneous isotropic embedding
material. For R ∈ VQ, we have to account for the distributional term in G

e
,

forcing us to define a suitable principle value of the integral; for the εrµr-
material, it is given by Equation 6.127.
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Completely analogously, we obtain for the electromagnetic scattered field
for R ∈ IR3:

Es(R,ω) = jωµ0µr

∫ ∫ ∫
Vc

Jec(R
′,ω) · G

e
(R − R′,ω) d3R′

+
∫ ∫ ∫

Vc

Jmc(R
′,ω) · G

m
(R − R′,ω) d3R′, (6.168)

Hs(R,ω) = jωε0εr

∫ ∫ ∫
Vc

Jmc(R
′,ω) · G

e
(R − R′,ω) d3R′

−
∫ ∫ ∫

Vc

Jec(R
′,ω) · G

m
(R − R′,ω) d3R′; (6.169)

this time the hyper singularity of G
e

for R ∈ Vc comes into play.
This formal solution immediately tells us how the present scattering prob-

lem can be generalized to an inhomogeneous anisotropic embedding material:
Choose the Green tensors of the respective material in (6.166), (6.167) and
(6.168), (6.169) (de Hoop 1995)!

For vanishing permeability contrast, we explicitly write down the
Lippmann–Schwinger integral equation—similar to the scalar acoustic case
in Section 5.6—for the total electric field in the interior of Vc (object equa-
tion111) by adding Ei(R,ω) on both sides of (6.168):

E(R,ω) = Ei(R,ω) + k2
∫ ∫ ∫

Vc

[χ
e
(R′,ω) · E(R′,ω)] · G

e
(R − R′,ω) d3R′

für R ∈ Vc. (6.170)

Similar to (5.115), we can formally resolve (6.170) with regard to the scattered
field:

Es(R,ω) = (I − V
c
)−1 · V

c
{Ei}(R,ω), R ∈ Vc. (6.171)

We define the tensor integral operator V
c

according to

V
c
{E}(R,ω) = k2

∫ ∫ ∫
Vc

G
e
(R − R′,ω)

· χ
e
(R′,ω) · E(R′,ω) d3R′, R ∈ Vc; (6.172)

its application to a vector yields another vector. Assuming Ei(R,ω) to be a
plane wave with amplitude (Jones vector) E0i(k̂i,ω)—yielding Ei(R,ω, k̂i) =
E0i(k̂i,ω) e jkk̂i·R—Equation 6.171 shows according to

Es(R,ω, k̂i) = (I − V
c
)−1 · V

c
{e jkk̂i·R′}(R,ω) · E0i(k̂i,ω)

def= Σ
c
(R,ω, k̂i) · E0i(k̂i,ω), R ∈ Vc, (6.173)

111Note: In the object equation, we have R,R′ ∈ Vc, i.e., both variables of the integral
operator vary in the same domain.
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that Es linearly depends upon this amplitude factor: Obviously, this is a
consequence of the linearity of Maxwell equations!

In contrast to the scalar case, a numerical solution of (6.170) has to cope
with the unfriendly hyper singularity of Green’s dyadic for R = R′ requiring
special care. For example, discretizing the volume Vc in terms of spherical
voxels, we can utilize (6.127) resulting explicitly in:

[
I +

1
3

χ
e
(R,ω)

]
· E(R,ω) = Ei(R,ω) + k2 PV

∫ ∫ ∫
Vc

[χ
e
(R′,ω) · E(R′,ω)]

· G(0)
e

(R − R′,ω) d3R′ for R ∈ Vc. (6.174)

For cubic voxels, the resulting integral equation identically looks like (6.174),
yet the integral “principal value” has to be understood as pseudofunction
(Langenberg and Fellinger 1995); for other voxel geometries, even the distri-
butional term in G

e
looks different (van Bladel 1991; Chew 1990).

Having finally determined E(R,ω) for R ∈ Vc, the scattered field outside
the scatterer can be comparatively easily calculated utilizing (6.168) for R ∈
IR3\V c in terms of the data equation112: The scattering problem has been
solved!

In case if permittivity and permeability contrasts are nonzero, a coupled
system of Lippmann–Schwinger equations has to be established and solved
utilizing (6.166), (6.168) and (6.167), (6.169).

Lippmann–Schwinger integral equations have the advantage that, even for
arbitrary inhomogeneous anisotropic scatterers, it is sufficient to know the
Green tensors of the homogeneous isotropic embedding material; the disad-
vantage is that they are volume integral equations with a high discretization
cost. Therefore, if the scatterer is equally homogeneous and isotropic, a differ-
ent procedure is appropriate: We formulate surface current integral equations
of the interior of Vc corresponding to (6.151) and (6.152), performing the limit
R −→ Sc from the interior in the respective Franz–Larmor integral represen-
tations of the electromagnetic Huygens principle; in these integrals, the Green
tensors of the homogeneous isotropic scatterer material appear that differ only
in the wave number from those of the exterior. The transition conditions re-
quire the continuity of the surface current densities for the exterior and the
interior scattered fields, resulting in a coupled system of two surface integral
equations (Langenberg 2005).

6.7.5 Born approximation

For large wavelengths as compared to the scatterer dimension and low con-
trast, the volume current densities

112Note: In the data equation, we have R′ ∈ Vc and R ∈ IR3\V c, i.e., both variables of
the integral operator vary in different domains.
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JBorn
ec (R,ω) = − jωε0εrχ

e
(R) · Ei(R,ω), (6.175)

JBorn
mc (R,ω) = − jωµ0µrχ

m
(R) · Hi(R,ω) (6.176)

represent an acceptable approximation. Then, the scattered field within the
Born approximation can immediately be calculated with the integrals (6.168)
and (6.169).

6.7.6 Scattering tensor

Remote sensing with electromagnetic waves is particularly interested in the
polarization of the scattered wave as it depends upon the polarization of the
incident wave (Ulaby and Elachi 1990; Cloude 2002). Utilizing the representa-
tion (6.168) of the scattered field, the representation (6.164)—for example—of
an equivalent electric current density, as well as the result (6.173), we can di-
rectly derive the linear dependence

Efar
s (R,ω, k̂i) =

e jkR

R
Σ(R̂,ω, k̂i) · E0i(k̂i,ω)︸ ︷︷ ︸

= E0s(R̂,ω, k̂i)

(6.177)

of the vector amplitude E0s(R̂,ω, k̂i) of the scattered field from the Jones
vector of the incident (plane) wave where the scattering tensor

Σ(R̂,ω, k̂i) =
k2

4π
(I − R̂ R̂) ·

∫ ∫ ∫
Vc

χ
e
(R′)

·
[
Σ

c
(R′,ω, k̂i) e−jkk̂i·R′

+ I
]
e−jk(R̂−k̂i)·R′

d3R′ (6.178)

contains the complete information about the scatterer. The scattering ten-
sor is indeed a second rank tensor with nine components in a well-defined
coordinate system that can actually be reduced to a 2×2-scattering matrix
if we recognize that E0i(k̂i,ω) is orthogonal with regard to k̂i and that
E0s(R̂,ω, k̂i) is orthogonal with regard to R̂; the Jones vectors of the incident
and of the scattered waves in the far-field is given by two components in a
suitable polarization basis. Depending on the polarization basis, 2×2-Jones
and Sinclair scattering matrices arise (Langenberg 2005) whose measurement
and evaluation comprise remote sensing. First ideas for a generalization to
elastodynamics are presented in Section 15.4.1.

6.8 Two-Dimensional Electromagnetism: TM- and
TE-Decoupling

To describe acoustic waves mathematically, we can rely on the pressure as
a scalar field quantity, be it either in two or in three spatial dimensions.
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A corresponding simplification for three-dimensional electromagnetism and
three-dimensional elastodynamics is generally not possible; yet, in two-
dimensional electromagnetism, a separation into scalar partial fields that do
not depend upon each other may be possible113; both fields are mathemati-
cally completely equivalent to two-dimensional acoustics. In elastodynamics,
not even that is possible; only two-dimensional SH-waves are comparable to
scalar acoustics.

6.8.1 TM-field

We postulate two-dimensional Maxwell equations with ∂/∂y ≡ 0 and claim
that:

Assuming εr(x, z), µr = const, zero field and current components accord-
ing to

Hy(x, z, t) = 0,

Ex(x, z, t) = Ez(x, z, t) = 0; (6.179)
Jmy(x, z, t) = 0,

Jex(x, z, t) = Jez(x, z, t) = 0 (6.180)

result in a consistent system of equations for the remaining field compo-
nents Hx(x, z, t) �= 0, Hz(x, z, t) �= 0 and Ey(x, z, t) �= 0 if excited by the cur-
rent components Jmx(x, z, t) �= 0, Jmz(x, z, t) �= 0, as well as Jey(x, z, t) �= 0,
where Ey(x, z, t) can be chosen as a scalar potential to calculate Hx(x, z, t),
Hz(x, z, t), prescribing the current components and the inhomogeneity of the
permittivity εr(x, z). This field is transversely magnetic with regard to the
y-axis defining the two-dimensionality because the magnetic field does not
have a component in this direction; Figure 6.5(a) illustrates the components
of the TM-field.

For a proof, we write Maxwell equations (6.1) and (6.2) implying the above
assumptions:

∂Dy(x, z, t)
∂t

=
∂Hx(x, z, t)

∂z
− ∂Hz(x, z, t)

∂x
− Jey(x, z, t), (6.181)

∂Bx(x, z, t)
∂t

=
∂Ey(x, z, t)

∂z
− Jmx(x, z, t), (6.182)

∂Bz(x, z, t)
∂t

= − ∂Ey(x, z, t)
∂x

− Jmz(x, z, t). (6.183)

Differentiation of (6.182) with regard to z and (6.183) with regard to x, sub-
traction of the remaining equations, and insertion of (6.181) recognizing the
constitutive equations

113Bromwich’s theorem (Langenberg 2005) defines material inhomogeneities for certain co-
ordinate systems that allow for a separation into two scalar TM- and TE-fields, respectively,
even in three spatial dimensions.
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FIGURE 6.5
Two-dimensional electromagnetism (∂/∂y ≡ 0): a) TM-field, b) TE-field.

Bx,z(x, z, t) = µ0µrHx,z(x, z, t), (6.184)
Dy(x, z, t) = ε0εr(x, z)Ey(x, z,ω) (6.185)

results in a wave equation for Ey(x, z, t):

∆xzEy(x, z, t) − ε0εr(x, z)µ0µr
∂2Ey(x, z, t)

∂t2

= µ0µr
∂Jey(x, z, t)

∂t
− ey · ∇xz × Jm(x, z, t). (6.186)

This proves the above statement.
If the material turns out to be inhomogeneous with regard to the

permeability—no matter whether the permittivity is homogeneous or
inhomogeneous—an additional term ∇ lnµr(x, z) · ∇Ey(x, z, t) appears on
the right-hand side of (6.186).

If the permittivity has jump discontinuities on two-dimensional
“surfaces”—curves in an xz-plane—transition conditions (6.30) and (6.31)
must be satisfied. Without prescribed surface current densities, it readily fol-
lows from (6.30) that Ey must be continuous. Furthermore, from (6.31), it fol-
lows the continuity of the normal derivative n · ∇xzEy of the scalar “potential”
Ey; to show that, Equations 6.181 and 6.182 are used in the only remaining
nonzero y-component of (6.31). The two-dimensional electromagnetic TM-
case complies with (two-dimensional) scalar acoustics if the density is constant
and the compressibility is discontinuous. If the curves are boundaries of a scat-
terer with perfect electric conductivity, the tangential component Ey as scalar
“potential” must be equal to zero; n × H then defines the electric surface cur-
rent density induced in y-direction. In this case, the two-dimensional electro-
magnetic TM-scattering problem corresponds to a scalar Dirichlet problem.
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6.8.2 TE-field

As displayed in Figure 6.5(b), the only nonzero components Hy �= 0, Ex,
Ez �= 0 lead to a transverse electric, a TE-field. Under the assumptions
µr(x, z), εr = const, and Jmy �= 0, Jex, Jez �= 0, we obtain a scalar wave equa-
tion for the “potential” Hy(x, z, t):

∆xzHy(x, z, t) − ε0εrµ0µr(x, z)
∂2Hy(x, z, t)

∂t2

= ε0εr
∂Jmy(x, z, t)

∂t
− ey · ∇xz × Je(x, z, t). (6.187)

Again, an additional or alternative inhomogeneity of the “complementary”
material parameter, in this case, the permittivity, leads to the additional term
∇ ln εr(x, z) · ∇Hy(x, z, t); in that case, it is advisable to stay with a vector
wave equation for the electric field strength.

Potential transition conditions require the continuity of Hy and the con-
tinuity of the normal derivative of Hy; for perfect electric conductivity, the
condition n × E = 0 transforms into a Neumann boundary condition for Hy,
and n × H then defines the induced Kex,z-current density components. In
the TM-case, only axial currents are flowing, whereas in the TE-case, only
circumferential currents are flowing.



7
Vector Wave Equations

The elastodynamic governing equations (4.33) and (4.34) represent a coupled
system of partial differential equations of first order for the field quantities
v(R, t) and T(R, t) after introducing constitutive equations of linear time in-
variant instantaneously and locally reacting materials, that are always consid-
ered in this section. To neutralize this coupling in terms of a decoupling both
equations are inserted into each other: We obtain partial differential equations
of second order either for v(R, t) or for T(R, t). Since both equations allow for
waves as solutions, we generally call them “wave equations” even though they
are more complicated than the simple d’Alembert wave equation (5.32), hence
the terminology “Navier wave equations” is sometimes used in the literature.
Another decoupling method, even though valid only for homogeneous isotropic
materials, is dealt with in connection with the Helmholtz decomposition of a
vector into potentials.

7.1 Wave Equations for Anisotropic and Isotropic
Nondissipative Materials

We perform the insertion steps for the elastodynamic governing equations
(4.33) and (4.34) subsequently for inhomogeneous anisotropic, homogeneous
anisotropic, and homogeneous isotropic materials. That way, we learn some-
thing about the general structure of the wave equation and afterward we have
two special cases for homogeneous materials at hand that are particularly
important for US-NDT.

7.1.1 Inhomogeneous anisotropic materials

We perform a time derivative of Newton–Cauchy’s equation of motion (4.33)

ρ(R)
∂2v(R, t)

∂t2
= ∇ · ∂T(R, t)

∂t
+

∂f(R, t)
∂t

(7.1)

and insert the deformation rate equation (4.34) in the form

∂T(R, t)
∂t

= c(R) : ∇v(R, t) + c : h(R, t); (7.2)

205
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VQ

f (R, t)

h(R, t)

Material ρ(R), c(R)

FIGURE 7.1
Source volume VQ of elastic waves in an inhomogeneous anisotropic material.

the symmetry of the stiffness tensor with regard to the last two indices al-
lows for the short-hand notation c : ∇v for the double contraction of c with
1
2 (∇v + ∇v21) resulting in the Navier equation114

∇ ·
[
c(R) : ∇v(R, t)

]
− ρ(R)

∂2v(R, t)
∂t2

= −∂f(R, t)
∂t

− ∇ ·
[
c(R) : h(R, t)

]
(7.3)

for v(R, t) [Equation 5.29 is the acoustic counterpart]. Note: For sources
f(R, t), h(R, t) confined to VQ (Figure 7.1) embedded in the inhomogeneous
anisotropic material, the c(R)-inhomogeneity of the material (inside VQ) en-

ters the inhomogeneity of the differential equation. Generally—and typically
in US-NDT—we encounter the situation as sketched in Figure 7.2: The in-
homogeneous anisotropic embedding material with the material parameters
ρ(e)(R), c(e)(R) contains a contrast volume Vc with the material parameters

ρ(i)(R), c(i)(R) with nonoverlapping VQ and Vc; then, Vc can be considered

as a defect for US-NDT that is illuminated by the sources in VQ. We want to
show how we can trickily “hide” the defect within an additional inhomogene-
ity term in the differential equation (7.3) (Snieder 2002). At first, we define
the (dimensionless) contrast of the defect

114In elastodynamics, we are primarily interested in the particle velocity or the particle
displacement as field quantities whereas acoustics is devoted to the pressure that would
correspond to the stress tensor in the present context; therefore, the elastodynamic pendant
to (5.26) would be the differential equation

I+ : ∇
[

1
ρ(R)

∇ · T(R, t)
]

− s(R) :
∂2T(R, t)

∂t2
= −I+ : ∇

[
1

ρ(R)
f(R, t)

]
− ∂h(R, t)

∂t
.

For simplicity, we have used the symmetrization tensor I+ according to (2.109).
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VQ

f (R, t)

ρ(e)(R)

ρ(e)(ζ) ρ(i)(ζ)

ρ(ζ)

c(e)(R)

ρ(i)(R)
c(i)(R)

ζ2

ζ

ζ1

ζ1 ζ2
ζ

Vch (R, t)

FIGURE 7.2
Source volume VQ of elastic waves in an inhomogeneous anisotropic material.

χρ(R) =
1

ρ(e)(R)

[
ρ(i)(R) − ρ(e)(R)

]
Γc(R) (7.4)

in the density and the (dimensionless) contrast

χ
c
(R) = s(e)(R) :

[
c(i)(R) − c(e)(R)

]
Γc(R) (7.5)

in the stiffness tensor, where s(e)(R) with

s(e)(R) : c(e)(R) = c(e)(R) : s(e)(R)

= I+ (7.6)

is the compliance tensor of the embedding material; due to the characteristic
function Γc(R), both χρ(R) and χ

c
(R) are actually equal to zero outside Vc.

The material inhomogeneities in (7.3) can now be written as

ρ(R) = ρ(e)(R) [1 + χρ(R)] =
{

ρ(e)(R) for R �∈ Vc

ρ(i)(R) for R ∈ Vc,
(7.7)

c(R) = c(e)(R) :
[
I+ + χ

c
(R)
]

=

⎧⎨⎩c(e)(R) for R �∈ Vc

c(i)(R) for R ∈ Vc
; (7.8)

in Figure 7.2, we have displayed ρ(R) in terms of a cross-section of Vc along
the coordinate ζ.
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Inserting (7.7) and (7.8) into (7.3), we obtain after rearranging terms:

∇ ·
[
c(e)(R) : ∇v(R, t)

]
− ρ(e)(R)

∂2v(R, t)
∂t2

= −∂f(R, t)
∂t

− ∇ ·
[
c(e)(R) : h(R, t)

]
+ ρ(e)(R)χρ(R)

∂2v(R, t)
∂t2

− ∇ ·
[
c(e)(R) : χ

c
(R) : ∇v(R, t)

]
; (7.9)

in the term ∇ ·
[
c(R) : h

]
, we can replace c(R) by c(e)(R) because VQ with

h �= 0 has been assumed to be in the exterior of Vc. The notation (7.9) sug-
gests as if v(R, t) would satisfy a Navier equation for the inhomogeneous
anisotropic embedding material with an “extended” inhomogeneity that rep-
resents the contrast volume Vc. This is apparently not really true because
the extended inhomogeneity contains the unknown field quantity; neverthe-
less, the form (7.9) has advantages for the approximate solution of scattering
problems (keyword: Born approximation) consequently stimulating to explic-
itly express the two terms ρ(e)χρ∂

2v/∂t2 and ∇ ·
[
c(e) : χ

c
: ∇v

]
by (equiv-

alent) sources f ρ and h
c

where

f ρ(R, t) = − ρ(e)(R)χρ(R)
∂v(R, t)

∂t

= Γc(R)
[
ρ(e)(R) − ρ(i)(R)

] ∂v(R, t)
∂t

, (7.10)

h
c
(R, t) = χ

c
(R) : ∇v(R, t)

= χ
c
(R) : s(i)(R) :

∂T(R, t)
∂t

= Γc(R)
[
s(e)(R) − s(i)(R)

]
:

∂T(R, t)
∂t

, (7.11)

because (7.9) then reads as

∇ ·
[
c(e)(R) : ∇v(R, t)

]
− ρ(e)(R)

∂2v(R, t)
∂t2

= − ∂

∂t

[
f(R, t) + f ρ(R, t)

]
−∇ ·

{
c(e)(R) :

[
h(R, t) + h

c
(R, t)

]}
. (7.12)

To find the last line of (7.11), we have to use the symmetry of the material
anisotropy tensor and the Newton–Cauchy equation (4.33) that is homoge-
neous in the contrast volume.115

115Equation 5.99 with 5.94 and 5.95 is the acoustic pendant to 7.12 (for a homogeneous
embedding material).
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In the Navier equation (7.12), the contrast volume Vc is equivalent to the
sources f ρ(R, t), h

c
(R, t) why they are called equivalent sources. They are

also called secondary (or induced) sources because they are created as kind
of a feed-back by the incident field vi(R, t) with the sources f(R, t), h(R, t)
superimposed by their own scattered field vs(R, t) to the total field v(R, t) =
vi(R, t) + vs(R, t) in Vc. On one hand, this dependence of the equivalent
sources upon the total field can be exploited to formulate a volume integral
equation for their calculation (Section 15.3.1), and on the other hand, the
linear superposition of the incident and the scattered field suggests to neglect
the scattered field in Vc: This is the so-called Born approximation (Section
15.3.2; acoustics: Section 5.6).

The Navier equation (7.12) holds in all space (R ∈ IR3). Nevertheless,
we can specialize it to R �∈ Vc and R ∈ Vc recognizing that the equivalent
sources are restricted to:116

∇ ·
[
c(e)(R) : ∇v(R, t)

]
− ρ(e)(R)

∂2v(R, t)
∂t2

= −∂f(R, t)
∂t

− ∇ ·
[
c(e)(R) : h(R, t)

]
for R �∈ Vc; (7.13)

in the interior of Vc apparently the homogeneous equation (7.3) with the
material parameters of Vc holds

∇ ·
[
c(i)(R) : v(R, t)

]
− ρ(i)(R)

∂2v(R, t)
∂t2

= 0 for R ∈ Vc. (7.14)

At this point, it should already not be unmentioned that even scattering
by a void in an embedding material—our previous contrast volume has been
an inclusion—can be reduced to equivalent (surface) sources (Section 15.1.3).

7.1.2 Homogeneous anisotropic materials

Specializing the wave equation (7.3) to homogeneous anisotropic materials
ρ(R) = ρ, c(R) = c is evident:

∇ · c : ∇v(R, t) − ρ
∂2v(R, t)

∂t2
= −∂f(R, t)

∂t
− ∇ · c : h(R, t). (7.15)

Note: To shift the R-independent c-tensor in front of the divergence operator

an interchange of indices is necessary, we obtain

c2341 .
: ∇∇v(R, t) − ρ

∂2v(R, t)
∂t2

= −∂f(R, t)
∂t

− c2341 .
: ∇h(R, t). (7.16)

116One says that: They are of compact support.
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The specialization of (7.12) to a homogeneous anisotropic embedding ma-
terial for inhomogeneous anisotropic contrast volumes equivalently reads as

∇ · c : ∇v(R, t) − ρ
∂2v(R, t)

∂t2
=− ∂

∂t

[
f(R, t) + f ρ(R, t)

]
− ∇ · c :

[
h(R, t) + h

c
(R, t)

]
, (7.17)

where ρ(e) =⇒ ρ has to be replaced in f ρ and c(e) =⇒ c in h
c
.

7.1.3 Homogeneous isotropic materials

For a homogeneous isotropic material, we have to insert the stiffness tensor

c = λ Iδ + 2µ I+ (7.18)

with Lamé constants λ and µ in (7.15) and to pay attention to (2.115) and
(2.116):

λ∇ · I trace [∇v(R, t)]︸ ︷︷ ︸
= ∇ · v(R, t)

+ 2µ∇ · [∇v(R, t)]s︸ ︷︷ ︸
= µ[∇ · ∇v(R, t) + ∇∇ · v(R, t)]

−ρ
∂2v(R, t)

∂t2

=−∂f(R, t)
∂t

− λ∇[traceh(R, t)] − 2µ∇ · h(R, t), (7.19)

where we exploited the symmetry of h in the h-term. Explicitly written Equa-
tion 7.19 finally reads as

µ∆v(R, t) + (λ + µ)∇∇ · v(R, t) − ρ
∂2v(R, t)

∂t2

=−∂f(R, t)
∂t

− λ∇[traceh(R, t)] − 2µ∇ · h(R, t), (7.20)

and another version emerges if we express the ∆-Operator according to (2.187)
by ∇ × ∇× and ∇∇:

(λ + 2µ)∇∇ · v(R, t) − µ∇ × ∇ × v(R, t) − ρ
∂2v(R, t)

∂t2

=−∂f(R, t)
∂t

− λ∇[traceh(R, t)] − 2µ∇ · h(R, t). (7.21)

The notation (7.21) nicely reveals117 the pressure wave term (λ + 2µ)∇∇ · v
and the shear wave term µ∇ × ∇ × v (Section 8.1.2).

117From the homogeneous equation in this writing, we immediately deduce that respective
solutions—for example, plane waves—may either be polarized longitudinally or transversely
with different velocities. For instance, we take the divergence resulting in a vanishing double
curl operator and leaving us with only the differential operator for acoustic longitudinal
pressure waves with ρ/(λ + 2µ) as inverse square of the pressure wave velocity. However,
if we take the curl the first term vanishes and ρ/µ appears to be the inverse square of the
velocity of transverse waves: The remaining differential operator is equivalent to the one for
transverse electromagnetic waves.



K12611 Chapter: 7 page: 211 date: January 6, 2012

Vector Wave Equations 211

In the homogeneous isotropic material outside the source volume Equation
7.2 specially reads as

∂T(R, t)
∂t

= λ I∇ · v(R, t) + µ
{
∇v(R, t) + [∇v(R, t)]21

}
; (7.22)

for causal fields (Section 3.3) time integration leads to

T(R, t) = λ I∇ · u(R, t) + µ
{
∇u(R, t) + [∇u(R, t)]21

}
, (7.23)

where u(R, t) according to (3.94) denotes the particle displacement. If h is
the null tensor, we equally write (7.20) and (7.21) often for the particle dis-
placement instead the particle velocity:

µ∆u(R, t) + (λ + µ)∇∇ · u(R, t) − ρ
∂2u(R, t)

∂t2
=−f(R, t), (7.24)

(λ + 2µ)∇∇ · u(R, t) − µ∇ × ∇ × u(R, t) − ρ
∂2u(R, t)

∂t2
=−f(R, t). (7.25)

7.1.4 Inhomogeneous isotropic materials

For inhomogeneous isotropic materials, the isotropic stiffness tensor (7.18)

c(R) = λ(R) Iδ + 2µ(R) I+ (7.26)

and the mass density ρ(R) are spatially dependent; calculating ∇ ·[
c(R) : ∇v(R, t)

]
in (7.3) further terms appear in addition to the terms

µ(R) ∆v(R, t) and [λ(R) + µ(R)] ∇∇ · v(R, t) that result from the differ-
entiation of c(R) (for clearness, we omit the evaluation of this differentiation

on the right-hand side):

[λ(R) + µ(R)]∇∇ · v(R, t) + µ(R)∆v(R, t) − ρ(R)
∂2v(R, t)

∂t2

+ [∇λ(R)] [∇ · v(R, t)] + [∇µ(R)] · [∇v(R, t)] + [∇v(R, t)] · [∇µ(R)]

= −∂f(R, t)
∂t

− ∇ · c(R) : h(R, t). (7.27)

This differential equation serves to calculate the ray propagation in inhomo-
geneous isotropic materials (Section 12.3.2).

7.2 Helmholtz Decomposition for Homogeneous
Isotropic Materials: Pressure and Shear Waves

The Helmholtz decomposition of a vector field, for example, the particle ve-
locity u(R, t), into a scalar potential Φ(R, t) and a vector potential Ψ(R, t)
according to
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u(R, t) = ∇Φ(R, t) + ∇ × Ψ(R, t) (7.28)

with the gauge118

∇ · Ψ(R, t) = 0 (7.29)

is always possible because Φ and Ψ can be calculated knowing u (Achenbach
1973; Achenbach et al. 1982). Obviously, Equation 7.28 is the decomposition
of u(R, t) into a divergence-free shear term ∇ × Ψ(R, t) and a curl-free pres-
sure term ∇Φ(R, t). Turning to the Helmholtz decomposition of the particle
velocity

v(R, t) = ∇∂Φ(R, t)
∂t

+ ∇ × ∂Ψ(R, t)
∂t

, (7.30)

it becomes obvious that the Navier equation (7.21) for homogeneous isotropic
materials decouples in two independent equations for the potentials due to
the inherent divergence and curl. Insertion of (7.28) into (7.21) directly yields

∇ ∂

∂t

[
(λ + 2µ)∆Φ(R, t) − ρ

∂2Φ(R, t)
∂t2

]
+ ∇ × ∂

∂t

[
−µ∇ × ∇ × Ψ(R, t)︸ ︷︷ ︸

(7.29)
= µ∆Ψ(R, t)

−ρ
∂2Ψ(R, t)

∂t2

]
(7.31)

for the left-hand side of (7.21). Similarly, by decomposing the right-hand side
of (7.21) into a (curl-free) gradient and a (divergence-free) curl term, we can
equalize the respective curl-free and divergence-free terms as Helmholtz de-
compositions of the left- and right-hand sides of (7.21). The force density vec-
tor f(R, t) is directly assigned to the Helmholtz potentials (λ + 2µ)Φf (R, t)
and µΨf (R, t) according to

f(R, t) = (λ + 2µ)∇Φf (R, t) + µ∇ × Ψf (R, t), ∇ · Ψf (R, t) = 0. (7.32)

For the symmetric tensor of the injected deformation rate h(R, t), we establish
a Helmholtz decomposition similar to (7.32) for each fixed value of the second
index only to combine the three equations to a tensor equation (of second
rank) afterward; nevertheless, we have to enforce the symmetry:

h(R, t) =
1
2
{
∇Θh(R, t) + [∇Θh(R, t)]21

}
+

1
2

{
∇ × Ξ

h
(R, t) + [∇ × Ξ

h
(R, t)]21

}
, (7.33)

118A vector—here: Ψ—is only uniquely determined if its curl and its divergence are
assessed.
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where

∇ · Ξ(R, t) = 0 (7.34)

is a gauge requirement. For the right-hand side complementing (7.31), we have
to calculate

λ∇ traceh(R, t) + 2µ∇ · h(R, t)

= λ∇∇ · Θh(R, t) + µ∇ · ∇Θh(R, t) + µ∇∇ · Θh(R, t)

+ λ∇ trace [∇ × Ξ(R, t)] +
1
2

µ∇ × ∇ · Ξ21(R, t);

also decomposing ∇ · ∇Θh into ∇∇ · Θh − ∇ × ∇ × Θh, the equalization
of the respective divergence-free and curl-free terms of (7.31) with the corre-
sponding terms of the inhomogeneity results in the decoupled equations for
Φ(R, t) and Ψ(R, t):

∆Φ(R, t) − ρ

λ + 2µ

∂2Φ(R, t)
∂t2

= −Φf (R, t) − ∇ · Θh(R, t) − λ

λ + 2µ
trace [∇ ×

∫ t

0
Ξ

h
(R, τ) dτ],

(7.35)

∆Ψ(R, t) − ρ

µ

∂2Ψ(R, t)
∂t2

= −Ψf (R, t) + ∇ ×
∫ t

0
Θh(R, τ) dτ − 1

2
∇ ·
∫ t

0
Ξ21

h
(R, τ) dτ. (7.36)

Since the inhomogeneities of the differential equations for the potentials are
related to the “true” physical sources f(R, t) and h(R, t) in a rather compli-
cated way only the homogeneous versions of (7.35) and (7.36) are generally
used (e.g., Section 8.1.2; Schmerr 1998); however, we then have d’Alembert
wave equations in contrast to the homogeneous Navier equation (7.21), and
one of them is even scalar. Simultaneously, the mathematical decoupling
into two d’Alembert equations is also a physical decoupling into pressure
and shear waves resulting, at least for pressure waves in a “scalarization.”
However, the pressure–shear coupling due to boundary and transition con-
ditions destroys the above decoupling hence it is advisable to stay with the
Navier equation in particular because there is no alternative for inhomoge-
neous and/or anisotropic materials. Even plane waves do not decouple into
pressure and shear waves in infinite homogeneous anisotropic materials, they
are even no longer longitudinally and transversely polarized (Section 8.3.1).
In inhomogeneous isotropic materials, a respective separation into longitudi-
nal pressure and transverse shear waves only exists if the material properties
are slowly varying within the framework of a high frequency approximation
(Červený 2001; Section 12.3).
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7.3 Decoupling of Scalar SH-Waves for Inhomogeneous
Isotropic Two-Dimensional Materials

There is a possibility for a complete “scalarization” of elastic wave
propagation—more precisely, elastic shear waves: We simply have to postu-
late a single nonvanishing cartesian component of v(R, t) and require the
independence of the wave propagation from this coordinate, i.e., we con-
fine ourselves to a two-dimensional problem with—for example—∂/∂y ≡ 0
for v(R, t) = vy(x, z, t)ey. This two-dimensional SH-propagation problem is
mathematically completely equivalent to the two-dimensional electromagnetic
TE-problem.

We rely on a homogeneous isotropic material, hence on the Navier equation
(7.13) with

c(e)(R) = λ(R) Iδ + 2µ(R) I+ (7.37)

for R ∈ IR3. Under the assumptions

∂

∂y
≡ 0, (7.38)

v(R, t) = vy(x, z, t)ey, (7.39)

its left-hand side is reduced to the only remaining y-component—we have
∇ · v ≡ 0 and ∇µ · v ≡ 0—

µ(x, z)
(

∂2vy(x, z, t)
∂x2 +

∂2vy(x, z, t)
∂z2

)
+ ∇µ(x, z) · ∇vy(x, z, t) − ρ(x, z)

∂2vy(x, z, t)
∂t2

. (7.40)

We must require

f(R, t) = fy(x, z, t)ey, (7.41)
ex · ∇[λ(x, z) traceh(x, z, t)] = 0, (7.42)
ez · ∇[λ(x, z) traceh(x, z, t)] = 0, (7.43)

∇ · [µ(x, z)h(x, z, t)] · ex = 0, (7.44)
∇ · [µ(x, z)h(x, z, t)] · ez = 0 (7.45)

to get only a y-component also on the right-hand side. With the assump-
tion (7.38), we then obtain

µ(x, z)∆vy(x, z, t) + ∇µ(x, z) · ∇vy(x, z, t) − ρ(x, z)
∂2vy(x, z, t)

∂t2

= −∂fy(x, z, t)
∂t

− 2
∂

∂x
[µ(x, z)hxy(x, z, t)] − 2

∂

∂z
[µ(x, z)hzy(x, z, t)]

(7.46)
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FIGURE 7.3
Two-dimensional scalar SH-wave scattering problem (r = xex + zez).

as a two-dimensional scalar wave equation for shear waves with a polarization
parallel to the independency axis y. In a homogeneous isotropic material,
(7.46) reduces to the d’Alembert wave equation

∆vy(x, z, t) − ρ

µ

∂2vy(x, z, t)
∂t2

= − 1
µ

∂fy(x, z, t)
∂t

− 2
∂hxy(x, z, t)

∂x
− 2

∂hzy(x, z, t)
∂z

. (7.47)

In the presence of (two-dimensional119) inclusion- or defect “volumes” Vc

(“surface” Sc with outer normal nc: Figure 7.3) with parameters ρ(i)(r),µ(i)(r)
of an inhomogeneous isotropic material embedded in a ρ(e)(r)µ(e)(r)-material
the scalar two-dimensionality also remains intact. Stress tensor and particle
velocity have to satisfy the transition conditions (3.88) and (3.97); with (7.23),
we calculate the stress tensor for the present two-dimensional case as

T(x, z, t) = µ(x, z)[∇uy(x, z, t)ey + ey∇uy(x, z, t)], (7.48)

thus reducing (3.88)—we have nc · ey = 0—to

nc · T(e)(rS , t) −nc · T(i)(rS , t)= µ(e)(rS)nc · ∇u(e)
y (r, t)|r=rS

ey−µ(i)(rS)nc

· ∇u(i)
y (r, t)|r=rS

ey = 0, rS ∈ Sc, (7.49)

119Two-dimensional “volumes” are domains in IR2 whose “surfaces” are curves in IR2.
Instead of using the mathematical notations Ω and ∂Ω for domains and their boundaries,
we stay with the more intuitive notations V and S.
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where

r = xex + zez. (7.50)

The transition condition equation (7.49) only has a y-component—we refer to
the notation (2.146) of the normal derivative—

µ(e)(rS)
∂u

(e)
y (r, t)
∂nc

∣∣∣∣∣
r=rS

= µ(i)(rS)
∂u

(i)
y (r, t)
∂nc

∣∣∣∣∣
r=rS

, rS ∈ Sc, (7.51)

finally yielding the (homogeneous) transition conditions as continuity require-
ments of the particle velocity component according to (Equation 3.97)

u(e)
y (rS , t) = u(i)

y (rS , t), rS ∈ Sc, (7.52)

and its µ-multiplied normal derivative according to (7.51).
For perfectly soft “inclusions,” (7.51) degenerates to a Neumann boundary

condition

∂uy(r, t)
∂nc

∣∣∣∣
r=rS

= 0, rS ∈ Sc, (7.53)

and for perfectly rigid inclusions, (7.52) degenerates to a Dirichlet boundary
condition

uy(rS , t) = 0, rS ∈ Sc, (7.54)

for the particle displacement component. Scattering of elastic shear waves
polarized parallel to the independency axis of a two-dimensional soft
scatterer—a two-dimensional void with a stress-free boundary—(SH-waves
for shear-horizontal) consequently is a scalar Neumann boundary value prob-
lem.120 Note: The respective scattering of a pressure wave in acoustics is
a scalar Dirichlet problem (for the pressure). Furthermore, two-dimensional
P-SV-wave scattering with a polarization vector parallel to the independency
axis is not a scalar problem.

7.4 Frequency Domain Wave Equations for
Nondissipative and Dissipative Materials

With a Fourier transform with regard to time a real valued time and space-
dependent field quantity—for example, v(R, t)—changes into a complex val-
ued frequency and space dependent Fourier spectrum v(R,ω) with the

120It complies with the two-dimensional electromagnetic TE-problem (Langenberg 2005).
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property v(R,−ω) = v∗(R,ω). The differentiation theorem of the Fourier
transform (2.292) changes a time derivative of a field quantity v(R, t) into a
multiplication of the spectrum with −jω:

∂

∂t
v(R, t) ◦—• − jωv(R,ω), (7.55)

∂2

∂t2
v(R, t) ◦—• − ω2 v(R,ω) (7.56)

transforming the d’Alembert operator of a scalar hyperbolic wave equation
(for example: Equation 5.32)

∆ − 1
c2

∂2

∂t2
(7.57)

into the Helmholtz operator

∆ + k2 mit k =
ω

c
(7.58)

of a scalar elliptic—the so-called reduced—wave equation. According to (3.21),
the Fourier spectrum for a fixed (circular) frequency ω can be related to the
phasor of the real valued time harmonic field quantity v(R, t, ω0) that con-
sequently oscillates at each spatial point with different amplitudes v(R,ω0)
but always with the same (circular) frequency ω0.

7.4.1 Frequency domain wave equations for
nondissipative materials

Due to (7.55) and (7.56), we can directly cite all reduced wave equations cor-
responding to the time domain wave equations as derived in Section 7.1; being
actually trivial, we will refrain from a “derivation” only to utilize them upon
request. Yet one should note that: This elementary Fourier transform of the
wave equations is strictly related to the assumptions of instantaneously react-
ing materials yielding only frequency-independent material parameters in the
respective reduced wave equations. Nevertheless, we can always insert those
material parameters into an ω0-equation that are given for this particular
frequency; with that we basically have introduced constitutive equations for
dissipative materials, i.e., for noninstantaneously reacting materials. This is
the topic of the next section.

7.4.2 Frequency domain wave equations for
dissipative materials

For dissipative (linear) materials, we refer to the physically consistent re-
laxation models (4.109), (4.110) of dissipation, where the relaxation kernels
µ(R, t) and χ(R, t) should be—physically stringent—causal square integrable
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time functions. As a consequence, the fields are causal and possess finite energy
(Karlsson and Kristensson 1992). As a further consequence, the real and imag-
inary parts of the necessarily complex Fourier spectra µ(R,ω) and χ(R,ω)

(all components of these tensors) are mutual Hilbert transforms; they are not
independent upon each other (Section 2.3.4).

Inserting the constitutive equations (4.109) and (4.110) into the governing
equations (3.1) and (3.2) leads to the system of equations121

ρ(R) · ∂v(R, t)
∂t

+
∫ t

0
µ(R, t − τ) · ∂v(R, τ)

∂τ
dτ = ∇ · T(R, t) + f(R, t),

(7.59)

s(R) :
∂T(R, t)

∂t
+
∫ t

0
χ(R, t − τ) :

∂T(R, τ)
∂τ

dτ = I+ : ∇v(R, t) + h(R, t);

(7.60)

due to the convolution rule (2.295), its Fourier transform results in

−jω
[
ρ(R) + µ(R,ω)

]
· v(R,ω) = ∇ · T(R,ω) + f(R,ω), (7.61)

−jω
[
s(R) + χ(R,ω)

]
: T(R,ω) = I+ : ∇v(R,ω) + h(R,ω). (7.62)

Eliminating T(R,ω) yields the reduced wave equation

∇ · c
c
(R,ω) : ∇v(R,ω) + ω2ρ

c
(R,ω) · v(R,ω)

= jωf(R,ω) − c
c
(R,ω) : h(R,ω), (7.63)

where

s
c
(R,ω) = s(R) + χ(R,ω), (7.64)

c
c
(R,ω) = s−1

c
(R,ω), (7.65)

ρ
c
(R,ω) = ρ(R) + µ(R,ω) (7.66)

denote complex valued frequency-dependent material tensors that replace the
real valued instantaneously reacting and therefore nondissipative materials:
The reduced wave equation (7.63) is complementary to (7.3) for relaxation
dissipative materials. Should the Maxwell model (4.77), (4.78) of dissipation
be sufficient the respective reduced wave equation emerges through Fourier
transform of (4.81) and should a Rayleigh–Kelvin–Voigt model be appropriate,
we find the respective reduced wave equation under (4.108). Yet, we once more
emphasize that only the relaxation models (4.109) and (4.110) are physically
consistent, all other models can only have a restricted validity.

121For a shorter notation, we use the symmetrization operator

I+ : ∇v =
1
2

[∇v + (∇v)21
]
.



8
Elastic Plane Waves in Homogeneous
Materials

8.1 Homogeneous Plane Waves in Isotropic
Nondissipative Materials

Plane waves emerge as very special solutions of homogeneous wave equa-
tions122 for homogeneous materials, that is to say, we look for solutions of
the homogeneous equation (7.20)

µ ∆v(R, t) + (λ + µ)∇∇ · v(R, t) − ρ
∂2v(R, t)

∂t2
= 0 (8.1)

for isotropic nondissipative materials; applying one time integration, we can
equally write this equation in terms of the particle displacement (Equa-
tion 7.24):

µ ∆u(R, t) + (λ + µ)∇∇ · u(R, t) − ρ
∂2u(R, t)

∂t2
= 0. (8.2)

8.1.1 One-dimensional plane waves: Primary longitudinal
and secondary transverse waves

“One-dimensional” means that all field quantities should only depend upon
one (Cartesian) coordinate. We choose the z-coordinate, that is to say, we
postulate independence of x and y putting all derivatives with regard to x
and y to zero:

∂

∂x
≡ 0,

∂

∂y
≡ 0. (8.3)

With (2.182), (2.180), and (2.186), respectively, the requirements (8.3) yield as

µ
∂2u(z, t)

∂z2 + (λ + µ)
∂2uz(z, t)

∂z2 ez − ρ
∂u(z, t)

∂t2
= 0. (8.4)

122Gaussian wave packets or plane wave spectra represent other special solutions of the
homogeneous wave equation (Chapter 12).
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We take the three Cartesian components of this one-dimensional vector wave
equation:

µ
∂2ux(z, t)

∂z2 − ρ
∂2ux(z, t)

∂t2
= 0, (8.5)

µ
∂2uy(z, t)

∂z2 − ρ
∂2uy(z, t)

∂t2
= 0, (8.6)

(λ + 2µ)
∂2uz(z, t)

∂z2 − ρ
∂2uz(z, t)

∂t2
= 0. (8.7)

We obtain three mutual independent (decoupled) equations for the respec-
tive components of u(R, t) with a similar mathematical structure that can be
solved independently. For example, from the outset, we can choose trivial so-
lutions for two equations, e.g., ux(z, t) = uy(z, t) ≡ 0 or ux(z, t) = uz(z, t) ≡ 0
or uy(z, t) = uz(z, t) ≡ 0.

Pulsed primary longitudinal waves: We choose trivial solutions for (8.5)
and (8.6) and investigate the Fourier transformed equation (8.7), that is to
say, the reduced wave equation corresponding to:

(λ + 2µ)
∂2uz(z,ω)

∂z2 + ω2ρuz(z,ω) = 0. (8.8)

Because now only one differential equation variable remains, we can write
(8.8) as ordinary differential equation of second order

(λ + 2µ)
d2uz(z,ω)

dz2 + ω2ρuz(z,ω) = 0 (8.9)

with constant coefficients; writing it as

d2uz(z,ω)
dz2 + k2

Puz(z,ω) = 0 (8.10)

with the short-hand notations

kP = ω

√
ρ

λ + 2µ

=
ω

cP
(8.11)

it definitely has sin kPz and/or cos kPz as solutions. With (2.259), we combine
both possibilities to the complex valued solutions123

uz(z,ω) = u(ω) e±jkPz, (8.12)

where, due to the homogeneity of the differential equation (8.10), u(ω) turns
out to be an arbitrary amplitude eventually depending upon the parameter ω

123The physical meaning of the sine/cosine solutions will be discussed later on.
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that is “hidden” in kP; we understand u(ω) as function of ω, as eventually
complex spectrum of the equally arbitrary time function u(t) where

u(t) ◦—• u(ω). (8.13)

Note: u(t) has the unit m whereas u(ω) has the unit ms.
To answer the question which sign can or must be chosen in the exponent

of the exponential function (8.12), we transform the solutions (8.12) into the
time domain applying the translation rule (2.290) of the Fourier transform:

uz(z, t) = F−1{uz(z,ω)}
= F−1{u(ω) e±jkPz}
= F−1{u(ω) e±j z

cP
ω}

= u

(
t ∓ z

cP

)
. (8.14)

Equation 8.14 represents the plane wave solution of the wave equation (8.7);
why is it a wave? At first, we investigate the upper sign according to

uz(z, t) = u

(
t − z

cP

)
(8.15)

and choose a particular location, e.g., z = 0: An observer of the plane
wave “measures” there the time function—the impulse—uz(0, t) = u(t) [Fig-
ure 8.1(b); u(t) is an RC2(t)-pulse displaced by half its duration to the
right side of the t-axis: Section 2.3.2]. Another observer at z0 > 0 measures
with uz(z0, t) = u(t − z0/cP) the same pulse, yet delayed by the time t = z0/cP
(Figure 8.1a): The impulse—the pulsed wave—has propagated into the direc-
tion of positive z-values during the time z0/cP with the velocity cP. At the
location z = −z0, z0 > 0, the respective observer has measured the impulse
already at time t = −z0/cP (Figure 8.1c), that is to say, the one-dimensional
plane wave (8.15) has the z-axis as propagation direction, it comes from neg-
ative infinity and propagates in the direction of positive z-values into positive
infinity. Similarly, the one-dimensional plane wave

uz(z, t) = u

(
t +

z

cP

)
(8.16)

propagates with velocity cP into negative z-direction. Both signs in (8.14) are
physically meaningful and definitely mathematically possible,124 they charac-
terize the propagation direction.

Since uz(z, t) is a function of two variables, we can also display, alterna-
tively to Figure 8.1 that discusses the dependence of t for fixed values of z, the
dependence of z for fixed values of t (Figure 8.2). At time t = 0 [Figure 8.2(b)],

124The derivation of the Green function reveals that mathematically possible signs must
not at all be physically meaningful (Section 13.1).
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uz(z, t)

u(t – z0/cP)

t = z0/cP)

t = –z0/cP
z0/cP

u(t + z0/cP)

z = z0
(a)

(b)

(c)
z = –z0

z = 0

t

t

t

z0/cP

u(t)

FIGURE 8.1
Propagation of a one-dimensional pulsed plane wave with the velocity cP; time
dependence for various locations.

the wave amplitude distribution is given by u(−z/cP), that is to say, by the
time impulse mirrored at the origin with a differently normalized argument: If
the time impulse u(t) has duration T (in seconds), then the “spatial impulse”
is TcP meters long.125 For our chosen symmetric time impulse, we exactly
“see” the same impulse in the spatial domain that propagates—compare
Figure 8.2(a)—during the time t0 from z = 0 to z = t0cP. In the spatial
domain, we also sketch the particle velocity vector uzez.

The so-called phases

φ(z, t) = t ∓ z

cP
(8.17)

of the plane (∓)-waves are constant on all planes perpendicular to the prop-
agation coordinate: That is the reason why they are called plane waves.

125Consequently, a longitudinal wave pulse in steel of duration 1 µs is 5900 µm long. In
Figures 8.1 and 8.2, we have geometrically sketched the time and the spatial pulses with
equal length; this means that we either have normalized the velocity to 1—kind of a brute
force—or we have agreed to a dimensionless axis: t in Figure 8.1 may be normalized to
the duration T and z in Figure 8.2 to the spatial length TcP. That way, travel times are
geometrically equal to travel distances.
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uz(z, t)

u(t0 – z/cP)

u(– z/cP)

z = t0cP
t0cP

t = t0(a)

(b) t = 0

z

z

uzez

FIGURE 8.2
Propagation of a one-dimensional pulsed plane wave with velocity cP: spatial
dependence for times t = 0 (b) and t = t0 (a).

Simultaneously, the amplitudes are equally constant on all these planes, the
planes of constant phase and constant amplitude coincide: These are homo-
geneous plane waves. The velocity

cP =
√

λ + 2µ

ρ
(8.18)

of one-dimensional homogeneous plane waves evidently is the velocity of phase
propagation, hence it is called phase velocity.126 Let us consider two z-values
z1, z2 and two times t1, t2 with equal respective phases; then, we obtain

φ(z1, t1) − φ(z2, t2) = 0

= t1 − t2 ∓ z1 − z2

cP
(8.19)

or
∆t = ±∆z

cP
; (8.20)

switching to differential time and space intervals, we have

dz

dt
= ±cP (8.21)

as spatial change of phase with time, i.e., as phase velocity.
The particle displacement of the one-dimensional wave (8.15) only has a

z-component pointing into propagation direction (Figure 8.2), it is a longitu-
dinal (homogeneous plane) wave with phase velocity cP.

126In Section 8.1.2, we define the velocity of energy propagation, and in Section 8.3, we
find that it may differ from the phase velocity both in magnitude and direction.
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Solving the wave equations (8.5) and (8.6) in the next paragraph, we will
find that the respective phase velocity is always smaller than (8.18), revealing
that the presently discussed wave arrives always first at a particular observa-
tion point, it is the primary wave; this explains the index P that we attach
to the phase velocity (8.18). In Section 8.1.2, we will find that P may also
indicate pressure, i.e., the primary wave is a pressure wave from a physical
point of view. Yet, the primary or pressure wave is only strictly longitudinal
if it is a homogeneous plane wave; hence, we do not use the notation cL (e.g.:
Kutzner, 1983; Krautkrämer and Krautkrämer, 1986); and similarly not cT for
the secondary or shear wave that is transversely polarized as a homogeneous
plane wave.

We have implicitly assumed (Figures 8.1 and 8.2) that the arbitrary127

time function u(t) is an impulse with finite duration; this must not necessarily
be so, we can also consider a time harmonic function of infinite duration like
sinω0t or cos ω0t, −∞ < t < ∞.

Time harmonic longitudinal waves: At first, we choose the complex val-
ued time harmonic function128

u(t, ω0) = f(ω0) e−jω0t (8.22)

as complex valued combination of cos ω0t and sinω0t with the circular fre-
quency ω0 = 2πf0—the frequency f0 has the unit Hz, the circular frequency
ω0 the unit s−1—and the eventually complex valued amplitude f(ω0). The
ansatz (8.22) involves a single spectral line at exactly this circular frequency
with amplitude 2πf(ω0):

u(ω, ω0) = 2πf(ω0) δ(ω − ω0). (8.23)

Hence, our time harmonic one-dimensional homogeneous plane waves are char-
acterized by

uz(z, t,ω0) = f(ω0) e−jω0

(
t∓ z

cP

)

= f(ω0) e±jkPze−jω0t (8.24)

now exhibiting the so-called wave number

kP =
ω0

cP
(8.25)

corresponding to ω0 in the time function uz(z, t,ω0) of the primary wave:
With (8.11), we defined it as short-hand notation in the spectra (8.12). The

127If not arbitrary, there would be no US-NDT.
128The sign in the exponent matches the sign in the kernel of the inverse Fourier transform

(2.270). Using the ansatz

u(t, ω0) = f(ω0) e jω0t,

we have to switch to the complex conjugate in all complex valued formulas in the elaboration.
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complex exponential function e jϕ is 2π-periodic with regard to ϕ, hence the
time function e−jω0t is 2π-periodic with regard to ω0t; the periodicity interval
in the time domain

T0 =
2π

ω0
(8.26)

is called the period duration of time harmonic waves. Correspondingly, the
spatial function e±jkPz is 2π-periodic in kPz; the periodicity interval in the
spatial domain

λP =
2π

kP
(8.27)

is called wavelength of the time harmonic longitudinal plane wave. Time har-
monic longitudinal plane waves are periodic in space and time with periodicity
intervals depending upon each other due to (8.25):

λP = cPT0

=
cP

f0
. (8.28)

This fundamental relation among frequency, wavelength, and phase velocity
is an immediate consequence of the wave equation, written as

ω = cPkP; (8.29)

it is called dispersion relation of the underlying material even though this is
not obvious at this point.129 We will multiply come back to that.

We explicitly point out that the term “wavelength” is originally related
to time harmonic waves. As far as pulses are concerned, we have to consider
a particular spectral component, for example, the carrier frequency of the
RCN(t)-pulse (2.275).

Sometimes the time harmonic plane wave (8.24) is written with suppressed
time dependence:

uz(z,ω0)
def= uz(z, t,ω0) e jω0t

= f(ω0) e±jkPz. (8.30)

In (8.24), it is immediately evident that the sign combination +jkPz with
−jω0t stands for a harmonic plane wave propagation into positive z-direction
in contrast to the sign combination −jkPz with −jω0t standing for propagation
into negative z-direction. Yet, in order to guess the propagation direction from
(8.30), we must know the underlying time dependence; it could easily have
been e+jω0t yielding a change of the signs that determine the propagation

129The dispersion relation (8.29) of the homogeneous isotropic nondissipative material is a
linear relation between frequency and wave number; a material with such a dispersion rela-
tion does not at all exhibit dispersion of a propagating wave impulse (Figures 8.1 and 8.2).
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direction: The wave e−jkPz e jωt propagates into positive z-direction and the
wave e jkPz e jωt into negative z-direction.

It is clear that time harmonic waves are idealizations, yet, this is already
true for plane waves: They “require” an infinite propagation space. Never-
theless, both constructs are extremely useful to compose less idealized wave
fields like transducer radiation fields. We only have to switch from the single
spectral line to a complete Fourier spectrum and from a single propagation
direction to a spatial spectrum of directions!

If anybody is irritated by complex valued time harmonic longitudinal
plane waves (8.24)—US-NDT is a real valued “application space”!—he can
choose two spectral lines at ω = ω0 and ω = −ω0 with respective one half of
the previous amplitude (Equation 3.20) instead of the single spectral line at
ω = ω0 (Equation 8.23):

u(ω) = π[f(ω0) δ(ω − ω0) + f∗(ω0) δ(ω + ω0)]. (8.31)

If we additionally assume the amplitude at ω = −ω0 to be conjugate complex
as compared to the amplitude at ω = ω0, we obtain

u(t, ω0) = �{f(ω0) e−jω0t} (8.32)

via inverse Fourier transform of (8.31) and consequently

uz(z, t,ω0) = �{f(ω0) e±jkPze−jω0t}. (8.33)

The expression f(ω0) e±j ω0
cP

z is called phasor of the time harmonic wave (8.33)
(Section 3.2.6).

One remark concerning the sin kPz- and/or cos kPz-solutions of (8.10): We
obtain them from (8.12) if we superimpose back and forth traveling waves
with equal and opposite amplitudes according to

uz(z, t) = f(ω0)
(
e jkPz ± e−jkPz

)
e−jω0t

= f(ω0) e−jω0t

{
2 cos kPz for the positive sign
2j sin kPz for the negative sign . (8.34)

Obviously, these are standing “waves” oscillating with ω0 at a certain location
z with the respective sine or cosine amplitudes, they represent time-dependent
elastic oscillations similar to those of a violin string. Such oscillations can be
effectively used to compose modes in an elastic wave guide (Rose 1999).

Pulsed secondary transverse waves: We now turn to the remaining dif-
ferential equations (8.5) and (8.6), yet we keep this shorter because we have
already learned the essential facts about waves. We select (8.5) arbitrarily
putting uy(z, t) ≡ 0. Again, we switch to a reduced wave equation for the
frequency spectrum applying a Fourier transform with regard to time t:

µ
∂2ux(z,ω)

∂z2 + ω2ρux(z,ω) = 0. (8.35)
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Introducing the wave number for the secondary wave as well as the velocity—
from a physical view point, the index S equally stands for shear wave (Sec-
tion 8.1.2)—

kS = ω

√
ρ

µ

=
ω

cS
(8.36)

we find the solutions according to (8.12)

ux(z,ω) = u(ω) e±jkSz (8.37)

of

d2ux(z,ω)
dz2 + k2

Sux(z,ω) = 0. (8.38)

The inverse Fourier transform of (8.37) leads us to the one-dimensional pulsed
secondary plane waves

ux(z, t) = u

(
t ∓ z

cS

)
(8.39)

that propagate with the phase velocity cS in ±z-direction. Indeed, Equa-
tion 8.39 refers to secondary waves because with

cS =
√

µ

ρ
, (8.40)

we always have cS < cP. The time domain representation of the pulsed sec-
ondary wave

ux(z, t) = u

(
t − z

cS

)
(8.41)

for different locations principally looks identical to the one for the primary
wave in Figure 8.1, we simply have to replace cP by cS. Yet, in a representation
scaled to Figure 8.1, we have to choose the travel time z0/cS of the secondary
wave at z0 larger than the travel time z0/cP of the primary wave at the same
location z0. It is for this reason that primary and secondary waves separate
with increasing time, a fact that we have displayed in Figure 8.3. Note: Both
waves must not be necessarily identically pulsed as u(t). In US-NDT, this
travel time separation is used to identify either primary or secondary waves
through time gating.

It is quite clear that the picture in Figure 8.3 is equally valid for uy(z, t)
because we obtain the solutions of (8.6) as

uy(z, t) = u

(
t ∓ z

cS

)
. (8.42)
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ux,y,z(z, t)

u(t – z0/cP)

 z0/cS

 z0/cP

u(t – z0/cS)

u(t)

z = z0(a)

(b) z = 0

t

t

FIGURE 8.3
Propagation of one-dimensional pulsed P- and S-waves.

The spatial picture of pulsed secondary waves as compared to Figure 8.2
is depicted in Figure 8.4; two facts are worth being noted:

• The impulse u(−z/cS) mirrored for t = 0 exhibits a different normalization
of the z-coordinate; since cP < cS, it appears compressed as compared to130

u(−z/cP): We have normalized the primary wave velocity cP to 1; this
corresponds to the normalized axis scaling z/TcP in Figure 8.4; due to
the relation λS = cS/f0 corresponding to (8.28), the wavelength λS of the
carrier frequency of the RC2(t)-pulse is smaller than λP.

• During the same time interval t0 that we considered in Figure 8.2, the
pulsed secondary wave has only reached the location z = t0cS < t0cP, it
arrives as pulsed secondary wave at this point.

The particle displacement vector (8.39) of the secondary wave only has an
x-component; hence, it is oriented perpendicular to the propagation direction:
We encounter transverse (homogeneous plane) waves. In Figure 8.4, this is
indicated by an arrow.

The sketches 8.2 and 8.4 are even getting more intuitive if we ani-
mate the one-dimensional pulsed homogeneous plane P- and S-waves in
a two-dimensional xz-space (or yz-space)—a two-dimensional xz-plane (or
yz-plane)—as a movie; for this purpose, the wave amplitudes u(ti − z/cP,S),
i = 1, 2, 3, . . . , I, are displayed either color or gray coded in an xz-plane for
a dense sequence of times ti, i = 1, 2, 3, . . . , I. In Figure 8.5, two times t = t1

130Compare Footnote 125.
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ux(z, t)

u(t0 – z/cS)

u(– z/cS)

z = t0cS
t0cS

t = t0(a)

(b) t = 0

z

z

uxex

FIGURE 8.4
Spatial propagation picture of a one-dimensional pulsed S-wave with veloc-
ity cS for t = 0 (b) and t = t0 (a).

and t = t2 > t1 are selected: Wavefronts of pulsed plane P- and S-waves be-
come very demonstrative that way; in particular, we nicely recognize the or-
thogonality of planes of constant phase and amplitude with respect to the
propagation direction, identifying the waves as pulsed homogeneous plane
waves.

We additionally emphasize that plane P- and S-waves are completely in-
dependent of each other in a homogeneous material of infinite extent. The
so-called mode conversion, P =⇒ S and S =⇒ P, only appears in inhomoge-
neous materials, for example, at the plane boundary between two half-spaces
of infinite extent, and even then only for nonnormal incidence.

Just as the transverse secondary waves (8.39), the secondary waves (8.42)
are also transversely polarized, and they have only a y-component. Should
both components ux(z, t) and uy(z, t) be equal to zero, we can combine them—
identical pulse structure u(t) anticipated131—with different amplitudes ux and
uy to the transverse vector

uS(z, t) = u

(
t ∓ z

cS

)
(uxex + uyey)

= u

(
t ∓ z

cS

)
uS. (8.43)

131The general case of nonidentical pulse structure is discussed in connection with time
harmonic waves.
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P S

P

t = t2

t = t1

x

z

S

FIGURE 8.5
Plane P- and S-wavefronts: two-dimensional spatial display—a window to in-
finite space—of one-dimensional pulsed homogeneous plane P- and S-waves
for two times t1 and t2 > t1 (RC2-pulses).

Without loosing generality, we can normalize uS as unit vector ûS [we “hide”
the magnitude of uS in u(t)]:

uS(z, t) = u

(
t ∓ z

cS

)
ûS, (8.44)

where ûS · ez = 0; we have introduced transverse waves with linear polariza-
tion ûS. The homogeneous infinitely extended material, as considered here,
does not exhibit any preference direction that we can arrange for a carte-
sian coordinate system with the z-axis as propagation direction and—for
example—the x-axis pointing into ûS-direction. This is no longer possible
if any preference directions exist; then, we must ascertain the propagation
direction of plane waves in three dimensions (Section 8.1.2), where the lin-
ear transverse polarization separates into two well distinguishable transverse
waves (e.g.: SH and SV).
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Time harmonic transverse waves: As in the paragraph on time harmonic
longitudinal waves, we can “excite” time harmonic transverse waves with cir-
cular frequency ω0. In contrast to (8.24), we then obtain

ux,y(z, t,ω0) = f(ω0) e±jkSze−jω0t (8.45)

with the secondary wave number

kS =
ω

cS
(8.46)

and the secondary wavelength

λS =
cS

f0
. (8.47)

The wavelengths of time harmonic plane P- and S-waves of equal frequency
similarly compare to the respective phase velocities.

Superimposing x- and y-components of time harmonic plane waves prop-
agating into +z-direction according to

uS(z, t,ω0) = e jkSz−jω0t
[
ux(ω0) ex + uy(ω0) ey

]
,

= e jkSz−jω0tuS(ω0) (8.48)

we note that the choice of equal amplitudes of both components is by no means
mandatory: We can choose ux(ω0) and uy(ω0) differently complex valued for
each circular frequency132 ω0. The resulting complex ratio

A(ω0) =
uy(ω0)
ux(ω0)

(8.49)

is called polarization number in the theory of electromagnetic waves; A(ω0) in
a complex A-plane uniquely determines the curve of the vector tip uS(z0, t, ω0)
in the xy-plane for a fixed location z0 as function of time. For example,
A(ω0) = j means right-circular polarization (RC) of the time harmonic plane
wave: If the thumb of the right hand points into the +z-propagation direc-
tion of the wave, the tip of uS(z0, t, ω0) moves on a circle following the bent
fingers of the right hand and consequently in clockwise direction (CW) if we
observe the wave from behind; for this observation, mode RC is identical to
CW and left-circular (LC) to counter-clockwise (CCW).133 If we would have

132This is the reason why the concept of wave polarization is at first only applicable to
time harmonic waves. For impulses, one has to consider time averages (Langenberg 2005).
133Note: This is the definition of electrical engineering; in the physics/optics literature

(e.g., Born and Wolf 1975), the thumb is held opposite to the propagation direction. To
relate this definition to the engineering sense of rotation for right-circular CW polarized
waves the left hand is needed—the same wave is optically LC-polarized—and looking to-
ward the propagating wave this again corresponds to CCW. In addition, the assignment
of the polarization state to the point A(ω0) in the complex plane depends on the chosen
time function e−jω0t or e jω0t: For e jω0t, the value A(ω0) = j corresponds to left-circular
polarization in electrical engineering.
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to use the left hand for the same thumb orientation to describe the sense of
rotation opposite to the clock while watching the wave from behind, it would
be left-circular polarized. Due to missing respective transducers to generate
arbitrarily elliptically polarized transverse waves, the above terminology is
not widely known in US-NDT. Yet, in the theory of electromagnetic waves,
an essential part of communication and radar technology is based upon the
concept of polarization (Cloude 2002; Langenberg 2005).

8.1.2 Three-dimensional plane waves: Primary longitudinal
pressure and secondary transverse shear waves

Mathematical representation of homogeneous plane waves in three
dimensions: As we already stated: In an infinitely extended homogeneous
isotropic material—in an elastic full-space—the previous discussion of one-
dimensional plane waves is sufficient because we can always rotate a carte-
sian coordinate system such that—for example—the z-axis coincides with the
propagation direction. Yet, the simplest case of an inhomogeneous material,
the one-sided infinitely extended homogeneous isotropic half-space, its planar
surface defines a preference plane whose embedding into a cartesian coordi-
nate system is, even not strictly necessary, rather advisable to calculate the
reflection and mode conversion of elastic waves. By choosing the xy-plane as
surface, we would be left only with the z-axis as one-dimensional propagation
direction limiting our investigation to normal incidence, angular transducers
would not exist. As a consequence, we need the mathematical representation
of plane waves propagating three-dimensionally in a fixed cartesian coordinate
system in an arbitrary direction given, for instance, by the unit vector k̂. In
Figure 8.6, we have sketched this situation: In the direction k̂, we define a coor-
dinate axis ζ for one-dimensional plane wave propagation in three-dimensional
xyz-space. Hence, we postulate pulsed elastic plane waves with phase veloc-
ity c and the linear—longitudinal or transverse—polarization û according to

u(ζ, t) = u

(
t ∓ ζ

c

)
û. (8.50)

We know that the phases and amplitudes of homogeneous plane waves are per
definitionem constant in planes perpendicular to the propagation direction.
Therefore, we must find planes orthogonal to k̂ as the geometric location of
all vectors of position R for which

φ(ζ, t) = φ[ζ(R), t]

= t ∓ ζ(R)
c

(8.51)

is constant for fixed times. Figures 8.6 and 2.9 illustrate that such
planes are described by134 k̂ · R = ζ(R) = const leading to the mathematical

134For k̂ = ez , we obtain ζ = z as before: planes perpendicular to the z-axis.
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FIGURE 8.6
Propagation coordinate ζ of a one-dimensional plane wave in three-dimensional
xyz-space.

representation of pulsed homogeneous elastic plane waves in three-dimensional
R-space—we affiliate the propagation vector k̂ in the list of arguments of the
particle displacement—

u(R, t, k̂) = u

(
t ∓ k̂ · R

c

)
û. (8.52)

We actually know that we have to distinguish between the phase velocities
c = cP and c = cS of primary and secondary waves with longitudinal (û =
ûP ‖ k̂) and transverse (û = ûS ⊥ k̂) polarization. But exactly this fact should
emerge from a formal mathematical procedure because discussion of wave
propagation in homogeneous anisotropic materials leaves no other choice.
Therefore it is beneficial to equally formulate and solve the present prob-
lem of plane elastic wave propagation in a homogeneous isotropic material as
a so-called eigenvalue problem even though we already know the solution.

Phase velocities and polarizations of plane waves in three dimen-
sions: Solution of an eigenvalue problem: Phase velocities and polar-
izations of plane elastic waves necessarily resulted from the wave equations
(8.5) through (8.7) decoupled with regard to the components of u(R, t). This
decoupling was a consequence of the assumption ∂/∂y ≡ 0 that is here not pos-
sible, why we have to work with the vector wave equation (8.2). The Fourier
transform with regard to time leads us to the homogeneous vectorial reduced
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wave equation

µ ∆u(R,ω) + (λ + µ)∇∇ · u(R,ω) + ω2ρu(R,ω) = 0 (8.53)

for the frequency spectrum u(R,ω) of the particle velocity. To solve this dif-
ferential equation, we make the ansatz of homogeneous135 plane waves

u(R,ω) = u(R,ω, k̂) = u(ω, k̂) e±j k̂·R
c(k̂)

ω (8.54)

by Fourier transforming (8.50) and additionally admitting that the polariza-
tion vector û(k̂) of the vectorial amplitude

u(ω, k̂) = û(k̂)u(ω) (8.55)

and the phase velocity c(k̂) depend upon the parameter k̂ characteriz-
ing the propagation direction.136 If we now insert u(R,ω) according to
(8.54) into (8.53), we must calculate ∆u(R,ω, k̂) = ∇ · ∇u(R,ω, k̂) and
∇∇ · u(R,ω, k̂); for this purpose, we use product and chain rules as given in
Section 2.2.2 as well as the result (2.175) of the calculation137 of ∇[ jkk̂ · R]:

∇u(R,ω, k̂)
(2.174)

= ∇
[

± j
ω

c(k̂)
k̂ · R

]
︸ ︷︷ ︸

(2.175)
= ±j

ω

c(k̂)
k̂

u(R,ω, k̂)

= ±j
ω

c(k̂)
k̂ u(R,ω, k̂), (8.56)

∇ · ∇u(R,ω, k̂)
(2.167)

= ±j
ω

c(k̂)
k̂ · ∇u(R,ω, k̂)

= − ω2

c2(k̂)
u(R,ω, k̂); (8.57)

135It is an ansatz of homogeneous plane waves because k̂ is assumed to be real valued
(Section 8.2).
136In principle, also the impulse spectrum u(ω) could depend upon k̂; yet we will see

that we can ignore this idea even for the anisotropic case. Only the concept of the spatial
spectrum of plane waves is built on it.

However, for plane waves in elastic half-spaces, we are forced to accept a dependence of
the amplitude upon the propagation direction in a once again factorized version:

u(ω, k̂) = u(ω, k̂)û(k̂)

= u(ω)u(k̂)û(k̂),

where u(k̂) will turn out to be a reflection, transmission, or mode conversion factor
(Chapter 9).
137Note: If we assume (2.175), we do not need coordinates to perform the (∇ · ∇)- and

(∇∇·)-differentiations.
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∇ · u(R,ω, k̂)
(2.172)

= u(R,ω, k̂) · ∇
[
±j

ω

c(k̂)
k̂ · R

]
= ±j

ω

c(k̂)
u(R,ω, k̂) · k̂, (8.58)

∇∇ · u(R,ω, k̂)
(2.166)

= ±j
ω

c(k̂)
∇u(R,ω, k̂) · k̂

= − ω2

c2(k̂)
k̂ k̂ · u(R,ω, k̂). (8.59)

It follows:

− ω2

c2(k̂)
µu(R,ω, k̂) − ω2

c2(k̂)
(λ + µ) k̂ k̂ · u(R,ω, k̂) + ω2ρu(R,ω, k̂) = 0;

(8.60)

we multiply with c2(k̂), divide by ρ, and factor out −ω2u(R,ω, k̂) recognizing
(2.96): [

µ

ρ
I +

λ + µ

ρ
k̂ k̂ − c2(k̂) I

]
· ω2u(R,ω, k̂) = 0. (8.61)

The exponential function e±j ω

c(k̂)
k̂·R u(R,ω, k̂) is always nonzero; in the time

domain, −ω2u(ω) is nothing else than the second derivative of the arbitrary
impulse u(t) finally resulting in the notation of (8.61) as an eigenvalue problem
(Equation 2.128) (

µ

ρ
I +

λ + µ

ρ
k̂ k̂
)

· û(k̂) = c2(k̂)û(k̂) (8.62)

of the real valued symmetric tensor

D(k̂) =
µ

ρ
I +

λ + µ

ρ
k̂ k̂. (8.63)

Eigenvalues of D(k̂) are the squares of phase velocities c2(k̂) and eigenvectors
are the polarization vectors û(k̂); because D(k̂) is given by the prescribed
material properties and the plane wave ansatz, this is consequently also true
for the possible phase velocities and the corresponding polarizations.

In Section 2.1.4, we alluded to real valued eigenvalues of real valued sym-
metric tensors; hence, the squares of the phase velocities are real. In addition,
the tensor D(k̂) is positive-definite because

R · D(k̂) · R =
µ

ρ
R2 +

λ + µ

ρ
(k̂ · R)2 (8.64)

is always greater than zero for R > 0 and equal to zero only for R = 0. There-
fore, its eigenvalues—the squares of the phase velocities—are greater than
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zero, that is to say, the phase velocities themselves are real valued and posi-
tive, as it has to be. We will see that explicitly below.

To calculate the eigenvalues c2(k̂), the determinant of the homogeneous
system of equations[

µ

ρ
I +

λ + µ

ρ
k̂ k̂ − c2(k̂) I

]
· û(k̂) = 0 (8.65)

must be required to be zero (Equation 2.131). We write (8.65) in Chen’s
standard form (1983) [

µ − ρc2(k̂)
λ + µ

I + k̂ k̂

]
︸ ︷︷ ︸

= W(k̂, c2)

·û(k̂) = 0 (8.66)

with the wave tensor W(k̂, c2) and utilize one of Chen’s identities:

det (β I + CD) = β2(β + C · D). (8.67)

It follows:

detW(k̂, c2) =

[
µ − ρc2(k̂)

λ + µ

]2 [
µ − ρc2(k̂)

λ + µ
+ k̂ · k̂

]
, (8.68)

and this determinant is definitely equal to zero if either[
µ − ρc2(k̂)

λ + µ

]2

= 0 (8.69)

or

µ − ρc2(k̂)
λ + µ

+ 1 = 0 (8.70)

holds. This third degree polynomial (8.68) in c2(k̂) factorizes into a polyno-
mial of second and into a polynomial of first degree in c2(k̂); the coefficients
of both polynomials do not depend on k̂, hence, the eigenvalues c2(k̂) are not
functions of k̂. Actually, the material is isotropic because the phase veloci-
ties c of plane waves do not depend upon the propagation direction, and vice
versa, k̂-independent phase velocities define the material as isotropic. This is
a consequence of the stiffness tensor (7.18).

The quadratic equation (8.69) possesses two equal solutions

c2 =
µ

ρ
, (8.71)
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and the linear equation (8.70) has the solution

c2 =
λ + 2µ

ρ
. (8.72)

The double eigenvalue (8.71) and the single eigenvalue (8.72) are real and
larger than zero, a consequence of the real valued symmetry and the positive
definiteness of the tensor (8.63). From the eigenvalues, we obtain the phase
velocities

cS =
√

µ

ρ
(8.73)

of secondary

cP =
√

λ + 2µ

ρ
(8.74)

and primary waves. In the strict sense, phase velocities characterize plane
elastic waves in first place;138 the transverse polarization of secondary and
the longitudinal polarization of primary homogeneous waves result from the
second step of the eigenvalue problem solution via the calculation of the eigen-
vectors. The fact that, from a physical view point, secondary waves are shear
waves and primary waves are pressure waves (in homogeneous materials) fol-
lows from the Helmholtz decomposition of the particle velocity vector (even
for nonplane waves).139

In Section 2.1.4, we claimed that eigenvectors of real symmetric tensors are
orthogonal to each other if they belong to different eigenvalues. Both eigen-
vectors belonging to the twofold eigenvalue c2

S must therefore be orthogonal
to the eigenvector belonging to the eigenvalue c2

P: We expect that the polar-
ization vectors of primary and secondary plane waves are orthogonal to each
other; the additional fact that primary plane waves are longitudinally and sec-
ondary plane waves are transversely polarized will be explicitly shown in the
following. We simply calculate W(k̂, c2

P) and W(k̂, c2
S) and search for vectors

û(k̂) satisfying (8.66).
We find

W(k̂, c2
P) = −I + k̂ k̂; (8.75)

therefore, each vector ûP(k̂) is eigenvector to the (single) c2
P-eigenvalue, for

which
(I − k̂ k̂) · ûP(k̂) = 0 (8.76)

138This is especially true in homogeneous and/or anisotropic materials because even plane
waves in such materials are generally no pure longitudinal pressure or shear waves (Sec-
tions 8.3.1 and 12.3)
139This equally follows from the divergence and curl of the particle velocity vectors (8.82)

through (8.84).
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and, respectively,

ûP(k̂) = k̂ k̂ · ûP(k̂)

= [k̂ · ûP(k̂)] k̂ (8.77)

holds. It follows that: Depending upon the sign of k̂ · ûP(k̂), the vector ûP(k̂)
points into the direction ±k̂—P-waves are longitudinally polarized!—resulting
per definition in k̂ · ûP(k̂) = ±1 and140

ûP(k̂) = ±k̂. (8.78)

According to (2.97), the expression (I − k̂ k̂) · ûP(k̂) is the vectorial compo-
nent ûPt(k̂) of ûP(k̂) orthogonal to k̂; if it is requested to be zero, ûP(k̂)
must point into the direction ±k̂, that is to say, ûP(k̂) is uniquely determined
apart from the sign: Since plane waves are solutions of the homogenenous
wave equation, the sign can be arbitrarily chosen such that ûP(k̂) always
points into propagation direction, namely into (+k̂)-direction for propaga-
tion in (+k̂)-direction (Figure 8.2) and into (−k̂)-direction for propagation in
(−k̂)-direction.

Now, we calculate

W(k̂, c2
S) = k̂ k̂; (8.79)

consequently, each vector ûS(k̂) is eigenvector to the (twofold) c2
S-eigenvalue,

for which

k̂ k̂ · ûS(k̂) = 0 (8.80)

and, respectively,
k̂ · ûS(k̂) = 0 (8.81)

holds. This is true for each vector orthogonal to k̂, i.e., the nonnormalized
eigenvectors uS(k̂) are located in a plane orthogonal to k̂, where the arbi-
trariness is a consequence of the eigenvalue c2

S to be twofold. If we choose any
unit vector ûS1(k̂) with ûS1(k̂) · k̂ = 0 in this plane as (normalized) eigen-
vector, then ûS2(k̂) = ±k̂ × ûS1(k̂) with ûS2(k̂) · k̂ = 0 is another (normal-
ized) eigenvector orthogonal to ûS1(k̂); together with ûP(k̂), we now have
an orthonormal trihedron ûP(k̂), ûS1(k̂), ûS2(k̂) of eigenvectors and polariza-
tions, respectively, and applying the already practiced sign choice for ûP(k̂) to
ûS2(k̂), this trihedron is right handed. Note: Such a trihedron consists of lin-
early independent vectors (Equation 2.59), i.e., the two transversely polarized
secondary waves and the longitudinally polarized primary wave are mutually
independent upon each other.

140By the way: In contrast to the eigenvalues, the eigenvectors depend upon k̂; this is
depicted in Figure 8.8.
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With the solution of the preceding eigenvalue problem, we have ascer-
tained the phase velocities and polarizations in the ansatz (8.54) of homoge-
neous elastic plane waves:

uP(R,ω, k̂) = ± uP(ω) e±jkPk̂·R k̂, (8.82)

uS1(R,ω, k̂) = ± uS1(ω) e±jkSk̂·R ûS1(k̂) with ûS1(k̂) · k̂ = 0, (8.83)

uS2(R,ω, k̂) = ± uS2(ω) e±jkSk̂·R k̂ × ûS1(k̂); (8.84)

For the notation of these Fourier spectra, we again fell back on wave numbers

kP,S =
ω

cP,S
; (8.85)

due to the independence of the three wave modes (8.82) through (8.84), we
can choose different amplitude spectra. In the time domain, we finally obtain

uP(R, t, k̂) = ±uP

(
t ∓ k̂ · R

cP

)
k̂, (8.86)

uS1(R, t, k̂) = ±uS1

(
t ∓ k̂ · R

cS

)
ûS1(k̂) mit ûS1(k̂) · k̂ = 0, (8.87)

uS2(R, t, k̂) = ±uS2

(
t ∓ k̂ · R

cS

)
k̂ × ûS1(k̂). (8.88)

Besides the amplitude spectra, we could also choose different propagation
directions of the P,S1,S2-waves, because the wave modes are independent upon
each other in the elastic full-space.

In Figure 8.7, the propagation of a P-RC2(t)-pulse is illustrated in a way
that is comparable to Figure 8.5.

The coordinate-free representations (8.82) through (8.84) and (8.86)
through (8.88), respectively, of plane elastic waves may be embedded—often it
must be done!—in a cartesian coordinate system. In Figure 8.8(a), the vectors
k̂, ûS1(k̂), ûS2(k̂) = k̂ × ûS1(k̂) have, for example, the components (2.225) of
the orthonormal trihedron of spherical coordinates with regard to the polar
angle ϑk and the azimuth angle ϕk (compare Figure 2.16):

k̂ = sinϑk cos ϕk ex + sinϑk sinϕk ey + cos ϑk ez, (8.89)

ûS1(k̂) = cos ϑk cos ϕk ex + cos ϑk sinϕk ey − sinϑk ez, (8.90)

ûS2(k̂) = − sinϕk ex + cos ϕk ey. (8.91)

The scalar product k̂ · R reads as follows

k̂ · R = sinϑk cos ϕk x + sinϑk sinϕk y + cos ϑk z. (8.92)
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t = t1 t = t2 > t1
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ζ

FIGURE 8.7
Two-dimensional spatial representation of pulsed wavefronts of a plane elas-
tic P-wave for two different times t = t1 and t = t2 > t1 propagating into
+k̂-direction; note: k̂ is orthogonal to the wavefronts.
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FIGURE 8.8
Orthogonal polarization of secondary waves: S1- and S2-waves (a) as well as
SH- and SV-waves (b).

Specially choosing ϕk = 0, we confine the propagation direction k̂ to vectors
in the xz-plane [Figure 8.8(b)]:

k̂ = sinϑk ex + cos ϑk ez, (8.93)

ûS1(k̂) = cos ϑk ex − sinϑk ez

def= ûSV(k̂), (8.94)
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ûS2(k̂) = ey

def= ûSH(k̂); (8.95)

k̂ · R = sinϑk x + cos ϑk z. (8.96)

If the xy-plane accidentally constitutes a reference plane—boundary between
two materials, specimen surface—ûS2(k̂) = ûSH(k̂) = ey becomes a horizon-
tal polarization of the transverse secondary wave, i.e., an SH-wave, and
ûS1(k̂) = ûSV(k̂) becomes the polarization of the SV-wave that generally
exhibits a nonzero vertical component with respect to the xy-plane; the
notations141 SH and SV always refer to a reference plane (or to the axis of inde-
pendence of a two-dimensional problem; Section 7.3)! For k̂ = ez (Figures 8.2
and 8.4), we have ûSV = ex, and with ûSH = ey both transversely polarized
wave modes are then horizontal and, hence, physically undistinguishable.

With (8.75), (8.76) and (8.79), (8.80), respectively, we have found the po-
larization vectors for plane elastic waves by a “close look”; yet, in Section 2.1.4,
we referred to a formal evaluation being based on the knowledge of the adjoint
adjW(k̂, c2) of the wave tensor. With Chen’s formula (Chen 1983)

adj (β I + CD) = β [(β + C · D) I − CD], (8.97)

we calculate

adjW(k̂, c2) =
µ − ρc2

λ + µ

(
λ + 2µ − ρc2

λ + µ
I − k̂ k̂

)
(8.98)

and consequently

adjW(k̂, c2
P) = k̂ k̂, (8.99)

adjW(k̂, c2
S) = 0; (8.100)

0 denotes the null tensor. With (8.75) and (8.79), we state that: A second
rank tensor (here: W), whose determinant is identically zero is either, as
one says (Chen 1983), planar (roughly speaking, it consists of two terms:
Equation 8.75), then the adjoint tensor (8.99) is linear (dyadic product of two
vectors, a dyadic), or the tensor is linear (Equation 8.79), then the adjoint
tensor is the null tensor. In the first case, the column vector (left vector) of
the adjoint tensor (here: k̂) is an eigenvector, in the second case, any vector
orthogonal to the row vector (right vector) of the tensor itself (here: k̂) is an
eigenvector. The fact that the tensor is linear and the adjoint tensor is the null

141Figure 8.8(a) immediately tells us that ûS2 and ûS1 are obviously also SH and SV
with regard to the xy-plane; nevertheless, Figure 8.8(b) stands for the “proper” SH- and
SV-definition, namely, in the SH-case for an orientation parallel to an independency axis—
here: y—of a two-dimensional problem. Furthermore: If the xz-plane is declared to be an
incidence plane (Chapter 9), SH is a polarization orthogonal and SV a polarization parallel
to the incidence plane.
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tensor typically occurs for a twofold eigenvalue. This so-called degeneracy—
the two respective eigenvectors are indeed orthogonal to the third eigenvector,
yet otherwise arbitrary—is characteristic for isotropic materials; in anisotropic
materials, it is nullified.

Primary longitudinal pressure and secondary transverse shearwaves:
The longitudinal polarization of primary homogeneous plane waves and the
transverse polarization of secondary homogeneous plane waves in isotropic
materials similarly result—and actually a little bit less formal than in the
preceding paragraph—with the help of the Helmholtz decomposition (Section
7.2); this reveals that primary waves are pressure and secondary waves are
shear waves: The letters P and S then stand for pressure and shear. Yet, we
emphasize once again: In anisotropic materials, this procedure does not lead
us to the destination, why in that case we can only expect plane quasipressure
and plane quasishear waves.

Using the gauge (7.29), the Helmholtz decomposition (7.28) of the par-
ticle displacement vector in homogeneous isotropic materials resulted in de-
coupled d’Alembert wave equations (7.35) and (7.36) for the scalar potential
Φ(R, t) and the vector potential Ψ(R, t) whose homogeneous and Fourier
transformed versions

∆Φ(R,ω) + ω2 ρ

λ + 2µ
Φ(R,ω) = 0, (8.101)

∆Ψ(R,ω) + ω2 ρ

µ
Ψ(R,ω) = 0 (8.102)

are now investigated. With the ansatz of plane waves

Φ(R,ω, k̂) = Φ(ω, k̂) e±j k̂·R
c(k̂)

ω
, (8.103)

Ψ(R,ω, k̂) = Ψ(ω, k̂) e±j k̂·R
c(k̂)

ω (8.104)

corresponding to (8.54), we obtain

− ω2

c2(k̂)
Φ(R,ω, k̂) + ω2 ρ

λ + 2µ
Φ(R,ω, k̂) = 0, (8.105)

− ω2

c2(k̂)
Ψ(R,ω, k̂) + ω2 ρ

µ
Ψ(R,ω, k̂) = 0 (8.106)

if we utilize (2.175), (2.172), (2.174), and (2.167).142 Because the exponential
functions in (8.103) and (8.104) are always nonzero, the equations (8.105)
and (8.106) are equivalent to(

1

c2(k̂)
− ρ

λ + 2µ

)
ω2Φ(ω, k̂) = 0, (8.107)

142That way, we calculate ∆
[
Ψ(ω, k̂) e

±j k̂·R
c(k̂)

ω
]

coordinate free without too much
paperwork!



K12611 Chapter: 8 page: 243 date: January 13, 2012

Elastic Plane Waves in Homogeneous Materials 243(
1

c2(k̂)
− ρ

µ

)
ω2Ψ(ω, k̂) = 0. (8.108)

Since Φ(ω, k̂) and Ψ(ω, k̂) are arbitrary amplitudes, it follows that the brack-
ets in (8.107) and (8.108) must be equal to zero,143 hence c(k̂) adopts the
values

cP =
√

λ + 2µ

ρ
, (8.109)

cS =
√

µ

ρ
. (8.110)

As usual we have characterized both possible “bracket solutions” for the phase
velocities by indices P and S, and evidently, both do not depend on k̂ in
isotropic materials. Instead of ω/cP,S, we may also use the wave numbers kP,S
in (8.103) and (8.104).

The potential Φ(R,ω) is a scalar field quantity; hence, we must not check
its polarization. This is different for the vector potential Ψ(R,ω, k̂): Those
who are familiar with the theory of electromagnetic waves know that the
divergence condition (7.29) implies Ψ(ω, k̂) to be transverse. We calculate

∇ ·
[
Ψ(ω, k̂) e±jkSk̂·R

]
= Ψ(ω, k̂) e±jkSk̂·R · [±jkSk̂]

= ± jkS e±jkSk̂·R Ψ(ω, k̂) · k̂; (8.111)

according to (7.29), the result of this calculation should always be zero, and
on behalf of the nonzero exponential function,

k̂ · Ψ(ω, k̂) = 0 (8.112)

must hold (for ω > 0), i.e., Ψ(ω, k̂) must be transverse to the propagation
direction. This is a consequence of the arbitrary144 gauge (7.29) for the vector
potential of secondary waves.

With (7.28), we obtain—we utilize (2.172), (2.173), and (2.175)—

u(R,ω, k̂) = ∇Φ(R,ω, k̂) + ∇ × Ψ(R,ω, k̂)

= ∇
[
Φ(ω, k̂) e±jkPk̂·R

]
+ ∇ ×

[
Ψ(ω, k̂) e±jkSk̂·R

]
= ± jkPΦ(ω, k̂) e±jkPk̂·R k̂ ± jkS e±jkSk̂·R k̂ × Ψ(ω, k̂). (8.113)

We immediately realize that: The primary part of the particle displacement
of plane elastic waves is longitudinally and the secondary part is transversely

143Naturally, we are primarily interested in the case ω �= 0.
144For electromagnetic plane waves, the zero divergence of the electric flux density is a

physical law formulated by Maxwell equations.
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polarized (independent upon the arbitrary gauge!). In addition, we know due
to equations (2.188) and (2.189) that the primary part is curl free and the
secondary part is divergence free [it can be explicitly calculated with (8.113):
Footnote 139]. Specially choosing (compare Footnote 136 and Equation 8.55)

Φ(ω, k̂) = Φ(ω), (8.114)

Ψ(ω, k̂) = Ψ̂(k̂)Ψ(ω) (8.115)

and by comparing Equations 8.82 and 8.83, we obtain the following relations
between the pulse spectra Φ(ω), Ψ(ω) of the potentials and the pulse spectra
uP(ω), uS(ω) of the particle displacements:

uP(ω) = jkPΦ(ω), (8.116)
uS(ω) = jkSΨ(ω); (8.117)

for the time functions, this means

uP(t) = − 1
cP

dΦ(t)
dt

, (8.118)

uS(t) = − 1
cS

dΨ(t)
dt

. (8.119)

Regarding the relation of the polarization vectors ûS1(k̂), ûS2(k̂), and Ψ̂(k̂),
we have the choice: Either we can choose Ψ̂(k̂) “SV-oriented” according
to Ψ̂(k̂) = ûS1(k̂) or “SH-oriented” according to Ψ̂(k̂) = ûS2(k̂); in the first
case, we have ûS2(k̂) = k̂ × Ψ̂(k̂), and in the second case we have ûS1(k̂) =
Ψ̂(k̂) × k̂. In (cartesian) coordinates, this means (compare Figure 8.8): With
k̂ in the xz-plane, Ψ̂ = Ψ̂xex + Ψ̂zez yields an SH-wave with ûSH = k̂ × Ψ̂ =
ey, and Ψ̂ = ey yields an SV-wave with ûSV = Ψ̂ × k̂ = ûSVxex + ûSVzez.

Sound pressure of plane elastic waves: Generally, the field quantity
“sound pressure” in the sense of acoustics only exists iff (if and only if) the
stress tensor is equal to the isotropic pressure tensor:

T(R, t) = P(R, t) = −p(R, t) I. (8.120)

With (7.23), the stress tensor for homogeneous isotropic materials, we calcu-
late for plane waves utilizing (8.58) and (8.56):

T
P
(R,ω, k̂) = jkP uP(ω) e jkPk̂·R (λ I + 2µ k̂ k̂), (8.121)

T
S
(R,ω, k̂) = jkSµ uS(ω) e jkSk̂·R [k̂ ûS(k̂) + ûS(k̂) k̂]. (8.122)

Due to the zero divergence of the shear wave, the λ-term is missing in
T

S
(R,ω, k̂). Apparently, the tensors (8.121) and (8.122) are not proportional

to the unit tensor,145 resulting in the nonexistence of p(R, t) or p(R,ω),

145Only if µ = 0, but then its acoustics.
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respectively, in elastic materials in the sense of (8.120). Nevertheless, we can
deduce a scalar sound pressure from the stress tensor for plane elastic waves
in analogy to (5.54) if we project (8.121) and (8.122) first to the propagation
direction k̂ and then to the respective polarization k̂ or ûS(k̂) of the plane
elastic wave:146

pP(R,ω, k̂) def= −T
P
(R,ω, k̂) : k̂ k̂ = −jωZP uP(ω) e jkPk̂·R︸ ︷︷ ︸

= uP(R,ω, k̂)

= pP(ω) e jkPk̂·R, (8.123)

pS(R,ω, k̂) def= −T
S
(R,ω, k̂) : k̂ ûS(k̂) = −jωZS uS(ω) e jkSk̂·R︸ ︷︷ ︸

= uS(R,ω, k̂)

= pS(ω) e jkSk̂·R; (8.124)

here, we have

ZP,S = ρcP,S (8.125)

as acoustic wave impedances according to (5.52). As uP(R,ω, k̂) and
uS(R,ω, k̂), we understand scalar particle displacements that are conse-
quently proportional to the respective sound pressure. Note: Krautkrämer
and Krautkrämer (1986) do not consider the factor −j; yet, it is important if
we transform (8.123) and (8.124) into the time domain:

pP(R, t, k̂) = ZP
∂uP(R, t, k̂)

∂t
, (8.126)

pS(R, t, k̂) = ZS
∂uS(R, t, k̂)

∂t
. (8.127)

It is quite clear that we can simply write down particle displacement pres-
sure relations of the kind (5.54) according to (8.123) and (8.124), yet a phys-
ical meaning for the pressure written as such is only obtained through the
respectively defined double contractions of the stress tensor if the required
projections are subsequently interpreted (Figure 8.9). For the plane P-wave,
the projection of T

P
onto the propagation direction k̂ yields a (traction) vec-

tor tP ∼ k̂ with the dimension of a force density = force/area pointing into the
direction of the polarization vector k̂; if we now define a unit area SP with
the normal nP = k̂ in polarization direction, we actually obtain −tP · nP =
−tP · k̂ = −T

P
: k̂ k̂ = pP as P-sound pressure pP on SP (Equation 8.123).

The right side of Figure 8.9 is relevant for the S-wave: The projection of T
S

onto the propagation direction k̂ yields the force density vector tS ∼ ûS point-
ing into the polarization direction ûS; the projection of tS onto the nor-
mal nS = ûS of the unit area SS yields −tS · nS = −tS · ûS = −T

S
: k̂ ûS = pS

146This becomes only obvious if we write the stress tensors according to (8.121) and (8.122)
coordinate free!
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nP

tP = TP · k^ ~ k^

–tP · k^ = pP

SP

SS

k^ k^

tS = TS · k^ ~ ûS

–tS · ûS= pS

ûS

nS

FIGURE 8.9
Sound pressure of plane P- and S-waves.

(Equation 8.124). Note: Rotating the polarization ûS =⇒ −ûS results in the
same expression (8.124).

Energy velocities of homogeneous plane elastic waves: We will inves-
tigate to what extent a homogeneous plane elastic wave transports energy.147

According to Section 4.3, we must calculate the elastodynamic Poynting vec-
tor; we advantageously concentrate on time harmonic plane elastic waves of
circular frequency ω0, thus calculating time averages of the energy flux density
in terms of the real part of the complex elastodynamic Poynting vector

SK(R,ω0) = − 1
2

v(R,ω0) · T∗(R,ω0)

= j
ω0

2
u(R,ω0) · T∗(R,ω0) (8.128)

utilizing the complex valued phasors of time harmonic homogeneous plane
P- and S-waves (Equations 8.82, 8.83, and 8.84)

uP(R,ω0, k̂) = uP(ω0) e j k̂·R
cP

ω0 k̂, (8.129)

uS(R,ω0, k̂) = uS(ω0) e j k̂·R
cS

ω0 ûS(k̂), ûS(k̂) · k̂ = 0. (8.130)

With (8.121) and (8.122), we immediately have148

SKP(R,ω0, k̂) =
ω2

0ρ

2
cP|uP(ω0)|2 k̂

=
|pP(ω0)|2

2ZP
k̂, (8.131)

147The energy transport and the energy density of inhomogeneous plane waves with or-
thogonal phase and amplitude planes due to a complex valued k̂ is calculated in Section 8.2;
their physical realization is discussed in Section 9.1.2.
148For time harmonic inhomogeneous plane waves (in nondissipative materials), different

expressions are obtained: Section 8.2.



K12611 Chapter: 8 page: 247 date: January 13, 2012

Elastic Plane Waves in Homogeneous Materials 247

SKS(R,ω0, k̂) =
ω2

0ρ

2
cS|uS(ω0)|2 k̂

=
|pS(ω0)|2

2ZS
k̂. (8.132)

Both Poynting vectors are real valued.
As result of our investigation, we find that: Homogeneous plane elastic

waves in isotropic materials transport energy for ω0 > 0 into the direction k̂,
i.e., the propagation direction of the phase coincides with the propagation
direction of energy. This is a degeneration of the isotropic material because
this is generally not true in anisotropic materials.

Regarding dimension, the Poynting vector stands for energy per time per
area, thus dividing by an energy per volume—an energy density—we obtain
the dimension of a velocity. It is reasonable to choose the energy density as it
is stored in the time average of a time harmonic elastic wave (Section 4.3):

〈w(R, t, ω0)〉 =
ρ

4
v(R,ω0) · v∗(R,ω0) +

1
4

S(R,ω0) : c : S∗(R,ω0) (8.133)

=
ω2

0ρ

4
u(R,ω0) · u∗(R,ω0) +

1
4

S(R,ω0) : c : S∗(R,ω0).

(8.134)

With the definition (3.2) of the deformation tensor for source-free materials,
we obtain for the particle displacements (8.129) and (8.130)

S
P
(R,ω0, k̂) = jkP uP(ω0) e jkPk̂·R k̂ k̂, (8.135)

S
S
(R,ω0, k̂) =

1
2

jkS uS(ω0) e jkSk̂·R [k̂ ûS(k̂) + ûS(k̂) k̂] (8.136)

and consequently for the present homogeneous isotropic nondissipative
material149

〈wP(R, t, ω0, k̂)〉 =
ω2

0ρ

2
|uP(ω0)|2, (8.137)

〈wS(R, t, ω0, k̂)〉 =
ω2

0ρ

2
|uS(ω0)|2. (8.138)

Note: The energy densities of homogeneous plane waves are spatially indepen-
dent, i.e., continuously distributed over infinite space, resulting in an infinite
total energy of such waves; they are nonrealizable.

With

cEP(k̂) def=
�{SKP(R,ω0, k̂)}
〈wP(R, t, ω0, k̂)〉 , (8.139)

cES(k̂) def=
�{SKS(R,ω0, k̂)}
〈wS(R, t, ω0, k̂)〉 , (8.140)

149Footnote 148 similarly holds.
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we now define energy velocity vectors and calculate them for homogeneous
plane elastic waves in homogeneous isotropic nondissipative materials as
follows:

cEP(k̂) = cP k̂, (8.141)

cES(k̂) = cS k̂. (8.142)

These energy velocity vectors have direction of phase propagation and their
magnitudes are equal to the phase velocities. With the definition of phase
velocity vectors (of homogeneous plane waves in nondissipative materials)

cP,S(k̂) def= cP,S k̂, (8.143)

it follows

cEP,S(k̂) = cP,S(k̂). (8.144)

Due to the isotropy of the material surfaces of constant, phase velocity vectors
are spherical surfaces with radii cP and cS. Similarly, the surfaces of constant
so-called slowness vectors

sP,S(k̂) =
1

cP,S
k̂

= sP,S k̂ (8.145)

are spherical surfaces with radii sP,S = 1/cP,S; in Figure 8.10(a), cross-sections
through slowness surfaces and slowness vectors sP(k̂P), sS(k̂S) are depicted
for two given phase vectors k̂P, k̂S; with (8.141) and (8.142), we know that the
energy velocity vectors belonging to the directions k̂P, k̂S are orthogonal to

S
S

k^S

P

P

cES (k^S) cS (I^S)

I^S

cP(I^P)

I^P

cES

cS cP

cEP
cEP(k^P)

1
cS

k^P

SP

SS

1
cP

(a) (b)

FIGURE 8.10
Cross-sections through slowness (a) and energy velocity surfaces (b) of the
isotropic material.
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the slowness surfaces at points sP(k̂P), sS(k̂S). If we otherwise prescribe unit
ray vectors l̂P, l̂S of energy propagation, the resulting surfaces of constant
energy velocity are spherical surfaces with radii cEP(̂lP) = cP, cES(̂lS) = cS,
and due to (8.145) and (8.144), we know that the slowness vectors belong-
ing to the directions l̂P, l̂S are orthogonal to the energy velocity surfaces at
points cEP(̂lP), cES(̂lS) [Figure 8.10(b)]. Having displayed these trivialities of
the isotropic material in a separate figure finds a reason when considering
anisotropic materials: The respective surfaces are no longer spherical but the
above orthogonalities are kept.

8.2 Inhomogeneous Plane Waves in Isotropic
Nondissipative Materials

Complex wave number vectors: We generalize the ansatz (8.54) for the
Fourier spectra of plane waves to complex wave number vectors k (in Sec-
tion 9.3.1, we repeat the following arguments for complex slowness vectors in
cartesian coordinates):

u(R,ω,k) = u(ω) e±jk·R û(k). (8.146)

That way, we obtain

W(k,ω) =
µ

ρ
k · k I +

λ + µ

ρ
kk − ω2 I (8.147)

instead of the wave tensor (8.66). Equating the determinant

detW(k,ω) =
(

µk · k − ρω2

λ + µ

)2(
µk · k − ρω2

λ + µ
+ k · k

)
(8.148)

to zero, we obtain the dispersion relations

k · k =
ρ

µ
ω2 =

ω2

c2
S

= k2
S, (8.149)

k · k =
ρ

λ + 2µ
ω2 =

ω2

c2
P

= k2
P (8.150)

that are understood as the dependence of the wave number vector k(ω) upon
frequency (and the material parameters) and, respectively, the dependence
of the frequency ω(k) upon the wave number vector. On the left-hand side,
the structure of these dispersion relations is a consequence of the isotropy of
the material, and on the right-hand side, it is a consequence of its lack of
dissipation (vanishing dissipation) because (here) kP and kS are real valued.
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The homogeneity of the material is already reflected by Equation 8.146 of the
plane wave.150 If we “solve” (8.149) and (8.150) with the ansatz

kP,S = kP,Sk̂, (8.151)

we obtain homogeneous plane P- and S-waves whose planes of constant phase
and amplitude are parallel to another; they have been discussed in the previ-
ous section.

Yet, we do not have to satisfy the dispersion relations (8.149) or (8.150)
through the ansatz (8.151), by all means we can accept complex wave number
vectors

k = �k + j�k (8.152)

if we only require

�k · �k = 0. (8.153)

This constraint ensures that

k · k = |�k|2 − |�k|2 + 2j�k · �k︸ ︷︷ ︸
= 0

(8.154)

is real as claimed by the dispersion relations for nondissipative (isotropic)
materials: In a nondissipative material, �k and �k must be orthogonal to
each other if we allow for �k �= 0. As a matter of fact, the ansatz (8.152)
according to

u(R,ω,k) = u(ω) e±j	k·R e∓
k·R û(k) (8.155)

with (8.153) generates an evanescent inhomogeneous plane wave that is atten-
uated perpendicularly to �k if we point with the attenuation vector �k into
the “correct” half-space, depending upon the propagation direction. It is il-
lustrated in Figure 8.11: For propagation in (+�k)-direction [Figure 8.11(a)],
e−
k·R is an exponential attenuation for that half-space into which �k points
because then we have �k · R > 0; for propagation in (−�k)-direction [Fig-
ure 8.11(b)], e
k·R is only an exponential attenuation for that half-space into
which �k does not point because then we have �k · R < 0. The complex wave
number vector k has the phase propagation vector �k as real part and the at-
tenuation vector �K as imaginary part, whose direction must be determined
to assess an attenuation. Such inhomogeneous plane waves in nondissipative
materials will be met for the first time while discussing the total reflection of a
plane SV-wave at the plane boundary of an elastic half-space (Section 9.1.2).

150The generalization to inhomogeneous materials in terms of eikonal equations is discussed
in Section 12.3.
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k · R > 0 k · R < 0

k

k

ℜk ℜk

ejℜk ·R e–jℜk ·R

R R
(a) (b)

FIGURE 8.11
Evanescent inhomogeneous plane waves (elastic full-space); (a) propagation
direction +�k, (b) propagation direction −�k.

Complex polarization vectors: As pressure waves, primary waves in
isotropic materials are curl-free, and as shear waves, secondary waves are
divergence-free; therefore, we determine the polarization (unit) vectors ûP,S(k)
via the requirements:

kP × ûP(kP) = 0, (8.156)
kS · ûS(kS) = 0. (8.157)

Obviously, (8.156) is satisfied by

ûP(kP) ∼ kP (8.158)

because, even for complex wave number vectors kP = �kP + j�kP, we
always have kP × kP ≡ 0. With (8.158), ûP(kP) is also complex defining the
P-polarization unit vector ûP(kP) in the Hermitian sense by

ûP(kP) =
kP√

kP · k∗
P

(8.159)

because then we have ûP(kP) · û∗
P(kP) = 1. With (8.153) and (8.159), the

polarization picture of an inhomogeneous plane pressure wave in a nondissi-
pative material results as sketched in Figure 8.12. For propagation into positive
�k-direction, the exponential attenuation results for the half-space indicated
by R.

The requirement (8.157) is satisfied for each complex vector ûS(kS) for
which

�kS · �ûS(kS) − �kS · �ûS(kS) = 0, (8.160)
�kS · �ûS(kS) + �kS · �ûS(kS) = 0 (8.161)
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FIGURE 8.12
(a) Polarization of an inhomogeneous plane pressure wave in a nondissipative
material; (b) S1/S2-polarization of an inhomogeneous plane shear wave in a
nondissipative material.

holds, (8.157) does not imply orthogonality of kS, ûS(kS) in a geometric sense.
As in the previous section for the case of real valued wave numbers, we choose
ûS2 real valued, hence �ûS2 = 0,

�kS · ûS2
(8.160)

= 0, (8.162)

�kS · ûS2
(8.161)

= 0 (8.163)

ensuring that, independent of kS, ûS2 is always orthogonal to the plane
spanned by �kS and �kS. As allusion to Figure 8.8(a), we now define

ûS1(kS) =
ûS2 × kS√

(ûS2 × kS) · (û∗
S2 × k∗

S)

=
ûS2 × kS√

kS · k∗
S

, (8.164)

where, due to ûS2 · kS = 0, ûS2 · k∗
S = 0, ûS2 · ûS2 = 1, the same normalization

results than for ûP(kP). The definition (8.164) assures

ûS1(kS) · kS = 0, (8.165)
ûS1(kS) · ûS2 = 0; (8.166)

due to151

�ûS1(kS) =
ûS2 × �kS√

kS · k∗
S

, (8.167)

�ûS1(kS) =
ûS2 × �kS√

kS · k∗
S

, (8.168)

151Note: 
ûS1, 
ûS2, 
kS always constitute our familiar right-handed orthogonal trihe-
dron of shear polarizations; yet, �ûS1 is connected to �kS that must point into the “evanes-
cence space” (+
kS)-direction.
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it is a special solution of (8.160); the relations (8.167) and (8.168) yield the
situation as sketched in Figure 8.12(b), together with (8.153) and (8.161).

According to Figure 8.8(b), we also can certainly postulate in a cartesian
coordinate system kP,S · ey = 0; it follows

ûP(kP) · ey = 0, (8.169)
ûS2 =⇒ ûSH = ey, (8.170)

ûS1(kS) =⇒ ûSV(kS) =
ey × kS√
kS · k∗

S

. (8.171)

Phase velocity: According to (8.54), the respective ansatz of homogeneous
plane waves,

cP,S(kP,S) =
ω

|�kP,S| (8.172)

defines the phase velocity of inhomogeneous plane waves in (8.155) because
the phase can be written as

�kP,S · R =
|�kP,S|

ω
�̂kP,S · Rω. (8.173)

Thus we obtain as vectorial phase velocity similarly to (8.144)

cP,S(kP,S) =
ω

|�kP,S| �̂kP,S. (8.174)

Due to kP,S + k∗
P,S = 2�kP,S, we can explicitly write cP,S(kP,S) showing the

dependence of the complex vectors kP,S:

cP,S(kP,S) =
2√

kP,S · kP,S + k∗
P,S · k∗

P,S + 2kP,S · k∗
P,S

ω. (8.175)

Due to the dispersion relations (8.149) and (8.150) of nondissipative materials,
it follows kP,S · kP,S = k2

P,S and k∗
P,S · k∗

P,S = k2
P,S, hence

cP,S(kP,S) =

√
2

k2
P,S + kP,S · k∗

P,S
ω. (8.176)

Via kP · k∗
P, we can only say further things about homogeneous plane waves

(Sections 8.1.2 and 8.4.1). With

k̂P,S =
kP,S

kP,S
, (8.177)

we admittedly define in the present case of nondissipative materials non-
Hermitian complex unit vectors152 k̂P,S because the dispersion relations then
read

k̂P,S · k̂P,S = 1. (8.178)

152With (8.178), we have k̂P,S · k̂∗
P,S ≥ 1, and the equality sign only holds for �k̂P,S = 0.
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That way, we finally obtain

cP,S(k̂P,S) =

√
2

1 + k̂P,S · k̂∗
P,S

cP,S. (8.179)

The phase velocities of homogeneous and inhomogeneous plane waves are dif-
ferent! In Section 9.1.2, we will give cP(k̂P) for an actual wave number vector
kP. Since k̂P,S · k̂P,S = |�k̂P,S|2 − |�k̂P,S|2 = 1, we have |�k̂P,S| ≥ 1, and due
to k̂P,S · k̂∗

P,S = |�k̂P,S|2 + |�k̂P,S|2, it follows k̂P,S · k̂∗
P,S ≥ 1 (Footnote 152)

with the result cP,S(k̂P,S) ≤ cP,S.

Energy velocities for complex pressure and shear wave number vec-
tors: To calculate energy velocities of inhomogeneous plane waves, we must
first compute the complex Poynting vector and the time averaged energy den-
sity of time harmonic waves of circular frequency ω0 for complex wave number
vectors.

We resort to (8.128):

�SK(R,ω0,k)

= j
ω0

4
[
u(R,ω0,k) · T∗(R,ω0,k) + u∗(R,ω0,k) · T(R,ω0,k)

]
; (8.180)

with

T(R,ω0,k) = c : S(R,ω0,k)

=
j
2

c : [ku(R,ω0,k) + u(R,ω0,k)k] , (8.181)

the ansatz (8.146) with (8.152) yields

�SK(R,ω0,k)

=
ω0

4
|u(ω0)|2e−2
k·R{λ[k∗ · û∗(k)û(k) + k · û(k)û∗(k)

]
+ µ(k + k∗)

+ µ
[
k∗ · û(k)û∗(k) + k · û∗(k)û(k)

]}
(8.182)

for isotropic materials; we have incorporated û(k) · û∗(k) = 1.
With (8.134), we similarly obtain for the time averaged energy density:

〈w(R, t, ω0,k)〉
=

1
4

|u(ω0)|2e−2
k·R[�ω2
0 + λû(k)û∗(k) : k∗k + µk · k∗

+ µû∗(k)û(k) : k∗k
]
. (8.183)

Obviously, the (time averaged) potential and kinetic energy densities are no
longer equal for complex wave number vectors, be it for inhomogeneous plane
waves in nondissipative or for homogeneous/inhomogeneous plane waves in
dissipative materials.153

153This is also true for electromagnetic waves (Chen 1983).
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Specialization of (8.182) and (8.183) to pressure waves results through
insertion of (8.159):

�SKP(R,ω0,kP)

=
ω0

4
|u(ω0)|2e−2
kP·R

× λ
(
k∗

P · k∗
PkP + kP · kPk∗

P
)

+ 2µkP · k∗
P
(
kP + k∗

P
)

kP · k∗
P

, (8.184)

〈wP(R, t, ω0,kP)〉
=

1
4

|u(ω0)|2e−2
kP·R

× λ
(
k2
PkP · k∗

P + kPk∗
P : k∗

PkP
)

+ 2µkP · k∗
P
(
k2
P + kP · k∗

P
)

kP · k∗
P

. (8.185)

Up to now, we have not yet used dispersion relations; yet, for inhomogeneous
plane pressure waves in nondissipative materials, we search complex wave
number vectors kP, whose scalar product with themselves is real valued; hence,
we have kP · kP = k2

P as well as k∗
P · k∗

P = k2
P. Complementing (8.131) and

(8.137), we obtain

�SKP(R,ω0, k̂P) =
ω2

0

2cP
|u(ω0)|2e−2kP
k̂P·R λ + 2µk̂P · k̂∗

P

k̂P · k̂∗
P

�k̂P, (8.186)

〈wP(R, t, ω0, k̂P)〉 =
ω2

0

4c2
P

|u(ω0)|2e−2kP
k̂P·R λ + 2µk̂P · k̂∗
P

k̂P · k̂∗
P

(
1 + k̂P · k̂∗

P

)
(8.187)

and, therefore,

cEP(k̂P) =
2cP

1 + k̂P · k̂∗
P

�k̂P; (8.188)

the energy flux is perpendicular to the phase surfaces as it is true for homoge-
neous plane waves. But not only the directions of phase and energy velocity are
equal, they have also equal magnitudes because we find |cEP(k̂P)| = cP(k̂P)
with (8.172), (8.177), and (8.176) by taking the magnitude of (8.188).

Because of the occurrence of complex and conjugate complex unit vectors
in (8.182) and (8.183), we can anticipate that we will obtain different expres-
sions for S2/SH- and S1/SV-polarizations. For the real valued ûS2-vector and
for the complex valued ûS1(kS)-vector, we have kS · ûS2/S1 = 0 and k∗

S ·
û∗

S2/S1 = 0; for ûS2, we additionally have k∗
S · ûS2 = 0, reducing (8.182) and

(8.183) to

�SKS2(R,ω0,kS) =
ω0

2
µ |u(ω0)|2e−2
kS·R �kS, (8.189)

〈wS2(R, t, ω0,kS)〉 =
1
4

|u(ω0)|2e−2
kS·R (�ω2
0 + µkS · k∗

S
)

=
1
4

µ |u(ω0)|2e−2
kS·R (k2
S + kS · k∗

S
)
. (8.190)
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With a definition similar to (8.177)

k̂S =
kS

kS
(8.191)

it follows:

�SKS2(R,ω0,kS) =
�ω2

0

2
cS |u(ω0)|2e−2kS
k̂SR �k̂S, (8.192)

〈wS2(R, t, ω0,kS)〉 =
�ω2

0

4
|u(ω0)|2e−2kS
k̂S·R

(
1 + k̂S · k̂∗

S

)
. (8.193)

We obtain

cES2(k̂S) =
2cS

1 + k̂S · k̂∗
S

�k̂S (8.194)

with—as above—|cES2(k̂S)| = cS2(k̂S) as energy velocity. The expressions
(8.189), (8.190) and (8.192), (8.193), respectively, as well as (8.194) hold for
each real valued S2-polarization vector, therefore also for ûS2 = ûSH = ey.

With the identity

(A × B)(C × D) = (A × B) · (C × D) I + (A · D)CB + (B · C)DA

− (A · C)DB − (B · D)CA, (8.195)

we compute

�SKS1(R,ω0,kS) =
1
4

µ |u(ω0)|2e−2
kS·R

× 2kS · k∗
S (kS + k∗

S) − (k∗
S · k∗

SkS + kS · kSk
∗
S)

kS · k∗
S

,

(8.196)

〈wS1(R, t, ω0,kS)〉 =
1
4

µ |u(ω0)|2e−
kS·R

× kS · k∗
S
(
k2
S + kS · k∗

S
)

+ (kS · k∗
S)2 − kSk

∗
S : k∗

SkS

kS · k∗
S

(8.197)

for the S1-polarization. With the dispersion relation of nondissipative mate-
rials and the definition (8.191), we further have

�SKS1(R,ω0,kS) =
�ω2

0

2
cS |u(ω0)|2e−2kS
k̂S·R 2k̂S · k̂∗

S − 1

k̂S · k̂∗
S

�k̂S, (8.198)

〈wS1(R, t, ω0,kS)〉 =
�ω2

0

4
|u(ω0)|2e−2kS
k̂S·R

(
1 + k̂S · k̂∗

S
)(

2k̂S · k̂∗
S − 1

)
k̂S · k̂∗

S

.

(8.199)
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Therefore, energy density and energy flux density are different for real and
complex S-polarization vectors. Yet, in the expressions

cES1(k̂S) =
2cS

1 + k̂S · k̂∗
S

�k̂S (8.200)

for the energy density, these differences cancel; we certainly have |cES1(k̂S)| =
cS1(k̂S).

Specializing ûS1 = ûSV with ûSV · ey = 0 does not change the results.

8.3 Plane Waves in Anisotropic Nondissipative
Materials

In this section, we first treat the important case of homogeneous plane waves;
inhomogeneous plane waves (in nondissipative) materials are dealt with when
they physically appear with the reflection/transmission at the plane bound-
ary between isotropic and anisotropic (transversely isotropic) half-spaces (Sec-
tion 9.3).

8.3.1 Plane waves in anisotropic materials

Wave tensor: The spectral particle displacement u(R,ω) satisfies the
Fourier transformed homogeneous wave equation (7.15) for homogeneous
anisotropic materials:

∇ · c : ∇u(R,ω) + ρω2u(R,ω) = 0. (8.201)

Similar to (8.54), we make the solution ansatz of homogeneous plane waves

u(R,ω) =⇒ u(R,ω, k̂) = u(ω, k̂) e±j k̂·R
c(k̂)

ω
, (8.202)

where k̂ is the (real) unit vector of the (phase) propagation direction; it will
turn out that the phase velocity c(k̂) explicitly depends on that vector as it
is true for the polarization vector u(ω, k̂); we factorize as in (8.55):

u(ω, k̂) = û(k̂)u(ω). (8.203)

With the ansatz (8.202), we obtain the counterpart to (8.61) for homogeneous
anisotropic materials from (8.201):[

1
ρ

k̂ · c · k̂ − c2(k̂) I
]

· ω2u(R,ω, k̂) = 0. (8.204)
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Consequently, the calculation of the phase velocity and the polarization of
homogeneous plane waves in homogeneous anisotropic materials turns out to
be an eigenvalue problem

Daniso(k̂) · û(k̂) = c2(k̂)û(k̂), (8.205)

where

Daniso(k̂) =
1
ρ

k̂ · c · k̂ (8.206)

is the real symmetric Kelvin–Christoffel tensor due to the symmetries (4.15)
and (4.17).

The eigenvalues c2(k̂) must be positive to ensure real phase velocities c(k̂);
therefore, Daniso(k̂) must be positive definite. Hence, R · Daniso(k̂) · R must
be larger than zero and equal to zero only if R = 0. This requirement is car-
ried over to the stiffness tensor due to the definition (8.206) of Daniso(k̂):
Rk̂ : c : k̂R = Rk̂ : c : Rk̂ must be larger than zero and equal to zero only

if R = 0, that is to say, Rk̂ = 0. Since 1
2 S(R, t) : c : S(R, t) has the mean-

ing of the elastodynamic potential deformation energy density for arbitrary
time-dependent fields due to (4.36), this requirement is guaranteed. For ho-
mogeneous isotropic materials, we have explicitly confirmed the positive defi-
niteness D(k̂) with (8.64).

To calculate the eigenvalues c2(k̂), the determinant of the wave tensor

Waniso(k̂, c2) = k̂ · c · k̂ − ρ c2(k̂) I (8.207)

must be equal to zero because the eigenvectors û(k̂) are solutions of the ho-
mogeneous system of equations (of the Kelvin–Christoffel equation)[

Daniso(k̂) − c2(k̂) I
]

· û(k̂) = 0 ⇐⇒
[
k̂ · c · k̂ − ρ c2(k̂) I︸ ︷︷ ︸
= Waniso(k̂, c2)

]
· û(k̂) = 0.

(8.208)

To calculate the eigenvectors, we need the adjoint of Waniso(k̂, c2); the calcula-
tion of the determinant and the adjoint requires specification of the anisotropy
through c.

Nevertheless, there are some general results even for the arbitrary c-case

that will be discussed in the following (Auld 1973; Helbig 1994; Royer and
Dieulesaint 2000; Snieder 2002).

Energy velocities: With (8.139) and (8.140), respectively, we defined energy
velocity vectors of plane elastic wave modes; we cite

cE(k̂) =
�{SK(R,ω, k̂)}
〈wel(R, t, k̂)〉 . (8.209)
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Here, �{SK(R,ω, k̂)} is the real part of the complex elastodynamic Poynting
vector and 〈wel(R, t, k̂)〉 is the time averaged elastodynamic energy density
of time harmonic plane waves with circular frequency ω, hence according to
(8.128) and (8.134), respectively:

SK(R,ω, k̂) =
jω
2

u(R,ω, k̂) · T∗(R,ω, k̂), (8.210)

〈wel(R, t, k̂)〉 =
ρω2

4
u(R,ω, k̂) · u∗(R,ω, k̂) +

1
4

S(R,ω, k̂) : c : S∗(R,ω, k̂).

(8.211)

The ansatz (8.202) of homogeneous plane waves with (8.203) leads to

S(R,ω, k̂) =
jω

c(k̂)
u(ω) e j ω

c(k̂)
k̂·R 1

2

[
k̂ û(k̂) + û(k̂)k̂

]
, (8.212)

and consequently, we have on behalf of the c-symmetries:

SK(R,ω, k̂) =
ω2

2c(k̂)
|u(ω)|2 û(k̂) · c : k̂ û(k̂)

=
ω2

2c(k̂)
|u(ω)|2 c

.
: k̂ û(k̂)û(k̂), (8.213)

〈wel(R, t, k̂)〉 =
ρω2

4
|u(ω)|2 +

ω2

4c2(k̂)
|u(ω)|2 û(k̂)k̂ : c : k̂ û(k̂). (8.214)

The double contraction of (8.205) with û(k̂) and recognizing (8.206) leads to

û(k̂)k̂ : c : k̂ û(k̂) = ρc2(k̂), (8.215)

thus simplifying the expression (8.214):

〈wel(R, t, k̂)〉 =
ρω2

2
|u(ω)|2. (8.216)

For homogeneous plane waves, the time averaged kinetic energy density is
equal to the time averaged deformation energy density154 (Royer and Dieule-
saint 2000). As a consequence, we obtain the calculation instruction155

cE(k̂) =
1

ρc(k̂)
c

.
: k̂ û(k̂)û(k̂) (8.217)

154This is not true for inhomogeneous plane waves (compare inhomogeneous electromag-
netic waves: Chen 1983) in either nondissipative or dissipative materials: compare Equa-
tions 9.156 and 9.159, respectively, for isotropic nondissipative and (9.346) and (9.349),
respectively, for anisotropic nondissipative materials as well as Section 8.4 for isotropic
dissipative materials.
155For energetically evanescent waves, we have (9.349).
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for the energy velocity vectors of respective wave modes if the corresponding
polarization vectors are known.

The combination of (8.217) and (8.215) yields the result

cE(k̂) · k̂ = c(k̂), (8.218)

that is to say, the magnitude of the energy velocity vector is always greater
than or equal to the phase velocity of the wave mode under concern: cE(k̂) ≥
c(k̂). The equality sign exactly holds if energy and phase velocity vectors
c(k̂) = c(k̂)k̂ are parallel as it is always the case in isotropic materials accord-
ing to (8.144) but only exceptionally in anisotropic materials.

Defining a ray vector according to

l(k̂) =
cE(k̂)

ω
(8.219)

—the ultrasonic ray points into the direction of energy flux!—and contracting
it with the phase vector

k =
ω

c(k̂)
k̂ (8.220)

results in

l(k̂) · k = 1. (8.221)

The dependence of the phase velocity upon k̂ is the reason that the
ray vector l(k̂) does not point into the direction of k̂; namely, taking the
∇k̂-gradient of the eigenvalue equation156 (8.208)—we have ∇k̂k̂ = I and

∇k̂(k̂ · c · k̂) = 2 c · k̂—

∇k̂

{[
k̂ · c · k̂ − ρ c2(k̂) I

]
· û(k̂)

}
=
{

∇k̂

[
k̂ · c · k̂ − ρ c2(k̂) I

]}
· û(k̂)

+
[
∇k̂û(k̂)

]
·
[
k̂ · c · k̂ − ρ c2(k̂) I

]21
= 2
[
c · k̂ − ρ c(k̂) ∇k̂c(k̂) I

]
· û(k̂)

+
[
∇k̂û(k̂)

]
·
[
k̂ · c · k̂ − ρ c2(k̂) I

]
= 0 (8.222)

yields after right-contraction with û(k̂) and another utilization of the eigen-
value equation (8.208)

c
.
: k̂ û(k̂)û(k̂) = ρ c(k̂) ∇k̂c(k̂) (8.223)

156This makes sense only if ∇k̂c(k̂) �= 0, that is to say, if c(k̂) is actually a function of k̂.
In addition: The result of the calculation of Royer and Dieulesaint (2000) is correct but not
complete; the authors ignore the dependence of the polarization vector û(k̂) upon k̂.
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with the consequence

cE(k̂) = ∇k̂c(k̂) (8.224)

due to (8.217). Result: Since we excluded the isotropic case with c(k̂) = c, that
is to say, cE = ck̂ (Equation 8.144), we find that cE(k̂) does not point into
the direction of k̂. Yet, there is a simple geometric way to find this direction.
We take the ∇k̂-gradient of the slowness vector

s(k̂) = s(k̂)k̂

=
1

c(k̂)
k̂ (8.225)

according to

∇k̂s(k̂) = − 1

c2(k̂)
∇k̂c(k̂) k̂ +

1

c(k̂)
I (8.226)

and find with (8.224) and (8.218)

∇k̂s(k̂) · cE(k̂) = 0. (8.227)

On the other hand, the differential slowness vector

ds(k̂) = dk̂ · ∇k̂s(k̂) (8.228)

is tangential to the slowness surface according to Figure 8.13 s(k̂) so that
(8.227) implies

ds(k̂) · cE(k̂) = 0. (8.229)

The energy velocity vector cE(k̂) is perpendicular to the slowness surface
in each point characterized by k̂. This result is extraordinarily important for
US-NDT because an ultrasonic angle transducer designed for isotropic steel in
terms of its aperture phase distribution may radiate into a completely different
direction in anisotropic (austenitic) steel. Yet, to understand that intuitively,
we must consider a finite aperture size of the transducer because, for infinitely
extended wavefronts of plane waves, the different directions of k̂ and l(k̂) are
not visible: Figure 8.14(a) shows plane wavefronts for two different times t1
and t2 > t1; they are orthogonal to the phase propagation vector k̂ and hence
to the phase velocity vector c(k̂) = c(k̂)k̂. Per definition, the amplitude of
a (homogeneous) plane wave is constant on its wavefront merely exhibiting
a constant shift of the energy coming from infinity and drifting to infinity
due to the direction of the energy velocity vector cE(k̂) differing from the
direction k̂. Yet, turning to spatially (and timely) constrained wave packets
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â
k^

k^ ′

s(k^ ′)

ĉΕ(k^ ′)

ĉΕ(k̂)ds(k^)

s(k̂)

s(k^)

dk̂

FIGURE 8.13
Orientation of the (unit) vector energy velocity relative to the slowness sur-
face s(k̂).

