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Preface

Galileo’s claim that mathematics is the language of science 

applies to no science more than to physics. But mathematical 

description requires great effort. How is that effort begun? The 

answer, more often than not, is with a drawing of an as yet word-

less, pre-mathematical picture of reality. To draw is to see the 

world in a particular way and to inform the self with an under-

standing of the world. Drawing the important elements of  

physical reality diminishes the psychological difficulty of articu-

lating that reality in language of any kind. Subsequent progress 

allows one to refine an initially crude drawing.

Carefully constructed drawings play a large role in teaching 

and in learning physics. Routinely I require my own students, 

when beginning to analyze a physical situation, to produce a 

drawing that represents important physical elements placed  

in right relation. Many of my students are visual learners and 

require little inducement, but the task benefits all. The drawing 

or diagram produced, sometimes called “the cartoon approxima-

tion,” guides the whole process of investigation.

Drawings are a humble but effective tool of the physicist’s 

craft and part of the tradition of physics that is passed on from 

colleague to colleague and from teacher to student. Certain 
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drawings achieve relative fame and permanence on the pages of 

research journals, monographs, and textbooks. Many more exist 

only briefly on chalkboards or scraps of paper.

Drawings that jump-start a physical inquiry and encapsulate 

its results require neither rich detail nor realistic perspective—

only simplicity and clarity. A good physics drawing is in many 

ways like a good epigram: spare and, once composed, its ele-

ments cannot be subtracted from, added to, or rearranged with-

out diminishing the composition. Also, like a good epigram, a 

good drawing is worth committing to memory.

This volume contains fifty-one exemplary drawings from 

twenty-six centuries of physics discovery arranged in chrono-

logical order. Each drawing presents a single idea. Most of the 

drawings appear frequently in other physics books, and all have 

survived the test of my own teaching and learning. Each draw-

ing anchors an episode of the story I tell. An essay reviews the 

physics and places it in historical context.

When I started this project I was not sure that physics could 

be presented in any depth or breadth in this way, but I wanted 

to try. I am, after all, a theoretician who uses mathematics in 

research and a teacher whose duty it has been to find the math-

ematics most appropriate for his students. But to abstract the 

essential physics from a complicated situation and to represent 

that physics in a drawing is also close to the work of a theoreti-

cal physicist and teacher. I was delighted to learn that the word 

theory is related, through its Greek roots, to the word seeing. 

And, of course, the phrase I see often means I understand. Thus, 

to draw is to draw out, to draw out is to see, and to see is to 

understand.
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Here is the result—admittedly an episodic and incomplete 

account. I am satisfied, but an unbiased evaluation necessarily 

falls to others. This book is for readers interested in the world in 

which they live but who, for various reasons, know little math-

ematics or physics. My hope is that Drawing Physics will, by 

appealing to their visual sense, help these readers say, “Now I 

see, and now I understand.”
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1.  Triangulation (600 BCE)

When a surveyor cannot measure a certain distance directly, say 

the width of a river or the height of a tree, either by counting 

paces or by laying out lengths of a standard measure, he can use 

the properties of triangles to determine the distance. This idea, 

which goes back to Thales of Miletus (624–565 BCE), is one of 

the first in the history of physics and mathematics.

Miletus was, in the sixth century BCE, a Greek port on an 

island off the west coast of Asia Minor, now modern Turkey, and 

Thales was an early philosopher or “lover of wisdom.” Thales 

traveled far from Miletus in his search for wisdom—to Babylon 

and across the eastern Mediterranean to Egypt. Egypt, even in the 

sixth century BCE, was known for its ancient civilization. After 

all, the great pyramids were built in approximately 2500 BCE. 

What Thales found in Egypt, if not wisdom, was the practical 

Figure 1
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knowledge of local Egyptian land measurers or geometers who 

were skilled at measuring the position, size, and shape of agricul-

tural plots, presumably so they would not be lost or confused 

with neighboring plots after an episode of Nile flooding.

How did Thales convert the practical knowledge of the Egyp-

tian land measurers to the universally applicable principles of geo-

metrical surveying we now call triangulation? He may have been 

helped by a diagram such as that of the tree and the rod (figure 1). 

When an upright rod casts a shadow equal in length to its height, 

one can expect that every other upright object will also cast a 

shadow equal in length to its height. Thus, when the height of the 

rod is equal to the length of its shadow, the unknown height of 

the tree is equal to the length of its easily measured shadow.

Such an inference requires that different rays of sunlight are 

all straight and parallel to one another. This supposition also 

allows us to use a rod and its shadow to determine the height of 

the tree at any time of day since the sides of all similarly shaped 

triangles stand in the same relation to one another. For when-

ever an upright object casts a shadow, a right triangle is formed 

out of the object, its shadow, and a line connecting the top of 

the object to the top of its shadow. Thus, the ratio of the height 

of the object to its shadow is the same for all upright objects at 

any one time and location.

Figure 2 shows two such triangles: one formed by a taller 

object and its shadow and the other formed by a shorter one and 

its shadow. Both shadows are shorter than the objects are tall. 

Since the two triangles have the same shape, the ratios of their 

heights to the length of their shadows, H H/ ′ and h h/ ′, must 

be the same, that is, H H h h/ /′ = ′. Therefore, the presumably 

unknown height of the taller object H can be expressed in terms 

of the directly measurable quantities, ′H , h, and ′h , in the for-

mula H H h h= ′ ′/ . Note that one need not measure an angle in 

order to use this method.
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Although no record exists in Thales’s own words, secondary 

sources credit him with measuring the height of the great pyra-

mid at Giza and with determining the distance from the shore to 

ships at sea—possibly with methods similar to those described 

here. Today our smart phones and global positioning satellites 

also exploit the properties of similar triangles.

Thales is also said to have discovered how to inscribe a right 

triangle within a circle—a discovery in gratitude for which he 

sacrificed an ox. He speculated that the principle, or source, of 

all things is water; he shifted the course of a river; and he cor-

rectly predicted, within a year, the occurrence of a relatively rare 

event: the moon completely obscuring the sun in a solar eclipse. 

For these feats of skill and wisdom, Thales was honored as one of 

the seven wise men of antiquity.

Thales, unlike those who seek only practical mastery, sought 

universal truths among the diversity of particular facts. He was a 

philosopher. And for his application of mathematical truths to 

the natural world, he could also be called the first physicist.

Figure 2
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2.  Pythagorean Monochord (500 BCE)

One of the simplest musical instruments imaginable, the Pythag-

orean monochord, is a single stretched string fixed at each end. 

When plucked, the string vibrates and produces a tone of a par-

ticular pitch. Longer and heavier strings produce lower tones 

just as longer and larger wind and percussion instruments do. 

These facts must have been known before the time Pythagoras 

flourished around 525 BCE. After all, musical instruments with 

several strings of different lengths, such as the oud and the lyre, 

are depicted on Greek vases that date from the seventh century 

BCE. But Pythagoras, or one of his followers, may have been the 

first to quantify the relationship between the length of a string 

and the tone it produces.

Around 525 BCE Pythagoras emigrated from his native island 

of Samos, near the west coast of Asia Minor in the Aegean Sea, to 

the Dorian Greek colony of Croton (modern-day Crotone) near 

the ball of the boot that outlines the coast of southern Italy. 

There he founded a brotherhood of scholars who practiced a dis-

cipline whose object was to care for and purify the soul. The 

brotherhood also aspired to be the beneficent if austere political 

leaders of Croton. Around 450 BCE the original brotherhood 

was overthrown and broken up, but mystics and scholars called 

Pythagoreans were prominent for at least another hundred 

years. Some of them were mathematically talented investigators 

who attributed their own discoveries to their leader Pythagoras.

Figure 3



6  Antiquity

Figure 3 depicts a Pythagorean monochord. We now know 

that the tone produced by a monochord is determined by the 

dominant frequency of its vibration and that this frequency is in 

turn determined by the length of the string (the longer the 

string, the lower the pitch) and by the speed of a disturbance on 

the string (the faster the disturbance, the higher the pitch). We 

also know that strings of lesser density and strings under greater 

tension produce more quickly traveling disturbances and, there-

fore, produce higher frequencies and higher pitches. Yet in no 

way does this knowledge reduce the mystery of the relation, dis-

covered by the Pythagoreans, between whole numbers and 

pleasing sounds.

Imagine two such monochords with strings of identical com-

position and tension but unequal in length. When simultane-

ously plucked or struck, the two strings produce two different 

tones. This humble arrangement allowed the Pythagoreans to 

make a discovery that filled them, and today fills us, with won-

der. When one monochord is twice as long as a similarly con-

structed monochord or, more generally, when the lengths of the 

monochord strings are to one another as two small whole num-

bers are, such as 2 to 1, 3 to 2, or 4 to 3, then when plucked at 

the same time they produce, respectively, the pleasing sound of 

an octave, a perfect fifth, or a perfect fourth. Otherwise the tones 

are not so pleasing, but rather inharmonious or discordant.

That the small whole numbers, 1, 2, 3, and 4, should corre-

spond to pleasing sounds became for the Pythagoreans emblem-

atic of the numeric nature of our world. According to the 

Pythagoreans, both the form and the substance of the world are 

composed of whole numbers. Thus, for instance, the soul is a 

numerical harmony of the parts of the body. Even particular 

qualities such as “maleness” and “femaleness” are associated 
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with numbers—in this case, odd and even numbers respectively. 

Today we find such ideas both vague and arbitrary. But the idea 

of finding common ratios and numerical forms in various phe-

nomena is consistent with modern physics.

The Pythagorean monochord is the most basic of stringed 

instruments—hardly a musical instrument at all. But it demon-

strates the principle behind the way violins, harps, and other 

stringed instruments make pleasing sounds. Flutes and other 

wind instruments also produce musical sounds—in their case by 

causing a column of air to vibrate. Drums produce sound when 

the membrane of the drumhead vibrates. Supposedly Pythago-

ras’s last words to his disciples were “Work the monochord.” Was 

this his way of saying “Become a musician” or of saying “Inves-

tigate the nature of the universe”? We understand Pythagoras 

better if we realize that for him these are the same vocation.
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3.  Phases of the Moon (448 BCE)

The various appearances of the moon—new moon (or no moon), 

tiny crescent moon, quarter moon, gibbous moon (partway 

between quarter and full), and full moon—are so familiar we 

may wonder why they need to be explained at all. Yet a certain 

kind of mind strives to explain complex phenomena, whether 

familiar or unfamiliar, in terms of simple concepts. These simple 

concepts should themselves be plausible and explain other  

phenomena. If successful, the explanation becomes part of a 

coherent outlook or theory.

All we need in order to explain the progress of the moon 

through an ordered series of phases is to assume that (1) the 

moon gives off no light of its own but reflects the light of the 

sun, (2) the moon travels around the earth in an approximately 

circular orbit, and (3) the rays of sunlight reaching the moon 

and earth travel along parallel lines. These ideas are illustrated in 

figure 4.

Figure 4
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But beware. Figure 4 necessarily distorts other aspects of real-

ity. The moon is neither so large compared to the earth nor so 

close to it. Nor, as is implied, does the moon pass into the earth’s 

shadow every month and cause a lunar eclipse or pass between 

the sun and earth and cause a solar eclipse, for the plane of the 

moon’s orbit around the earth is slightly tilted with respect to 

the plane of the earth’s orbit around the sun.

The sun’s rays illumine, at any one time, only half the moon’s 

surface and half the earth’s surface. The rest is in shadow—a 

shadow that on earth we call night. An observer, located in the 

diagram at the point of contact between the (larger) circle of the 

earth and the dotted line, has just been carried into this shadow 

by the earth’s daily counterclockwise rotation. This observer can 

see only that region of the sky above his local horizon, here indi-

cated with the dotted line. The bulk of the earth blocks the rest 

of his view. What this observer sees of the moon is a relatively 

thin sliver of reflected light. This sliver appears as a crescent with 

its horns pointing away from the sun. As the earth’s rotation 

continues to carry the observer in a counterclockwise direction, 

the moon drops below the observer’s horizon.

Figure 5 shows several positions of the moon, each about 

seven days apart, as it moves around the earth. This cyclic 

motion takes about 29.5 days—a moneth in Middle English or, as 

we now say, a month. In each position a different portion of the 

moon’s illuminated surface is visible to observers on the night 

side of the earth. These different appearances are the moon’s 

phases: waxing half moon, full moon, waning half moon, new 

moon, and all those in between. Since the monthly motion of 

the moon around the earth is slow compared to the daily rota-

tion of the earth on its axis, an observer on Earth sees very much 

the same phase of the moon throughout any one night.
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We cannot be sure who first explained the existence and suc-

cession of the moon’s phases in this way. However, we do know 

that the Greek philosopher Anaxagoras (~500–428 BCE) was the 

first to leave a written record suggesting important aspects of 

this explanation. Anaxagoras was a native of Clazomenae, a city 

of Greek speakers in the middle of the west coast of Asia Minor, 

now Turkey. Anaxagoras spent twenty to thirty years of his 

mature life in Athens and so witnessed firsthand the beginning 

of the Peloponnesian War and other stirring events and impres-

sive achievements of fifth-century BCE Athens. His time in  

Athens must have overlapped the lives of near-contemporary 

Athenian tragic playwrights Sophocles and Euripides and the life 

of the younger Socrates (469–399 BCE).

We do know that Anaxagoras wrote books because Socrates 

claimed to have read one of them, though he did not like it very 

Figure 5
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much. Today we have only a few fragments of Anaxagoras’s writ-

ing preserved as quotations in other ancient texts. “The Sun puts 

the shine in the Moon” is one of these fragments. Later com-

mentators, Aetius and Plutarch, writing four and five centuries 

after Anaxagoras claimed that Anaxagoras was the first to clearly 

explain the cause of the moon’s phases. Diogenes Laertius, who 

flourished in the third century CE, also claimed that Anaxagoras 

was the first to put a diagram in a book. If Anaxagoras did, 

indeed, explain the phases of the moon with a diagram, I suspect 

his diagram looked much like figure 5.

Anaxagoras is best known for his creative cosmology, that is, 

for his way of explaining everything. Anaxagoras’s first cosmo-

logical principle was that the mind directs and orders all things. 

Anaxagoras spoke of mind so often that his contemporaries gave 

him the nickname Nous, the Greek word for mind, just as today 

we might, with a little sarcasm, call someone a “brain.” It was 

Anaxagoras’s failure to follow through with the idea of Mind that 

so disappointed Socrates. Instead of explaining phenomena in 

terms of creation for some purpose as a mindful person might 

create, that is, for the sake of being beautiful or useful, Anaxago-

ras, in fact, often resorted exclusively to material and mechani-

cal causes. One such materialistic idea, that the sun and all the 

stars are simply fiery pieces of metal, led to his conviction for 

impiety and banishment from Athens.
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4.  Empedocles Discovers Air (450 BCE)

The air that surrounds us is invisible, odorless, and tasteless. Nor 

does it usually produce sound or resist our movement through 

it. Of course, sometimes we feel a breeze at our back or a wind in 

our face. Less frequently tornadoes obliterate solid buildings and 

gale force winds raise seas that put neighborhoods under water. 

No doubt our ancestors had been aware of these phenomena for 

millennia when Empedocles (490–430 BCE), a native of Acragas 

in Sicily, sought to explain them. He was one of several physi-

cally minded, Greek-speaking philosophers or cosmologists  

who sought the principles or, in Empedocles’s usage, the roots of 

all phenomena.

For Thales the single principle was water, presumably, because 

of its ubiquity and because under common conditions water 

exists in three different phases: solid, liquid, and gas. For the 

Pythagoreans the single principle was number. For Anaximenes 

Figure 6
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(ca. 500 BCE) it was air. For Heraclitus (ca. 495 BCE) it was  

fire. In a surviving fragment, Heraclitus suggests that while the 

logos (or the account) abides, there is no permanent material 

thing, since, accordingly to Heraclitus, “You cannot step twice 

into the same river, for other waters and yet others go ever  

flowing on.”

Empedocles sought to explain both the variableness and the 

stability of our experience by postulating that everything is com-

posed of just four elements: earth, air, fire, and water. According 

to Empedocles, these four elements are neither created nor 

destroyed. The mixture and separation of different quantities of 

earth, air, fire, and water, brought about by the agencies of love 

and strife, account for the world of change we experience. Much 

later Empedocles’s four elements became the basis of Aristotelian 

and medieval cosmology.

What prompted Empedocles to consider air as one of the four 

fundamental elements? Air is a peculiar choice for, unlike earth, 

fire, and water, air seems bereft of qualities. For instance, we can 

see the water vapor above a boiling pot, but not the air that sup-

ports that vapor. Likewise, we can see the fire under the pot, but 

not the air the fire consumes. One fragment of Empedocles’s 

poem On Nature, out of the several hundred of its lines that sur-

vive, suggests an answer to this question. In describing human 

respiration, Empedocles compares the pores in our lungs and in 

our skin with a clepsydra—the main part of an ancient water 

clock that, in turn, is an open-mouthed jar that can be drained 

through a small spout at the center of its bottom. He writes: “As 

when a young girl, playing with a clepsydra of shining bronze, 

puts the passage of the pipe against her pretty hand and dunks it 

into the delicate body of silvery water, no liquid enters the ves-

sel, but the bulk of air, pressing from inside on the close-set 
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holes, keeps it out until she uncovers the compressed stream. 

But then when the air is leaving the water duly enters.”

Figure 6 illustrates the phenomenon Empedocles observed. 

According to the poem, the young girl inverts the clepsydra, 

closes its spout or pipe with her finger (here replaced with a 

plug), and submerges its open mouth into “the delicate body of 

silvery water.” Interestingly, something prevents the water from 

rising and assuming the same level inside the clepsydra as out-

side. That something is air. For when the child lifts her finger,  

its seal with the pipe is broken, air rushes through the pipe, and 

the water below the clypsedra pushes upward. If we have ever 

doubted the substantiality of air, this little demonstration, which 

can be reproduced with a kitchen funnel and a sink full of water, 

should dispel our doubt.

Thales, Anaxagoras, Empedocles, and the other Greek phi-

losophers predating Socrates were imaginative and, for the most 

part, materialistically minded thinkers who sought to explain 

phenomena with the fewest, self-consistent, and most plausible 

principles. While these cosmologists appealed to common obser-

vations (for instance, that water exists in three phases), their 

tools of discovery and verification were invariably speculation 

and argument. They did not perform experiments. But one won-

ders: Could Empedocles have resisted imitating the child he 

observed? Did he not also play with the clepsydra? If so, Emped-

ocles did something unusual for a Greek of his time. He not only 

thought about nature, but manipulated a natural phenomenon 

with the intention of learning something new. He performed an 

experiment.
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5.  Aristotle’s Universe (350 BCE)

Have you ever heard someone say “Eventually scientists will  

figure out how to do it?” You fill in the reference for “it.” Travel 

faster than the speed of light? Build a heat engine with 100  

percent efficiency? Extract energy from the cosmic microwave 

background? Indeed, it may be that some things once thought 

impossible will turn out to be quite possible. But it is not true 

that everything of which we might dream is possible. After all, 

we live in a world that has a nature: a characteristic way of being 

and of becoming, of remaining the same and of changing.

We may learn about that nature and discover ways to employ 

it, but we have no power to change the nature of things. Accord-

ing to Francis Bacon (1561–1626), “Nature, to be commanded, 

must be obeyed.” Aristotle (384–321 BCE) transmitted to us this 

indispensable concept of nature—a concept rejected, perhaps 

unintentionally, by those who think scientists and engineers can 

do anything and everything.

Figure 7
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The word nature comes to us from a Latin root, the Greek 

equivalent of which is φύσις or phusis, from which also derives 

physics. Of course, modern physics was born struggling against 

certain Aristotelian ideas. Nevertheless, Aristotle’s concept of 

nature is the bedrock upon which the practice of modern  

physics stands.

Figure 7 illustrates Aristotle’s universe—not as one would 

observe it—but rather in the state of perfection toward which 

Aristotle’s universe tends by virtue of its nature. Earth and water 

move down toward the center—earth more persistently than 

water. Air and fire move up away from the center—fire more 

readily than air. Thus upward and downward motions charac-

terize the region below the sphere of the moon. Objects above 

the lunar sphere are composed of a fifth substance, the quintes-

sence or ether. The sun and wandering stars or planets (not 

shown in the diagram) and the fixed stars reside on transparent 

spheres that carry them around the earth in concentric circles. 

Circular motion characterizes the region above the sphere of the 

moon.

Aristotle borrowed many of the features of his universe from 

his pre-Socratic predecessors, for instance, the four elements 

(earth, air, fire, and water) and the celestial spheres. Further-

more, the pre-Socratics were the first to formulate the concept of 

nature. But Aristotle composed these ideas into an ordered 

whole, a cosmos, that answered the questions of his day and, 

at the same time, remained consistent with commonplace 

observations.

That last statement needs to be qualified for Aristotle must 

have observed sublunary objects that do not always travel up or 

down. Toss a clod of earth, and it travels along an approximately 

parabolic arc, at first up, then down, and always in the direction 
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thrown. According to Aristotle, motion requires a mover and, if 

that mover is not the nature of the moving object, motion must 

be imparted and maintained externally, that is, unnaturally or 

by “violence.” Thus, it is the hand that throws the clod and the 

air through which the clod moves that cause its unnatural hori-

zontal movement.

According to this view, to manipulate objects and study their 

behavior, that is, to perform experiments, is not a reliable way to 

study nature. For in doing so, one fruitlessly studies that which 

has no nature: the whimsy of the human boy, for instance,  

that tossed the clod in a particular way. To manipulate a natural 

phenomenon, is to spoil its naturalness—at least according to 

Aristotle.

Nevertheless, Aristotle was a great observer of nature and, 

according to the eminent historian of science George Sarton, 

“one of the greatest philosophers and scientists of all times.” He 

discovered the law of the lever and was the first to systematically 

study meteorology. He “carried on immense botanical, zoologi-

cal, and anatomical investigations [and] clearly recognized  

the fundamental problems of biology: sex, heredity, nutrition, 

growth, and adaptation.” He structured the elements of logic 

and originated the inductive method. Aristotle also wrote ageless 

treatises on literary criticism, ethics, and metaphysics. Indeed, 

there is hardly a branch of human knowledge to which Aristotle 

did not contribute.

In 335 BCE Aristotle established a school of philosophy and 

science in Athens called the Lyceum. Those who studied with 

and followed Aristotle became known as peripatetics, that is, 

those who study while walking from place to place. Aristotle’s 

most famous pupil, Alexander the Great, the son of Phillip II of 

Macedon, conquered the known world.
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According to Aristotle, the realm of the celestial spheres is 

perfect. Its motions, unlike those of the sublunary realm, are 

completely natural, manifestly beautiful, and ultimately caused 

only by the desire for the good. It is not hard to see why Aristo-

tle’s view of the universe has influenced thought and literature 

for over two thousand years. It is, after all, a privilege and delight 

to look at the heavens each night and be inspired by their 

perfection.
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6.  Relative Distance of the  
Sun and the Moon (280 BCE)

Aristarchus of Samos (310–230 BCE) was the first to determine 

the relative distance of the sun and the moon from the earth. His 

method, like that of Thales, depends on the properties of similar 

or same-shaped triangles. But his application—to the relative 

distances of heavenly bodies—is much bolder. Aristarchus 

assumed only that the moon receives its light from the sun.

Figure 8 suggests Aristarchus’s argument at the cost of making 

the sun too close relative to the earth-moon separation. When 

the moon appears, to an observer on the earth, exactly half-dark 

and half-light, that is, appears as a half moon, Aristarchus knew 

that a line from the sun to the moon must meet a line from the 

earth to the moon at a right angle. Thus, if at half moon we are 

able to measure the size of the slightly-less-than-right angle θ  

between the earth-sun and earth-moon lines (admittedly a dif-

ficult measurement), we know all there is to know about the 

shape of the right triangle formed by Earth, Moon, and Sun. All 

there is to know about the shape of the right triangle would allow us, 

for instance, to reproduce a similarly shaped triangle on papyrus 

Figure 8
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and in this way determine the ratio of the two sides representing 

the sun-earth SE and moon-earth ME distances, that is, the ratio 

SE ME/ .

Aristarchus’s procedure led to a ratio SE ME/ [ ] ≈ 20  according 

to which the sun is about twenty times more distant from the 

earth than the moon is from the earth. The ratio SE ME/  is, in 

fact, closer to 400. However, Aristarchus’s method is sound. At 

least one scholar has claimed that the techniques available to 

Aristarchus should have allowed him to be more accurate. If so, 

perhaps his interest was more with pioneering a new method 

than with its careful application.

Aristarchus is better known for his teaching that the earth 

rotates daily on its axis and revolves yearly around the sun. But 

he convinced few of his contemporaries. The problem is that a 

yearly motion of the earth around a presumably stationary sun 

implies that the relative positions of the stars as observed from 

the earth should change during the year. We now know that the 

closest stars are too distant for this effect of observer motion, the 

stellar parallax effect, to be seen with the naked eye.

Note that figure 8 makes no distinction between Earth-  

and Sun-centered planetary systems. Both are consistent with 

Aristarchus’s method of determining relative distances since  

in each case the moon revolves around the earth. Thus Aris-

tarchus’s contemporaries could, with perfect consistency, accept 

his determination of relative distances and reject his Sun- 

centered planetary system.

The manuscript in which Aristarchus made his argument, On 

the Sizes and Distances of the Sun and Moon, refers not only to the 

distances of the sun and moon but also to their sizes. His deter-

mination of the relative size of the sun and moon is also insight-

ful. Aristarchus observed that during a total eclipse of the sun 
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Aristarchus forged yet one more link in his chain of argu-

ments. He noticed that the time required for the moon to pass 

into the earth’s shadow during a lunar eclipse is close to the time 

the moon stays completely obscured by the earth’s shadow. If so, 

the earth’s radius must be twice that of the moon—assuming the 

earth’s shadow from Earth to Moon is approximately cylindrical. 

And if the earth is two times larger than the moon and the sun 

is twenty times larger than the moon, then the sun must be 

must be ten times larger than the earth. Again, Aristarchus’s 

argument is valid even if his data are not accurate. According to 

modern measurements the earth is about four times larger than 

the disc of the moon completely obscures the disc of the sun 

but just so—as shown in figure 9. Because the larger right tri-

angle appearing in this figure is similar to the smaller one, the 

ratio of the distances of Sun and Moon SE ME/  from Earth must 

equal the ratio of their radii R RS M/ . Therefore, if the sun is, as 

Aristarchus believed, twenty times more distant than the moon, 

the sun must be twenty times larger than the moon. Since the 

sun is, in fact, about four hundred times more distant than the 

moon, the sun is actually about four hundred times larger than 

the moon.

Figure 9
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the moon and the sun is some one hundred times larger than 

the earth.

Aristarchus’s methods illustrate the intellectual trends of his 

time. Since he was a younger contemporary of Euclid (the latter 

flourished around 300 BCE), Aristarchus lived during a period in 

which the propositions of geometry had become widely known. 

Subsequently, astronomical knowledge was more frequently 

framed in geometrical language than before and, in this way, 

physical science began to distinguish itself from philosophical 

wisdom. At the same time, the center of Greek learning was 

migrating from Athens to the newly founded city of Alexandria 

near the mouth of the Nile. While Aristarchus may or may not 

have traveled from his native Samos to Alexandria, his life falls 

within the initial stages of a period of cultural ferment set in 

motion by the conquests and foundations of Alexander the 

Great.
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7.  Archimedes’s Balance (250 BCE)

Around 300 BCE, Euclid organized the mathematical knowledge 

of his time into definitions, common notions, postulates, and the 

demonstrations of propositions. Some of the definitions are famil-

iar, for instance, “A line is breadthless length,” and some seem a 

little mysterious, “A straight line is a line that lies evenly with 

the points on itself.” The common notions are self-evident state-

ments common to all kinds of reasoning such as “Things which 

are equal to the same thing are also equal to one other.” The 

postulates are a small group of unproven statements, assumed to 

be true, such as “All right angles are equal to one other,” and the 

propositions are statements whose truth Euclid demonstrates by 

valid argument from the postulates, the common notions, and 

previously demonstrated propositions. The result, contained 

within the thirteen books of Euclid’s Elements, is an extended 

deductive system that has, for 2,300 years, been a model of rigor-

ous thinking. The outstanding lesson of Euclid’s system is that 

many truths can be demonstrated and not merely asserted.

Euclid’s Elements astonishes and charms its readers. It is said 

that Sir Thomas Hobbes, on first picking up Book I of the Ele-

ments and reading Proposition 47, the Pythagorean theorem, 

exclaimed, “By God, this is impossible.” Hobbes then read its 

demonstration and then the demonstrations of the propositions 

used to demonstrate Proposition 47 and so on until he had read 

a good part of Book I in reverse order—a method of reading Euclid 

Figure 10
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I do not recommend. On the other hand, I do commend Edna 

St. Vincent Millay’s response to Euclid, a fourteen-line Shake-

spearean sonnet, “Euclid alone has looked on Beauty bare,” 

whose middle verses are as follows:

... let geese

Gabble and hiss, but heroes seek release

From dusty bondage into luminous air.

O blinding hour, O holy, terrible day,

When first the shaft into his vision shone

Of light anatomized! Euclid alone

Has looked on Beauty bare. ...

Archimedes (287–212 BCE), certainly the most original 

mathematician and physicist of antiquity, also fell under 

Euclid’s spell. We know this because he followed Euclid in  

organizing what he had discovered about the equilibrium of 

heavy bodies into a system of postulates, propositions, and 

demonstrations.

Figure 10 illustrates Propositions 6 and 7 of Archimedes’s On 

the Equilibrium of Planes that together compose his law of the 

balance: two objects balance at distances inversely proportional to 

their weights—a law illustrated each time two children of unequal 

weight balance themselves on a teeter-totter. The dark line in the 

diagram is the balance beam, the triangle is the beam’s support 

or pivot, short, light lines mark the beam at equally spaced inter-

vals on either side of the pivot, and the blocks stand for units of 

weight. In the left panel a weight of two units is one unit to the 

right of the pivot and a weight of one unit is two units to the left 

of the pivot, so that each weight is at a distance from the pivot 

inversely proportional to its magnitude.

Figure 10 illustrates a demonstration of a particular case of 

the law of the balance. The demonstration requires only two 
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premises, both quite reasonable. One of these is Archimedes’s 

Postulate 1, equal weights at equal distances (from the pivot) bal-

ance, and the other is a previously demonstrated proposition, 

Proposition 4, the center of gravity of two equal weights taken 

together is in the middle of a line joining their centers. The phrase 

center of gravity refers to the location at which a pair of identical 

weights can be replaced by a single weight equal in magnitude  

to the total weight of the pair. Thus, Proposition 4 justifies the 

transition, shown in the center panel that makes the stability of  

the left and right panels equivalent. Of course, according to  

Postulate 1, the weights in the right panel balance. Therefore, 

the sequence of panels from left to right (or from right to left) 

demonstrates that a weight of two units located one unit to the 

right of the pivot balances a weight of one unit located two units 

to the left of the pivot.

Archimedes’s demonstration is more general than ours.  

Nevertheless, our demonstration exploits the rule justified by 

his Proposition 4: a weight at a particular location can be replaced 

by two weights, each equal to half the original weight, placed equal 

distances on either side of their original location. By applying this 

rule several times one can show that the two balance beams 

illustrated in figure 11 are physically equivalent. Give it a try. 

And remember: You are allowed to place blocks on top of  

the pivot.

Figure 11
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Archimedes may have sojourned for a while in Alexandria, 

and if so, he may have known the somewhat younger Eratosthe-

nes (276–194 BCE) who plays a role in a later essay. Even so 

Archimedes lived the greater part of his life in his native Syra-

cuse, a Greek city on the island of Sicily. Greek colonists had 

inhabited Sicily and the southeastern coast of the Italian main-

land since the eighth century BCE. During Archimedes’s life-

time, the Romans extended their dominion over the Italian 

peninsula and Sicily and engaged the North African city of Car-

thage in a life-and-death struggle. Syracuse, and therefore Archi-

medes, stood directly in the path of this Roman expansion.
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8.  Archimedes’s Principle (250 BCE)

The story goes that when the solution to a particularly challeng-

ing problem came to Archimedes in his bath, he leapt from the 

tub shouting “Eureka! Eureka!” (I have found it! I have found it!) 

But what had Archimedes found? According to Vitruvius (ca. 

75–15 BCE), the Roman military engineer who told the story 

almost two centuries after the event, Archimedes had discovered 

a method for determining whether a crown that had been made 

for King Hieron of Syracuse was of pure gold, as per instructions, 

or mixed with silver. The story is a good one—almost too good 

to be true—for the method Archimedes discovered concerned 

bodies submerged in a fluid just as Archimedes’s body was sub-

merged in his bathwater. However, Vitruvius does not tell us the 

details of Archimedes’s method.

Figure 12 illustrates the physics behind what physics teachers 

call Archimedes’s principle—the content of which Archimedes 

outlined in Propositions 3–7 of Book I of his text On the Equilib-

rium of Floating Bodies. Archimedes’s principle is simply stated 

Figure 12
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and elegantly proved and could have been used to determine the 

composition of King Hieron’s crown.

