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preface to the american edition

When I began to use everyday activities like dunking to show how
scientists think about the world, I hadn′t expected my activities to be
televised live in America and reported in such prestigious places as the
Wall Street Journal and the San Francisco Chronicles, nor to receive
letters from American schoolchildren wanting help with their school
science projects. These things happened, though, and so I was particularly
pleased to be asked to prepare an edition of this book on the science of
everyday life for an American audience. I have spent many happy hours
working with American scientists, scientists from other countries now
living in America, and especially American chefs and food writers. I hope
they will forgive me for the stories that I tell about them here.

I received many interesting and helpful comments following the first
publication of this book. Those corrections are incorporated in this
updated edition. My thanks to my sharp-eyed readers.



introduction

Scientists, like hangmen, are socially disadvantaged by their profession.
People are naturally curious about their work and their motivation for
doing it but are rather afraid to ask about the details. The fear in the case
of scientists is that the questioner won′t understand the answer, and will
end up looking foolish. This fear can be so great that guests at parties,
having discovered that I am a scientist, usually turn to my wife and ask her
what I do, rather than approach me directly.

This book is for them, and for everyone else who wants to know what
scientists are really up to. It uses ”the science of the familiar” as a key to
open a door to science, to show what it feels like to be a scientist, and to
view from an insider′s perspective what scientists do, why they do it, and
how they go about it. I have used this approach with some success in
media publicity exercises designed to show that science can be applied to
many everyday activities, including cookie dunking, the best way to use
gravy on roast dinners, the making and throwing of indoor boomerangs,
and the use of physics to improve your sex life. The widespread public
interest in these stories has encouraged me to write this book, in which I
give the background to the stories and broaden my repertoire to cover the
application of science to doughnut dunking, shopping, household jobs,
sports, bathtime, and bedtime — in fact, the major activities of an
ordinary day.

Science can add much to everyday activities, but it has also gained
much from the study of such activities. Among the things that it has
gained are the principle of heat convection, discovered by the Anglo-
American Count Rumford after burning his mouth on a hot apple pie; the
first measurement of the size of a molecule, performed by Benjamin
Franklin after observing the calming effect of dirty wash water on the
waves in a ship′s wake; and the first estimate of the range of forces



between molecules, derived from consideration of the uptake of liquids by
porous materials.

Each chapter is built around a familiar activity, and introduces a major
scientific concept that is central to that activity. Interwoven with stories of
the science are stories of the scientists, who include many of my
contemporaries as well as some famous names from the past. Those from
the past cannot stop me from telling stories about them. Most of those
from the present have seen what I have written and have kindly refrained
from censoring it.

The science of the familiar is one of the most effective ways to
introduce science to non-scientists. Michael Faraday, the discoverer of
electricity, was among the first in the field nearly a hundred and fifty years
ago with his popular lectures on ”The Chemical History of a Candle,”
which were packed by London′s fashionable elite. Many others have since
followed, including myself.

Not everyone has approved. Some of my colleagues feel that, in
reporting experiments on something as commonplace as cookie or
doughnut dunking, I am running the risk of trivializing science. Others
have taken me to task for bringing science into areas where they feel it has
no business to be. One newspaper editor even described me as ”the kind of
expert who cannot look at a plate of fish and chips without dropping a
morsel into a handy test tube and jotting down calculations.” The writer
was displeased with me for treating gravy absorption by roast dinners as a
subject for scientific observation, but he unwittingly hit the nail on the
head in describing what science is about. Scientists are in the business of
trying to understand the world, and understanding can come just as much
from the small and apparently insignificant as it can from contemplation
of the grand themes. Many artists, writers, and philosophers have likewise
found deep significance in some of the seemingly mundane aspects of life.

Scientists see the world around them in scientific terms, regardless of
time, place, or social propriety. This can lead to some unconventional
behavior. The nineteenth-century physicist James Prescott Joule selected a
picturesque waterfall as a place for his honeymoon, but his choice was
dictated by science rather than romance, and he took a thermometer with
him so that he could measure the waterfall′s temperature and confirm his



theory of heat. When a former colleague of mine was caught in a
rainstorm, his rational scientific response was to remove all of his clothes
and ”hang himself out to dry” over his laboratory radiator, in which
position he scared the life out of an unsuspecting cleaning person.

In this book the reader will meet many scientists (most of them clothed)
from the past and the present, from different cultural backgrounds, and
often with very different scientific and social aspirations. All, though,
have shared a vision that Nature′s beauty is enhanced by scientific
understanding, and that such understanding has its own particular beauty,
whether it is concerned with phenomena on the grand scale or with the
intimacy of everyday, familiar detail. It is the beauty of that familiar detail
that, above all, I wish to share.

I could not have done it without the help of many of my scientific
friends and colleagues who have taken the time to discuss issues, to read
chapter drafts, and to bring their own expertise to bear in correcting errors
and adding enlightenment. Those who have made major contributions
include (in alphabetical order) Marc Abrahams, Lindsay Aitkin, Bob
Aveyard, Peter Barham, Geoff Barnes, Gary Beauchamp, Tony Blake, Fritz
Blank, Stuart Burgess, Arch Corriher, Terry Cosgrove, Neil Furlong, John
Gregory, Simon Hanna, Michael Hanson, Robin Heath, Roger Highfield,
Philip Jones, Harold McGee, Eileen McLaughlin, Mervyn Miles, Emma
Mitchell, David Needham, Jeff Odell, Jeff Palmer, Alan Parker, Ric
Pashley, Bob Reid, Harry Rothman, Sean Slade, Burt Slotnick, Elizabeth
Thomas, Brian Vincent, and Lawrence West. Other names, equally
important, will no doubt come into my mind as soon as this book has gone
into print.