[Figure 8.14(b)], this energy shift becomes immediately visible. Hence, the
propagation direction of an impulse is given by the energy velocity, i.e., the
formal Fourier inversion of (8.202) makes no physical sense; instead, we must
write

u(R, t, l̂) = u

(
t ± l̂ · R

cE(̂l)

)
û(̂l). (8.230)

The angle between cE(k̂)—or l̂(k̂)—and k̂ is called skewing angle.
By the way: The phase propagation vector k̂ corresponding to a given

ray vector l(k̂) is perpendicular to the so-called wave surface originating from
the end points of all ray vectors. For that purpose, we take the ∇l̂-gradient of

cE(̂l), i.e., of the energy velocity vector with respect to the ray l̂ corresponding
to a given phase propagation direction k̂. Due to (8.219) and (8.221), we have

cE(̂l) · k = ω (8.231)

and, therefore,

∇l̂ cE(̂l) · k̂ = 0. (8.232)
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c(k^)

c(k^)

c(k^)

c(k^)

k^

t2 > t1 t1

t2 > t1 t1

k^

cΕ(k^)

cΕ(k^)

cΕ(k^)

cΕ(k^)

(a)

(b)

FIGURE 8.14
Consequence of different phase and energy velocity vectors for plane waves (a)
and plane wave packets (b).

On the other hand, the differential vector

dcE(̂l) = dl̂ · ∇l̂ cE(̂l) (8.233)

is tangential to the wave surface resulting in

dcE(̂l) · k̂ = 0 (8.234)

with (8.232).

Group velocities: There is a different formula to calculate the energy veloc-
ity of homogeneous plane waves in nondissipative materials—besides (8.217)
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and (8.224)—relating it to the group velocity that may be defined under cer-
tain assumptions. According to[

k · c · k − ρ ω2(k) I
]

· û(k) = 0, (8.235)

we insert the phase vector (8.220) in the eigenvalue equation (8.208) and
define ω2(k) as eigenvalue. Taking the ∇k-gradient of (8.235) yields similar
to (8.222): [

c · k − ρ ω(k)∇kω(k) I
]

: û(k)û(k) = 0, (8.236)

thus resulting in

cE(k) = ∇kω(k)

def=
∂ω(k)

∂k
(8.237)

with (8.217) and (8.220).
Under certain assumptions, ∇kω(k) is the group velocity vector cgr(k) of

a wave packet. The latter is synthesized via integration of a given k-spectrum
u(k) = u(ω, k̂) of plane waves with the volume element d3k = k2d2k̂ dk of
k-space according to

u(R, t) =
1

(2π)3

∫ ∞

0

∫ ∫
S2

u(k) e jk·R−jω(k)t k2d2k̂ dk

=
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
u(k) e jk·R−jω(k)t d3k, (8.238)

where we assume that u(k) is concentrated around the spectral center of
gravity k0 = k̂0ω0/c(k̂0); S2 is the unit sphere that hosts all directions k̂. If
ω(k) is slowly varying in the volume occupied by u(k)—this is essentially the
already mentioned assumption—we can truncate a Taylor expansion after the
linear term:

ω(k) = ω(k0) + (k − k0) · ∇kω(k)
∣∣∣
k=k0

. (8.239)

With the short-hand notation

cgr(k0) = ∇kω(k)
∣∣∣
k=k0

, (8.240)

we evidently define a velocity vector determining the retardation of the enve-
lope Ak0

(R) of the wave packet after inserting (8.239) into (8.238):

u(R, t) � Ak0

[
R − cgr(k0)t

]
e jk0·R− ijω(k0)t, (8.241)
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where

Ak0

[
R − cgr(k0)t

]
=

1
(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
u(k) e j(k−k0)·[R−cgr(k0)t] d3k.

(8.242)

Therefore, the velocity vector of the phase of the wave packet is given by

c(k0) = ω(k0)k0, (8.243)

and the group velocity vector is given by (8.240). Consulting Figure 8.14,
illustrates the consequence of the different directions of c(k0) and cgr(k0)
as far as the propagation of wave packets is concerned. These wave packets
emerge as pulsed radiation of a transducer; mathematically, its radiation field
is synthesized with point sources; hence, physical intuition suggests that the
pulsed radiation field of a point source reflects the direction dependence of
the group (energy) velocity vector (of a plane wave) in terms of time domain
wavefronts (wave surfaces)157 (Helbig 1994; Snieder 2002; Langenberg et al.
2002b). For transversely isotropic materials, this is confirmed by the EFIT-
simulation of Figure 8.26.

Sound pressure of plane waves: Equation (8.124) equally defines the sound
pressure of a plane wave mode in anisotropic materials:

p(R,ω, k̂) = −T(R,ω, k̂) : k̂ û(k̂); (8.244)

with

T(R,ω, k̂) =
jω

c(k̂)
u(ω) e jkk̂·R c : k̂ û(k̂), (8.245)

the c-symmetries and Equation 8.215, we obtain

p(R,ω, k̂) = − jωu(ω) e jkk̂·R 1

c(k̂)
k̂ û(k̂) : c : k̂ û(k̂)︸ ︷︷ ︸

= ρ c2(k̂)

= − jω ρ c(k̂)︸ ︷︷ ︸
= Z(k̂)

u(ω) e jkk̂·R. (8.246)

8.3.2 Plane waves in transversely isotropic materials

Wave tensor: We specify c according to (4.24) considering a material with

transverse isotropy, where the preference direction is given by â, i.e., in planes

157Therefore, the following quotation (Born and Wolf 1975) is only relevant for plane
waves: It may be noted that the ray velocity, being derived from the Poynting vector shares
with it a certain degree of arbitrariness. It is nevertheless a useful concept although, like
the phase velocity, it has no directly verifiable physical significance.
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orthogonal to â, the material is isotropic. Through calculation, we obtain the
respective wave tensor:

Wtriso(k̂, c2) = γ1 I + γ2 k̂ k̂ + γ3 â â + γ4 (k̂ â + â k̂), (8.247)

where

γ1 = µ⊥ + (µ‖ − µ⊥)(k̂ · â)2 − ρ c2(k̂), (8.248)
γ2 = λ⊥ + µ⊥, (8.249)

γ3 = (λ⊥ + 2µ⊥ + λ‖ − 2µ‖ − 2ν)(k̂ · â)2 + µ‖ − µ⊥, (8.250)

γ4 = (µ‖ − µ⊥ + ν − λ⊥)k̂ · â. (8.251)

Phase velocities: To calculate the eigenvalues c2(k̂) of Dtriso(k̂), we write
the wave tensor in the form

Wtriso(k̂, c2) = γ1 I + k̂ (γ2 k̂ + γ4 â) + â (γ3 â + γ4 k̂) (8.252)

to be able to utilize Chen’s formula (Chen 1983)

det (α I + A1C1 + A2C2)

= α
[
α2 + α(A1 · C1 + A2 · C2) + (C1 × C2) · (A1 × A2)

]
(8.253)

for the determinant:

detWtriso(k̂, c2)

= γ1

{
γ2
1 + γ1(γ2 + γ3 + 2γ4 k̂ · â) + (γ2γ3 − γ2

4)
[
1 − (k̂ · â)2

]}
. (8.254)

Note that c2(k̂) is hidden in γ1 identifying the first eigenvalue via

γ1 = 0 (8.255)

according to

c2
SH(k̂) =

µ⊥ + (µ‖ − µ⊥)(k̂ · â)2

ρ
. (8.256)

Anticipating the orientation of the corresponding eigenvector, we have ap-
pended the index SH. We state that: The phase velocity cSH(k̂) actually de-
pends explicitly upon the phase propagation direction k̂ for µ‖ �= µ⊥ as it is
“allowed” for an anisotropic material! However, we have transverse isotropy
with respect to â, hence we obtain the k̂-independent (isotropic) value

c2
SH(k̂⊥ â) =

µ⊥
ρ

(8.257)

for k̂ · â = 0; that way, the notation for Lamé’s parameter µ⊥ is enlightened.
Furthermore, following from transverse isotropy, the phase velocity diagram
cSH(k̂) in a fixed k̂ â-plane is rotationally symmetric around â.
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The second and third eigenvalues of Dtriso(k̂) are obtained putting the
cambered bracket of (8.254) to zero

γ1 = −1
2

(γ2 + γ3 + 2γ4 k̂ · â)

∓ 1
2

√
(γ2 + γ3 + 2γ4 k̂ · â)2 − 4(γ2γ3 − γ2

4)[1 − (k̂ · â)2] (8.258)

and solving the quadratic equation158 in γ1

γ2
1 + γ1(γ2 + γ3 + 2γ4 k̂ · â) + (γ2γ3 − γ2

4)[1 − (k̂ · â)2] = 0 (8.259)

while considering the short-hand notation γ1 and Equation 8.256:

c2
qP,qSV(k̂) = c2

SH(k̂) − γ
qP,qSV
1

ρ
(8.260)

= c2
SH(k̂) +

1
2 (γ2 + γ3 + 2γ4 k̂ · â)

ρ

±
1
2

√
(γ2 + γ3 + 2γ4 k̂ · â)2 − 4(γ2γ3 − γ2

4)[1 − (k̂ · â)2]

ρ
.

(8.261)

As a consequence of transverse isotropy, the diagrams of the phase velocities
cqP,qSV(k̂) are rotationally symmetric around â in a fixed k̂ â-plane. The in-
dices stand for quasi-P and quasi-SV that become comprehensible when we
calculate the corresponding eigenvectors, i.e., the polarization vectors. The
assignment qP =⇒ +√ and qSV =⇒ −√ in (8.261) becomes immediately
clear if we investigate once more the k̂-specialization to the isotropy plane:
For k̂ · â = 0, we obtain

c2
qP(k̂⊥ â) =

λ⊥ + 2µ⊥
ρ

for + √
, (8.262)

c2
qSV(k̂⊥ â) =

µ‖
ρ

for − √
, (8.263)

that is to say, for +√ , we actually find the primary wave velocity for the
⊥-Lamé parameters, and for −√ , the secondary wave velocity for the ‖-Lamé
parameters. With Figure 8.15, we anticipate the respective orientation of
the eigenvectors, i.e., polarization vectors; since all eigenvalues are different
for k̂ · â = 0, the eigenvectors must constitute an orthogonal trihedron that
apparently has no “quasi” properties: Apart from the fact that both secondary

158The minus sign in front of the square root yields the polarization vectors as displayed
in Figures 8.18 and 8.19, after evaluating (8.278); with (8.278), the positive sign in fact
results in a qSV-polarization perpendicular to the SH- and qP-polarizations, yet opposite
to qSV-polarization vectors as depicted in the above figures. With the choice of (8.270) for
SH, no right-handed orthonormal trihedron ûqP, ûqSV, ûSH would result; that is why we
choose the negative sign in (8.278).
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ûqP ûP : λ⊥ + 2µ⊥

ûSH : µ⊥

Plane of transverse isotropy

k^

ûqSVâ, ûSV : µ⏐⏐

FIGURE 8.15
Polarization vectors and phase velocities of wave modes for phase propagation
in the plane of transverse isotropy perpendicular to the preference direction.

wave polarization vectors must be orthogonal to each other due to the different
eigenvalues, we find the usual polarization vectors of a (homogeneous) plane
wave in an isotropic material (compare Figure 8.8) yet with the speciality
that the bipod ûSH, ûqSV cannot be rotated around the propagation direc-
tion k̂ as in the isotropic case, ûqSV must point into â-direction. Therefore,
an arbitrarily given (ûS⊥k̂)-polarization splits into two orthogonal ûSH- and
ûqSV-polarizations that propagate with different velocities; after a finite travel
distance, a phase difference results, the originally linearly polarized shear wave
is elliptically polarized.159

Phase propagation along the preference direction, namely k̂ · â = 1, leads
to another simple case; we find

159The same effect is observed for electromagnetic waves in biaxial materials along the
main axis; it is utilized in photoelasticity (Born and Wolf 1975; Wolf 1976).
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ûSH : µ⏐⏐

Plane of transverse isotropy

ûqSV

k^,â,

ûSV : µ⏐⏐

ûqP ûP : λ⏐⏐ + 2µ⏐⏐

FIGURE 8.16
Polarization vectors and phase velocities of wave modes for phase propagation
perpendicular to the plane of transverse isotropy parallel to the preference
direction.

c2
SH(k̂ ‖ â) =

µ‖
ρ

, (8.264)

c2
qP(k̂ ‖ â) =

λ‖ + 2µ‖
ρ

, (8.265)

c2
qSV(k̂ ‖ â) =

µ‖
ρ

. (8.266)

The corresponding polarization vectors are depicted in Figure 8.16; since in
that case only ‖-Lamé parameters are involved and the eigenvalues (8.264)
and (8.266) are equal, we encounter a standard (homogeneous) plane wave
(Figure 8.8): Both shear wave polarizations may be chosen orthogonal to each
other, but it is not mandatory because each vector perpendicular to k̂ and â,
respectively, is an eigenvector to the eigenvalue µ‖/ρ; this time, we can even
rotate the (ûSH, ûqSV)-bipod around the â-axis.

Polarization vectors: For the eigenvalue c2
SH(k̂), we have γ1 = 0 (Equation

8.255), and therefore we immediately see that, according to (8.252),
Wtriso(k̂, c2

SH) is a planar tensor (sum of two dyadic products). Consequently,
adjWtriso(k̂, c2

SH) must be a linear tensor (a single dyadic product; Chen
1983). With Chen’s formula
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adj (α I + A1C1 + A2C2) = α[(α + A1 · C1 + A2 · C2)I − A1C1 − A2C2]

+ (C1 × C2)(A1 × A2), (8.267)

we calculate

adjWtriso(k̂, c2)

= γ1

[
(γ1 + γ2 + γ3 + 2γ4 k̂ · â) I − γ2 k̂ k̂ − γ3 â â − γ4(â k̂ + k̂ â)

]
+ (γ2γ3 − γ2

4)(k̂ × â)(k̂ × â), (8.268)

and obviously,

adjWtriso(k̂, c2
SH) = (γ2γ3 − γ2

4)(k̂ × â)(k̂ × â) (8.269)

is linear! Consequence: The eigenvector ûSH(k̂) is proportional to the left
vector k̂ × â in the dyadic product (8.269), i.e., normalization to |k̂ × â| re-
sults in:160

ûSH(k̂) =
k̂ × â√

1 − (k̂ · â)2
. (8.270)

This eigenvector that gives the SH-polarization direction is orthogonal to the
plane spanned by k̂ and â (Figure 8.17); it does not explain the notation
SH for shear-horizontal. Usually, this notation only becomes meaningful if a
reference plane, e.g., the xy-plane as a plane surface of a specimen, is present
and if k̂ and â span a plane perpendicular to it [Figure 8.17(b)]; then, ûSH
(by the way, independent upon k̂) is horizontal with regard to that plane.
Incidentally, ûSH defines a “real” shear wave because it is divergence-free.

The special case k̂⊥ â is contained in (8.269) and (8.270) but not the spe-
cial case k̂ ‖ â because then we have adjW(k̂ ‖ â, c2

SH) as null tensor. Therefore,
W(k̂ ‖ â, c2

SH) must be linear:

Wtriso(k̂ ‖ â, c2
SH) = (γ2 + γ3 + 2γ4) â â. (8.271)

Hence, the eigenvector is proportional to any vector orthogonal to the right
factor â of the dyadic (8.271); this is exactly so as we plotted it as an example
in Figure 8.16.

With the knowledge of all eigenvalues and one eigenvector as well as with
the fact of the real symmetry of Dtriso(k̂) before our eyes, we conclude that
the two remaining eigenvectors ûqP(k̂) and ûqSV(k̂) reside in a plane spanned
by k̂ and â because they must be orthogonal to ûSH(k̂); in addition, they must
be orthogonal to each other. Therefore, we make the ansatz 161

ûqP,qSV(k̂) ∼ αqP,qSV k̂ + βqP,qSV â (8.272)

160Evidently, we can also choose −k̂ × â = â × k̂ (Spies 1992), yet we stay with the con-
vention as given in Figure 8.8.
161The formal calculation using the adjoint of W, respectively, Chen’s formulas (1983) for

(electromagnetic) biaxial materials is far more strenuous.
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π/2
π/2

z

y

(b)

(a)

x

â

ûSH

ûSH

k^

â

k^

FIGURE 8.17
Orientation of SH-polarization in a transversely isotropic material without (a)
and with (b) reference plane.

and determine βqP,qSV/αqP,qSV from the equation

Wtriso(k̂, c2
qP,qSV) · (αqP,qSV k̂ + βqP,qSV â) ≡ 0 (8.273)

of the eigenvalue problem. With (8.252), we obtain from (8.273)

[
αqP,qSV(γqP,qSV

1 + γ2 + γ4 k̂ · â) + βqP,qSV(γ2 k̂ · â + γ4)
]
k̂

+
[
αqP,qSV(γ3 k̂ · â + γ4) + βqP,qSV(γqP,qSV

1 + γ3 + γ4 k̂ · â)
]
â = 0;

(8.274)
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Both solutions of (8.259) have been written according to (8.258) as γ
qP,qSV
1 .

Because k̂ and â can be considered as linearly independent—the special case
k̂ ‖ â is separately treated—both brackets in (8.274) must equally be zero; the
result is the homogeneous system of equations

αqP,qSV(γqP,qSV
1 + γ2 + γ4 k̂ · â) + βqP,qSV(γ2 k̂ · â + γ4) = 0, (8.275)

αqP,qSV(γ3 k̂ · â + γ4) + βqP,qSV(γqP,qSV
1 + γ3 + γ4 k̂ · â) = 0 (8.276)

for the components of the eigenvalues in a k̂ â-coordinate system. This system
of equations has a nontrivial solution because its coefficient determinant is
equal to detWtriso(k̂, c2

qP,qSV) and, hence, equal to zero. We find

βqP,qSV

αqP,qSV

def= γqP,qSV

= − γ
qP,qSV
1 + γ2 + γ4 k̂ · â

γ4 + γ2 k̂ · â

= − ρ c2
SH − ρ c2

qP,qSV + γ2 + γ4 k̂ · â
(ν + µ‖)k̂ · â ; (8.277)

after insertion of γ
qP,qSV
1 and cSH,qP,qSV, respectively, and normalization,

we get162

ûqP,qSV(k̂) =
k̂ + γqP,qSVâ

UqP,qSV

=
k̂ − 1

2 (γ2−γ3)∓ 1
2

√
(γ2+γ3+2γ4 k̂·â)2−4(γ2γ3−γ2

4)[1−(k̂·â)2]
γ4+γ2 k̂·â â

UqP,qSV
, (8.278)

where

UqP,qSV = |k̂ + γqP,qSVâ|
=
√

1 + γ2
qP,qSV + 2γqP,qSVk̂ · â. (8.279)

A short calculation reveals that in fact

ûqP(k̂) · ûqSV(k̂) = 0 (8.280)

holds.
For the special case k̂ · â = 0, we have γ4 = 0; therefore, we cannot readily

use (8.278). A remedy consists in a transformation of adjWtriso(k̂, c2):

162The result looks much simpler than the one given and published by Spies (1992, 1994).
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adjWtriso(k̂, c2)=
{

γ1(γ1 + γ2 + γ3 + 2γ4 k̂ · â) + (γ2γ3 − γ2
4)[1 − (k̂ · â)2]

}
︸ ︷︷ ︸

= 0 für γ1 = γ
qP,qSV
1

I

− (γ1γ2 + γ2γ3 − γ2
4) k̂ k̂ − (γ1γ3 + γ2γ3 − γ2

4) â â

− [γ1γ4 − (γ2γ3 − γ2
4)k̂ · â](k̂ â + â k̂); (8.281)

we obtain

adjWtriso(k̂⊥ â, c2
qP) = γ2(γ2 − γ3) k̂ k̂ (8.282)

and, respectively,

adjWtriso(k̂⊥ â, c2
qSV) = γ3(γ3 − γ2) â â. (8.283)

Consequently, ûqP(k̂⊥ â) is parallel to k̂ and ûqSV(k̂⊥ â) is parallel to â as
it is sketched in Figure 8.15.

For k̂ ‖ â, the two vectors k̂ and â are not linearly independent making the
derivation of (8.277) not applicable. Yet, calculating adjWtriso(k̂ ‖ â, c2

SH,qSV)
results in the null tensor; hence,

Wtriso(k̂ ‖ â, c2
SH,qSV) = (γ2 + γ3 + 2γ4) â â (8.284)

is linear and ûSH,qSV(k̂ ‖ â) orthogonal to the respective right factor â: We
choose ûSH and ûqSV orthogonal to each other. This is the same situation
as for a standard plane wave in an isotropic material because both eigen-
values c2

SH(k̂ ‖ â) and c2
qSV(k̂ ‖ â) are equal. Obviously, even ûqP(k̂ ‖ â) fits

into this picture of a standard plane wave because we immediately realize
adjWtriso(k̂ ‖ â, c2

qP) ∼ â â so that ûqP(k̂ ‖ â) is parallel to the left factor â.
With Figure 8.16, we have anticipated this fact.

In Figures 8.18 and 8.19, we have depicted the k̂-dependence of the phase
velocities cSH(k̂), cqSV(k̂), cqP(k̂) for two typical materials with transverse
isotropy: fiber-reinforced composite and austenitic steel 308; hence, â is given
by the direction of the carbon fibers and, respectively, by the crystal orienta-
tion. The velocity diagrams are displayed in the plane spanned by k̂ and â,
and they are rotationally symmetric with respect to the â-direction.163 Gener-
ally, we have164 cqP(k̂) > cSH,qSV(k̂) obviously relating the addendum quasi-P
and quasi-SV not to the characterization of wave modes according to pressure
and shear waves—distinguished by velocities—but to the polarization (and to

163Spies (1992) also discusses the dependence upon â if the diagrams are displayed in a
fixed plane (the plane of incidence) perpendicular to a reference plane; if n denotes the
normal to the reference plane, the plane of incidence is spanned by k̂ and n.
164There are exceptions (Royer and Dieulesaint 2000): TeO2.
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FIGURE 8.18
Phase velocities cSH(k̂), cqSV(k̂) and cqP(k̂) and polarization vectors for
fiber reinforced composite: λ⊥ + 2µ⊥ = 13.5, µ⊥ = 3.4, λ‖ + 2µ‖ = 145.8,
µ‖ = 6.8, ν = 10.2 [GPa]; ρ = 1.6 g/cm3.
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FIGURE 8.19
Phase velocities cqSV(k̂), cSH(k̂) and cqP(k̂) and polarization vectors for
austenitic steel 308: λ⊥ + 2µ⊥ = 262.75, µ⊥ = 82.25, λ‖ + 2µ‖ = 216, µ‖ =
129, ν = 145 [GPa]; ρ = 8 g/cm3.
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FIGURE 8.20
Longitudinal deviation of the qP-polarization vector for fiber-reinforced com-
posite (—) and austenitic steel 308 (- - -).

nonvanishing curl and divergence); we learn from Figure 8.18 that the longitu-
dinal deviation of the qP-mode and the transverse deviation of the qSV-mode
may be significant, i.e., the primary wave is quasilongitudinally and the sec-
ondary wave is quasitransversely polarized, whereas the polarization vector
of the SH-mode is always perpendicular to the k̂ â-plane and, hence, to the
propagation direction. This is the reason why a qP-wave is only a quasipres-
sure wave due to its nonvanishing curl, and a qSV-wave is only a quasishear
wave due to its nonvanishing divergence: We cannot separate the particle ve-
locity according to the Helmholtz decomposition (7.28). In Figure 8.20, we
have displayed the longitudinal deviation of the qP-polarization vector for
both materials as a function of k̂ · â = cos αk̂ â, that is to say, as a function
of the phase propagation angle relative to165 â: Evidently, the longitudinal
deviation of the qP-mode and, hence, also for the transverse deviation of the
qSV-mode is only marginal for austenitic steel.

To derive reflection, transmission, and mode conversion laws of plane
waves, we use phase matching for the (plane) boundary of two materials, and
to geometrically construct the respective phase propagation directions, we use
the slowness diagrams (Chapter 9). For this reason, we have also plotted the
corresponding slowness diagrams in Figure 8.21 corresponding to Figures 8.18
and 8.19. As we have seen in Section 8.3.1, the planes of constant slowness
s(k̂) = 1/c(k̂) in anisotropic materials are important for another reason: The
energy velocity vector cE(k̂) is orthogonal to the respective slowness surface,
i.e., with the knowledge of the slowness diagram s(k̂), we can immediately

165Additionally, calculating the sign of (k̂ × ûSH) · ûqP, we actually obtain the orientation
of ûqP “between k̂ and â” as displayed in Figure 8.18.
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FIGURE 8.21
Slownesses sSH(k̂), sqSV(k̂) and sqP(k̂) for fiber-reinforced composite (left)
and austenitic steel 308 (right).

construct the ray direction l̂(k̂) that only coincides with the phase propaga-
tion direction k̂ in isotropic materials (Section 8.1.2).

As we will see further below, the concave depressions of the qSV-slowness
diagrams in Figure 8.21 lead to nonunique phase propagation vectors in the
direction of certain ray vectors.

Energy velocities: Knowing explicitly the phase velocities and polarization
vectors for the transversely isotropic material, we utilize Equation 8.217 to
calculate the energy velocities.166 With (4.24), according to

ctriso = λ⊥ Iδ + 2µ⊥ I+ +

+ α1 â â â â + α2(I â â + â â I) +

+ α3(I â â + â â I)1324 + α3(I â â + â â I)1342, (8.285)

where

α1 = λ⊥ + 2µ⊥ + λ‖ + 2µ‖ − 2(ν + 2µ‖), (8.286)
α2 = ν − λ⊥, (8.287)
α3 = µ‖ − µ⊥, (8.288)

166Spies (1992, 1994) utilizes Equation 8.237 that leads to much more complicated
expressions.
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we immediately calculate167

ctriso : k̂ û = λ⊥k̂ · û I + µ⊥(k̂ û + û k̂)

+ α1k̂ · â â · û â â + α2(k̂ · â â · û I + k̂ · û â â)

+ α3(k̂ · â û â + û · â â k̂ + û · â k̂ â + k̂ · â â û) (8.289)

and subsequently

cE(k̂) =
1

ρ c(k̂)

[
λ⊥k̂ · û û + µ⊥k̂ + µ⊥k̂ · û û + α1k̂ · â(û · â)2â

+ α2(k̂ · â â · û û + k̂ · û û · â â) + α3(k̂ · â â · û û

+ â · û û · k̂ â + û · â â · û k̂ + k̂ · â â)
]
. (8.290)

With k̂ · ûSH(k̂) = 0 and ûSH(k̂) · â = 0, we directly obtain cESH(k̂) as:

cESH(k̂) =
µ⊥k̂ + (µ‖ − µ⊥)k̂ · â â

ρ cSH(k̂)
. (8.291)

Disregarding the special cases

cESH(k̂⊥ â) = cSH(k̂⊥ â) k̂, (8.292)

cESH(k̂ ‖ â) = cSH(k̂ ‖ â) k̂ (8.293)

the energy velocity vector cESH(k̂) actually does not have the direction of
the phase velocity vector for µ‖ �= µ⊥. For µ‖ = µ⊥, the propagation of the
SH-mode is isotropic.

To calculate cEqP,qSV(k̂) numerically, it is advisable to insert the respective
polarization vectors

ûqP,qSV(k̂) =
k̂ + γqP,qSVâ

UqP,qSV
(8.294)

167We have, for example:

â â I1342 : k̂ û = âiâjδklexi
exk

exl
exj

: k̂nûmexn
exm

= âiâjδklδjnδlmk̂nûmexi
exk

= âiânk̂nûmexi
exm

= (k̂ · â)â û.



K12611 Chapter: 8 page: 278 date: January 13, 2012

278 Ultrasonic Nondestructive Testing of Materials

in a way that a k̂ â-component decomposition of the velocity vectors results:

ρ cqP,qSV(k̂)cEqP,qSV(k̂)

=
{

µ⊥ + α3ûqP,qSV · â â · ûqP,qSV

+
1

UqP,qSV

[
(λ⊥ + µ⊥)k̂ · ûqP,qSV + (α2 + α3)k̂ · â â · ûqP,qSV

]}
k̂

+
{

(α1k̂ · â â · ûqP,qSV + α2k̂ · ûqP,qSV)ûqP,qSV · â
+ α3(k̂ · â + k̂ · ûqP,qSVûqP,qSV · â)

+
γqP,qSV

UqP,qSV

[
(λ⊥ + µ⊥)k̂ · ûqP,qSV + (α2 + α3)k̂ · â â · ûqP,qSV

]}
â.

(8.295)

With Figure 8.13, we directly conclude from the slowness diagrams of Fig-
ure 8.21 that all energy velocity vectors cESH,qP,qSV(k̂) have the direction of
k̂ for k̂⊥ â and k̂ ‖ â; as a matter of fact, we even have

cEqP,qSV(k̂⊥ â) = cqP,qSV(k̂⊥ â) k̂, (8.296)

cEqP,qSV(k̂ ‖ â) = cqP,qSV(k̂ ‖ â) k̂ (8.297)

as completion of (8.292) and (8.293). Numerical evaluation of (8.291) and
(8.295), respectively, that is to say, production of energy velocity dia-
grams goes as such: We prescribe k̂-vectors and plot |cESH,qSV,qP(k̂)| =
cESH,qSV,qP(k̂) in the direction of the unit vectors ĉESH,qSV,qP(k̂), i.e., in the
direction of the (unit) ray vectors l̂(k̂), where the functions l̂(k̂) for the
three wave modes are generally nonlinear. For our model of the fiber-
reinforced composite, the diagrams of Figure 8.22 and for our model austenitic
steel 308 those of Figure 8.23 are obtained. Strikingly appealing are the
cusps of qSV-diagrams, whose origin is the nonuniqueness of the respective

â
^

k^

cESH(Î)
cEqP(l)^

cEqP(l)^

cEqSV(l)^

l

FIGURE 8.22
Energy velocities cESH(k̂), cEqSV(k̂) and cEqP(k̂) for fiber reinforced compos-
ite: λ⊥ + 2µ⊥ = 13.5, µ⊥ = 3.4, λ‖ + 2µ‖ = 145.8, µ‖ = 6.8, ν = 10.2 [GPa];
ρ = 1.6 g/cm3.
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FIGURE 8.23
Energy velocities cESH(k̂), cEqSV(k̂) and cEqP(k̂) for austenitic steel 308: λ⊥ +
2µ⊥ = 262.75, µ⊥ = 82.25, λ‖ + 2µ‖ = 216, µ‖ = 129, ν = 145 [GPa]; ρ =
8 g/cm3.
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FIGURE 8.24
Illustration of the nonlinear relation between the phase propagation vector k̂
and the ray vector l̂ for the qP-energy velocity diagram of austenitic steel 308.

k̂(̂l)-function. Before we discuss that in detail with the help of Figure 8.25,
we first consider the simpler (and nonambiguous) case of a qP-diagram (Fig-
ure 8.24). We know from Section 8.3.1 (Equation 8.229) that, for a given ray
vector l̂(k̂), the phase propagation vector k̂ is always perpendicular to the sur-
face of the energy velocity diagram—the wave surface. This is illustrated in
Figure 8.24 for several ray vectors for the qP-diagram of austenitic steel 308.
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FIGURE 8.25
Illustration of the nonlinear relation of the phase propagation vector k̂ and
the ray vector l̂ for the qSV-energy velocity diagram of austenitic steel 308
(for clarity, the l̂-(unit)vectors have only half the length as compared to the
k̂-(unit)vectors).

The angle between l̂ and â is denoted by α l̂ â, obviously this angle grows, even
though nonlinearly but monotonously, as a function of α k̂ â, the angle between

k̂ and â (left part of Figure 8.24). The assignment of characteristic points on
this curve to the respective l̂, k̂-directions of the velocity diagram is readily
obtained: α l̂1â

= π/4 has α k̂1â
= π/4 and α l̂2â

= π/2 has α k̂2â
= π/2 as con-

sequence; starting from α l̂ â = 0, the angle α k̂ â slowly and then rapidly grows
until the direction α l̂1â

= α k̂1â
= π/4 is reached for both vectors, and then,

for π/4 < α l̂ â < π/2, we observe the reverse behavior, and for π/2 < α l̂ â < π,
everything starts from the beginning. The boldface part of the energy velocity
diagram refers to the interval 0 ≤ α k̂ â ≤ π.

With Figure 8.25, we turn to the already mentioned cusps of the en-
ergy velocity diagrams of austenitic steel 308. At first, the α l̂ â(α k̂ â)-curve
on the left side of the figure reveals its nonlinearity and additionally being
nonmonotonous: A specific l̂-value—for example: l̂3—may belong to three
k̂-values, here: k̂3, k̂4, k̂5. Again, we discuss the mapping of the (0 ≤ α k̂ â ≤ π)-
interval into a respective α l̂ â-interval: Obviously—we directly notice it from
the velocity diagram—α k̂ â = 0 belongs to α l̂ â = 0. Starting from this ori-
gin α k̂ â increases only if α l̂ â becomes negative until it reaches the lower tip
of the boldface part of the right-hand cusp; afterward, α k̂ â still increases
whereas α l̂ â heads for a second zero. The value α l̂ â = π/4 is related—as
for the qP-diagram—to the value α k̂ â = π/4. In the following, α l̂ â passes
through the complete upper cusp that manifests itself in the α l̂ â(α k̂ â)-curve
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as consecutiveness of a local maximum and a local minimum. To the
l̂3-direction—α l̂3â

= π/2—belongs a k̂3-direction with π/2 < α k̂3â
→∼ >π/4,

the left-hand cusp tip corresponds to the subsequent maximum of the
α l̂ â(α k̂ â)-curve, and finally, we find the value α k̂4â

= π/2 for α l̂3â
= π/2.

The subsequent minimum corresponds to the right-hand tip of the upper cusp
and the ensuing double point of the velocity diagram (double point in the
k̂ â-plane) now belongs to the phase propagation vector k̂5: One ray direction
l̂3 with α l̂3â

= π/2 relates to three differently oriented phase surfaces where
two of them propagate with the same energy velocity and one with a larger
energy velocity, that is to say, k̂ is no longer orthogonal to the wavefronts as
in Figure 8.7. It becomes exceptionally clear in Figure 8.26: Here, we have

âl^
l^ l^

l^
f^

FIGURE 8.26
2D-EFIT-qP/qSV-RC2(t)-wavefronts of a line force density f̂ in austenitic
steel 308 for two different times.
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calculated EFIT-RC2(t)-wavefronts for two different times that originate as
qP- and qSV-wavefronts from a line force density in austenitic steel 308. In
Section 8.3.1, we already mentioned that time domain wave fronts of point
and line sources (Green functions) must coincide with the energy velocity di-
agrams of plane waves; this is nicely highlighted by the respective velocity
diagrams, where we observe that indeed three phase surfaces exist in the di-
rections of the cusp double points. They do not propagate into the directions
of the three phase vectors but into the direction of the one ray vector (Equa-
tion 8.230). Two of them even possess different energy velocities that may
lead to confusion interpreting seismic bore hole signals (Wang 2002).

8.4 Plane Waves in Isotropic Dissipative Materials

In the frequency domain, homogeneous isotropic dissipative materials are char-
acterized by the constitutive equations

µ(R,ω) = εc(ω)I, (8.298)

ρ
c
(R,ω) = [ρ + εc(ω)] I

= ρc(ω) I, (8.299)

c
c
(R,ω) = λc(ω) Iδ + 2µc(ω) I+, (8.300)

where εc(ω),λc(ω) and µc(ω) are complex-valued functions of the circular fre-
quency whose real and imaginary parts must be related by Hilbert transforms
as Kramers–Kronig equations. We obtain the reduced wave equation

µc(ω)∆u(R,ω) + [λc(ω) + µc(ω)]∇∇ · u(R,ω) + ω2ρc(ω)u(R,ω) = 0
(8.301)

for the particle displacement vector instead of (8.53). Note: The only differ-
ence with regard to (8.53) is the occurrence of frequency-dependent material
parameters.

With the plane wave ansatz

u(R,ω,k) = u(ω) e jk·R û(k), (8.302)

we directly obtain dispersion relations for P- and S-slowness vectors from
[compare (8.147) for nondissipative materials]

W(k,ω) = [µc(ω)k · k − ω2ρc(ω)] I + [λc(ω) + µc(ω)]kk (8.303)

and from the requirement detW(k,ω) = 0:

kP · kP = ω2 ρc(ω)
λc(ω) + 2µc(ω)

def= k2
Pc(ω), (8.304)
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kS · kS = ω2 ρc(ω)
µc(ω)

def= k2
Sc(ω); (8.305)

the respective right-hand sides identify them as actual dispersion equations.
The second sign of equality in (8.304) and (8.305) defines complex valued non-
linear frequency-dependent168 wave numbers kP,Sc(ω) in each case. Evidently,
the possible solutions kP,S of the dispersion relations are also complex valued
vectors:

kP,S = �kP,S + j�kP,S. (8.306)

The P,S-indices already suggest that we are searching for plane pressure and
shear waves as solutions of the reduced wave equation (8.301). Therefore, we
again determine the polarization vectors —similar to Section 8.2—from the
requirement

∇ × uP(R,ω,kP) = 0, (8.307)
∇ · uS(R,ω,kS) = 0 (8.308)

and, respectively,

kP × ûP(kP) = 0, (8.309)
kS · ûS(kS) = 0; (8.310)

together with the Hermitian normalization condition

ûP,S · û∗
P,S = 1, (8.311)

we obtain polarization unit vectors as in Section 8.2:

ûP(kP) =
kP√

kP · k∗
P

, (8.312)

ûS1(kS) =
ûS2 × kS√

kS · k∗
S

, (8.313)

if we assume ûS2 to be real valued with ûS2 · kS = 0.
After embedding into a cartesian coordinate system, we can choose ûS2 =

ûSH = ey and ûS1 = ûSV with ûSV · ey = 0 alluding to Figure 8.8.

8.4.1 Homogeneous plane waves

The dispersion relations (8.304) and (8.305) for dissipative materials—as in
nondissipative materials—allow for homogeneous and inhomogeneous plane
P,S-wave solutions.

168With kP,Sc(ω), we adumbrate the nonproportionality of wave numbers of complex val-
ued materials to the circular frequency.



K12611 Chapter: 8 page: 284 date: January 13, 2012

284 Ultrasonic Nondestructive Testing of Materials

In the ansatz (8.306) for the complex wave number vectors, we identify
according to

uP,S1/2(R,ω,kP,S) = u(ω) e j	kP,S·R e−
kP,S·R ûP,S1/2(kP,S) (8.314)

the real part �kP,S as phase (propagation) vector and the imaginary part as
attenuation vector �kP,S. In nondissipative (isotropic) materials, we have ex-
actly two possibilities for �kP,S: either equal to the null vector—representing
homogeneous plane waves—or perpendicular to �kP,S—representing inhomo-
geneous plane waves—with the orientation as given in Figure 8.11 (propa-
gation into +�kP,S-direction only results in an attenuation in the half-space
�kP,S · R > 0). The resulting plane waves are either nonattenuated or evanes-
cent with regard to the propagation direction. Exactly these two cases are
excluded in dissipative materials! Namely inserting (8.306) into the dispersion
equation, we obtain the separation into real and imaginary parts:

�kP,S · �kP,S − �kP,S · �kP,S = �k2
P,S(ω), (8.315)

�kP,S · �kP,S =
1
2

�k2
P,S(ω), (8.316)

and on behalf of (8.316), the imaginary part �kP,S can neither be zero nor can
it be perpendicular to �kP,S for �kP,S �= 0. Two alternatives remain: �kP,S
parallel to �kP,S—resulting in homogeneous attenuated plane waves because
phase and amplitude surfaces coincide—or arbitrary nonorthogonal orienta-
tion relative to �kP,S—resulting in inhomogeneous plane waves, whose phase
and amplitude surfaces are neither parallel nor perpendicular to each other.
The angle 0 ≤ 〈(�kP,S,�kP,S) < π/2 is not determined by the elastodynamic
governing equations, it is an arbitrary parameter.

We obtain homogeneous plane waves that are attenuated in propagation
direction eζ for ζ > 0 as solutions

kP,S = kP,Sc(ω) eζ (8.317)

of the dispersion equations yielding

�kP,S = �kP,Sc(ω) eζ, (8.318)
�kP,S = �kP,Sc(ω) eζ (8.319)

(compare Section 4.4.1). To give these phase and attenuation vectors explic-
itly, we must calculate the real and imaginary part of kP,Sc(ω) = �kP,Sc(ω) +
j�kP,Sc(ω) for prescribed real and imaginary part of k2

P,Sc(ω) = �k2
P,Sc(ω) +

j�k2
P,Sc(ω); we obtain (Equations 2.268 and 2.269 with the adequate choice

of sign):

�kP,Sc(ω) =
1√
2

√
�k2

P,Sc(ω) +

√[
�k2

P,Sc(ω)
]2

+
[
�k2

P,Sc(ω)
]2

=
1√
2

√
|k2

P,Sc(ω)| + �k2
P,Sc(ω), (8.320)
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�kP,Sc(ω) =
1√
2

√
−�k2

P,Sc(ω) +

√[
�k2

P,Sc(ω)
]2

+
[
�k2

P,Sc(ω)
]2

=
1√
2

√
|k2

P,Sc(ω)| − �k2
P,Sc(ω), (8.321)

as solution of the system of equations

[�kP,Sc(ω)]2 − [�kP,Sc(ω)]2 = �k2
P,Sc(ω), (8.322)

�kP,Sc(ω)�kP,Sc(ω) =
1
2

�k2
P,Sc(ω) (8.323)

that follows from the separation into real and imaginary part of

k2
P,Sc(ω) = �k2

P,Sc(ω) + j�k2
P,Sc(ω)

= [�kP,Sc(ω) + j�kP,Sc(ω)]2 (8.324)

(Equations 8.304, 8.305, with 8.317). Hence, we obtain

cP,S(ω) =
ω

�kP,Sc(ω)
(8.325)

as frequency-dependent phase velocity of homogeneous dispersive P- and
S-waves in homogeneous isotropic dissipative materials. Of course, this ex-
pression is also obtained through specialization of the general formula (8.175).

The energy velocities of homogeneous plane waves in dissipative materi-
als are directly found inserting (8.317) into (8.184), (8.185), (8.189), (8.190),
(8.196), and (8.197) and subsequent division:

�SKP,S1/S2(R,ω,kP,S)

=
�ω

2
c2
P,S |u(ω)|2e−2
kP,Sc(ω)eζ·R �kP,Sc(ω) eζ, (8.326)

〈wP,S1/2(R, t, ω,kP,S〉
=

�

4
c2
P,S |u(ω)|2e−2
kP,Sc(ω)eζ·R [k2

P,S + |kP,Sc(ω)|2], (8.327)

cEP,S1/2(ω) =
2ω�kP,Sc(ω)

k2
P,S + |kP,Sc(ω)|2 eζ

(8.320)
= cP,S(ω)

�k2
P,Sc(ω) + |kP,Sc(ω)|2
k2
P,S + |kP,Sc(ω)|2 eζ. (8.328)

Four remarks are appropriate:

• In (8.326) and (8.327), we switched to the circular frequency variable ω

of Fourier spectra starting from the arbitrary but fixed circular frequency
ω0 of time harmonic fields.

• The formulas (8.326) and (8.327) emerge through specialization of the gen-
eral expressions (8.182) and (8.183) to P,S1/2-polarizations and dispersion
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relations of dissipative materials, yet they contain with �, λ, and µ as
isotropic specialization of the c-tensor in (8.181), that is to say, of the

c-tensor without losses, the (frequency-independent) material parameters

of the instantaneous reaction of the material according to (4.109), (4.110),
and (7.64) through (7.66), respectively; the wave numbers kP,S and the ve-
locities cP,S are assigned to this instantaneous reaction, i.e., the material
parameters169 �,λ,µ.

• The complex frequency-dependent wave numbers kP,Sc(ω) according to
(8.304) and (8.305) define the frequency-dependent phase velocity (8.325);
under certain assumptions (Langenberg 2005), we can also define a
frequency-dependent group velocity of pulsed plane waves

cgrP,S(ω) =
1

dkP,Sc(ω)
dω

. (8.329)

Yet, it is not equal to the magnitude of the energy velocity (8.328). The
equality of energy and group velocity has been shown in Section 8.3.1 for
anisotropic nondissipative materials.

Apropos pulsed waves: Even though homogeneous plane waves in dissi-
pative materials appear simple in the frequency domain, it is becoming
much more complicated in the time domain; to calculate an ultrasonic
pulse based on (8.314), we have to evaluate an inverse Fourier transform:

uP,S1/2(R, t,kP,S)

= F−1{u(ω)e j	kP,Sc(ω)eζ·R e−
kP,Sc(ω)eζ·R ûP,S1/2(kP,S)}, (8.330)

and this might not be possible analytically due to the general nonlinear
frequency dependence of kP,Sc(ω); an approximate evaluation leads to the
above concept of the group velocity: The envelope of a bandlimited impulse
propagates nondispersively whereas the phase “slides” through the enve-
lope. Yet, one fundamental remark must always be considered: A causal
pulse always remains causal while propagating in a dissipative material,
even so-called precursors do not arrive earlier at the point of observation
as it is allowed by the phase velocity related to the material parameters
� and c of the instantaneous reaction of the material (Sommerfeld 1914;

Brillouin 1914; Kristensson et al. 2000).

• For the special Maxwell model of dissipation (only �c is complex: Equa-
tion 4.85) with �kP,Sc(ω) = kP,S, we have |cEP,S1/2(ω)| = cP,S(ω).

Figures 8.27(a) and (b) depict the phase propagation, attenuation, and
polarization vectors.

169Note: In general, we have �, λ, µ �= 
�c, 
λc, 
µc.
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8.4.2 Inhomogeneous plane waves

The dispersion equations (8.315) and (8.316) for dissipative materials sep-
arated into real and imaginary parts allow for homogeneous as well as in-
homogeneous plane waves as solutions. The first ones are characterized by
parallel �kP,S and �kP,S and the second ones contain arbitrary parameter,
namely, the angle 〈(�kP,S,�kP,S) between phase and attenuation vector with
0 < 〈(�kP,S,�kP,S) < π/2. Based on (8.162), (8.163) and (8.167), (8.168), we
obtain the graphical display of phase, attenuation, and polarization vectors in
Figure 8.28(a) and (b). Note: The special case of homogeneous plane waves
in dissipative materials [Figure 8.27(a) and (b)] is contained in Figure 8.28(a)
and (b) but not the case of Figure 8.12 because the orthogonality �kP,S and
�kP,S is only possible in nondissipative materials.

kSkSkPkP

(b)(a)
uP
^ uP

^

uS1
^

uS2
^

uS1
^

FIGURE 8.27
(a) Polarization of a homogeneous plane pressure wave in a dissipative mate-
rial; (b) S1/S2-polarization of a homogeneous plane shear wave in a dissipative
material.

kS
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(a) (b)

kP

uS2
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uP
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uP
^

uS1
^

uS1
^

FIGURE 8.28
(a) Polarization of an inhomogeneous plane pressure wave in a dissipative
material; (b) S1/S2-polarization of an inhomogeneous plane shear wave in a
dissipative material.
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In dissipative materials, we can only say something about kP,S · k∗
P,S for

homogeneous plane waves, for inhomogeneous waves, we must generally stay
with this term in Equations 8.184, 8.192, and 8.196 for the real part of the
complex Poynting vector and in Equations 8.185, 8.193, and 8.197 for the
time averaged elastodynamic energy density; only kP,S · kP,S can be replaced
by k2

P,Sc and k∗
P,S · k∗

P,S by k∗2
P,Sc. The respective quotient (ω0 =⇒ ω)

cEP(kP) =
λ
[
k∗2
Pc(ω)kP + k2

Pc(ω)k∗
P
]
+ 2µkP · k∗

P (kP + k∗
P)

λ [k2
PkP · k∗

P + |k2
Pc(ω)|2] + 2µkP · k∗

P (k2
P + kP · k∗

P)
ω, (8.331)

cES2(kS) =
2�kS

k2
S + kS · k∗

S
ω, (8.332)

cES1(kS) =
2kS · k∗

S (kS + k∗
S) − [k∗2

Sc(ω)kS + k2
Sc(ω)k∗

S
]

kS · k∗
S (k2

S + kS · k∗
S) + (kS · k∗

S)2 − |k2
Pc(ω)|2 ω, (8.333)

therefore, yields the energy velocity of P-, S1(SH)-, and S2(SV)-waves. For
all previous cases of complex phase vectors, we always found expressions with
comparable structures for the energy velocities of P-, S1-, and S2-wave modes
but this is no longer true for the general case of inhomogeneous waves in
dissipative materials. Only the phase velocities according to (8.175)

cP,S1/2(kP,S) =

√
2

�k2
P,Sc + kP,S · k∗

P,S
ω (8.334)

are of the same structure. Note: cEP(kP) and cES1(kS) do not have the direc-
tion of �kP and �kS, respectively, i.e., the energy flux is not orthogonal to
the phase surfaces.

In nondissipative materials inhomogeneous plane waves basically exist as
mathematical solutions of a homogeneous reduced wave equation in an infinite
elastic full-space, yet their physical realization is tied to the boundary of a half-
space (Section 9.2.1). That is the reason why we also discuss inhomogeneous
plane waves in dissipative materials with respect to a reference plane, namely,
the xy-boundary between a homogeneous isotropic nondissipative half-space
(z > 0) and a homogeneous isotropic dissipative half-space (z < 0). For sim-
plicity, we consider the single mode case of an incident SH-wave coming from
the nondissipative half-space with the angle of incidence ϑiS [Figure 9.12 mit
λ(2) =⇒ λ

(2)
c (ω), µ(2) =⇒ µ

(2)
c (ω), ρ(2) =⇒ ρ

(2)
c (ω)]; the already mentioned

arbitrary parameter—the angle between �kS and �kS—is appointed by the
angle of incidence. The phase matching for the phase vectors (Equation 9.19)

n × kiS = n × ktS

= n × �ktS + jn × �ktS (8.335)

with n = ez requires

n × �ktS = n × kiS, (8.336)
n × �ktS = 0 (8.337)
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after separation into real and imaginary parts. Obviously, �ktS must be or-
thogonal to the boundary and hence parallel to the z-axis; note: For each
phase propagation direction given by �ktS, the attenuation is always orthog-
onal to the boundary, i.e., the transmitted SH-wave is generally an inhomoge-
neous plane wave (except for vertical incidence). To calculate this nonzero
z-component of �ktS as well as the still open z-component of �ktS—the
phase matching (8.337) only assigns the x-component—we use the dispersion
relation separated into real and imaginary parts, namely, Equations 8.315
and 8.316. With

ktS = ktSxex + ktSzez (8.338)

and

ktSx = − k
(1)
S sinϑiS, (8.339)

ktSz = �ktSz + j�ktSz, (8.340)

hence

�ktS = ktSxex + �ktSzez, (8.341)
�ktS = �ktSzez, (8.342)

we obtain

k2
tSx + (�ktSz)

2 − (�ktSz)
2 = �k

(2)2

Sc (ω), (8.343)

�ktSz�ktSz =
1
2

�k
(2)2

Sc (ω); (8.344)

if we write (8.343) according to

(�ktSz)
2 − (�ktSz)

2 = �k
(2)2

Sc (ω) − k
(1)2

S sin2 ϑiS, (8.345)

it becomes obvious that (8.345) and (8.344) are analogous to (8.322) and
(8.323), whose solutions can be readily given by (8.320) and (8.321) just spend-
ing some thoughts to the correct signs:

ktSz(ω)

= − 1√
2

√

k

(2)2
Sc (ω) − k

(1)2
S sin2 ϑiS +

√[

k

(2)2
Sc (ω) − k

(1)2
S sin2 ϑiS

]2
+

[
�k

(2)2
Sc (ω)

]2
,

(8.346)

�ktSz(ω)

= − 1√
2

√
−
k

(2)2
Sc (ω) + k

(1)2
S sin2 ϑiS +

√[

k

(2)2
Sc (ω) − k

(1)2
S sin2 ϑiS

]2
+

[
�k

(2)2
Sc (ω)

]2
.

(8.347)

Once again this illustrates explicitly that phase and attenuation vector in a
dissipative material depend upon the frequency distribution of dissipation.
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The phase velocity of the transmitted wave is calculated according to (8.172)
with (8.341):

ctS(ω) =
ω√

k2
tSx + (
ktSz)2

=

√√√√ 2


k
(2)2
Sc (ω) + k

(1)2
S sin2 ϑiS +

√[
k
(2)2
Sc (ω) − k

(1)2
S sin2 ϑiS

]2 +
[�k

(2)2
Sc (ω)

]2 ω ;

(8.348)

due to (8.325), it depends nonlinearly upon the frequency via k
(2)
Sc (ω), similar

to cS(ω) according to (8.325), why a dissipative material is always dispersive.
Furthermore, the phase velocity depends upon the propagation direction: The
dissipative half-space appears to be anisotropic (Langenberg 2005). This is
also true for the energy velocity because with (8.346) and (8.347), we obtain
an expression

ktS · k∗
tS = k

(1)2

S sin2 ϑiS +

√[
�k

(2)2
Sc (ω) − k

(1)2
S sin2 ϑiS

]2
+
[
�k

(2)2
Sc (ω)

]2
(8.349)

that can be inserted into (8.332) with kS = k
(2)
S , where, as usual, k

(2)
S denotes

the wave number of the instantaneous reaction of the dissipative half-space.
For the special case of vertical incidence (and only for this case), the in-

homogeneous transmitted wave is generally reduced to a homogeneous plane
wave attenuated in propagation direction −ez.

The above thoughts and results can be immediately transferred to inho-
mogeneous SV- and P-waves in dissipative materials. To calculate the energy
velocities, the formulas (8.331) and (8.333), respectively, must then be used.



9
Reflection, Transmission, and Mode
Conversion of Elastic Plane Waves at Planar
Boundaries between Homogeneous
Nondissipative Materials

9.1 Stress-Free Planar Boundary of a Homogeneous
Isotropic Nondissipative Elastic Half-Space

At first, we investigate reflection and—eventually—mode conversion of elastic
plane waves for the planar boundary of a homogeneous isotropic nondissipative
elastic half-space, assuming the “material” of the complementary half-space to
be vacuum. Because vacuum with mass density zero does not support elastic
waves, the complementary half-space is field-free so that the field in the elastic
half-space must satisfy the (homogeneous170) boundary condition

T(R, t) · n = 0, R ∈ S, (9.1)

according to Section 3.3: The boundary S with normal n is stress-free
(traction-free). This standard problem of elastic wave propagation has often
been treated in the literature (e.g., Achenbach 1973; Auld 1973; Ben-Menahem
and Singh 1981; Harker 1988; Langenberg 1983), and even US-NDT is well
aware if it (Krautkrämer and Krautkrämer 1986; Kutzner 1983; Schmerr
1998). Nevertheless, we discuss it here: First for the sake of completeness
and second to appreciate, a (nearly) coordinate-free calculation171 that essen-
tially shortens the procedure and makes it clearer. In addition, we want to
depict the result with reflection and mode conversion of pulsed waves because
US-NDT is in fact pulsed testing; if at all, we only find illustrations for time
harmonic waves in the literature.

9.1.1 Primary longitudinal pressure wave incidence

Reflected primary longitudinal P- and mode converted secondary
transverse SV-waves: The boundary of the half-space is a physically

170We disregard prescribed tractions in the boundary.
171A completely coordinate-free treatise of Fresnel’s reflection of electromagnetic waves

can be found in Chen (1983).
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S

FIGURE 9.1
Reflection and mode conversion of a P-wave at the boundary S of a homoge-
neous isotropic nondissipative elastic half-space with the material parameters
λ,µ, ρ (the y-axis points into the page).

existing reference plane that we conveniently identify as a coordinate plane of
a cartesian coordinate system: We choose the xy-plane and count positive z
into direction n, where n denotes the outer normal of the vacuum half-space
(Figure 9.1). We are able to rotate the coordinate system around the z-axis
until the given phase propagation vector k̂iP of the incident P-wave lies in
the xz-plane; then the plane of incidence spanned by ez = n and k̂iP coincides
with the xz-plane. According to Figure 8.8, ϑik is the polar angle of k̂iP—
ϕik = π is the azimuth angle—yet as angle of incidence, we denote the angle
ϑiP counted from the z-axis with

ϑiP = π − ϑik. (9.2)

For π/2 ≤ ϑik ≤ π, we have π/2 ≥ ϑiP ≥ 0. According to (8.89), k̂iP then has
the component representation

k̂iP =− sinϑik ex + cos ϑik ez

=− sinϑiP ex − cos ϑiP ez; (9.3)

it can also be read from Figure 9.1.
The incident pulsed longitudinal plane P-wave is given according to

(8.86) as

uiP(R, t, k̂iP) = uiP

(
t − k̂iP · R

cP

)
k̂iP, (9.4)
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yet we immediately turn to the Fourier spectrum

uiP(R,ω, k̂iP) = uiP(ω) e jkPk̂iP·R k̂iP. (9.5)

Equation 8.121 tells that we cannot satisfy the boundary condition (9.1) with
(9.5) alone: The physically existing boundary condition enforces the existence
of reflected P- and, as we will see, mode converted SV-waves, whose amplitudes
depend upon the propagation direction (compare Footnote 136). We use the
ansatz for both waves as follows:

urP(R,ω, k̂rP) = urP(ω, k̂rP) e jkPk̂rP·R k̂rP, (9.6)

umSV(R,ω, k̂mS) = umS(ω, k̂mS) e jkSk̂mS·R ûmSV(k̂mS),

ûmSV(k̂mS) · k̂mS = 0, (9.7)

where we denote the propagation vectors of these waves as k̂rP · ey = k̂mS ·
ey = 0, indicating that they also lie in the xz-plane (we will see that this is a
must). With

ûmSV(k̂mS) = k̂mS × ey, (9.8)

the polarization of the shear wave (9.7) follows indeed the convention for an
SV-wave according to Figure 8.8(b) being SV with regard to the boundary;
ûmSV(k̂mS) lies also in the plane of incidence. By using (8.89) and (8.90), we
calculate the following components:

k̂rP =− sinϑrP ex + cos ϑrP ez, (9.9)

k̂mS =− sinϑmS ex + cos ϑmS ez, (9.10)

ûmSV(k̂mS) =− cos ϑmS ex − sinϑmS ez. (9.11)

Reflection and mode conversion laws: With (9.5) through (9.7) and
(8.121) and (8.122), we must now try to satisfy the boundary condition

T(RS ,ω) · ez

=
[
T

iP
(RS ,ω, k̂iP) + T

rP
(RS ,ω, k̂rP) + T

mSV
(RS ,ω, k̂mS)

]
· ez

= 0 (9.12)

for each vector of position RS = xex + yey arbitrarily located in the xy-plane.
To “try” means that: The components of the vector equation (9.12) must be
sufficient to determine the unknowns k̂rP, k̂mS, urP(ω), umS(ω); if not, the
ansatz (9.6) and (9.7) would have failed. Since we have

T
iP

(R,ω, k̂iP) = jkP uiP(ω) e jkPk̂iP·R (λ I + 2µ k̂iP k̂iP), (9.13)

T
rP

(R,ω, k̂rP) = jkP urP(ω, k̂rP) e jkPk̂rP·R (λ I + 2µ k̂rP k̂rP), (9.14)

T
mSV

(R,ω, k̂mS) = jkSµ umS(ω, k̂mS) e jkSk̂mS·R

× [k̂mS ûmSV(k̂mS) + ûmSV(k̂mS) k̂mS], (9.15)
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we directly see that (9.12) has no y-component: If we would have eventually
considered a mode converted SH-wave in (9.12) with ûmSH = −ey, it would
totally drop while considering the remaining x- and z-components of (9.12);
it is obviously not required in our ansatz, it is decoupled from the P-SV-waves
(Section 7.3). If we now insert (9.13) through (9.15) into (9.12), the resulting
vector equation must be satisfied for all points RS , and this is only possible if
the arguments of the exponential functions in (9.13) through (9.15) are equal
for172 R = RS :

kP k̂iP · RS = kP k̂rP · RS = kS k̂mS · RS . (9.16)

An arbitrary point RS ∈ S can be represented according to

RS = n × R (9.17)

by an arbitrary point R ∈ IR3; therefore, we can write (9.16) according to

kP(k̂iP × n) · R = kP(k̂rP × n) · R = kS(k̂mS × n) · R, (9.18)

and because R is a completely arbitrary vector, not only the (k̂ × n)-
projections in (9.18) but also the (k̂ × n)-vectors themselves must be equal:

kP k̂iP × n = kP k̂rP × n = kS k̂mS × n. (9.19)

As sketched in Figure 9.1, we have assumed that k̂iP lies in the plane of
incidence, yielding k̂iP × n ∼ ey; Equation 9.19 says that this must also be
valid for k̂rP and k̂mS so that in fact k̂rP and k̂mS lie in the plane of inci-
dence173 (check Figure 9.1). If we take the component representations (9.3),
(9.9), and (9.10) into consideration, only the y-component of the vector equa-
tions (9.19) remains and the double equality sign yields the two equations

sinϑrP = sin ϑiP, (9.20)
kS sinϑmS = kP sinϑiP. (9.21)

The reflection law (9.20) delivers the equality

ϑrP = ϑiP (9.22)

of reflection and incidence angles and the mode conversion law (9.21) allows
for the calculation of the propagation direction of the mode converted SV-
wave for a given angle of incidence and given wave number and phase velocity
ratio, respectively. Note: Since kP < kS, we always have sinϑmS < sinϑiP < 1

172Exponential functions with different arguments x1, x2, x3 are linearly independent; the
equation

α1 ex1 + α2 ex2 + α3 ex3 = 0

would yield α1 = α2 = α3 = 0.
173Therefore, the present boundary value problem of elastic waves is a two-dimensional

problem: We have ∂/∂y ≡ 0.
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and hence ϑmS < ϑiP. The laws of reflection and mode conversion follow from
the boundary condition simply through the phase matching condition.

Reflection and mode conversion coefficients for the vector parti-
cle displacement: We take the z- and x-components of (9.12) with (9.13)
through (9.15):

kP uiP(ω)[λ + 2µ(k̂iP · ez)
2] + kP urP(ω, k̂rP)[λ + 2µ(k̂rP · ez)

2]

+ 2kSµ umS(ω, k̂mS)(k̂mS · ez)(k̂mS · ex) = 0, (9.23)

2kP uiP(ω)(k̂iP · ex)(k̂iP · ez) + 2kP urP(ω, k̂rP)(k̂rP · ex)(k̂rP · ez)

+ kS umS(ω, k̂mS)[(k̂mS · ex)2 − (k̂mS · ez)
2] = 0, (9.24)

where we consider

ûmSV(k̂mS) · ez = k̂mS · ex, (9.25)

ûmSV(k̂mS) · ex = − k̂mS · ez (9.26)

due to (9.8). With (9.23) and (9.24), we have found two equations174 for
both still unknown amplitudes urP(ω, k̂rP) and umS(ω, k̂mS). We now define
reflection and mode conversion coefficients—we will see that they depend upon
the angle of incidence but not on frequency—

RP(ϑiP) =
urP(ω, k̂rP)

uiP(ω)
, (9.27)

MS(ϑiP) =
umS(ω, k̂mS)

uiP(ω)
, (9.28)

and introduce angles just now via (9.3), (9.9), and (9.10); we consider (9.21)
converting k̂iP · ez as follows:

λ + 2µ(k̂iP · ez)
2 = λ + 2µ cos2 ϑiP

= λ + 2µ

(
1 − λ + 2µ

µ
sin2 ϑmS

)
= (λ + 2µ)(1 − 2 sin2 ϑmS)
= (λ + 2µ)(cos2 ϑmS − sin2 ϑmS) (9.29)

to arrive at the following system of equations:

RP(ϑiP) − µ

λ + 2µ

kS

kP

2 cos ϑmS sinϑmS

cos2 ϑmS − sin2 ϑmS
MS(ϑiP) = − 1, (9.30)

−RP(ϑiP) − kS

kP

cos2 ϑmS − sin2 ϑmS

2 sinϑiP cos ϑiP
MS(ϑiP) = − 1. (9.31)

174Working without the ansatz of mode converted waves putting umS(ω, k̂mS) equal to
zero, the two equations for urP(ω, k̂rP) would contradict each other.
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Its solution is readily obtained:

RP(ϑiP) =
sin 2ϑiP sin 2ϑmS − κ2 cos2 2ϑmS

sin 2ϑiP sin 2ϑmS + κ2 cos2 2ϑmS
, (9.32)

MS(ϑiP) = κ
2 sin 2ϑiP cos 2ϑmS

sin 2ϑiP sin 2ϑmS + κ2 cos2 2ϑmS
, (9.33)

where we have used trigonometric formulas for the double angles and the usual
notation

κ =
kS

kP
=

cP

cS
> 1. (9.34)

If MS(ϑiP) is found in the literature with a different sign (e.g.: Schmerr 1998;
Ben-Menahem and Singh 1981; Langenberg 1983), the respective authors have
chosen the opposite direction of ûmSV(k̂mS). Sometimes (Krautkrämer and
Krautkrämer 1986; Schmerr 1998; Harker 1988), reflection and mode conver-
sion coefficients are given for the Helmholtz potentials and not for the particle
displacement; then, due to (8.113), the factor κ = cP/cS is missing in (9.33).

Another item: RP(ϑiP) and MS(ϑiP) are amplitude factors of vectorial
particle displacements (9.6) and (9.7), that is to say, we have explicitly

urP(R,ω, k̂rP) = RP(ϑiP) uiP(ω) e jkPk̂rP·R k̂rP, (9.35)

umSV(R,ω, k̂mS) = MS(ϑiP) uiP(ω) e jkSk̂mS·R k̂mS × ey (9.36)

together with (9.5). Hence, switching to (scalar) cartesian components, addi-
tional angle functions appear:

uiPx(x, z,ω,ϑiP) = − sinϑiP uiP(ω) e−jkP(sin ϑiP x+cos ϑiP z), (9.37)

uiPz(x, z,ω,ϑiP) = − cos ϑiP uiP(ω) e−jkP(sin ϑiP x+cos ϑiP z); (9.38)

urPx(x, z,ω,ϑiP) = − sinϑiP RP(ϑiP) uiP(ω) e−jkP(sin ϑiP x−cos ϑiP z), (9.39)

urPz(x, z,ω,ϑiP) = cos ϑiP RP(ϑiP) uiP(ω) e−jkP(sin ϑiP x−cos ϑiP z); (9.40)

umSx(x, z,ω,ϑiP) = −1
κ

√
κ2 − sin2 ϑiP MS(ϑiP) uiP(ω)

× e−jkP(sin ϑiP x−
√

κ2−sin2 ϑiP z), (9.41)

umSz(x, z,ω,ϑiP) = −1
κ

sinϑiP MS(ϑiP) uiP(ω) e−jkP(sin ϑiP x−
√

κ2−sin2 ϑiP z).

(9.42)

For vertical incidence—ϑiP = 0: RP(0) = −1, MS(0) = 0—only the two com-
ponents uiPz and urPz remain:

uiPz(x, z,ω, 0) =− uiP(ω) e−jkPz, (9.43)
urPz(x, z,ω, 0) =− uiP(ω) e jkPz, (9.44)
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and their ratio for z = 0

urPz(x, 0,ω, 0)
uiPz(x, 0,ω, 0)

= 1 (9.45)

is +1: The particle velocity of the incident wave has a positive uiP(ω)-
amplitude in (+k̂iP = −ez)-direction, and the particle velocity of the reflected
wave has a negative uiP(ω)-amplitude in (+k̂rP = ez)-direction due to
RP(0) = −1. Yet, the respective vector components exhibit equal signs.

The stress tensors (9.13) through (9.15) related to the particle velocities
(9.4), (9.35), and (9.36) have the following cartesian components:

T
iP

(x, z,ω,ϑiP) = jkPuiP(ω) e−jkP(sin ϑiP x+cos ϑiP z)

×
{

λ I + µ[2 sin2 ϑiP exex + sin 2ϑiP (exez + ezex)

+ 2 cos2 ϑiP ezez]
}

; (9.46)

T
rP

(x, z,ω,ϑiP) = jkP RP(ϑiP) uiP(ω) e−jkP(sin ϑiP x−cos ϑiP z)

×
{

λ I + µ[2 sin2 ϑiP exex − sin 2ϑiP (exez + ezex)

+ 2 cos2 ϑiP ezez]
}

; (9.47)

T
mSV

(x, z,ω,ϑiP) = j
kP

κ
MS(ϑiP) uiP(ω) e−jkP(sin ϑiP x−

√
κ2−sin2 ϑiP z)

×
[
2µ sinϑiP

√
κ2 − sin2 ϑiP exex

− (λ + 2µ cos2 ϑiP)(exez + ezex)

− 2µ sinϑiP

√
κ2 − sin2 ϑiP ezez

]
. (9.48)

For the special case ϑiP = 0, we realize that:

T
iP

(x, z,ω, 0) = jkPuiP(ω) e−jkPz (λ I + 2µ ezez); (9.49)

T
rP

(x, z,ω, 0) =− jkPuiP(ω) e jkPz (λ I + 2µ ezez); (9.50)
T

mSV
(x, z,ω, 0) = 0. (9.51)

Not even for vertical incidence can we define an isotropic pressure tensor for
µ �= 0—and hence a scalar pressure—because the matrix representations of
both tensors (9.49) and (9.50),⎛⎝λ 0 0

0 λ 0
0 0 λ + 2µ

⎞⎠ ,

are not proportional to the unit matrix even though they are diagonal. Yet,
with (8.123) and (8.124), we have assigned a scalar pressure as a physically
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meaningful quantity to plane pressure and shear waves through two double
contractions of the stress tensor; hence, we obtain here:

piP(R,ω,ϑiP) = − T
iP

(R,ω, k̂iP) : k̂iPk̂iP

=− jωZP uiP(ω) e jkPk̂iP·R, (9.52)

prP(R,ω,ϑiP) = − T
rP

(R,ω, k̂rP) : k̂rPk̂rP

=− jωZP RP(ϑiP) uiP(ω) e jkPk̂rP·R, (9.53)

pmSV(R,ω,ϑiP) = − T
mSV

(R,ω, k̂mS) : k̂mS(k̂mS × ey)

=− jωZS MS(ϑiP) uiP(ω) e jkSk̂mS·R

=− jωZP
ZSMS(ϑiP)

ZP︸ ︷︷ ︸
= MpS(ϑiP)

uiP(ω) e jkSk̂mS·R, (9.54)

identifying RP(ϑiP) and MpS(ϑiP) as reflection and mode conversion coeffi-
cients of the respectively defined sound pressure. Yet we note that: This scalar
sound pressure does not satisfy, for example, the condition of a “pressure-free”
boundary for R = RS because we have piP(RS ,ω,ϑiP) + prP(RS ,ω,ϑiP) +
pmSV(RS ,ω,ϑiP) �= 0; for an illustration, we refer to Figure 8.9: The preceding
equation relates “pressure surfaces” parallel and perpendicular to the bound-
ary. Only for vertical incidence, that is not the standard case in US-NDT, we
have piP(RS ,ω, 0) + prP(RS ,ω, 0) = 0, and this is an immediate consequence
of the continuity of the Tzz-stress tensor component (for vertical incidence);
for an illustration, consult Figure 8.9(a): The vertically incident pressure wave
“presses” into the opposite direction on the boundary than the vertically re-
flected pressure wave, and “shear pressure surfaces” are not present.

Obviously, both factors RP(ϑiP) and MS(ϑiP) depend upon the angle of
incidence but not upon frequency. This means that the reflected and the mode
converted pulse have the same pulse spectrum, a consequence of the nondissi-
pative half-space. With (9.4) and the inversely Fourier transformed represen-
tations (9.35) and (9.36), we therefore obtain the pulsed waves:

uiP(R, t, k̂iP) = uiP

(
t − k̂iP · R

cP

)
k̂iP, (9.55)

urP(R, t, k̂rP) = RP(ϑiP) uiP

(
t − k̂rP · R

cP

)
k̂rP, (9.56)

umSV(R, t, k̂mS) = MS(ϑiP) uiP

(
t − k̂mS · R

cP

)
k̂mS × ey. (9.57)

The superposition of (9.55) through (9.57) results in the total particle dis-
placement uP(x, z, t,ϑiP) for P-wave incidence for z ≥ 0, and specially, we
obtain for z = 0:

uP(x, 0, t, ϑiP) = uiP

(
t +

sinϑiP

cP
x

)
[k̂iP + RP(ϑiP) k̂rP + MS(ϑiP) k̂mS × ey].

(9.58)
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In contrast to the boundary condition TP(x, 0, t, ϑiP) · ez = 0 for the total
stress tensor that we used as starting point, the particle velocity itself is
nonzero on the boundary: According to Section 3.3 (Equation 3.110), it defines
an induced boundary deformation rate tensor175

gP(x, t,ϑiP)

= −1
2

d
dt

uiP

(
t +

sinϑiP

cP
x

)
[ezk̂iP + k̂iPez + RP(ϑiP)(ezk̂rP + k̂rPez)

+ MS(ϑiP)(ezûmSV + ûmSVez)] (9.59)

for P-wave incidence that, as we will see in Section 15.1.3, plays the role of an
xy-plane localized equivalent source of the particle velocity in Huygens’ prin-
ciple of elastodynamics, i.e., the physically existing boundary can be replaced
by “Huygens integration” of (9.59) (Sections 15.1 and 15.2), gP(x, t, k̂iP) is
the source of the reflected and mode converted impulses (9.56) and (9.57). As
a matter of fact,

uiP

(
t +

sinϑiP

cP
x

)
is a surface impulse propagating with the surface (phase) velocity

ciPS(ϑiP) =
cP

sinϑiP
(9.60)

into negative x-direction. For π/2 ≥ ϑiP > 0, we have cP ≤ ciPS(ϑiP) < ∞.
A wavefront representation similar to Figure 8.7 of the superposition of (9.55)
through (9.57) especially reveals very nicely as a movie how the surface im-
pulse “hauls” the wavefronts of the incident, reflected, and mode converted
pulses, and this is only possible if the surface velocities ciPS , crPS , cmSS of
all three pulses are equal; but this is exactly the consequence of phase match-
ing coming along in the law of reflection (9.20) and in the mode conversion law
(9.21). As an extraction of a movie, Figure 9.2 shows wavefronts for four dif-
ferent times, where the magnitude of the particle velocity vector is displayed,
i.e., possible different pulse signs are not visible.

For the sake of completeness: The Fourier transforms of (9.58) and (9.59)
are given by

uP(x, 0,ω,ϑiP)

= uiP(ω) e−jkP sin ϑiP x [k̂iP + RP(ϑiP) k̂rP + MS(ϑiP) k̂mS × ey], (9.61)

gP(x,ω,ϑiP)

=
jω
2

uiP(ω) e−jkP sin ϑiP x [ezk̂iP + k̂iPez + RP(ϑiP)(ezk̂rP + k̂rPez)

+ MS(ϑiP)(ezûmSV + ûmSVez)], (9.62)

and (9.62) may be inserted into a time harmonic elastic Huygens integral as
equivalent source.

175As claimed in Section 3.3, it may only be equal to zero for a vanishing incident field.
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kiP

ϑiP = 45°, t3 = 0 ϑiP = 45°, t4 > 0

ϑiP = 45°, t1 < 0 ϑiP = 45°, t2 < 0

^

krP
^ krP

^

kmS
^

kmS
^
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^
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^

kmS
^kiP

^
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^

FIGURE 9.2
Wavefronts of incident, reflected, and mode converted RC2(t)-pulses for a
stress-free boundary of a steel half-space with cP = 5900 m/s and cS = 3200
m/s; κ = 1.84.

Dispersion relations and slowness-diagrams: We want to render the
concept of slowness surface or slowness diagram (Figure 8.10) more precisely
to utilize it for a geometric construction of the mode conversion angle for given
angle of incidence.

With the definition of the slowness vector

s =
k
ω

(9.63)

with the dimension of a reciprocal velocity—whence the name comes from—
the dispersion relations (8.149) and (8.150) for P- and S-waves in isotropic
nondissipative materials, respectively, can be written as:

sP,S · sP,S =
1

c2
P,S

= s2
P,S (9.64)

that we satisfy with

sP,S = sP,Sk̂ (9.65)

in allusion to (8.151).
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ϑrP

ϑmS

ϑiP

SiP

sP sin ϑiP = sP sin ϑrP = sS sin ϑmS

sP sS x, sx

Vacuum

sP, sS

z, sz

S

kmS
^

krP
^

kiP
^ûmSV

SrP

SmS

FIGURE 9.3
Slowness diagrams for reflection and mode conversion of a plane P-wave at a
stress-free boundary.

Therefore, according to Figure 9.1, we can introduce the following slowness
vectors:

siP = sPk̂iP, (9.66)

srP = sPk̂rP, (9.67)

smS = sSk̂mS (9.68)

for the present problem of reflection and mode conversion of an incident P-
wave. The respective dispersion relations

siP · siP = |siP|2 = s2
iPx + s2

iPz = s2
P, (9.69)

srP · srP = |srP|2 = s2
rPx + s2

rPz = s2
P, (9.70)

smS · smS = |smS|2 = s2
mSx + s2

mSz = s2
S (9.71)

according to (9.64) are identically fulfilled by (9.66) through (9.68). In
an sxsz-coordinate system (Figure 9.3), the right-hand equations of (9.69)
through (9.71) are equations describing circles, i.e., the endpoints of the slow-
ness vectors siP, srP lie on a circle with radius sP, and the endpoint of the
slowness vector smS is located on a circle with radius sS: Figure 9.3 depicts
these slowness diagrams176 for the relevant half-space z ≥ 0. Due to phase

176For arbitrary directions of incidence in the fixed cartesian coordinate system with even-
tually nonzero k̂iP · ey , we would obtain spherical surfaces as three-dimensional slowness
diagrams.
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matching at the boundary according to (9.16), the x-components of the slow-
ness vectors must be equal:

siP · ex = srP · ex = smS · ex

=⇒ sP sinϑiP = sP sinϑrP = sS sinϑmS, (9.72)

that is to say, we “find” the laws of reflection and mode conversion in terms
of a slowness notation. The x-components also determine the z-components
via the circles (9.69) through (9.71)—the endpoints of the slowness vectors
are located on their respective slowness circle—enforcing the geometric con-
struction of the slowness vectors and, hence, the phase propagation vectors
k̂rP, k̂mS as sketched in Figure 9.3: The projections of siP, srP, smS onto the
x-axis have the same magnitude as the boldface line.

Wavefronts of reflected P- and mode converted SV-waves: The ex-
pressions (9.32) and (9.33) for reflection and mode conversion coefficients are
discussed in dependence of the angle of incidence and the phase velocity ra-
tio: neither explicitly appear Lamé constants nor the density. For κ = 1.84—
cP = 5900 m/s, cS = 3200 m/s: steel—the angular dependence of RP and MS
is displayed in Figure 9.4. Since we will encounter complex valued reflection
and transmission coefficients in the sections to follow, we generally display
|RP(ϑiP)|, |MS(ϑiP)|. Yet the formulas (9.32) and (9.33) directly reveal that
MS(ϑiP) ≥ 0, 0 ≤ ϑiP ≤ π/2 and RP(0) = −1, RP(π/2) = −1, that is to say,
at the endpoints of the angle of incidence interval, the reflection coefficient
is negative. For the κ-value chosen in Figure 9.4, this is true for the total

0

1

RP(ϑiP)

π/2
ϑiP 0

1

π/2
ϑiP

MS(ϑiP)

FIGURE 9.4
Magnitudes of reflection and mode conversion coefficients for P-wave incidence
as a function of the angle of incidence (steel: cP = 5900 m/s, cS = 3200 m/s;
κ = 1.84).
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interval, yet for smaller κ-values RP(ϑiP), 0 < ϑiP < π/2 may also become
positive yielding two zeroes.

The angle-dependent magnitudes of reflection and mode conversion co-
efficients also manifest themselves in the amplitudes of pulsed wavefronts;
Figure 9.2 gives an example. Here, i.e., in Figure 9.5, we display respective

ϑiP = 0°, t < 0 ϑiP = 0°, t > 0

Reflected P-wave
Incident P-wave

(a) (b)

(c) (d)

(e) (f )

ϑiP = 30°, t = 0 ϑiP = 45°, t = 0

ϑiP = 60°, t = 0 ϑiP = 80°, t = 0

kiP = –ez
^

kiP = ez
^

FIGURE 9.5
Wavefronts of incident and reflected P- as well as mode converted SV-waves
for different angles of incidence (a)–(f) (material: steel with cP = 5900 m/s,
cS = 3200 m/s; κ = 1.84).
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wavefronts for various angles of incidence, where, as in Figure 9.2, the gray
scale represents the magnitude of the particle velocity not allowing for a sign
recognition. Yet, for vertical incidence, we are able to conclude the following:
An RC2(t)-pulse is impressed as time function uiP(t) to the vertically incident
P-wave [Figure 9.5(a)] yielding for vertical incidence:

uiP(R, t, ϑiP = 0) = RC2
(
t +

z

c

)
k̂iP. (9.73)

After reflection—Figure 9.5(b)—the only existing reflected wavefront for
z > 0—we have RP(0) = −1—is given by

urP(R, t, ϑiP = 0) = −RC2
(
t − z

c

)
k̂rP; (9.74)

this wavefront has only a negative longitudinal component with regard to the
propagation direction k̂rP, a consequence of RP(0) = −1. Yet considering the
vector components of the particle velocity in the xz-coordinate system instead
of the longitudinal components, we have

uiP(R, t, ϑiP = 0) = − RC2
(
t +

z

c

)
ez, (9.75)

urP(R, t, ϑiP = 0) = − RC2
(
t − z

c

)
ez (9.76)

due to k̂iP = −ez and k̂rP = ez, that is to say, these components have the
same sign [compare (9.45)].

The single pictures of Figure 9.5(c)–(f) finally show wavefronts of incident,
reflected, and mode converted waves for the fixed time t = 0 for various angles
of incidence 0 < ϑiP < π/2 (Equations 9.55 through 9.57). The gray scales for
the amplitudes reflect the respective values of RP(ϑiP), MS(ϑiP) according to
(9.32) and (9.33) and their graphical display in Figure 9.4.

9.1.2 Secondary transverse vertical shear wave incidence

Having already discussed the mathematical procedure to calculate reflection
and mode conversion at a plane stress-free boundary for an incident P-wave
in detail, we can now shorten the treatise for an incident SV-wave; yet on the
other hand, we must investigate the new phenomenon of total reflection for
angles of incidence beyond the critical angle: In that case, we realize phase
matching introducing the definition of a complex valued mode conversion
“angle” with the consequence of a complex wave number vector of the mode
converted, then inhomogeneous, P-wave that propagates along the boundary
with an exponential decay for z > 0; the extent of the attenuation is deter-
mined by the imaginary part of the mode conversion “angle” identifying it as
an attenuation constant.

Reflected secondary transverse SV-waves and mode converted pri-
mary longitudinal P-waves below the critical angle: To illustrate the
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sP sS x, sx

sP, sS

S

krS
^

kiS
^kmP

^

SmP

ϑmP

ϑrS ϑiS

ûrSV

ûiSV

SrS

z, sz

Vacuum

sS sin ϑiS = sS sin ϑrS = sP sin ϑmP

FIGURE 9.6
Slowness diagrams for reflection and mode conversion of an SV-wave at the
stress-free boundary for angles of incidence below the critical angle.

propagation directions, reflection and mode conversion angles that have been
visualized with two figures in the previous section—Figures 9.1 and 9.3—we
only plot the slowness diagrams of the single Figure 9.6, yet pointing out that
this figure is only relevant for angles of incidence below the critical angle;
for larger angles of incidence, we have to consult Figure 8.11. We immedi-
ately come back to the definition and calculation of the critical angle when
discussing phase matching.

From Figure 9.6, we directly take the component representations of the
respective phase propagation vectors:

k̂iS =− sinϑiS ex − cos ϑiS ez, (9.77)

k̂rS =− sinϑrS ex + cos ϑrS ez, (9.78)

k̂mP =− sinϑmP ex + cos ϑmP ez. (9.79)

With

ûiSV(k̂iS) = k̂iS × ey, (9.80)

ûrSV(k̂rS) = k̂rS × ey (9.81)
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we define the polarization vectors of incident and reflected SV-waves in the
usual way. The Fourier spectra of the partial waves that are needed due to the
boundary condition (9.1) for the total particle displacement field look like that:

uiSV(R,ω, k̂iS) = uiS(ω) e jkSk̂iS·R ûiSV(k̂iS), (9.82)

urSV(R,ω, k̂rS) = RSV(ϑiS) uiS(ω) e jkSk̂rS·R ûrSV(k̂rS), (9.83)

umP(R,ω, k̂mP) = MP(ϑiS) uiS(ω) e jkPk̂mP·R k̂mP, (9.84)

where we have already introduced the reflection coefficient and the mode con-
version coefficient RSV(ϑiS) MP(ϑiS) from our knowledge of the previous sub-
section.

Reflection and mode conversion law: critical angle: The condition
(9.1) for a stress-free boundary reads explicitly:

T(RS ,ω) · ez

=
[
T

iSV
(RS ,ω, k̂iS) + T

rSV
(RS ,ω, k̂rS) + T

mP
(RS ,ω, k̂mP)

]
· ez

= 0, (9.85)

where we have similarly to (9.13) through (9.15)

T
iSV

(R,ω, k̂iS) = jkSµ uiS(ω) e jkSk̂iS·R [k̂iS ûiSV(k̂iS) + ûiSV(k̂iS) k̂iS],
(9.86)

T
rSV

(R,ω, k̂rS) = jkSµ RSV(ϑiS) uiS(ω)

× e jkSk̂rS·R [k̂rS ûrSV(k̂rS) + ûrSV(k̂rS) k̂rS], (9.87)

T
mP

(R,ω, k̂mP) = jkP MP(ϑiS) uiS(ω) e jkPk̂mP·R (λ I + 2µ k̂mP k̂mP).
(9.88)

Again, it is obvious that an eventually considered SH-wave in the ansatz
(9.82) through (9.84) stands isolated when taking the components of (9.85);
it is always decoupled from the two-dimensional P,SV-reflection problem (Sec-
tion 7.3).

With the stress tensors (9.86) through (9.88) of plane waves the boundary
condition (9.85) enforces phase matching

kS k̂iS · RS = kS k̂rS · RS = kP k̂mP · RS (9.89)

that must hold for all boundary points RS = xex + yey. With (9.77)
through (9.79), we once again obtain the reflection law

ϑrS = ϑiS (9.90)

as well as the mode conversion law

sinϑmP =
kS

kP
sinϑiS. (9.91)
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As compared to P-incidence—Equation 9.21—to calculate the mode conver-
sion angle ϑmP only the factor in front of the sine of the angle of incidence has
reversed: Since kS/kP = κ > 1, we can expect the sine of the mode conversion
angle ϑmP to become larger than 1 depending on the angle of incidence ϑiS;
Obviously, this is “critical” for a sine function; hence, we denote

ϑcmP = arcsin
kP

kS
(9.92)

as critical angle (of incidence) for the mode conversion of an incident SV-wave
into a P-wave as a consequence of sin ϑmP = 1. For ϑiS > ϑcmP, we meet the
phenomenon of a “critical sine.”

We do not face any problems for angles of incidence below the critical
angle to construct the phase propagation directions in Figure 9.6 based on
the geometry of slowness diagrams; even the ûiSV, ûrSV-polarizations can be
depicted without difficulty.177

But now we face the following question: How do we “create” a sine bigger
than 1 since angles of incidence beyond the critical angle are physically per-
mitted? The answer comes with the theory of complex valued functions of a
complex variable: As it is true for the equation x2 + 1 = 0 to have solutions
only for complex numbers, a sine with complex argument according to (2.255)
may well have a real part bigger than 1 because of the emerging hyperbolic
cosine that is larger than 1; we simply must allow for complex values of the
“angle” ϑmP in178 sinϑmP. Those complex values are defined by the phase
matching (9.91); yet, sinϑmP should be larger than 1 but real valued request-
ing a vanishing imaginary part; this is achieved attaching the fixed real part
π/2 to the complex “angle” ϑmP

ϑmP =
π

2
+ j�ϑmP. (9.93)

Concerning the sign of �ϑmP, we make a decision below. There are intuitive
arguments for (9.93): Since ϑmP according to (9.91) is always larger than
ϑiS, the mode conversion eventually reaches the value π/2 before we have
ϑiS = π/2; a further increase for the angle ϑmP for increasing angle of incidence
is not possible yielding the “escape” of ϑmP to complex values with the real
part remaining constant according to �ϑmP = π/2; afterward, the physical
meaning of the imaginary part has to be clarified. With (9.93), (2.255), and
(9.91), we have for ϑiS > ϑcmP

sinϑmP = cosh �ϑmP =
kS

kP
sinϑiS > 1. (9.94)

We also have to clarify the consequences of complex mode conversion “an-
gles” for the field structure of umP(R,ω, k̂mP): Via k̂mP according to (9.79),

177Note: Per definition, both polarization vectors point into the direction of increasing
polar angle; this has consequences regarding the sign of the reflection coefficient.
178Of course, a complex “angle” ϑmP is no longer visible as an angle in a slowness diagram.
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sinϑmP and cos ϑmP appear; due to phase matching, sinϑmP has always to
be replaced by κ sinϑiS, leaving us only with cos ϑmP = cos(π/2 + j �ϑmP).
According to (2.256), we have

cos ϑmP = −j sinh�ϑmP, (9.95)

i.e., the cosine of the complex mode conversion angle (9.93) is purely imagi-
nary! Inserting (9.94) and (9.95) into (9.79), we find a complex wave number
(unit) vector

k̂mP = − cosh �ϑmP ex − j sinh�ϑmP ez; (9.96)

even if its Hermitian scalar product k̂mP · k̂∗
mP is not equal179 to 1, its “nor-

mal” scalar product k̂mP · k̂mP is equal to 1 due to the dispersion relation,
retaining the characterization as unit vector. Insertion into (9.84) yields

umP(R,ω, k̂mP) = MP(ϑiS) uiS(ω) e−jkP cosh 
ϑmP x e kP sinh 
ϑmP z k̂mP.

(9.97)

First: The exponential function e jkPk̂mP·R being complex for ϑiS < ϑcmP sep-
arates into a complex exponential function e−jkP cosh 
ϑmP x and a real valued
exponential function e kP sinh 
ϑmP z for ϑiS > ϑcmP; the latter one should not
tend to infinity for z −→ ∞, instead it should decrease requesting the choice

�ϑmP ≤ 0. (9.98)

Further: This choice actually gives a physical meaning to �ϑmP because
sinh�ϑmP obviously is a (negative) attenuation constant! With (9.97), we ob-
tain an inhomogeneous plane wave propagating into (−x)-direction (Section
8.2): The surfaces of constant phase are planes perpendicular to the x-axis,
yet the surfaces of constant amplitude are planes perpendicular to the z-axis,
both planes are orthogonal to each other. It is an evanescent inhomogeneous
plane wave.

In (9.97), the imaginary part of the mode conversion “angle” still explicitly
appears; but with (9.94), we can replace kP cosh �ϑmP by kS sinϑiS, and for
sinh�ϑmP, this is possible via the relation

cosh2 �ϑmP − sinh2 �ϑmP = 1, (9.99)

where we only have to take care that �ϑmP ≤ 0, and hence sinh�ϑmP ≤ 0,
holds after resolving for sinh�ϑmP:

sinh�ϑmP = −
√

κ2 sin2 ϑiS − 1. (9.100)

179We calculate

k̂mP · k̂∗
mP = cosh2 �ϑmP + sinh2 �ϑmP �= 1

and

k̂mP · k̂mP = cosh2 �ϑmP − sinh2 �ϑmP = 1.
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We finally obtain

umP(R,ω,ϑiS) = − MP(ϑiS) uiS(ω) e−jkS sin ϑiS x e−
√

k2
S sin2 ϑiS−k2

P z

×
(

κ sinϑiS ex − j
√

κ2 sin2 ϑiS − 1 ez

)
. (9.101)

This representation of the mode converted wave, that is (a) a solution of the
homogeneous wave equation and (b) satisfies the physically required boundary
condition together with uiP and urP, does no longer exhibit any trace of a
complex “angle”: Only the given quantities cP, cS, and ϑiS appear.

We postpone the discussion of differently complex components of
umP(R,ω,ϑiS) until we have calculated MP(ϑiS) [and RSV(ϑiS)]. An illus-
tration can be found in Figure 8.12.

Dispersion relations and slowness-diagrams; evanescent inhomoge-
neous plane waves: The dispersion relations for the participating slowness
vectors are completely analogous to (9.69) through (9.71) for all angles of inci-
dence 0 ≤ ϑiS ≤ π/2 because these relations are based on (8.149) and (8.150)
as a consequence of the wave equation:

siS · siS = |siS|2 = s2
iSx + s2

iSz = s2
S, (9.102)

srS · srS = |srS|2 = s2
rSx + s2

rSz = s2
S, (9.103)

smP · smP = |smP|2 = s2
mPx + s2

mPz = s2
P. (9.104)

For angles of incidence below the critical angle—ϑiS < ϑcmP—the phase prop-
agation vectors k̂iS, k̂rS, k̂mP—Equations 9.77 through 9.79—are real valued;
and that also holds for the slowness vectors

siS = sSk̂iS, (9.105)

srS = sSk̂rS, (9.106)

smP = sPk̂mP (9.107)

due to (9.65). Due to phase matching, their x-components

siS · ex = srS · ex = smP · ex

=⇒ sS sinϑiS = sS sinϑrS = sP sinϑmP (9.108)

must be equal, yielding Figure 9.6 in complete analogy to Figure 9.3 as con-
struction recipe for the phase propagation vectors.

For ϑiS > ϑcmP, we have with

kmP = −kP cosh �ϑmP ex − j kP sinh�ϑmP ez

= −kS sinϑiS ex︸ ︷︷ ︸
= �kmP

+j
√

k2
S sin2 ϑiS − k2

P ez︸ ︷︷ ︸
= �kmP

(9.109)
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exactly the case (8.152) of a complex valued solution of the dispersion relation
k · k = k2

P, where

�kmP = −kS sinϑiS ex (9.110)

is the phase propagation vector and

�kmP =
√

k2
S sin2 ϑiS − k2

P ez (9.111)

is the amplitude attenuation vector of an evanescent inhomogeneous plane
wave. With (9.84), the (phase) propagates into (+�kmP)-direction, i.e., in
(−x)-direction, and adequately (Figure 8.11) �kmP points into that half-space
z ≥ 0, where the inhomogeneous wave is evanescent. According to (8.177), the
unit vector

k̂mP =
kmP

kP
(9.112)

belongs to (9.109), and the slowness vector related to (9.109)

smP = −sS sinϑiS ex︸ ︷︷ ︸
= �smP

+j
√

s2
S sin2 ϑiS − s2

P ez︸ ︷︷ ︸
= �smP

(9.113)

separates into the “original” slowness vector �smP determining the (phase)
propagation direction and the slowness attenuation vector �smP; �smP only
has an x-component

�smPx = −sS sinϑiS (9.114)

and �kmP only has a z-component

�smPz =
√

s2
S sin2 ϑiS − s2

P, (9.115)

and due to the slowness dispersion relations

smP · smP = |�smP|2 − |�smP|2 = s2
P

= (�smPx)2 − (�smPz)2 = s2
P, (9.116)

both are related by the hyperbola equation (9.116) in a �sx�sz-coordinate
system. Figure 9.7 shows �smP and �smP as well as the hyperbola construc-
tion of the attenuation constant �smPz via phase matching.

Note: With (9.97), we did not choose the polarization vector ûmP = k̂mP
as a Hermitian unit vector in contrast to the definition (8.159) that has to
be considered deriving general expressions like (8.186) and (8.187) for the
real part of the complex Poynting vector and for the time averaged energy
density. Yet, the energy velocity according to (8.188) is not affected because
the Hermitian normalization cancels.

Reflection and mode conversion coefficients for the particle displace-
ment vector; Hilbert transformed wavefronts beyond the critical
angle: We insert the stress tensors (9.86) through (9.88) into the boundary
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x, sx, ℜsx
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– sP
22
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sS sin ϑiS = sS sin ϑrS =  ℜsmP 

FIGURE 9.7
Slowness diagram for reflection and mode conversion of a plane SV-wave at a
stress-free boundary for angles of incidence beyond the angle of incidence.

condition (9.85) and calculate z- and x-components considering (9.80)
and (9.81):

2kSµ (k̂iS · ez)(k̂iS · ex) + 2kSµ RSV(ϑiS)(k̂rS · ez)(k̂rS · ex)

+ kPMP(ϑiS)[λ + 2µ(k̂mP · ez)
2] = 0, (9.117)

kS[(k̂iS · ex)2 − (k̂iS · ez)
2] + kS RSV(ϑiS)[(k̂rS · ex)2 − (k̂rS · ez)

2]

+ 2kP MP(ϑiS)(k̂mP · ex)(k̂mP · ez) = 0. (9.118)

Introduction of angles and the conversion

λ + 2µ cos2 ϑmP = (λ + 2µ)(cos2 ϑiS − sin2 ϑiS) (9.119)

yields as solution of this system of equations

RSV(ϑiS) =
sin 2ϑiS sin 2ϑmP − κ2 cos2 2ϑiS

sin 2ϑiS sin 2ϑmP + κ2 cos2 2ϑiS
, (9.120)

MP(ϑiS) = −κ
sin 4ϑiS

sin 2ϑiS sin 2ϑmP + κ2 cos2 2ϑiS
. (9.121)
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Again we state that: Based on the arbitrary choice of SV-polarization di-
rections, we may find RSV(ϑiS) as well as MP(ϑiS) with different signs in the
literature (Auld 1973; Langenberg 1983; Ben-Menahem and Singh 1981). If the
calculation is performed for the scalar and vector potentials as field quantities,
a factor κ2 appears in (9.121) (Krautkrämer and Krautkrämer 1986; Schmerr
1998; Harker 1988). And further: RSV(ϑiS) and MP(ϑiS) are amplitude fac-
tors of the vector displacement according to (9.83) and (9.84); switching to
components, additional angle functions appear in (9.37) through (9.42) as
factors. For vertical incidence—ϑiS = 0 : RSV(0) = −1, MP(0) = 0—only the
uiSVx- and urSVx-components remain, and their ratio is +1 as a consequence
of RSV(0) = −1.

Analogous to (9.46) through (9.48), we calculate the cartesian stress tensor
components:

T
iSV

(x, z,ω,ϑiS) = jkSµ uiS(ω) e−kS(sin ϑiS x+cos ϑiS z)

×
[

− sin 2ϑiS exex − cos 2ϑiS(exez + ezex)

+ sin 2ϑiS ezez

]
; (9.122)

T
rSV

(x, z,ω,ϑiS) = jkSµ RSV(ϑiS) uiS(ω) e−kS(sin ϑiS x−cos ϑiS z)

×
[
sin 2ϑiS exex − cos 2ϑiS(exez + ezex)

− sin 2ϑiS ezez

]
; (9.123)

T
mP

(x, z,ω,ϑiS ≤ ϑcmP) = jkP MP(ϑiS) uiS(ω) e−jkS(sin ϑiS x−
√

κ−2−sin2 ϑiS z)

×
[
λ I + 2µκ2 sin2 ϑiS exex

− 2µκ sinϑiS

√
1 − κ2 sinϑiS (exez + ezex)

+ 2µ(1 − κ2 sin2 ϑiS) ezez

]
. (9.124)

With coordinate-free representations (9.86) through (9.88) of P- and SV-wave
stress tensors, we once more define the sound pressure of the respective plane
wave modes [compare (9.52) through (9.54)]:

piSV(R,ω,ϑiS) = − T
iSV

(R,ω, k̂iS) : k̂iSûiSV(k̂iS)

= − jωZS uiS(ω) e jkSk̂iS·R, (9.125)

prSV(R,ω,ϑiS) = − T
rSV

(R,ω, k̂rS) : k̂rSûrSV(k̂rS)

= − jωZS RSV(ϑiS) uiS(ω) e jkSk̂rS·R, (9.126)

pmP(R,ω,ϑiS) = − T
mP

(R,ω, k̂mP) : k̂mPk̂mP

= − jωZP MP(ϑiS) uiS(ω) e jkPk̂mP·R

= − jωZS
ZPMP(ϑiS)

ZS︸ ︷︷ ︸
= MpP(ϑiS)

uiS(ω) e jkPk̂mP·R. (9.127)
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Once again we state that: Except for ϑiS = 0, the sound pressure does not
satisfy a Dirichlet boundary condition at the boundary R = RS (compare
Figure 8.9).

Before utilizing the frequency independence of RSV(ϑiS) and MP(ϑiS) to
obtain pulsed wave representations for the particle displacements, we have to
clarify how to deal with complex reflection and mode conversion coefficients
for ϑiS > ϑcmP because pulsed waves should be real valued. First, we investi-
gate RSV(ϑiS) and MP(ϑiS) for angles of incidence beyond the critical angle.
We have

sin 2ϑmP = 2 sinϑmP cos ϑmP

=

⎧⎪⎨⎪⎩
2κ sinϑiS

√
1 − κ2 sin2 ϑiS for 0 ≤ ϑiS ≤ ϑcmP

2jκ sinϑiS

√
κ2 sin2 ϑiS − 1 for ϑcmP < ϑiS ≤ π/2.

(9.128)

It turns out that RSV(ϑiS) is the quotient of two respective complex conjugate
numbers180 for ϑiS > ϑcmP; hence, in this case, we obtain

RSV(ϑiS) = exp

(
−2j arctan

2 sin 2ϑiS sinϑiS

√
κ2 sin2 ϑiS − 1

κ cos2 2ϑiS
+ jπ

)
= e jφRSV (ϑiS) (9.129)

with |RSV(ϑiS)| = 1.
A real valued pulsed wave urSV(R, t, k̂rS) is obtained through Fourier

inversion of (9.83) if urSV(R,−ω, k̂rS) = u∗
rSV(R,ω, k̂rS) holds; for uiS(ω),

this is true according to our assumption, for e jkSk̂rS·R, this is true due to
kS = ω/cS; only RSV(ϑiS) has to be complemented for negative frequencies
according to181

RSV(ϑiS,ω) def= e j sign(ω) φRSV (ϑiS) (9.130)

yielding a frequency-dependent reflection coefficient. Now we can apply (2.328)
to calculate the inverse Fourier transform of (9.83). Before doing this explicitly,
we look at umP(R,ω, k̂mP) whether we can perform the inverse Fourier trans-
form of this partial wave in the same way for ϑiS > ϑcmP. Certainly, MP(ϑiS)
is also complex in that case so that we will equally proceed as for (9.130):

MP(ϑiS) =− sin 4ϑiS

2j sin 2ϑiS sinϑiS

√
κ2 sin2 ϑiS − 1 + κ cos2 2ϑiS

= |MP(ϑiS)| e j sign(ω) φMP (ϑiS); (9.131)

180For example, RSV(ϑiS) = −z∗/z with

z = κ2 cos2 2ϑiS + 2jκ sin 2ϑiS sin ϑiS

√
κ2 sin2 ϑiS − 1

= x + jy;

then we have RSV(ϑiS) = −e−2jϕ = e−2jϕ+jπ with ϕ = PVarctan y/x (compare Footnote
40) and consequently φRSV (ϑiS) = −2ϕ + π.
181It is also mentioned by Schmerr (1998).
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since |MP(ϑiS)| �= 1, there is a slight difference182 as compared to (9.130).
It is much more essential that, in contrast to urSV(R,ω, k̂rS), the converted
wave mode umP(R,ω, k̂mP) has differently complex valued components for
ϑiS > ϑcmP and, additionally, containing the attenuation factor

e−
√

k2
S sin2 ϑiS−k2

P z.

Therefore, the Fourier inversion must be separately performed for the respec-
tive components while considering the frequency-dependent factor

e− |ω|
cP

√
κ2 sin2 ϑiS−1 z

. (9.132)

Before performing this for an arbitrary pulse spectrum uiS(ω), we first con-
sider two complex conjugated spectral lines according to (8.31) with cir-
cular frequencies ±ω0 to obtain the real valued ω0-time harmonic particle
displacement

umP(x, z, t,ω0,ϑiS)

= �
{

− MP(ϑiS) uiS(ω0)
(

κ sinϑiS ex − j
√

κ2 sin2 ϑiS − 1 ez

)
× e−jkS sin ϑiS x e−

√
k2
S sin2 ϑiS−k2

P z e−jω0t

}
. (9.133)

We calculate the curve for the tip of umP(x, z, t,ω0,ϑiS) as a function of time
for a fixed location, for example, x = 0, z = 0; for a real phase propagation
vector k̂mP (ϑiS ≤ ϑcmP), the vector umP(0, 0, t, ω0,ϑiS) oscillates according
to longitudinal polarization along a line extending in k̂mP-direction. With the
notation

u0mP(ϑiS,ω0) = − MP(ϑiS) uiS(ω0)
= |u0mP(ϑiS,ω0)| e jφ0mP(ϑiS,ω0), (9.134)

where φ0mP(ϑiS,ω0) = π + φMP(ϑiS) + φuiS(ω0) and |u0mP(ϑiS,ω0)| =
|MP(ϑiS) uiS(ω0)|, we can write (9.133) for x = 0, z = 0 as follows:

umP(0, 0, t, ω0,ϑiS) = |u0mP|
[
κ sinϑiS cos(ω0t − φ0mP) ex

−
√

κ2 sin2 ϑiS − 1 sin(ω0t − φ0mP) ez

]
.

(9.135)

Now, it becomes obvious that the tip of the vector

umP(0, 0, t, ω0,ϑiS)
|u0mP| = κ sinϑiS cos(ω0t − φ0mP) ex

−
√

κ2 sin2 ϑiS − 1 sin(ω0t − φ0mP) ez (9.136)

182Under the keyword “total reflection,” we explain the nonzero mode conversion coefficient
even though the magnitude of the reflection coefficient is equal to one.
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umP(0, 0, t, ω0, ϑiS)/|u0mP|

κ sin ϑiS
ux

uz

κ2 sin2 ϑiS – 1

k2
S sin2 ϑiS – k2

P zκ sin ϑiS e–

φ0(t)

φ0(t)

φx(t)

FIGURE 9.8
Elliptical curve as location of the real-valued particle displacement vector
of the mode converted P-wave for ϑiS > ϑcmP: umP rotates clockwise with
increasing angle φ0(t) = ω0t − φ0mP.

rotates clockwise in the xz-plane with increasing phase angle

φ0(t) = ω0t − φ0mP (9.137)

on a canonical183 ellipse with the main axis κ sinϑiS and the smaller axis√
κ2 sin2 ϑiS − 1 (Figure 9.8), because (9.136) is nothing else than the param-

eter representation of such an ellipse. For x �= 0—e.g., x < 0—and z = 0 only
the initial phase changes for t = 0 because the phase angle is then given by
φx(t) = ω0t − φ0mP + kS sinϑiS x (Figure 9.8); for z > 0, the length of both
axes decreases exponentially (Figure 9.8).

At this point, we come back to the Fourier inversion of (9.82) through
(9.84) for arbitrary pulse spectra uiS(ω), where we may also consider the
case ϑiS > ϑcmP with (9.130), (9.131), and (9.132); the resulting (for a real
positive x-component) (−j)-imaginary z-component of umP(R,ω,ϑiS) (Equa-
tion 9.101) is included in the phase of (9.131) in terms of an additional
e−jπ/2-phase of the z-component as compared to the x-component. With this
agreement, we use the relation (2.328) for ϑiS > ϑcmP to complement (9.55)
through (9.57):

uiSV(R, t, ϑiS) = uiS

(
t − k̂iS · R

cS

)
k̂iS × ey, 0 ≤ ϑiS ≤ π/2, (9.138)

183Both axes of the canonical ellipse point into the directions of the coordinate axes, and
the ellipse is not rotated in the xz-coordinate system.
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urSV(R, t, ϑiS) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

RSV(ϑiS) uiS

(
t − k̂rS · R

cS

)
k̂rS × ey, 0 ≤ ϑiS ≤ ϑcmP[

cos φRSV(ϑiS) uiS

(
t − k̂rS · R

cS

)
− sinφRSV(ϑiS) H

{
uiS

(
τ − k̂rS · R

cS

)}]
k̂rS × ey,

ϑcmP < ϑiS ≤ π/2, (9.139)

umP(R, t, ϑiS) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

MP(ϑiS) uiS

(
t − k̂mP · R

cP

)
k̂mP, 0 ≤ ϑiS ≤ ϑcmP

−|MP(ϑiS)| α(z, t,ϑiS)

∗
{

κ sinϑiS

[
cos φMP(ϑiS) uiS

(
t +

sinϑiS x

cS

)
− sinφMP(ϑiS)H

{
uiS

(
τ +

sinϑiS x

cS

)}]
ex

+
√

κ2 sin2 ϑiS − 1
[

sinφMP(ϑiS) uiS

(
t +

sinϑiS x

cS

)
+ cos φMP(ϑiS)H

{
uiS

(
τ +

sinϑiS x

cS

)}]
ez

}
,

ϑcmP < ϑiS ≤ π/2, (9.140)

where

α(z, t,ϑiS) = F−1
{

e− |ω|
cP

√
κ2 sin2 ϑiS−1 z

}
(2.278)

=
cP

π

√
κ2 sin2 ϑiS − 1 z

(κ2 sin2 ϑiS − 1) z2 + c2
Pt2

(9.141)

denotes the Fourier transform of the attenuation function to be used in (9.140)
for convolution of the impulse uiS(t) and its Hilbert transform. Due to its
maximum amplitude

α(z, 0,ϑiS) =
cP

π

1√
κ2 sin2 ϑiS − 1 z

(9.142)

being proportional to z−1, we observe that this convolution again results in
the evanescence of umP(R, t, ϑiS) for z > 0. As a consequence of the convolu-
tion, the uiS(t)-impulse is z-dependent dispersive (Figure 9.11). At least some
intuition from (9.140) is obtained for ϑiS > ϑcmP putting (9.135) x = 0, z = 0
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RSV(ϑiS)

ϑiS ϑiS
ϑcmPϑcmP π/2π/2 00

1 2

MP(ϑiS)

FIGURE 9.9
Magnitudes of reflection and mode conversion coefficients for SV-incidence
as function of the angle of incidence (material: steel with cP = 5900 m/s,
cS = 3200 m/s; κ = 1.84).

as in the time harmonic case, and choosing an RCN(t)-pulse for uiS(t), and
observing184 (2.306):

uRCN
mP (0, 0, t, ϑiS > ϑcmP) � − |MP(ϑiS)| eN(t)

[
κ sinϑiS cos(ω0t − φMP) ex

−
√

κ2 sin2 ϑiS − 1 sin(ω0t − φMP) ez

]
; (9.143)

the similarity with (9.136) and, hence, with Figure 9.8 may not be over-
looked:185 The tip of the vector uRCN

mP (0, 0, t, ϑiS) moves as a function of time
on the same ellipse as in the time harmonic case, only the axes of the ellipse
change with the RCN(t)-envelope eN(t).

With (9.59) and based on (9.58), we presented the surface deformation
rate tensor in the time domain for P-wave incidence that can be considered as
source density of the reflected total field; here, due to the complexity of the

184For the time domain attenuation function α(z, t, ϑiS), we have

lim
z→0

α(z, t, ϑiS) = δ(t)

canceling the convolution for z = 0.
185In (9.136), the angle π that is contained in φ0mP is changed into a negative sign; the

additional phase angle φuiS is contained in the envelope eN(t) of the RCN(t)-pulse.
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expressions (9.138) through (9.140), we only present the Fourier spectrum of
the respective tensor for SV-incidence, an equation that corresponds to (9.62):

gSV(x,ω,ϑiS)

=
jω
2

uiS(ω) e−jkS sin ϑiS x
[
ezk̂iS × ey + k̂iS × eyez

+ RSV(ϑiS)(ezk̂rS × ey + k̂rS × eyez)

+ MP(ϑiS)(ezk̂mP + k̂mPez)
]
. (9.144)

Note: (9.144) holds for 0 ≤ ϑiS ≤ π/2, hence also for ϑiS > ϑcmP! Yet, actually
inserting this source density into a Huygens integral extending over the xy-
plane, the radiation pattern of the mode converted P-“ray” disappears for
ϑiS > ϑcP (Figure 15.5).

Wavefronts of reflected SV- and mode converted P-waves: As with
Figure 9.4, we discuss reflection and mode conversion coefficients (9.120) and
(9.121) for fixed κ as function of the angle of incidence. Since both factors are
complex for ϑiS > ϑcmP, only the display of the magnitude (and eventually the
phase) makes sense. For κ = 1.84 (steel), the angular dependence of |RSV(ϑiS)|
and |MP(ϑiS)| is depicted in Figure 9.9; obviously, we have |RSV(ϑiS >
ϑcmP)| = 1, and from Equation 9.120, we take RSV(0) = −1, RSV(ϑmP) = −1,
and |RSV(π/2)| = 1 with φRSV(π/2) = π.

In Figure 9.10(a) and (b), we show—similarly to Figure 9.5(a) and (b)—
wavefronts of vertically incident and reflected waves for two different times,
and, as before, the magnitude of the vector particle velocity is displayed.
Again, the time function of the incident SV-wave is given as an RC2(t)-pulse—
note the smaller wavelength of the shear wave—resulting in

uiSV(R, t, ϑiS = 0) = RC2
(

t +
z

cS

)
ex (9.145)

for vertical incidence based on (9.138). After reflection—Figure 9.10(b)—
the only existing reflected wavefront for z > 0—we have RSV(0) = −1 and
ûrSV(ϑiS = 0) = −ex (Figure 9.7)—

urSV(R, t, ϑiS = 0) = RC2
(

t − z

cS

)
ex (9.146)

is displayed; it is evident that we obtain an RC2-pulse with the same sign as
(9.145): The negative reflection coefficient turns the negative x-component of
ûrSV(ϑiS = 0) into the positive x-direction.

The other pictures of Figure 9.10 display wavefronts of incident, reflected,
and mode converted waves for ϑiS > 0 for fixed time t = 0 (Equations 9.138
through 9.140). Particularly, Figure 9.10(e) is interesting: Here, the angle
ϑiS is “a little bit” larger than the critical angle ϑcmP for the mode con-
verted P-wave, and apparently, the evanescence of this wavefront is visible.
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ϑiS = 0°, t < 0 ϑiS = 0°, t > 0

Reflected SV-waveIncident SV-wave

(a) (b)

(c) (d)

(e) (f )

ϑiS = 20°, t = 0 ϑiS = 30°, t = 0

ϑiS = 35°, t = 0 ϑiS = 70°, t = 0

kiS = –ez
^

kiS = ez
^

FIGURE 9.10
Wavefronts of incident and reflected SV- as well as mode converted P-waves
for various angles of incidence (a)–(f) (material: steel mit cP = 5900 m/s,
cS = 3200 m/s; κ = 1.84).

Displaying it alone (Figure 9.11), we nicely notice the z-dependent dispersion
caused by the convolution in (9.140); the nonsymmetry with regard to x = 0
results from the superposition of the symmetric RC2(t)-pulse with its antisym-
metric Hilbert transform. Figure 9.10(f) intuitively illustrates total reflection
to be immediately discussed, where the phase shift of the reflected SV-wave
is due to the superposition with the Hilbert transformed RC2(t)-pulse (Equa-
tion 9.139).
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ϑiS = 35°, t = 0, linear scale ϑiS = 35°, t = 0, logarithmic scale

ϑiS = 70°, t = 0, linear scale ϑiS = 70°, t = 0, logarithmic scale

FIGURE 9.11
Wavefront of the evanescent mode converted p-wave (material: steel with cP =
5900 m/s, cS = 3200 m/s; κ = 1.84).

For “running” times, all wavefronts in Figure 9.10(c)–(f) move simul-
taneously with the constant (trace) velocity cS/ sinϑiS (Equations 9.138
through 9.140) of the boundary phase center from right to left (in negative x-
direction) through their respective observation windows (compare Figure 9.2).
Due to (9.92), this trace velocity becomes equal to cP for ϑiS = ϑcmP: The SV-
wavefront being reflected under the angle ϑcmP manifests itself as the “head
wave” (Section 14.2) of a phase center moving along the boundary with this
velocity.

Energy balance for reflection and mode conversion: Total reflection:
In both diagrams in Figure 9.9, two things are worth being noted:

• Even though the magnitude of the reflection coefficient RSV(ϑiS) for the in-
cident SV-wave is equal to 1 for ϑiS > ϑcmP, the amplitude factor MP(ϑiS)
of the mode converted P-wave is not at all equal to 0;

• the amplitude factor of the mode converted P-wave normalized to the
amplitude of the incident wave may be larger than 1.
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Yet, both items do not contradict an energy balance because it must hold for
the energy flux density and not for amplitudes. So, let us calculate the complex
elastodynamic Poynting vector! For the incident and reflected SV-waves, we
have access to (8.132):

SKiSV(R,ω0, k̂iS) =
ω2

0ρ

2
cS|uiS(ω0)|2 k̂iS, (9.147)

SKrSV(R,ω0, k̂rS) =
ω2

0ρ

2
cS|RSV(ϑiS)|2|uiS(ω0)|2 k̂rS. (9.148)

Both Poynting vectors are real valued directly standing for the time averaged
energy transported through a unit area.

Yet, for the mode converted P-wave, we have to admit complex values of
the wave number vector k̂mP. Generalizing (8.131), we obtain186

SKmP(R,ω0, k̂mP) =
ω0

2
kP|MP(ϑiS)|2|uiS(ω0)|2 e−2kP
k̂mP·R

×
(
λk̂mP + 2µk̂mP · k̂∗

mPk̂
∗
mP

)
, (9.149)

resulting in (8.131) of a homogeneous plane wave for �k̂mP = 0, namely for
ϑiS ≤ ϑcmP. Even though k̂mP · k̂∗

mP is always real, SKmP is eventually com-
plex due to the eventually complex wave number vector that explicitly ap-
pears; we calculate the real part

�
{
SKmP(R,ω0, k̂mP)

}
=

ω2
0

2cP
|MP(ϑiS)|2|uiS(ω0)|2 e−2kP
k̂mP·R

×
(
λ + 2µk̂mP · k̂∗

mP

)
�k̂

∗
mP. (9.150)

Now the “boundary energy balance” looks like that:

• The sum of the real parts of the normal components of all three Poynting
vectors must be equal to zero in the boundary, else we would observe a
(positive) energy accumulation:

n · �
{
SKiSV(x, 0,ω0, k̂iS)

}
+ n · �

{
SKrSV(x, 0,ω0, k̂rS)

}
+ n · �

{
SKmP(x, 0,ω0, k̂mP)

}
= 0. (9.151)

This balance equation is nothing more than the energy conservation law
(4.64) for nondissipative materials specialized to the boundary (utilizing
the method to derive transition and boundary conditions in Section 3.3).

186We can directly come back to (8.186), yet we must observe that we have defined
ûmP according to (8.159) in Section 8.2; for this definition, a mode conversion coefficient

M ′
P = MP

√
k̂mP · k̂∗

mP results that has to be inserted into (8.186): We obtain (9.149).
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• The real parts of the tangential components of the three respective Poynt-
ing vectors may be arbitrary in the boundary because of the infinite total
energy of plane waves the corresponding energy flux prevents balancing.
In other words: The energy conservation law (4.64) provides nothing re-
garding the tangential components in the boundary.

With (9.147), (9.148), and (9.150), we calculate (9.151) for ϑiS ≤ ϑcmP
as—we have n = ez—

cos ϑiS − cos ϑiS|RSV(ϑiS)|2 − κ|MP(ϑiS)|2
√

1 − κ2 sin2 ϑiS = 0; (9.152)

the expression

|MP(ϑiS)|2 =
cos ϑiS[1 − |RSV(ϑiS)|2]

κ
√

1 − κ2 sin2 ϑiS

(9.153)

emerges that evidently permits values bigger than 1 for |MP(ϑiS ≤ ϑcmP)|2.
Hence, this is not a contradiction to the energy conservation law.

For ϑiS > ϑcmP, we have ez · �{SKmP(R,ω0, k̂mP)} = 0 due to ez ·
�k̂mP = 0, i.e., (9.151) expresses the fact that the evanescent wave does not
take part in the energy exchange at the boundary resulting in

|RSV(ϑiS > ϑcmP)|2 = 1 (9.154)

from (9.151) independently upon MP. Therefore, we speak of the total reflec-
tion of the incident wave.

With (9.150), we calculate the nonvanishing component of �{SKmP} as

�
{
SKmP(R,ω0, k̂mP)

}
=− ω2

0

2cS
|MP(ϑiS)|2|uiS(ω0)|2 e−2kP
k̂mP·R

× [λ + 2µ(2κ2 sin2 ϑiS − 1)] sinϑiS ex (9.155)

and note that the inhomogeneous—evanescent—plane wave propagating into
(−x)-direction transports energy into propagation direction with exponen-
tially decaying energy flux density in z-direction. The origin of this energy for
an evanescent wave being energetically not coupled to the incident SV-wave
may not be clarified with the model of plane waves due to their infinite total
energy; we have to switch to spatially constrained rays.

For the sake of completeness, we also compute the time averaged energy
density of time harmonic inhomogeneous (evanescent) plane waves. Generaliz-
ing (8.137) yields with some calculus [Footnote 186 similarly holds if we apply
(8.187)]:

〈wmP(R, t, k̂mP)〉 =
ω2

0

4
1
c2
P

|MP(ϑiS)|2|uiS(ω0)|2 e−2kP
k̂mP·R

× (1 + k̂mP · k̂∗
mP)(λ + 2µk̂mP · k̂∗

mP); (9.156)
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for ϑiS ≤ ϑcmP, hence �k̂mP = 0, this corresponds to the expression (8.137)
for the homogeneous plane wave.

With (8.172) and (9.109), we calculate the phase velocity of the evanescent
wave as (compare Equation 9.140):

cmP(ϑiS) =
ω0

|�kmP| (9.157)

=
cS

sinϑiS
, ϑiS > ϑcmP. (9.158)

With (8.188) and (9.109), we calculate the energy velocity of the evanescent
wave as:

cEmP(ϑiS > ϑcmP) =
2cP

1 + k̂mP · k̂∗
mP

�k̂mP (9.159)

=− cS

sinϑiS
ex

=− cmP(ϑiS) ex. (9.160)

The magnitudes of the phase and energy velocities of the evanescent wave are
equal, and we have

cP > |cEmP(ϑiS > ϑcmP)| ≥ cS, (9.161)

because sin ϑiS > cS/cP for ϑiS > ϑcmP.

9.1.3 Secondary transverse horizontal shear wave
incidence

The simplest case of shear wave reflection at a stress-free boundary is still
missing: SH-wave reflection. Instead of (9.82), we assume

uiSH(R,ω, k̂iS) = −uiS(ω) e jkSk̂iS·R ey, (9.162)

where k̂iS is given by (9.77). The particle velocity (9.162) yields the stress
tensor

T
iSH

(R,ω, k̂iS) = −jkSµ uiS(ω) e jkSk̂iS·R
(
k̂iSey + eyk̂iS

)
(9.163)

in a homogeneous isotropic nondissipative material. Consequently, the
projection

T
iSH

(R,ω, k̂iS) · ez = −jkSµ uiS(ω) e jkSk̂iS·R k̂iS · ez ey (9.164)

that appears in the requirement for the boundary to be stress-free has
only a y-component. Since the respective projections for P- and SV-waves—
Equations 9.12 and 9.85—exhibit only x- and z-components, SH-wave
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reflection is obviously decoupled from P-SV-reflection, and we might be suc-
cessful with the ansatz of the single reflected SH-wave

urSH(R,ω, k̂rS) = −RSH(ϑiS)uiS(ω) e jkSk̂rS·R ey, (9.165)

where k̂rS is given by (9.78). With its stress tensor

T
rSH

(R,ω, k̂rS) · ez = −jkSµRSH(ϑiS)uiS(ω) e jkSk̂rS·R
(
k̂rSey + eyk̂rS

)
,

(9.166)
we satisfy the boundary condition[

T
iSH

(RS ,ω, k̂rS) + T
rSH

(RS ,ω, k̂rS)
]

· ez = 0 (9.167)

via superposition with (9.163); it follows

−uiS(ω) e−jkS sin ϑiS x cos ϑiS + RSH(ϑiS)uiS(ω) e−jkS sin ϑrS x cos ϑrS = 0.
(9.168)

Due to phase matching, we immediately obtain the reflection law

ϑrS = ϑiS, (9.169)

and subsequently

RSH(ϑiS) = RSH = 1. (9.170)

SH-waves are totally reflected at a stress-free boundary independent upon the
angle of incidence!

For vertical incidence ϑiS = 0, SH-polarization is physically indistinguish-
able from SV-polarization; so, how do we explain the different signs of the
reflection coefficients RSV(0) = −1 and RSH = 1? It is explicated with the
ansatz for polarization directions of incident and reflected SV- and SH-waves,
respectively: For vertical incidence, the pertinent SV-polarizations are op-
posite to each other (Figure 9.7), whereas the SH-polarizations are parallel
(not only for vertical incidence) (Figure 9.12). This has consequences for
the sound pressure: For this (accidental) choice of signs of polarizations,
piSV(RS ,ω, 0) + prSV(RS ,ω, 0) satisfies a Dirichlet boundary condition but
not piSH(RS ,ω, 0) + prSH(RS ,ω, 0). A repair is easy: Change SH-polarization
directions accordingly! This illuminates that: The relative polarization direc-
tions are physically determined via the pertinent reflection coefficients but not
the sound pressure “orientations.”

With (9.170), we explicitly present—for the sake of completeness—the
cartesian stress tensor components of the incident and reflected field:

T
iSH

(x, z,ω,ϑiS) = jkSµ uiS(ω) e−jkS(sin ϑiS x+j cos ϑiS z) (9.171)

× [sinϑiS(exey + eyex) + cos ϑiS(eyez + ezey)],
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T
rSH

(x, z,ω,ϑiS) = jkSµ uiS(ω) e−jkS(sin ϑiS x−j cos ϑiS z) (9.172)

× [sinϑiS(exey + eyex) − cos ϑiS(eyez + ezey)];

furthermore, the sound pressure equations of plane SH-waves read

piSH(R,ω,ϑiS) = T
iSH

(R,ω, k̂iS) : k̂iSey

=− jωZS uiS(ω) e jkSk̂iS·R, (9.173)

prSH(R,ω,ϑiS) = T
rSH

(R,ω, k̂rS) : k̂rSey

=− jωZS uiS(ω) e jkSk̂rS·R. (9.174)

Due to RSH = 1, the surface deformation rate tensor as equivalent source
of the reflected field is proportional to the incident field itself:

gSH(x,ω,ϑiS) = jω [ezûiSH(x, 0,ω,ϑiS) + ûiSH(x, 0,ω,ϑiS)ez]

=− jωuiS(ω) e−jkS sin ϑiS x(ezey + eyez). (9.175)

We explicitly state the following for this special case (general remarks have
already been made in Section 7.3):

• Since both the field quantity uSH as well as the equation for vanishing
stress only possess a y-component, and due to ∂/∂y ≡ 0, SH-reflection
turns out to be a two-dimensional scalar boundary value problem for the
scalar field quantity uSH · ey.