The left panel shows a container filled with water, or any 

other fluid, at rest. The dashes outline a region of the fluid while 

the arrows represent the direction and magnitude of the pressure 

exerted by the fluid outside the outlined region on the fluid inside 

the outlined region. (The longer the arrows, the larger the pres-

sure.) Note that, as one might expect, the magnitude of this pres-

sure increases with depth. Therefore, the upward push, on the 

fluid in the outlined region, is larger than the downward push. 

In fact, the net upward push must be just enough to support the 

weight of the fluid in the outlined region in order to keep the 

fluid at rest.

In the right panel of figure 12 the fluid that was in the out-

lined region has been replaced with an identically shaped object. 

A string attached to the object keeps it from sinking. Since the 

fluid outside the object in the right panel is identical to the fluid 

outside the region outlined in the left panel, the net force the 

outside fluid exerts is also identical. Thus, the fluid outside an 

object exerts a net upward force on the object equal in magnitude to 

the weight of the fluid the object displaces. This is Archimedes’s 

principle. The argument with which we have reached Archime-

des’s principle applies to floating as well as to fully submerged 

objects.

Once we understand Archimedes’s principle we can use it to 

solve problems. Here is one problem physics teachers sometimes 

assign their students. A cargo ship containing iron ore is in a 

watertight lock as illustrated in figure 13. The captain orders his 

crew to dump the iron ore into the bottom of the lock. Does the 

water level in the lock rise, fall, or stay the same when the ore is 

dumped? The answer (the water level falls) requires the creative 

use of Archimedes’s principle.
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Archimedes also proved that the surface of a fluid at rest is part 

of the surface of a sphere whose center is at the center of the earth. 

Stop a moment and consider this claim. The surface of every 

glass of water, every cup of coffee, and every farmer’s pond is 

curved, concave downward, with its center of curvature at the 

center of the earth! Of course, Archimedes’s claim ignores the 

distorting effect of the water’s surface tension. But, still, the 

claim is amazing. The bulk of the earth pulls on a fluid in such a 

way as to shape it into a section of a sphere. Figure 14 illustrates 

this claim and provides the seed of Archimedes’s proof, which, 

however, I do not spell out.

Figure 13

Figure 14
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Although Archimedes was primarily a mathematician and 

physicist, he also invented devices that exploit physical princi-

ples: the so-called Archimedean screw that could pump water 

from a lower to a higher level and the compound pulley that 

could, in principle, allow one person to, very slowly, lift a mas-

sive ship. Some of Archimedes’s inventions were weapons of war, 

for instance, burning mirrors and catapults, which he devised in 

order to defend his native Syracuse from the Roman army that 

besieged it in 212 BCE.

But the Romans prevailed and Archimedes died as he had 

lived—absorbed in a problem of mathematical science. The 

Roman commander of the besieging army, Marcellus, had given 

orders that the famous Archimedes, then seventy-five years old, 

be spared. But when confronted by an armed Roman soldier 

Archimedes, who had been studying some figures drawn in the 

sand, brusquely demanded, “Stand back from my diagrams!” 

Those were his last words. Evidently, this was no way to address 

an armed Roman soldier.
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9.  The Size of the Earth (225 BCE)

Eratosthenes (276–194 BCE) was born in the North African town 

of Cyrene (in modern Libya) and educated in Athens, but lived 

the greater part of his life in Alexandria where around 244 BCE 

he became the head of its great library. The wealth of this library’s 

holdings can be inferred from the task given Callimachus, a con-

temporary of Eratosthenes—to catalog the library’s books—and 

the result of his effort: 120 volumes of bibliography. Thus, we 

can understand Callimachus’s famous complaint, “A great [or 

large] book is a great evil.” Nevertheless, the library and its great 

books made Eratosthenes’s career possible.

Eratosthenes’s writings include the text Geographica, now lost 

but often cited in antiquity. This book gathered together what 

was then known about geography—a word he was the first to 

use in its modern sense. Eratosthenes’s compilation of the geo-

graphical wisdom of the past into a single, expansive treatise  

had many imitators during the centuries of Roman domination 

Figure 15
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that followed his death. Pliny’s Natural History, for instance, 

included all that was known of the natural world. However, even 

the best Roman scholars were more concerned with the utility 

and entertainment value of the learning inherited from the 

Greeks than with creatively understanding or extending that 

learning.

But Eratosthenes was an Alexandrian Greek who not only 

preserved but also built upon the wisdom of the past. For 

instance, he was the first to add lines of longitude to a map of 

the known world. On a globe these lines are great circles that 

pass through both poles. The particular line of longitude or 

meridian that connects Alexandria and Syene (modern Aswan) 

plays a role in Eratosthenes’s determination of the circumference 

of the earth.

The diagram illustrates Eratosthenes’s method. Eratosthenes 

noticed that when rays of sunlight reach the bottom of a deep 

well at Syene, rays of sunlight at Alexandria make an angle equal 

to 1/50 of a circle with a straight vertical pole or gnomon. Eratos-

thenes also knew that, so distant was the sun from the earth, the 

different rays of sunlight striking the earth are essentially paral-

lel, and that, according to Euclid, a line falling upon two parallel 

lines makes the alternate interior angles equal—as illustrated in 

figure 15. Therefore, according to the geometry of the diagram 

and Eratosthenes’s measurement, an angle equal to 1/50 of a 

circle (about 7 degrees) with vertex at the center of the earth 

subtends or encompasses the meridian connecting Syene and 

Alexandria along the surface of the earth. Consequently, the dis-

tance between Syene and Alexandria is 1/50 the circumference 

of the earth. It only remained for Eratosthenes to determine this 

distance and multiply by 50.
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As it happens, Syene is located near the first waterfall  

upstream from the Nile’s mouth at Alexandria. Between Syene 

and Alexandria, the Nile flooded often, and, consequently, was 

measured frequently by the cadre of Egyptian geometers, literally 

“land measurers,” whose job was to preserve the identity of 

property along the Nile. Eratosthenes had access to the land 

measurers’ records and from them inferred that the distance 

from Syene to Alexandria was about 5,000 stadia. Therefore, 

according to Eratosthenes’s method, the circumference of the 

earth is about 250,000 stadia.

But how long is a single stade? Ancient documents provide 

at least two different answers to this question. The Egyptian 

stade is 158 meters and the more commonly used Greek stade 

is 185 meters. The first produces a circumference within one 

percent of the modern value, 40,000 kilometers, while the sec-

ond produces one 17 percent too large. But comparing Eratos-

thenes’s value to that determined by modern methods teaches 

us little. It is more important to understand that Eratosthenes’s 

method is sound and based on measurements rather than on 

speculations.

Eratosthenes also understood that his measurements were 

uncertain. We know this because Eratosthenes attempted to 

quantify their uncertainty. For instance, he determined that on 

the longest day of the year, sunlight reaches the bottom of any 

well at Syene within a circle with radius of about 300 stadia. 

This effect alone limits the accuracy of Eratosthenes’s determi-

nation of the circumference of the earth to plus or minus 6 

percent.

That Eratosthenes assumed the earth is spherical is unremark-

able. For by his time it had long been known that (1) as we travel 
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north the southern constellations sink toward the horizon and 

the Pole Star rises higher in the nighttime sky, and (2) during a 

lunar eclipse the shadow of the earth on the moon is a section of 

a circle. No observant person could argue with these facts. Only 

a desire to make sense of them was needed. We know from his 

determination of the size of the earth that Eratosthenes had that 

desire.
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10.  Philoponus on Free Fall (550 CE)

Figure 16

John Philoponus (490–570 CE), whose surname means lover 

of toil, was a Greek Christian who lived and worked as a phi-

losopher, theologian, and scientist in the century immedi-

ately following the invasion of Roman Italy by Germanic 

tribes in 476 CE. While he flourished more than a century 

after Theodosius (347–395 CE) had established Catholic 

Christianity as the official religion of the empire in 380 CE, 

Philoponus was taught by and worked with pagan philoso-

phers associated with the library in Alexandria. Philoponus 
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wrote extensive commentaries on Aristotle and in several  

treatises argued against the Aristotelian doctrine of the eternity 

of the world. He believed that the heavens have the same prop-

erties as the earth and, as well a Christian might, that the heav-

ens are not divine.

Philoponus’s analysis of motion critiqued Aristotle’s. Aristotle 

had argued that continuous motion requires either an internal 

or an external mover in continuous contact with the object 

moved. Accordingly, the natural downward motion of a heavy 

object is caused by the object’s inner nature and opposed by the 

air through which it falls. In contrast, the horizontal motion of 

a projectile is unnatural and requires external movers: at first a 

mover that initiates the horizontal motion and then the contin-

ued push of the air. Philoponus, quite reasonably, doubted that 

the air could at the same time resist a projectile’s natural down-

ward motion and cause its unnatural horizontal motion.

Aristotle also claimed that the time required for an object to 

fall from rest from a given height is in inverse proportion to its 

weight. Thus, the heavier an object, the more quickly it should 

fall. But, according to Philoponus:

This view of Aristotle’s is completely erroneous, and our view may 

be corroborated by actual observations more effectively than by 

any sort of verbal argument. For if you let fall from the same 

height two weights, one many times as heavy as the other, you 

will see that the ratio of the times required for the motion does 

not depend [solely] on the ratio of the weights, but that the differ-

ence in time is very small. And so if the difference in the weights 

is not considerable, that is, if one is, let us say, double the other 

there will be no difference, or else an imperceptible difference, in 

time.

Figure 16 illustrates the situation Philoponus describes. When 

two objects, one several times heavier than the other, are simul-

taneously released, the heavier object, according to Philoponus’s 
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observation, reaches the ground only slightly ahead of the 

lighter object—certainly not, as according to Aristotle, several 

times more quickly.

However, Aristotle’s view is not without foundation. Given 

the difficulty of measuring small time intervals, Aristotle may 

well have simulated descent in air with descent in water by, for 

instance, simultaneously dropping heavy and light stones in a 

pool of clear water. If so, Aristotle would have observed that 

heavier objects do, indeed, as illustrated in figure 17, fall signifi-

cantly faster than lighter ones.

We now know that free fall, that is, fall through a near vac-

uum or through a relatively short distance in air, is not compa-

rable to fall through water or oil. In a vacuum, all massive objects 

fall at exactly the same rate just as, for instance, a hammer and 

feather dropped together on the surface of our relatively airless 

moon do. However, in a sufficiently viscous fluid, two similarly 

shaped objects fall at terminal speeds that are, as Aristotle 

expected, proportional to the object’s weight. To observe such 

descent all one needs is a tall glass of water and two objects of 

Figure 17
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approximately the same shape and size but with very different 

masses—perhaps a stony pebble and a ball bearing.

The barbarian invasions that led to the fall of the Western 

Empire and the subsequent breakdown of Roman institutions 

disrupted communication between the Latin West and the  

Greek East. As a result, Philoponus’s books and commentaries as 

well as many other Greek texts became, for centuries, physically 

and linguistically unavailable to the Latin scholars of the West. 

Nestorian and Muslim scholars of the ninth and tenth centuries 

translated many of these texts from Greek into Syriac and Ara-

bic. By 1000 this work of translation was largely complete and 

another translation movement began—this time from the Greek, 

Syriac, and Arabic into Latin. Witness, for example, the indefati-

gable Gerard of Cremona (1114–1187) who managed to trans-

late some seventy to eighty books, including Ptolemy, Aristotle, 

and Euclid, from Arabic into Latin.

Although Philoponus’s books were not translated into Latin 

until the fourteenth century, this was well in time for Simon 

Stevin (1548–1620) and Galileo Galilei (1564–1642) to make use 

of them. Stevin actually reproduced, in Delft in 1588, the free 

fall experiment Philoponus described. And, while Galileo cer-

tainly grasped and exploited the meaning of Philoponus’s and 

Stevin’s observations, there is scant evidence that, in similar 

fashion, he dropped objects from the leaning tower of Pisa. It is 

an irony of popular history that Galileo is given credit for an 

experiment he probably did not do and that in his own time was 

already a thousand years old.
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11.  The Optics of Vision (1020 CE)

Figure 18

It is said that an Egyptian caliph of the Fatimid dynasty convinced 

the Muslim sage Ibn al-Haytham (ca. 965–ca. 1040), also known 

by his Latinized name Alhazen, to leave his native Basra in Iraq 

and come to Egypt in order to design and build a waterway that 

would regulate the flow of the Nile. Upon close inspection, 

Alhazen found that the project was not feasible. Then, fearing 

the wrath of the disappointed caliph, Alhazen feigned insanity. 

This tactic preserved Alhazen’s life at the cost of his forced con-

finement. Even so, Alhazen was able to continue his scholarly 

work, and, when the caliph died, he recovered his freedom.

During his enforced leisure Alhazen may have occupied him-

self with copying two works he held in high esteem: Euclid’s 

Elements and Ptolemy’s Almagest. These and other Greek philo-

sophical, mathematical, and medical texts were available to 

Alhazen in Arabic translation thanks to the work of ninth- and 
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tenth-century linguists associated with the House of Wisdom in 

Bagdad.

Greek scholars presented Alhazen with two theories of vision: 

(1) an emission theory, held by Euclid and Ptolemy, according to 

which rays were emitted from the eye and upon reaching an 

object rendered it visible, and (2) an intromission theory, held by 

Aristotle and Galen (ca. 129–200 CE), according to which rays of 

light traveled in the other direction, that is, from the visible 

object to the eye. Alhazen knew that very bright objects could 

damage the eye and so it seemed unlikely to him that, as the 

emission theory required, the eye could harm itself. He also real-

ized that observing the nighttime sky by virtue of rays that travel 

from one’s eyes to the most distant parts of the universe in the 

instant required to lift one’s eyelids was absurd.

Yet the emission theory had one quite useful feature: The rays 

emerging from the eye (considered as a point) and encompass-

ing the visible object form a cone, the visual cone, whose apex is 

at the eye and whose base outlines the object seen. The visual 

cone explains, for instance, depth perception. After all, more dis-

tant objects of the same size form visual cones with smaller solid 

angles at the cone’s apex. Thus, the angle subtended by a famil-

iar object indicates its distance. How to preserve the useful  

features of the visual cone and yet adopt the more plausible 

intromission of rays was Alhazen’s problem.

It is important to know that Alhazen labored under the incor-

rect assumption that the crystalline humor or lens was the visually 

sensitive part of the eye. Not until Johannes Kepler’s dissection of 

an ox’s eye in 1604 was it understood that the images responsible 

for vision are formed on the retina at the back of the eye. Alhazen 

also supposed, this time correctly, that rays of light emerge in all 

directions from every point of an illuminated object. For this 
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reason, many rays emerging from a single point enter the surface 

of the eye at different points and from slightly different direc-

tions. For example, consider the two rays coming from the top of 

the crescent in figure 18. How does the surface of the eye make 

sense of these two rays and others like them?

Alhazen cleverly, but arbitrarily, answered this question and, 

in the process, created a theory of vision. He insisted that the 

surface of the eye is sensitive only to those rays that enter it per-

pendicular to its curved surface, that is, only to those rays that 

do not bend or refract upon entering the eye. These unrefracted 

rays form the visual cone. Presumably, refracted rays are, in some 

fashion, dissipated or rendered incapable of stimulating the lens. 

In this way the virtues of the visual cone were merged with those 

of the intromission of rays. In other words, the geometry of 

Euclid and Ptolemy was merged with the causation and anatomy 

of Aristotle and Galen.

Alhazen’s theory of vision, however flawed we now under-

stand it to be, answered the questions of its day and, as a con-

sequence, was immensely influential. His Optica was translated 

into Latin around 1200. Subsequent contributors to the science 

of optics, Roger Bacon (1214–1294), Johannes Kepler (1571–

1630), Willebrord Snell (1580–1626), and Pierre de Fermat 

(1601–1665), all refer to Alhazen.

Alhazen’s theory of vision was not his only contribution  

to optics. He also explained the principles behind the camera 

obscura and understood that when a ray of light leaves one 

medium, say, air, and enters another, say, water or glass, the inci-

dent, reflected, and refracted rays all lie in a single plane—for 

instance, as represented by the plane containing figure 19.



Middle Ages  43

Many centuries before Alhazen, Ptolemy (90–168 CE) had 

made an empirical study of reflection and refraction. Ptolemy 

correctly surmised that the angle of incidence is always equal to 

the angle of reflection so that θ θincid reflec= . But he also incorrectly 

proposed that the angle of refraction is directly proportional to 

the angle of incidence so that θ θrefrac incidk= ⋅  where the propor-

tionality constant k characterized the different media on either 

side of the interface. For example, when going from air to water 

(as in figure 19), Ptolemy found that θ θrefrac incid= ⋅0 8.  and so 

k = 0 8. . Alhazen showed that Ptolemy’s expression describes 

refraction only through relatively small angles. Not until the 

seventeenth century did more generally applicable and accurate 

theories of refraction become widely available.

Figure 19
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12.  Oresme’s Triangle (1360)

Figure 20

Oresme’s triangle, embedded in figure 20, relates two quantities, 

speed (in the vertical direction) and time (in the horizontal 

direction), graphically rather than pictorially. It is possibly the 

earliest such graph. As such it illustrates a proof of a theorem 

sometimes called the mean speed theorem or the Merton rule 

according to which a uniformly accelerated object starting from 

rest traverses the same distance in a given time as an object  

moving uniformly at half the accelerated object’s final speed. In 

expressing this proof in graphic language, Nicole Oresme (1323–

1382), who later became the bishop of Lisieux in northwestern 

France, built upon ideas first articulated in antiquity.

The preeminent mathematics of Greek and Roman antiquity 

and of the Middle Ages was geometry, and the preeminent 

geometry text was Euclid’s Elements. While the earlier, more 

familiar books of the Elements are nonnumerical, Euclid used 

straight lines to represent numerical magnitudes in the latter 

books of the Elements. The longer the line the greater the magni-

tude, with a doubly long line having double the magnitude.
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While Euclid’s lines and magnitudes are abstract quantities 

without physical reference, Aristotle used straight lines to repre-

sent distances before Euclid just as Archimedes and Eratosthenes 

did, to great effect, after Euclid. After all, that a straight line can 

represent the distance between two points in space follows natu-

rally from sketching an object extended in space. By dividing a 

straight line into standard units, the Greeks quantified space just 

as, by dividing a time interval into so many drops leaving the 

bowl of a water clock, they quantified time.

The related concept of speed, even if composed of distance 

and time, was not similarly quantified until the period 1325–

1350 by a group of mathematicians and logicians associated 

with Merton College of Oxford University: Thomas Bradwardine, 

William Heytesbury, John of Dumbleton, and Richard Swines-

head. These Merton scholars also distinguished among different 

kinds of motion and investigated their relationships including 

that identified by the Merton rule.

Oxford University and its counterparts in Bologna and Paris 

had grown in the late twelfth century out of the professionally 

oriented guilds of masters and scholars. Their masters were 

expert in the arts of rhetoric, law, medicine, and theology while 

their scholars were in need of these arts. Contemporaneous with 

the growth of universities was the recovery and translation into 

Latin of important Greek and Arabic texts. Thus, the Merton 

scholars of 1325–1350 and, a few years later, Oresme at the  

University of Paris had access to all thirteen books of Euclid’s 

Elements and the entire corpus of Aristotle’s work.

Oresme’s contribution was to translate the largely verbal dis-

cussions of the Merton scholars into geometrical language. In 

the process he also constructed a neat proof of the Merton rule—

a proof that hinges on the distinction between uniform and 
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uniformly accelerated motion. According to a definition, widely 

circulated in the late Middle Ages, an object in uniform motion 

traverses the same distance in equal intervals of time no matter how 

small the interval. The Merton scholars constructed a structurally 

similar definition of uniformly accelerated motion: an object in 

uniformly accelerated motion increases its speed by equal amounts in 

equal intervals of time no matter how small the interval.

Oresme represented the speed of an object in uniform motion 

with a series of equal length, vertical lines, separated in the hori-

zontal direction by equal intervals of time as illustrated in the 

left panel of figure 21. Oresme also represented the speed of an 

object in uniformly accelerated motion with a series of succes-

sively, equally incremented vertical lines separated in the hori-

zontal direction by equal intervals as illustrated in the center 

panel. In both cases, the lines representing speed are perpendic-

ular to a single, horizontal line representing the passage of time. 

The dashed lines outline the area occupied by the vertical speed 

lines. The right panel similarly illustrates an arbitrary case of 

non-uniformly accelerated motion.

Figure 21

Clearly, the speed lines in the left panel of figure 21, repre-

senting an object in uniform motion, fill out an area that is pro-

portional to the distance traversed. After all, a car traveling for 2 

hours at 90 kilometers per hour has traversed 180 kilometers, 

that is, the product of the base times the height of the rectangle 
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occupied by its representative speed lines. Oresme assumed, cor-

rectly but without justification, that the areas occupied by the 

speed lines of any kind of motion, non-uniform as well as uni-

form, also represent the distance traversed—a general theorem 

that requires the calculus for proof.

Given Oresme’s assumption and his use of speed lines, a proof 

of the Merton rule follows from closely inspecting the triangle 

ABC in figure 20. Because triangle ABC outlines the speed lines 

of a uniformly accelerated object, its area represents the distance 

traversed by that object. By construction, the horizontal line  

FD bisects the vertical line BC at D so that ABDF is a rectangle 

with a height BD that represents half the final speed BC of the 

uniformly accelerated object. Therefore, the area of the rectangle 

ABDF represents the distance traversed by an object whose uni-

form speed equals half the final speed of the uniformly acceler-

ated object. In order to prove the Merton rule, Oresme needed 

only to prove that rectangle ABDF and triangle ABC have the 

same area.

Today we would simply observe that since the area of any 

triangle is equal to its base times one-half its height, the area of 

the triangle ABC in figure 20 is equal to its base AB times one-

half its height BD. But AB times BD is also the area of the rect-

angle ABDF. Therefore, the rectangle ABDF and the triangle ABC 

have the same area.

However, Oresme’s proof was closely based on Euclidean 

propositions. Accordingly, note that the vertical angles CED and 

AEF are equal (Proposition 15 of Book I of Euclid’s Elements) as 

are the right angles AFE and CDE (Postulate 4). Therefore, the 

remaining angles FAE and DCE of the two triangles, CDE and 

AFE, are also equal. Furthermore, the sides CD and FA are equal 

because, by construction, the horizontal line FD bisects the 
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vertical line BC at D. Therefore, the triangles CDE and AFE are 

equal in area (Proposition 26). Adding these equal area triangles 

to the same quadrilateral ABDE produces two differently shaped 

but equal area figures: the triangle ABC and the rectangle ABDF 

(Common Notion 2). Since these figures represent the distances 

traversed, respectively, by a uniformly accelerated object and by 

an object with uniform speed equal to half the final speed of the 

accelerated object, the Merton rule is proved. The right panel  

of figure 20 merely extends the proof to allow for objects with 

non-zero initial speed.

While this analysis may appear wordy and inefficient, even 

obscure, to those habituated to the algebraic methods of today, 

our aim here is to understand the medieval science of motion 

rather than to judge it. And to understand Oresme’s analysis we 

need to reproduce Oresme’s pattern of thought.

The Merton scholars’ distinction between uniform and uni-

formly accelerated motion, their discovery of the Merton rule, 

and Oresme’s geometrical proof of it, are exercises in kinematics, 

that is, exercises in the description of motion rather than an 

exploration of the dynamics or the causes of motion. While the 

dynamics of the fourteenth century remained enmeshed in 

Aristotelian concepts, the kinematics of the Merton scholars 

and of Oresme was a real advance on Aristotle. In due course, 

Galileo restated Oresme’s proof of the mean speed theorem 

under the heading “Naturally Accelerated Motion” in the “Third 

Day” of his text Two New Sciences, and René Descartes’s (1596–

1650) invention of what we now call Cartesian coordinates made 

explicit what Oresme’s graphical analysis merely suggested.
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13.  Leonardo and Earthshine (1510)

Figure 22

If this text had a section called “Renaissance Science,” Leon-

ardo da Vinci (1452–1519) would be its exemplar. Yet, while 

Leonardo was of the Renaissance, he was not the kind of  

scholar glorified by the humanists of his time: a scholar nur-

tured in classical history and literature, having perfect Latin, 

skilled at rhetoric, and able to speak with confidence at public 

gatherings. Rather, Leonardo’s education was incomplete, his 

Latin was poor, and he had little interest in public affairs.  

But Leonardo was a keen observer of nature, an avid experi-

mentalist, and a man drawn to practical applications. While 

the classically educated scholars of the Italian Renaissance 

quoted authors, Leonardo cited experience.

Leonardo poured much of his experience into 13,000 note-

book pages of drawings and text—pages that have enriched the 

language of visualization. He originated the aerial view so help-

ful in topography and mapmaking and the idea of presenting 

different sides of the same object, for instance, of the aorta of  

an ox. He pioneered the use of anatomical cross-sections, and 
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observed that, at the same distance, a bright object appears larger 

than a less bright object of the same size.

Leonardo may have intended his notebooks to comprise a 

profusely illustrated encyclopedia of all technical knowledge. 

But, as they come to us, their pages have no order other than 

that imposed by the vicissitudes of Leonardo’s life. He usually 

wrote from right to left with characters slanting leftward: so-

called mirror-image cursive. We do not know whether this prac-

tice was meant to preserve the privacy of his entries or was 

simply more convenient for the left-handed Leonardo.

The notebooks do, however, help us understand how Leon-

ardo could be a prolifically inventive genius and yet have so  

little influence on the development of science. Like Archimedes, 

he focused on isolated problems. But, unlike Archimedes, Leon-

ardo failed to develop collections of coherent ideas that explain 

more than the subject at hand. It is as if the very fertility of  

his mind and the concreteness of his artistic vision fragmented 

his scientific efforts and, in this way, kept him from developing 

powerful, abstract theoretical explanations. Even so, the frag-

ments of his thought are often intriguing. Figure 22 illustrates 

one of them, on earthshine.

When the moon is a waxing or waning crescent, the shaded, 

relatively dark surface between the horns of its crescent glows 

with a faint, ghostly light—as suggested in the left panel of  

figure 22. Leonardo’s explanation of earthshine, illustrated in 

the right panel, is the earliest documented explanation of this 

phenomenon. According to Leonardo, a significant part of the 

sunlight striking the earth is reflected from its surface. The frac-

tion of sunlight that reflects from the earth’s surface, known as 

its albedo, is close to 30 percent. Some of this reflected light 
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strikes the dark side of the moon and some of that light is 

reflected back to the earth and observed as earthshine.

Leonardo got one detail of his explanation wrong. He believed 

that sunlight reflects primarily from the earth’s oceans, in par-

ticular from the tops of ocean waves. In fact, the earth’s clouds 

reflect much more sunlight than do its oceans. Photos taken 

from orbiting spacecraft confirm that the brightest parts of the 

earth are its cloud-covered areas. And when the earth’s cloud 

cover changes, the albedo of the earth also changes. In contrast, 

the moon has virtually no atmosphere and its albedo, about 12 

percent, remains constant in time. Therefore, measuring changes 

in the intensity of the earthshine is equivalent to measuring 

changes in the earth’s albedo. The latter has become an impor-

tant input to climate change models.

When walking the streets of Florence and Milan, Leonardo 

carried a notebook in which he sketched whatever caught his 

attention: people, buildings, and landscapes. On occasion, he 

would follow a stranger for hours until he could rough out their 

visage on paper. Leonardo also drew what he could only imag-

ine: flying machines, cannons that shot exploding shells, and 

shoes that allowed one to walk on water. He designed a car pow-

ered by two sets of springs. While one set unwound and pro-

pelled the car forward, the car’s passenger would wind the other 

set. He envisioned a rotating spit powered by the same fire that 

cooked the flesh impaled upon it and a house of prostitution 

with an unusually large number of doors. Many of his designs 

are of practical devices that would, in time, be built. But no one 

has yet constructed Leonardo’s wake-up device contrived of 

mechanical relays that, when triggered by a water clock, jerked a 

sleeper’s feet into the air.
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Leonardo was also keenly interested in mathematics and  

prepared illustrations for a mathematical text De Divina Propor-

tione (1509) written by his friend Luca Pacioli. But, of course, 

Leonardo is most famous for his paintings—above all, The Last 

Supper and The Mona Lisa—paintings with animated postures; 

expressive faces; modeled, pointing hands; and pyramidal com-

positions. Leonardo painted in oils with a broader range of light 

and dark shades than is usually seen with the eye—a technique 

art historians call chiaroscuro. It may have been that the artist in 

Leonardo was drawn to the chiaroscuro of earthshine while the 

scientist in him sought its explanation.
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14.  The Copernican Cosmos (1543)

Figure 23

The task of ordering the visible universe into an intelligible whole 

or cosmos has long challenged astronomers. According to Aristotle 

(384–322 BCE), the heavenly bodies—Moon, Sun, wandering 

stars or planets, and fixed stars—are embedded in rigidly rotat-

ing, Earth-centered, transparent spheres. In this way each “star” 

moves uniformly in a circle around a stationary earth. Ptolemy 

(90–168 CE), who was a great observer of the heavens, embel-

lished Aristotle’s basic structure in order to better account for 

what he actually saw: planets whose brightness varied and planets 

that sped up, slowed down, and sometimes reversed direction.

Figure 23 illustrates how Ptolemy’s embellishments apply to a 

single planet. Accordingly, the planet moves in a relatively small 

circle or epicycle whose center, in turn, moves along the primary 

circular orbit or deferent. Thus, two concentric spheres border the 

epicycle’s orbit and determine its size. The epicycle itself accounts 

for the planet’s occasional backward or retrograde motion. The 

center of the epicycle’s bordering spheres can, in turn, be shifted 
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from the center of the universe where the earth resides—a fea-

ture not illustrated here. Ptolemy’s task was to derive numbers 

that characterize these circles, motions, and shifts from known 

sequences of observed positions in order to produce an empiri-

cally accurate geocentric model of the cosmos. Such was his suc-

cess that astronomers, astrologers, and calendar makers found 

his model useful for more than 1,400 years.

Figure 24

Other ancient astronomers, notably Aristarchus (310–230 

BCE), placed the sun at the center of the universe, but because 

such solar systems implausibly require a moving earth they never 

gained many adherents. Not until 1543 when Nicolaus Coperni-

cus (1473–1543) published his On the Revolutions of the Celestial 

Spheres did the heliocentrism of Aristarchus begin to replace the 

geocentrism of Aristotle and Ptolemy. Yet one wonders. What 

advantage did the cosmos of Aristarchus and Copernicus have 

over the cosmos of Aristotle and Ptolemy? After all, because 
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Copernicus allowed only circular orbits, he had to employ even 

more epicycles than did Ptolemy in order to achieve an equiva-

lent accuracy. The answer is that Copernicus’s cosmos requires 

retrograde motion, while Ptolemy’s merely allows for it. Coperni-

cus’s system had a logical coherence that Ptolemy’s lacked.

Figure 24 illustrates this logical coherence. Four straight lines 

of sight from the earth to an outer planet and on to the “fixed” 

stars in its background are shown. Because Copernicus arranged 

the planets so that the more quickly moving ones are closer to 

the sun, the connected pairs of small open circles representing 

contemporaneous positions are further apart on the earth’s orbit 

than they are on the outer planet’s orbit. Therefore, as the earth 

moves from point A, near opposition, to point B the outer planet 

appears to move backward or to retrogress relative to the back-

ground of fixed stars. At C this retrogression diminishes and at D 

the outer planet’s forward motion resumes.

Retrograde motion is observed every time an outer planet 

nears opposition, that is, every time Sun, Earth, and outer planet 

line up in that order. Of course, Ptolemy’s geocentric cosmos  

also accounts for retrograde motion but only with just the  

right, individually chosen epicycles, non-concentric spheres, 

and planetary speeds.

Copernicus must have had the connection between the real 

motion of the earth and the apparent retrograde motion of the 

outer planets in mind in writing his introduction to On the 

Revolutions:

I finally discovered ... that if the movements of the other wander-

ing stars are correlated with the circular movement of the Earth, 

and if the movements are computed in accordance with the revo-

lution of each planet, not only do all their phenomena follow 
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from that but also this correlation binds together so closely the 

order and magnitudes of all the planets and of their spheres or 

orbital circles and the heavens themselves that nothing can be 

shifted around in any part of them without disrupting the re-

maining parts and the universe as a whole.

After studying in Krakow, Bologna, Rome, and Padua, Coper-

nicus performed the duties of a trustee, physician, translator, 

and diplomat for the diocese of Varmia in so-called Royal Prus-

sia. Copernicus’s native language was probably German even 

though this region was then a part of the kingdom of Poland 

and today, after many vicissitudes, is again part of Poland,  

now a republic. He saw the birth of the Protestant movement 

launched by Martin Luther (1483–1546) in 1517 and the ravag-

ing of his home by Teutonic knights. Against the wishes of his 

bishop, Copernicus extended hospitality to the Lutheran math-

ematician, Joachim Rheticus. Rheticus successfully urged Coper-

nicus to publish On the Revolutions.