I would especially like to thank my agent, Barbara Levy, and my editors,
Peter Tallack and Cal Barksdale, for encouraging me in this venture and
for showing such belief in my ability to carry it through. Most especially, I
would like to thank my wife, Wendy, who has read and reread every
chapter draft on behalf of the eventual reader and whose perceptive
comments have done so much to remove obscurities and to improve
readability.

The book is deliberately designed so that each chapter can be either
dipped into or read straight through as a story. There were, furthermore,



many fascinating byways, entertaining anecdotes, and small points of
interest that did not make it into the chapters, usually because they could
not be fitted into the flow of the story without disrupting it. I have put
these into notes, some of which are scattered through the chapters, but
most of which are accumulated at the back of the book. Here the reader
will find advice on the best way to eat hot chili peppers, the rules of the
Mudgeeraba Creek Emu Racing and Boomerang Throwing Association,
and the reason one American state attempted to sue another for the theft of
its rain. These and other tidbits are as much a part of the book as are the
main chapters, and I hope that the reader derives as much entertainment
from reading about them as I have from discovering and writing about
them.

Nunney, Somerset



1

the art and science of dunking
One of the main problems that scientists have in sharing their picture of
the world with a wider audience is the knowledge gap. One doesn′t need to
be a writer to read and understand a novel, or to know how to paint before
being able to appreciate a picture, because both the painting and the novel
reflect our common experience. Some knowledge of what science is about,
though, is a prerequisite for both understanding and appreciation, because
science is largely based on concepts whose detail is unfamiliar to most
people.

That detail starts with the behavior of atoms and molecules. The notion
that such things exist is pretty familiar these days, although that did not
stop one of my companions at a dinner party from gushing, ”Oh, you′re a
scientist! I don′t know much about science, but I do know that atoms are
made out of molecules!” That remark made me realize just how difficult it
can be for people who do not spend their professional lives dealing with
matter at the atomic or molecular level to visualize how individual atoms
and molecules appear and behave in their miniaturized world.

Some of the first evidence about that behavior came from scientists who
were trying to understand the forces that suck liquids into porous
materials. One of the most common manifestations of this effect is when
coffee is drawn into a dunked doughnut or tea or milk into a dunked
cookie, so I was delighted when an English advertising firm asked me to
help publicize the science of cookie dunking because it gave me an
opportunity to explain some of the behavior of atoms and molecules in the
context of a familiar environment, as well as an opportunity to show how
scientists operate when they are confronted with a new problem.

I was less delighted when I was awarded the spoof IgNobel Prize for my
efforts. Half of these are awarded each year for ”science that cannot, or



should not, be reproduced.” The other half are awarded for projects that
”spark public interest in science.” The organizers have now changed these
confusing descriptions for the simple ”First they make you laugh; then
they make you think.”

It was a pleasure, though, to receive letters from schoolchildren who
had been enthused by the publicity surrounding both the prize and the
project. One American student sought my help to take the work further in
his school science project, in which he studied how doughnuts differ from
cookies. He subsequently reported with pride that he had received an ”A”
for his efforts.

This chapter tells the story of the dunking project and of the underlying
science, which is used to tackle problems ranging from the extraction of
oil from underground reservoirs to the way that water reaches the leaves in
trees.

Doughnuts might have been designed for dunking. A doughnut, like bread,
is held together by an elastic net of the protein gluten. The gluten might
stretch, and eventually even break, when the doughnut is dunked in hot
coffee, but it doesn′t swell or dissolve as the liquid is drawn into the
network of holes and channels that the gluten supports. This means that
the doughnut dunker can take his or her time, pausing only to let the
excess liquid drain back into the cup before raising the doughnut to the
waiting mouth. The only problem that a doughnut dunker faces is the
selection of the doughnut, a matter on which science has some surprising
advice to offer, as I will show later in the chapter.

Cookie dunkers face much more of a challenge. If recent market
research is to be believed, one cookie dunk in every five ends in disaster,
with the dunker fishing around in the bottom of the cup for the soggy
remains. The problem for serious cookie dunkers is that hot tea or coffee
dissolves the sugar, melts the fat, and swells and softens the starch grains
in the cookie. The wetted cookie eventually collapses under its own
weight.

Can science do anything to bring the dedicated cookie dunker into parity
with the dunker of doughnuts? Could science, which has added that extra



edge to the achievements of athlete and astronaut alike, be used to enhance
ultimate cookie dunking performance and save that fifth, vital dunk?

These questions were put to me by an advertising company wanting to
promote ”National Cookie-Dunking Week.” As someone who uses the
science underlying commonplace objects and activities to make science
more publicly accessible, I was happy to give ”The Physics of Cookie
Dunking” a try. There was, it seemed, a fair chance of producing a light-
hearted piece of research that would show how science actually works, as
well as producing some media publicity on behalf of both science and the
advertisers.

The advertisers clearly thought that there would be keen public interest.
They little realized just how keen. The ”cookie dunking” story that
eventually broke in the British media rapidly spread worldwide, even
reaching American breakfast television, where I participated in a learned
discussion of the relative problems of doughnut and cookie dunkers. The
extent of public interest in understandable science was strikingly revealed
when I talked about the physics of cookie dunking on a call-in science
show in Sydney, Australia. The switchboard of Triple-J, the rock radio
station, received seven thousand calls in a quarter of an hour.

The advertisers had their own preconceptions about how science works.
They wanted nothing less than a ”discovery” that would attract newspaper
headlines. Advertisers and journalists aren′t the only people who see
science in terms of ”discoveries.” Even some scientists do. Shortly after
the Royal Society was founded in 1660, Robert Hooke was appointed as
”curator of experiments” and charged with the job of making ”three or
four considerable experiments” (i.e., discoveries) each week and
demonstrating them to the Fellows of the Society. Given this pressure, it is
no wonder that Hooke is reported to have been of irritable disposition,
with hair hanging in disheveled locks over his haggard countenance. He
did in fact make many discoveries, originating much but perfecting little. I
had to tell the advertisers in question that Hooke may have been able to do
it, but I couldn′t. Science doesn′t usually work that way.