• The boundary condition (9.168) corresponds to a (homogeneous) Neu-
mann boundary condition (Equation 5.21)

n · ∇
[
uSH(R,ω, k̂S) · ey

]
R=RS

=
∂uSH(R,ω, k̂S) · ey

∂z

∣∣∣∣∣
z=0

= 0 (9.176)

just for this scalar field quantity. This is surprising because the respective
boundary value problem of scalar acoustics—the soft boundary condition
for a boundary to a vacuum half-space—is a Dirichlet boundary value
problem; yet, it is a Dirichlet problem for the scalar pressure p(R,ω) as it
would correspond to the isotropic stress tensor T(R,ω) = −p(R,ω)I; yet,
according to (9.171) and (9.172), it may not be defined. We may define
the sound pressure (9.173) and (9.174) for plane SH-waves, but it does
not satisfy a Dirichlet boundary condition for the underlying polariza-
tion orientations:187 The two-dimensional scalar SH-wave boundary value
problem is a scalar Neumann problem (Section 7.3).

187The sound pressure of plane waves has nothing to do with the scalar field quantity
“pressure.”
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9.2 Planar Boundary between Homogeneous Isotropic
Nondissipative Elastic Half-Spaces

This standard problem of elastic waves is particularly important for US-NDT
because the physically relevant and NDT-relevant wavefronts appearing in
the ultrasonic field of piezoelectric transducers—vertical, angle, and “creeping
wave” transducers—may be intuitively understood with the dispersion rela-
tions of homogeneous and inhomogeneous plane waves through phase match-
ing at the boundary.

We first discuss the case of a “welded” connection of both half-spaces,
and afterward, we investigate fluid coupling; as a special case, we obtain the
combination “elastic half-space – fluid half-space.”

Even though the underlying full-spaces constitute an inhomogeneous—
more precisely: piecewise homogeneous—material, we succeed—interestingly
enough—with the solution “plane wave” of the wave equation for homogeneous
(isotropic nondissipative) materials (compare the flow chart 1.1). The reason
is that: The plane wave is a so-called separation solution of the wave equation
in cartesian coordinates (Langenberg 2005), and the planar boundary fits into
such a coordinate system. This may be generalized: If the material discontinu-
ities of piecewise homogeneous materials coincide with respective coordinate
surfaces that allow for a separation of the wave equation for homogeneous
materials, we get along with this wave equation. Unfortunately, only three
coordinate systems are available: cartesian, circular cylindrical, and spheri-
cal coordinates. These so-called canonical scattering problems are treated in
Sections 15.4.2 and 15.4.4.

9.2.1 SH-wave incidence

Reflection and transmission of elastic plane waves at the planar boundary
of two homogeneous isotropic nondissipative half-spaces is first investigated
for the simplest wave mode: the SH-wave mode ûiSH(R, t, k̂iS); Section 9.1.3
revealed that the corresponding boundary condition equation is decoupled
from the respective P-SV-equation, and this does not change if we switch to
transition conditions, it is still a two-dimensional scalar problem (Section 7.3).

Reflection and transmission of SH-waves: At first, we consider the ge-
ometry (Figure 9.12). Generalizing Figure 9.1, we replace the half-space z < 0
by an elastic half-space with material parameters λ(2),µ(2), ρ(2) and distin-
guish those from the material parameters λ(1),µ(1), ρ(1) of the upper half-space
through a corresponding index; similarly, this holds for the wave (phase) ve-
locities c

(1,2)
P , c

(1,2)
S and the slownesses s

(1,2)
P , s

(1,2)
S .

As incident wave, we postulate a plane wave with transverse horizontal
polarization that is also assumed for the reflected and transmitted waves:

uiSH(R, t, k̂iS) = −uiS

(
t − k̂iS · R

c
(1)
S

)
ey, z ≥ 0, (9.177)
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krS
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^

ktS
^

ϑrS ϑiS
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ûrSH
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(2)

n

x S

ûiSH

λ(1), µ(1), ρ(1) c(1), c(1)
SP

λ(2), µ(2), ρ(2) c(2), c(2)
SP

FIGURE 9.12
Reflection and transmission of a plane SH-wave at the boundary of two homo-
geneous isotropic nondissipative elastic half-spaces with material parameters
λ(1,2),µ(1,2), ρ(1,2) (the y-axis points into the page).

urSH(R, t, k̂rS) = −RSH(ϑiS) uiS

(
t − k̂rS · R

c
(1)
S

)
ey, z ≥ 0, (9.178)

utSH(R, t, k̂tS) = −TSH(ϑiS) uiS

(
t − k̂tS · R

c
(2)
S

)
ey, z ≤ 0. (9.179)

The amplitudes of urSH and utSH define angle-dependent reflection and trans-
mission coefficients RSH(ϑiS) and TSH(ϑiS), respectively. The components of
the phase propagation vectors are taken from Figure 9.12:

k̂iS =− sinϑiS ex − cos ϑiS ez, (9.180)

k̂rS =− sinϑrS ex + cos ϑrS ez, (9.181)

k̂tS =− sinϑtS ex − cos ϑtS ez, (9.182)

where we already note that the transmission angle ϑtS may be larger or smaller
than ϑiS depending upon the ratio of the shear wave velocities c

(1)
S /c

(2)
S ; if it

is larger than ϑiS, we will encounter a critical angle ϑctS, and ϑtS will then
be complex. Regarding the SH-polarization, we refer to Figure 8.8 yielding
ûSH = −ey; in Figure 9.12, we look at the tip of the polarization vector.

For the stress tensors—again we switch to Fourier spectra—

T
iSH

(R,ω, k̂iS) = −jk(1)
S µ(1) uiS(ω) e jk(1)

S k̂iS·R
(
k̂iSey + eyk̂iS

)
, (9.183)

T
rSH

(R,ω, k̂rS) = −jk(1)
S µ(1)RSH(ϑiS) uiS(ω) e jk(1)

S k̂rS·R
(
k̂rSey + eyk̂rS

)
,

(9.184)
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T
tSH

(R,ω, k̂tS) = −jk(2)
S µ(2)TSH(ϑiS) uiS(ω) e jk(2)

S k̂tS·R
(
k̂tSey + eyk̂tS

)
,

(9.185)

the transition condition (Equation 3.98)[
T

iSH
(RS ,ω, k̂iS) + T

rSH
(RS ,ω, k̂rS)

]
· ez = T

tSH
(RS ,ω, k̂tS) · ez (9.186)

holds instead of the boundary condition (9.167), where RS ∈ S. Since (9.186)
has only a y-component, we are left with only one equation to determine
both the coefficients RSH and TSH. Yet, a second equation emerges from the
continuity requirement of the particle displacement vector for R = RS , which
is also given in terms of Fourier spectra [transition condition (3.99)]:

uiSH(RS ,ω, k̂iS) + urSH(RS ,ω, k̂rS) = utSH(RS ,ω, k̂tS). (9.187)

This vector equation also has only a y-component finally providing two equa-
tions for two unknowns as soon as we have eliminated RS from (9.186)
and (9.187).

Reflection and transmission law: critical angle: As already mentioned,
the first step concerns the elimination of the arbitrary boundary vector RS

from Equations 9.186 and 9.187 via phase matching

k
(1)
S k̂iS · RS = k

(1)
S k̂rS · RS = k

(2)
S k̂tS · RS (9.188)

that on one hand—similar to the transition from (9.16) to (9.19)—enforces
coplanar vectors k̂iS, k̂rS, k̂tS in the way as displayed in Figure 9.12; on the
other hand, Equation 9.188 provides the reflection law

ϑrS = ϑiS (9.189)

and the transmission law

sinϑtS =
k

(1)
S

k
(2)
S

sinϑiS. (9.190)

The latter one again permits, together with the dispersion relations,

siS · siS = s
(1)2

S , (9.191)

srS · srS = s
(1)2

S , (9.192)

stS · stS = s
(2)2

S (9.193)

for the slowness vectors

siS = s
(1)
S k̂iS, (9.194)

srS = s
(1)
S k̂rS, (9.195)
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krS
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ktS
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ϑrS

ϑtS
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(1)

(2)
x, Sx

siS

srS

sS
(1)

sS
(2)

ϑiS

z, sz

sS
(1) sin ϑiS = sS

(1) sin ϑrS = sS
(2) sin ϑtS

FIGURE 9.13
Slowness diagram for reflection and transmission of an SH-wave at the bound-
ary of two homogeneous isotropic nondissipative elastic half-spaces: c

(1)
S > c

(2)
S .

stS = s
(2)
S k̂tS, (9.196)

the geometric construction of the transmission angle ϑtS with the help of
a slowness diagram; Figure 9.13 illustrates this construction for c

(1)
S ≥ c

(2)
S

always resulting in ϑtS ≤ ϑiS.
For c

(1)
S < c

(2)
S , the transmission law (9.190) defines the critical angle for

sinϑtS = 1:

ϑiS = ϑctS = arcsin
s
(2)
S

s
(1)
S

. (9.197)

In the slowness diagram, we then have to distinguish whether ϑiS ≤ ϑctS or
ϑiS > ϑctS holds: Figure 9.14(a) gives an example for ϑiS < ϑctS; apart from
the fact that now we have ϑtS > ϑiS there are no other peculiarities. Even for
angles of incidence beyond the critical angle ϑctS, we find no new peculiarities:
The transmission angle ϑtS has to be chosen complex valued:

ϑtS =
π

2
+ j�ϑtS, (9.198)



K12611 Chapter: 9 page: 330 date: January 18, 2012

330 Ultrasonic Nondestructive Testing of Materials

sS
(1)

 sin ϑiS = sS
(1)
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FIGURE 9.14
Slowness diagram for reflection and transmission of an SH-wave at the bound-
ary of two homogeneous isotropic nondissipative elastic half-spaces: c

(1)
S < c

(2)
S ;

(a) ϑiS ≤ ϑctS and (b) ϑiS > ϑctS.

because it opens the door for the sine of ϑtS becoming bigger than 1 due
to (9.198):

sinϑtS = cosh �ϑtS =
k

(1)
S

k
(2)
S

sinϑiS. (9.199)

Consequently, the phase propagation vector (9.182) becomes a complex wave
number (unit) vector

k̂tS =− sinϑtS ex − cos ϑtS ez

=− cosh �ϑtS ex + j sinh�ϑtS ez, (9.200)

where sinh �ϑtS can be calculated as

sinh�ϑtS = −
√√√√k

(1)2
S

k
(2)2
S

sin2 ϑiS − 1 (9.201)

due to (9.99). As in (9.100), the negative sign in (9.201) is needed—therefore,
�ϑtS in (9.198) must be negative—to ensure the exponential decay of the
Fourier spectrum of the transmitted wave

utSH(R,ω,ϑiS) = −TSH(ϑiS)uiS(ω) e−jk(1)
S sin ϑiS x e

√
k
(1)2
S sin2 ϑiS−k

(2)2
S z ey

(9.202)
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for ϑiS > ϑctS in the half-space z < 0; then the wave is evanescent because the
imaginary part of the complex wave number vector

ktS = k
(2)
S k̂tS

= −k
(1)
S sinϑiS ex︸ ︷︷ ︸
= �ktS

+j
(

−
√

k
(1)2
S sin2 ϑiS − k

(2)2
S

)
ez︸ ︷︷ ︸

= �ktS

(9.203)

points into (−ez)-direction for wave propagation into (+�ktS ∼ −ex)-
direction, hence vertically into that half-space for which we require exponential
attenuation [Figure 8.11(a)]. The dispersion relation (9.193) for the complex
slowness vector [Figure 9.14(b)]

stS =− s
(1)
S sinϑiS ex − j

√
s
(1)2
S sin2 ϑiS − s

(2)2
S ez

= �stS + j�stS (9.204)

yields the hyperbola equation

(�stSx)2 − (�stSz)2 = s
(2)2

S (9.205)

in a �sx�sz-coordinate system allowing for the construction of �stSz via phase
matching as sketched in Figure 9.14(b).

Note: For SV-wave incidence on a stress-free boundary, we always observe
a critical angle; here, it only exists if the shear wave ratio of both half-spaces
permits.

Reflection and transmission coefficients of the particle displacement
vector; Hilbert transformed wavefronts beyond the critical angle:
With (9.177) through (9.179) and (9.183) through (9.185), we obtain from the
transition conditions (9.186) and (9.187) after some short calculus:

RSH(ϑiS) =
Z

(1)
S cos ϑiS − Z

(2)
S cos ϑtS

Z
(1)
S cos ϑiS + Z

(2)
S cos ϑtS

, (9.206)

TSH(ϑiS) =
2Z

(1)
S cos ϑiS

Z
(1)
S cos ϑiS + Z

(2)
S cos ϑtS

, (9.207)

where

Z
(j)
S =

√
ρ(j)µ(j), (9.208)

= ρ(j)c
(j)
S , j = 1, 2, (9.209)

as usual define acoustic (shear wave) impedances of the respective materials.
For ϑiS = 0, we obtain

RSH(0) = −Z
(2)
S − Z

(1)
S

Z
(2)
S + Z

(1)
S

, (9.210)
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TSH(0) =
2Z

(1)
S

Z
(2)
S + Z

(1)
S

, (9.211)

equations that one usually knows by heart for a rapid estimation of reflection
and transmission close to vertical incidence. Again we state that: The resulting
figures refer to the vector particle displacement (here, of course, to the only
nonvanishing component).

As always, we present the cartesian components of the stress tensors; we
adopt (9.171) and (9.172) with respective (1)-indexing

T
iSH

(x, z,ω,ϑiS) = jωZ
(1)
S uiS(ω) e−jk(1)

S (sin ϑiS x+cos ϑiS z)

× [sinϑiS(exey + eyex) + cos ϑiS(eyez + ezey)], (9.212)

T
rSH

(x, z,ω,ϑiS) = jωZ
(1)
S RSH(ϑiS) uiS(ω) e−jk(1)

S (sin ϑiS x−cos ϑiS z)

× [sinϑiS(exey + eyex) − cos ϑiS(eyez + ezey)] (9.213)

and add T
tSH

(x, z,ω,ϑiS):

T
tSH

(x, z,ω,ϑiS) = jωZ
(2)
S TSH(ϑiS) uiS(ω) e−j(k(1)

S sin ϑiS x+k
(2)
S cos ϑtS z)

× [sinϑtS(exey + eyex) + cos ϑtS(eyez + ezey)]. (9.214)

The sound pressure equations of plane waves read

piSH(R,ω,ϑiS) = T
iSH

(R,ω, k̂iS) : k̂iSey

=− jωZ
(1)
S uiS(ω) e jk(1)

S k̂iS·R, (9.215)

prSH(R,ω,ϑiS) = T
rSH

(R,ω, k̂rS) : k̂rSey

=− jωZ
(1)
S RSH(ϑiS) uiS(ω) e jk(1)

S k̂rS·R, (9.216)

ptSH(R,ω,ϑiS) = T
tSH

(R,ω, k̂tS) : k̂tSey

=− jωZ
(2)
S TSH(ϑiS) uiS(ω) e jk(1)

S k̂tS·R; (9.217)

evidently, RSH(ϑiS) is also the reflection coefficient for the sound pressure; yet,
as transmission coefficient, we obtain

TpSH(ϑiS) =
Z

(2)
S

Z
(1)
S

TSH(ϑiS)

=
2Z

(2)
S cos ϑiS

Z
(1)
S cos ϑiS + Z

(2)
S cos ϑtS

, (9.218)

because

ptSH(R,ω,ϑiS) = −jωZ
(1)
S TpSH(ϑiS) uiS(ω) e jk(2)

S k̂tS·R (9.219)
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only receives the same prefactor as piSH with the definition (9.218). There-
fore, when giving numbers, we have to clearly identify the physical quantities
that have been used to define a transmission coefficient. Furthermore: The
resulting discontinuity of the sound pressure even for ϑiS = 0—it is always
discontinuous for ϑiS �= 0—is once more a consequence of the actual choice of
SH-polarization directions of incident, reflected, and transmitted waves.

For ϑiS ≤ π/2, assuming a nonexistent critical angle, and for ϑiS ≤ ϑctS,
assuming a critical angle, the pulsed SH-wavefront are given by (9.177)
through (9.179). Yet, allowing for a critical angle and choosing ϑiS > ϑctS,
Fourier inversion of the frequency spectra of reflected and transmitted SH-
waves has to account for the complex valued RSH(ϑiS) and TSH(ϑiS) due to
(9.198), especially according to

RSH(ϑiS > ϑctS) = e j sign(ω)φRSH (ϑiS), (9.220)
TSH(ϑiS > ϑctS) = |TSH(ϑiS)| e j sign(ω)φTSH (ϑiS), (9.221)

where the sign(ω)-functions must be inserted, because the pulsed wavefronts
must be real valued for real pulse functions uiS(t); consequently, we obtain for
c
(2)
S > c

(1)
S

urSH(R, t, ϑiS)

= −
[

cos φRSH(ϑiS) uiS

(
t − k̂rS · R

c
(1)
S

)

− sinφRSH(ϑiS)H
{

uiS

(
τ − k̂rS · R

c
(1)
S

)}]
ey, ϑctS < ϑiS ≤ π/2,

(9.222)

utSH(R, t, ϑiS)

= −|TSH(ϑiS)|α(2)(z, t,ϑiS)

∗
[

cos φTSH(ϑiS) uiS

(
t +

sinϑiSx

c
(1)
S

)
− sinφTSH(ϑiS)H

{
uiS

(
τ +

sinϑiSx

c
(1)
S

)}]
ey, ϑctS < ϑiS ≤ π/2.

(9.223)

The evanescence follows form the convolution with (Equation 9.141)

α(2)(z, t,ϑiS) = F−1

{
e
− |ω|

c
(2)
S

√
κ2S sin2 ϑiS−1|z|

}

=
c
(2)
S

π

√
κ2
S sin2 ϑiS − 1|z|(

κ2
S sin2 ϑiS − 1

)
z2 + c

(2)2
S t2

, (9.224)
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ϑiS = 0°, t1 < 0

Incident SH-wave

(a) (b)

(c) (d)

Reflected SH-wave

Transmitted SH-wave

ϑiS = 0°, t2 > 0

ϑiS = 45°, t3 = 0 ϑiS = ϑiSB = 86.56°, t4 = 0

kiS = –ez
^
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^
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^
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^
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^
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^
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^

FIGURE 9.15
Wavefronts of incident, reflected, and transmitted SH-waves for various an-
gles of incidence (a)–(d) (materials: steel(1)-plexiglas(2): compare the dashed
curves in Figure 9.16).

where

κS =
c
(2)
S

c
(1)
S

> 1. (9.225)

Wavefronts of reflected and transmitted SH-waves: As before, we dis-
play wavefronts of reflected and transmitted waves as spatial amplitude dis-
tribution for fixed times. Again, we choose an RC2(t)-pulse as prescribed
time function that also manifests itself in space according to Figure 8.4. Fig-
ure 9.15(a) displays the incident wave for vertical incidence and t = t1 < 0;
the RC2-pulse appears as a positive component in the (−ey)-SH-polarization:

uiSH(R, t, ϑiS = 0) = −RC2

(
t +

z

c
(1)
S

)
ey. (9.226)

For Z
(2)
S < Z

(1)
S (here: steel(1)-plexiglas(2)), the reflected impulse [Figure

9.15(b)]
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urSH(R, t, ϑiS = 0) = − RSH(0) RC2

(
t − z

c
(1)
S

)
ey

=
Z

(2)
S − Z

(1)
S

Z
(2)
S + Z

(1)
S

RC2

(
t − z

c
(1)
S

)
ey (9.227)

has the same RC2-sign in the (−ey)-SH-polarization; the same holds for the

transmitted pulse having a smaller wavelength due to c
(2)
S < c

(1)
S . Since Fig-

ure 9.15 depicts scalar components of particle displacement vectors, the sign
of the RC2(t)-pulse is also visible. For ϑiS > 0, Figure 9.15(c) and (d) finally
transform the information contained in Figure 9.16 (dashed curves)—e.g., the
zero188 of the reflection coefficient for ϑiS = ϑiSB—into gray scales.

Exchanging materials—plexiglas(1)-steel(2)—yields a sign change of the
reflected impulse due to Z

(2)
S > Z

(1)
S [Figure 9.17(b)] and an increase in wave-

length of the transmitted pulse. Figure 9.17(c), displays the reflection and
transmission for ϑiS < ϑctS: The reflection coefficient is still real valued nega-
tive. Once again, the zero of the reflection coefficient below the critical angle
defines a Brewster angle,188 and a little beyond but still below the critical

0 π/2 π/2
ϑiS 0

21

ϑiS
ϑctSϑctS

RSH(ϑiS) TSH(ϑiS)

FIGURE 9.16
|RSH| and |TSH| without (steel(1)-plexiglas(2): - - -) and with (plexiglas(1)-
steel(2):—) critical angle (steel: cS = 3200 m/s, ρ = 7.7 · 103 kg/m3; plexiglas:
cS = 1430 m/s, ρ = 1.18 · 103 kg/m3).

188Note: As in the electromagnetic case for a parallel polarization of the electric field with
regard to the plane of incidence (TM case for equal permeability of both materials), the
elastodynamic SH-reflection exhibits a Brewster angle with zero reflection coefficient; it is
always less than the critical angle.
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ϑiS = 0°, t < 0

Incident SH-wave

(a) (b)

(c) (d)

Reflected SH-wave

Transmitted SH-wave

ϑiS = 0°, t > 0

ϑiS = 21.54° < ϑctS, t = 0

(e) ϑiS = 31.54° > ϑctS, t = 0

ϑiS

kiS = –ez
^

kiS = ez
^

ktS = –ez
^

26.54° = ϑctS, t = 0~

FIGURE 9.17
Wavefronts of incident, reflected, and transmitted SH-waves for various angles
of incidence (a)–(e) (materials: plexiglas(1)-steel(2): compare the solid curves
in Figure 9.16).

angle, the reflection coefficient becomes real valued positive and tends toward
+1 [Figure 9.17(d): The transmitted wave is about to become evanescent].
For ϑiS > ϑtS, the phase φRSH tends very rapidly toward −π—the magnitude
of RSH is equal to 1—resulting in a negative sign of the reflected pulse in
Figure 9.17(e); due to its attenuation, the transmitted wave is not visible.
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Energy balance for reflection and transmission: Total reflection: As
for the case of SV-wave incidence on a stress-free surface, we investigate the
energy balance, in particular for ϑiS > ϑctS, provided a critical angle exists.
The energy conservation law (4.64) for nondissipative materials requires the
continuity of the normal component of the real part of the complex Poynting
vector for z = 0:

n · �
{
SKiSH(x, 0,ω0, k̂iS)

}
+ n · �

{
SKrSH(x, 0,ω0, k̂rS)

}
= n · �

{
SKtSH(x, 0,ω0, k̂tS)

}
; (9.228)

regarding �SKiSH and �SKrSH, we may go back to (8.132):

�
{
SKiSH(R,ω0, k̂iS)

}
=

ω2
0ρ

(1)

2
c
(1)
S |uiS(ω0)|2 k̂iS, (9.229)

�
{
SKrSH(R,ω0, k̂rS)

}
=

ω2
0ρ

(1)

2
c
(1)
S |RSH(ϑiS)|2|uiS(ω0)|2 k̂rS, (9.230)

and �SKtSH is taken from (8.189):

�
{
SKtSH(R,ω0, k̂tS)

}
=

ω2
0ρ

(2)

2
c
(2)
S |TSH(ϑiS)|2|uiS(ω0)|2 e−2k

(2)
S 
k̂tS·R �k̂tS.

(9.231)

The only nonvanishing component of �SKtSH for ϑiS > ϑctS then reads

�
{
SKtSH(R,ω0, k̂tS)

}
= −ω2

0

2
µ(2)

c
(1)
S

|TSH(ϑiS)|2|uiS(ω0)|2 e−2k
(2)
S 
k̂tS·R sinϑiS ex, (9.232)

preventing the appearance of �SKtSH in the balance equation (9.228) in that
case; the remaining terms in (9.228) then yield the requirement |RSH(ϑiS >
ϑctS)| = 1 for total reflection.

For the case of an existing critical angle and ϑiS > ϑctS, we go back to
(8.190) to calculate the time averaged energy density of the transmitted field:

〈wtSH(R, t, k̂tS)〉 =
ω2

0

4
ρ(2)|TSH(ϑiS)|2|uiS(ω0)|2 e−2k

(2)
S 
k̂tS·R(1 + k̂tS · k̂∗

tS).

(9.233)

According to (9.157), we obtain the phase velocity of the evanescent trans-
mitted wave as

ctSH(ϑiS) =
c
(1)
S

sinϑiS
, ϑiS > ϑctS, (9.234)

and for its energy velocity vector, we obtain (9.160)

cEtSH(ϑiS) = − c
(1)
S

sinϑiS
ex, ϑiS > ϑctS, (9.235)
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using (9.160). It follows

c
(2)
S > |cEtSH(ϑiS)| > c

(1)
S . (9.236)

9.2.2 P- and SV-waves incidence

Slowness diagrams and critical angles: If two (homogeneous isotropic
nondissipative) elastic materials are under concern, the respective slowness
diagrams for P- or SV-wave incidence are determined by four slownesses s

(1)
P ,

s
(1)
S , s

(2)
P , s

(2)
S , and it depends upon the incident wave mode and the slow-

ness ratios whether any and if, how many critical angles exist. The Figures
9.18 and 9.19 summarize all possibilities that we may think of.189 For the
case of P-wave incidence, we may expect reflected and transmitted P-waves
(srP =⇒ k̂rP, stP =⇒ k̂tP) as well as mode converted SV-waves in reflec-
tion (smrS =⇒ k̂mrS) and transmission (smtS =⇒ k̂mtS); for the case of SV-
wave incidence, we obtain reflected and transmitted SV-waves (srS =⇒ k̂rS,
stS =⇒ k̂tS) as well as mode converted P-waves in reflection (smrP =⇒ k̂mrP)
and transmission (smtP =⇒ k̂mtP). The potential respective critical angles are
distinguished by respective indices, where ϑcmrP always exists for SV-wave
incidence, whereas the existence of ϑctP,ϑcmtS,ϑcmtP,ϑctS depends upon the
ratio of the (phase) velocities of both materials. For the case of P-wave in-
cidence, we face at most two critical angles ϑctP,ϑcmtS, and for the case of
SV-wave incidence, at most three critical angles ϑctS,ϑcmrP,ϑcmtP can ex-
ist. The number of possible critical angles may be immediately deduced from
Figures 9.18 and 9.19: We have plotted boldface slowness diagrams for the
respective incident wave modes making it directly obvious if there are other
slowness diagrams in the interior of these boldface diagrams; their number is
equal to the number of critical angles. By the way: Only the diagrams (Pa)
and (SVa) in Figure 9.18 are displayed with all details, whereas (Pb), (SVb),
(Pc), and (SVc) are only rudimentarily sketched to enhance the facility of
inspection. The same is true for all diagrams of Figure 9.19.

Incident P-wave: System of equations for reflection, transmission,
and mode conversion coefficients: In the present case, the transition con-
ditions (3.99) and (3.98) must be satisfied with the following partial waves:

uiP(R,ω, k̂iP) = uiP(ω) e jk(1)
P k̂iP·R k̂iP, (9.237)

urP(R,ω, k̂rP) = RP(ϑiP) uiP(ω) e jk(1)
P k̂rP·R k̂rP, (9.238)

umrSV(R,ω, k̂mrS) = MrS(ϑiP) uiP(ω) e jk(1)
S k̂mrS·R k̂mrS × ey (9.239)

189All these possibilities can already be realized with the materials given in the tables by
Krautkrämer and Krautkrämer (1986); (Pa) corresponds to the case (1)=steel, (2)=plexiglas
and (Pa′) to (1)=plexiglas and (2)=steel.
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FIGURE 9.18
Boundary between two homogeneous isotropic nondissipative elastic half-
spaces: slowness diagrams for reflection, transmission, and mode conversion of
incident P- (left: Pa, Pb, Pc) and incident SV-waves (right: SVa, SVb, SVc).
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FIGURE 9.19
Continuation of Figure 9.18.
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for z ≥ 0 and

utP(R,ω, k̂tP) = TP(ϑiP) uiP(ω) e jk(2)
P k̂tP·R k̂tP, (9.240)

umtSV(R,ω, k̂mtS) = MtS(ϑiP) uiP(ω) e jk(2)
S k̂mtS

·R k̂mtS × ey (9.241)

for z ≤ 0, where

k̂iP = − sinϑiP ex − cos ϑiP ez, (9.242)

k̂rP = − sinϑrP ex + cos ϑrP ez, (9.243)

k̂mrS = − sinϑmrS ex + cos ϑmrS ez, (9.244)

k̂tP = − sinϑtP ex − cos ϑtP ez, (9.245)

k̂mtS = − sinϑmtS ex − cos ϑmtS ez. (9.246)

The angles ϑtP and ϑmtS must eventually be complex with π/2-real part;
hence, their cosines must eventually be purely imaginary; to ensure the atten-
uation of utP and umtSV in the half-space z < 0, the imaginary parts of the
cosines must be positive.

The phase matching requirement yields

k
(1)
P sinϑiP = k

(1)
P sinϑrP = k

(1)
S sinϑmrS = k

(2)
P sinϑtP

= k
(2)
S sinϑmtS (9.247)

leading to the reflection law

ϑrP = ϑiP, (9.248)

the mode conversion law in reflection

sinϑmrS =
k

(1)
P

k
(1)
S︸︷︷︸

< 1

sinϑiP, (9.249)

the transmission law

sinϑtP =
k

(1)
P

k
(2)
P︸︷︷︸

> < 1

sinϑiP, (9.250)

as well as the mode conversion law in transmission

sinϑmtS =
k

(1)
P

k
(2)
S︸︷︷︸

> < 1

sinϑiP. (9.251)

In Figure 9.18(Pa), the geometric construction of the angles ϑrP,ϑmrS,ϑtP,
ϑmtS is explicitly performed making it evident in the further pictures of Figures
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9.18 and 9.19. Equations 9.250 and 9.251 reveal the existence of at most two
critical angles.

The partial waves (9.237) through (9.241) define reflection and transmis-
sion coefficients RP(ϑiP), TP(ϑiP), and mode conversion coefficients MrS(ϑiP),
MtS(ϑiP) in reflection and transmission. Their calculation requires four equa-
tions that have to be provided by the transition conditions (3.99) and (3.98).
The transition condition (3.99) for the particle displacement vector has, ac-
cording to (9.237) through (9.241) and (9.242) through (9.246), an x- and a
z-component:

− sinϑiP − RP(ϑiP) sinϑiP − MrS(ϑiP) cos ϑmrS

= −TP(ϑiP) sinϑtP + MtS(ϑiP) cos ϑmtS, (9.252)
− cos ϑiP + RP(ϑiP) cos ϑiP − MrS(ϑiP) sinϑmrS

= −TP(ϑiP) cos ϑtP − MtS(ϑiP) sinϑmtS. (9.253)

With (8.121), (8.122), (9.8), and (9.237) through (9.246), we use (3.98) to
calculate the ez-projections of the stress tensors190

T
iP

(R,ω,ϑiP) · ez

= jk(1)
P uiP(ω) e jk(1)

P k̂iP·R (λ(1)ez − 2µ(1)k̂iP cos ϑiP), (9.254)
T

rP
(R,ω,ϑiP) · ez

= jk(1)
P RP(ϑiP)uiP(ω) e jk(1)

P k̂rP·R (λ(1)ez + 2µ(1)k̂rP cos ϑiP),
(9.255)

T
mrSV

(R,ω,ϑiP) · ez

= jk(1)
S µ(1)MrS(ϑiP)uiP(ω) e jk(2)

S k̂mrS·R(−k̂mrS sinϑmrS + ûmrSV cos ϑmrS),
(9.256)

T
tP

(R,ω,ϑiP) · ez

= jk(2)
P TP(ϑiP)uiP(ω) e jk(2)

P k̂tP·R (λ(2)ez − 2µ(2)k̂tP cos ϑtP), (9.257)
T

mtSV
(R,ω,ϑiP) · ez

= jk(2)
S µ(2)MtS(ϑiP)uiP(ω) e jk(2)

S k̂mtS
·R(−k̂mtS sinϑmtS − ûmtSV cos ϑmtS)

(9.258)

and state that (9.254) through (9.258) also have an x- and a z-component
leading to the explicit version of (3.98):

k
(1)
P µ(1) sin 2ϑiP − k

(1)
P µ(1)RP(ϑiP) sin 2ϑiP − k

(1)
S µ(1)MrS(ϑiP) cos 2ϑmrS

= k
(2)
P µ(2)TP(ϑiP) sin 2ϑtP − k

(2)
S µ(2)MtS(ϑiP) cos 2ϑmtS, (9.259)

190The polarization vectors ûmr,tSV are always unit vectors in the sense of ûmr,tSV ·
ûmr,tSV = 1.



K12611 Chapter: 9 page: 343 date: January 18, 2012

Elastic Plane Waves at Planar Boundaries 343

k
(1)
P (λ(1) + 2µ(1)) cos 2ϑmrS + k

(1)
P (λ(1) + 2µ(1))RP(ϑiP) cos 2ϑmrS

− k
(1)
S µ(1)MrS(ϑiP) sin 2ϑmrS

= k
(2)
P (λ(2) + 2µ(2))TP(ϑiP) cos 2ϑmtS + k

(2)
S µ(2)MtS(ϑiP) sin 2ϑmtS;

(9.260)

we have utilized the conversions

λ(1) + 2µ(1) cos2 ϑiP = (λ(1) + 2µ(1)) cos 2ϑmrS, (9.261)
λ(2) + 2µ(2) cos2 ϑtP = (λ(2) + 2µ(2)) cos 2ϑmtS. (9.262)

Finally, we obtain the following system of equations

K
P
(ϑiP) f

P
(ϑiP) = i P(ϑiP) (9.263)

for the four-component solution (column) matrix (for the four-component col-
umn vector)

f
P
(ϑiP) =

⎛⎜⎜⎝
RP(ϑiP)
MrS(ϑiP)
TP(ϑiP)
MtS(ϑiP)

⎞⎟⎟⎠ (9.264)

for given inhomogeneity matrix (given inhomogeneity column vector)

i P(ϑiP) =

⎛⎜⎜⎝
sinϑiP
cos ϑiP
sin 2ϑiP

cos 2ϑmrS

⎞⎟⎟⎠ , (9.265)

and given (4×4)-coefficient matrix

K
P
(ϑiP)

=

⎛⎜⎜⎜⎜⎜⎝
− sinϑiP − cos ϑmrS sinϑtP − cos ϑmtS
cos ϑiP − sinϑmrS cos ϑtP sinϑmtS

sin 2ϑiP κ(1) cos 2ϑmrS
κ(1)

κ(2)
Z

(2)
S

Z
(1)
S

sin 2ϑtP −κ(1) Z
(2)
S

Z
(1)
S

cos 2ϑmtS

− cos 2ϑmrS
1

κ(1)
sin 2ϑmrS

Z
(2)
P

Z
(1)
P

cos 2ϑmtS
Z

(2)
S

Z
(1)
P

sin 2ϑmtS

⎞⎟⎟⎟⎟⎟⎠
(9.266)

with the short-hand notations

κ(j) =
c
(j)
P

c
(j)
S

, j = 1, 2, (9.267)

for the velocity ratios, and

Z
(j)
P,S = ρ(j)c

(j)
P,S, j = 1, 2, (9.268)

for the acoustic impedances.



K12611 Chapter: 9 page: 344 date: January 18, 2012

344 Ultrasonic Nondestructive Testing of Materials

Even though the matrix (9.266) may be analytically inverted, the resulting
expressions are rather intricate—even if the Ewing method (Schmerr 1988) is
applied—providing no advantage over a numerical method of the system of
Equations 9.263 to obtain numbers for f

P
(ϑiP). But in case one goes back

to Schmerr (1998), one has to note that the respective coefficients are re-
lated to the amplitudes of potentials. Yet, Ben-Menahem and Singh (1981),
Achenbach (1973), and Auld (1973) also present the matrix (9.266) for the
amplitudes of the particle displacement, but care has to be taken regarding
the signs of the polarization directions of SV-waves.

For vertical incidence—ϑiP = 0—we obtain a simple special case: The
(4×4)-system of equations (9.263) separates into two (2×2)-systems of equa-
tions with only trivial solutions for MrS(0) and MtS(0), whereas we obtain for
the P-reflection and transmission coefficients:

RP(0) =
Z

(2)
P − Z

(1)
P

Z
(2)
P + Z

(1)
P

, (9.269)

TP(0) =
2Z

(1)
P

Z
(2)
P + Z

(1)
P

. (9.270)

Therefore, the sound pressure equations for arbitrary incidence angles

piP(R,ω,ϑiP) = − jωZ
(1)
P uiP(ω) e jk(1)

P k̂iP·R, (9.271)

prP(R,ω,ϑiP) = − jωZ
(1)
P RP(ϑiP) uiP(ω) e jk(1)

P k̂rP·R, (9.272)

pmrSV(R,ω,ϑiP) = − jωZ
(1)
S MrS(ϑiP) uiP(ω) e jk(1)

S k̂mrS·R, (9.273)

ptP(R,ω,ϑiP) = − jωZ
(2)
P TP(ϑiP) uiP(ω) e jk(2)

P k̂tP·R, (9.274)

pmtSV(R,ω,ϑiP) = − jωZ
(2)
S MtS(ϑiP) uiP(ω) e jk(2)

S k̂tS·R (9.275)

reduce to the following ones for vertical incidence:

piP(R,ω, 0) = − jωZ
(1)
P uiP(ω) e−jk(1)

P cos ϑiP z, (9.276)

prP(R,ω, 0) = − jωZ
(1)
P RP(0)uiP(ω) e jk(1)

P cos ϑiP z, (9.277)

ptP(R,ω, 0) = − jωZ
(1)
P TptP(0)uiP(ω) e−jk(2)

P cos ϑtP z, (9.278)

where TptP(0) according to

TptP(0) =
2Z

(2)
P

Z
(2)
P + Z

(1)
P

(9.279)

structurally coincides with (9.218). The polarization directions of incident,
reflected, and transmitted P-waves are chosen such that the resulting sign of
the reflection coefficient of the vector particle velocity entails the continuity
of the sound pressure for ϑiP = 0 according to (9.276) through (9.278).
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FIGURE 9.20
Magnitudes of reflection, transmission, and mode conversion coefficients for
P-wave incidence as function of the angle of incidence: steel(1)-plexiglas(2):
- - -; plexiglas(1)-steel(2):—(steel: cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 ·
103 kg/m3; plexiglas: cP = 2730 m/s, cS = 1430 m/s, ρ = 1.18 · 103 kg/m3).

Wavefronts for P-wave incidence: Figure 9.21 displays wavefronts of in-
cident, reflected and transmitted P-waves as well as wavefronts of mode con-
verted reflected and mode converted transmitted SV-waves for the existence
of two critical angles [Figure 9.19(Pa′)]; the display is logarithmic enhancing
the “side lobes” of the RC2(t)-pulse relative to the “main lobe.”
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ϑiP = 20°, t = 0(a) (b)

(c) (d)

(e) (f )

ϑiP = 25°, t = 0

ϑiP = 30°, t = 0 ϑiP = 40°, t = 0

ϑiP = 55°, t = 0 ϑiP = 65°, t = 0

FIGURE 9.21
Wavefronts for P-wave incidence (a)–(f): plexiglas(1)-steel(2) (logarithmic
magnitude of the vector particle velocity).

Incident SV-wave: System of equations for reflection, transmission,
and mode conversion coefficients: We postulate the following plane waves

uiSV(R,ω, k̂iS) = uiS(ω) e jk(1)
S k̂iS·R k̂iS × ey, (9.280)

urSV(R,ω, k̂rS) = RSV(ϑiS) uiS(ω) e jk(1)
S k̂rS·R k̂rS × ey, (9.281)
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umrP(R,ω, k̂mrP) = MrP(ϑiS) uiS(ω) e jk(1)
S k̂mrP·R k̂mrP (9.282)

for z ≥ 0 and

utSV(R,ω, k̂tS) = TSV(ϑiS) uiS(ω) e jk(2)
S k̂tS·R k̂tS × ey, (9.283)

umtP(R,ω, k̂mtP) = MtP(ϑiS) uiS(ω) e jk(2)
S k̂mtP

·R k̂mtP (9.284)

for z ≤ 0 an; the respective polarization vectors read

k̂iS = − sinϑiS ex − cos ϑiS ez, (9.285)

k̂rS = − sinϑrS ex + cos ϑrS ez, (9.286)

k̂mrP = − sinϑmrP ex + cos ϑmrP ez, (9.287)

k̂tS = − sinϑtS ex − cos ϑtS ez, (9.288)

k̂mtP = − sinϑmtP ex − cos ϑmtP ez. (9.289)

The angles ϑmrP, ϑtS, and ϑmtP must eventually be complex with π/2-real
parts; hence, their cosines must be purely imaginary with positive imaginary
parts to ensure evanescent waves.

The phase matching requirement leads to

k
(1)
S sinϑiS = k

(1)
S sinϑrS = k

(1)
P sinϑmrP = k

(2)
S sinϑtS = k

(2)
P sinϑmtP

(9.290)
resulting in the reflection law

ϑrS = ϑiS, (9.291)

the mode conversion law for reflection

sinϑmrP =
k

(1)
S

k
(1)
P︸︷︷︸

> 1

sinϑiS, (9.292)

the transmission law

sinϑtS =
k

(1)
S

k
(2)
S︸︷︷︸

> < 1

sinϑiS, (9.293)

as well as the mode conversion law for transmission

sinϑmtP =
k

(1)
S

k
(2)
P︸︷︷︸

> < 1

sinϑiS. (9.294)

The geometric construction of the angles ϑrS,ϑmrP,ϑtS,ϑmtP is explicitly
performed in Figure 9.18(SVa), thus becoming obvious for the subsequent



K12611 Chapter: 9 page: 348 date: January 18, 2012

348 Ultrasonic Nondestructive Testing of Materials

SV-pictures of Figures 9.18 and 9.19. Equations 9.292, 9.293, and 9.294 reveal
the mandatory existence of at least one critical angle and at most three. The
latter case leads to total reflection of the incident SV-wave.

The partial waves (9.280) through (9.284) define reflection and transmis-
sion coefficients RSV(ϑiS), TSV(ϑiS) as well as mode conversion coefficients
MrP(ϑiS), MtP(ϑiS) in reflection and transmission. Again, we need four equa-
tions to calculate them; still missing are the respective stress tensor projections
onto the boundary normal n = ez related to (9.280) through (9.284):

T
iSV

(R,ω,ϑiS) · ez

= −jk(1)
S µ(1)uiS(ω) e jk(1)

S k̂iS·R (k̂iS sinϑiS + ûiSV cos ϑiS), (9.295)
T

rSV
(R,ω,ϑiS) · ez

= jk(1)
S µ(1)RSV(ϑiS)uiS(ω) e jk(1)

S k̂rS·R (−k̂rS sinϑiS + ûrSV cos ϑiS),
(9.296)

T
mrP

(R,ω,ϑiS) · ez

= jk(1)
P MrP(ϑiS)uiS(ω) e jk(1)

P k̂mrP·R (λ(1)ez + 2µ(1)k̂mrP cos ϑmrP),
(9.297)

T
tSV

(R,ω,ϑiS) · ez

= jk(2)
S µ(2)TSV(ϑiS)uiS(ω) e jk(2)

S k̂tS·R (−k̂tS sinϑtS − ûtSV cos ϑtS),
(9.298)

T
mtP

(R,ω,ϑiS) · ez

= jk(2)
P MtP(ϑiS)uiS(ω) e jk(2)

P k̂mtP
·R (λ(2)ez − 2µ(2)k̂mtP cos ϑmtP).

(9.299)

With the transition conditions (3.99) and (3.98), we finally find the system of
equations

K
SV

(ϑiS) f
SV

(ϑiS) = i SV(ϑiS) (9.300)

for the four-component solution (column) matrix

f
SV

(ϑiS) =

⎛⎜⎜⎝
RSV(ϑiS)
MrP(ϑiS)
TSV(ϑiS)
MtP(ϑiS)

⎞⎟⎟⎠ (9.301)

with given inhomogeneity matrix

i SV(ϑiS) =

⎛⎜⎜⎝
cos ϑiS
sinϑiS
cos 2ϑiS
sin 2ϑiS

⎞⎟⎟⎠ (9.302)
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and given (4×4)-coefficient matrix

K
SV

(ϑiS)

=

⎛⎜⎜⎜⎜⎜⎝
cos ϑiS sinϑmrP cos ϑtS − sinϑmtP

− sinϑiS cos ϑmrP sinϑtS cos ϑmtP

− cos 2ϑiS − 1
κ(1)

sin 2ϑmrP
Z

(2)
S

Z
(1)
S

cos 2ϑtS − 1
κ(2)

Z
(2)
S

Z
(1)
S

sin 2ϑmtP

sin 2ϑiS −κ(1) cos 2ϑiS
Z

(2)
S

Z
(1)
S

sin 2ϑtS
Z

(2)
P

Z
(1)
S

cos 2ϑtS

⎞⎟⎟⎟⎟⎟⎠ .

(9.303)

As before we state that: The system of equations (9.300) is best solved
numerically! Yet for vertical incidence, we immediately obtain MrP(0) =
MtP(0) = 0 and

RSV(0) =
Z

(2)
S − Z

(1)
S

Z
(2)
S + Z

(1)
S

, (9.304)

TSV(0) =
2Z

(1)
S

Z
(2)
S + Z

(1)
S

. (9.305)

For vertical incidence, the SV-polarization may not be distinguished from
the SH-polarization; the still different signs of RSV(0) and RSH(0) (Equa-
tion 9.210) are explained by the different directions of incident and reflected
polarizations in both cases. This is the reason why here the sound pressure
is continuous for ϑiS = 0 in contrast to the SH-case. In the limit ρ(2) −→ 0,
hence Z

(2)
S −→ 0, this remark corresponds to the one in connection with the

SH- and SV-reflection at a boundary to vacuum.
Obviously, the content of Figure 9.22 may be visualized with wavefronts;

this is especially intuitive for an animation in dependence of the angle of
incidence.

9.3 Planar Boundary between a Homogeneous
Isotropic Nondissipative and a Homogeneous
Transversely Isotropic Nondissipative Half-Space

This selected special case of a planar boundary between two homogeneous
anisotropic nondissipative half-spaces will not be investigated as detailed
as “Fresnel’s” reflection at the boundary between two isotropic half-spaces;
the reason is its complexity with generally nonavailable analytical expres-
sions. We will rather emphasize some peculiarities that do not appear in the
isotropic case.

• Inhomogeneous plane waves with nonorthogonal real and imaginary parts
of the phase propagation vector even though there is no dissipation: This
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1

RSV(ϑiS)

2

0 π/2
ϑiS 0 π/2

ϑiS
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π/2
ϑiS 0 π/2

ϑiS

MrP(ϑiS)

TSV(ϑiS) MtP(ϑiS)

FIGURE 9.22
Magnitudes of reflection, transmission, and mode conversion coefficients for
SV-wave incidence as function of the angle of incidence: steel(1)-plexiglas(2):
- - -; plexiglas(1)-steel(2):—(Steel: cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 ·
103 kg/m3; plexiglas: cP = 2730 m/s, cS = 1430 m/s, ρ = 1.18 · 103 kg/m3);
the markers on the abscissae refer to critical angles in the following order:
ϑcmtP, ϑctS, ϑcmrP for—, ϑcmrP for - - -.

is a generalization (annihilation of isotropic degeneracy) of evanescent
(evanescent with regard to the phase propagation) of inhomogeneous plane
waves as they occur at the boundary of an isotropic nondissipative half-
space and at the boundary of two isotropic nondissipative half-spaces.
Evanescence has basically to be understood with respect of the energy
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propagation (Langenberg and Marklein 2005), and only for coinciding
phase and energy propagation evanescence refers to the phase surfaces.

• Simultaneous excitation of two plane SV-waves with different phase and
energy velocities: We will discuss a relevant example for US-NDT of
austenitic parts (Langenberg and Marklein 2005).

9.3.1 Inhomogeneous elastic plane waves in
isotropic materials

As introduction, we will again explicitly prove (compare Section 8.2) that
isotropic nondissipative materials exclusively support inhomogeneous plane
waves that are evanescent with respect to the phase and energy propagation.
Slowness diagrams constitute the physically intuitive geometric method to
understand “Fresnel’s” reflection of plane waves; therefore, we write the wave
tensor (8.147) for isotropic materials in terms of slowness vectors s instead of
phase vectors k as in Section 8.2:

W(s) = µ s · s I + (λ + µ) s s − ρ I; (9.306)

with s = s ŝ—s is per definition independent upon s in isotropic materials—
and a real valued unit vector ŝ = k̂, we obtain the respective eigenvalue equa-
tion with (9.306) [

µ I + (λ + µ) ŝ ŝ − ρ

s2 I
]

· û(s) = 0 (9.307)

as compared to (8.61) for the real eigenvalue ρ/s2. Calculation of the deter-
minant according to

detW(ŝ, s2) =
(
µ − ρ

s2

)2 [
µ − ρ

s2 + (λ + µ) ŝ · ŝ
]

(9.308)

yields

s · s = s2
S =

ρ

µ
(9.309)

on one hand and, on the other hand,

s · s = s2
P =

ρ

λ + 2µ
(9.310)

resulting in

s2
Px + s2

Pz = s2
P (9.311)

or

s2
Sx + s2

Sz = s2
S (9.312)



K12611 Chapter: 9 page: 352 date: January 18, 2012

352 Ultrasonic Nondestructive Testing of Materials

for the real components sx, sz of

s = sxex + szez. (9.313)

If, for example, sP,Sx-components are prescribed via phase matching the per-
tinent sP,Sz-components are obtained as solutions

sP,Sz = ±
√

s2
P,S − s2

P,Sx (9.314)

of the quadratic equations (9.311) and (9.312). Note: For sP,Sx < sP,S, we find
two real solutions sP,Sz characterizing homogeneous plane waves each; selec-
tion of one of the zeroes is tied to the physical requirement of a “meaningful”
propagation of the respective homogeneous plane wave, i.e., “away” from a
boundary for reflected/transmitted waves.

As we stated for the first time in Section 9.1.2 investigating the mode
conversion SV =⇒ P, the given x-component of the slowness vector may be too
large to result in a real z-component; in that case, we obtain purely imaginary
sP,Sz-components

sP,Sz = ±j
√

s2
P,Sx − s2

P,S (9.315)

describing inhomogeneous evanescent plane waves. Again, sign selection is
done with physical arguments, here: The inhomogeneous plane wave must
exponentially decay in the z-half-space under concern (Section 9.1.2). It fol-
lows: A solution of the eigenvalue problem for elastic plane waves in isotropic
nondissipative materials is possible for real slowness vector (9.313) and for
complex slowness vector

s = �s + j�s (9.316)

with

�s = sP,Sxex, (9.317)

�s = ±
√

s2
P,Sx − s2

P,S ez, (9.318)

the solutions sP,Sz of the quadratic equations (with real coefficients) (9.311)
and (9.312) are either real or conjugate purely imaginary; the real part (9.317)
and the imaginary part (9.318) of the slowness vector are orthogonal to each
other. Now, we ask ourselves whether the eigenvalue equations (9.309) and
(9.310) allow for complex solutions with nonorthogonal �s and �s. In that
case, we would have to assume sz = sRz + jsIz with real part and, as a so-
lution of a quadratic equation with real coefficients, with complex conjugate
imaginary part; as a consequence, the representation �s = sxex + sRzez and
�s = sIzez of the slowness vector with nonorthogonal real and imaginary vec-
tors would result, i.e., the emerging inhomogeneous plane wave would not
be evanescent with regard to the phase propagation direction �̂s. We will
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immediately see that, as already shown in Section 8.2, this is not possible in
isotropic nondissipative materials.

We calculate the determinant of (9.306) according to

detW(s) = (µ s · s − ρ)2[(λ + 2µ) s · s − ρ] (9.319)

and assume complex slowness vectors (9.316) to satisfy the equation

detW(s) = 0; (9.320)

since both factors in (9.319) are similarly structured, we concentrate on the
first one:

µ(�s + j�s) · (�s + j�s) − ρ = 0, (9.321)

hence

�s · �s − �s · �s + 2j�s · �s = s2
S, (9.322)

where sS is real due to the material being nondissipative resulting in the real
and imaginary part separation of (9.321)

�s · �s − �s · �s = s2
S, (9.323)

�s · �s = 0; (9.324)

�s (�s) must be orthogonal to �s (�s) in isotropic nondissipative materials
(Figure 8.11), inhomogeneous plane waves must be evanescent perpendicular
to the phase propagation direction and the coinciding energy propagation
direction in those materials, and this is exactly expressed with Equations
(9.317) and (9.318): For given �s = sxex, the imaginary part �s may only
have a z-component.

9.3.2 Inhomogeneous plane SH-waves in transversely
isotropic materials

The comparatively simple example of plane SH-waves will show us that the
requirement (9.324) emerges from the degeneracy of isotropic nondissipative
materials concerning phase and energy velocities having the same direction;
plane waves in anisotropic nondissipative materials are also evanescent, yet
evanescent with regard to the energy velocity (Červený 2001) leading to even-
tually nonorthogonal phase �s and attenuation vector �s. For SH-waves in
transversely isotropic nondissipative materials, we can derive simple analytical
expressions for detWtriso(s) and cESH(ŝ), allowing for an immediate verifica-
tion of the preceding assertion; a general coordinate-free proof for arbitrary
wave modes and arbitrary anisotropic materials is given by Langenberg and
Marklein (2005).

Based on

Wtriso(s) = β1 I + β2 s s + β3 â â + β4 (s â + â s) (9.325)
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with—the α-expressions are defined by (8.286) through (8.288)—

β1 = µ⊥ s · s + α3(s · â)2 − ρ, (9.326)
β2 = λ⊥ + µ⊥, (9.327)
β3 = α1(s · â)2 + α3 s · s, (9.328)
β4 = (α2 + α3) s · â, (9.329)

we calculate

detWtriso(s) = β1

[
β2
1 + β1(β3 + β2 s · s + 2β4 s · â)

+ (β2β3 − β2
4)(I − â â) : s s

]
(9.330)

similar to (8.254). As mentioned before, we focus on the SH-case and investi-
gate the equation β1 = 0 with the ansatz

s = �s + j�s (9.331)

according to

µ⊥(�s · �s − �s · �s + 2j�s · �s)

+ α3
[
(�s · â)2 − (�s · â)2 + 2j(�s · â)(�s · â)

]− ρ = 0 (9.332)

after its separation into real and imaginary parts:

µ⊥ (�s · �s − �s · �s) + (µ‖ − µ⊥)
[
(�s · â)2 − (�s · â)2

]− ρ = 0, (9.333)
µ⊥ �s · �s + (µ‖ − µ⊥) (�s · â)(�s · â) = 0. (9.334)

The isotropic case µ‖ = µ⊥ again yields (9.323) and (9.324); the same is true
for the phase propagation in the isotropy plane according to �s · â = 0.

The planar boundary—presently still virtual—between two elastic half-
spaces is, as usual, identified with the xy-plane of a cartesian coordinate sys-
tem. As ezs-plane of incidence we choose the xz-plane; in the following, we
confine ourselves to those â-directions lying in the plane of incidence. With
that definition of the xz-plane, we would generally obtain the component rep-
resentation s = (sRx + jsIx)ex + (sRz + jsIz)ez of the complex slowness vec-
tor according to the real and imaginary part separation �s = sRxex + sRzez,
�s = sIxex + sIzez. Via phase matching in the xy-plane, the x-component
of the slowness vector is prescribed real valued, thus coercively yielding the
component separation

s = sxex + szez

= sRxex + (sRz + jsIz)ez (9.335)
= (sRxex + sRzez)︸ ︷︷ ︸

= �s

+j sIzez︸ ︷︷ ︸
= �s

(9.336)
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of the slowness vector, i.e., �s may only have a z-component. But this does
not mean “evanescence with regard to phase propagation” because �s may
possess an x and a z-component if this is compatible with the imaginary part
(9.334) of the SH-eigenvalue equation. Similar to the geometric interpretation
of (9.324) (Figure 8.11), we can use (9.334) to construct �s geometrically. We
write (9.334) as

�s · [µ⊥(I − â â) + µ‖ â â
] · �s = 0 (9.337)

and insert �s = sIzez �= 0:

�s · [µ⊥(I − â â) + µ‖ â â
] · ez = 0. (9.338)

For â = ex, we have �s · ez = 0 to obtain, as for the isotropic case, inhomo-
geneous plane SH-wave evanescence with regard to the phase propagation for
such a preference direction. Figure 9.23 translates Equation 9.338 accordingly:
With regard to the given preference direction â lying in the plane of incidence,
we calculate the projection vector µ‖ â â · ez of ez in the direction of â and
the projection vector µ⊥(I − â â) · ez orthogonal to â; according to (9.338),
�s is orthogonal to the sum of these two projection vectors, where the (real)
vectorial sRxex-component of �s is prescribed per definition: If â �= ex, the
imaginary part (9.334) of the SH-eigenvalue equation for a particular trans-
versely isotropic material allows for (slowness) phase vectors with an arbi-
trary material specific orientation with regard to the attenuation vector. This

ℜs

sRxex

ezµ a a · ez
^ ^

z

x

â

µ ⊥ (I – a a) · ez
^ ^

FIGURE 9.23
Geometric construction of the real part of the slowness vector for the SH-wave
mode in a transversely isotropic nondissipative material with µ‖ > µ⊥.
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obviously complies for given real valued sx with the possible complex valued
solutions sz of the quadratic eigenvalue equation

µ⊥ (s2
x + s2

z) + (µ‖ − µ⊥)(sxâx + szâz)2 − ρ = 0 (9.339)

with, due to the real coefficients, conjugate complex imaginary parts according
to (9.335). The exclusive evanescence of inhomogeneous plane waves in the
previous sense, namely with regard to the phase or slowness vector, evidently
turns out to be a degeneracy of the isotropic material; we will see that in
the general case evanescence has to be understood with regard to the energy
velocity vector.

Using (9.334) according to

(sRxex + sRzez) · [µ⊥ (I − â â) · ez + µ‖ â â · ez

]
= 0, (9.340)

we calculate the ratio of the z- and x-components of �s:

sRz = − (µ‖ − µ⊥)ex · â â · ez

ρc2
SH(ez)︸ ︷︷ ︸

= σR

sRx; (9.341)

we state that σR is constant for a specific material, the direction of �s remains
constant with increasing sRx (as in the isotropic case). By the way: For µ‖ >
µ⊥, â · ez < 0, â · ex > 0 and sRx < 0, i.e., for the parameters of Figure 9.23,
we have sRz < 0 as it corresponds to the figure. Accordingly, we find sRz > 0
if µ‖ is chosen smaller than µ⊥ for unmodified â and sRx; then �s points into
the half-space z > 0.

With (9.341), we find sIz from (9.332):

sIz = ± sSH(ez)

sSH(�̂s)

√
1 + σ2

R

√
s2
Rx − s2

SH(�̂s)
1 + σ2

R
; (9.342)

the configuration of Figure 9.23 requests the choice of the negative sign. Via
explicit insertion of �̂s according to (9.369), Equation 9.342 adopts the form
(9.400).

With �s = sIzez and �s = sRxex + sRzez, where sRz = σRsRx, the inho-
mogeneous plane SH-wave

u(R,ω, s) = −u(ω) e jω	s·R e±ω
s·R ey (9.343)

is actually evanescent with regard to the energy propagation direction if
we have chosen the physically meaningful sign for sIz. Namely, generalizing
(8.332), we calculate for transversely isotropic materials

cESH(s) =
2
[
µ⊥ �s + (µ‖ − µ⊥) �s · â â

]
ρ + µ⊥s · s∗ + (µ‖ − µ⊥)s s∗ : â â

=
2�s · [µ⊥(I − â â) + µ‖ â â

]
ρ + µ⊥s · s∗ + (µ‖ − µ⊥)s s∗ : â â

(9.344)
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because we obtain the anisotropic generalization191

SK(R,ω, s) =
ω2

2
|u(ω)|2 e−2ω
s·R û(s) · c : s∗û∗(s), (9.345)

〈w(R, t, s)〉 =
ω2ρ

4
|u(ω)|2 e−2ω
s·R +

ω2

4
|u(ω)|2 e−2ω
s·R s û(s) : c : s∗û∗(s)

(9.346)
of (8.182) and (8.183) for complex slowness vectors with

u(R,ω, s) = u(ω) e jωs·R û(s) (9.347)

and

û(s) · û∗(s) = 1; (9.348)

it follows

cE(s) =
2�
{
c

.
: s∗û∗(s)û(s)

}
ρ + s û(s) : c : s∗û∗(s)

. (9.349)

With (4.24) and recognizing s∗ · ûSH = 0, â · ûSH = 0, ûSH · û∗
SH = 1 (Foot-

note 196), we find

ctriso .
: s∗û∗

SHûSH = s∗ · [µ⊥I + (µ‖ − µ⊥)â â
]

(9.350)

and (9.344), respectively, and due to (9.340), we apparently have

cESH(s) · ez = 0. (9.351)

This fact is not noticeable for the isotropic nondissipative material because
phase and energy velocity vectors have the same direction.

9.3.3 Reflection and transmission of plane SH-Waves
at the planar boundary between homogeneous
isotropic and homogeneous transversely isotropic
nondissipative materials

We have already multiply used the idea of a given x-component of a real
or complex slowness vector via phase matching at material discontinuity

191The second term in (9.346) may no longer be converted with the Kelvin–Christoffel
equation

(s · c · s − ρ I) · û(s) = 0,

thus yielding the inequality of the time averaged kinetic energy density and the time aver-
aged potential energy density for inhomogeneous plane waves as it is true for the isotropic
nondissipative material.
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sS
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 sin ϑiS = sS
(1)
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^
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a · µ  , µ ⊥, ρ(2)^

FIGURE 9.24
Slowness diagram for reflection and transmission of an SH-wave at the bound-
ary of a homogeneous isotropic nondissipative and a homogeneous transversely
isotropic nondissipative elastic half-space: â = ex, µ‖ > µ⊥, c

(1)
S < c

(2)
SH(ex);

(a) ϑiS ≤ ϑctSH and (b) ϑiS > ϑctSH.

boundaries. Consequently, we should illustrate the conclusions of the previ-
ous subsection with the help of slowness diagrams. First, we confine ourselves
to the simplest case of a boundary between a homogeneous isotropic non-
dissipative (z > 0 : µ, ρ(1)) and a homogeneous transversely isotropic nondis-
sipative half-space (z < 0 : â,µ‖,µ⊥, ρ(2)) for SH-wave incidence from the
isotropic half-space.

The assumption “â lies in the plane of incidence” yields −ey as polarization
vector of SH-waves in both half-spaces conveying physical intuition to the
vanishing mode conversion into qP- and/or qSV-waves: In this case, SH-waves
are decoupled from qP- and qSV-waves.

Preference direction â in the boundary: With Figure 9.24(a) and (b);
we consign Figure 9.14(a) and (b) to the case as defined above: We have
attributed the SH-slowness diagram for fiber reinforced composite with â = ex

(Figure 8.21) to the transversely isotropic half-space z < 0. Having directly
selected the more interesting case s(1) > s(2)(ex) yielding the existence of a
critical angle ϑctSH, we distinguish between ϑiS ≤ ϑctSH [Figure 9.24(a)] and
ϑiS > ϑctSH [Figure 9.24(b)].

We start with ϑiS ≤ ϑtSH. Phase matching of incident, reflected, and mode
converted plane SH-waves [compare (9.177) through (9.179)]

uiS(R,ω, k̂iS) = −uiS(ω) e jωs
(1)
S k̂iS·R ey, z ≥ 0, (9.352)
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urS(R,ω, k̂rS) = −Rtriso
SH (ϑiS) uiS(ω) e jωs

(1)
S k̂rS·R ey, z ≥ 0, (9.353)

utSH(R,ω, k̂tSH) = −T triso
SH (ϑiS) uiS(ω) e jωs

(2)
SH(k̂tSH)k̂tSH·R ey, z ≤ 0,

(9.354)

for all x, y in the boundary z = 0 results in the reflection and transmission laws

ϑrS = ϑiS, (9.355)

s
(2)
SH(k̂tSH) sinϑtSH = s

(1)
S sinϑiS, (9.356)

respectively, via the chain of equations

s
(1)
S sinϑiS = s

(1)
S sinϑrS = s

(2)
SH(k̂tS) sinϑtSH. (9.357)

Note: The transmission law (9.356) comes as an implicit equation for the
transmission angle because

k̂tSH = − sinϑtSH ex − cos ϑtSH ez (9.358)

tells us that the slowness s
(2)
SH(k̂tSH) also depends upon ϑtSH; we must visualize

the explicit dependence of ϑiS utilizing the eigenvalue equation; this is often
successful—for the SH-wave mode even for â �= ex, and for qP- and qSV-wave
modes at least for â · ez = 0—because in these cases, only quadratic equations
have to be solved; nevertheless, the paper work can be considerable. Here, for
the SH-case, we will explain the procedure in detail.

Figure 9.24(a) reveals that a critical angle ϑctSH exists for s
(1)
S > s

(2)
SH(−ex);

if ϑiS = ϑctSH, we obviously have ϑtSH = π/2, and therefore k̂tSH = −ex; we
obtain

sinϑctSH =
s
(2)
SH(−ex)

s
(1)
S

=
s
(2)
SH(â)

s
(1)
S

=

√
ρ(2) µ

ρ(1) µ‖
. (9.359)

For ϑiS < ϑctSH, the SH-eigenvalue equation

µ⊥ s2 + (µ‖ − µ⊥) (s · â)2 − ρ(2) = 0 (9.360)

with real slowness vector

s =⇒ stSH = stSHx ex + stSHz ez (9.361)

and given
stSHx = s

(1)
S sinϑiS (9.362)
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possesses two real zeroes stSHz that can immediately be found192 from the
eigenvalue equation (9.360) due to stSH · â = stSHx—we have â = ex—and
s2

tSHx + s2
tSHz = s

(2)2

SH :

stSHz = ±
√

µ‖
µ⊥

√
ρ(2)

µ‖
− s

(1)2
S sin2 ϑiS. (9.363)

The selection of the “correct” z-component of the slowness vector is performed
with physical arguments: For transmitted waves in the half-space z < 0, only
the negative sign is useful. Yet, we would only have to interchange the two
half-spaces including the wave incidence for a selection of the other sign. With
both components (9.362) and (9.363)—or, in the case â = ex, directly with
(9.360) and (9.362)—s

(2)
SH(k̂tSH) is computable from the transmission law as a

function of the angle of incidence according to

s
(2)
SH(k̂tSH) =

√
ρ(2) − (µ‖ − µ⊥) s

(1)2
S sin2 ϑiS

µ⊥
, (9.364)

and hence

sinϑtSH = s
(1)
S sinϑiS

√
µ⊥

ρ(2) − (µ‖ − µ⊥)s(1)2
S sin2 ϑiS

. (9.365)

For ϑiS > ϑtSH, we expect transmitted inhomogeneous plane waves as so-
lutions of the SH-eigenvalue equation (9.360) with

�stSH = sRtSHx ex + sRtSHz ez, (9.366)
�stSH = sItSHz ez, (9.367)

where according to (9.338), we immediately obtain sRtSHz = 0 (σR = 0 in
(9.341)) for â = ex; with (9.362), we derive

sItSHz = ± s
(2)
SH(ez)

s
(2)
SH(−ex)

√
s2
RtSHx − s

(2)2
SH (−ex)

= ±
√

µ‖
µ⊥

√
s
(1)2
S sin2 ϑiS − ρ(2)

µ‖
(9.368)

from Equation 9.342. As in Figure 9.14, this is a hyperbola as function of
s
(1)
S sinϑiS, yet with an asymptote given by the ratio

√
µ‖/µ⊥ [Figure 9.24(b)];

it is understood that the negative sign is relevant for the half-space z < 0 (and
the time dependence e−jωt).

192For â = ex or, even more general, â in the xy-plane, we always find sz , i.e., even for
qP- and qSV-wave modes, in terms of this simple explicit form (Spies 1994) because the
qP- and qSV-eigenvalue equations also only contain s · â [compare (9.330)]; yet we have to
solve a quadratic equation in s2.
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Preference direction â inclined to the boundary: With Figures 9.25
and 9.26, we turn to the case of a preference direction of the transversely
isotropic half-space inclined to the boundary. We will see that, despite the
“harmless” ellipticity of the SH-slowness diagram, a rich variety of possibilities
exists. Yet, we continue to assume â · ey = 0 to assure decoupling of the SH-
wave modes from the qP- and qSV-wave modes.

Based on Figure 9.25—the pertinent equations are discussed in the next
paragraph—we first discuss the orientation of â “toward the bottom,” i.e., we
assume â · ez < 0, 0 < â · ex < 1 resulting in a rotation of the slowness dia-
gram with respect to the boundary with the consequence of an asymmetry
with regard to the wave incidence either from the “left” or from the “right”;
with Figure 9.25, we particularly assume a negative x-component of siS as it is
true for Figure 9.24. The dashed phase matching lines in Figure 9.25(a) sepa-
rate the SH-slowness diagram for sx ≤ 0 into three regions: region I containing
one real zero sz < 0 of the SH-eigenvalue equation, region II (in that case very
narrow) containing two real zeroes sz < 0, and region III containing two com-
plex conjugate sz-zeroes. With Figures 9.25(b) and (c), we select angles of
incidence with siSx in region I: Obviously, for either one, we obtain one inter-
section of the respective phase matching lines with the slowness diagram in the
lower half-space leading to a negative z-component of the slowness vector stSH
of the transmitted SH-wave in both cases, i.e., phase propagation is away from
the boundary as we are used to. Yet, this is not the mathematical criterion for
a physically meaningful solution stSHz of the eigenvalue equation: It depends
on whether the energy flux given by the energy velocity vector cEtSH(ŝtSH) is
directed away from the boundary. With a negative z-component, this is true
for both cases—in fact, the energy velocity is perpendicular to the slowness
surface—nevertheless, we face a surprise: Even though the incident SH-wave
coming from the isotropic half-space is inclined to the boundary the energy
flux in the transversely isotropic half-space is perpendicular to the boundary
[Figure 9.25(c)] or even “backwards” [Figure 9.25(b)]. This opens the door for
wrong assessments of ultrasonic signals not taking into account the potential
anisotropy of a material. Yet from a physical point of view, such a behavior
can be easily understood: For example, vertical incidence yields a bending of
energy propagation toward â, because for µ‖ > µ⊥, we observe the largest en-
ergy velocity in the inclined â-direction (Figure 8.22), the vertically incident
waves “feel” an appropriate component perpendicular to the boundary and
“except this offer.”

With Figure 9.25(d), we turn to an example for region II: An appropriately
chosen siSx-component obviously leads to two different negative real stSHz-
solutions of the eigenvalue equation (9.339), yet the one with smaller magni-
tude must be excluded for a physical reason: For such a slowness vector, the
energy velocity has a positive z-component; physical arguments yield unique-
ness of the mathematically nonunique wave propagation!193 With increasing

193Therefore, the inverted direction of the energy velocity is the real reason to exclude
(sz > 0)-solutions in region I.
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FIGURE 9.25
Slowness diagrams for reflection and transmission of an SH-wave at the bound-
ary of a homogeneous isotropic nondissipative and a homogeneous transversely
isotropic nondissipative elastic half-space for increasing angle of incidence (b)–
(f); (a) defines different regions for slowness components through phase match-
ing lines: 0 < â · ex < 1, â · ez < 0, µ‖ > µ⊥, c

(1)
S < c

(2)
SH(−ex).
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magnitude of the siSx-component, the two possible slowness vectors in re-
gion II tend to coincide to one with an energy velocity having a (negative)
x-component, i.e., the energy flux is parallel to the boundary [Figure 9.25(e)].
The corresponding angle of incidence is the critical angle ϑctSH, and we expect
evanescence of this energy flux for angles of incidence larger than ϑctSH due
to the complex conjugate stSHz-zeroes of the SH-eigenvalue equation having
chosen the appropriate sign of the imaginary part. As a matter of fact, in Fig-
ure 9.25(f), we construct the imaginary part �stSH = sItSHz ez of the slowness
vector as (energy) attenuation vector for siSx located in region III with the
negative branch of the hyperbola; for the real part vector, we obtain

�stSH = −s
(1)
S sinϑiS(ex + σR ez) (9.369)

with (9.341); its direction remains unchanged as compared to the “critical
slowness vector” of Figure 9.25, and this is also true for the energy velocity
due to (9.351).

With Figure 9.26, we discuss the orientation of the preference direction â
“to the top,” i.e., we assume â · ez > 0, and still 0 < â · ex < 1. Hence, the
slowness diagram is rotated into the opposite direction as compared to Fig-
ure 9.25, and to be on the safer side, we have plotted the whole 360◦-diagram;
the same phase matching lines as in Figure 9.25(a) equally define regions I, II,
and III for different characteristic values of −s

(1)
S sinϑiS. The single pictures

of Figure 9.26 corresponding to the pictures 9.25(b)–(d) have been omitted
because the respective results can be easily imagined: For example, verti-
cal incidence leads to a negative x-component of the energy velocity of the

s(2) (ex) x, Sx, SRx

z, Sz, SIz z, Sz

SH s(2) (ex) x, SxSH

s(1)
S s(1)

S

ϑctSH

cEtSH

cEtSH

SrS

SiS

StSH
ââ

(a) (b)

IIIIII

FIGURE 9.26
Slowness diagrams for reflection and transmission of an SH-wave at the bound-
ary between a homogeneous isotopic nondissipative and a homogeneous trans-
versely isotropic nondissipative elastic half-space; (a) defines different regions
for slowness components through phase matching lines; (b) energy evanescent
transmitted waves: 0 < â · ex < 1, â · ez > 0, µ‖ > µ⊥, c

(1)
S < c

(2)
SH(−ex).
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transmitted wave, and the same is true for all incidence angles ϑiS > 0 with
−s

(1)
S sinϑiS located in region I. Entering region II with the phase x-component

of the incident wave, we again obtain two real sz-solutions of the eigenvalue
equation, yet in contrast to region I, both are located on the dashed part of the
slowness diagram for z > 0 [compare Figure 9.26(a)]. Consequently, it seems
that both solutions are irrelevant or transmitted waves because the pertinent
slowness vectors point away from the boundary; yet, this holds for the phase
propagation, and the energy propagation corresponding to the solution with
the smaller magnitude is directed into the lower half-space z < 0, representing
a physically meaningful transmitted wave. The coincidence of both solutions
marks the boundary of region III; even though the resulting slowness vector
also points into the half-space z > 0, we encounter an energy velocity vector
parallel to the boundary indicating the transition to the energy evanescent
transmitted waves of region III [Figure 9.26(b)]. This wave mode is sketched
as a wave packet in Figure 9.26(b) (compare Figure 8.14 and Equation 8.230):
Hence, imagining a transmitted wave with phase propagation into the upper
half-space and energy propagation into the lower half-space or parallel to the
boundary does not cause any problems.

Reflection and transmission coefficients: We write the deformation ten-
sor (8.212) of a plane elastic wave in terms of an explicit visibility of the
slowness vector:

S(R,ω, s) = jω u(ω) e jωs(k̂)·R 1
2

[
s(k̂) û(k̂) + û(k̂) s(k̂)

]
; (9.370)

here, the phase propagation (unit) vector k̂ according to

k̂ = �̂s (9.371)

is given by the unit vector �̂s of the real part vector �s of the eventually
complex slowness vector s. For the SH-wave mode, we have û(k̂) = −ey, hence
(8.289) immediately yields

T
SH

(R,ω, s) = ctriso : S
SH

(R,ω, s)

= −jωu(ω) e jωs(k̂)·R ctriso : s(k̂) ey

= −jωu(ω) e jωs(k̂)·R
{

µ⊥
[
s(k̂) ey + ey s(k̂)

]
+ (µ‖ − µ⊥) s(k̂) · â (ey â + â ey)

}
(9.372)

for the stress tensor of a plane SH-wave in a transversely isotropic material.
The particle displacements (9.352) through (9.354), written for arbitrary real
or complex valued slowness vectors,

uiSH(R,ω, siS) = −uiS(ω) e jωsiS(k̂iS)·R ey, z ≥ 0, (9.373)
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urSH(R,ω, srS) = −Rtriso
SH (ϑiS) uiS(ω) e jωsrS(k̂rS)·R ey, z ≥ 0, (9.374)

utSH(R,ω, stSH) = −T triso
SH (ϑiS) uiS(ω) e jωstSH(k̂tSH)·R ey, z ≤ 0, (9.375)

therefore correspond to the stress tensors

T
iSH

(R,ω, siS)

= −jωµuiS(ω) e jωsiS(k̂iS)·R
[
siS(k̂iS) ey + ey siS(k̂iS)

]
, (9.376)

T
rSH

(R,ω, srS)

= −jωµRtriso
SH (ϑiS) uiS(ω) e jωsrS(k̂rS)·R

[
srS(k̂rS) ey + ey srS(k̂rS)

]
,

(9.377)

T
tSH

(R,ω, stSH)

= −jωT triso
SH (ϑiS) uiS(ω) e jωstSH(k̂tSH)·R

{
µ⊥
[
stSH(k̂tSH) ey + ey stSH(k̂tSH)

]
+ (µ‖ − µ⊥) stSH(k̂tSH) · â (ey â + â ey)

}
. (9.378)

To satisfy the transition conditions

uiSH(x, y, z = 0,ω, siS) + urSH(x, y, z = 0,ω, srS)
= utSH(x, y, z = 0,ω, stSH), (9.379)

T
iSH

(x, y, z = 0,ω, siS) · ez + T
rSH

(x, y, z = 0,ω, srS) · ez

= T
tSH

(x, y, z = 0,ω, stSH) · ez (9.380)

for all x and y, we have to match the phases of all contributing wave modes
in the boundary according to

siS · ex = srS · ex = stSH · ex, (9.381)

thus assessing the x-components of the slowness vectors:

srSx = stSHx = siSx = −s(1) sinϑiS. (9.382)

To calculate the still open z-components, we utilize the dispersion relations
(eigenvalue equations) of the respective wave modes:

siS · siS =
ρ(1)

µ
= s

(1)2

S , (9.383)

srS · srS =
ρ(1)

µ
= s

(1)2

S , (9.384)

stSH · stSH +
µ‖ − µ⊥

µ⊥
(stSH · â)2 =

ρ(2)

µ⊥
; (9.385)

we nicely recognize the disturbance of the isotropy of the half-space z < 0 due
to the (µ‖ − µ⊥)/µ⊥-anisotropy ratio. With

s2
i,rS = s2

i,rSx + s2
i,rSz (9.386)
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and (9.382), we obtain

siSz = ±
√

s
(1)2
S − s2

iSx

= ± s
(1)
S cos ϑiS; (9.387)

srSz = ±
√

s
(1)2
S − s2

rSx

= ± s
(1)
S cos ϑiS (9.388)

from (9.383) and (9.384), respectively, i.e., the eigenvalue equations (9.383)
and (9.384) that are quadratic in si,rSz each have two real solutions for the
z-components of the slowness vectors due to the phase matching (9.382) for
the x-components from which we may choose the physically meaningful ones
prescribing the phase propagation directions k̂iS and k̂rS:

siSz =− s
(1)
S cos ϑiS, (9.389)

srSz = s
(1)
S cos ϑiS. (9.390)

Therefore, the reflection law expresses the equality of the x- and the opposite
equality of the z-components of siS and srS, respectively, it is a consequence
of phase matching and eigenvalue equations. Obviously, the same is true for
the transmission law between the isotropic and the transversely isotropic half-
space, and we may equally use the above formalism—that is why, we demon-
strated it once more explicitly—to arrive at the respective result.

With

stSH = stSHx ex + stSHz ez, (9.391)

hence194

stSH · stSH = s2
tSH = s2

tSHx + s2
tSHz, (9.392)

the eigenvalue equation (9.385) together with the given x-component of stSH
via phase matching (9.382) is a quadratic equation for the z-component:

µ⊥ (s2
tSHx + s2

tSHz) + (µ‖ − µ⊥) (stSHxâx + stSHzâz)2 = ρ(2); (9.393)

after some short calculation, its solution can be written according to

stSHz = σR stSHx ± s2
SH(ez)

√
µ⊥
ρ(2)

√
µ‖
ρ(2)

√
ρ(2)2

µ⊥µ‖s2
SH(ez)

− s2
tSHx (9.394)

utilizing (Equation 9.341)

σR = − (µ‖ − µ⊥)ex · â â · ez

ρ(2)c2
SH(ez)

. (9.395)

For â · ez = 0, Equation 9.394 reduces to (9.363).

194Note: s2
tSH is the eventually complex non-Hermitian magnitude of the slowness vector

stSH and not the square of the slowness s
(2)
SH.
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With (9.394), we have found two real valued stSHz-zeroes of the SH-
eigenvalue equation for

sinϑiS ≤ ρ(2)

s
(1)
S s

(2)
SH(ez)

√
µ⊥µ‖

(9.396)

that obviously define regions I and II of Figure 9.25(a), namely region I for
zeroes with opposite signs and region II for two negative zeroes. For all other
cases, the choice of the physically meaningful zero has to be made consulting
the direction of the pertinent energy velocity, not only for region II [Figure
9.25(d)], but strictly speaking also for region I; based on Figure 9.26, we have
encountered an example for a phase propagation direction belonging to the
positive stSHz-zero if the pertinent energy velocity is physically possible. With
the above example together with the example of Figure 9.25(e), we illustrate
the case of one (double) real zero that is given according to (9.394) with the
equality sign in (9.396). Therefore, this equality sign defines the critical angle
ϑctSH as

sinϑctSH =
ρ(2)

s
(1)
S s

(2)
SH(ez)

√
µ⊥µ‖

; (9.397)

for ϑiS ≤ ϑctSH, and with

tanϑtSH =
stSHx

stSHz

=− s
(1)
S sinϑiS

stSHz
, (9.398)

we obtain the (real) transmission angle for the phase propagation vector, but
only the pertinent direction of the energy velocity vector tells us what actually
happens in the transversely isotropic half-space.

For ϑiS > ϑctSH, we obtain from (9.394) two conjugate complex zeroes;
together with stSHx, their real parts compose the real part vector

�stSH = −s
(1)
S sinϑiS(ex + σR ez) (9.399)

and their imaginary parts the imaginary part vector

�stSH = ±s2
SH(ez)

√
µ⊥
ρ(2)

√
µ‖
ρ(2)

√
s
(1)2
S sin2 ϑiS − ρ(2)2

µ⊥µ‖s2
SH(ez)

ez (9.400)

of the transmission slowness vector [Equation 9.369 as well as Equation 9.342
that may actually be transformed to (9.400) with (9.399) utilizing the eigen-
value equation]. In case, the half-space z < 0 is isotropic or transversely
isotropic with â · ez = 0, the (phase) transmission angle ϑtSH becomes com-
plex for ϑiS > ϑctSH, its real part �ϑtSH = π/2 then giving the direction of
the phase as well as the energy propagation [Figure 9.24(b)]. Yet, if we have
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â · ez �= 0 for the transversely isotropic half-space, it is completely inappropri-
ate to describe the phase and energy propagations of the transmitted wave by
a complex angle for ϑiS > ϑctSH; however, we obtain the direction of the phase
propagation vector independently of the angle of incidence from (9.399) as

tanϑtSH =
1
σR

, (9.401)

and we know that the pertinent energy velocity vector is parallel to the
boundary. The evanescence of this energy flux is evident through the physical
meaningful selection of the imaginary part of the complex valued—not purely
imaginary—stSHz-zero of the eigenvalue equation.

The vector equations (9.379) and (9.380) of the transition conditions are
indeed scalar equations with only y-components; therefore, we immediately
calculate

Rtriso
SH (ϑiS) =

µ s
(1)
S cos ϑiS +

[
µ⊥ stSH · ez + (µ‖ − µ⊥) stSH · â â · ez

]
µ s

(1)
S cos ϑiS − [µ⊥ stSH · ez + (µ‖ − µ⊥) stSH · â â · ez

] ,
(9.402)

T triso
SH (ϑiS) =

2µ s
(1)
S cos ϑiS

µ s
(1)
S cos ϑiS − [µ⊥ stSH · ez + (µ‖ − µ⊥) stSH · â â · ez

] .
(9.403)

For the special case â · ez = 0 and ϑiS ≤ ϑctSH, these two formulas reduce to

Rtriso
SH (ϑiS =

µ s
(1)
S cos ϑiS − µ⊥ s

(2)
SH(ϑtSH) cos ϑtSH

µ s
(1)
S cos ϑiS + µ⊥ s

(2)
SH(ϑtSH) cos ϑtSH

, (9.404)

T triso
SH (ϑiS =

2µ s
(1)
S cos ϑtS

µ s
(1)
S cos ϑiS + µ⊥ s

(2)
SH(ϑtSH) cos ϑtSH

, (9.405)

and for ϑiS > ϑctSH, we obtain

Rtriso
SH (ϑiS) =

µ s
(1)
S cos ϑiS + jµ⊥ sItSHz

µ s
(1)
S cos ϑiS − jµ⊥ sItSHz

, (9.406)

T triso
SH (ϑiS) =

2µ s
(1)
S cos ϑiS

µ s
(1)
S cos ϑiS − jµ⊥ sItSHz

, (9.407)

where sItSHz is given with the negative sign through (9.368). With (9.404)
and (9.405), we are “very close” to (9.206) and (9.207); furthermore: Since
nominator and denominator in (9.406) are complex conjugate to each other,
we observe total reflection for ϑiS > ϑctSH in the case â · ez = 0. For the more
general case â · ez �= 0 (Equations 9.402 and 9.403), we do not observe total
reflection because stSHz is not purely imaginary.
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9.3.4 Reflection, transmission, and mode conversion
of plane SV-waves at the planar boundary
between homogeneous isotropic and homogeneous
transversely isotropic nondissipative materials

The case of reflection, transmission, and mode conversion of P/SV-qP/qSV-
wave modes at the boundary of an isotropic and a transversely isotropic half-
space is exemplarily discussed in terms of an SV-wave coming from an isotropic
steel half-space and impinging onto an austenitic steel 308 half-space. Apart
from the practical relevance for US-NDT, this case serves again for the finding
of some new basic results.

Preference direction â in the boundary: We start with the assump-
tion â · ez = 0 and turn to the slowness diagram of Figure 9.27: For z > 0,
the circular (in three dimensions: spherical) slowness diagrams for isotropic
steel are plotted in the xz-plane; yet, we know already [Figure 9.25(b)] that
the slowness diagrams of the transversely isotropic austenitic steel half-space
(austenitic steel 308) for z < 0 may even play a role for z > 0, hence we
have continued the respective diagrams of Figure 8.21 as dashed lines for
z > 0. First: The P-diagram for steel does not essentially differ from the qP-
diagram for austenitic steel 308, whereas the qSV-diagram of austenitic steel
308 is considerably distinct from the steel S-diagram. Since we assume â to be

IIIIIIIV

x, Sx, SRx

z, Sz, SIz

s(2)
qP

s(1)
S

s(1)
P

s(2)
qSV

â

FIGURE 9.27
Slowness diagram of reflection, transmission, and mode conversion of an SV-
wave at the boundary of a homogeneous isotropic nondissipative (steel) and
a homogeneous transversely isotropic nondissipative half-space (austenitic
steel): â · ez = 0.
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parallel to the plane of incidence, SH-wave modes are decoupled from P/SV-
qP/qSV-wave modes. According to these slowness diagrams, an incident SV-
wave from the half-space z > 0 should result in a reflected SV-wave (reflection
law!) and a reflected mode converted P-wave including a critical angle for ex-
actly those waves [Figure 9.18(SVa)]. Yet, the performance in the half-space
z < 0 is much more interesting: For “small” incidence angles ϑiS character-
izing region I a transmitted qSV- and a transmitted mode converted qP-
wave are excited according to two (real) physically meaningful stqP,qSVz-zeroes
of the qP/qSV-slowness eigenvalue equation [equating the square bracket in
(9.330) to zero]; the latter exhibits a critical angle ϑcmtqP > ϑcmrP, i.e., we
reach region II of Figure 9.27 for ϑiS > ϑcmtqP: The transmitted mode con-
verted qP-wave becomes inhomogeneous, it is evanescent with regard to phase
and energy because phase and energy velocity vector point into (negative)
x-direction; the magnitude of the attenuation results from the purely imag-
inary stqPz-zeroes in region II (with different signs). The imaginary part of
the negative imaginary zero varies on the quasielliptical curve plotted for re-
gion II with increasing ϑiS; it is not a hyperbola because two additional real
stqSVz-zeroes (with different signs) exist, the negative one belonging to the
(energetically) propagating transmitted qSV-wave. Region III of Figure 9.27
is characterized by the existence of four real stqSVz-zeroes with pairwise dif-
ferent signs, the previous purely imaginary stqPz-zeroes can no longer exist,
the inhomogeneous qP-wave “disappears” beyond the critical angle ϑcmtqPinh

that defines region III as incidence angle. Consequently, there is no trans-
mitted quasipressure wave. For ϑiS > ϑcmtqPinh , we observe two energetically
propagating qSV-waves qSV1 and qSV2 with different phase and energy ve-
locity: qSV1 belongs to the (negative) stqSVz-zero with larger magnitude and
qSV2 to the one with the smaller magnitude. For the underlying slowness
diagrams of Figure 9.27, we have s

(1)
S < max k̂ sqSVx(k̂) making region IV in-

accessible; its boundary is characterized by the coincidence of the two nega-
tive with the two positive stqSVz-zeroes yielding a double zero in each case
with pertinent energy velocity parallel to the boundary. That way, critical
angles ϑctqSV1

= ϑcmtqSV2
= ϑctqSV are defined; for ϑiS > ϑctqSV, we observe

energy evanescence of both qSV1,2-waves due to complex valued stqSVz-zeroes,
where the magnitude of the respective attenuation must be determined via a
slowness hyperbola as variation curve of the imaginary part of the physically
meaningful zero. Note: Even though the energy velocity of both waves has the
same direction for ϑiS > ϑctqSV, their phase velocities are differently oriented
making them distinguishable as energetically evanescent waves.

Preference direction â inclined to the boundary: As for the SH-case
(Figure 9.26), we now turn our attention to inclined slowness diagrams con-
fining ourselves to SV/qSV-diagrams (Figure 9.29) because we aim at a par-
ticular application: Figure 9.28 shows the model of a steel test specimen with
an austenitic weld that stood for extensive parameter variations for EFIT-
simulations (Hannemann 2001); the simultaneous existence of measurements
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45°-SV-transducer

cP, cS, ρ

ν, ρa

λ⊥, µ⊥

λ⏐⏐, µ⏐⏐

â

FIGURE 9.28
Model of a test specimen made of ferritic steel with a weld made of
austenitic steel: cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 · 103 kg/m3;
λ‖ + 2µ‖ = 216, λ⊥ + 2µ⊥ = 262.75, µ⊥ = 82.5, µ‖ = 129, ν = 145 GPa, ρa =
7.7999 · 103 kg/m3.

(Langenberg et al. 2000) suggests the choice of material parameters for
austenitic steel 308SS90; they differ slightly from those of austenitic steel 308
(Figure 9.27) yielding slightly different slowness diagrams. This weld is to be
tested with a 45o-SV-transducer (dimensioned for ferritic steel) as shown in
Figure 9.28; the weld boundary makes an angle of 10◦ relative to the surface
of the specimen leading to an incidence angle of 55o for the SV-wave; â is also
inclined by 10◦ with regard to the weld boundary. Hence, we face the configu-
ration of Figure 9.29 with the respective direction of siSV. Figure 9.27 reveals
the evanescence of the reflected mode converted P-wave for this particular di-
rection of siSV as well as the non-existence of the transmitted mode converted
qP-wave; we are actually only confronted with the qSV-diagram with respect
to transmitted waves. The phase matching line to the reflected SV-wave (lo-
cated at a distance srSV · ex parallel to the z-axis) creates four intersections
with the qSV-diagram, where stqSV1

and stqSV2
yield energy velocity direc-

tions pointing into the austenitic half-space: The incident SV-wave excites
two transmitted qSV-waves with different directions and magnitudes of phase
and energy velocities. We realign the coordinate system of Figure 9.29 as in
Figure 9.30 with the x, sx-axis coinciding with the weld boundary; that way,
we should have a basis to interpret the (two-dimensional) EFIT-simulation of
the test problem under concern in Figure 9.28; this is confirmed through the
wavefronts of Figure 9.31.

First: From Figure 9.29, we conclude facts about reflection, transmission,
and mode conversion of plane waves, yet, regarding the incident wave, the test
problem of Figure 9.28 is a source field problem of a transducer of finite extent
on a stress-free surface (Chapter 14), and due to the presence of the weld, a
scattering problem has to be solved for this incident field (Section 15.1.3).
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x, Sxâ

FIGURE 9.29
Slowness diagram construction of two transmitted qSV-waves at the boundary
of a homogeneous isotropic nondissipative (steel) and a homogeneous trans-
versely isotropic nondissipative (austenitic) half-space.

The formal solution via point source synthesis utilizes Green functions, not
plane waves. Yet, we may represent Green functions in terms of spatial spec-
tra of plane waves (Section 14.2.3), thus approaching our desired goal at least
verbally. In addition, the near-field evaluation of respective integral represen-
tations (Section 11.1) reveals the presence of quasiplane waves in the source
field of an aperture transducer that may be understood as wave packets in the
sense of Figure 8.14; moreover, this conception is backed by EFIT-simulations
(Figure 14.19). Therefore, we may conversely interpret the EFIT-simulations
of the transducer problem of Figure 9.28 with the help of the slowness dia-
grams of plane waves according to Figure 9.30: It is achieved in Figure 9.31.
There, we have displayed wavefronts of a two-dimensional EFIT-simulation for
three different times; these simulations are closely related to measurements195

(Langenberg et al. 2000), hence the transducer aperture is amplitude tapered
with a measured excitation distribution and not just with a rectangular func-
tion: Due to this reason, the wave packet of the incident SV-RC5(t)-pulse
does not emerge from the center of the aperture; yet it propagates at least
under 45o in the direction ŝiSV relative to the surface normal. Reaching the
weld, a reflected SV-RC5(t)-wave packet is created propagating in the direc-
tion ŝrSV. Regarding the phase propagation directions—the normals to the
phase fronts—the two transmitted wave packets coincide with the directions

195These measurements have been performed by B. Köhler of the Fraunhofer Institute for
Non-Destructive Testing in Dresden, Germany.
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x, Sx

z, Sz

SVi

SVr

qSVt2

qSVt1

â

FIGURE 9.30
Excitation of two qSV-waves in an austenitic weld with a 45◦-SV-transducer.

ŝtqSV1
and ŝtqSV2

of Figure 9.30. The pertinent different directions of the en-
ergy velocities ĉEtqSV1,2

become noticeable in the last wavefront picture of
Figure 9.31 through the drift of the wave packets in the respective directions
according to Figure 8.14, keeping the original phase surface orientations.

Reflection and transmission coefficients: We are not at all capable to
give equally “nice” analytical expressions for the reflection and transmission
coefficients for the qP/qSV-case as we could for the SH-case with (9.402) and
(9.403), yet we can systematize the approach:

• At first, we have to calculate 360◦-slowness diagrams for the material
parameters â, λ‖, µ‖, λ⊥, µ⊥, ν, ρ of the transversely isotropic half-space;
together with the diagrams for the isotropic half-space, their graphical
display illustrates the occurrence of respective wave modes as function
of the incidence angle: rP, mrSV, and tqP, mtqSV as well as mtqSV1,2
for P-incidence, and rSV, mrP as well as mtqP, tqSV, and tqSV1,2 for
SV-incidence.

• The given angle of incidence defines the phase matching line through
siP,SV · ex, namely the (real) x-components of all existing slowness vec-
tors, hence, it prescribes any possible evanescence, i.e., whether the
z-component of a particular wave mode slowness vector becomes complex.
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siSV
^

siSV
^

stqSV1
^

stqSV2
^

srSV
^

cEtqSV1
^

cEtqSV2
^

FIGURE 9.31
2D-EFIT-simulation of US-NDT of an austenitic weld: excitation of two trans-
mitted waves.

• For the given real x-component of s, we have to find the four solutions of
the fourth order polynomial

β2
1(s) + β1(s) [β2s · s + β3(s) + 2β4(s)s · â]

+
[
β2β3(s) − β2

4(s)
]
(I − â â) : s s = 0 (9.408)
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for the z-component of s (for â · ez �= 0) to determine the transmitted
wave modes, in general numerically, where β1(s), β2, β3(s), β4(s) are given
by (9.326) through (9.329). With the slowness diagrams, the real and/or
complex zeroes can be assigned to distinct wave modes.

• The physically meaningful selection of wave modes belonging to the four
sz-zeroes has to be based upon the direction of the energy velocity. To
utilize (9.349), we need the polarization vectors as Hermitian unit vectors;
even for complex slowness vectors, their calculation is performed according
to Section 8.3.2, and we explicitly obtain:196

û(s) =
s + γ(s)â√

s · s∗ + γ(s)s∗ · â + γ∗(s)s · â + |γ(s)|2 , (9.409)

where

γ(s) = −β1(s) + β2s · s + β4(s)s · â
β4(s) + β2s · â . (9.410)

• Now we can calculate the energy velocity according to (9.349) for any real
or complex slowness vector; the selection criterion for physically mean-
ingful slowness vectors stM, and hence for those transmitted wave modes
indexed tM that actually exist, and to be accounted for in the transition
conditions, reads cE(stM) · ez ≤ 0 (and not �stM ≤ 0).

• From the transition conditions

uiP,SV(R,ω, siP,S) + urP,SV(R,ω, srP,S) + umrSV,P(R,ω, smrS,P)

=
∑
tM

utM(R,ω, stM), (9.411)

ez · T
iP,SV

(R,ω, siP,S) + ez · T
rP,SV

(R,ω, srP,S)

+ ez · T
mrSV,P

(R,ω, smrS,P)

=
∑
tM

ez · T
tM

(R,ω, stM) (9.412)

for z = 0, we then obtain reflection, transmission, and mode conversion
coefficients. Of course, eventually evanescent wave modes have to be ac-
counted for in (9.411) and (9.412).

Marklein (1997), among others, discusses the generalization of this procedure
to arbitrary anisotropic half-spaces; even numerical examples are given. It

196By the way, for complex slowness vectors, the SH-polarization unit vector reads in
generalization of (8.270):

ûSH(s) =
s × â√

s · s∗ − s s∗ : â â
,

because we then have ûSH(s) · û∗
SH(s) = 1.
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should be pointed out that the respective work of Marklein consequently con-
tinues (to a large extent) with the coordinate-free notation as introduced into
elastodynamics by Fellinger (1991) and utilized in this elaboration; once used
to it, it provides a much clearer lay out than the index notation in the stan-
dard literature (Auld 1973; Helbig 1994; de Hoop 1995; Nayfeh 1995; Royer
and Dieulesaint 2000).



10
Rayleigh Surface Waves

10.1 Planar Surfaces

Inhomogeneous plane waves as solutions of the (Fourier transformed) wave
equation for isotropic nondissipative materials (Section 8.2) have found phys-
ical realizations concerning reflection and transmission of plane waves at the
planar boundary between such materials or at their planar (stress-free) sur-
face, respectively (for electromagnetic waves, this topic is called Fresnel’s re-
flection): The existence of up to three critical angles yields an equal number of
evanescent plane waves (Sections 9.1.2, 9.2.1, and 9.2.2). Plane waves on one
selected side of the boundary exhibit at most two critical angles [Figures 9.19
(SVc)–(SVa′)], one for the pressure and one for the shear wave, where the
amplitudes of the resulting evanescent waves are given by complex transmis-
sion coefficients. However, a stress-free surface only allows for one evanescent
pressure wave with an amplitude given by a complex mode conversion coeffi-
cient. The question leading to Rayleigh surface waves is the following: Does
the homogeneous wave equation allow for a solution in terms of the super-
position of two evanescent plane waves along the stress-free surface of an
isotropic nondissipative material, namely in terms of the superposition of an
inhomogeneous pressure and an inhomogeneous shear wave? As for the case
of a boundary separating two materials, both waves should propagate with
the same phase velocity along the surface, however with different attenuation
constants. What we already know: Neither an incident plane pressure nor an
incident plane shear wave can excite such a “free” surface wave!

Hence, we make the following ansatz for a time harmonic inhomogeneous
plane wave:

u(R,ω,k) = uP(ω) e jkP·R ûP(kP) + uS(ω) e jkS·R ûSV(kS), (10.1)

where the amplitude ratio uP(ω)/uS(ω) must be determined from the stress-
free boundary condition. We assume the shear partial wave in (10.1) to be
SV-polarized since a horizontally polarized shear wave is decoupled from either
an SV- or a P-wave. Note: The superposition of these partial waves resulting
in a Rayleigh wave is neither a pressure nor a shear wave because (10.1) is
neither divergence- nor curl-free. The evanescence of both partial waves is
expressed by the complex phase vectors

377
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kP,S = �k + j�kP,S, (10.2)

where we have

�k · �kP,S = 0 (10.3)

as orthogonality of the phase propagation and the attenuation direction due
to the lossless material (Equation 8.153). According to our assumption, the
phases of both partial waves of (10.1) should propagate into the same direction
with the same magnitude (with the same phase velocity), hence kP and kS
should have the same real part vector �k. Due to the dispersion relations for
the isotropic nondissipative material

kP,S · kP,S = k2
P,S, (10.4)

we have

|�kP,S|2 = |�k|2 − k2
P,S

= k2
R − k2

P,S (10.5)

for the magnitudes of the imaginary part vectors under the assumption (10.3);
we have used the short-hand notation kR—R for Rayleigh—for the wave num-
ber |�k| of the surface wave we are searching for. To ensure a real valued
|�kP,S|, we must have kR > kP,S, i.e., the phase velocity of the Rayleigh wave
will turn out to be smaller than the velocity of pressure and shear waves.

As already mentioned, the partial P-wave of (10.1) should be a curl-free
inhomogeneous pressure and the partial SV-wave should be a divergence-free
inhomogeneous shear wave. Accordingly, Equations 8.159 and 8.164 apply for
the orientation of real and imaginary part vectors of the complex polarization
vectors ûP,SV(kP,S) with ûSV = ûS1:

ûP(kP) =
kP√

kP · k∗
P

, (10.6)

ûSV(kS) =
ûS2 × kS√

kS · k∗
S

; (10.7)

here, ûS2 is a real valued unit vector with ûS2 · n = 0 and ûS2 · �k = 0,
where n denotes the normal to the surface. Even though, as already stated,
a Rayleigh wave may not be excited by an incident plane wave, we stay with
the “reflection related” choice of a cartesian coordinate system and configure
the phase propagation vector �k as well as the unit vector ûS2 as follows
(Figures 9.1 and 9.7):

�k = −kR ex (10.8)
ûS2 = −ey; (10.9)
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^
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FIGURE 10.1
Complex polarization vectors of (a) the partial pressure and (b) the partial
shear constituents of a Rayleigh surface wave.

since the attenuation vectors �kP,S must point into the material half-space
z > 0, we assess

�kP,S = γP,Sez (10.10)

with

γP,S =
√

k2
R − k2

P,S > 0. (10.11)

With (10.6) and (10.7), we obtain polarization vectors as sketched in Fig-
ure 10.1 (note Figure 8.12 while considering Footnote 151). The particle ve-
locity vector of the potential Rayleigh wave then reads as

uR(R,ω,−kRex)

= uP(ω) e−γPz −kRex + jγPez√
2k2

R − k2
P

e−jkRx

︸ ︷︷ ︸
= uP(x, z,ω,−kRex)

−uS(ω) e−γSz jγSex + kRez√
2k2

R − k2
S

e−jkRx

︸ ︷︷ ︸
= uSV(x, z,ω,−kRex)

,

(10.12)

where we can rely on the stress-free boundary condition ez · T
R
(RS ,ω,

−kRex) = 0, RS · ez = 0, to determine the phase velocity cR = ω/kR and the
amplitude ratio uP(ω)/uS(ω). With (8.121) and (8.122), we find

ez · T
R
(RS ,ω,−kRex) · ez

= jλ [kP · uP(x, 0,ω,−kRex) + kS · uSV(x, 0,ω,−kRex)]
+ 2jµ [kP · ezuP(x, 0,ω,−kRex) · ez + kS · ezuSV(x, 0,ω,−kRex) · ez]

(10.13)
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for the normal component ez · T
R
(RS ,ω,−kRex) · ez and

ez · T
R
(RS ,ω,−kRex) × ez

= jµ
[
kP · ezuP(x, 0,ω,−kRex) × ez + uP(x, 0,ω,−kRex) · ezkP × ez

+ kS · ezuSV(x, 0,ω,−kRex) × ez + uSV(x, 0,ω,−kRex) · ezkS × ez

]
(10.14)

for the tangential (vector) component ez · T
R
(RS ,ω,−kRex) × ez. Since

phase matching is already assured through the joint factor e−jkRx of uP and
uSV, we obtain a homogeneous system of equations equating (10.13) and
(10.14) to zero197 for the amplitudes uP(ω) and uS(ω); this system has a
nontrivial solution only if its coefficient determinant is vanishing, hence a con-
ditional equation for the Rayleigh wave number kR and the Rayleigh slowness
sR = 1/cR = kR/ω emerges after some calculation:(

2s2
R − s2

S
)2 − 4s2

R

√
s2
R − s2

S

√
s2
R − s2

P = 0. (10.15)

As a matter of fact, this equation has a real valued solution sR > sP,S—it
is shown by Achenbach (1973) using complex function analysis—and it is
explicitly found applying Cardani’s formulas (Vinh and Ogden 2004).

Utilizing the Rayleigh equation we immediately obtain the (frequency-
dependent) amplitude ratio from (10.14)

uP(ω)
uS(ω)

=
1

2jkRγP

√
2k2

R − k2
S

√
2k2

R − k2
P, (10.16)

and hence

uRx(x, z,ω,−kRex) =
jγS√

2k2
R − k2

S

uS(ω)
(

2k2
R − k2

S

2γPγS
e−γPz − e−γSz

)
e−jkRx,

(10.17)

uRz(x, z,ω,−kRex) =
kR√

2k2
R − k2

S

uS(ω)
(

2k2
R − k2

S

2k2
R

e−γPz − e−γSz

)
e−jkRz

(10.18)

for the x- and z-components of the Rayleigh wave particle velocity. Both com-
ponents are displayed in Figure 10.2 for steel as function of z. Since uRx is
purely imaginary due to the j-factor, and since the magnitudes of the compo-
nents are different, the Rayleigh wave is elliptically polarized in the xz-plane
(not in a plane perpendicular to the propagation direction); a similar behavior
has already been observed for “Fresnel’s” evanescent waves (e.g., Figure 9.8).

197The excitation by an incident wave is missing.
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uRx(0, z, ω, – kRex)/j

uRz(0, z, ω, – kRex)

1 11
kRz

FIGURE 10.2
Particle displacement components of a Rayleigh surface wave (cP = 5900 m/s,
cS = 3200 m/s, cR = 2963 m/s).

10.2 Lightly Curved Surfaces

For lightly curved stress-free surfaces, we can equally prove the existence of
Rayleigh surface waves with the same phase velocity cR as for planar surfaces
utilizing the formalism of the preceding section. For the sake of simplicity, we
postulate a circular cylindrical surface with radius a � λP,S (Figure 10.3) and
introduce the orthogonal trihedron eρ, es, ez of the so-called Dupin coordinates
(orthogonal curvilinear surface coordinates combined with the normal): ρ is

s

es
cP, S

eρ

ez

a >> λP, S

ρ

FIGURE 10.3
Dupin coordinates eρ, es, ez of a circular cylindrical surface.
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the radial variable counted from the boundary at ρ = 0 into the (nondissipa-
tive homogeneous isotropic) cP,S-material, s is an arc length variable, and ez

characterizes the cylinder axis.
Again, a Rayleigh wave is found by superimposing inhomogeneous P- and

SV-waves with wave number vectors

kP,S = kRes + jγP,Seρ (10.19)

that obviously satisfy the necessary constraint

�kP,S · �kP,S = 0. (10.20)

The dispersion relation corresponding to (10.4) must be found from the
reduced wave equation in Dupin coordinates. Therefore, we come back
to two-dimensional Helmholtz potentials Φ(ρ, s, ω, kR) and Ψ(ρ, s, ω, kR) =
Ψ(ρ, s, ω, kR)ez with

∆Φ(ρ, s, ω, kR) + k2
PΦ(ρ, s, ω, kR) = 0, (10.21)

∆Ψ(ρ, s, ω, kR) + k2
SΨ(ρ, s, ω, kR) = 0, (10.22)

adopting the ∆-operator according to

∆ =
∂2

∂ρ2 +
1

ρ + a

∂

∂ρ
+

a2

(ρ + a)2
∂2

∂s2 (10.23)

from circular cylindrical coordinates: Obviously, we have s = aϕ and
ρ = r − a. With the ansatz

Φ(ρ, s, ω, kR) = Φ0(ω) e jkRs−γPρ, (10.24)
Ψ(ρ, s, ω, kR) = Ψ0(ω) e jkRs−γSρ (10.25)

for locally plane inhomogeneous P- and SV-waves traveling along the surface
with the wave number vectors (10.19), we find

γ2
P,S − 1

ρ + a
γP,S − a2

(ρ + a)2
k2
R + k2

P,S = 0. (10.26)

The ansatz (10.24) and (10.25) would only be a solution of (10.21) and (10.22)
if the Rayleigh wave number kR would be ρ-dependent—logical: the larger ρ

the faster the wave has to be in order not to be delayed—in that case, kR(ρ)
would also have to be differentiated while being inserted into the differential
equations. Hence, we confine ourselves to ρ � 0—the resulting Rayleigh wave
should be a surface wave—and obtain

γ2
P,S − 1

a
γP,S − k2

R + k2
P,S = 0. (10.27)

Figure 10.2 additionally exhibits that γP,S � 1/λP,S, i.e., γ2
P,S − γP,S/a is ap-

proximately given by (1 − λP,S/a)/λ2
P,S, where we have neglected the term
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λP,S/a for a � λP,S. Therefore, we find the same dispersion relation for lightly
curved surfaces

k2
R = k2

P,S + γ2
P,S (10.28)

as for planar surfaces. If we assume ρ � 0 after having performed the deriva-
tives ∇Φ and ∇ × Ψ with

∇ = eρ

∂

∂ρ
+

a

ρ + a
es

∂

∂s
, (10.29)

we obtain

uR(ρ, s, ω, kR) = uP(ω) e jkRs−γPρ ûP + uS(ω) e jkRs−γSρ ûSV, (10.30)

where ûP and ûSV are given by

ûP =
jγPeρ + kRes√

2k2
R − k2

P

, (10.31)

ûSV =
−kReρ + jγSes√

2k2
R − k2

S

. (10.32)

Comparison with (10.12) reveals that we obtain an expression for uR in the
eρes-coordinate system of the lightly curved surface that is equally structured
as the one for planar surfaces. Once more assuming ρ � 0 after the calculation
of the stress tensor components

T
R

= λ I∇ · uR + µ
[
∇uR + (∇uR)21

]
, (10.33)

and—as in the dispersion equation—neglecting terms of the order198 γP,S/a
and kR/a with respect to quadratic or product terms of kR and γP,S the
boundary condition eρ · T

R
= 0 for ρ = 0 yields a homogeneous system of

equations for the components eρ · T
R

· eρ and eρ · T
R

· es, leading once more
to the particle displacement components (10.7) and (10.8) and the Rayleigh
equation via equating the determinant to zero.

198These terms result from divergence and gradient calculation of ûP,SV in eρes-
coordinates. It is only within this approximation that the first term of (10.30) represents a
pressure wave, and the second one a shear wave.
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11
Plane Wave Spatial Spectrum

Due to their infinite energy, plane waves are not immediately appropriate for
applications in US-NDT. Yet, as solutions of homogeneous wave equations,
they may be superimposed with different amplitudes into arbitrary propaga-
tion directions: We obtain a spatial spectrum of plane waves that is literally
a spatial spectrum because the propagation directions of the respective plane
waves are given by the Fourier vector K as conjugate vector to R! Trans-
ducer radiation fields and Gaussian beams may be adequately described by
these spectra (Chapters 14 and 12). Formally, we find the spatial plane wave
spectrum by Fourier transforming the reduced wave equations with respect
to two Cartesian coordinates; consequently, the resulting two-dimensional in-
verse Fourier integral has to be interpreted accordingly. To avoid unnecessary
algebraic ballast, we will first deal with scalar acoustic wave spectra.

11.1 Acoustic Plane Wave Spatial Spectrum

11.1.1 Plane wave spatial spectrum

We start with the homogeneous acoustic Helmholtz equation (5.40)

∆p(x, y, z,ω) + k2p(x, y, z,ω) = 0 (11.1)

for the frequency spectrum of the acoustic pressure p(x, y, z,ω) in cartesian
coordinates and take its Fourier transform with regard x and y:

∂2

∂z2 p̂(Kx, Ky, z, ω) + (k2 − K2
x − K2

y)p̂(Kx, Ky, z, ω) = 0. (11.2)

As solution of this one-dimensional differential equation, we can immediately
write down a plane wave propagating in +z-direction

p̂(Kx, Ky, z, ω) = p̂0(Kx, Ky,ω) e jKz(Kx,Ky,ω)z (11.3)

with the wave number

Kz(Kx, Ky,ω) =
√

k2 − K2
x − K2

y , (11.4)
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and the arbitrary amplitude p̂0(Kx, Ky,ω) for z = 0. The two-dimensional
inverse Fourier integral

p(x, y, z,ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
p̂0(Kx, Ky,ω)e jKz(Kx,Ky,ω)zejKxx+jKyy dKxdKy

(11.5)

may immediately be written as superposition of plane waves according to

p(x, y, z,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
p̂0(Kx, Ky,ω) e jK·R dKxdKy (11.6)

if a phase vector

K = Kxex + Kyey + Kzez

= Kxex + Kyey +
√

k2 − K2
x − K2

y ez (11.7)

is defined that satisfies the dispersion relation

K · K = k2. (11.8)

Since −∞ < Kx < ∞, −∞ < Ky < ∞, and due to

Kz =

⎧⎪⎨⎪⎩
√

k2 − K2
x − K2

y for K2
x + K2

y ≤ k2

±j
√

K2
x + K2

y − k2 for K2
x + K2

y > k2,
(11.9)

K may become a complex vector

K = �K + j�K (11.10)

for K2
x + K2

y > k2; its imaginary part

�K =
√

K2
x + K2

y − k2 ez (11.11)

has to be chosen with a positive sign to ensure an exponential attenuation

e j	K·R−
K·R (11.12)

in the half-space z > 0 (Figure 8.11). The dispersion relation (11.8) allows us
to calculate Kz according to

K2
x + K2

y + K2
z = k2 (11.13)

for Kx, Ky-values in the interior of the circle K2
x + K2

y ≤ k2—resulting in
propagating spectral components of the spatial plane wave spectrum (11.6)—
and Kz according to

K2
x + K2

y − K2
z = k2 (11.14)
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FIGURE 11.1
Plane wave spatial spectrum.

for Kx, Ky-values in the exterior of the circle K2
x + K2

y ≤ k2—resulting in
evanescent spectral components. Figure 11.1 illustrates these facts for Ky = 0;
we have encountered them numerous times in Chapter 9 for a single plane wave
with phase vector k. Here, we integrate over all phase vectors K according to
(11.7), where each spatial spectral component, i.e., each single propagating or
evanescent plane wave, is given an arbitrary amplitude p̂0(Kx, Ky,ω). Accord-
ing to (11.5), this amplitude is the two-dimensional Fourier transform of the
pressure distribution p(x, y, z = 0,ω) = p0(x, y,ω) in the xy-plane for z = 0:

p̂0(Kx, Ky,ω) =
∫ ∞

−∞

∫ ∞

−∞
p0(x, y,ω) e−jKxx−jKyy dxdy. (11.15)

Therefore, we can finally interpret (11.6) like so: A given field distribution in
the xy-plane is “transported” into the half-space z > 0 by means of a spa-
tial spectrum of plane waves; or: Equation 11.6 is the mathematical plane
wave spatial spectrum representation of the radiation field in the half-space
z > 0 excited by an “aperture distribution” prescribed in the xy-plane for
z = 0. This illustrates the relevance of such a representation for the calcula-
tion of transducer radiation fields; we only have to consider a physically exist-
ing aperture placed on a physically existing half-space with a planar surface
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(Chapter 14). Note: Even though the contribution of the evanescent spectral
components appears to be marginal, it is absolutely necessary to ensure the
completeness of the spectrum (Tygel and Hubral 1987).

By the way: Equation 11.6 becomes applicable for the half-space z < 0 if
K is given a negative z-component for the propagating spectral waves and if
�K is equally given a negative z-component for the evanescent waves, i.e., in
(11.3), we choose the negative z-direction as propagation direction matching
the attenuation appropriately.

11.1.2 Propagator as spatial filter

The role of the evanescent waves becomes particularly apparent with another
interpretation of the integral representation (11.5), namely with the interpre-
tation of the propagator

P̂ (Kx, Ky, z, ω) = e jz
√

k2−K2
x−K2

y (11.16)

as spatial filter. Simultaneously, this interpretation implies an appropriate
calculation of sound fields.

Regarding the Fourier variables Kx and Ky, the propagator P̂ (Kx, Ky, z, ω)
represents a spatially varying frequency-dependent filter of the Fourier trans-
formed initial field distribution p̂0(Kx, Ky,ω). The influence of the filter
parameters z and ω are discussed with the help of Figure 11.2 clearly ex-
hibiting that

|P̂ (Kx, Ky, z, ω)| =

⎧⎨⎩1 for k ≥
√

K2
x + K2

y

e−z
√

K2
x+K2

y−k2
for k <

√
K2

x + K2
y

(11.17)

exponentially suppresses the spatial frequencies contained in p̂0(Kx, Ky,ω)

for k <
√

K2
x + K2

y and large values of z.
For a simplified graphical display of these facts in Figure 11.2, we choose

a two-dimensional problem, i.e., we assume p0(x, y,ω) = p0(x,ω) being in-
dependent of y with the consequence p̂0(Kx, Ky,ω) = p̂0(Kx,ω)δ(Ky). As
“aperture distribution” for z = 0, a rectangular function p0(x,ω) = qa(x)
should be fine, it is depicted in Figure 11.2 together with its spatial spectrum
p̂0(Kx,ω) = 2 sin aKx/Kx; the aperture width 2a appears in the zero loca-
tions of the sinc function with the first one at Kx = ±π/a. Due to (11.17),
the transmission region of the spatial filter (11.16) for z > 0 is essentially
determined by the wave number k: The boundaries of the spatial low-pass
filter are located at Kx = ±k. Due to our actual example ka = 10, we have
3π/a < ka < 4π/a allowing for a respective number of oscillations of the sinc
function to pass the filter; we nicely recognize the significant exponential at-
tenuation of the spatial filter beyond Kx = ±k already for z = 0.5a, and for
z = a, we can almost speak of a perfect low-pass filter. According to the spec-
tral superposition of plane waves, this obviously indicates that evanescent
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p0(x, ω) = qa(x)

P(Kx, ω)^

p0(Kx, ω) = 2 sin aKx
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^

z = 0

z = 0.5a

z = a

z

k Kx

k Kx

Kx

x
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–k

–a

– π
a

a

π
a

P(Kx, ω) ejz k2 – K2
x=^ √

FIGURE 11.2
Interpretation of the spatial plane wave spectrum as spatial filter (ka = 10).

waves have already decayed. Figure 11.3 displays the result of the spatial fil-
tering of the sinc function for ka = 10 and ka = π as function of kz in terms of
a three-dimensional plot; it is apparent that the interaction of aperture width
and filter bandwidth determines the structure of p̂(Kx, z, ω) as function of z
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Kx

k z

Kx

k z

p(Kx, z, ω)^

p(Kx, z, ω)^

FIGURE 11.3
Spatial spectrum of a strip-like radiating aperture; 0 ≤ k|z| ≤ 10ka; top:
ka = 10, bottom: ka = π.

and, naturally, the structure of p(x, z,ω) via the inverse Fourier transform
with regard to Kx: In Figure 11.4, the magnitude of p(x, z,ω) is displayed
as function of x and z for the two cases ka = 10, and ka = π. For ka = 10,
we recognize a well-structured near and transition region finally ending up—
for x = 0—in the 1/

√
z-decay of the amplitude of the far-field (square root

of z because Figures 11.3 and 11.4 stand for a two-dimensional problem). For
ka = π, the magnitude of the far-field parallel to the x-axis looks like a sinc
function, i.e., like the Fourier transform of the initial aperture distribution for
z = 0; we will later on indeed prove this evaluating (11.5) with the stationary
phase method, and to illustrate it properly, Figure 11.2 additionally shows
the imaginary part of the propagator (dashed curve): Obviously, it exhibits
an increasing oscillatory behavior at the filter boundaries with increasing z,
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x

k z

p(x, z, ω)

x

k z

p(x, z, ω)

FIGURE 11.4
Time harmonic radiation field of a strip-like aperture; 0 ≤ k|z| ≤ 10ka; top:
ka = 10, bottom: ka = π.

while it remains stationary in the vicinity of Kx = 0. For ka = π, Figure 11.4
teaches us—the width 2a of the initial rectangular distribution is just as big
as one wavelength—that the far-field is nothing but the Green function of a
quasipoint-(here: line-)source (Sections 13.4.1 and 14.1.2).

11.1.3 Approximate evaluation with the stationary phase
method

One-dimensional inverse Fourier integrals: We emphasized the conve-
nience of the spatial plane wave spectrum to represent transducer radiation
fields mathematically. Since a transducer has a finite lateral extension, we
could assume an aperture distribution p0(x, y,ω) with a compact support,
i.e., being zero outside the rectangle qa(x)qb(y). Then, we can choose a field
observation point R with R � a, b, and simultaneously kR � 1, implying the
relevant assumptions for a far-field approximation (compare Section 13.1.3).
Figure 11.4 (top) suggests that such an approximate evaluation of the inverse
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–k k Kx

FIGURE 11.5
Magnitude (bold face) and imaginary part of the propagator for kz = 50
(z = 5a).

Fourier integral (11.5) would produce something like the Fourier transform
of the aperture distribution. The method of stationary phase is based upon
the strong oscillatory behavior of the propagator for kz � 1 close to the filter
boundaries, whereas it remains comparatively stationary for Kx, Ky in the
vicinity of the origin. Figure 11.2 indicates this behavior already for small kz,
and Figure 11.5 is convincing for kz = 50; simultaneously, this figure confirms
that evanescent waves have already decayed and do no longer contribute. In-
sofar, we neglect exactly these spatial components in (11.5)—more precisely:
in the two-dimensional version of (11.5), i.e., in the one-dimensional inverse
Fourier integral

p(x, z,ω) =
1

2π

∫ ∞

−∞
p̂0(Kx,ω) e jKxx+jKzz dKx; (11.18)

hence:

p(x, z,ω) � 1
2π

∫ k

−k

p̂0(Kx,ω) e jKxx+jKzz dKx; (11.19)

Kz is real valued in the interval −k ≤ Kx ≤ k. In the far-field, the obser-
vation direction plays the essential role suggesting the introduction of polar
coordinates

x = ρ sin θ, (11.20)
z = ρ cos θ (11.21)

in the xz-plane (Figure 11.6:  = ρ sin θex + ρ cos θez). Our cartesian exez-
bipod is equally used for cartesian K-space coordinates (Figure 11.6), i.e.,
we put

Kx = k sin θK , (11.22)
Kz = k cos θK . (11.23)

Consequently, the integral (11.19) is written as:

p(x, z,ω) � k

2π

∫ π/2

−π/2
p̂0(Kx,ω) e jkρ cos(θ−θK) cos θK dθK . (11.24)
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xex

ez
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FIGURE 11.6
Polar coordinates in the spatial and spectral domain.

For kρ � 1, the essential contributions arise from the neighborhood of the
stationary phase point defined by

d
dθK

cos(θ − θK) = sin(θ − θK) (11.25)

being zero; it follows θK = θ, i.e., the phase is stationary for a spatial spectral
component if we observe exactly in this direction, or, differently expressed,
that plane wave within the spatial spectrum propagating into the observation
directions mostly contributes to the integral. Therefore, we truncate the Taylor
series

cos(θ − θK) = 1 − 1
2

(θ − θK)2 (11.26)

after the quadratic term and calculate

pfar(ρ, θ,ω) =
k

2π
cos θ e jkρp̂0(k sin θ,ω)

∫ π/2

−π/2
e−j kρ

2 (θ−θK)2dθK︸ ︷︷ ︸
=
∫ θ+π/2

θ−π/2
e−j kρ

2 θ2K dθK

. (11.27)

Now we wish to extend the integration boundaries in (11.27) to infinity in order
to make the correspondence (2.280) applicable; this should be approximately
feasible because the strongly oscillating integrand for kρ � 1 would make
sure to cancel the contributions for θK −→ ±∞; yet the resulting integral
does not converge in the sense of classical analysis. Therefore, we “smuggle”
a convergence generating factor in calculating
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lim
α′→0

∫ ∞

−∞
e− 1

4α
ω2

e−jωt dω

∣∣∣∣
t=0

= lim
α′→0

2π

√
α

π

= 2π

√
−j
πα′′ (11.28)

with a complex valued 1/α = α′ + jα′′. Application to (11.27) yields

pfar(ρ, θ,ω) = k cos θ p̂0(k sin θ,ω)
e jkρ−j π

4√
2πkρ

. (11.29)

In fact, in the far-field, we “see” the Fourier transform of the aperture distribu-
tion according to Figure 11.4 (top). The term e jkρ/

√
ρ represents a cylindrical

wave with an amplitude proportional to cos θ p̂0(k sin θ,ω) impressed in the
direction θ. The respective representation of source fields with the help of
Green functions is given in Sections 13.1.4 and 14.1.2.

Two-dimensional inverse Fourier integrals: Schmerr (1998) explicitly
performs the evaluation of two-dimensional inverse Fourier integrals199

p(x, y, z,ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
p̂0(Kx, Ky,ω) e jz

√
k2−K2

x−K2
ye jKxx+jKyy dKxdKy

(11.30)

with the stationary phase method; spherical coordinates are introduced in the
spatial domain, and the resulting integral

p(R, ϑ,ϕ,ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
p̂0(Kx, Ky,ω)

× e jR cos ϑ
√

k2−K2
x−K2

y+jKxR sin ϑ cos ϕ+jKyR sin ϑ sin ϕ dKxdKy (11.31)

is asymptotically evaluated for kR � 1. We cite the result:

pfar(R,ϑ,ϕ,ω) = − j
2π

k p̂0(k sinϑ cos ϕ, k sinϑ sinϕ,ω) cos ϑ
e jkR

R
. (11.32)

11.2 Elastic Plane Wave Spatial Spectrum

The spatial spectrum of elastic plane waves is readily obtained utilizing the
Helmholtz decomposition (7.28) of the particle displacement; the homogeneous

199Yet, in the last line of his Equation E.21, a minus sign is missing.



K12611 Chapter: 11 page: 395 date: January 6, 2012

Plane Wave Spatial Spectrum 395

scalar Helmholtz equation for Φ(x, y, z,ω) is solved analogous to (11.6):

Φ(x, y, z,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Φ̂0(Kx, Ky,ω) e jKP·R dKxdKy, (11.33)

where

KP = Kxex + Kyey +
√

k2
P − K2

x − K2
y︸ ︷︷ ︸

= KPz

ez; (11.34)

in Cartesian coordinates, we find the solution of the homogeneous vector
Helmholtz equation for Ψ(x, y, z,ω) component wise as (11.33):

Ψ(x, y, z,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Ψ̂0(Kx, Ky,ω) e jKS·R dKxdKy, (11.35)

where

KS = Kxex + Kyey +
√

k2
S − K2

x − K2
y︸ ︷︷ ︸

= KSz

ez. (11.36)

The spatial spectrum Φ̂0(Kx, Ky,ω) is the two-dimensional Fourier transform
of the arbitrarily given aperture distribution Φ0(x, y,ω) = Φ(x, y, z = 0,ω) of
the pressure wave spectrum; yet, the spatial shear wave spectrum (11.35)
has to satisfy the constraint ∇ · Ψ(x, y, z,ω) = 0 (Equation 7.29), and this is
carried over for z = 0 to (the hat does not characterize a unit vector)

KS · Ψ̂0(Kx, Ky,ω) = 0 (11.37)

in the spectral domain, i.e., only two (Cartesian) components of Ψ0(x, y,ω) =
Ψ(x, y, z = 0,ω) can be arbitrarily prescribed. The evaluation of the differ-
entiations (7.28) on (11.33) and (11.35) finally yields the spatial spectrum of
elastic plane pressure and shear waves:

u(x, y, z,ω)

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

×
[
jKPΦ̂0(Kx, Ky,ω) e jKP·R + jKS × Ψ0(Kx, Ky,ω) e jKS·R

]
dKxdKy.