Copernicus held the first printed edition of On the Revolutions 

in his hands shortly before his death in 1543. We do not  

know whether Copernicus was aware of the anonymous preface, 

inserted by another Lutheran mathematician Andreas Osiander. 

If so, he would have been dismayed. For Osiander’s preface char-

acterized heliocentricism as a mere calculational device that 

allows one to make accurate predictions without pretending to 

describe reality. Yet it is clear from the introduction to On the 

Revolutions that Copernicus believed in the reality of the helio-

centric universe. Copernicus believed that he had discovered the 

“machinery of the world,” which had been constructed by the 

“Most Orderly Workman of all.”
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15.  The Impossibility of  
Perpetual Motion (1586)

A chain of fourteen identical, spherical beads is draped over a tri-

angular support whose lower edge is parallel to the ground (figure 

25). According to Simon Stevin (1548–1620), its Flemish origina-

tor and contemporary of William Shakespeare (1564–1616), this 

clootcrans or “wreath of spheres,” as it has been variously called, 

must remain stationary even if one assumes the beads can slip 

without friction on their supporting surface. Suppose, Stevin rea-

soned, that the wreath were to slip clockwise. Each sphere would 

soon take up a position previously held by an adjacent sphere. 

Then the wreath would recover its original aspect, and then slip 

again, and so on, ad infinitum. Since perpetual motion is clearly 

absurd, the wreath of spheres must remain in its original position.

Figure 25
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The Nobel laureate Richard Feynman (1918–1988) referred to 

Stevin’s wreath, in his Lectures on Physics, in order to highlight 

the impossibility of perpetual motion. Feynman went on to say 

of Stevin’s wreath, “If you can get an epitaph like that on your 

gravestone, you are doing fine.” The impossibility of perpetual 

motion is, indeed, an important physical concept. Sadi Carnot 

appealed to it in 1824 in order to motivate his statement of the 

second law of thermodynamics. But we know neither where 

Simon Stevin is buried nor the location of his gravestone. Feyn-

man must have meant, not Stevin’s gravestone, but rather the 

memorial statue of Stevin designed by Eugène Simonis and 

erected in Bruges in 1846 at a place now called Simon Stevin 

Plaza. The statue shows Stevin holding a scroll upon which the 

wreath of spheres is engraved. Simonis, no doubt, took the 

wreath of spheres from the title page of Stevin’s text The Princi-

ples of the Art of Weighing.

In his text, Stevin argues that since that part of the chain 

hanging below the supporting triangle is symmetrically arranged 

around a vertical line passing through its center, one can remove 

that part of the chain without disturbing the equilibrium of the 

wreath’s remaining parts—as shown in the left panel of figure 

26. One can also replace the several beads on each inclined plane 

with a single bead of the same total weight without disturbing 

that equilibrium—as illustrated in the right panel. (I have, with-

out modifying anything essential, added a frictionless pulley  

to the arrangement.) These transformations prove a theorem 

according to which: Two weights on inclined planes balance each 

other if the magnitude of each weight is proportional to the length of 

the inclined plane upon which it rests. This theorem had been 

discovered much earlier by one Jordanus Nemorarius, a figure 

about whom little is known—only that he wrote in Latin and 
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flourished somewhere between 1050 and 1350. But it is Stevin’s 

method of proof, starting as it does from the impossibility of 

perpetual motion, that interests us.

As a young engineer, Stevin helped design and build wind-

driven mills that drained the swamps of his native Flanders,  

now northern Belgium and the adjacent parts of Holland. Even-

tually Stevin was drawn into the struggle against the Spanish 

domination of the Low Countries—a struggle in which Stevin 

served Prince Maurice, the son of William of Orange, as tutor 

and military advisor. As Maurice’s military advisor, Stevin 

brought rational principles to laying sieges, building fortifica-

tions, and supplying armies. As Maurice’s tutor, Stevin compiled 

textbooks on dialectic, arithmetic, geometry, algebra, mechan-

ics, astronomy, and music—textbooks that contain not only 

what was then known but also Stevin’s contributions to each 

subject. So much did Prince Maurice value Stevin’s textbooks he 

carried them with him on campaign.

Stevin is also famous for enthusiastically, if not always con-

vincingly, promoting the use of his native Dutch. According to 

Stevin, the Dutch language is particularly suited to the scientific 

enterprise. For Stevin supposed that an efficiently constructed 

language should represent each single thing by a single word 

composed of a single syllable. And, according to his investiga-

tions, Dutch has more monosyllabic words available for this 

Figure 26
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purpose than either Greek or Latin or, presumably, any of their 

derivative languages. Stevin even imagined Dutch to be the lan-

guage of an ancient and enlightened Golden Age in which all 

people lived in peace and prosperity. Such were his fancies, but 

Stevin did materially contribute to the evolution of the Dutch 

language by coining new Dutch words for recently developed 

technical concepts. Stevin’s efforts to promote Dutch were a part 

of a larger movement toward employing the vernacular in scien-

tific writing—a movement that attracted a new class of readers 

to the literature of science.
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16.  Snell’s Law (1621)

Figure 27

One of the most familiar manifestations of refraction is the 

broken appearance of a straight object resting in and projecting 

out of a glass of water. While the geometry of this particular  

phenomenon (involving as it does the light reflected from the 

object seen, its propagation through water and air, and its recep-

tion at the eye) is quite complicated, the essence of refraction is 

simple.

In a homogeneous medium composed of, for instance, water 

or air, light travels along straight lines. But when a beam of  

light or light ray leaves one medium and enters another, that 

part of the light not reflected at the boundary refracts or bends 

toward or away from the line normal (or perpendicular in a 
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two-dimensional view) to the boundary between the two media. 

In particular, a ray inclines toward the normal when leaving air 

and entering water and inclines away from the normal when 

leaving water and entering air—as illustrated in figure 27 and  

in figure 19.

Ptolemy (90–168 CE), Alhazen (985–1040), and Kepler (1571–

1630) all sought and failed to find an accurate mathematical 

description of refraction. Not until around 1621 did such a 

description—attributed in correspondence of the time to the 

Dutchman Willebrord Snell (1580–1626)—emerge. Snell’s law 

asserts that the angles, θ1 and θ2, between the ray and the normal 

to the boundary in each medium are related to each other by the 

equation sin / sin /θ θ1 2 2 1= n n  where the indices of refraction, n1 

and n2, characterize the two media. Snell and his contemporaries 

could, by measuring the two angles θ1 and θ2, determine the 

ratio of one index to the other. When medium 2 is water and 

medium 1 is air, the ratio n n2 1/  is about 4/3.

Just as important to us as the accuracy of Snell’s law is what 

its form says about the nature of light. René Descartes (1596–

1650) demonstrated that Snell’s law follows from the hypothesis 

that light is composed of tiny particles that upon crossing the 

boundary between two different media either speed up or slow 

down in the direction of the boundary normal. When, for 

instance, leaving air and entering water the particles of light 

speed up—at least according to Descartes. Given this hypothesis 

and that n n2 1 4 3/ /= , light must be faster in water than in air by 

a factor of 4/3.

Descartes’s interpretation of Snell’s law is clever, but is neither 

compelling nor unique. Pierre de Fermat (1601–1665) reason-

ably objected that, on the contrary, light should travel more 

slowly in water than in air, since water, being denser than air, 
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must offer more resistance to the particles of light. Elevating this 

supposition to a postulate, Fermat found that Snell’s law follows 

from an ingenious principle of his own invention: light travels 

between two points along the quickest route—a principle now 

known as Fermat’s principle or the principle of least time.

Compare, for instance, the path taken by light as it travels 

(from air to water) across the air-water interface, as shown in 

figure 27, to the path taken by a lifeguard as she runs along the 

beach, plunges into the water, and swims to a person in distress. 

Since the lifeguard can run faster on the beach than she can 

swim in water, she minimizes her travel time by covering more 

distance on the beach than in the water. Consequently, when 

entering the water, she bends her direction of travel toward the 

person in distress and, thus, toward the perpendicular to the 

beach-water interface.

Of course one could decide between Descartes’s and Fermat’s 

interpretations of the phenomenon by measuring the speed of 

light in water and comparing it to the speed of light in air. If 

light is faster in water than in air, Descartes is right; if light is 

slower in water than in air, Fermat is right. But technical difficul-

ties delayed such measurements until 1850 at which time it was 

shown that light travels more slowly in water than in air. Fermat 

was right.

In the meantime the followers of Descartes sharply criticized 

Fermat’s principle as unphysical. They asked, “Is light supposed 

to try out all possible paths, compare their transit times, and 

then choose the quickest path?” It is not so surprising that life-

guards can discern the quickest path and also that ants can and 

do search out and occupy the quickest route between their nest 

and a supply of food, as illustrated in figure 28, for in both cases 

theirs is a learned, goal-oriented behavior. To the followers of 
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Descartes and most other seventeenth-century natural philoso-

phers, as scientists were then called, light propagation had to 

be a purely mechanical process whose explanation necessar-

ily excludes such behavior. It was not until the wave theory of 

light triumphed in the early nineteenth century that the con-

flict between a mathematically sufficient description (based 

on Fermat’s principle of least time) and the expectations of a  

mechanistic physics was resolved.

Figure 28
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17.  The Mountains on the Moon (1610)

Figure 29a

By the first decade of the seventeenth century the time had 

come for the telescope to be invented. In Holland several Dutch 

lens grinders and spectacle makers hit upon the same idea at the 

same time: a tube that aligned two lenses, one concave eyepiece 

and one convex light-gathering objective. In 1608 one of these 

Dutchmen, Hans Lippershey, attempted to patent a spyglass, as 

it was then called, that enabled one to see “things far away as if 

they were nearby.” Lippershey’s spyglass only magnified linear 

dimensions by a factor of three. Even so, because it had obvious 

military applications, the news of its discovery spread quickly 

across Europe.
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Galileo heard of the spyglass in May 1609, discovered the 

principle of its construction, and that summer began making his 

own improved spyglasses. Eventually he achieved a magnifying 

power of 30. This number is important for, as Galileo later 

reported, one needs a magnifying power of at least 20 to see the 

astonishing sights he saw when he first pointed his spyglass 

toward the heavens: the moon’s surface not smooth, as had been 

supposed, but rough with mountains and craters; the Milky Way 

resolved into numerous individual stars; and, most amazing of 

all, four new wandering “stars” orbiting Jupiter.

Galileo understood the importance of these discoveries. Not 

only were they novelties, intrinsically interesting, and easily 

Figure 29b
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comprehended, they also had far-reaching consequences for our 

understanding of the cosmos. And because Galileo wanted  

to quickly communicate these discoveries to the scholars of 

Europe, he wrote his short report, Sidereus Nuncius or Starry Mes-

senger, uncharacteristically in the Latin of his day rather in the 

vernacular Italian. Even so Starry Messenger created an immediate 

sensation in Italy and was discussed on the streets of Padua,  

Venice, Florence, and Rome.

Figure 29a is by Galileo’s own hand. It shows the surface of 

the moon as he saw it, roughened with mountains and craters. 

Figure 29b illustrates the method he used to determine the rela-

tive height of these mountains. Its key is that Galileo recognized 

in the moon phenomena similar to phenomena on Earth. In 

particular, he recognized that the white spots just to the left 

of the line dividing the moon’s shaded and illumined parts in  

figure 29a are mountaintops ablaze in the rising or setting sun. 

Figure 29b shows how the Pythagorean theorem, ( )r x r s+ = +2 2 2, 

relates the radius of the moon r , the height of a mountain x, and 

the distance from an illuminated mountaintop to the line divid-

ing the shaded and lighted lunar hemispheres s. Because Galileo 

had a value for the moon’s radius r  and could estimate the ratio 

s r/  from his drawings, he was able to use this equation to find 

values for the height x of various lunar mountains. He found the 

highest of these mountains to be about four miles high—not far 

from modern determinations.

The very roughness of the surface of the moon undermines 

the distinction, so important in Aristotelian cosmology, between 

the imperfect sublunar realm of the earth with its atmosphere 

and the perfect realm of the heavens, the moon included. At the 

time of his telescopic discoveries, Galileo was a secret Coperni-

can. Within a few years he would become a public advocate of 

the Copernican cosmos. It seems likely that these discoveries, 

especially of the rough surface of the moon and of the four 
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orbiting satellites of Jupiter, confirmed and energized an advo-

cacy that, eventually, led to Galileo’s conflict with the church.

Galileo’s Starry Messenger is itself a jewel of composition. His-

torians of science value it greatly. Scientists and science writers 

should also. Galileo’s later writing, found for instance in the  

dialogue Two Chief World Systems, is famous for its sarcastic 

polemics that destroyed his opponents’ positions. But in Starry 

Messenger we find no sarcasm and no polemics. Rather we find 

apt metaphors, rounded sentences, and efficient summaries that 

clearly express complex ideas with excitement. Starry Messenger 

is a delight for readers and a model for writers.
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18.  The Moons of Jupiter (1610)

Figure 30

Among the marvels Galileo saw when he turned his newly con-

structed telescope toward the heavens in the winter of 1609–

1610 were the four brightest moons of Jupiter. He dubbed these 

the Medicean planets in order to flatter the man whose patronage 

he sought and to whom he dedicated the seventy-page booklet 

he published in March 1610 that reported on these telescopic 

discoveries. This was Sidereus Nuncius, that is, Starry Messenger, 

dedicated to “The Most Serene Cosimo II de Medici, Fourth 

Grand Duke of Tuscany.”

In this booklet, Galileo described the way in which he con-

structed a telescope capable of magnifying linear dimensions by 
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a factor of 30 and the things he saw with his telescope: moun-

tains on the moon, newly visible stars into which he resolved 

the Milky Way, the phases of Venus, and the finite-sized, disklike 

appearance of the planets. Then he announced, “There remains 

the matter which in my opinion deserves to be considered the 

most important of all—the disclosure of four PLANETS never 

seen from the creation of the world up to our own time.” On the 

night of January 7, 1610, Galileo observed that Jupiter appeared 

close to what he initially took to be three small stars in its back-

ground. But he also noticed, and later recalled, that these stars 

and Jupiter unaccountably lined up along the ecliptic, that is, 

along the band in which the planets move through the back-

ground of “fixed” stars. That night two of these stars were to the 

east of Jupiter and one to the west—as illustrated in figure 30. 

The next night, January 8, all three were to the west of Jupiter 

and again lined up along the ecliptic. Although these appear-

ances interested Galileo, he did not yet understand that these 

“stars” were Jupiter’s moons.

Because the sky was overcast on January 9, Galileo made no 

observations. Then on January 10–11 only two stars appeared, 

on both occasions to the east of Jupiter. When Galileo began 

observing on January 12 he again saw only two stars: the brighter 

one to the east of Jupiter and the less bright one to the west. But 

as he was observing, another star emerged from the east side of 

Jupiter. On January 13 Galileo saw four stars—all lined up with 

Jupiter along the ecliptic.

Galileo kept observing every clear night for two months, long 

enough to conclude that there were four such stars, moons, or 

planets, as he variously called them, illumined by the sun and 

that they revolved, in unequal circles, around Jupiter but not 

long enough to determine their periods of revolution. Galileo 
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thought that their varying degree of brightness, here and in  

Galileo’s original drawings crudely represented by size, is caused 

by different refractions of their images through Jupiter’s atmo-

sphere. We now know that these moons spin on their axes and 

in this way bring into view different parts of their surface—parts 

that reflect sunlight in different degrees.

Galileo also noted, almost in passing, that these moons 

accompany Jupiter in its twelve-year orbit around the sun. It is 

at this point that Galileo, long a secret Copernican, became a 

public one. Important to this transition and to his subsequent 

evolution to public defender of Copernicus’s cosmology is  

Galileo’s observation “that the revolutions are swifter in those 

planets which describe smaller circles around Jupiter.” Jupiter 

and its moons validated, by reproducing in miniature, the 

Copernican cosmos in which those planets closer to the Sun 

move more swiftly. Furthermore:

Here we have a fine and elegant argument for quieting the doubts 

of those who, while accepting with tranquil mind the revolutions 

of the planets about the Sun in the Copernican system, are might-

ily disturbed to have the Moon alone revolve about the Earth and 

accompany it in an annual rotation about the Sun. Some have 

believed that this structure of the universe should be rejected as 

impossible. But now we have not just one planet rotating about 

another while both run through a great orbit around the Sun; our 

own eyes show us four stars which wander around Jupiter as does 

the Moon around the Earth, while all together trace out a grand 

revolution about the Sun in the space of twelve years.

Today, the four brightest moons of Jupiter are named after  

mythological figures: Ganymede, Callisto, Io, and Europa—all 

conquests of the god Jupiter. Sometimes we, quite appropriately, 

refer to this group as the Galilean satellites.

Altogether the orbits of sixty-seven moons of Jupiter have 

now been confirmed. Most of these were captured by Jupiter 
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after its formation and, as a consequence, have highly elliptical 

orbits, highly inclined to the ecliptic. Had Galileo been able to 

observe some of these smaller satellites with irregular orbits as 

well as the four brightest ones, he might not have seen in Jupiter 

and its moons a miniature Copernican solar system.

As it was, Galileo became a vocal champion of Copernicus, 

and as such unwisely responded to detractors who pitted Scrip-

ture against Copernican cosmology. In particular, these detrac-

tors pointed to Joshua’s command (Joshua 10:12–13) that the 

sun stand still and to the several Biblical references to the stabil-

ity of the earth. Galileo, ever the faithful Catholic, did not doubt 

that Joshua had miraculously lengthened the day “until the 

nation took revenge on their enemies,” but contextualized the 

biblical account as written for readers who believed that the Sun 

moved around a stationary Earth. Such a defense did not impress 

church officials who reserved the office of interpreting Scripture 

to themselves.
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19.  Kepler’s Laws of  
Planetary Motion (1620)

Figure 31

Johannes Kepler (1571–1630) delighted in uncovering the hid-

den order of the universe. As a young man, he embraced the 

order in Copernicus’s heliocentric arrangement of the heavenly 

bodies. Copernicus’s universe was not significantly more accu-

rate than Ptolemy’s geocentric one, but it was more ordered with 

each of its features logically entailing others.

Crucial to his search for order was Kepler’s encounter with 

Tycho Brahe (1546–1601) in February 1600. Tycho’s personal 

resources and connections had allowed him to construct the 

best pre-telescopic, astronomical observatories of his time: first 

the Uraniborg observatory on the island of Hven for the Danish 

king Frederick II and then, after falling out with Frederick’s  

heir, an observatory near Prague financed by the Holy Roman 

emperor, Rudolph II. Tycho, more so than any of his predeces-

sors, saw the value of observing the same planet as it progressed 

through a complete orbit and of determining the uncertainty 

associated with each observation.

However, Tycho was not a Copernican. Rather, he promoted 

his own peculiar cosmology in which the five visible planets 
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(Mercury, Venus, Mars, Jupiter, and Saturn) moved in concentric 

circles around the sun while the sun itself circled a stationary 

earth at the center of the Universe. Tycho wanted Kepler to use 

his data to verify this system, but because Tycho was uncertain 

of Kepler’s loyalties he shared his data with Kepler with great 

ambivalence, allowing, for instance, Kepler to view the data but 

not to copy it for later use.

On Tycho’s death in October 1601, Kepler inherited both 

Tycho’s position as imperial mathematician and Tycho’s data on 

condition that he complete the work of reforming theoretical 

astronomy on the basis of Tycho’s cosmology. Ironically, the 

high quality of Tycho’s data made this task impossible. For none 

of the established systems, Ptolemaic, Copernican, or Tychonic, 

could incorporate Tycho’s observations with the required preci-

sion. Eventually Kepler had to abandon these cosmologies, based 

as they were on combinations of circular motions. Kepler then 

tried to fit the orbit of Mars to an ellipse with the stationary Sun 

at one of its two foci—as illustrated in the right panel of figure 

31—and found that this scheme worked perfectly.

The left panel shows how an ellipse can be constructed with 

a string, two pushpins, and a pencil. The ends of the string are 

attached to the pushpins and these, in turn, are stuck in a plane 

surface. The pencil marks out a circuit in the plane as it slides 

along and holds the string taut. Hence an ellipse is the set of 

points lying in a plane whose distances to each of two points in 

the plane sum to a constant. The two points are called the foci 

of the ellipse. If the two foci happen to coincide, the ellipse 

reduces to a circle. A line drawn through the two foci from one 

end of the ellipse to the other (2a in the diagram) is twice the 

semi-major axis a.
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That each of the planets, Earth included, moves in an ellipse 

with the sun at one focus is known as Kepler’s first law of planetary 

motion. The right panel illustrates Kepler’s second law: A line 

extending from the sun to the planet sweeps out equal areas 

(e.g., the shaded areas) in equal intervals of time. Consequently, 

the closer a planet approaches the Sun, the faster it moves. While 

Kepler’s first two laws relate the different parts of a single plane-

tary orbit to one another, his third law of planetary motion 

describes a relationship among the orbits of different planets. In 

particular, the square of the time required for a planet to com-

plete a single revolution around the sun T  is proportional to the 

cube of the planet’s semi-major radius a. In other words, the 

ratio T a2 3/  is the same for all of the planets. Kepler suspected 

that these relationships were the result of the Sun’s push and 

pull on the planet but never discovered the form of that push or 

pull. He presented evidence for the first two of his three laws of 

planetary motion in New Astronomy (1609) and for the third in 

Harmonies of the World (1619).

Kepler was a generous spirit who sought to conciliate jealous 

rivals and a faithful Lutheran who twice uprooted his family in 

order to prevent their forced conversion to Catholicism. He was 

an unfortunate man who suffered the death of his first wife and 

eight of his twelve children, the need to defend his mother 

against a charge of witchcraft, and the outbreak of a war, the 

Thirty Years’ War, that devastated central Europe. Kepler was also 

deeply pious and deeply grateful for having discovered that for 

which he had long sought: new evidence of a universal har-

mony. At the close of his text Harmonies of the World, he offered 

to “Thee, O Lord Creator, who by the light of nature arouse in us 

a longing for the light of grace” the following prayer: “If I have 

been drawn into rashness by the beauty of thy works, or if I  
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have pursued my own glory among men while engaged in a 

work intended for Thy Glory, be merciful, be compassionate, 

and pardon me; and finally deign graciously to effect that these 

demonstrations give way to Thy Glory and the salvation of souls 

and nowhere be an obstacle to them.”
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20.  Galileo on Free Fall (1638)

Figure 32

Galileo’s fame as a scientist rests on his ability to abstract the 

essential physics from complicated phenomena, to describe that 

physics in eloquent words and simple mathematics, and to  

verify that description with cleverly designed experiments. But 

Galileo had multiple talents. In fact, Galileo did so many things 

well his twentieth-century biographer, Stillman Drake, claimed 

that it is “hard to say whether the qualities of the man of the 

Renaissance were dominant, or those of our own scientific age.” 

He was an excellent prose stylist, an accomplished visual artist, 

an ardent gardener, a proficient lute player, and a vigorous 

debater.

One of Galileo’s tactics was to construct “thought experi-

ments” that helped him explore the consequences of a hypoth-

esis—including any absurdities that hypothesis might entail. 

Figure 32 illustrates a thought experiment that Galileo used in 

Two New Sciences (1638). Formally, Two New Sciences records a 

four-day-long conversation among three friends: Salviati, speak-

ing for Galileo; Sagredo, questioning, intelligent, and open-

minded; and Simplicio, naively representing what he (Simplicio) 

understood to be Aristotle’s position.
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Aristotle had advanced plausible, if superficial, explanations 

of everyday phenomena. For instance, because objects in motion 

invariably slow down and come to a stop, continuous motion 

requires a continuously acting mover. And because heavier 

objects descend more quickly through water than do lighter 

ones, heavier objects descend more quickly through all media, 

including air, in direct proportion to their heaviness or weight 

and inversely proportional to the resistance of the medium—at 

least according to Aristotle.

Galileo’s persona, Salviati, contests these ideas by arguing as 

follows. Suppose, in accordance with Aristotle’s analysis, a one-

pound stone falls with a speed of one cubit per second and a 

four-pound stone falls with a speed of four cubits per second. If 

tied together, the lighter stone should retard the speed of the 

heavier one and the heavier one increase the speed of the lighter 

one and, in this way, result in a speed intermediate between one 

and four cubits per second. On the other hand, the five-pound 

package of two stones, considered as a whole, should fall at a 

speed of five cubits per second. This contradiction can be avoided 

only if all objects fall from rest at the same speed.

However, Simplicio, the naïve Aristotelian, remained puzzled: 

“I am still at sea, he says, because it appears to me that the 

smaller stone when added to the larger increases its weight and 

by adding weight I do not see how it can fail to increase its speed 

or, at least, not to diminish it.” Salviati’s response, that is, Galil-

eo’s response, to Simplicio surprises us:

It will not be beyond you when I have once shown you the mis-

take under which you are laboring. ... One always feels the pres-

sure upon his shoulders when he prevents the motion of a load 

resting upon him; but if one descends just as rapidly as the load 

would fall how can it gravitate or press upon him? Do you not see 

that this would be the same as trying to strike a man with a lance 
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when he is running away from you with a speed which is equal 

to, or even greater than, that with which you are following him? 

You must therefore conclude that, during free and natural fall, the 

small stone does not press upon the larger and consequently does 

not increase its weight as it does when at rest.

Evidently, when in free fall, neither stone presses upon the other, 

that is, neither has weight relative to the other—an idea that 

Albert Einstein (1879–1955) exploited to great effect almost three 

centuries later in constructing his theory of general relativity.

Galileo also appealed to actual experiments. While experi-

ments that could support his case were hard to perform, he knew 

of at least two that challenged Aristotle’s conclusions. Simon 

Stevin, in 1586, and much earlier John Philoponus (490–570 CE) 

had dropped objects of very different weight from great heights 

and found that weight alone makes no significant difference in 

the rate of fall. (Galileo could also have dropped cannon balls 

from the Leaning Tower of Pisa for this purpose, but he never 

claimed to have done so.) It may be that Salviati refers to these 

earlier experiments in the following passage from their first day 

of conversation in Two New Sciences:

Aristotle says, “an iron ball of one hundred pounds falling from a 

height of one hundred cubits reaches the ground before a one-

pound ball has fallen a single cubit.” I [Salviati] say that they ar-

rive at the same time. You find on making the experiment, that 

the larger outstrips the smaller by two finger-breaths, that is, 

when the larger has reached the ground, the other is short of it by 

two finger breaths; now you would not hide behind these two 

fingers the ninety-nine cubits of Aristotle, nor would you men-

tion my small error and at the same time pass over in silence his 

very large one.

After undermining Aristotle’s explanation of falling objects, 

Galileo proposed that in the absence of a restraining medium all 

objects accelerate downward at the same rate, in particular, by 
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incrementing their speed equal amounts in equal intervals of 

time, that is, by about 32 feet (or 9.8 meters) per second every 

second. Galileo developed the mathematical consequences of 

this hypothesis and then devised an experiment to look for 

them. Because objects fall much too quickly for convenient mea-

surement, he rolled spheres down an inclined plane in order to 

slow down the natural downward acceleration of free fall. This 

whole procedure (hypothesis, deduction, and experimental veri-

fication) worked brilliantly for Galileo and since his time has 

become standard practice for modern physics.
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21.  Galileo on Projectile Motion (1638)

Figure 33

In 1616 the office of Inquisitor General of the Roman Catholic 

Church warned Galileo to “relinquish altogether the said opin-

ion that the Sun is the center of the world and immovable and 

that the Earth moves.” Consequently, Galileo promised not “to 

hold, teach, or defend in any way whatsoever, verbally or in 

writing” the said opinion—a promise that, by publishing Dia-

logue Concerning Two Chief World Systems in 1632, he broke in the 

most dramatic way. The conceit of the dialogue that placed pow-

erful arguments in favor of a heliocentric universe and weak 

objections to it in the mouths of fictitious interlocutors fooled 

no one.

The inquisitors convicted Galileo of “vehement suspicion of 

heresy” and sentenced him to life in prison, eventually commut-

ing his sentence to confinement to his villa in Arcetri. This time 

Galileo kept the promise extracted from him and no longer 

spoke or wrote, at least publically, on the structure of the world. 
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Galileo was humiliated, but we have benefited, for in turning 

away from cosmology Galileo focused his remaining years  

on the subject of his greatest achievement: the description of 

motion. While Galileo’s telescopic discoveries of 1610 had dem-

onstrated the unity of earthly and heavenly realms, he neverthe-

less clung to circular planetary orbits and, to Kepler’s dismay, 

ignored the latter’s evidence for elliptical ones. At Arcetri Galileo 

uncovered the foundations of a new science of motion that to 

this day remain current—a task for which by 1633 he had been 

preparing for many years.

The phenomenon of projectile motion had, up to Galileo’s 

time, resisted analysis. Today we might deploy a high-speed, 

digital video camera and special curve-fitting software, but Gali-

leo had to measure intervals in space with a cord marked off in 

standard units and time intervals with the outflow of a water 

clock or, yet more imprecisely, the beating of his pulse.

Galileo first proposed a formal description of projectile 

motion and then tested the consequences of his proposal against 

painstakingly obtained experimental evidence. He had been 

aware since his school days of the distinction, originating in the 

fourteenth century, between uniform motion, in which a body 

traverses equal distances in equal intervals of time, and uni-

formly accelerated motion, in which a body increases its speed 

by equal amounts in equal intervals of time. Galileo proposed 

that the motion of a projectile was a combination of these two 

kinds of motion: uniform motion in the horizontal direction 

and uniformly accelerated motion in the downward direction. 

Galileo was aware that the distance traversed by a body moving 

with uniform speed increases as the first power of the time 

elapsed, while the distance traversed by a uniformly accelerating 

body increases as the square of the time elapsed.
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Figure 33 shows snapshots, equally spaced in time, of a sphere 

that has been launched over the edge of a horizontal surface 

and, as a consequence, continues its uniform motion in the hor-

izontal direction. The distance the object falls in each interval of 

time, indicated on the right by a sequence of odd integers 1, 3, 

5, ... , ensures that the downward acceleration is uniform. For if 

during the first interval the sphere falls 1 unit of distance and in 

the second interval 3 units, in the third 5, and so on, then after 

1 interval the sphere has fallen a total of 1 12=  units of distance, 

after 2 intervals the sphere has fallen a total of 1 3 22+ =  units, 

while after 3 intervals 1 3 5 32+ + =  units, and so on. In general, 

after the nth interval of time the sphere has fallen n2 units of 

distance. In other words, the sphere falls a distance proportional 

to the square of the elapsed time—as is characteristic of uni-

formly accelerating motion. The result of these two motions is a 

parabolic trajectory, outlined in the diagram, in which the dis-

tance fallen is proportional to the square of the horizontal dis-

tance traversed.

Such was Galileo’s proposal, but how did he confirm it? Heavy 

objects, whether projected horizontally or simply falling straight 

down, increase their speed in the downward direction at a rate of 

32 feet (9.8 meters) per second every second—accelerating too 

rapidly for careful observation. So in place of allowing an object 

to fall freely, Galileo let a bronze sphere roll down an inclined 

plane and, in this way, slowed down what he called the “natural 

acceleration” of gravity. He minimized the effect of friction by 

using smoothly polished, hard wood for his inclined plane. He 

gathered data by making different measurements on repeated 

trials of the same experimental arrangement.

Galileo’s study of projectile motion, presented on the “fourth 

day” of conversation in Two New Sciences (1638), broke new 
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ground in ways that prefigure the modern practice of science. He 

abandoned the Aristotelian idea that continuous motion requires 

a continuously acting cause, and, indeed, strategically post-

poned the difficult search for the cause of projectile motion in 

order to focus on its description. In describing projectile motion, 

Galileo turned away from a concern with the whole universe 

and toward a phenomenon that could be isolated from its envi-

ronment and from which he could abstract its essential ele-

ments. He searched for simple mathematical relationships that 

described this physics and tested these relationships with experi-

ments that reproduced the idealized situation as closely as 

possible.

Galileo’s analysis of projectile motion is the basis of a simple 

device often used by physics teachers. Two identical steel balls 

are mounted on a wooden block. A spring-loaded lever launches 

one of the balls in the horizontal direction while simultaneously 

releasing the other and allowing it to drop from rest. The two 

steel balls strike the floor at the same time with a satisfyingly 

single “plunk.” Thus, projectiles and freely falling objects accel-

erate downward at the same rate: 32 feet or 9.8 meters per sec-

ond every second.
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22.  Scaling and Similitude (1638)

Figure 34

Figure 34, in Galileo’s own hand, appears in his Two New Sciences 

(1638). Its exquisite shading tells us that these are not mere 

shapes for which outlines would have sufficed. Galileo wants us 

to see these figures as bones—bones with which he can illustrate 

the concepts of scaling and similitude and take the first steps 

toward a theory of appropriate size.

Mathematical objects with the same shape, such as two  

triangles that differ only in scale, are said to be similar. Three-

dimensional objects, for example, pyramids, with parts in the 

same proportions yet of different size, are also similar. However, 

most natural objects and animals with similar shapes occupy a 

more or less limited range of sizes within which they can be large 

or small versions of themselves.