Scientists don′t set out to make discoveries; they set out to uncover
stories. The stories are about how things work. Sometimes the story might



result in a totally new piece of knowledge, or a new way of viewing the
nature of things. But not often.

I thought that, with the help of my friends and colleagues in physics and
food science, there would be a good chance of uncovering a story about
cookie dunking, but that it was hardly likely to result in a ”discovery.” To
their credit, the advertisers accepted my reasoning, and we set to work.

The first question that we asked was ”What does a cookie look like from
a physicist′s point of view?” It′s a typical scientist′s question, to be read as
”How can we simplify this problem so that we can answer it?” The
approach can sometimes be taken to extremes, as with the famous
physicist who was asked to calculate the maximum possible speed of a
racehorse. His response, according to legend, was that he could do so, but
only if he was permitted to assume that the horse was spherical. Most
scientists don′t go to quite such lengths to reduce complicated problems to
solvable form, but we all do it in some way — the world is just too
complicated to understand all at once. Critics call us reductionists, but, no
matter what they call us, the method works. Francis Crick and James
Watson, discoverers of the structure of DNA, didn′t find the structure by
looking at the complicated living cells whose destiny DNA drives. Instead,
they took away all of the proteins and other molecules that make up life
and looked at the DNA alone. Biologists in the fifty years following their
discovery have gradually put the proteins back to find out how real cells
use the DNA structure, but they wouldn′t have known what that structure
was had it not been for the original reductionist approach.

We decided to be reductionist about cookies, attempting to understand
their response to dunking in simple physical terms and leaving the
complications until later. When we examined a cookie under a microscope,
it appeared to consist of a tortuous set of interconnected holes, cavities,
and channels (so does a doughnut). In the case of a cookie, the channels
are there because it consists of dried-up starch granules imperfectly glued
together with sugar and fat. To a scientist, the cookie dunking problem is
to work out how hot tea or coffee gets into these channels and what
happens when it does.

With this picture of dunking in mind, I sat down with some of my
colleagues in the Bristol University Physics Department and proceeded to



examine the question experimentally. Solemnly, we dipped our cookies
into our drinks, timing how long they took to collapse. This was Baconian
science, named after Sir Francis Bacon, the Elizabethan courtier who
declared that science was simply a matter of collecting a sufficient
number of facts to make a pattern.

Baconian science lost us a lot of cookies but did not provide a scientific
approach to cookie dunking. Serendipity, the art of making fortunate
discoveries, came to the rescue when I decided to try holding a cookie
horizontally, with just one side in contact with the surface of the tea. I was
amazed to find that this cookie beat the previous record for longevity by
almost a factor of four.

Scientists, like sports fans, are much more interested in the exceptional
than they are in the average. The times of greatest excitement in science
are when someone produces an observation that cannot be explained by the
established rules. This is when ”normal science” undergoes what Thomas
Kuhn called a paradigm shift, and all previous ideas must be recast in the
light of the new knowledge. Einstein′s demonstration that mass m is
actually a form of energy E, the two being linked by the speed of light c in
the formula E = mc2, is a classic example of a paradigm shift.

Paradigm shifts often arise from unexpected observations, but these
observations need to be verified. The more unexpected the observation, the
harsher the testing. In the words of Carl Sagan: ”Extraordinary claims
require extraordinary proof.” No one is going to discard the whole of
modern physics just because someone has claimed that Yogic flying is
possible, or because a magician has bent spoons on television. If levitation
did prove to be a fact, though, or spoons could really be bent without a
force being applied, then physics would have to take it on the chin and
reconsider.

One long-lived horizontal cookie dunk was hardly likely to require a
paradigm shift for its explanation. For that rare event to happen, the new
observation must be inexplicable by currently known rules. Even more
importantly, the effect observed has to be a real one, and not the result of
some unique circumstance.

One thing that convinces scientists that an effect is real is
reproducibility — finding the same result when a test is repeated. The



long-lived cookie could have been exceptional because it had been harder
baked than others we had tried, or for any number of reasons other than the
method of dunking. We repeated the experiments with other cookies and
other cookie types. The result was always the same — cookies that were
dunked by the ”horizontal” technique lasted much longer than those that
were dunked conventionally. It seemed that the method really was the key.

What was the explanation? One possibility was diffusion, a process
whereby each individual molecule in the penetrating liquid meanders from
place to place in a random fashion, exploring the channels and cavities in
the cookie with no apparent method or pattern to its wanderings. The
movement is similar to that of a drunken man walking home from the pub,
not knowing in which direction home lies. Each step is a haphazard lurch,
which could be forwards, backwards or sideways. The complicated
statistics of such movement (called a stochastic process) has been worked
out by mathematicians. It shows that his probable distance from the pub
depends on the square root of the time. Put simply, if he takes an hour to
get a mile away from the pub, it is likely to take him four hours to get two
miles away.

If the same mathematics applied to the flow of liquid in the random
channels of porous materials such as cookies, then it would take four times
as long for a cookie dunked by our fortuitous method to get fully wet as it
would for a cookie dunked ”normally.” The reason for this is that in a
normal dunk the liquid only has to get as far as the mid-plane of the
cookie for the cookie to be fully wetted, since the liquid is coming from
both sides. If the cookie is laid flat at the top of the cup, the liquid has to
travel twice as far (i.e., from one side of the cookie to the other) before the
cookie is fully wetted, which would take four times as long according to
the mathematics of diffusion (Figure 1.1).