(11.38)

In Section 14.2.2, we will utilize the representation (11.38) to calculate the
radiation field of a given strip-like normal as well as tangential force density
on the stress-free surface of an elastic half-space. The respective far-field eval-
uation with the stationary phase method gives us the Miller–Pursey point
directivities (Miller and Pursey 1954).
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12
Ultrasonic Beams and Wave Packets

US-NDT language often uses the term “ultrasonic beam” instead of “ultra-
sonic wave”; it is advantageous that we may distinguish between “beams” and
“rays” for a correct mathematical definition of respective approximate solu-
tions of homogeneous wave equations: Basically, rays come as generalization of
time harmonic plane waves to time harmonic locally plane waves in inhomoge-
neous materials—they are geometric trajectories of a wave normal—whereas
time harmonic beams are paraxial solutions of homogeneous reduced wave
equations propagating along rays and keeping their functional, for example,
Gaussian, structure; as wave packets or pulsed beams, they represent respec-
tive impulse solutions physically visible in the time domain. Beams have a lot
of conceptual, mathematical, and practical benefits as compared to rays.

12.1 Gaussian Beams as Paraxial Approximation of a
Spatial Plane Wave Spectrum

In homogeneous isotropic materials, the plane wave spatial spectrum as solu-
tion of a homogeneous Helmholtz equation (Section 11.1)

∆p(x, y, z,ω) + k2p(x, y, z,ω) = 0 (12.1)

offers a simple access to scalar acoustic Gaussian beams accomplishing the
paraxial approximation in the solution. Another access is offered by the im-
mediate parabolic approximation of the hyperbolic wave equation with the
subsequent exact solution; we refer to it later on.

A two-dimensional Fourier transform of (12.1) with regard to x and y
leads to

∂2

∂z2 p̂(Kx, Ky, z, ω) + (k2 − K2
x − K2

y)p̂(Kx, Ky, z, ω) = 0; (12.2)

the solution is

p̂(Kx, Ky, z, ω) = p̂0(Kx, Ky,ω) e jKzz (12.3)

with

Kz =
√

k2 − K2
x − K2

y (12.4)

397
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and arbitrarily chosen amplitude p̂0(Kx, Ky,ω) is a plane wave propagat-
ing into positive z-direction with wave number Kz (Section 11.1). The two-
dimensional inverse Fourier transform of (12.3) according to

p(x, y, z,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
p̂0(Kx, Ky,ω) e jKzz e jKxx+jKyy dKxdKy

(12.5)

reveals this integral representation as solution “spatial plane wave spectrum”
of (12.1) propagating from the Fourier transformed200 “aperture” distribution
Fxy{p(x, y, 0,ω)} = p̂0(Kx, Ky,ω) in the plane z = 0 with the phase vectors
K = Kxex + Kyey + Kzez into the half-space z > 0 (Figure 11.1). We arrive
at the paraxial approximation of (12.5) assuming that the maximum geomet-
ric extension of the “aperture” p(x, y, 0,ω)—denoting it by 2a—is large with
regard to the wavelength, i.e., that the high-frequency approximation ka � 1
holds; due to the uncertainty relation of the Fourier transform, the Fourier
variables Kx and Ky being conjugate to the “aperture” variables x and y sat-

isfy the constraint k �
√

K2
x + K2

y , i.e., summation only affects those propa-
gating spectral components whose Kz is only slightly different from k, that is
to say, whose K-vector almost points into ez-direction being paraxial in this
sense (Figure 11.1). Hence, the approximation

Kz � k − K2
x + K2

y

2k
(12.6)

is suggested that has

ppax(x, y, z,ω) =
1

(2π)2
e jkz

∫ ∞

−∞

∫ ∞

−∞
p̂0(Kx, Ky,ω)

× e−j z
2k (K2

x+K2
y) e jKxx+jKyy dKxdKy (12.7)

as consequence; we may stay with the infinite integration boundaries because
presetting of p̂0(Kx, Ky,ω) arranges for a respective limitation of the inte-
gration interval. For a further analytical evaluation of (12.7), we have to pre-
scribe p̂0(Kx, Ky,ω), and consequently ppax(x, y, 0,ω) explicitly: We choose
the Gaussian Fourier spectrum

p̂0(Kx, Ky,ω) = p0(ω)
π

α
e− 1

4α(ω) (K
2
x+K2

y) (12.8)

because, in that case, Equation 12.7 is a two-dimensional inverse Fourier in-
tegral of a two-dimensional Gauss function that is explicitly known201 with
(2.280). The Gaussian “aperture” distribution

ppax(x, y, 0,ω) = p0(x, y,ω) = p0(ω) e−α(ω)(x2+y2) (12.9)

200We put “aperture” in quotes to indicate that it is not a physically existing field dis-
tribution within an aperture but the cross-section profile of a Gaussian spectrum of plane
waves in the xy-plane.
201Being a two-dimensional transform, the factor

√
π/α appears twice.
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belongs to (12.8), where α(ω) is a frequency-dependent parameter that can
be played with; hence, we speak of time harmonic Gaussian beams (Ishimaru
1991; Heyman 1994; Heyman and Felsen 2001).

Based on the rotational symmetry in the xy-plane,202 we may also write
the Gaussian distribution (12.9) as

p0(x, y,ω) = p0(ω) e−α(ω)r2
. (12.10)

Assuming α(ω) to be a complex valued parameter

α(ω) = α′ + jωα′′, α′ > 0, (12.11)

the time function

p0(x, y, t) = e−α′r2
p0(t + α′′r2) (12.12)

belongs to (12.10). With α′, we control the geometric extension of the “aper-
ture,” and with α′′, an r-dependent precipitate radiation of the p0(t)-pulse
with regard to t = 0. We now want to adjust this timely lead in a way that
each impulse p0(t + α′′r2) arrives at the same time at the axial observation
point R = Rfez, the so-called focus point; to achieve this, the travel time dif-
ference

√
R2

f + r2/c − Rf/c for “aperture” points r �= 0 must be compensated
by α′′ with respect to r = 0. For r � Rf , we may approximate this travel time
difference according to √

R2
f − r2

c
− Rf

c
� 1

2cRf
r2 (12.13)

resulting in

α′′ =
1

2cRf
. (12.14)

With α′ = 1/a2 � k2, we ensure that the extension of the “aperture” is ap-
proximately 2a with ka � 1 finally yielding

α(ω) =
1
a2 + j

1
2Rf

k. (12.15)

With Rf � a, we satisfy the necessary requirement that (12.13) holds; due
to the paraxial approximation, the real part of α(ω) is in fact also frequency
dependent because ka � 1.

With (12.15), we can now calculate

ppax(x, y, z,ω) = p0(ω)
π

α(ω)
e jkz 1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
e−( 1

4α(ω)+j z
2k )(K2

x+K2
y)

× e jKxx+jKyy dKxdKy (12.16)

202The rotational symmetry characterizes this Gaussian beam as stigmatic; we meet astig-
matic Gaussian beams in the next section.
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as a two-dimensional inverse Fourier integral; we find

ppax(x, y, z,ω) = p0(ω)
β(z,ω)
β(0,ω)

e−β(z,ω)r2
e jkz (12.17)

with

β(z,ω) =
α(ω)

1 + j2α(ω)
k z

. (12.18)

Equation 12.17 is the (approximate) solution “paraxial Gaussian beam” of the
Helmholtz equation (12.1).

With the separation of β(z,ω) into real and imaginary parts,

�β(z, ω) =
1
a2

1(
1 − z

Rf

)2
+ z2

R2
f

1
γ2
f (ω)

, (12.19)

�β(z, ω) =
γf(ω)

a2

1 − z
Rf

(
1 + 1

γ2
f (ω)

)
(
1 − z

Rf

)2
+ z2

R2
f

1
γ2
f (ω)

(12.20)

with

γf(ω) =
ka2

2Rf
, (12.21)

we recognize according to

ppax(x, y, z,ω) = p0(ω)
β(z,ω)
β(0,ω)

e−	β(z,ω)r2
ejkz−j
β(z,ω)r2

(12.22)

that �β(z, ω) determines the z-dependent beam geometry, namely the expo-
nential decay in r-direction for fixed z; we define that r-value for which the
amplitude p0(ω)β(z,ω)/β(0,ω) for r = 0 has decreased by the factor e−1 as
half the beam width w(z,ω):

w(z,ω) =
1√�β(z, ω)

, (12.23)

hence,

w(z,ω)
a

=

√(
1 − z

Rf

)2

+
z2

R2
f

1
γ2
f (ω)

. (12.24)

For z = 0, we have w(0,ω) = a, i.e., we recover the given (circular) “aper-
ture” distribution in the xy-plane. According to (12.22), �β(z, ω) defines the
z-dependent deviation of the phase surfaces

kz − �β(z,ω)r2 = const (12.25)
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0 z0f(ω)
zf  = z/Rf

w(z, ω)
a

1

w0(ω)
1

a

FIGURE 12.1
Waist profile of a Gaussian beam for γf = 2.

of a Gaussian beam with regard to a plane wave propagating into z-direction.
Figure 12.1 illustrates the waist profile w(z,ω)/a of a Gaussian beam as a
function of the normalized axis coordinate zf = z/Rf . At

z0(ω)
Rf

= z0f(ω) =
γ2
f (ω)

1 + γ2
f (ω)

< 1, (12.26)

we find a minimum of w(z,ω), and its value

w0(ω)
a

=
1√

1 + γ2
f (ω)

=

√
z0f(ω)
γf(ω)

(12.27)

gives us the half waist width; by the way: Only for γf � 1, we have z0 � Rf
for the location of the minimum. For z −→ ∞, we find

w(z,ω)
a

z→∞−→
√

1 + γ2
f (ω)

γf(ω)
zf

=
zf√

z0f(ω)
, (12.28)

i.e., the Gaussian beam diverges linearly with z. The location and the width
of the waist as well as its divergence are only determined by the frequency-
dependent dimension-less “play parameter” γf(ω) as function of the normal-
ized axis. For γf � 1, we have a considerably waisted Gaussian beam, γf = 1
yields the collimated Gaussian beam, and γf � 1 results in a strongly diverg-
ing Gaussian beam.203

The phase surfaces of a plane wave propagating into z-direction are given
by planes perpendicular to the z-axis, the phase surfaces (12.25) of a Gaussian

203Due to the strong divergence ∼ zf/γf , the waist of the beam is now close to zf = 0; even
though a little bit misleading, this beam is called narrow-waisted Gaussian beam (Galdi
et al. 2001, 2003).
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w(z, ω)/a x/z0(ω)

z/z0(ω)

1

1

FIGURE 12.2
Phase surfaces of a Gaussian beam for γf = 2.

beam are only locally planar in the proximity of the axis r � 0; Figure 12.2
illustrates their curvature in the xz-plane for different values of the constants
on the right-hand side of (12.25): Obviously, the sign of the curvature radius
changes while passing the waist plane z = z0.

Instead of parameterizing a Gaussian beam through γf(ω) as function of
an Rf -normalized axis, a parametrization through z0(ω) is essentially offered
(Siegman 1986; Heyman and Felsen 2001):

�β(z, ω) =
k

2
zR(ω)

[z − z0(ω)]2 + z2
R(ω)

, (12.29)

�β(z, ω) = − k

2
z − z0(ω)

[z − z0(ω)]2 + z2
R(ω)

; (12.30)

that way, a new parameter

zR(ω) =
z0(ω)
γf(ω)

(12.31)

immediately appears that has the dimension of a length being called Rayleigh
distance: Because of

w(z0 + zR) =
√

2 w0(ω), (12.32)

the beam remains collimated within the Rayleigh distance. Combining real and
imaginary parts within the z0zR-parametrization to a complex valued function
β(z,ω), it is recognized that β(z,ω) now has the simple representation

β(z,ω) =
k

2
1

zR(ω) + j[z − z0(ω)]
. (12.33)
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This conversion produces a factor k suggesting to write (12.17) in the follow-
ing way:

ppax(x, y, z,ω) = p0(ω)
β(z,ω)
β(0,ω)

e jk[z+j 1
k β(z,ω)r2]

= p0(ω)
q(0,ω)
q(z,ω)

e jk
[
z+ 1

2
r2

q(z,ω)

]
, (12.34)

where

q(z,ω) = − j
k

2
1

β(z,ω)
= z − z0(ω) − jzR(ω). (12.35)

With (12.29) and (12.30), we obviously have

� 1
q(z,ω)

=
z − z0(ω)

[z − z0(ω)]2 + z2
R(ω)

, (12.36)

� 1
q(z,ω)

=
zR(ω)

[z − z0(ω)]2 + z2
R(ω)

. (12.37)

As we will show in the next section, (12.34) with (12.35) is a natural
parametrization of a Gaussian beam if it is derived as an exact solution of
a parabolically approximated wave equation. Using this parametrization, we
obtain

w(z,ω) =

√
2

kzR(ω)

√
[z − z0(ω)]2 + z2

R(ω) (12.38)

for the half beam width with

w0(ω) =

√
2zR(ω)

k
. (12.39)

Due to (12.39), we have

zR(ω) =
πw2

0(ω)
λ

, (12.40)

i.e., zR is kind of a near-field length of the waist “aperture” again revealing
the above characterization as a collimation length.

To arrive at wave packets, namely pulsed beams that are localized in space
and time, we have to calculate

ppax(x, y, z, t) = F−1
ω {ppax(x, y, z,ω)}; (12.41)

yet the frequency dependence of β(z,ω) and q(z,ω), respectively, barely of-
fers a chance to perform the Fourier inversion analytically. Even postulat-
ing frequency independence does not lead any further: Within the physical
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Rfγf -parametrization, we should then have Rf ∼ ω due to (12.21), and conse-
quently, β(z,ω) would still be frequency dependent; within the mathematical
z0zR-parametrization, the frequency independence of these parameters yields
the frequency independence of q(z,ω); however, with (12.37), a term

e− ω
2c 
 1

q(z) r2

(12.42)

results whose Fourier inversion does not converge. To yield convergence, the
negative frequencies must be omitted: The resulting impulses without negative
frequencies represent analytical signals (Section 2.3.4), and with that, a further
evaluation is possible (Heyman 1994); we will follow these ideas in the next
section.

12.2 Pulsed Beams as Exact Solutions of an
Approximate Wave Equation

The wave equation belonging to (12.1) reads

∆p(x, y, z, t) − 1
c2

∂2

∂t2
p(x, y, z, t) = 0. (12.43)

The phase term e jkz in (12.34) suggests to represent p(x, y, z, t) in a moving
coordinate system

p(x, y, z, t) = P (x, y, z, τ) (12.44)

according to the substitution

τ = t − z

c
. (12.45)

The conversion of the z- and t-differentiations in (12.43) to P (x, y, z, τ) yields

∂2

∂z2 p(x, y, z, t) − 1
c2

∂2

∂t2
p(x, y, z, t)

=
∂

∂z

[
∂

∂z
P (x, y, z, τ) − 2

c

∂

∂τ
P (x, y, z, τ)

]
, (12.46)

because ∂τ(t, z)/∂z = −1/c and ∂τ(t, z)/∂t = 1. The constraint to high-
frequency Gaussian beams allows for the approximation∣∣∣∣ ∂

∂z
P (x, y, z, τ)

∣∣∣∣� ∣∣∣∣1c ∂

∂τ
P (x, y, z, τ)

∣∣∣∣ (12.47)

leading us to the “wave packet equation”

∂2

∂x2 P (x, y, z, τ) +
∂2

∂y2 P (x, y, z, τ) − 2
c

∂2

∂z∂τ
P (x, y, z, τ) = 0. (12.48)



K12611 Chapter: 12 page: 405 date: January 6, 2012

Ultrasonic Beams and Wave Packets 405

The concluding remarks of the last section suggest to seek solutions of this
equation in terms of analytical signals

P+(x, y, z, τ) = P (x, y, z, τ) + jHτ′{P (x, y, z, τ′)}, (12.49)

whose imaginary part is the Hilbert transform of the real valued function
P (x, y, z, τ) for real values of τ. We are especially looking for solutions with
the special xyz-structure of an astigmatic Gaussian beam

P+(x, y, z, τ) = A(z)f+

(
τ − 1

2
rTB(z)r

)
, (12.50)

where B(z) is a complex symmetric 2×2-matrix

B(z) =
(

Bxx(z) Bxy(z)
Bxy(z) Byy(z)

)
(12.51)

with a positive-definite imaginary part matrix, while r is the 2×1-matrix

r =
(

x
y

)
(12.52)

corresponding to the observation point vector r in the xy-plane, and f+(t)
denotes a high-frequency analytic signal. The term

rTB(z)r = Bxx(z)x2 + 2Bxy(z)xy + Byy(z)y2 (12.53)

is a quadratic form, where the positive definiteness rT�B(z)r > 0 of the
imaginary part matrix ensures the exponential decay of the Gaussian beam
perpendicular to the z-axis (compare Equation 2.320). In the solution ansatz
(12.50), we now have to calculate B(z) and A(z) via insertion into the differ-
ential equation (12.48). We obtain that:

A(z)rT
[
cB(z)B(z) +

dB(z)
dz

]
r

d2f+(t)
dt2

− c

[
A(z) traceB(z) +

2
c

dA(z)
dz

]
df+(t)

dt
= 0. (12.54)

This equation should hold for any arbitrary impulse f+(t); therefore, the fac-
tors204 of these derivatives must be separately equal to zero:

cB(z)B(z) +
dB(z)

dz
= O , (12.55)

A(z) traceB(z) +
2
c

dA(z)
dz

= 0; (12.56)

204By the way, the validity of (12.55) requires the symmetry of B(z).
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O denotes the 2×2-zero matrix. The conversion from β(z,ω) to q(z,ω) ac-
cording to (12.35) equally suggests to introduce the inverse of B(z):

B(z) = Q−1(z). (12.57)

With

dB(z)
dz

=−
[
Q(z)Q(z)

]−1 dQ(z)

dz

=− Q−1(z)Q−1(z)
dQ(z)

dz
, (12.58)

we obtain [
c I −

dQ(z)

dz

]
Q−1(z)Q−1(z) = O (12.59)

instead of (12.55) yielding

dQ(z)

dz
= c I , (12.60)

and finally

Q(z) = Q(0) + cz I ; (12.61)

I is the 2×2-unit matrix. The proximity to (12.35) is apparent!
The solution of (12.56) is immediately obtained:

A(z) = A0 e− c
2

∫
traceB(z) dz; (12.62)

it would be desirable to be able to calculate at least the integral in the expo-
nent of (12.62); as a matter of fact, even more can be achieved! We write

cB(z) = c I B(z) =
dQ(z)

dz
Q−1(z). (12.63)

The explicit calculation of the trace in the last term of (12.63) miraculously
yields the following identity for each 2×2-matrix205 Q(z):

trace

[
dQ(z)

dz
Q−1(z)

]
=

d
dz

ln detQ(z). (12.64)

205This identity may even be proved for each rectangular matrix starting, for instance,
from an eigenvalue decomposition of the matrix (Shlivinski 2004).



K12611 Chapter: 12 page: 407 date: January 6, 2012

Ultrasonic Beams and Wave Packets 407

With A0 =
√

detQ(0), we consequently obtain

A(z) =

√√√√detQ(0)

detQ(z)
, (12.65)

and hence

P+(x, y, z, τ) =

√√√√detQ(0)

detQ(z)
f+

[
τ − 1

2
rTQ−1(z)r

]
, (12.66)

as exact solution of the approximately valid wave packet equation (12.48).
As the equation of a complex valued pulsed beam, we obtain

p+(x, y, z, t) =

√√√√detQ(0)

detQ(z)
f+

[
t − z

c
− 1

2
rTQ−1(z)r

]
. (12.67)

This beam becomes rotationally symmetric in the xy-plane if we assume the
matrix Q(0) to be proportional to a unit matrix according to

Q(0) = cq(0) I . (12.68)

We then have

Q(z) = c [q(0) + z)]︸ ︷︷ ︸
= q(z)

I , (12.69)

hence

Q−1(z) =
1

cq(z)
I . (12.70)

Now we only need to calculate

detQ(z) = c2q2(z) (12.71)

and to choose q(0) = −z0 − jzR (Equation 12.35) to rediscover the stigmatic
time harmonic Gaussian beam with frequency-independent parameters z0 and
zR choosing the analytic signal

f+(t) = p0(ω)e−jωt. (12.72)

Hence, the paraxially approximated solution of the Helmholtz equation is an
exact solution of the wave packet equation as a parabolic approximation of
the exact wave equation. On the other hand, we are now able, for the case
of frequency-independent parameters z0 and zR in the representation (12.34)
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of a time harmonic Gaussian beam, to produce a pulsed beam applying a
F−1

+ -Fourier inversion (Equation 2.319)

p+(x, y, z, t) =
q(0)
q(z)

f+

[
t − z

c
− 1

2c

r2

q(z)

]
, (12.73)

if we assume p0(t) =⇒ f+(t) as analytic signal; therefore, we may well speak
of a Gaussian beam even though there is no Gauss function in (12.73). With
the choice of an analytic signal of finite duration, the pulsed Gaussian beam
is consequently localized in space and time.

Evidently, the choice of (12.68) yields a rotationally symmetric pulsed
beam for all z and all times. With the obvious generalization

Q(0) = c

(
q1(0) 0

0 q2(0)

)
(12.74)

with q1,2(0) = −z01,2 − jzR1,2 , we can generate a canonical elliptic “aperture”
distribution in the (z = 0)-plane—the main axes of the ellipse coincide with
the coordinate axes—that also remains the beam cross-section for all z and
all times. With a full (symmetric) Q(0)-matrix, we can finally generate astig-
matic wave packets with z-dependent noncoinciding main axes of the wave-
fronts (phase surfaces) and the amplitude distributions perpendicular to the
propagation direction (Heyman 1994).

Real valued pulsed (stigmatic) beams are obtained if we separate

p+(r, z, t) =
q(0)
q(z)

f+

[
t − z

c
− 1

2c

r2

q(z)

]
= a(z) f+ [t − τ(r, z) − jγ(r, z)] (12.75)

with

a(z) =
q(0)
q(z)

, (12.76)

τ(r, z) =
r2

2c
� 1

q(z)
, (12.77)

γ(r, z) =
r2

2c
� 1

q(z)
(12.78)

into a real and an imaginary part. To achieve this, we use (2.321):

f+[t − τ(r, z) − jγ(r, z)] = fγ[t − τ(r, z)] + jH{fγ(τ)}t−τ(r,z), (12.79)

where

fγ(t) = �
{

1
π

∫ ∞

0
F (ω)e−γ(r,z)ωe−jωt dω

}
, (12.80)

H{fγ(t)} = �
{

1
π

∫ ∞

0
F (ω)e−γ(r,z)ωe−jωt dω

}
. (12.81)
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The evanescence parameter γ(r, z) of the beam is related to the spectrum
F (ω) of the given real valued pulse f(t) = F−1{F (ω)} via the integrands of
(12.80) and (12.81), a fact that reflects the frequency-dependent beam width
according to (12.38) even for frequency-independent beam parameters.

We finally obtain

�p+(r, z, t) = fγ[t − τ(r, z)]�a(z) − H{fγ(τ)}t−τ(r,z)�a(z), (12.82)
�p+(r, z, t) = fγ[t − τ(r, z)]�a(z) + H{fγ(τ)}t−τ(r,z)�a(z), (12.83)

where

�a(z) =
z0(z0 − z) + z2

R

(z − z0)2 + z2
R

, (12.84)

�a(z) =− zRz

(z − z0)2 + z2
R

. (12.85)

Now we can choose f(t), for example, as an RCN(t)-pulse and insert F (ω) =
RCN(ω) according to (2.276) in (12.80) and (12.81): We obtain RCN(t)-
wave packets (12.82) and (12.83) being traced as localized pulses through
space and time. The balance between �a(z) and �a(z) determines whether
we see the RCN(t)-pulse itself sor its Hilbert transform. Figure 12.3 exhibits
time snap-shots matching the parameters chosen for Figure 12.2 according to
the numerical evaluation206 of (12.82) for an RC2(t)-pulse with k0z0 = 18.
We nicely recognize how the beam starts as RC2-pulse converting into its
Hilbert transform while passing the focus point [we apply (2.306)] and finally
propagating as negative RC2-pulse: The pulsed Gaussian beam changes its
sign passing the focus point; this special dissipative behavior is induced by a
Hilbert transform.

It is interesting to note that the explicit appearance of k in front of the
brackets in the exponential of (12.34) also yields different pulse structures of
the “aperture” distributions of ppax(r, z, t) according to (12.41) and p+(r, z, t)
according to (12.75) for z = 0:

ppax(r, 0, t)
(12.12)

= e− r2

a2 p0

(
t +

r2

2cRf

)
; (12.86)

p+(r, 0, t) = fγ [t − τ(r, 0)] , (12.87)

where

τ(r, 0) = −r2

2c

z0

z2
0 + z2

R
= − r2

2cRf
, (12.88)

fγ(t) = �
{

1
π

∫ ∞

0
F (ω) e−γ(r,0)ωe−jωt dω

}
, (12.89)

206This evaluation is by no means trivial; it is not simply based on programming Equa-
tion 12.82: We have to thank Shlivinski.
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FIGURE 12.3
Time snap-shots of an RC2-pulsed Gaussian beam (black: maximum positive
values; white: maximum negative values).

γ(r, 0) =
r2

2c

zR

z2
0 + z2

R
. (12.90)

The pulse structure of fγ(t) is r-dependent! Yet, if we express zR and z0 in
γ(r, 0) according to (12.90) through γf and Rf explicitly inserting γf , we have
γ(r, 0) = r2/(ωa2) allowing for the attenuation exponential function to come
out of the integral (12.89).
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12.3 Pulsed Beams as Approximate Solutions
of Eikonal and Transport Equations

Rays are solutions of eikonal and transport equations resulting from a high-
frequency approximation of the wave equation, recognizing that this only
makes sense for inhomogeneous materials because a ray in homogeneous ma-
terial is initially nothing else but a slowness vector. Nevertheless, this offers
another approach to Gaussian, and generally, pulsed beams if the eikonal
equation—even in homogeneous materials—is approximately solved by a trun-
cated Taylor series: The result is a Gaussian beam in the frequency domain
and a wave packet (pulsed Gaussian beam) in the time domain as it is given
by (12.67). Since rays, as already mentioned, are particularly useful for ray
tracing in inhomogeneous materials, we now have a possibility for general-
ization: We identify the ray in an inhomogeneous material as the axis of a
Gaussian beam!

We will again explain this third approach to Gaussian and pulsed beams
for the scalar acoustic wave equation for homogeneous materials after having
defined the respective ray eikonal and transport equations; for inhomogeneous
materials, we refer to the literature. Afterwards, we define P- and S-rays in
inhomogeneous isotropic elastic materials; concerning the generalization to
P- and S-beams in such materials, we again refer to the literature, and this
also holds for the derivation of Gaussian beams via complex source point
coordinates.

12.3.1 Eikonal and transport equations for acoustic beams

We are looking for ray solutions of the acoustic wave equation

∆p(R, t) − 1
c2(R)

∂2p(R, t)
∂t2

= 0 (12.91)

in inhomogeneous materials implying a spatially dependent compressibility
κ(R) according to (5.27), yet a constant density. The time harmonic ansatz

p(R, t) = P (R) e jω0T (R)e−jω0t (12.92)

with slowly varying functions κ(R), P (R), and T (R) as compared to the wave-
length emerges as a plane wave for a constant phase velocity c(R) = c with
T (R) = k̂ · R/c; consequently, we interpret (12.92) as a local plane wave in
particular requiring now its R-dependent propagation direction. Insertion of
(12.92) into (12.91) yields terms with ω2

0- and ω1
0-factors that are predomi-

nantly important for large ω0. Equating them separately to zero results in the
eikonal equation

∇T (R) · ∇T (R) =
1

c2(R)
(12.93)
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and in the transport equation

2∇P (R) · ∇T (R) + P (R)∆T (R) = 0. (12.94)

On the other hand, the ω0
0-term ∆P (R) = 0 is neglected (else we would

have three equations for two unknowns); Červený (2001) cites possibilities
to incorporate it.

With the phase T (R) = k̂ · R/c of a plane wave in homogeneous materi-
als, we have ∇T (R) = k̂/c, and consequently, the respective eikonal equation
reads ∇T (R) · ∇T (R) = k̂ · k̂/c2 = 1/c2 or s · s = 1/c2 if s = k̂/c denotes the
slowness vector. Therefore, defining a spatially dependent slowness vector even
in inhomogeneous materials according to

s(R) = ∇T (R), (12.95)

the eikonal equation

s(R) · s(R) =
1

c2(R)
= ρκ(R) (12.96)

appears as generalization of the dispersion relation (5.45) for the κ(R)-
inhomogeneous material; hence, the unit vector ŝ(R) defines a ray trajectory.
As soon as this trajectory has been calculated as so-called characteristic of
the eikonal equation, a ray coordinate s can be assigned and

∇T (R) · ŝ(R) def=
∂T (R)

∂s
(12.97)

can be defined as wave(phase)front travel time along the ray. With (12.95)
and (12.96), we then have

T (R) =
∫

L(R0,R)

1
c(s)

ds (12.98)

as travel time of the wavefront from the starting point R0 to the actual ob-
servation point R. To calculate characteristics—and also to solve transport
equations—we have a handful of possibilities that are discussed in detail by
Červený (2001). With Figure 12.4, we illustrate a graphical “solution” for a
one-dimensionally layered inhomogeneous material exploiting the law of re-
fraction. The ray starting from R0 follows a piecewise straight line trajectory,
and we nicely recognize why the material may only be slowly varying (within
the extent of several wavelengths) for such a ray solution of the wave equation:
Internal (multiple) reflections are disregarded, similar to the Born approxima-
tion for the field scattered by a penetrable body (Section 5.6.3).

Červený (2001) also shows that an inhomogeneous density ρ(R) does
not really complicate the ray equations: The eikonal equation remains un-
changed, and similarly the transport equation, if P (R) is replaced by P̃ (R) =
P (R)/

√
ρ(R).
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FIGURE 12.4
Ray trajectory in a one-dimensionally layered inhomogeneous material (ray
tracing).

Likewise, the transition to pulsed rays is straightforward:

p(R, t) = P (R)f+ [t − T (R)] , (12.99)

where f+(t) is again an analytic signal.
The formal similarity of (12.99) with (12.67) suggests, at least for a homo-

geneous material, to transform the ray into a beam testing whether

T (R) =
z

c
+

1
2
rTQ−1(z)r, (12.100)

P (R) =

√√√√detQ(0)

detQ(z)
(12.101)

are solutions of the eikonal and transport equations for c(R) = c; ŝ = ez, i.e.,
the z-axis as ray trajectory would then be the axis of the beam. Precisely
checking (12.100), we realize that it obviously represents a truncated Taylor
series with regard to the coordinates perpendicular to the ray axis—here: r,
respectively, x and y:

T (r, z) = T (r, z)
∣∣
r=0 + ∇rT (r, z)

∣∣
r=0 · r +

1
2

∇r∇rT (r, z)
∣∣
r=0 : r r,

(12.102)
if we put T (r, z)

∣∣
r=0 = z/c and observe

∇rT (r, z)
∣∣
r=0 · r

=
[
s(r, z) − ∂sz(r, z)

∂z
ez

]
r=0

· r = s(r = 0, z) · r =
1
c
ez · r = 0. (12.103)
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We may now either insert (12.102) into the eikonal equation to find (12.100)
with (12.61), and then (12.101) as solution of the transport equation, or we
directly check whether (12.100) and (12.101) are solutions of the eikonal and
transport equations while considering (12.55) and (12.56); in both cases, we
obtain the correct result utilizing the paraxial approximation, namely: In a
homogeneous material, the ansatz (12.92) with the Taylor expansion (12.102)
of the phase applying eikonal and transport equations leads to a pulsed Gaus-
sian beam with (12.100) and (12.101) as paraxially approximated solution
of the wave equation. We already know that the pulsed beam in a homoge-
neous material is an approximate solution of the wave equation (or an exact
solution of the wave packet equation), so why do we again emphasize it for
different approaches? It is because the above procedure can be generalized
to (weakly) inhomogeneous materials (Červený 2001; Klimeš 1989; Popov
1982, 2004)! Then, we obtain Gaussian or pulsed beams in inhomogeneous
materials having the ray trajectories as a beam axes. Interesting enough, this
result is also obtained as exact solution of an approximately valid wave packet
equation for inhomogeneous materials, i.e., according to the approach dis-
cussed in Section 12.2 (Červený et al. 1982; Heyman 1994).

The conceptual advantage of beams as compared to rays is in their na-
ture having no singularities at focus points or caustics due to detQ(l) �= 0,
where l is a coordinate along the ray trajectory. In addition: A physically ex-
isting aperture distribution may be quantitatively separated into “aperture”
distributions of beams to be launched along rays into well-defined directions
(superposition of Gaussian or pulsed beams) to calculate acoustic radiation
fields in inhomogeneous materials (Maciel and Felsen 1990; Shlivinski et al.
2004, 2005). Beam rays may also formally be derived choosing a complex
source point in Green functions for source fields (Heyman 2002); yet we do
not want to get deeper into that approach even though it has already been
applied to calculate transducer radiation fields (Zeroug et al. 1996).

12.3.2 Eikonal and transport equations for elastic beams

Inhomogeneous isotropic materials: Up to now, we have only dealt with
acoustic (scalar) ultrasonic beams, yet US-NDT requires elastic longitudinal
and transverse beams. To define respective rays, we need the pertinent eikonal
and transport equations. Starting point is the homogeneous Navier equation
(7.27)—we write it in terms of the particle velocity—

[λ(R) + µ(R)]∇∇ · u(R, t) + µ(R)∆u(R, t) − ρ(R)
∂2u(R, t)

∂t2

+ [∇λ(R)] [∇ · u(R, t)] + [∇µ(R)] · [∇u(R, t)]
+ [∇u(R, t)] · [∇µ(R)] = 0 (12.104)

that may be approximately solved with the time harmonic ray ansatz

u(R, t) = U(R) e jω0T (R) e−jω0t. (12.105)
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Equating the quadratic term in ω0 to zero results in[
λ(R) + µ(R)

ρ(R)
∇T (R)∇T (R) +

µ(R)
ρ(R)

∇T (R) · ∇T (R) I − I
]

· U(R) = 0

(12.106)

after some calculus; with the definition of the slowness vector according to
(12.95), we find the alternative form[

µ(R)s(R) · s(R) − ρ(R)
ρ(R)

I +
λ(R) + µ(R)

ρ(R)
s(R)s(R)

]
· U(R) = 0.

(12.107)

With

s(R) = ŝ(R)/c(R), (12.108)

this condition is structurally identical to the eigenvalue problem (8.62) of
plane waves in homogeneous materials. Equating to zero the determinant of
the wave tensor W[s(R)] in the square brackets, we immediately find the
dispersion relation

sS(R) · sS(R) =
ρ(R)
µ(R)

=
1

c2
S(R)

, (12.109)

sP(R) · sP(R) =
ρ(R)

λ(R) + 2µ(R)

=
1

c2
P(R)

(12.110)

with (8.67), and consequently, the eikonal equation

∇TP(R) · ∇TP(R) =
1

c2
P(R)

(12.111)

for a P-ray as well as the eikonal equation

∇TS(R) · ∇TS(R) =
1

c2
S(R)

(12.112)

for an S-ray; however, “P” only stands for “primary” and “S” only for “sec-
ondary” because a decoupling into pressure and shear waves is no longer pos-
sible in inhomogeneous materials.207

207The divergence and the curl of (12.105) contain ∇ · U(R) and ∇ × U(R), and both
expressions are generally nonzero.
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Concerning polarizations of P- and S-rays, we argue exactly in the same
way as for plane waves in homogeneous materials (Section 8.1.2). We calculate

W[sP(R)] =
λ(R) + µ(R)

ρ(R)

[
sP(R)sP(R) − 1

c2
P(R)

I
]

(12.113)

and conclude

sP(R)sP(R) · UP(R) =
1

c2
P(R)

UP(R) (12.114)

from the eigenvalue equation W[sP(R)] · UP(R) ≡ 0. Equation 12.114 tells us
that the amplitude vector UP(R) of the P-ray has the direction of the slowness
vector sP(R), it is therefore perpendicular to the phase front TP(R) = const:
The P-ray is longitudinally polarized with respect to the ray trajectory just
as a plane wave. This is a consequence of the high-frequency approximation
because the eigenvalue problem (12.107) exclusively follows from equating the
quadratic ω0-term to zero. From (12.114), we obtain the representation

UP(R) = cP(R) cP(R)sP(R) · UP(R)︸ ︷︷ ︸
def= UP(R)

sP(R)

= UP(R)ŝP(R). (12.115)

We have UP(R) · U∗
P(R) = |UP(R)|2, where |UP(R)| is the magnitude of the

complex scalar amplitude UP(R).
With

W[sS(R)] =
λ(R) + µ(R)

ρ(R)
sS(R)sS(R), (12.116)

we find the condition

sS(R)sS(R) · US(R) = 0 (12.117)

for the polarization of the S-ray from the eigenvalue equation W[sS(R)] ·
US(R) = 0. It follows

sS(R) · US(R) = 0, (12.118)

i.e., the S-ray polarization vector is perpendicular to the pertinent ray tra-
jectory, the S-ray is transversely polarized with respect to the ray trajectory.
Therefore, we introduce two orthogonal unit vectors eS1(R) and eS2(R) tan-
gentially to the phase front TS(R) = const satisfying eS1,S2(R) · ŝS(R) = 0
besides eS1(R) · eS2(R) = 0; these two vectors are used as polarization basis
for the S-ray:

US(R) = US1(R)eS1(R) + US2(R)eS2(R)
= US1(R) + US2(R), (12.119)
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FIGURE 12.5
Polarization of P- and S-rays.

where US1,S2(R) are complex valued scalar amplitude factors: We have
US(R) · U∗

S(R) = |US1(R)|2 + |US2(R)|2. As for the case of plane waves (Fig-
ure 8.8), sS(R), US1(R), and US2(R) should establish a (local) right-handed
system, why we look at the tip of the vector US2(R) in Figure 12.5. Because
of the different and spatially dependent phase velocities cP(R) and cS(R), the
phase fronts TP(R) = const and TS(R) = const are nonplanar, and they do
not coincide at the same time; therefore, they are displayed for two different
times in Figure 12.5. Per definition, the trajectories defined by sP(R) and
sS(R) are orthogonal to the respective phase fronts at the point R; hence,
they generally do not have the same direction. As indicated above, the po-
larization vector UP(R) is also orthogonal to the phase front TP(R) = const,
while the polarization vectors US1,S2(R) are tangentially oriented with respect
to TS(R) = const.208

For a complete description of P- and S-rays, we must also know the
transport equations for both rays according to (12.94). To derive them, we

208The three polarization vectors UP(R), US1,S2(R) are generally nonorthogonal to each
other, even though the wave tensor is real-symmetric, and should consequently have real
orthogonal eigenvectors! For plane waves in homogeneous materials, be they isotropic or
anisotropic, the wave tensor contains the parameter k̂ as phase unit vector; it may be chosen
equal for P,S1,S2-, respectively, qP,qS1,qS2-wave modes yielding the same real-symmetric
tensor for all wave modes with, therefore, real orthogonal polarization vectors regarding
the direction k̂. Yet, for rays in inhomogeneous materials, the wave tensor is a function
of the phase fronts TP,S1,S2(R) = const, the solutions sP,S1,S2(R) = ∇TP,S1,S2(R) of the
respective eikonal equations determine the directions ŝP,S1,S2(R) yielding a different wave
tensor for each wave mode.
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concentrate on the linear ω0-term—we denote it by F(R)—after we have in-
serted (12.105) into (12.104). We find

F(R) = [λ(R) + µ(R)][∇∇T (R) · U(R) + ∇T (R)∇ · U(R)
+ ∇U(R) · ∇T (R)] + µ(R)[2∇T (R) · ∇U(R) + ∆T (R)U(R)]
+ [∇λ(R)∇T (R) · U(R) + ∇T (R)∇µ(R) · U(R)
+ ∇µ(R) · ∇T (R)U(R); (12.120)

the ∇-differentiations always refer to the immediate adjacent term. Now we
must insert either the P- or the S-ray for T (R), and U(R), respectively; we
start with the P-ray and carry out the relevant differentiations on UP(R) =
UP(R)cP(R)sP(R) with sP(R) = ∇TP(R); that way, terms with ∇TP(R) ap-
pear in the gradient dyadic ∇UP(R) suggesting to investigate the vector equa-
tion FP(R) = 0 projected onto the P-trajectory sP(R) = ∇TP(R) (Červený
2001), thus allowing for the multiple use of the eikonal equation (12.111). We
obtain after some calculus209

FP(R) · ∇TP(R)

= ∇TP(R) · {2c2
P(R)ρ(R)∇UP(R) + UP(R)∇

[
c2
P(R)ρ(R)

]}
+ c2

P(R)ρ(R)UP(R)∆TP(R), (12.121)

resulting in the following form of the transport equation

2∇ŨP(R) · ∇TP(R) + ŨP(R)∆TP(R) = 0 (12.122)

with the substitution ŨP(R) =
√

c2
P(R)ρ(R)UP(R). It is structurally identical

to the transport equation (12.94) for acoustic waves.
For the S-ray, we investigate projections of FS(R) onto the polarization

vectors210 FS(R) · eα(R) with α = S1,S2 because three terms immediately
disappear due to the orthogonality of ∇TS(R) · eα = 0:

FS(R) · eα(R)
= [λ(R) + µ(R)][eα(R) · ∇∇TS(R) · US(R) + eα(R) · ∇US(R) · ∇TS(R)]

+ µ(R)[2∇TS(R) · ∇US(R) · eα(R) + ∆TS(R)US(R) · eα(R)]
+ ∇µ(R) · ∇TS(R)US(R) · eα(R); (12.123)

since ∇[∇TS(R) · eα(R)] = 0 = ∇∇TS(R) · eα(R) + ∇eα(R) · ∇TS(R), the
terms in the [λ(R) + µ(R)]-factor cancel as soon as we have inserted US(R)
according to (12.119), and the resulting expression ∇US(R). It remains

209From ∇T · ∇∇T · U, a term ∇T · ∇∇T · ∇T results that may be brought into the
form 1

2∇(∇T · ∇T ) · ∇T with the formula ∇(A · B) = (∇A) · B + (∇B) · A allowing for
another application of the eikonal equation.
210We did it similarly for the P-ray.
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FS(R) · eα(R)
= µ(R){2∇TS(R) · ∇Uα(R) + 2∇TS(R)

· [US1(R)∇eS1(R) + US2(R) · ∇eS2(R)] · eα(R)
+ Uα(R)∆TS(R)} + Uα(R)∇µ(R) · ∇TS(R), (12.124)

and finally—we write (12.124) separately for α = S1 and α = S2—

2∇ŨS1(R) · ∇TS(R) + ŨS1(R)∆TS(R)

+ 2ŨS2(R)∇TS(R) · ∇eS2(R) · eS1(R) = 0, (12.125)

2∇ŨS2(R) · ∇TS(R) + ŨS2(R)∆TS(R)

+ 2ŨS1(R)∇TS(R) · ∇eS1(R) · eS2(R) = 0 (12.126)

if we once more put Ũα(R) =
√

c2
S(R)ρ(R)Uα(R) and observe that ∇[eα(R) ·

eα(R)] = 0 = 2∇eα(R) · eα(R) holds. Hence, the transport equations for both
polarizations of the S-ray are coupled for an arbitrary choice of the polariza-
tion basis eα(R), α = S1,S2, the polarizations are not—as for plane waves
in homogeneous materials—a priori independent upon each other. However,
deciding on a specific basis

∇TS(R) · ∇eα(R) = βα(R)∇TS(R) (12.127)

with normalization constants βα(R), the coupling disappears; Červený (2001)
discusses algorithms for a practical calculation of such a basis.

As for the case of acoustic rays, we may now convert elastic rays into beams
inserting respective Taylor expansions of TP,S(R) into the eikonal equations
(Červený 2001; Norris 1988); Spies (1994) has applied this formalism to the
calculation of transducer fields in homogeneous materials.

Inhomogeneous anisotropic materials: The formalism to define and to
calculate P- and S-rays in inhomogeneous isotropic materials suggests to pro-
ceed similarly for the case of inhomogeneous anisotropic material because the
ansatz (12.105) immediately yields[

∇T (R) · c(R) · ∇T (R) − ρ(R) I
]

· U(R) = 0 (12.128)

after insertion of the homogeneous Navier equation (7.3), and equating the
ω2

0-factor to zero. As usual, the determinant of the wave tensor in the squared
brackets must vanish:

det
[
∇T (R) · c(R) · ∇T (R) − ρ(R) I

]
= 0, (12.129)

in order to ensure nontrivial solutions for U(R); due to s(R) = ∇T (R), the
eigenvalue problem known from Section 8.3 results, i.e., the dispersion rela-
tion turns into the eikonal equation with the solutions sqP(R), sqS1(R), and
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sqS2(R) for qP-, qS1-, and qS2-slowness vectors, respectively, whose magni-
tudes are equal to the pertinent phase velocities, and their directions being
orthogonal to the phase fronts TqP,qS1,qS2(R) = const.

Transport equations result equating the ω0-factor to zero:

∇T (R) · c(R) : ∇U(R) + ∇ ·
[
c(R) : ∇T (R)U(R)

]
= 0. (12.130)

In the second term, the divergence operates on all factors in the squared
brackets; we do not explicitly evaluate it because later on we want to bring
the energy velocity vector according to (8.217) into play; this gets apparent if
we insert the slowness vector into (12.130) as well as the representation

U(R) = U(R)û(R) (12.131)

and contract the resulting vector equation with û(R), i.e., project it onto the
polarization unit vector (we have similarly done that for the isotropic case):

û(R)s(R) : c(R) : ∇U(R)û(R) + û(R)s(R) : c(R) : ∇û(R)U(R)

+ û(R)∇ :
[
c(R) : s(R)û(R)U(R)

]
= 0; (12.132)

in addition, we have calculated the ∇U(R)-term in (12.130) with (12.131).
Pursuing our above formulated goal, it would be nice if û(R) would appear in
the last term of (12.132) within the squared brackets. Hence, we tentatively
calculate

∇ ·
[
U(R)c(R) · s(R) · û(R) · û(R)

]
= ∇ ·

[
U(R)c(R) · s(R) · û(R)

]
· û(R)

+
[
U(R)c(R) · s(R) · û(R)

]
: ∇û(R), (12.133)

where we have exploited the symmetry of c(R) with respect to the first two

indices in the second term on the right-hand side. The first term on the right-
hand side is equal to the third one in (12.132), it may replace it; due to the
symmetry of cijkl(R) = cklij(R), the second term on the right-hand side of
(12.133) compensates the second term in (12.132), and it remains

û(R)s(R) : c(R) : ∇U(R)û(R) + ∇ ·
[
U(R)c(R) · s(R) · û(R) · û(R)

]
= 0.

(12.134)

The repeated exploitation of the c(R)-symmetries allows us to apply (8.217),

and we obtain

ρ(R)cE(R) · ∇U(R) + ∇ · [ρ(R)cE(R)U(R)] = 0, (12.135)
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respectively,

2ρ(R)cE(R) · ∇U(R) + ∇ · [ρ(R)cE(R)]U(R) = 0. (12.136)

The definition of Ũ(R) =
√

ρ(R)U(R) yields the final form

2cE(R) · ∇Ũ(R) + Ũ(R)∇ · cE(R) = 0 (12.137)

of the transport equation. For the isotropic case, it reduces to the transport
equation (12.122) for P-rays, and (12.125), respectively, (12.126) for S-rays
under the constraint (12.127). With the definition of the ray vector according
to (8.219), we obtain

2l(R) · ∇Ũ(R) + Ũ(R)∇ · l(R) = 0, (12.138)

making it obvious that the (energy) transport is in the direction of the ray
vector, namely the energy velocity vector that replaces the slowness vector to
calculate the ray trajectories in anisotropic materials.

For plane waves in homogeneous materials, we had derived the relation
(8.220) between ray vector and phase vector utilizing the eigenvalue equation
(8.205) and the formula (8.217) for the energy velocity; in inhomogeneous
materials, the respective eigenvalue equation (12.128) only holds within the
high-frequency approximation; however, it appropriately follows

cE(R) · s(R) = 1. (12.139)

Instead of calculating the ray travel time (12.98) with the phase velocity, we
have to use

T (R) =
∫

L(R0,R)

1
cE(l)

dl (12.140)

from the respectively converted equation (12.139):

l̂(R) · ∇T (R) =
1

cE(R)
. (12.141)

Typical NDT-relevant ray tracing results have been published, for instance, by
Ogilvy (1986) and Harker et al. (1990); beyond that, the travel time equation
(12.141) may be applied to formulate and implement an ultrasonic imaging
technique for inhomogeneous anisotropic welds (InASAFT for Inhomogeneous
Anisotropic Synthetic Aperture Focusing Technique: Shlivinski et al. 2004b).

The above cited theory of ray trajectories in anisotropic materials may
again be applied to pulsed and Gaussian beams propagating along the ray
vector trajectories (Červený 2001; Norris 1987); Spies (1998, 2000a) has ap-
plied this formalism to the calculation of transducer fields in inhomogeneous
anisotropic materials.
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13
Point Sources in Homogeneous Isotropic
Infinite Space, Elastodynamic Source Fields

13.1 Homogeneous Infinite Space Scalar Green
Function

In Section 5.5, we had utilized the scalar Green function G(R,R′,ω) for homo-
geneous infinite space to represent acoustic source fields and, in Section 5.6, to
represent acoustic scattered fields in terms of a point source synthesis. There,
we emphasized the appropriateness to define additional Green functions via
gradient operations—∇G(R,R′,ω), ∇∇G(R,R′,ω)—because they explic-
itly appear in the integral representations of acoustic fields. For electromag-
netism, the constructions (I + k−2∇∇)G(R,R′,ω) and ∇G(R,R′,ω) × I
played a fundamental role, and we will see in Section 13.2.3 that elastody-
namics enforces additional derivatives. Despite the mathematical complexity
of Green functions differential equations and their respective solutions, the
physical concept of Green functions as elementary waves superimposing to
wave fields in terms of the point source synthesis is very intuitive, why we
start again from the beginning with G(R,R′,ω) to clarify some aspects that
we ignored in Section 5.5.

13.1.1 Time harmonic Green function

The differential equation (Equation 5.58)

∆G(R,R′,ω) + k2G(R,R′,ω) = −δ(R − R′) (13.1)

has been written down as defining equation for the three-dimensional scalar
Green function of homogeneous infinite space with the (initially real) wave
number k. The wave number may be representative for acoustics—k =
ω

√
ρκ—electromagnetism in an εrµr-material—k = ω

√
ε0εrµ0µr—or for elas-

tic pressure or shear waves: k = kP = ω
√

ρ/(λ + 2µ); k = kS = ω
√

ρ/µ; in
any case, we write k = ω/c. The inhomogeneity of (13.1) is a unit point source
at R′ according to the property

423
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V

δ(R − R′) d3R′ =
{

1 for R ∈ V
0 for R �∈ V

(13.2)

of the δ-distribution. It is due to this distributional inhomogeneity that (13.1)
must strictly be mathematically solved in the sense of distributions. Hence, the
intuitive approaches to solve (13.1) mostly resemble patchwork. However, the
result is a distribution defined by a function (regular distribution) rendering
it legitimate to stay on the bottom of (distributionally reinforced) classical
analysis.

In the following, we make two proposals to solve (13.1): a more intuitive
and a formal one that is particularly practical for vector and tensor Green
functions.

Solution of the differential equation for the scalar Green function:
Physical reasoning: Per definition, the Green function should represent a
time harmonic elementary wave that emerges form the point source at R′.
The surrounding homogeneous infinite space will not disturb the propagation
of this elementary wave suggesting, based on symmetry arguments, the phase
and amplitude surfaces of this elementary wave to be spherical surfaces with
midpoint R′ (Figure 13.1). For an arbitrary observation point R, the propa-
gation of the elementary spherical wave with wave number k into the direction
R − R′ should be outbound with regard to R − R′. With time dependence
e−jωt, we therefore have

G(R,R′,ω) ∼ e−jk|R−R′|. (13.3)

With increasing distance |R − R′|, the spherical surface increases proportion-
ally to |R − R′|2; it is reasonable to claim that the power density transported
by the elementary wave decreases proportionally to |R − R|−2 to ensure a

R′

R

R – R′

O

FIGURE 13.1
Phase and amplitude surfaces of a time harmonic elementary spherical wave
emanating from the source point R′.
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constant total radiated power. Hence, (13.3) has to be rendered more pre-
cisely according to211

G(R,R′,ω) ∼ ejk|R−R′|

|R − R′| . (13.4)

Now, we rapidly show via differentiation (advantageously for R′ = 0, and in
spherical coordinates) that (13.4) is in fact a solution of the homogeneous
equation (13.1) for R �= R′! It now depends to introduce a factor in (13.4) to
yield the correct source point behavior of the Green function for R = R′.

Solution of the differential equation for the scalar Green function:
The factor 1/4π: Instead of proving for the “initial guess” function (13.4)
to be a solution of the differential equation (13.1), we may even derive it
analytically. For simplicity, we choose R′ = 0 and write (13.1) in spherical
coordinates R,ϑ,ϕ immediately exploiting the request for spherical symmetry,
i.e., independence of ϑ and ϕ:

1
R2

∂

∂R

[
R2 ∂G(R,ω)

∂R

]
︸ ︷︷ ︸

=
∂2G(R, ω)

∂R2 +
2
R

∂G(R,ω)
∂R

+k2G(R, ω) = −δ(R), (13.5)

where G(R, ω) denotes the rotationally symmetric Green function with source
point R′ = 0. With the substitution G(R, ω) = U(R,ω)/R, the homogeneous
equation (13.5)—R �= 0—turns into

d2U(R,ω)
dR2 + k2U(R,ω) = 0 (13.6)

whose solutions “time harmonic plane waves propagating into positive
R-direction” is given by

U(R,ω) = U(ω) e jkR. (13.7)

It follows

G(R, ω) = U(ω)
e jkR

R
. (13.8)

The amplitude factor may not be arbitrary because (13.8) should become
solution of the inhomogeneous equation (13.1). For its determination, there
is no way around distributional arguments. Starting from (13.2), we integrate

211At a slower rate than 1/R is physically meaningless because the total power would
increase with increasing distance. On the other hand, a famous lemma of F. Rellich (Colton
and Kress 1983) tells us that a solution of the inhomogeneous Helmholtz equation approach-
ing zero faster than 1/R is equal to the trivial solution.
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(13.5) over a spherical volume VK with radius R0 and surface SK containing
the origin and observe that the first term in (13.5) has emerged from ∆ =
∇ · ∇ and apply Gauss’ theorem212—R̂ is the outer normal on SK—∫ ∫

SK

R̂ · ∇G(R, ω)
∣∣∣
R=R0︸ ︷︷ ︸

=
∂G(R,ω)

∂R

∣∣∣∣
R=R0

dS + k2
∫ ∫ ∫

VK

G(R, ω) dV = −1. (13.9)

The right-hand side of this equation is R0-independent; hence, this must also
hold for the left-hand side; therefore, we investigate it for R0 −→ 0. In the vol-
ume integral, we have dV = R2 sinϑdRdϑdϕ making it obvious that it tends
to zero for R0 −→ 0 if we insert (13.8). With dS = R2

0 sinϑdϑdϕ, we obtain
the respective limit in the surface integral

lim
R0→0

∫ 2π

0

∫ π

0

∂G(R,ω)
∂R

∣∣∣∣
R=R0

R2
0 sinϑ dϑdϕ

= lim
R0→0

[
R2

0
∂G(R,ω)

∂R

∣∣∣∣
R=R0︸ ︷︷ ︸

= U(ω) e jkR0(jkR0 − 1)

∫ 2π

0

∫ π

0
sinϑ dϑdϕ︸ ︷︷ ︸

= 4π

]

= −4πU(ω); (13.10)

it follows U(ω) = 1/4π, and hence213

G(R,R′,ω) = G(R − R′,ω)

=
e jk|R−R′|

4π|R − R′| . (13.11)

From an engineering point of view, we can be quite comfortable with this
derivation of the Green function for the scalar Helmholtz equation (5.32).
Yet to derive the Green function for (5.33)—defined by (5.64) and given by
(5.67)—we already had to utilize the three-dimensional spatial Fourier trans-
form tool requiring the knowledge of the inverse transform of 1/(K2 − k2).
A couple of remarks might be adequate in this connection.

Solution of the differential equation for the scalar Green function:
Three-dimensional spatial Fourier transform: Let

G̃(K,R′,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(R,R′,ω) e−jK·R d3R (13.12)

212Mathematically, this is not truly correct because G(R, ω) in VK is not continuously
differentiable; we should apply Gauss’ theorem in a distributional sense with ∇ as distri-
butional gradient choosing respective test functions.
213In the physics literature, the factor 4π is often found in front of the δ-function in the

differential equation (13.1); consequently, it is missing in the denominator of (13.11). Yet,
this normalization does not provide a unit source.
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be the three-dimensional spatial Fourier transform of G(R,R′,ω) with regard
to R; due to the double position vector argument of G(R,R′,ω), we distin-
guish the three-dimensional Fourier transform with regard to R by a tilde.
Hence, the transform of (13.1) yields

(jK) · (jK) G̃(K,R′,ω) + k2G̃(K,R′,ω) = −e−jK·R′
; (13.13)

due to ∆ = ∇ · ∇, we have used the differentiation rule (2.292) twice, and the
shifting rule (2.339) as well as (2.379). It follows with K · K = K2

G̃(K,R′,ω) =
1

K2 − k2 e−jK·R′
(13.14)

as well as the inversion integral

G(R,R′,ω) =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
K2 − k2 e jK·(R−R′) d3K. (13.15)

Obviously, G(R,R′,ω) is only a function of R − R′ that is denoted by G(R −
R′,ω), where

G(R,ω) =
1

(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

1
K2 − k2 e jK·R d3K (13.16)

has now to be calculated. To achieve this, the KxKyKz-coordinate system
is adjusted to the fixed point of observation R (Figure 13.2). With K · R =
KR cos ϑK , we write (13.16) in K-space spherical coordinates

K
Ky

Kz

Kx

O

R
ϑK

ϕK

FIGURE 13.2
K-space cartesian coordinate system Kx, Ky, Kz and spherical coordinates
K, ϑK ,ϕK .
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G(R,ω) =
1

(2π)3

∫ 2π

0

∫ π

0

∫ ∞

0

K2

K2 − k2 e jKR cos ϑK sinϑK dKdϑKdϕK ,

(13.17)

where the ϕK-integration immediately yields 2π. With the substitution
cos ϑK = η, elementary evaluation of the η-integration, and combination of
the two resulting integrals, we obtain

G(R,ω) =
1
jR

1
(2π)2

∫ ∞

−∞

K

K2 − k2 e jKR dK. (13.18)

Now we have to cope with the singularity of the integrand on the so-called
Ewald sphere K = k; we have the choice between complex valued functions
analysis (Langenberg 2005; Becker 1974; de Hoop 1995; King and Harrison
1969) or distributional calculus (DeSanto 1992). Using complex functions
analysis, we would like to apply the residue theorem; this requires an appro-
priate closure of the (−∞,∞)-integration path in a complex K-plane, and this
is performed in a way that physically an outbound traveling spherical wave is
obtained. The mathematically possible solution of (13.1) as an inbound travel-
ing spherical wave must be excluded due this “radiation condition.” Therefore,
we uniquely obtain

G(R,ω) = G(R, ω)

=
e jkR

4πR
(13.19)

as Green function. Using distributional calculus, the Fourier integrals resulting
from a partial fraction decomposition of the K/(K2 − k2)-integrand are sim-
ply calculated:214 We immediately obtain—however, physically meaningless—
G(R, ω) = cos kR/4πR as standing wave. To make it a physically meaningful
outbound traveling wave, (13.14) has to be complemented by an appropriate
solution of the homogeneous equation215 (13.1), and a fitting solution is216

j sin kR/4πR again resulting in (13.19).
Hence, we see—and this is the reason why we presented some details—that

the physically intuitive concept of an outbound time harmonic (elementary)
spherical wave is not that easy to be found mathematically. Yet, once we have
adopted (13.11) as the solution of (13.1), there are no limits for further inter-
pretations; this becomes particularly apparent interpreting Green functions in
the time domain as it is true for plane waves.

214The correspondence (2.373) is required.
215The function sin kR/R is nonsingular for R = 0; therefore, it satisfies the homogeneous

Helmholtz equation.
216According to

G̃(K, ω) =
1

K2 − k2
+ j�{G̃(K, ω)},

we have to complement with an imaginary part

�{G̃(K, ω)} =
π

2k
δ(K − |k|),

whose inversion yields sin kR/4πR.
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Very often, for the sake of simplicity, simulations and model calculations for
US-NDT are carried out in two spatial dimensions. This requires a completely
different scalar Green function again suggesting to present the respective result
at first as a time harmonic cylindrical wave.

Two-dimensional time harmonic Green function: We postulate two-
dimensionality with ∂/∂y ≡ 0 and introduce polar coordinates r, θ in the
xz-plane (counting θ from the z-axis, then er, eθ, ey is a right-handed tri-
hedron). Due to the expected rotational symmetry of the Green function
G(r,ω) = G(r,ω), the two-dimensional pendant to (13.5) reads

1
r

∂

∂r

[
r

∂G(r, ω)
∂r

]
︸ ︷︷ ︸
=

∂2G(r, ω)
∂r2 +

1
r

∂G(r, ω)
∂r

+k2G(r, ω) = −δ(r). (13.20)

Even though the difference as compared to (13.5) seems to be marginal—1/r
instead 2/R as variable dependent coefficient function—it has considerable
consequences: The homogeneous differential equation (13.20) defines cylindri-
cal functions217 J0(kr), N0(kr), H(1)

0 (kr), H(2)
0 (kr) (Bessel function, Neumann

function, and Hankel functions of first and second kind, all of order zero) as
solutions. Which one to choose out of the four? With (13.7), we immediately
selected that solution representing an outbound time harmonic wave with re-
spect to R. Here, G(r, ω) ∼ e jkr would be appropriate; as amplitude decrease
with increasing r, the function 1/

√
r should do because the phase surfaces

e jkr are circles, whose circumference increases proportional to r accounting
for the power density associated with

G(r, ω) ∼ e jkr

√
r

(13.21)

as a quadratic quantity to decay in fact equally fast as the “surface” increases
yielding a constant total power independent of r. The power radiated by the
unit line source is transported to infinity as an outbound radiation. The solu-
tion structure (13.21) now helps us to select218 the correct cylindrical function
because only H(1)

0 (kr) exhibits exactly this behavior for large kr (Abramowitz
and Stegun 1965):

H(1)
0 (kr) � e−j π

4

√
2
π

e jkr

√
kr

für kr � 1. (13.22)

217Comparable to the solutions sin kz, cos kz, e jkz , e−jkz of

∂2φ(z, ω)
∂z2

+ k2φ(z, ω) = 0

that have been identified in Chapter 8 as time harmonic plane waves together with the time
dependence e−jωt.
218This selection is related to the time dependence e−jωt; e jωt would yield the choice of

H(2)
0 (kr).
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The correct amplitude factor is found analogous to (13.9) and (13.10)
(Langenberg 2005), finally yielding the two-dimensional scalar Green function

G(r − r′,ω) =
j
4

H(1)
0 (k|r − r′|) (13.23)

if we again displace the source point from the origin to r′.
In connection with the point source synthesis of source and scattered fields,

it is useful to know that the integration of the three-dimensional Green func-
tion along the independence axis of the two-dimensional problem leads to the
two-dimensional Green function; namely, the Hankel function H(1)

0 (kr) has the
integral representation (Abramowitz and Stegun 1965)

j
4

H(1)
0 (kr) =

∫ ∞

−∞

e jk
√

r2+y2

4π
√

r2 + y2
dy. (13.24)

13.1.2 Time domain Green function

Evidently, the two- and three-dimensional Green functions (13.23) and (13.11)
are functions of the circular frequency ω via k = ω/c; therefore, they may
be considered to represent Fourier spectra of time domain Green functions
G(r − r′, t), respectively, G(R − R′, t).

Three-dimensional Green function in the time domain: With (2.366)
and the shifting rule (2.290), G(R − R′, t) may be rapidly found:

G(R − R′, t) =
1

4π|R − R′| δ

(
t − |R − R′|

c

)
. (13.25)

The differential equation defining (13.25) is found via Fourier inversion
of (13.1):

∆G(R − R′, t) − 1
c2

∂2G(R − R′, t)
∂t2

= −δ(R − R′) δ(t). (13.26)

Apparently, the right-hand side of (13.26) is now a pulsed unit point source
flashing “briefly” at the source point R′ at time t = 0. Its field is a pulsed
elementary spherical wave according to (13.25), whose time dependence re-
produces the source time function: The propagation of elementary waves in
three-dimensional space (filled with homogeneous nondissipative material) is
dispersion-free!

A slight generalization of (13.26) and (13.25) introduces a nonzero switch-
on time at t = t′:

∆G(R − R′, t, t′) − 1
c2

∂2G(R − R′, t, t′)
∂t2

= −δ(R − R′) δ(t − t′); (13.27)
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then the Fourier transform with respect to t leads to

∆G(R − R′,ω, t′) + k2G(R − R′,ω, t′) = −δ(R − R′) e jt′ω (13.28)

revealing

G(R − R′,ω, t′) = G(R − R′,ω) e jt′ω (13.29)

to hold. Therefore, the Fourier inversion of (13.29) yields together with (13.25):

G(R − R′, t, t′) =
1

4π|R − R′| δ

(
t − t′ − |R − R′|

c

)
= G(R − R′, t − t′). (13.30)

Figure 13.3 interprets the Green function (13.30) as elementary δ-impulse
spherical wave: Similar to a plane wave, we may either plot A-“scans” at fixed
spatial points (compare Figure 8.1), or we may plot the amplitude distribution
for fixed times (compare Figure 8.5); in Figure 13.3, both representations have
been combined. The two circles represent δ-impulse wavefronts at two fixed
times t1 and t2 with t2 > t1, i.e., they join those points R for which

R′

δ(t –t′)

R1

O

R2

t2

t1 t

tt′

t
R2 – R′

δ(t –t′ – R2 – R′ /c)
4π R2 – R′

R1 – R′

δ(t –t′ – R1 – R′ /c)

δ(t –t′)

4π R1 – R′

FIGURE 13.3
Pulsed δ-wavefronts of the Green function G(R − R′, t − t′) for two different
times and A-“scans” for two different spatial points.
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t1 − t′ − |R − R′|
c

= 0 (13.31)

holds or, respectively,

t2 − t′ − |R − R′|
c

= 0. (13.32)

A-“scans” are depicted for two selected points R1 and R2; these points are
located on the respective wavefronts resulting in a δ-impulse at time t1, re-
spectively, t2 in the A-“scan,” as symbolized by an arrow in Figure 2.22, where
the “amplitude” of the δ-pulse decays due to the |R − R′|−1-factor in (13.30).

For Green functions, the δ-pulse time dependence is mandatorily dictated,
however not for plane waves allowing to choose immediately RC2(t)-pulses
for NDT-relevant reasons (Section 8). Similarly here: We define an RC2(ω)-
bandlimited219 “Green function” GRC2(R − R′,ω) according to

∆GRC2(R − R′,ω) + k2GRC2(R − R′,ω) = −δ(R − R′) RC2(ω) (13.33)

that may immediately be given comparing (13.33) with (13.1):

GRC2(R − R′,ω) = RC2(ω)
e jk|R−R′|

4π|R − R′| . (13.34)

Via Fourier-inversion, we obtain in the time domain:

GRC2(R − R′, t) =
1

4π|R − R′| RC2
(

t − |R − R′|
c

)
. (13.35)

Figure 13.4 similarly depicts (13.35) in terms of three wavefronts (as usual in
gray-coded amplitude) and three A-“scans” for different distances from the
source point. The display of this bandlimited elementary spherical wave is
self-guiding: However, we want to point out that the RC2-pulse in the spatial
wavefronts appears spatially mirrored as in Figure 8.2, which is not visible
here due to the symmetry to the origin. That way, a causal excitation pulse
f(t)—f(t) ≡ 0 for t < 0—manifests itself as spatially causal wavefront: Before
a causal wavefront, the wave field is identically zero.

Two-dimensional Green function in the time domain: To find the two-
dimensional Green function in the time domain, we have to subject (13.23) to
an inverse Fourier transform; assistance comes from integral representations
of the Hankel function (Abramowitz and Stegun 1965). We find

G(r − r′, t) =
c

2π

1√
c2t2 − |r − r′|2 u(ct − |r − r′|), (13.36)

219The spectrum (13.29) of the Green function (13.30) always has the same magnitude for
−∞ < ω < ∞.
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R′

R1

O

R2

t

t

RC2(t)

RC2(t)

R2 – R′

RC2(t – R1 – R′ /c)

t = R2 – R′ /c

t = R1 – R′ /c

t

4π R1 – R′

R1 – R′

RC2(t – R2 – R′ /c)
4π R2 – R′

FIGURE 13.4
RC2(t)-impulse wavefronts of the bandlimited Green function GRC2(R − R′,
t) for three different times, and A-“scans” for three different locations (as in
Figure 8.1, the RC2(t)-impulse from Figure 2.20 is displaced by half a width
to the right to ensure its causality for t < 0).

where u(ct − |r − r′|) as unit step-function ensures the causality of G(r − r′, t),
i.e., G(r − r′, t) ≡ 0 for t < |r − r′|/c. Two typical A-“scans” for (13.36) are
displayed in Figure 13.5 for two different observation points r1 and r2 with
|r2 − r′| > |r1 − r′|. Two facts are immediately apparent:

• Even though the line source radiates a δ-impulse, the time variation of the
radiated field is not δ-like.220

• The square root singularity t = |r − r′|/c is the same for each distance
from the line source; the amplitude decay is hidden in the decreasing area
under the square root function with increasing distance.

220This result is also obtained if all point sources stringed along the line source are su-
perimposed with the three-dimensional Green function (Langenberg 2005): For a selected
observation point, the contributions from more distant point sources arrive later with lower
amplitudes.
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t = r1 – r′ /c t =
t t

r2 – r′ /c

G(r2 – r′, t)G(r1 – r′, t)

FIGURE 13.5
Two-dimensional Green function as function of time for two different obser-
vation points r1 and r2 mit |r2 − r′| > |r1 − r′|.

t = r1 – r′ /c t = r2 – r′ /c

tt

GRC2(r1 – r′, t) GRC2(r2 – r′, t)

FIGURE 13.6
Two-dimensional bandlimited Green function as function of time for two dif-
ferent observation points r1 and r2 mit |r2 − r′| > |r1 − r′|.

To make the amplitude decay visible with increasing distance, we calculate
analogous to (13.33)

GRC2(r − r′,ω) = RC2(ω)
j
4

H(1)
0

( |r − r′|
c

ω

)
; (13.37)

consequently, the expression

GRC2(r − r′, t) = RC2(t) ∗ c

2π

1√
c2t2 − |r − r′|2 u(ct − |r − r′|) (13.38)

may be evaluated as a convolution integral. The decreasing area under the
square root function then yields the amplitude decay and the dispersion of the
RC2(t)-pulse (Figure 13.6). We simply have to insert the asymptotic (13.22)
of the Hankel function into (13.37) to recognize a 1/

√
ω-multiplication of the

RC2(ω)-spectrum:

GRC2(r − r′,ω) � 1
4

e j π
4

√
2c

π

RC2(ω)√
ω

e jk|r−r′|√|r − r′| , (13.39)
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where the constraint kr � 1 must hold for all frequencies contained in the
RC2(ω)-spectrum.

These differences in two- and three-dimensional time domain Green func-
tions definitely effect respective sound field calculations, and restrain the quan-
titative comparison of two-dimensional simulations with measurements that
are always three-dimensional.

13.1.3 Far-field approximation

A convenient location for only one source point is the coordinate origin; yet
in general—in particular in US-NDT—we have to deal with extended sources
necessitating a superposition of the contributions from “many” (continuously
distributed) point sources. In that case, the coordinate origin might be con-
veniently located close to the source volume or even right in the “middle.”
If additionally the observation point distance R is large with regard to the
maximum linear dimension of the source volume (and large with regard to
the wavelength), the so-called far-field approximation may be introduced sim-
plifying the field calculation considerably.

Figure 13.7 supports the following argument: If R � R′ (for all R′ in the
interior of an eventual source volume) holds, then R − R′ is “nearly” parallel
to R allowing for the approximation

|R − R′| � R − R′ · R̂. (13.40)

Yet, in the Green function (13.11), the expression |R − R′| appears twice; due
to the major sensitivity of the phase with regard to approximations, we will use
(13.40) in the exponential function yet |R − R′|−1 � R−1 for the amplitude.
This results in the far-field approximation

Gfar(R,R′,ω) =
e jkR

4πR
e−jkR′·R̂ (13.41)

of the Green function. A precise calculation and estimate reveals (Langenberg
2005) that this approximation is practical for R � R′ and kR � 1.

R – R′

(R – R′ · R)R

R′ · R

R′

^

2

^ ^

R

π

O

FIGURE 13.7
Geometry of the far-field approximation.
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The far-field approximated Green function (13.41) exhibits a characteristic
structure: It is an elementary spherical wave that emerges from the origin
instead as from the actual source point221 R′, hence it must be direction
dependent phase corrected through multiplication with the phase directivity
characteristic

H(R̂,R′,ω) = e−jkR′·R̂. (13.42)

To present a time domain far-field A-“scan” of the Green function, we
must be somehow careful because (13.41) only holds for kR � 1; a “plain”
Fourier inversion is not permitted because δ(t) contains all frequencies with
the same amplitude [the spectrum F{δ(t)} = 1 appears as a factor in (13.11)].
Fortunately, we have the bandlimited Green function (13.34) at hand: For the
frequencies contained in RC2(ω), we surely may globally require R � c/ω

resulting in

GRC2,far(R,R′, t) =
1

4πR
RC2

(
t − R

c
+

R′ · R̂
c

)
(13.43)

due to the convolution of the Fourier inversion of (13.41) with RC2(t). Figure
13.8 displays a respective A-“scan.” Obviously, the phase correction manifests
itself as a travel time correction for the coordinate origin source.

The far-field approximation is particularly useful to give Green functions
∇′G(R − R′,ω), ∇′∇′G(R − R′,ω) that have been required in Section 5.5
for acoustic source fields a comparatively simple mathematical structure. Ac-
cording to (2.177), the gradient ∇′G(R − R′,ω) always has the direction of
|R − R′|, hence it generally has three components in spherical coordinates. We
may now either neglect the term with |R − R′|−2 in (2.177) as compared to

(R – R′ · R)/c

GRC2, far(R, R′, t)

^

t

FIGURE 13.8
A-“scan” of the RC2(ω)-bandlimited Green function in the far-field.

221Within a point source synthesis, this term is common to all point sources; hence, it can
be ignored in the synthesis volume integral.
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the |R − R′|−1-term to approximate ∇|R − R′| � R̂ or we can immediately
calculate

∇′Gfar(R,R′,ω) = −jkR̂
e jkR

4πR
e−jkR′·R̂. (13.44)

Due to ∇G(R − R′,ω) = −∇′G(R − R′,ω), we have

∇Gfar(R,R′,ω) = jkR̂
e jkR

4πR
e−jkR′·R̂. (13.45)

We conclude that: In the far-field ∇′-, respectively, ∇-differential operations,
on the Green function may be approximated by algebraic (−jkR̂)-, respec-
tively, (jkR̂)-multiplications:

∇′ far=⇒ − jkR̂, (13.46)

∇ far=⇒ jkR̂. (13.47)

That way, ∇′Gfar(R,R′,ω) has only one eR-component in spherical coordi-
nates!

The del-operation simultaneously produces a factor ω, yielding in the time
domain after—for example—RC2(ω)-band limitation

∇′GRC2,far(R,R′, t) =
1
c

∂GRC2,far(R,R′, t)
∂t

R̂; (13.48)

as compared to the A-“scan” in Figure 13.8, we observe the derivative of an
RC2(t)-impulse (in three dimensions)!

With the help of (13.46), respectively (13.47), we may immediately present
the far-field approximation of the acoustic dyadic Green function [Equa-
tion 5.67, respectively (5.68), for R �= R′]

G
v
(R − R′,ω) = − 1

k2 ∇′∇′G(R − R′,ω)

=− 1
k2 ∇∇G(R − R′,ω), (13.49)

namely

Gfar
v

(R,R′,ω) =
e jkR

4πR
e−jkR′·R̂ R̂ R̂; (13.50)

after band limitation with RC2(ω), we obtain in the time domain

GRC2,far
v

(R,R′, t) =
1

4πR
RC2

(
t − R

c
+

R′ · R̂
c

)
R̂ R̂, (13.51)

that is to say, another RC2(t)-pulse. The single components of (13.51) exhibit
differently direction dependent weighted amplitudes.
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With (13.22) and the above arguments, we obtain the far-field approxima-
tion of the two-dimensional Green function (13.23):

Gfar(r, r′,ω) =
1
4

e j π
4

√
2
π

e jkr

√
kr

e−jkr′·r̂, kr � 1, r � r′. (13.52)

As before, the transform into the time domain is only meaningful for a band-
limited “Green” function. Analogous to (13.37), respectively (13.38), we
multiply with an RC2(ω)-spectrum and utilize the correspondence222

(Doetsch 1967)

1√
t
u(t) ◦—• √

π
1√|ω| e j π

4 sign(ω) (13.53)

as well as the convolution and shifting rules:

GRC2,far(r, r′, t) =
c

2
√

2π

1√
r

RC2(t) ∗ 1√
ct − r + r′ · r̂ u(ct − r + r′ · r̂).

(13.54)

In contrast to (13.38), the square root function does not experience an area
change while shifted on the t-axis leading to constant dispersion of the RC2(t)-
pulse (due to the convolution) and to the expected 1/

√
r-dependence.

13.1.4 Point source synthesis of scalar source fields
with the scalar Green function

As a matter of fact, elastodynamics in a three-dimensional homogeneous
isotropic material offers with (Equation 7.35)

∆Φ(R, t) − 1
c2
P

∂2Φ(R, t)
∂t2

= −q(R, t) (13.55)

one scalar equation for the scalar Helmholtz potential Φ(R, t); for simplic-
ity, we have abbreviated the right-hand side of (7.35) with q(R, t), where
q(R, t) �= 0 only for R ∈ VQ.

Even though, we already addressed the point source synthesis of acoustic
(scalar) wave fields in Section 5.5, we want to demonstrate one more time the

222We have to continue the (ω > 0)-spectrum (13.52) as complex conjugate for ω < 0!
Alternatively, instead of using (13.53), we may approximate

1√
c2t2 − |r − r′|2 =

1√
ct − |r − r′|

1√
ct + |r − r′|︸ ︷︷ ︸

� 1√
2

in (13.36).
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usefulness of the scalar Green function to solve the scalar equation (13.55).
We claim that: If the solution of (13.55) for a point source at R′ radiating
a δ-impulse for t′, namely the scalar Green function G(R − R′, t − t′) of the
three-dimensional homogeneous isotropic material is known, we obtain the
solution of (13.55) for arbitrary sources q(R, t) superimposing all elementary
spherical waves given by G(R − R′, t − t′) q(R′, t′)-weighted for all source
points R′ ∈ VQ and all switch-on times −∞ < t′ < ∞, i.e., we should have

Φ(R, t) =
∫ ∫ ∫

VQ

∫ ∞

−∞
q(R′, t′)G(R − R′, t − t′) dt′d3R′. (13.56)

To prove it, we insert (13.56) into (13.55):(
∆ − 1

c2
P

∂2

∂t2

)
Φ(R, t)

=
∫ ∫ ∫

VQ

∫ ∞

−∞
q(R′, t′)

(
∆ − 1

c2
P

∂2

∂t2

)
G(R − R′, t − t′)︸ ︷︷ ︸

def= −δ(R − R′) δ(t − t′)

dt′d3R′,

(13.57)

where we could shift the differential operator acting on R and t to G(R −
R′, t − t′). Due to the sifting property of the δ-functions, we finally have(

∆ − 1
c2
P

∂2

∂t2

)
Φ(R, t) =

{−q(R, t) for R ∈ VQ

0 for R �∈ VQ,
(13.58)

i.e., (13.56) is a solution of (13.55). In the point source synthesis integral
(13.56), the Green function appears—in cartesian coordinates—as kernel of
a four-dimensional convolution integral.223 With the explicit representation
(13.29) of the Green function (c =⇒ cP), we can immediately calculate the
t′-integral due to (2.362):

Φ(R, t) =
1

4π

∫ ∫ ∫
VQ

q
(
R′, t − |R−R′|

cP

)
|R − R′| d3R′, (13.59)

where the remaining volume integral is now no longer a (three-dimensional)
convolution integral. The representation (13.59) of a scalar potential is called
a retarded potential: The potential at R for time t is composed by all those
point sources with their respective source point amplitude at R′ ∈ VQ for a

223The theory of linear time invariant systems knows the impulse response of the system as
reaction to a δ(t)-pulse input. An arbitrary input signal then yields the convolution with the
impulse response as output signal. The Green function is nothing but the impulse response
in time and space.
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time t′ that is as far in the past with regard to the actual observation time
as it corresponds to the travel time of the pertinent spherical waves from the
source point R′ to the observation point R. The Fourier transform (13.59)
according to

Φ(R,ω) =
1

4π

∫ ∫ ∫
VQ

q(R′,ω)
e jkP|R−R′|

|R − R′| d3R′ (13.60)

is recognized as superposition of time harmonic spherical waves:224 The time
retardation of the spherical waves is now obvious from their phase.

Note: Even for the frequent case of so-called synchronous sources

q(R, t) = f(t)q(R) ◦—• q(R,ω) = F (ω)q(R), (13.61)

whose single point sources all radiate with the same time dependence f(t) the
potential Φ(R, t) generally does not exhibit the time variation f(t) because
in the pertinent spectrum

Φ(R,ω) = F (ω)
1

4π

∫ ∫ ∫
VQ

q(R′)
e jkP|R−R′|

|R − R′| d3R′

︸ ︷︷ ︸
= φ(R,ω)

, (13.62)

F (ω) is weighted with the frequency-dependent function φ(R,ω), i.e., f(t) is
convolved with φ(R, t).

In the far-field (13.60) adopts a particularly simple form (compare Foot-
note 221):

Φfar(R,ω) =
e jkPR

R

1
4π

∫ ∫ ∫
VQ

q(R′,ω) e−jkPR̂·R′
d3R′

︸ ︷︷ ︸
= Hq(R̂,ω)

. (13.63)

A spherical wave emanating from the coordinate origin is weighted by the
direction- and frequency-dependent radiation characteristic Hq(R̂,ω) of the
source, where Hq(R̂,ω) generally accounts for an amplitude and phase
weighting. Note: Not even in the far-field, the assumption of a synchronous
f(t)-source leads to an f(t)-dependence of Φfar(R, t).

Once again, we concentrate on the point source superposition of the acous-
tic pressure as scalar quantity (Equation 5.63)

p(R,ω)

=
∫ ∫ ∫

VQ

[
jωρh(R′,ω)G(R − R′,ω) + f(R′,ω) · ∇′G(R − R′,ω)

]
d3R′

(13.64)

224In Cartesian coordinates, this is once again a three-dimensional convolution integral.
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to write down the far-field approximation of both terms:

pfar(R,ω) =
e jkR

R
jω

Z

4πc

∫ ∫ ∫
VQ

h(R′,ω) e−jkR̂·R′
d3R′

− e jkR

R
jω

1
4πc

∫ ∫ ∫
VQ

R̂ · f(R′,ω) e−jkR̂·R′
d3R′

=
e jkR

R

[
Hh(R̂,ω) + Hf (R̂,ω)

]
. (13.65)

For Hh(R̂,ω), the relative far-field phases of elementary spherical waves are
superimposed with direction-dependent amplitudes, whereas for Hf (R̂,ω), an
additional amplitude weighting is observed due to the direction dependence
of the spherical waves: The reason for it is the ∇′-operation on the Green
function. If—for instance—f represents a z-directed force density at the origin
according to

f(R,ω) = F (ω) δ(R) ez, (13.66)

we have Hf (R̂,ω) ∼ R̂ · ez = cos ϑ: The pertinent elementary spherical wave
is a dipole wave (Langenberg 2005).

With the special choice of the direction of f(R,ω) according to

f(R,ω) = f(R,ω) eR

= f(R,ω) R̂ (13.67)

(so-called breathing sphere), we can eliminate the dipole waves from the acous-
tic radiation field.

The point source synthesis (13.64) of the acoustic pressure suggests an-
other illustration of the Green function. We put f(R,ω) ≡ 0 and h(R,ω) =
δ(R) postulating a point-like (unit) injected dilatation rate at the origin to
find its pressure radiation field

pPSh(R,ω) = jωρ G(R, ω) (13.68)

with (13.64). The jωρ-multiplied scalar Green function is the time harmonic
pressure radiation field of a (scalar) point source. In the time domain, this
multiplication accounts for a differentiation:

pPSh(R, t) = −ρ
∂G(R, t)

∂t
, (13.69)

i.e., a δ(t)-h-source yields a δ′(t)-pressure wavefront. However, if we put
h(R,ω) ≡ 0 and f(R,ω) = δ(R)f̂ assuming a point-like (unit) force density
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with the given arbitrary direction f̂ , we can also observe the dipole wave in
the pressure wave (projected onto f̂):

pPSf (R,ω) = −f̂ · ∇G(R, ω). (13.70)

In the far-field, the gradient operation again accounts for a differentiation in
the time domain.

Another hint: If we insert the far-field approximation

vfar(R,ω) =
1
Z

pfar(R,ω) R̂ (13.71)

into the time harmonic acoustic governing equation

jωρv(R,ω) = ∇p(R,ω), (13.72)

we also obtain the expression (5.53) valid for plane waves for acoustic source
fields:

vfar(R,ω) · R̂ =
1
Z

pfar(R,ω)

=
1
Z

[Hh(R̂,ω) + Hf (R̂,ω)]
e jkR

R
. (13.73)

13.2 Homogeneous Isotropic Infinite Space Green
Tensors of Elastodynamics

13.2.1 Second-rank Green tensor

In acoustics, the differential equations (5.32) and (5.33) for the field quan-
tities p(R, t) and v(R, t) result from the acoustic governing equations for a
homogeneous infinite (nondissipative) space. After a Fourier transform with
respect to t, we gave their solutions in terms of the point source synthesis
according to (5.63) and (5.73), where Green functions played the role of su-
perimposing time harmonic elementary spherical waves. All necessary Green
functions could be lead back to ∇-differentiations of the scalar Green function
G(R − R′,ω). This is also true in elastodynamics (and electromagnetics).

We refrain ourselves to homogeneous isotropic materials because only these
materials allow for explicit mathematical expressions for Green functions (ten-
sors); hence, we assume

c = λ Iδ + 2µ I+, (13.74)

respectively

s = Λ Iδ + 2M I+, (13.75)
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where Λ and M are related to λ and µ via (4.30) and (4.31). The basis to
calculate elastodynamic source fields are the respective governing Equations
(4.33) and (4.34) resulting in the differential equations for the field quantities
T(R, t) and v(R, t):

I+ : ∇
[
∇ · T(R, t)

]− ρ s :
∂2T(R, t)

∂t2
= −I+ : ∇f(R, t) − ρ

∂h(R, t)
∂t

,

(13.76)

µ ∆v(R, t) + (λ + µ) ∇∇ · v(R, t) − ρ
∂2v(R, t)

∂t2

= −∂f(R, t)
∂t

− ∇ · c : h(R, t).
(13.77)

The differential equation for v(R, t) has already been given with (7.20), here,
for simplicity, we keep c on the right-hand side, even though we have (13.74)

in mind. The differential equation for T(R, t) also results from inserting the
elastodynamic governing equations into each other, where the utilization of
the symmetrization tensor I+ is useful for a short-hand notation; despite the

specification (13.75), we explicitly keep the compliance tensor s.

De Hoop (1995) simultaneously elaborates the theory of Green functions
for both field quantities v(R, t) and T(R, t), establishing a reciprocity the-
orem with the elastodynamic governing equations; here, we start with the
Navier equation (13.77) for v(R, t) and calculate T(R, t) from its solution
via the deformation rate equation, as we have done it already for plane
waves. Equation 13.77 is essentially distinguished form the respective acoustic
Equation 5.33 by the additional ∆v(R, t)-term. From the specialization (8.5)
through (8.7) to the homogeneous one-dimensional form, we conclude that
this term stands for the additionally occurring shear waves. Hence, we will
expect from the respective Green function for Equation 13.77 that it accounts
for pressure and shear elementary waves.

After the Fourier transform of (13.77) with regard to t according to

(µ ∆ + ρω2)v(R,ω) + (λ + µ)∇∇ · v(R,ω) = −Q(R,ω), (13.78)

where

Q(R,ω) = −jω f(R,ω) + ∇ · c : h(R,ω), (13.79)

we define a time harmonic (second rank) Green tensor G(R,R′,ω) through[
(µ ∆ + ρω2) I + (λ + µ) ∇∇

] · G(R,R′,ω) = −δ(R − R′) I. (13.80)

To calculate G(R,R′,ω), the dyadic differential operator (µ ∆ + ρω2) I +
(λ + µ)∇∇ must on one hand be inverted as a dyadic operator and, on the
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other hand, as a differential operator. We formally apply a three-dimensional
Fourier transform with respect to R [compare (13.12)]:

G̃(K,R′,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(R,R′,ω) e−jK·R d3R′. (13.81)

That way the differential equation (13.80) turns into the algebraic equation(
µK2 − ρω2

λ + µ
I + KK

)
︸ ︷︷ ︸

= W̃(K)

·G̃(K,R′,ω) =
1

λ + µ
e−jR′·K I (13.82)

allowing for the inversion of the wave tensor W̃(K) with algebraic methods
according to the instruction

W̃
−1

(K) =
adjW̃(K)

detW̃(K)
. (13.83)

For K =⇒ ωk̂/c, we already know the wave tensor with Equation (8.66): With
(8.67), we calculated its determinant and equalized it to zero to determine the
phase velocities c = cP, c = cS. Here, |K| = K is the magnitude of the Fourier
vector K with 0 ≤ K < ∞ allowing at least for the expectation detW̃(K) �= 0
for K �= ω/cP and K �= ω/cS. Analogous to (8.68), we calculate

detW̃(K) =
(

µK2 − ρω2

λ + µ

)2 [ (λ + 2µ)K2 − ρω2

λ + µ

]
(13.84)

and note that detW̃(K = ω/cP,S, K̂) is in fact equal to zero, but nonzero oth-
erwise. With Chen’s formula (Chen 1983)

adj (β I + CD) = β[(β + C · D) I − CD], (13.85)

we calculate the adjoint of W̃(K) according to:

adjW̃(K) =
µK2 − ρω2

λ + µ

{[
(λ + 2µ)K2 − ρω2

λ + µ

]
I − KK

}
; (13.86)

consequently, we obtain for the inverse

W̃
−1

(K) =
λ + µ

µK2 − ρω2

[
I − λ + µ

(λ + 2µ)K2 − ρω2 KK
]

=
λ + µ

µ

[
1

K2 − k2
S

I − λ + µ

λ + 2µ

1
(K2 − k2

S)(K2 − k2
P)

KK
]

;

(13.87)
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as expected W̃
−1

(K), and hence G̃(K,R′,ω), is singular on the two so-called
Ewald spheres K = kP and K = kS in K-space; however, such a singularity
already appeared in the Fourier spectrum (13.14) of the scalar Green function!
Due to this analogy, it appears meaningful to separate the second term in the
square brackets of (13.87) via partial fraction decomposition

λ + µ

λ + 2µ

1
(K2 − k2

S)(K2 − k2
P)

=
1
k2
S

(
1

K2 − k2
P

− 1
K2 − k2

S

)
(13.88)

into the two terms 1/(K2 − k2
P) and 1/(K2 − k2

S). It follows

G̃(K,R′,ω) =
1

λ + µ
e−jR′·K W̃

−1
(K) · I

=
1
µ

[(
I − 1

k2
S

KK
)

1
K2 − k2

S
+

1
k2
S

1
K2 − k2

P
KK

]
e−jR′·K.

(13.89)

The inverse Fourier integral suggests [compare (13.15)]

G(R,R′,ω) = G(R − R′,ω). (13.90)

Furthermore, G̃(K,R′,ω), and hence G(R − R′,ω), is a symmetric second
rank tensor. We find that:

G(R − R′,ω)

=
1
µ

[(
I +

1
k2
S

∇′∇′
)

e jkS|R−R′|

4π|R − R′| − 1
k2
S

∇′∇′ e jkP|R−R′|

4π|R − R′|

]

=
1
µ

[(
I +

1
k2
S

∇∇
)

e jkS|R−R′|

4π|R − R′| − 1
k2
S

∇∇ e jkP|R−R′|

4π|R − R′|

]

=
1
µ

[(
I +

1
k2
S

∇∇
)

GS(R − R′,ω) − 1
k2
S

∇∇GP(R − R′,ω)
]

=
1
µ

{
IGS(R − R′,ω) +

1
k2
S

∇∇
[
GS(R − R′,ω) − GP(R − R′,ω)

]}
,

(13.91)

where

GP,S(R − R′,ω) =
e jkP,S|R−R′|

4π|R − R′| . (13.92)

A further remark concerning the mathematical structure: As it was already
obvious with (5.71), the ∇∇-operation on the scalar Green function contains a
distributional term for R = R′ that is, by the way, also present in elastostatics
in the limit kS,P −→ 0 because it is not due to the exponential function but
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to the 1/|R − R′|-term. Yet, this behavior is exhibited by both ∇∇-terms in
(13.91); due to the different signs, the distributional terms cancel. In addition,
the necessary principal value calculation in (5.71) for R ∈ VQ becomes obsolete
allowing for a “tranquilized” calculation of the differentiations in (13.91) with
a subsequent integration. Only if we evaluate both terms separately, we must
take care.225

From a physical point of view, the two terms

G
P
(R,ω) =− 1

k2
P

∇∇e jkPR

4πR
, (13.93)

G
S
(R,ω) =

(
I +

1
k2
S

∇∇
)

e jkSR

4πR
, (13.94)

composing G(R,ω) according to

G(R,ω) =
1

λ + 2µ
G

P
(R,ω) +

1
µ

G
S
(R,ω) (13.95)

exactly satisfy our expectations: G
P
(R,ω) represents primary and G

S
(R,ω)

secondary waves. We immediately show that for R �= 0, we have

∇ × G
P
(R,ω) = 0, (13.96)

∇ · G
S
(R,ω) = 0, (13.97)

i.e., G
P
(R,ω) equally stands for pressure and G

S
(R,ω) for shear waves.

Insofar, G
P
(R,ω) is identical to the acoustic tensor226 G

v
(R,ω) accord-

ing to (5.67) for R �= 0227 (exterior to the source point); yet even G
S
(R,ω)

has a counterpart, namely the tensor G
e
(R,ω) of electromagnetics (Section

6.6): An electric current density radiates elementary waves (of the electric
field strength) of the same mathematical and physical structure as an elas-
todynamic force density (regarding the particle velocity) if one solely con-
centrates on the secondary shear waves. Including pressure waves (f =⇒ v)-
elastodynamics structurally appears as a “superposition” of (f =⇒ v)-acoustics
and (Je =⇒ E)-electromagnetics!

For R �= 0, the evaluation of the ∇∇-differentiation in the separately ap-
pearing terms (13.93) and (13.94) does not cause any problems:

G
P
(R,ω) =

[
R̂ R̂ − j

kPR
(I − 3R̂ R̂) +

1
k2
PR2 (I − 3R̂ R̂)

]
e jkPR

4πR
, (13.98)

G
S
(R,ω) =

[
I − R̂ R̂ +

j
kSR

(I − 3R̂ R̂) − 1
k2
SR2 (I − 3R̂ R̂)

]
e jkSR

4πR
.

(13.99)

225Regarding a separate evaluation, Footnote 232 is relevant.
226Hence, all subsequent discussions also hold for acoustic pressure waves.
227Note that the limit µ −→ 0 must be performed in the first line of (13.87).
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The following is attracting attention:

• Even if the source point is located in the coordinate origin, the elemen-
tary elastodynamic pressure and shear waves possess direction-dependent
amplitudes that are functions of R and R̂.

• The amplitudes of elementary elastodynamic pressure and shear waves
each contain terms with characteristic R-dependencies: 1/R, 1/R2, and
1/R3. Obviously, we have

Gfar
P

(R,ω) =
e jkPR

4πR
R̂ R̂

=
e jkPR

R
g

P
(R̂), (13.100)

Gfar
S

(R,ω) =
e jkSR

4πR
(I − R̂ R̂)

=
e jkSR

R
g

S
(R̂) (13.101)

as far-field terms with the (frequency-independent) tensorial radiations
characteristics

g
P
(R̂) =

1
4π

R̂ R̂, (13.102)

g
S
(R̂) =

1
4π

(I − R̂ R̂). (13.103)

Accordingly, the 1/R3-terms represent the near-field and the 1/R2-terms
a transition field.

• Near-field, transition field, and far-field are differently frequency depen-
dent; only in the far-field, the δ(t)-impulse of the source in the time domain
version of (13.80) appears as δ(t)-G

P,S
-elementary wavefront.

• With respect to a sphere (in the far-field),

Gfar
P

(R,ω) =
e jkPR

4πR
eR eR (13.104)

has only a radial (tensor) component and

Gfar
S

(R,ω) =
e jkSR

4πR
(eϑ eϑ + eϕ eϕ) (13.105)

only tangential (tensor) components, because we have I = eR eR + eϑ eϑ +
eϕ eϕ in spherical coordinates.

The discussion of G(R − R′,ω), respectively G(R − R′, t), in the sense of
Section 13.1.2 for the scalar Green function is a little more cumbersome due to
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the tensorial character of G and due to the different frequency dependence of
near-, transition-, and far-fields. Therefore, we refer to (13.68) through (13.70)
considering immediately the physical field quantity, in the present case, the
particle velocity. Beforehand, we give the tensor components of G

P
(R,ω) and

G
S
(R,ω) in spherical coordinates:

G
P
(R,ω) : eReR =

(
1 + j

2
kPR

− 2
k2
PR2

)
e jkPR

4πR
, (13.106)

G
P
(R,ω) : eϑeϑ =

(
−j

1
kPR

+
1

k2
PR2

)
e jkPR

4πR
, (13.107)

G
P
(R,ω) : eϕeϕ =

(
−j

1
kPR

+
1

k2
PR2

)
e jkPR

4πR
; (13.108)

G
S
(R,ω) : eReR =

(
−j

2
kSR

+
2

k2
SR2

)
e jkSR

4πR
, (13.109)

G
S
(R,ω) : eϑeϑ =

(
1 + j

1
kSR

− 1
k2
SR2

)
e jkSR

4πR
, (13.110)

G
S
(R,ω) : eϕeϕ =

(
1 + j

1
kSR

− 1
k2
SR2

)
e jkSR

4πR
. (13.111)

In spherical coordinates G(R,ω) is diagonal, and apparently the far-field ap-
proximation (13.104) and (13.105) is found to be related to the 1-terms in the
brackets of (13.106), (13.110), and (13.111).

13.2.2 Particle displacement of a point source force density,
point radiation characteristic

Analogous to (13.56), we claim that

v(R,ω) =
∫ ∫ ∫

VQ

G(R − R′,ω) · Q(R′,ω) d3R′ (13.112)

is a solution of the differential equation (13.78) if G(R − R′,ω) satisfies
(13.80). For a proof insert (13.112) into (13.78), use (13.80), and argue with
the sifting property of the δ-function. Equation 13.112 is the point source syn-
thesis of a time harmonic elastodynamic particle velocity field that is radiated
by the source density Q(R,ω) being nonzero in VQ: The tensorial elementary
waves are composed of pressure and shear waves with spherical amplitude
and phase surfaces. As for plane waves, to “observe” the elementary waves,
we switch to the particle velocity228 and initially consider h(R,ω) ≡ 0:

228De Hoop (1995) denotes the Green tensor −jωG as Gvf :

v(R, ω) =
∫ ∫ ∫

VQ

Gvf (R − R′, ω) · f(R′, ω) d3R′.
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u(R,ω) =
∫ ∫ ∫

VQ

G(R − R′,ω) · f(R′,ω) d3R′ (13.113)

=
∫ ∫ ∫

VQ

f(R′,ω) · G21(R − R′,ω) d3R′

=
∫ ∫ ∫

VQ

f(R′,ω) · G(R − R′,ω) d3R′; (13.114)

we have exploited the symmetry of G(R − R′,ω). The vector particle dis-
placement field of a point-like (unit) force density229

f(R,ω) = δ(R) f̂ (13.115)

at the origin is the tensor Green function projected onto the direction f̂ of the
force density [compare (13.70)]

uPSf (R,ω) = G(R,ω) · f̂ (13.116)

= f̂ · G(R,ω). (13.117)

This explains the tensor character of the elementary waves: The vector force
density f̂ is rotated into the vector particle displacement, both do not have
the same direction. The vector (13.116) may be separated into its spherical
coordinate components:

u
PSf

R,ϑ,ϕ(R,ω) = uPSf (R,ω) · eR,ϑ,ϕ

= G(R,ω) : f̂ eR,ϑ,ϕ; (13.118)

with (13.106) through (13.111), we find

u
PSf

R (R,ω) =
[

1
λ + 2µ

(
1 + j

2
kPR

− 2
k2
PR2

)
e jkPR

4πR

+
1
µ

(
−j

2
kSR

+
2

k2
SR2

)
e jkSR

4πR

]
f̂ · eR, (13.119)

u
PSf

ϑ (R,ω) =
[

1
λ + 2µ

(
−j

1
kPR

+
1

k2
PR2

)
e jkPR

4πR

+
1
µ

(
1 + j

1
kSR

− 1
k2
SR2

)
e jkSR

4πR

]
f̂ · eϑ, (13.120)

u
PSf
ϕ (R,ω) =

[
1

λ + 2µ

(
−j

1
kPR

+
1

k2
PR2

)
e jkPR

4πR

+
1
µ

(
1 + j

1
kSR

− 1
k2
SR2

)
e jkSR

4πR

]
f̂ · eϕ. (13.121)

229The δ(R)-function has the unit m−3, a force f0 = 1 has the unit N.
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At first, we keep in mind: Each elastodynamic (force density) point source
radiates pressure and shear waves. In addition: Generally, the primary pres-
sure wave is not longitudinal, and the secondary shear wave is not transverse
since both waves appear in each component. The terminology “long and shear
waves” common to US-NDT is strictly only valid for plane waves; pressure as
well as shear elementary waves have both longitudinal eR- as well as transverse
eϑ, eϕ-particle displacement components.230

Only in the far-field approximation

u
PSf ,far
R (R,ω) =

1
λ + 2µ

e jkPR

4πR
f̂ · eR, (13.122)

u
PSf ,far
ϑ (R,ω) =

1
µ

e jkSR

4πR
f̂ · eϑ, (13.123)

u
PSf ,far
ϕ (R,ω) =

1
µ

e jkSR

4πR
f̂ · eϕ, (13.124)

the familiar terminology holds: Primary far-field pressure waves are longi-
tudinally polarized, secondary far-field shear waves are transversely polar-
ized. Otherwise spoken: In the far-field, primary waves only appear in the
R-component and shear waves only in the ϑ,ϕ-components of the particle ve-
locity. Specially choosing f̂ = f̂(R̂) = eR (so-called breathing sphere), tangen-
tial components basically do not appear in the particle displacement radiation
field, and the far-field of this special source only consists of a pressure wave.

For US-NDT, the special choice f̂ = ez is particularly important (the sim-
plest model of a piezoelectric transducer is a normal point force on an elastic
half-space with a surface parallel to the xy-plane); that way, the ϕ-component
of the shear wave disappears, and the R-component of the pressure wave ex-
hibits the directivity f̂ · eR = cos ϑ, i.e., a zero perpendicular to the force orien-
tation (ϑ = π/2), while the ϑ-component of the shear wave has the directivity
f̂ · eϑ = − sinϑ, i.e., zeroes in the direction of the force orientation (ϑ = 0,
ϑ = π). RC2(ω)-bandlimited time domain far-field wavefronts of the particle
velocity—multiply (13.122) through (13.124) by RC2(ω)—are displayed as
such in Figure 13.9; note: The pressure and shear wavefronts appear in differ-
ent components of the particle velocity. This figure carries the wavefront rep-
resentation of plane pressure and shear waves in Figure 8.5 over to respective
elementary waves from point sources; in both cases, the shear wave is recogniz-
able by its smaller wavelength, hence both wavefront types are longitudinally,
respectively transversely, polarized in both cases, yet, here, the far-field ap-
proximation is assumed, and the point source parameter f̂ comes into play.
For example, the breathing sphere f̂ = f̂(R̂) = eR yields the wavefront picture
of Figure 13.10. An A-“scan” complementing Figure 13.9 (Figure 13.11) once

230Therefore, we necessarily find shear waves on the acoustic axis in the near-field of a
normal point force on the surface of a half-space (the zeroes of the point directivity—Figure
14.12—only appear in the far-field) yielding applications in medical diagnostics (Fink et al.
2002).
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x

y

Shear wave Pressure wave

uϑ
PSf , fareϑ

uR
PSf , fareR

z

f = ez
^

FIGURE 13.9
RC2(ω)-bandlimited far-field wavefronts of the particle velocity with force
density f̂ = ez [with regard to the pressure wave, the shear wave basically
exhibits the amplitude factor (λ + 2µ)/µ = κ2; a second factor κ is inherent
because at fixed time t the wavefront of the shear wave has only reached
R = cSt, while the pressure wave is already observed at R = cPt].

uR
PSf , fareR

f(R) = eR
^ ^

Pressure wave

FIGURE 13.10
RC2(ω)-bandlimited far-field wavefronts of the particle velocity for given force
density f̂ = eR.
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uR
PSf , far(R, t)

R/cP R/cS

t

uϑ
PSf , far(R, t)

FIGURE 13.11
A-“scan” to Figure 13.9 for a fixed location R (with regard to the pressure
wave, the shear wave exhibits a larger amplitude by a factor of (λ + 2µ)/
µ = κ2 as compared to the pressure wave at a fixed location).

again explicitly illustrates that an RC2(t)-pulse in the force density manifests
itself again as RC2(t)-pulse in the far-field of the particle velocity, in fact in
the pressure wave pulse as well as in the shear wave pulse. For plane waves
in infinite space, we could independently prescribe the time dependence of
pressure and shear waves; for elementary waves from point sources, the time
dependence of the shear wave is coupled to the time dependence of the pressure
wave via the time dependence of the source.

Point directivities of the particle displacement of a force density: As
already mentioned, the direction-dependent amplitudes of the far-field wave-
fronts in Figure 13.9 according to (13.118), and (13.100), (13.101) are given
by the (non-normalized) f̂ -directivities

H
PSf

P (R̂) =
1

λ + 2µ
g

P
(R̂) : f̂ eR

=
1

4π(λ + 2µ)
R̂ R̂ : f̂ eR

=
1

4π(λ + 2µ)
f̂ · R̂

= R e−jkPR u
PSf ,far
R (R,ω), (13.125)

H
PSf

Sϑ (R̂) =
1
µ

g
S
(R̂) : f̂ eϑ

=
1

4πµ
(I − R̂ R̂) : f̂ eϑ

=
1

4πµ
f̂ · eϑ

= R e−jkSR u
PSf ,far
ϑ (R,ω), (13.126)
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H
PSf

Sϕ (R̂) =
1
µ

g
S
(R̂) : f̂ eϕ

=
1

4πµ
(I − R̂ R̂) : f̂ eϕ

=
1

4πµ
f̂ · eϕ

= R e−jkSR u
PSf ,far
ϕ (R,ω), (13.127)

where we have assumed f̂ = ez in the alluded figure. These point directivities
are frequency independent. Figure 13.12 exhibits graphical displays of the
point directivities |HPSf

P (R̂)| and |HPSf

Sϑ (R̂)| (radiation patterns) for f̂ = ez

and f̂ = ex in the xz-plane. The single pictures 13.12(a) and (b) refer to the
amplitude weighting of the wavefronts in Figure 13.9.

Note: The (f̂ = ez)-radiation pattern of the transverse shear wave corre-
sponds to the one of an accordingly oriented Hertzian dipole for electromag-
netic waves (Section 6.6). This is mandatory because the Green tensors G

e
and G

S
agree with each other, and the force density in the v-differential

f = ez
^ f = ez

^

f = ex
^f = ez

^

HP
PSf (R) = ^

R^

1
4π(λ + 2µ)

cos ϑ

ϑ

z

HP
PSf (R) = 

(a) (b)

(c) (d)

^ 1
4π(λ + 2µ)

sin ϑ cos ϕ

HSϑ
PSf (R) = –^ 1

4πµ
sin ϑ

HSϑ
PSf (R) = ^ 1

4πµ
cos ϑ cos ϕ

FIGURE 13.12
Radiation patterns of the particle displacement for two orthogonal [(a), (b) vs.
(c), (d)] point-like force density sources (f̂ -point directivities): in the direction
R̂, the magnitude normalized to 1 of the point directivities is displayed for
ϕ = 0 as function of ϑ.
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equation has a similar significance as the electric current density in the
E-differential equation.

Locally plane waves: By the way, with (13.116) and (13.95) as well as
with (13.100) and (13.101), we may write the far-field approximation (13.122)
through (13.124) coordinate-free:

uPSf ,far
P (R,ω) =

1
λ + 2µ

ejkPR

4πR
R̂ R̂ · f̂

= uP(f̂ , R̂)
e jkPR

R
ûP(f̂ , R̂) (13.128)

with

ûP(f̂ , R̂) = R̂, (13.129)

uP(f̂ , R̂) =
1

4π(λ + 2µ)
R̂ · f̂ (13.130)

as well as

uPSf ,far
S (R,ω) =

1
µ

ejkSR

4πR
(I − R̂ R̂) · f̂

= uS(f̂ , R̂)
e jkSR

R
ûS(f̂ , R̂) (13.131)

with

ûS(f̂ , R̂) =
(I − R̂ R̂) · f̂
|(I − R̂ R̂) · f̂ | , (13.132)

uS(f̂ , R̂) =
1

4πµ
|(I − R̂ R̂) · f̂ |, (13.133)

where the amplitude (unit) vectors ûP(f̂ , R̂) and ûS(f̂ , R̂) according to

(I − R̂ R̂) · ûP(f̂ , R̂) = 0, (13.134)

R̂ · ûS(f̂ , R̂) = 0 (13.135)

are longitudinally, respectively transversely, oriented with regard to the prop-
agation direction R̂. The comparison of this notation with (8.82) through
(8.84) reveals that the particle displacement far-field of a point source be-
haves locally as a plane wave. One essential difference: A potential F (ω)-band
limitation of the point source according to f(R,ω) = F (ω)δ(R) f̂ appears as
a factor in both amplitudes uP,S(f̂ , R̂) =⇒ uP,S(f̂ , R̂,ω) = F (ω)uP,S(f̂ , R̂).

Obviously, this analogy—Equations 8.121 and 8.122—also holds for the
stress tensor. With (13.74) (Equation 7.23), we calculate

T(R,ω) = c : ∇u(R,ω)

= λ I∇ · u(R,ω) + µ
{
∇u(R,ω) + [∇u(R,ω)]21

}
, (13.136)
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i.e., in the far-field of the f̂ -point source

TPSf ,far(R,ω) = TPSf ,far
P

(R,ω) + TPSf ,far
S

(R,ω) (13.137)

with—note (13.135)—

TPSf ,far
P

(R,ω) = jkP uP(f̂ , R̂)
e jkPR

R
(λ I + 2µR̂ R̂), (13.138)

TPSf ,far
S

(R,ω) = jkSµ uS(f̂ , R̂)
e jkSR

R
[R̂ ûS(f̂ , R̂) + ûS(f̂ , R̂)R̂]. (13.139)

We will see in Chapter 14 that the local analogy between spherical and plane
waves is even true for the far-field of arbitrarily finite sources.

The separation (13.128) and (13.131) into pressure and shear elementary
waves also holds, recognizing (13.95) and (13.116), for arbitrary distances:

uPSf (R,ω) =
1

λ + 2µ
G

P
(R,ω) · f̂︸ ︷︷ ︸

= uPSf

P (R,ω)

+
1
µ

G
S
(R,ω) · f̂︸ ︷︷ ︸

= uPSf

S (R,ω)

; (13.140)

yet for arbitrary distances, this is not a separation into longitudinal and trans-
verse waves. Hence, we have for the stress tensor

TPSf (R,ω) =
1

λ + 2µ
c : ∇G

P
(R,ω) · f̂ +

1
µ

c : ∇G
S
(R,ω) · f̂

= Σ(R,ω) · f̂ , (13.141)

where

Σ(R,ω) =
1

λ + 2µ
c : ∇G

P
(R,ω) +

1
µ

c : ∇G
S
(R,ω)

= c : ∇G(R,ω) (13.142)

=
(
λ I∇ + µ∇ I + µ∇ I213) · G(R,ω) (13.143)

obviously—compare (13.141) with (13.116)—plays the role of a Green tensor
characterizing the elementary stress waves emerging from a point force density
source.

Impulse responses of the particle velocity components: With Fig-
ures 13.9 and 13.11, we have discussed bandlimited far-field wavefronts and
A-“scans” of the particle displacement, where typically different components
of the particle displacement vector can be displayed in one respective figure
because they appear separately in space and time in case the duration of
the excitation bandlimited pulse is short enough. This might not be true for
the near- and transition fields, yet we could principally excite with a δ-pulse
with infinite bandwidth. The only difficulty: We must observe the different
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frequency dependence of the near-, transition-, and far-field terms evaluat-
ing the Fourier inversion of (13.119) through (13.121). So, let us write, for
example, Equation 13.119 with the view of the frequency dependence:

u
PSf

R (R,ω)

=
f̂ · eR

4πρR

[(
1
c2
P

+ j
2

cPR

1
ω

− 2
R2

1
ω2

)
e j R

cP
ω +
(

−j
2
cS

1
ω

+
2

R2

1
ω2

)
e j R

cS
ω

]
.

(13.144)

With the correspondences (2.373), the Fourier inversion yields231 (Doetsch
1967)

|t| ◦—• − pf
2
ω2 (13.145)

the impulse response of the R-component of the particle displacement because
we may consider the factor 1 in (13.115) as spectrum of a δ(t)-excitation:

u
PSf

R (R, t) =
f̂ · eR

4π(λ + 2µ)

⎡⎣δ
(
t − R

cP

)
R

+ cP

sign
(
t − R

cP

)
R2 + c2

P

∣∣∣t − R
cP

∣∣∣
R3

−κcP

sign
(
t − R

cS

)
R2 − c2

P

∣∣∣t − R
cS

∣∣∣
R3

⎤⎦ . (13.146)

The following is striking: Taken as such, neither the primary wave terms—
apart from the δ-pulse—nor the secondary wave terms are causal, equal to zero
for t < R/cP, respectively t < R/cS. However, in the sum232 the physically
mandatory causality for t < R/cP is realized! It is illustrated as graphical dis-
play of (13.146) in Figure 13.13. We recognize the far-field-δ-pulse with R−1-
dependence, and—in the impulse response!—for R/cP < t < R/cS, a (linear)
ramp function with R−2-amplitude dependence thus disappearing in the far-
field. This ramp function is discontinuous at t = R/cP and t = R/cS; hence,
exciting with a bandlimited RC2(t)-pulse, the convolution of (13.146) with
such an impulse results in an integration of the RC2(t)-pulse at the two dis-
continuous jumps with an amplitude factor given by the jump heights (once
with a positive sign and once with a negative sign); in between, due to the
very slow rise of the ramp, the convolution nearly yields zero. The final conclu-
sions read as follows: In the near- and transition-regions, the primary pressure
RC2(t)-pulse is marginally distorted by a small integrated RC2(t)-impulse,
and a second small integrated RC2(t)-impulse arrives with the secondary wave
velocity (Schleichert et al. 1989). Hence, the secondary wave is also visible in
the longitudinal R-component of the particle displacement, yet it disappears
in this component in the far-field. The pendant—a primary wave pulse in the

231The spectrum 1/ω2 has to be considered as a pseudofunction in the distributional sense.
232For the pressure wave of acoustics, this “sum compensation” does not exist; in that

case, causality must be enforced with an appropriate solution of the homogeneous equation.
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4π(λ + 2µ) uϑ
PSf (R, t)

f · eϑ
^

4π(λ + 2µ) uR
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f · eR
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FIGURE 13.13
Impulse response of the particle displacement of a point-like force density
source: (a) R-component, (b) ϑ-component.

transverse component—is observed in the ϑ- and ϕ-components of the particle
velocity. For example, we calculate

u
PSf

ϑ (R, t) =
f̂ · eϑ

4π(λ + 2µ)

⎡⎣−cP

2

sign
(
t − R

cP

)
R2 − c2

P

2

∣∣∣t − R
cP

∣∣∣
R3

+κ2
δ
(
t − R

cS

)
R

+ κ
cP

2

sign
(
t − R

cS

)
R2 +

c2
P

2

∣∣∣t − R
cS

∣∣∣
R3

⎤⎦.

(13.147)

The graphical display of (13.147) can be found in Figure 13.13(b): Compared
to the R-component, attention is attracted by the amplitude of the ramp
function: It is by a factor of 0.5 smaller, i.e., the primary impulse in the
transverse ϑ-component is on one hand smaller than the secondary impulse in
the longitudinal component by this factor and, on the other hand, once more
by the factor κ−1.

13.2.3 Third-rank Green tensor

We illustrated the second rank Green tensor with point-like force densities f
based on (13.113), respectively (13.114), the injected deformation rate tensor h
was set equal to the null tensor. So, let us return to (13.112) utilizing (13.79):
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v(R,ω) =
∫ ∫ ∫

VQ

G(R − R′,ω) ·
[
−jωf(R′,ω) + ∇′ · c : h(R′,ω)

]
d3R′,

(13.148)

and let us concentrate on the second term in (13.148). Similar to the transi-
tion from (5.61) to (5.63), we want to shift the operation ∇′ · c : on h(R′,ω)

to G(R − R′,ω). For that purpose, we need the pendant to (5.62) (Langen-
berg 2005):

∇ · (D · A) = (∇ · D) · A + D21 : ∇A

= A21 · (∇ · D) + D21 : ∇A. (13.149)

If we identify A21 with G and D with c : h, we have a suitable formula

at hand:

∇′ · [c : h(R′,ω) · G21(R − R′,ω)] = G(R − R′,ω) · ∇′ · [c : h(R′,ω)]

+ [c : h(R′,ω)]21 : ∇′G21(R − R′,ω).

(13.150)

Due to the symmetries c = c2134 = c3421 = c3412, and h = h21, we can con-

vert: (c : h)21 = h : c; since G(R − R′,ω) is symmetric, the expression

−c : ∇′G21(R − R′,ω) = − c : ∇′G(R − R′,ω)

= c : ∇G(R − R′,ω)

= Σ(R − R′,ω) (13.151)

obviously defines a third rank tensor [compare (13.142)] that plays the role of
a (“right-sided”) third rank Green tensor233 for the injected deformation rate

233With the conversion

−(c : h)21 : ∇′G21 = − (∇′G)231 : c : h

= (∇G)231 : c : h

= (∇G)321 : c︸ ︷︷ ︸
= Σ̄

: h,

we may also define a “left-sided” third rank Green tensor Σ̄. In fact, based on the

c-symmetries, we have Σ̄
231 = Σ resulting in

Σ̄ : h = h : Σ̄
231

= h : Σ.
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v(R,ω) =
∫ ∫ ∫

VQ

[
− jωf(R′,ω) · G(R − R′,ω)

+ h(R′,ω) : Σ(R − R′,ω)
]

d3R′ (13.152)

that coincides with the third rank Green tensor in (13.141) due to the sym-
metry of G(R − R′,ω) [the volume integral on the left-hand side of (13.150)
disappears as can be shown with the usual Gauss’ theorem argument or with
Footnote 83]. The first two indices of Σ are those of c yielding the symmetry

Σ(R − R′,ω) = Σ213(R − R′,ω); (13.153)

the third index of Σ is the second one of G. The integral representation

(13.152) holds for R ∈ IR3, i.e., even for observation points in the interior
of the source volume; the difference GS − GP in (13.91) accounts for these
nonexisting convergence problems.

We may further specialize (13.151) with (13.74) since we assume a homo-
geneous isotropic material:

Σ(R − R′,ω) = −
{

λ I∇′ · G(R − R′,ω) + µ∇′G(R − R′,ω)

+ µ
[
∇′G(R − R′,ω)

]213 }
, (13.154)

respectively for R′ = 0

Σ(R,ω) = λ I∇ · G(R,ω) + µ∇G(R,ω) + µ
[
∇G(R,ω)

]213 (13.155)

=
λ

λ + 2µ
I∇GP(R,ω) +

2
k2
S

∇∇∇[GS(R,ω) − GP(R,ω)]

+ (∇I + ∇I213)GS(R,ω) . (13.156)

The representation (13.156) of Σ nicely reveals the appearance of the difference
GS − GP in Σ, thus, as mentioned above, excluding problems with (13.152)
for R ∈ VQ.

Due to the separation (13.95), Σ is also composed of a primary pressure
and a secondary shear elementary wave term:234

Σ(R,ω) =
1

λ + 2µ
Σ

P
(R,ω) +

1
µ

Σ
S
(R,ω), (13.157)

234To show that Σ
P

in (13.152) in fact creates a pressure wave term with ∇ × v = 0 and

Σ
S

a shear wave term with ∇ · v = 0, we should use the left-sided Σ̄-tensor according to

Footnote 233.
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where for R �= 0

Σ
P
(R,ω) = λ I∇ · G

P
(R,ω) + µ

{
∇G

P
(R,ω) +

[
∇G

P
(R,ω)

]213}
,

(13.158)

Σ
S
(R,ω) = µ

{
∇G

S
(R,ω) +

[
∇G

S
(R,ω)

]213}
(13.159)

holds because, for R �= 0, the term ∇ · G
S

disappears on behalf of (13.97).
For R = 0, a term ∇ · G

S
= −∇δ(R)/ρω2 remains in (13.159) that is finally

compensated in the sum (13.157), respectively (13.156), by a corresponding
term from ∇ · G

P
.

To arrive at the differentiated representations for R �= 0 similar to (13.98)
and (13.99), we actually must go through some calculus;235 the result reads as

Σ
P
(R,ω) =

[
jkP

(
λ I R̂ + 2µR̂ R̂ R̂

)
+

1
R

(
− λ I R̂ + 2µR̂ I + 2µR̂ I213 + 2µI R̂ − 12µR̂ R̂ R̂

)
+ j

6µ

kPR2

(
R̂ I + R̂ I213 + I R̂ − 5R̂ R̂ R̂

)
− 6µ

k2
PR3

(
R̂ I + R̂ I213 + I R̂ − 5R̂ R̂ R̂

)]ejkPR

4πR
; (13.160)

Σ
S
(R,ω) = µ

[
jkS

(
R̂ I + R̂ I213 − 2R̂ R̂ R̂

)
− 1

R

(
3R̂ I + 3R̂ I213 + 2I R̂ − 12R̂ R̂ R̂

)
− j

6
kSR2

(
R̂ I + R̂ I213 + I R̂ − 5R̂ R̂ R̂

)
+

6
k2
SR3

(
R̂ I + R̂ I213 + I R̂ − 5R̂ R̂ R̂

)]ejkSR

4πR
; (13.161)

The far-field approximations of Σ
P

and Σ
S

are not obtained from (13.160)
and (13.161) but immediately from (13.158) and (13.159) applying (13.47):

235The following formulas are required:

∇R = R̂,

∇R̂ =
1
R

(I − R̂ R̂),

∇(ΦD) = (∇Φ)D + Φ∇D,

∇(AB) = (∇A)B + (A∇B)213.
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Σfar

P
(R,ω) = jkP

ejkPR

4πR

(
λ I R̂ + 2µR̂ R̂ R̂

)
= jkP

e jkPR

4πR
(λ I + 2µR̂ R̂)R̂

=− jω
e jkPR

R
σ

P
(R̂), (13.162)

Σfar

S
(R,ω) = jkSµ

ejkSR

4πR

(
R̂ I + R̂ I213 − 2R̂ R̂ R̂

)
=− jω

e jkSR

R
σ

S
(R̂). (13.163)

We have

Σfar

P
(R,ω) · (I − R̂ R̂) = 0, (13.164)

Σfar

S
(R,ω) · R̂ = 0. (13.165)

The radiation characteristics σ
P
(R̂) and σ

S
(R̂) of the Σ

P,S
-tensors are

given by

σ
P
(R̂) =− 1

4πcP
(λ I + 2µR̂ R̂)R̂ (13.166)

σ
S
(R̂) =− µ

4πcS
(R̂ I + R̂ I213 − 2R̂ R̂ R̂); (13.167)

we define them independent of frequency similar to the radiation characteris-
tics g

P
, g

S
of the G

P,S
-tensors.

13.2.4 Particle displacement of a point source deformation
rate, point radiation characteristic

According to (13.152), the second rank tensor for the particle velocity is related
to a force density source and the third rank Green tensor for the particle
velocity to a deformation rate source. Accordingly, we now investigate the
case f = 0 and h �= 0 in some more detail:

v(R,ω) =
∫ ∫ ∫

VQ

h(R′,ω) : Σ(R − R′,ω) d3R′. (13.168)

With (Equation 2.127)

ĥ =
h√

h : h+
(13.169)

and
h(R,ω) = δ(R) ĥ, (13.170)
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we postulate a point-like deformation rate unit source in the origin and find236

vPSh(R,ω) = ĥ : Σ(R,ω)

= Σ312(R,ω) : ĥ (13.171)

as the counterpart to (13.116). The calculation of the components of vPSh in
spherical coordinates similar to (13.119) through (13.121) would result in a
lot of paper work; therefore, we directly concentrate on the far-field similar to
(13.128) and (13.131) utilizing (13.162) and (13.163):

vPSh,far(R,ω) = ĥ :
[

1
λ + 2µ

Σfar

P
(R,ω) +

1
µ

Σfar

S
(R,ω)

]
= vPSh,far

P (R,ω) + vPSh,far
S (R,ω), (13.172)

where

vPSh,far
P (R,ω) = j

kP

λ + 2µ

e jkPR

4πR
ĥ : (λI + 2µR̂ R̂)R̂

= vP(ĥ, R̂)
e jkPR

R
(13.173)

with

vP(ĥ, R̂) = vP(ĥ, R̂)R̂

= j
kP

4π(λ + 2µ)
ĥ : (λI + 2µR̂ R̂)R̂ (13.174)

as well as

vPSh,far
S (R,ω) = 2jkS

e jkSR

4πR
ĥ : R̂(I − R̂ R̂)

= vS(ĥ, R̂)
e jkSR

R
(13.175)

with

vS(ĥ, R̂) = vS(ĥ, R̂)v̂S(ĥ, R̂)

= j
kS

2π
ĥ : R̂(I − R̂ R̂). (13.176)

With

uPShfar
P (R,ω) = − 1

4πcP(λ + 2µ)
e jkPR

R
ĥ : (λI + 2µR̂ R̂)R̂

= uP(ĥ, R̂)
e jkPR

R
ûP(ĥ, R̂); (13.177)

236We repeatedly apply the symmetries h = h21 and Σ = Σ213.
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uPSh,far
S (R,ω) = − 1

2πcS

ejkSR

R
ĥ : R̂(I − R̂ R̂)

= uS(ĥ, R̂)
e jkSR

R
ûS(ĥ, R̂), (13.178)

where

ûP(ĥ, R̂) = R̂, (13.179)

uP(ĥ, R̂) =− ĥ : (λI + 2µR̂ R̂)
4πcP(λ + 2µ)

; (13.180)

ûS(ĥ, R̂) =
ĥ : R̂(I − R̂ R̂)

|ĥ : R̂(I − R̂ R̂)| , (13.181)

uS(ĥ, R̂) =− |ĥ : R̂(I − R̂ R̂)|
2πcS

, (13.182)

we switch to the particle displacement. Evidently, the polarization equations
(13.134) and (13.135) also hold for the ĥ-source; the stress tensor equations
(13.138) and (13.139) may also be kept if (13.179) through (13.182) are in-
serted: Even the particle displacement far-field of a point-like deformation rate
source behaves locally as a plane wave. In addition, we emphasize that the
time dependence of a point-like f - as well as a point-like h-source reproduces
in the far-field A-“scan” of the particle displacement (compare Figures 13.9
and 13.11).