Sometimes our imaginations run away with the idea of scal-

ing. In Jonathan Swift’s Gulliver’s Travels, a storm washes Lemuel 

Gulliver onto the island of Lilliput. Lilliput’s inhabitants are 

twelve times smaller than Gulliver. Later Gulliver is marooned 

on the island of Brobdingnag whose inhabitants are twelve times 
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larger. Otherwise these relatively small and large people are, in 

virtue, in vice, in wisdom, and in folly, much like the humans of 

Swift’s time.

As entertaining or as instructive as such tales may be, Galileo 

would have recognized the flaw in Swift’s descriptions—for it is 

one thing to imagine indefinitely large or small mathematical 

objects and quite another to imagine such objects clothed with 

physical attributes within natural environments. According to 

Galileo, a giant twelve times as large as a normal human being 

would collapse under his own weight.

Galileo reasonably supposed that the cross-section of a limb 

determines the limb’s strength. After all, an animal’s muscles 

push or pull across a cross-sectional area. Furthermore, a bone is 

like a wooden beam. When a beam breaks, it does not break 

everywhere at once but breaks through in a single jagged cross-

section. Yet the weight that a bone or beam must support is 

directly proportional to the mass of the whole structure to  

which it belongs. In general, the strength of an animal, or of any 

structure, is directly proportional to the area of its cross-section 

while the weight it supports is directly proportional to its total 

volume.

Since cross-sectional area increases with the square of a scale 

factor L, that is, with L2, and volume increases with the cube of 

this scale factor, that is, with L3 , the ratio of an object’s strength 

to the weight it supports varies as L L2 3/ , that is, as 1/L. This 

dependence has become known as the square-cube law. By reason 

of the square-cube law, the larger an animal or structure, the less 

able it is to support its own weight.

For the same reason, smaller creatures of the same general 

shape have a relative advantage in strength. “Thus,” says 
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Galileo, “a small dog could probably carry on his back two or 

three dogs of his own size; but I believe that a horse could not 

carry even one of his own size.” He could also have noted that 

an ant can carry more than ten times its own weight.

The larger of the two bones in Galileo’s drawing is about 10 

times wider than the smaller one but only about 3 times as long. 

Therefore, these bones are not geometrically similar. Instead 

Galileo chose these proportions in order to better match their 

strength-to-weight ratio. Since the cross-sectional area of the 

larger bone is 102 or 100 times larger than that of the smaller 

bone, the larger bone can carry or support 100 times more 

weight than that carried or supported by the smaller bone. And 

if the animal to which the larger bone belongs is relatively thick-

limbed and squat, that is, as they say “overbuilt” as shown here, 

it may manage to weigh only about 300 times more than the 

animal to which the smaller bone belongs. Thus, the larger ani-

mal would be relatively weaker than the smaller animal but still 

within the realm of possibility. If, on the other hand, the larger 

animal were geometrically similar and 10 times larger than the 

smaller one, it would weigh 1,000 times more while being only 

100 times as strong—probably not within the realm of possibil-

ity. Apparently, nature departs from geometric similitude in order 

to preserve relative strength.

The science of determining what ratios are important in what 

contexts is called dimensional analysis. Comparative zoologists as 

well as engineers who build and test scale models, say, in wind 

tunnels and towing tanks, seek out, with the help of dimen-

sional analysis, these ratios. In most cases the structure’s interac-

tion with its environment is crucial to their task. Small 

water-borne insects, for instance, must cope not so much with 

gravity but rather with the surface tension and viscosity of water. 
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And small mammals develop special strategies for maintaining 

their body temperature. Preserving the ratio of relevant forces 

(dynamical similitude), of relevant velocities (kinetic similitude), 

and of relevant thermal quantities (thermal similitude) is usually 

more important than preserving geometric similarity when scal-

ing up or down.
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23.  The Weight of Air (1644)

Figure 35

The element mercury is relatively rare, but it does not blend eas-

ily with other elements in the earth’s crust, and, for this reason, 

is often found isolated in mineral deposits. These deposits have 

been mined for millennia for, in spite of mercury’s toxicity, our 

ancestors valued it, a shiny liquid metal, as a medicine, as an 

ornament, and for its high density.

Evangelista Torricelli (1608–1647) put mercury’s density, 

roughly fourteen times that of water, and its liquidity to good 

use in devising the first barometer as shown in figure 35. He 

prepared a narrow glass tube sealed at one end, filled it with 

mercury, stopped the open end with his finger, inverted it, and 

inserted it into a basin of mercury. Upon removing his fin-

ger the mercury in the tube fell and left a column about 1.3 

cubits (2½ feet, 29 inches, or 74 centimeters) high. In this way  
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Torricelli created something at the top of the tube that had long 

been thought impossible: a region containing nothing, that is, a 

vacuum, a Torricellian vacuum.

But is it not true that “Nature abhors a vacuum?” A few years 

earlier Galileo (1564–1642) had been drawn to reflect on this 

abhorrence by the testimony of a workman who had been called 

upon to repair a suction pump that drew water from a well (illus-

trated in figure 36). According to Galileo’s text Two New Sciences 

(on the “first day” of conversation) the workman claimed that 

“the defect was not in the pump but in the water which had 

fallen too low to be raised through such a height; and he [the 

workman] added that it was not possible, either by a pump or by 

any other machine working on the principle of attraction to lift 

water a hair’s breath above 18 cubits; whether the pump be large 

or small this is the extreme limit of the lift.” Galileo imagined 

that the vacuum created at the top of the pump suspended the 

column of water and that if the column got too long the water 

would break under its own weight just as a rod of wood or iron 

suspended at its top would, if sufficiently long, also break.

Figure 36
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Torricelli respected Galileo to the point that he waited upon 

the man, blind and under house arrest, during the last three 

months of his life. However, Torricelli dismissed Galileo’s 

hypothesis that the vacuum itself suspends the weight and held 

that, on the contrary, because “we live submerged at the bottom 

of an ocean of air,” the surrounding air, by pushing down on the 

surface of the barometer basin and the well water, pushes up  

the columns of mercury and water. Because mercury is roughly 

fourteen times more denser than water, air will support a col-

umn of water roughly fourteen times higher, that is, about 18 

cubits (34 feet or 10 meters) high. Torricelli intended for his 

barometer to measure weather-related changes in the weight of 

air, but this effect could not, in his time, be easily separated from 

temperature-induced changes in the volumes of its glass and 

mercury parts.

Torricelli’s explanation survived while Galileo’s did not. For if 

the barometer’s column of mercury is pushed up by the weight 

of the surrounding air rather than held up by the abhorrence of 

the vacuum, the mercury column should fall as the barometer is 

carried to a higher elevation where the air was known to be thin-

ner and less weighty. The philosopher, mathematician, and 

physicist Blaise Pascal (1623–1662) tested this idea by arranging 

for his sister’s husband, the judge Florin Périer, to transport a 

barometer up a mountain, the so-called Puy de Dôme that rises 

900 meters (3,000 feet) above the nearby municipality of Cler-

mont-Ferrand in France.

Pascal’s 1648 report The Great Experiment on the Weight of 

the Mass of the Air includes his careful instructions to his brother-

in-law and Périer’s exciting description of the actual experiment. 

Its result: a complete vindication of the idea that air has weight. 

Périer constructed two mercury barometers and left one attended 
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at the foot of the Puy de Dôme while he and his companions 

carried the other to its top. There he found that the mercury 

column had fallen 8 centimeters (35/32 inches) during the course 

of their ascent. Périer repeated this test on a smaller scale by 

ascending the 37-meter (120-foot) high tower of the Notre Dame 

de Clermont as did Pascal himself by ascending a 46-meter (150-

foot) high tower in Paris. In each case the mercury column fell a 

distance proportional to the ascent of the barometer. The only 

credible explanation was Torricelli’s that “we live submerged at 

the bottom of an ocean of air.” Pascal concluded his report with 

these words:

Does nature abhor a vacuum more in the highlands than in the 

lowlands? ... Is not its abhorrence the same on a steeple, in an at-

tic, and in the yard? ... let them [the Aristotelians] learn that ex-

periment is the true master that one must follow in Physics; that 

the experiment made on mountains has overthrown the univer-

sal belief in nature’s abhorrence of a vacuum, and given the world 

the knowledge, never more to be lost, that nature has no abhor-

rence of a vacuum, nor does anything to avoid it; and that the 

weight of the mass of the air is the cause of all the effects hitherto 

ascribed to that imaginary cause.
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24.  Boyle’s Law (1662)

Figure 37

Robert Boyle’s first trial of the experiment depicted here ended 

in disaster. He had a long glass tube bent in the shape of a “U” 

with its two unequal legs parallel to one another. The longer leg 

was more than six feet in length and the shorter one was sealed 

at its end. Then he poured mercury into the open end of the 

long leg of the tube. His object was to record paired values of the 

distances marked H  and h in the third panel of figure 37, H  

indicating how much higher the mercury is in the longer leg 

than in the shorter one and h indicating the length of the col-

umn of air trapped in the shorter leg. But before he could gather 

data, he accidently broke the unwieldy tube and, presumably, 

spilled the expensive mercury.
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As the well-educated son of the fabulously wealthy first Earl 

of Cork, Boyle (1629–1691) had both the know-how and the 

means to do this experiment—and to redo it as necessary. And 

because Boyle was acquainted with Torricelli’s barometer (1643) 

and with Pascal’s demonstration of the weight of air (1648), he 

was able to interpret his results as a demonstration of what is 

known, in England and in the United States, as Boyle’s law, the 

first enunciation of which Boyle published in an appendix 

(1662) to an earlier work, A Defense of the Doctrine Touching the 

Spring and Weight of Air (1660).

Figure 37 illustrates the idea behind Boyle’s law. In the first 

panel the air in the shorter leg is just barely connected to the air 

in the longer leg that, in turn, is open to the atmosphere. Given 

the behavior of Torrecilli’s barometer, we know that the pressure 

of the air that surrounds us is enough to hold up a column of 

mercury a little more than 29 inches high or, alternatively, a 

column of water 34 feet high or a column of air extending to the 

top of the atmosphere. As the mercury continues to flow into 

the longer leg, the air in the shorter leg is cut off from the atmo-

sphere. And as the mercury in both legs rises—more quickly in 

the longer leg than in the shorter one—the air in the shorter 

column is compressed. Boyle kept a record of the coordinate  

values of the three quantities H , H + 29, and h to the nearest 

sixteenth of an inch. The numbers in the table are Boyle’s values 

listed to the nearest inch.

When the mercury in the longer leg is 29 inches higher than 

in the shorter one, the air pressure in the shorter leg must be 

enough to hold up the 29-inch-high column of mercury and a 

column of air extending to the top of the atmosphere (equal in 

weight to another 29-inch-high column of mercury). At this 

point the column of air in the shorter leg is compressed from its 
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H H+29 h

0 29 12

1 30 12

3 32 11

4 33 11

6 35 10

8 37 10

10 39 9

12 42 9

15 44 8

18 47 8

21 50 7

25 54 7

29 58 6

35 64 6

41 70 5

49 78 5

58 88 4

71 100 4

88 117 3
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initial value of 12 inches to 6 inches in length. As more mercury 

is poured into the longer leg the quantity H + 29 grows and the 

quantity h shrinks in inverse relation so that ( ) /H h+ ∝29 1 . 

Thus, when H = ×2 29 and, therefore, H + = ×29 3 29, the origi-

nal value of h is diminished by a factor of 3. Since H + 29 is 

directly proportional to the pressure P exerted on and by the 

column of trapped air and h is proportional to the trapped air’s 

volume V, these data demonstrate Boyle’s law, which in alge-

braic form is P V∝ 1/  as illustrated in figure 38.

Boyle may have known that P V∝ 1/  obtains only when the 

temperature of the gas is constant—as it was in his experiment—

but never mentioned this limiting condition. It was Edme  

Marriote (1620–1684) who, having independently discovered 

Boyle’s law in 1667, made this condition explicit. For this  

reason, Europeans often refer to Marriote’s law or to the Marriote-

Boyle law.

Figure 38

Boyle, like Francis Bacon before him, was a champion of 

empirical study—such as that which led to his eponymous law. 
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Also, like Bacon, he was suspicious of overarching theories. Spec-

ulative hypotheses and mathematical expression of physical 

laws were helpful only when motivated by data gathered from 

close observation and careful experimentation.

Like many from wealthy Anglo-Irish families Boyle was edu-

cated partly at home with private tutors and partly in an English 

“public” school, in this case, Eton College near Windsor. He left 

England for study on the Continent with a tutor as a twelve-

year-old in 1639. While Boyle was in Europe, his father died and 

left him a handsome inheritance. When he returned in 1644, 

the Irish were rebelling against English rule and England was in 

the midst of a civil war. His brothers and sisters were on both 

sides of this latter conflict, but Boyle became a partisan of nei-

ther. As he remarked in a letter to his former tutor, he felt exposed 

“to the injuries of both parties, and the protection of neither.” 

Throughout his life, Boyle observed “a very great caution” in all 

matters political and religious.

Boyle is sometimes called the “father of chemistry”—proba-

bly for rejecting both the Aristotelian doctrine of four elements 

(earth, air, fire, and water) and the Paracelsian doctrine of three 

principles (salt, sulfur, and mercury) and in their place empha-

sizing that all chemical phenomena should be understood in 

terms of the mechanics of particles in motion. During the late 

1640s in London, he began meeting weekly with a group of like-

minded natural philosophers to witness and discuss physical 

demonstrations. He called this group, which later evolved into 

the Royal Society of London, “the invisible college.”

Boyle had wide interests and wrote prolifically on medicine, 

theology, and language as well as on physical science. Nearly 

half of his literary output was devoted to theological topics, 

especially to the relation of theology to the new philosophy of 
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experimental science. Boyle’s last will and testament established 

a series of lectures on Christian apologetics that were revived in 

2004 with the express purpose of exploring the relationship 

between Christianity and science.
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25.  Newton’s Theory of Color (1666)

Figure 39

Isaac Newton (1642–1727) entered Trinity College, Cambridge 

University, in 1661, the year after the Restoration of the English 

monarchy that, in turn, followed the beheading of Charles I and 

the decade-long dictatorship of Oliver Cromwell. At that time 

the university had entered a long period of decline from which 

it did not emerge until after Newton’s death. Although nomi-

nally dedicated to educating young men, chiefly for the clergy, 

the fellows of Cambridge were not obliged to tutor, lecture, pub-

lish, or even remain in residence. Many, in fact, chose to absent 

themselves for months and years at a time. Even so they drew 

their stipends. Only three offenses were cause for dismissing a 

fellow: committing voluntary manslaughter, becoming a here-

tic, and getting married.

Yet in many ways Cambridge was a perfect place for Newton. 

He was self-motivated and independent-minded and would not 

have followed the guidance of a good teacher were one available. 

All he needed were some books and tools (he installed a lathe in 

his student lodgings), and to be left alone. He learned by con-

tinually thinking about a subject of his own choosing. His 

youthful obsessions were mathematics, mechanics, and optics.
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Newton received his master of arts and became a fellow at 

Trinity College, and, at the age of thirty, was elected Lucasian 

Professor of Mathematics, one of the most lucrative professor-

ships in the kingdom. So steady was his advancement that Rich-

ard Westfall, his twentieth-century biographer, believes that, in 

an age when the church or the court dictated most academic 

appointments, the young Newton must have had a powerful 

patron—now unknown to us. Upon assuming his professorship, 

Newton was obliged to give a series of inaugural lectures. The 

phenomenon of color was the subject of these lectures.

Newton’s theory of color is so thoroughly our own, we strug-

gle to imagine another. But for two thousand years people 

believed that sunlight was pure and simple. Color was somehow 

added to originally colorless sunlight during its reflection from 

or refraction (or bending) through different transparent materi-

als. Newton, for instance, tried to imagine light as a collection  

of identical globules that, like tennis balls, could acquire a spin 

during reflection and refraction. Different rates of spin would 

correspond to different colors. But these ideas fell by the wayside 

once Newton bought some prisms and started experimenting on 

his own.

Newton’s experiments suggested a radically different theory 

of color. He arranged for sunlight to enter his chamber through 

a small circular hole in a closed shutter and to fall upon a trian-

gular glass prism as shown on the left side of the figure 39. That 

such prisms produce colored light was already so well-known 

as to be celebrated, to use Newton’s word. René Descartes, Rob-

ert Boyle, and Robert Hooke (1635–1705) had all reported on 

the phenomenon, but none had projected a refracted beam 

on a surface more than a few feet distant from the prism that 

caused the refraction. As a result, the size and shape of their 

refracted beams were not noticeably changed. Newton, on the  
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other hand, projected his beam onto the opposing wall of his 

chamber twenty-two feet distant and found that the originally 

circular image now extended five times more in one direction 

than in the other and displayed a series of colors in the extended 

direction. Moreover, the size of the oblong image increased in 

direct proportion to the distance from the prism. Newton’s con-

cluded that sunlight is a composition of different colors, and the 

different colors refract or bend in different amounts, blue more 

than yellow and yellow more than red.

Figure 39 also shows an extension of this experiment that 

Newton used to confirm these ideas—what he called his experi-

mentium crucis. As before, a beam of sunlight refracts through 

a triangular glass prism and the oblong image projects on an 

opaque surface. This time the light of a single color (here yellow) 

passes through a hole in that surface and falls on a second prism. 

If a prism creates colors by modifying the beam rather than by 

separating the beam into its constituent colors, the second prism 

should also modify the color of the yellow beam. But the beam 

remained yellow on passing through the second prism. Newton 

still believed that light was composed of particles, but he was 

now also convinced that (1) sunlight is a heterogeneous mixture 

of colors, (2) which refract in different amounts, and (3) upon 

refraction separate into a continuous spectrum of colors. Fur-

thermore, (4) opaque objects appear differently colored because 

they preferentially reflect one color.

Newton’s theory of color had an immediate consequence. He 

abandoned his effort to produce lenses, for telescopes, that per-

fectly focus starlight. For since lenses focus light by refracting, 

that is, by bending their rays, and different-colored rays bend in 

different amounts and starlight, like sunlight, is a mixture of dif-

ferent colors, starlight will never focus to a single point in a 
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refracting telescope as is required for perfect image formation. 

This realization may have motivated Newton in 1668 to build 

the first reflecting telescope, which avoids refraction altogether.

Richard Westfall confesses, in the preface to his nine- 

hundred-page biography of Newton, Never at Rest (1983), that 

the more he learned of the man, the more alien he seemed.  

Newton never married and, apparently, had few friends. Yet his 

Cambridge colleagues viewed him with respect if not awe. New-

ton would sometimes draw figures, such as in figure 39, in the 

newly prepared gravel walks of Trinity College, and they, for a 

time, would carefully walk around these drawings in order to 

preserve them for the Lucasian Professor’s use.
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26.  Free-Body Diagrams (1687)

Figure 40

At a certain stage in their study, a physics student is called upon 

to master an important diagrammatic tool: the free-body dia-

gram. Free-body diagrams help us analyze a situation in terms of 

forces. A general Newtonian principle is that only bodies  

exert forces on one another. What are the forces and what are 

the bodies that exert and that experience these forces? A free-

body diagram helps us keep track of our answers.

Consider, for example, the seemingly simple situation of a 

book resting on a table that in turn rests on the ground. We 

know that both the book and the table are heavy, that is, both 

are attracted downward toward the center of the earth. This 

gravitational force—after the Latin gravis for “heavy”—is an 

example of an action-at-a-distance force because the bulk of the 
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earth need not touch either the book or the table in order to pull 

them down. In contrast, an object that must touch another 

object in order to exert a force on it is called a contact force.

Figure 40 shows the book and the table and a free-body dia-

gram of the book. Free-body diagrams represent objects as dots 

or circles and the forces on the object as directed line segments 

or arrows whose tails are attached to the object and whose 

heads point in the direction of the force. The length of the 

arrow is proportional to the magnitude of the force applied to 

the object. A longer arrow represents a larger magnitude force 

and equal-length arrows represent equal-magnitude forces. We 

also attach superscripts to each force symbol indicating the 

nature of the force, action-at-a-distance or contact, and sub-

scripts indicating the force’s source and the object to which it is 

applied. Thus, FE B
A
,  stands for the action-at-a-distance force 

exerted by the earth on the book. We usually call this particular 

force the book’s weight.

If the force of gravity were the only force on the book, it 

would, according to Newton’s second law, accelerate downward. 

However, our initial description indicates that the book is at rest. 

Therefore, its acceleration must be zero. Consequently, the net 

force on the book must vanish and a force other than the earth’s 

gravity must be applied to the book in order for it to remain  

at rest.

We deduce the source of this additional force on the book by 

a process of elimination. A force must be either an action-at-a-

distance force or a contact force. The gravitational pull of the 

earth is the only action-at-a-distance force on the book. (We 

ignore the relatively small gravitational attraction between book 

and table.) And, clearly, since the table is the only object touch-

ing the book, the table is the only object capable of exerting a 

contact force on the book. Therefore, because, and only because, 
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we know the book is at rest, we know that the contact force the 

table exerts on the book FT B
C
,  points in the opposite direction and 

is of equal magnitude to the action-at-a-distance force the earth 

exerts on the book FE B
A
, .

But how do contact forces work? How, in particular, does the 

table exert a force on the book? Interestingly, the surfaces of the 

table and the book behave approximately as if they were com-

posed of a multitude of tiny springs that resist compression. 

When the book is placed on the table, a book-shaped array of 

“springs” in the table is compressed until the total upward force 

of the table on the book is equal and opposite to the downward 

force of gravity on the book. The depression in the table is typi-

cally so slight as to be invisible to the naked eye. If the table were 

not strong enough to generate and maintain this contact force, 

the book would crash through the table.

A similar kind of analysis applies to the table with the inter-

esting difference that now two objects, the ground on which the 

Figure 41
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Figure 42

table rests and the book, touch and push on the table. For this 

reason the corresponding free-body diagram of the table in fig-

ure 41 shows three forces on the table: the downward gravita-

tional force of the earth on the table FE T
A
, , the downward contact 

force of the book on the table FB T
C
, , and the upward contact 

force of the ground on the table FG T
C
, . These forces must sum to 

zero because we know the table is at rest and, therefore, not 

accelerating.

Free-body diagrams can also be drawn of bodies that are not 

at rest. Consider, for instance, a pear that has fallen from its tree 

but has not landed on the ground. Figure 42 illustrates the fall-

ing pear and its free-body diagram. Since nothing touches the 

pear, the gravitational force of the earth on the pear FE P
A
,  is the 

only force on the pear. Thus, the net force on the pear is its 

weight. According to Newton’s second law, the apple will accel-

erate toward the center of the earth at a rate equal to F mE P
A
, /  

where m is the mass of the pear.
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27.  Newton’s Cradle (1687)

Figure 43

Many of us have played with a “Newton’s cradle,” composed of 

several steel balls suspended as shown in figure 43. A simplified 

version of this toy composed of only two steel balls best illus-

trates our concern (see figure 44). The left panel of the diagram 

shows the black ball hanging at rest while the elevated white ball 

is released and allowed to swing down and strike the black ball. 

The right panel shows the two balls shortly after their collision. 

The white ball is now at rest, and the black ball has now com-

pletely captured the motion originally in the white ball. Eventu-

ally the black ball will swing up to a level close to that originally 

occupied by the white ball. Sometimes we hear this device 

referred to as a “double pendulum,” so called because two pen-

dula mimic the motion of one.
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Figure 44

The collision of these two steel balls is approximately elastic. In 

a perfectly elastic, head-to-head collision of two identical objects, 

one originally at rest and the other moving, the one originally 

at rest completely captures the motion of the originally moving 

object. The collision of two billiard balls is approximately elas-

tic. However, collisions are not always perfectly or even approxi-

mately elastic. One could, for instance, easily arrange for the two 

swinging balls to stick together on impact and so reproduce an 

example of a perfectly inelastic collision. After a perfectly inelastic 

collision, identical balls move off together at half the speed of 

the moving ball just before collision.

Could there be one principle behind both—indeed behind 

all—kinds of collisions? Newton found such a principle. It was 

his effort to understand collisions that set him on a path leading 

to his three laws of motion that encapsulate the foundations of 

classical mechanics.

Observe that in both kinds of collision the ball originally at 

rest speeds up by the same amount the ball originally in motion 

slows down. The technical word for speeding up and slowing 
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down is acceleration; speeding up is positive acceleration and 

slowing down is negative acceleration. Therefore, both when the 

two identical balls stick together and when they do not, the ball 

originally at rest accelerates by the same amount the ball origi-

nally in motion decelerates. Given that, according to Newton’s 

second law, forces cause acceleration, the force on one of the 

balls must be equal and oppositely directed to the force on the 

other ball.

The general principle behind this last statement is Newton’s 

third law. Newton’s third law is probably the least understood of 

Newton’s three laws of motion—possibly because its original 

Latin was first rendered into English by the seemingly meaning-

less phrase For every action there is always an equal and opposite 

reaction. This widely reproduced statement is more a mnemonic 

for than an accurate description of the law. When used cor-

rectly, this mnemonic should remind us that all forces occur in 

action-reaction pairs of equal magnitude and opposite direc-

tion. Thus whenever object A exerts a force on object B, object 

B exerts a force of equal magnitude and opposite direction on 

object A.

The left panel of figure 45 again shows colliding balls, while 

the right panel consists of two free-body diagrams that label the 

forces on each ball. These free-body diagrams clearly show that 

the left ball exerts a contact force on the right ball FL R
C
,  equal in 

magnitude and opposite in direction to the contact force the 

right ball exerts on the left ball FR L
C
, . These diagrams are typical in 

another way. They show that each of the two forces in an action-

reaction pair applies to a different object.
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We take advantage of Newton’s third law every day. When 

we begin to walk, having been in a resting position, our body 

accelerates in the forward direction, and, according to Newton’s 

second law, whenever a body accelerates there is a net force on 

that body in the direction of that acceleration. What is this 

force that causes us to begin walking? The force of gravity is in 

the wrong direction. It could pull us through the floor, but it 

cannot accelerate us along the floor. We cleverly solve this phys-

ics problem by pushing backward on the floor with one foot. 

Consequently, the floor must, according to Newton’s third law, 

exert a force on this foot that accelerates us in the forward direc-

tion. Of course, this happens whether or not we are aware of 

Newton’s third law. Our bodies understand Newton’s third law 

and exploit it every day.

Figure 45
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28.  Newtonian Trajectories (1687)

Figure 46

Galileo’s telescopic observations of the mountains and valleys 

on the moon suggest that the earthly and heavenly realms are 

similarly composed. Newton (1643–1727) confirmed this sug-

gestion by generalizing to cosmic scale another of Galileo’s dis-

coveries: the parabolic trajectory. Pitch a baseball horizontally 

and imagine its trajectory unfolding in space and time. The base-

ball covers ground in direct proportion to the first power t of 

the time elapsed and falls downward in direct proportion to the 



Early Modern Period  113

second power t2 of the time elapsed. The result is a parabolic 

trajectory.

But the earth’s surface is not flat; neither is the strength of its 

gravitational attraction independent of the distance from its 

center. Things do not really fall down, but rather toward the cen-

ter, and the magnitude of the resulting centripetal (to the center) 

acceleration diminishes with distance from the center. What is 

unimportant in the context of a pitched baseball becomes 

important for trajectories that are as large as the earth itself. This 

is the lesson of figure 46, which is taken from Newton’s major 

work Philosophia Naturalis Principia Mathematica (1687).

Newton’s Principia completes a line of thought Newton had 

begun in 1664–1666, during which time Cambridge University 

had closed and sent its students and fellows away in order that 

they might protect themselves from an epidemic of the plague 

then sweeping through England’s cities and towns. Newton 

returned to his boyhood home in the village of Woolsthorpe  

and to his twice-widowed mother Hannah Smith. He built  

bookshelves, read, and thought—and tried to do little else. He 

invented a scheme of calculation in which ratios of indefinitely 

small quantities and their infinite sums had finite limits—a 

scheme we now call calculus.

He also reflected on the effect of gravity reaching far beyond 

his mother’s apple-laden trees all the way up to the orbit of the 

moon. How, he asked, would the moon fall if it fell like an apple? 

Newton supposed the moon’s orbit was the result of a double 

tendency: one to continue in straight-line motion and the other 

to accelerate toward the center of the earth. He found that  

this combination produced, in the simplest case, a circular orbit. 

Newton also wondered how the magnitude of the acceleration 

caused by gravity diminished with distance d from the Earth’s 
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center—as the first power of the inverse distance 1/ d or as the 

second power 1 2/ d ? Guided by Kepler’s third law—The period 

of the planetary orbits increases as the 3/2 power of their average  

distance from the Sun—Newton settled on the second power. 

His calculations were “pretty nearly” consistent with what he 

observed: a month-long revolution of the moon around the 

earth.

The seventeenth-century equivalent of a pitched baseball is a 

cannonball fired from a horizontally directed muzzle. Place the 

cannon on top of the highest mountain on earth, eliminate the 

earth’s atmosphere, and you have the situation illustrated in 

Newton’s drawing. At relatively low velocities, the cannonball 

follows what appears to be a parabolic trajectory. As the cannon-

ball’s initial speed increases, its range increases until the cannon-

ball orbits the earth in a perfect circle. The two outermost orbits 

are ellipses with one focus at the center of the earth. The dia-

gram suggests that a parabolic trajectory is, in actual fact, a small 

part of an ellipse. The larger part of the elliptical trajectory of a 

baseball or a cannonball is never realized because the bulk of the 

earth intervenes.

The Principia demonstrates mathematically what Newton’s 

drawing can only suggest. The inverse square law of gravitation 

and Newton’s laws of motion result in the approximate para-

bolic trajectories of projectiles near the surface of the earth, in 

the circular and elliptical orbits of artificial satellites and the 

moon, and in the elliptical and hyperbolic orbits of planets and 

comets.

The Principia proposes a universally operating law of gravita-

tion according to which each point of mass in the universe 

attracts every other point of mass with a force proportional to 

the product of the two masses and the inverse square of their 
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separation. Newton carried his calculations so far as to develop 

an algorithm for predicting the size and timing of high tides by 

accounting for the oceans’ simultaneous threefold attraction to 

Earth, Moon, and Sun.

Universal gravitation was a success, but Newton knew that 

the idea was incomplete. After all, how could the sun exert a 

force that kept the earth in its orbit without the benefit of an 

intervening mechanism? For Newton and other seventeenth-

century natural philosophers to explain a phenomenon meant 

to reveal the mechanism in terms of which objects, in direct 

contact, push or pull on one another. Newton abhorred the con-

cept of a force that could project itself across empty space. Yet he 

cautiously refrained from offering a mechanical explanation  

of gravity, and, in the end, accepted the universal law of  

gravitation as a means of efficient and precise mathematical 

description.

The first edition of the Principia (1687) made Newton famous. 

During his remaining forty years, Newton revised and extended 

the Principia and, at long last, brought his optical and mathe-

matical writings into print. In 1696 he left his professorship at 

Cambridge and accepted an appointment as warden of the Royal 

Mint and, in 1700, as its master. He represented Cambridge in 

Parliament (1701) and was elected president of the Royal Society 

(1703). Queen Anne knighted him in 1705.

Sir Isaac Newton died in 1727, but his intellectual legacy 

endures. In no sense has Newton’s physics been overthrown. 

Relativity and quantum mechanics embed Newtonian physics as 

a limiting case—the particularly important case that describes 

the world of human-sized objects. The Newtonian synthesis 

remains the core of physics education and provides the structure 

that gives meaning to new discoveries.
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29.  Huygens’s Principle (1690)

Figure 47

Constantijn Huygens intended that his son Christiaan (1629–

1695) follow him into the Dutch diplomatic service and for this 

reason gave him a liberal education in languages, music, history, 

rhetoric, logic, mathematics, and natural philosophy and also 

training in fencing and riding. But when the House of Orange 

lost its power, Constantijn lost a patron, and Christiaan lost his 

opportunity in diplomacy. Fortunately for us, Christiaan’s true 

interests were in mathematics and natural philosophy. He devel-

oped the theory of pendulum motion and of colliding objects, 

invented an algorithm for computing the digits of the irrational 

number π , and constructed a telescope with which he identified 

Saturn’s rings, its moon Titan, and the Orion nebula. But he is 

most remembered for his reflections on the nature of light.

The nature of light had long fascinated scientists. By the late 

seventeenth century, two theories were current: (1) light was a 

stream of high-speed particles, and (2) light was a disturbance 

that propagated through an invisible medium called the ether. 

Descartes and Newton, who agreed about little else, both sup-
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ported the particle theory while Huygens promoted the distur-

bance or wave theory.

Popular opinion favored particles. After all, we can hear but 

not see around corners—facts that support the idea that sound is 

a wave disturbance that propagates through the air and around 

corners while light is composed of small particles that, except at 

reflecting and refracting boundaries, travel in straight lines. But 

in 1660 the Jesuit Francesco Grimaldi (1618–1693) observed that 

light does, indeed, show a slight tendency to diffuse or diffract 

around small objects such as pins and through and around nar-

row slits in an opaque barrier just as would be expected if light 

were a wave disturbance.