Figure 1.1: How to Dunk a Cookie.

Left-hand diagram: Disaster — a cookie dunked in the “conventional”
manner, with liquid entering from both sides. Right-hand diagram:

Triumph — a cookie dunked in the “scientific” manner. The liquid takes
four times as long to penetrate the width of the cookie, and the cookie will

remain intact so long as the upper surface stays dry.

The American scientist E. W. Washburn found a similar factor of four
when he studied the dunking of blotting paper — a mat of cellulose fibers
that is also full of random channels. Washburn′s experiments, performed
some eighty years ago, were simplicity itself. He marked off a piece of
blotting paper with lines at equal intervals, then dipped it vertically into
ink (easier to see than water) with the lines above and parallel to the liquid
surface, and with one line exactly at the surface. He then timed how long it
took the ink to reach successive lines. He found that it took four times as
long to reach the second line as it did to reach the first, and nine times as
long to reach the third line.

I attempted to repeat Washburn′s experiments with a range of different
cookies provided by my commercial sponsor. I dunked the cookies, each
marked with a pencil in fivemillimeter steps, vertically into hot tea, and
timed the rise of the liquid with a stopwatch. The cookies turned out to be
very similar to blotting paper when it came to taking up liquid. Just how
similar became obvious when I drew out the results in a graph. If the
distance penetrated follows the law of diffusion, then a graph of the square
of the distance traveled versus time should be a straight line. If it took five
seconds for the liquid to rise four millimeters, it should take twenty



seconds for the liquid to rise eight millimeters. And so it proved, for up to
thirty seconds, after which the sodden part of the cookie dropped off into
the tea (Figure 1.2).

Figure 1.2: Distance (Squared) of Hot Tea Penetration into Different
Kinds of Cookies versus Time.

The boxes represent individual measurements, with the lengths of the
vertical and horizontal sides representing the probable error in the

measurement of (distance)2 or time respectively.

These results look very convincing. Numerical agreement with
prediction is one of the things that impresses scientists most. Einstein′s
General Theory of Relativity, for example, predicted that the sun′s
gravitation would bend light rays from a distant star by 1.75 seconds of arc
(about five tenthousandths of a degree) as they passed close by.
Astronomers have now found that Einstein′s prediction was correct to
within one percent. If astrology could provide such accurate forecasts,
even physicists might believe it.

That′s not the end of the story. In fact, it is hardly the beginning. Even
though the experimental results followed the pattern of behavior predicted



by a diffusion model, closer reasoning suggested that diffusion was an
unlikely explanation. Diffusion applies to situations where an object
(whether it is a drunken man or a molecule in a liquid) has an equal chance
of moving in any direction, which seems unlikely for liquid penetrating a
cookie, since the retreat is blocked by the oncoming liquid. Diffusion
models, though, are not the only ones to predict experimentally observed
patterns of behavior. Washburn provided a different explanation, based on
the forces that porous materials exert on liquids to draw them in.

The imbibition process is called capillary rise, and was known to the
ancient Egyptians, who used the phenomenon to fill their reed pens with
ink made from charcoal, water, and gum arabic. The question of how
capillary rise is driven, though, was first considered only two hundred
years ago when two scientists, an Englishman and a Frenchman,
independently asked the question: ”What is doing the pulling?” The
Englishman, Thomas Young, was the youngest of ten children in a Quaker
family. By the age of fourteen, he had taught himself seven languages,
including Hebrew, Persian, and Arabic. He became a practicing physician
and made important contributions to our understanding of how the heart
and the eyes work, showing that there must be three kinds of receptor at
the back of the eye (we now call them cones) to permit color vision. Going
one better, he produced the theory that light itself is wave-like in
character. In his spare time he laid the groundwork for modern life
insurance and came close to interpreting the hieroglyphs on the Rosetta
stone. The Frenchman, the Marquis de Laplace, also came from rural
origins (his father was a farmer in Normandy) and his talents, too, showed
themselves early on. He eventually became known as ”The Newton of
France” on account of his incredible ten-volume work called Mécanique
céleste. In this work he showed that the movements of the planets were
stable against perturbation. In other words, a change in the orbit of one
planet, such as might be caused by a meteor collision, would only cause
minor adjustments to the orbits of the others, rather than throw them
catastrophically out of synchrony.

Young and Laplace independently worked out the theory of capillary
rise — in Laplace′s case, as an unlikely appendix to his work on the
movements of the planets. Both had observed that when water is drawn
into a narrow glass tube by capillary action, the surface of the water is



curved. The curved liquid surface is called the meniscus, and if the glass is
perfectly clean the meniscus will appear to just graze the glass surface
(Figure 1.3).

Figure 1.3: Water Rise in a Narrow Glass Tube.

Laplace′s (and Young′s) brilliantly simple thought was that it appeared as
though the column of water was being lifted at the edge by the meniscus.
But what was doing the lifting? It could only be the glass wall, with the
molecules of the glass pulling on the nearby water molecules. But how
could such a horizontal attraction provide a vertical lift? Laplace
concluded that each water molecule in the surface is attracted primarily to
its nearest neighbors, so that the whole surface is like a rope hammock,
where each knot is a water molecule and the lengths of rope in between
represent the forces holding the molecules together (Figure 1.4).



Figure 1.4: Forces Between Molecules in a Meniscus.

The molecules (circles) are held together by attractive forces (arrows).
Molecules near the tube walls also experience attractive forces between

themselves and the walls.

A hammock supported at each end sags in the middle. A simplistic
picture of capillary rise is that the water column is being lifted in a similar
manner. More accurately, the forces of local molecular attraction tend to
shrink the liquid surface to the minimum possible area. If the surface is
curved, the tendency of the surface to shrink (known as surface tension)
produces a pressure difference between the two sides, just as the stretched
rubber surface of a balloon creates a high internal pressure. It is the
pressure difference across a meniscus that drives capillary rise.