Based on Figure 13.10, we demonstrated that the special choice f̂(R̂) = R̂
of the force density cuts off the pertinent shear wave in the far-field; with the
special choice ĥ = I/

√
3 of a deformation rate unit source, we may completely

cut off the pertinent shear wave, i.e., in the near- and far-fields because we
have I : Σ

S
≡ 0 with (13.161). Deceptions of that kind will become useful for

the physical interpretation of side echoes.

Point directivities for the particle displacement of a deformation
rate source: Analogous to (13.125) through (13.127), we define frequency-
independent237 (non-normalized) far-field point directivities for the particle
velocity of a deformation rate source with (13.166) and (13.167):

HPSh

P (R̂) =
1

λ + 2µ
ĥ : σ

P
(R̂) · eR

= − 1
4πc2

PZP
ĥ : (λI + 2µR̂ R̂)R̂ · eR

= − 1
4πc2

PZP
ĥ : (λI + 2µR̂ R̂)

= R e−jkPRuPSh,far
R (R,ω), (13.183)

237Therefore, we defined σ
P

and σ
S

according to (13.162) and (13.163) without the fac-

tor −jω.
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HPSh

Sϑ (R̂) =
1
µ

ĥ : σ
S
(R̂) · eϑ

= − 1
4πcS

ĥ : (R̂ I + R̂ I213 − 2R̂ R̂ R̂) · eϑ

= − 1
2πcS

ĥ : R̂(I − R̂ R̂) · eϑ

= − 1
4πcS

ĥ :
(
R̂ eϑ + eϑR̂

)
= R e−jkSRuPSh,far

ϑ (R,ω), (13.184)

HPSh

Sϕ (R̂) =
1
µ

ĥ : σ
S
(R̂) · eϕ

= − 1
4πcS

ĥ :
(
R̂ eϕ + eϕR̂

)
= R e−jkSRuPSh,far

ϕ (R,ω). (13.185)

Choosing subsequently single components of the ĥ-tensor, we obtain, for exam-
ple, the radiation patterns in Figure 13.14 (we constrain to hxx, hyy, hzz, hxz;
note: In the S-contribution, the exex-, eyey-, and ezez-terms compensate),
where we adhere to the fact that the HPSh

P -diagrams—even without the
prefactors—may be structurally material dependent. Together with Figure
13.12, a quick overview concerning the directivity of point sources is avail-
able; the formalism of elastodynamic Green tensors is finally reduced to sine
and cosine! With this perception, we will even approach the next section.

13.2.5 Fourth-rank Green tensor: Stress tensor of a point
source deformation rate

Four Green tensors of elastodynamics: Why another tensor, even of rank
four? With (13.152), the elastodynamic source field of the particle velocity
for a given force and deformation rate source is already known! In view of
the acoustic scheme in Figure 5.1, it becomes clear what we mean: With
the source field representation for p containing the Green functions G and
∇G, everything is said; yet the gradient operation ∇p to calculate v leads
to a second rank Green tensor G

v
in the resulting source field representation

through ∇G! On the other hand, first, solving the differential equation for v
the tensor G

v
comes immediately into play.

Here, the situation is quite similar: The source field representation of v
requires G and Σ; calculating the stress tensor from v via “Hooke’s differen-
tiation” c : ∇ a forth rank Green tensor Π is emerging from Σ that afterward

relates given deformation rates and resulting stresses through double contrac-
tion with h. From a physical point of view, Π represents (Huygens) stress

elementary waves emanating form h. Anticipating the following calculation,
we display in Figure 13.15 a scheme similar to Figure 5.1, and before we
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HP
PSh(R) = –^ 1

4πc2
PZP

(λ + 2µsin2 ϑ cos2 ϕ)

HP
PSh(R) = –^ 1

4πc2
PZP

(λ + 2µsin2 ϑ sin2 ϕ)

HP
PSh(R) = –^ 1

4πc2
PZP

(λ + 2µcos2 ϑ)

HP
PSh(R) = –^ cSZS

4πc2
PZP

(λ + 2µcos2 ϑ)

1
4πcS

sin 2ϑ cos2 ϕHSϑ
PSh (R) = –^

1
4πcS

sin 2ϑHSϑ
PSh (R) = –^

1
4πcS

sin 2ϑ sin2 ϕHSϑ
PSh (R) = –^

1
4πcS

cos 2ϑ cos ϕHSϑ
PSh (R) = –^

h = exex
^ h = exex

^

h = eyey
^h = eyey

^

h = ezez
^

h = exez
^ h = exez

^

h = ezez
^

R^
ϑ

z

FIGURE 13.14
Radiation patterns of the particle velocity for point-like deformation rate
sources (ĥ-point directivities): In the direction R̂, the normalized magnitude
of the point-directivities is displayed as function of ϑ for y = 0 (material: steel
with cP=5900 m/s, cS=3200 m/s, ρ = 7.7·103 kg/m3).
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v = ∫ ∫ ∫VQ (–jωf · G + h · Σ) dV ′

–jωρv = ∇ · T + f

–jωT = c : ∇v + c : h

jω
1T = ∫ ∫ ∫VQ

(– h : Π + f · Σ312) dV ′

FIGURE 13.15
Relation of Green functions for homogeneous isotropic elastic materials with
the source densities f and h (we have c = λIδ + 2µI+).

explicitly perform this calculation, we summarize the formal operations that
bestowed us (13.152):

v =
∫ ∫ ∫

VQ

[ G · (−jωf)︸ ︷︷ ︸
= −jωf · G21

G−Symm.
= −jωf · G

+ G · ∇′ · c : h︸ ︷︷ ︸
= −(c : h)21 : ∇′G21

c,h−Symm.

= −h : c : ∇′G21

= h : c : ∇G21

G−Symm.
= h : c : ∇G

(13.142)
= h : Σ

] dV ′.

(13.186)

That way, Green tensors result that appear on the right-hand side of the
sources. Yet, we may equally define left-sided Green tensors (compare Foot-
note 233):

v =
∫ ∫ ∫

VQ

[ G · (−jωf) + G · ∇′ · c : h︸ ︷︷ ︸
c,h−Symm.

= −(∇′G)231 : c : h

= (∇G)231 : c : h
def= Σ̄ : h

= h : Σ̄
231

c−Symm.

= h : Σ

] dV ′. (13.187)
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Stress elementary wave from a point-like deformation rate source:
With the stress tensor T(R,ω) = c : ∇u(R,ω)—to be on the safer side, we

initially assume R �∈ VQ—and −jωu(R,ω) = v(R,ω), we immediately cal-
culate with the help of the third equality sign of the horizontal bracket of
(13.187):

T(R,ω)

=
∫ ∫ ∫

VQ

[ c : ∇G(R − R′,ω) · f(R′,ω)︸ ︷︷ ︸
= Σ(R − R′,ω) · f(R′,ω)

= f(R′,ω) · Σ312(R′,ω)

− 1
jω

× c : ∇Σ̄(R − R′,ω) : h(R′,ω)︸ ︷︷ ︸
def= Π̄(R − R′,ω) : h(R′,ω)

= h(R′,ω) : Π̄
3412(R − R′,ω)

def= h(R′,ω) : Π(R − R′,ω)
c−Symm.

= h(R′,ω) : [∇Σ(R − R′,ω)]2314 : c

] d3R′ (13.188)

=
∫ ∫ ∫

VQ

[
Σ(R − R′,ω) · f(R′,ω) − 1

jω
Π̄(R − R′,ω) : h(R′,ω)

]
d3R′

(13.189)

=
∫ ∫ ∫

VQ

[
f(R′,ω) · Σ312(R − R′,ω) − 1

jω
h(R′,ω) : Π(R − R′,ω)

]
d3R′.

(13.190)

The last equality sign of the horizontal bracket of the second term in (13.188)
results from conversion of

Π(R,ω) = Π̄
3412(R,ω)

=
[
c : ∇Σ̄(R,ω)

]3412
=
[
c : ∇Σ312(R,ω)

]3412
(13.191)

in cartesian coordinates (most rapidly using the summation convention) con-
sequently exploiting the definition of the index notation (commutation of the
unit vectors in the fourfold dyadic product, not the indices!). Hence, we find

Π(R,ω) =
[
∇Σ(R,ω)

]2314
: c , R �= 0, (13.192)
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respectively

Π(R − R′,ω) =
[
∇Σ(R − R′,ω)

]2314
: c , R �= R′. (13.193)

We can prove that Π (in a homogeneous material) exhibits the same symme-

tries as the c-tensor (de Hoop 1995):

Π(R,ω) = Π2134(R,ω)

= Π1243(R,ω)

= Π3412(R,ω). (13.194)

Therefore, we have

Π(R,ω) = Π̄(R,ω). (13.195)

With the Green tensors Σ and Π, we are now able to give the stress

elementary waves from point-like f̂ - and ĥ-sources:

TPSf,h(R,ω) = f̂ · Σ312(R,ω) + ĥ : Π(R,ω). (13.196)

Assuming a homogeneous isotropic material, we may insert (7.18) into
(13.192):

Π(R,ω) = λ∇ · Σ312(R,ω) I

+ µ

{[
∇Σ(R,ω)

]2314
+
[
∇Σ(R,ω)

]2341}
, R �= 0. (13.197)

Due to (13.157), this also leads to the separation

Π(R,ω) =
1

λ + 2µ
Π

P
(R,ω) +

1
µ

Π
S
(R,ω) (13.198)

with

Π
P
(R,ω) = λ∇ · Σ312

P
I + µ

{[
∇Σ

P
(R,ω)

]2314
+
[
∇Σ

P
(R,ω)

]2341}
,

(13.199)

Π
S
(R,ω) = µ

{[
∇Σ

S
(R,ω)

]2314
+
[
∇Σ

S
(R,ω)

]2341}
; (13.200)

on behalf of (13.159) and ∇ · G
S
(R,ω) ≡ 0 (Equation 13.97), we have

∇ ·
[
∇G

S
(R,ω)

]312
= ∇∇ · G21

S
(R,ω)

= ∇
[
∇ · G

S
(R,ω)

]
= 0. (13.201)
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The explicit representation of (13.199) and (13.200) similar to (13.160) and
(13.161) requires (for R �= 0) the calculation of the fourfold gradient dyadic of
the scalar Green function; we avoid that and refer to de Hoop (1995). However,
we give the far-field representation utilizing (13.162) and (13.163):

Πfar

P
(R,ω) = −k2

P
e jkPR

4πR
(λI + 2µR̂ R̂)(λI + 2µR̂ R̂), (13.202)

Πfar

S
(R,ω) = −k2

Sµ2 e jkSR

4πR

(
R̂ R̂ I2314 + R̂ R̂ I2341 + R̂ R̂ I3214

+ R̂ R̂ I3241 − 4R̂ R̂ R̂ R̂
)
. (13.203)

The symmetries (13.194) are obvious.

The distributional term of the forth rank Green tensor: In the
Π-representation (13.192), we assumed R �= 0; what happens for R = 0?

The second rank tensor G
v
(R − R′,ω) contains an explicit distributional

term for R = R′ according to (5.67) that was found solving the differential
equation (5.64); with (5.75) through (5.79), we argued for its necessity. Using
similar arguments, we will give the distributional term in Π(R − R′,ω).

For R ∈ VQ,

T(R,ω) = − 1
jω

c : ∇v(R,ω) − 1
jω

c : h(R,ω) (13.204)

must hold. With the source field representation (13.152) for the particle veloc-
ity that is also valid for R ∈ VQ, we obtain for T(R,ω) according to (13.204):

T(R,ω) = c : ∇
∫ ∫ ∫

VQ

[
G(R − R′,ω) · f(R′,ω)

− 1
jω

Σ̄(R − R′,ω) : h(R′,ω)
]

d3R′

− 1
jω

c : h(R,ω). (13.205)

Knowing that G(R − R′,ω), and hence Σ̄(R − R′,ω), does not exhibit hyper

singularities for R = R′ (Equations 13.91 and 13.156), we shift c : ∇ under

the integral:

T(R,ω) =
∫ ∫ ∫

VQ

[
c : ∇G(R − R′,ω) · f(R′,ω)

− 1
jω

c : ∇Σ̄(R − R′,ω) : h(R′,ω)
]

d3R′

− 1
jω

c : h(R,ω). (13.206)
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For R ∈ VQ, we may add the c : h-term in (13.206) outside the integral ac-

cording to

T(R,ω) =
∫ ∫ ∫

VQ

{
c : ∇G(R − R′,ω)︸ ︷︷ ︸

= Σ(R − R′,ω)

·f(R′,ω)

− 1
jω

[
c : ∇Σ̄(R − R′,ω) + δ(R − R′)c

]
: h(R′,ω)

}
d3R′

(13.207)

to a tensor

Π̄(R − R′,ω) = Π(R − R′,ω)

= c : ∇Σ̄(R − R′,ω) + c δ(R − R′)

=
[
∇Σ(R − R′,ω)

]2314
: c + c δ(R − R′) (13.208)

that replaces (13.193) if R = R′.
On the other hand, if we start from—similar to (5.80) through (5.81)—

v(R,ω) = − 1
jωρ

∇ · T(R,ω) − 1
jωρ

f(R,ω) (13.209)

and insert (13.189) with (13.208) for R ∈ VQ, the δ-term in (13.210) compen-
sates238 the f -term in (13.209) due to

∇ · Σ(R − R′,ω) + ρω2G(R − R′,ω) = −δ(R − R′) I; (13.210)

furthermore, ∇ · Π̄(R − R′,ω) leads to a distributional term due to (13.208)

that is equally compensated via insertion of Σ̄(R − R′,ω), respectively G(R −
R′,ω), and recognizing the differential equation for G(R − R′,ω).238 Conse-
quently, the representation (13.152) for R ∈ VQ emerges from (13.209) with
(13.189) and (13.208).

Differential equation for the fourth rank Green tensor: From the gov-
erning equations of acoustics for homogeneous materials, we derive the reduced
wave equations (5.37) and (5.39) for the Fourier transformed field quantities

238This is nothing but the differential equation (13.80), where c = λIδ + 2µI+ has not yet

been inserted:

∇ · c : ∇G(R − R′, ω) + ρω2G(R − R′, ω) = −δ(R − R′) I.
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p(R,ω) and v(R,ω); with (5.58) and (5.64), each of these differential equa-
tions is assigned a differential equation for Green functions G(R − R′,ω) and
G

v
(R − R′,ω) (also compare Figure 5.1). Here, in elastodynamics, the field

quantities v(R,ω) and T(R,ω) are under concern; the differential equation
(13.78) for v(R,ω) is assigned the differential equation (13.80) for the Green
function G(R − R′,ω), and Figure 13.15 illustrates that in fact Π̄(R − R′,ω),

respectively Π(R − R′,ω), should satisfy a differential equation assigned to

the Fourier transformed equation (13.76). We double contract (13.76) with c

according to

c : ∇
[
∇ · T(R,ω)

]
+ ρω2T(R,ω) = −c : ∇f(R,ω) + jωρ c : h(R,ω)

(13.211)

and claim that Π(R − R′,ω) [respectively Π̄(R − R′,ω)] according to (13.208)

is a solution of the differential equation

c : ∇
[
∇ · Π(R − R′,ω)

]
+ ρω2Π(R − R′,ω) = ρω2c δ(R − R′). (13.212)

This is comparatively easy to prove inserting and utilizing the three-
dimensional Fourier transform (∇ =⇒ jK).

13.3 Two- and Three-Dimensional Elastodynamic
Source Fields

13.3.1 Elastodynamic point source synthesis

With the integral representations (13.152) and (13.190), we formulate the
point source synthesis for elastodynamic source fields in homogeneous isotropic
materials:

v(R,ω) =
∫ ∫ ∫

VQ

[
− jωf(R′,ω) · G(R − R′,ω)

+ h(R′,ω) : Σ(R − R′,ω)
]

d3R′, (13.213)

T(R,ω) =
∫ ∫ ∫

VQ

[
f(R′,ω) · Σ312(R′,ω)

− 1
jω

h(R′,ω) : Π(R − R′,ω)
]

d3R′. (13.214)

The amplitude and phase distributions of force density sources f(R′,ω) and
deformation rate sources h(R′,ω) in the interior of a source volume VQ tune
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the elastodynamic elementary waves emanating from each source point R′ as
given mathematically by the Green tensors G(R − R′,ω), Σ(R − R′,ω) and

Π(R − R′,ω); particle velocities and stresses of given sources become calcula-

ble for R ∈ IR3, i.e., in the interior as well as the exterior of VQ using (13.213)
and (13.214).

13.3.2 Far-field approximations of three-dimensional
elastodynamic source fields

Pressure and shear waves radiation characteristics of force den-
sity and deformation rate sources: Be a the maximum linear dimension
of VQ; then we obtain the far-field approximations of the source fields for
R � a and kP,SR � 1 with Equation 13.95 and the far-field approximations
(13.100) and (13.101), with Equation 13.157 and the far-field approximations
(13.162) and (13.163), as well as Equation 13.198 and the far-field approxi-
mations (13.202) and (13.203) of the Green tensors; these may be separated
into primary and secondary terms. At first, we discuss the primary terms239

vfar
P (R,ω) = −jω

1
λ + 2µ

∫ ∫ ∫
VQ

f(R′,ω) · Gfar
P

(R,R′,ω) d3R′

+
1

λ + 2µ

∫ ∫ ∫
VQ

h(R′,ω) : Σfar

P
(R,R′,ω) d3R′, (13.215)

Tfar
P

(R,ω) =
1

λ + 2µ

∫ ∫ ∫
VQ

f(R′,ω) · Σ312 far

P
(R,R′,ω) d3R′

− 1
jω

1
λ + 2µ

∫ ∫ ∫
VQ

h(R′,ω) : Πfar

P
(R,R′,ω) d3R′ (13.216)

and write (13.215) in the particle displacement

ufar
P (R,ω) =

e jkPR

R

[
Hf

P(R̂,ω) + Hh
P(R̂,ω)

]
=

e jkPR

R

[
Hf

P(R̂,ω) + Hh
P(R̂,ω)

]
R̂ (13.217)

with the short-hand notations

Hf
P(R̂,ω) =

1
4πcPZP

∫ ∫ ∫
VQ

f(R′,ω) · R̂ e−jkPR̂·R′
d3R′

︸ ︷︷ ︸
= Hf

P(R̂,ω)

R̂, (13.218)

239Due to the argument R − R′ of the Green tensors in (13.213) and (13.214), and last
but not least the insertion of (13.41), we have to write “R comma R′” as argument in the
far-field approximation.
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Hh
P(R̂,ω) = − 1

4πc2
PZP

∫ ∫ ∫
VQ

h(R′,ω) : (λI + 2µR̂ R̂) e−jkPR̂·R′
d3R′

︸ ︷︷ ︸
= Hh

P(R̂,ω)

R̂.

(13.219)

The functions Hf
P(R̂,ω) and Hh

P(R̂,ω) are scalar radiation characteristics
of the source distributions that completely describe the particle velocity field
of the primary wave (not only in the far-field: Colton and Kress 1983). With

Hf,h
P (R̂,ω) · (I − R̂ R̂) = 0, (13.220)

the primary wave identifies itself as a longitudinal pressure wave. Nota bene:
The primary displacement source field is longitudinally polarized only in the
far-field!

For the stress tensor (13.216), we obtain the explicit representation

Tfar
P

(R,ω) = jkP

[
Hf

P(R̂,ω) + Hh
P(R̂,ω)

] e jkPR

R
(λI + 2µR̂ R̂). (13.221)

The comparison of (13.217) with (8.82) and (13.221) with (8.121) reveals the
local plane wave behavior of the primary far-field of elastodynamic source
fields. We have already stated that for the special case of point-like f - and
h-sources.

With satisfaction, we note that: The necessarily prescribed path via the
formalism of Green functions (we admit: not quite unlabored) has provided
us with relatively simple expressions for the radiation far-field of elastody-
namic source fields that are on one hand “close” to plane waves and, on the
other hand “close” to acoustic source fields (Equation 13.65). In contrast to
the purely scalar h-source of the acoustic pressure in (13.65), the f -source
appears in the P-displacement according to (13.218) with a point directivity
(compare Figure 13.12), by the way, as already observed for the f -source of
the acoustic pressure in (13.65). The corresponding point directivity for the
h-source of the P-displacement in (13.219) was already discussed in connection
with Figure 13.14.

Now we turn to the S-term of the source field; the counterparts to (13.215)
and (13.216) read

vfar
S (R,ω) = −jω

1
µ

∫ ∫ ∫
VQ

f(R′,ω) · Gfar
S

(R,R′,ω) d3R′

+
1
µ

∫ ∫ ∫
VQ

h(R′,ω) : Σfar

S
(R,R′,ω) d3R′, (13.222)

Tfar
S

(R,ω) =
1
µ

∫ ∫ ∫
VQ

f(R′,ω) · Σ312 far

S
(R,R′,ω) d3R′

− 1
jω

1
µ

∫ ∫ ∫
VQ

h(R′,ω) : Πfar

S
(R,R′,ω) d3R′. (13.223)
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With (13.101) and (13.163), we obtain for the particle velocity similar to
(13.217):

ufar
S (R,ω) =

e jkSR

R

[
Hf

S(R̂,ω) + Hh
S(R̂,ω)

]
(13.224)

=
e jkSR

R

[
Hf

Sϑ(R̂,ω) + Hh
Sϑ(R̂,ω)

]
︸ ︷︷ ︸

= ufar
Sϑ (R,ω)

eϑ

+
e jkSR

R

[
Hf

Sϕ(R̂,ω) + Hh
Sϕ(R̂,ω)

]
︸ ︷︷ ︸

= ufar
Sϕ (R,ω)

eϕ

with the short-hand notations

Hf
S(R̂,ω) =

1
4πcSZS

∫ ∫ ∫
VQ

f(R′,ω) e−jkSR̂·R′
d3R′ · (I − R̂ R̂)

=
1

4πcSZS

∫ ∫ ∫
VQ

f(R′,ω) e−jkSR̂·R′
d3R′ · (eϑeϑ + eϕeϕ)

=
1

4πcSZS

∫ ∫ ∫
VQ

f(R′,ω) · eϑ e−jkSR̂·R′
d3R′

︸ ︷︷ ︸
= Hf

Sϑ(R̂,ω)

eϑ

+
1

4πcSZS

∫ ∫ ∫
VQ

f(R′,ω) · eϕ e−jkSR̂·R′
d3R′

︸ ︷︷ ︸
= Hf

Sϕ(R̂,ω)

eϕ, (13.225)

Hh
S(R̂,ω) = − 1

2πcS

∫ ∫ ∫
VQ

h(R′,ω) · R̂ e−jkSR̂·R′
d3R′ · (I − R̂ R̂)

= − 1
2πcS

∫ ∫ ∫
VQ

h(R′,ω) : R̂ eϑ e−jkSR̂·R′
d3R′

︸ ︷︷ ︸
= Hh

Sϑ(R̂,ω)

eϑ

− − 1
2πcS

∫ ∫ ∫
VQ

h(R′,ω) : R̂ eϕ e−jkSR̂·R′
d3R′

︸ ︷︷ ︸
= Hh

Sϕ(R̂,ω)

eϕ. (13.226)

As expected, the integrals of the scalar S-radiation characteristics exhibit
the S-point directivities (13.126) and (13.127) of the f -source and the S-point
directivities (13.184) and (13.185) of the h-source, where we must absolutely
consider that the unit vectors eϑ and eϕ belong to the orthogonal trihedron
related to the observation point R and not to the trihedron eR′ , eϑ′ , eϕ′ of
the source point. Sketches of pertinent radiation patterns can be found in the
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Figures 13.12 and 13.14, when cartesian exi
-, respectively, exk

exl
-components

of the point-like sources are prescribed; if we equally decompose the extended
sources f(R′,ω) and h(R′,ω) according to

f(R′,ω) = fxi
(R′,ω) exi

, (13.227)
h(R′,ω) = hxkxl

(R′,ω) exk
exl

(13.228)

(using the summation convention), the scalar products exi
· eϑ, exi

· eϕ,

exk
exl

: R̂ eϑ, exk
exl

: R̂ eϕ (i, k, l = 1, 2, 3) as point directivities of the carte-
sian components of the sources may come out of the integrals because they
are equal for each source point R′ (the cartesian trihedron does not depend
upon position). We obtain (using the summation convention):

Hf
Sϑ,ϕ(R̂,ω) =

1
4πcSZS

exi
· eϑ,ϕ

∫ ∫ ∫
VQ

fxi(R
′,ω) e−jkSR̂·R′

d3R′,

(13.229)

Hh
Sϑ,ϕ(R̂,ω) = − 1

2πcS
exi

exj
: R̂ eϑ,ϕ

∫ ∫ ∫
VQ

hxixj (R
′,ω) e−jkSR̂·R′

d3R′

(13.230)

and similarly

Hf
P(R̂,ω) =

1
4πcPZP

exi
· R̂
∫ ∫ ∫

VQ

fxi(R
′,ω) e−jkPR̂·R′

d3R′, (13.231)

Hh
P(R̂,ω) = − 1

4πc2
PZP

exi
exj

: (λI + 2µR̂ R̂)

×
∫ ∫ ∫

VQ

hxixj
(R′,ω) e−jkPR̂·R′

d3R′. (13.232)

Now the respective P- and S-radiation characteristic integrals look similar,
and the point directivities appear as factors!240 Note: Hf

Sϑ,ϕ and Hf
P consist

of a sum of three and Hh
Sϑ,ϕ, Hh

P of a sum of nine integrals. Each of these
integrals might be evaluated in those coordinates simplifying the calculation.

By the way: Even for the case of synchronous sources f(R′,ω) =
F (ω)f(R′), h(R′,ω) = H(ω)h(R′), all radiation characteristics are frequency
dependent, i.e., calculation of the pulsed sound field requires additional con-
volutions. Generally, it is not correct to impress the impulse F (t) or H(t) on
the displacement calculated for a fixed frequency and a specific observation
direction R̂.

Based on (13.225) and (13.226), we immediately realize that

Hf,h
S (R̂,ω) · R̂ = 0 (13.233)

240If we would like for some reason or another to decompose the vectorial f - and the ten-
sorial h-sources with regard to a trihedron of the source point—for example, eR′ , eϑ′ , eϕ′—
the scalar products (the point directivities) eR′,ϑ′,ϕ · eR,ϑ,ϕ, eR′,ϑ′,ϕ′eR′,ϑ′,ϕ′ : eR,ϑ,ϕeR,ϑ,ϕ
must remain under the integrals.
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holds: In the far-field, shear waves from arbitrary f - and/or h-sources are
transversely polarized with regard to R̂. This confirms that they locally behave
like plane waves. This is also true for the corresponding stress tensor

Tfar
S

(R,ω) = jkSµ
e jkSR

R

{
R̂
[
Hf

S(R̂,ω) + Hh
S(R̂,ω)

]
+
[
Hf

S(R̂,ω) + Hh
S(R̂,ω)

]
R̂
}

(13.234)

if we convert according to

f · (R̂ I312 + R̂ I321 − 2R̂ R̂ R̂) = R̂ f + f R̂ − 2f · R̂ R̂ R̂

= R̂ f · (I − R̂ R̂) + f · (I − R̂ R̂)R̂

and

h : (R̂ R̂ I2314 + R̂ R̂ I2341 + R̂ R̂ I3214 + R̂ R̂ I3241 − 4R̂ R̂ R̂ R̂)

= 2(h : R̂ R̂ I2314︸ ︷︷ ︸
= R̂ h : R̂ I

+h : R̂ R̂ I2341︸ ︷︷ ︸
= h : R̂ I R̂

−2h : R̂ R̂ R̂ R̂)

= 2[R̂ h : R̂(I − R̂ R̂) + h : R̂(I − R̂ R̂)R̂].

Sound pressure of elastodynamic source far-fields: The local similarity
of elastodynamic source far-fields with plane waves suggests to give sound
pressure definitions analogous to (8.123) and (8.124). With (13.221), we obtain
the sound pressure

pfar
P (R,ω) = − Tfar

P
(R,ω) : R̂ R̂

=− jωZP

[
Hf

P(R̂,ω) + Hh
P(R̂,ω)

] e jkPR

R︸ ︷︷ ︸
= ufar

P (R,ω)

(13.235)

of the P-source field contribution (in the far-field!) and, with (13.234), the
sound pressure of the S-source field contribution (in the far-field!):

pfar
Sϑ (R,ω) =− Tfar

S
(R,ω) : R̂ eϑ

=− jωZS

[
Hf

Sϑ(R̂,ω) + Hh
Sϑ(R̂,ω)

] e jkPR

R︸ ︷︷ ︸
= ufar

Sϑ (R,ω)

, (13.236)

pfar
Sϕ (R,ω) =− Tfar

S
(R,ω) : R̂ eϕ

=− jωZS

[
Hf

Sϕ(R̂,ω) + Hh
Sϕ(R̂,ω)

] e jkPR

R︸ ︷︷ ︸
= ufar

Sϕ (R,ω)

. (13.237)
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Just as for plane waves, we state that an elastodynamic scattering problem can
barely be solved with the sound pressure as field quantity because it does not
satisfy any transition conditions at the boundary between the scatterer and
the embedding material. However, we may define the sound pressure of the
scattered far-field similar to (13.235) through (13.237) after we have settled
the transition conditions for the particle displacement and the stress tensor.

13.3.3 Far-field approximations of two-dimensional
elastodynamic source fields

Due to the reduced paper work, US-NDT often relies on two-dimensional
simulations.241 In Section 13.1, we already pointed out differences regarding
the scalar Green function. In the present section, we want to look at the
consequences for elastodynamic source fields if we assume ∂/∂y ≡ 0, namely
independence of all field quantities from the y-coordinate.

Two-dimensional elastodynamic f-source fields: At first, we calculate∫ ∞

−∞
∇′∇′ e jk

√
(x−x′)2+(y−y′)2+(z−z′)2

4π
√

(x − x′)2 + (y − y′)2 + (z − z′)2
dy′

= ∇∇
∫ ∞

−∞

e jk
√

(x−x′)2+(y−y′)2+(z−z′)2

4π
√

(x − x′)2 + (y − y′)2 + (z − z′)2
dy′

︸ ︷︷ ︸
=

j
4

H(1)
0

(
k
√

(x − x′)2 + (z − z′)2
)

=

⎛⎜⎜⎜⎜⎜⎝
∂2

∂x2 0
∂2

∂x∂z

0 0 0

∂2

∂z∂x
0

∂2

∂z2

⎞⎟⎟⎟⎟⎟⎠
j
4
H(1)

0

(
k
√

(x − x′)2 + (z − z′)2
)

(13.238)

using (13.24). With

r = x ex + z ez, (13.239)
r′ = x′ ex + z′ez, (13.240)

d2r′ = dx′dz′, (13.241)

we write (13.213) for h ≡ 0 assuming f(x′, y′, z′,ω) = f(x′, z′,ω) = f(r′,ω)
and utilizing (13.91) and (13.238):

v(x, y, z,ω) = −jω
∫ ∫

VQ

∫ ∞

−∞
f(x′, z′,ω) · G(x − x′, y − y′, z − z′,ω) dy′ d2r′

241This is generally also true for our examples.
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= −jω
∫ ∫

VQ

f(r′,ω) ·
∫ ∞

−∞
G(x − x′, y − y′, z − z′,ω) dy′︸ ︷︷ ︸

= 1
µ

[(
I + 1

k2
S
∇∇

)
j
4 H(1)

0 (kS|r − r′|)

− 1
k2
S
∇∇ j

4 H(1)
0 (kP|r − r′|)

]
d2r′

def= v(x, z,ω)
= v(r,ω). (13.242)

The two-dimensionality of the source distribution yields the two-dimensionality
of the Green function!

In Section 7.3, we showed that SH- and P-SV-waves are decoupled in the
two-dimensional case; here, this should also be found. Therefore, we split
(13.242) into cartesian components:

vx(r,ω) =− jω
1
µ

∫ ∫
VQ

f(r′,ω) ·
[(

ex +
1
k2
S

∇ ∂

∂x

)
j
4

H(1)
0 (kS|r − r′|)

− 1
k2
S

∇ ∂

∂x

j
4

H(1)
0 (kP|r − r′|)

]
d2r′,

(13.243)

vy(r,ω) =− jω
1
µ

∫ ∫
VQ

f(r′,ω) · ey

j
4

H(1)
0 (kS|r − r′|) d2r′, (13.244)

vz(r,ω) =− jω
1
µ

∫ ∫
VQ

f(r′,ω) ·
[(

ez +
1
k2
S

∇ ∂

∂z

)
j
4

H(1)
0 (kS|r − r′|)

− 1
k2
S

∇ ∂

∂z

j
4

H(1)
0 (kP|r − r′|)

]
d2r′.

(13.245)

Obviously, the force density component fy for a scalar SH-problem is only
responsible for a vy-component, whereas fx and fz radiate P- as well as SV-
waves possessing only vx- and vz-components. The latter are combined to a
PSV-vector:

vPSV(r,ω) = vx(r,ω) ex + vz(r,ω) ez

=− jω
∫ ∫

VQ

f(r′,ω) · G
PSV

(r − r′,ω) d2r′, (13.246)

where

G
PSV

(r − r′,ω) =
1
µ

[(
I − eyey +

1
k2
S

∇r∇r

)
j
4

H(1)
0 (kS|r − r′|)

− 1
k2
S

∇r∇r
j
4

H(1)
0 (kP|r − r′|)

]
(13.247)
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with

∇r = ex

∂

∂x
+ ez

∂

∂z
(13.248)

plays the role of a two-dimensional PSV-Green function;242 the two-
dimensionality is recognized by the argument r − r′.

Writing

vy(r,ω) = −jω
∫ ∫ ∫

VQ

fy(r′,ω) GSH(r − r′,ω) d2r′ (13.249)

with the two-dimensional SH-Green function

GSH(r − r′,ω) =
1
µ

j
4

H(1)
0 (kS|r − r′|) (13.250)

relates (13.244) to (13.246).

Two-dimensional elastodynamic h-source fields: In the two-
dimensionally spatially dependent h-tensor, the hyx-, hyy-, and hyz-
components do not appear as sources because, in the two-dimensional (Fourier
transformed) deformation rate equation

−jωS(r,ω) =
1
2

{
∇r v(r,ω) +

[
∇r v(r,ω)

]21}+ h(r,ω), (13.251)

the components ∇r v : exey, ∇r v : eyey, ∇r v : ezey of the gradient dyadic
∇r v—and therefore of the deformation rate tensor according to the definition
(3.73)—are equal to zero due to ∂/∂y ≡ 0. Hence, in two dimensions, the
injected deformation rate tensor h(r,ω) has the component representation

h(r,ω) = hxx(r,ω) exex + hxy(r,ω) exey + hxz(r,ω) exez+

+ hzx(r,ω) ezex + hzy(r,ω) ezey + hzz(r,ω) ezez. (13.252)

With

v(x, y, z,ω) =
∫ ∫

VQ

∫ ∞

−∞
h(x′, z′,ω) : Σ(x − x′, y − y′, z − z′,ω) dy′ d2r′

=
∫ ∫

VQ

h(r′,ω) :
∫ ∞

−∞
c : ∇G(x − x′, y − y′, z − z′,ω) dy′ d2r′

242Note: G
PSV

is a second rank tensor with nine components possessing a matrix scheme—
compare (13.238)—with five zeroes.
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=
∫ ∫

VQ

h(r′,ω) : c : ∇
∫ ∞

−∞
G(x − x′, y − y′, z − z′,ω) dy′︸ ︷︷ ︸

= 1
µ

[(
I + 1

k2
S
∇∇

)
j
4 H(1)

0 (kS|r − r′|)

− 1
k2
S
∇∇ j

4 H(1)
0 (kP|r − r′|)

]
d2r′

def= v(x, z,ω)
= v(r,ω), (13.253)

we now turn to the two-dimensional h-sources (13.252).
At first, we calculate vy(r,ω):

vy(r,ω) =
1
µ

∫ ∫
VQ

h(r′,ω) : c : ∇r

[
ey

j
4

H(1)
0 (kS|r − r′|)

]
d2r′

=
1
µ

∫ ∫
VQ

h(r′,ω) : µ(∇r ey + ey∇r)
j
4

H(1)
0 (kS|r − r′|) d2r′

= 2
∫ ∫

VQ

h(r′,ω) : ey∇r
j
4

H(1)
0 (kS|r − r′|) d2r′

= 2
∫ ∫

VQ

[
hxy(r′,ω)

∂

∂x
+ hzy(r′,ω)

∂

∂z

]
j
4

H(1)
0 (kS|r − r′|) d2r′.

(13.254)

Evidently, with (13.244) and (13.254), we have rediscovered the solution of
the Fourier transformed two-dimensional differential equation (7.47) with the
help of the two-dimensional scalar Green function.243 As a matter of fact, the
components hxy(r′,ω), hzy(r′,ω) of the two-dimensional h-tensor only radiate
SH-waves.

A column vector of h defined as

hy(r,ω) = hxy(r,ω) ex + hzy(r,ω) ez (13.255)

—the hyy-component of h is not present according to (13.251)—allows for the
short-hand notation

vy(r,ω) =
∫ ∫

VQ

hy(r′,ω) · GSH(r − r′,ω) d2r′ (13.256)

of (13.254) with the vectorial SH-Green function

GSH(r − r′,ω) = 2∇r
j
4

H(1)
0 (kS|r − r′|). (13.257)

243In (13.254), we differentiate the Green function, and in the differential equation (7.47),
the hxy , hzy-sources are differentiated; with ∂/∂x, ∂/∂z =⇒ −∂/∂x′, −∂/∂z′ and partial
integration, we realize that both the representations are identical.
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With the definition of the two-dimensional third rank Green tensor

Σ
PSV

(r,ω) = c : ∇r G
PSV

(r,ω)

= (λIδ + 2µI+) : ∇r G
PSV

(r,ω)

= λI∇r · G
PSV

(r,ω) + µ
[
∇r G

PSV
(r,ω) + ∇r G213

PSV
(r,ω)

]
,

(13.258)

we may collect the x- and z-components of v(r,ω) in a PSV-vector

vPSV(r,ω) =
∫ ∫

VQ

h(r′,ω) : Σ
PSV

(r − r′,ω) d2r′, (13.259)

where the remaining components of the h-tensors (13.251) appear.

Far-field approximations of two-dimensional elastodynamic source
fields: The far-field approximation

ufar
y (r,ω) =

∫ ∫
VQ

fy(r′,ω) Gfar
SH(r, r′,ω) d2r′

=
e jkSr

√
r

Hf
SH(r̂,ω) (13.260)

of the two-dimensional SH-fy-source field of the particle displacement with
the radiation characteristic

Hf
SH(r̂,ω) =

1√
ω

e j π
4

2ZS
√

2πcS

∫ ∫
VQ

fy(r′,ω) e−jkSr̂·r′
d2r′ (13.261)

is immediately obtained with (13.52). Besides the fact that (13.260) is recog-
nized as the far-field approximation of a cylindrical wave, the scalar radiation
characteristic (13.261) is different from the radiation characteristic compo-
nents (13.225), in particular regarding the additional frequency dependence
1/

√
ω; for a pulse US-NDT, this is of considerable importance (compare Fig-

ures 13.4 and 13.6).
The far-field approximation

ufar
PSV(r,ω) =

∫ ∫
VQ

f(r′,ω) · Gfar
PSV

(r, r′,ω) d2r′

=
e jkPr

√
r

Hf
P(r̂,ω) +

e jkSr

√
r

Hf
SV(r̂,ω) (13.262)

of the two-dimensional PSV-f -source field of the particle displacement with
the radiation characteristics

Hf
P(r̂,ω) =

1√
ω

e j π
4

2ZP
√

2πcP

∫ ∫
VQ

f(r′,ω) · r̂ e−jkPr̂·r′
d2r′

︸ ︷︷ ︸
= Hf

P(r̂,ω)

r̂, (13.263)
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Hf
SV(r̂,ω) =

1√
ω

e j π
4

2ZS
√

2πcS

∫ ∫
VQ

f(r′,ω) · eθ e−jkSr̂·r′
d2r′

︸ ︷︷ ︸
= Hf

SV(r̂,ω)

eθ (13.264)

is immediately obtained via derivation from (13.247) using

∇r =⇒ jkP,Sr̂ (13.265)

and

I = r̂ r̂ + eθ eθ + eyey (13.266)

as well as (13.52)

Gfar
PSV

(r, r′,ω) =
1

λ + 2µ
r̂ r̂

1
4

e j π
4

√
2
π

e jkPr

√
kPr

e−jkPr̂·r′

+
1
µ

eθ eθ

1
4

e j π
4

√
2
π

e jkSr

√
kSr

e−jkSr̂·r′
. (13.267)

The respective three-dimensional radiation characteristics are numbered by
(13.218) and (13.225). Equation 13.267 is the two-dimensional counterpart of
(13.95) with (13.100) and (13.101).

The far-field approximation of the SH-particle displacement of two-
dimensional h-sources immediately results from (13.257) using (13.265) and
(13.52):

ufar
y (r,ω) =

e jkPr

√
r

Hh
SH(r̂,ω), (13.268)

where

Hh
SH(r̂,ω) = − 1√

ω

e j π
4√

2πcS

∫ ∫
VQ

hy(r′,ω) · r̂ e−jkSr̂·r′
d2r′. (13.269)

For the PSV-contribution, we have to rely on (13.259) with (13.258); with
(13.265) and (13.267), it follows

Σfar

PSV
(r̂,ω) = jkP

1
λ + 2µ

1
4

e j π
4

√
2
π

e jkPr

√
kPr

(λIδ + 2µI+) : r̂ r̂ r̂︸ ︷︷ ︸
= (λI + 2µ r̂ r̂)r̂

+ jkS
1
µ

1
4

e j π
4

√
2
π

e jkSr

√
kSr

(λIδ + 2µI+) : r̂ eθ eθ︸ ︷︷ ︸
= µ(r̂ eθ + eθr̂)eθ

(13.270)

from (13.258), and hence

ufar
PSV(r,ω) =

e jkPr

√
r

Hh
P(r̂,ω) +

e jkSr

√
r

Hh
SV(r̂,ω) (13.271)
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with

Hh
P(r̂,ω)

= − 1√
ω

e j π
4

2cPZP
√

2πcP
2µ

∫ ∫
VQ

h(r′,ω) : (λI + 2µr̂ r̂) e−jkPr̂·r′
d2r′ r̂,

(13.272)

Hh
SV(r̂,ω) = − 1√

ω

e j π
4√

2πcS

∫ ∫
VQ

h(r′,ω) : r̂ eθ e−jkSr̂·r′
d2r′ eθ. (13.273)

The radiation characteristic (13.272) complements (13.263) and (13.273) com-
plements (13.264).

13.3.4 Examples for two- and three-dimensional
elastodynamic and acoustic source far-fields:
Planar rectangular, planar circular, and planar
strip-like force density distributions with
constant amplitude

Planar rectangular force density distribution in an elastic full-space:
Within the pressure and shear wave radiation characteristics (13.218) and
(13.225) of the far-field (13.217) of the particle displacement, we may arbi-
trarily prescribe the force density vector f(R,ω) to subsequently obtain an
intuitive idea of the resulting radiation field. We choose an example that may
be considered as a preliminary US-NDT model244 of a piezoelectric transducer
with rectangular radiating surface:

f(R,ω) = F (ω)qa(x)qb(y)δ(z)ez. (13.274)

Here, qa(x) and qb(y) are rectangular functions symmetric to the origin of
width 2a, respectively 2b, according to (2.273), characterizing the rectangular
geometry of the “transducer model” (13.274) and the constant force density
within the aperture; with δ(z) in (13.274), we ensure a planar force density, and
with ez, we postulate the overall equal direction of the force density within
the aperture; F (ω) stands for the spectrum of the excitation pulse of the
synchronous source

f(R, t) = F (t)qa(x)qb(y)δ(z)ez (13.275)

according to (13.61). Equation 13.274 is sketched in the coordinate system of
Figure 13.16, where we count z downward into a virtual part.

The point directivities of the force density (13.274) have already been out-
lined in Figure 13.12(a) and (b), here we are concentrating on the directivities

244Preliminary, because at the moment, we can only calculate radiation fields of source
distributions in full-space; physical effects resulting from the location of the transducer on
a stress-free specimen surface are not yet accounted for.



K12611 Chapter: 13 page: 484 date: January 18, 2012

484 Ultrasonic Nondestructive Testing of Materials

y y
ϑ

z z
R
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a–a
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ez

x x
ϕ

(a) (b)

FIGURE 13.16
Planar rectangular force density distribution (a), and spherical coordinates
for calculation of the radiation field (b).

of the finite aperture in an elastic full-space. We find them in terms of Equa-
tions 13.218 and 13.225, yet we may immediately shift the point directivities
(13.231) and (13.229) in front of the integrals due to the R′-independent force
density orientations:

Hfz

P (R̂,ω) =
F (ω)

4πcPZP
ez · R̂

∫ b

−b

∫ a

−a

e−jkPR̂·R′
dx′dy′, (13.276)

Hfz

Sϑ,ϕ(R̂,ω) =
F (ω)

4πcSZS
ez · eϑ,ϕ

∫ b

−b

∫ a

−a

e−jkSR̂·R′
dx′dy′. (13.277)

On behalf of the sifting property of the δ(z)-distribution in (13.274), the ex-
pression R̂ · R′ in (13.276) and (13.277) is given by

R̂ · R′ = R̂ · ex x′ + R̂ · ey y′

= sin ϑ cos ϕ x′ + sinϑ sinϕ y′. (13.278)

The resulting integrals can be easily calculated:

Hfz

P (ϑ,ϕ,ω) =
abF (ω)
πcPZP

cos ϑ
sin(kPa sinϑ cos ϕ)

kPa sinϑ cos ϕ

sin(kPb sinϑ sinϕ)
kPb sinϑ sinϕ

,

(13.279)

Hfz

Sϑ(ϑ,ϕ,ω) = − abF (ω)
πcSZS

sinϑ
sin(kSa sinϑ cos ϕ)

kSa sinϑ cos ϕ

sin(kSb sinϑ sinϕ)
kSb sinϑ sinϕ

,

(13.280)

Hfz

Sϕ(ϑ,ϕ,ω) = 0. (13.281)

In [Equation 13.217, respectively (13.224)]

ufar
P (R,ϑ,ϕ,ω) =

e jkPR

R
Hfz

P (ϑ,ϕ,ω) eR +
e jkSR

R
Hfz

Sϑ(ϑ,ϕ,ω) eϑ, (13.282)
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the radiation characteristics determine the particle displacement far-field. We
keep hold of the following: The radiation characteristics (13.279) and (13.280)
are products of the respective point directivities [Figure 13.12(a) and (b)]
and the directivity of the planar rectangular aperture with constant force
distribution. For ϑ = 0,π, we have

sin(kP,Sa sinϑ cos ϕ)
kP,Sa sinϑ cos ϕ

sin(kP,Sb sinϑ sinϕ)
kP,Sb sinϑ sinϕ

∣∣∣∣
ϑ=0,π

= 1, (13.283)

yielding Hf
P(ϑ = 0,π,ϕ,ω) to be maximum due to the point directivity cos ϑ,

whereas Hf
Sϑ(ϑ = 0,π,ϕ,ω) has zeroes due to the point directivity − sinϑ.

Radiation patterns for (13.279) and (13.280) are displayed in Figure 13.17
for y = 0 as a function of ϑ in the coordinate system of Figure 13.16(b).
These diagrams solely represent elastodynamics through appearance of the
respective point directivity because the aperture diagram representing the
geometry and the amplitude distribution of the planar source refers to every
(rectangular) scalar aperture radiator. The essential parameters of the planar
rectangular constant aperture distribution determining the radiation patterns
are kP,Sa and kP,Sb, hence kP,Sa for y = 0. For kP,Sa-values of the order of 1
[Figure 13.17(a) and (b)], we are still close to a point source (Figure 13.12),
the aperture directivity is barely recognizable. The chosen kP,Sa-values for
Figure 13.17(a) and (b) result, for example, for an aperture of x-extension 2a =
2 mm located in steel in combination with the frequency f = 1 MHz (λP =
5.9 mm, λS = 3.2 mm). Increasing the x-aperture by a factor of 5 to 2a = 1 cm,
the diagrams of Figures 13.17(c) and (d) result, where in fact Hf

P already
exhibits a significant directivity, while exactly this aperture main lobe in the
Hf

Sϑ-diagram is suppressed by the multiplication with the zero of the point
directivity sinϑ for ϑ = 0 and simultaneously enhancing the amplitudes of
the side lobes. This tendency—increasing directivity,245 and an increasing
number of side lobes in the Hf

P-diagram with increasing fanning out of the
Hf

Sϑ-diagrams without a pronounced main lobe—continues with increasing
kP,Sa (Figures 13.17(e) and (f); 2a = 2 cm).

We want to make a remark on the “creeping wave transducer” using the
present preliminary transducer model; therefore, we consider the non syn-
chronous source

f(R, t) = F

(
t − x

cA

)
qa(x)qb(y)δ(z)ez (13.284)

instead of (13.275). As before, this force density excitation impresses the
same impulse F (t) to the aperture line x = 0,−b ≤ y ≤ b and also to the
lines −a ≤ x < 0,−b ≤ y ≤ b, however precipitated by x/cA, and to the lines

245For a quantitative description of the directivity introducing the directivity factor, the
respective literature on antennas should be consulted (for example, Balanis 1997; Langen-
berg 2005).
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kPa = 1.065 (kSa = 1.963)

kPa = 5.32 (kSa = 9.82)

kPa = 10.65 (kSa = 19.63)

(a) (b)

(c) (d)

(e) (f )

FIGURE 13.17
P- and S-radiation patterns [P: (a), (c), (e); S: (b), (d), (f)] of a planar rectan-
gular fz-force density aperture; y = 0 (steel: cP = 5900 m/s, cS = 3200 m/s,
ρ = 7.7 · 103 kg/m3).

0 < x ≤ a,−b ≤ y ≤ b delayed by x/cA, where cA with the dimension of a ve-
locity246 denotes the parameter for the slope of this linear lead/delay. In the
frequency domain, the nonsynchronous source (13.284) turns into the (linear)
phase tapered source

f(R,ω) = F (ω)e jkAxqa(x)qb(y)δ(z)ez, (13.285)

where

kA =
ω

cA
(13.286)

246For physically real angle transducers, cA is the trace velocity of the P-wave from the
piezoelectric crystal impinging on the material surface.
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plays the role of a wave number for the trace velocity cA of the tapering. With
(13.285), we obtain the radiation characteristics

Hfz

P (ϑ,ϕ,ω, kA)

=
abF (ω)
πcPZP

cos ϑ
sin(kPa sinϑ cos ϕ − kAa)

kPa sinϑ cos ϕ − kAa

sin(kPb sinϑ sinϕ)
kPb sinϑ sinϕ

, (13.287)

Hfz

Sϑ(ϑ,ϕ,ω, kA)

= −abF (ω)
πcSZS

sinϑ
sin(kSa sinϑ cos ϕ − kAa)

kSa sinϑ cos ϕ − kAa

sin(kSb sinϑ sinϕ)
kSb sinϑ sinϕ

(13.288)

instead of (13.279) and (13.280); the respective diagrams for kPa = 10.65
(kSa = 19.63) in Figure 13.18 illustrate that kA turns into the parameter of
a main lobe steering, where the factor α in kA = αkP equals the sine of the
steering angle ϑPs of the P-main lobe:

sinϑPs =
kA

kP
= α. (13.289)

This is obtained putting the argument kPa sinϑ cos ϕ − kAa of the sinc func-
tion for ϕ = 0 equal to zero. Interesting enough, the steering of the P-main
lobe simultaneously yields pronounced main lobes also for the S-diagrams.
The steering prevents the “destruction” of the aperture main lobe by the
point directivity sinϑ. However, due to

sinϑSs =
kA

kS
=

α

κ
, (13.290)

the steering angle ϑSs is smaller than ϑPs.
An interesting limiting case for beam steering results if α = 1, i.e., ϑPs =

π/2: The P-main lobe of the aperture itself—without point directivity (Figure
13.19)—points into the direction 90o, even though broadened as it is typical
for such an end fire radiator (for electromagnetic waves: Balanis 1997); with
the point directivity (with elastodynamics), the zero of cosϑ in this direction
yields a completely different radiation pattern: The P-wave is now radiated
under the angle(s) ϑPs � 64o (ϑPs � 116o); it actually turns out to be the bulk
pressure wave that accompanies the “creeping wave” of the accordingly named
transducer (Erhard 1982; Langenberg et al. 1990). Figure 13.19 confirms that
this P-wave is additionally accompanied by an S-main lobe under the angle
ϑSs � 33o (for steel). Apparently, the steering angle of the S-main lobe may be
increased for increasing α as long as α/κ < 1. As a consequence, the P-diagram
fans out just like the S-diagram in Figure 13.17; it becomes useless.

Impulse radiation from a planar rectangular force density aperture:
The frequency appears twice in the particle displacement far-field (13.282):
in the exponential function and in the radiation characteristic. Therefore, if
we are able to calculate Hfz

P (ϑ,ϕ, t) and Hfz

Sϑ(ϑ,ϕ, t) via Fourier inversion
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kA =     kP
1
2

kA =       kP
√2
2

kA =       kP
√3
2

(a) (b)

(c) (d)

(e) (f )

FIGURE 13.18
P- and S-radiation patterns [P: (a), (c), (e); S: (b), (d), (f)] of a pla-
nar rectangular fz-force density aperture with linear x-phase distribution;
y = 0 (steel: cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 · 103 kg/m3; kPa = 10.65,
kSa = 19.63).

from Hf
P(ϑ,ϕ,ω) and Hf

Sϑ(ϑ,ϕ,ω), the impulsive radiation field of the planar
rectangular force density aperture becomes available according to

ufar
P (R,ϑ,ϕ, t) =

1
R

Hfz

P

(
ϑ,ϕ, t − R

cP

)
eR +

1
R

Hfz

Sϑ

(
ϑ,ϕ, t − R

cS

)
eϑ

(13.291)
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kA = kP

(a) (b)

FIGURE 13.19
P- and S-radiation diagrams [P: (a); S: (b)] of a planar rectangular fz-force
density aperture with linear x-phase tapering (dashed: P-radiation diagram
of the aperture without point directivity); y = 0 (steel: cP = 5900 m/s, cS =
3200 m/s, ρ = 7.7 · 103 kg/m3; kPa = 10.65, kSa = 19.63).

due to the shifting rule of the Fourier transform. We again restrict ourselves
to the xz-plane, i.e., y = 0, and represent

Hfz

P (ϑ,ϕ = 0, t) =
ab

πcPZP
cos ϑ F (t) ∗ F−1

⎧⎪⎨⎪⎩
sin
( a

cP
sinϑ ω

)
a

cP
sinϑ ω

⎫⎪⎬⎪⎭
(13.292)

as convolution integral of the excitation pulse F (t) with the Fourier inver-
sion of

sin
(

a
cP

sinϑ ω
)

a
cP

sinϑ ω
=

⎧⎪⎨⎪⎩
1 for ϑ = 0,π

cP

a sinϑ

1
ω

1
2j

(
e j a

cP
sin ϑ ω − e−j a

cP
sin ϑ ω

)
for 0 < ϑ < π

,

(13.293)
where we apparently have to distinguish the two cases in (13.293). The factor
1/ω may be added to the F (ω)-term to obtain

Hfz

P (ϑ,ϕ = 0, t)

=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ab

πcPZP
F (t) ∗ δ(t) für ϑ = 0,π

b

2πZP

cos ϑ

sinϑ
F−1

{
F (ω)
−jω

}
∗
[
−δ

(
t − a

cP
sinϑ

)
+ δ

(
t +

a

cP
sinϑ

)]
für 0 < ϑ < π

=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ab

πcPZP
F (t) für ϑ = 0,π

b

2πZP

cos ϑ

sinϑ

∫ t

−∞

[
F

(
τ +

a

cP
sinϑ

)
− F

(
τ − a

cP
sinϑ

)]
dτ

für 0 < ϑ < π

(13.294)



K12611 Chapter: 13 page: 490 date: January 18, 2012

490 Ultrasonic Nondestructive Testing of Materials

a sin ϑ

a sin ϑ

Ra

R^

R–a

R

a x

z

–a

ϑ

ϑ

ϑ

FIGURE 13.20
Far-field impulse radiation from a planar rectangular aperture in the plane
y = 0.

with the integration rule (Equation 2.293) of the Fourier transform. For a
given distance R satisfying R � a, all frequencies contained in F (ω) must
fulfill the far-field condition kPR � 1.

We state that: In the direction of the P-main lobes for ϑ = 0 and ϑ = π, the
excitation impulse itself is radiated, while in all other directions, two timely
separated pulses with different signs are radiated that are integrals of the ex-
citation pulse. Figure 13.20 illustrates the time shift of both pulses identifying
them as pulses emanating from the edges of the aperture: Per definition, in
the far-field, the distances of all source points to a particular observation point
are parallel yielding Ra = R − a sinϑ and R−a = R + a sinϑ; accordingly, the
travel times of the pulses emanating from the edges differ by 2a sinϑ/cP,
and they alone compose the pulsed radiation far-field for 0 < ϑ < π accord-
ing to (13.294). However, for ϑ = 0,π, a single impulse is observed that em-
anates from the center of the aperture because, in connection with (13.291),
its travel time is given by R/cP. Certainly, this impulse is also obtained in
the limit superimposing the two edge pulses for ϑ −→ 0,π; in other words,
the pulsed far-field in the direction of the (time harmonic) main lobe(s) re-
sults from the isochronous superposition of both edge pulses. The transition
from the near- to the far-field will be discussed with the help of AFIT/EFIT-
simulations of piezoelectric transducers (Sections 14.1.1 and 14.2.1). Here, we
refer to Figure 13.21 that displays the above facts of the pulsed far-field for an
RC2(t)-excitation of the aperture [we have RC2(ω = 0) = 0 as it is required
for the application of the integration rule of the Fourier transform], where we
have assumed cPT < 2a; for cPT > 2a, the two edge pulses can no longer be
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(R – a sin ϑ)/cP

(R – a sin ϑ)/cP

z

FIGURE 13.21
P-far-field particle displacement pulses from a planar rectangular fz-force
density aperture for RC2(t)-excitation; y = 0 (steel: cP = 5900 m/s, cS =
3200 m/s, ρ = 7.7 · 103 kg/m3).

separated, even for ϑ = π/2. Note that the edge pulses in Figure 13.21 are
actually integrated RC2(t)-pulses. The monochromatic beam steering of the
P-main lobe manifests itself in the pulsed radiation field through the radiation
of the single RC2(t)-pulse in the direction of the steered beam.

The above similarly holds for the pulsed S-radiation far-field.

Planar circular force density distribution in full-space: Instead of the
planar rectangular force density distribution [Figure 13.16(a)] we now con-
sider a planar circular force density distribution with radius a and constant
amplitude [Figure 13.22(a)]:

f(R,ω) = F (ω)u(a − r)δ(z)ez; (13.295)
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FIGURE 13.22
Planar circular force density distribution (a) and planar strip-like force density
distribution (b).

u(a − r) denotes the unit step-function that ensures the circular geometry and
the constant amplitude of the force density distribution. Source point polar
coordinates r′,ϕ′ in the xy-plane yield

R′ = r′ cos ϕ′ ex + r′ sinϕ′ ey + z′ ez, (13.296)

and hence instead of (13.276) and (13.277):

Hfz

P (R̂,ω) =
F (ω)

4πcPZP
cos ϑ

∫ 2π

0

∫ a

0
e−jkPr′ sin ϑ cos(ϕ−ϕ′)r′ dr′dϕ′,

(13.297)

Hfz

Sϑ(R̂,ω) = − F (ω)
4πcSZS

sinϑ

∫ 2π

0

∫ a

0
e−jkSr′ sin ϑ cos(ϕ−ϕ′)r′ dr′dϕ′.

(13.298)

With the rotational symmetry of the source with regard to ϕ, we argue for the
rotational symmetry of the radiation characteristics, i.e., their respective inde-
pendence upon ϕ; therefore, we can insert any value for ϕ, for example, ϕ = 0
(or ϕ = π), into (13.297) and (13.298), and simultaneously, we interchange
the order of integration:

Hfz

P (ϑ,ω) =
F (ω)

4πcPZP
cos ϑ

∫ a

0
r′
∫ 2π

0
e−jkPr′ sin ϑ cos ϕ′

dϕ′dr′, (13.299)

Hfz

ϑ (Sϑ,ω) = − F (ω)
4πcSZS

sinϑ

∫ a

0
r′
∫ 2π

0
e−jkSr′ sin ϑ cos ϕ′

dϕ′dr′. (13.300)

To evaluate the aperture integrals, we utilize the integral representation

J0(ζ) =
1

2π

∫ 2π

0
e±jζ cos α dα (13.301)
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for the Bessel function of zero order (Abramowitz and Stegun 1965), the re-
cursion relation

J0(ζ) = J′
1(ζ) +

1
ζ

J1(ζ) (13.302)

and the partial integration:

Hfz

P (ϑ,ω) =
a2F (ω)
2cPZP

cos ϑ
J1(kPa sinϑ)

kPa sinϑ
, (13.303)

Hfz

Sϑ(ϑ,ω) = − a2F (ω)
2cSZS

sinϑ
J1(kSa sinϑ)

kSa sinϑ
. (13.304)

As compared to (13.279) and (13.280), only the aperture radiation character-
istic has changed! For ϑ = 0,π, we have

J1(kP,Sa sinϑ)
kP,Sa sinϑ

∣∣∣∣
ϑ=0,π

=
1
2

(13.305)

basically suggesting radiation patterns as in Figure 13.17; however, the P-main
lobe of the circular aperture is a little bit broader than the P-main lobe of
the rectangular aperture (with the same linear dimension in the xz-plane)
because the first zero of J1(ζ) occurs at ζ � 3.83, whereas the sine in (13.279)
has its first zero already at π � 3.14 (Figure 13.23).

Planar strip-like force density aperture in full-space: With

f(R,ω) = F (ω)qa(x)δ(z)ez, (13.306)

we describe the force density distribution of a planar strip-like source with
constant amplitude [Figure 13.22(b)]. In the sense of Section 13.3.3, this is

kPa = 2.66

(a) (b)

FIGURE 13.23
P-radiation pattern of the strip-like (a) and the circular aperture (b) (steel:
cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 · 103 kg/m3).
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a two-dimensional source distribution (∂/∂y ≡ 0) immediately allowing us to
apply (13.262) to obtain its PSV-radiation field:

ufar
PSV(r,ω) =

e jkPr

√
r

Hfz

P (r̂,ω) +
e jkSr

√
r

Hfz

SV(r̂,ω), (13.307)

where we have

Hfz

P (θ,ω) =
F (ω)√

ω

e j π
4

2ZP
√

2πcP
ez · r̂

∫ a

−a

e−jkPr̂·r′
dx′ r̂, (13.308)

Hfz

SV(θ,ω) =
F (ω)√

ω

e j π
4

2ZS
√

2πcS
ez · eθ

∫ a

−a

e−jkSr̂·r′
dx′ eθ (13.309)

according to (13.263) and (13.264). Instead of the polar coordinate angle ϕ

counted from the x-axis (Section 13.3.3), we have introduced the respective
angle θ counted from the z-axis to achieve comparability with the polar angle
counting in Figure 13.16(b); we have eθ = −eϕ. With

r̂ = sin θ ex + cos θ ez, (13.310)

we obtain

r̂ · r′ = sin θ x′,
ez · r̂ = cos θ, (13.311)

ez · eθ =− sin θ

and, consequently,

Hfz

P (θ,ω) =
F (ω)√

ω

e j π
4

2ZP
√

2πcP
cos θ

∫ a

−a

e−jkP sin θx′
dx′

=
F (ω)√

ω

ae j π
4

2ZP
√

2πcP
cos θ

2 sin(kPa sin θ)
kPa sin θ

, (13.312)

Hfz

SV(θ,ω) = − F (ω)√
ω

e j π
4

2ZS
√

2πcS
sin θ

∫ a

−a

e−jkS sin θx′
dx′

=− F (ω)√
ω

ae j π
4

2ZS
√

2πcS
sin θ

2 sin(kSa sin θ)
kSa sin θ

. (13.313)

The comparison with (13.279) and (13.280) tells us that normalized monochro-
matic radiation patterns of the strip source are completely identical with the
respective radiation patterns of the rectangular source for y = 0 (ϕ = 0,π):
In this sense, the 2D-approximation of a 3D-strip source is perfect! It is not
perfect regarding the behavior with distance and regarding pulsed radiation:
Compared to (13.292), an additional convolution of the factor 1/

√
ω appears

as we already noted for the far-field approximation of the bandlimited two-
dimensional (scalar) Green function (13.54).
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Equally not perfect is the 2D-approximation of a circular aperture con-
cerning pulsed radiation and radiation patterns: The Bessel function radia-
tion patterns (13.303) and (13.304) differ in terms of their half-width from
the sinc function radiation patterns (13.312) and (13.313); Figure 13.23 shows
an example for kPa = 2.66, where 2a either denotes the width of the strip or
the diameter of the circular aperture.

Acoustic source far-fields of planar dilatation rate distributions in
full-space: Our preliminary model for piezoelectric transducers may also be
used in immersion mode: We locate the planar source distribution in a liquid
(water) to obtain a model for an immersion technique transducer. With the
integral representations (5.63) and (5.73) of acoustic source fields, we are able
to calculate their radiation field. Usually (Schmerr 1998), the dilatation rate
h(R, t) is prescribed for an immersion transducer (and not the force density),
be it either planar rectangular or planar circular. With (13.46), we obtain the
time harmonic far-field of the pressure as well as the particle velocity:

pfar(R,ω) = jωρ
e jkR

4πR

∫ ∫ ∫
VQ

h(R′,ω) e−jkR̂·R′
d3R′, (13.314)

vfar(R,ω) = jk
e jkR

4πR

∫ ∫ ∫
VQ

h(R′,ω) e−jkR̂·R′
d3R′ R̂, (13.315)

allowing for an equally elementary evaluation of the radiation characteristic
integrals in (13.314) and (13.315) for planar h-sources, for example, the planar
rectangular h-source:

h(R,ω) = H(ω)qa(x)qb(y)δ(z). (13.316)

The essential difference of the h-model of a time harmonic immersion trans-
ducer is the missing elastodynamic point directivity. For the pulsed radiation
field, it is noteworthy that the factor ω yields a differentiation of the excita-
tion pulse in the main lobe direction, whereas the edge pulses are replica of
the excitation pulse. In two dimensions, ω is replaced by the square root of ω

leading to a “partial” differentiation in the main lobe direction.247

Two facts should be noted:

• In the literature (for example, Schmerr 1998), the immersion transducer is
modeled as an infinitely rigid baffled transducer with the so-called Rayleigh
Sommerfeld integral. This implies the utilization of a Green function satis-
fying a Neumann boundary condition on the infinitely extended xy-plane
containing the source distribution (13.316). We come back to this mention-
ing already that essentially only a factor 2 appears compared to (13.314)
(Chapter 14).

247The necessary Fourier inversion of
√|ω| to evaluate the convolution is given by Doetsch

(1967). By the way: The resulting pulse structure is recognized in Figure 5.4 because
the Huygens integral of the scattered pressure far-field also contains a factor

√
ω in two

dimensions.
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• The pulsed radiation field of a synchronous planar h-source may be ana-
lytically expressed even in the near-field; we refer to the literature (e.g.:
Aulenbacher and Langenberg 1980; Schmerr 1998).

13.4 Elementary Spherical Waves and Plane Waves

For US-NDT, the concept of elastic plane waves to estimate the reflection,
transmission, and mode conversion is equally important as the concept of ele-
mentary elastic spherical waves for a point source synthesis of elastodynamic
source fields. Actually, both wave types may be converted into each other:
A plane wave may be represented by an infinite series of (multipole) spherical
waves, and a spherical wave by the integration of plane waves of arbitrary
propagation directions: Instead of the point source synthesis of elastodynamic
source fields, a spatial plane wave spectrum decomposition is obtained. This is
considerably important for planar sources located on the surface of an elastic
half-space and not, as discussed before, as planar “volume” sources in an elas-
tic full-space; in fact, this is the actual transducer modeling problem (at least
in an idealized manner); this is the reason why we called the results of Figures
13.17 through 13.19 and 13.21 results of preliminary transducer models.

13.4.1 Spatial plane wave spectrum of the
three-dimensional scalar Green function:
Weyl’s integral representation

We write the differential equation (13.1) for the three-dimensional scalar Green
function G(R − R′,ω) in cartesian coordinates:

∂2

∂x2 G(x − x′, y − y′, z − z′,ω) +
∂2

∂y2 G(x − x′, y − y′, z − z′,ω)

+
∂2

∂z2 G(x − x′, y − y′, z − z′,ω) + k2G(x − x′, y − y′, z − z′,ω)

= −δ(x − x′)δ(y − y′)δ(z − z′). (13.317)

Instead of the three-dimensional Fourier transform (13.12), we now introduce
a two-dimensional Fourier transform with respect to x and y (according to
Figure 13.16, the coordinate z should point into the specimen why we leave
it untouched):

Ĝ(Kx, Ky, z, ω) =
∫ ∞

−∞

∫ ∞

−∞
G(x, y, z,ω) e−jKxx−jKyy dxdy, (13.318)

where Kx, Ky denote the conjugate Fourier variables referring to x and y;
as in Section 11.1, the transformed functions are characterized by a hat to
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distinguish them from (13.12). With the shifting rule, the differentiation rule,
and the sifting property of the δ-distribution, the partial differential equation
(13.317) turns into the ordinary differential equation

− K2
xĜ(Kx, Ky, z − z′,ω) − K2

yĜ(Kx, Ky, z − z′,ω)

+
d2

dz2 Ĝ(Kx, Ky, z − z′,ω) + k2Ĝ(Kx, Ky, z − z′,ω)

= −δ(z − z′). (13.319)

The conversion

d2

dz2 Ĝ(Kx, Ky, z − z′,ω) + (k2 − K2
x − K2

y︸ ︷︷ ︸
def= K2

z

)Ĝ(Kx, Ky, z − z′,ω) = −δ(z − z′)

(13.320)

identifies this differential equation as defining equation of the one-dimensional
Green function Ĝ(Kx, Ky, z − z′,ω) with respect to the coordinate z. If
Equation 13.320 was a homogeneous equation [compare (11.2)] linearly in-
dependent solutions could be one-dimensional plane waves with wave num-
ber Kz propagating into positive as well as negative z-direction. Yet, here,
we have to require that the waves propagate away from the source point z′.
Consequently,

Ĝ(Kx, Ky, z − z′,ω) = Ĝ0(Kx, Ky,ω) e jKz|z−z′| (13.321)

would be a suitable solution. As for the three-dimensional case (Section
13.1.1), we must calculate the amplitude factor Ĝ0(Kx, Ky,ω); for the one-
dimensional case, this is comparatively simple because we only have to insert
(13.321) into (13.320) differentiating in the distributional sense:248

Ĝ0(Kx, Ky,ω) =
j

2Kz
. (13.322)

248Write

f(z, z′) = |z − z′| = (z − z′) sign(z − z′)

and differentiate

df(z, z′)
dz

= sign(z − z′) + 2(z − z′)δ(z − z′)

= sign(z − z′),
d2f(z, z′)

dz2
= 2δ(z − z′).

Furthermore, consider sign2(z − z′) = 1 and

e jKz|z−z′|δ(z − z′) = δ(z − z′).
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Thus, the three-dimensional scalar Green function with source point x′ = y′ =
z′ = 0 results as Weyl’s integral representation in terms of the inverse Fourier
integral (13.318):

G(x, y, z,ω) =
e jk

√
x2+y2+z2

4π
√

x2 + y2 + z2

=
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

j
2Kz

e j|z|Kze jKxx+jKyy dKxdKy

=
1

(2π)2
j
2

∫ ∞

−∞

∫ ∞

−∞

e j|z|
√

k2−K2
x−K2

y√
k2 − K2

x − K2
y

e jKxx+jKyy dKxdKy.

(13.323)

The interpretation of Weyl’s integral representation (13.323) as spatial spec-
trum of plane waves is achieved before the background of the considerations
in Section 11.1 if we write (13.323) as

G(x, y, z,ω) =
1

(2π)2
j
2

∫ ∞

−∞

∫ ∞

−∞

1
Kz

e jK·R dKxdKy (13.324)

in the half-space z > 0 (|z| = z). Evidently, the “aperture” distribution
p̂0(Kx, Ky,ω) =⇒ j/2Kz in the xy-plane yields the radiation field of a point
source in terms of an elementary spherical wave for z > 0; the representa-
tion (13.324) is the spatial spectral plane wave decomposition of the Green
function.

Since the coordinate z in (13.323) appears only as |z|, the above definition
equally holds for the half-space z < 0, i.e., Figure 11.1 has to be symmetrically
complemented for z < 0.

With

G(x, z,ω) =
j
4

H(1)
0

(
k
√

x2 + z2
)

=
1

2π

j
2

∫ ∞

−∞

e j|z|
√

k2−K2
x√

k2 − K2
x

e jKxx dKx, (13.325)

we may immediately write down the spectral plane wave decomposition of the
two-dimensional scalar Green function.

An elementary spherical wave emanating from the origin is described by
the Green function e jkR/4πR independent of the distance R; therefore, the
application of the method of stationary phase to (13.323) according to (11.32)
yields nothing but this:

Gfar(R,ω) = − j
2π

k
j
2

1√
k2 − k2 sin2 ϑ cos2 ϕ − k2 sin2 ϑ sin2 ϕ

cos ϑ
e jkR

R

=
1

4π

e jkR

R
. (13.326)
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An elementary cylindrical wave is described by j/4H(1)
0 (kρ), where the

Hankel function exhibits an explicit far-field behavior; application of the one-
dimensional method of stationary phase according to (11.29) to the integral
(13.325), therefore, yields exactly this (Equation 13.23 with Equation 13.22):

Gfar(ρ,ω) =
j
2

k cos θ
e jkρ−j π

4√
2πkρ

1√
k2 − k2 sin2 θ

=
j
4

√
2

πk

ejkρ−j π
4√

ρ
. (13.327)

13.4.2 Spatial cylindrical wave spectrum of the
three-dimensional scalar Green function:
Sommerfeld integral

The formal transition to polar coordinates

x = r cos ϕ,

y = r sinϕ (13.328)

in the xy-plane and polar coordinates

Kx = Kr cos ϕK ,

Ky = Kr sinϕK (13.329)

in the KxKy-plane turns (13.323) into

G(x, y, z,ω) =
1

(2π)2
j
2

∫ ∞

0

∫ 2π

0

e j|z|
√

k2−K2
r√

k2 − K2
r

e jKrr cos(ϕ−ϕK)Kr dϕKdKr.

(13.330)
The rotational symmetry with respect to ϕ and the integral representation
(13.301) of the Bessel function reveal (13.330) to be the spectral decomposition
of the three-dimensional Green function into cylindrical waves:

G(x, y, z,ω) =
e jk

√
r2+z2

4π
√

r2 + z2

=
j

4π

∫ ∞

0

e j|z|
√

k2−K2
r√

k2 − K2
r

Kr J0(Krr) dKr. (13.331)

Again, we have to ensure that the square root in the exponential has the
correct (positive) sign for Kr > k. The integral representation (13.331) is as-
sociated with the name of Sommerfeld.

The integral transform B{ • } according to

Φ(r) =
1

2π
B{Φ(Kr)}

=
1

2π

∫ ∞

0
Φ(Kr) J0(rKr) Kr dKr (13.332)
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is called (inverse) Fourier–Bessel transform . It is symmetric with regard to
the transform itself:

Φ(Kr) = 2π B{Φ(r)}
= 2π

∫ ∞

0
Φ(r) J0(rKr) r dr. (13.333)



14
Force Density and Dilatation Rate Sources
on Surfaces of Homogeneous Isotropic
Half-Spaces, Radiation Fields
of Piezoelectric Transducers

14.1 Acoustic Half-Spaces with Soft or Rigid Surfaces

14.1.1 AFIT-wavefronts of the line and strip-like rigidly
baffled aperture radiator

AFIT—the Acoustic Finite Integration Technique—is the acronym for a nu-
merical code to calculate the radiation, propagation, and scattering of acous-
tic waves (Wolter 1995; Marklein 1997): The propagation physics of acoustic
waves, mathematically formulated with the acoustic governing equations, is
literally visualized that way. Here, we calculate the pulsed wave field of an
acoustic aperture radiator on the acoustically rigid surface of a half-space (in-
finitely rigid baffled transducer) using AFIT and display the field in terms
of pulsed wavefronts (Figure 14.1). Afterward, we know what the respective
analytical calculation should deliver, and we will see what it can deliver.
Figure 14.1 (top) displays the pulsed wavefront of the pressure for a line
dilatation rate source with RC2(t)-time dependence [more precisely: the time
derivative of a dilatation rate source in order to account for the factor jω in
(14.23)]; in the terminology of the next section, this is the RC2(ω)-bandlimited
two-dimensional Green function satisfying a Neumann boundary condition:
GN(x, z, t) ∗ RC2(t). The result meets our expectations: We observe a (two-
dimensional) semicircular wavefront that, according to our assumption, sat-
isfies a Neumann boundary condition on the rigid surface, i.e., the normal
component of the particle velocity vanishes. Figure 14.1 (bottom) shows the
respective pulsed wavefronts of the pressure radiated from a strip-like dilata-
tion rate aperture with constant amplitude: According to the scalar Huy-
gens principle, each aperture point radiates semicircular wavefronts forming
a plane pressure wavefront as envelope that is tangential to the semicircular
wavefronts emanating from the aperture edges, it has the same lateral dimen-
sion as the aperture itself. Note: With increasing travel time, the radius of the
aperture edge pulses increases, they nestle more and more against the aperture

501
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FIGURE 14.1
AFIT-wavefronts of the line and strip-like infinitely rigid baffled aperture
radiator (acoustic pressure with pressure prescribed within the aperture).

wavefront; depending on the excitation pulse duration, they are “someday” no
longer distinguishable from the aperture wavefront, and we will see later on
that this leads to the transition near-field =⇒ far-field defining the near-field
length.

14.1.2 Scalar half-space Green functions,
Rayleigh–Sommerfeld integrals, plane wave
spectral decomposition (integral representations
of the Weyl type)

The theory of acoustic and elastodynamic source fields in Section 13.3 has been
called a preliminary transducer model because the sources have been located
in an infinite full-space. Yet, in general, US-NDT has to cope with finite sized
parts that contain sources either in the interior [Figure 14.2(a)] or on the
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p = 0
or

nM · v = 0

p = nM · t
or

nM · v = –g

nM nM

SM SM

VQ

VM

(a) (b)

SA
VMh

p = pi + ps

∆p + k2p = 0

FIGURE 14.2
Volume sources in a “specimen” (a), and Surface sources on the “speci-
men” (b): Green functions satisfying boundary conditions are required.

surface within an aperture SA [Figure 14.2(b)]. Normally, the surface SM of the
part volume VM is also the measurement surface for ultrasonic signals, and in
the exterior, we often assume vacuum. The above figures refer to the acoustic
case because the solution principles become obvious without the mathematical
complexity of elastodynamics.

Volume sources: scalar half-space Green functions: We refer to Figure
14.2(a) and consider for simplicity dilatation, hence h-sources, last but not
least because they often serve to model immersion transducers. In full-space,
the field of this source would be given by

pi(R,ω) =
∫ ∫ ∫

VQ

jωρh(R′,ω)G(R − R′,ω) d3R′, R ∈ VM ; (14.1)

for VQ ⊂ VM , the pressure pi(R,ω) should satisfy the boundary conditions
specified for R ∈ SM ; this is not achieved by the incident field leading to the
generation of secondary sources on SM in such a way that they radiate a scat-
tered field ps(R,ω) superimposing to the incident field p(R,ω) = pi(R,ω) +
ps(R,ω) to satisfy the boundary condition. According to the Helmholtz
formulation of Huygens’ principle, the field values p(R,ω), ∇p(R,ω) · nM

themselves are the secondary sources resulting in

ps(R,ω) =
∫ ∫

SM

[
p(R′,ω)∇′G(R − R′,ω)

− G(R − R′,ω)∇′p(R′,ω)
]

· n′
M dS′ (14.2)

as representation of the scattered field for R ∈ VM (Section 5.6, respectively
Section 15.1.2; note: the normal nM points into the interior of VM ).

For a soft measurement surface SM [Dirichlet boundary condition:
p(R′,ω) = 0 for R′ ∈ SM ], (14.2) reduces to

pD
s (R,ω) = −

∫ ∫
SM

G(R − R′,ω)∇′p(R′,ω) · n′
M dS′, R ∈ VM , (14.3)
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and for a rigid measurement surface SM [Neumann boundary condition:
∇′p(R′,ω) · n′

M = 0 for R′ ∈ SM ], we have

pN
s (R,ω) =

∫ ∫
SM

p(R′,ω)∇′G(R − R′,ω) · n′
M dS′, R ∈ VM . (14.4)

To calculate the respective secondary sources, integral equations are resulting
(Section 15.1.2) that have already been addressed in Section 5.6. After solv-
ing them, the superpositions pD = pD

s + pi, pN = pN
s + pi are solutions of the

respective problem.
An alternative to this approach uses the integral representations (14.1)

and (14.2) with Green functions GD(R′,R,ω), GN(R′,R,ω) that satisfy the
Dirichlet

GD(R′,R,ω) = 0, R′ ∈ SM , (14.5)

or the Neumann boundary condition

∇′GN(R′,R,ω) · n′
M = 0, R′ ∈ SM , (14.6)

themselves besides the differential equation

∆′GD,N(R′,R,ω) + k2GD,N(R′,R,ω) = −δ(R′ − R), R′,R ∈ VM . (14.7)

Based on the reciprocity theorem, we may show (de Hoop 1995) that:

GD,N(R′,R,ω) = GD,N(R,R′,ω). (14.8)

With (14.5), the Dirichlet scattered field (14.3) and, with (14.6), the Neumann
scattered field, (14.4) is identically zero; hence, the incident fields

pi(R,ω) = pD,N(R,ω)

=
∫ ∫ ∫

VQ

jωρh(R′,ω) GD,N(R′,R,ω) d3R′ (14.9)

fulfill the required boundary conditions249 for R ∈ SM due to (14.8). The
problem is simply: How to obtain the Green functions GD,N(R′,R,ω)? After

249To show that pD,N(R, ω) according to (14.9) in fact satisfies the inhomogeneous differ-
ential equation

∆pD,N(R, ω) + k2pD,N(R, ω) = −jωρ h(R, ω),

we also have to use (14.8). At first, we interchange R and R′ in (14.9) according to

pD,N(R′, ω) =
∫ ∫ ∫

VQ

jωρ h(R, ω)GD,N(R,R′, ω) d3R′,

and then we replace GD,N(R,R′, ω) by GD,N(R′,R, ω) and shift the operator (∆′ +
k2)pD,N(R′, ω) to GD,N(R′,R, ω); with (14.7), we obtain −jωρ h(R′, ω).
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all, their calculation is nothing else but the solution of our problem for point-
like h-sources. However, there are special cases of SM -geometries offering a
simple access to the calculation of (scalar) Green functions, for example, the
planar surface of an (acoustic) half-space volume VM : We image250 the unit
point source located at R at this plane and construct

GD(R′,R,ω) =
e jk

√
(x′−x)2+(y′−y)2+(z′−z)2

4π
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

− e jk
√

(x′−x)2+(y′−y)2+(z′+z)2

4π
√

(x′ − x)2 + (y′ − y)2 + (z′ + z)2

= GD(x′ − x, y′ − y, z′, z, ω), (14.10)

GN(R′,R,ω) =
e jk

√
(x′−x)2+(y′−y)2+(z′−z)2

4π
√

(x′ − x)2 + (y′ − y)2 + (z′ − z)2

+
e jk

√
(x′−x)2+(y′−y)2+(z′+z)2

4π
√

(x′ − x)2 + (y′ − y)2 + (z′ + z)2

= GN(x′ − x, y′ − y, z′, z, ω), (14.11)

where

R′ = x′ex + y′ey + z′ez, (14.12)
R = x ex + y ey + z ez.

We immediately realize that GD satisfies a Dirichlet and GN a Neumann
boundary condition for z′ = 0.

Surface sources: Rayleigh–Sommerfeld integrals: In fact, the following
is interesting: If we insert a surface dilatation source

h(R′,ω) = g(x′, y′,ω)δ(z′) (14.13)

into (14.9), we immediately have

pD(R,ω) ≡ 0, R ∈ VM , (14.14)

pN(R,ω) = 2
∫ ∫

SM

jωρ g(x′, y′,ω) G(x − x′, y − y′, z, ω) dx′dy′, R ∈ VM ,

(14.15)

250This method of images results mathematically as follows: Complement the solution
of the inhomogeneous equation (14.7) with a solution of the homogeneous equation, for
example, the field of a point source emanating from a source point R′′ in the exterior of
VM and determine R′′ such that the respective boundary condition is satisfied (Langenberg
2005).
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with the half-space Green functions, where G(x − x′, y − y′, z − z′,ω) is the
full-space (scalar) Green function! A surface dilatation source on the soft
planar surface of a half-space is a nonradiating source (the source is short-
circuited analogous to an electric current source on a perfectly conducting
surface), while a respective source on the planar rigid surface of a half-space
radiates a field twice as large as the one from a source in full-space: The source
as well as its image are radiating!

If we want to create a nonzero surface source field with a Dirichlet bound-
ary condition, we must turn to the complementary source, hence the (normal)
surface force density. Again, the factor 2 appears as compared to the full-space:

pD(R,ω) = 2
∫ ∫

SM

fz(x′, y′,ω)n′
M

·∇′G(x − x′, y − y′, z − z′,ω)
∣∣
z′=0 dx′dy′, R ∈ VM , (14.16)

pN(R,ω) ≡ 0, R ∈ VM . (14.17)

The integrals (14.15) and (14.16) are called Rayleigh–Sommerfeld integrals. In
particular, Equation 14.15 is relevant for practical applications because this
integral characterizes the infinitely rigid baffled transducer.

Surface sources: spectral plane wave decomposition: Even though we
already obtained the radiation field of surface source densities [Figure 14.2(b)]
as a limiting case, we want to derive the Rayleigh–Sommerfeld integrals once
more pursuing a different way. The reason: Applying the above method to the
elastic case runs into problems: The method of images does no longer hold,
and hence Green tensors satisfying boundary conditions may not simply be
derived from the scalar Green functions (14.10) and (14.11) as it was true
in full-space. Green tensors satisfying boundary conditions must be worked
out, they result as integral representation of the Weyl type over plane wave
spectra! Therefore, we want to practice that method for the scalar case.

For nonzero surface sources, the (time harmonic) acoustic pressure fulfills
a homogeneous Helmholtz equation for R ∈ VM :

∆p(R,ω) + k2p(R,ω) = 0, R ∈ VM , (14.18)

and it must satisfy the inhomogeneous Dirichlet boundary condition (Equa-
tion 5.20)

p(R,ω) = nM · t(R,ω) for R ∈ SM , (14.19)

or the inhomogeneous Neumann boundary condition (Equation 5.17)

nM · v(R,ω) = −g(R,ω) for R ∈ SM , (14.20)

respectively,

nM · ∇p(R,ω) = −jωρ g(R,ω) for R ∈ SM . (14.21)
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For a finite aperture SA ⊂ SM that only extends over part of SM—as indicated
in Figure 14.2(b)—the inhomogeneities satisfy nM · t(R,ω) = 0, g(R,ω) = 0
for R ∈ SM\SA.

A solution of (14.18) for R ∈ VM is the Helmholtz integral (14.2); utilizing
Green functions satisfying the boundary condition GD, respectively GN, as
well as, adequately, the inhomogeneous boundary condition (14.19), respec-
tively (14.21), the explicit integral representations

pD(R,ω) =
∫ ∫

SM

n′
M · t(R′,ω)∇′GD(R′,R,ω) · n′

M dS′, (14.22)

pN(R,ω) =
∫ ∫

SM

jωρ g(R′,ω)GN(R′,R,ω) dS′ (14.23)

result. We state once more—this time for arbitrary surfaces SM : Prescrib-
ing the surface source as dilatation rate g(R,ω), R ∈ SM results in a rigid
boundary condition of the radiated pressure (g is “short-circuited” on a soft
surface). For planar surfaces SM—as surfaces of half-spaces—we may again
use the analytical expressions (14.10) and (14.11) turning (14.22) and (14.23)
into the Rayleigh–Sommerfeld integrals (14.16) and (14.15).

Yet, the motivation for this paragraph was not to use Equations 14.10
and 14.11. Therefore, we do not write the solution of (14.18) for a half-space
volume VM (z > 0) as a Huygens point source synthesis in terms of a
Helmholtz integral but as a plane wave spectrum because, according to Sec-
tion 13.4.1, we may represent the contribution of each point source within the
aperture SA for z ≥ 0 by a respective spectrum whose arbitrary parameters—
(14.18) is a homogeneous equation—must be determined through the appro-
priate boundary condition (14.19) or (14.20).

As in Section 11.1, we subject the differential equation (14.18) in carte-
sian coordinates to a two-dimensional spatial Fourier transform with respect
to x and y:

d2

dz2 p̂N(Kx, Ky, z, ω) + (k2 − K2
x − K2

y︸ ︷︷ ︸
def= Kz

)p̂N(Kx, Ky, z, ω) = 0, (14.24)

where the upper index indicates that pN(x, y, z,ω) should satisfy the inho-
mogeneous Neumann boundary condition (14.20); for a planar surface SM , it
reads—we use the version (14.21)—

ez · ∇pN(x, y, z,ω)
∣∣
z=0 = −jωρ g(x, y,ω), x, y ∈ SM . (14.25)

As Fourier transform of (14.25), we obtain

d
dz

p̂N(Kx, Ky, z, ω)
∣∣∣
z=0

= −jωρ ĝ(Kx, Ky,ω). (14.26)

Linearly independent solutions of (14.24) are the one-dimensional plane waves

p̂N(Kx, Ky, z, ω) = p̂+(Kx, Ky,ω) e jKzz + p̂−(Kx, Ky,ω) e−jKzz (14.27)
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propagating into positive and negative z-direction; the arbitrary amplitudes
p̂±(Kx, Ky,ω) depending on the parameters Kx, Ky,ω of the differential equa-
tion (14.24) must be matched to the inhomogeneous boundary condition
(14.26). Since the surface source density is located on the surface of the propa-
gation half-space z > 0, physical intuition requires to put p̂−(Kx, Ky,ω) equal
to zero. Subsequently, Equation 14.26 leads to

p̂+(Kx, Ky,ω) = − ωρ

Kz
ĝ(Kx, Ky,ω). (14.28)

The Fourier inversion of (14.27) with (14.28) results in

pN(x, y, z,ω) =−ωρ
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ĝ(Kx, Ky,ω)

e jKzz

Kz
e jKxx+jKyy dKxdKy,

(14.29)

namely the spectral plane wave decomposition of the sound field of a planar
aperture radiator, where the two-dimensional Fourier transform of the aper-
ture function g(x, y,ω) appears as spectral amplitude. For z = 0, the pressure
pN(x, y, z,ω) satisfies the Neumann boundary condition (14.25), hence a rigid
boundary condition in the exterior of a finite aperture SA: The dilatation rate
source is rigidly baffled. In Figure 14.1, this is clearly recognized: The pressure
does not vanish on the excitation surface.

In Section 11.1, we put “aperture distribution” in quotes to indicate that
the field distribution p0(x, y,ω) as given in the xy-plane formally plays the
same role in the integral representation (11.5) as solution of a homogeneous
reduced wave equation as g(x, y,ω) in (13.302), yet it may not really be
considered as a physically real aperture(function): A source is actually not
present in a homogeneous equation. By means of the relation (14.28) between
ĝ(Kx, Ky,ω) and p̂+(Kx, Ky,ω) =⇒ p̂0(Kx, Ky,ω), we immediately recognize
that the factor 1/Kz may not lead to an identical physically real finite aperture
g(x, y,ω) for a given finite sized “aperture distribution” p0(x, y,ω). On the
other hand, a finite aperture g(x, y,ω) yields an infinitely extended field dis-
tribution in the xy-plane—such that the pertinent normal derivative satisfies
the inhomogeneous Neumann boundary condition (14.26)—which is under-
standable from a physical point of view: The surface source density g(x, y,ω)
prescribed for z = +0, i.e., close to the rigid half-space surface at z = 0, illu-
minates this surface as an incident field!

Smuggling factors according to

pN(x, y, z,ω)

= 2jωρ
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
ĝ(Kx, Ky,ω)

j
2Kz

e jKzze jKxx+jKyy dKxdKy

(14.30)

into (14.29), we recognize the Fourier inversion of the product of the spectra
ĝ(Kx, Ky,ω) and Ĝ(Kx, Ky, z, ω) according to (13.321) and (13.322) for z ≥ 0,
i.e., the convolution of g(x, y,ω) with G(x, y, z,ω):
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pN(x, y, z,ω) = 2jωρ

∫ ∞

−∞

∫ ∞

−∞
g(x′, y′,ω) G(x − x′, y − y′, z, ω) dx′dy′

= j
ωρ

2π

∫ ∞

−∞

∫ ∞

−∞
g(x′, y′,ω)

e jk
√

x−x′)2+(y−y′)2+z2√
(x − x′)2 + (y − y′)2 + z2

dx′dy′,

(14.31)

thus having rediscovered the Rayleigh–Sommerfeld integral (14.15) through
explicit solution of a half-space boundary value problem.

Therefore, in case we know the Green function of the half-space explicitly,
we may alternatively work with the Fourier integral (14.30) or with the con-
volution integral (14.31). In case we do not know the Green function—as it
is true in elastodynamics at least for the time harmonic Green function—we
have to take a back seat with the spectral plane wave decomposition (SPWD).

In Figure 14.3, we face alternative methods to calculate the sound field of
an acoustic aperture radiator for the case of a strip source, where it is not
quite irrespective that which integral is used for a particular distance z: The
Weyl integral as spectral plane wave decomposition definitely has advantages
if the sound field has to be calculated in planes parallel to the surface for
distances not too large (within the near-field length); for larger z-values, the
oscillations of the exponential function e jKzz—the propagator—complicate

SM rigid

–a a

ρ, knM

Rayleigh–Sommerfeld integral:

Far-field: radiation characteristic
impulse radiation

Far-field: radiation characteristic
impulse radiation

Synchronous source:
impulse radiation

(Cagniard–de Hoop)

z

Stationary
phase

x-convolution: g * (GN = 2G)

Gfar

Kx-Fourier inversion: g ejKzz/Kz

Weyl integral: SPWD

x
rigidg(x, ω)

VM

^

FIGURE 14.3
Alternative methods to calculate the sound field of an acoustic aperture radi-
ator: strip-like rigidly baffled aperture.
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numerical calculations. For those purposes of “parallel plane evaluation,” the
Rayleigh–Sommerfeld integral is not equally appropriate because the Green
function is relatively slowly decaying with x and y; the power of the Rayleigh–
Sommerfeld integral lies in the direct access of the far-field because the Weyl
integral first requires the application of the method of stationary phase to
arrive at the same radiation characteristic (Section 11.1.3). Yet both integrals
lead to the same result independent of dimensionality and source geometry
as we will show later on: In any case, the Fourier transform of the source
distribution has to be calculated. If we would be interested in the pulsed ra-
diation field of the aperture (for example, Figure 14.1), we should perform
a numerical evaluation of the Rayleigh–Sommerfeld or the Weyl integral for
each circular frequency within the spectrum of the excitation pulse with a
subsequent inverse Fourier transform with regard to ω. However, for special
source geometries—circular, strip-like, or rectangular apertures with constant
amplitudes—and special excitation functions—generally step-function, Dirac
impulse, or its derivatives—the pulsed radiation field may be analytically cal-
culated for arbitrary distances z using a tricky integration of either one of
the integral representations (Cagniard–de Hoop method: Aulenbacher 1988;
Aulenbacher and Langenberg 1980; analytic integration: Schmerr 1998; Royer
and Dieulesaint 2000); for other excitations, for example, RCN(t)-pulses, a
subsequent convolution has to be performed with an increasingly unfriendly
numerical effort the further we are in the far-field. After all, the transition
near-field =⇒ far-field is most intuitively recognized from the pulsed radia-
tion field (Figures 14.5 and 14.6).

The spatial filter interpretation as discussed in Section 11.1.2 equally ap-
plies to the field distribution pN(x, y, z,ω) according to (14.29), namely to the
interpretation of the radiation field of a rigidly baffled acoustic transducer;
only the propagation as spatial Fourier spectrum of the Green function be-
comes somewhat bulky because it is singular at the band limits Kz = 0 of the
spatial low-pass filter.

Near-field length: Based on the numerical evaluation of the spatial plane
wave spectrum of a strip-like “aperture,” we could nicely illustrate the transi-
tion near-field =⇒ far-field (Figures 11.3 and 11.4); for another special case—
the circular aperture—we may even perform analytic investigations if the
Rayleigh–Sommerfeld is evaluated on the acoustic axis.

We write the Rayleigh–Sommerfeld integral (14.31) for g(x′, y′,ω) =
u(a − r′) in cylindrical coordinates and immediately choose ϕ = 0 due to the
rotational symmetry:

pN(r, z,ω) = 2jωρ

∫ 2π

0

∫ ∞

0

e jk
√

r2+r′2−2rr′ cos ϕ′+z2

4π
√

r2 + r′2 − 2rr′ cos ϕ′ + z2
r′dr′dϕ′. (14.32)

Per definition, we have r = 0 on the acoustic axis yielding an elementary
integration after the substitution

√
r′2 + z2 = �:
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pN(0, z, ω) = jωρ

∫ a

0

e jk
√

r′2+z2

√
r′2 + z2

r′dr′

= jωρ

∫ √
z2+a2

z

e jk� d�

= Z
[
e jkβ(z) − 1

]
e jkz, (14.33)

where

β(z) =
√

z2 + a2 − z. (14.34)

Hence, we observe a one-dimensional amplitude and phase modulated wave
propagating into positive z-direction; the magnitude

|pN(0, z, ω)| = 2Z

∣∣∣∣sin kβ(z)
2

∣∣∣∣ (14.35)

yields the amplitude modulation that contains n zeroes according to

β(z) = nλ, n = 1, 2, 3, . . . ; (14.36)

their number is limited by the requirement nλ < a because we have βmax(z) =
β(0) = a (Figure 14.4). The physical reason for this oscillatory pressure behav-
ior on the acoustic axis as displayed in Figure 14.4 is the interference of the
aperture wavefront with the aperture edge pulses (Figure 14.1); the typical

0 a 2a 3a 4a 5a

5a

z

z
pN(0, z ,ω) /  pN

max

λ
2λ
3λ

β(z)

a

FIGURE 14.4
Phase and normalized magnitude of the sound pressure of a circular aperture
radiator on the acoustic axis (for a = 4λ, as chosen here, the sound pressure
indeed starts with a zero for z = 0).
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far-field behavior as 1/R-dependence (1/z for r = 0) is only observed when
these wavefronts become so close to each other that they superimpose due to
their finite duration; namely, for z � a we may approximate:

β(z) = z

√
1 +

a2

z2 − z

� z

(
1 +

a2

2z2

)
− z

=
a2

2z
, (14.37)

yielding251

|pN(0, z, ω)| � πa2Z

λ

1
z

(14.38)

if we approximate the sine function in (14.35) by its argument. We may even
calculate the z-value where the far-field behavior becomes relevant; we define
the near-field length N as the location of the last maximum of the sound
pressure. We find the pertinent z-value requesting β(z) = λ/2, and we conclude
for a � λ

N � a2

λ
. (14.39)

That way, we have constituted the near-field time harmonically, yet plausi-
bility arguments have already been given based on the pulsed sound field as
displayed in Figure 14.1. With a respective sketch of the pulsed sound field
(Figure 14.5), we may also arrive at the expression (14.39). We define that
travel distance cPt of the aperture wavefront as near-field length N for which

d

cPt cPt
cPt – d

2a

FIGURE 14.5
Calculation of the near-field length from the pulsed radiation field of the
acoustic aperture radiator.

251Of course, the usual far-field approximation of the Rayleigh–Sommerfeld integral (14.32)
with subsequent specialization to the acoustic axis yields the same result.
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the distance d of the cross-points of the aperture edge pulses on the acoustic
axis is approximately equal to a half of the impulse “duration length” cPT .
The geometry of Figure 14.5 tells us that

cPt − d =
√

c2
Pt2 − a2 (14.40)

holds, and consequently, we have according to the above definition

N −
√

N2 − a2 � cPT

2
, (14.41)

respectively for N � a:

a2

N
� cPT. (14.42)

With the definition of the pulse wavelength cPT � λ, (14.42) is equal to
(14.39).

By the way: The near-field length of a pulsed sound field is causatively
related to the band limitation of the aperture impulse, it does not exist for a
Dirac pulse. To show that, we return to the monochromatic axis sound pres-
sure (14.33) of the circular aperture that has been calculated for the spectrum
of a Dirac pulse due to (14.32) and transform it into the time domain:

pN(0, z, t) = Z

[
δ

(
t − 1

c

√
z2 + a2

)
− δ
(
t − z

c

)]
. (14.43)

It obviously consists of two Dirac pulses with different signs and z-independent
amplitude; they are assigned to the aperture wavefront and the superimposed
edge pulses: The travel time difference of these pulses is given by β(z), it is
only zero at infinity! No superposition occurs for z < ∞ with the consequence
that no “one impulse far-field behavior” with 1/R-amplitude dependence is
observed as we have derived it for the main lobe direction of an aperture in
the far-field with bandlimited excitation (Equation 13.294 and Figure 13.21).

Figure 14.6(c) and (d) schematically display the far-field behavior for
band limitation as given by (13.294)—the double circles may illustrate the
finite impulse duration—by means of wavefronts; in contrast, Figure 14.6(a)
and (b), similarly display the correct wave front behavior [numerically ex-
act result: Figure 14.1(c) and (d)]: Evidently, according to the discussion of
Figure 14.5, the differences become more and more marginal with increasing
distance. Furthermore, we recognize the decreasing near-field length with in-
creasing pulse duration according to (14.42). The limit “infinitely short (Dirac)
impulse” yields an infinitely large near-field length. The validity condition for
the monochromatic far-field approximation has been given as “distance large
with regard to aperture size” and “distance large with regard to wavelength.”
Hence, we want to check the values of 2a, R, and kR that have to be assigned
to the wavefronts in Figure 14.6 if the wave number k is, for example, taken
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(a)

(b)

(c)

(d)

FIGURE 14.6
Bandlimited impulse wavefronts of a strip-like aperture radiator: transition
near- to far-field; (a) and (b): near-field evaluation; (c) and (d): far-field
evaluation.

from the center-frequency of an RC2(t)-pulse. The spatial extent of the wave-
fronts in Figure 14.6 yields λ = 1 mm (wavelength, not Lamé’s constant!) ac-
cording to a center-frequency of ca. 600 kHz in steel. From that, we obtain
kR � 80 and R/2a � 0.7 for the near-field sketches 14.6(a) and (c) as well
as kR � 230 and R/2a � 2 for the far-field sketches 14.6(b) and (d). Even
though the condition kR � 1 is satisfied for all sketches, the differences be-
tween 14.6(a) and 14.6(c) are still significant due to the too small R/2a-value.
But the value R/2a � 2 for the sketches (b) and (c) signals that we are not
yet really in the far-field. The actual amplitudes are apparently not contained
in this “validation” of the far-field approximation.

14.1.3 Far-field evaluation of Rayleigh–Sommerfeld
and Weyl integrals

The far-field of the rigidly baffled aperture radiator is approximately obtained
if we insert the far-field approximation (13.41) of the Green function into the
Rayleigh–Sommerfeld integral (14.31):

pN,far(R,ϑ,ϕ,ω)

=
e jkR

R

jωρ

2π

∫ ∞

−∞

∫ ∞

−∞
g(x′, y′,ω) e−jk sin ϑ cos ϕx′−jk sin ϑ sin ϕy′

dx′dy′︸ ︷︷ ︸
= Hg(ϑ,ϕ,ω)

.

(14.44)
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Due to the rigid half-space surface, a factor 2 appears as compared to (13.65).
The radiation characteristic Hg(ϑ,ϕ,ω) of the surface dilatation rate source
g(x, y,ω) turns out to be proportional to its two-dimensional spatial Fourier
transform for Kx = k sinϑ cos ϕ, Ky = k sinϑ sinϕ:

Hg(ϑ,ϕ,ω) =
jωρ

2π
ĝ(k sinϑ cos ϕ, k sinϑ sinϕ,ω). (14.45)

Alternatively referring to the integral representation (14.29) of Weyl’s
type and calculating its respective far-field approximation with the method of
stationary phase (Equation 11.32), we again obtain (14.44) and (14.45).

14.2 Strip-Like Normal and Tangential Force Density
Distributions on the Stress-Free Surface
of an Elastic Half-Space: Spectral Plane
Wave Decomposition of the Two-Dimensional
Second-Rank Green Tensor

14.2.1 EFIT-wavefronts of the linear and strip-like
aperture radiator on the stress-free surface
of an elastic half-space

Similar to Figure 14.1, we show respective EFIT-calculated pulsed wavefronts
in Figure 14.7 for the case of an elastic half-space with stress-free surface
excited by a normal force density with RC2(t)-time dependence. As output
of EFIT, the pendant to AFIT for elastic waves (Fellinger 1991; Marklein
1997; Bihn 1998), we have displayed the magnitude of the particle velocity;
insofar, it does not vanish on the excitation surface because it is stress-free. As
compared to the particle displacement, the RC2(t)-excitation manifests itself
as time derivative in the particle velocity.

The upper part of Figure 14.7 exhibits the wavefronts for the case of a line
force density: We recognize semicircular pressure as well as shear wavefronts—
the latter one with a zero in normal direction—that are connected by two head
waves; their physical origin is the excitation of Huygens shear elementary
waves through the pressure wave propagating along the surface with speed cP
that superimpose (in two dimensions) to a planar wavefront. It makes an angle
with the surface ϑK that emerges as mode conversion angle for ϑiP = π/2 from
(9.21). In the end, the head waves are needed because neither the pressure
nor the shear wave can satisfy the stress-free boundary condition alone. Two
Rayleigh surface waves finally complete the pulsed radiation field of a normal
line source on a stress-free half-space.
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FIGURE 14.7
EFIT-wavefronts of the line source and the strip-like aperture radiator on the
stress-free surface of an elastic half-space (magnitude of the particle velocity).

In the lower part of Figure 14.7, the excitation is given as a normal force
density constantly distributed within an aperture (two-dimensional strip-like
aperture radiator on a stress-free surface). According to Huygens’ principle,
each point within the aperture radiates semicircular pressure waves that su-
perimpose to a planar (geometric optical) aperture wavefront, the “main lobe”
of the strip “transducer.” Equally recognizable are the semicircular pressure
waves emanating from the edges of the aperture acting as line sources. Due
to the zeroes of the Huygens elementary shear waves, no aperture wavefront
with shear velocity can be formed; only the shear pulses from the aperture
edges as well as, last but not least, the Rayleigh pulses from these line sources
prevail. The comparison with Figure 14.1 reveals that the dominant EFIT-
calculated elastic wavefronts may be satisfactorily approximated by acoustic
waves.
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14.2.2 Strip-like normal and tangential force density
distributions on the stress-free surface
of an elastic half-space

Normal force density: Again, we take Figure 13.22(b) as a basis, yet we
assume a homogeneous isotropic half-space VM for z > 0; its surface SM—the
xy-plane—be stress-free outside the strip-like aperture and inside be a con-
stant synchronous surface force density independent of y, yielding the ansatz

t(x,ω) = F (ω)qa(x)ez (14.46)

[compare the volume source (13.306)].
The complementary acoustic problem could be alternatively solved as

an inhomogeneous boundary value problem either with the half-space scalar
Green function or with the spectral plane wave decomposition. Here, we are
forced to apply the second method because half-space Green tensors, especially
the second rank half-space Green tensor, are not explicitly known252 because
the method of images does not hold: A line or point force density in front of
a stress-free surface creates pressure and shear waves with different speeds,
whose respective mode conversion at the surface may not be represented by
image sources.

Therefore, we formulate the following two-dimensional inhomogeneous
elastodynamic boundary value problem:253 Solve the differential equation

µ∆r u(x, z,ω) + (λ + µ)∇r∇r · u(x, z,ω) + ω2ρu(x, z,ω) = 0 (14.47)

for the time harmonic particle displacement (Equation 7.24 for ∂/∂y ≡ 0) for
z > 0 under the condition

T(x, z = 0,ω) · ez = −t(x,ω) ∀ x ∈ SM . (14.48)

From Section 13.3.3, we know that the source (14.46) radiates only P-SV-
waves, i.e., the particle displacement vector only has a component in the
xz-plane, yet for both wave modes. The special solution “plane P-SV-waves
with propagation direction k̂” is found in terms of Equations 8.82 and 8.83
with ûS1 = eθ, where we once more introduce the “two-dimensional polar an-
gle” θ counted from the z-axis. Now it becomes apparent that plane elastic
waves are not just fiction, yet they are building blocks for elastodynamic

252As a result of the following calculation, we are at least able to give an integral repre-
sentation of the Weyl type.
253The respective two-dimensional source field problem of full-space has the solution

uPSV(r, ω) =
∫ ∫

VQ

f(r′, ω) · G
PSV

(r − r′, ω) d2r′

according to (13.246) yielding the far-field approximation (13.312) and (13.313) with
(13.306).
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source fields in a spatial spectrum of plane elastic waves (compare Section
11.2 concerning theoretical arguments)

uPSV(x, z,ω)

=
1

2π

∫ ∞

−∞

[
ûP(Kx,ω) e jKP·r K̂P + ûSV(Kx,ω) e jKS·r eθKS

]
dKx;

(14.49)

as in (13.325), the two-dimensional case does not require a Ky-integration,254

yet we continue to use the hat to characterize scalar spatial spectra ûP(Kx,ω),
ûSV(Kx,ω). According to Figure 11.1, the phase vector of a spectral plane
wave is given by the Fourier vector, hence

KP = kPK̂P

= Kxex +
√

k2
P − K2

x︸ ︷︷ ︸
= KPz

ez, (14.50)

KS = kSK̂S

= Kxex +
√

k2
S − K2

x︸ ︷︷ ︸
= KSz

ez; (14.51)

and consequently, the spectral P-contribution is polarized in the direction K̂P,
and the spectral SV-contribution in the direction eθKS

with K̂S · eθKS
= 0,

where (Figure 14.8)

eθKS
= cos θKSex − sin θKSez. (14.52)

Note: The polarization vectors K̂P and eθKS
are in fact spectral polariza-

tion vectors, they must remain under the integral! In the differential equation
(14.47) Kx as conjugate Fourier variable with regard to x is—besides ω—
a parameter, i.e., the spectral amplitudes ûP(Kx,ω) and ûSV(Kx,ω) may
depend on these parameters. To actually consider (14.49) as the radiation
field of the strip-like aperture, these spectral amplitudes must be matched
to the inhomogeneous boundary condition255 (14.48). Its Fourier transform
reads as

Fx

{
T(x, z = 0,ω)

} · ez = −F (ω)
2 sin aKx

Kx
ez. (14.53)

With the stress tensors for plane pressure and shear waves (Equations 8.121
and 8.122), we obtain the spectral decomposition

254The y-dependence of (14.46) may be represented by a factor 1; accordingly, the two-
dimensional Fourier transform yields a δ(Ky)-distribution, which makes the Ky-integral
disappear due to the sifting property.
255For plane waves in full-space, these amplitudes may be arbitrary.
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KP, Sz

KS

KP
KPz

KSz

Kx
Kx kSkP–kP

ez

ex–kS

θKS

FIGURE 14.8
Propagating spectral components of plane P- and SV-waves.

T
PSV

(x, z,ω) =
1

2π

∫ ∞

−∞

[
jkP ûP(Kx,ω) e jKP·r (λI + 2µK̂PK̂P)

+ jkSµ ûSV(Kx,ω) e jKS·r (K̂SeθKS
+ eθKS

K̂S)
]

dKx

(14.54)

of the stress tensor into plane waves resulting in the requirement

T
PSV

(x, z = 0,ω) · ez = −F (ω)
2π

∫ ∞

−∞

2 sin aKx

Kx
e jKxx dKx ez (14.55)

for the boundary condition (14.53), hence

jkP ûP(Kx,ω)
(

λI +
2µ

k2
P

KPKP

)
· ez

+ jkSµ ûSV(Kx,ω)
(

KS

kS
eθKS

+ eθKS

KS

kS

)
· ez

= −F (ω)
2 sin aKx

Kx
ez. (14.56)

The vector equation (14.56) has the x- and z-components

2
kP

KxKPz ûP(Kx,ω) +
(
Kx eθKS

· ez + eθKS
· exKSz

)
ûSV(Kx,ω) = 0,

(14.57)
1
kP

(
k2
S − 2K2

x

)
ûP(Kx,ω) + 2KSz eθKS

· ez ûSV(Kx,ω)

= j
F (ω)

µ

2 sin aKx

Kx
, (14.58)
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resulting in an inhomogeneous system of equations for the two unknowns
ûP(Kx,ω) and ûSV(Kx,ω). We find

ûP(Kx,ω) = jkP
F (ω)

µ

2 sin aKx

Kx

kS

(
Kx eθKS

· ez + KSz eθKS
· ex

)
R(Kx)

,

(14.59)

ûSV(Kx,ω) = − j
F (ω)

µ

2 sin aKx

Kx

2kSKxKPz

R(Kx)
, (14.60)

where

R(Kx) = kS

[ (
k2
S − 2K2

x

) (
Kx eθKS

· ez + eθKS
· ex KSz

)
− 4KxKSzKPz eθKS

· ez

]
. (14.61)

With (Figure 14.8)

Kx = kS sin θKS ,

KSz = kS cos θKS (14.62)

and (14.52), we have

eθKS
· ex =

KSz

kS
, (14.63)

eθKS
· ez = − Kx

kS
; (14.64)

hence,

R(Kx) =
(
k2
S − 2K2

x

)2
+ 4K2

x

√
k2
S − K2

x

√
k2
P − K2

x (14.65)

is the well-known Rayleigh function (Chapter 10: kR =⇒ Kx). Additionally,
noting

K̂P · ex =
Kx

kP
, (14.66)

K̂P · ez =
KPz

kP
, (14.67)

we finally obtain explicit representations of the cartesian components of the
(two-dimensional) particle velocity field of a strip-like force density aperture
with constant amplitude located on the elsewhere stress-free surface of an
elastic half-space in terms of a spectral plane wave decomposition (Miller and
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Pursey 1954; Achenbach 1973, 1988; Fellinger 1991; Kühnicke 2001; Harker
1988):

utz

PSVx(x, z,ω) = j
F (ω)
2πµ

∫ ∞

−∞

2 sin aKx

Kx

Kx

R(Kx)

×
[ (

k2
S − 2K2

x

)
e jKP·r − 2

√
k2
S − K2

x

√
k2
P − K2

x e jKS·r
]

dKx,

(14.68)

utz

PSVz(x, z,ω) = j
F (ω)
2πµ

∫ ∞

−∞

2 sin aKx

Kx

√
k2
P − K2

x

R(Kx)

×
[ (

k2
S − 2K2

x

)
e jKP·r + 2K2

x e jKS·r
]

dKx. (14.69)

The upper index characterizes the excitation “normal force” on a stress-free
half-space.

For Kx > kP, respectively Kx > kS, the two vectors KP, respectively KS,
become complex vectors (and, hence, also eθKS

); the sign choice

�KP,S =
√

k2
P,S − K2

x ez (14.70)

ensures the convergence of the integrals (14.68) and (14.69) for z > 0.

Tangential force density: For the tangential force density

t(x,ω) = F (ω)qa(x)ex, (14.71)

the radiation field is obtained after a brief calculation:

utx

PSVx(x, z,ω) = j
F (ω)
2πµ

∫ ∞

−∞

2 sin aKx

Kx

√
k2
S − K2

x

R(Kx)

×
[
2K2

x e jKP·r +
(
k2
S − 2K2

x

)
e jKS·r

]
dKx, (14.72)

utx

PSVz(x, z,ω) = j
F (ω)
2πµ

∫ ∞

−∞

2 sin aKx

Kx

Kx

R(Kx)

×
[
2
√

k2
S − K2

x

√
k2
P − K2

x e jKP·r − (k2
S − 2K2

x

)
e jKS·r

]
dKx.

(14.73)

Methods to calculate the plane wave spectrum: Figure 14.3 tells us
what we can do with the spectral plane wave decomposition of an acoustic
sound field; Figure 14.9 converts this to the elastodynamic case. Beforehand
we state that the integral representations (14.68) and (14.69), respectively
(14.72) and (14.73), in contrast to a remark by Schmerr (1998), do not only
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SM Stress-free Stress-freet(x, ω)

VM –a a

nM

Weyl-integral: SPWD

Saddle point
method

(station. phase)

Synchronous source:
impulse radiation

(Cagniard–de Hoop)

Far-field: radiation characteristic;
Miller–Pursey directivities;

impulse radiationz

Kx-Fourier-inversion

ρ, λ, µ

x

FIGURE 14.9
Alternative methods to calculate the radiation field of an elastic aperture
radiator: strip-like aperture on a stress-free half-space.

contain independent P- and SV-bulk waves according to the two-dimensional
second rank tensor (13.267), but the complete elastodynamic wave field in-
clusive head and Rayleigh waves (Figure 14.7). Insofar, the numerical evalua-
tion of the Kx-Fourier transform for constant z-values (compare Figures 11.3
and 11.4 for the acoustic case) does not make much sense due to the inher-
ent interferences; in addition, we even face numerical problems for z = 0 due
to the zero of the Rayleigh function, in particular if a transform into the
time domain is planned (Fellinger 1991). However, these difficulties can be
avoided—others lurk around the corner—evaluating the Weyl-type integral
representation, at least for synchronous sources with a special time depen-
dence (δ′(t)-dependence), directly in the time domain with the Cagniard–de
Hoop method (de Hoop 1959; Achenbach 1973; Aulenbacher 1988). That way,
the wavefronts depicted in Figure 14.7 are characteristically related to typical
integration paths and poles in a complex plane: The semicircular (in two di-
mensions) pressure and shear wavefronts emerge from hyperbolic integration
paths, whereas the head waves are due to a branch cut that is met by the SV-
hyperbola for observation angles θ > ϑcmP [ϑcmP according to (9.92)]. We will
come back to the physical origin of the head waves in Section 14.2.4. Finally,
the Rayleigh waves are related to a pole (a zero of the Rayleigh function),
whose contribution becomes significant for θ −→ π/2. One more evaluation
method remains: For the acoustic case, we could immediately give a far-field
approximation applying the method of stationary phase, yet for the present
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case, this procedure also faces problems, on one hand due to the zeroes of the
Rayleigh function, and on the other hand due to the complex valued square
root in the KS-integrals for Kx > kP. Instead, the method of steepest descent
has to be applied in a complex Kx-plane (Miller and Pursey 1954; Achenbach
1973; Harker 1988), yet miraculously the same result is obtained if we un-
scrupulously apply the stationary phase formula (11.32). In the following, we
will do that explicitly, but beforehand we want to point out that the com-
plete left part of Figure 14.3 is missing in Figure 14.9: Green’s second rank
half-space tensor is not known explicitly impeding the presentation of an elas-
todynamic Rayleigh–Sommerfeld integral. We rather must apply the spectral
representation in terms of plane waves to define the components of such a
tensor and, hence, the far-field directivities of a line source on a stress-free
half-space.

14.2.3 Spectral plane wave decomposition of the
two-dimensional second-rank Green tensor

To assign a half-space Green tensor GHS
PSV

(r,ω) satisfying a stress-free bound-
ary condition to the above particle displacement components of the tx-, re-
spectively tz-strip sources, similar to (13.116) according to

uLSt

PSV(r,ω) = GHS
PSV

(r,ω) · t̂, (14.74)

we have to switch from the strip source to the line source256 and to assume
F (ω) ≡ 1:

t(x,ω) = δ(x) t̂, (14.75)
F{t(x,ω)} = t̂. (14.76)

With t̂ = ex, the components of the particle displacement vector uLStx

PSV (r,ω)
are “switched on” in (14.74) yielding per definition the cartesian components
GHS

PSV
(r,ω) as follows:

GHS
PSV

(r,ω) : exex
def= uLStx

PSV (r,ω) · ex

= u
LStx

PSVx(r,ω), (14.77)

GHS
PSV

(r,ω) : exez
def= uLStx

PSV (r,ω) · ez

= u
LStx

PSVz(r,ω); (14.78)

256Note: Miller and Pursey (1954) consider a narrow strip source with the limit

t̂(Kx, ω) = lim
a→0

2 sin aKx

Kx
= 2a.

This, and the time dependence e+jωt, is the origin of the somewhat different prefactors of
their directivities.
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analogously it follows for t̂ = ez:

GHS
PSV

(r,ω) : ezex
def= uLStz

PSV (r,ω) · ex

= u
LStz

PSVx(r,ω), (14.79)

GHS
PSV

(r,ω) : ezez
def= uLStz

PSV (r,ω) · ez

= u
LStz

PSVz(r,ω). (14.80)

With (14.76) and (14.68), (14.69), (14.72) and (14.73), we obviously have

GHS
PSV

(r,ω) : exex =
j

2πµ

∫ ∞

−∞

√
k2
S − K2

x

R(Kx)

×
[
2K2

x e jKP·r +
(
k2
S − 2K2

x

)
e jKS·r

]
dKx, (14.81)

GHS
PSV

(r,ω) : exez

=
j

2πµ

∫ ∞

−∞

Kx

R(Kx)

×
[
2
√

k2
S − K2

x

√
k2
P − K2

x e jKP·r − (k2
S − 2K2

x

)
e jKS·r

]
dKx,

(14.82)

GHS
PSV

(r,ω) : ezex

=
j

2πµ

∫ ∞

−∞

Kx

R(Kx)

×
[ (

k2
S − 2K2

x

)
e jKP·r − 2

√
k2
S − K2

x

√
k2
P − K2

x e jKS·r
]

dKx,

(14.83)

GHS
PSV

(r,ω) : ezez =
j

2πµ

∫ ∞

−∞

√
k2
P − K2

x

R(Kx)

×
[ (

k2
S − 2K2

x

)
e jKP·r + 2K2

x e jKS·r
]

dKx. (14.84)

Note: As a second rank tensor GHS
PSV

(r,ω) is not symmetric, i.e., t̂ may not
be converted into a left factor of GHS

PSV
(r,ω) in (14.74) [this would define

GHS 21
PSV

(r,ω)]. The reason is that the Green tensor for an inhomogeneous
material—the half-space with stress-free surface is such a material—is only
symmetric if the transpose is accompanied by an interchange of source and
observation point257 (de Hoop 1995). This is not possible for the present case
because the integral representations (14.81) through (14.84) are only valid for
a particular source point.

257It was not yet observed until now because homogeneous materials exhibit a |R − R′|-
dependence as a special case of the R,R′-dependence.



K12611 Chapter: 14 page: 525 date: January 18, 2012

Elastodynamic Source Fields in Homogeneous Isotropic Half-Space 525

14.2.4 Far-field radiation characteristics of normal
and tangential line force densities on the surface
of a stress-free half-space

We apparently suspect that, analogous to the respective volume source ac-
cording to (13.262), the far-field of the strip source on the stress-free surface
of a half-space will be given by independent P- and SV-waves with pertinent
radiation characteristics. Being particularly interested in the radiation charac-
teristics of normal and tangential line force densities, we apply formula (11.29)
as asymptotic evaluation of a one-dimensional inverse Fourier integral (11.18)
with the method of stationary phase—however, with mathematical concerns,
yet with good hope—to the integral representations (14.81) through (14.84).
We obtain258

u
LStz ,far
PSVx (r, θ,ω) =

e j π
4

µ

kP√
2πkP

e jkPr

√
r

kP sin θ cos θ(k2
S − 2k2

P sin2 θ)
R(kP sin θ)

+
e−j 3π

4

µ

2kS√
2πkS

e jkSr

√
r

k2
S sin θ cos2 θ

√
k2
P − k2

S sin2 θ

R(kS sin θ)
,

(14.85)

u
LStz ,far
PSVz (r, θ,ω) =

e j π
4

µ

kP√
2πkP

e jkPr

√
r

kP cos2 θ(k2
S − 2k2

P sin2 θ)
R(kP sin θ)

+
e j π

4

µ

2kS√
2πkS

e jkSr

√
r

k2
S sin2 θ cos θ

√
k2
P − k2

S sin2 θ

R(kS sin θ)
;

(14.86)

u
LStx ,far
PSVx (r, θ,ω) =

e j π
4

µ

2kP√
2πkP

e jkPr

√
r

k2
P sin2 θ cos θ

√
k2
S − k2

P sin2 θ

R(kP sin θ)

+
e j π

4

µ

kS√
2πkS

e jkSr

√
r

kS cos2 θ(k2
S − 2k2

S sin2 θ)
R(kS sin θ)

, (14.87)

u
LStx ,far
PSVz (r, θ,ω) =

e j π
4

µ

2kP√
2πkP

e jkPr

√
r

k2
P sin θ cos2 θ

√
k2
S − k2

P sin2 θ

R(kP sin θ)

+
e−j π

4

µ

kS√
2πkS

e jkSr

√
r

kS sin θ cos θ(k2
S − 2k2

S sin2 θ)
R(kS sin θ)

.

(14.88)

Note: In the KP-integral, we have to choose Kx = kP sin θ and, in the KS-
integral, Kx = kS sin θ. Combining

258The numerous indices characterizing the particle displacement precisely identify the
relevant quantity as in (13.128) and (13.131).
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ur = sin θ ux + cos θ uz, (14.89)
uθ = cos θ ux − sin θ uz (14.90)

to r- and θ-components, we immediately find that the normal and the tan-
gential forces only radiate a P-wave in the r-component and only an SV-wave
in the θ-component of the far-field. We find

u
LStz ,far
Pr (r, θ,ω) =

e jkPr

√
r

H
LStz

P (θ,ω), (14.91)

H
LStz

P (θ,ω) =
e j π

4

µ
√

2πkP

cos θ(κ2 − 2 sin2 θ)

(κ2 − 2 sin2 θ)2 + 2 sin θ sin 2θ
√

κ2 − sin2 θ
;

(14.92)

u
LStz ,far
SVθ (r, θ,ω) =

e jkSr

√
r

H
LStz

SV (θ,ω), (14.93)

H
LStz

SV (θ,ω) =
e−j 3π

4

µ
√

2πkS

sin 2θ
√

1 − κ2 sin2 θ

κ(1 − 2 sin2 θ)2 + 2 sin θ sin 2θ
√

1 − κ2 sin2 θ
;

(14.94)

u
LStx ,far
Pr (r, θ,ω) =

e jkPr

√
r

H
LStx

P (θ,ω), (14.95)

H
LStx

P (θ,ω) =
e j π

4

µ
√

2πkP

sin 2θ
√

κ2 − sin2 θ

(κ2 − 2 sin2 θ)2 + 2 sin θ sin 2θ
√

κ2 − sin2 θ
;

(14.96)

u
LStx ,far
SVθ (r, θ,ω) =

e jkSr

√
r

H
LStx

SV (θ,ω), (14.97)

H
LStx

SV (θ,ω) =
e j π

4

µ
√

2πkS

κ cos θ cos 2θ

κ(1 − 2 sin2 θ)2 + 2 sin θ sin 2θ
√

1 − κ2 sin2 θ
.