Huygens’s Treatise on Light (1690) is quite narrow in scope. 

Huygens does not mention that white light is composed of a 

spectrum of colors, or Grimaldi’s discovery of diffraction, or the 

properties we usually associate with waves such as periodicity 

and wavelength. Instead, Huygens asks: If light is a stream of 

particles, why don’t the particles scatter from one another as  

different streams cross and, in this way, make ordinary vision 

impossible? And he observes that it is the nature of sound waves 

to propagate through each other without distortion. Otherwise 

conversation in a noisy room would be impossible. Huygens 

concludes that light must be like sound: a disturbance or wave 

that propagates from source to receiver.

But a question remains. What is the medium through which 

light waves propagate? It cannot be air since light travels through 

a glass jar from which the air has been pumped while sound does 

not. Evidently, light has its own medium that Huygens calls the 

ether: an invisible material that penetrates transparent objects 

yet as a whole forms an elastic fluid through which disturbances 
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propagate at high speed. The option of allowing light waves  

to propagate without a medium, the modern point of view, was 

not available to Huygens and other seventeenth-century scien-

tists who were materialists and, as Huygens put it, dedicated to 

“the true philosophy, in which one conceives the causes of all 

natural effects in terms of mechanical motions.”

Huygens’s contribution to the discussion begins by observing 

that every point on a luminous body is a source of light. And 

if the speed of light is the same in all directions, a disturbance 

originating from one point will, if unhindered, soon occupy the 

surface of a finite sphere centered on that point. But how exactly 

does one spherical disturbance evolve into another larger, con-

centric spherical disturbance? Huygens’s principle, according to 

which every point in a disturbed medium is a new point source, pro-

vides the answer. Four points are identified on the inner circle 

of the left panel in figure 47 and each one of these, according to 

Huygens, sends out its own spherical disturbance that is some-

times called a secondary wave. The envelope of these secondary 

waves (here identified with a dashed circle) constructs a new 

surface of disturbed medium. On the right, light propagates 

from a point source so distant that its spheres of disturbance 

appear in figure 47 as parallel lines. In this case, the envelope of 

secondary waves also constructs a new line in the direction of  

forward propagation.

All the well-known properties of light: straight-line propa-

gation in homogeneous media, equality of the angles of inci-

dence and reflection, and Snell’s law of refraction, follow from  

Huygens’s principle. Consider, for instance, the wave surfaces 

depicted in figure 48 as they approach an air-water interface.  

Huygens supposed that the material through which light trav-

els modifies the speed of light—the denser the material, the  
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slower the light. Therefore, the distance between the waves 

should shrink as they enter the water. One could imagine the 

secondary waves produced at the interface: two concentric half-

circles, the one in water smaller than the one in air. But one 

could also, equivalently, imagine the wave crests as rows of a 

marching band closing up as the band leaves a smooth walking 

surface and enters a rough piece of ground—assuming that the 

march tempo remains steady while the marchers’ pace shortens. 

The result: the lines of wave disturbance incline toward the nor-

mal of the interface in just the amount dictated by Snell’s law 

given that the speed of light in water is about three quarters that 

in air.

Figure 48



120  Early Modern Period

The particle and the wave interpretations of light coexisted 

throughout the eighteenth and early nineteenth centuries. In 

the mid-nineteenth century, the speed of light in water was 

found to be three quarters that in air. Only Huygens’s theory of 

light, which had by then evolved into a complete wave theory, 

was consistent with this result, even though direct evidence of 

the ether has never been found. Evidently light waves do not 

need a medium through which to propagate.
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30.  Bernoulli’s Principle (1733)

Figure 49

Daniel Bernoulli’s (1700–1782) good fortune (and also his  

misfortune) was to have his own father as a tutor. Daniel’s father, 

Johann Bernoulli (1667–1748), was a professor at the University 

of Basel in Switzerland and the foremost mathematician in 

Europe. Johann and his brother Jakob, Daniel’s uncle, were 

among the first mathematicians to master calculus after its 

invention by Newton and Gottfried Wilhelm Leibniz (1646–

1716) in the second half of the seventeenth century. Johann’s 

son, Daniel, was probably the ablest of several generations of 

Bernoulli mathematicians.

Such was Daniel’s precocity and his broad talent that at 

twenty-one years of age he would have made the University of 

Basel a fine professor in any one of several fields: natural phi-

losophy, mathematics, logic, and physiology. But his application 

for a faculty position was passed over on two occasions, not 

because his qualifications fell short, but because the university 

chose the successful candidate by lot from among those quali-

fied. Daniel was simply unlucky.
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A decade later Daniel had forged an international reputation 

chiefly for his work at the Imperial Academy of Sciences in St. 

Petersburg. He excelled at finding problems ripe for solution 

with the new methods. But he hated the harsh climate of St. 

Petersburg and, in 1732, returned to Basel in order to accept the 

position finally offered: a professorship of anatomy and bot-

any—two subjects in which, by that time, he had little interest. 

Only toward the end of his productive career did Bernoulli 

assume professorships that reflected his abiding interests: in 

physiology in 1743 and in natural philosophy in 1760.

Figure 49 illustrates one of Daniel Bernoulli’s discoveries. The 

thick dark lines outline a section of tubing through which an 

incompressible fluid (for instance, water) flows from left to right. 

As the tube’s diameter shrinks in the direction of fluid flow, the 

fluid’s speed increases in order that the fluid entering the tube 

from the left might leave at the same rate on the right. The thin 

lines are streamlines—reproducible trajectories of a lightweight 

object immersed in the fluid. Where the streamlines crowd 

together, the fluid more flows quickly.

Leonardo da Vinci (1452–1619) had, much earlier, under-

stood this behavior. Evidently, Leonardo spent many pleasant 

afternoons dropping seeds into flowing brooks and watching 

their trajectories unfold in space and time—the seed speeding up 

and slowing down as the brook narrowed and widened. This 

simple inverse relation between a fluid’s speed and the cross-

sectional area of its channel, sometimes called the principle of 

continuity, expresses conservation of mass.

Bernoulli, who was well aware of the principle of continuity, 

searched for a second principle linking a fluid’s speed to the pres-

sure it exerts. Because Bernoulli was a former medical student, he 

knew that measuring the pressure of a moving fluid, such as the 

pressure of arterial blood, presented a problem. Physicians in his 



Early Modern Period  123

day simply cut open a patient’s artery and observed how high 

the blood spurted. Bernoulli sought a less wasteful and less dan-

gerous method. He experimented with water flowing at various 

speeds through pipes of various diameters. He punched holes in 

the pipes and fitted these holes with vertical glass tubes open at 

both ends. When water flowed through the pipe, water ascended 

the tube. The pressure of the moving water equals the pressure of 

the ambient air plus an amount proportional to the height of 

the water supported in the open glass tube.

Bernoulli’s technique quickly became standard medical prac-

tice. For the next 170 years, physicians inserted the sharpened 

end of an open glass tube into a patient’s artery and observed 

how high the blood ascended in the tube—the higher its ascent, 

the higher the patient’s blood pressure. This method was better 

than the old one, but still painful and dangerous. Not until 1896 

was the current noninvasive way of measuring blood pressure 

devised.

More importantly, Bernoulli discovered that in each experi-

mental arrangement the sum of the pressure exerted by the flow-

ing fluid and the energy density of its bulk flow, P V+ ρ 2 2/  

where P is the fluid pressure, V  is its speed, and ρ is its mass per 

unit volume, remains constant along a streamline—a relation-

ship we now call Bernoulli’s principle. Evidently an incompress-

ible fluid loses some of its pressure as it speeds up upon entering 

a narrower section of tube.

Today we use the principle of continuity and Bernoulli’s prin-

ciple to explain how airplane wings produce lift. Figure 50 shows 

the cross-section of an airplane wing and the streamlines of the 

air that flows around it. Straight, evenly spaced streamlines far 

above and immediately below the wing indicate undisturbed air. 

Immediately above the wing section the streamlines necessarily 

crowd together. According to the principle of continuity, the air 
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immediately above the wing must flow more quickly than the 

air below it, while, according to Bernoulli’s principle, the more 

quickly flowing air above the wing exerts less downward pres-

sure on the wing than the more slowly moving air below the 

wing exerts upward pressure. The result is a net upward force on 

the wing.

Figure 50

Most fathers would be proud of a son with Daniel’s accom-

plishments, but not Johann. Instead he saw Daniel as a competi-

tor. When in 1734 the two tied for first place in a competition 

sponsored by the Paris Academy of Sciences to which they had 

submitted independent solutions to a problem in celestial 

mechanics, Johann angrily denounced his son—and also the 

prize committee for not recognizing his superior achievement. 

Then in 1743 Daniel discovered that his father had reproduced 

or, as he suspected, plagiarized and published in Hydraulica 

(1743) much of what Daniel had published ten years earlier on 

moving fluids in his similarly titled Hydrodynamica (1733). Worse 

yet, Johann had asked the printer to backdate the publication of 

Hydraulica to 1732 in order to establish priority over his son. 

Daniel never forgave his father and the two remained unrecon-

ciled at the elder Bernoulli’s death in 1748.
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31.  Electrostatics (1785)

Figure 51

Figure 51 illustrates a well-known interaction: Like charges repel 

and unlike charges attract. The two kinds of charges are here indi-

cated by a plus and by a minus sign. Insulating strings suspend 

the charged balls. (An insulator is made of material in which 

charges are not free to move, and a conductor is of material in 

which charges are free to move.)

In the eighteenth century these balls were composed of pith 

(a spongy organic material) and the strings were of silk—both 

good insulators. The natural philosophers of that time generated 

positive charge on a glass rod, for instance, by rubbing the rod 

with their hands, and transferring the charge to the pith balls by 

stroking the latter with the glass rod.

Today we can illustrate the same interactions more easily. 

Simply detach about 18 inches (46 cm) of Scotch tape from its 

spool. Fold one end of the tape over on itself to make a non-

sticky handle and press the remaining sticky side to a smooth 

table surface. Prepare another tape in exactly the same way, and 

pull both tapes up from the surface at once—one in each hand. 

The identically prepared tapes are identically charged and will 

repel each other as shown in the right panel of figure 52. In 

order to create oppositely charged tapes press one to the table 

and stick another on top of the first—sticky side to nonsticky 

side with the two handles at the same end. Pull the tapes up 
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while stuck together. Then, carefully peel them apart. They will 

be oppositely charged and attract each other as shown in the left 

panel.

Any two dissimilar materials in close contact, for instance, 

tape and table surface, will result in charge moving from one 

material to the other. The traditional method of charging by rub-

bing is simply one way of making close, repeated contact 

between two dissimilar materials. Placing the sticky side of one 

tape on the nonsticky side of a second tape is another.

Benjamin Franklin (1706–1790) invented the names positive 

and negative to denominate the two kinds of charge, but they 

could have been given other names, and, indeed, were by Charles 

du Fay (1698–1739), who was the first to recognize the phenom-

enon of like charges repelling and unlike charges attracting. Du 

Fay called the charge created on glass by rubbing glass vitreous 

(after the Latin root for glass) and the charge created on amber 

by rubbing amber resinous (after the Latin for fossilized tree 

resin). In Franklin’s jargon, vitreous charge was positive and res-

inous charge negative.

Figure 52
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The names positive and negative suggest Franklin’s theory 

according to which all materials contain a single electric fluid. 

When an object has an excess of this fluid it is charged positive, 

and when an object has a deficit it is charged negative. Other 

people explained the same phenomena by appealing to two dif-

ferent kinds of fluid, each with its own charge. Compelling evi-

dence in favor of two different charges (and their two different 

particles) did not emerge until the discovery of the electron in 

the late nineteenth century and the proton in the early twenti-

eth century.

If you try the experiment with charged Scotch tape, you may 

notice that your hand attracts the tape regardless of its charge. 

The explanation is simple. Under normal conditions, skin is a 

good conductor. As your hand approaches, for instance, a posi-

tively charged tape, negative charges within your hand move 

closer to the tape and positive charges move farther away. Your 

hand (actually your whole body) becomes polarized. Since the 

closer the charges the stronger their attraction, your hand 

attracts the tape independently of the kind of charge the tape 

contains. Figure 53 shows how, in similar fashion, an uncharged 

(horizontal) conducting rod becomes polarized and attracts a 

(vertical) positively charged tape.

Figure 53
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The eighteenth century was the first age of electricity. It  

was also the age of enlightenment—a period when men and 

women believed that rational thinking, rather than adherence 

to tradition, would solve our problems and improve our lives. 

The natural philosophers of the eighteenth century not only 

discovered that like charges repel and unlike ones attract but 

invented means of mechanically generating large amounts of 

charge. Some went in for fantastic demonstrations that, for 

instance, polarized or charged small boys suspended from bun-

dles of silk threads. Franklin not only drew electricity from 

storm clouds with his wet (and so conducting) kite string, but 

also managed to cook a turkey by passing electric charges 

through it. Stephen Gray (1666–1736) conducted an electro-

static signal some 800 feet (244 meters) along a metal wire—a 

precursor to the telegraph. Others hawked the therapeutic 

effect of electric shocks.

Charles Coulomb’s (1736–1806) contribution crowned the 

efforts of Gray, Du Fay, and Franklin. In order to accurately mea-

sure the strength of the earth’s magnetism Coulomb eliminated 

friction from a compass needle by suspending it from a fine 

thread. The more force exerted on the ends of the needle, the 

more it rotated and twisted the suspending thread. Coulomb 

used this technique to devise a sensitive device, now called a tor-

sion balance, for measuring the force between two small, charged 

spheres. One sphere was attached to the end of a light, horizon-

tal, counterbalanced rod suspended from a fine thread. The 

other stationary, charged sphere was placed near the first. The 

larger the force exerted on the charged sphere attached to  

the suspended rod, the more the rod rotated and turned its sus-

pending thread—the rotation in direct proportion to the force 

applied. Coulomb found that the force F exerted between two 
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small charges, q1 and q2, is inversely proportional to the square 

of the distance d  between them and directly proportional to the 

product of the charges—a result, F q q d∝ ( )1 2
2 , now known as 

Coulomb’s law.

While this result, mimicking as it does Newton’s universal law 

of gravitation, had been suggested before, Coulomb was the first 

to demonstrate it with a simple, convincing experiment. He did 

not speculate on the cause of this electrostatic force, but, rather, 

like Newton before him, was satisfied with its precise mathemat-

ical description. Coulomb is one of the seventy-two notable 

French engineers, scientists, and mathematicians whose names 

are inscribed on the Eiffel Tower.
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32.  Young’s Double Slit (1801)

Figure 54

Sometimes one physical theory completely overthrows and 

replaces another. Such a revolution occurred in the years follow-

ing the period 1801–1804 when the English polymath Thomas 

Young (1773–1829) marshaled compelling arguments in favor of 

the wave theory of light. Young’s arguments were, in part, rein-

terpretations of data gathered a hundred years earlier by Isaac 

Newton and, in part, based upon his own simple experiments.

Young had to overcome a strong prejudice among natural 

philosophers in favor of Newton’s hypothesis that light is com-

posed of small particles that travel in straight lines at high 

speeds. True, Newton had, early in his career, explored the pos-

sibility that light was composed of waves. But the waves of 
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which he was aware (sound and water waves) tend to bend, that 

is, to diffract, around barriers, while light, it seems, does not. 

After all, we can hear but not see around corners. Consequently, 

Newton was drawn to the idea of particles of light. In order  

to explain optical phenomena more complex than the forma-

tion of shadows, Newton endowed different kinds of light par-

ticles with different tendencies to transmit and reflect. These 

ideas were clearly speculative, but the unqualified success of 

Newtonian mechanics and gravitation gave them an unearned 

authority.

Young broke this century-long Newtonian spell by first not-

ing that the intensity of sound and water waves, in fact, dimin-

ishes behind the barriers around which they diffract—just as, in 

greater degree, the intensity of light does. Evidently, all three 

phenomena (light, sound, and water waves) diffract around bar-

riers in much the same way but in different degrees. Figure 54 

illustrates the geometry of one of Young’s demonstrations of  

diffraction—the double slit geometry. Young discussed several 

realizations of this geometry: one with water waves, one with 

light of a single color, and one with white light composed of 

many colors.

It is easiest to see the physics behind all three realizations 

when the waves are on the surface of a pool of water. Young  

used what today would be called a “ripple tank,” essentially a flat 

basin filled with water, to demonstrate how waves propagate 

around barriers and interact with one another. Waves are 

launched in the ripple tank by the periodic insertion and removal 

of a solid object. The dark lines in the diagram indicate the crests 

of these waves. The wave troughs are, of course, midway between 

the crests. By design, the crest of a single wave strikes the two 

openings in the middle barrier at the same time and launches 
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two new waves into the area to the right. (Recall Huygens’s prin-

ciple that each point on a wave front is a new point source.) 

Where, in the middle region, two dark lines intersect, two wave 

crests meet, superpose, and form a double-high crest. Where two 

troughs meet, a double-deep trough forms. And where a crest 

meets a trough, the water remains at its undisturbed level. Young 

coined the word interference to denote this pattern of wave 

interaction.

That light produces, on a much smaller scale, the same inter-

ference pattern in the double-slit geometry that water waves do 

is evidence that light is also composed of waves. In particular, 

monochromatic light originating from a single point source 

and propagating or diffracting through two parallel openings or 

slits in an otherwise opaque barrier produces a series of bright 

and dark bands, an interference pattern. Light, in effect, propa-

gates along the direction indicated by the dashed lines in the  

diagram.

Young went on to describe the different interference patterns 

produced when light is diffracted around a fine thread and 

reflected from grooved surfaces and thin films. Young concludes 

one of his (typically wordy) lectures by stating that “the accu-

racy, with which the general law of interference of light has been 

shown to be applicable to so great a variety of facts, in circum-

stances the most dissimilar, will be allowed to establish its valid-

ity in the most satisfactory manner.” Evidently, since interference 

is a wave property and light can be made to produce various 

interference patterns, light is composed of waves.

Because Young’s printed arguments were entirely verbal, that 

is, without benefit of diagrams or mathematics, they were at first 

ignored. Eventually, Augustin Fresnel (1788–1827) provided the 

mathematical formulation implied by but lacking in Young’s 
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presentations. Sometimes Young’s arguments have been inter-

preted as “proving Newton wrong.” If so, Young also honored 

Newton for his enduring contributions.

Young was a child prodigy, the eldest of ten children born to 

Quaker parents of modest means. He was raised by his grandfa-

ther and educated by an aunt who, for the most part, allowed 

him to pursue his own interests. He read with fluency by the age 

of two and by four had twice read through the entire English 

Bible. Besides European and classical languages, he studied Near 

Eastern ones: Hebrew, Samaritan, Chaldean, Syriac, and Persian. 

He kept a journal in Latin and commented on French authors in 

French and on Italian authors in Italian. Once when asked to 

exhibit his penmanship, he wrote the same sentence in fourteen 

different languages. While Young trained to be a physician, he 

also developed a serious interest in mathematics, natural phi-

losophy (in particular, optics and botany), and various mechani-

cal arts including telescope making.

Young’s competence in languages led him to study a copy of 

the three inscriptions, one in Ancient Greek, one in Egyptian 

hieroglyphics, and one in Demotic Egyptian, on a particular 

stele, the so-called Rosetta Stone, discovered in 1799 by a French 

officer with Napoleon’s army in Egypt. Since all three inscrip-

tions paraphrase the same decree, the Rosetta Stone was a key to 

deciphering Egyptian hieroglyphics—the meaning of which had 

been, since the late Roman period, lost. Young’s contribution 

was to discern that the Demotic was a mixture of alphabetic and 

hieroglyphic characters and to begin the work of deciphering 

both Egyptian texts. When, in 1822, the French philologist  

Jean-François Champollion (1790–1832) independently deci-

phered the Demotic and hieroglyphic inscriptions, Young 

praised his work.
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Young’s life of scholarship earned him his own stele, a memo-

rial stone in Westminster Abbey—one that praises “a man alike 

eminent in almost every department of human learning, patient 

of unremitting labor, endowed with the faculty of intuitive per-

ception, who, bringing an equal mastery to the most abstruse 

investigations of letters and science, first established the undula-

tory theory of light, and first penetrated the obscurity which had 

veiled for ages the hieroglyphics of Egypt.”
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33.  Oersted’s Demonstration (1820)

Figure 55

Once household implements began to be made of iron, people 

began noticing that nearby lightning strikes sometimes magne-

tized these implements. But what is lightning? And how does it 

magnetize iron? In a letter written in 1752, Benjamin Franklin 

described an experiment whose purpose was to answer the first 

of these questions. His idea was to fly a kite into a storm cloud so 

that any electrical charge present would be conducted down its 

wet string and stored in a glass container, lined inside and out 

with metal foil, called a Leyden jar. After explaining to his corre-

spondent how to make a kite out of a silk handkerchief, Franklin 

went on to say, “And when the rain has wet the kite and twine, 

so that it can conduct the electric fire freely, you will find it 

stream out plentifully from the key on the approach of your 

knuckle. At this key the phial [Leyden jar] may be charged, and 

from electric fire thus obtained, spirits may be kindled, and all 

the other electric experiments be performed which are usually 

done by the help of a rubbed glass or tube, and thereby the 

sameness of the electric matter with that of lightning completely 

demonstrated.” One can only conclude, as Franklin does, that 

lightning consists of electric charges.
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It was left to the Danish scientist Hans Christian Oersted 

(1777–1851) to address the second question: the relationship 

between moving charge and magnetism. The story goes that in 

1820, while attempting to show his students at the University of 

Copenhagen that a current of moving charges had nothing to do 

with magnetism, Oersted placed a segment of conducting wire 

close to and parallel with the usual north–south orientation of a 

compass needle. To his surprise, when the ends of the wire were 

connected to a Voltaic cell or battery, the needle rotated away 

from the north–south line—as shown in figure 55. In actual fact, 

Oersted had unintentionally demonstrated that moving charges 

do produce a magnetic influence. The entire scene—Oersted, 

current-carrying wire, compass needle, and attentive students 

(all male)—is represented on one side of the Oersted Medal 

awarded annually by the American Association of Physics Teach-

ers to an outstanding teacher of physics. Oersted’s image is cer-

tainly appropriate for this medal since his may be the only major 

scientific discovery made during a lecture demonstration before 

a class of students.

What most interested Oersted and his contemporaries was 

that a current of charge in the wire twists the compass needle. 

And, in this experimental arrangement, the twisting could  

not be explained in terms of an attraction or repulsion along 

lines joining points on the conducting wire and points on the 

compass needle. The only other known fundamental forces  

Oersted knew about, Newton’s law of universal gravitation and 

Coulomb’s law of electrostatics, act in this way—that is, along 

lines connecting two points.

Oersted found that if the current in the wire was moderately 

strong, the magnetic influence it produced overcame that of the 

earth. In this case, a set of compass needles arranged in a plane 
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perpendicular to the wire would point in directions that circle 

the wire, as shown in figure 56. According to Oersted, “From the 

preceding facts we may likewise collect that this conflict [or 

influence] performs circles; for without this condition it seems 

impossible that the one part of the uniting wire, when placed 

below the magnetic pole, should drive it towards the east, and 

when placed above it towards the west; for it is the nature of a 

circle that the motions in opposite parts should have an oppo-

site direction.” What “performs circles” around the wire was 

later identified as a magnetic field line. Oersted had, in effect, 

demonstrated that an electric current produces a magnetic field 

and, in so doing, initiated the study of electromagnetism.

Figure 56
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The connection Oersted revealed between electrical and mag-

netic phenomena satisfied the expectations of the contempo-

rary romantic movement—a movement that touched on all 

aspects of human endeavor. A romantic would see connections 

everywhere, and a scientifically inclined romantic would imag-

ine that all the forces of nature were but different aspects of a 

single, all-encompassing, invisible power. If this power encom-

passed the human as well as the natural, then the natural world 

might suggest to us what it means to be human, and our human-

ity might teach us how to appreciate and care for the natural 

world. Oersted would have embraced these possibilities— 

so beautifully expressed in William Wordsworth’s sonnet The 

Prelude (1850).

My heart leaps up when I behold

A rainbow in the sky:

So was it when my life began,

So is it now I am a man,

So be it when I shall grow old

Or let me die!

The child is father of the man:

And I could wish my days to be

Bound each to each by natural piety.

But a romantic awareness could terrify as well as inspire. One 

need only read Mary Shelley’s Frankenstein (1818) or Robert 

Louis Stevenson’s Dr. Jekyll and Mr. Hyde (1886).

Oersted was a child of his age, a romantic, and of the last 

generation of scientists who called themselves natural philoso-

phers. In addition to his work as a physicist and chemist (he was 

the first to isolate the element aluminum), Oersted wrote a  

dissertation on Kantian metaphysics and published a volume of 

poetry. His last work was a philosophy of life entitled The Soul in 

Nature (1852).



Nineteenth Century  141

34.  Carnot’s Simplest Heat Engine (1836)

Figure 57

Steam-driven heat engines turned wheels that, in the early  

nineteenth century, ground corn, wove cloth, moved goods, and 

lifted water out of English coal mines. By the late nineteenth 

century, heat engines were powering dynamos that produced 

electricity—that highly transportable potential to perform work. 

Remarkably, already in 1824 with the publication of Reflections 

on the Motive Power of Fire and on the Machines Fitted to Develop 

that Power, Sadi Carnot (1796–1832) had outlined the general 

possibilities and absolute limitations of heat engines.

Carnot’s Reflections is concerned not only with the theory of 

heat engines and their various applications, but also with the 

military, political, and economic implications of their develop-

ment. This is not surprising given Carnot’s family background. 
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His father, Lazare, was Napoleon’s capable general-in-chief and 

Sadi’s early military and scientific training was at the newly 

established École Polytechnique. Fatefully for Carnot, England, 

rather than his native France, had discovered, developed, and 

applied the steam engine to the point that “to take away today 

from England her steam-engines would be to take away at the 

same time her coal and iron. It would be to dry up all her 

sources of wealth, to ruin all on which her prosperity depends, 

to annihilate that colossal power. The destruction of her navy, 

which she considers her strongest defense, would perhaps be 

less fatal.”

By 1824 that “colossal power” had exiled Sadi’s father and 

blighted his own military career. France was worthy of a better 

future and a bigger role in developing the heat engine—or  

so Carnot must have thought. As it happened, Carnot helped 

create that role by developing the theory of heat engines with 

a precision never imagined by the English engineers of his 

time.

Figure 57 particularly suits the generality of Carnot’s theory. 

Gone are the furnaces, boilers, pistons, condensers, and smoke-

stacks that compose a real steam engine. In his imagination, Car-

not stripped away all these until he was left with only the three 

elements and their functions that were essential for the opera-

tion of any imaginable heat engine: a hot body that supplies 

heat, a device that produces work from that heat, and a cold 

body that absorbs waste heat. Two blocks, one circle, and three 

arrows represent the elements and functions that compose Car-

not’s simplest heat engine.

That both a hot and a cold body are needed for a heat  

engine to produce work is the crucial contribution of Carnot’s 

Reflections. He must have been aware of the importance of this 
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requirement because he repeated it seven times in seven succes-

sive paragraphs within the first few pages of Reflections. In 

Carnot’s words: “The production of motion in steam engines is 

always accompanied by a circumstance on which we should fix 

our attention. This circumstance is the re-establishing of equilib-

rium in the caloric; that is, its passage from a body in which the 

temperature is more or less elevated, to another in which it is 

lower.” Eliminate either the hot or the cold body, and whatever 

is left is no longer a heat engine capable of doing work. The  

logically equivalent statement “No heat engine simpler than 

Carnot’s simplest heat engine is possible” is a truth of the high-

est order—a truth that expresses what we now call the second 

law of thermodynamics.

Other versions of the second law of thermodynamics are  

better known. For example, “No process is possible whose only 

result is to cool a cold body and heat a hot body.” In other words, 

a cup of hot coffee left in a cool room never gets hotter; it always 

cools down. And “No process is possible whose only result is  

to cool a hot body and produce work.” In other words, a heat 

engine cannot be 100 percent efficient. The German physicist 

Rudolph Clausius (1822–1888) framed the first of these state-

ments in 1850 and the English physicist William Thomson the 

second in 1851. Of course, Carnot’s earlier 1824 statement pre-

dates both. But each is logically equivalent to the other two. 

Each is a version of the second law.

One does not prove a statement that purports to be as funda-

mental as the second law of thermodynamics. Rather, one  

simply asserts that statement and from it derives important con-

sequences. Only after these consequences have been tested and 

verified is the statement recognized as a fundamental law of 

physics.
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Carnot was, indeed, able to derive important consequences 

from his version of the second law. For instance, he found that, 

in principle, “the most efficient heat engine is one that operates 

indefinitely slowly, without friction or dissipation, and without 

direct contact of hot and cold parts.” The technical word that 

stands for this combination of properties is reversibility. Thus, 

Carnot proved that “the most efficient heat engine is one that 

operates reversibly”—a statement traditionally called “Carnot’s 

theorem.”

Carnot was hampered in developing the consequences of his 

ideas because, at the time of writing Reflections, he did not accept 

the law of conservation of energy, now known as the first law of 

thermodynamics. (Interestingly, the second law predates the 

first law by more than twenty years.) In its place Carnot believed 

that heat, or caloric as it was called, was an indestructible fluid 

whose quantity was conserved as it flowed from one place to 

another. Not until the 1840s did James Prescott Joule’s increas-

ingly precise experiments explode the concept of caloric and 

compel acceptance of the first law of thermodynamics. Accord-

ing to the first law, it is energy, rather than caloric, that is con-

served. In this view, heat is just one way of transferring energy 

from one place to another. (Doing work is another.) However, 

such were Carnot’s gifts that, even under the fog of serious  

misconception, he recognized and exploited a truth of great  

consequence—a truth we now call the second law of 

thermodynamics.
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35.  Joule’s Apparatus (1847)

Figure 58

What causes things to heat up and to cool down? Thanks 

to the widespread use of reliable thermometers in the eigh-

teenth century, one scientist came up with an explanation. 

According to Antoine Lavoisier (1743–1794), heating was 

caused by the flow of caloric (a “subtle fluid”) that, as it pen-

etrated the pores of an object, raised its temperature. Caloric 

was thought to be ingenerate and indestructible, that is, 

conserved, as it flowed from one object to another. Further-

more, caloric was thought to be weightless and composed  
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of particles that repelled one other. Hot objects were caloric-

rich and cold ones caloric-poor. As caloric diffused from a hot 

object to a cold one, their two temperatures approached one 

another.

A particular amount of a particular kind of material requires a 

particular quantity of caloric to raise its temperatures by one 

degree. In this way, different objects have different heat capaci-

ties. The common substance water provides a convenient stan-

dard of comparison. By definition, one calorie is that quantity of 

caloric required to raise the temperature of one gram of water 

one degree Celsius (or centigrade). Therefore, the heat capacity 

of water is, by definition, one calorie per gram degree Celsius.

If caloric merely flows from one place to another, one might, 

with the help of a table of heat capacities, predict temperature 

changes in a whole class of phenomena. Pour some cold milk 

into hot coffee. Given the amounts of milk and coffee, their 

heat capacities (essentially that of water), and their initial tem-

peratures, the final temperature of the mixture follows from  

the conservation of caloric. Simple calorimetric experiments 

done in elementary physics and chemistry labs use the same 

principle.

However, the concept of caloric was far from universally 

accepted in 1800. Benjamin Thompson’s cannon boring experi-

ment of 1798 had seriously undermined, without altogether  

discrediting, the concept of a conserved caloric. Thompson 

(1753–1814), later known as Count Rumford, was an American 

original, sharp but self-aggrandizing. Born in Woburn, Massa-

chusetts, his sympathies shifted to the British during the Revolu-

tionary War, and when the tide turned in favor of the new nation 

Thompson left the rich widow he had married and resettled in 

England. Within a few years, King George III had knighted 
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Thompson, and, with the king’s blessing, he became a scientific 

and military advisor to the elector of Bavaria all the while  

continuing to spy for his British patrons.

It was in this position, while supervising the boring of can-

non in Munich, that Thompson, now Count Rumford of the 

Holy Roman Empire, reflected upon the necessity of continually 

cooling the cannon with water. To further investigate, he devised 

an experiment in which a blunt tool bore into a cylinder of brass 

while the whole was immersed in the water contained within a 

sealed wooden box. As two horses turned the bore, he notice a 

continual increase in the temperature of the water until, after 

two and a half hours, it began to boil. As Rumford noted, in a 

report to the Royal Society of London (1798), “It would be diffi-

cult to describe the surprise and astonishment expressed in the 

countenance of the bystanders, on seeing so large a quantity of 

cold water heated and actually made to boil without fire.” From 

whence came all this caloric? That caloric was released from the 

metal when shaved from the stock seemed unlikely since the 

heat capacity per mass of the metallic shavings was identical to 

that of the stock. Whatever its source, the supply of caloric 

seemed inexhaustible. According to Rumford, “It is hardly nec-

essary to add that anything which any insulated body, ... can 

continue to furnish without limitation cannot possibly be a 

material substance: and it appears to me to be extremely diffi-

cult, if not quite impossible, to form any distinct idea of any-

thing capable of being excited and communicated, in the 

manner the heat was excited and communicated in these experi-

ments, except it be MOTION.” But Rumford’s view was not com-

pelling. For his idea that heat is motion and stored in the motion 

of the smallest parts that compose a material was not easily 

quantified. Then again, the concept of caloric led to numerical 
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predictions that worked—at least in calorimetric experiments. 