Laplace was able to use his picture of local molecular attraction to write
down an equation describing the shape of a meniscus so accurately that the
equation has never needed to be modified since. By thinking about the
commonplace phenomenon of capillary rise, he had also unexpectedly
found an answer to one of the big questions in science at that time: ”How
far do the forces between atoms or molecules extend?” Are they long
range, like the force of a magnet on a needle, or the force of gravity
between the Sun and the Earth? Or are they very short range, so that only
nearby atoms are affected? Laplace showed that only very short-range
forces could explain the shape of a meniscus and the existence of surface



tension. Knowing how many molecules are packed together in a given
volume of liquid, he was even able to make a creditable estimate of the
actual range of the intermolecular forces. His experience shows that the
science of the familiar is more than a way of making science accessible or
illustrating scientific principles. Many of the principles themselves have
arisen from efforts to understand everyday things like the fall of an apple,
the shape and color of a soap bubble, or the uptake of liquid by a porous
material. Scientists exploring such apparently mundane questions have
uncovered some of Nature′s deepest laws.

Laplace and Young showed that the relationship between surface
curvature, surface tension, and the pressure across a meniscus was an
extraordinarily simple one — the pressure difference across the meniscus
at any point is just twice the surface tension divided by the mean radius of
curvature at that point. This relationship, which now bears their joint
names, shows (for example) that capillary action alone can raise a column
of water no more than fourteen millimeters in a tube with a radius of one
millimeter. As the tube radius becomes smaller, the water can rise higher
in proportion. For a tube one thousand times narrower, the water can rise
one thousand times higher.

Such tiny channels are present in the leaves of trees. Nature provides a
spectacular example in the Giant Sequoia, found in the Sierra Nevada
range in California. The leafy crown of the largest known specimen, the
”General Sherman,” towers eighty-three meters above the tourists passing
below. The water supply for the leaves is drawn up from the soil by
capillary action. The menisci of these huge columns of water reside in the
leaves, and a quick calculation shows that the capillary channels
containing the menisci can be no more than 0.2 micrometers wide —
about one two-hundred-and-fiftieth of the diameter of a human hair, but
just about the size of the cellulosic microfibril pores in the leaf cell walls.
The capillary pressures generated by such tiny menisci can in theory
support the continuous columns of water contained in bundles of tubes
called the xylem (which run up the trunk below the bark), and
measurements of the pressure in the xylem have confirmed the essential
correctness of this theory. There is just one problem. If a column of liquid
breaks, an airlock develops at a point where the tube is much wider, and
where the new meniscus cannot support anything like such a tall column



of liquid. Such breaks occur frequently, with each new break being
signified by a ”click” that can be heard with a stethoscope. Once a column
has broken, it seemingly cannot re-form. Yet massive trees continue to
grow, giving scientists yet another problem to puzzle over.

The Young-Laplace equation nevertheless provides the only reasonable
explanation for the uptake of water by trees. It applies equally to the
uptake of coffee by doughnuts, since the coffee is held in place in the
porous matrix by the pressure across the meniscus in the smallest of the
pores at the upper level of the coffee, just as water is held up in the xylem
of a tree by the pressure across the meniscus in the smallest of the pores in
the leaves. This leads to the paradoxical conclusion that more finely
textured doughnuts should be able to retain more coffee than their coarser-
textured cousins, provided that both have the same total pore volume.

The Young-Laplace equation has been applied to many serious practical
questions, such as the prevention of rising damp in buildings and the
extraction of oil from porous rocks, as well as to the slightly less serious
questions of cookie and doughnut dunking. It tells us how far liquids will
rise up a tube or penetrate into a porous material, but it doesn′t say how
fast. This is a key piece of information when it comes to cookie dunking.
It was provided by a French physician, Jean-Louis-Marie Poiseuille, who
practiced in Paris in the 1830s. Poiseuille was interested in the
relationship between the rate of flow of blood and the pressure in veins
and arteries. He was the first to measure blood pressure using a mercury
manometer, a technique still used by doctors today. He tested how fast
blood and other liquids could flow through tubes of different diameters
under the pressures that he had measured in living patients, and found that
the rate of flow depended not only on the pressure, but also on the
diameter of the tube and the viscosity of the liquid (i.e., its resistance to
flow: honey, for example, is much more viscous than water). Poiseuille′s
contribution to science was to describe the dependence of rate of flow on
tube diameter and liquid viscosity by means of a very simple equation (the
details of which are in the notes to this chapter).

Poiseuille′s equation can be combined with the Young-Laplace equation
to predict rates of capillary rise. Washburn was the first to do this,
producing an equation that predicts how far a liquid drawn into a



cylindrical tube by capillary action will travel in a given time. The actual
equation is:

where L is the distance that the liquid travels in time t, R is the radius of
the tube, and γ (surface tension) and η (viscosity) are numbers that depend
on the nature of the liquid. Washburn′s very simple equation predicts an
equally simple effect — that to double the distance of travel will take four
times as long, and to triple it will take nine times longer; exactly the
experimental result that Washburn obtained for blotting paper, and that I
obtained for cookies.

In the absence of gravitational effects (which were negligible for both
Washburn′s and my own experiments), the Washburn equation is
extremely accurate, as I found when studying it as a part of my Ph.D thesis
some twenty years ago. By timing the flow of liquid down glass tubes
(some of them twenty times narrower than a human hair) I found that the
equation is correct for tube diameters as small as three micrometers. Such
tubes, though, are a far cry from the interiors of blotting paper or cookies.
There seemed to be no theoretical reason why an equation derived for a
very simple situation should apply to such a complicated mess. There still
isn′t. No one, to my knowledge, understands why a liquid drawn by surface
tension into a tortuous set of interconnected channels should follow the
same simple dynamics as a liquid drawn into a single cylindrical tube. All
that we can say is that many porous materials behave in this way. The
”drunkard′s walk” diffusion equation, which predicts a similar relationship
between distance penetrated and time taken, may have a role to play.
Despite extensive computer modeling studies, though, we still don′t have a
full and satisfactory answer.