(14.98)

With (14.92), (14.94), (14.96) and (14.98), we have given the (non-normalized)
line force densities according to Miller and Pursey (1954) . Note: They are
all different because the Green tensor is not symmetric. Figure 14.10 illus-
trates the line force density directivities as radiation patterns; the comparison
with the full-space patterns in Figure 13.12 reveals that the stress-free sur-
face is of great influence even in the far-field. Most relevant for US-NDT
applications is the zero of H

LStz

SV for θ = 0 (further zeroes are present for
θ = ±ϑcmP,±π/2) as well as the maxima for θ � ±35o (steel); the perfor-
mance of the 45o-angle transducer is based on that. Furthermore: Apart from
the typical 1/

√
ω-dependence of two-dimensional fields, the line force density

directivities are frequency independent.
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^
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z

FIGURE 14.10
Radiation patterns for the particle displacement of a line force density (and
point force density: Section 14.3) on the surface of an elastic half-space (mag-
nitudes of the normalized radiation characteristics as function of θ; material
of the half-space: steel).

For Kx = kP, the spectrum of the plane P-waves becomes evanescent, yet
in the stationary phase approximation, we then have Kx = kS sin θ = kP for
the SV-waves, hence

θ = arcsin
cS

cP
. (14.99)

This is nothing but the critical angle ϑcmP (Equation 9.92) of a mode converted
P-wave for an SV-wave incident on a stress-free surface. Consequently, the
two H

LStz,x

SV -directivities (14.94) and (14.98) for θ > arcsin cS/cP become com-
plex.259 Similarly, Kx = kP implies that a P-wavefront moves along the surface
with the (trace) velocity cP; according to Section 9.1.2, this means that this
“surface excitation” tails an SV-wavefront under the angle θ = θcmP, the plane
wave spectrum must explicitly contain a plane SV-wave for ϑcmP < θ ≤ π/2
(and symmetrically for respective negative angles), the so-called head or lateral
wave (Section 14.2.1). The mathematical transition into the far-field applying
the method of stationary phase according to (14.91) through (14.98) obviously
suppresses the originally present head and Rayleigh waves (Figure 14.7). The
line force density directivities exclusively represent direction-dependent am-
plitude distributions of the semicircular P- and SV-wavefronts—the zeroes of
H

LStz

SV for ±ϑcmP impede the excitation of head waves in case of normal force
excitation.
259Therefore, if time domain wavefronts should be calculated via inverse Fourier transform

using (14.93) and (14.94), respectively (14.97) and (14.98), we have to recognize (2.328).
We come back to that in Section 14.3.2.
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14.3 Circular Normal Force Density Distribution
on the Stress-Free Surface of an Elastic
Half-Space: Point Source Characteristic

In Section 13.3.4, we stated that radiation far-fields of planar force density
distributions in full-space essentially differ with regard to the radiation char-
acteristic of the aperture geometry; however, the point directivities of elasto-
dynamics are always equal. There, we could conclude this from the analytic
representation of the second rank Green tensor, here a respective assertion
must be based on the spectral plane wave decomposition and its far-field eval-
uation. We explicitly deal with the circular aperture because it contains the
point source as special case.

14.3.1 Integral representation of the Sommerfeld type

The circular (synchronous) normal force density aperture with constant
amplitude

t(r,ω) = F (ω)u(a − r)ez (14.100)

is rotationally symmetric generally allowing for the application of a Fourier–
Bessel transform according to (13.332) and (13.333) as an integral represen-
tation of the Sommerfeld type (13.331) to calculate its radiation field (Miller
and Pursey 1954; Achenbach 1973; Schmerr 1998). The rotational symme-
try260 implies for the vector of the particle displacement uϕ(r, ϕ, z, ω) ≡ 0 as
well as ∂/∂ϕ ≡ 0 for all field quantities. Forthrightly taking the homogeneous
differential equation (7.24) for the particle velocity in cylindrical coordinates
as basis, we observe, however, a coupling of its components through the re-
maining ur, uz-components suggesting to perform a decoupling in advance
introducing Helmholtz-potentials Φ(r, z,ω) and Ψ(r, z,ω) (Section 7.2). As-
suring the ϕ-component of

u(r, z,ω) = ∇Φ(r, z, ω) + ∇ × Ψ(r, z,ω) (14.101)

to be zero, we have to choose Ψr = Ψz ≡ 0 in addition to ∂/∂ϕ ≡ 0; then,
∇ · Ψ = 0 is also assured, and we have

u(r, z,ω) =
[
∂Φ(r, z,ω)

∂r
− ∂Ψϕ(r, z,ω)

∂z

]
er

+
[
∂Φ(r, z,ω)

∂z
+

1
r

∂rΨϕ(r, z,ω)
∂r

]
ez. (14.102)

Consequently, the two resulting homogeneous scalar differential equations for
Φ(r, z,ω) and Ψϕ(r, z,ω) read

260In each plane ϕ = const., we expect P-SV-waves.
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1
r

∂

∂r

[
r
∂Φ(r, z,ω)

∂r

]
+

∂2Φ(r, z,ω)
∂z2 + k2

PΦ(r, z,ω) = 0, (14.103)

1
r

∂

∂r

[
r
∂Ψϕ(r, z,ω)

∂r

]
− Ψϕ(r, z,ω)

r2 +
∂2Ψϕ(r, z,ω)

∂z2 + k2
SΨϕ(r, z,ω) = 0.

(14.104)

With the Fourier–Bessel transform ansatz 261

Φ(r, z,ω) =
1

2π

∫ ∞

0
Φ̄(Kr, z, ω) J0(Krr) KrdKr, (14.105)

Ψϕ(r, z,ω) =
1

2π

∫ ∞

0
Ψ̄ϕ(Kr, z, ω) J1(Krr) KrdKr, (14.106)

we immediately find for z ≥ 0

Φ̄(Kr, z, ω) = Φ0(Kr,ω) e jzKPz , (14.107)
Ψ̄ϕ(r, z,ω) = Ψϕ0(Kr,ω) e jzKSz (14.108)

with
KP,Sz =

√
k2
P,S − K2

r , (14.109)

and, hence, for the components of the particle displacement262

utz
r (r, z,ω) = − 1

2π

∫ ∞

0

[
KrΦ0(Kr,ω) e jzKPz

+ jKSzΨϕ0(Kr,ω) e jzKSz

]
KrJ1(Krr) dKr,

(14.110)

utz
z (r, z,ω) =

1
2π

∫ ∞

0

[
jKPzΦ0(Kr,ω) e jzKPz

+ KrΨϕ0(Kr,ω) e jzKSz

]
KrJ0(Krr) dKr. (14.111)

To calculate Φ0(Kr,ω) and Ψϕ0(Kr,ω) from the inhomogeneous boundary
condition, we need the tangential and the normal components of T(r, z,ω) · ez:

T(r, z,ω) : ezer = µ

[
∂uz(r, z,ω)

∂r
+

∂ur(r, z,ω)
∂z

]
, (14.112)

T(r, z,ω) : ezez = λ
1
r

∂rur(r, z,ω)
∂r

+ (λ + 2µ)
∂uz(r, z,ω)

∂z
. (14.113)

261Equation 14.104 is the differential equation of a cylindrical function of first order.
262We have (Abramowitz and Stegun 1965)

dJ0(Krr)
dr

= −KrJ1(Krr)

as well as
1
r

d
dr

[rJ1(Krr)] = KrJ0(Krr).
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With the Fourier–Bessel transform of (14.100) according to (Bracewell 1978)

t(Kr,ω) = 2π

∫ ∞

0
F (ω)u(a − r) J0(Krr) rdr ez

= 2πa
J1(Kra)

Kr
ez, (14.114)

the tangential component (14.112) turns into a homogeneous and the normal
component (14.113) into an inhomogeneous equation for z = 0. After resolving
them, we have

utz
r (r, z,ω)

= −F (ω)
2πµ

∫ ∞

0

2πaJ1(Kra)
Kr

Kr

R(Kr)

×
[ (

k2
S − 2K2

r

)
e jzKPz − 2

√
k2
S − K2

r

√
k2
P − K2

r e jzKSz

]
KrJ1(Krr) dKr,

(14.115)

utz
z (r, z,ω)

= j
F (ω)
2πµ

∫ ∞

0

2πaJ1(Kra)
Kr

√
k2
P − K2

r

R(Kr)

×
[ (

k2
S − 2K2

r

)
e jzKPz + 2K2

r e jzKSz

]
KrJ0(Krr) dKr. (14.116)

The comparison with (14.68) and (14.69) suggests that the (far-field) point di-
rectivities in each plane ϕ = const are principally equal to the line directivities.

14.3.2 Point source characteristics

For the Fourier-Bessel integral representations (14.115) and (14.116), we may
immediately give the far-field approximations with the saddle point method
(Miller and Pursey 1954). However, to be consistent with Section 14.2.4, we
want to apply the method of stationary phase to two-dimensional (inverse)
Fourier integrals (Equation 11.32), and therefore we replace

J0(Krr) =
1

2π

∫ 2π

0
e jKrr cos α dα, (14.117)

J1(Krr) = − j
2π

∫ 2π

0
e jKrr cos α cos α dα; (14.118)

in (14.115) and (14.116). Polar coordinates

Kx = Kr cos ϕK ,

Ky = Kr sinϕK ;
x = r cos ϕ, (14.119)
y = r sinϕ
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imply Kxx + Kyy = Krr cos(ϕ − ϕK) yielding the desired Fourier integrals for
α = ϕ − ϕK (due to the rotational symmetry, we may choose ϕ = 0). Appli-
cation of (11.32) to the resulting P- and S-terms and the combination

utz,far
PR (R,ϑ,ω) = utz,far

r (r, z,ω) sinϑ + utz,far
z (r, z,ω) cos ϑ, (14.120)

utz,far
Sϑ (R,ϑ,ω) = utz,far

r (r, z,ω) cos ϑ − utz,far
z (r, z,ω) sinϑ (14.121)

result in the particle displacement far-field of the circular normal force den-
sity aperture on the stress-free surface of an elastic half-space decoupled into
pressure and shear waves:

utz,far
PR (R,ϑ,ω) =

a2F (ω)
2cPZP

cos ϑ
J1(kPa sinϑ)

kPa sinϑ

× 2κ2(κ2 − 2 sin2 ϑ)

(κ2 − 2 sin2 ϑ)2 + 2 sinϑ sin 2ϑ
√

κ2 − sin2 ϑ︸ ︷︷ ︸
= M tz

P (ϑ)

e jkPR

R
,

(14.122)

utz,far
Sϑ (R,ϑ,ω) = −a2F (ω)

2cSZS
sinϑ

J1(kSa sinϑ)
kSa sinϑ

× 4 cos ϑ
√

1 − κ2 sin2 ϑ

κ(1 − 2 sin2 ϑ)2 + 2 sinϑ sin 2ϑ
√

1 − κ2 sin2 ϑ︸ ︷︷ ︸
= M tz

S (ϑ)

e jkSR

R
.

(14.123)

We purposely split off the factors cos ϑ and sinϑ in (14.122) and (14.123)
to allow for a direct comparison with the respective full-space source (Equa-
tions 13.303 and 13.304): The half-space (far-)field is obtained by a multipli-
cation with the Miller–Pursey factors M tz

P (ϑ) and M tz

S (ϑ).
The Miller–Pursey point directivities are obtained if the circular aperture

is replaced by a normal point force according to263

t(r,ω) =
δ(r)
πr

ez; (14.124)

using the notation (13.125) and (13.126), we obtain

u
PStz ,far
PR (R,ϑ,ω) =

e jkPR

R
H

PStz

P (ϑ), (14.125)

263The πr-normalization of the δ-distribution is necessary for δ(r)/πr to be a unit source
(Langenberg 2005): ∫ 2π

0

∫ ∞

0

δ(r)
πr

φ(r) rdrdϕ = 2
∫ ∞

0
δ(r)φ(r) dr︸ ︷︷ ︸
= 1/2

= 1.
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H
PStz

P (ϑ) =
1

4π(λ + 2µ)
2κ2 cos ϑ(κ2 − 2 sin2 ϑ)

(κ2 − 2 sin2 ϑ)2 + 2 sinϑ sin 2ϑ
√

κ2 − sin2 ϑ
;

(14.126)

u
PStz ,far
Sϑ (R,ϑ,ω) =

e jkSR

R
H

PStz

S (ϑ), (14.127)

H
PStz

S (ϑ) = − 2 sin 2ϑ
√

1 − κ2 sin2 ϑ

κ(1 − 2 sin2 ϑ)2 + 2 sinϑ sin 2ϑ
√

1 − κ2 sin2 ϑ
.

(14.128)

In connection with the line directivities (14.65) and (14.67), we had to point
out the 1/

√
ω-frequency dependence, yet here we have to state the frequency

independence of the point directivities. In case of a band limitation of the
point source, for example, by an RC2(t)-impulse, a “quick look” would sug-
gest, as in Figures 13.9 and 13.11 for the full-space, a similar appearance of
RC2(t)-impulses for the particle displacement in both wavefronts. As com-
pared to the full-space wavefronts in Figure 13.9, the direction dependent
amplitude weights are given by the point directivities (14.126) and (14.128),
and H

PStz

S (ϑ) becomes complex for κ sinϑ > 1, hence for ϑ > ϑcmP! Similar
to the derivation of the impulse equation (9.139), we have to complement

H
PStz

S (ϑ,ω) def= |HPStz

S (ϑ)|e jφHS (ϑ) sign(ω) (14.129)

for negative frequencies in the inverse Fourier transform with

φHS(ϑ) = argHPStz

S (ϑ) (14.130)

yielding an actual frequency dependence of the S-point directivity. With
(2.328), it follows

u
PQtz

,far
S, (R,ϑ, t)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

H
PQtz

S (ϑ)
F
(
t − R

cS

)
R

, 0 ≤ ϑ ≤ ϑcmP

|HPQtz

S (ϑ)|
⎡⎣cos φHS(ϑ)

F
(
t − R

cS

)
R

− sinφHS(ϑ)
H
{

F
(
τ − R

cS

)}
R

⎤⎦,

ϑcmP < ϑ ≤ π/2,

(14.131)

for the F (ω)-bandlimited shear wavefront, while the bandlimited pressure
wavefront is given by

u
PStz ,far
PR (R,ϑ, t) = H

PStz

P (ϑ)
F
(
t − R

cP

)
R

(14.132)
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for all ϑ. For an RCN(t)-time dependence of the point-like normal force den-
sity, the Hilbert transform in (14.131) with (2.306) may even be calculated—
for H{g(τ)} = f(t), we have H{g(τ − t0)} = f(t − t0)—:

u
PStz ,far
S, (R,ϑ, t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
H

PStz

S (ϑ)
eN
(
t − R

cS

)
cos ω0

(
t − R

cS

)
R

, 0 ≤ ϑ ≤ ϑcmP

|HPStz

S (ϑ)|
eN
(
t − R

cS

)
cos ω0

[
t − R

cS
− φHS(ϑ)

]
R

,

ϑcmP < ϑ ≤ π/2,

(14.133)

where eN(t) is the envelope of the RCN(t)-pulse (compare Equation 9.143).
We recognize that the complex valued point directivity reflects itself in a phase
shift of the carrier frequency of the RCN(t)-pulse for ϑ > ϑcmP; therefore, a
zero must exist in the S-point directivity for ϑ = ϑcmP; as a consequence, the
head wave is suppressed. Figure 14.11 displays the far-field approximation
of the pulsed particle velocity field (this is the initial output of EFIT) of a
normal point force with RC2(t)-time dependence in terms of wavefronts. The
comparison with the approximation-free EFIT-result reveals the differences
with respect to the near-field: The direct physical effects of the stress-free
surface, head and Rayleigh waves, are missing.

If we want to calculate the respective time domain wavefronts in the far-
field of a line source using (14.91) through (14.94), we have to observe the
1/

√
ω-frequency dependence of the line directivities (14.92) and (14.94). With

the correspondence (13.53), we therefore obtain

H
LStz

P (θ, t) =
1

2πµ

√
cP

2
cos θ M tz

P (θ)
u(t)√

t
, (14.134)

EFIT-result without approximations Far-field: stationary phase approximation(b)(a)

FIGURE 14.11
Wavefronts of a normal line force with RC2(t)-time dependence on a stress-
free half-space (magnitude of the particle velocity): (a) EFIT-result with-
out approximations and (b) wavefronts in the far-field with stationary phase
approximation.
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H
LStz

SV (θ, t)

= − 1
2πµ

√
cS

2
sin θ

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
M tz

S (θ)
u(t)√

t
, 0 ≤ θ ≤ ϑcmP

|M tz

S (θ)|
[
cos φMtz

S
(θ)

u(t)√
t

− sinφMtz
S

(θ)H
{

u(τ)√
τ

}]
,

ϑcmP < θ ≤ π/2,

(14.135)

where we have used the Miller–Pursey factors M tz

P (θ) and M tz

S (θ) with

M tz

S (θ) = |M tz

S (θ)| e jφ
M

tz
S

(θ) sign(ω)
for ϑcmP < θ ≤ π/2 (14.136)

as defined by (14.122) and (14.123). That way, we obtain F (ω)-bandlimited
time domain wavefronts of the particle displacement in the far-field:

u
LStz ,far
Pr (r, θ, t) =

1
2πµ

√
cP

2
cos θ M tz

P (θ)
u(t)√

t
∗

F
(
t − r

cP

)
√

r
, (14.137)

u
LStz ,far
SV” (r, θ, t)

= − 1
2πµ

√
cS

2
sin θ

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M tz

S (θ)
u(t)√

t
∗

F
(
t − r

cS

)
√

r
, 0 ≤ θ ≤ ϑcmP

|M tz

S (θ)|u(t)√
t

∗
⎡⎣cos φMtz

S
(θ)

F
(
t − r

cS

)
√

r
−

− sinφMtz
S

(θ)
H
{

F
(
τ − r

cS

)}
√

r

⎤⎦,

ϑcmP < θ ≤ π/2.

(14.138)

To calculate (14.138), we have used (2.300). For an RCN(t)-pulse, we may
even modify (14.138) according to (14.133); however, it is important that we
always have to evaluate the convolution with u(t)/

√
t yielding a difference

in the time structure of the wavefronts in two dimensions as compared to
Figure 14.11.

Due to the importance of the point directivities for practical applications—
especially for the normal force264—we recap the respective part of Figure 14.10
in a matched terminology (Figure 14.12).

264The derivation of point directivities for the tangential force in the limit of a torque force
is presented by Miller and Pursey (1954).
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HP
PStZ (ϑ) HS

PStZ (ϑ)

t = ez
^ t = ez

^

R^
ϑ

z

SM

FIGURE 14.12
Radiation patterns of the particle displacement for a normal point force den-
sity on the surface of an elastic half-space (magnitudes of the normalized
radiation characteristics as function of θ; material of the half-space: steel).

14.4 Radiation Fields of Piezoelectric Transducers

One of the basic tasks of US-NDT comprises modeling of the sound field of
piezoelectric transducers with contact to the surface. An idealized model is
sketched in Figure 14.13. On an infinitely large planar specimen surface SM

with vacuum on top, being often also the measurement surface for scattered
ultrasonic signals, we prescribe a surface force density t(x, y, t) within an
aperture of arbitrary geometry SA as function of the surface coordinates and
time; through a Fourier transform with regard to t, the spectrum t(x, y,ω)

y

z

SM

x
SA

ez · T(x, y, z = 0, t) = –A(x, y, t) ΓA(x, y)ez ,  x, y, ε SM

FIGURE 14.13
Basic task of US-NDT: sound field calculation of piezoelectric contact trans-
ducers prescribing an aperture distribution.
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is specified for all frequencies, for the case of a monochromatic excitation,
we may also select one particular frequency. As a consequence of the usual
transducer fluid coupling, we exclusively prescribe the normal component of
t(x, y, t) according to

t(x, y, t) = A(x, y, t)ΓA(x, y)ez, x, y ∈ SM , (14.139)

(Section 3.3.4), where A(x, y, t) is a potentially nonsynchronous spatially and
time-dependent aperture distribution within SA; the restriction to SA is en-
sured by the characteristic function ΓA(x, y) of SA. A synchronous distribu-
tion would imply the splitting A(x, y, t) = A(x, y)F (t).

Half-space Green tensor: In case the half-space z > 0 is homogeneous and
isotropic, we know the Green tensors G and Σ for the respective full-space
allowing for an immediate citation of the time harmonic source field integral
(13.213) for surface sources on SM (we have z > 0):

v(x, y, z,ω) =
∫ ∞

−∞

∫ ∞

−∞

[
− jωt(x′, y′,ω) · G(x − x′, y − y′, z, ω)

+ g(x′, y′,ω) : Σ(x − x′, y − y′, z, ω)
]

dx′dy′. (14.140)

It is consistent with the elastodynamic Huygens principle (Section 15.1.3) that
both surface sources—surface force density t = −ez · T and surface deforma-
tion rate g = −1

2 (ezv + v ez)—appear in the integral. With (14.139), together
with the symmetry (13.153) of Σ, (14.140) reduces to

v(x, y, z,ω) = − jω
∫ ∫

SA

A(x′, y′,ω) ez · G(x − x′, y − y′, z, ω) dx′dy′

+
∫ ∞

−∞

∫ ∞

−∞
v(x′, y′, 0,ω) ez : Σ(x − x′, y − y′, z, ω) dx′dy′,

(14.141)

where the second term is annoying because v(x′, y′, 0,ω) is not known be-
forehand, and it may not be prescribed independently of A(x′, y′,ω); in fact,
we must perform the limit z −→ 0 in (14.141) mathematically very carefully
resulting in an integral equation of the second kind for v(x, y, z = 0,ω). The
solution of this integral equation is numerically expensive, yet it is advanta-
geous because only known Green tensors are involved.

As an alternative to the solution of an integral equation, we may define a
Green tensor265 GN(x′, y′, z′, x, y, z, ω) of the half-space satisfying the differ-
ential equation (Equation 13.80)

265The upper index “N” stands for “Neumann”: Within scalar acoustics, a (homogeneous)
Dirichlet problem is defined by vanishing boundary values of the scalar pressure itself,
whereas a Neumann problem is characterized by a vanishing normal derivative of the field
quantity (Section 5.6). Here, the normal “component” of a “differentiated” tensor should
similarly vanish.
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(µ∆′ + ρω2) I + (λ + µ)∇′∇′]
· GN(x′, y′, z′, x, y, z, ω) = −δ(x′ − x)δ(y′ − y)δ(z′ − z) I (14.142)

as well as the stress-free boundary condition on SM (of course, c is the stiffness

tensor of a homogeneous isotropic material)

ez · c : ∇′GN(x′, y′, z′, x, y, z, ω)
∣∣∣
z′=0

= 0, x′, y′ ∈ SM . (14.143)

Based on a reciprocity theorem, one can show (de Hoop 1995):

GN(x′, y′, z′, x, y, z, ω) = GN 21(x, y, z, x′, y′, z′,ω). (14.144)

With GN(x′, y′, z′, x, y, z, ω), we define ΣN(x′, y′, z′, x, y, z, ω) according to
(Equation 13.142)

ΣN(x′, y′, z′, x, y, z, ω) = c : ∇′GN(x′, y′, z′, x, y, z, ω), (14.145)

and therefore we have

ez · ΣN(x′, y′, z′ = 0, x, y, z, ω) = 0 for x′, y′ ∈ SM . (14.146)

We conclude the dependence of GN and ΣN from x′ − x and y′ − y via
Fourier transforming (14.142); due to the nonsymmetry in z′ and z as stated
by the boundary condition (14.143), it remains the dependence “z′ comma z”:

GN(x′, y′, z′, x, y, z, ω) =⇒ GN(x′ − x, y′ − y, z′, z, ω), (14.147)

ΣN(x′, y′, z′, x, y, z, ω) =⇒ ΣN(x′ − x, y′ − y, z′, z, ω). (14.148)

With (14.146), the bothering integral in (14.141) disappears if we use the
half-space Green tensor GN instead of the full-space Green tensor G:

v(x, y, z,ω)

= −jω
∫ ∫

SA

A(x′, y′,ω) ez · GN(x′ − x, y′ − y, z′ = 0, z, ω) dx′dy′.

(14.149)

Note: GN is symmetric on behalf of (14.144) allowing for an interchange of
the factors in the dot product ez · GN only with a simultaneous interchange
of the primed with the unprimed variables:

v(x, y, z,ω) = −jω
∫ ∫

SA

A(x′, y′,ω)GN(x − x′, y − y′, z, z′ = 0,ω) · ez dx′dy′.

(14.150)
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For a unit point source A(x′, y′,ω) = δ(x′)δ(y′) at the origin, we in fact
conclude according to

uPStz (x, y, z,ω) = GN(x, y, z, z′ = 0,ω) · ez

def= GHS(x, y, z,ω) · ez (14.151)

the sense of the Green tensor projected onto the direction of the exciting
force density GN · ez as particle displacement of a normal force density on the
stress-free surface of a homogeneous isotropic elastic half-space, because we
have—in unprimed coordinates—

ez · TPStz (x, y, z = 0,ω) = ez · c : ∇uPStz (x, y, z,ω)
∣∣∣
z=0

= 0, x, y ∈ SM , (14.152)

due to (14.143). With (14.74), we gave a respective definition of the two-
dimensional half-space Green tensor.

In the limit z −→ 0, the integral representation (14.147) must actually
assume the boundary values specified by

ez · T(x, y, z = 0,ω) = −A(x, y,ω)ΓA(x, y) ez, x, y ∈ SM , (14.153)

because it was accordingly constructed; however, the explicit proof is not at
all trivial.

The integral representation (14.149) of the transducer sound field would be
the elastodynamic counterpart to the Rayleigh–Sommerfeld integral266 (14.15)
if we would know GN(x′ − x, y′ − y, z′, z, ω) explicitly: Unfortunately, this is
not true!

Strip-like aperture: However, we know integral representations of Weyl’s
or Sommerfeld’s type for different alternatives of GN. At first, we switch to
the particle displacement and exploit the convolution structure of the aperture
integral with regard to x′ and y′:

u(x, y, z,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞
Â(Kx, Ky,ω) Ĝ

N
(Kx, Ky, z, z′ = 0,ω)

· ez e jKxx+jKyy dKxdKy, (14.154)

where Â(Kx, Ky,ω) and Ĝ
N
(Kx, Ky, z, z′ = 0,ω) are spatial two-dimensional

Fourier transforms of A(x, y,ω) and GN(x, y, z, z′ = 0,ω) with regard to x

266In acoustics, a free surface composes a Dirichlet problem for the pressure, yet in elasto-
dynamics, a “Neumann” problem for the particle velocity because the pressure corresponds
to the stress tensor.
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and y. For a two-dimensional synchronous aperture distribution A(x, y,ω) =
F (ω)A(x) with

Â(Kx, Ky,ω) = F (ω) Â(Kx) 2πδ(Ky), (14.155)

(14.154) specially reads

u(x, z,ω) =
F (ω)
2π

∫ ∞

−∞
Â(Kx)Ĝ

N
(Kx, Ky = 0, z, z′ = 0,ω) · ez e jKxx dKx,

(14.156)
resulting in

Â(Kx, Ky,ω) = F (ω)
2 sin aKx

Kx
2πδ(Ky), (14.157)

and consequently

u(x, z,ω) =
F (ω)
2π

∫ ∞

−∞

2 sin aKx

Kx
Ĝ

N
(Kx, Ky = 0, z, z′ = 0,ω) · ez︸ ︷︷ ︸

def= Ĝ
HS

PSV
(Kx, z, ω) · ez

e jKxx dKx

(14.158)

for the strip-like synchronous aperture distribution with constant amplitude
according to A(x, y,ω) = F (ω)qa(x); here, Ĝ

N · ez may be deduced from

GHS
PSV

(x, z,ω) · ez =
1

2π

∫ ∞

−∞
Ĝ

N
(Kx, Ky = 0, z, z′ = 0,ω) · ez e jKxx dKx

(14.159)

with recourse to (14.83) and (14.84). That way, Weyl’s integral representation
(14.156) is the extension of (14.68) and (14.69) to arbitrary two-dimensional
aperture distributions.

Arbitrary geometry of the aperture SA: To calculate GN · ez in

u(x, y, z,ω) =
∫ ∫

SA

A(x′, y′,ω)GN(x − x′, y − y′, z, z′ = 0,ω) · ez dx′dy′

(14.160)

for arbitrary aperture geometries and distributions, we have to modify the
ansatz “spectrum of plane waves” (Equation 14.49) according to

uP,S(x, y, z,ω) =
1

(2π)2

∫ ∞

−∞

∫ ∞

−∞

[
ûP(Kx, Ky,ω) e jKP·R K̂P

+ ûS1(Kx, Ky,ω) e jKS·R eϑKS

+ ûS2(Kx, Ky,ω) e jKS·R eϕKS

]
dKxdKy

(14.161)
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because we may no longer exclude a term with spectral eϕKS
-polarization

due to symmetry considerations as for the circular aperture; therefore, its
previously calculated sound field is useless solving the above task.

Sound fields of piezoelectric transducers in the time domain: Weyl’s
integral representation for the particle displacement field of a strip-like aper-
ture with constant amplitude distribution (Equations 14.68 and 14.69) is
the starting point for further conversions: As already mentioned, we obtain
explicit expressions for the time domain field by applying the Cagniard–
de Hoop method to the integral representation for the time harmonic field:
u(x, z,ω) =⇒ u(x, z, t), however, only for distributional excitation functions
F (t) (normal force density: Aulenbacher 1988) requiring subsequent convo-
lutions for any arbitrary F (t). Due to the “unlovely” structure of the scalar
(full-space) Green function (13.36) with the square root singularity, the numer-
ical evaluation is somewhat unpleasant leading at best to a mere basic insight.
Nevertheless, we find point directivities for the near-field essentially revealing a
shift of the maximum of the line source shear wave diagram to different angles.

An alternative to the above approach is the evaluation of (14.68) and
(14.69) for those frequencies that—for example—are contained in an RC2(t)-
impulse with a subsequent Fourier inversion with regard to ω. Especially for
points close to the surface, this is not quite uncomplicated (Fellinger 1991).

Last but not least, we have the (two-dimensional) EFIT-code at hand to
produce time domain wavefronts for the strip-like RC2(t)-excited aperture:
In fact, the numerical tool implemented as EFIT visualizes v(x, z, t) as
function of space and time: Figure 14.7 already displayed examples. Advan-
tageously, these numerical results can be validated against the above schemes
(Fellinger 1991). Generally, EFIT also yields wavefronts for three-dimensional
planar apertures; this is simply a question of available computer memory
(and computation time). Again, for the point source, an analytic formulation
is available (Achenbach 1973).

Sound fields of piezoelectric transducers in the far-field: If the planar
(normal) force density (14.139) is located in full-space, we obtain the following
particle displacement field (Equation 13.215 with 13.100, respectively 13.222
with 13.101):

utz,far
P (R,ω) =

e jkPR

R

g
P
(R̂) · ez

λ + 2µ

∫ ∫
SA

A(x′, y′,ω)

× e−jkPx′ sin ϑ cos ϕ−jkPy′ sin ϑ sin ϕ dx′dy′, (14.162)

utz,far
S (R,ω) =

e jkSR

R

g
S
(R̂) · ez

µ

∫ ∫
SA

A(x′, y′,ω)

× e−jkSx′ sin ϑ cos ϕ−jkSy′ sin ϑ sin ϕ dx′dy′. (14.163)

Here, the aperture integral is nothing but the two-dimensional Fourier trans-
form of the aperture distribution A(x, y,ω)ΓA(x, y) for specially spatially
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depending values of the Fourier variables Kx and Ky:

Fxy{A(x, y,ω)ΓA(x, y)}Kx = kP,S sin ϑ cos ϕ
Ky = kP,S sin ϑ sin ϕ

=
∫ ∫

SA

A(x′, y′,ω) e−jkP,S sin ϑ cos ϕ−jkP,S sin ϑ sin ϕ dx′dy′

= Â(Kx = kP,S sinϑ cos ϕ, Ky = kP,S sinϑ sinϕ,ω). (14.164)

With (Equations 13.102 and 13.103)

g
P
(R̂) · ez =

1
4π

R̂ R̂ · ez

=
1

4π
cos ϑ R̂, (14.165)

g
S
(R̂) · ez =

1
4π

(I − R̂ R̂) · ez

=
1

4π
(eϑeϑ − eϕeϕ) · ez

=
1

4π
eϑeϑ · ez

= − 1
4π

sinϑ eϑ, (14.166)

we obtain

utz,far
P (R,ω) =

1
4πcPZP

e jkPR

R

× cos ϑ Â(Kx = kP sinϑ cos ϕ, Ky = kP sinϑ sinϕ,ω) eR,

(14.167)

utz,far
S (R,ω) = − 1

4πcSZS

e jkSR

R

× sinϑ Â(Kx = kS sinϑ cos ϕ, Ky = kS sinϑ sinϕ,ω) eϑ.

(14.168)

We particularly emphasize that the far-field of a normal force density (the
direction of the force density is parallel to a cartesian coordinate, here ez)
does not exhibit a ϕ-component of utz,far

S . We have already given two ex-
amples for the general far-field equations of three-dimensionally planar force
densities in full-space: the synchronous rectangular and circular aperture with
constant amplitude distribution. For the rectangular aperture, we have (Equa-
tions 13.279 and 13.280)

Â(Kx = kP,S sinϑ cos ϕ, Ky = kP,S sinϑ sinϕ,ω)
= F (ω)Fxy{qa(x)qb(y)}Kx = kP,S sin ϑ cos ϕ

Ky = kP,S sin ϑ sin ϕ

= F (ω)
2 sin(kP,Sa sinϑ cos ϕ)

kP,S sinϑ cos ϕ

2 sin(kP,Sb sinϑ sinϕ)
kP,S sinϑ sinϕ

, (14.169)
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and for the circular aperture, we found (Equations 13.303 and 13.304)

Â(Kx = kP,S sinϑ cos ϕ, Ky = kP,S sinϑ sinϕ,ω)

= F (ω)Fxy

{
u
(
a −
√

x2 + y2
)}

Kx = kP,S sin ϑ cos ϕ
Ky = kP,S sin ϑ sin ϕ

= F (ω)
2πaJ1

(
a
√

K2
x + K2

y

)
√

K2
x + K2

y

∣∣∣∣∣∣
Kx = kP,S sin ϑ cos ϕ
Ky = kP,S sin ϑ sin ϕ

= F (ω)
2πaJ1(aKr)

Kr

∣∣∣∣
Kr=kP,S sin ϑ

. (14.170)

For the two-dimensionally planar (strip-like) force density in full-space, the
respective expressions for the particle displacement are also known (Equa-
tion 13.307 with 13.312 and 13.313):

utz,far
P (r,ω) =

1√
ω

e j π
4

2ZP
√

2πcP

e jkPr

√
r

cos θ Â(Kx = kP sin θ,ω) er, (14.171)

utz,far
S (r,ω) = − 1√

ω

e j π
4

2ZS
√

2πcS

e jkSr

√
r

sin θ Â(Kx = kS sin θ,ω) eθ, (14.172)

where

Â(Kx = kP,S sin θ,ω) = F{A(x,ω)qa(x)}Kx=kP,S sin θ

= F (ω)
2 sin(kP,Sa sin θ)

kP,S sin θ
. (14.173)

On the other hand, we also calculated the particle displacement field of the
strip-like and the circular synchronous aperture on a half-space. Therefore, a
comparison is possible: At first, we refer to the half-space result for the strip-
like synchronous aperture, namely the line source expressions multiplied by
the radiation characteristic of the finite sized aperture:267

utz,far
P (r, θ,ω)

= er

1√
ω

e j π
4

2ZP
√

2πcP

e jkPr

√
r

cos θ︸ ︷︷ ︸
LS in full-space

F (ω)
2 sin(kPa sin θ)

kP sin θ︸ ︷︷ ︸
Scalar aperture

M tz

P (θ)︸ ︷︷ ︸
MP-factor

, (14.174)

utz,far
SV (r, θ,ω)

= −eθ

1√
ω

e j π
4

2ZS
√

2πcS

e jkSr

√
r

sin θ︸ ︷︷ ︸
LS in full-space

F (ω)
2 sin(kSa sin θ)

kS sin θ︸ ︷︷ ︸
Scalar aperture

M tz

S (θ)︸ ︷︷ ︸
MP-factor

.

(14.175)

267One has to evaluate the plane wave spectra (14.68) and (14.69) with the stationary
phase method.
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Certainly, the scalar aperture factor may be extended to a nonsynchronous
aperture according to (with reference to Equations 13.287 and 13.288 with
13.286)

F (ω)
2 sin(kP,Sa sin θ − kAa)

kP,S sin θ − kA
(14.176)

In (14.174) and (14.175), we may distinguish three different factors: line source
in full-space with the respective radiation characteristics (Equations268 13.264
and 13.265), radiation characteristics of the scalar aperture (Equations 13.312
and 13.313), and the Miller–Pursey factors accounting for the half-space that
have been defined with (14.122) and (14.123):

M tz

P (θ) =
2κ2(κ2 − 2 sin2 θ)

(κ2 − 2 sin2 θ)2 + 2 sin θ sin 2θ
√

κ2 − sin2 θ
, (14.177)

M tz

S (θ) =
4 cos θ

√
1 − κ2 sin2 θ

κ(1 − 2 sin2 θ)2 + 2 sin θ sin 2θ
√

1 − κ2 sin2 θ
. (14.178)

Next, we refer to the half-space result for the circular synchronous aperture
(Equations 14.122 and 14.123):

utz,far
P (R,ϑ,ω) = eR

1
4πcPZP

e jkPR

R
cos ϑ︸ ︷︷ ︸

PS in full-space

2πaJ1(kPa sinϑ)
kP sinϑ︸ ︷︷ ︸

Scalar aperture

M tz

P (ϑ)︸ ︷︷ ︸
MP-factor

,

(14.179)

utz,far
S (R,ϑ,ω) = −eϑ

1
4πcSZS

e jkSR

R
sinϑ︸ ︷︷ ︸

PS in full-space

2πaJ1(kSa sinϑ)
kS sinϑ︸ ︷︷ ︸

Scalar aperture

M tz

S (ϑ)︸ ︷︷ ︸
MP-factor

;

(14.180)

we discover exactly the same structure with the three characteristic factors
[replace θ by ϑ in (14.177) and (14.178)]!

Instead of calculating the far-field for arbitrary three-dimensionally pla-
nar (non)synchronous normal force density aperture distributions with the
ansatz (14.161), we generalize (14.179) and (14.180) accordingly:269

utz,far
P (R,ϑ,ω) = eR

1
4πcPZP

e jkPR

R
cos ϑ︸ ︷︷ ︸

PS in full-space

× Fxy{A(x, y,ω)ΓA(x, y)}Kx = kP sin ϑ cos ϕ
Ky = kP sin ϑ sin ϕ︸ ︷︷ ︸

Scalar aperture

M tz

P (ϑ)︸ ︷︷ ︸
MP-factor

,

(14.181)

268For eϕ in (13.265), we have eϕ = eθ.
269Well understood, this is an obvious conclusion, not a mathematical proof.
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utz,far
S (R,ϑ,ω) = −eϑ

1
4πcSZS

e jkSR

R
sinϑ︸ ︷︷ ︸

PS in full-space

× Fxy{A(x, y,ω)ΓA(x, y)}Kx = kS sin ϑ cos ϕ
Ky = kS sin ϑ sin ϕ︸ ︷︷ ︸

Scalar aperture

M tz

S (ϑ)︸ ︷︷ ︸
MP-factor

.

(14.182)

Note: A potential ϕ-dependence of the far-field of arbitrary transducer aper-
tures may only, if at all, come from the scalar radiation characteristic of the
aperture [compare (13.279) and (13.280)]. Furthermore: P,SV-waves propagate
in each plane ϕ = const.

Now, we are able to accordingly modify the full-space radiation patterns of
Figures 13.17 until 13.19 for the propagation into a half-space with a stress-
free surface: They must only be multiplied with the Miller–Pursey factors.
Figures 14.14 until 14.17 display respective results. We may generally state
that: There is no big change as compared to the full-space diagrams; only
the beam steering angles for the S-diagrams [Figure 13.18(b), (d), and (f)
compared to Figure 14.15(b), (d), and (f)] are slightly different for the same
kA-values due to the difference in the point directivities. As compared to
Figure 13.19, the S-main lobe of the “creeping wave transducer” is not as
wide (Figure 14.16). By the way: To understand the operational mode of the
creeping wave transducer as far as the accompanying bulk pressure wave is
concerned, the stress-free surface contributes nothing, the full-space consider-
ation is completely sufficient. However—as already multiply mentioned—head
and Rayleigh wavefronts are missing after a transform into the time domain,
as they have been observed in an EFIT-near-field simulation as a remarkable
feature the above (time harmonic) far-field (Langenberg et al. 1990).

We should explicitly mention that far-field radiation patterns are not at all
ultrasonic beams: They represent the sound field amplitude beyond the near-
field length! A complete picture of the (time harmonic) sound field is only
obtained through an approximation-free (numerical) evaluation of the spec-
tral plane wave representation, through quantitative summation of ultrasonic
beams (Shlivinski et al. 2004, 2005) or through EFIT-simulations (Fellinger
1991; Marklein 1997; Bihn 1998); Figure 14.18(a) and (b) exhibit respective
EFIT-results for the 0o-pressure wave (P-⊥) and the 45o-shear wave trans-
ducer (SV-45◦) replacing the pulse excitation by e jω0t u(t).

Figures 14.19 and 14.20 continue to show the comparison of approximation-
free EFIT- and far-field approximated wavefronts for the strip-like aperture;
in the beginning, there was Figure 14.11 for the line source. Figure 14.19 dis-
plays the logarithmically scaled versions of the wavefront amplitudes in order
to magnify differences of both evaluation methods; in contrast, the linear rep-
resentations in Figure 14.20 only accentuate the “NDT-relevant” features of
the respective transducer field. The EFIT-calculated field of the 0◦-pressure
wave transducer (P-⊥) in Figure 14.19(a) teaches us that its acoustically



K12611 Chapter: 14 page: 545 date: January 18, 2012

Elastodynamic Source Fields in Homogeneous Isotropic Half-Space 545

kPa = 1.065 (kSa = 1.963)

(a) (b)

(c) (d)

(e) (f )

kPa = 5.32 (kSa = 9.82)

kPa = 10.65 (kSa = 19.63)

SM

SM

SM

FIGURE 14.14
P- and S-radiation patterns [P: (a), (c), (e); S: (b), (d), (f)] of a planar rect-
angular tz-force density aperture on the stress-free surface of a homogeneous
isotropic half-space; y = 0 (steel: cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 · 103

kg/m3).

approximated pressure wave field according to Figure 14.1 must be comple-
mented by the typical line source effects [Figure 14.11(a)] of both aperture
edges, namely by shear, Rayleigh, and head waves. The corresponding far-
field evaluation as given in Figure 14.19(d) only relies on the far-field equa-
tion (14.175) according to the prescription “P-⊥-transducer”; therefore, the
shear wavefronts as described by Equation 14.175 are missing [compare Figure
14.11(b)]. However it is remarkable how well the exactly calculated sound
field is approximated by the superposition of both edge pressure waves [also
compare the sketch in Figure 14.6(d)]. This is also true for the 30o-pressure
wave transducer [Figure 14.19(b) and (e)] and the 45◦-shear wave transducer
[Figure 14.19(c) and (f)], where the far-field of the latter results from the
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kA =     kP
1
2

kA =       kP
√2
2

kA =       kP
√3
2

SM

SM

SM

(a) (b)

(c) (d)

(e) (f )

FIGURE 14.15
P- and S-radiation patterns [P: (a), (c), (e); S: (b), (d), (f)] of a planar rectan-
gular tz-force density aperture with linear x-phase tapering on the stress-free
surface of a homogeneous isotropic half-space; y = 0 (steel: cP = 5900 m/s,
cS = 3200 m/s, ρ = 7.7 · 103 kg/m3; kPa = 10.65, kSa = 19.63).

analysis of Equation 14.175. As compared to the P-⊥-field, the P-30◦- and
SV-45◦-fields the far-field approximated wavefronts have already traveled a
little bit further than the EFIT-calculated wavefronts. The explanation is
given by the sketch in Figure 13.20. The EFIT-code pursues—wave theoreti-
cally correct—the superposition of Huygens-type elementary waves emanating
from the aperture resulting in the spatial field distribution according to the
chosen time, where the time origin corresponds to the first radiated elemen-
tary wave, in this case, to the one from the left aperture edge; in contrast, the
far-field approximation replaces the finite spatial aperture by a point, here:
line, source in the coordinate origin, namely the center of the aperture thus
serving as the time origin. Hence, the right aperture edge is advanced, and the
left one is retarded against the far-field time origin (Figure 13.20) resulting
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SM

kA = kP

(a) (b)

FIGURE 14.16
P- and S-radiation patterns [P: (a); S: (b)] of a planar rectangular tz-force
density aperture with linear x-phase tapering on the stress-free surface of a
homogeneous isotropic half-space: bulk pressure wave of the creeping wave
transducer; y = 0 (steel: cP = 5900 m/s, cS = 3200 m/s, ρ = 7.7 · 103 kg/m3;
kPa = 10.65, kSa = 19.63)).

SM

kA = 1.3 kP

(a) (b)

FIGURE 14.17
P- and S-radiation patterns [P: (a); S: (b)] of a planar rectangular tz-force
density aperture with linear x-phase tapering on the stress-free surface of a ho-
mogeneous isotropic half-space: 45o-shear wave transducer; y = 0 (steel: cP =
5900 m/s, cS = 3200 m/s, ρ = 7.7 · 103 kg/m3; kPa = 10.65, kSa = 19.63).

in a relatively earlier arrival of the pulse from the right aperture edge at a
given observation point, respectively for the same time it has already traveled
further. Therefore, matching the EFIT- and far-field time axes is trivial.

Far-field approximation of the half-space Green tensor GN · ez: The
sound field that has been heuristically generalized to arbitrary transducer
apertures even allows for the presentation of the far-field component of the
half-space Green tensor GN,far(R,R′,ω) · ez: The sound field corresponding
to the full-space tz-source may be derived from (13.114) with G(R − R′,ω) ·
ez =⇒ Gfar(R,R′,ω) · ez [(13.95) =⇒ (13.100) and (13.101)]; yet exactly, this
field explicitly appears in (14.181) and (14.182) multiplied by the Miller–
Pursey factors. Consequently, we obtain the representation

GN,far(R,R′,ω) · ez = M tz

P (ϑ)
1

λ + 2µ
g

P
(R̂) · ez

e jkPR

R
e−jkPR̂·R′

+ M tz

S (ϑ)
1
µ

g
S
(R̂) · ez

e jkSR

R
e−jkSR̂·R′

(14.183)
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P-⊥, v , Linear SV-45°,  v , Linear(a) (b)

FIGURE 14.18
EFIT-simulated ultrasonic beams (linear scale); (a) P-⊥; (b) SV-45o.

as basis of a far-field point source synthesis for given normal force densities
on the stress-free surface of a homogeneous isotropic half-space.

Heuristic approximation of the near-field of piezoelectric transduc-
ers: An obvious idea is the following: The terms

φfar
A (R,ϑ,ϕ,ω) =

e jkP,SR

4πR
F{A(x, y,ω)}Kx = kP,S sin ϑ cos ϕ

Ky = kP,S sin ϑ sin ϕ

(14.184)

are nothing else but the far-field approximation of the scalar field

φA(R,ϑ,ϕ,ω)

=
∫ ∫

SA

A(x′, y′,ω)

× e jkP,S

√
(R sin ϑ cos ϕ−x′)2+(R sin ϑ sin ϕ−y′)2+z2 cos2 ϑ

4π
√

(R sinϑ cos ϕ − x′)2 + (R sinϑ sinϕ − y′)2 + z2 cos2 ϑ︸ ︷︷ ︸
= GP,S(R,ϑ,ϕ, x′, y′, z′ = 0,ω)

dx′dy′,

(14.185)

where GP,S(R,ϑ,ϕ, x′, y′, z′,ω) is the three-dimensional scalar Green function
of the acoustic full-space in “mixed” coordinates—spherical coordinates with
regard to the observation point,270 and cartesian coordinates with regard to
the source point—; the index P or S determines the phase velocity of the

270Evidently, we could also choose cartesian coordinates with regard to the observation
point.
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P-⊥, v , Logarithmic P-⊥, v , Logarithmic

P-30°, v , Logarithmic P-30°, v , Logarithmic

SV-45°, v , LogarithmicSV-45°, v , Logarithmic

(a) (d)

(b) (e)

(c) (f )

FIGURE 14.19
RC2(t)-impulse radiation form different piezoelectric transducers: EFIT-
wavefronts [left column (a)–(c)] and far-field approximated wavefronts [right
column (d)–(f)]; magnitude of the particle velocity: inverse Fourier-transform
of the −jω multiplied equations 14.174 and 14.175 with 14.176; logarithmic
scale.



K12611 Chapter: 14 page: 550 date: January 18, 2012

550 Ultrasonic Nondestructive Testing of Materials

P-⊥, v , Linear P-⊥, v , Linear

P-30°, v , Linear P-30°, v , Linear

(a) (d)

(b) (e)

SV-45°, v , Linear(c) SV-45°, v , Linear(f )

FIGURE 14.20
RC2(t)-impulse radiation from different piezoelectric transducers: EFIT-
wavefronts [left column (a)–(c)] and far-field approximated wavefronts [right
column (d)–(f)]; magnitude of the particle velocity: inverse Fourier-transform
of the −jω multiplied equations 14.174 and 14.175 with 14.176; linear scale.
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acoustic full-space. The transition φA(R,ϑ,ϕ,ω) =⇒ φfar
A (R,ϑ,ϕ,ω) is tied

to the assumptions R/A � 1 and kP,SR � 1, where A is the maximum linear
dimension of the aperture geometry SA. If these assumptions are not satisfied
(e.g., for the wavefront sketches in Figure 14.6), we might think to extend the
sound field equations (14.181) and (14.182) to the near-field271

utz

P (R,ϑ,ϕ,ω) = eR

1
cPZP

M tz

P (ϑ)

× cos ϑ

∫ ∫
SA

A(x′, y′,ω) GP(R,ϑ,ϕ, x′, y′, z′ = 0,ω) dx′dy′,

(14.186)

utz

S (R,ϑ,ϕ,ω) = −eϑ

1
cSZS

M tz

S (ϑ)

× sinϑ

∫ ∫
SA

A(x′, y′,ω) GS(R,ϑ,ϕ, x′, y′, z′ = 0,ω) dx′dy′.

(14.187)

That way, we have created a mixed near-far-field formulation: The scalar direc-
tivity of the aperture has been replaced by the correct near-field formula, i.e.,
the scalar point source synthesis uses the actual A(x′, y′,ω)-weighted source
points and not only the phase and amplitude correction of a spherical wave em-
anating from the origin; this means that even the aperture wavefront is present
as sketched in Figures 14.6(a) and (b), respectively (two-dimensionally), cal-
culated for Figures 14.1(c) and (d). On the other hand, the elastodynamic
point directivities of the half-space are only available in the far-field in terms
of the Miller–Pursey factors. Additionally, we could go that far to include the
full-space point directivities cos ϑ and − sinϑ in the point source synthesis
according to

utz

P (R,ϑ,ϕ,ω) =
1

cPZP
M tz

P (ϑ)
∫ ∫

SA

A(x′, y′,ω)G
P
(R,ϑ,ϕ, x′, y′, z′ = 0,ω)

· ez dx′dy′, (14.188)

utz

S (R,ϑ,ϕ,ω) =
1

cSZS
M tz

S (ϑ)
∫ ∫

SA

A(x′, y′,ω)G
S
(R,ϑ,ϕ, x′, y′, z′ = 0,ω)

· ez dx′dy′; (14.189)

In any case, utz

P then exhibits eϑ- and eϕ-components as well as utz

S eR- and
eϕ-components that are not contained in (14.186) and (14.187). But: The par-
ticle displacement field (14.188) and (14.189) does not contain any head and
Rayleigh waves because the Miller–Pursey factors characterizing the stress-
free surface of the half-space appear as far-field approximation in front of the
(elastodynamic) aperture integrals. This may not even be changed if we fol-
low physical intuition and shift the Miller–Pursey factors under the integral

271An analogy: The P-half-space point directivity Mtz
P (ϑ) adopts the image value 2 for

ϑ = 0 just as the scalar Rayleigh–Sommerfeld integrals (14.15) and (14.16).
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SM x

cos ϑ′ =

=

cos ϑ
ϑ

ϑ′

R
R – R′

R – R′
z

z

R

R′ Source point x′, y′, z′ = 0

Observation point R, ϑ, ϕ

z

(x – x′)2 + (y – y)2 + z2√

FIGURE 14.21
Point directivities for the source point.

replacing ϑ(x, y, z) by the polar angle ϑ′(x, y, z, x′, y′) of the source point (Fig-
ure 14.21):

utz

P (R,ϑ,ϕ,ω) =
1

cPZP

∫ ∫
SA

A(x′, y′,ω) M tz

P (ϑ′)G
P
(R,ϑ,ϕ, x′, y′, z′ = 0,ω)

· ez dx′dy′, (14.190)

utz

S (R,ϑ,ϕ,ω) =
1

cSZS

∫ ∫
SA

A(x′, y′,ω) M tz

S (ϑ′)G
S
(R,ϑ,ϕ, x′, y′, z′ = 0,ω)

· ez dx′dy′. (14.191)

Having “risked” Equations 14.190 and 14.191, we can step back regarding
complexity by complementing the Miller–Pursey factors by the (far-field) point
directivities in full-space as contained in G

P,S
· ez—yet with regard to the

source point!—i.e., we shift the total point directivity under the integrals in
(14.186) and (14.187):

utz

P (R,ϑ,ϕ,ω) = eR

1
cPZP

∫ ∫
SA

A(x′, y′,ω) M tz

P (ϑ′)

× cos ϑ′ GP(R,ϑ,ϕ, x′, y′, z′ = 0,ω) dx′dy′, (14.192)

utz

S (R,ϑ,ϕ,ω) = −eϑ

1
cSZS

∫ ∫
SA

A(x′, y′,ω) M tz

S (ϑ′)

× sinϑ′ GS(R,ϑ,ϕ, x′, y′, z′ = 0,ω) dx′dy′. (14.193)

These “point directivities of the source point” are illustrated in Figure 14.21.
Figure 14.22 shows an example calculated according to (14.192) and (14.193);
the respective far-field results are given in Figure 14.17: We recognize the
formation of main lobes; however, Figure 14.22 is scaled with a length
(here: m), whereas a far-field diagram does no longer contain the actual dis-
tance from the source. It is remarkable that the differences as compared to
the far-field diagrams are only marginal.

We insist to point out that (14.190) and (14.191) do not represent the re-
sult of a calculation of the GN · ez-component of the half-space Green tensor
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FIGURE 14.22
Near-field radiation pattern of a 45o-shear wave transducer in the plane
y = 0 for −20 mm ≤ x ≤ 200 mm, 0 ≤ z ≤ 200 mm; left: P-diagram, right:
S-diagram; logarithmic scale (material: see Figure 14.17; frequency: 1 MHz;
transducer width: 2a = 0.02 m, i.e. kPa = 10.65).

in (14.149): All previous near-field formulas have been given based on physi-
cal intuition, yet heuristically; for each application, they have to prove their
usefulness in comparison with an exact spectral plane wave representation as
obtained with the ansatz (14.161). Alternatively, EFIT-results may be used
for a validation. With regard to the numerical evaluation, we note that—as it
is true for the scalar Rayleigh–Sommerfeld integrals (14.15) and (14.16)—we
always face convolution integrals with regard to x and y provided the obser-
vation point is given in cartesian coordinates. Furthermore: Since the point
directivities are frequency independent, we even may, similar to the scalar case,
transform the near-field versions into the time domain with the Cagniard–de
Hoop method to calculate wavefronts (Aulenbacher and Langenberg 1980).
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15
Scatterers in Homogeneous Isotropic
Nondissipative Infinite Spaces

The calculation of source fields, be it in full-space or on the surface of a
half-space, certainly represents an important canonical problem of US-NDT;
however, the real fundamental problem is sketched in Figure 15.1: A speci-
men volume VM with surface SM , often also being the stress-free measurement
surface, contains (primary) sources of elastodynamic fields—source volumes
VQ—and “defects”—scattering bodies with, say, a volume Vc with surface Sc.
If the specimen material is assumed to be linear, time invariant, and locally
reacting (very little may be done analytically without this assumption) but
nevertheless inhomogeneous, anisotropic, and dissipative, where dissipation is
expressed by the frequency dependence of complex valued material tensors
ρ(e)

c
(R,ω), c(e)

c
(R,ω) (Section 4.4). The scattering bodies may be character-

ized by material tensors ρ(i)
c

(R,ω), c(i)

c
(R,ω). The fundamental modeling273

problem is the following: Calculate elastodynamic field quantities—generally
u(R, t)—on SM for given material tensors of VM and Vc, and for given sources
f(R, t), h(R, t) in VQ; due to the assumed linearity and time invariance of
the materials, we may formulate the fundamental modeling problem as in
Figure 15.1 for the Fourier spectra.

Analytical methods are not really available to solve this problem in gen-
eral; for instance, going back to the point source synthesis involving Green
functions, we mostly have to confine to homogeneous isotropic nondissipative
specimen materials as well as a half-space as specimen volume, and even then,
approximations have to be introduced regarding the source field representa-
tion (Section 14.4). Arguments for these approximations are formulated in
the frequency domain allowing for frequency-dependent specimen materials;
the Fourier inversion into the time domain must be anyway evaluated numer-
ically in most cases. In this sense, the “defect” may be generally assumed
to be inhomogeneous and anisotropic. Why? Because only those Green func-
tions are needed that have already been used to calculate the source field.
However, a complete arbitrariness of material properties and geometry of the
defect first requires the numerical solution of integral equations for secondary

273In contrast to it, we face the assessment of ultrasonic signals: The sources are known,
the specimen is known, and the field quantity is given on (part of) the surface; what can
be deduced regarding Vc?
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VQ

VM

Vc

Sc SM
f(R, ω)
h(R, ω)

ρ
c
(e)(R, ω)

c
c
(e)(R, ω)

ρ
c
(i)(R, ω)

u(R, ω) = ?

c
c
(i)(R, ω)

FIGURE 15.1
Modeling a US-NDT problem.

sources before inserting them into the integral representation for the scattered
field. To avoid this, we may introduce the Kirchhoff or Born approximation
for the secondary sources; the first one is relevant for voids, the latter one for
inclusions. In contrast to the Green function based methods, we may rely on
approximate analytical methods like ray tracing (Section 12.3.2) in inhomo-
geneous and/or anisotropic materials.

If a concrete situation does not allow for the above mentioned compro-
mises, ab initio numerical methods—FE (finite elements), FDTD (finite dif-
ference time domain), FIT (finite integration technique) (EFIT: Fellinger 1991;
Marklein 1997)—have to be applied. Yet, even relying on those does not solve
all problems: New ones like discretization errors and numerical dispersion
arise.274

15.1 Huygens’ Principle

Christiaan Huygens (Blok et al. 1992) formulated a principle to be able to
calculate certain problems of light wave propagation theoretically:

This principle postulates that each point on a wavefront acts as a point
source for a spherical wave (elementary wave) propagating with the speed of
light. For a later time, the field at a given point is the sum of all point source
fields; the envelope of all elementary waves from all points represents the next
wavefront.

For given source fields, we have already recognized this principle as the
mathematical formulation of the point source synthesis, the elementary waves
are described by the scalar Green function in the time domain according to

274There is no such thing as a free lunch.
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(13.25). However, Huygens’ principle claims more: Even if we know nothing
about the sources, the knowledge of the wave field on an arbitrary surface is
sufficient to calculate its further propagation. Furthermore, Huygens claims
that: The waves only propagate forward, their backward propagation becomes
extinct. We anticipate that a mathematical formulation of Huygens’ principle
will be found based on Green functions, and in fact, a completely formal appli-
cation of Green’s second integral formula yields the desired representation. In
the time domain, this (integral) representation goes back to G. Kirchhoff, yet
the frequency domain version was already given earlier by H. von Helmholtz
generally leading to the notation as Helmholtz integral, sometimes Helmholtz–
Kirchhoff integral: The Kirchhoff integral is nothing but the inverse Fourier
transform of the Helmholtz integral.

Now we obviously expect that the elastodynamic version of such a
Helmholtz integral simply emerges utilizing appropriate elastic elemen-
tary waves, i.e., their pertinent Green functions. The formal mathematical
derivation—in particular, the backward extinction theorem—requires a tenso-
rial counterpart of Green’s second integral formula, and before the background
of this quite challenging formalism, the physical content of the (elastodynamic)
Huygens principle gets easily lost. Therefore, in the following, we first pursue
two ways around the strict mathematical derivation:

• Using physical arguments postulating the extinction theorem;

• Deriving the scalar Huygens principle mathematically applying Green’s
second integral formula and interpreting it physically, because the physical
content remains the same for the elastodynamic version.

15.1.1 Mathematical foundation of Huygens’ principle
of elastodynamics based on physical arguments

We argue with Fourier transformed fields in the frequency domain to find an
integral representation of elastodynamic fields equivalent to the Helmholtz
integral.

Huygens’ principle as equivalence principle: The elastodynamic field
(Equations 13.213 and 13.214)

v(R,ω) =
∫ ∫ ∫

VQ

[
− jωf(R′,ω) · G(R − R′,ω)

+ h(R′,ω) : Σ(R − R′,ω)
]

d3R′, (15.1)

T(R,ω) =
∫ ∫ ∫

VQ

[
f(R′,ω) · Σ312(R′,ω)

− 1
jω

h(R′,ω) : Π(R − R′,ω)
]

d3R′ (15.2)
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of given sources f(R′,ω) and h(R′,ω) being zero in the exterior of VQ satisfies
the inhomogeneous elastodynamic governing equations

−jω�v(R,ω) = ∇ · T(R,ω) + f(R,ω), (15.3)

−jωT(R,ω) = c : ∇v(R,ω) + c : h(R,ω) (15.4)

in a homogeneous isotropic nondissipative full-space R ∈ IR3 , where c =

λIδ + 2µI+; the Green functions for this infinite space are given by (13.91),

(13.154), and (13.208). In the exterior of a mathematically virtual closed sur-
face Sg, i.e., for R ∈ IR3\V , that encloses the source volume [Figure 15.2(a)],
v(R,ω) and T(R,ω) satisfy the homogeneous governing equations according
to (15.1) and (15.2)

−jω�v(R,ω) = ∇ · T(R,ω), (15.5)

−jωT(R,ω) = c : ∇v(R,ω). (15.6)

Now we turn to the problem of Figure 15.2(b): The exterior of Sg should be
composed of the same homogeneous isotropic nondissipative �,λ,µ-material
that hosts the source volume in Figure 15.2(a); however, in the interior of Sg,
we postulate a null-field. How do we achieve the field exterior to Sg to be
unchanged as compared to Figure 15.2(a)? Of course, we must locate sources
somewhere, and the transition conditions (3.106) and (3.107) tell us that the
discontinuous jump from a null-field inside Sg to the field v ,T outside Sg

may be sustained by surface sources

t(R′,ω) = − n′ · T(R′,ω), (15.7)

g(R′,ω) = − I+ : n′v(R′,ω), (15.8)

V V

(a) (b)

VQ Sg Sg

n′

v = 0, T = 0
h

f

v, T
t, g

v, T v, T

, λ, µ

FIGURE 15.2
(a) Elastodynamic field of primary sources f and h; (b) “Huygens” sources t
and g as equivalent sources of the field in the exterior of Sg, and a null-field
in the interior of Sg.
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where n′ denotes the outward normal—pointing away from the null-field—
at the point R′ ∈ Sg. In (15.7) and (15.8), the field quantities v(R′,ω) and
T(R′,ω) are boundary values of the exterior field, i.e., the surface sources
are field dependent. It seems that this is just a circular argument: A field
is sustained by sources that contain the field itself! Nevertheless, a physical
explanation is immediately at hand: With Figure 15.2(a), we actually assumed
the excitation of the field by primary sources, and this evidently implies that
also the field on the virtual surface Sg of Figure 15.2(a) originates from these
sources, more precisely: the field components as given by (15.7) and (15.8).
With Figure 15.2(b), these field components are kept, yet the interior of Sg is
emptied, and interesting enough, in the exterior of Sg, nothing changes: Re-
lating to the field in the exterior of Sg, the knowledge of the surface sources
on Sg is equivalent to the knowledge of the primary volume sources in the
interior of Sg. This is an equivalence principle (Langenberg 2005). It is also
the Huygens principle because the knowledge of the field on a (closed) sur-
face is sufficient for the knowledge of the field in the exterior of this surface.
And: In the interior of Sg, the field of the equivalent sources is obviously
canceled. Now only the mathematical representation of the field is missing;
for that purpose, we invert (15.7), (15.8), and post: The field components
given by

−n′ · T(R′,ω) def= t(R′,ω), (15.9)

−I+ : n′v(R′,ω) def= g(R′,ω) (15.10)

define surface sources on Sg with R′ ∈ Sg, and the vector singular function
γ(R) of the surface Sg (Section 2.4.5) formally turns them into equivalent
volume sources

f c(R
′,ω) = − γ(R′) · T(R′,ω), (15.11)

h
c
(R′,ω) = − I+ : γ(R′)v(R′,ω), (15.12)

with275 R′ ∈ IR3 that may be inserted into the integral representations (15.1)
and (15.2):

v(R,ω) =
∫ ∫ ∫

VQ

[
− jωf c(R

′,ω) · G(R − R′,ω)

+ h
c
(R′,ω) : Σ(R − R′,ω)

]
d3R′, (15.13)

T(R,ω) =
∫ ∫ ∫

VQ

[
f c(R

′,ω) · Σ312(R′,ω)

− 1
jω

h
c
(R′,ω) : Π(R − R′,ω)

]
d3R′. (15.14)

275Evidently, the volume sources (15.11) and (15.12) are only nonzero for R′ ∈ Sg .
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The sifting property (2.382) of the singular function transforms these volume
integrals into surface integrals

v(R,ω) =
∫ ∫

Sg

[
jωn′ · T(R′,ω) · G(R − R′,ω)

− n′v(R′,ω) : Σ(R − R′,ω)
]

dS′, (15.15)

T(R,ω) =
∫ ∫

Sg

[
− n′ · T(R′,ω) · Σ312(R − R′,ω)

+
1
jω

n′v(R′,ω) : Π(R − R′,ω)
]

dS′, (15.16)

where we additionally recognized the symmetries (13.153) and (13.194) of the
Σ- and Π-tensor. The integral representations (15.15) and (15.16) do not only

constitute an equivalence principle, they are the mathematical formulation of
an elastodynamic Huygens principle, namely the elastodynamic counterpart
to the scalar Helmholtz integral. For observation points R in the exterior
of Sg, they constitute a representation theorem as a solution of the homoge-
neous governing equations, and for observation points R in the interior of Sg,
they constitute an extinction theorem:276 The mathematical formulation of
Huygens’ principle yields the field on one side of a surface with sources on the
respective other side of the surface, and on the source side, a null-field is ob-
tained. Yet, an explicit mathematical proof is still missing because the extinc-
tion theorem has only been postulated! We simply followed the ideas of Lar-
mor (1903) to constitute an electromagnetic Huygens principle because (15.15)
and (15.16) contain the correct boundary values of field components as equiv-
alent sources with a significant probability due to their physical justification;
viz., Equations (15.15) and (15.16) are solutions for arbitrary boundary values.
Note: According to Larmor’s arguments surface traction densities as well as
surface deformation rates must be considered as equivalent surface sources
being the essential reason for introducing both physical sources ab initio
in the elastodynamic governing equations; else we could not have written down
the correct elastodynamic equivalence principle on the basis of (15.1) and
(15.2). As a trade-off, we had to derive all three Green tensors G,Σ, and Π.

Before we get more deeply involved in the mathematical derivation of
(15.15) and (15.16), we want to sketch the benefit of an elastodynamic
Huygens principle to solve the basic problem of US-NDT as displayed in
Figure 15.1. Up to now, it is simply an equivalence principle.

Huygens’ principle: integral representations of a scattered field: The
following arguments have already been introduced in connection with acoustic
and electromagnetic scattered fields; therefore, we simply copy Figures 5.2 and
6.3 elastodynamically (Figure 15.3). A source and a scattering volume may be

276For R ∈ Sg , they turn into the basis for BEM (boundary element method) as a numer-
ical tool to calculate scattered fields.
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–vi, –Ti

v = –vi + vs

T = Ti + Ts
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FIGURE 15.3
Elastodynamic scattering problem: surface sources of Huygens’ principle.

embedded in a homogeneous isotropic nondissipative full-space; without the
presence of the scatterer, the elastodynamic field would be a true source field
of primary sources to be indexed as an incident field according to vi(R,ω),
T

i
(R,ω); it may be calculated with (Equations 15.1 and 15.2)

vi(R,ω) =
∫ ∫ ∫

VQ

[
− jωf(R′,ω) · G(R − R′,ω)

+ h(R′,ω) : Σ(R − R′,ω)
]

d3R′, (15.17)

T
i
(R,ω) =

∫ ∫ ∫
VQ

[
f(R′,ω) · Σ312(R′,ω)

− 1
jω

h(R′,ω) : Π(R − R′,ω)
]

d3R′. (15.18)

In the presence of a scattering object, this cannot be the only field because
it does not necessarily satisfy the physically required boundary or transition
conditions on Sc. Due to the linearity of the elastodynamic governing equa-
tions, we therefore superimpose a scattered field vs(R,ω), T

s
(R,ω) to obtain

the total field

v(R,ω) = vi(R,ω) + vs(R,ω), (15.19)
T(R,ω) = T

i
(R,ω) + T

s
(R,ω) (15.20)

that should finally satisfy the boundary, respectively transition conditions on
Sc. To ensure this, it would be helpful to have a mathematical representation
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of v(R,ω), T(R,ω) that already contains the boundary values of the v(R,ω),
T(R,ω)-field as parameters. The total field satisfies homogeneous elasto-
dynamic governing equations in the exterior of Vc and VQ—R ∈ IR3\(V c ∪
V Q)—[the scattered field vs(R,ω), T

s
(R,ω) even satisfies homogeneous

equations for R ∈ VQ, it is source-free in VQ], and, therefore, we may rely
on elastodynamic Huygens-type integral representations for the total field in
terms of the integrals (15.15) and (15.16):

v(R,ω) =
∫ ∫

SQ

[
jωn′

Q · T(R′,ω) · G(R − R′,ω)

− n′
Qv(R′,ω) : Σ(R − R′,ω)

]
dS′

+
∫ ∫

Sc

[
jωn′

c · T(R′,ω) · G(R − R′,ω)

− n′
cv(R′,ω) : Σ(R − R′,ω)

]
dS′, (15.21)

T(R,ω) =
∫ ∫

SQ

[
−n′

Q · T(R′,ω) · Σ312(R′,ω)

+
1
jω

n′
Qv(R′,ω) : Π(R − R′,ω)

]
dS′

+
∫ ∫

Sc

[
−n′

c · T(R′,ω) · Σ312(R′,ω)

+
1
jω

n′
cv(R′,ω) : Π(R − R′,ω)

]
dS′ (15.22)

for observation points in the exterior of SQ and Sc; however, they still extend
over both surfaces SQ and Sc.

First of all, we concentrate on the SQ-integrals in (15.21) and (15.22) and
replace the total field, for example, in the integrand of (15.22) according to
(15.5) and (15.6) by the superposition of the incident and scattered fields:

∫ ∫
SQ

[
jωn′

Q · T(R′, ω) · G(R − R′, ω) − n′
Qv(R′, ω) : Σ(R − R′, ω)

]
dS′

=
∫ ∫

SQ

[
jωn′

Q · T
i
(R′, ω) · G(R − R′, ω) − n′

Qvi(R
′, ω) : Σ(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= vi(R, ω) for R ∈ IR3\V Q

+
∫ ∫

SQ

[
jωn′

Q · T
s
(R′, ω) · G(R − R′, ω) − n′

Qvs(R
′, ω) : Σ(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= 0 for R ∈ IR3\V Q

.

(15.23)

The underbrackets state that the SQ-integrals in (15.21) and (15.22) yield
nothing but the incident field, because the equivalence principle immediately
tells us that the first integral on the right-hand of (15.23) is equal to vi for
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R ∈ IR3\V Q, and the second integral is equal to zero; after all, the scattered
field is source-free in the interior of SQ. (A reminder: The Huygens integral is
a representation of a field on one side of a surface for sources located on the
other side.)

Hence, with (15.23), we may write the SQ-equivalence integral in (15.21)
as source field volume integral according to (15.17) that may also be evaluated
for R ∈ VQ. That way, we obtain for R ∈ IR3\V c:

v(R, ω) = vi(R, ω)

+
∫ ∫

Sc

[
jωn′

c · T(R′, ω) · G(R − R′, ω) − n′
cv(R′, ω) : Σ(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= vs(R, ω)

,

(15.24)

and similarly

T(R, ω) = T
i
(R, ω)

+
∫ ∫

Sc

[
−n′

c · T(R′, ω) · Σ312(R′, ω) +
1
jω

n′
cv(R′, ω) : Π(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= T

s
(R, ω)

.

(15.25)

With (15.24) and (15.25), we have found Huygens-type integral representa-
tions of the scattered field vs(R,ω), T

s
(R,ω) for R ∈ IR3\V c; for R ∈ Vc,

these representations yield vs(R,ω) = −vi(R,ω), T
s
(R,ω) = −T

i
(R,ω),

because the integral representations (15.21) and (15.22) yield v(R,ω) = 0,
T(R,ω) = 0 for R ∈ Vc due to the extinction theorem.

From a physical point of view, the integral representations (15.24) and
(15.25) are

• Elastodynamic Huygens integrals: The knowledge of well-defined field
components on a closed surface Sc allows for the calculation of the (scat-
tered) field outside the surface;

• Elastodynamic source field representations of secondary sources: With Lar-
mor’s arguments, we found the Huygens integrals of the scattered field
through insertion of surface sources into volume integrals. The sources
are secondary because they are excited—electromagnetically spoken:
induced—by the incident field of the primary sources on behalf of the
presence of the scatterer. We summarize that: The incident field has pri-
mary and the scattered field secondary sources.

There is an essential difference between primary and secondary sources: The
former are prescribed independent of fields, the latter are field dependent,
and, therefore, even dependent on the scattered field on Sc that has to be cal-
culated from exactly these sources. Up to now, the Huygens integrals (15.24)
and (15.25) are purely formal representations not yet ready to serve for an
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actual calculation of the scattered field. However, we have not yet introduced
the possible physical properties of the scatterer, and it will turn out that
the transition, respectively boundary, conditions will serve to calculate the
secondary sources.

15.1.2 Mathematical derivation of Huygens’ principle
for scalar acoustic fields

Huygens and equivalence principle: We refer to Green’s second integral
formula∫ ∫ ∫

V

{
Φ(R′)

[
∆′Ψ(R′) + k2Ψ(R′)

]− Ψ(R′)
[
∆′Φ(R′) + k2Φ(R′)

]}
dV ′

=
∫ ∫

Sg

[
Φ(R′)n′ · ∇′Ψ(R′) − Ψ(R′)n′ · ∇′Φ(R′)

]
dS′ (15.26)

slightly modifying (2.202): In the integrand of the volume integral, we add
and subtract k2Φ(R′)Ψ(R′), k > 0 yielding twice the Helmholtz operator
∆′ + k2; in the volume as well as in the surface integral, we use R′ as in-
tegration variable (Figure 15.4), which becomes apparent in a minute. Within
(15.26), Φ(R′) and Ψ(R′) are initially arbitrary potential functions that will
now be given a definite physical meaning: Φ(R′) =⇒ p(R′,ω) as a scalar
field quantity may be considered to be the acoustic pressure that satisfies the
homogeneous Helmholtz equation in V :

∆′p(R′,ω) + k2p(R′,ω) = 0, R′ ∈ V, (15.27)

with the wave number k = ω/c of a homogeneous isotropic nondissipative
material (Equations 5.40, 5.42, and 5.50), and Ψ(R′) =⇒ G(R′ − R,ω) may
be the corresponding Green function

G(R′ − R,ω) =
e j|R′−R|

4π|R′ − R| (15.28)

O

V
Sg

c κ,

R′
n′

R′

FIGURE 15.4
Mathematical derivation of Huygens’ principle.
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of infinite space that satisfies the differential equation for R′ ∈ IR3 according
to (5.58), respectively (13.1):

∆′G(R′ − R,ω) + k2G(R′ − R,ω) = −δ(R′ − R); (15.29)

R is an arbitrary position vector parameter that may point to the interior or
to the exterior of V . Insertion of (15.27) and (15.29) into (15.26) yields

R ∈ V : p(R,ω)

R ∈ IR3\V : 0

}
=
∫ ∫

Sg

[
G(R − R′,ω)n′ · ∇′p(R′,ω)

− p(R′,ω)n′ · ∇′G(R − R′,ω)
]
dS′

(15.30)

depending277 on R; with (15.28), we evidently have

G(R′ − R,ω) = G(R − R′,ω), (15.31)
n′ · ∇′G(R′ − R,ω) = n′ · ∇′G(R − R′,ω). (15.32)

Obviously, (15.30) constitutes the mathematical formulation of the scalar Huy-
gens principle as a so-called Helmholtz integral: The knowledge of the field
quantity “pressure” and its normal derivative278 on a closed surface Sg is suf-
ficient to calculate the field quantity on one side of the surface—here: in the
interior—and on the other side, a null-field is obtained (representation theo-
rem and extinction theorem). As a matter of fact, (15.30) is also an equiva-
lence principle for R ∈ V because this integral accounts for the contribution
of sources located in the exterior of Sg to the interior of Sg. However, strictly
speaking, we must no longer call them “principles” because (15.30) is a con-
sequence of Helmholtz’ reduced wave equation. Yet, we can close the circle
of arguments in Section 15.1.1 if the acoustic equation of motion for homoge-
neous regions

v(R,ω) =
1

jω�
∇p(R,ω) (15.33)

is recognized (Equation 5.75) and inserted into (15.30):

p(R,ω) =
∫ ∫

Sg

[
jω�n′ · v(R′,ω)G(R − R′,ω)

− p(R′,ω)n′ · ∇′G(R − R′,ω)
]
dS′. (15.34)

Namely, additionally defining surface sources

t(R′,ω) = −n′p(R′,ω), (15.35)
g(R′,ω) = n′ · v(R′,ω) (15.36)

277This was the reason to choose R′ as integration variable in Green’s second formula
(15.26): With (15.30), p(R, ω) results as a function of the familiar variable R.
278Note: The scalar field quantity alone, as originally postulated by Huygens, is not

sufficient.
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for R′ ∈ Sg—note: According to the definition (5.82) and (5.83), the normal
should point away from the null-field, yet in Figure 15.4, it points toward the
null-field as requested by Green’s formula (15.26) yielding differing signs in
(15.34) and (5.84)—then (15.34) turns into the surface source complement of
the acoustic volume source integral (5.63):

p(R,ω) =
∫ ∫

Sg

[
jω� g(R′,ω)G(R − R′,ω)

+ t(R′,ω) · ∇′G(R − R′,ω)
]
dS′, R ∈ V. (15.37)

The Helmholtz integral (15.30) is a formal mathematical consequence of the
Helmholtz wave equation for a scalar field, the version (15.34), respectively
(15.37), additionally exhibits the physics of acoustic waves. Since (15.35) and
(15.36) result from the transition conditions (5.11) and (5.12) and, hence,
from the acoustic governing equations, we have proven Larmor’s arguments
with (15.37) for acoustics;279 via insertion, we can immediately prove that
(15.34) is a solution of the Helmholtz wave equation (15.27) for R ∈ V (in
unprimed coordinates). Therefore, we must not hesitate to insert the surface
source densities (15.35) and (15.36) even into the integral representation (5.73)
for the field quantity v(R,ω) that is complementary to p(R,ω) to obtain
representations as (15.34), respectively (15.37):

v(R,ω) =
∫ ∫

Sg

[
jωκ p(R′,ω)n′ · G

v
(R − R′,ω)

− n′ · v(R′,ω)∇′G(R − R′,ω)
]
dS′ (15.38)

=
∫ ∫

Sg

[
− jωκ t(R′,ω) · G

v
(R − R′,ω)

− g(R′,ω)∇′G(R − R′,ω)
]
, R ∈ V. (15.39)

Here, G
v
(R − R′,ω) is given by (5.68), respectively (5.71), where the distri-

butional part as well as the principal value calculation may be disregarded
for R ∈ V .

Integral representations of an acoustic scattered field: To utilize the
Helmholtz integral (15.30), respectively (15.34), for calculation of an acoustic
scattered field, we argue with Figure 15.5: To Figure 15.4, we add the math-
ematically virtual Huygens “volume” V to the volume VQ with the primary
sources and the scattering volume Vc embedded in a κ, �-material (compare
the elastodynamic counterpart in Figure 15.3) because the exterior of V is not

279Based on this physical understanding, it becomes clear why (15.30) must contain the
scalar field quantity as well as its normal derivative; the physics of scalar acoustic wave
propagation is primarily expressed in the acoustic governing equations—and the related
transition conditions—and only subsequently in wave equations.
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n′Q
SQ

Sc

Sg

VQ

Vc

V

p, v 0, 0

f(R′, ω)

n′

n′c

h(R′, ω)

κ,

κ,

FIGURE 15.5
Acoustic scattering problem and Huygens “volume.”

under concern in the derivation of the Helmholtz integral; hence, (15.30) still
yields the field quantity p(R,ω) for R ∈ V —as it is true for (15.39) concerning
v(R,ω)—and both integrals yield a null-field for R ∈ IR3\V .

Figure 15.6 is topologically equivalent to the volume aggregation of Fig-
ure 15.5: The surface Sg is deformed in a way that it adapts the surfaces
SQ and Sc—note the different directions of normals—while being connected
by two narrow “bridges” with a surface enwinding both volumes VQ and Vc.
While the integral contributions on adjacent “bridge rails” cancel due to the
differing normal directions, we must require the contribution of the enwinding
surface to vanish. From a physical view point, this is completely apparent:
The Helmholtz integral interpreted as an equivalence integral represents the
contribution of sources in the interior of the enwinding surface (yet in the ex-
terior of VQ and Vc) that are located in the exterior of this surface; but there
are no sources! Mathematically, the vanishing of the enwinding integral is en-
sured by Sommerfeld’s radiation condition280 (Hönl et al. 1961; Langenberg
2005). Consequently, the following two integrals remain:

p(R, ω) =
∫ ∫

SQ

[
jω�n′ · v(R′, ω)G(R − R′, ω) − p(R′, ω)n′ · ∇′G(R − R′, ω)

]
dS′

+
∫ ∫

Sc

[
jω�n′ · v(R′, ω)G(R − R′, ω) − p(R′, ω)n′ · ∇′G(R − R′, ω)

]
dS′

280The other way around: Sommerfeld’s radiation condition ensures, together with transi-
tion, respectively boundary, conditions on Sc, the uniqueness of the solution of the scattering
problem (Colton and Kress 1983).
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0, 0

0, 0

0, 0

V

VQ

Vc

SQ

Sg

Sc

p, v

h(R′, ω)

f(R′, ω)

n′

n′

n′

n′

n′

n′

n′

n′Q

n′c

κ,

FIGURE 15.6
Acoustic scattering problem and distorted Huygens “volume.”

=
∫ ∫

SQ

[
−jω�n′

Q · v(R′, ω)G(R − R′, ω) + p(R′, ω)n′
Q · ∇′G(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= pi(R, ω) for R ∈ IR3\V Q

+
∫ ∫

Sc

[−jω�n′
c · v(R′, ω)G(R − R′, ω) + p(R′, ω)n′

c · ∇′G(R − R′, ω)
]
dS′

︸ ︷︷ ︸
= ps(R, ω) for R ∈ IR3\V c

(15.40)

that represent the incident field and the scattered field according to (5.63) and
per definition (Equations 5.84). With (15.39), we similarly obtain the particle
velocity vector (Equations 5.73 and 5.86)

v(R,ω) = vi(R,ω) +
∫ ∫

Sc

[
− jωκ p(R′,ω)n′

c · G
v
(R − R′,ω)

+ n′
c · v(R′,ω)∇′G(R − R′,ω)

]
dS′ (15.41)
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for R ∈ IR3\V c. The comparison with the source field volume integrals (5.63)
and (5.73) reveals that

t(R′,ω) = n′
cp(R′,ω), (15.42)

g(R′,ω) = −n′
c · v(R′,ω) (15.43)

are in fact (secondary) surface sources, respectively,

f c(R
′,ω) = γ

c
(R′)p(R′,ω), (15.44)

hc(R′,ω) = −γ
c
(R′) · v(R′,ω) (15.45)

are formally (secondary) volume sources within the scattered field integral
representations (15.40) and (15.41) (Figure 5.2).

15.1.3 Mathematical derivation of Huygens’ principle
for elastodynamic fields

Elastodynamic Huygens and equivalence principle: We started with
the reduced wave equation (homogeneous in V ) (15.27) as well as with the
differential equation for the scalar Green function (15.29) to derive Huygens’
principle for scalar fields mathematically, and both equations have been uti-
lized in Green’s second formula that fitted the Helmholtz operator in (15.27)
and (15.29). For a similar approach in elastodynamics, we need the two dif-
ferential equations

∇′ · c : ∇′v(R′,ω) + ω2�v(R′,ω) = 0, (15.46)

∇′ · c : ∇′G(R′ − R,ω) + ω2�G(R′ − R,ω) = −δ(R′ − R) I, (15.47)

where we imply homogeneity and isotropy of the material with the spatial
dependence R′ − R of the second rank Green tensor, hence assuming c =

λ Iδ + 2µ I+; nevertheless, for the sake of lucidity for the following deriva-

tion, we keep the short-hand notation (15.46) and (15.47) as compared to
(13.78) and (13.80) without the specification of c. Now we only need a suit-

able Green formula that contains the differential operator ∇′ · c : ∇′ because

we compose—and calculate with (15.46) and (15.47)—the expression

v(R′,ω) ·
[
∇′ · c : ∇′G(R′ − R,ω) + ω2�G(R′ − R,ω)

]
−
[
∇′ · c : ∇′v(R′,ω) + ω2�v(R′,ω)

]
· G(R′ − R,ω)

= −v(R′,ω) δ(R′ − R) (15.48)

analogous to the integrand (15.26), where we must adhere to the cancela-
tion of the two terms ω2�v(R′,ω) · G(R′ − R,ω) while taking the v- and
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G-contractions on the left-hand side of281 (15.48). Quite clear: On the right-
hand side, the volume integration of (15.48) either yields v(R,ω) or 0 de-
pending whether R is located in the interior or exterior of V. Now, our goal
must be to transform the volume integral of the left-hand side into a surface
integral over Sg; that is why we need an appropriate Green formula. To derive
it, we obviously have to pull out a ∇′-operator as divergence operator in both
terms

v · [∇′ · c : ∇′G] =⇒ ∇′ · [v · c : ∇′G], (15.49)

[∇′ · c : ∇′v] · G =⇒ ∇′ · [c : ∇′v · G] (15.50)

—apparently yielding “disturbing” terms that hopefully cancel in the differ-
ence (15.48)—because afterward the application of Gauss’ theorem results in a
surface integral replacing the pulled out divergence operator by a contraction
with the normal. In the formula collection, we find282 differentiation formulas
for the right-hand sides of (15.49) and (15.50):

∇′ · (A · D) = ∇′A : D + A · ∇′ · D213, (15.51)

∇′ · (B · C) = (∇′ · B) · C + B21 : ∇′C. (15.52)

With A = v, D = c : ∇′G, B = c : ∇′v, C = G, we are close to the desired

transformations:

v · ∇′ · (c : ∇′G)213 = ∇′ · (v · c : ∇′G) − ∇′v : c : ∇′G, (15.53)

(∇′ · c : ∇′v) · G = ∇′ · (c : ∇′v · G) − (c : ∇′v)21 : ∇′G, (15.54)

where “close” means that we have to take transposes left-sidedly in (15.53)
and right-sidedly in (15.54), thus not yet realizing (15.49) with (15.53) com-
pletely, and not yet accounting for the cancelation of both terms on the right-
hand sides of (15.53) and (15.54) in the difference (15.48). Both addressed
transposes relate to the first two indices of c, and c is respectively symmet-

ric! Consequently, we have (c : ∇′G)213 = c : ∇′G and (c : ∇′v)21 = c : ∇′v;

due to the symmetry c = c3412 (analogous to Equation 4.15), we further have

c : ∇′v = (∇′v) : c, and hence

281In a homogeneous isotropic material, G is symmetric also ensuring the cancelation of
v · G against G · v.
282In this collection, we actually find

∇ · (A · D) = ∇A : D + A · ∇ · D21,

∇ · (D · A) = (∇ · D) · A + D21 : ∇A,

yet in the first formula, we may enhance D to a third rank tensor, and in the second formula,
A may be enhanced to a second rank tensor because the additional indices are free indices
in both formulas.
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−v(R′,ω) δ(R′ − R) = ∇′ ·
[
v(R′,ω) · c : ∇′G(R′ − R,ω)

]
− ∇′ ·

[
c : v(R′,ω) · G(R′ − R,ω)

]
. (15.55)

Now we integrate (15.55) over V , apply Gauss’ theorem, and adhere to G(R′ −
R,ω) = G(R − R′,ω) for homogeneous isotropic materials:

R ∈ V : v(R,ω)

R ∈ IR3\V : 0

}
=
∫ ∫

Sg

[
n′ · c : ∇′v(R′,ω) · G(R − R′,ω)

− n′v(R′,ω) : c : ∇′G(R − R′,ω)
]

dS′.

(15.56)

This integral representation of the elastodynamic particle velocity vector is
an elastodynamic representation theorem as well as an elastodynamic extinc-
tion theorem, hence, an elastodynamic Huygens as well as an equivalence
integral in the same sense as the integral representation (15.30) of the scalar
acoustic pressure. According to (13.151), we identify Σ(R − R′,ω) = −c :

∇′G(R − R′,ω) as a third rank Green tensor (of infinite space), and due
to c : ∇′v(R′,ω) = −jωT(R′,ω), the expressions

t(R′,ω) = n′ · T(R′,ω), (15.57)

g(R′,ω) = I+ : n′v(R′,ω) (15.58)

define surface sources for R′ ∈ Sg—note the differently oriented normal as
compared to (15.7) and (15.8) that points toward the null-field—rendering
(15.56) similar to (15.37) as a surface source counterpart for R ∈ V

v(R,ω) =
∫ ∫

Sg

[
−jωn′ · T(R′,ω) · G(R − R′,ω)

+ n′v(R′,ω) : Σ(R − R′,ω)
]
dS′ (15.59)

=
∫ ∫

Sg

[
−jω t(R′,ω) · G(R − R′,ω)

+ g(R′,ω) : Σ(R − R′,ω)
]
dS′ (15.60)

as compared to the elastodynamic volume source integral (15.13); vis-à-vis
(15.15) the sign has changed in (15.59) due to the different normal orienta-
tion; in the version (15.60), this difference is not obvious due to the different
definition of the surface sources according to (15.57) and (15.58).

With the proof of (15.56) and the interpretation (15.59), respectively
(15.60), Larmor’s arguments yielding (15.15) for electromagnetics have
been validated. Therefore, we may complement the representations (15.59)
and (15.60) by
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T(R,ω) =
∫ ∫

Sg

[
n′ · T(R′,ω) · Σ312(R − R′,ω)

− 1
jω

n′v(R′,ω) : Π(R − R′,ω)
]
dS′ (15.61)

=
∫ ∫

Sg

[
t(R′,ω) · Σ312(R − R′,ω)

− 1
jω

g(R′,ω) : Π(R − R′,ω)
]
dS′ (15.62)

on the basis of (15.16). Mathematically, this follows applying Hooke’s law to
(15.59), respectively (15.60), similar to the calculation that yielded (13.190).

Integral representations of an elastodynamic scattered field: Now
the integral representations (15.59) and (15.61) may be utilized to calculate
elastodynamic scattered fields; to this end, we distort the integration surface
Sg as in Figure 15.6, postulate the elastodynamic counterpart of a Sommerfeld
radiation condition (Tan 1975b; Pao und Varatharajulu 1976; Alves and Kress
2002), and observe the different directions of the normals n′ and n′

c to find

v(R, ω) = vi(R, ω)

+
∫ ∫

Sc

[
jωn′

c · T(R′, ω) · G(R − R′, ω) − n′
cv(R′, ω) : Σ(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= vs(R, ω)

,

(15.63)

T(R, ω) = T
i
(R, ω)

+
∫ ∫

Sc

[
−n′

c · T(R′, ω) · Σ312(R′, ω) +
1
jω

n′
cv(R′, ω) : Π(R − R′, ω)

]
dS′

︸ ︷︷ ︸
= T

s
(R, ω)

(15.64)

for R ∈ IR3\V c (Figure 15.3). As expected, these mathematically derived inte-
gral representations of the scattered field (de Hoop 1958, 1995; Tan 1975a; Pao
and Varatharajulu 1976; Fellinger 1991) are identical with Equations 15.24
and 15.25 emerging from guess.

15.2 Integral Equations for Secondary Surface
Deformation Sources on Scatterers with
Stress-Free Surfaces: Displacement Field Integral
Equation and Stress Field Integral Equation

The integral representation (15.63) for the scattered particle velocity vector
holds for an arbitrary scatterer; it is a solution of the homogeneous reduced
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wave equation (15.46) in the exterior R ∈ IR3\V c for arbitrary secondary
sources. For a physically specified scatterer, the secondary sources have to
be calculated with the help of the actual transition or boundary conditions.
Specially, considering the NDT-relevant case of a scatterer with a stress-free
surface—a vacuum “hole” in a solid, also modeling a crack for a vanishing
volume with finite surface—the boundary condition enforces n′

c · T(R′,ω) =
0 for R′ ∈ Sc yielding only the secondary surface deformation rate I+ :

n′
cv(R′,ω) to be nonzero in the integral representation (15.63); yet, the lat-

ter is not specified by the boundary condition because the total field v(R,ω)
defines these tensor components as secondary sources for R −→ Sc. However,
exactly this fact is utilized for their calculation: The limit R −→ Sc is ex-
plicitly performed with the integral representation (15.63) of the scattered
field—we will see that this limit isolates a term v(R,ω)/2 from the integral—
hence an equation is obtained for v(R,ω), R ∈ Sc containing the particle
velocity vector explicitly, and also under the integral: Such an equation is
called an integral equation of the second kind. This integral equation may
be solved numerically for a given surface Sc—special cases also allow for an
analytical solution—yielding numbers for the secondary deformation rate; af-
terward, these may be inserted into the scattered field representation (15.63)
for R ∈ IR3\V c: The scattering problem has been solved! This exact approach
is relatively expensive, and therefore approximate solutions of the integral
equation are considered, and in many cases, applications indeed allow for the
elastodynamically modified Kirchhoff or physical optics approximation that is
well known in optics and electromagnetics. Many modeling codes developed
for US-NDT rely on that approximation.

15.2.1 Integral equations relating secondary sources

At first, we perform the limit R −→ Sc in (15.63) without specifying a bound-
ary condition—for example: stress-free. Obviously, (15.63) may be immedi-
ately written down for the particle displacement resulting in a283 displacement
field integral equation (DFIE):

u(R,ω) = ui(R,ω) −
∫ ∫

Sc

[
n′

c · T(R′,ω) · G(R − R′,ω)

+ u(R′,ω)nc : Σ(R − R′,ω)
]
dS′; (15.65)

due to the symmetry of Σ with regard to the first two indices, we may inter-

change n′
c and u(R′,ω). Insofar, the limit R −→ Sc is not totally trivial due

to the singularities of G(R − R′,ω) as well as Σ(R − R′,ω) for R −→ R′,
and integrals over singular functions are improper integrals whose existence
must be proven for each special case. That is, exactly, our task in the present

283We follow the terminology of the theory of electromagnetic fields, where an electric field
integral equation—EFIE—as well as a magnetic field integral equation—MFIE (Section 6.7;
Langenberg 2005) are derived.
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case; yet, fortunately, we must not start from the beginning because essen-
tial results are already at hand from the scalar and electromagnetic Huygens
integrals (Langenberg 2005).

We introduce the short-hand notation

Hu
Sc

(R,ω) = −
∫ ∫

Sc

[
n′

c · T(R′,ω) · G(R − R′,ω)

+ u(R′,ω)n′
c : Σ(R − R′,ω)

]
dS′ (15.66)

of an elastodynamic Helmholtz integral for the particle displacement; we know
already that

Hu
Sc

(R,ω) =

{
us(R,ω), R ∈ IR3\V c

−ui(R,ω), R ∈ Vc

(15.67)

holds; now, we are interested in Hu
Sc

(R0,ω) with R0 ∈ Sc, but we may not
readily insert this position vector due to the above mentioned singularities;
instead, we have to investigate the limit Hu

Sc
(R −→ R0,ω). Doing so, we cut

a small area Sε out of Sc around the point R0 and calculate

Hu
Sc

(R −→ R0,ω) = Hu
Sc\Sε

(R0,ω) + lim
R→R0

Hu
Sε

(R,ω); (15.68)

in the first term, we may offhand insert R0 because this position vector is out-
side the integration surface Sc\Sε, yet in the second term, we must explicitly
investigate the limit, and this is performed as follows: The integral Hu

Sε
(R,ω)

is calculated for a point R0 outside Sc for a very small area Sε, and evaluating
the limit R −→ R0 subsequently. In order not to make it too cumbersome,
we approximate Sε by a planar circular disk Kε centered at R0 with radius ε

and assume R to move along the normal n0 in R0 toward R0, i.e., along the
constant normal on Kε (Figure 15.7); we actually have

R = Rn = R0 + hnn0 (15.69)

finally resulting in the calculation of

lim
hn→0

Hu
Kε

(Rn,ω) = − lim
hn→0

∫ ∫
Kε

[
n0 · T(R′,ω) · G(Rn − R′,ω)

+ u(R′,ω)n0 : Σ(Rn − R′,ω)
]
dS′.

(15.70)

For a sufficiently small disk Kε, we surely may approximate (15.70) by

lim
hn→0

Hu
Kε

(Rn,ω) � −n0 · T(R0,ω) · lim
hn→0

∫ ∫
Kε

G(Rn − R′,ω) dS′

− u(R0,ω)n0 : lim
hn→0

∫ ∫
Kε

Σ(Rn − R′,ω) dS′. (15.71)
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R Rn hnn0 Kε

Sc

r′0

y0

ϕ′0

Rn – R′

R0x0

z0

O

R′

FIGURE 15.7
Calculation of the limit R −→ R0 in the elastodynamic Helmholtz integral.

Now there is no further way around the integration of G and Σ; nevertheless,
we may exploit that ε as well as hn are small, in particular small with regard
to the wavelength. Under this assumption—namely kP,S|Rn − R′| � 1—the
exponential functions e jkP,S|Rn−R′| in G(Rn − R′,ω) and Σ(Rn − R′,ω) may
be replaced by the truncated Taylor series284

e jkP,S|Rn−R′| � 1 + jkP,S|Rn − R′| − 1
2

k2
P,S|Rn − R′|2. (15.72)

With the approximation (15.72), we first investigate the G-term in
(15.71); with the representation (13.95) together with (13.98) and (13.99), we
obtain285

G(Rn − R′,ω) � 1
λ + 2µ

1
8π|Rn − R′|

[
I − ̂(Rn − R′) ̂(Rn − R′)

]
+

1
µ

1
8π|Rn − R′|

[
I + ̂(Rn − R′) ̂(Rn − R′)

]
. (15.73)

284We must retain the quadratic term to get hold of all singular terms in G and Σ.
285This is not the G-tensor of elastostatics.
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Note the cancelation of the strongest singular 1/|Rn − R′|3-terms in G
P,S

for kP,S|Rn − R′| � 1; this is not true for electromagnetic fields yielding a
particular problem (Langenberg 2002a). Hence, we are faced with the two
integrals∫ ∫

Kε

1
|Rn − R′| dS′;

∫ ∫
Kε

(Rn − R′)(Rn − R′)
|Rn − R′|3 dS′ (15.74)

in the first term of (15.71). In the center R0 of the disk Kε, we establish a
cartesian coordinate system x0, y0, z0 with ez0

= n0 (Figure 15.7) and perform
the dS′-integration in polar coordinates r′

0,ϕ
′
0, where

R0 − R′ = −r′
0 cos ϕ′

0 ex0
− r′

0 sinϕ′
0 ey0

. (15.75)

This specifies the evaluation of the integrations (15.74):∫ ε

0

∫ 2π

0

1
(r′2

0 + h2
n)1/2 r′

0dr′
0dϕ′

0︸ ︷︷ ︸
= 2π(

√
h2

n + ε2 − hn)

;
∫ ε

0

∫ 2π

0

Γ(r′
0,ϕ

′
0)

(r′2
0 + h2

n)3/2 r′
0dr′

0dϕ′
0︸ ︷︷ ︸

=
∫ ε

0

r′
0

(r′2
0 + h2

n)3/2

∫ 2π

0
Γ(r′

0,ϕ
′
0) dϕ′

0dr′
0

,

(15.76)
where

Γ(r′
0,ϕ

′
0) = r′2

0 cos2 ϕ′
0 ex0

ex0
+ r′2

0 cos ϕ′
0 sinϕ′

0 ex0
ey0

− hnr′
0 cos ϕ′

0 ex0
n0

+ r′2
0 cos ϕ′

0 sinϕ′
0 ey0

ex0
+ r′2

0 sin2 ϕ′
0 ey0

ey0
− hnr′

0 sinϕ′
0 ey0

n0

− hnr′
0 cos ϕ′

0 n0ex0
− hnr′

0 sinϕ′
0 n0ey0

+ h2
n n0n0. (15.77)

It follows ∫ ε

0

r′
0

(r′2
0 + h2

n)3/2

∫ 2π

0
Γ(r′

0,ϕ
′
0) dϕ′

0dr′
0

= π(ex0
ex0

+ ey0
ey0

)
2hn(hn −√h2

n + ε2) + ε2√
h2

n + ε2

− πn0n0
2hn(hn −√h2

n + ε2)√
h2

n + ε2
. (15.78)

Obviously, the limit hn −→ 0 yields a linear ε-term in the left as well as in the
right integral (15.76); therefore, we have in (15.71)

lim
ε→0

lim
hn→0

∫ ∫
Kε

G(Rn − R′,ω) dS′ = 0. (15.79)
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Consequently, the G-contribution in Hu
Sc\Sε

(R0,ω) reveals itself to be a con-
vergent improper integral in the limit ε −→ 0 (Colton and Kress 1983; Lan-
genberg 2005).

Let us turn to the Σ-term in (15.71). Since Σ contains another gradient as
compared to G, we must expect that the resulting stronger singularity does
not lead to a result corresponding to (15.79). We refer to (13.157) and write
this Σ-separation according to

ω2� Σ(R − R′,ω) = k2
PΣ

P
(R − R′,ω) + k2

SΣ
S
(R − R′,ω) (15.80)

immediately visualizing with the help of (13.160) and (13.161) the cancelation
of the strongest singular 1/|Rn − R′|4-terms that result from the 1-term of
the expansion (15.72). Yet, even with this finding, there is no way around
to write down all single terms of (13.160) and (13.161) associated with the
truncated Taylor series (15.72) in order to realize any compensations and to
identify the dominant 1/|Rn − R′|2-terms

ω2� Σ(Rn − R′,ω)

� − k2
P

4π|Rn − R′|2
{

λI ̂(Rn − R′) + µ ̂(Rn − R′)I + µ ̂(Rn − R′)I213

+ µ
[
I − 3 ̂(Rn − R′) ̂(Rn − R′)

]
̂(Rn − R′)

}
+

k2
S

4π|Rn − R′|2
{

µ
[
I − 3 ̂(Rn − R′) ̂(Rn − R′)

]
̂(Rn − R′)

}
(15.81)

for kP,S|Rn − R′| � 1; we may ignore the terms that are constant with regard
to |Rn − R′| as well as the 1/|Rn − R′|-terms, because their Kε-integration
has already been investigated and found to be not critical. In (15.81), we
combine the P- and S-terms and add the n0-contraction according (15.71):

n0 · Σ(Rn − R′,ω)

� 1
λ + 2µ

1
4π|Rn − R′|2

[
µ

n0(Rn − R′)
|Rn − R′| − µ

n0 · (Rn − R′)I
|Rn − R′|

− µ
(Rn − R′)n0

|Rn − R′| − 3(λ + µ)
n0 · (Rn − R′)(Rn − R′)(Rn − R′)

|Rn − R′|3
]
.

(15.82)

With (15.69) and (15.75), we immediately realize the cancelation of the first
and the third terms in the square brackets of (15.82) after the ϕ′

0-integration;
it remains the calculation of
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n0 ·
∫ ∫

Kε

Σ(Rn − R′,ω) dS′

� −I
µ

λ + 2µ

hn

2

∫ ε

0

r′
0

(r′2
0 + h2

n)3/2 dr′
0︸ ︷︷ ︸

=
1
hn

− 1

(h2
n + ε2)1/2

− 3
4

λ + µ

λ + 2µ
hn

[
(ex0

ex0
+ ey0

ey0
)
∫ ε

0

r′3
0

(r′2
0 + h2

n)5/2 dr′
0︸ ︷︷ ︸

= −1
3

ε2

(h2
n + ε2)3/2 +

2
3hn

− 2
3

1

(h2
n + ε2)1/2

+ 2h2
n n0n0

∫ ε

0

r′
0

(r′2
0 + ε2)5/2 dr′

0︸ ︷︷ ︸
=

1
3h3

n

− 1

3 (h2
n + ε2)3/2

]
. (15.83)

In the limit hn −→ 0, we finally find

lim
hn→0

n0 ·
∫ ∫

Kε

Σ(Rn − R′,ω) dS′ = −1
2

I; (15.84)

in contrast to (15.79), this limit is ε-independent unequal to zero resulting in

lim
ε→0

lim
hn→0

Hu
Kε

(Rn,ω) =
1
2

u(R0,ω), (15.85)

as limit of (15.71) for ε −→ 0.
According to the separation (15.68), we must now have a closer look at

the limit
lim
ε→0

Hu
Sc\Sε

(R0,ω); (15.86)

based on the same mathematical considerations as for the scalar acoustic case
(Colton and Kress 1983; Langenberg 2005), we find (Chen and Zhou 1992)
that this limit exists as a Cauchy principal value for the Σ-contribution, i.e.,

Hu
Sc

(R0,ω) def= lim
ε→0

Hu
Sc\Sε

(R0,ω) (15.87)

is an improper integral existing only in a special sense: Since n0 · Σ(R0 −
R′,ω) according to (15.82) exhibits a |R0 − R′|−2-singularity, we have to
agree upon carrying out the ϕ′-integration before the r0-integration while
calculating n0 · ∫ ∫

Sc\Kε
Σ(R0 − R′,ω) dS′. In (15.68), the limit Hu

Sc
(R −→

R0,ω) is nothing but

Hu
Sc

(R −→ R0,ω) = us(R −→ R0,ω)
def= us(R0,ω), (15.88)
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finally yielding

us(R,ω) =
1
2

u(R,ω) − PV
∫ ∫

Sc

[
n′

c · T(R′,ω) · G(R − R′,ω)

+ u(R′,ω)n′
c : Σ(R − R′,ω)

]
dS′

(15.89)

for the “generalization” to the surface point R0 =⇒ R with R ∈ Sc. Replacing
the scattered field by the total field according to

us(R,ω) = u(R,ω) − ui(R,ω), (15.90)

we obtain the integral relation for R ∈ Sc

u(R,ω) = 2ui(R,ω) − 2PV
∫ ∫

Sc

[
n′

c · T(R′,ω) · G(R − R′,ω)

+ u(R′,ω)n′
c : Σ(R − R′,ω)

]
dS′

(15.91)

as a composition of the secondary source “surface force density”

tc(R
′,ω) = −n′

c · T(R′,ω), R′ ∈ Sc, (15.92)

with the secondary source “surface deformation”

gu

c
(R′,ω) = −I+ : u(R′,ω)n′

c, R′ ∈ Sc, (15.93)

of the particle displacement field. Both sources are not independent upon each
other. For example, prescribing a stress-free surface Sc, we must calculate u
on Sc and, hence, the secondary source gu

c
as a solution of an integral equation

(three scalar integral equations).

15.2.2 Scatterers with stress-free surfaces:
DFIE and Stress Field Integral Equation (SFIE)

Displacement field integral equation: The NDT-relevant stress-free
boundary condition of Sc enforces tc to vanish (15.92) according to (15.92);
therefore, the DFIE reads

u(R,ω) = 2ui(R,ω) − 2PV
∫ ∫

Sc

u(R′,ω)n′
c : Σ(R − R′,ω) dS′, R ∈ Sc.

(15.94)

It is an integral equation of the second kind—the unknown quantity u appears
under the integral and outside—that basically holds for arbitrary scatterer
geometries; yet, the fundamental NDT-problem of crack scattering is better
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formulated with an integral equation of the first kind (SFIE) to be discussed
in a minute. Defining an integral operator

U {u}(R,ω) = 2PV
∫ ∫

Sc

u(R′,ω)n′
c : Σ(R − R′,ω) dS′

= 2PV
∫ ∫

Sc

u(R′,ω)n′
c : c : ∇′G(R − R′,ω) dS′, R ∈ Sc,

(15.95)

we may formally write (15.94) as

(I + U ){u}(R,ω) = 2ui(R,ω), R ∈ Sc, (15.96)

where I{u}(R,ω) = I · u(R,ω) = u(R,ω) denotes the identity operator.
Therefore, it is clear how to calculate286 u(R,ω), R ∈ Sc: We have to in-
vert I + U ! Since U depends on the scattering geometry, there will be few
possibilities to achieve that: As a matter of fact, an analytic inversion287 only
works for the circular cylinder and the sphere (Ying and Truell 1956; Klaholz
1992; Schubert 1999; Section 15.4), constraining us to numerical methods in all
other cases. To solve the electromagnetic counterparts EFIE and MFIE—the
MFIE corresponds to the DFIE—the method of moments has been proposed
(Harrington 1968; Poggio and Miller 1987) and applied up to latest develop-
ments (Chew et al. 2002; Michielssen 2002; Wilton 2002). In elastodynamics,
one also speaks of the boundary element method (Chen and Zhou 1992).

If the surface Sc consists of a front side S+
c and a back side S−

c with
an infinitesimal distance, the mathematical model of a crack emerges, and
immediately, the above integral equation becomes useless. The integration
over Sc decomposes into integrations over S+

c and S−
c with the correspond-

ing normals n+
c and n−

c and the particle displacements u+(R′ ∈ S+
c ,ω) and

u−(R′ ∈ S−
c ,ω); according to the assumption n−

c = −n+
c , two identical inte-

grals over Sc with different signs emerge, or, respectively, one integral results
containing the unknown quantity as the crack opening displacement accord-
ing to the difference ucod(R′,ω) = u+(R′,ω) − u−(R′,ω). Yet, outside of this
integral—it is an integral equation of the second kind!—the particle displace-
ment u+(R,ω) appears for R ∈ S+

c and u−(R,ω) for R ∈ S−
c ! In acoustics

and electromagnetics, we face the same dilemma having led to a way out:
Formulate an integral equation of the first kind! Fortunately, we always have

286Investigating uniqueness—also in acoustics and electromagnetics—always relates to the
nontrivial solutions of the interior (resonance problem regarding Sc) problem (Jones 1984;
Colton and Kress 1983; Langenberg 2005). Therefore, all these wave theoretical integral
operators exhibit a nonempty null-space for well-defined resonance frequencies, that is to
say, for these frequencies, the pertinent homogeneous integral equations have nontrivial
solutions.
287As a matter of fact, one does not solve the integral equation for eigenfunction expansions

of the particle displacement on Sc, but the incident field as well as the scattered field
(may be, even only the potentials) are expanded in terms of eigenfunctions resulting in the
expansion coefficients via satisfying the boundary or transition conditions.
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two related field quantities (after the definition of constitutive equations),
here:288 u(R,ω) and T(R,ω). Therefore, instead of using (15.65), the inte-
gral representation (15.64) for the stress tensor is applied to derive an integral
relation between secondary sources, and in that case, the stress-free boundary
condition assures a vanishing term relating to this boundary condition under
the integral as well as outside the integral: The result is an integral equa-
tion of the first kind for the secondary surface deformation. In the following
paragraph, this integral equation will be explicitly given as the SFIE, and
for reasons becoming obvious, we immediately specialize it to the problem of
two-dimensional crack scattering, last but not least because we may rather
easily obtain numerical results.

SFIE: two-dimensional crack scattering: Similar to (15.65), we intro-
duce the short-hand notation

H
T
Sc

(R,ω) = −
∫ ∫

Sc

[
n′

c · T(R′,ω) · Σ312(R − R′,ω)

+ u(R′,ω)n′
c : Π(R − R′,ω)

]
dS′ (15.97)

for the elastodynamic Huygens representation of the scattered stress tensor
field; in this integral, we have to investigate the limit R −→ R0 according to

H
T
Sc

(R −→ R0) = lim
ε→0

H
T

Sc\Sε
(R0,ω) + lim

ε→0
lim

R→R0

H
T
Sε

(R,ω). (15.98)

With the circular disk approximation of Sε, we are able to calculate the double
limit R −→ R0 and ε −→ 0 in the second term of (15.98) as before, where
we advantageously contract with n0, the normal in the surface point R0,
because we finally have to satisfy the boundary condition n0 · T(R0,ω) = 0
with (15.98). For the first term in the integrand of (15.97), we find

− lim
ε→0

lim
R→R0

n0 ·
∫ ∫

Kε

n′
c · T(R′,ω) · Σ312(R − R′,ω) dS′

=
1
2

I · T(R0,ω) · n0

=
1
2

T(R0,ω) · n0 (15.99)

in complete analogy to (15.84). Yet, with the second term in (15.97), we
face problems because the del-operations in Π(R − R′,ω) (one more than

in Σ) lead to a singularity of the Kε-integral in the limit ε −→ 0. A similar
problem for the electromagnetic case points to a solution (Langenberg 2005;

288In electromagnetics, one replaces the electric field strength for the case of perfectly
conducting scatterers by the magnetic field strength, and instead of the MFIE as integral
equation of the second kind, the EFIE as integral equation of the first kind results.
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Morita et al. 1990): Sloppily spoken, the singularity emerges from the “upper
boundary” of the Kε-integral, namely from the boundary r′

0 = ε of the disk;
yet, an exactly similar singularity is found in the limit

H
T
Sc

(R0,ω) = lim
ε→0

H
T

Sc\Sε
(R0,ω) (15.100)

at the lower boundary of the Sc\Kε-integral, i.e. the H
T
Sc

(R0,ω)-integral is
a PV-convergent improper integral. In such cases, help is found defining a
special definition of the limit (15.87) that goes beyond the definition of a
Cauchy PV—the explicit value of the singular term known from the calculation
of the Kε-integral is subtracted under the limes—and the result is called the
ε-principal value (PVε) of the integral. We do not want to evaluate this further
because our subsequent example of two-dimensional crack scattering allows for
a circumvention via the hyper singularity of the integrand, thus avoiding the
PVε-computation. Nevertheless, we write down the integral equation relation
as it emerges from (15.97) through (15.99):

nc · T(R,ω)

= 2nc · T
i
(R,ω) − 2 PVε nc ·

∫ ∫
Sc

[
n′

c · T(R′,ω) · Σ312(R − R′,ω)

+ u(R′,ω)n′
c : Π(R − R′,ω)

]
dS′ (15.101)

This is the counterpart to (15.91).
Equation 15.101 turns into the SFIE, an integral equation of the first kind

for the secondary surface deformation, if the stress-free boundary condition of
Sc is inserted:

nc · T
i
(R,ω) = PVε nc ·

∫ ∫
Sc

u(R′,ω)n′
c : Π(R − R′,ω) dS′. (15.102)

Defining an integral operator

T {u}(R,ω) = 2 PVε nc ·
∫ ∫

Sc

u(R′,ω)n′
c : Π(R − R′,ω) dS′ (15.103)

similar to (15.95) yields the short-hand notation

T {u}(R,ω) = 2nc · T(R,ω). (15.104)

As a hyper singular integral equation, the SFIE is not really suited for
numerical evaluations; this corresponds to the EFIE in electromagnetics if the
latter is written down in Franz’s version (Langenberg 2002a); a way out either
uses initially or after partial integration the Stratton–Chu version. Therefore,
in the present case, we will also try to shift one of the del-operations in Π to

the unknown u via partial integration. Below, following Tan (1977), this idea
will be elaborated for two-dimensional crack scattering.
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Sc = Sc
+ ∪ Sc

–

nc
+

nc
–

a–a x1

x2

x3

FIGURE 15.8
Strip-like two-dimensional crack.

Figure 15.8 displays the geometry of the (mathematically idealized) crack
of width 2a, i.e., the two-dimensional strip-like scatterer. The evaluation
of various contractions in the SFIE suggests to number cartesian xyz-
coordinates as xj , j = 1, 2, 3. Due to the two-dimensionality of the problem,
we have ∂/∂y = ∂/∂x2 ≡ 0. We concentrate upon P-SV-scattering postulating
Tix2xj ≡ 0, j = 1, 2, 3 (Sections 9.1.1 and 9.1.2); since S+

c satisfies nc
def= n+

c =
ex3

, only Tix2x3 ≡ 0 is relevant out of the three vanishing stress tensor com-
ponents according to (15.102) allowing to restrict ourselves to the x1- and the
x3-components of the SFIE. With R = x1ex1

+ x3ex3
and R′ = x′

1ex1
and the

definition of

ucod(x′
1,ω) = u(x′

1, x
′
3 = +0,ω) − u(x′

1, x
′
3 = −0,ω) (15.105)

as crack opening displacement, we first calculate the right-hand side of
(15.102) applying (13.197) for x3 > 0 thus ignoring the PV:289

nc ·
∫ ∫

Sc

u(R′,ω)n′
c : Π(R − R′,ω) dS′

= ex3
·
∫ a

−a

ucod(x′
1,ω)ex3

: Π(x1 − x′
1, x3,ω) dx′

1

= ex3
·
∫ a

−a

ucod(x′
1,ω)ex3

:
{

λ∇ · Σ312(x1 − x′
1, x3,ω)I

+ µ
[
∇Σ2314(x1 − x′

1, x3,ω) + ∇Σ2341(x1 − x′
1, x3,ω)

]}
dx′

1. (15.106)

289On the left-hand side of the first line of (15.106), the three-dimensional scalar Green
function appears in Π, yet on the right-hand side, we find the two-dimensional Green func-

tion due to the independence of the secondary source upon x′
2 (compare Section 13.3.3).
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For the x1-components of the three terms in (15.106), we find

ex3
· ucodex3

: ∇ · Σ312I · ex1
= 0, (15.107)

ex3
· ucodex3

: ∇Σ2314 · ex1
= ucod

xj

∂

∂x3
Σx3xjx1 , (15.108)

ex3
· ucodex3

: ∇Σ2341 · ex1
= ucod

xj

∂

∂x1
Σx3xjx3 ; (15.109)

we used Einstein’s summation convention. Similarly, we obtain the x3-
components:

ex3
· ucodex3

: ∇ · Σ312I · ex3
= ucod

xj

∂

∂xk
Σx3xjxk

, (15.110)

ex3
· ucodex3

: ∇Σ2314 · ex3
= ucod

xj

∂

∂x3
Σx3xjx3 , (15.111)

ex3
· ucodex3

: ∇Σ2341 · ex3
= ucod

xj

∂

∂x3
Σx3xjx3 . (15.112)

Above all, our goal must be to transfer the derivatives of the Σ-components to

derivatives of the ucod-components via partial integration; the integration is
with regard to x′

1, therefore, the x1- and essentially the x3-derivatives must be
transferred to x′

1-derivatives. The transfer of x3- to x1-derivatives is performed
with the help of the differential equation (Equation 13.210)

∇ · Σ(R − R′,ω) + ρω2G(R − R′,ω) = 0, (15.113)

whose components—j = 1, 2, 3, k = 1, 2, 3—in the present case for x3 > 0 ex-
plicitly read

∂

∂x1
Σx1xjxk

(x1 − x′
1, x3,ω)

+
∂

∂x3
Σx3xjxk

(x1 − x′
1, x3,ω) + ρω2 Gxjxk

(x1 − x′
1, x3,ω) = 0. (15.114)

Now the sole x1-derivatives may be transformed into x′
1-derivatives using

∂/∂x1 = −∂/∂x′
1 yielding the expressions

ex3
· ucodex3

: ∇Σ2314 · ex1
= −ucod

xj

(
− ∂

∂x′
1
Σx1xjx1 + ρω2 Gxjx1

)
,

(15.115)

ex3
· ucodex3

: ∇Σ2341 · ex1
= −ucod

xj

∂

∂x′
1
Σx3xjx3 , (15.116)

ex3
· ucodex3

: ∇ · Σ312I · ex3

= −ucod
xj

(
∂

∂x′
1
Σx3xjx1 − ∂

∂x′
1
Σx1xjx3 + ρω2Gxjx3

)
, (15.117)
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ex3
· ucodex3

: ∇Σ2314 · ex3
= −ucod

xj

(
− ∂

∂x′
1
Σx1xjx3 + ρω2 Gxjx3

)
,

(15.118)

ex3
· ucodex3

: ∇Σ2341 · ex3
= −ucod

xj

(
− ∂

∂x′
1
Σx1xjx3 + ρω2 Gxjx3

)
(15.119)

instead of (15.108) through (15.112) to be inserted into (15.106):

ex3
·
∫ a

−a

ucod(x′
1,ω)ex3

: Π(x1 − x′
1, x3,ω) dx1 · ex1

= −µρω2
∫ a

−a

ucod
xj

(x′
1,ω)Gxjx1(x1 − x′

1, x3,ω) dx′
1

+ µ

∫ a

−a

ucod
xj

(x′
1,ω)

∂

∂x′
1

[
Σx1xjx1(x1 − x′

1, x3,ω)

− Σx3xjx3(x1 − x′
1, x3,ω)

]
dx′

1, (15.120)

ex3
·
∫ a

−a

ucod(x′
1,ω)ex3

: Π(x1 − x′
1, x3,ω) dx1 · ex3

= −(λ + 2µ)ρω2
∫ a

−a

ucod
xj

(x′
1,ω)Gxjx3(x1 − x′

1, x3,ω) dx′
1

+
∫ a

−a

ucod
xj

(x′
1,ω)

∂

∂x′
1

[
(λ + 2µ)Σx1xjx3(x1 − x′

1, x3,ω)

− λΣx3xjx1(x1 − x′
1, x3,ω)

]
dx′

1. (15.121)

Under the self-evident side condition ucod
xj

(−a,ω) = ucod
xj

(a,ω) = 0, the x′
1-

derivatives of the sigma-tensor components are shifted to the components of
the crack opening displacement via partial integration resulting in a negative
sign; afterward, the limit x3 −→ 0 must be performed to obtain integral equa-
tions for the components of ucod(x′

1,ω). Due to this limit, the j-contraction
in (15.120) is simultaneously constrained to j = 1, and the one in (15.121) to
j = 3 because an odd number of x3-derivatives in the sigma- and G-tensor
components always produces a factor x3 − x′

3 that vanishes for x′
3 = x3 = 0.

In addition, we face the question whether the singularity of the sigma-tensor
components is bothering; yet the—eventually—critical term (15.81) shows an
asymmetry with regard to x′

1 = 0 for x1 = 0—it is Rn = hnex3
—and hn −→ 0

according to x3 −→ 0—there is always an odd number of (Rn − R′)-terms—
yielding a vanishing (−a, a)-integral. Finally, we find the integral equations of
the first kind—we return to the xyz-notation of cartesian coordinates—

Tizx(x, 0,ω) = −µρω2
∫ a

−a

ucod
x (x′,ω)Gxx(x − x′, 0,ω) dx′

+ µ

∫ a

−a

∂

∂x′ u
cod
x (x′,ω) [Σzxz(x − x′, 0,ω) − Σxxx(x − x′, 0,ω)] dx′,

(15.122)
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Tizz(x, 0,ω) = −(λ + 2µ)ρω2
∫ a

−a

ucod
z (x′,ω)Gzz(x − x′, 0,ω) dx′

+
∫ a

−a

∂

∂x′ u
cod
z (x′,ω) [λΣzzx(x − x′, 0,ω) − (λ + 2µ)Σzxz(x − x′, 0,ω)] dx′

(15.123)

for both components of the crack opening displacement as they have been
calculated290 by Tan (1977); in both the equations, x is constrained to the
interval −a to a. Due to the two-dimensionality of the problem, the represen-
tation (13.248) has to be used to calculate G and Σ.

The SFIEs (15.122) and (15.123) are decoupled with regard to the com-
ponents of the crack opening displacement, yet they contain the components
themselves as well as their derivatives. But the numerical method to be ap-
plied solves this difficulty: The unknown components of the crack opening
displacement are expanded into the so-called base functions—Tan chooses a
trigonometric approximation—whose derivative can be easily calculated; af-
terward, the boundary condition is satisfied at discrete points x. This is one of
the potential proposals of the method of moments (Harrington 1968; Poggio
and Miller 1987; Wilton 2002); we have applied an EFIE-code developed by
Wilton and collaborators (Langenberg et al. 1993a) to obtain the numerical
results as discussed in Section 15.4.3, because the SFIE (15.122) and (15.123)
exhibit the same mathematical structure as compared to their electromagnetic
EFIE-counterparts in the Stratton–Chu version.

15.2.3 Kirchhoff approximation in elastodynamics

The formulation of Huygens’ principle for scalar—optical—waves in terms of
the Helmholtz integral as a solution of a homogeneous reduced wave equa-
tion provided a physical—in contrast to a geometrical—optics in the middle
of the nineteenth century. Yet, possible solution methods were scarce; hence,
approximate methods were investigated. The best known and most success-
ful is the Kirchhoff approximation of physical optics giving a second name
to the method, namely PO.291 It may either be heuristically established or
as a special solution of an integral equation of the second kind. For the ex-
amples of scalar acoustics and (two-dimensional) scalar SH-wave scattering,
we will follow the second path just to introduce the Kirchhoff approximation
of general elastodynamics heuristically based on this knowledge (the explicit
mathematical derivation is rather confusing).

Kirchhoff approximation in acoustics: We investigate the DFIE (15.96)
in the limit µ −→ 0; with (13.154), it follows

290Note: For the τΓ
α;β;γ-tensor as defined by Tan, we have τΓ

α;β;γ = −Σαβγ.
291With certain generalizations and augmented by other approximations, the Kirchhoff-PO

is still the basis for the calculation of electromagnetic wave scattering by complex geometries
(Greving 2000); it also plays a central role to model US-NDT problems (Spies 2000b; Boehm
et al. 2002; Kühnicke 2001; Civa: www.civa.cea.fr; Schmitz et al. 2004b).
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Σµ→0(R − R′,ω) = λ I∇ · Gµ→0(R − R′,ω), (15.124)

and the differential equation (13.80) for Gµ→0 reduces to

∇∇ · Gµ→0(R − R′,ω) +
ρω2

λ
Gµ→0(R − R′,ω) = − 1

λ
δ(R − R′)I.