Undermining a theory is one thing. Replacing it with a suffi-

ciently explanatory alternative is another.

It was not until 1847 that the young English brewer and  

amateur scientist James Prescott Joule (1818–1889) perfected a 

demonstration that demolished the concept of caloric, demoted 

calorimetry to a special case, and established the more broadly 

defined quantity energy as that which is always conserved. Since 

1839 Joule had been laboring to show that given amounts of 

work generate determinate amounts of caloric—work that was 

variously performed by generating electrical currents, by rub-

bing surfaces, and by compressing gases. In each case Joule 

found that the same quantity of work, of whatever kind, gener-

ates the same amount of caloric. In the English units of his day, 

the energy required to lift approximately 780 pounds one foot 

generated the caloric necessary to raise the temperature of one 

pound of water one degree Fahrenheit. But if caloric could be 

generated at fixed, determinate rates, then caloric was not a con-

served quantity.

Joule exhibited the apparatus depicted in figure 58 at a meet-

ing of the British Association for the Advancement of Science in 

Oxford in 1847. It consisted of a well-insulated container of 

water into which a paddle wheel, driven by a falling weight, was 

inserted. Stationary vanes attached to the container kept the 

water from persistent circulatory motion. In this way the poten-

tial energy of the weight was dissipated in the water—the effect 

of which was immediately indicated by a thermometer. Joule 

allowed the weight to drop again and again until the tempera-

ture rose a fraction of a degree—a precision with which, as a 

professional brewer, he was well acquainted—and claimed that 

the result was reproducible. Joule’s simple design and precise 
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measurements earned what Rumford’s experiment had not: the 

attention of the English scientific elite. Indeed, one of those 

attending the 1847 meeting was William Thomson, who in 1851 

adopted conservation of energy as a postulate of the new science 

of thermodynamics.

Joule continued to refine his measurement of the ratio of the 

work to the heat it produced, now called the mechanical equiva-

lent of heat. His last measurement of this ratio (in 1878) yielded 

the number 772.55, which is inscribed on his tombstone along 

with a verse from the gospel of John (9:4): “I must work the 

works of him that sent me, while it is day: the night cometh, 

when no man can work.”
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36.  Faraday’s Lines of Force (1852)

Figure 59

One of Albert Einstein’s earliest memories was of a compass  

his father had given him. Apparently, the earth, itself a large 

magnet, cast its influence across empty space and caused the 

compass needle to point north. Years later Einstein said that on 

holding the compass he “trembled and grew cold. ... There had 

to be something behind objects that lay deeply hidden.”

But is the space around a magnet really empty? Michael  

Faraday (1791–1867) was the first to gather evidence suggesting 

that what surrounds a magnet is as real as the magnet itself.  

He referred to this something as the “atmosphere” of a magnet 

or, alternatively, as its “lines of force.” Today we speak of its  

magnetic field.
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Shortly after Hans Christian Oersted discovered, in 1820, that 

a wire carrying a current deflects a magnetized needle, Faraday,  

a self-taught English chemist and physicist, began a three-

decade-long study of electromagnetic phenomena. He reported 

the results of his study in 3,299 consecutively numbered para-

graphs that occupy some 1,100 pages of text collected in three 

volumes called Experimental Researches in Electricity. His final 

contribution to this extraordinary work is an essay, “The Physi-

cal Character of the Lines of Magnetic Force” (1852), in which 

he expressed his belief in the physical reality of lines of magnetic 

force.

It is not difficult to map a bar magnet’s lines of force with a 

small compass. One has only to put the magnet in the center of 

a large sheet of paper and position the compass nearby. Place  

a dot at the compass needle’s head (or north pole), shift the  

needle’s tail (or south pole) to the position of the dot, and place 

another dot at the new position of the needle’s head. Repeat this 

process many times and smoothly connect the dots. By conven-

tion, magnetic lines of force have a direction. They begin at a 

north pole and end at a south pole. The pattern of lines drawn 

in this way and according to this convention will approximate 

the idealized pattern shown in figure 59. Knowing the direction 

of the lines of force surrounding a magnet is equivalent to know-

ing in which direction a compass needle will point when placed 

near the magnet.

According to Faraday, magnetic lines of force belong-

ing to different magnets have the following properties: (1) 

lines of force tend to shorten themselves, (2) adjacent paral-

lel lines of force pointing in the same direction repel each 

other, and (3) adjacent parallel lines of force pointing in 

the opposite direction attract each other and then recon-

nect or merge. Figure 60 illustrates the arrangement and  
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suggests the behavior of the lines of force associated with  

particular magnets and current-carrying wires. In the left panel, 

the lines of force shorten and cause north and south poles to 

attract each other. In the middle panel, adjacent parallel lines 

of force pointing in the same direction repel and cause two 

north poles to repel each other. Finally, the right panel shows 

the cross-sections of two wires, both with electrical currents 

flowing out of the plane of the paper. Adjacent parallel lines of 

force pointing in opposite directions in the region between the 

two wires attract each other, merge, shorten, and cause the two 

wires to attract.

Figure 60

Faraday knew that his lines of force explained nothing that 

could not also be explained in terms of distant objects exerting 

force across empty space. The lines of force are, as he admitted, 

“speculations” rather than deductions along a “strict line of rea-

soning.” Even so his lines of force are immensely satisfying. 

Because adjacent lines of force, or adjacent parts of the same 

lines, push or pull directly on each other, the lines eliminate the 

need for action-at-a-distance forces. Lines of force helped Fara-

day, and also help us, visualize what happens. While Faraday 
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was perhaps the most productive experimental physicist of all 

time, his mathematical knowledge did not extend beyond ele-

mentary algebra and trigonometry. Visualizations, of which the 

magnetic lines of force are a prime example, did the work of 

mathematics for Faraday.

Faraday was born to a family so poor he often went hungry  

as a child. He was raised in and remained devoted to a small,  

dissenting, that is, non-Anglican, Christian denomination. 

Although he had no schooling, he was apprenticed to a kindly 

bookbinder who encouraged Faraday in his education. The 

young Faraday attended public lectures on topics in natural phi-

losophy. These helped him, at age twenty-one in 1813, to land a 

menial job at the Royal Institution where eventually he was able 

to do his own experiments.

His invention of the electric motor (1821) and discovery of 

electromagnetic induction (1831–1832) brought him recogni-

tion, but his relations with the scientific establishment of his 

day were complicated. Although he was universally honored for 

his inventions, discoveries, popular lectures, and public service 

and he corresponded with the important scientists of his time, 

Faraday’s theories and speculations were generally dismissed. 

Faraday had no pupils and no disciples apart from James Clerk 

Maxwell (1831–1879). He refused a knighthood and the presi-

dency of the Royal Society, and he declined to advise the British 

government on creating chemical weapons for use in the 

Crimean War (1853–1856). He died in 1867 before his lines of 

force and the concept of an electromagnetic field to which they 

gave birth were widely accepted.

Maxwell vindicated Faraday’s work by translating Faraday’s 

lines of force into mathematical language and incorporating 

that mathematics into a set of equations, known as Maxwell’s 
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equations, that compose a complete theory of electromagne-

tism. According to this theory electric and magnetic lines of 

force, while produced by charges, magnets, and electrical cur-

rents, may detach from these sources and propagate with finite 

speed through empty space as electromagnetic waves, for 

instance, from Sun to Earth and from satellite to cell phone.
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37.  Maxwell’s  
Electromagnetic Waves (1865)

Figure 61

James Clerk Maxwell (1831–1875) so greatly admired Michael 

Faraday that he advised readers of his own work first to carefully 

study Faraday’s 1,100-page Experimental Researches in Electricity 

(1855). Certainly he had done so and even corresponded with its 

author, forty years his senior. Eventually, Maxwell paid Faraday 

the high compliment of constructing a mathematical model of 

the pictorial concept of which Faraday was most proud: his elec-

tric and magnetic lines of force.

Four equations, the celebrated Maxwell’s equations, encapsu-

late Maxwell’s model of Faraday’s lines of force. These equations 

show how electric and magnetic lines of force, or fields, are gen-

erated from their sources, that is, from charges and currents. In 

promoting Faraday’s lines of force, Maxwell, like Faraday before 

him, was at odds with the many physicists committed to the 
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program of action-at-a-distance forces—that is, committed to 

explaining electromagnetic phenomena in terms of charges, in 

various states of rest and motion, exerting forces on other 

charges. Maxwell pointedly ignored forces and made fields his 

priority.

But a question remained. Are the lines of force and the fields 

to which they are equivalent real, as Maxwell and Faraday 

believed, or are they mere mathematical devices whose only 

purpose is to make convenient the calculation of forces? For a 

while the question remained unanswered. But in the process of 

constructing his equations, Maxwell discovered something  

Faraday had missed. Not only do magnetic fields that change 

their intensity, direction, or position generate electric fields as 

expressed by Faraday’s law (one of the four Maxwell equations), 

but also electric fields that change their intensity, direction,  

or position generate magnetic fields, an effect Maxwell incorpo-

rated into the Ampere-Maxwell law (another of the four  

Maxwell equations).

Together these two effects make possible self-sustaining elec-

tromagnetic waves that propagate at a speed determined by a 

combination of constants inherent in electromagnetic phenom-

ena. Maxwell noticed that their predicted speed is close to  

measured values of the speed of light (3 00 108. ⋅  meters/second). 

Furthermore, electromagnetic waves carry energy and momen-

tum just as light waves do. Maxwell reasonably concluded  

that light is composed of electromagnetic waves. In this way, 

Maxwell established, in 1865, a new explanation of light and 

endowed electromagnetic fields with physical reality. Then in 

1886–1887 Heinrich Hertz (1857–1894) experimentally discov-

ered that electromagnetic waves behave in the same way as light 

does and, in this way, confirmed Maxwell’s conclusion.
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Figure 61 illustrates an electromagnetic wave, composed of 

electric and magnetic fields, each sustaining the other, and prop-

agating in the direction shown by the thick black arrow. The 

whole structure looks three-dimensional, which is illusory since 

only one dimension of space is shown. At every point along this 

single spatial dimension, the electric and magnetic fields com-

posing the wave have amplitudes, indicated by the length of 

their arrows, and a direction, indicated by the thick arrow’s 

direction. The particular waveform shown also has a definite 

wavelength. In general, more complex waveforms are sums of a 

number of waves each with its own amplitude, direction, and 

wavelength.

However revolutionary his discovery, Maxwell adopted the 

common sense of his time in supposing that electromagnetic 

waves require a material medium through which to propagate. 

After all, the waves known to Maxwell (sound waves, water 

waves, and waves in and on musical instruments) were waves 

that propagate in material media. Therefore it was natural for 

Maxwell and others to assume that electromagnetic waves also 

have a material medium—then called the lumeniferous ether. 

Even so, this ethereal medium avoided and continues to avoid 

detection. Furthermore, its properties are incoherent. The ether 

must be very tenuous because the planets move through it with-

out noticeable resistance. Yet the ether must also be rigidly elas-

tic, like steel, otherwise the speed of light would not be so high. 

Rather than continue to believe in a material like no other whose 

only purpose is to be a medium for electromagnetic waves, phys-

icists, toward the end of the ninteenth century, simply aban-

doned the ether.

Maxwell, like many from nineteenth-century, middle-class 

English families, received his early education at home under the 
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guidance of parents and private tutors. As a child, Maxwell was 

fascinated by all things that moved, made a noise, or in some 

way “worked” and that prompted the question “What’s the go o’ 

it?” or the urgent request “Show me how it doos.” He learned to 

draw from his cousin, Jemima Blackburn, who later became a 

well-known watercolorist and book illustrator.

Maxwell wrote scientific and mathematical papers before he 

was old enough to read them before the learned societies that 

published them, as was then the custom. As a young scholar he 

won the Adams Prize (in 1857) for an extended analysis of the 

stability of Saturn’s rings. Besides his contributions to electro-

magnetic theory, Maxwell developed a mathematical descrip-

tion of the range of particle velocities in a gas in equilibrium at 

a given temperature—the so-called Maxwell distribution—and 

made lasting contributions to color vision, thermodynamics, 

and statistical mechanics.

Maxwell died of abdominal cancer at the age of forty-eight. 

Maxwell’s admiring friends and colleagues mourned his early 

death. One of them, Professor Lewis Campbell, a friend from 

childhood, wrote a biography (1882) that emphasized Maxwell’s 

Christian faith. Maxwell, Campbell said, had taken to heart his 

mother’s request that he “look up through Nature to Nature’s 

God.”
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38.  Photoelectric Effect (1905)

Figure 62

Figure 62 depicts the photoelectric effect. Light (upper left) 

strikes a surface (bottom), breaks loose some of its electrons, and 

ejects them (upper right) from the surface. Soon after its discov-

ery in 1887, scientists began exploring the curious properties  

of the photoelectric effect. Chief among them is that only  

sufficiently high frequency light can eject electrons—so-called 

photoelectrons—from the surface. How high a frequency is 

required depends on the composition of the surface. Most met-

als, for instance, require frequencies at least as high as that of 

ultraviolet light. If the frequency is too low, for instance, if its 

color is too red, no photoelectrons are produced no matter how 

intense the light. Then, in 1902, Philipp Lenard (1882–1947) dis-

covered that when photoelectrons are produced their kinetic 

energy increases with the frequency of light that produced them 

and is independent of its intensity.
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This behavior is impossible to explain in terms of the wave 

theory of light. All simple waves are characterized by a frequency, 

which determines how quickly wave crests arrive at a particular 

point, and by an amplitude, whose square is directly propor-

tional to the wave intensity. Ocean waves, for instance, have 

these properties.

Indeed, Arthur Holly Compton (1892–1962) once made clear 

the absurdity of low-amplitude light waves ejecting electrons 

from a metal with the following simile: “There was once a sailor 

on a vessel in New York harbor who dived overboard and 

splashed into the water. The resulting wave, after finding its 

intricate way out of the harbor, at last found its way across the 

ocean, and a part of it entered the harbor at Liverpool. In this 

harbor there happened to be a second sailor swimming beside 

his ship. When the wave reached him, he was surprised to find 

himself knocked by the wave up to the deck.” Here Compton 

actually makes two comparisons. The first two sentences refer to 

the creation of electromagnetic radiation by electrons striking a 

metallic surface (see essay 41) while the last two sentences refer 

to a single electron absorbing, photon-like, low-amplitude elec-

tromagnetic radiation.

In 1905 Albert Einstein, then a twenty-six-year-old Swiss  

patent inspector, devised a simple explanation of the photoelec-

tric effect. According to Einstein, light has both a wave-like  

and a particle-like character. Light must be wave-like because 

Maxwell’s wave theory of light had been tremendously success-

ful. Yet, Einstein argued, in producing photoelectrons, the 

energy of light behaves as if it is concentrated in bundles or 

quanta (later called photons). The energy of a photon hv is pro-

portional to the frequency v  of the wave with which it is associ-

ated. The proportionality constant h is called Planck’s constant 
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after the physicist Max Planck (1858–1947) who first measured 

its value. Greater light intensity simply means greater numbers 

of photons.

Since a photon is localized, one photon interacts with only 

one electron. Part of the photon energy W  goes into overcoming 

the forces that hold the electron in the surface while the other 

part Ek produces the kinetic energy of the electron. Symbolically, 

hv W Ek= + . Thus, if the energy of the photon hv  is not larger 

than the energy required W  to dislodge an electron, that is, if 

hv W< , no photoelectrons are created. The data available to 

Einstein supported his light quantum or photon interpretation 

of the photoelectric effect.

In 1900 Planck derived an accurate description of equilibrium 

or blackbody radiation, that is, a description of the electromag-

netic waves contained within a cavity whose walls absorb and 

emit those waves. In doing so, he supposed that the material 

composing the cavity walls absorbs and emits electromagnetic 

wave energy only in quantized chunks of energy hv. Einstein’s 

explanation of the photoelectric effect shifted attention away 

from the way blackbody radiation interacts with the material 

composing the cavity walls to the radiation itself.

The title of Einstein’s 1905 paper on the photoelectric effect, 

“On a Heuristic Point of View about the Creation and Conver-

sion of Light,” signals Einstein’s cautious approach. Photons are 

a mere heuristic, that is, a useful but ultimately provisional, 

approach to the photoelectric effect. Einstein came to under-

stand that photons and other quantum phenomena presume a 

probabilistic dynamics. (The creation of a photoelectron is not 

completely predictable.) But Einstein never accepted as final the 

probabilistic interpretation of physics that the quantum revolu-

tion demanded.
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Planck was not pleased with photons for a different reason. 

He asserted that if photons were accepted, “the theory of light 

would be thrown back by centuries”—presumably back to the 

seventeenth century when the adherents of light particles (fol-

lowing Newton) and of light waves (following Huygens) debated 

the issue. Thus, Planck understandably resisted the wave-particle 

duality of light. But wave-particle duality was here to stay. Some-

times it is asserted that the current theory of light, called quan-

tum electrodynamics, as developed after World War II, decides the 

question in favor of particles. If so, these are very strange parti-

cles that carry along with them information usually ascribed  

to waves.

Robert Millikan (1868–1953) performed experiments in 

1915–1916 that confirmed Einstein’s explanation of the photo-

electric effect. Einstein received the 1921 Nobel Prize in Physics 

(in 1922) “especially for his discovery of the law of the photo-

electric effect,” and Millikan received the 1923 Nobel Prize in 

Physics, in part, for his work in confirming that law. Einstein, 

however, was never satisfied with the photon concept. In 1951 

he wrote, “All these 50 years of pondering have not brought me 

any closer to answering the question, ‘What are light quanta?’”
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39.  Brownian Motion (1905)

Figure 63

Jean Perrin’s (1870–1942) experimental work ended the long 

debate over whether matter was continuously divisible or not, 

that is, whether or not atoms exist. Perrin received the 1926 

Nobel Prize in Physics for deciding the question in favor of 

atoms. Among his crucial experiments are those that confirmed 

Albert Einstein’s theory of Brownian motion—a theory that 

makes use of atoms and molecules.

Brownian motion—that irregular, back-and-forth, wandering 

motion of microscopic particles immersed in a liquid—was first 

observed in 1827 in grains of pollen in water. After showing that 

neither currents in the water nor the water’s evaporation caused 
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the irregular motion of the pollen grains, the Scottish botanist 

Robert Brown (1773–1858) supposed that, in this motion, he 

had discovered the source of vitality common to all forms of  

life. But upon observing the same irregular motion in particles of 

fossilized wood, volcanic ash, ground glass, granite, and even a 

fragment of the Sphinx, Brown gave up this idea.

Investigators following Brown had, by the early twentieth 

century, identified the cause of Brownian motion in the impacts 

delivered to the microscopic particles, Brownian particles, by the 

molecules composing the surrounding fluid. All that was needed 

was a quantitative theory of the phenomenon whose predic-

tions could be tested. Einstein provided that theory in 1905. 

According to Einstein, a group of Brownian particles, all starting 

from the same point, disperses indifferently in all directions. 

Also a Brownian particle’s mean squared distance d2 from its 

starting point increases as the first power of the time t  rather 

than, as one might expect of uniformly moving particles, as the 

second power t2. Brownian particles randomly diffuse rather 

than deterministically drift.

In confirming Einstein’s theory, Perrin constructed a number 

of diagrams, like figure 63, in which he marked the position of a 

Brownian particle (often a particle of plant resin) at equal inter-

vals (typically every thirty seconds) and connected successive 

positions with a straight line. The lengths and numbers of these 

displacements confirmed the statistical predictions of Einstein’s 

theory. The microscopes, with which Brownian particles are 

seen, in effect make visible the ordinarily invisible world of 

atoms and molecules.

However, a common mistake is to associate a single line 

segment (see figure 63) with a single molecular impact. Perrin 

knew that, if instead of every 30 seconds, he had marked the  
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position of the particle a thousand times more frequently, that 

is, every 0.03 seconds, he would have created a diagram, except 

for its size, much like this one. Every tiny displacement of a 

Brownian particle hides within itself a pattern of random dis-

placements that mimics the larger pattern. The displacements of 

a Brownian particle are said to be scale invariant.

Also in 1905 Einstein created the theory of special relativity 

and originated the concept of a quantum of light or photon. 

Einstein continued, during the next twenty years of his life,  

to contribute to the quantum revolution in physics. But eventu-

ally he turned his back on quantum theory. In particular,  

Einstein rejected the probabilistic interpretation of quantum 

phenomena—an interpretation that rapidly gained ground after 

Max Born (1882–1970) introduced it in 1926. Yet Einstein began 

his career by embracing a statistical, that is, a probabilistic, 

description of Brownian motion. Why then did he reject a prob-

abilistic description of quantum phenomena?

Einstein was comfortable using probability to describe the 

incompleteness of our knowledge of the natural world. We are 

ignorant, but neither necessarily nor completely so. According 

to Einstein, probabilities, properly used, quantify the degree of 

knowledge and ignorance that follows from our finitude. On the 

other hand, Max Born’s probabilistic interpretation of quantum 

mechanics radically limits what we can, in principle, know. Ein-

stein rejected Born’s use of probability. Rather, such limitation, 

Einstein believed, simply means that our theories are incom-

plete. Einstein stubbornly maintained that the fundamental 

laws of nature (now unknown to us) must be deterministic (not 

probabilistic or random) and that complete knowledge of an iso-

lated part of the physical world is possible.
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In spite of their deep disagreement, Born and Einstein 

remained lifelong friends. “I at any rate am convinced that He 

[God] is not playing at dice,” Einstein famously wrote to Born in 

1926. Many years later Born said of Einstein: “He has seen more 

clearly than anyone before him the statistical background of the 

laws of physics, and he was a pioneer in the struggle for conquer-

ing the wilderness of quantum phenomena. Yet later, when out 

of his own work a synthesis of statistical and quantum principles 

emerged which seemed to be acceptable to almost all physicists, 

he kept himself aloof and skeptical. Many of us regard this as a 

tragedy—for him, as he gropes his way in loneliness, and for us 

who miss our leader and our standard bearer.” Born went on to 

say that their disagreement was “based on different experiences 

in our work and life. But, in spite of this, he remains my beloved 

master.”
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40.  Rutherford’s Gold  
Foil Experiment (1910)

Figure 64

The concept of an atom as a tiny, indivisible building block of 

the material world is at least as old as the fifth century BCE. 

Imagine dividing a chunk of matter into smaller and smaller 

pieces until eventually producing an object that could no longer 

be divided. This is appropriately an atom, since the very word 

means uncuttable. Lucretius, a first-century BCE Roman poet, 

took comfort in the idea that human affairs were mere surface 

phenomena. Ultimately, all was “atoms and the void.”

Atoms also comforted philosophers because the existence  

of atoms solved, in part, a philosophical problem. One observes 

that all things seem to change. But since change is a relative 

concept, we are moved to ask: “Change with respect to  

what?” “How can we evaluate change except relative to some 
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unchanging standard that does not itself change?” “How does 

one account for both change and permanence?” Atoms provide 

one answer. Atoms are permanent. It is their spatial relationship 

to one another that changes.

Isaac Newton endowed Lucretius’s invisible atoms with the 

properties of quite visible objects: mass, weight, and the ability 

to deliver an impact. Daniel Bernoulli (1700–1782) used these 

Newtonian concepts to explain how and to what extent a gas 

composed of atoms can exert a pressure on its container walls. 

But these were speculations, even if essentially correct ones.

The first to call attention to empirical evidence for the  

existence of atoms was the English chemist John Dalton (1766–

1844). Dalton’s evidence consisted of the regular proportions of 

the mass of homogeneous and unanalyzable substances or chem-

icals that combine with one another. While Dalton’s work rein-

forced the traditional picture of the atom as a solid, indivisible 

object, he also brought something new to the idea: each element 

has its own kind of atom, and atoms of the same kind are identi-

cal. Dalton’s atom remained plausible throughout much of the 

nineteenth century even as the number of known elements 

more than doubled from his day to that of the youth of Ernest 

Rutherford (1871–1937). Rutherford’s comment “I was brought 

up to look at the atom as a nice hard fellow, red or grey in colour 

according to taste” must have expressed what many of his  

generation believed.

But atoms are not so simple. Most importantly, atoms are  

not even atoms in the sense of being indivisible. For late in the 

nineteenth century, certain kinds of atoms were found to be 

radioactive, that is, to spontaneously emit massive particles or 

electromagnetic energy or both. Evidently, atoms have parts and 

some atoms emit their parts: alpha, beta, and gamma rays as they 
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were then called. We now know that alpha rays are the nuclei of 

helium atoms, two protons and two neutrons stuck together; 

that beta rays are electrons; and that gamma rays are quite short-

wavelength, and thus quite high-energy, electromagnetic radia-

tion. Radioactive atoms must in some way contain these various 

“rays.”

Joseph John Thomson (1856–1940), who had earlier discov-

ered that beta rays are electrons, in 1904 quite plausibly sug-

gested that all atoms contain a number of electrons. In order to 

provide for the charge neutrality of most atoms, Thomson imag-

ined that these atomic electrons reside within a sphere of posi-

tively charged, atomic fluid that leaves the entire atom 

electrically neutral. This model of atomic structure became 

known as the “plum pudding” or “currant bun” model after edi-

ble concoctions of the day. Presumably, the plums or the cur-

rants are electrons, while the pudding or the bun dough is the 

positive fluid that surrounds and neutralizes these electrons.

Thomson’s model did not last long. In 1910 Ernest Ruther-

ford, his associate Hans Geiger (1882–1945), and Geiger’s stu-

dent Ernest Marsden bombarded a thin gold foil with the alpha 

particles (helium nuclei) emitted from a sample of naturally 

radioactive radium. One day Geiger reported to Rutherford that 

the gold foil deflected alpha particles back toward their source.

Since an alpha particle is eight thousand times more massive 

than an electron, an electron residing within an atom could no 

more deflect an alpha particle from its straight-line path than a 

fly could deflect a rolling bowling ball. Neither could the whole 

mass of an atom deflect an alpha particle if, as was supposed, 

that mass was distributed uniformly throughout the atom’s vol-

ume. Only if most of the gold atom’s mass was concentrated 

within an essentially point-like core or nucleus would a few alpha 
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particles, each directed squarely at a nucleus, bounce back 

toward their source. Rutherford understood all this and knew 

what Geiger and Marsden’s result implied. Some years later he 

remarked, “It was quite the most incredible event that has ever 

happened to me in my life. It was almost as incredible as if you 

fired a 15-inch shell at a piece of tissue paper and it came back 

and hit you.”

Figure 64 illustrates the essential physics of Rutherford,  

Geiger, and Marsden’s experiment. Several alpha particles 

approach the gold foil from the left. The foil is represented by an 

array of gold nuclei shown here as dots. In fact, Rutherford’s 

gold foils were about four thousand atoms across. Most alpha 

particles pass through the foil without deflection, but a few 

bounce directly back.

The orbit of an alpha particle scattering from a gold nucleus 

is structurally identical to the orbit of a comet approaching, 

passing around, and then receding from the sun as illustrated  

in figure 65. (The alpha particle and nucleus are on the left  

and the comet and Sun are on the right in the diagram.) Such 

trajectories have been understood since the time of Newton. 

Rutherford had only to adapt Newton’s general mathematical 

description to his particular experiment to quantify the observed 

scattering.

Figure 65
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Rutherford’s gold foil experiment showed that an atom is 

composed of a small nucleus and attendant electrons that orbit 

throughout a much larger volume around that nucleus. A typical 

nuclear radius is to the radius of its atom as the radius of a beach 

ball is to the radius of the earth. Apparently, Lucretius’s void is 

inside as well as outside the atoms that make up our world.
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41.  X-rays and Crystals (1912)

Figure 66

On November 8, 1895, while experimenting with a beam of elec-

trons created within an evacuated glass tube, Wilhelm Conrad 

Röntgen (1845–1923) accidentally discovered certain “rays” that 

propagated beyond the end of his tube. These rays seemed to 

travel in straight lines, made florescent materials glow, and 

exposed photographic plates. Because the rays traveled through 

flesh but not through bone, Röntgen used them to photograph 

the bones in his wife’s hand. He called them X-rays.

Röntgen’s X-rays were immediately hailed as a new method 

of photography. The New York Times covered Röntgen’s discov-

ery early in 1896. That year more than one thousand profes-

sional and popular articles and fifty books and pamphlets were 

published on X-rays. Röntgen, however, was not pleased with 

the publicity and complained, “I could not recognize my own 
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work in the reports.” But he had started something new. That 

spring the young Ernest Rutherford wrote to his fiancée that 

“every Professor in Europe is now on the warpath” trying to 

understand X-rays.

That understanding came slowly, but by 1912 evidence was 

accumulating that X-rays were very high frequency, short-wave-

length electromagnetic waves. The left half of figure 66 depicts 

this understanding. Electrons are accelerated to high speeds  

and collide with the end of an evacuated glass tube. In the colli-

sion short-wavelength, electromagnetic waves—the X-rays—are  

created that carry forward the energy and momentum of the 

electrons. Yet not everyone was convinced. Some continued to 

believe that X-rays were particles.

Max von Laue (1879–1960), a near contemporary and friend 

of Albert Einstein, proposed an experiment (shown in the right 

half of the diagram) whose result secured the case for waves. 

Early in 1912, while listening to a student explain his research 

on the interaction of long-wavelength electromagnetic waves 

with the atoms or molecules that compose a crystal, von Laue 

asked himself, “Why not shine X-rays on a crystal?”

Since the spacing between the atoms or molecules in a  

typical crystal (10-8 cm) is only a little larger than the estimated 

wavelength of X-rays (10-9 cm), X-ray waves should, after pass-

ing through the crystal, produce an interference pattern, that 

is, a pattern of constructively and destructively superposing 

waves. This interference pattern should be similar to that pro-

duced by visible light passing through a regular series of paral-

lel slit-shaped openings called a diffraction grating. In both cases, 

the interference pattern produced depends upon a wave prop-

erty called diffraction, that is, a departure from straight-line 

propagation.
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Although X-ray interference is, in its geometry, a smaller-scale 

version of visible light interference, physically the two cases are 

quite different. X-rays pass through a crystal by vibrating the 

charged particles in the atoms (or molecules) composing the 

crystal. These atoms, in turn, radiate new waves that pass on  

the interaction from atom to atom until the very last atoms on 

the far side of the crystal radiate like a string of regularly spaced 

radio beacons. Visible light, on the other hand, passes freely 

though the slits of a diffraction grating and is absorbed or 

reflected by the material surrounding the slits.

Von Laue convinced two colleagues, Walter Friedrich and 

Paul Knipping, to test his idea. Their initial experiment, with 

materials and equipment on hand, captured on film the X-ray 

interference pattern shown in figure 67. It consists of several 

dark splotches, each indicating the constructive interference of 

diffracted X-rays, surrounding a single, larger dark patch, indi-

cating the remains of the original ray. This image attracted favor-

able attention and secured funding for more refined experiments 

that fully confirmed von Laue’s detailed analysis. Von Laue, 

Friedrich, and Knipping published their first results in June 

1912.

Figure 67
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Von Laue’s idea was brilliant and its confirmation complete. 

In place of pursing a single idea for many years, he had “sud-

denly ... perceived the way which subsequently proved to be the 

shortest path to success.” The Nobel committee awarded Von 

Laue its 1914 Prize in Physics for “his discovery of the diffraction 

of X-rays by crystals.” Von Laue’s rise, from privatdozent (junior 

faculty with no regular salary) to Nobel laureate, took less than 

three years.

Von Laue survived long enough to be tested by the fires of 

Nazism and World War II. He spoke out publicly against the per-

secution of the Jews and the promotion of a “German science” 

that, for instance, rejected relativity because Einstein was Jewish. 

He remained in Germany during the war, an outspoken critic of 

the Nazis, secretly helping his Jewish colleagues emigrate and 

then escape. After the war von Laue helped rebuild Germany’s 

institutions of science. Then, in 1960, a motorcycle struck and 

overturned the car he was driving to work. In the few days left to 

him, von Laue composed his own epitaph: “He died trusting in 

God’s mercy.”
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42.  Bohr’s Hydrogen Atom (1913)

Figure 68

The Danish public knew Niels Bohr (1885–1962) as a soccer 

player before it knew him as a physicist. Crucial to the evolution 

of Bohr’s persona from sports hero to Nobel laureate was the 

postdoctoral year (1911–1912) he spent in England studying 

atomic physics, first with John Joseph Thomson at the Univer-

sity of Cambridge and then with Ernest Rutherford at the Uni-

versity of Manchester. Recall that the earlier work of Max Planck 

(1900) and Albert Einstein (1905) had suggested that the con-

cepts of classical physics were not sufficient for understanding 

the atom.
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Bohr set for himself the task of understanding the simplest 

of all atoms, the hydrogen atom. Initially he was uncertain 

about how to proceed. Rutherford’s gold foil experiment had 

implied that most of the mass of an atom resides in a tiny, posi-

tive core or nucleus. And because electrical and gravitational 

forces were similarly structured, it was natural for Bohr and 

others to suppose that the electron in a hydrogen atom moves 

round its nuclear proton in a circular or elliptical orbit just as a 

planet moves around the sun. The problem with this planetary 

picture of the atom is simple and dramatic. According to classi-

cal concepts, an electron that orbits a nucleus will radiate for 

the same reason that an electron moving back and forth along 

a radio antenna will radiate. Both are accelerating and, there-

fore, both radiate energy. Consequently, an atomic electron will 

lose energy and spiral into the nucleus. The atom will quickly 

collapse.