What we do know is that the Washburn equation works. It′s not the only
equation that works when it′s not supposed to. The equation that describes



how a thin stream of water dripping from a tap breaks up into droplets, for
example, has been applied very successfully to describe the breakup of an
atomic nucleus during radioactive disintegration. That doesn′t mean that
an atomic nucleus is like a water droplet in all other respects, any more
than a cookie or piece of blotting paper is exactly like a narrow tube. It
simply happens that an equation derived for an idealized situation also
applies in practice to more complicated situations, and hence can be used
to give guidance and predictions in these circumstances. Such equations
are called semi-empirical, and often arise when scientists are in the throes
of trying to understand a complex phenomenon. They are most useful at an
intermediate stage in the understanding of a problem. When a more
complete explanation eventually becomes available, semi-empirical
equations are usually discarded, although they sometimes retain a value as
teaching instruments.

The Washburn equation, applied to cylindrical tubes, has a sound
theoretical basis. Applied to cookies or blotting paper, though, it is semi-
empirical. To use it in these circumstances, we need to be able to interpret
R. R is a radius, but of what? The best that we can do is to interpret it as an
”effective” radius, a sort of average radius of all the pores and channels.
One can try to assess the value of this effective radius by measuring as
many channels as possible under a microscope and taking an average, but
there is a simpler way, using the experimental graph for cookie dunking.
The slope of this graph can be used to calculate the effective radius via the
Washburn equation. When I tried the calculation, though, the results didn′t
seem to make sense.

The effective radii of the channels in dunked cookies, calculated from
the Washburn equation, were 68, 88, and 110 nanometers for the soft and
crumbly, medium, and hard cookies respectively. These radii are very
small. The calculated diameters are hundreds, or even thousands of times
smaller than the size of the holes that can be seen in a dry cookie under the
microscope, which are measurable in micrometers (a micrometer is one
thousand times bigger than a nanometer). So what′s going on? The answer
seems to be that the structure of a wet cookie is very different from that of
a dry cookie. In a dry cookie, the starch is in the form of shrunken, dried-
up granules. These are quite tiny. In rice (which is almost pure starch), for
example, there are thousands of tiny granules in every single visible grain.



When these granules come into contact with hot water, they swell
dramatically, taking in water as avidly as an athlete during a marathon. As
it happens, my colleagues and I had studied the swelling process, which is
very important in the preservation, processing, and reconstitution of
starchy foods. We held single potato starch granules in water while we
gradually raised the temperature of the water, watching what happened
through a microscope. At around 60°C the granules suddenly increased
their volume by up to seventy times, producing what I subsequently
described in a radio interview as the world′s smallest potato pancakes.

The starch granules in cookies swell similarly when the cookies are
dipped into hot tea. The swollen, crinkled granules become very soft,
which is one of the reasons why a dunked cookie puffs up and eventually
disintegrates (the other reason is that the fat and sugar ”glue” between the
granules melts and dissolves). The granules that we were studying became
so soft that they could be sucked into glass tubes whose diameters were
three times smaller. This deformability seems to be the explanation for the
extraordinarily low values of the effective channel radius calculated from
the Washburn equation for dunked cookies — the softened granules
squeeze up against each other like rock fans at a concert, leaving only the
narrowest of gaps in between. In practice, it′s just as well. If the pores
stayed at their original ”dry cookie” size, the Washburn equation predicts
that a cookie would fill up with tea or coffee in a fraction of a second, and
cookie dunking, unlike doughnut dunking, would become a matter of split-
second timing.

As it is, the Washburn equation not only explains why cookies dunked
by the ”flat-on” scientific method can be dunked for four times as long as
with the conventional method — it can also be used to predict how long a
cookie may safely be dunked by those who prefer a more conventional
approach. Only one assumption is needed — that the cookie will not fall
apart so long as a thin layer remains dry and sufficiently strong to support
the weight of the wet part. But how thin can this layer be? There was only
one way to find out, and that was by measuring the breaking strength of
dry cookies that had been thinned down. I consequently ground down a
range of cookies on the Physics Department′s belt sander, a process that
covered me with cookie dust and caused much amusement among



workshop staff, who were more used to manufacturing precision parts for
astronomical instruments.

Whole dry cookies, I found, could support up to two kilograms of
weight when clamped horizontally at one end with the weight placed on
the other end. The thinned-down dry cookies were strong in proportion to
their weight, and could be reduced to two percent of their original
thickness and still be strong enough to support the weight of an otherwise
saturated cookie (between ten and twenty grams, depending on the cookie
type). All that was needed now was to calculate how long the cookies
could be dunked while still leaving a thin dry layer, either in the mid-plane
of the cookie for a conventional dunk or on the upper surface of the cookie
for a ”scientific” dunk. The calculation was easily done using the
Washburn equation plus the values of the effective channel radius for
different cookies. For most cookies, the answer comes out at between 3.5
seconds and 5 seconds for a conventional dunk, and between 14 and 20
seconds for a ”scientific” dunk.