(15.125)
For R �= R′, we obtain

Gµ→0(R − R′,ω) = − 1
λ

1
k2 ∇∇ e jk|R−R′|

4π|R − R′| (15.126)

as solution of (15.125) (Equation 5.69), where k = ω
√

ρ/λ. Similarly, we have
for R �= R′

∇ · Gµ→0(R − R′,ω) =
1
λ

∇ e jk|R−R′|

4π|R − R′|
=

1
λ

∇G(R − R′,ω) (15.127)

under consideration of (5.58). Therefore, for R ∈ IR3\V c—R �∈ Sc—we may
rewrite the scattering integral based on (15.95):∫ ∫

Sc

u(R′,ω)n′
c : Σµ→0(R − R′,ω) dS′

=
∫ ∫

Sc

u(R′,ω) · n′
c∇G(R − R′,ω) dS′. (15.128)

For the limit R −→ Sc we finally find (Colton and Kress 1983; Langenberg
2005):

lim
R→Sc

nc ·
∫ ∫

Sc

u(R′,ω) · n′
c∇G(R − R′,ω) dS′

=
1
2

u(R,ω) · nc +
∫ ∫

Sc

u(R′,ω) · n′
c

∂

∂nc
G(R − R′,ω) dS′; (15.129)

hence, we obtain the integral equation of the second kind

(I + K′){u · nc}(R,ω) = 2ui(R,ω) · nc, R ∈ Sc, (15.130)

with the operator

K′{u · nc}(R,ω) = 2
∫ ∫

Sc

u(R′,ω) · n′
c

∂

∂nc
G(R − R′,ω) dS′ (15.131)

for the normal components of the particle displacement. On behalf of (5.74),
this is an integral equation for the normal derivative of the field quantity
“pressure” of an acoustic Dirichlet problem (soft boundary); its solution for
a special case of Sc, namely an infinite planar (boundary) surface Sxy (of an
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acoustic half-space) may immediately be written down:

u(x, y,ω) · nc = 2ui(x, y, z = 0,ω) · nc, x, y ∈ Sxy, (15.132)

because due to

∂

∂nc
G(R − R′,ω) = nc · R − R′

|R − R′|︸ ︷︷ ︸
= 0 for R,R′ ∈ Sxy

e jk|R−R′|

4π|R − R′|
(

jk − 1
|R − R′|

)
,

(15.133)
we have

K′{u · nc}(x, y,ω) = 0, x, y ∈ Sxy. (15.134)

For an infinite planar “scattering” surface, the radiation interaction integral
(15.134) is equal to zero, and hence, the secondary source is equal to twice
the incident field: The surface is a perfect mirror!

Now Kirchhoff’s approximation argues as follows: With the direction of the
incident field, for example, the phase unit vector k̂i of a plane wave, and the
normal nc we define an illuminated side for convex scatterers by k̂i · nc < 0
and a shadow side by k̂i · nc > 0 (illustrated two-dimensionally in Figure 15.9).
Then, the secondary source on the shadow side is set equal to zero, and on the
illuminated side—following (15.132)—equal to twice the incident field, hence

uPO(R,ω) · nc = 2ui(R,ω) · nc u(−k̂i · nc), R ∈ Sc, (15.135)

where the unit-step function u(−k̂i · nc) accounts for the shadow side. Un-
der the assumption of a smoothly curved surface Sc as compared to the
wavelength—locally planar surface—there is some hope that this is an

nc

tc

nc

nc

ki
^

ϑic

R

O

Sc
ki · nc > 0^

Sc
ki · nc < 0^

ki
^ki

^

FIGURE 15.9
Kirchhoff approximation of elastodynamics (S k̂i·nc<0

c is the illuminated,

S
k̂i·nc>0
c the shadow side of Sc).
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appropriate approximation; in fact, PO-approximated scattered far-fields are
quite exact in the direction of specular reflection but not in the side lobe
region (Figure 5.4); yet, a quantitative estimate of the error is not available.

Kirchhoff approximation for two-dimensional SH-wave scattering:
According to (7.47), the y-component of the spectral particle displacement of
two-dimensional (∂/∂y ≡ 0) SH-waves satisfies the homogeneous Helmholtz
equation

∆uy(r,ω) + k2
Suy(r,ω) = 0 (15.136)

in source-free space, where r = xex + zez. Following (7.49), the stress-free
boundary condition results in the Neumann boundary condition:

nc · ∇uy(r,ω) = 0, r ∈ Sc, (15.137)

where Sc is now a one-dimensional “surface,” namely a closed contour in the
xz-plane (Footnote 119). The Helmholtz integral

usy(r,ω) =
∫

Sc

uy(r′,ω)
∂

∂n′
c

G(r − r′,ω) dS′ (15.138)

is the appropriate solution of (15.136) under the boundary condition (15.137)
(Equation 5.85, respectively Equation 15.40, with 15.33) involving the two-
dimensional scalar Green function (13.23). The limit r −→ Sc in (15.138)
yields

usy(r,ω) =
1
2

uy(r,ω) +
∫

Sc

uy(r′,ω)
∂

∂n′
c

G(r − r′,ω) dS′, r ∈ Sc,

(15.139)
and consequently, the integral equation of the second kind

(I − K){uy}(r,ω) = 2uiy(r,ω), r ∈ Sc, (15.140)

with the operator

K{uy}(r,ω) = 2
∫

Sc

uy(r′,ω)
∂

∂n′
c

G(r − r′,ω) dS′, r ∈ Sc, (15.141)

emerges for the secondary source uy(r ∈ Sc,ω) of the scattered field. The
integral equation of the second kind (15.140) for the Neumann problem com-
plements the integral equation of the second kind (15.130) for the Dirichlet
problem.292

Similar to (15.134), we find

K{uy}(x,ω) = 0, x ∈ Sx, (15.142)

yielding once again (we have k̂i · ey = 0)

uPO
y (r,ω) = 2uiy(r,ω) u(−k̂i · nc), r ∈ Sc, (15.143)

for the Kirchhoff approximated secondary source.

292The operators K and K′ are adjoint to each other.
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The typical structure “twice the incident field” (on the illuminated side) is
also true for electromagnetic waves (Equation 6.157); again, the reason is that
a perfectly conducting surface represents a perfect mirror for electromagnetic
waves. This is not true for elastic waves!

Kirchhoff approximation for two-dimensional P-wave scattering:
The reflection of a plane pressure wave at the planar stress-free boundary
of an elastic half-space produces a reflected transversely polarized shear wave
via mode conversion (Section 9.1.2), i.e., such a boundary is no perfect mirror
for elastic waves. Therefore, we may not expect that the secondary source for
the reflected pressure wave and the mode converted shear wave is just twice
as large as the incident field at the boundary; certainly, reflection and mode
conversion factors should come into play. In fact, we already calculated the
relevant secondary source with (9.59). If we consider (9.58), we obtain for the
spectral boundary particle displacement (for P-wave incidence)

uP(x,ω,ϑiP) = uiP(ω) e jkPxk̂iP·ex

×
[
k̂iP + RP(ϑiP)k̂rP + MS(ϑiP)k̂mS × ey

]
, x ∈ Sx.

(15.144)

To prove explicitly that (15.144) is in fact the Huygens equivalent source for
the reflected and mode converted waves, respectively secondary source of the
scattered field in terms of reflected and mode converted waves, we either have
to derive (15.144) as a solution of the (two-dimensional) DFIE (15.96) for
Sc = Sx or must at least show that (15.144) is a solution of (15.96). For both
special cases of the previous paragraph, this proof was indeed simple due to
the vanishing radiation interaction integral; here, it is extremely cumbersome:
Following a spatial Fourier transform of (15.96) with regard to x, we managed
to invert the operator I + U yielding multiple combinations of sine and cosine
functions, yet they did not allow us to bring the result into the explicit form
(15.144); even symbolic math did not succeed. A nearly similar problem is
encountered if (15.144) is inserted into (15.96): Here, numerical evaluation
helps at least—with a discrepancy of about 10−10—to prove that (15.144) is
a solution of (15.96).

Due to these difficulties, we simply should accept (15.144) as secondary
source based on physical intuition. Subsequently, it is only a small step to
define a Kirchhoff approximated secondary source for P-wave incidence

uP,PO(r,ω,ϑic) = uiP(ω) e jkPk̂iP·r
[
k̂iP + RP(ϑic)k̂rP + MS(ϑic)k̂mS × ey

]
u(−k̂iP · nc), (15.145)

cos ϑic = −k̂iP · nc, (15.146)

k̂iP = sinϑictc − cos ϑicnc, (15.147)

k̂rP = sinϑictc + cos ϑicnc, (15.148)
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k̂mS =
kP

kS
sinϑictc +

√
1 −
(

kP

kS
sinϑic

)2

nc, (15.149)

k̂mS × ey = −
√

1 −
(

kP

kS
sinϑic

)2

tc +
kP

kS
sinϑicnc (15.150)

for r ∈ Sc. Note that normal nc, tangential vector293 tc = ey × nc, and angle
of incidence ϑic are locally defined on Sc (Figure 15.9) depending on r and
requesting to remain under the integral; as compared to (15.135) and (15.143),
this “extended” spatial dependence—the phase of the incident field also yields
a spatial dependence of the secondary sources (15.135) and (15.143)—is char-
acterized in the argument of uP,PO(r,ω,ϑic) through the explicit appearance
of the angle ϑic.

Equation 15.145 once again particularly exhibits—as compared to acous-
tics and electromagnetics—the additional problems of elastodynamics due to
the existence of two wave modes with different velocities. We will see (Section
15.4) that this “extended” r-dependence even affects the radiation patterns
of scattered fields.

Kirchhoff approximation for two-dimensional SV-wave scattering:
From Section 9.1.2 (Equation 9.144), we extract the particle displacement of
the secondary surface deformation source for SV-wave incidence:

uSV,PO(r,ω,ϑic) = uiS(ω) e jkSk̂iS·r
[
k̂iS × ey + RSV(ϑic)k̂rS × ey

+ MP(ϑic)k̂mP

]
u(−k̂iS · nc), (15.151)

cos ϑic = −k̂iS · nc, (15.152)

k̂iS = sinϑictc − cos ϑicnc, (15.153)

k̂rS = sinϑictc + cos ϑicnc, (15.154)

k̂mP =
kS

kP
sinϑictc +

√
1 −
(

kS

kP
, sinϑic

)2

nc. (15.155)

Here, we have additionally to recognize complex valued expressions for
RSV(ϑic), MP(ϑic), and k̂mP for ϑic > ϑcmP, where ϑcmP is the critical an-
gle for the mode converted P-wave.

Kirchhoff approximation for three-dimensional pressure and shear
wave scattering: In three dimensions, the separation of plane elastic shear
waves into SH- and SV-polarizations has to be performed with regard to a
given reference plane that is not yet defined by an arbitrary three-dimensional
scatterer. Nevertheless, the direction of incidence k̂iP,S defines a normal nc in
each (illuminated) surface point R and, hence, spatially dependent tangential

293Note: tc is defined in the direction k̂iP yielding positive tc-components of k̂iP, k̂rP, k̂mS.
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and incidence planes as well as a tangential vector tc located in the respective
plane of incidence. Therefore, for an incident pressure wave we may imme-
diately choose (15.146) as Kirchhoff approximation, where ϑic, nc, and tc

vary three-dimensionally for R ∈ Sc. The mode converted shear wave emerg-
ing from each of these “Kirchhoff reflections” is evidently SV-polarized with
regard of the actually considered tangential, respectively incidence plane, but
not SV-polarized with regard to all tangential planes (as in two dimensions);
this must be recognized separating the scattered far-field into polarizations
(Section 15.5). For an incident plane shear wave, an additional separation into
SH- and SV-components with regard to the local tangential planes has to be
performed; then, (15.143) (the y-component is the local tangential component
perpendicular to tc) and (15.151) may be applied.

For all cases of Kirchhoff approximated secondary sources being simply
proportional to the incident field, the latter must not be just a plane wave;
a real-life antenna or transducer field may also be inserted. Strictly speaking,
for elastic waves, this is not true because the image principle does not hold:
Reflection and mode conversion factors are only known for plane waves.

15.3 Integral Equations for the Equivalent Sources
of Penetrable Scatterers

15.3.1 Lippmann–Schwinger integral equations
for equivalent volume sources of inhomogeneous
anisotropic scatterers

We refer to the elastodynamic scattering problem as sketched in Figure 15.10.
With the reduced wave equations

∇ ·
[
c(R) : ∇v(R,ω)

]
+ ω2ρ(R)v(R,ω) = jωf(R,ω)

− ∇ ·
[
c(R) : h(R,ω)

]
, (15.156)

I+ : ∇
[

1
ρ(R)

∇ · T(R,ω)
]

+ ω2s(R) : T(R,ω)

= −I+ : ∇
[

1
ρ(R)

f(R,ω)
]

+ jωh(R,ω) (15.157)

for the elastodynamic field quantities in inhomogeneous anisotropic materials
as well as the definition294

f c(R,ω) def= f ρ(R,ω) = −jωΓc(R) [ρ − ρ(R)]v(R,ω), (15.158)

294In h
c
, the italic “c” stands for the scattering volume Vc, and in h

c
, the boldface “c”

stands for the inhomogeneity of the stiffness, respectively compliance tensor.
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VQ

Vc

Sc

f(R, ω)

h(R, ω)

s(R), c(R)

, λ, µ

(R)

FIGURE 15.10
Elastodynamic scattering problem: penetrable inhomogeneous anisotropic
scatterer in a homogeneous isotropic embedding material (equivalent volume
sources).

h
c
(R,ω) def= h

c
(R,ω) = −jωΓc(R)

[
s − s(R)

]
: T(R,ω) (15.159)

of equivalent sources of such a material inclusion (Section 7.1.1)—of a pene-
trable scatterer with the characteristic function Γc(R) of the scattering volume
Vc—in a homogeneous isotropic material with known Green tensors, we may
immediately write down the scattered field of a penetrable inhomogeneous
anisotropic scatterer using the source field representations of point source
synthesis (as so-called data equations):

vs(R,ω) =
∫ ∫ ∫

Vc

[
−jωf c(R

′,ω) · G(R − R′,ω)

+ h
c
(R′,ω) : Σ(R − R′,ω)

]
d3R′, (15.160)

T
s
(R,ω) =

∫ ∫ ∫
Vc

[
f c(R

′,ω) · Σ312(R′,ω)

− 1
jω

h
c
(R′,ω) : Π(R − R′,ω)

]
d3R′. (15.161)

That way, the equivalent sources turn into secondary sources of the scat-
tered field that depend upon the total field v(R,ω) = vs(R,ω) + vi(R,ω),
T(R,ω) = T

s
(R,ω) + T

i
(R,ω), where the incident field vi(R,ω), T

i
(R,ω)

comes from primary sources located outside Vc in the homogeneous isotropic
background material.

Since (15.158) and (15.159) contain the total field, the scattered field
point source synthesis is only a preliminary result: Beforehand, the to-
tal field in Vc must be calculated! Fortunately, the integral representations
(15.160) and (15.161) also hold for R ∈ Vc—note: Π contains a δ-distributional
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term according to (13.208)—resulting in the system of coupled Lippmann–
Schwinger integral equations

v(R,ω) + jω
∫ ∫ ∫

Vc

{
− jω[ρ − ρ(R′)]v(R′,ω) · G(R − R′,ω)

+
[
s − s(R′)

]
: T(R′,ω) : Σ(R − R′,ω)

}
d3R′ = vi(R,ω), R ∈ Vc,

(15.162)

T(R,ω) + jω
∫ ∫ ∫

Vc

{
[ρ − ρ(R′)]v(R′,ω) · Σ312(R − R′,ω)

− 1
jω

[
s − s(R′)

]
: T(R′,ω) : Π(R − R′,ω)

}
d3R′ = T

i
(R,ω), R ∈ Vc,

(15.163)

for the vector v(R,ω) and the tensor T(R,ω) inside Vc: These are nine scalar
equations for the three components of v and the six components of T (T is
symmetric); they are also called (coupled) object equations. As for the DFIE,
the volume integrals in (15.162) and (15.163) stand for the radiation interac-
tion inside Vc. Neglecting them results in the Born approximation for the sec-
ondary sources (Section 15.3.2). The explicit notation of the secondary sources
in (15.162) and (15.163) immediately reveals the reason for the coupling of
the object equations to be the inhomogeneity of all material parameters, i.e.,
density as well as elastic constants. Only for a sole density inhomogeneity with
s(R) = s, a single Lippmann–Schwinger equation (three scalar equations) is

obtained:295

v(R,ω) + ω2ρ

∫ ∫ ∫
Vc

χρ(R′)G(R − R′,ω) · v(R′,ω) d3R′ = vi(R,ω),

R ∈ Vc; (15.164)

here, χρ(R) is the density contrast of the penetrable scatterer according to
(7.4). With the (v = vs + vi)-separation and the definition of the integral
operator

V {v}(R,ω) = −ω2ρ

∫ ∫ ∫
Vc

χρ(R′)G(R − R′,ω) · v(R′,ω) d3R′, R ∈ Vc,

(15.165)
we may write (15.164) as follows:

vs(R,ω) = (I − V )−1{V {vi}}(R,ω), R ∈ Vc, (15.166)

where I{v}(R,ω) = I · v(R,ω) = v(R,ω) denotes the identity operator. Spe-
cially choosing a plane pressure or shear wave according to

vi(R,ω,kiP,S) = viP,S(ω) e jkP,Sk̂i·R I · v̂iP,S (15.167)

295Therefore, the solution of the inverse scattering problem starts with this simplifying
assumption (Pelekanos et al. 2000).
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as incident wave, the expression

vs(R,ω,kiP,S) = (I − V )−1{V {viP,S(ω) e jkP,Sk̂i·R I}}(R,ω)︸ ︷︷ ︸
= Ξρ

c
(R,ω,kiP,S)

·v̂iP,S

(15.168)
reveals—as expected from the linearity of the governing equations—a lin-
ear dependence of the scattered field upon the polarization of the incident
plane wave, thus defining a scattering tensor Ξρ

c
(R,ω,kiP,S) (for sole density

variations).
To derive similar facts for vs(R,ω) and T

s
(R,ω) in case of an additional

inhomogeneity of the elastic constants, we use

T
i
(R,ω,kiP,S) = − 1

ω
viP,S(ω) e jkP,Sk̂i·R (λ I kiP,S + 2µ I+ · kiP,S) · v̂iP,S

(15.169)

as expression for the T
i
-wave associated with vi in the homogeneous isotropic

embedding material [Equation 15.169 contains the two equations (8.121) and
(8.122)]. The linear relation (15.168) may be generalized as follows and com-
plemented by (15.171):

vs(R,ω,kiP,S) = Ξρ,c
c

(R,ω,kiP,S) · v̂iP,S, R ∈ Vc, (15.170)

T
s
(R,ω,kiP,S) = Υρ,c

c
(R,ω,kiP,S) · v̂iP,S, R ∈ Vc. (15.171)

Here, we are only interested in the principal representation possibilities
(15.170) and (15.171) and avoid to present the explicit (and complicated)
expressions for Ξρ,c

c
and Υρ,c

c
.

The comparison of the system of coupled Lippmann–Schwinger integral
equations (15.162) and (15.163) with the DFIE (15.94) shows the essential
complexity calculating the scattered field of an inclusion in a homogeneous
isotropic elastic full-space as compared to a void (with a stress-free surface);
this is apparently independent upon the homogeneity/inhomogeneity and/or
the isotropy/anisotropy of the inclusion.

15.3.2 Born approximation for inhomogeneous
anisotropic scatterers

The Kirchhoff approximation argues with a locally plane approximation of the
scattering surface to linearize the void scattering problem.

The Born approximation argues with marginal differences for inclusion
and embedding materials to linearize the inclusion scattering problem: It is
assumed that the total field in the volume of the inclusion is not that different
from the undisturbed incident field yielding vs(R,ω) = 0 and T

s
(R,ω) = 0

for R ∈ Vc. Therefore, Born secondary sources are given by
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fBorn
c (R,ω) = −jωΓc(R)[ρ − ρ(R)]vi(R,ω), (15.172)

hBorn
c

(R,ω) = −jωΓc(R)
[
s − s(R)

]
: T

i
(R,ω). (15.173)

These sources result in a Born scattered field outside Vc, yet in the interior
of Vc, they do not reproduce vi, respectively T

i
, because the incident field

comes from the primary sources in VQ, even inside Vc.
The Born approximation ignores the scatterer with respect to its inte-

rior scattered field, hence, it will be the better the larger the wavelength as
compared to Vc, i.e., in contrast to the Kirchhoff approximation, it is a low fre-
quency approximation (for weak contrast). Chew (1990) gives a more precise
assessment for scalar fields.

15.3.3 Coupled integral equations for equivalent surface
sources of homogeneous isotropic scatterers

The Lippmann–Schwinger integral equations (15.162) and (15.163) for pen-
etrable scatterers are coupled volume integral equations, yielding a costly
numerical solution due to the required three-dimensional discretization. For
homogeneous isotropic penetrable scatterers296 (Figure 15.11), an alternative
exists in terms of coupled surface integral equations; namely, in that case,
Green’s tensors are known for the isotropic material inside Vc—material pa-
rameters �(i), λ(i), µ(i)—as well as those for the outside material—material
parameters �(e), λ(e), µ(e)—and we may write down elastodynamic Huygens
integrals with the respective Green tensors G(i,e), Σ(i,e) (of full-space) for the
exterior scattered field, as well as for the interior scattered field. According to
(15.63), the respective integral representation for the exterior particle velocity
field reads (R ∈ IR3\V c):

v(e)(R,ω) = vi(R,ω) +
∫ ∫

Sc

[
jωn′

c · T(e)(R′,ω) · G(e)(R − R′,ω)

− n′
cv

(e)(R′,ω) : Σ(e)(R − R′,ω)
]
dS′;

(15.174)

of course, the secondary sources of the exterior scattered field exhibit the
boundary values of the exterior total field. The counterpart to (15.174) for
the interior total field reads (R ∈ Vc: No sources are located in Vc, hence, the
scattered field is equal to the total field):

v(i)(R,ω) = −
∫ ∫

Sc

[
jωn′

c · T(i)(R′,ω) · G(i)(R − R′,ω)

− n′
cv

(i)(R′,ω) : Σ(i)(R − R′,ω)
]
dS′; (15.175)

296In case Green tensors are known for the inhomogeneous and/or anisotropic scatterer ma-
terial, this alternative may also be pursued. Yet, the advantage of the Lippmann–Schwinger
volume integral equation is the sole request for the tensors of the homogeneous isotropic
embedding material.
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VQ

Vc
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(e), λ(e), µ(e)

(i), λ(i), µ(i)

nc

f(R, ω)

h(R, ω)

FIGURE 15.11
Elastodynamic scattering problem: penetrable homogeneous isotropic scat-
terer in a homogeneous isotropic embedding material (equivalent surface
sources).

the minus sign goes back to the “wrong” direction of the normal nc for the
secondary sources of the interior field (defined by the boundary values of
the interior field). Based on the homogeneous transition conditions (3.88)
and (3.93), we may eliminate the interior secondary sources:

v(i)(R,ω) = −
∫ ∫

Sc

[
jωn′

c · T(e)(R′,ω) · G(i)(R − R′,ω)

− n′
cv

(e)(R′,ω) : Σ(i)(R − R′,ω)
]
dS′. (15.176)

In (15.174) and (15.176), the six scalar components of nc · T(e)(R,ω) and
v(e)(R,ω), R ∈ Sc, appear as unknowns; hence, two vector (DFIE) surface
integral equations are required. Therefore, we calculate the limit R −→ Sc

from the exterior of Vc in (15.174) and, in (15.176), the similar limit from the
interior of Vc. For the first case, we may refer to (15.91):

v(e)(R,ω) = 2vi(R,ω)

+ 2 PV
∫ ∫

Sc

[
jωn′

c · T(e)(R′,ω) · G(e)(R − R′,ω)

− n′
cv

(e)(R′,ω) : Σ(e)(R − R′,ω)
]
dS′; (15.177)

for the second case, the calculation in Section 15.2.1 has to be repeated for
an interior point with the sole difference of an opposite normal; therefore, we
anticipate the same basic result with a different sign:

v(i)(R,ω) = −2 PV
∫ ∫

Sc

[
jωn′

c · T(e)(R′,ω) · G(i)(R − R′,ω)

− n′
cv

(e)(R′,ω) : Σ(i)(R − R′,ω)
]
dS′. (15.178)
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In (15.177) and (15.178), we now have R ∈ Sc allowing to repeatedly apply
the homogeneous transition condition (3.93) to finally eliminate v(i)(R,ω):

v(e)(R,ω) = −2 PV
∫ ∫

Sc

[
jωn′

c · T(e)(R′,ω) · G(i)(R − R′,ω)

− n′
cv

(e)(R′,ω) : Σ(i)(R − R′,ω)
]
dS′. (15.179)

With (15.177) and (15.179), we have found the coupled system of surface in-
tegral equations we were looking for! The extension to piecewise homogeneous
isotropic scatterers has been given by Tan (1975a).

15.4 Scattering Tensor; Far-Fields

15.4.1 Scattering tensor

Elastodynamic radiation fields are excited by primary sources, elastodynamic
scattered fields are radiation fields of secondary sources. Therefore, we may
come back to the results of Chapter 13 referring to the elastodynamic point
source synthesis (Section 13.3.1) of scattered fields; note: The point source
directivities of a point scatterer in full-space are identical to the ones of a
point radiator, we have to use the Green functions of full-space according to
(13.213) and (13.214). This is also true, for example, if the scatterer exhibits
a stress-free boundary: Such a boundary condition is accounted for by the
solution of an integral equation (DFIE: Equation 15.94) for the secondary
source h

c
or its Kirchhoff approximation and not using the Miller–Pursey

factors based on the half-space Green tensor representation (14.183). The
latter would be a contradiction by itself because the equivalent source of a
stress-free scattering surface is a surface deformation (rate) and not a surface
force density.

In the following, we explicitly present the scattered far-fields because we
also give numerical examples for them; we only have to replace the primary
sources f and h in the vector radiation characteristics (13.217), (13.218) and
(13.225), (13.226) by the secondary sources f c and h

c
to obtain vector scat-

tering amplitudes:

ufar
sP(R,ω) =

e jkPR

R

[
Hfc

sP(R̂,ω) + Hhc

sP(R̂,ω)
]
, (15.180)

Hfc

sP(R̂,ω) =
1

4πcPZP
R̂ R̂ ·

∫ ∫ ∫
Vc

f c(R
′,ω) e−jkPR̂·R′

d3R′

︸ ︷︷ ︸
= F3D{f c(R,ω)}K=kPR̂

= f̃ c(K = kPR̂,ω)

, (15.181)
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Hhc

sP(R̂,ω) = − 1
4πc2

PZP
R̂(λI + 2µR̂ R̂) :

∫ ∫ ∫
Vc

h
c
(R′,ω) e−jkPR̂·R′

d3R′

︸ ︷︷ ︸
= F3D{h

c
(R,ω)}K=kPR̂

= h̃
c
(K = kPR̂,ω)

;

(15.182)

ufar
sS (R,ω) =

e jkSR

R

[
Hfc

sS(R̂,ω) + Hhc

sS(R̂,ω)
]
, (15.183)

Hfc

sS(R̂,ω) =
1

4πcSZS
(I − R̂ R̂) ·

∫ ∫ ∫
Vc

f c(R
′,ω) e−jkSR̂·R′

d3R′

︸ ︷︷ ︸
= F3D{f c(R,ω)}K=kSR̂

= f̃ c(K = kSR̂,ω)

, (15.184)

Hhc

sS(R̂,ω) = − 1
2πcS

(I − R̂ R̂)R̂ :
∫ ∫ ∫

Vc

h
c
(R′,ω) e−jkSR̂·R′

d3R′

︸ ︷︷ ︸
= F3D{h

c
(R,ω)}K=kSR̂

= h̃
c
(K = kSR̂,ω)

.

(15.185)

Specifying secondary (volume) sources f c and h
c

according to

f c(R,ω) = 0, (15.186)

h
c
(R,ω) = −I+ : γ

c
(R)v(R,ω)

= jω I+ : γ
c
(R)u(R,ω) (15.187)

yield (15.180) through (15.185) to be a scattered far-field of a scatterer with
a stress-free surface, and specifying according to

f c(R,ω) = −jωΓc(R) [ρ − ρ(R)]v(R,ω)

= −ω2Γc(R) [ρ − ρ(R)]u(R,ω), (15.188)

h
c
(R,ω) = −jωΓc(R)

[
s − s(R)

]
: T(R,ω) (15.189)

yields a scattered far-field of a penetrable inhomogeneous anisotropic scat-
terer. The under brackets in (15.181) and (15.182), respectively (15.184)
and (15.185), state the proportionality of scattered far-fields to the three-
dimensionally Fourier transformed secondary sources on the respective Ewald
spheres K = kP,SR̂ as it is true for the far-fields of primary sources.297 Hence,

297In these Fourier transforms K = kP,SR̂ has to be inserted as Fourier variable; therefore,
K varies on so-called Ewald spheres with radii KP,S for fixed wave numbers kP,S if R̂ varies.
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monochromatic far-field measurements298 of scattered fields, even though be-
ing recorded for all observation directions R̂ (on the unit sphere), only contain
the Ewald sphere information of the Fourier spectra, which is not sufficient to
image the scatterer (the defect) because not even a partial volume of K-space
is covered that way. One has to switch, for example, to a broadband impulse
excitation providing spherical Ewald shell information. In the end, ultrasonic
imaging techniques such as SAFT and its modifications use exactly this infor-
mation (Chapter 16; Langenberg 1987; Langenberg et al. 1993a, 1999a, 2002;
Langenberg 2002; Langenberg et al. 2004a, 2004b; Mayer et al. 1990; Marklein
et al. 2002b; Kostka et al. 1998; Langenberg et al. 2006, 2007; Zimmer 2007).

Obviously, instead of (15.187), we may eventually use the Kirchhoff ap-
proximation and, instead of (15.188) and (15.189), the Born approximation;
we then obtain Kirchhoff approximated, respectively Born approximated,
scattered fields.

A particular compact notation of scattered far-fields for incident plane
P,S-waves is obtained defining scattering tensors (of second rank). We write
the secondary sources for these incident waves (15.188) and (15.189) utilizing
(15.170) and (15.171) as well as (15.169) according to

f c(R,ω,kiP,S) = jωρ χρ(R)
[
Ξρ,c

c
(R,ω,kiP,S) e−jkP,Sk̂i·R

+ viP,S(ω)I
]

· v̂iP,S e jkP,Sk̂i·R, (15.190)

h
c
(R,ω,kiP,S) = −jωχ

c
(R) : s(R) :

[
Υr,c

c
(R,ω,kiP,S) e−jkP,Sk̂i·R

− viP,S(ω)
ω

(λ I kiP,S + 2µ I+ · kiP,S)
]

· v̂iP,S e jkP,Sk̂i·R,

(15.191)

and this results in

ufar
sP,S(R̂,ω,kiP,S) =

e jkP,SR

R
U

P,S
(R̂,ω,kiP,S) · v̂iP,S (15.192)

with

U
P,S

(R̂,ω,kiP,S) = Ξρ,c
P,S

(R,ω,kiP,S) + Υr,c
P,S

(R,ω,kiP,S), (15.193)

Ξρ,c
P

(R,ω,kiP,S) = j
kP

4πcP
R̂ R̂ ·

∫ ∫ ∫
Vc

χρ(R′)

×
[
Ξρ,c

c
(R′,ω,kiP,S)e−jkiP,S·R′

+ viP,S(ω)I
]

× e−j(kPR̂−kiP,S)·R′
d3R′, (15.194)

298This holds similarly for near-field measurements if the measurement surface is located
outside the smallest sphere hosting the scatterer (Colton and Kress 1983; Dassios and
Kleinman 2000).
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Υr,c
P

(R,ω,kiP,S) = j
kP

4πcPZP
R̂(λ I + 2µ R̂ R̂)

:
∫ ∫ ∫

Vc

χ
c
(R′) : s(R′) :

[
Υρ,c

c
(R′,ω,kiP,S)e−jkiP,S·R′

− viP,S(ω)
ω

(λ I kiP,S + 2µ I+ · kiP,S)

]
e−j(kPR̂−kiP,S)·R′

d3R′, (15.195)

Ξρ,c
S

(R,ω,kiP,S) = j
kS

4πcS
(I − R̂ R̂)

·
∫ ∫ ∫

Vc

χρ(R′)
[
Ξρ,c

c
(R′,ω,kiP,S)e−jkiP,S·R′

+ viP,S(ω)I
]

× e−j(kSR̂−kiP,S)·R′
d3R′, (15.196)

Υr,c
S

(R,ω,kiP,S) = j
kS

2π
(I − R̂ R̂)R̂ :

∫ ∫ ∫
Vc

χ
c
(R′) : s(R′)

:

[
Υρ,c

c
(R′,ω,kiP,S)e−jkiP,S·R′ − viP,S(ω)

ω
(λ I kiP,S + 2µ I+ · kiP,S)

]
× e−j(kSR̂−kiP,S)·R′

d3R′, (15.197)

if they are inserted into (15.181) and (15.182). Within the far-field ap-
proximation (15.192) of the particle displacement, the scattering tensor
U

P,S
(R̂,ω,kiP,S)—its definition refers to the theory of electromagnetic waves

(Langenberg 2005; Baum 2000)—relates the given polarization of the incident
plane wave to the resulting polarization of the scattered field; it is composed
of the terms Ξρ,c

P,S
(R̂,ω,kiP,S) and Υρ,c

P,S
(R̂,ω,kiP,S) related to the density

contrast χρ(R) and the stiffness contrast χ
c
(R). Remote sensing with elec-

tromagnetic waves (Ulaby and Elachi 1990; Cloude 2002; Langenberg 2005)
relies on a successful theory of object identification based on an algebraic
analysis of the scattering tensor, respectively consecutively derived scattering
matrices; these results still wait to be applied in US-NDT. Yet, fundamen-
tal facts for backscattering (pulse echo: R̂ = −k̂i) are immediately evident:
The right-handed contraction of the scattering tensor with the polarization
vector v̂iP,S (we could equally write ûiP,S because we deal with a unit vec-
tor) results in a right-handed contraction of Ξρ,c

P,S
(R̂,ω,kiP,S), respectively

Υρ,c
P,S

(R̂,ω,kiP,S) with v̂iP,S, and without further specification of theses ten-
sors, no general result can be obtained; yet, in case of the Born approximation,
Ξρ,c

P,S
(R̂,ω,kiP,S) and Υρ,c

P,S
(R̂,ω,kiP,S) are deleted providing the following

conclusions for isotropic scatterers:

• Under the Born approximation, there is no mode conversion in backscat-
tering direction, i.e., an incident pressure wave is backscattered as a pure
pressure wave and an incident shear wave as pure shear wave;
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• Under the Born approximation, the scattered shear far-field in backscat-
tering direction is equally polarized as the incident shear wave, there is no
polarization rotation.

By the way, the same facts also hold for scatterers with a stress-free sur-
face under the Kirchhoff approximation: The mirror point for backscattering
is then given by nc = −k̂i (Figure 15.9), yielding the same direction of the
surface particle displacement as the incident plane wave according to (15.145),
respectively (15.151); this statement is obtained via the same calculation as
above.

In reality, Born and Kirchhoff approaches may only be approximations
identifying the deviation from the above statements as a measure for the
validity of these approaches.

15.4.2 Two-dimensional scalar scattering problems:
Pulsed SH-far-fields of circular cylindrical voids
and strip-like cracks

Circular cylindrical void: SH-wave scattering is a scalar problem for two-
dimensional scatterers, in particular, a scalar Neumann problem for voids with
a stress-free surface (Section 7.3). We choose a circular cylindrical void with
radius a (Figure 15.12) in steel (κ = cP/cS = 1.827)—model of a side wall
drilled hole for US-NDT—and investigate the scattering of a plane SH-wave

Sc

a x
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FIGURE 15.12
SH-wave scattering for a circular cylindrical void with a stress-free surface.



K12611 Chapter: 15 page: 603 date: January 6, 2012

Scatterers in Homogeneous Isotropic Nondissipative Infinite Spaces 603

uiSH(r,ω, k̂i) = −uiS(ω) e jkSk̂i·r ey, (15.198)

with a polarization vector oriented in negative y-direction (parallel to the
cylinder axis) as in Section 9.1.3. With

k̂i = − sin θi ex − cos θi ez, (15.199)
r = r sin θ ex + r cos θ ez, (15.200)

we obtain

k̂i · r = −r cos(θ − θi) (15.201)

in polar coordinates in the xz-plane. For r > a, the only nonvanishing
y-component of the scattered SH-field usSH(r, θ,ω) = usSH(r, θ,ω)ey satisfies
the homogeneous reduced wave equation (7.47), namely

∆usSH(r, θ,ω) + k2
SusSH(r, θ,ω) = 0, (15.202)

and for r = a the homogeneous Neumann boundary condition (Equation 7.53)

∂usSH(r, θ,ω)
∂r

∣∣∣∣
r=a

= − ∂uiSH(r, θ,ω)
∂r

∣∣∣∣
r=a

(15.203)

of the total field. We conjecture that the scattered field can be represented
as superposition of outgoing cylindrical waves and write (15.202) in polar
coordinates:[

1
r

∂

∂r

(
r

∂

∂r

)
+

1
r2

∂2

∂θ2 + k2
S

]
usSH(r, θ,ω) = 0. (15.204)

The so-called partial wave separation ansatz

usSH(r, θ,ω) =
∞∑

n=−∞
an(ω)Rn(r) e jnθ (15.205)

turns (15.204) into a Bessel differential equation for the radial functions Rn(r)
(Schäfke 1967): (

∂2

∂r2 +
1
r

∂

∂r
− n2

r2 + k2
S

)
Rn(r) = 0. (15.206)

“Matching” solutions, i.e., those representing outgoing waves, are Hankel func-
tions H(1)

n (kSr) of the first kind of order n if the time dependence has been
chosen according to e−jωt, namely with the negative sign in the exponent of
the inverse Fourier transform as always in this elaboration. That way, the
partial wave amplitudes (the expansion coefficients) an(ω) in

usSH(r, θ,ω) =
∞∑

n=−∞
an(ω)H(1)

n (kSr) e jnθ (15.207)
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may be calculated with the help of the boundary condition (15.203) provided
the respective partial wave separation for the incident plane wave (15.198) is
available; we have (Schäfke 1967)

e−jkSr cos(θ−θi) =
∞∑

n=−∞
(−j)nJn(kSr) e jn(θ−θi); (15.208)

only the solutions of (15.206) free of singularities, the Bessel functions Jn(kSr)
of order n appear because the plane wave has no singularities. With (15.207)
and (15.208), we now obtain from (15.203)

an(ω) = uiS(ω)(−j)n J′
n(kSa)

H(1)′
n (kSa)

e−jnθi (15.209)

due to the orthogonality relation∫ 2π

0
ejnθe−jmθ dθ = 2πδnm, (15.210)

where the dash on the cylinder functions stands for a derivative with regard
to the argument (not with regard to r!). With the asymptotics

H(1)
n (kSr) �

√
2

πkSr
e jkSr−jn π

2 −j π
4 (15.211)

of the Hankel functions (Abramowitz and Stegun 1965), we finally find

ufar
sSH(r, θ,ω) =

e jkSr

√
r

HSH(θ,ω), (15.212)

HSH(θ,ω) = uiS(ω)e−j π
4

√
2

πkS

∞∑
n=−∞

(−1)n J′
n(kSr)

H(1)′
n (kSa)

e jn(θ−θi) (15.213)

for the scattered far-field.
It should be noted that the partial wave separation method can also be

applied to SH-wave scattering by a homogeneous penetrable cylinder: Only
the emerging interior field must be expanded into standing wave cylinder func-
tions, i.e., Bessel functions; its expansion coefficients as well as those for the
exterior scattered field result from the transition conditions (7.51) and (7.52).

The above derivation of the SH-scattered field of a circular cylinder with a
stress-free surface circumvents the field representation as a Huygens integral
because the reduced wave equation is initially solved by a series expansion into
the special functions of the underlying coordinate system (here: cylinder coor-
dinates) (Langenberg 2005). This works only in so-called separable coordinate
systems allowing for a representation of the scattering surface in terms of a
coordinate surface and, hence, not for arbitrary scattering geometries; there-
fore, generally the integral equations resulting from Huygens’ principle have
to solved numerically. Nevertheless, we want briefly sketch how to deal with
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the Huygens integral in the case of the cylinder geometry even though this is
a circumvention. Specializing (5.85) to SH-waves and to the actual geometry
including the boundary condition results in

usSH(r, θ,ω) = a

∫ 2π

0
uSH(a, θ′,ω)

∂

∂r′ G(r − r′,ω)
∣∣∣∣
r′=a

dθ′ (15.214)

as a Huygens-type scattered field representation, where G(r − r′,ω) is the two-
dimensional scalar Green function (13.23). The integral equation (of the sec-
ond kind) for the secondary source uSH(θ,ω) def= uSH(a, θ,ω) = usSH(a, θ,ω) +
uiSH(a, θ,ω) follows from (5.90):

uiSH(a, θ,ω) =
1
2
uSH(θ,ω) − a

∫ 2π

0
uSH(θ′,ω)

∂

∂r′ G(r − r′,ω)
∣∣∣∣
r′=a

dθ′,

0 ≤ θ < 2π. (15.215)

The solution of (15.215) now follows the above separation scheme: The field
uSH(θ,ω) is expanded according to

uSH(θ,ω) =
∞∑

n=−∞
bn(ω) e jnθ (15.216)

as well as (Hönl et al. 1961)

∂

∂r′ G(r − r′,ω)
∣∣∣∣
r′=a

=
j
4

∂

∂r′ H
(1)
0

(
kS
√

a2 + r′2 − 2ar′ cos(θ − θ′)
)∣∣∣∣

r′=a

=
j
8

kS

∞∑
m=−∞

[
H(1)′

m (kSa)Jm(kSa) + H(1)
m (kSa)J′

m(kSa)
]
e jm(θ−θ′) (15.217)

into a Fourier series with regard to θ, respectively θ′; these series are inserted
into (15.215), and the orthogonality relation (15.210) as well as the Wronski
determinant between Jm and H(1)

m (Schäfke 1967) are applied resulting in
bn(ω); now (15.216) and (15.217) are inserted into (15.214), and similarly as
before, we find usSH according to (15.207) with (15.209).

To model a US-NDT problem with pulsed excitation, we have to eval-
uate (15.212) with (15.213) for all circular frequencies ω within the band-
width of uiS(ω) applying a subsequent inverse Fourier transform. We choose
uiS(ω) as spectrum of an origin symmetric, for the negative y-component of
the particle displacement (15.198) positive RC2-pulse (Figure 2.20); likewise,
the pulsed far-field in backscattering direction—this comes from the numeri-
cal evaluation—approximately exhibits the structure of a positive RC2-pulse
in the negative y-component (compare the reflection of a plane SH-wave at
a stress-free planar boundary in Section 9.1.3: The reflected pulse does not
exhibit a sign change) stimulating us to plot −uRC2,far

sSH (r, θ, t) in Figure 15.13;
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FIGURE 15.13
RC2-far-field scattered pulses −uRC2,far

sSH (r, θ, t) for an incident plane SH-wave
impinging on a circular cylinder with a stress-free surface (respective ampli-
tudes normalized to the maximum value).
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the total duration of the RC2-pulse is given by T = 2a/cS corresponding to
the travel time of the shear wave along the diameter of the cylinder. The
pulsed cylinder wavefront of the scattered far-field requires the travel time
tr = r/cS from the coordinate origin at the cylinder center to the observa-
tion point R that is disregarded on a normalized time axis. The time origin
adjusted to the pulsed incident plane wave coincides with the transmission
of the RC2-pulse maximum through the plane k̂i · r = 0; therefore, the pulse
reflected at the cylinder front surface into backscattering direction arrives at
time t = tr − 2ta with ta = a/cS at the observation point finally yielding

tnorm =
cS

a
t − r

a
+ 2 (15.218)

as normalized time axis for the scattered pulses in Figure 15.13.
Let us first consider the backscattered pulse for θ = θi: We recognize for

tnorm = 0 the pulse being mirror reflected at the cylinder front surface ex-
hibiting a certain asymmetry as compared to the symmetric RC2-pulse of
the incident wave, which is not only related to the two-dimensionality of the
problem (Figure 13.6); it essentially originates—even in the case of a strict
validity of the Kirchhoff approximation (15.143)—from the adjacent points of
the mirror point contributing to the backscattered pulse via Huygens integra-
tion (15.138). This first backscattered pulse is followed by a smaller so-called
creeping wave pulse299 for tnorm � 5, whose physical nature is best explained
by AFIT-simulations of the scattering process in Figures 15.14 through 15.17

FIGURE 15.14
SH-RC2-pulse scattering for a circular cylinder with a stress-free surface:
AFIT-simulation (T = 2a/3cS).

299The Franz-type creeping waves circling a convex scatterer denote a precisely defined
phenomenon in the literature (Hönl et al. 1961; Heyman and Felsen 1985); they have nothing
to do with the radiation field of the “creeping wave transducer” (Langenberg et al. 1990).
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FIGURE 15.15
SH-RC2-pulse scattering for a circular cylinder with a stress-free surface:
AFIT-simulation (T = 2a/3cS).

FIGURE 15.16
SH-RC2-pulse scattering for a circular cylinder with a stress-free surface:
AFIT-simulation (T = 2a/3cS).

(a scalar problem allows for the application of “AFIT”). Figure 15.14 ini-
tially illustrates the development of the primary scattered pulse; note that
the superposition of this impulse with the incident plane wave on the surface
of the cylinder is nonzero due to the Neumann boundary condition. After
the incident wave has reached the time origin, it continues to travel straight
ahead, yet it remains connected to the surface via the scattered wave (Figure
15.15) because the boundary condition must be satisfied for all times after the
first contact with the scatterer. Figure 15.16 clearly shows the development
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FIGURE 15.17
SH-RC2-pulse scattering for a circular cylinder with a stress-free surface:
AFIT-simulation (T = 2a/3cS).

of creeping waves resulting from the enforcement of the boundary condition:
They stick to the surface of the scatterer while circling it, and on the rear sur-
face, they cross each other (Figure 15.17); on the respective opposite side, they
send wavefronts back to the observation point arriving there simultaneously.
The travel time difference with regard to the mirror pulse is approximately
calculated as follows: The mirror pulse is created at time tnorm = 0, both (sym-
metric) creeping waves exactly at tnorm = 1; then they circle the geometric
shadow side of the circular cylinder during the time tnorm = π and experience
another delay tnorm = 1 compared to the mirror pulse while traveling to the
(far-field) observation point resulting in a total delay of tnorm = 1 + π + 1 � 5.
Basically, an infinite series of creeping waves is created, yet their amplitudes
decay rapidly leaving the second one already invisible within the chosen scale.
Figure 15.17 also shows that the scatterer does not produce a geometric optical
shadow.

It should be noted that the creeping wave phenomenon is a consequence
of the exact calculation of the scattering problem: The Kirchhoff approxima-
tion does not contain creeping waves due to the zero secondary source on
the shadow side. This jump discontinuity of the secondary source may lead
to nonphysical “Kirchhoff signals” in the pulsed scattered field of a convex
scatterer.

The AFIT-simulations obviously allow for an intuitive interpretation of the
calculated A-scan in Figure 15.13, the single pulses can be uniquely allocated
to physical phenomena. This is one basic advantage of such simulations. The
two additional A-scans in Figure 15.13 have been calculated for θ − θi = 45o

and θ − θi = 90o; compared to backscattering, only the time delay and the
amplitudes of the creeping waves change, and they do no longer arrive si-
multaneously at the observation point. The one with the smaller time delay
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FIGURE 15.18
SH-wave scattering by a strip-like crack with a stress-free surface.

relative to the mirror pulse increases in visibility while the other one is already
below the recording level due to the longer creeping path.

Strip-like crack: The strip-like crack may be considered as the limiting
case of a cylinder with elliptical cross-section and stress-free surface. Advan-
tage: The reduced wave equation is also separable in elliptical coordinates, the
eigenfunctions are Mathieu functions (Schäfke 1967) to be calculated in terms
of series involving Bessel functions. This method yielded the result cited in
Section 5.6 for acoustic wave scattering by a rigid crack (Figure 5.3); here, we
only have to reinterpret the physical quantities in terms of SH-wave scattering.
Typically, in backscattering direction two scattered pulses are observed—again
we have T = 2a/cS—that emanate from the edges of the crack; the one from
the farther edge is bigger in amplitude and exhibits a negative phase compared
to the one from the closer edge. The edges may be considered as line sources,
and, therefore, for an incident RC2-pulse, the time structure of the respec-
tively bandlimited two-dimensional Green function according to Figure 13.5
is recovered.

Figures 15.19 through 15.20 illustrate the formation of the far-field pulses
in Figure 5.3 with the help of AFIT-simulations, where Figure 15.20 illus-
trates the subsequent scattering of an edge pulse at the opposite edge; this
basically leads to an infinite series of edge interaction pulses (with decreasing
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FIGURE 15.19
SH-RC2-pulse scattering by a strip-like crack with stress-free surface: AFIT-
simulation: θi = −45o (T = 0.5a/cS).

FIGURE 15.20
SH-RC2-pulse scattering by a strip-like crack with stress-free surface: AFIT-
simulation: θi = −45o (T = 0.5a/cS).

amplitudes) appearing as resonances in the frequency spectrum; being a con-
sequence of radiation interaction, they are not contained in the Kirchhoff ap-
proximation. Figures 15.32 and 15.33 additionally exhibit AFIT-simulations
for perpendicular incidence.

In Section 5.6, we showed results in Figure 5.4 referring to acoustic crack
scattering obtained with the Kirchhoff approximation. Here, we want to write
down the respective equations for SH-wave scattering, last but not least to give
the pulse structures in this figure, and, hence, in Figure 5.3 explicitly. First,
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we specify the scalar acoustic Huygens integral (5.85) to the actual physical
situation:

usSH(r,ω) =
∫

S+
c ∪S−

c

uSH(r′,ω)∇′G(r − r′,ω) · n′
c ds′; (15.219)

here, Sc = S+
c ∪ S−

c is the crack contour—the ds′-integration extends along
this line—composed of an upper and lower surface (Figure 15.18), and
G(r − r′,ω) is the two-dimensional Green function. In the far-field, (15.219)
reduces to

ufar
sSH(r,ω) = −jkS

∫
S+

c ∪S−
c

uSH(r′,ω) r̂ · n′
c Gfar(r, r′,ω) ds′. (15.220)

According to (15.105), we define the crack opening displacement

ucod
SH (x′,ω) = uSH(x′, z′ = +0,ω) − uSH(x′, z′ = −0,ω); (15.221)

due to n′
c = n+

c = ez on S+
c and n′

c = n−
c = −ez on S−

c , we may afterward
combine the S−

c -integral with the S+
c -integral:

ufar
sSH(r, θ,ω) = −jkS cos θ

∫ a

−a

ucod
SH (x′,ω) Gfar(x, x′, z, z′ = 0,ω) dx′.

(15.222)

Explicit insertion of Gfar(x, x′, z, z′ = 0,ω) = Gfar(r, x′,ω) according to
(13.52) yields

ufar
sSH(r, θ,ω) = −jω

1
4cS

e j π
4

√
2
π

e jkSr

√
kSr

cos θ

∫ a

−a

ucod
SH (x′,ω) e−jkS sin θx′

dx′.

(15.223)
Introduction of the Kirchhoff approximation (Equation 15.143)

ucod,PO
SH (x′,ω) = 2uiSH(x′,ω)

= 2uiS(ω)e−jkS sin θix
′

(15.224)

leads to an immediate evaluation of the integral:

ufar,PO
sSH (r, θ,ω) = −jωuiS(ω)

1
2cS

e j π
4

√
2
π

e jkSr

√
kSr

× cos θ
e jkSa(sin θ+sin θi) − e−jkSa(sin θ+sin θi)

jkS(sin θ + sin θi)︸ ︷︷ ︸
=

2a sin kSa(sin θ + sin θi)
kSa sin kSa(sin θ + sin θi)

. (15.225)

Apart from the “Neumann factor” cos θ, the monochromatic PO-scattering
diagram of the strip-like crack is given by the sinc-function with the argu-
ment kSa(sin θ + sin θi) yielding the main lobe of width kSa in the direction of
specular reflection θ = −θi. Yet, the argument of the sinc-function is also equal



K12611 Chapter: 15 page: 613 date: January 6, 2012

Scatterers in Homogeneous Isotropic Nondissipative Infinite Spaces 613

to zero for θ = θi + π, defining the forward scattering direction; but this is a
main lobe of the scattered field, it is required to create a shadow superimpos-
ing to the incident field, i.e., the secondary source of the strip scattered field
must—as primary surface sources in full-space (Section 13.3.4)—also radiate
in forward scattering direction. We obtain similar symmetric SH-scattering
diagrams as for P-, respectively S, radiation diagrams in Figure 13.17; here,
the local parameter kAa is given by the angle of incidence300 according to
−kSa sin θi.

Having similar explicit expressions for the scattered SH-field as in Sec-
tion 13.3.4 for radiated P-S-fields, we may also discuss the scattered pulsed
SH-field via Fourier inversion. Yet we must likewise distinguish between the
main lobe directions θ = −θi, respectively θ = θi + π, and all other direc-
tions because the frequency dependence of the sinc-function is dropped for
the main lobe directions; therefore, an incident, for example, RC2-pulse must
first be differentiated [factor −jω in (15.225)] and then convolved with the
two-dimensional Green pulse (compare Equation 13.54); due to cos(θi + π) =
− cos θi, it finally gets a negative sign in forward scattering direction (Fig-
ure 5.4). For all other scattering directions θ �= −θi, θi + π, θi �= 0—e.g., in
backscattering direction θ = θi �= 0 (as for the 45◦-incidence in Figure 5.4)—
the decomposition of the sinc function into two exponential functions reveals
the superposition of two edge pulses in such a way as if the two edges would
be line sources with opposite signs being switched on at times t = ∓a sin θi/cS
with an RC2-pulse (apart from the factor cot θi that does not appear in Equa-
tion 13.54):

uRC2,far,PO
sSH (r, θi, t) = cot θi

[
GRC2,far

(
r = −rk̂i, r

′ = aex, t +
a sin θi

cS

)
−GRC2,far

(
r = −rk̂i, r

′ = −aex, t − a sin θi

cS

)]
;

(15.226)

the edge initially illuminated by the incident wave radiates with a positive
and the other one with a negative sign (Figure 5.4), where the equal ampli-
tude magnitude is an immediate consequence of the Kirchhoff approximation;
Figure 5.3, resulting from a calculation free of approximations, tells us that
both edge pulses have indeed different signs yet nonequal amplitudes.

Let us go back to specular reflection, respectively forward scattering: As
compared to the edge pulses the (−jω)-factor approximately yields a recon-
struction of the incident RC2-pulse; it is indeed required—with a negative
sign—to produce a shadow of the scatterer; due to the above “approximately,”
this shadow is not geometric optical but scattered optical.

By the way, letting the strip not radiate as secondary but as primary
SH-source, we have to prescribe a two-dimensional strip-like fy-force density
according to (7.47); hence, we have to solve

300A conventional angle transducer is actually realized by the angle of an incident wave!
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FIGURE 15.21
P-SV-wave scattering by a circular cylindrical void with stress-free surface.

∆uy(r,ω) + k2
Suy(r,ω) = − 1

µ
fy(r,ω); (15.227)

with the two-dimensional Green function we immediately obtain

uy(x, z,ω) =
1
µ

∫ a

−a

fy(x′,ω)G(x − x′, z, z′ = 0,ω) dx′. (15.228)

According to Section 14.1.2, we may even embed the primary strip source in
a stress-free surface—for SH-waves, this requires the enforcement of a Neu-
mann boundary condition—utilizing the respective Green function GN = 2G
in (15.228):

uN
y (x, z,ω) =

2
µ

∫ a

−a

fy(x′,ω)G(x − x′, z, z′ = 0,ω) dx′. (15.229)

We state that: Similar to the P-radiation of an fz-source (Section 13.3.4; Fig-
ure 13.21), this primary SH-source does not exhibit a pulse differentiation in
the far-field main lobe directions, and the edge pulses turn out to be integrals
of the line source pulse (13.54).

15.4.3 Two-dimensional scattering problems:
Pulsed P-SV-far-fields of circular cylindrical voids
and strip-like cracks

Circular cylindrical void: Even for two-dimensional scatterers P-SV-wave
scattering is not a scalar problem (compare reflection and mode conversion of
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a plane wave at a planar boundary: Chapter 9), yet only two scalar potentials
are required, the scalar Helmholtz potential Φ(r,ω) and the y-component
Ψy(r,ω) of the vector potential Ψ(r,ω), because

u(r,ω) = ∇Φ(r,ω) + ∇ × Ψy(r,ω)ey (15.230)

solely yields particle displacement components located in the xz-plane to be
allotted to P-, respectively SV-waves. Both potentials satisfy homogeneous
scalar Helmholtz equations outside the scatterer

∆Φ(r,ω) + k2
PΦ(r,ω) = 0, (15.231)

∆Ψy(r,ω) + k2
SΨy(r,ω) = 0, (15.232)

provided the incident field is assumed to be a (source-free) plane P- or
SV-wave:

Φi(r,ω, k̂i) = φi(ω) e jkPk̂i·r, (15.233)

Ψiy(r,ω, k̂i) = ψi(ω) e jkSk̂i·r. (15.234)

With (15.230), the incident P-wave is obtained from (15.233):

uiP(r,ω, k̂i) = jkPφi(ω)︸ ︷︷ ︸
= uiP(ω)

e jkPk̂i·r k̂i, (15.235)

and the incident SV-wave from (15.234):

uiSV(r,ω, k̂i) = jkSψi(ω)︸ ︷︷ ︸
= uiS(ω)

e jkSk̂i·r k̂i × ey, (15.236)

where k̂i is given by (15.199). For the circular cylindrical void, P-SV-scattering
is sketched in Figure 15.21.

Apparently, it is now appropriate to solve the scalar Helmholtz equations
(15.231) and (15.232) for the scattering potentials Φs(r, θ,ω) and Ψsy(r, θ,ω)
similar to (15.202) with partial wave separation:

Φs(r, θ,ω) =
∞∑

n=−∞
φn(ω)H(1)

n (kPr) e jnθ, (15.237)

Ψsy(r, θ,ω) =
∞∑

n=−∞
ψn(ω)H(1)

n (kSr) e jnθ. (15.238)

To calculate the expansion coefficients φn(ω) and ψn(ω), we need two equa-
tions resulting from the stress-free boundary condition on the cylinder surface:

T(a, θ,ω) · er = 0, (15.239)
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where

T(a, θ,ω) = λ I∇ · u(r, θ,ω)
∣∣∣
r=a

+ µ
[
∇u(r, θ,ω) + ∇u21(r, θ,ω)

] ∣∣∣
r=a

.

(15.240)

With

∇u(r, θ,ω) · er =
∂ur(r, θ,ω)

∂r
er +

1
r

[
∂ur(r, θ,ω)

∂θ
− uθ(r, θ,ω)

]
eθ,

(15.241)

∇u21(r, θ,ω) · er =
∂ur(r, θ,ω)

∂r
er +

∂uθ(r, θ,ω)
∂r

eθ, (15.242)

where

ur(r, θ,ω) =
∂Φ(r, θ,ω)

∂r
+

1
r

∂Ψy(r, θ,ω)
∂θ

, (15.243)

uθ(r, θ,ω) =
1
r

∂Φ(r, θ,ω)
∂θ

− ∂Ψy(r, θ,ω)
∂r

, (15.244)

we obtain using (15.231)

Trr(r, θ,ω) = −k2
PλΦ(r, θ,ω) + 2µ

{
∂2Φ(r, θ,ω)

∂r2 +
∂

∂r

[
1
r

∂Ψy(r, θ,ω)
∂θ

]}
,

(15.245)

1
µ

Tθr(r, θ,ω) = 2
∂

∂r

[
1
r

∂Φ(r, θ,ω)
∂θ

]
− r

∂

∂r

[
1
r

∂Ψy(r, θ,ω)
∂r

]
+

1
r2

∂2Ψy(r, θ,ω)
∂θ2 . (15.246)

For r = a, we get both nonzero components of (15.239) as the required equa-
tions. Note: The potentials Φ and Ψy in (15.245) and (15.246) are total
potentials Φ = Φi + Φs, Ψy = Ψiy + Ψsy allowing for the calculation of the
expansion coefficients for P-, respectively SV-wave, incidence depending on
the choice of ψi(ω) = 0, φi(ω) �= 0, respectively ψi(ω) �= 0, φi(ω) = 0, and
using (15.208).

The r- and θ-components of the scattered field are calculated with the help
of (15.243) and (15.244), where we know that in the far-field pressure wave-
fronts are given by ufar

sr , and shear wavefronts are given by ufar
sθ ; therefore, for

P-wave incidence, ufar
sr is the directly scattered and ufar

sθ the mode converted
wavefront, and vice versa. Furthermore, we have to take care of a differenti-
ating (jω)-factor between the potential spectra and the particle displacement
spectra when calculating pulsed wavefronts (Equations 15.235 and 15.236).

Figure 15.22 displays a matrix representation of pulsed far-fields as func-
tion of the normalized time

tP,S
norm =

cP

a
t − cP

cP,S

r

a
+ 2

cP

cP,S
(15.247)



K12611 Chapter: 15 page: 617 date: January 6, 2012

Scatterers in Homogeneous Isotropic Nondissipative Infinite Spaces 617

prescribing uiP(ω) (top), respectively uiS(ω) (bottom), as RC2-spectra; for all
cases, the total duration of the RC2-pulse with T = 2a/cP is approximately
as large as the pressure wave travel time over the diameter of the cylinder.
The origin of the normalized time axes always coincides with the arrival of
the first (specularly reflected) pressure or shear pulse. As compared to the
scalar case, we notice—e.g., in backscattering direction—a differentiation of
the incident pulse (similar to the specular reflection in case of the strip-like
crack: Figure 5.3); the reason is the (jω)-factor appearing in the secondary
h

c
-source (15.187) that penetrates the scattering amplitudes (15.182) and

(15.185). Since all time axes are normalized with the pressure wave velocity,
we observe the (SV=⇒SV)-creeping wave pulse in backscattering direction
later than in Figure 15.13 because in the former case, the time axis was nor-
malized with the shear wave velocity. In backscattering direction, the clock-
wise and counter-clockwise traveling creeping waves arrive simultaneously, in
other directions, they can be timely separated. Due to the lower attenuation
in the (SV=⇒SV)-case, the creeping wave pulse with the larger travel distance
becomes also visible.

Figures 15.23 and 15.24 display EFIT-calculated wavefronts for P-wave
incidence and Figures 15.25 and 15.26 for SV-wave incidence for two different
times: As compared to SH-wavefronts (Figures 15.14 through 15.17), we ob-
serve mode conversion together with creeping waves in both modes, and the
scattered wavefronts exhibit a characteristic amplitude structure due to the
elastodynamic point directivity of the secondary sources (consult Figure 13.14
for the exez-source to understand, for example, the amplitude structure for
SV-wave incidence).

Strip-like crack: In contrast to the partial wave separation in cylindrical
coordinates (Equation 15.207), the coordinates of the elliptical cylinder—
including the limiting case of the strip-like crack—exhibit wave numbers in all
separation functions (Mathieu functions), even in the generalized angular func-
tions. If only a single wave number has to be considered as for SH-scattering,
orthogonality can still be exploited to calculate the expansion coefficients. Yet,
P-SV-scattering has to cope with two wave numbers foreclosing a respective
approach. Therefore, the present case requires the numerical solution of in-
tegral equations (15.122) and (15.123) as derived in Section 15.2.2 for the
components of the crack opening displacement, and this may be achieved
with the method of moments301 (Harrington 1968).

Figures 15.27 through 15.29 exemplify magnitudes of far-field radiation
patterns for a fixed frequency and crack width 2a; throughout we have kPa =
11, and κ = 1.827 for the pressure shear wave ratio yields kSa = 20.1 (this
κ-value is slightly different from κ = 1.844 used elsewhere in this elaboration).
The figures vary with the angle of incidence; each of them exhibits diagrams

301We could apply a code developed by D.R. Wilton and coworkers from the University of
Houston, USA.
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FIGURE 15.23
P-RC2-pulse scattering by a circular cylinder with a stress-free surface: EFIT-
simulation.

for P-, respectively SV-wave, incidence in a matrix representation as in Figure
15.22. We know from Section 15.4 that scattered fields are described by similar
equations as radiation fields in full-space, only the primary sources have to
be replaced by secondary sources. Admittedly, primary sources are usually
realized prescribing the force density,302 while secondary sources on stress-
free surfaces are given by deformation rates. Point directivities of Figure 13.12
are relevant for the first ones, and those of Figure 13.14 for the latter ones.
Yet, for perpendicular P-wave incidence (Figure 15.27: top)—the deformation

FIGURE 15.22
RC2-pulsed scattered far-field uRC2,far

sP (r, θ, t) · er, respectively uRC2,far
sSV

(r, θ, t) · eθ for plane P- (top), respectively SV-wave (bottom), incidence on a
circular cylinder with a stress-free surface (amplitudes normalized to their re-
spective maximum value resulting in nonzero pulses for (P=⇒S)- and (S=⇒P)-
backscattering).

302Because we consider primary force density sources on stress-free surfaces as models for
piezoelectric transducers; prescription of a deformation rate yields a “short circuit.”
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FIGURE 15.24
P-RC2-pulse scattering by a circular cylinder with a stress-free surface: EFIT-
simulation.

FIGURE 15.25
SV-RC2-pulse scattering by a circular cylinder with a stress-free surface:
EFIT-simulation.
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FIGURE 15.26
SV-RC2-pulse scattering by a circular cylinder with a stress-free surface:
EFIT-simulation.

rate is a ezez-source—the differences compared to the ez-force density source
are covered by the scalar radiation diagram of the strip leading in fact to a
congruence of the (P=⇒P)- and (P=⇒SV)-scattering diagrams of Figure 15.27
with the P- and S-radiation diagrams of Figures 13.17(e) and (f) (apart from
the slightly different kP,Sa-values). The same is true for the exez-deformation
rate source (Figure 13.14) for perpendicular SV-wave incidence as compared
to the ex-force density source (Figure 13.12). Vis-à-vis P-wave incidence only
the main lobes are narrower due to the larger kSa-value. As for the scalar
SH-wave incidence on the strip (Section 15.4.2), we observe respective main
lobes in the direction of specular reflection (in this case in backscattering
direction) and, in forward scattering direction, to yield a shadow.

Figure 15.28 displays scattering diagrams for θi = 210o, an angle of inci-
dence of 30◦ with regard to the crack normal. First, we recognize clear main
lobes even for the mode converted scattered fields (P=⇒SV; SV=⇒P), yet
only in the direction of “specular” mode conversion because no shadow has
to be formed. Furthermore, we state an asymmetry within the (P=⇒P)- and
(SV=⇒SV)-diagrams obviously foreclosing to argue with the superposition
of the magnitude-symmetric deformation rate point directivities of Figure
13.14 to understand the structure of crack scattered fields, and by no means,
we may refer to the primary fz-full-space source [Figures 13.17(a) and (b)]
illustration.
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FIGURE 15.27
P-SV-far-field radiation patterns of a strip-like crack with a stress-free surface
for plane P- (top: P=⇒P; P=⇒SV), respectively SV-wave, incidence (bot-
tom: SV=⇒P; SV=⇒SV) (respective amplitudes normalized to their maxi-
mum value: kPa = 11, kSa = 20.1, θi = 180o).

The asymmetry of the (P=⇒P)- and (SV=⇒SV)-main lobe diagrams in
the directions of specular reflection and forward scattering for nonperpendicu-
lar incidence is in fact a specialty of elastodynamics as compared to acoustics
and electromagnetics: Cause are the elastodynamic point directivities (13.174)
and (13.176) of deformation rate sources that essentially codetermine the an-
gular dependence of P-SV-scattered fields via the scattering amplitude repre-
sentations (15.182) and (15.185); with the secondary source (Equation 15.187)

hcod
c

(x, y, z,ω) = jωI+ : ezu
cod(x,ω)δ(z)qa(x), (15.248)

the scalar radiation characteristics of the crack “aperture” turn out to be
magnitude-symmetric for the transition from the scattering direction θ to the
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FIGURE 15.28
P-SV-far-field radiation patterns of a strip-like crack with a stress-free surface
for plane P- (top: P=⇒P; P=⇒SV), respectively SV-wave, incidence (bot-
tom: SV=⇒P; SV=⇒SV) (respective amplitudes normalized to their maxi-
mum value: kPa = 11, kSa = 20.1, θi = 210o).

scattering direction π − θ, but not the superpositions of exez- and ezez-point
directivities because of the combined appearance of cos θ- and sin θ-functions.

Figure 15.29 finally shows the magnitudes of the scattered far-fields for an
incidence angle of 45◦ with regard to the crack normal, i.e., for θi = 225o. For
the case of reflection and mode conversion of a plane SV-wave at an infinite
stress-free surface, we would already find ourselves beyond the critical angle
for P-mode conversion; evidently, the same is true for the crack of finite width
as can be concluded from the (SV=⇒P)-diagram: For θi = π + ϑcmP, the main
lobe of the scalar crack “aperture” points into the direction θ = 90o allowing
the point directivities to visualize mainly side lobes.

As with Figures 15.22 through 15.26, we now turn to pulsed scattered fields
first showing 2D-EFIT-wavefronts for a long-⊥-, respectively a shear-⊥, trans-
ducer model on a stress-free surface (Figures 15.30 and 15.31, respectively
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FIGURE 15.29
P-SV-far-field radiation patterns of a strip-like crack with a stress-free surface
for plane P- (top: P=⇒P; P=⇒SV), respectively SV-wave, incidence (bot-
tom: SV=⇒P; SV=⇒SV) (respective amplitudes normalized to their maxi-
mum value: kPa = 11, kSa = 20.1, θi = 225o).

15.32 and 15.33). Mode conversion and Rayleigh waves traveling along the
crack faces are nicely recognized exciting the crack edges—basically infinitely
often—as line sources for cylindrical elastic waves. They become visible in
A-scans as resonance pulses (e.g., P=⇒P in Figure 15.34, backscattering).
The EFIT-simulations in Figures 15.30 and 15.31 are complemented by AFIT-
simulations assuming a fictitious µ-free material with the same pressure wave
velocity as for steel; then the stress-free boundary condition on the specimen
and the crack surface manifests itself as a Dirichlet boundary condition for
the pressure due to T = −pI (Equation 5.3) (soft surfaces), and prescribing a
normal force density within the transducer aperture, i.e., the stress tensor com-
ponent Tzz, manifests itself as pressure prescription. From this confrontation,
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FIGURE 15.30
P-RC2-pulse scattering (t = t1) by a strip-like crack with a stress-free sur-
face (left: EFIT-simulation; magnitude of the particle velocity), respectively
by a strip-like “Crack” with a soft surface (right: AFIT-simulation; for a di-
rect comparison magnitude of the particle velocity and not pressure as in
Figure 14.1).

FIGURE 15.31
P-RC2-pulse scattering (t = t2 > t1) by a strip-like crack with a stress-free
surface (left: EFIT-simulation; magnitude of the particle velocity), respec-
tively by a strip-like “crack” with a soft surface (right: AFIT-simulation; for
a direct comparison magnitude of the particle velocity and not pressure as in
Figure 14.1).

we learn a lot about the complexity of elastodynamic wave fields as com-
pared to their acoustic counterparts. In Figures 15.32 and 15.33, the AFIT-
simulation stands for SH-wave scattering (we have cSH = cSV), i.e., as scalar
boundary condition the Neumann boundary condition replaces the Dirichlet
boundary condition of Figures 15.30 and 15.31. Insofar, Figures 15.32 and
15.33 complement Figures 15.19 and 15.20.

The already cited Figure 15.34 shows, comparable to Figure 15.22, RC2-
pulse A-scans for the special incidence angle of 30◦, counted from the normal,
that yielded distinct scattering diagrams in all four cases according to Fig-
ure 15.28. The impulses for the (P=⇒P)-case look very similar as the scalar
acoustic pulses in Figure 5.3 (i.e., the SH-case), yet augmented by pronounced
resonance pulses; the differentiation in the main lobe directions comes from
the (jω)-factor of the secondary deformation rate source (15.248).
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FIGURE 15.32
SV-RC2-pulse scattering (t = t1) by a strip-like crack with a stress-free surface
(left: EFIT-simulation; magnitude of the particle velocity), respectively SH-
RC2-pulse scattering (right: AFIT-simulation; magnitude of the y-component
of the particle velocity).

FIGURE 15.33
SV-RC2-pulse scattering (t = t2 > t1) by a strip-like crack with a stress-free
surface (left: EFIT-simulation; magnitude of the particle velocity), respec-
tively SH-RC2-pulse scattering (right: AFIT-simulation; magnitude of the y-
component of the particle velocity).

Due to the cP-time axis normalization in all cases, the (SV=⇒SV)-edge
pulses are further apart. As compared to (P=⇒P)-scattering, we state a much
lower amplitude of the pulse from the closer edge with respect to the one from
the farther edge; this weakens the depth assessment of a back wall breaking
crack in pulse-echo mode as well as the time of flight diffraction (TOFD)-
technique.

15.4.4 Three-dimensional scattering problems:
Pulsed P-S-far-fields of spherical voids

In the case of the two-dimensional circular cylinder, we were able to apply
the same mathematical calculus for either pressure or shear wave scattering
(Section 15.4.3), in case of the three-dimensional sphere, shear wave scat-
tering is much more elaborate, while pressure wave scattering follows the
beaten path.
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FIGURE 15.34
RC2-pulsed far-field uRC2,far

sP (r, θ, t) · er, respectively uRC2,far
sSV (r, θ, t) · eθ by a

strip-like crack with a stress-free surface for plane P- (top), respectively
SV-wave incidence (bottom) (respective amplitudes normalized to maximum
value); θi = 210o.

P-wave incidence: Due to the spherical symmetry, we may orient a carte-
sian coordinate system always with the negative z-direction coinciding with
the direction of incidence of the P-wave (Figure 15.35). The ansatz

uiP(R,ω, k̂i) = uiP(ω) e jkPk̂i·R k̂i (15.249)

then yields ϕ-independent R- and ϑ-components of the incident P-wave with

k̂i = −ez

= − cos ϑ eR + sinϑ eϑ; (15.250)
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FIGURE 15.35
P-wave scattering by a spherical void with a stress-free surface.

therefore, we expect that ∂/∂ϕ ≡ 0 holds and that the scattered field—also
in the mode converted part—does not contain ϕ-components: In each plane
ϕ = const, it is P-SV-polarized meaning that the reference plane for SV-
polarization is ϕ-dependent: We deal with P-S-wave scattering. In the far-field,
we obviously have ufar

sP = ufar
sP eR and ufar

sS = ufar
sS eϑ (Figure 15.35). With the

plane “potential wave”

Φi(R,ω, k̂i) = φi(ω) e jkPk̂i·R (15.251)

and

uiP(R,ω, k̂i) = ∇Φi(R,ω, k̂i)

= eR

∂Φi(R,ω, k̂i)
∂R

+ eϑ

1
R

∂Φi(R,ω, k̂i)
∂ϑ

, (15.252)

we again obtain (15.249) with (15.250) provided we put

uiP(ω) = jkPφi(ω). (15.253)

The desired R- and ϑ-components of the scattered field us(R,ϑ,ω) follow
according to
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us(R,ϑ,ω) = ∇Φs(R,ϑ,ω) + ∇ × [Ψsϕ(R,ϑ,ω) eϕ

]
=
{

∂Φs(R,ϑ,ω)
∂R

+
1

R sinϑ

∂

∂ϑ
[sinϑ Ψsϕ(R,ϑ,ω)]

}
eR

+
{

1
R

∂Φs(R,ϑ,ω)
∂ϑ

− 1
R

∂

∂R
[R Ψsϕ(R,ϑ,ω)]

}
eϑ (15.254)

from the Helmholtz potentials Φs(R,ω,ϑ) and Ψs(R,ϑ,ω) = Ψsϕ(R,ϑ,ω) eϕ,
where these potentials must satisfy the differential equation

∆Φs(R,ϑ,ω) + k2
PΦs(R,ϑ,ω) = 0, (15.255)

∆Ψsϕ(R,ϑ,ω) +
(

k2
S − 1

R2 sin2 ϑ

)
Ψsϕ(R,ϑ,ω) = 0; (15.256)

the additional term in (15.256) is due to the fact that Ψs satisfies a vector
Helmholtz equation, i.e., in ∆Ψsϕeϕ, we also have to differentiate eϕ.

As in Sections 15.4.2 and 15.4.3, we solve (15.255) and (15.256) separat-
ing into partial waves, yet this time partial spherical waves. With the delta-
operator

∆ =
∂2

∂R2 +
2
R

∂

∂R
+

1
R2 sinϑ

∂

∂ϑ
sinϑ

∂

∂ϑ
+

1
R2 sin2 ϑ

∂2

∂ϕ2 (15.257)

in spherical coordinates, we find the general solution of

∆W (R,ϑ,ϕ,ω) + k2W (R,ϑ,ϕ) = 0 (15.258)

in terms of an eigenfunction expansion:

W (R,ϑ,ϕ,ω) =
∞∑

n=0

n∑
m=−n

wnm(ω)h(1)
n (kR)Pm

n (cos ϑ)ejmϕ, (15.259)

where h(1)
n (kR) denote spherical Hankel functions according to

h(1)
n (kR) =

√
π

2kR
H(1)

n+ 1
2
(kR), (15.260)

and Pm
n (ζ) associated Legendre functions of the first kind according to (Schäfke

1967)

Pm
n (ζ) = (−1)m(1 − ζ2)

m
2

dmPn(ζ)
dζm

, (15.261)

Pn(ζ) =
1

2nn!
dn

dζn
(ζ2 − 1)n; (15.262)

they satisfy the differential equations

∂2h(1)
n (kR)
∂R2 +

2
R

∂h(1)
n (kR)
∂R

+
(

k2 − n(n + 1)
R2

)
h(1)

n (kR) = 0, (15.263)

1
sinϑ

∂

∂ϑ

[
sinϑ

∂Pm
n (cos ϑ)
∂ϑ

]
+
[
n(n + 1) − m2

sin2 ϑ

]
Pm

n (cos ϑ) = 0. (15.264)
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Since the solutions of (15.255) and (15.256) should be rotationally symmet-
ric with regard to ϕ, only the index m = 0 is relevant in the eigenfunction
expansion (15.259) allowing to write down the series

Φs(R,ϑ,ω) =
∞∑

n=0

φn(ω)h(1)
n (kPR)Pn(cos ϑ) (15.265)

for the scattering potential Φs(R,ϑ,ω); here, Pn(cos ϑ) = P0
n(cos ϑ) are Leg-

endre polynomials in cosϑ. Furthermore, we state for m = ±1 that (15.264) is
just the ϑ-separated part of the differential equation (15.256) in case ∂/∂ϕ = 0
resulting in

Ψsϕ(R,ϑ,ω) =
∞∑

n=0

ψn(ω)h(1)
n (kSR)P1

n(cos ϑ) (15.266)

as (rotationally symmetric) series expansion for the scattering potential303

Ψsϕ(R,ϑ,ω); since P−1
n according to P−1

n = −P1
n/n(n + 1) is proportional

to P1
n, we must not consider this term separately. We take the eigenfunction

expansion for the incident plane pressure wave potential from the literature
(Schäfke 1967; Langenberg 2005):

Φi(R,ϑ,ω, k̂i = −ez) = φi(ω) e−jkPR cos ϑ

= φi(ω)
∞∑

n=0

(−j)n(2n + 1)jn(kPR)Pn(cos ϑ), (15.267)

where jn denote spherical Bessel functions.
As always, the boundary condition

T(a,ϑ,ω) · eR = T
s
(a,ϑ,ω) · eR + T

iP
(a,ϑ,ω,−ez) · eR

= 0 (15.268)

with

T(R,ϑ,ω) · eR

= λ eR∇ · u(R,ϑ,ω) + µ
[
∇u(R,ϑ,ω) · eR + ∇u21(R,ϑ,ω) · eR

]
= −λk2

PΦ(R,ϑ,ω) eR + µ
[
∇u(R,ϑ,ω) · eR + ∇u21(R,ϑ,ω) · eR

]
,

(15.269)

∇u(R,ϑ,ω) · eR =
∂uR(R,ϑ,ω)

∂R
eR +

1
R

[
∂uR(R,ϑ,ω)

∂ϑ
− uϑ(R,ϑ,ω)

]
eϑ,

(15.270)

∇u21(R,ϑ,ω) · eR =
∂uR(R,ϑ,ω)

∂R
eR +

∂uϑ(R,ϑ,ω)
∂R

eϑ, (15.271)

303Due to (Equation 15.261)

P1
n(cos ϑ) =

∂Pn(cos ϑ)
∂ϑ

the literature (Mow 1965) initially starts motivation-less with ∂Ψsϕ/∂ϑ as potential.
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serves to calculate the expansion coefficients φn(ω) and ψn(ω) because
(15.268) has exactly two scalar components eR · T · eR = TRR and eϑ · T ·
eR = TϑR:

TRR(R,ϑ,ω) = −λk2
PΦ(R,ϑ,ω) + 2µ

∂2Φ(R,ϑ,ω)
∂R2

+ 2µ
1

sinϑ

∂

∂R

{
1
R

∂

∂ϑ
[sinϑ Ψϕ(R,ϑ,ω)]

}
, (15.272)

1
µ

TϑR(R,ϑ,ω) = 2
∂

∂R

[
1
R

∂Φ(R,ϑ,ω)
∂ϑ

]
− ∂2Ψϕ(R,ϑ,ω)

∂R2 +
2

R2 Ψϕ(R,ϑ,ω)

+
1

R2

∂

∂ϑ

{
1

sinϑ

∂

∂ϑ
[sinϑ Ψϕ(R,ϑ,ω)]

}
. (15.273)

Insertion of the series expansions (15.265), (15.266), and (15.267) and con-
sidering Footnote 303 and the differential equations (15.263) and (15.264)
together with the orthogonality relation∫ π

0
Pm

n (cos ϑ)Pm
n′(cos ϑ) sinϑ dϑ =

2
2n + 1

(n + m)!
(n − m)!

δnn′ (15.274)

yields the following system of equations for φn(ω) and ψn(ω):{[
2n(n + 1) − k2

Sa2]h(1)
n (kPa) − 4kPah(1)′

n (kPa)
}

φn(ω)

+ 2n(n + 1)
[
kSah(1)′

n (kSa) − h(1)
n (kSa)

]
ψn(ω)

= −(−j)n(2n + 1)
{[

2n(n + 1) − k2
Sa2] jn(kPa) − 4kPa j′n(kPa)

}
φi(ω),

(15.275)[
kPah(1)′

n (kPa) − h(1)
n (kPa)

]
φn(ω)

−
{[

n(n + 1) − 1 − k2
Sa2

2

]
h(1)

n (kSa) − kSah(1)′
n (kSa)

}
ψn(ω)

= −(−j)n(2n + 1) [kPa j′n(kPa) − jn(kPa)]φi(ω). (15.276)

With (15.254), we finally obtain the components of the scattered particle
velocity field:

usR(R,ϑ,ω)

=
∞∑

n=0

[
kPφn(ω)h(1)′

n (kPR) − n(n + 1)ψn(ω)
h(1)

n (kSR)
R

]
Pn(cos ϑ),

(15.277)

usϑ(R,ϑ,ω)

=
∞∑

n=0

{
φn(ω)

h(1)
n (kPR)

R
− ψn(ω)

[
kSh(1)′

n (kSR) +
h(1)

n (kSR)
R

]}
P1

n(cos ϑ).

(15.278)
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With the asymptotic

h(1)
n (kP,SR) � j−(n+1)

kP,S

e jkP,SR

R
, (15.279)

h(1)′
n (kP,SR) � j−n e jkP,SR

R
(15.280)

of the spherical Hankel functions the far-field approximation emerges:

ufar
sR(R,ϑ,ω) =

e jkPR

R
kP

∞∑
n=0

j−nφn(ω)Pn(cos ϑ), (15.281)

ufar
sϑ (R,ϑ,ω) = −ejkSR

R
kS

∞∑
n=0

j−nψn(ω)P1
n(cos ϑ). (15.282)

That way, the scattering amplitudes (15.181) and (15.185) are explicitly given
as eigenfunction expansions: As expected, in the far-field, we observe exclu-
sively a pressure wave in the longitudinal R-component, and a shear wave in
the transverse ϑ-component, the scattered wave modes are decoupled through
polarization.

S-wave incidence: Choosing the (negative) z-axis of a cartesian coordinate
system as direction of incidence of a plane shear wave on a spherical void,
we may rotate the coordinate system around the z-axis until the x-axis coin-
cides with the polarization vector of the shear wave (Figure 15.36). Hence, we
assume

uiS(R,ω, k̂i) = uiS(ω) ejkSk̂i·R ex (15.283)

with k̂i = −ez as incident wave. Since ex defines a preference direction in the
xy-plane, we may no longer count on the rotational symmetry of the pres-
sure wave incidence, we must admit ∂/∂ϕ �≡ 0. Furthermore, we may choose
a surface element on the sphere where k̂i and eR span a plane of incidence,
and it is obvious that ûiS = ex is generally not located in this plane: In three
dimensions, we can no longer speak of SV-scattering, we have to cope with
S-scattering without decoupling into SV and SH. This requires two compo-
nents of the vector potential Ψ besides the scalar potential Φ, namely its
ϑ- and ϕ-components. Yet, we may easily show that the resulting ϑ- and
ϕ-components of the vector Helmholtz equation ∆Ψ(R,ω) + k2

SΨ(R,ω) = 0
are not decoupled.304 But from the theory of electromagnetic waves, we bor-
row a “trick” to decouple a vector wave equation (Hönl et al. 1961; Langenberg
2005) that also works for the present problem305 (Brill and Gaunaurd 1987):
We put Ψ(R,ω) divergence-free according to

304In fact, due to the divergence condition, the R-component is equal to zero, but in the
ϑ- as well as in the ϕ-component both components of Ψ appear.
305Alternatively, we may work with vector wave functions (Stratton 1941; Einspruch et al.

1960).
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FIGURE 15.36
S-wave scattering by a spherical void with a stress-free surface.

Ψ(R,ω) = ∇ × [RU(R,ω)] + ∇ × ∇ × [RV (R,ω)] (15.284)

introducing two scalar potentials U(R,ω) and V (R,ω), the so-called Debye
potentials. Applying the Helmholtz operator ∆ + k2

S to (15.284), we obtain
after some calculus

(∆ + k2
S)Ψ(R,ω) = −(R × ∇)

[
∆U(R,ω) + k2

SU(R,ω)
]

+ (R · ∇∇ + 2∇ − R∆)
[
∆V (R,ω) + k2

SV (R,ω)
]
,

(15.285)

and hence

∆U(R,ω) + k2
SU(R,ω) = 0, (15.286)

∆V (R,ω) + k2
SV (R,ω) = 0 (15.287)

as a collection of sufficient conditions to assure that Ψ(R,ω) satisfies a homo-
geneous vector Helmholtz equation. In addition, we have

∆Φ(R,ω) + k2
PΦ(R,ω) = 0 (15.288)

for the scalar pressure wave potential. Evidently, the solutions of all scalar
Helmholtz equations have to be expanded into partial waves in spherical co-
ordinates; without relying on rotational symmetry, we have to assume the
general eigenfunction expansion (15.259) according to
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Φs(R,ϑ,ϕ,ω) =
∞∑

n=0

n∑
m=−n

φ(s)
nm(ω)h(1)

n (kPR)Pm
n (cos ϑ)e jmϕ, (15.289)

Us(R,ϑ,ϕ,ω) =
∞∑

n=0

n∑
m=−n

u(s)
nm(ω)h(1)

n (kSR)Pm
n (cos ϑ)e jmϕ, (15.290)

Vs(R,ϑ,ϕ,ω) =
∞∑

n=0

n∑
m=−n

v(s)
nm(ω)h(1)

n (kSR)Pm
n (cos ϑ)e jmϕ. (15.291)

In particular, we have to find the expansions for the potentials Ui(R,ω, k̂i),
Vi(R,ω, k̂i) of the incident shear wave in a way that

uiS(R,ω,−ez) = ∇ × ∇ × [RUi(R,ω,−ez)]
+ ∇ × ∇ × ∇ × [RVi(R,ω,−ez)], (15.292)

hence,

uiS(ω) e−jkSR cos ϑ sinϑ cos ϕ

= ∇ × ∇ × [RUi(R,ϑ,ϕ,ω,−ez)] · eR

+ ∇ × ∇ × ∇ × [RVi(R,ϑ,ϕ,ω,−ez)] · eR, (15.293)

uiS(ω) e−jkSR cos ϑ cos ϑ cos ϕ

= ∇ × ∇ × [RUi(R,ϑ,ϕ,ω,−ez)] · eϑ

+ ∇ × ∇ × ∇ × [RVi(R,ϑ,ϕ,ω,−ez)] · eϑ, (15.294)

− uiS(ω) e−jkSR cos ϑ sinϕ

= ∇ × ∇ × [RUi(R,ϑ,ϕ,ω,−ez)] · eϕ

+ ∇ × ∇ × ∇ × [RVi(R,ϑ,ϕ,ω,−ez)] · eϕ, (15.295)

holds. Explicitly differentiating the right-hand side of (15.292) yields

2∇Ui(R,ω,−ez) + R · ∇∇Ui(R,ω,−ez) + k2
S RUi(R,ω,−ez)

− k2
S R × ∇Vi(R,ω,−ez) (15.296)

allowing to write down the components required in (15.293) through (15.295):

uiS(ω) e−jkSR cos ϑ sinϑ cos ϕ = R
∂2Ui(R,ϑ,ϕ,ω,−ez)

∂R2

+ 2
∂Ui(R,ϑ,ϕ,ω,−ez)

∂R

+ k2
S R Ui(R,ϑ,ϕ,ω,−ez), (15.297)

uiS(ω) e−jkSR cos ϑ cos ϑ cos ϕ =
1
R

∂2

∂ϑ∂R
[R Ui(R,ϑ,ϕ,ω,−ez)]

+ k2
S

1
sinϑ

∂Vi(R,ϑ,ϕ,ω,−ez)
∂ϕ

, (15.298)
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−uiS(ω) e−jkSR cos ϑ sinϕ =
1

R sinϑ

∂2

∂ϕ∂R
[R Ui(R,ϑ,ϕ,ω,−ez)]

− k2
S

∂Vi(R,ϑ,ϕ,ω,−ez)
∂ϑ

. (15.299)

Of course, we have to assure a correct calculation of the components of the
dyadic differential operator ∇∇ in spherical coordinates (alternatively, we
may check the collection of formulas). Fortunately, (15.297) contains only Ui,
and, hence, only unm-coefficients; however, with (15.267), we know the eigen-
function expansion for e−jkR cos ϑ but not the one for sinϑ e−jkR cos ϑ. This can
be readily fixed observing

uiS(ω) e−jkSR cos ϑ sinϑ cos ϕ =
uiS(ω)
jkSR

cos ϕ
∂

∂ϑ
e−jkSR cos ϑ (15.300)

because then we have

uiS(ω) e−jkSR cos ϑ sinϑ cos ϕ

=
uiS(ω)
jkSR

cos ϕ

∞∑
n=0

(−j)n(2n + 1)jn(kSR)P1
n(cos ϑ). (15.301)

Since Equations 15.297 through 15.299 must hold for all values of R, ϑ, and ϕ,
the factor cos ϕ on the left-hand side of (15.299) enforces a similar factor on
the right-hand side giving the eigenfunction expansion of Ui(R,ϑ,ϕ,ω,−ez)
undoubtedly the following appearance:

Ui(R,ϑ,ϕ,ω,−ez) = cos ϕ

∞∑
n=0

u(i)
n (ω)jn(kSR)P1

n(cos ϑ). (15.302)

Applied to the spherical Bessel functions in (15.302), the differential operator
on the right-hand side of (15.297) yields n(n + 1)jn(kSR)/R finally resulting
in the eigenfunction expansion

Ui(R,ϑ,ϕ,ω,−ez) =
uiS(ω)

jkS
cos ϕ

∞∑
n=0

(−j)n 2n + 1
n(n + 1)

jn(kSR)P1
n(cos ϑ).

(15.303)

Equations 15.298 and 15.299 exhibit the same R-differential operator applied
to Ui, once with an additional ϑ-, and once with an additional ϕ-differentiation;
therefore, the following approach is offered: We differentiate (15.298) with re-
spect to ϕ, multiply (15.299) with sinϑ, and differentiate the resulting equation
with respect to ϑ; afterward, both equations are subtracted: The terms with
Ui are canceled! It remains

1
k2
S

uiS(ω) sinϕ
∂

∂ϑ

(
e−jkSR cos ϑ

)
=

1
sin2 ϑ

∂2Vi(R,ϑ,ϕ,ω,−ez)
∂ϕ2

+
1

sinϑ

∂

∂ϑ

[
sinϑ

∂Vi(R,ϑ,ϕ,ω,−ez)
∂ϑ

]
.

(15.304)
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With the differential equation (15.264), the ansatz

Vi(R,ϑ,ϕ,ω,−ez) = sinϕ

∞∑
n=0

v(i)
n (ω)jn(kSR)P1

n(cos ϑ) (15.305)

leads to

Vi(R,ϑ,ϕ,ω,−ez) = −uiS(ω)
k2
S

sinϕ

∞∑
n=0

(−j)n 2n + 1
n(n + 1)

jn(kSR)P1
n(cos ϑ).

(15.306)
Equation 15.269 is now also ϕ-dependent according to

T(R,ϑ,ϕ,ω) · eR = −λk2
PΦ(R,ϑ,ϕ,ω) eR

+ µ
[
∇u(R,ϑ,ϕ,ω) · eR + ∇u21(R,ϑ,ϕ,ω) · eR

]
;

(15.307)

hence, in contrast to (15.270) and (15.271), we also need the ϕ-components in
∇u · eR and ∇u21 · eR:

∇u(R,ϑ,ϕ,ω) · eR

=
∂uR(R,ϑ,ϕ,ω)

∂R
eR +

1
R

[
∂uR(R,ϑ,ϕ,ω)

∂ϑ
− uϑ(R,ϑ,ϕ,ω)

]
eϑ

+
1

R sinϑ

[
∂uR(R,ϑ,ϕ,ω)

∂ϕ
− sinϑ uϕ(R,ϑ,ϕ,ω)

]
eϕ, (15.308)

∇u21(R,ϑ,ϕ,ω) · eR

=
∂uR(R,ϑ,ϕ,ω)

∂R
eR +

∂uϑ(R,ϑ,ϕ,ω)
∂ϑ

eϑ +
∂uϕ(R,ϑ,ϕ,ω)

∂ϕ
eϕ. (15.309)

With the differentiation prescriptions

uR(R,ϑ,ϕ,ω) =
∂Φ(R,ϑ,ϕ,ω)

∂R
+

1
R

∂

∂R

[
R2 ∂U(R,ϑ,ϕ,ω)

∂R

]
+ k2

SR U(R,ϑ,ϕ,ω), (15.310)

uϑ(R,ϑ,ϕ,ω) =
1
R

∂Φ(R,ϑ,ϕ,ω)
∂ϑ

+
1
R

∂

∂R

[
R

∂U(R,ϑ,ϕ,ω)
∂ϑ

]
+

k2
S

sinϑ

∂V (R,ϑ,ϕ,ω)
∂ϕ

, (15.311)

uϕ(R,ϑ,ϕ,ω) =
1

R sinϑ

∂Φ(R,ϑ,ϕ,ω)
∂ϕ

+
1

R sinϑ

∂

∂R

[
R

∂U(R,ϑ,ϕ,ω)
∂ϕ

]
− k2

S
∂V (R,ϑ,ϕ,ω)

∂ϑ
, (15.312)
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we obtain

TRR(R,ϑ,ϕ,ω) = −λk2
PΦ(R,ϑ,ϕ,ω) + 2µ

∂2Φ(R,ϑ,ϕ,ω)
∂R2

+ 2µ
∂

∂R

{
1
R

∂

∂R

[
R2 ∂U(R,ϑ,ϕ,ω)

∂R

]}
+ 2µk2

S
∂

∂R
[R U(R,ϑ,ϕ,ω)] , (15.313)

1
µ

TϑR(R,ϑ,ϕ,ω) = 2
∂

∂R

[
1
R

∂Φ(R,ϑ,ϕ,ω)
∂ϑ

]
+ 2
(

∂2

∂R2 +
1
R

∂

∂R
− 1

R2

)
∂U(R,ϑ,ϕ,ω)

∂ϑ

+ k2
S

∂U(R,ϑ,ϕ,ω)
∂ϑ

+
k2
S

sinϑ
R

∂

∂R

[
1
R

∂V (R,ϑ,ϕ,ω)
∂ϕ

]
,

(15.314)

1
µ

TϕR(R,ϑ,ϕ,ω) =
2

sinϑ

∂

∂R

[
1
R

∂Φ(R,ϑ,ϕ,ω)
∂ϕ

]
+

2
sinϑ

(
∂2

∂R2 +
1
R

∂

∂R
− 1

R2

)
∂U(R,ϑ,ϕ,ω)

∂ϕ

+
k2
S

sinϑ

∂U(R,ϑ,ϕ,ω)
∂ϕ

− k2
SR

∂

∂R

[
1
R

∂V (R,ϑ,ϕ,ω)
∂ϑ

]
.

(15.315)

In (15.313), we have Φ = Φs and U = Ui + Us; since Ui contains cos ϕ and P1
n,

the following specializations of the scattering potential expansion Φs and Us

are mandatory:

Φs(R,ϑ,ϕ,ω) = cos ϕ

∞∑
n=0

φ(s)
n (ω)h(1)

n (kPR)P1
n(cos ϑ), (15.316)

Us(R,ϑ,ϕ,ω) = cos ϕ

∞∑
n=0

u(s)
n (ω)h(1)

n (kSR)P1
n(cos ϑ), (15.317)

because the differential operators in (15.313) only apply to the spherical cylin-
der functions, and, hence, the orthogonality relation (15.274) is applicable for
m = 1. In (15.314) and (15.315) also appear ϕ- and ϑ-differentiations apart
from the R-differentiations; at first: In (15.314), we have V = Vi + Vs; so, if
we specialize

Vs(R,ϑ,ϕ,ω) = sinϕ

∞∑
n=0

v(s)
n (ω)h(1)

n (kSR)P1
n(cos ϑ), (15.318)

then all terms of (15.314) contain cos ϕ, and all terms of (15.315) contain
sinϕ, and, hence, the ϕ-dependence can be eliminated from the homogeneous
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boundary condition equations (15.313) through (15.315) for R = a. However,
the orthogonality relation (15.274) may not immediately be applied because
the ϑ-differentiations in both equations (15.314) and (15.315) yield “friendly”
P1

n(cos ϑ)-terms as well as “unfriendly” ∂P1
n(cos ϑ)/∂ϑ-terms, and the latter

ones may “only” be changed into Pn- and P2
n-terms according to—keeping

the lower index—(Stratton 1941, however, with a wrong sign)

∂P1
n(cos ϑ)
∂ϑ

= −1
2
[
n(n + 1)Pn(cos ϑ) − P2

n(cos ϑ)
]
. (15.319)

Yet, the following reasoning is successful: The short-hand notation

1
µ

TϑR(R,ϑ,ϕ,ω) = ∂Φ
R

∂Φ(R,ϑ,ϕ,ω)
∂ϑ

+ ∂U
R

∂U(R,ϑ,ϕ,ω)
∂ϑ

+
k2
S

sinϑ
∂V

R

∂V (R,ϑ,ϕ,ω)
∂ϕ

, (15.320)

1
µ

TϕR(R,ϑ,ϕ,ω) =
1

sinϑ
∂Φ

R

∂Φ(R,ϑ,ϕ,ω)
∂ϕ

+
1

sinϑ
∂U

R

∂U(R,ϑ,ϕ,ω)
∂ϕ

− k2
S∂V

R

∂V (R,ϑ,ϕ,ω)
∂ϑ

(15.321)

of (15.314) and (15.315) using Φ, U, V -specific R-differential operators ∂Φ
R,

∂U
R , ∂V

R particularly enlightens the appearance of similar differential opera-
tors in both equations allowing to introduce respectively similar coefficients
αn(a,ω) and βn(a,ω)

αn(a,ω) = φ(s)
n (ω)∂Φ

Rh(1)
n (kPR)

∣∣∣
R=a

+ u(s)
n (ω)∂U

Rh(1)
n (kSR)

∣∣∣
R=a

+ u(i)
n (ω)∂U

R jn(kSR)
∣∣∣
R=a

, (15.322)

βn(a,ω) = k2
Sv(s)

n (ω)∂V
R h(1)

n (kSR)
∣∣∣
R=a

+ k2
Sv(i)

n (ω)∂V
R jn(kSR)

∣∣∣
R=a

(15.323)

after insertion of the expansions (15.316) through (15.318) for R = a yielding
the notation:

∞∑
n=0

[
αn(a,ω) sin2 ϑ

∂P1
n(cos ϑ)
∂ϑ

+ βn(a,ω) sinϑP1
n(cos ϑ)

]
= 0, (15.324)

∞∑
n=0

[
αn(a,ω) sinϑP1

n(cos ϑ) − βn(a,ω) sin2 ϑ
∂P1

n(cos ϑ)
∂ϑ

]
= 0; (15.325)

the u
(i)
n - and v

(i)
n -coefficients are known from (15.303), respectively (15.306).

Multiplication of both equations with P1
n′(cos ϑ) and integration with respect

to ϑ from 0 to π yield

βn′(a,ω) = −
∞∑

n=0

αn(a,ω)
2n′ + 1

2n′(n′ + 1)

∫ π

0
sin2 ϑ

∂P1
n(cos ϑ)
∂ϑ

P1
n′(cos ϑ) dϑ︸ ︷︷ ︸

= γnn′

,

(15.326)
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αn′(a,ω) =
∞∑

n=0

βn(a,ω)
2n′ + 1

2n′(n′ + 1)

∫ π

0
sin2 ϑ

∂P1
n(cos ϑ)
∂ϑ

P1
n′(cos ϑ) dϑ︸ ︷︷ ︸

= γnn′

(15.327)

according to the orthogonality relation (15.274) for m = 1. Inserting, for exam-
ple, (15.327) into (15.326)—we denote the summation index n′′ in (15.326)—
we obtain

βn′(a,ω) = −
∞∑

n′′=0

γn′′n′

∞∑
n=0

βn(a,ω)γnn′′ (15.328)

= −
∞∑

n=0

βn(a,ω)
∞∑

n′′=0

γnn′′γn′′n′ ; (15.329)

hence, we must have
∞∑

n′′=0

γnn′′γn′′n′ = −δnn′ . (15.330)

A numerical calculation requires a truncation of the series expansions, say at
n = n′ = n′′ = N ; then the γnn′ fill an N × N -matrix Γ, and (15.330) can be
written:

Γ · Γ = −I , (15.331)

where I denotes the N × N -unit matrix; as usual, the dot stands for the
contraction of adjacent indices. With the calculation rules det(Γ · Γ) = det2Γ
and det(−I ) = −det I = −1, we immediately see that this cannot be true.
Consequently, in (15.324) as well as in (15.325), the summations must sepa-
rately be zero:

∞∑
n=0

βn(a,ω) sinϑ P1
n(cos ϑ) = 0, (15.332)

∞∑
n=0

αn(a,ω) sinϑ P1
n(cos ϑ) = 0, (15.333)

∞∑
n=0

αn(a,ω) sin2 ϑ
∂P1

n(cos ϑ)
∂ϑ

= 0, (15.334)

∞∑
n=0

βn(a,ω) sin2 ϑ
∂P1

n(cos ϑ)
∂ϑ

= 0. (15.335)

Now the orthogonality relation (15.274) yields for m = 1:

βn(a,ω) = 0, (15.336)
αn(a,ω) = 0 (15.337)
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if we use (15.332) and (15.333); with (15.336) and (15.337), even the require-
ments (15.334) and (15.335) are correct. Due to (15.323), Equation 15.336
states the decoupling of the V -potential from the U -potential; we find
explicitly

v(s)
n (ω) = −v(i)

n (ω)
∂V

R jn(kSR)

∂V
R h(1)

n (kSR)

∣∣∣∣∣
R=a

= −v(i)
n (ω)

kSa j′n(kSa) − jn(kSa)

kSah(1)′
n (kSa) − h(1)

n (kSa)
, (15.338)

where the dashes on the spherical cylinder functions denote derivatives with
regard to the argument. The v

(i)
n (ω) may be read off from (15.306):

v(i)
n (ω) = −uiS(ω)

k2
S

(−j)n 2n + 1
n(n + 1)

. (15.339)

To calculate the expansion coefficients φ
(s)
n (ω) and u

(s)
n (ω), we must com-

bine306 (15.337) according to[
kPah(1)′

n (kPa) − h(1)
n (kPa)

]
φ(s)

n (ω)

+
{[

n(n + 1) − 1 − k2
Sa2

2

]
h(1)

n (kSa) − kSah(1)′
n (kSa)

}
u(s)

n (ω)

= −
{[

n(n + 1) − 1 − k2
Sa2

2

]
jn(kSa) − kSa j′n(kSa)

}
u(i)

n (ω)

(15.340)

with the boundary condition TRR(a,ϑ,ϕ,ω) = 0 resulting from (15.313):{[
2n(n + 1) − k2

Sa2]h(1)
n (kPa) − 4kPah(1)′

n (kPa)
}

φ(s)
n (ω)

+ 2n(n + 1)
[
kSah(1)′

n (kSa) − h(1)
n (kSa)

]
u(s)

n (ω)

= −2n(n + 1) [kSa j′n(kSa) − jn(kSa)]u(i)
n (ω). (15.341)

The u
(i)
n (ω) are read off from (15.303):

u(i)
n (ω) =

uiS(ω)
jkS

(−j)n 2n + 1
n(n + 1)

. (15.342)

With the expansion coefficients of the potentials, we may finally calculate
the components of the particle displacement according to (15.310) through
(15.312):

306The expansion coefficients are similarly given by Brill and Gaunaurd (1987), yet without
calculation.
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usR(R,ϑ,ϕ,ω) = cos ϕ

∞∑
n=0

[
kPφ(s)

n (ω)h(1)′
n (kPR)

+ n(n + 1)u(s)
n (ω)

h(1)
n (kSR)

R

]
P1

n(cos ϑ), (15.343)

usϑ(R,ϑ,ϕ,ω) = cos ϕ

∞∑
n=0

{
φ(s)

n (ω)
h(1)

n (kPR)
R

∂P1
n(cos ϑ)
∂ϑ

+ u(s)
n (ω)

[
kSh(1)′

n (kSR) +
h(1)

n (kSR)
R

]
∂P1

n(cos ϑ)
∂ϑ

+k2
Sv(s)

n (ω)h(1)
n (kSR)

P1
n(cos ϑ)
sinϑ

}
, (15.344)

usϕ(R,ϑ,ϕ,ω) = − sinϕ

∞∑
n=0

{
φ(s)

n (ω)
h(1)

n (kPR)
R

P1
n(cos ϑ)
sinϑ

+ u(s)
n (ω)

[
kSh(1)′

n (kSR) +
h(1)

n (kSR)
R

]
P1

n(cos ϑ)
sinϑ

+k2
Sv(s)

n (ω)h(1)
n (kSR)

∂P1
n(cos ϑ)
∂ϑ

}
. (15.345)

Obviously, these representation only hold for R ≥ a. It is interesting to note
the agreement of the components with those for P-wave incidence with respect
to the R-dependence (Equations 15.277 and 15.278). With the asymptotic
expansions (15.277) and (15.278), we find the far-field approximations:

ufar
sR(R,ϑ,ϕ,ω) =

e jkPR

R
kP cos ϕ

∞∑
n=0

j−nφ(s)
n (ω)P1

n(cos ϑ), (15.346)

ufar
sϑ (R,ϑ,ϕ,ω) =

e jkSR

R
kS cos ϕ

∞∑
n=0

j−n

[
u(s)

n (ω)
∂P1

n(cos ϑ)
∂ϑ

− jkSv(s)
n (ω)

P1
n(cos ϑ)
sinϑ

]
, (15.347)

ufar
sϕ (R,ϑ,ϕ,ω) = −e jkSR

R
kS sinϕ

∞∑
n=0

j−n

[
u(s)

n (ω)
P1

n(cos ϑ)
sinϑ

− jkSv(s)
n (ω)

∂P1
n(cos ϑ)
∂ϑ

]
. (15.348)

To calculate the ϑ-derivative of P1
n(cos ϑ), we can use (15.319), and with

(15.261) and (15.262), we can show that P1
n(cos ϑ)/ sinϑ is nonsingular for

ϑ = 0,π. As in the P-case, the mode decoupling is once more explicitly given
by longitudinal and transverse polarizations. Yet, we should note that both
shear wave expansion coefficients enter the transverse components, i.e., their
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S P

P Sϑ

S Sϑ(ϕ = π/4)

S Sϕ(ϕ = π/4)

FIGURE 15.37
Far-field radiation patterns of the spherical void in a homogeneous isotropic
material (steel) for plane wave incidence; kPa = 10.39, kSa = 19.18: λP = a.

decoupling is not reflected by the particle displacement components in the
spherical coordinate system: We observe S- and not SV-, respectively, SH-
scattering. By the way: The far-field approximation according to (13.47),
namely via the substitution ∇ far=⇒ jkP,SR̂, may not immediately be per-
formed with the Debye ansatz (15.284) because the vector of position R ex-
plicitly appears in addition to the differential operators: For example, defining
a vector potential U = U R we have Ufar �= U farR.

Figures 15.37 through 15.42 display results of the numerical evaluation
of (15.346) through (15.348), once in the frequency domain as scattering
diagrams and once as scattered pulses in the time domain following an in-
verse Fourier transform. For steel as embedding material of a spherical void
Figure 15.37 shows scattering diagrams for plane P-, respectively, S-wave
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(ex-polarization) incidence for the directly scattered as well as for the mode
converted part (kPa = 6.28, kSa = 11.58); for direct shear wave scattering,
the plane (ϕ = π/4) has been chosen exhibiting both nonvanishing transverse
components because the respective diagrams are different. As usual, we state
that these diagrams feature more side lobes than the (P=⇒P)-diagram due
to the smaller wavelength also resulting in a stronger penciling of forward
scattering; by the way, superimposed to the incident field, the latter serves
to form a “shadow” of the void; here, only the scattered field is displayed.
Therefore, the—identical—mode conversion diagrams have zeroes for forward
scattering, and additionally—according to the point directivities of the third
rank Green tensor (Figure 13.14)—in back scattering direction.

Prescribing uiP(ω), respectively uiS(ω), as RC2-pulse spectra with the
center frequency 200 kHz, evaluating (15.346) through (15.348) within the
relevant RC2-frequency band, and subsequently Fourier inverting, we calcu-
late far-field scattered pulses in each R̂-scattering direction as displayed in
Figures307 15.38 through 15.42. As compared to the scattered pulses for the
cylindrical void (Figure 15.22), an absolute time axis scaled in microseconds
has been chosen; only the travel time from the origin in the center of the
sphere to the far-field observation point has been subtracted precipitating, for
example, the (P=⇒P)- and (S=⇒S)-backscattered pulses (Figure 15.38, re-
spectively, Figures 15.41 and 15.42) by 2tPa = 2a/cP, respectively 2tSa = 2a/cS,
with regard to the time origin because they originate at the front surface of
the sphere, while the time origin is allocated to the passage of the maximum
of the incident RC2-pulse through the xy-plane. Due to the mode conversion
scattering diagrams in Figure 15.37, there are no mode converted pulses in
backscattering direction (Figures 15.39 and 15.40). Figure 15.38 shows the ex-
citation of creeping waves yet with considerable larger relative amplitudes as
compared to the cylindrical void (Figure 15.22) because they are able to cir-
cle the sphere in each Rϕ-plane. Moving with the observation point from the
backscattering to the forward scattering direction (as displayed in the picture
sequence of Figures 15.38 through 15.42) causes the creeping wave with the
shorter travel distance to approach the directly scattered pulse with increasing
amplitude—the other one is already too much attenuated to be still visible—
superimposing it in forward scattering direction. For the (S=⇒S)-case (Fig-
ure 15.41: ϑ-component for ϕ = 0; Figure 15.42: ϕ-component for ϕ = π/2),
the creeping wave amplitude in backscattering direction is nearly as large as
the amplitude of the directly scattered pulse, and in the (ϕ = 0)-plane—the
ϑ-component in this plane is quasi-SV with regard to the incident wave—we
nicely recognize both circling creeping waves with increasing ϑ (both means:
clockwise and counterclockwise). Elastodynamic creeping waves for various
geometries (e.g., spheres, spheroids) have been under concern for defect shape
recognition (Bollig and Langenberg 1983).

307Note (Figure 8.3): As a function of time, the smaller shear wavelength is not visible
because the P- and S-RC2-pulses have equal duration for the same center frequency of the
RC2-pulse.
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FIGURE 15.38
Pulsed scattered P-far-field of the spherical void in a homogeneous isotropic
material (steel) for plane P-wave incidence for various observation angles;
kPa = 6.28, kSa = 11.58 for the center frequency 200 kHz of the RC2-pulse
spectrum; a = 29.5 · 10−3 m (λP = a); horizontal axis: time in µs.
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FIGURE 15.39
Pulsed scattered S-far-field (ϑ-component for ϕ = 0) of the spherical void in a
homogeneous isotropic material (steel) for plane P-wave incidence for various
observation angles; kPa = 6.28, kSa = 11.58 for the center frequency 200 kHz
of the RC2-pulse spectrum; a = 29.5 · 10−3 m (λP = a); horizontal axis: time
in µs.
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FIGURE 15.40
Pulsed scattered P-far-field of the spherical void in a homogeneous isotropic
material (steel) for plane S-wave incidence for various observation angles;
kPa = 6.28, kSa = 11.58 for the center frequency 200 kHz of the RC2-pulse
spectrum; a = 29.5 · 10−3 m (λP = a); horizontal axis: time in µs.



K12611 Chapter: 15 page: 647 date: January 6, 2012

Scatterers in Homogeneous Isotropic Nondissipative Infinite Spaces 647

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−250 −200 −150 −100 −50 0 50 100 150 200

−1
−0.5

0
0.5

1

ϑ 
= 

0

−1
−0.5

0
0.5

1

ϑ 
= 

15

−1
−0.5

0
0.5

1

ϑ 
= 

30

−1
−0.5

0
0.5

1

ϑ 
= 

45

−1
−0.5

0
0.5

1

ϑ 
= 

60

−1
−0.5

0
0.5

1

ϑ 
= 

75

−1
−0.5

0
0.5

1

ϑ 
= 

90

−1
−0.5

0
0.5

1

ϑ 
= 

10
5

−1
−0.5

0
0.5

1

ϑ 
= 

12
0

−1
−0.5

0
0.5

1

ϑ 
= 

13
5

−1
−0.5

0
0.5

1

ϑ 
= 

15
0

−1
−0.5

0
0.5

1

ϑ 
= 

16
5

−1
−0.5

0
0.5

1

ϑ 
= 

18
0

Time (µs)

FIGURE 15.41
Pulsed scattered S-far-field (ϑ-component for ϕ = 0) of the spherical void in a
homogeneous isotropic material (steel) for plane S-wave incidence for various
observation angles; kPa = 6.28, kSa = 11.58 for the center frequency 200 kHz
of the RC2-pulse spectrum; a = 29.5 · 10−3 m (λP = a); horizontal axis: time
in µs.
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FIGURE 15.42
Pulsed scattered S-far-field (ϕ-component for ϕ = π/2) of the spherical void
in a homogeneous isotropic material (steel) for plane S-wave incidence for
various observation angles; kPa = 6.28, kSa = 11.58 foe the center frequency
200 kHz of the RC2-pulse spectrum; a = 29.5 · 10−3 m (λP = a); horizontal
axis: time in µs.
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15.5 3D System Model of Pulsed Ultrasonic Scattering
within Kirchhoff’s Approximation

The first step in a system model construction for ultrasonic scattering consists
of transducer modeling [the electronic equipment is included by Schmerr and
Song (2007)]; apparently, we will utilize the results of Section 14.4 yet with
citation of the relevant equations for the sake of completeness.

Figure 15.43 illustrates the respective coordinate system for transducer
modeling (index i for incident field). Within an aperture SA as part of a stress-
free planar measurement surface SM (xiyi-plane of a cartesian coordinate sys-
tem: Figure 14.13), we prescribe a perpendicular (Fourier-transformed) force
density308

t(xi, yi,ω) = ui(ω)A(xi, yi,ω)ΓA(xi, yi) ez, (15.349)

where ΓA(xi, yi) as characteristic function of the aperture describes its geom-
etry, and ui(ω) is the given pulse spectrum. With the prescription of (15.349),
we introduce the first approximation309 into our system model; there are more
to come.

yi

zi

ϑi

θi
li
^

ϕi
xi

SA

SM

t

eϑi
Ri

FIGURE 15.43
Transducer modeling for a 3D-US-scattering model.

308With respect to (14.153), we explicitly indicate the given pulse spectrum ui(ω); yet
A(xi, yi, ω) remains frequency dependent due to the phase tapering (15.350).
309To go beyond requires a detailed model of the total transducer, respectively, a precise

measurement of the particle displacement amplitude and pulse structure on the transducer
radiation surface (Marklein 1997).
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With310

A(xi, yi,ω) = qa(xi)qb(yi) e jkS sin θixi , (15.350)

we specialize to a rectangular shear wave angle transducer and define a respec-
tive main lobe direction l̂i in the xizi-plane through θi (maximum of the shear
wave beam according to Figure 14.14). As a second approximation,311 we use
the far-field formula (14.182) to obtain the particle displacement spectrum

ufar
iS (Ri,ϑi,ϕi,ω)

= −eϑi
sinϑi M tz

S (ϑi)
ui(ω)

4πcSZS

e jkSRi

Ri
Fxiyi

{A(xi, yi,ω)}Kxi
= kS sin ϑi cos ϕi

Kyi
= kS sin ϑi sin ϕi

def= HiS(R̂ik,ω)
e jkSRik

Ri
eϑi

(15.351)

of the incident SV-wave, where

Fxiyi
{A(xi, yi,ω)} = Â(Kxi , Kyi ,ω)

=
2 sin a(Kxi

− kS sin θi)
Kxi − kS sin θi

2 sin bKyi

Kyi

, (15.352)

and (Equation 14.178)

M tz

S (ϑi) =
4 cos ϑi

√
1 − κ2 sin2 ϑi

κ(1 − 2 sin2 ϑi)2 + 2 sinϑi sin 2ϑi

√
1 − κ2 sin2 ϑi

. (15.353)

Note that M tz

S (ϑi) is complex for κ sinϑi > 1, i.e., for ϑi > ϑcmP, and fre-
quency dependent according to

M tz

S (ϑi) = |M tz

S (ϑi)| e jφMS (ϑi) sign(ω) (15.354)

—for example, this is exactly the domain for a 45◦-shear wave angle
transducer—yielding the respective particle displacement pulse correspond-
ing to (15.351) as

ufar
iS (Ri,ϑi,ϕi, t)

= −eϑi

sinϑi

4πcSZS

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

M tz

S (ϑi) Â(ϑi,ϕi, t) ∗ ui

(
t − Ri

cS

)
for 0 ≤ ϑi ≤ ϑcmP

|M tz

S (ϑi)|
[
cos φMS(ϑi) Â(ϑi,ϕi, t) ∗ ui

(
t − Ri

cS

)
− sinφMS(ϑi) H

{
Â(ϑi,ϕi, t) ∗ ui

(
t − Ri

cS

)}]
for ϑcmP < ϑi < π/2

(15.355)

310The product of the rectangular functions qa(xi), qb(yi) in (15.350) is the characteristic
function ΓA(xi, yi) of the aperture.
311Here, we could be more general according to Equations 14.187, respectively 14.193, but

then we would have to calculate an integral for each beam direction Ri and each frequency.
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(Equation 14.132), where ui(t) = F−1
ω {ui(ω)}. With Â(ϑi,ϕi, t), we denote

the inverse Fourier transform

Â(ϑi,ϕi, t) = F−1
ω

{
Â

(
Kxi

=
ω

cS
sinϑi cos ϕi, Kyi

=
ω

cS
sinϑi sinϕi,ω

)}
(15.356)

of the scalar aperture directivity with regard to ω requiring a case-by-case
analysis. For R̂i = l̂i, i.e., in the main beam direction ϕi = 0 , ϑi = θi of the
transducer, we obtain (in the far-field!) only a single pulse:

Â(ϑi = θi,ϕi = 0, t) ∗ ui

(
t − Ri

cS

)
= 4ab ui

(
t − Ri

cS

)
. (15.357)

For observation points in the xizi-plane outside the main beam, i.e., for
ϕi = 0 , ϑi �= θi, we certainly observe, as shown in Section 13.3.4 (Figure
13.21), two pulses:

Â(ϑi �= θi,ϕi = 0, t) ∗ ui

(
t − Ri

cS

)
=

2cSb

sinϑi − sin θi

∫ t

−∞

[
ui

(
τ − Ri

cS
+

a

cS
(sinϑi − sin θi)

)
− ui

(
τ − Ri

cS
− a

cS
(sinϑi − sin θi)

)]
dτ (15.358)

that emanate from the ±a-edges of the rectangular aperture; the ±b-edges
are not visible in this plane. Two pulses coming solely from the ±b-edges
are observed for ϑiϕi-combinations satisfying sinϑi cos ϕi = sin θi. Finally, we
obtain four pulses for arbitrary ϑi outside the xizi-plane:

Â(ϑi,ϕi �= 0, t) ∗ ui

(
t − Ri

cS

)
=

c2
S

(sinϑi cos ϕi − sin θi) sinϑi sinϕi

×
∫ t

−∞

[
ui

(
τ − Ri

cS
− a

cS
(sinϑi cos ϕi − sin θi)

)
−ui

(
τ − Ri

cS
+

a

cS
(sinϑi cos ϕi − sin θi)

)]
dτ

∗
∫ t

−∞

[
ui

(
τ − Ri

cS
− b

cS
sinϑi sinϕi

)
−ui

(
τ − Ri

cS
+

b

cS
sinϑi sinϕi

)]
dτ. (15.359)

The existence of a defect Vc, namely a scatterer, excites a scattered field
that may be calculated with the elastodynamic Huygens integral within the
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FIGURE 15.44
3D-US-system model: transducer and scatterer.

Kirchhoff approximation (Section 15.2.3). We need observation and source
point coordinates R, respectively R′, with coordinate origin O (Figure 15.44):
Per definition R′ points toward Sc, R is generally located on SM . With re-
spect to this coordinate origin, the origin of our xiyizi-coordinate system is
identified by RQ. For a numerical calculation of the elastodynamic Huygens
integral for arbitrary scattering surfaces Sc, we have to discretize Sc via tes-
sellation into two-dimensional patches; the kth patch be characterized by the
fixed position vector Rck. With regard to the endpoint Ock of Rck, we define
a Dupin-coordinate system with surface normal nck. (After introducing the
Kirchhoff approximation, Sk turns into a planar surface patch, and the Dupin
coordinates degenerate into a local cartesian xkykzk-coordinate system with
ezk

= nck.) A source point R′ ∈ Sk for the scattered field may finally be char-
acterized by R′

k with respect to Ock, just as Rk characterizes an observation
point of the scattered field.

We assume the defect to be a void with stress-free surface and come back
to (15.65) in terms of

us(R,ω) = −
∫ ∫

Sc

u(R′,ω)n′
c : Σ(R − R′,ω) dS′ (15.360)

to calculate the scattered field. Utilization of the full-space Green tensor im-
plies the third approximation neglecting the retroaction of the measurement
surface on the scattered field (multiple reflections between SM and Sc are not
considered), i.e., the total field uiS(R,ω) + us(R,ω) as superposition of inci-
dent and scattered fields does not satisfy the stress-free boundary condition
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for R ∈ SM\SA. (It should already be satisfied by the incident field alone,
which is not true for the far-field approximation.)

Due to the discretization of Sc, we may represent the scattered field as
sum of the scattered fields of the single patches:

us(R,ω) =
∑

k

usk(Rck + Rk,ω), (15.361)

where

usk(Rck + Rk,ω) = −
∫ ∫

Sk

u(Rck + R′
k,ω)n′

ck : Σ(Rk − R′
k,ω) d2R′

k.

(15.362)

The radiation interaction of single patches is still contained in the globally—
for Sc, and not locally for Sk—calculated secondary source as solution of
the integral equation (15.2.2); only after the introduction of the Kirchhoff
approximation independent secondary sources of the patches are postulated.
Before doing this, we apply the far-field approximation of each patch scattered
field with regard to the local origin Ock as the forth approximation:312

ufar
sk (Rck + Rk,ω) = −

∫ ∫
Sk

u(Rck + R′
k,ω)n′

ck : Σfar(Rk − R′
k,ω) d2R′

k,

(15.363)

where (Equation 13.157 with 13.162 and 13.163)

Σfar(Rk,R′
k,ω) = jω

e jkPRk

4πRk

1
�c3

P

(
λ I R̂k + 2µ R̂kR̂kR̂k

)
e−jkPR̂k·R′

k

+ jω
e jkSRk

4πRk

1
cS

(
R̂kI + R̂kI

213 − 2R̂kR̂kR̂k

)
e−jkSR̂k·R′

k .

(15.364)

The result is the separation of the patch scattered field into a directly scattered
S- and a mode converted P-part:

ufar
sk (Rck + Rk,ω) = ufar

skS(Rck + Rk,ω) + ufar
skP(Rck + Rk,ω) (15.365)

with

ufar
skS(Rck + Rk,ω)

=
e jkSRk

Rk

(
− jω

4πcS

)∫ ∫
Sk

u(Rck + R′
k,ω)n′

cke−jkSR̂k·R′
k d2R′

k

:
(
R̂kI + R̂kI

213 − 2R̂kR̂kR̂k

)
, (15.366)

312We could avoid this at the expense of a considerable calculation effort, yet the precision
of the Kirchhoff approximation in the near-field is not known.
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ufar
skP(Rck + Rk,ω)

=
e jkPRk

Rk

(
− jω

4π�c3
P

)∫ ∫
Sk

u(Rck + R′
k,ω)n′

cke−jkPR̂k·R′
k d2R′

k

:
(
λ I R̂k + 2µ R̂kR̂kR̂k

)
. (15.367)

Now, these integral representations of the scattered field require the secondary
surface deformation source u(Rck + R′

k,ω)n′
ck, and consequently

u(Rck + R′
k,ω) def= u(R′

k,ω) (15.368)

as function of the integration variable R′
k; to apply the Kirchhoff approxima-

tion, we initially need the incident field at this point. Yet, Rck defines not only
the “center point” of a patch but also a ray (Section 12.3.2) of the incident
field in the direction of Rik (Figure 15.44); accordingly, R′

k isolates a ray R′
ik,

and therefore we need

ufar
ikS(R′

ik,ω) = HikS(R̂
′
ik,ω)

e jkSR′
ik

R′
ik

eϑ′
ik

(15.369)

as an incident spherical wave. For acoustic and electromagnetic waves, this
knowledge is sufficient for the Kirchhoff approximation, but for elastic waves,
we additionally need the reflected as well as the mode converted spherical
wave with the respective amplitude factors; yet simple expressions are only
known for plane waves (and planar surfaces Sc). Consequently, as a fifth ap-
proximation, we consider the spherical wave to be a plane wave; Figure 15.45
serves as illustration. Namely, for Rik � R′

k, we have

SA

R′ik

R′k · Rik
^ ^

R′k

Rik

FIGURE 15.45
Approximation of the incident spherical wave by a plane wave.
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ϑ′
ik � ϑik,

ϕ′
ik � ϕik,

R′
ik � Rik + R′

k · R̂ik, (15.370)

allowing for the approximation

ufar
ikS(R′

ik,ω) � HikS(R̂ik,ω)
e jkSRik

Rik
e jkSR̂ik·R′

k eϑik

def= uikS(R′
k,ω) (15.371)

for kSRik � 1. Now, the term e jkSR̂ik·R′
k eϑik

in (15.371) defines the de-
sired transverse—we have eϑik

· R̂ik = 0—shear wave at R′
k ∈ Sk with patch-

dependent phase, amplitude, and polarization propagating into R̂ik-direction.
With the Kirchhoff approximation as sixth approximation, we calculate

u(R′
k,ω) so as if the patch Sk would be a planar (Kirchhoff) patch SkK illu-

minated by a plane wave e jkSR̂ik·Rk eϑik
; moreover, its contribution to the scat-

tered field is only considered if R̂ik · nck < 0 holds, because for R̂ik · nck > 0,
it is located in the shadow of the incident wave. For a planar patch, the Dupin
coordinates degenerate to a cartesian xkykzk-coordinate system with the or-
thonormal trihedron exk

, eyk
, ezk

(Figure 15.46), where the direction of, for
example exk

and, hence, the direction of eyk
, must still be defined. As sketched

in Figure 15.46, we choose exk
“in the direction” of Rik, i.e.,

zk

yk

xk

R′k

n′ck = nck

Rik

Rk

eϑik

uikSH
^

uikSV
^

Ock

SkK

φk

θk

θik

nck = ezk

eyk

exk

FIGURE 15.46
Illustration of the Kirchhoff approximation.
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exk
=

(I − ncknck) · R̂ik

|(I − ncknck) · R̂ik| , (15.372)

and consequently, we obtain eyk
= nck × exk

. That way, the propagation vec-
tor R̂ik of the incident plane wave is located in the xkzk-plane, and we may
immediately adopt—according to the Kirchhoff approximation—the formulas
from Sections 9.1.2 and 9.1.3 for reflection and mode conversion of trans-
versely polarized plane shear waves. Yet, we must bear the matter in mind
that eϑik

stands for an SV-polarized shear wave with regard to SM , with re-
gard to SkK, the vector eϑik

generally contains SV- and SH-components that
have to be identified beforehand. Therefore, we decompose

eϑik
= eϑik

· ûikSH ûikSH + eϑik
· ûikSV ûikSV (15.373)

in an SH-SV-polarization basis with regard to SkK consisting of the unit vec-
tors ûikSH = eyk

and ûikSV = eyk
× R̂ik (Figure 15.46). In terms of the inci-

dence angle θik, the vectors R̂ik and ûikSV have components

R̂ik = sin θikexk
− cos θikezk

, (15.374)
ûikSV = − cos θikexk

− sin θikezk
(15.375)

in the xkykzk-coordinate system. Yet, given are the vectors R̂ik and eϑik
—and

also ûikSV—in the xiyizi-coordinate system according to

R̂ik = R̂ik · exi
exi

+ R̂ik · eyi
eyi

+ R̂ik · ezi
ezi

, (15.376)

eϑik
= eϑik

· exi
exi

+ eϑik
· eyi

eyi
+ eϑik

· ezi
ezi

(15.377)

requiring the transformation:

R̂ik · exk
= R̂ik · exi

exi
· exk

+ R̂ik · eyi
eyi

· exk
+ R̂ik · ezi

ezi
· exk

def= sin θik, (15.378)

R̂ik · eyk
= R̂ik · exi

exi
· eyk

+ R̂ik · eyi
eyi

· eyk
+ R̂ik · ezi

ezi
· eyk

def= 0, (15.379)

R̂ik · ezk
= R̂ik · exi

exi
· ezk

+ R̂ik · eyi
eyi

· ezk
+ R̂ik · ezi

ezi
· ezk

def= − cos θik; (15.380)

the nine scalar products between the unit vectors of the i- and the k-coordinate
system trihedron stand for the relative orientation of these two coordinate
systems with respect to each other and must be calculated for each patch.