Yet stable atoms do exist. And by 1912 scientists knew that 

the diameter of a hydrogen atom was about 10-8 centimeters. 

Furthermore, the frequencies and wavelengths of the light that 

could be absorbed and emitted by atoms of different elements 

were known quite precisely and quantified in certain tantalizing, 

simple, yet unexplained formulas. Any successful model of the 

structure of the hydrogen atom would have to be consistent 

with these well-established facts.

Bohr’s working principle was to make the least modification 

needed to the classical physics of the hydrogen atom in order to 

account for its stability and its interaction with light waves. He 

implemented this principle by simply asserting that the hydro-

gen atom observes classical physics except that it does not radi-

ate when its electron occupies one of a discrete set of special 
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orbits. He called these special orbits stationary states. Bohr’s asser-

tion, though quite unjustified, worked brilliantly.

Of course, in order to quantify his model, Bohr had to specify 

what makes an orbit a stationary state. He did this by requiring 

that in a stationary-state circular orbit the electron’s angular 

momentum—that is, the product of its radius, its mass, and its 

speed—is a multiple of the fundamental constant discovered by 

Planck during his study of blackbody radiation and now called 

Planck’s constant.

In order to illustrate the consequences of these assumptions, 

we number the allowed stationary-state circular orbits with an 

index n = 1 2 3, , … , as illustrated in figure 68, so that, for exam-

ple, E1 and r1 stand for the energy and radius of the first, most 

stable, ground, stationary-state orbit. In general the electron’s 

energy En and its distance from the nucleus rn in a stationary 

state increase with increasing index n. Only the three innermost, 

circular orbits of a hydrogen atom’s electron are shown in the 

diagram, but possible orbits extend out in ever larger, unevenly 

spaced, concentric circles.

According to Bohr, the hydrogen atom can absorb energy 

from light only by boosting its electron from a less energetic, 

lower, stationary state orbit into a more energetic, higher one—

as shown in figure 69—and likewise can emit light energy only 

when an electron drops from a more energetic, higher, station-

ary state orbit into a less energetic, lower one. This hypothesis 

allowed Bohr to calculate the frequency of the light absorbed 

or emitted when the electron transitioned from one orbit to 

another—frequencies that exactly reproduced those observed.
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Bohr’s model was quickly recognized as important. Ruther-

ford’s assessment was typical: “While it is too early to say 

whether the theories of Bohr are valid, his contributions ... are of 

great importance and interest.” But Bohr and his contemporaries 

had less success in applying the model assumptions to multi-

electron atoms. This failure should have been expected. For 

Bohr’s method depended upon using as much of classical phys-

ics as possible in describing an electron orbit. However, helium, 

the next simplest atom after hydrogen, is composed of three par-

ticles: one nucleus and two electrons. And unlike the classical 

two-body problem, the classical three-body problem cannot be 

Figure 69
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exactly solved. The quantum revolution of the 1920s dismantled 

the very notion of an orbit of an atomic electron. Still, in 1913, 

the simplicity and success of Bohr’s model of the hydrogen atom 

forced physicists to take a close look at his model and ask them-

selves, “Why does it work so well?”
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43.  General Relativity (1915)

Figure 70

Each side in the Great War of 1914–1918 tried to bleed the other 

to death. Because newly developed machine guns and heavy 

artillery made traditional offensive tactics obsolete, furious  

battles achieved little or nothing of military value—only mas-

sive death. The Battle of Verdun, for instance, lasted nine 

months, created a million casualties, and left two depleted 

armies occupying much the same ground as before. By the time 

Germany sued for peace in the fall of 1918, a whole generation 

of “doomed youth,” in Wilfred Owen’s haunting words, had 

died “as cattle.”

The memory of the Great War, its chauvinism, its horror, and 

its futility, was still fresh on November 6, 1919—one year after 

the armistice—as the Royal Society and Royal Astronomical Soci-

ety convened in London to announce observations that con-

firmed Einstein’s theory of general relativity. That English 

scientists had made the considerable effort necessary to test an 

esoteric theory of a German-speaking Swiss scientist was wel-

come news to a public weary of war.

The English scientists tested Einstein’s theory by placing 

themselves within the shadow cast by the moon as it passed in 

front of the sun during the total eclipse of May 29, 1919. On that 
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date the oval-shaped shadow of total eclipse, some hundred 

miles across, traveled from the east coast of Brazil to the west 

coast of Africa. One team of observers led by the Royal Astrono-

mer Andrew Crommelin was stationed at Sobral, Brazil, and the 

other led by the Cambridge physicist Arthur Eddington (1882–

1944) was stationed on Principe Island off the west coast of 

Africa near present-day Gabon. Each team measured the angular 

separation of two stars as one of them passed near the edge of 

the obscured sun’s disc. When this separation was compared 

with earlier measurements of the same separation, the position 

of the star grazing the sun’s disc during total eclipse had shifted 

as if the sun had attracted its light—illustrated in figure 70 in 

exaggerated form.

That the sun can attract starlight was implicit in Newton’s 

theory of gravitation and his proposal that light is composed of 

tiny, massive particles traveling at high speed. Accordingly, New-

ton could have calculated the angle δ  through which starlight is 

deflected in the circumstance illustrated in figure 70, but he did 

not. The first to do so, according to Newtonian principles, was 

Johann Georg von Soldner (1776–1833) who in 1801 predicted a 

deflection of 0.87 seconds of arc—somewhat less than 1/360th 

of a single degree of arc. (Note: One degree of arc is 1/360 of a 

complete circle.)

Einstein, like Newton, believed that light is composed of tiny, 

massive particles. A theory based simply on tiny, massive parti-

cles of light (however differently conceived by Newton and Ein-

stein) and Newton’s theory of gravitational attraction leads to 

Soldner’s deflection of 0.87 seconds. However, something more 

is at work in the general relativistic description of space, time, 

and gravitation that Einstein proposed in 1915. That additional 

something is the idea that massive bodies curve space and time 
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in their vicinity. When this curvature is accounted for, Einstein’s 

theory predicts a deflection of 1.74 seconds of arc—exactly twice 

that of Soldner’s prediction.

Crommelin and Eddington confirmed Einstein’s general rela-

tivistic prediction, not Soldner’s Newtonian one. Shortly after 

the public announcement of their results, the Times of London 

boldly declared that Einstein had “overthrown” Newtonian 

physics and the New York Times declared that he had “knocked 

out” Euclidean geometry. The cover of the popular Berliner Illus-

trirte Zeitung displayed a full-page photograph of a thoughtful 

Einstein. John Joseph Thomson (1856–1940), the discoverer of 

the electron, pronounced that “his [Einstein’s] was one of the 

greatest achievements of human thought.” Such coverage turned 

Einstein, who was already well known among physicists, into an 

icon of science.

That some of the consequences of the special and general 

theories of relativity are counterintuitive has contributed to  

Einstein’s long-lasting fame. Recall that general relativity sprang 

from special relativity—the latter a theory of moving clocks that 

run slow and moving meter sticks that shrink. Special relativity 

was and is a spectacular success. The daily, predictable operation 

of thousands of particle accelerators around the world attests to 

its correctness. Its generalization, the general theory of relativity, 

has been confirmed in more limited circumstances. Besides the 

deflection of starlight, general relativity explains, in part, the 

slow advance of Mercury’s closest approach to the sun and also 

the red shift of light emerging from massive bodies and the 

properties of black holes.

Yet Einstein did not set out to predict unusual phenomena. 

His motivation, according to the eminent physicist Subrah

manyan Chandrasekhar (1910–1995), was more aesthetic than 
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empirical. His desire was for simplicity, system, and symmetry in 

physical theory rather than for successfully accounting for spe-

cific phenomena. Of course Einstein looked for and found appli-

cations of his theories, but in 1915 general relativity satisfied no 

outstanding empirical need.

Interestingly, what counts as a good theory has changed over 

time. Today general relativity has an odd reputation among 

physicists. While its successes cannot be denied, many are 

uncomfortable with the absence of a quantum theory of gravity, 

that is, uncomfortable with the absence of a quantum version of 

general relativity. This absence is felt more as a lack of confor-

mity to current standards than as any failure of general relativi-

ty’s predictions. This is because the language of quantum 

mechanics has become the language of physics. And gravity 

alone among fundamental forces has resisted expression in that 

language.
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44.  Compton Scattering (1923)

Figure 71

Einstein invented the concept of light quanta in 1905 in order to 

account for the photoelectric effect—that is, for the capacity of 

ultraviolet light to eject electrons from metallic surfaces. Accord-

ing to his hypothesis, the energy in light is concentrated in bun-

dles or quanta that are, on occasion, entirely and instantaneously 

transferred to a single electron. The energy E hv( )=  in each quan-

tum of light is determined by the frequency v  of the light wave 

with which it is associated where the proportionality constant h 

is Planck’s constant.

Einstein’s explanation of the photoelectric effect was not 

experimentally confirmed until ten years after its proposal. Even 

then most physicists continued to resist the implication of  

Einstein’s explanation that light consists of quanta or photons as 

they would later be called. After all, the diffraction and interfer-

ence of visible light only makes sense if light is composed of 

waves. Infrared, ultraviolet, and X-ray radiation are also waves—

straightforward extensions of the visible spectrum. Furthermore, 

the wave theory of light is firmly grounded in Maxwell’s theory 
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of electromagnetism—a theory so successful it could not be 

questioned. The few experiments that light waves did not 

explain concerned the interaction of light with atoms and mol-

ecules—an interaction that, because it was not fully understood, 

could be ignored by quantum skeptics.

Max Planck probably spoke for many when, in 1913, he 

signed a letter nominating Einstein for membership in the  

Prussian Academy of Sciences: “In sum, one can say that there is 

hardly one among the great problems in which modern physics 

is so rich to which Einstein has not made a remarkable contribu-

tion. That he may have sometimes missed the target in his spec-

ulations, as, for example, in his hypothesis of light quanta, 

cannot really be held too much against him, for it is not possible 

to introduce new ideas even in the most exact sciences without 

sometimes taking a risk.” Einstein himself considered light 

quanta to be a mere provisional device that in time would be 

replaced with a more foundational theory.

In the meantime, Einstein used the concept of light quanta 

cautiously. He spoke, for instance, of the ejection of photoelec-

trons as akin to drawing beer from a barrel. That beer is always 

drawn from barrels in pint containers does not mean the beer 

inside the barrel is partitioned into pints. In similar fashion, 

that light, in some circumstances, seems to give up its energy in 

standardized chunks does not mean that light is composed of 

quanta.

It fell to Arthur Holly Compton to endow light quanta  

with a reality that few could question. Figure 71 illustrates 

Compton’s experiment. Light (left panel) is directed at a free 

electron (represented by the circle on the left). Light (right  

panel) scatters from the electron and the electron recoils. The 

dotted line shows a continuation of the electron’s original  
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trajectory. According to Compton, the angle through which the 

light scatters and its shift to lower frequency and longer wave-

length is related to the direction of the recoiling electron and its 

kinetic energy exactly as if the energy and momentum of the 

light were concentrated in a single quantum. The light quanta 

and an electron collide, say, as one billiard ball with another.

In fact, Compton scattered X-rays, instead of visible light, 

from the weakly bound electrons in the carbon atoms of a sam-

ple of graphite, instead of from perfectly free electrons. Recall 

that William Röntgen had discovered X-rays in 1895 and that 

Max Von Laue had demonstrated in 1912 that X-rays are rela-

tively high frequency (compared to visible light) electromag-

netic waves. Now Compton had shown that X-rays, and by 

extension all parts of the electromagnetic spectrum, also behave 

as particles of electromagnetic radiation.

Interestingly the 1923 paper in which Compton announced 

his result did not mention Einstein’s 1905 paper on the photo-

electric effect. Yet Compton’s experiment is routinely character-

ized, as we do here, as confirming Einstein’s light quanta 

hypothesis. Compton’s biographer, Roger Steuwer, claims that 

Compton, given the way he typically mischaracterized Einstein’s 

work, “quite likely never even read Einstein’s 1905 paper.” Steu-

wer continues, “One of the most striking aspects of Compton’s 

research program, when viewed in its entirety, is its relative 

autonomy”—that is, “his theoretical insights were derived from, 

and anchored in, his own precise experiments.”

The Compton effect created a sensation. Before Compton’s 

experiment and its interpretation, one could confine the sup-

posed particle-like qualities of light to its ill-understood interac-

tion with matter. After Compton’s experiment, physicists had no 

choice but to embrace light quanta.
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But the Compton effect created a new difficulty. Two incom-

patible theories of light, a particle theory and a wave theory,  

had been found indispensable, each in different circumstances. 

High-frequency light interacts with electrons just as if the light 

were composed of particle-like photons. Yet beams of low-fre-

quency light also create interference patterns just as waves do. 

Light can be treated either as a bundle of energy E hv=( ) or as a 

wave with frequency v E h( / )= . Eventually physicists became 

accustomed to this wave-particle duality, and the idea remains 

useful to this day. But a more coherent theory has now been 

fashioned. Shortly after World War II, the wave and particle the-

ories of light were integrated into a single, mathematical theory 

called quantum electrodynamics.
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45.  Matter Waves (1924)

Figure 72

Louis de Broglie (1892–1987) (pronounced Louie de Broy) was 

born into an illustrious family that had since the seventeenth 

century produced prominent soldiers, politicians, and diplomats 

for France. Louis’s father was the fifth duc de Broglie. Louis 

would eventually become the seventh. Educated as a child by 

private tutors, he completed high school and matriculated at the 

University of Paris, first studying history, then law, and finally 

physics—especially theoretical physics. Although World War I 

interrupted his studies, his older brother, a prominent experi-

mental physicist, arranged for Louis to be posted, for much of 

the war, to the safety of a telegraph station at the foot of the 

Eiffel Tower. Demobilized in 1919 Louis returned to the univer-

sity to finish his doctoral dissertation.

A confidence born of his family’s privilege and means and his 

obvious talent for physics enabled Louis to develop ideas outside 

the mainstream of physics. Einstein’s 1905 work on relativity 

and on the photoelectric effect inspired de Broglie. In particular,  
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Einstein’s idea that light, so successfully described as a wave, 

could also behave as a quantum of energy suggested to de  

Broglie the complementary idea that an electron, considered a 

particle since its discovery in 1897, could also behave as a wave.

According to de Broglie’s hypothesis, every particle is accom-

panied by a wave that helps determine its behavior. De Broglie 

found that the wavelength λ of the wave associated with a mate-

rial particle, today called the de Broglie wavelength, is inversely 

proportional to the particle’s momentum p so that λ = h p/  

where h is Planck’s constant. The smaller the particle momen-

tum, the larger its wavelength, and the larger its wavelength, the 

more evident the particle’s wave nature. These wave properties 

were, to de Broglie, as real as the mass of the associated particle.

De Broglie’s first application of matter waves was to the 

hydrogen atom. Niels Bohr had, in 1913, somewhat arbitrarily 

limited the continuum of its possible electron orbits to a discrete 

set he called stationary states. According to Bohr, only an electron 

in a stationary state orbit is stable and immune from the classical 

expectation of radiating energy. Bohr’s model was empirically 

successful even if based on ad hoc postulates.

De Broglie’s matter waves provided an explanation of Bohr’s 

arbitrary limitation of electron orbits that, in turn, opened up a 

new world of thought. He found that only electron orbits associ-

ated with waves that smoothly reconnect with themselves after 

a complete orbit are possible. Waves associated with other orbits 

destroy themselves. De Broglie’s smoothly reconnecting waves 

neatly correspond to Bohr’s stationary states. Figure 72, more 

conceptual than figurative, of a circular electron orbit associated 

with a wave of three complete wavelengths illustrates this con-

cept. Other possible orbits are associated with waves of a whole 

number (1, 2, 3, ...) of wavelengths.
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The idea of a wave constructively interfering with itself may 

already be familiar. Fix one end of an extendable, elastic cord to 

a post. (A Slinky in place of a cord will do.) Extend the cord, and 

launch waves by moving its free end up and down. Only those 

regular up-and-down motions with certain discrete frequencies 

will produce waves that constructively interfere with the waves 

reflected from the fixed end of the cord. With this particular 

setup, the only large waveforms possible are those composed of 

a whole number of half wavelengths. Figure 73 shows a cord, 

fixed at one end, supporting a wave of three half wavelengths.

Figure 73

De Broglie composed his ideas on matter waves into a doc-

toral dissertation in 1924. Upon reading it Einstein claimed,  

“He [de Broglie] has lifted a corner of the great veil.” Erwin 

Schrödinger (1887–1961), by developing a wave equation whose 

solutions described and generalized de Broglie’s matter waves, 

soon lifted another corner of that veil.

Experimental confirmation came quickly. Indeed, the Ameri-

can physicist Clinton Davisson (1881–1958) confirmed de  

Broglie’s matter waves even before he knew he was doing  

so. Davisson and his collaborator, Lester Germer, had been 
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continuing Davisson’s earlier study of the surfaces of crystals by 

shining a beam of low-energy electrons on those surfaces and 

recording the intensity of the reflected beam as a function of its 

angle of incidence. Germer, on a trip to Europe in 1926, was 

astonished to hear a lecture in which the presenter, Max Born 

(1882–1970), who a year later developed the probabilistic inter-

pretation of matter waves, showed a curve from Davisson’s ear-

lier research that, Born claimed, showed that electrons reflect 

from a crystal’s surface just as waves do. On Germer’s return he 

and Davisson refined their experiment in the light of Born’s 

comment. Their result: slow electrons reflect from the surface of 

a crystal exactly as do waves with a wavelength equal to that of 

the de Broglie wavelength λ = h p/ , where p is the electron 

momentum.

De Broglie received the 1929 Nobel Prize in Physics “for his 

discovery of the wave nature of electrons.” Erwin Schrödinger 

received the prize in 1933, Clinton Davisson in 1937, and Max 

Born in 1954. De Broglie, like Einstein and Schrödinger, rejected 

Born’s probabilistic interpretation of matter waves. They were 

too strongly committed to the classical tradition of continuity 

and determinism in physics. Yet Born’s quantum probabilistic 

interpretation has proven all but inescapable.
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46.  The Expanding Universe (1927–1929)

Figure 74

The daily appearances of the sun and the moon, the moving 

planets, the starry sky, and the encircling band of hazy or “milky” 

light called the Milky Way have, over the centuries, invited men 

and women to consider the universe as a whole. Of what is it 

composed? Does it move? What is its shape?” are questions they 

asked and sometimes answered. Observations made with the naked 

eye or with the aid of a telescope only slightly constrained their 

speculations. Experiments were, of course, out of the question.

Emmanuel Kant (1704–1804) was one inquirer whose specu-

lations were disciplined with reason. He reasoned both from 

what little he knew (the sun is part of the Milky Way star system) 

and from what he could reasonably suppose (the laws of physics 

are everywhere the same) to a cosmology much in advance of his 

time. According to Kant, the Milky Way must be an extended 

rotating system of stars whose apparent stability is the result of a 
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balance between the attractive force of gravity and the centrifu-

gal tendency of rotating systems to fly apart. While we see the 

Milky Way from its inside, a distant observer on its outside 

would see a hazy, flattened ellipse that appears much like  

the nebulae of unknown composition astronomers had been  

discovering in Kant’s day. Thus, it is likely that the Milky Way is 

not the only such star system—a lone island in an otherwise 

empty universe—but one among many similar systems scattered 

throughout the universe.

Empirically minded astronomers ignored Kant’s reasoning, 

based, as it was, on a slim foundation of physical evidence. More 

influential were the painstaking telescopic studies of William 

Herschel (1738–1822) and Harlow Shapley (1885–1972). Shapley 

determined the size of the Milky Way by using the characteristic 

relation, discovered by Henrietta Swan Leavitt (1868–1921) (one 

of the first female “computers” at the Harvard College Observa-

tory), between the brightness of the variable stars called Cepheids 

and their period of variation. Shapley developed a method of 

determining the distance of a particular Cepheid variable by 

observing its period and consequently inferring its absolute 

brightness, and then by comparing the latter to its apparent 

brightness and inferring its distance. Since Cepheid variables are 

scattered throughout the Milky Way, Shapley was able to deter-

mine the Milky Way’s size—some 100,000 light years across. 

However, in opposition to Kant, he erroneously concluded that 

the nebulae were objects in the Milky Way and that the Milky 

Way encompassed all the matter of the universe.

This last conclusion fell apart in 1923–1924 when Edwin 

Hubble (1889–1953), using the recently constructed 100-inch 

diameter optical telescope on Mount Wilson in California,  

identified Cepheid variables in the Andromeda nebula. Using 
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Shapley’s method of determining distances, Hubble found that 

this nebula was, in fact, a separate star system some ten times 

further from the Milky Way than the latter is across. Upon read-

ing a letter from Hubble explaining this discovery, Shapley 

remarked to a colleague, “Here is the letter that has destroyed 

my universe.”

Hubble went on to study the spectra, that is, the characteris-

tic pattern of colored light emitted from and absorbed by the 

gases in the atmosphere of the stars that compose distant nebu-

lae. Interestingly, Hubble found that, more often than not, 

these spectra were shifted toward longer wavelengths and lower 

frequencies (“red-shifted”) relative to the spectra of the same 

gases in terrestrial laboratories. Hubble then supposed these red 

shifts were Doppler shifts—a consequence of a galaxy’s rapid 

recession from our galaxy just as the pitch of the siren of an 

emergency vehicle is lower (and its sound wavelength longer) 

when the vehicle rapidly recedes from the listener. He found 

that the further the galaxy, the faster its velocity of recession in 

direct proportion one to the other—a relation now known as 

Hubble’s law.

Milton Humason (1891–1972), a local Mount Wilson mule 

driver and observatory janitor who turned himself into a metic-

ulous and able astronomer, assisted Hubble in this work. Their 

discovery at first glance seemed to place our galaxy, the Milky 

Way galaxy, at the center of a giant cosmic explosion. After all, 

the most quickly moving fragments produced in an explosion 

would travel, in a given interval, furthest from its center. But 

another idea has prevailed. All modern cosmologies assume that, 

on the largest scales, the matter of the universe is uniformly dis-

tributed. Thus, the distribution of galaxies looks the same in dif-

ferent directions and would look the same in different places. 
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According to this assumption, called the cosmological principle, 

there is no center and no edge of the universe. The “cosmic 

explosion” happened everywhere at the same time.

Hubble’s law and the cosmological principle together imply 

that the density of galaxies decreases as time marches on. Figure 

74 illustrates this conclusion by imaging two views of the cos-

mos through the frame of a single window. The right view is 

billions of years later than the left view and consequently shows 

a universe less densely populated with galaxies. It is in this sense 

that we can say the universe is expanding.

There is much evidence supporting this universal expansion. 

However, the rate of expansion and its proximate cause are still 

(in 2016) under investigation. Although Hubble was the first to 

gather data that showed galactic red shifts, he was not the first to 

interpret that data in terms of a universal expansion. Rather that 

honor is due to Georges Lemaître (1894–1966), a Belgian Roman 

Catholic priest and student of Arthur Eddington, the latter one 

of the leading general relativists of his time. Lemaitre discovered 

a solution, to the equations of general relativity, that describes 

an expanding, homogenous, and isotropic universe with non-

zero density and found evidence for this solution in Hubble’s 

earliest data. Published in a little-known journal in 1927, Lemaî-

tre’s work, although eventually praised by Einstein and others, 

went, for a time, unnoticed.

Hubble eventually took the unusual step of hiring an agent to 

promote his case for a Nobel Prize in Physics. This was an uphill 

and ultimately unsuccessful battle—for in Hubble’s day, astrono-

mers were not considered for Nobel Prizes. Even so Hubble 

deserves recognition at the level of a Nobel Prize for his discov-

ery that the nebulae are independent star systems and for his 

crucial role in discovering the expansion of the universe.
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47.  The Neutrino and  
Conservation of Energy (1930)

Figure 75

When first discovered in the last few years of the nineteenth 

century, radioactivity troubled physicists. After all, atoms were 

supposed to be indestructible. How then could they eject their 

parts? And why did they even have parts? Furthermore, radioac-

tivity seemed to be an inexhaustible source of energy. From 

whence came this energy? Was it from the atom itself or from 

the region surrounding the atom, or was it created ex nihilo at 

the moment of radioactive decay?

Hard work and imagination soon answered these questions. 

Atoms, indeed, have parts. Radioactivity consists of unstable 

atoms randomly ejecting those parts in alpha, beta, and gamma 

radiation. Alpha (helium nuclei) and beta (electron) radiations 

transform the original atom into one of another kind. Ernest 

Rutherford summarized the situation in 1904: “This theory [of 

transformation] is found to account in a satisfactory way for all 

the known facts of radioactivity and a mass of disconnected facts 

into one homogeneous whole. On this view the continuous 

emission of energy from the active bodies is derived from the 
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internal energy inherent in the atom, and does not in any way 

contradict the law of conservation of energy.” Einstein’s discov-

ery, in 1905, that anything with mass m has energy E in the 

amount mc2 and anything with energy E has mass m in the 

amount E c/ 2 supported Rutherford’s assessment. (Here c is 

the speed of light.) The energy of radiation is accounted for by a 

loss of the radioactive atom’s mass.

By 1929 physicists had made more progress. Rutherford dis-

covered the nucleus in 1910, and Werner Heisenberg (1901–

1976), Erwin Schrödinger, and Paul Dirac (1902–1984) fashioned 

different approaches to the quantum mechanics of atomic struc-

ture (respectively in 1924, 1926, and 1928). Soon similar ideas 

would be applied to the nucleus. According to Dirac, “The under-

lying physical laws necessary for the mathematical theory of a 

large part of physics and the whole of chemistry are thus com-

pletely known, and the difficulty is only that the application of 

these laws leads to equations much too complicated to be solu-

ble.” And yet problems remained whose solution required more 

than “the application of these laws.”

The electrons ejected from unstable nuclei in beta radiation 

were at the heart of these problems. In particular, the electron 

energies in beta radiation are continuously distributed over  

a range of possible values even when their source is a single  

kind of nucleus. In contrast, alpha and gamma radiation—

respectively, helium nuclei and high-frequency electromagnetic 

waves—have well-defined energies that characterize the particu-

lar nuclei from which they come.

In 1929 physicists believed (correctly) that nuclei were com-

posed of protons and neutrons in sufficient numbers to account 

for their nuclear charge and mass. Many also believed (incor-

rectly) that a neutron was a tightly bound system of a proton 
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and an electron. Because a proton and electron are oppositely 

charged, they attract each other. For this reason these scientists 

thought that beta rays were produced when a neutron breaks in 

two and releases enough energy to drive its proton and electron 

apart.

As reasonable as this picture might seem, it is unacceptable. 

For given that both momentum and energy are conserved in any 

process and that the neutron is slightly more massive than the 

proton (each about 1,800 times more massive than an electron), 

the electron must carry away almost all the energy released in 

the beta decay of a neutron. Furthermore, betas, like alphas and 

gammas, should have well-defined energies that characterize the 

neutron from which they are emitted. But, in fact, the energy of 

the emitted electrons varies widely. Either identical neutrons 

contain different amounts of energy or, as suggested by Niels 

Bohr, energy is not conserved in a single decay but only on  

average over many decays. Most physicists rejected these 

possibilities.

Wolfgang Pauli (1900–1958) rescued the situation, in 1930, 

by suggesting that the energy released in the beta decay of a 

neutron is shared among the remaining proton, the electron, 

and an as yet undetected, lightweight particle—later named a 

neutrino (Italian for “little neutron”) by Enrico Fermi. Figure 75 

illustrates the decay of a neutron into a proton, an electron, and 

a neutrino. Because the electron sometimes takes more and 

sometimes less of the available energy with most of the rest 

going to the neutrino, Pauli’s version of beta decay conserves 

energy while allowing for a continuous distribution of electron 

energies.

That the neutrino interacts only weakly with other particles 

explains why it had not, in Pauli’s time, been detected. Pauli’s 
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proposal took great courage. Privately he confided to a friend, “I 

have done something very bad today by proposing a particle 

that cannot be detected; it is something no theorist should ever 

do.” But Pauli started something of a trend. Today we have par-

ticle physicists whose job it is to suggest new particles every time 

an unusual experimental result is observed.

The Italian physicist Enrico Fermi (1901–1954) took Pauli’s 

idea and, using the newly developing methods of quantum  

electrodynamics, constructed a theory of beta decay that pre-

dicted the observed distribution of electron energy. According to 

Fermi’s theory, a proton, electron, and neutrino are not constitu-

ents of the neutron but, rather, are created at the moment of its 

decay. Fermi’s theory, published in 1934, was a great success.

The neutrino is, indeed, difficult but not impossible to detect. 

In 1956, more than twenty-five years after Pauli’s original pro-

posal, Clyde Cowan and Frederick Reines were confident that 

they had observed neutrinos produced in a nuclear reactor and 

sent Pauli the following exciting, if plainly phrased, confirma-

tion: “We are happy to inform you that we have definitely 

detected neutrinos.”
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48.  Discovering the Neutron (1932)

Figure 76

James Chadwick (1891–1974) gets credit for “discovering the 

neutron,” but his actual contribution is not so simply described. 

He was neither the first to predict the existence of the neutron 

nor the first to find evidence for its existence. Nor was he the 

first to realize that neutrons must be elementary rather than 

composite particles.

Of course, sometimes the word discover is quite appropriate. 

Ernest Rutherford, for instance, certainly discovered the atomic 

nucleus. Its existence was unexpected in 1910 when Rutherford, 

his associate Hans Geiger, and their undergraduate student Ernest 

Marsden performed an experiment whose inescapable interpreta-

tion was that most of the mass of the atom and all of its positive 

charge were concentrated in a relatively small body at the center 

of the atom. Rutherford later called this body a nucleus.

Since the hydrogen nucleus is the least massive and least 

charged of the known nuclei, Rutherford took it to be a building 

block out of which other nuclei were composed and gave it the 

name proton after the Greek for “first thing.” (Rutherford was an 

adept eponymist. He not only gave us nucleus and proton but also 

neutron and alpha, beta, and gamma radiation—all names that 

have survived to this day.)
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It soon became apparent that while the number of protons in 

an atomic nucleus determines an atom’s chemical properties, a 

nucleus composed of protons alone does not explain its physical 

properties—in particular, its mass. For instance, the next most 

massive atom after hydrogen is helium. Its nucleus has two pro-

tons but weighs approximately four times more than a single 

proton. Other nuclei weigh at least twice and often more than 

twice the weight of the protons they contain. Rutherford’s solu-

tion was to postulate the existence of a neutral particle in nuclei, 

the neutron, with mass approximately equal to that of a proton. 

Neutrons inhabit nuclei in numbers that bring each nuclear 

mass up to its observed value. Thus a helium nucleus contains 

two protons and two neutrons bound together with the strong 

nuclear force. So far, so good. But Rutherford mistakenly con-

ceived the neutron itself to be a composite system containing  

a proton and an electron. (The electron mass is about 1/1800 a 

proton mass.)

Such was the common understanding and misunderstanding 

in 1928 when three teams of researchers—Rutherford and his 

assistant, James Chadwick, in Manchester, England; Walther 

Bothe and his student, Herbert Becker, in Berlin; and Irene Curie 

(Marie Curie’s daughter) and her husband, Frédérick Joliet, in 

Paris—began bombarding various light elements with alpha par-

ticles, that is, with helium nuclei. These teams found that when 

a nucleus absorbs an alpha particle, it typically becomes unstable 

and emits, uniformly in all directions, penetrating, high-fre-

quency, electromagnetic (that is, gamma) radiation. But when 

beryllium, with a charge of 4 protons and a mass of 9 atomic 

mass units, was bombarded something unusual happened: the 

unstable nucleus emitted radiation only in the forward direc-

tion, that is, in the direction of the bombarding alpha particles.
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Chadwick was the first to propose that when a beryllium 

nucleus absorbs an alpha particle it emits not electromagnetic 

radiation but another particle, a neutron, in the forward direc-

tion, and he set about devising an experiment to confirm this 

proposal. By February 1932 Chadwick was confident enough to 

submit a letter to the journal Nature entitled “Possible Existence 

of a Neutron.” As Chadwick later explained, “The results, and 

others I have obtained in the course of this work, are very diffi-

cult to explain on the assumption that the radiation from beryl-

lium is a quantum radiation, if energy and momentum are to be 

conserved in the collision. The difficulties disappear, however, if 

it is assumed that the radiation consists of particles of mass 1 

and charge 0, or neutrons.”