Was there anything else to consider? The only thing remaining was to
examine the breaking process itself. The physics of how materials
(including cookies) break is quite complicated. The underlying concept,
though, is relatively simple (as are quite a few scientific concepts — the
expertise comes in working out their consequences in detail). The concept
here is that when a crack starts all of the stress is concentrated at the sharp
tip of the crack, in the same way that when someone wearing stiletto heels
steps on your toe, all of the painful pressure is concentrated at the tip of
the heel. If the stress is sufficient to start a crack, it is sufficient to finish
the job. That is why brittle materials (including dry cookies) break
completely once a break has started. The stress that is needed to drive a
crack depends on the sharpness of the crack tip. The sharper the tip, the
less stress is needed, in the same way that a light person wearing a stiletto
heel can produce as much pain as a heavier person wearing a wider heel. It
would seem, then, that even the tiniest scratch could potentially grow into
a catastrophic break, no matter how strong the material, so long as the tip
of the scratch was sufficiently sharp.

Engineers up to the end of the Second World War knew from practical
experience that there must be something wrong with this theory, or else a
saboteur could have caused London′s Tower Bridge to collapse into the



Thames by scratching it with a pin. Even though experience showed that
this wouldn′t happen, engineers still massively over-designed structures
like bridges and ships — just in case. Even so, there were occasions when
the theory took over. One such example was when an additional passenger
elevator was fitted to the White Star liner Majestic in 1928. Stresses
concentrated at the sharp corner of the new, square hole in the deck where
the elevator was situated drove a crack across the deck and down the side
of the ship, where it fortuitously struck a porthole (providing a rather more
rounded tip), without which the ship carrying 3,000 passengers would have
been lost somewhere between New York and Southampton. In other cases,
such as that of the USS Schenectady, ships have actually been torn in half
(Figure 1.5).

Figure 1.5: Crack Formation on a Grand Scale: the Schenectady
Disaster.

In January 1943 the one-day-old T2 tanker SS Schenectady had just
returned to harbor after sea trials when there was a huge bang, and the



vessel fractured from top to bottom, jackknifing so that the bow and stern
settled to the river bottom while the center rose clear of the water.

Photograph reproduced with permission from B. B. Rath, Naval Research
Institute.

Sharp corners are now rounded where possible to avoid stress
concentration effects. We also understand more about the mechanisms that
stop small cracks from growing, which involve plastic (i.e. plasticine-like)
flow of the material at the tip of the crack, so that the tip becomes slightly
rounded and less sharp. The process can be encouraged by the
incorporation of crack-stoppers. These are soft components in a mixed
(composite) material whose function is to stop cracks from growing.
When a traveling crack hits a particle of crack-stopper, the crack-stopper
”gives,” turning the crack tip from sharp to blunt and reducing the stress
concentration to below a safe limit. The ultimate crack-stopper is an actual
hole, such as the porthole in the Majestic.

Modern composite materials, such as those used for the manufacture of
jet engines, routinely contain ”crack-stoppers.” Cookies are also
composite materials, and also contain crack-stoppers. The crack-stoppers
are natural materials like sugar, starch, and (especially) fat, which,
although hard, still have some ”give.” As a result, most cookies are
remarkably robust, until they are thinned too far. Then the ”graininess” of
the cookie takes over. When a cookie becomes as thin as the diameter of
the individual grains, the separation of any two grains is sufficient to
reveal the void below, and the cookie falls apart.

There is a solution even to this problem — a two-dimensional crack-
stopper. That crack-stopper is chocolate, a material that ”gives” slightly
when an attempt is made to break it, and which can be (and is) often used
to cover part or all of a cookie surface.

Our eventual recommendation to the advertisers was that basic physics
provides the ultimate answer to the perfect cookie dunk. That answer is to
use a cookie coated on one side with chocolate, keep the chocolate side
uppermost as you dunk the physicists′ way, and time the dunk so that the
thin layer of cookie under the chocolate stays dry.



To my considerable surprise, the story was taken up avidly by the
media, with the Washburn equation as the centerpiece. The idea of
applying an equation to something as homely as cookie dunking made a
great hit with journalists. Those who published the equation took great
care to get it right; some even telephoned several times to double-check.
Only one failed to check, and they got it wrong, provoking the following
letter:

Dear Sir,

I think there is something wrong with your cookie-dunking
equation. Please send me some cookies for noticing this.

Chao Quan (aged 12)

Unfortunately, by the time the letter arrived, my colleagues and I had eaten
all the cookies.

Why should an eighty-year-old equation become the center of a news
story? At the invitation of the journal Nature, I tried to find an answer. My
conclusion was:

Such journalistic excitement over an equation contradicts the
normal publisher′s advice to authors — that every additional
equation halves the sales of a popular science book. Why was
this so? Let me suggest an answer, relevant to the sharing of
more serious science. Scientists are seen by many as the
inheritors of the ancient power of the keys, the owners and
controllers of seemingly forbidden knowledge. Equations are
one key to that knowledge. The excitement of journalists in
gaining control of a key was surely a major factor in their
sympathetic promotion of the story. By making the Washburn
equation accessible, I was able to ensure that journalists
unfamiliar with science could use the key to unlock Pandora′s
box.



The science of dunking may seem trivial, and in one sense it is.
Scientists′ questions often seem like a child′s idle curiosity, the sort of
thing that we should have outgrown when we reached adulthood, so that
we could concentrate on more serious things like making money or waging
war. To myself and other scientists, though, asking ”why?” is one of the
most serious things that we can do. Sometimes we try to justify it by
practical outcomes. To me, that is a big mistake, whether the outcome is
landing a man on the moon or finding a better way to dunk a cookie. The
real reason that a scientist asks ”why?” is because he or she shares with
the rest of the community the most basic of human aspirations — wanting
to understand the world and how it works. As members of a thinking
species, we all have such aspirations, and express them every time we
ponder religious beliefs, or our relationships with other people, or feelings
of any kind. Scientists find a similar sense of excitement in addressing a
particular area of life′s great canvas — the behavior of the material world.