The SH-SV-decomposition of our transversely polarized plane shear wave
(15.371) with regard to the kth patch now reads as
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uikS(R′
k,ω) = HikS(R̂ik,ω)

e jkSRik

Rik
e jkSR̂ik·R′

k eϑik
· eyk

eyk

+ HikS(R̂ik,ω)
e jkSRik

Rik
e jkSR̂ik·R′

k eϑik
· ûikSV ûikSV

def= AikSH(Rik,ω) e jkSR̂ik·R′
k eyk

+ AikSV(Rik,ω) e jkSR̂ik·R′
k eyk

× R̂ik (15.381)

with

eϑik
= − cos θik eϑik

· exk
− sin θik eϑik

· ezk
. (15.382)

According to the combination of the Kirchhoff approximations (15.143) and
(15.151), we postulate313

u(R′
k,ω) = uikS(R′

k,ω) + AikSH(Rik,ω)RSH(θik) e jkSR̂krS·R′
k eyk

+ AikSV(Rik,ω)RSV(θik) e jkSR̂krS·R′
k eyk

× R̂krS

+ AikSV(Rik,ω)MP(θik) e jkSR̂kmP·R′
k R̂kmP, (15.383)

where

R′
k = x′

kexk
+ y′

keyk
, (15.384)

R̂krS = sin θikexk
+ cos θikezk

, (15.385)

R̂kmP = κ sin θikexk
+ cos θkmPezk

, (15.386)

cos θkmP =

{√
1 − κ2 sin2 θik for θik ≤ ϑcmP

j
√

κ2 sin2 θik − 1 for ϑik > θcmP
, (15.387)

ϑcmP = arcsin
1
κ
, (15.388)

RSH(θik) = −1, (15.389)

RSV(θik) =
sin 2θik sin 2θkmP − κ2 cos2 θik

sin 2θik sin 2θkmP + κ2 cos2 θik
, (15.390)

MP(θik) = −κ
sin 4θik

sin 2θik sin 2θkmP + κ2 cos2 θik
; (15.391)

(15.392)

consequently, we obtain

u(R′
k,ω) = [AikSV(Rik,ω)(eyk

× R̂ik + RSV(θik)eyk
× R̂krS

+ MP(θik)R̂kmP) + 2AikSH(Rik,ω)eyk
] e jkS sin θikx′

k

def= u(Rik,ω) e jkS sin θikx′
k (15.393)

313Due to the abundance of indices, we omit the explicit PO-characterization for the
Kirchhoff approximation.
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from (15.382). Now, we insert the Kirchhoff approximation (15.393) into
(15.366) and (15.367):

ufar
skS(Rk,ω) = − jω

4πcS
IskS(R̂k, θik,ω)

e jkSRk

Rk
u(Rik,ω)ezk

:
(
R̂kI + R̂kI

213 − 2R̂kR̂kR̂k

)
, (15.394)

ufar
skP(Rk,ω) = − jω

4π�c3
P

IskP(R̂k, θik,ω)
e jkPRk

Rk
u(Rik,ω)ezk

:
(
λ I R̂k + 2µ R̂kR̂kR̂k

)
. (15.395)

We have

IskS(R̂k, θik,ω) =
∫ ∫

SkK

e−jkS(R̂k·R′
k−sin θikx′

k) dx′
kdy′

k

= Fx′
ky′

k
{ΓkK(x′

k, y′
k)e jkS sin θikx′

k}Kx′
k

= kS sin θk cos φk

Ky′
k

= kS sin θk sin φk

= Γ̂kK(kS sin θk cos φk − kS sin θik, kS sin θk sinφk), (15.396)

IskP(R̂k, θik,ω) =
∫ ∫

SkK

e−jkP(R̂k·R′
k−κ sin θikx′

k) dx′
kdy′

k

= Fx′
ky′

k
{ΓkK(x′

k, y′
k)e jkS sin θikx′

k}Kx′
k

= kP sin θk cos φk

Ky′
k

= kP sin θk sin φk

= Γ̂kK(kP sin θk cos φk − kS sin θik, kS sin θk sinφk) (15.397)

with

R̂k = sin θk cos φk exk
+ sin θk sinφk eyk

+ cos θk ezk
(15.398)

as frequency-dependent scalar radiation characteristics of the kth patch with
the characteristic function ΓkK(x′

k, y′
k) for the directly scattered S- and for

the mode converted P-part. Obviously, we observe the S-main lobes—more
precisely: their scalar aperture factors—for angles θk and φk given by314

sin θk cos φk − sin θik = 0,

sin θk sinφk = 0; (15.399)

we find φk = 0 and θk = θik according to the reflection law. To determine the
polar and azimuth angle of the (scalar) P-main lobe, we obtain the equations

kP sin θk cos φk − kS sin θik = 0,

sin θk sinφk = 0 (15.400)

314The maximum of a spatial spectrum Γ̃(K) of a three-dimensional characteristic function
Γ(R) is directed toward K = 0; here, this is applied to the two-dimensional characteristic
function of the patch SkK modulated by the incident wave.
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resulting in φk = 0 and θk = arcsin(κ sin θik), namely in the mode conversion
law. For κ sin θik = 1 we have θk = π/2, and the lobe angle cannot become
larger, i.e. for θik > ϑcmP the P-main lobe disappears form the visible range
in the terminology of antenna theory (Balanis 1997; Langenberg 2005); conse-
quently, the P-part is then ignored in the numerical evaluation. For an illus-
tration of main lobes of scattered far-fields of a primary surface force density
rectangular patch (in full-space), the reader is referred to Figures 13.17 and
13.18 as well as 13.19 for the limit of the visible range.

As in Section 13.2.4, we must now calculate the point directivities of the
secondary surface deformation u(Rik,ω)ezk

with formulas (13.183) through
(13.185) according to (15.394) and (15.395). With (15.394), we find the vector
components of the S-point directivity:

u(Rik,ω)ezk
:
(
R̂kI + R̂kI

213 − 2R̂kR̂kR̂k

)
= cos θk u(Rik,ω) − u(Rik,ω) · R̂k(cos θkR̂k + sin θkeθk

), (15.401)

and state—as always—that ufar
skS(Rk,ω) has only eθk

- and eφk
-components in

the xkykzk-coordinate system:

ufar
skS(Rk,ω) · R̂k = 0, (15.402)

ufar
skS(Rk,ω) · eθk

∼ cos θk u(Rik,ω) · eθk
− sin θk u(Rik,ω) · R̂k, (15.403)

ufar
skS(Rk,ω) · eφk

∼ cos θk u(Rik,ω) · eφk
, (15.404)

which have to be found explicitly. With (15.393), we obtain after some
calculus:

u(Rik,ω) · R̂k

= AikSV(Rik,ω)

{
sin θk cos φk [cos θik (RSV (θik) − 1) + κ sin θikMP(θik)]

− cos θk

[
sin θik (RSV (θik) + 1) −

√
1 − κ2 sin2 θik MP(θik)

]}
+ 2AikSH(Rik,ω) sin θk sinφk, (15.405)

u(Rik,ω) · eθk

= AikSV(Rik,ω)

{
cos θk cos φk [cos θik (RSV(θik) − 1) + κ sin θikMP(θik)]

+ sin θk

[
sin θik (RSV(θik) + 1) −

√
1 − κ2 sin2 θik MP(θik)

]}
+ 2AikSH(Rik,ω) cos θk sinφk, (15.406)
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u(Rik,ω) · eφk

= AikSV(Rik,ω)

{
sinφk [cos θik (1 − RSV(θik)) − κ sin θikMP(θik)]

}
+ 2AikSH(Rik,ω) cos φk. (15.407)

With these projections of the Kirchhoff approximated secondary surface de-
formation source, we are able to calculate the S-scattered field of the kth
patch:

ufar
skS(Rk,ω) = − jω

4πcS
IskS(R̂k, θik,ω)

e jkSRk

Rk

×
{[

cos θk u(Rik,ω) · eθk
− sin θk u(Rik,ω) · R̂k

]
eθk

+ cos θk u(Rik,ω) · eφk
eφk

}
. (15.408)

In fact, for θik = 0 and AikSH(Rik,ω) = 0, we obtain the S-point directivity
of an exez-deformation rate as displayed in Figure 13.14.

We turn to the mode converted P-scattered field and calculate

u(Rik,ω)ezk
:
(
λ IR̂k + 2µ R̂kR̂kR̂k

)
=
[
λu(Rik,ω) · ezk

+ 2µ cos θk u(Rik,ω) · R̂k

]
R̂k (15.409)

analogous to (15.401); as expected, it follows

ufar
skP(Rk,ω) · R̂k ∼ λu(Rik,ω) · ezk

+ 2µ cos θk u(Rik,ω) · R̂k, (15.410)

ufar
skP(Rk,ω) · eθk

= 0, (15.411)

ufar
skP(Rk,ω) · eφk

= 0. (15.412)

The requested term u(Rik,ω) · R̂k is already given with (15.405) requiring
only the calculation of

u(Rik,ω) · ezk
= AikSV(Rik,ω)

[
− sin θik (1 + RSV(θik))

+
√

1 − κ2 sin2 θik MP(θik)
]
. (15.413)

We have agreed to put the mode converted P-scattered field equal to zero for
θik > ϑcmP; yet for θik ≤ ϑcmP, we calculate

ufar
skP(Rk,ω) = − jω

4π�c3
P

IskP(R̂k,ω)
e jkPRk

Rk

×
[
λu(Rik,ω) · ezk

+ 2µ cos θk u(Rik,ω) · R̂k

]
R̂k.

(15.414)
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FIGURE 15.47
3D-US-system model: reception.

Again, the point directivity of an exez-deformation rate source resulting for
θik = 0 and AikSH(Rik,ω) = 0 is displayed in Figure 13.14.

Now we turn to reception simulation definitely locating the point of ob-
servation Rk =⇒ RkM on the measurement surface SM (Figure 15.47). In
the xiyizi-coordinate system, we characterize the end point of RkM by RM ,
hence

RkM = RM − Rik (15.415)

holds. The normal component of the sum315 of all patch scattered fields that
originate from illuminated patches—for a planar measurement surface SM , we
have nM = −ezi

—

uM (RM ,ω) = −ezi
·
R̂ik·nck<0∑

k

[
ufar

skS(RkM ,ω) + ufar
skP(RkM ,ω)

]
(15.416)

then defines a scalar316 “point reception expression” uM (RM ,ω) for SV-P-
waves (SV with regard to SM ); for its explicit calculation, we once more need
the direction cosines between the trihedrons of the xiyizi- and the xkykzk-
coordinate system for R̂kM · ezi

, eθkM
· ezi

, eφkM
· ezi

. For RM �= 0, the re-
ception quantity uM (RM ,ω) stands for a pitch-catch mode, and for RM = 0,

315The Kirchhoff approximation allows for a simple summation because radiation interac-
tion is neglected.
316Comparable to the open circuit voltage in antenna theory (Balanis 1997; Langenberg

2005).
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we have a pulse-echo-mode. Yet it should be noted that, due to the utiliza-
tion of full-space Green tensors in the elastodynamic Huygens integral, the
scattered field does not satisfy a boundary condition on SM ; to account for
that, we would have to introduce partial fields reflected and mode converted
at SM to be calculated with the approximation of incident plane waves (else
the reflection and mode conversion factors are not known).

In addition, a receiving transducer may be approximately modeled as a
receiving aperture SE (Figure 15.47). Let the receiving transducer have the
main beam direction l̂M in transmission mode—either for SV- or P-waves (SV
with respect to SM )—then

uP,SV
E (ω)

∫ ∫
SE

uM (RM ,ω) e jkP,S l̂M ·RM d2RM (15.417)

yields a receiving transducer quantity for these P-, respectively SV-waves.
This is only an approximation since the scattered field does not satisfy a tran-
sition condition on the transducer aperture, and, hence, there is no extraction
of energy. This is not even changed incorporating the surface SM to be stress-
free. Nevertheless, (15.417) contains the mode-dependent direction selectivity
of reception, a fact that is absolutely necessary to assess A- or B-scans prop-
erly (e.g., Shlivinski et al. 2004b); to produce such data, an inverse Fourier
transform of uE(ω) according to the modification

uP,SV
E (ω) = ui(ω)

∫ ∫
SE

uM (RM ,ω) e jkP,S l̂M ·RM d2RM (15.418)

must be performed for a given pulse spectrum ui(ω). As an example, we eval-
uated (15.418) for the “defects” in the specimen as displayed in Figure 15.48
for 45◦-shear wave incidence (2 MHz) without consideration of its actual sur-
face, and not only for a single reception point but also for a linear pulse-echo
scan path defined on the surface of the specimen (opposite to the display in
Figure 15.48 from left to right). The result is given in Figure 15.49 in terms of

FIGURE 15.48
CAD-model of a specimen with side wall drilled holes and flat bottom holes
(V. Schmitz, Fraunhofer IZFP).
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FIGURE 15.49
Calculated B-scan for a linear scan path from left to right on the top surface of
the specimen in Figure 15.48: 45◦-2 MHz-shear wave transducer, RC3-pulse;
horizontal axis = scan coordinate, vertical axis = time counted downward
(V. Schmitz, Fraunhofer IZFP).

a B-scan. Based on Figure 16.4, we will discuss the SAFT-processing of these
synthetic data in comparison with an experiment (Figure 16.3).

Two general statements concerning the structure of scattered far-fields
in backscattering direction under Kirchhoff or Born approximation are estab-
lished in Section 15.4: In backscattering direction, there is no mode conversion
and no shear wave polarization rotation.
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16
Inverse Scattering: US-NDT Imaging

We meet a direct scattering problem if scatterer, embedding material, and
incident field are known and the scattered field has to be calculated. In the
sense of Huygens’ principle superimposing elementary waves—a point source
synthesis—we have to move forward in time requiring the knowledge of Green
functions of the embedding material. As a special problem the radiation inter-
action of the scatterer with itself arises rendering the direct scattering problem
as a nonlinear problem with regard to the geometry of the scatterer. There-
fore, linearizations such as the Born or Kirchhoff approximation neglect this
radiation interaction.

An inverse scattering problem is met if embedding material, incident field,
and scattered field (on a measurement surface) are known, and the location,
geometry, and material composition of the scatterer has to be calculated.
Replacing “scatterer” by “defect,” this is the classical problem of US-NDT!
Considering the measured values of the scattered field as “sources,” we appar-
ently have to invert the scattered wave propagation with the knowledge of the
embedding material Green functions, i.e., a temporal backward oriented point
source synthesis, with these sources has to be performed. For this back propa-
gation, the above mentioned nonlinearity is debilitating because the radiation
interaction of the scatterer with itself must be “feazed.” To avoid this—thus
considerably simplifying the inverse scattering problem—linearizations like
the Born or Kirchhoff approximation are introduced.

The simplest case of a scalar scattering problem is met for an acoustic
point scatterer in a homogeneous isotropic material because there is no ra-
diation interaction. The scattering data are immediately given by the scalar
full-space Green function allowing for a direct back propagation of these “mea-
sured” data—diffraction curves (or surfaces) in B-scans—with the knowledge
of exactly this Green function: Applying the resulting algorithm to arbitrary
scatterers (linearizingly) assuming that they are composed of noninteracting
point scatterers, we have invented the imaging scheme SAFT.

16.1 SAFT: Synthetic Aperture Focusing Technique

16.1.1 Integration along diffraction curves (surfaces)
and back propagation

We execute the following “experiment” (Figure 16.1): A point scatterer
in an acoustic homogeneous isotropic nondissipative material is hit by an

665
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FIGURE 16.1
2D-AFIT-simulation: a point scatterer generates “measurement” data as a
diffraction curve.
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RC2-bandlimited geometric “optical” (two-dimensional) aperture wavefront
(Figure 16.1: second picture from top) from a “transducer” (Figure 16.1: third
picture from top); that way, it is turned into a secondary source, and gener-
ates per definition a scattered field in terms of a two-dimensional bandlimited
Green function (Equation 13.38) that becomes visible in the bottom picture of
Figure 16.1. If this scattered wavefront reaches the “measurement” surface, it
can be principally pointwise detected to build up a B-scan (of course, reflection
takes place at the rigid surface): A diffraction curve emerges as a B-scan data
space (Figure 16.1: top). For a planar reception surface, the diffraction curve
is a hyperbola, in three dimensions a rotationally symmetric hyperboloid. This
is readily shown if we identify those times for which the δ-distribution of the
three-dimensional full-space scalar Green function (Equation 13.25)

G(R − R′, t − t′) =
δ
(
t − t′ − |R−R′|

c

)
4π|R − R′| (16.1)

is singular for given t′ (the incident wave hits the point scatterer, here t′ = 0)
and given position R′ varying R on the (finite sized) measurement surface SM :

t =
|R − R′|

c

=
1
c

√
(x − x′)2 + (y − y′)2 + (z − z′)2; (16.2)

according to the planar measurement surface, we assume cartesian coordinates
and position the point scatterer at x′ = x′

0, y
′ = y′

0, z
′ = z′

0. The measurement
surface should have distance d from the xy-plane, hence, we have

t2 − (x − x′
0)

2

c2 − (y − y′
0)

2

c2 =
(d − z′

0)
2

c2 , (16.3)

respectively

t =
1
c

√
(d − z′

0)2 + (x − x′
0)2 + (y − y′

0)2 > 0, (16.4)

as a hyperboloid equation in xyt-data space; this (single shell) hyperboloid has
its apex at x = x′

0, y = y′
0 exhibiting the shortest travel time t = (d − z′

0)/c.
Having in mind this geometry information of the diffraction surface, we may
postulate the following inversion algorithm: Choose a point x′, y′, z′ in xyz-
“reconstruction space” and calculate the respective hyperboloid as if there
would reside a point scatterer; then integrate in xyt-data space along this sur-
face as two-dimensionally sketched in Figure 16.2; it is anticipated that the
resulting value would be rather low according to the intersection point of the
dashed with the solid hyperbola if the point scatterer actually resides at x′

0,
y′
0, z

′
0. The same holds for all fictitious point scatterers x′ �= x′

0, y
′ �= y′

0, z
′ �=

z′
0, only if we come to the voxel hosting the actually existing point scatterer

the integration yields a “high” value because it is along the real diffraction
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FIGURE 16.2
SAFT: integration of scalar scattered field data along hyperbolic diffraction
curves, respectively back propagating them.

curve (surface). The result is a “reconstruction” of the point scatterer, an
inverse scattering problem has been solved for this particular point scatterer
via focusing of its diffraction curve (surface). Now, assuming that an arbitrary
scatterer is composed of independent point scatterers—implying a lineariza-
tion of scattering and inverse scattering—and integrating its scalar scattered
field φ(x, y, d, t) according to

o(x′, y′, z′)

=
∫ ∫

SM

φ

(
x, y, d, t =

1
c

√
(x − x′)2 + (y − y′)2 + (d − z′)2

)
dxdy

(16.5)

for all points x′, y′, z′ in reconstruction space (region of interest) over all points
x, y ∈ SM hoping that this focusing of scattering data within a synthetic aper-
ture SM—therefore: SAFT—would yield a suitable image o(x′, y′, z′) of the
scatterer. Since the integration (16.5) starts with voxels it is called the voxel,
driven approach of SAFT (in two dimensions: pixel driven approach). Even
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though Figure 16.1 actually stands for an acoustic scattering problem, we de-
note the scalar scattering data with φ(R, t) because application in US-NDT
is not for an acoustic pressure.

An alternative to the voxel driven approach, is the A-scan driven approach,
which is also sketched in Figure 16.2: Each data point φ(x, y, d, t) is back
propagated to its x′y′z′-isochrone surface (0 < z′ < d)

z′ − d = −
√

c2t2 − (x′ − x)2 − (y′ − y)2 < 0, (16.6)

i.e., equally distributed on the half-sphere with midpoint x, y, d and radius ct
as given by (16.6). If the respective data point lies on the diffraction surface
of the x′

0y
′
0z

′
0-point scatterer, the pertinent half-sphere contains exactly this

point scatterer due to (16.3)—this situation is depicted in Figure 16.2—i.e.,
all respective half-spheres intersect at x′

0, y
′
0, z

′
0 and yield a “high” amplitude

via superposition, the location of the point scatterer has been reconstructed.
The generalization to arbitrary scatterers that are composed of independent
point scatterers results in the linear algorithm “A-scan driven SAFT.” As a
point data source synthesis that is back oriented in time—we synthesize not
a field but an image—the advanced Green function

Ga(R − R′, t) =
δ
(
t + |R−R′|

c

)
4π|R − R′| (16.7)

may be used to formulate this Huygens-like referring to the time domain
version of (15.37) (we ignore the distance dependence of the elementary wave
amplitudes):

o(x′, y′, z′) =
∫ ∫

SM

∫ ∞

−∞
φ(x, y, d, t′) δ

×
(

t − t′ +
1
c

√
(x − x′)2 + (y − y′)2 + (d − z′)2

)
dt′dxdy

∣∣∣∣∣
t=0

;

(16.8)

we have to choose t = 0 after having calculated the t′-convolution integral,
because per definition, each single point scatterer has been excited for this
particular time. Obviously, the result (16.8) is identical to (16.5) due to the
relation f(t) ∗ δ(t − t0) = f(t − t0).

We explicitly point out that algorithms to solve the inverse scattering
problem require a priori information about the embedding material; it is the
Green function, respectively the phase-, and energy velocity of the elementary
waves in the homogeneous isotropic embedding material that has to be known
to be inserted into (16.5), respectively (16.8).

16.1.2 Pitch-catch and pulse-echo versions of SAFT

At the beginning of the chapter about inverse scattering, we assumed the
knowledge of the incident field to define an inverse scattering problem, yet it
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does not appear in the inversion formula (16.5). The reason is the agreement
t′ = 0: A δ-pulsed plane wave in the direction k̂i in terms of δ(t − k̂i · R/c)
meets a point scatterer located in the coordinate origin for t = 0 (respectively,
on the plane k̂i · R = 0); to meet the point scatterer at R′

0 for time t = 0, it
must be modified according to φi(t − k̂i · (R − R′

0)/c). This is not practical
because in the inversion formula (16.5), we face the transition R′

0 =⇒ R′ as
variable in reconstruction space; it is more convenient to choose t′ = k̂i · R′

0/c
in (16.1) because then we have

o(x′, y′, z′)

=
∫ ∫

SM

φ

(
x, y, d, t =

1
c

√
(x − x′)2 + (y − y′)2 + (d − z′)2 +

k̂i · R′

c

)
× dxdy (16.9)

as inversion formula allowing for a voxel-dependent time normalization given
by the direction of the incident plane wave.

Instead of a nonphysical incident plane wave coming from infinity, we
may as well accomplish the illumination of the x′

0, y
′
0, z

′
0-point scatterer by

an xQ, yQ, zQ-localized point source according to

t′ =
1
c

√
(xQ − x′

0)2 + (yQ − y′
0)2 + (d − z′

0)2. (16.10)

The respective inversion formula then reads

o(x′, y′, z′) =
∫ ∫

SM

φ

(
x, y, d, t =

1
c

√
(x − x′)2 + (y − y′)2 + (d − z′)2

+
1
c

√
(xQ − x′)2 + (yQ − y′)2 + (d − z′)2

)
dxdy.

(16.11)

Specialization to the practically relevant pulse-echo operational mode may
then be realized through xQ = x, yQ = y:

o(x′, y′, z′) =
∫ ∫

SM

φ

(
x, y, d, t

=
2
c

√
(x − x′)2 + (y − y′)2 + (d − z′)2

)
dxdy. (16.12)

Note: The integrations in the SAFT inversion formulas (16.9), (16.11),
and (16.12) do not yield the same results; so, strictly speaking, the result-
ing images o(x′, y′, z′) should be denoted differently.

16.1.3 SAFT with Hilbert transformed pulse data

Regrettably, practical US-NDT may not rely on a δ-pulse as incident trans-
ducer field; generally, a bandlimited pulse with, for example, RC2-dependence
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serves as an appropriate model. Therefore, the scattered pulse reflects exactly
this oscillatory behavior (compare Figure 16.1) that is rediscovered in a B-scan
data field as diffraction curves (surfaces); the SAFT-inversion integrals back
propagate these oscillations into reconstruction space yielding, according to
the pulse duration, to a limited resolution as well as to oscillations of the
image function o(x′, y′, z′). Yet, they may be eliminated via SAFT signal pro-
cessing.317 For that purpose, a complex valued signal is defined applying a
Hilbert transform (Section 2.3.4) with regard to time according to

φc(R, t) = φ(R, t) + jHτ{φ(R, τ)} (16.13)

inserting it into the inversion formulas (16.9), (16.11), and (16.12); the result
is a complex valued image function oc(R′) with a magnitude representing the
envelope of the oscillatory image function; this works for arbitrary geome-
tries of measurement surfaces (Langenberg et al. 1993b). Alternatively, for
planar measurement surfaces, we may create a complex valued image function
according to318

oc(x′, y′, z′) = o(x′, y′, z′) − jHζ′{o(x′, y′, ζ′)} (16.14)

calculating the magnitude afterward; it turns out to be equivalent to the
previous approach (Langenberg 1987; Section 16.2.5). Yet, the calculation of
the magnitude of the complex valued scattered signal with subsequent SAFT-
inversion is not equivalent; it yields a deterioration of resolution.

Since SAFT is a heuristically proposed imaging algorithm, be it either
voxel driven or A-scan driven, we may equally establish heuristically based
modifications.

• First: US-NDT meets scalar wave fields only for SH-waves. Nevertheless,
the application to P- as well as SV-waves (in three dimensions: P- and S-
waves) is possible with two assumptions: Any scalar measurement quantity
is selected, for example, the electric voltage delivered by the transducer,
hoping to be proportional to the normal component of the particle dis-
placement on the specimen surface (for fluid coupling, the horizontal com-
ponent is not transmitted); however, due to the appearance of the wave
speed c in (16.5), it must be known beforehand, i.e., the assignment of
diffraction surfaces to pressure or shear waves is mandatory.

• Nonplanar measurement surfaces may be considered through d =⇒ z(x, y).

• A further physical understanding of wave propagation suggests the imple-
mentation of a depth adjustment under the SAFT-integral (16.5) because
data from point scatterers in greater depth definitely exhibit smaller am-
plitudes than those close to the surface.

317Various signal processing techniques, e.g., a deconvolution of the scattered signal with
the incident pulse, allow for an improvement of resolution (Mayer 1989).
318Regarding the negative sign, Section 16.2.5 should be consulted.
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• In practical applications, the incident field is neither a plane wave nor does
it come from a point source; yet transducer radiation characteristics may
easily be incorporated in a simple manner through spatial angle limitation
of the isochrone surface (e.g., for the A-scan driven approach).

• For homogeneous anisotropic materials, the isochrone surfaces are given
by energy velocity surfaces; therefore, a modification of SAFT for those
embedding materials is immediately at hand (Langenberg et al. 1997).
Accounting for refraction at boundaries of a piecewise (anisotropic) in-
homogeneous embedding material (defect imaging in anisotropic welds),
a ray geometric SAFT algorithm may be formulated and implemented
for such applications (Hannemann 2001; Marklein et al. 2002b; Shlivinski
et al. 2004b).

Finally: Even though knowledge concerning wave propagation has entered the
formulation of the SAFT imaging algorithm, it is not a rigorous mathematical
solution of the inverse scattering problem, which becomes apparent embed-
ding it into an inverse scattering theory (Langenberg 1987; Section 16.2.5);
only the inherent linearization based on the negligence of radiation interac-
tion is obvious, yet at this point we do not know anything about further
implicit assumptions, and, hence, about precision and resolution, and about
the factual physical meaning of the image o(x′, y′, z′). These questions must
be answered on the basis of theoretical investigations (Langenberg 1987) or
applying the algorithms to test specimens, respectively using synthetic data
(Langenberg et al. 2004a,b; Mayer et al. 2003; Schmitz 2002; Langenberg et al.
1999a, 1993a). In the following, we give an example: For the test specimen
displayed in Figure 15.48, pulse-echo B-scan data have been recorded along a
linear scan path—in Figure 16.3, from left to right—with a 45◦-2 MHz-shear
wave transducer (MWB45N2) and processed with the SAFT algorithm. The
result displayed in Figure 16.3 shows in fact a focusing of diffraction curves
to “defect” surfaces as they are recorded by the transducer, where the axial
resolution is given by the pulse duration and the lateral resolution is given by
the transducer, respectively the (synthetic) measurement aperture. Clearly,

FIGURE 16.3
SAFT imaging with experimental data (V. Schmitz: Fraunhofer IZFP).
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FIGURE 16.4
SAFT image with simulation data (V. Schmitz: Fraunhofer IZFP).

artifacts (ghost images) are recognizable that may be explained by multiple
scattering, respectively creeping waves for the cylindrical drills.

Figure 16.4 shows SAFT results for the same test specimen and the same
scan path if synthetic data calculated with the Kirchhoff approximation (Fig-
ure 15.49) are inserted. First: Due to the shorter simulation pulse, the axial
resolution is better, and then: multiply scattered and creeping wave pulses
are missing, because they are not considered within the Kirchhoff approxi-
mation. By the way: The images of the side wall drills exhibit the axially
resolved edge pulses of the transducer aperture as source of the incident field
(Section 13.3.4).

16.2 FT-SAFT: Fourier Transform Synthetic Aperture
Focusing Technique

The SAFT algorithms are based on heuristic arguments: Even though their
“derivation” uses the knowledge of the time domain Green function of the
embedding material, more precisely: the geometry of elementary wavefronts—
potential radiation characteristics of elementary waves are not incorporated—
the mathematical relation between scatterer and its scattered field is not
considered. However, this relation is available in terms of volume integrals
over secondary sources that are equivalent to the scatterer. Since the scat-
tered field is the quantity to be measured, it should in principle be possi-
ble to invert these volume integrals, i.e., to formulate an inverse scattering
theory. For scalar wave fields, this theory has been widely finalized as a lin-
ear (Langenberg 1987, 2002a) as well as a nonlinear theory (Belkebir and
Saillard 2001). On one hand, the linear theory contains the SAFT algorithms
as special cases after introducing several approximations (Langenberg 1987;
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pulse-echo version: Section 16.2.5), and on the other hand, it allows for the im-
plementation of algorithmic alternatives, most effectively: FT-SAFT for pla-
nar measurement surfaces (Mayer 1989; Mayer et al. 1990; Langenberg et al.
1999a; Mayer et al. 2003; Langenberg et al. 2004a, 2004b) because essentially
Fourier transforms are applied, hence the acronym “FT” stands for.

16.2.1 Scalar secondary sources: Contrast sources

For acoustically penetrable scatterers, the Fourier spectrum of the scattered
pressure is calculated as

ps(R,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
jωρhκ(R′,ω)G(R − R′,ω)

+ f ρ(R
′,ω) · ∇′G(R − R′,ω)

]
d3R′ (16.15)

in terms of volume integration (5.106) of the Fourier spectra of the secondary
sources (5.100) and (5.101):

hκ(R,ω) = jω Γc(R)
[
κ − κ(i)(R)

]
p(R,ω)

= − jωκ χκ(R)p(R,ω), (16.16)

f ρ(R,ω) = − jω Γc(R)
[
ρ − ρ(i)(R)

]
v(R,ω)

= jωρ χρ(R)v(R,ω)
= χρ(R)∇p(R,ω); (16.17)

here, κ(i)(R) and ρ(i)(R) denote compressibility and mass density in the
scattering volume Vc with the characteristic function Γc(R) that resides in
the homogeneous isotropic embedding material κ, ρ with the Green function
G(R − R′,ω); χρ(R) and χκ(R) are contrast functions defined by (5.94) and
(5.95). For perfect acoustic scatterers with a soft or rigid surface Sc, we con-
veniently start with the Helmholtz formulation (5.84) of Huygens’ principle

ps(R,ω) =
∫∫

Sc

[
jωρ g(R′,ω)G(R − R′,ω) + t(R′,ω) · ∇′G(R − R′,ω)

]
dS′,

(16.18)
where

g(R,ω) = − nc · v(R,ω)

= − 1
jωρ

nc · ∇p(R,ω), (16.19)

t(R,ω) = ncp(R,ω) (16.20)

denote the secondary surface sources (5.82) and (5.83).
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A formulation of (16.18) that is equivalent to (16.15) and (16.18) reads

ps(R,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

[
jωρhc(R′,ω)G(R − R′,ω)

+ f c(R
′,ω) · ∇′G(R − R′,ω)

]
d3R′ (16.21)

via the definition of secondary volume sources (15.44) and (15.45):

hc(R,ω) = − γ
c
(R) · v(R,ω)

= − 1
jωρ

γ
c
(R) · ∇p(R,ω), (16.22)

f c(R,ω) = γ
c
(R)p(R,ω). (16.23)

For the secondary sources (16.22) and (16.23), the specializations

f s
c(R,ω) = 0, (16.24)

hs
c(R,ω) = − 1

jωρ
γ

c
(R) · ∇p(R,ω) (16.25)

to a soft scatterer: Dirichlet boundary condition (p(R,ω) = 0, R ∈ Sc), re-
spectively to a rigid scatterer, is appropriate: Neumann boundary condition
(nc · ∇p(R,ω) = 0, R ∈ Sc):

f r
c(R,ω) = γ

c
(R)p(R,ω), (16.26)

hc(R,ω) = 0. (16.27)

Since the rigid scatterer exhibits the gradient of the Green function in (16.21),
we may produce the representation

pr
s(R,ω) = −

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
G(R − R′,ω)∇′ · f r

c(R
′,ω) d3R′ (16.28)

according to (5.63) =⇒ (5.61), where we may replace

∇ · f r
c(R,ω) = p(R,ω)∇ · γ

c
(R) (16.29)

using (16.26) and applying the Neumann boundary condition one more time.
Further specialization to a penetrable scatterer with χρ(R) ≡ 0, we obtain a
similar representation

ppen,s,r
s (R,ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
qpen,s,r
c (R′,ω)G(R − R′,ω) d3R′ (16.30)

for all three canonical scatterers if we define

qpen,s,r
c (R,ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k2χκ(R)p(R,ω) penetrable (only κ−contrast)

−γ
c
(R) · ∇p(R,ω) soft

−
[
∇ · γ

c
(R)
]
p(R,ω) rigid

.

(16.31)
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In each case, we meet a contrast source w(R,ω)

qpen,s,r
c (R,ω) =⇒ w(R,ω) = χ(R)φ(R,ω) (16.32)

that contains the geometry/material properties of the scatterer with χ(R);
it is field dependent via φ(R,ω); now we generally write φ(R,ω) (for the
penetrable scatterer φ(R,ω) contains the factor k2)—consequently φs(R,ω)
for the scattered field—to indicate that the integral representation

φs(R,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(R′,ω)G(R − R′,ω) d3R′ (16.33)

is a basis of an inversion theory not only for scalar acoustic waves but also for
any scalar wave field satisfying the differential equation

∆φs(R,ω) + k2φs(R,ω) = −w(R,ω). (16.34)

We would like to note that the distributional contrast sources of perfect
scatterers may be represented by strongly lossy penetrable scatterers. To this
end, we specialize the Maxwell model (4.78) for the compliance tensor to the
acoustic case:

∂S(R, t)
∂t

= −κ(R)
∂p(R, t)

∂t
− Γ(R)p(R, t). (16.35)

For the Fourier spectra, we obtain the complex compressibility

κc(R) = κ(R) + j
Γ(R)

ω
(16.36)

yielding

κ(i)
c = κ + j

Γ

ω
(16.37)

for a homogeneous κ-lossy scatterer, whose complex compressibility should
have the same real part as the embedding material; consequently, we obtain
a purely imaginary contrast

χκ = j
Γ

ωκ
, (16.38)

whose magnitude can be arbitrarily increased choosing Γ (for fixed frequency)
accordingly. The question is now: What kind of boundary condition may be
approximately realized with |χκ| � 1. We calculate the reflection of a plane
wave

pi(R,ω) = p0(ω) e−jk sin ϑiy−jk cos ϑiz (16.39)

with k = ω
√

ρκ at a lossy half-space with the wave number kc =
ω
√

ρ(κ + jΓ/ω) (surface ≡ xy-plane) and obtain for the reflected wave

pr(R,ω) = R(ϑi,ω) pi(ω) e−jk sin ϑiy+j	k
(c)
tz z (16.40)
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due to the transition conditions (5.13) and (5.14); the reflection coefficient is
given by

R(ϑi,ω) =
k cos ϑi − k

(c)
tz

k cos ϑi + k
(c)
tz

, (16.41)

and the complex z-component

k
(c)
tz = k

√
cos2 ϑi + j

Γ

ωκ
(16.42)

of the complex phase vector by k(c)
t of the accordingly attenuated e
k

(c)
tz z,

z < 0, transmitted plane wave. For Γ/ωκ � 1, we have R � −1, i.e., the acous-
tic pressure approximately satisfies a Dirichlet boundary condition. Therefore,
contrast source inversion (CSI) (Section 16.2.2) implements the soft scatterer
in terms of a purely imaginary contrast (16.38); a Maxwell model similar to
(16.35) for the density analogously approximates the rigid scatterer.

To linearize the direct as well as the inverse scattering problems, the back
coupling of the scattered field to the contrast source must be canceled; this
is basically achieved if the total field in (16.31) is set proportional to the
incident field, more precisely: if the penetrable scatterer is Born and the perfect
scatterer Kirchhoff approximated:

wlin(R,ω) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
k2χκ(R)pi(R,ω) penetrable (only κ−contrast)

−2γ
u
(R) · ∇pi(R,ω) soft

−2
[
∇ · γ

u
(R)
]
pi(R,ω) rigid.

(16.43)
Here, γ

u
(R) stands for the illuminated scattering surface, i.e., considering

the Kirchhoff shadow boundary. With this linearized version, the FT-SAFT
algorithm is essentially based on the contrast sources. Before we come to that
the nonlinear CSI will be briefly addressed because the necessary equations
are available anyway.

16.2.2 Contrast source inversion

In fact, Equation 16.33 can be used twice, once as the data equation

φs(R,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(R′,ω)G(R − R′,ω) d3R′, R ∈ SM , (16.44)

and once more as the object equation

φ(R,ω) = φi(R,ω) +
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(R′,ω)G(R − R′,ω) d3R′, R ∈ Vc.

(16.45)
For known contrast χ(R), Equation 16.45 is the Lippmann–Schwinger integral
equation (5.108) for the interior total field φ(R,ω), R ∈ Vc, for vanishing
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ρ-contrast; hence, it is the basis to solve the direct scattering problem.319

In case of the inverse problem, the contrast source is the desired unknown
quantity yielding the following iterative solution of (16.44) and (16.45) without
linearization:

• An initial guess w(0)(R,ω) is calculated with a linear back propagation
method yielding an initial guess of the interior total field φ(0)(R,ω) with
(16.45), and hence with the modified equation (16.32)

χ(R) =
w(R,ω)φ∗(R,ω)

|φ(R,ω)|2 (16.46)

a zero-order approximation of the contrast.

• Multiplying (16.45) with χ(R) results in the modified object equation

w(R,ω) = χ(R)φi(R,ω)

+ χ(R)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(R′,ω)G(R − R′,ω) d3R′, R ∈ Vc, (16.47)

which represents a system of integral equations together with (16.44) to
calculate w(1)(R,ω) if χ(0)(R) is used.

• With (16.45), we obtain φ(1)(R,ω), with (16.46) χ(1)(R) allowing for the
calculation of w(2)(R,ω), and so on.

The flow chart in Figure 16.5 clearly arranges the single steps of the CSI
algorithm.

w(n)(R, ω) φi(R, ω) = φ(R, ω) – ∫ ∫∫Vc ω(R′, ω)G(R – R′, ω) d3R′

χκ   (R)φi(R, ω) = w(R, ω) – χκ   (R)∫ ∫∫Vc ω(R′, ω)G(R – R′, ω) d3R′

φs(R, ω) = ∫ ∫∫Vc ω(R′, ω)G(R – R′, ω) d3R′

φ(n)(R, ω)

w(n)(R, ω)

w(n+1)(R, ω)

ω(R, ω)φ*(R, ω)χκ(R) = 
φ(R, ω) 2

χκ
(n)(R)

FIGURE 16.5
Flow chart for nonlinear CSI.

319For perfect scatterers, it reduces to integral equations (5.89), respectively (5.90).
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This nonlinear iterative algorithm has been published as CSI (including
modifications) (Kleinman and van den Berg 1997; van den Berg 1999; Haak
1999), and we applied it successfully to electromagnetic data (Marklein et al.
2001, 2002a). However, it is numerically costly, and, hence, it is legitimate to
ask what kind of improvements may be obtained as compared to linear inver-
sion. It is completely clear: If the (non-Born) contrast of a penetrable scat-
terer has to be calculated quantitatively, there is no way around a nonlinear
inversion algorithm. On the other hand, if one is only interested in the sur-
face contour of a perfect (non-Kirchhoff) scatterer, results for ultrasonic data
seem to indicate (Marklein et al. 2002b; Schmitz et al. 2004a) only a marginal
gain. However: For typical measured electromagnetic data, the gain may be
significant (Marklein et al. 2001).

16.2.3 Generalized holography

In connection with the CSI, we referred to a zero-order approximation of
the contrast source as solution of a linear back propagation scheme: It is
available in various versions of generalized holography (Langenberg 1987).
We consider—as for the A-scan driven approach of SAFT—the time harmonic
scattered field data (the Fourier spectra of the time-dependent scattered field)
on a closed measurement surface SM surrounding the scatterer completely as
point “sources” that have to be back propagated into the embedding material
in terms of elementary waves; hence,

θH(R,ω) =
∫∫

SM

[
G∗(R − R′,ω)∇′φs(R′,ω)

−φs(R′,ω)∇′G∗(R − R′,ω)
] · n′

M dS′ (16.48)

defines the (single frequency) “image” of the Huygens-type back propagation
for R ∈ VM , because G∗(R − R′,ω) is nothing but the Fourier spectrum of
the advanced Green function (16.7); n′

M is the outer normal on SM . Since
the secondary sources of the scattered field reside in the interior of VM , the
volume enclosed by SM , the “original” Huygens integral (16.48) with G instead
of G∗ would yield a null-field for R ∈ VM . In contrast, (16.48) yields the
nonvanishing generalized holographic field, even though at this point, it is not
yet known how it is related to the contrast sources of the scatterer. However,
application of Green’s theorem to VM results in the scattered field equation
(16.34) and its solution (16.33) in the Porter–Bojarski integral equation (of
the first kind)

θH(R,ω) = 2j
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(R′,ω) �G(R − R′,ω) d3R′ (16.49)

for the contrast source, where the kernel is the imaginary part of Green’s func-
tion of the embedding material. A more precise investigation reveals (Langen-
berg 1987) that θH is already a solution for w(R,ω), namely the solution of
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minimal norm (minimal energy). Under certain circumstances, e.g., for strip-
like scatterers (US-NDT: cracks) this is already something (Langenberg 1987).
If not, one must try harder “to put more energy” into the solution of (16.49),
e.g., integrating over frequency (within the bandwidth of the ultrasonic pulse).
Yet, since the contrast source is a function of both variables R and ω, in
general not in the synchronous form F (ω)w(R), the spatial distribution of
w(R,ω) is prone to vary for a different frequency, and this so-called frequency
diversity will only yield a result if the frequency dependence of the contrast
source is controlled from outside by the operator. This is achieved via the lin-
earization w =⇒ wlin (Equation 16.43) and prescription of the incident field,
for example, as plane wave with direction k̂i. That way, the door for an angu-
lar diversity is opened, i.e. (16.49) is integrated over a spatial angle interval of
k̂i (with single frequency excitation). Both diversities lead to explicit inversion
algorithms for the contrast (Langenberg 1987, 2002). For US-NDT, the fre-
quency diversity is primarily relevant, and in fact, if the resulting formula for
contrast inversion is transformed into the time domain, we obtain—after sev-
eral subsequent approximations—SAFT! That way, we have provided a field
theoretical derivation of SAFT! For the special case of planar measurement
surfaces, we will actually derive the field theoretical exact pulse-echo version
of SAFT in Section 16.2.5.

The numerical evaluation of the back propagation integral (16.48) is es-
pecially effective if we can apply—for planar measurement surfaces—spatial
Fourier transforms: The result is the FT-SAFT algorithm that is, due to the
same field theoretical foundations, the result equivalent to SAFT. However,
the direct derivation of FT-SAFT without using generalized holography is
simpler favoring this approach in the following section.

16.2.4 FT-SAFT

Fourier diffraction slice theorem: Similar to Figure 16.2, we configure a
planar measurement surface in a cartesian coordinate system as xy-plane for
z = d. The scattered field representation (16.43) reveals itself according to

φs(x, y, d,ω) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
w(x′, y′, z′,ω)G(x − x′, y − y′, d − z′,ω)

× dx′dy′dz′ (16.50)

as two-dimensional convolution integral with respect to x and y; it is resolved
via the Fourier transform convolution theorem to be transformed into a prod-
uct of the spatial spectra:

φ̂s(Kx, Ky, d, ω) =
∫ ∞

−∞
ŵ(Kx, Ky, z′,ω)Ĝ(Kx, Ky, d − z′,ω) dz′, (16.51)

where the spectra—for example, φ̂s(Kx, Ky, d, ω)—are given by

φ̂s(Kx, Ky, d, ω) =
∫ ∞

−∞

∫ ∞

−∞
φs(x, y, d,ω) e−jKxx−jKyy dxdy; (16.52)
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the spectrum

Ĝ(Kx, Ky, d − z′,ω) =
j

2
√

k2 − K2
x − K2

y

e j|d−z′|
√

k2−K2
x−K2

y (16.53)

is explicitly known from Weyl’s integral representation (13.323). With the
short-hand notation

Kz =
√

k2 − K2
x − K2

y (16.54)

and under the given assumption d > z′—then we have |d − z′| = d − z′—
(16.51) is finally revealed as spatial Fourier integral with respect to z′, where
Kz plays the role of the Fourier variable:

φ̂s(Kx, Ky, d, ω) =
j

2Kz
e jdKz

∫ ∞

−∞
ŵ(Kx, Ky, z′,ω) e−jKzz′

dz′. (16.55)

Hence, the so-called Fourier diffraction slice theorem holds:

φ̂s(Kx, Ky, d, ω) =
j

2Kz
e jdKz w̃(Kx, Ky, Kz =

√
k2 − K2

x − K2
y ,ω). (16.56)

In words: For K2
x + K2

y ≤ k2, the two-dimensionally Fourier transformed scat-
tered field φ̂s(Kx, Ky, d, ω) with respect to the measurement coordinates
x and y is proportional to the three-dimensional spatial Fourier spectrum
w̃(Kx, Ky, Kz,ω) on the Ewald sphere Kz =

√
k2 − K2

x − K2
y . The mapping

prescription (16.54) of the KxKy ω-space into KxKyKz-space distributes ac-
cording to K2

x + K2
y ≤ k2 bandlimited Fourier-transformed measured data320

depending upon variables Kx, Ky,ω on a half-sphere surface with radius
k = ω/c in K-space, where K = Kxex + Kyey + Kzez. The radius parameter
k inter alia permits to cover a partial volume of K-space varying frequency
requiring—as for the integration of the Porter–Bojarski equation (16.49)—the
linearization of the contrast source. We again distinguish between frequency
diversity of a multibistatic (multipitch-catch) setup, angular diversity of a
multibistatic (multipitch-catch) single frequency setup, as well as frequency
diversity of a multimonostatic (pulse-echo) setup.

FT-SAFT: multibistatic frequency and multibistatic angular diver-
sity: We assume the incident wave to be a plane wave

φi(R,ω, k̂i) = φ0(ω, k̂i) e jki·R (16.57)

with the diversity parameters ω and k̂i = ki/k: For varying frequency and R ∈
SM , an arbitrarily fixed illumination direction k̂i corresponds to a broadband
multiple pitch-catch experiment, hence to multibistatic frequency diversity

320Figure 11.3 depicts intuitively that this band limitation is actually realized for a suffi-
ciently large measurement distance d.
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(radar terminology: R = R0 ∈ SM is a bistatic experiment, hence for arbitrary
R ∈ SM a multibistatic experiment), and for varying angle of incidence and
R ∈ SM , an arbitrarily fixed frequency corresponds to a multibistatic single
frequency angular diversity. However, in each case, (16.57) yields the linearized
contrast source

wlin(R,ω, k̂i) = χ(R)φi(R,ω, k̂i), (16.58)

where we hide the factor k2 for the penetrable scatterer in φ0(ω, k̂i). In-
serting (16.58) into (16.56), the Fourier transform of a modulated contrast
function has to be calculated due to the exponential function in (16.57), i.e.,
the three-dimensional Fourier spectrum χ(R) is displaced in K-space. Yet,
it is advantageous to displace the Ewald sphere instead; to achieve this, we
multiply the scattered field with e−jki·R and combine the resulting exponen-
tial term e−jki·(R−R′) with the Green function (16.44) before applying the
two-dimensional Fourier transform:

e−jki·R φs(R,ω)

= φ0(ω, k̂i)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(R′)

e jk|R−R′|

4π|R − R′|e
−jki·(R−R′) d3R′; (16.59)

due to this modulation function the Fourier variables Kx and Ky are now
displaced by the components kix, respectively kiy:

e−jkizd φ̂s(Kx + kix, Ky + kiy, d, z)

= φ0(ω, k̂i)
j

2
√

k2 − (Kx + kix)2 − (Ky + kiy)2

×
∫ ∞

−∞
χ̂(Kx, Ky, z′) e−jkiz(d−z′) e j|d−z′|

√
k2−(Kx+kix)2−(Ky+kiy)2 dz′.

(16.60)

With the assumption d > z′, we have

φ̂s(Kx + kix, Ky + kiy, d, ω)

= φ0(ω, k̂i)
je jd

√
k2−(Kx+kix)2−(Ky+kiy)2

2
√

k2 − (Kx + kix)2 − (Ky + kiy)2

×
∫ ∞

−∞
χ̂(Kx, Ky, z′) e−jz′(

√
k2−(Kx+kix)2−(Ky+kiy)2−kiz) dz′ (16.61)

resulting in the Fourier diffraction slice theorem

φ̂s(Kx + kix, Ky + kiy, d, ω)

= φ0(ω, k̂i)
j

2(Kz + kiz)
e jd(Kz+kiz) χ̃(Kx, Ky, Kz) (16.62)
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FIGURE 16.6
Illustration of the multibistatic FT-SAFT mapping prescription.

with the mapping prescription

Kz =
√

k2 − (Kx + kix)2 − (Ky + kiy)2 − kiz, (16.63)

respectively,
|K + ki| = k (16.64)

with Kz + kiz ≥ 0. Figure 16.6 illustrates this mapping of the Fourier trans-
formed data into K-space, where once again only propagating spectral com-
ponents (Kx + kix)2 + (Ky + kiy)2 ≤ k2 of φ̂s are considered: The midpoint
of the Ewald sphere is now located at −ki, and the transformed data are
placed on that part of the hemisphere that is oriented toward the measure-
ment surface321; hence, the parameters of the mapping are k̂i and k yielding
typical K-space coverings for frequency-, respectively angular diversity,322 as
displayed in Figure 16.7 that are different in both cases consequently yielding
different spatially bandlimited results after Fourier inversion into reconstruc-
tion space. By the way: Even for infinite frequency bandwidth (0 ≤ k < ∞),

321Measuring the scattered field in transmission on a plane orthogonal to the propagation
direction, the Fourier diffraction slice theorem is immediately recognized as wave theoretical
counterpart of the X-ray tomography Fourier slice theorem (Langenberg 1987). Therefore,
FT-SAFT is also called diffraction tomography (Devaney 1986).
322Obviously, for angular diversity intersection lines (surfaces) of Ewald hemispheres are

obtained yielding superpositions of (Fourier transformed) data; this must be accounted for
by a filter operation that has been derived by Langenberg (2002a) for the case of far-field
inversion.
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^
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FIGURE 16.7
FT-SAFT K-space covering for multibistatic frequency- (left), respectively
multibistatic angular diversity (right).

respectively complete covering of the k̂i-unit sphere, we obtain at most band-
limited contrast functions, a fact that is also true for SAFT as time domain
version of frequency diversity, yet it is not apparent in the heuristic motiva-
tion of this algorithm. This fact should always be in mind if US-imaging is
addressed as defect reconstruction. Evidently, this is especially true if band-
width, respectively illumination interval, is restricted; for example, neither
operational mode reaches the origin of K-space in that case, i.e., the Fourier
inversion of the data covered limited K-space regions initially always results
in—as SAFT with bandlimited pulses—oscillatory images of scatterers; yet in
general, these are complex valued allowing for a simple magnitude operation
to get rid of the oscillations having the same effect as the additional SAFT
processing of Hilbert transformed pulsed data.

We have already emphasized that within the framework of a linear inverse
scattering theory SAFT and FT-SAFT are just two sides of the same medal;
for the multibistatic frequency diversity, this is illustrated in the flow chart of
Figure 16.8 based on synthetic EFIT-data, whereas the mathematical proof
has been given by Langenberg (1987). Starting point—in two dimensions—is
an xt-data field (the A-scans in a B-scan), here: the elastodynamic field of a
pulsed plane pressure wave scattered by a circular cylinder with a stress-free
surface; the pixel-driven SAFT algorithm requires the calculation of diffrac-
tion hyperbolas t(x′, z′) for each x′z′-pixel, and subsequent data integration
along the hyperbolas. The result is an image of the illuminated surface contour
of the scatterer with an axial resolution corresponding to the pulse duration
(through simultaneous SAFT processing of Hilbert transformed data and mag-
nitude calculation the pulse oscillations have been suppressed). Alternatively,
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the xt-data are Fourier transformed with regard to t and x resulting in an
ωKx-space (exhibiting very nicely the spatial band limitation of Fourier trans-
formed data to kx ≤ k); the mapping Kz =

√
ω2/c2

P − K2
x (cP is the pressure

wave velocity) turns it into K-space with coordinates Kx and Kz, and a two-
dimensional inverse Fourier transform with subsequent magnitude calculation
yields the FT-SAFT result that is practically nondistinguishable from the
SAFT result.

The equivalence of pulse-echo SAFT and FT-SAFT will be proved in the
last section of this elaboration.

FT-SAFT: multimonostatic frequency diversity (pulse-echo ver-
sion): Due to the simple data acquisition, the pulse-echo mode plays an
outstanding role in US-NDT; a corresponding SAFT algorithm has been for-
mulated with (16.12) to derive a multimonstatic FT-SAFT version the mea-
surements must first be preprocessed. As for (16.12), we start from the incident
field of a point-source at R0 ∈ SM , hence we modify (16.57) according to

φi(R,ω,R0) = φ0(ω)
e jk|R−R0|

4π|R − R0|
; (16.65)

Note: For the case of a penetrable scatterer φ0(ω) contains the factor k2. The
contrast source linearized according to (16.65) results in the scattered field

φs(R,ω,R0) = φ0(ω)
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(R′)

e jk|R′−R0|

4π|R′ − R0|
e jk|R−R′|

4π|R − R′| d3R′

(16.66)
that reduces to

φm
s (R,ω) = φ0(ω)

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(R′)

e2jk|R−R′|

(4π)2|R − R′|2 d3R′ (16.67)

in pulse-echo mode R0 = R (“m” for monostatic). The two-dimensional
Fourier transform of (16.67) with respect to x and y is no longer offhand
possible because the integrand contains the square of the Green function.
With the definition of the modified monostatic scattered field

φmo
s (R,ω) =

2π

j
∂

∂k

φm
s (R,ω)
φ0(ω)

, (16.68)

we achieve the appearance of a “monostatic Green function” Gmo(R −
R′,ω) = G(R − R′, 2ω) in

φmo
s (R,ω) =

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ(R′)

e2jk|R−R′|

4π|R − R′| d3R′; (16.69)

(16.68) is the above mentioned preprocessing of monostatic data. As a matter
of fact, Gmo(R − R′,ω) is a Green function because φmo

s (R,ω) satisfies the
differential equation

∆φmo
s (R,ω) + 4k2φmo

s (R,ω) = −χ(R) (16.70)
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with the Green function Gmo(R − R′,ω). Yet it should be pointed out that,
in contrast to (16.34), this only holds within the framework of linearization.

The Fourier diffraction slice theorem corresponding to (16.69) with the
mapping prescription

Kz =
√

4k2 − K2
x − K2

y ≥ 0, (16.71)

respectively
|K| = 2k, (16.72)

can now immediately be written down:

φ̂mo
s (Kx, Ky, d, ω) =

j
2Kz

e jdKz χ̃(Kx, Ky, Kz). (16.73)

The mapping (16.71) is sketched in Figure 16.9; obviously, we obtain origin-
centered hemispheres with radii 2k. Frequency diversity is immediately at
hand with (16.73) and (16.71), because (16.73) is already linearized; in
Figure 16.9, the diversity is indicated by the dashed mapping hemispheres
(circles). Again, it is apparent that finite frequency bandwidth yields oscilla-
tory images being fixed with magnitude calculation.

As in Figure 16.8 for multibistatic frequency diversity, we illustrate for
multimonostatic frequency diversity the equivalence of FT-SAFT and pulse-
echo SAFT, yet this time for experimental US-data (V. Schmitz: Fraunhofer
IZFP). Figure 16.10 displays images of a crack orthogonal to the surface of
a steel specimen; illumination occurred with (SV-) shear waves under 45◦,
hence with elastic vector waves. We consider the transducer receiving voltage
as scalar “wave field”; apparently, it does not satisfy the scalar wave equation
(16.34) consequently, the defect images in Figure 16.10 may not be considered

xy{φs
mo}

ez

SM
Point transmit-receive transducer

ex
x, Kx

z, Kz

z = d

y, Ky2k
ey

K

FIGURE 16.9
Illustration of multimonostatic FT-SAFT mapping.
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FIGURE 16.10
Pulse-echo SAFT- (left) and multimonostatic FT-SAFT imaging (right) of an
actual crack for 45◦-shear wave incidence.

to be defect reconstructions. A generalization of FT-SAFT to elastic waves
utilizing mode conversion has also been formulated (Kostka et al. 1998; Lan-
genberg et al. 2006, 2007; Zimmer 2007).

To what extent multimonostatic frequency diversity of FT-SAFT is in fact
equivalent to the pulse-echo version of SAFT will be analytically shown in the
next section. Based on simulations and analysis of experimental data, we could
show that in fact slowness surfaces must be used for the mapping prescrip-
tion within FT-SAFT in anisotropic materials in contrast to the utilization
of wave (energy) surfaces within SAFT (Zimmer 2007); after all we superim-
pose spectra of plane waves and do not back propagate elementary waves as
within SAFT.

16.2.5 Exact derivation of pulse-echo SAFT for planar
measurement surfaces

The notation

χ̃(Kx, Ky, Kz) =
2
j
Kz e−jdKz φ̂mo

s

(
Kx, Ky, d, ω =

c

2

√
K2

x + K2
y + K2

z

)
(16.74)

of the monostatic Fourier diffraction slice theorem directly reveals that the
contrast function χ(x, y, z) should be available with the help of a three-
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dimensional inverse Fourier transform with regard to Kx, Ky, Kz. Yet the
mapping prescription (16.71) tells us—as illustrated in Figure 16.9—that only
the upper Kz-half-space323—Kz ≥ 0 is accessible with transformed data for
k ≥ 0, i.e., at most

1
(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ̃(Kx, Ky, Kz) u(Kz) dKxdKydKz (16.75)

can be calculated with transformed data appending u(Kz) as unit step
function to χ̃(Kx, Ky, Kz) excluding the lower half-space. Yet, this three-
dimensional inverse Fourier integral yields the Hilbert transform with regard
to z besides the real valued contrast function χ(x, y, z)

1
(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
χ̃(Kx, Ky, Kz) u(Kz) dKxdKydKz

=
1
2

[χ(x, y, z) − jHζ{χ(x, y, ζ)}] , (16.76)

considering (2.287) and (2.298), where the negative sign of the Hilbert trans-
form is determined by the kernel of the spatial Fourier transform (Equa-
tions 2.329 and 2.330). Hence, χ(x, y, z) is found from (16.76) via magnitude
calculation considering (16.74):

χ(x, y, z)

= �
{

4
j(2π)3

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
Kz e−jKz(d−z) φ̂mo

s

×
(
Kx, Ky, d, ω =

c

2

√
K2

x + K2
y + K2

z

)
× u(Kz) e jKxx+jKyy dKxdKydKz

}
. (16.77)

Comparison with (16.53)—there we have e j(d−z)Kz for d > z—shows that the
resulting wave propagation from the scatterer to the measurement surface
in (16.77)—we had e−j(d−z)Kz—has been transformed in a back propagation
from the measurement surface; hence, the SAFT idea is already recognizable.
However, SAFT is a time domain algorithm, here the Kz-integration reflects
frequency diversity suggesting to transform the Kz-Integral into a k-, respec-
tively ω-integral, to interpret the latter as Fourier integral. Via the mapping
prescription (16.71), we substitute

Kz dKz = 4k dk, k ≥ 0, (16.78)

323The lower half-space could be accessible with a second measurement surface at z = −d.
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and obtain

χ(x, y, z)

= �
{

16
j(2π)3

∫ ∞

−∞
u(k) k

∫ ∞

−∞

∫ ∞

−∞
e−j(d−z)

√
4k2−K2

x−K2
y

× φ̂mo
s (Kx, Ky, d, ω = ck) ejKxx+jKyy dKxdKy dk

}
. (16.79)

Now, it is time to critically inspect the KxKy-integrations, because√
4k2 − K2

x − K2
y becomes purely imaginary for K2

x + K2
y > 4k2, and only a

proper sign choice of the complex square root determines convergence of the
KxKy-integrals. This sign, namely �

√
4k2 − K2

x − K2
y > 0, is already pre-

scribed in the two-dimensional Fourier transform

Ĝmo(Kx, Ky, d − z,ω)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
j

2
√

4k2 − K2
x − K2

y

e j(d−z)
√

4k2−K2
x−K2

y for K2
x + K2

y ≤ 4k2

1

2
√

K2
x + K2

y − 4k2
e−(d−z)

√
K2

x+K2
y−4k2

for K2
x + K2

y > 4k2

(16.80)

of the monostatic Green function ensuring the convergence of Weyl’s inte-
gral representation, or, physically expressed, ensuring the evanescent waves
emanating from the source at z—here: the scatterer—are in fact attenu-
ated reaching the measurement surface at d > z. Yet, in (16.79), we find
e−j(d−z)

√
4k2−K2

x−K2
y leading to

e−j(d−z)
√

4k2−K2
x−K2

y for K2
x + K2

y ≤ 4k2,

e(d−z)
√

K2
x+K2

y−4k2
for K2

x + K2
y > 4k2

(16.81)

with the same sign choice of the imaginary part. Consequence: The KxKy-
integrals in (16.79) would not converge! Yet, on the other side, we know (com-
pare Figure 11.3) that φ̂mo

s (Kx, Ky, d, ω = ck) contains only “few” spectral
components for K2

x + K2
y > 4k2 due to the attenuation of the evanescent waves

allowing for an explicit articulation via a multiplication with a circular disc fil-
ter u

(
2k −

√
K2

x + K2
y

)
in the KxKy-plane.324 In the integral representation

324Within the Kxω-diagram of Figure 16.8, this filter—the radius of the circular disc
increases linearly with frequency—is clearly visible.
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χ◦(R)

= �
{

16
j(2π)3

∫ ∞

−∞
u(k) k

∫ ∞

−∞

∫ ∞

−∞
u
(
2k −

√
K2

x + K2
y

)
× e−j(d−z)

√
4k2−K2

x−K2
y

× φ̂mo
s (Kx, Ky, d, ω = ck) ejKxx+jKyy dKxdKy dk

}
, (16.82)

we do no longer face any convergence problems; however, as a consequence,
we only obtain a filtered contrast function to be indicated by a respective
index, i.e., the final loss of evanescent partial waves in φ̂mo

s reduces the spatial
resolution.325 Obviously, we have

u
(
2k −

√
K2

x + K2
y

)
e−j(d−z)

√
4k2−K2

x−K2
y

= 2
∂

∂z
Ĝmo∗(Kx, Ky, d − z,ω) u

(
2k −

√
K2

x + K2
y

)
; (16.83)

with the definition of the z-derivative of a circular disc bandlimited complex
conjugate Green function Ĝmo∗

◦ (Kx, Ky, d − z,ω) according to

Ĝmo∗
◦ (Kx, Ky, d − z,ω) = Ĝmo∗(Kx, Ky, d − z,ω) u

(
2k −

√
K2

x + K2
y

)
(16.84)

KxKy-integrations in (16.82) may be written as a two-dimensional convolution
integral:

χ◦(x, y, z)

= �
{

32
2πj

∫ ∞

−∞
u(k) k

∫ ∞

−∞

∫ ∞

−∞

∂

∂z
Gmo∗

◦ (x − x′, y − y′, d − z,ω = ck)

× φmo
s (x′, y′, d, ω = ck) dx′dy′ dk

}
, (16.85)

where Gmo∗
◦ (x, y, z,ω), according to a correspondence given by Bracewell

(1978), may be represented by the respective two-dimensional convolution
integral

Gmo∗
◦ (x, y, d − z,ω) =

e−2jk
√

x2+y2+(d−z)2

4π
√

x2 + y2 + (d − z)2
x∗y∗ k

π

J1(2k
√

x2 + y2)√
x2 + y2

.

(16.86)

325To obtain a so-called super resolution, the partial evanescent waves have to be enhanced
exponentially while back propagating from the measurement surface according to (16.81);
yet this is very noise sensitive requiring special algorithmic care (Bertero and De Mol 1996).
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Now, the first approximation on the way to the SAFT algorithm comes
into play: For large values of k

√
x2 + y2—the US-pulse technique is a high-

frequency approximation—the Bessel function term is approximated by a
δ-pulse with the consequence:

Gmo∗
◦ (x, y, d − z,ω) � e−2jk

√
x2+y2+(d−z)2

4π
√

x2 + y2 + (d − z)2
. (16.87)

This approximation is of interest because in the time domain,326 we have

F−1
ω {Gmo∗

◦ (x, y, d − z,ω)} �
δ
(
t + 2

c

√
x2 + y2 + (d − z)2

)
4π
√

x2 + y2 + (d − z)2
, (16.88)

and the time domain is our final goal to establish SAFT mathematically. With
the short-hand notation

F (x, y, z,ω)

=
∫ ∞

−∞

∫ ∞

−∞

∂

∂z
Gmo∗

◦ (x − x′, y − y′, d − z,ω)φmo
s (x′, y′, d, ω) dx′dy′,

(16.89)

we write (16.85)

χ◦(x, y, z) = �
{

32
c2

1
2π

∫ ∞

−∞
u(ω)(−jω)F (x, y, z,ω) dω

}
; (16.90)

now, we find an inverse Fourier integral with regard to ω for t = 0 on the
right-hand side; therefore, the following calculation

1
2π

∫ ∞

−∞
u(ω)(−jω)F (x, y, z,ω) dω

=
1

2π

∫ ∞

−∞
u(ω)(−jω)F (x, y, z,ω) e−jωt dω

∣∣∣∣∣
t=0

= F−1
ω {u(ω)(−jω)F (x, y, z,ω)}

∣∣∣
t=0

=
∂

∂t
f(x, y, z, t) ∗

[
1
2

δ(t) − j
2π

pf
1
t

] ∣∣∣∣∣
t=0

=
1
2

[
∂

∂t
f(x, y, z, t) + jHτ

{
∂

∂τ
f(x, y, z, τ)

}] ∣∣∣∣∣
t=0

(16.91)

326That way, we approximate the circular disc bandlimited Green function by the Green
function itself; yet, the latter contains those (evanescent) spectral components that we got
rid of beforehand. In fact, the Green function is only complete with these components (Tygel
and Hubral 1987).
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yields in fact a time domain algorithm:

χ◦(x, y, z) = �
{

16
c2

[
∂

∂t
f(x, y, z, t) + jHτ

{
∂

∂τ
f(x, y, z, τ)

}] ∣∣∣∣∣
t=0

}

=
16
c2

∂

∂t
f(x, y, z, t)

∣∣∣∣∣
t=0

. (16.92)

It becomes intuitive if we explicitly calculate

f(x, y, z, t) �
∫ ∞

−∞

∫ ∞

−∞

∂

∂z

δ
(
t + 2

c

√
(x − x′)2 + (y − y′)2 + (d − z)2

)
4π
√

(x − x′)2 + (y − y′)2 + (d − z)2

t∗ φmo
s (x′, y′, d, t) dx′dy′

� 1
4π

∫ ∞

−∞

∫ ∞

−∞

d − z

(x − x′)2 + (y − y′)2 + (d − z)2

×
[

δ
(
t + 2

c

√
(x − x′)2 + (y − y′)2 + (d − z)2

)
√

(x − x′)2 + (y − y′)2 + (d − z)2

− 2
c

∂

∂t
δ

(
t +

2
c

√
(x − x′)2 + (y − y′)2 + (d − z)2

)]
t∗ φmo

s (x′, y′, d, t) dx′dy′ (16.93)

with the help of (16.88) based on (16.89). Due to the relations δ(t + t0) ∗ f(t) =
f(t + t0), δ′(t + t0) ∗ f(t) = f ′(t + t0), it follows

f(x, y, z, t) � 1
4π

∫ ∞

−∞

∫ ∞

−∞

d − z

(x − x′)2 + (y − y′)2 + (d − z)2

×
[

φmo
s (x′, y′, d, t′)√

(x − x′)2 + (y − y′)2 + (d − z)2

− 2
c

∂

∂t′
φmo

s (x′, y′, d, t′)

]∣∣∣∣∣
t′=t+ 2

c

√
(x−x′)2+(y−y′)2+(d−z)2

dx′dy′

(16.94)

finally resulting in the time domain algorithm

χ◦(x, y, z) � 4
πc2

∫ ∞

−∞

∫ ∞

−∞

d − z

(x − x′)2 + (y − y′)2 + (d − z)2
×

×
[

∂
∂t′ φ

mo
s (x′, y′, d, t′)√

(x − x′)2 + (y − y′)2 + (d − z)2
−

− 2
c

∂2

∂t′2
φmo

s (x′, y′, d, t′)

]∣∣∣∣∣
t′= 2

c

√
(x−x′)2+(y−y′)2+(d−z)2

dx′dy′

(16.95)



K12611 Chapter: 16 page: 694 date: January 6, 2012

694 Ultrasonic Nondestructive Testing of Materials

with (16.92) to retrieve the contrast function. The �-character and the ◦-
index in (16.95) illustrate that the contrast function is not “reconstructed.” In
addition, the inverse problem has been linearized with Born’s approximation,
and last but not least, formula (16.95) is based on the model of acoustic wave
propagation without density contrast. Furthermore, the upper index “mo” on
the data declares the deconvolution with φ0(ω) of the actual monostatic data
according to (16.68), where φ0(ω) is not even the spectrum of the exciting
pulse, but it also contains the factor ω2. Hence, it is surely legitimate to
simply define an “image” of the scatterer

o(x, y, z)

=
∫ ∞

−∞

∫ ∞

−∞
φm

s

(
x′, y′, d, t =

2
c

√
(x − x′)2 + (y − y′)2 + (d − z)2

)
dx′dy′,

(16.96)

while keeping the idea of time domain back propagation according to (16.95)
that is nothing more than the result of the pulse-echo SAFT algorithm ac-
cording to (16.12)! However, we know now that this algorithm has to satisfy
well defined assumptions.

The theoretical considerations of this section additionally yield another re-
sult taking not the real part but the imaginary part of (16.76), and considering
(16.91):

Hζ{χo(x, y, ζ)} = −16
c2 Hτ

{
∂

∂τ
f(x, y, z, τ)

} ∣∣∣∣∣
t=0

. (16.97)

For planar measurement surfaces, the back propagation of Hilbert-transformed
data is in fact equivalent to the Hilbert transform of the beforehand calcu-
lated SAFT image with respect to the ζ-(depth)coordinate. In case of SAFT
processing of spectrally bandlimited data, namely data without a (complete)
deconvolution, the oscillations occurring in the image may be deleted either
before or after back propagation:

|χ◦(x, y, z) − Hζ{χo(x, y, ζ)}|

=
16
c2

∣∣∣∣ ∂∂t
f(x, y, z, t) + jHτ

{
∂

∂τ
f(x, y, z, τ)

}∣∣∣∣
t=0

. (16.98)

Note: Back propagation of the magnitude of data being complex comple-
mented by a Hilbert transform does not yield the same result!

The explicit Hilbert transform—either with regard to ζ or τ (depth coordi-
nate or time)—may be avoided taking the magnitude of the anyway complex
valued FT-SAFT result.

Utilizing the generalized holographic field allows for the derivation of an
exact time domain SAFT algorithm even for arbitrary geometries of measure-
ment surfaces (Langenberg 1987).



Appendix
Collection of Mathematical Definitions
and Identities

The following formula collection for vector/tensor algebra and analysis es-
pecially contains the substantial collection of Chen (1993) and the identities
published by van Bladel (1985) and Ben-Menahem and Singh (1981), various
others have been contributed by ourselves together with some corrections in
the collections we referred to; hopefully no new errors have entered.

A.1 Vector Identities

A · (B × C) = C · (A × B)
= B · (C × A)
= [ABC] (triple product)
= [CAB]
= [BCA]

A × B = −B × A

= (I × A) · B
= A · (I × B)

A × (B × C) = B(A · C) − C(A · B)
= BA · C − CA · B
= (BC − CB) · A

(A × B) × C = B(C · A) − A(C · B)
= (BA − AB) · C

A × (B × C) − (A × B) × C = B × (A × C)
= A(C · B) − C(A · B)
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(A × B) · (C × D) = (A · C)(B · D) − (A · D)(B · C)
= A · [B × (C × D)]

(A × B) × (C × D) = [(A × B) · D]C − [(A × B) · C]D
= [ABD]C − [ABC]D

A × [B × (C × D)] = (B · D)(A × C) − (B · C)(A × D)

(A × B) · [(B × C) × (C × A)] = [A · (B × C)]2.

The following double products are defined according to Ben-Menahem and
Singh (1981); van Bladel (1985), Lindell (1992), or Gibbs (1913) using different
definitions.

(AB) : (CD) = (A · D)(B · C)

(AB)
×
× (CD) = (A × D)(B × C)

(AB)
.× (CD) = (A × D)(B · C)

(AB) ×. (CD) = (A · D)(B × C).

A.2 Tensor Identities

Summation convention: If an index on one side of an equation appears twice
or multiply (and not on the other side), it is subject to a summation from
1 to 3; no summation is involved if the index also appears on the other side.

A.2.1 Permutation tensor

ε =
3∑

i=1

3∑
j=1

3∑
k=1

εijkexi
exj

exk

= εijkexi
exj

exk
(summation convention)

= ε
i
exi

(summation convention)

εijk =

⎧⎨⎩ 0 , if two indices are equal
1 , if ijk is an even permutation of 123 (e.g., 231)

−1 , if ijk is an odd permutation of 123 (e.g., 213)

ε
1

=

⎛⎝0 0 0
0 0 1
0 −1 0

⎞⎠
ε

2
=

⎛⎝0 0 −1
0 0 0
1 0 0

⎞⎠
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ε
3

=

⎛⎝ 0 1 0
−1 0 0
0 0 0

⎞⎠
ε213 = −ε

ε132 = −ε

ε321 = −ε

ε312 = ε

ε231 = ε

exi
× exj

= εkijexk
, i, j = 1, 2, 3

εkij = exk
· (exi

× exj
)

ε · ε = εijkεklmexi
exj

exl
exm

= (δilδjm − δimδjl)exi
exj

exl
exm

= I I1324 − I I1342

ε : ε = −2I

ε
.
: ε = −6

ε : BA = A × B

ε : D21 = 〈D〉
A × B = 〈AB〉
〈D21〉 = −〈D〉

〈D〉 = 0 if D is symmetric

I =
3∑

i=1

3∑
j=1

δijexi
exj

= δijexi
exj

(summation convention)

=
3∑

i=1

exi
exi

= exi
exi

(summation convention)

I · A = A · I = A

I · D = D · I = D

I : D = D : I = traceD

I : I = 3
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Iδ = I I = δijexi
exj

δklexk
exl

= exi
exi

exk
exk

Iδ : D = D : Iδ = I traceD

I I1324 = δijδklexi
exk

exj
exl

= δikδjlexi
exj

exk
exl

= exi
exj

exi
exj

I I1342 = δijδklexi
exk

exl
exj

= δilδjkexi
exj

exk
exl

= exi
exj

exj
exi

I I1324 : D = D : I I1324 = D21

I I1342 : D = D : I I1342 = D

I+ =
1
2
(
I I1342 + I I1324)

I− =
1
2
(
I I1342 − I I1324)

D
s
= I+ : D = D : I+

D
a

= I− : D = D : I−

I I1342 : I I1342 = I I1342

I I1324 : I I1324 = I I1342

I I1342 : I I1324 = I I1324

I I1324 : I I1342 = I I1324.

A.2.2 Products

(A · D) · B = A · (D · B)

= A · D · B

(D · B) · A = D · (B · A)

= D · B · A

(A × D) · B = A × (D · B)

= A × D · B
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(D · B) × A = D · (B × A)

= D · B × A

AB21 = BA

A · D = D21 · A
A · D · B = B · D21 · A
(B · A)21 = A21 · B21

(A · B · C)21 = C21 · B21 · A21

A × I = I × A

(A × I)21 = −A × I

D = A × I (most general antisymmetric tensor)

with A =
1
2

ε : D =
1
2
〈D21〉 = −1

2
〈D〉

B × A = B · (A × I)

= B · (I × A)

A × B = (I × A) · B
= −B · (I × A)

= ε : BA

= −A · ε · B

A × D = (A × I) · D
= (I × A) · D
= ε : (DA)132

= − (D21 × A
)21

= −A · ε · D

A × BC = (A × B)C

D × A = D · (I × A)

= D · (A × I)

= −[ε : (DA)231]21

= −(A × D21)21

BC × A = B(C × A)
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(A × D) × B = A × (D × B)

= A × D × B

(AB − BA) · C = (B × A) × C

(A × D) · B = ε : (DA)132 · B
= A × (D · B)

B · (A × D) = (B × A) · D
= −A · (B × D)

B · (A × D) = −(A × B21)21 · D

(D × A) · B = −D · ε · A · B
= −D · ε : AB

= −(D × B) · A
= D · (A × B)

(D × A) · B = D · (A × B)

B · (D × A) = (B · D) × A

= B · D × A

(A × B)(C × D) = (A × B) · (C × D) I + (A · D)CB+

+ (B · C)DA − (A · C)DB − (B · D)CA

(A × I) · (B × I) = A × (B × I)

= BA − (A · B) I

A × (B × D) = B(A · D) − D(A · B)

(A × I)2 = AA − (A · A) I

= AA − A2 I

(A × B) × I = BA − AB

D · (A × I) + (A × I) · D21 = (A trace D − D21 · A) × I

I
×
× D = I trace D − D

D
×
× I = (I

×
× D)21

D
.× I = 〈D〉

D
×
× E = D : (ε ε)412536 : E.
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A.2.3 Traces

trace A = A11 + A22 + A33

= Aii

= I : A = A : I

trace I = 3

trace (AB) = A · B
trace (A + B) = trace A + trace B

trace (A + CD) = trace A + C · D
trace (A ± αI) = trace A ± 3α

trace (αI + CD) = 3α + C · D
trace (αI + A1C1 + A2C2) = 3α + A1 · C1 + A2 · C2

trace αA = α trace A

trace A21 = trace A

trace (A · B) = trace (B · A)

trace (AB · D) = B · D · A
trace (αI + AB · D) = 3α + B · D · A

trace (A · B · C) = trace (B · C · A)

= trace (C · A · B)

trace (A × I) = 0

trace (D + A × I) = trace D

trace (AB + C × I) = A · B
trace (αI + AB + C × I) = 3α + A · B

trace [(A × I) · (B × I)] = −2A · B
trace (A × I)2 = −2A2

trace adj A =
1
2
(trace2 A − trace A2)

trace adj (A + B) = trace adj A + trace adj B − trace (A · B)

+ trace A trace B

trace adj (A ± αI) = 3α2 ± 2α trace A + trace adj A

trace adj (A + CD) = trace adj A + (C · D) trace A − D · A · C
trace adj (αI + CD) = α(3α + 2C · D)

trace adj (αI + A1C1 + A2C2) = α[3α + 2(A1 · C1 + A2 · C2)]

+ (C1 × C2) · (A1 × A2)
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trace adj (αI + AB · D) = α(3α + 2B · D · A)

trace adj (D + A × I) = trace adj D + A2 − trace [D · (A × I)]

= trace adj D + A2, if D is symmetric

trace adj (αI + A × I) = 3α2 + A2

trace adj (AB + C × I) = C2 − C · (A × B)

trace adj (αI + AB + C × I) = 3α2 + 2α(A · B) + C2 − C · (A × B).

A.2.4 Determinants

det D =

∣∣∣∣∣∣
D11 D12 D13
D21 D22 D23
D31 D32 D33

∣∣∣∣∣∣
= D11D22D33 + D12D23D31 + D21D32D13 − D13D22D31

− D12D21D33 − D11D32D23

=

∣∣∣∣∣∣
D1
D2
D3

∣∣∣∣∣∣
= ε

.
: D3D2D1

=
∣∣D1 D2 D3∣∣

= ε
.
: D3D2D1

with the row vectors D i, and the column vectors Di of D

det (A × I) = 0

det (A · B) = det A det B

det A21 = det A

det A−1 =
1

det A

det (α A) = α3det A

det adj A = det2A

det A =
1
6
[
trace3A − 3 trace A trace A2 + 2 trace A3]

det (A + B) = det A + det B + trace (adj A · B) + trace (A · adj B)

det (AB) = 0
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det (A1C1 + A2C2) = 0
det (A1C1 + A2C2 + A3C3) = (A1 · A2 × A3)(C1 · C2 × C3)

det (A ± αI) = ±α3 + α2 trace A ± α trace adj A + det A

det (A + CD) = det A + D · (adj A) · C
det (αI + CD) = α2(α + C · D)

det (αI + AB · D) = α2(α + B · D · A)

det (αI + A1C1 + A2C2) = α[α2 + α(A1 · C1 + A2 · C2)

+ (C1 × C2) · (A1 × A2)]

det (D + A × I) = det D + trace [adj D · (A × I)] + A · D · A
= det D + A · D · A, if D is symmetric

det (αI + A × I) = α(α2 + A2)

det (AB + C × I) = (A · C)(B · C)

det (αI + AB + C × I) = α3 + α2A · B + α(C2 − A × B · C)

+ (A · C)(B · C).

A.2.5 Adjoints and inverses

adj D =
1
2
ε : (DD)4231 : ε

(adj D)nk = exn
· adj D · exk

=
1
2
εijkεlmnDilDjm

adj D =

⎛⎝D22D33 − D23D32 D32D13 − D33D12 D12D23 − D13D22
D31D23 − D21D33 D11D33 − D13D31 D13D21 − D11D23
D21D32 − D31D22 D12D31 − D11D32 D11D22 − D12D21

⎞⎠
adj (AB) = 0

adj (A × I) = AA

adj (A · B) = adj B · adj A

adj A21 = (adj A)21

adj A−1 = (adj A)−1

=
A

det A

adj (α A) = α2adj A

adj (α I) = α2I
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adj adj A = A det A

adj A = A2 − A trace A +
1
2
[
trace2A − trace A2] I

= A2 − A trace A + I trace adj A

A · adj A = (adj A) · A
= I det A

adj A · (B × C) = (A21 · B) × (A21 × C)

= (B · A) × (C · A)

(B × I) · adj A · (C × I) = A21 · CB · A21 − (C · A · B)A21

adj (A + B) = adj A + adj B + A · B + B · A−
− B trace A − A trace B + I trace A trace B − I trace (A · B)

adj (A1C1 + A2C2) = (C1 × C2)(A1 × A2)

adj (A1C1 + A2C2 + A3C3) = (C2 × C3)(A2 × A3) + (C3 × C1)(A3 × A1)
+ (C1 × C2)(A1 × A2)

adj (A ± αI) = α2I ± α(I trace A − A) + adj A

adj (A + CD) = adj A + (A − I trace A) · (D × I) · (C × I)

+ [(D · A) × I] · (C × I)

= adj A − (D × I) · A21 · (C × I)

adj (αI + CD) = α[(α + C · D)I − CD]

adj (αI + AB · D) = α[(α + B · D · A)I − AB · D]

adj (αI + A1C1 + A2C2) = α[(α + A1 · C1 + A2 · C2)I − A1C1 − A2C2]

+ (C1 × C2)(A1 × A2)

adj (D + A × I) = adj D + AA + (D − I trace D) · (A × I) + (A × I) · D
+ I trace [D · (A × I)]

= adj D + AA − (D · A) × I, if D is symmetric

adj (αI + A × I) = α(αI − A × I) + AA

adj (AB + C × I) = CC − (B · C)(A × I) − C(A × B)

adj (αI + AB + C × I) = α2I − α[AB − (A · B)I + C × I] + AA

− (B · C)(A × I) − C(A × B)
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A−1 =
adj A
det A

(α A)−1 =
1
α
A−1

(A−1)−1 = A

(A · B)−1 = B−1 · A−1

(A−1)21 = (A21)−1.

A.3 Coordinate Systems

A.3.1 Cartesian coordinates

x, y, z or xi , i = 1, 2, 3

with the orthonormal trihedron ex, ey, ez or exi
, i = 1, 2, 3

R = xex + yey + zez

= xiexi
(summation convention)

|R − R′| =
√

(x − x′)2 + (y − y′)2 + (z − z′)2

vector components: Axi
= A · exi

, i = 1, 2, 3

A = Axex + Ayey + Azez

=
3∑

i=1

Axiexi

= Axi
exi

(summation convention)
= Aiexi

tensor components: Dxixj = exi
· D · exj

= D : exj
exi

, i, j = 1, 2, 3

D = Dxxexex + Dxyexey + Dxzexez

+ Dyxeyex + Dyyeyey + Dyzeyez+

+ Dzxezex + Dzyezey + Dzzezez

=
3∑

i=1

3∑
j=1

Dxixjexi
exj

= DxiDxj
exi

exj
(summation convention)



K12611 Chapter: A page: 706 date: January 6, 2012

706 Ultrasonic Nondestructive Testing of Materials

= Dijexi
exj

= exDx + eyDy + ezDz

= Dxex + Dyey + Dzez

with row vectors Dxi
and column vectors Dxj of D, e.g.

Dx = Dxxex + Dxyey + Dxzez

Dx = Dxxex + Dyxey + Dzxez

trace D = Dxx + Dyy + Dzz

scalar products: A · B = AxBx + AyBy + AzBz

= AiBi

ds2 = dx2 + dy2 + dz2

vector product: A × B = (AyBz − AzBy)ex + (AzBx − AxBz)ey

+ (AxBy − AyBx)ez

= εijkAjBkexi

= ε : BA

= −A · ε · B
= 〈AB〉

〈D〉 = ε : D21 (rotation vector of D)

= εijkDjkexi

= −〈D21〉

dV = dxdydz

∇ = ex

∂

∂x
+ ey

∂

∂y
+ ez

∂

∂z

∇Φ = grad Φ

=
∂Φ

∂x
ex +

∂Φ

∂y
ey +

∂Φ

∂z
ez

∇∇Φ =
∂2Φ

∂x2 +
∂2Φ

∂x∂y
+

∂2Φ

∂x∂z

+
∂2Φ

∂y∂x
+

∂2Φ

∂y2 +
∂2Φ

∂y∂z

+
∂2Φ

∂z∂x
+

∂2Φ

∂z∂y
+

∂2Φ

∂z2
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∆Φ = ∇ · ∇Φ

=
∂2Φ

∂x2 +
∂2Φ

∂y2 +
∂2Φ

∂z2

trace (∇∇Φ) = ∆Φ

∇ · A = div A

=
∂Ax

∂x
+

∂Ay

∂y
+

∂Az

∂z

∇ × A = curl A

=
(

∂Az

∂y
− ∂Ay

∂z

)
ex +

(
∂Ax

∂z
− ∂Az

∂x

)
ey +

(
∂Ay

∂x
− ∂Ax

∂y

)
ez

∇A = grad A

=
∂Ax

∂x
exex +

∂Ay

∂x
exey +

∂Az

∂x
exez

+
∂Ax

∂y
eyex +

∂Ay

∂y
eyey +

∂Az

∂y
eyez

+
∂Ax

∂z
ezex +

∂Ay

∂z
ezey +

∂Az

∂z
ezez

= ∇Axex + ∇Ayey + ∇Azez

(∇ · D) · ex =
∂Dxx

∂x
+

∂Dyx

∂y
+

∂Dzx

∂z

(∇ · D) · ey =
∂Dxy

∂x
+

∂Dyy

∂y
+

∂Dzy

∂z

(∇ · D) · ez =
∂Dxz

∂x
+

∂Dyz

∂y
+

∂Dzz

∂z

trace (∇A) = ∇ · A
〈∇A〉 = ∇ × A

∆A = ∇ · ∇A

= ∇∇ · A − ∇ × ∇ × A

=
(

∂2Ax

∂x2 +
∂2Ax

∂y2 +
∂2Ax

∂z2

)
ex

+
(

∂2Ay

∂x2 +
∂2Ay

∂y2 +
∂2Ay

∂z2

)
ey

+
(

∂2Az

∂x2 +
∂2Az

∂y2 +
∂2Az

∂z2

)
ez

= ex∆Ax + ey∆Ay + ez∆Az.
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A.4 Curvilinear Orthogonal Coordinates

ξ1, ξ2, ξ3

with the orthonormal trihedron eξ1
, eξ2

, eξ3

x = x(ξ1, ξ2, ξ3)
y = y(ξ1, ξ2, ξ3)
z = z(ξ1, ξ2, ξ3)

R = x(ξ1, ξ2, ξ3)ex + y(ξ1, ξ2, ξ3)ey + z(ξ1, ξ2, ξ3)ez

hξi =

√(
∂x

∂ξi

)2

+
(

∂y

∂ξi

)2

+
(

∂z

∂ξi

)2

eξi
=

1
hξi

∂R
∂ξi

=
1

hξi

∂xj

∂ξi
exj

= γijexj

γij = eξi
· exj

γijγkj = δik

γijγik = δjk

vector components: Aξi = A · eξi
, i = 1, 2, 3

A = Aξ1eξ1
+ Aξ2eξ2

+ Aξ3eξ3

=
3∑

i=1

Aξi
eξi

= Aieξi
(summation convention)

Aξi
eξi

= Axj
exj

Aξi = γijAxj

Axi = γjiAξj

tensor components: Dξiξj = eξi
· D · eξj

= D : eξj
eξi

, i, j = 1, 2, 3

D = Dξ1ξ1eξ1
eξ1

+ Dξ1ξ2eξ1
eξ2

+ Dξ1ξ3eξ1
eξ3

+ Dξ2ξ1eξ2
eξ1

+ Dξ2ξ2eξ2
eξ2

+ Dξ2ξ3eξ2
eξ3

+ Dξ3ξ1eξ3
eξ1

+ Dξ3ξ2eξ3
eξ2

+ +Dξ3ξ3eξ3
eξ3
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=
3∑

i=1

3∑
j=1

Dξiξj
eξi

eξj

= Dijeξi
eξj

(summation convention)

I = δijeξi
eξj

ε = εijkeξi
eξj

eξk

Dξiξjeξi
eξj

= Dxkxl
exk

exl

Dξkξl
= γkiγljDxixj

Dxkxl
= γikγjlDξiξj

trace D = Dξ1ξ1 + Dξ2ξ2 + Dξ3ξ3

= Dxx + Dyy + Dzz

scalar product: A · B = Aξ1Bξ1 + Aξ2Bξ2 + Aξ3Bξ3

= AiBi

= AxBx + AyBy + AzBz

double contraction: C : D = Cξiξj Dξjξi = Cxixj Dxjxi

ds2 = h2
ξ1

dξ2
1 + h2

ξ2
dξ2

2 + h2
ξ3

dξ2
3

= dx2 + dy2 + dz2

vector product: A × B = (Aξ2Bξ3 − Aξ3Bξ2)eξ1
+ (Aξ3Bξ1 − Aξ1Bξ3)eξ2

+ (Aξ1Bξ2 − Aξ2Bξ1)eξ3

= εijkAjBkeξi

= ε : BA

= −A · ε · B
= 〈AB〉

dV = hξ1hξ2hξ3dξ1dξ2dξ3

∇ = eξi

1
hξi

∂

∂ξi

∇Φ = grad Φ

=
1

hξ1

∂Φ

∂ξ1
eξ1

+
1

hξ2

∂Φ

∂ξ2
eξ2

+
1

hξ3

∂Φ

∂ξ3
eξ3

∇ξi =
1

hξi

eξi
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∇ · A = div A

=
1

hξi

eξi
· ∂

∂ξi

(
Aξjeξj

)
=

1
hξi

eξi
·
(

∂Aξj

∂ξi
eξj

+ Aξj

∂eξj

∂ξi

)
=

1
hξ1hξ2hξ3

(
∂Aξ1hξ2hξ3

∂ξ1
+

∂Aξ2hξ1hξ3

∂ξ2
+

∂Aξ3hξ1hξ2

∂ξ3

)
,

where

∂eξj

∂ξi
=

1
hξj

eξi

∂hξi

∂ξj
(1 − δij) − 1

hξk

eξk

∂hξj

∂ξk
δij(1 − δkj).

In the second term, summation is over k, where the value k = j does not
appear in the sum due to the factor 1 − δkj .

Christoffel symbols of the second kind:

αk(j, i) =
(

k
j i

)
∂eξj

∂ξi
= αk(j, i)eξk(

k
j j

)
= − 1

hξk

∂hξj

∂ξk
,

(
j

j j

)
= 0(

i
j i

)
=

1
hξj

∂hξi

∂ξj(
j

j i

)
= 0 ,

(
k

j i

)
= 0 for i �= j �= k

∆Φ = ∇ · ∇Φ

=
1

hξi

eξi
· ∂

∂ξi

(
eξj

1
hξj

∂

∂ξj

)
=

1
hξ1hξ2hξ3

[
∂

∂ξ1

(
hξ2hξ3

hξ1

∂Φ

∂ξ1

)
+

∂

∂ξ2

(
hξ3hξ1

hξ2

∂Φ

∂ξ2

)
+

∂

∂ξ3

(
hξ1hξ2

hξ3

∂Φ

∂ξ3

)]

∇A =
1

hξi

(
∂Aξj

∂ξi
eξi

eξj
+ Aξjeξi

∂eξj

∂ξi

)
trace (∇A) = ∇ · A

〈∇A〉 = ∇ × A
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∇ × A = curl A

= ε : (∇A)21

=
1

hξi

eξi
× ∂

∂ξi
(Aξj

eξj
)

=
1

hξi

eξi
×
[
∂Aξj

∂ξi
eξj

+ Aξj

(
k

j i

)
eξk

]
=

1
hξ2hξ3

[
∂Aξ3hξ3

∂ξ2
− ∂Aξ2hξ2

∂ξ3

]
eξ1

+
1

hξ1hξ3

[
∂Aξ1hξ1

∂ξ3
− ∂Aξ3hξ3

∂ξ1

]
eξ2

+
1

hξ1hξ2

[
∂Aξ2hξ2

∂ξ1
− ∂Aξ1hξ1

∂ξ2

]
eξ3

∆A = ∇ · ∇A

= ∇∇ · A − ∇ × ∇ × A.

A.5 Cylindrical Coordinates

r, ϕ, z

with the orthonormal trihedron er, eϕ, ez

x = r cos ϕ r =
√

x2 + y2

y = r sinϕ ϕ = arctan y
x

z = z z = z

R = r cos ϕ ex + r sinϕ ey + zez

= rer + zez

|R − R′| =
√

r2 + r′2 − 2rr′ cos(ϕ − ϕ′) + (z − z′)2

hr = 1
hϕ = r

hz = 1

er = cos ϕ ex + sinϕ ey ex = cos ϕ er − sinϕ eϕ

eϕ = − sinϕ ex + cos ϕ ey ey = sinϕ er + cos ϕ eϕ

ez = ez ez = ez
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vector components: Ar = A · er

Aϕ = A · eϕ

Az = A · ez

A = Arer + Aϕeϕ + Azez⎛⎝Ar

Aϕ

Az

⎞⎠ =

⎛⎝ cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

⎞⎠⎛⎝Ax

Ay

Az

⎞⎠
⎛⎝Ax

Ay

Az

⎞⎠ =

⎛⎝cos ϕ − sinϕ 0
sinϕ cos ϕ 0

0 0 1

⎞⎠⎛⎝Ar

Aϕ

Az

⎞⎠
tensor components: Drr = er · D · er

= D : erer

Drϕ = er · D · eϕ

= D : eϕer

etc.

D = Drrerer + Drϕereϕ + Drzerez

+ Dϕreϕer + Dϕϕeϕeϕ + Dϕzeϕez

+ Dzrezer + Dzϕezeϕ + Dzzezez

I = erer + eϕeϕ + ezez⎛⎝Drr Drϕ Drz

Dϕr Dϕϕ Dϕz

Dzr Dzϕ Dzz

⎞⎠ =

⎛⎝ cos ϕ sinϕ 0
− sinϕ cos ϕ 0

0 0 1

⎞⎠⎛⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠
×
⎛⎝cos ϕ − sinϕ 0

sinϕ cos ϕ 0
0 0 1

⎞⎠
for example:

Drr = Dxx cos2 ϕ + (Dxy + Dyx) cos ϕ sinϕ + Dyy sin2 ϕ

Dϕϕ = Dxx sin2 ϕ − (Dxy + Dyx) cos ϕ sinϕ + Dyy cos2 ϕ

trace D = Drr + Dϕϕ + Dzz

= Dxx + Dyy + Dzz

scalar product: A · B = ArBr + AϕBϕ + AzBz

= AxBx + AyBy + AzBz

ds2 = dr2 + r2dϕ2 + dz2
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vector product: A × B = (AϕBz − AzBϕ)er

+ (AzBr − ArBz)eϕ

+ (ArBϕ − AϕBr)ez

= ε : BA

= −A · ε · B
= 〈AB〉

dV = rdrdϕdz

∇ = er

∂

∂r
+

1
r
eϕ

∂

∂ϕ
+ ez

∂

∂z

∇Φ = grad Φ

=
∂Φ

∂r
er +

1
r

∂Φ

∂ϕ
eϕ +

∂Φ

∂z
ez

∇∇Φ =
∂2Φ

∂r2 erer +
1
r

(
∂2Φ

∂r∂ϕ
− 1

r

∂Φ

∂ϕ

)
ereϕ +

∂2Φ

∂r∂z
erez

+
1
r

(
∂2Φ

∂r∂ϕ
− 1

r

∂Φ

∂ϕ

)
eϕer +

1
r2

(
∂2Φ

∂ϕ2 + r
∂Φ

∂r

)
eϕeϕ +

1
r

∂2Φ

∂ϕ∂z
eϕez

+
∂2Φ

∂r∂z
ezer +

1
r

∂2Φ

∂ϕ∂z
ezeϕ +

∂2Φ

∂z2 ezez.

Christoffel symbols of the second kind:

∂er

∂r
= 0

∂eϕ

∂r
= 0

∂ez

∂r
= 0

∂er

∂ϕ
= eϕ = α2(1, 2)eϕ

∂eϕ

∂ϕ
= −er = α1(2, 2)er

∂ez

∂ϕ
= 0

∂er

∂z
= 0

∂eϕ

∂z
= 0

∂ez

∂z
= 0

∆Φ =
1
r

∂

∂r

(
r
∂Φ

∂r

)
+

1
r2

∂2Φ

∂ϕ2 +
∂2Φ

∂z2

=
∂2Φ

∂r2 +
1
r

∂Φ

∂r
+

1
r2

∂2Φ

∂ϕ2 +
∂2Φ

∂z2

trace (∇∇Φ) = ∆Φ (A.1)

∇ · A = div A

=
1
r

∂rAr

∂r
+

1
r

∂Aϕ

∂ϕ
+

∂Az

∂z

∇ · er =
1
r

∇ · eϕ = 0
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∇ · ez = 0

∇ × A = curl A

=
(

1
r

∂Az

∂ϕ
− ∂Aϕ

∂z

)
er +

(
∂Ar

∂z
− ∂Az

∂r

)
eϕ +

(
1
r

∂rAϕ

∂r
− 1

r

∂Ar

∂ϕ

)
ez

∇ × er = 0

∇ × eϕ =
1
r
ez

∇ × ez = 0

∇A = grad A

=
∂Ar

∂r
erer +

∂Aϕ

∂r
ereϕ +

∂Az

∂r
erez

+
1
r

(
∂Ar

∂ϕ
− Aϕ

)
eϕer +

1
r

(
∂Aϕ

∂ϕ
+ Ar

)
eϕeϕ +

1
r

∂Az

∂ϕ
eϕez

+
∂Ar

∂z
ezer +

∂Aϕ

∂z
ezeϕ +

∂Az

∂z
ezez

(∇ · D) · er =
1
r

∂rDrr

∂r
+

1
r

∂Dϕr

∂ϕ
+

∂Dzr

∂z
− Dϕϕ

r

(∇ · D) · eϕ =
1
r

∂rDrϕ

∂r
+

1
r

∂Dϕϕ

∂ϕ
+

∂Dzϕ

∂z
+

Dϕr

r

(∇ · D) · ez =
1
r

∂rDrz

∂r
+

1
r

∂Dϕz

∂ϕ
+

∂Dzz

∂z

trace (∇A) = ∇ · A
〈∇A〉 = ∇ × A

∇∇ · A =
(

∂2Ar

∂r2 +
∂2Az

∂r∂z
+

1
r

∂2Aϕ

∂r∂ϕ
+

1
r

∂Ar

∂r
− 1

r2

∂Aϕ

∂ϕ
− Ar

r2

)
er

+
(

1
r

∂2Az

∂ϕ∂z
+

1
r2

∂2Aϕ

∂ϕ2 +
1
r

∂2Ar

∂r∂ϕ
+

1
r2

∂Ar

∂ϕ

)
eϕ

+
(

∂2Az

∂z2 +
1
r

∂2Aϕ

∂ϕ∂z
+

∂2Ar

∂r∂z
+

1
r

∂Ar

∂z

)
ez

∇ × ∇ × A

=
(

− 1
r2

∂2Ar

∂ϕ2 − ∂2Ar

∂z2 +
∂2Az

∂r∂z
+

1
r

∂2Aϕ

∂r∂ϕ
+

1
r2

∂Aϕ

∂ϕ

)
er

+
(

−∂2Aϕ

∂z2 +
1
r

∂2Az

∂ϕ∂z
− ∂2Aϕ

∂r2 − 1
r

∂Aϕ

∂r
+

Aϕ

r2 − 1
r2

∂Ar

∂ϕ
+

1
r

∂2Ar

∂ϕ∂r

)
eϕ

+
(

−∂2Az

∂r2 − 1
r2

∂2Az

∂ϕ2 +
∂2Ar

∂r∂z
+

1
r

∂2Aϕ

∂ϕ∂z
+

1
r

∂Ar

∂z
− 1

r

∂Az

∂r

)
ez
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∆A = ∇ · ∇A

= ∇∇ · A − ∇ × ∇ × A

=
(

∆Ar − Ar

r2 − 2
r2

∂Aϕ

∂ϕ

)
er

+
(

∆Aϕ − Aϕ

r2 +
2
r2

∂Ar

∂ϕ

)
eϕ

+ ∆Azez.

A.6 Spherical Coordinates

R,ϑ,ϕ

with the orthonormal trihedron eR, eϑ, eϕ

x = R sinϑ cos ϕ R =
√

x2 + y2 + z2

y = R sinϑ sinϕ ϑ = arctan
√

x2+y2

z
z = R cos ϑ ϕ = arctan y

x

R = R sinϑ cos ϕ ex + R sinϑ sinϕ ey + R cos ϑ ez

= ReR

|R − R′| =
√

R2 + R′2 − 2RR′[sinϑ sinϑ′ cos(ϕ − ϕ′) + cos ϑ cos ϑ′]

hR = 1
hϑ = R

hϕ = R sinϑ

eR = sinϑ cos ϕ ex + sinϑ sinϕ ey ex = sinϑ cos ϕ eR + cos ϑ cos ϕ eϑ

+ cos ϑ ez − sinϕ eϕ

eϑ = cos ϑ cos ϕ ex + cos ϑ sinϕ ey ey = sinϑ sinϕ eR + cos ϑ sinϕ eϑ

− sinϑ ez + cos ϕ eϕ

eϕ = − sinϕ ex + cos ϕ ey ez = cos ϑ eR − sinϑ eϑ

vector components: AR = A · eR

Aϑ = A · eϑ

Aϕ = A · eϕ

A = AReR + Aϑeϑ + Aϕeϕ⎛⎝AR

Aϑ

Aϕ

⎞⎠ =

⎛⎝sinϑ cos ϕ sinϑ sinϕ cos ϑ

cos ϑ cos ϕ cos ϑ sinϕ − sinϑ

− sinϕ cos ϕ 0

⎞⎠⎛⎝Ax

Ay

Az

⎞⎠
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Ay

Az

⎞⎠ =

⎛⎝sinϑ cos ϕ cos ϑ cos ϕ − sinϕ

sinϑ sinϕ cos ϑ sinϕ cos ϕ

cos ϑ − sinϑ 0

⎞⎠⎛⎝AR

Aϑ

Aϕ

⎞⎠
tensor components: DRR = eR · D · eR

= D : eReR

DRϑ = eR · D · eϑ

= D : eϑeR

etc.

D = DRReReR + DRϑeReϑ + DRϕeReϕ

+ DϑReϑeR + Dϑϑeϑeϑ + Dϑϕeϑeϕ

+ DϕReϕeR + Dϕϑeϕeϑ + Dϕϕeϕeϕ

I = eReR + eϑeϑ + eϕeϕ⎛⎝DRR DRϑ DRϕ

DϑR Dϑϑ Dϑϕ

DϕR Dϕϑ Dϕϕ

⎞⎠
=

⎛⎝sinϑ cos ϕ sinϑ sinϕ cos ϑ

cos ϑ cos ϕ cos ϑ sinϕ − sinϑ

− sinϕ cos ϕ 0

⎞⎠⎛⎝Dxx Dxy Dxz

Dyx Dyy Dyz

Dzx Dzy Dzz

⎞⎠
⎛⎝sinϑ cos ϕ cos ϑ cos ϕ − sinϕ

sinϑ sinϕ cos ϑ sinϕ cos ϕ

cos ϑ − sinϑ 0

⎞⎠
for example:

DRR = (Dxx cos2 ϕ + Dyy sin2 ϕ) sin2 ϑ + Dzz cos2 ϑ

+ (Dxy + Dyx) sin2 ϑ cos ϕ sinϕ + (Dxz + Dzx) sinϑ cos ϑ cos ϕ

+ (Dyz + Dzy) sinϑ cos ϑ sinϕ

Dϑϑ = (Dxx cos2 ϕ + Dyy sin2 ϕ) cos2 ϑ + Dzz sin2 ϑ

+ (Dxy + Dyx) cos2 ϑ cos ϕ sinϕ − (Dxz + Dzx) sinϑ cos ϑ cos ϕ

− (Dyz + Dzy) sinϑ cos ϑ sinϕ

Dϕϕ = Dxx sin2 ϕ + Dyy cos2 ϕ

− (Dxy + Dyx) cos ϕ sinϕ

trace D = DRR + Dϑϑ + Dϕϕ

= Dxx + Dyy + Dzz

scalar product: A · B = ARBR + AϑBϑ + AϕBϕ

= AxBx + AyBy + AzBz
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ds2 = dR2 + R2dϑ2 + R2 sin2 ϑdϕ2

vector product: A × B = (AϑBϕ − AϕBϑ)eR

+ (AϕBR − ARBϕ)eϑ

+ (ARBϑ − AϑBR)eϕ

= ε : BA

= −A · ε · B
= 〈AB〉

dV = R2 sinϑdRdϑdϕ

∇ = eR

∂

∂R
+

1
R

eϑ

∂

∂ϑ
+

1
R sinϑ

eϕ

∂

∂ϕ

∇Φ = grad Φ

=
∂Φ

∂R
eR +

1
R

∂Φ

∂ϑ
eϑ +

1
R sinϑ

∂Φ

∂ϕ
eϕ

∇∇Φ =
∂2Φ

∂R2 eReR +
1
R

(
∂2Φ

∂R∂ϑ
− 1

R

∂Φ

∂ϑ

)
eReϑ

+
1

R sinϑ

(
∂2Φ

∂R∂ϕ
− 1

R

∂Φ

∂ϕ

)
eReϕ

+
1
R

(
∂2Φ

∂R∂ϑ
− 1

R

∂Φ

∂ϑ

)
eϑeR +

1
R2

(
∂2Φ

∂ϑ2 + R
∂Φ

∂R

)
eϑeϑ

+
1

R2 sinϑ

(
∂2Φ

∂ϑ∂ϕ
− cot ϑ

∂Φ

∂ϕ

)
eϑeϕ

+
1

R sinϑ

(
∂2Φ

∂R∂ϕ
− 1

R

∂Φ

∂ϕ

)
eϕeR

+
1

R2 sinϑ

(
∂2Φ

∂ϑ∂ϕ
− cot ϑ

∂Φ

∂ϕ

)
eϕeϑ

+
1

R2

(
1

sin2 ϑ

∂2Φ

∂ϕ2 + cot ϑ
∂Φ

∂ϑ
+ R

∂Φ

∂R

)
eϕeϕ

Christoffel symbols of the second kind:

∂eR

∂R
= 0

∂eϑ

∂R
= 0

∂eϕ

∂R
= 0

∂eR

∂ϑ
= eϑ

∂eϑ

∂ϑ
= −eR

∂eϕ

∂ϑ
= 0

= α2(1, 2)eϑ = α1(2, 2)eR

∂eR

∂ϕ
= sinϑ eϕ

∂eϑ

∂ϕ
= cos ϑ eϕ

∂eϕ

∂ϕ
= − sinϑ eR − cos ϑ eϑ

= α3(1, 3)eϕ = α3(2, 3)eϕ = α1(3, 3)eR + α2(3, 3)eϑ
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∆Φ =
1

R2

∂

∂R

(
R2 ∂Φ

∂R

)
+

1
R2 sinϑ

∂

∂ϑ

(
sinϑ

∂Φ

∂ϑ

)
+

1
R2 sin2 ϑ

∂2Φ

∂ϕ2

=
∂2Φ

∂R2 +
2
R

∂Φ

∂R
+

1
R2 sinϑ

∂2Φ

∂ϑ2 +
cot ϑ

R2

∂Φ

∂ϑ
+

1
R2 sin2 ϑ

∂2Φ

∂ϕ2

=
1

R2

∂

∂R

(
R2 ∂Φ

∂R

)
+ (eR × ∇)2Φ

=
1

R2

∂

∂R

(
R2 ∂Φ

∂R

)
+ B{Φ} ; B is the Beltrami operator

trace (∇∇Φ) = ∆Φ (A.2)

∇ · A = div A

=
1

R2

∂

∂R
(R2AR) +

1
R sinϑ

∂

∂ϑ
(sinϑAϑ) +

1
R sinϑ

∂Aϕ

∂ϕ

∇ · eR =
2
R

∇ · eϑ =
1

R tanϑ

∇ · eϕ = 0

∇ × A = curl A

=
1

R sinϑ

[
∂

∂ϑ
(sinϑAϕ) − ∂Aϑ

∂ϕ

]
eR

+
1
R

[
1

sinϑ

∂AR

∂ϕ
− ∂

∂R
(RAϕ)

]
eϑ

+
1
R

[
∂

∂R
(RAϑ) − ∂AR

∂ϑ

]
eϕ

∇ × eR = 0

∇ × eϑ =
1
R

eϕ

∇ × eϕ =
1

R tanϑ
eR − 1

R
eϑ

∇A =
∂AR

∂R
eReR +

∂Aϑ

∂R
eReϑ +

∂Aϕ

∂R
eReϕ

+
1
R

(
∂AR

∂ϑ
− Aϑ

)
eϑeR +

1
R

(
∂Aϑ

∂ϑ
+ AR

)
eϑeϑ +

1
R

∂Aϕ

∂ϑ
eϑeϕ

+
1

R sinϑ

(
∂AR

∂ϕ
− sinϑAϕ

)
eϕeR +

1
R sinϑ

(
∂Aϑ

∂ϕ
− cos ϑAϕ

)
eϕeϑ

+
1

R sinϑ

(
∂Aϕ

∂ϕ
+ sinϑAR + cos ϑAϑ

)
eϕeϕ
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(∇ · D) · eR =
1

R2

∂R2DRR

∂R
+

1
R sinϑ

∂ sinϑDϑR

∂ϑ
+

1
R sinϑ

∂DϕR

∂ϕ

− 1
R

Dϑϑ − 1
R

Dϕϕ

(∇ · D) · eϑ =
1

R2

∂R2DRϑ

∂R
+

1
R sinϑ

∂ sinϑDϑϑ

∂ϑ

+
1

R sinϑ

∂Dϕϑ

∂ϕ
+

1
R

DϑR − cot ϑ

R
Dϕϕ

(∇ · D) · eϕ =
1

R2

∂R2DRϕ

∂R
+

1
R sinϑ

∂ sinϑDϑϕ

∂ϑ

+
1

R sinϑ

∂Dϕϕ

∂ϕ
+

1
R

DϕR +
cot ϑ

R
Dϕϑ

trace (∇A) = ∇ · A
〈AB〉 = ∇ × A

∇∇ · A =
(

∂2AR

∂R2 +
2
R

∂AR

∂R
− 2AR

R2 − Aϑ

R2 tanϑ
+

1
R tanϑ

∂Aϑ

∂R
+

1
R

∂2Aϑ

∂ϑ∂R

− 1
R2

∂Aϑ

∂ϑ
+

1
R sinϑ

∂2Aϕ

∂ϕ∂R
− 1

R2 sinϑ

∂Aϕ

∂ϕ

)
eR

+
(

1
R

∂2AR

∂R∂ϑ
+

2
R2

∂AR

∂ϑ
− Aϑ

R2 sin2 ϑ
+

1
R2 tanϑ

∂Aϑ

∂ϑ
+

1
R2

∂2Aϑ

∂ϑ2

+
1

R2 sinϑ

∂2Aϕ

∂ϕ∂ϑ
− cot ϑ

R2 sinϑ

∂Aϕ

∂ϕ

)
eϑ

+
(

1
R sinϑ

∂2AR

∂R∂ϕ
+

2
R2 sinϑ

∂AR

∂ϕ
+

cot ϑ

R2 sinϑ

∂Aϑ

∂ϕ
+

1
R2 sinϑ

∂2Aϕ

∂ϕ∂ϑ

+
1

R2 sin2 ϑ

∂2Aϕ

∂ϕ2

)
eϕ

∇ × ∇ × A =
(

1
R

∂2Aϑ

∂R∂ϑ
+

1
R2

∂Aϑ

∂ϑ
− 1

R2

∂2AR

∂ϑ2 +
1

R tanϑ

∂Aϑ

∂R
+

1
R tanϑ

Aϑ

R

− 1
R2 tanϑ

∂AR

∂ϑ
− 1

R2 sin2 ϑ

∂2AR

∂ϕ2 +
1

R sinϑ

∂2Aϕ

∂R∂ϕ

+
1

R2 sinϑ

∂Aϕ

∂ϕ

)
eR

+
(

1
R2 sin2 ϑ

∂2Aϕ

∂ϕ∂ϑ
+

cot ϑ

R2 sinϑ

∂Aϕ

∂ϕ
− 1

R2 sin2 ϑ

∂2Aϑ

∂ϕ2 − 2
R

∂Aϑ

∂R

+
1
R

∂2AR

∂R∂ϑ
− ∂2Aϑ

∂R2

)
eϑ
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+
(

1
R sinϑ

∂2AR

∂ϕ∂R
− 2

R

∂Aϕ

∂R
− 1

R2

∂2Aϕ

∂ϑ2 − ∂2Aϕ

∂R2

− 1
R2 tanϑ

∂Aϕ

∂ϑ
+

Aϕ

R2 sin2 ϑ
+

1
R2 sin2 ϑ

∂2Aϑ

∂ϑ∂ϕ

− cot ϑ

R2 sinϑ

∂Aϑ

∂ϕ

)
eϕ

∆A = ∇ · ∇A

= ∇∇ · A − ∇ × ∇ × A

=
(

∆AR − 2AR

R2 − 2 cot ϑ

R2 Aϑ − 2
R2

∂Aϑ

∂ϑ
− 2

R2 sinϑ

∂Aϕ

∂ϕ

)
eR

+
(

∆Aϑ +
2

R2

∂AR

∂ϑ
− Aϑ

R2 sin2 ϑ
− 2 cot ϑ

R2 sinϑ

∂Aϕ

∂ϕ

)
eϑ

+
(

∆Aϕ +
2

R2 sinϑ

∂AR

∂ϕ
− 1

R2 sin2 ϑ
Aϕ +

2 cot ϑ

R2 sinϑ

∂Aϑ

∂ϕ

)
eϕ

A.7 Identities for the Del Operator

A.7.1 General scalar, vector, and tensor fields

Single del-operations

• Scalar fields

∇Φ[φ1(R), . . . ,φn(R)] =
n∑

i=1

∂Φ(φ1, . . . ,φn)
∂φi

∇φi(R)

∇(ΦΨ) = Φ∇Ψ + Ψ∇Φ

• Scalar and vector fields

∇(ΦA) = Φ∇A + (∇Φ)A
∇ · (ΦA) = Φ∇ · A + A · ∇Φ

∇ × (ΦA) = Φ∇ × A − A × ∇Φ

• Scalar and tensor fields

∇(ΦD) = (∇Φ)D + Φ∇D

∇(Φ I) = (∇Φ) I

∇ · (ΦD) = ∇Φ · D + Φ∇ · D
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∇ · (ΦI) = ∇Φ

∇ × (ΦD) = ∇Φ × D + Φ∇ × D

∇ × (ΦI) = ∇Φ × I

• Vector fields

∇ · A[φ1(R), . . . ,φn(R)] =
n∑

i=1

∂A(φ1, . . . ,φn)
∂φi

· ∇φi(R)

∇ × A[φ1(R), . . . ,φn(R)] =
n∑

i=1

∇φi(R) × ∂A(φ1, . . . ,φn)
∂φi

∇(A · B) = (∇A) · B + (∇B) · A
= B · (∇A)21 + A · (∇B)21

= A × (∇ × B) + A · ∇B + B × (∇ × A) + B · ∇A,

weil

A × (∇ × B) = −A · ε · ε : (∇B)21

= −A · (∇B) + A · (∇B)21

= (∇B) · A − A · (∇B)

∇(A × B) = (∇A) × B − (∇B) × A

∇(AB) = (∇A)B + (A∇B)213

∇ · (A × B) = (∇ × A) · B − A · (∇ × B)
∇ · (AB) = (∇ · A)B + A · (∇B)

∇ × (A × B) = B · ∇A − A · ∇B + (∇ · B)A − (∇ · A)B
= ∇ · (BA − AB)

∇ × (AB) = (∇ × A)B − A × (∇B)
I : ∇A = ∇ · A

I
.× ∇A = ∇ × A

I ×. ∇A = −∇ × A

I
×
× ∇A = I ∇ · A − ∇A

(∇A)a =
1
2
(ε : ∇A) × I = −1

2
(∇ × A) × I

• Vector and tensor fields

∇(AD) = (∇A)D + (A∇D)2134

∇(D · A) = (∇D) · A + (∇A) · D21

∇(A · D) = (∇A) · D + A · (∇D)213
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∇(A × I) = ∇A × I

∇ · (DA) = (∇ · D)A + D21 · ∇A

∇ · (I A) = ∇A

∇ · (AD) = (∇ · A)D + A · ∇D

∇ · (A I) = I ∇ · A

∇ · (D · A) = (∇ · D) · A + trace (D21 · ∇A)

= (∇ · D) · A + D21 : ∇A

∇ · (A · D) = ∇A : D + A · ∇ · D21

= trace (∇A · D) + A · ∇ · D21

∇ · (A × D) = (∇ × A) · D − A · (∇ × D)

= −∇ · (D21 × A)

= −(∇ × D)21 · A + D21 · (∇ × A)

∇ · (D × A) = (∇ · D) × A + D21 .× ∇A

∇ · (I × A) = ∇ × A

∇ · (A × I) = ∇ × A

∇ × (D · A) = (∇ × D) · A − D21 ×. ∇A

∇ × (D × A) = (∇ × D) × A − ∇A
×
× D21

∇ × (I × A) = (∇A)21 − I ∇ · A

• Tensor fields

∇ · (D · E) = (∇ · D) · E + D21 : ∇E

∇ · (D21 × E) = (∇ × D)21 · E − D21 · (∇ × E)

Double del-operations

∇ · ∇Φ = ∆Φ

∇ · ∇A = ∆A

∇ · (∇A)21 = ∇∇ · A
∇ · (∇ × A) = 0
∇ · (∇ × D) = 0

∇ × (∇Φ) = 0

∇ × (∇A) = 0

∇ × (∇A)21 = (∇∇ × A)21
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∇ × ∇ × A = ∇∇ · A − ∇ · ∇A

∆(ΦΨ) = Φ∆Ψ + 2∇Φ · ∇Ψ + Ψ∆Φ

∆(ΦA) = Φ∆A + 2∇Φ · ∇A + A∆Φ

∆(AB) = A∆B + 2(∇A)21 · ∇B) + (∆A)B
∆(ΦD) = Φ∆D + (∆Φ)D + 2∇Φ · ∇D

∆(A · B) = A · ∆B + 2(∇A)21 : ∇B + (∆A) · B
∆(A · D) = A · ∆D + 2(∇A)21 : (∇D) + (∆A) · D
∆(D · A) = D · ∆A + 2(∇D)312 : ∇A + (∆D) · A

∆(A × I) = (∆A) × I

∇∇ · (ΦA) = (∇Φ)∇ · A + Φ∇∇ · A + ∇Φ × (∇ × A) + A · ∇∇Φ

+ ∇Φ · ∇A

∇ × ∇ × (ΦA) = ∇Φ × (∇ × A) − A∆Φ + A · ∇∇Φ + Φ∇ × ∇ × A

+ (∇Φ)∇ · A − ∇Φ · ∇A

∇ × ∇ × (Φ I) = ∇∇Φ − I∆Φ

A.8 Special Vector Fields Depending on the
Vector of Position

∇R = R̂

∇ 1
R

= − 1
R2 R̂

∇Rn = nRn−1R̂ , n = 0,±1,±2, . . .

∇Φ(R) = Φ′(R)R̂

∇e jkR

R
=
(

jk − 1
R

)
e jkR

R
R̂

∇|R − R′| =
R − R′

|R − R′|
∇′|R − R′| = −∇|R − R′|

∇ 1
|R − R′| = − R − R′

|R − R′|3
∇ · R = 3

∇ · R̂ =
2
R

∇ · R − R′

|R − R′| =
2

|R − R′|
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∇ · [Φ(R)R̂] =
2Φ(R)

R
+ Φ′(R)

∇ · (RnR̂) = (n + 2)Rn−1 , n = 0,±1,±2, . . .

∇ ·
(

e jkR

R
R̂
)

=
(

1
R

+ jk
)

e jkR

R

∇ × R = 0

∇ × [Φ(R)R̂] = 0

∇R = I

∇ · ∇R = 0

∇(RR) = IR + (RI)213

∇R̂ = ∇ · (I R̂)

=
1
R

(I − R̂ R̂)

∇[Φ(R)R̂] =
[
Φ′(R) − Φ(R)

R

]
R̂ R̂ +

Φ(R)
R

I

∇ · (R̂ I) =
2
R

I

∇ · (R̂ R̂ R̂) =
2
R

R̂ R̂

∇ · [Φ(R)I] = ∇Φ(R)

= Φ′(R)R̂

∇ · [Φ(R)R̂ R̂] =
[
Φ′(R) +

2
R

Φ(R)
]
R̂

∇ · [D(R) × R] = [∇ · D(R)] × R − 〈D(R)〉
∆Rn = n(n + 1)Rn−2 , n = 0,±1,±2, . . .

∆Φ(R) =
2Φ′(R)

R
+ Φ′′(R)

∆
1
R

= −4πδ(x)δ(y)δ(z)

∆
e jkR

R
= −k2 e jkR

R
− 4πδ(x)δ(y)δ(z)

∇∇ 1
R

= − 1
R3 (I − 3R̂ R̂)

für R �= 0

∇∇e jkR

R
=
[
−k2R̂ R̂ + jk

1
R

(I − 3R̂ R̂) − 1
R2 (I − 3R̂ R̂)

]
e jkR

R

for R �= 0.

For R = 0, both above formulas have to be understood as pseudofunctions in
a distributional sense, and they must be complemented by a δ-singular term;
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hence we have for all R ≥ 0:

∇∇e jkR

R
= pfδ

[
−k2R̂ R̂ + jk

1
R

(I − 3R̂ R̂) − 1
R2 (I − 3R̂ R̂)

]
e jkR

R

+ 4πk2LVδ δ(R)

mit LVδ = − 1
4πk2 lim

Vδ→0

∫ ∫
Sδ

n R̂
R2 dS

Vδ is an exclusion volume with surface Sδ.
For a spherical exclusion volume we have Vδ = VK :
pfδ =⇒ PV (Cauchy principal value)

LVK = − 1
3k2 I

For a constant vector a we have
∇(R · a) = a

∇ · (R a) = R̂ · a
∇ × (R a) = R̂ × a

∇ × (a × R) = 2a.
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