Figure 76 illustrates Chadwick’s idea. In the left frame, an 

energetic alpha particle approaches a beryllium nucleus. When a 

beryllium nucleus with 4 protons and 5 neutrons absorbs an 

alpha particle with 2 protons and 2 neutrons, the result is an 

unstable carbon nucleus with 6 protons and 7 neutrons. In the 

right frame, the unstable carbon has emitted a neutron in the 

forward direction. What remains behind is a stable carbon with 

6 protons and 6 neutrons.

Chadwick still imagined that the neutron he had identified 

was Rutherford’s composite particle, a tightly bound system of 

an electron and proton. But between 1932 and 1935 when he 

received the Nobel Prize in Physics for “the discovery of the neu-

tron,” Chadwick changed his mind. After all, Heisenberg’s newly 

discovered uncertainty principle made it impossible for an elec-

tron to be confined within the small volume of a neutron with-

out having an unrealistically large energy. In addition, Chadwick 

had succeeded in measuring the mass of a neutron and found  

it to be larger than the sum of the masses of its presumed 
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constituents, a proton and an electron—a result that doomed 

the idea of a composite neutron. The neutron must be an ele-

mentary particle.

A resourceful researcher trained in the art of cobbling together 

experiments from materials at hand, Chadwick was well posi-

tioned to make his contribution. As a young man Chadwick was 

studying with Hans Geiger in Germany when World War I broke 

out. Geiger advised Chadwick, an Englishman, to leave Ger-

many at once, but Chadwick delayed and was imprisoned along 

with other enemy aliens. In accordance with the Geneva Con-

ventions, the prisoners administered their own internal affairs. 

Thus, Chadwick lectured to his fellow inmates on radioactivity 

and conducted experiments using commercially available radio-

active toothpaste as a source.

When World War II began Chadwick, now in England and a 

famous Nobel laureate, was asked to investigate the feasibility of 

building an atomic bomb based upon the fission of heavy nuclei. 

Subsequently he wrote the final draft of a report summarizing 

British efforts through 1941. Eventually the British, exposed as 

they were to Luftwaffe bombing, abandoned the task of building 

their own bomb and offered their expertise to the Americans. 

Chadwick then became head of the British mission to the Man-

hattan Project and as such traveled to its various sites in Amer-

ica, moved his family to Los Alamos, New Mexico, and became a 

confidant of General Groves, the military engineer in charge of 

the Los Alamos effort. While Chadwick believed it was necessary 

for the Allies to build an atomic bomb, he returned to Britain in 

1948 disenchanted with the trend toward big, industrialized sci-

ence of which the Manhattan Project was a prime example.
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49.  Nuclear Fission and  
Nuclear Fusion (1942)

Figure 77

We are used to things happening in a certain way. Massive 

objects fall down—not up. Certain materials, like paper, burn 

easily. Others do not. We may be less familiar with nuclear fis-

sion and fusion, but the same general principle applies: A system 

(massive object, paper, nucleus) changes in a certain way (falls, 

burns, transforms) only when that system can lose energy in 

that change. This principle helps us understand nuclear fission 

and nuclear fusion. The first releases energy slowly in nuclear 

power plants and quickly in fission bombs. The second produces 

the energy beaming from our sun and released explosively in a 

hydrogen bomb.
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We know from Ernest Rutherford’s gold foil experiment of 

1912 that all of the positive charge and most of the mass of an 

atom is confined within a tiny nucleus several fermis across 

(1 fermi = 10-13 cm). By 1932 our current picture of the nucleus, 

as a spherical configuration of protons and neutrons, had 

emerged. Each proton is positively charged while each neutron 

is uncharged and only slightly more massive than a proton. 

Thus, the number of protons within a nucleus is a measure of its 

charge, and the number of protons and neutrons in a nucleus, 

collectively called nucleons, is a measure of its mass. However, a 

question arises: Given that like charges repel each other with  

a greater force the closer they are, what keeps the protons in a 

nucleus from flying apart? Evidently there is an even stronger 

attractive force that binds these nucleons together. Physicists 

call this force the strong nuclear force.

Competition between the repulsive electrostatic force among 

protons and the attractive strong nuclear force among nucleons 

determines the size, composition, and stability of nuclei. The 

different natures of these competing forces make this competi-

tion interesting. The attractive force between nucleons is strong 

but short range. When two nucleons are within a couple of fermis 

of each other, they attract one another with a strong nuclear 

force that overwhelms any repulsive electrostatic force. But, 

when two nucleons are further apart than a couple of fermis, the 

attractive strong nuclear force between them vanishes. As a 

result, the strong nuclear force acts only between a nucleon and 

its nearest neighbors. In contrast, the repulsive electrostatic force 

between two protons diminishes slowly with separation—as the 

inverse of their separation squared—in the same way as the grav-

itational force between the sun and the earth does. The electro-

static, like the gravitational, force is said to be long range.
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Now, imagine adding more and more protons to an already 

large nucleus. As the number of protons grows the net repulsive 

electrostatic force among all these protons grows, while the 

strong nuclear force keeping a nucleon (proton or neutron) 

bound to its nearest neighbors remains the same. For this rea-

son, there is a natural limit to how many protons a nucleus can 

have. Uranium with 92 protons occupies that limiting position. 

Nuclei with more than 92 protons are unstable.

This competition also explains the stability properties of rela-

tively light nuclei. Because these nuclei contain so few protons 

the net repulsive electrostatic force among them is weak relative 

to the strong nuclear force between neighboring nucleons. Fur-

thermore, the nucleons of hydrogen (one proton and no neu-

trons), of helium (two protons and two neutrons), and of lithium 

(three protons and four neutrons) are all on the surface of their 

relatively small, roughly spherical nuclei. Therefore, in these 

nuclei, each nucleon is not as strongly bound to its neighbors, as 

it would be if completely surrounded by other nucleons. As more 

nucleons are added to a light nucleus, a typical nucleon gains 

more neighbors and, consequently, the whole system becomes 

more tightly bound. An iron nucleus, intermediate between 

lighter and heavier nuclei with 56 protons and neutrons, is the 

most stable.

This competition between repulsive electrostatic and attrac-

tive strong nuclear forces can also be thought of in terms of 

energy lost and gained. Think, for instance, of a rock rolling 

down a hill. The final configuration of the rock-earth system has 

less energy than before. The energy “lost” is released in the 

kinetic energy of the rock as it falls. Ultimately this kinetic 

energy contributes to the thermal energy of the rock and the 

hillside.
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Likewise the configuration of a system of nucleons after split-

ting apart (the fission process) or sticking together (the fusion 

process) has less energy than before. Because the number of 

nucleons after fission or fusion is the same as before, the energy 

per nucleon in the final configuration is less than the energy per 

nucleon in the initial configuration. The nuclear energy lost is 

released in the kinetic energy of the fission or fusion products 

and in high-energy electromagnetic radiation.

The curve in figure 77, called the curve of binding energy, 

encapsulates this physics. Plotted is the energy per nucleon in 

various nuclei from hydrogen to uranium in the units typical  

of nuclear energy (MeV or million electron volts), versus the 

nuclear mass number, that is, the number of nucleons in the 

nucleus. The single curved arrow (on the left) indicates  

the fusion of two, identical, light nuclei and the two curved 

arrows (on the right) the fission of one heavy nucleus. Since the 

fusion or fission products have less energy per nucleon than 

before, energy is lost in the nuclear transformation and the final 

configurations are more tightly bound than before. The results 

of both fission and fusion are nuclei with more stability than 

before.

Nuclear fusions within the interior of the sun are ultimately 

the source of all of our “non-nuclear” energy: fossil fuel, hydro, 

wind, and solar power. But the fusion of two light nuclei does 

not happen as readily as the fission of a nucleus heavier than the 

stable form of uranium. After all, two light nuclei must over-

come their electrostatic repulsion in order to fuse. Thus, fusion 

requires that light nuclei be driven together with a speed charac-

teristic of the high temperature of the sun’s interior. Fission, on 

the other hand, occurs when a heavy nucleus, for instance, ura-

nium with 235 nucleons or plutonium with 239 nucleons, 
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absorbs an extra neutron. If among the fission fragments are sev-

eral neutrons, one fission reaction can cause several others and 

each of those several more. The result: a self-sustaining chain 

reaction of nuclear fissions. Enrico Fermi and his team were the 

first, on December 2, 1942, to initiate and control a nuclear 

chain reaction of fissions.

The discovery and application of nuclear fission and nuclear 

fusion intertwine with the development of nuclear weapons. 

The story of their development tells of competition between the 

United States, Nazi Germany, and Soviet Russia; sudden epipha-

nies while crossing a London street; a revelatory discussion 

between an aunt and her nephew, both physicists, on holiday 

together in Sweden; the contributions of Hungarian émigré  

scientists; letters to President Roosevelt signed by Einstein; a 

nuclear reactor under the football stadium at the University of 

Chicago; British commandos destroying a (Nazi-controlled) Nor-

wegian heavy water plant; a secret, multi-billion-dollar, nuclear 

industry in the United States; and Russian spies working incog-

nito in the closed city of Los Alamos, New Mexico. Numerous 

books relate the human drama and the interesting science of this 

story. Two excellent ones are The Making of the Atomic Bomb by 

Richard Rhodes (1987) and Nuclear Weapons: What You Need to 

Know by Jeremy Bernstein (2007).
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50.  Global Greenhouse Effect (1988)

Figure 78

The earth absorbs radiant energy from the sun, transforms that 

energy into longer wavelength, infrared, thermal energy, and 

reradiates this thermal energy skyward. By intercepting part of 

this reradiated, thermal energy and directing it back toward the 

earth’s surface, our atmosphere boosts the temperature of the 

earth’s surface above what it would be in its absence. Although 

such heating is commonly referred to as the greenhouse effect, 

actual greenhouses warm their contents in a different way—in 

particular, by inhibiting the circulation of air.

Consider two models: the no-atmosphere model (figure 78) 

and the absorbing and radiating atmosphere model (figure 79). 

Together these illustrations show how our “global greenhouse” 

works. The earth absorbs the energy of sunlight at an average 

rate of W  watts per square meter. The no-atmosphere model 

assumes the earth radiates into space as much energy as it 

receives from the sun. Since all objects with temperature T  

radiate at σT 4 watts per square meter where σ  is a universal 

constant, the earth radiates at a rate σT WE
4[ ]= , where TE is the 

average temperature of the earth’s surface. Thus, T WE = ( )/ /σ 1 4 

and so, given values of W and σ ,TE is found to be 254 degrees 
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Kelvin—a frigid minus 19 degrees Celsius (minus 2 degrees 

Fahrenheit).

But the earth does have an atmosphere and that atmosphere 

absorbs thermal energy radiated from the earth’s surface and 

reradiates that energy downward as well as upward at a rate of 

σT4
4  watts per meter squared where TA is the average temperature 

of the atmosphere. Figure 79 shows the energy flows in the 

absorbing and radiating atmosphere model. Accordingly, both 

the earth and its atmosphere each radiate as much energy as 

each receives. Some algebra shows that, in this case, the average 

temperature of the earth’s surface is boosted over its no-atmo-

sphere value by a factor of 2 1 191 4/ [ . ]≈ , that is, by approximately 

19 percent. With this boost the average temperature of the 

earth’s surface TE  becomes 302 degrees Kelvin, that is, a warmish 

29 degrees Celsius (or 84 degrees Fahrenheit). The current aver-

age temperature of the earth’s surface, 14.8 degrees Celsius (or 

58.6 degrees Fahrenheit), lies between the temperatures implied 

by the no-atmosphere and the absorbing and radiating atmo-

sphere models. Apparently, our atmosphere absorbs only part of 

the thermal energy radiated by the earth’s surface and is trans-

parent to the remaining part.

Figure 79
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Of course, these models are simplifications that ignore 

changes within the atmosphere and do not account for other 

contributions to the temperature of the earth’s surface, such as 

the variable reflection of sunlight from clouds and snow. Still, 

they show that our atmosphere’s ability to absorb and reradiate 

thermal energy is an important determinant of the temperature 

of the earth’s surface.

But what allows our atmosphere, a thin layer of gas contain-

ing less than one-millionth the mass of the earth, to absorb and 

reradiate this infrared radiation? The answer is, in large part, 

atmospheric carbon dioxide and water. While most of the atmo-

sphere is nitrogen N2 and oxygen O2, Argon Ar  is the third most 

numerous kind of molecule, and carbon dioxide CO2 is the 

fourth. Water, H O2 , is also present in variable amounts as well as 

smaller amounts of other gases. Notice that among these con-

stituents, CO2 and H O2  molecules each contain three atoms. For 

instance, carbon dioxide CO2 is composed of one carbon atom 

denoted C and two oxygen molecules denoted O2. The more 

atoms in a molecule, the more ways its structure may flex and 

vibrate and so resonate with and absorb the thermal radiation 

from objects with a temperature close to that of the earth’s 

surface.

While human beings do not directly control the amount of 

H O2  in the atmosphere, we do directly contribute to its CO2—

chiefly by burning fossil fuels. In preindustrial times, the con-

centration of CO2 in our atmosphere was 270 parts per million 

(ppm) or 0.0270 percent. Now our atmosphere has over 400 ppm 

CO2, that is, over 0.0400 percent. By releasing more CO2 into the 

atmosphere, we increase its ability to absorb thermal radiation 

and, consequently, increase the average temperature of the 

earth’s surface.
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The Swedish scientist Svante Arrhenius (1859–1927), who 

was the first in 1896 to note that increasing the number of CO2 

molecules in the atmosphere leads to global warming, consid-

ered such warming, in the main, a positive development that 

would prevent future ice ages and allow more of the earth’s sur-

face to be cultivated. Ninety years later in 1988, James Hansen 

(1941– ), then the director of the NASA Goddard Institute for 

Space Studies, warned of the hazards of global warming in testi-

mony before committees of the United States Congress.

While the physics of the global greenhouse effect is simple, 

the phenomenon of global warming is not. For instance, as the 

temperature of the earth’s atmosphere increases, it absorbs more 

water vapor. This, of course, leads to even more heating, but 

more atmospheric H O2  also leads to more cloud cover, and since 

clouds reflect sunlight, clouds moderate, in some degree, this 

heating. Of course, we can do no experiments on the global  

system—or rather we can do only one irreversible experiment.

Since Hansen’s testimony, climate scientists have collected 

much data and constructed complex numerical models that 

incorporate the physics relevant to climate change. They have 

checked their model predictions against those produced by inde-

pendent teams of researchers and against historical data and 

quantified the uncertainty of those predictions. Their conclu-

sion validates Hansen’s warning more than it does Arrhenius’s 

rosy prediction. Average surface temperatures are increasing at 

an alarming rate, and human activity is a major cause of this 

increase.

But some resist this conclusion. The chair of the United  

States Senate Committee on Environment and Public Works in 

2015, Senator James Inhofe of Oklahoma, quoting God’s prom-

ise to Noah after the flood, “While the Earth remains, seed time 



Twentieth Century and Beyond  215

and harvest, cold and heat, summer and winter, day and night, 

shall not cease” (Genesis 8:22), claims that it is arrogant for 

humans to believe they can change the earth’s climate. Indeed, 

arrogance may be an occupational hazard for scientists. After  

all, they invariably trust that natural processes can, in fact, be 

understood—a trust that sometimes devolves into arrogance.

Yet Inhofe should know that God’s will is often not done. We 

despoil rivers and lakes. We pollute land and air. We drive species 

into extinction. Given time we can do worse—or we can, by 

God’s grace, do better. The late Reinhold Niebuhr (1892–1971), 

who was a wiser theologian than Inhofe, urged us to pray for 

“the wisdom to distinguish between those things that can and 

those things that cannot be changed and for the courage to 

change those things that should be changed.” Certainly, the dis-

tinction between those things that can and those things that 

cannot be changed is an important part of the understanding 

scientists seek. What we all need is the courage to change those 

things that should be changed.
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51.  Higgs Boson (2012)

Figure 80

As we grow older, some of us put on weight. We slowly begin to 

feel more massive, or, at least, heavier. And while feeling our 

weight or our mass is an everyday experience, we have probably 

never been moved to ask: “Why does anything have mass?” 

“Where does mass come from?”

Einstein’s E mc= 2 or, equivalently, m E c= 2 provides one 

kind of answer. Evidently, anything with energy E has mass m in 

the amount E c2. But consider an elementary particle, for 

instance, an electron, isolated and at rest, that is, a particle with 

no parts, no apparent spatial extent, no obvious energy, and no 

motion. Yet an electron acts as if it has a tiny rest mass of 9 10 28⋅ −  

grams. Our question then becomes “Why do elementary parti-

cles have rest mass?” Or, if you prefer: “Why do isolated elemen-

tary particles at rest have energy?”

Before 1930 scientists knew of only two elementary particles: 

the electron and the proton. Then James Chadwick discovered 

the neutron and shortly thereafter Wolfgang Pauli reasoned that 

another kind of elementary particle, the neutrino, must exist. 
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Today we know that protons and neutrons are themselves each 

composed of three quarks. According to the standard model of 

particle physics, quarks are elementary particles that, like the 

electron, carry electric charge, have mass, and have no spatial 

extent. Electrons and neutrinos are also elementary particles but 

of a class, distinct from quarks, called leptons. Photons belong to 

yet a third class of elementary particles.

The theoretical concept of mass has emerged as a product of 

our long-standing effort to unify the fundamental forces that act 

among the elementary particles. Just as in the mid-nineteenth 

century James Clerk Maxwell, building upon Michael Faraday’s 

ideas, unified the separate theories of electricity and magnetism 

into a single theory of electromagnetism, so also in the early 

1960s were the separate theories of electromagnetism and the 

weak nuclear force unified into a single electro-weak theory.

The main building blocks of the electro-weak theory are the 

several symmetries assigned to these forces. A symmetry is a prop-

erty that is preserved while something else changes. For instance, 

we believe that the basic laws of physics are the same in every 

part of the universe. Or, as a physicist would say, these laws are 

symmetrical under translation from one part of the universe to 

another. Unfortunately, the simplest version of the electro-weak 

theory with its embedded symmetries requires that all elemen-

tary particles have zero rest mass—a claim we know to be false. 

For, while some elementary particles, like the photon, are mass-

less, others, like the electron, are not.

How then can the simplest description of the electro-weak 

theory be modified so that some elementary particles have mass? 

One answer is that the universe contains a Higgs field that allows 

those particles with which it interacts to acquire mass.
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Such acquisition is sometimes compared to a celebrity trying 

to move through a crowd while stopping frequently to shake 

hands, receive compliments, and pose for photos. Because the 

celebrity (the particle) interacts strongly with the crowd (the 

Higgs field), he or she acquires mass—at least of a certain kind. 

In contrast, an unknown person hardly interacts with the crowd 

at all just as if he or she has none of this “celebrity mass.” Quarks 

and leptons similarly interact, in varying degrees, with the Higgs 

field and, consequently, acquire mass in various amounts. On 

the other hand, because a photon does not interact with the 

Higgs field, it has no rest mass and travels at the speed of light.

The Higgs field and the mechanism with which it confers 

mass on otherwise massless particles makes the electro-weak 

theory consistent with known particle rest masses and also with 

our everyday experience of mass. In 2012, the Higgs boson, itself 

a characteristic excitation of the Higgs field, was observed in the 

detectors of the Large Hadron Collider of the CERN (after the 

French Conseil Européen pour la Recherche Nucléaire) labora-

tory in Geneva, Switzerland.

Apparently, early in its history, the universe transitioned from 

a state with no Higgs field to one with a Higgs field—a transition 

initiated by the emergence of a “Mexican hat” global potential 

energy shown in the center and right panels of figure 80. The 

horizontal position of the black circle indicates the strength of 

the universe’s Higgs field. The black circle initially resides in the 

center of the left panel, indicating no Higgs field. When the Mex-

ican hat global potential emerged (center panel), the universe  

was for a short time in an unstable state. Then the universe tran-

sitioned to a stable state with nonvanishing Higgs field (right 

panel). These panels are meant to suggest the rolling of a marble, 

initially perched on the crest of the Mexican hat potential, into  



Twentieth Century and Beyond  219

the trough between the hat’s crest and its upturned brim. In 

this way the fundamental forces, as represented by the Mexican 

hat potential, retain their symmetries while the state of the uni-

verse, represented by the position of the black circle, “breaks” 

this symmetry.

Peter Higgs (1929– ) and François Englert (1932– ) shared the 

2013 Nobel Prize in Physics for, in 1964, postulating the Higgs 

field, describing the Higgs mechanism, and predicting the Higgs 

boson. That Higgs’s name alone is attached, in proprietary fash-

ion, to these discoveries may well embarrass Peter Higgs. For, 

while Higgs certainly deserves a Nobel Prize, he is only one of 

several theoreticians who independently and nearly simultane-

ously came to the same conclusions.





Afterword

The principle with which I have selected concepts to explore in 

these essays, those that can be drawn and seen, favors older expla-

nations such as those of lunar phases and of submerged bodies 

over more recent, less visualizable ones such as those of the 

global greenhouse effect and of the Higgs boson. Other impor-

tant contributions to twentieth- and twenty-first-century phys-

ics, probability distributions, black holes, chaos, entanglement, 

and gravity waves did not make the cut because I could not eas-

ily represent them in a drawing. No doubt, our drive toward 

inventing new ways to see physics will, in time, allow these  

topics to be grasped visually.

Because Drawing Physics is composed of fifty-one separate 

essays, the connections among them may not be apparent. Con-

sider, for instance, that the theorists who predicted the Higgs 

boson (essay 51) built upon an approach pioneered by Enrico 

Fermi who, in the course of modeling beta decay (essay 47), fash-

ioned the first version of a field theory of the elementary  

particles and their fundamental forces. Fermi’s field theory, in 

turn, owes much to Maxwell’s 1865 theory of electromagnetism 

(essay 37) and to Einstein’s 1905 theory of special relativity. Yet 

Maxwell’s electromagnetism incorporates Faraday’s concept of 
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electric and magnetic field lines (essay 36), while Einstein’s the-

ory of special relativity generalizes the relativity of Galileo. The 

kinematics that embeds Galilean relativity (essays 20 and 21) 

appeals to observations on falling bodies made fifty years earlier 

by Simon Stevin (essay 15) and one thousand years earlier by 

John Philoponus (essay 10) and, also, to the geometrical lan-

guage invented by Oresme and the Merton College scholars 

(essay 12). Philoponus’s observations critique Aristotle theory of 

motion (essay 5) just as Aristotle had earlier critiqued Thales’s 

cosmology (essay 1). Other threads of understanding, each con-

tribution depending upon others, could be traced through the 

essays.

Only physics and astronomy, among the empirical sciences, 

can claim an intellectual tradition of such compass: 2,600 years 

from Thales to Higgs. And no other science appeals so directly to 

the visible world. The visual emblems of this tradition and their 

human and historical context define the content of Drawing 

Physics.



Notes
N o t e s
N o t e s

Antiquity: Essays 1–9

11  “The Sun puts the shine in the Moon.” Nahm, Selections from Early 

Greek Philosophy (1964), 143.

13  “You cannot step twice into the same river ... ” Nahm, Selections from 

Early Greek Philosophy (1964), 70.

13  “As when a young girl, playing with a clepsydra ... ” Curd, A Preso-

cratics Reader (2011), 97.

17  “one of the greatest philosophers and scientists of all times.” Sarton, 

Introduction to the History of Science (1927), 127.

17  “carried on immense botanical, zoological, and anatomical investi-

gations ... ” Sarton, Introduction to the History of Science (1927), 127.

23  “‘a line is breadthless length,’ and some seem a little mysterious, ‘A 

straight line is a line that lies evenly with the points on itself.’” Euclid, 

The Elements (1956), 153.

23  “Things which are equal to the same thing are also equal to one 

other.” Euclid, The Elements (1956), 155.

24  “ ... let geese / Gabble and hiss, but heroes seek release ... ” From 

“Euclid Alone Has Looked on Beauty Bare” by Edna St. Vincent Millay, 



224  Notes

in Salter, Ferguson, and Stallworth, eds., Norton Anthology of Poetry 

(2005), 1383.

Middle Ages: Essays 10–13

37  “This view of Aristotle’s is completely erroneous ... ” Lindberg, The 

Beginnings of Western Science (1992), 305.

Early Modern Period: Essays 14–31

56  “I finally discovered ... that if the movements ... ” Copernicus, On 

the Revolutions of the Heavenly Spheres (1952), 508.

57  “machinery of the world,” which had been constructed by the “Most 

Orderly Workman of all.” Copernicus, On the Revolutions of the Heavenly 

Spheres (1952), 508.

59  “If you can get an epitaph like that ... ” Feynman, The Feynman Lec-

tures on Physics (1963), vol. I, 4–5.

71  “There remains the matter which in my opinion ... ” Drake,  

Discoveries and Opinions of Galileo (1957), 50–51.

72  “that the revolutions are swifter in those planets ... ” Drake,  

Discoveries and Opinions of Galileo (1957), 57.

72  “Here we have a fine and elegant argument ... ” Drake, Discoveries 

and Opinions of Galileo (1957), 57.

76  “Thee, O Lord Creator ... ” Sobel, A More Perfect Heaven (2011), 211.

76  “If I have been drawn into rashness ... ” Sobel, A More Perfect Heaven 

(2011), 211.

78  “hard to say whether the qualities ... ” Drake, Discoveries and 

Opinions of Galileo (1957), 5.

79  “I am still at sea, he says, ... ” Galileo, Two New Sciences (1952), 158.

79  “It will not be beyond you ... ” Galileo, Two New Sciences (1952), 158.



Notes  225

80  “Aristotle says, ‘an iron ball of one hundred pounds ... ’” Galileo, 

Two New Science (1952), 158.

82  “relinquish altogether the said opinion ... ” and “to hold, teach, or 

defend it in any way ... ” Crombie, Medieval and Early Modern Science 

(1959), vol. II, 212–213.

87  “Thus ... a small dog could probably carry ... ” Galileo, Two New Sci-

ences (1952), 187.

91  “the defect was not in the pump ... ” Galileo, Two New Sciences 

(1952), 137–138.

92  “we live submerged at the bottom of an ocean of ... ” Evangelista 

Torricelli in a letter to Michelangelo Ricci as excerpted in Boynton, The 

Beginnings of Modern Science (1948), 227.

93  “Does nature abhor a vacuum more ... ” Blaise Pascal in The Great 

Experiment on the Weight of the Mass of the Air in Boynton, The Beginnings 

of Modern Science (1948), 231–241.

95  The table of values is taken from Boyle’s A Defense of the Doctrine 

Touching the Spring and Weight of Air as excerpted in Boynton, The Begin-

nings of Modern Science (1948), 246.

98  “to the injuries of both parties, and the protection of neither.” 

Wojcik, Robert Boyle and the Limits of Reason (1997), 13.

98  “a very great caution ... ” Wojcik, Robert Boyle and the Limits of Reason 

(1997), 13.

101  For Westfall’s belief that the young Newton had a powerful patron, 

see Westfall, Never at Rest (1980), 102.

102  Newton describes his experimentium cruces in A New Theory of Light 

and Colors as excerpted in Boynton, The Beginnings of Modern Science 

(1948), 148–156.

103  For Westfall’s confession that the more he knew of Newton the 

more alien the latter became, see Westfall, Never at Rest (1980), ix.



226  Notes

118  “the true philosophy, in which one conceives ... ” Huygens, Treatise 

on Light (1952), 554.

118  Vasco Ronchi argues that Huygens did not consider diffraction as 

evidence for his view of the nature of light because he could not quan-

tify the contribution of the secondary waves to the intensity of the 

envelope. See Ronchi, The Nature of Light (1970), 202.

Nineteenth Century: Essays 32–37

134  “the accuracy, with which the general law of interference ... ” 

Young, A Course of Lectures on Natural Philosophy and the Mechanical Arts 

(1845), Lecture XXXIX, 370.

136  “a man alike eminent in almost every department ... ” “Sketch of 

Dr. Thomas Young” (1874), 360.

137  “And when the rain has wet the kite and twine ... ” Boynton, The 

Beginnings of Modern Science (1948), 320.

139  “From the preceding facts we may likewise collect ... ” Dibner,  

Oersted and the Discovery of Electromagnetism (1962), 75.

140  “My heart leaps up when I behold ... ” From “My Heart Leaps  

Up” by William Wordsworth, in Salter, Ferguson, and Stallworth, eds., 

Norton Anthology of Poetry (2005), 796.

142  “To take away today from England ... ” Carnot, Reflections on the 

Motive Power of Fire (2005), 4.

143  “The production of motion in steam engines ... ” Carnot, Reflections 

on the Motive Power of Fire (2005), 6.

147  “It would be difficult to describe the surprise and astonishment ... ” 

Boynton, The Beginnings of Modern Science (1948), 195.

147  “It is hardly necessary to add ... ” Boynton, The Beginnings of Modern 

Science (1948), 198.

150  “trembled and grew cold. ... There had to be something behind 

objects that lay deeply hidden.” Pais, Subtle Is the Lord (1982), 37.
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151  “The Physical Character of the Lines of Magnetic Force (1852).” 

Fisher, Faraday’s Experimental Researches in Electricity (2001), 563–599.

152  “speculations” and “strict line of reasoning.” Fisher, Faraday’s 

Experimental Researches in Electricity (2001), 563.

Twentieth Century and Beyond: Essays 38–51

161  “There was once a sailor on a vessel in New York harbor ... ” 

Stuewer, The Compton Effect (1975), 43.

163  “the theory of light would be thrown back by centuries.” Holton 

and Brush, Physics, the Human Adventure (2001), 401. 

163  “especially for his discovery of the law of the photoelectric effect.” 

Nobel Citations (1922).

163  “All these 50 years of pondering have not brought me any closer to 

answering the question, ‘What are light quanta?’” Pais, Subtle Is the Lord 

(1982), 382.

164  Robert Brown, who thoroughly investigated Brownian motion, is 

usually credited with its discovery in 1827. However, Jan Ingenhousz 

quite clearly described the Brownian motion of coal dust particles on 

the surface of alcohol in 1785.

167  “I at any rate am convinced that He ... ” Einstein and Born, The 

Born-Einstein Letters 1916–1955 (2004), xxii.

167  “He has seen more clearly than anyone before him ... ” Schlipp, 

Albert Einstein; Philosopher-Scientist (1949), 163–164.

167  “based on different experiences in our work and life ... ” Schlipp, 

Albert Einstein; Philosopher-Scientist (1949), 177.

169  “I was brought up to look at the atom as a nice hard fellow ... ” 

Keller, The Infancy of Atomic Physics (2006), 9.

171  “It was quite the most incredible event that has ever happened to 

me ... ” Pais, Inward Bound (1986), 189.



228  Notes

173  “I could not recognize my own work in the reports.” Pais, Inward 

Bound (1986), 39.

174  “every Professor in Europe is now on the warpath.” Pais, Inward 

Bound (1986), 39.

176  “suddenly ... perceived the way which subsequently proved to be 

the shortest path to success.” Nobel Citations (1914).

176  “his discovery of the diffraction of X-rays by crystals.” Nobel 

Citations (1914).

180  “While it is too early to say whether the theories of Bohr ... ” Pais, 

Niels Bohr’s Times in Physics, Philosophy, and Polity (1991), 153.

182  “Doomed youth” and “as cattle.” From “Anthem for Doomed 

Youth” by Wilfred Owen, in Salter, Ferguson, and Stallworth, eds., 

Norton Anthology of Poetry (2005), 1386.

184  “overthrown” and “knocked out.” Pais, Subtle Is the Lord (1982), 

306–309.

187  “In sum, one can say that there is hardly one among the great 

problems ... ” Pais, Subtle Is the Lord (1982), 382.

188  “quite likely never read Einstein’s 1905 paper.” Stuewer, The Comp-

ton Effect (1975), 217–218.

192  “He [de Broglie] has lifted a corner of the great veil.” Moore, 

Schrödinger (1989), 187.

193  “for his discovery of the wave nature of electrons.” Nobel Citations 

(1929).

196  “Here is the letter that has destroyed my universe.” Payne-Gaposch-

kin, An Autobiography and Other Recollections (1997), 209.

198  “This theory [of transformation] is found to account ... ” Pais, 

Inward Bound (1986), 113.

199  “The underlying physical laws necessary for the mathematical 

theory ... ” Dirac, “Quantum Mechanics of Many-Electron Systems,” 

714.
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201  “I have done something very bad today ... ” Solomey, The Elusive 

Neutrino (1997), 14.

201  “We are happy to inform you that we have definitely detected neu-

trinos.” Solomey, The Elusive Neutrino (1997), 65.

204  “The results, and others I have obtained ... ” Schweber, Nuclear 

Forces (2012), 220.

204  “for ‘the discovery of the neutron.’” Nobel Citations (1935).

214  For an example of Senator James Inhofe’s rhetoric, see the Novem-

ber 12, 2014, issue of the New York Times.

214   “While the Earth remains ... ” Genesis 8:22 (Revised Standard  

Version).

215  “The wisdom to distinguish between those things ... ” A paraphrase 

of the widely reproduced “serenity prayer” typically ascribed to Rein-

hold Niebuhr.
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