In compensation for the narrowness of our compass, scientists have
gotten further in understanding the material world than psychologists,
philosophers, and theologians have in their attempts to understand people
and their relationships with each other or with the world. It has often
happened (as in the case of Laplace) that questions about commonplace
phenomena have produced answers to other, and sometimes more
important, questions. In the rest of this book, the science of the
commonplace is used to open doors for non-scientists. It has often opened
doors for scientists as well.



2

how does a scientist boil an egg?

The single egg, in the dark blue egg cup with a gold ring around the top,
was boiled for three and a third minutes. It was a very fresh, speckled
brown egg from French Marans hens owned by some friends of May in the
country. Bond disliked white eggs and, faddish as he was in many small
things, it amused him to maintain that there was such a thing as the perfect
boiled egg.
Ian Fleming, From Russia with Love

Energy, we now believe, is the ultimate stuff of the universe. It comes in
various forms — heat, light, microwaves, electricity, and so on. All of
these forms have one thing in common: they can be used to move things.

This even applies to domestic cooking, where the energy (usually in the
form of heat) that we put into the food does its job by moving the
molecules in the food, which wiggle and rearrange themselves to make
food more digestible and with a more palatable texture. How it does this
was the subject of a very interesting meeting that I attended in Sicily,
where scientists and chefs worked jointly to establish the best ways of
delivering heat energy to the parts of the food where it mattered. This
chapter gives the story of that meeting, and the story of energy itself. For
those readers with an eye towards practical value, it also gives the
scientific rules for the best way to boil an egg.

James Bond is not the only gourmet to have pursued the perfect boiled



egg. If he had driven his 1930 4½-liter gray supercharged Bentley coupé
up the tightly folded mountain road that scars the eastern flank of Sicily′s
Monte San Giuliano, the fluttering growl of its twin exhausts would
eventually have echoed from the ancient walls of the village of Erice,
rumored to be the former headquarters of the Mafia. These days, Bond
would have encountered a different sort of mafia — the gastronomic kind,
an international group of chefs and scientists who meet every two years in
the Ettore Majorana Center for Scientific Culture to look for ways of using
science to extend the horizons of gastronomy. There, in the year 1997,
Bond would have found the answer to his quest.

Bond would have been seventy-nine years old; ten years younger than
Nicholas Kurti, the former Oxford physics professor who inspired the
meetings. Nicholas, at eighty-nine, was still looking for new challenges
with an energy that was a tribute to his lifetime′s devotion to the pleasures
of the table. I had traveled with him from England, puffing in the wake of
his small, balding figure as we raced across the concourse of Milan airport
to catch a connecting flight to Palermo. His progress seemed unimpeded
by a backpack full of thermocouples and recorders for following the
temperature changes in food as it was cooked. Nicholas was fond of
declaiming that ”we know more about the temperature distribution in the
atmosphere of Venus than we do about the interior of a soufflé,” and this
meeting was an opportunity to correct the balance.1

It was not Nicholas′s first venture into combining science with cooking.
He was one of the first television cooks in the U.K., presenting as early as
1969 on black-and-white television a live program called The Physicist in
the Kitchen, in which he produced some surprising variants on traditional
cooking methods. He used a hypodermic syringe, for example, to inject
brandy directly into hot mince pies so as to avoid disturbing the crust. He
also demonstrated an original technique for making meringues, where he
put dollops of creamy meringue mixture onto plates in a vacuum jar and
then turned on the pump. The dollops foamed up to produce meringues
that were as hard and brittle as any prepared in an oven, but which took a
quarter of the time to make and melted in the mouth.

Nicholas was a low-temperature physicist, famous for once having held
the world record for the lowest temperature ever achieved in the
laboratory. His fame among scientists proved useful when it came to



promoting a series of meetings on the science of gastronomy, conceived as
a result of a conversation between the San Francisco cooking teacher
Elizabeth Thomas and an Italian scientist who happened to be attending a
meeting with Elizabeth′s husband at the Ettore Majorana Center, a set of
converted monasteries in Erice, on quite a different subject. The director
was keen on the idea, and promptly asked Elizabeth to organize such a
meeting. Elizabeth suggested that Nicholas, an old friend and a leading
figure at many Erice meetings, would be the ideal scientific link. The only
problem was the title. A series on ”The Science of Cooking” seemed rather
out of keeping in a place used for hosting discussions on major questions
like ”Planetary Emergencies” and ”The Mathematics of Democracy.”
Nicholas, ever the pragmatist, suggested the more impressive title
”Molecular and Physical Gastronomy,” and the Erice series of meetings
was born.

The Majorana Center turned out to be an excellent environment. The
meeting room, which holds about forty (the upper limit for our meetings),
lies on one side of a flagstone courtyard. On the opposite side of the
courtyard is the old monastery kitchen, now modernized so that ideas
arising in the course of the meeting or those proposed beforehand could be
tried out. The meeting title has also turned out to be a good one, and has
been widely adopted outside the confines of Erice. Its value is that it
accurately reflects our approach to gastronomy, which is to focus not on
the whole gastronomic experience (that is the responsibility of the chef),
but on what is happening to the food at the molecular level. The problem
of producing a perfect boiled egg, for example, is a problem of convincing
the string-like albumin protein molecules in the white of the egg to
become entangled while leaving similar molecules in the yolk in their
native, unentangled state. This is a matter of getting the right amount of
heat to the right place. Just how to do this is the central problem, not just
of egg-boiling (which was not even on the agenda when we began our 1997
meeting), but of cooking in general.

The transport of heat is a matter of physics, but its rules are so simple
that no scientific training is needed to understand them. To work out how
the rules apply to practical cooking problems, though, it is necessary to
understand how heat affects food flavor and texture, and this in turn means
understanding what heat is. Unfortunately for ease of communication



between chefs and scientists, the true nature of heat is not readily
understandable in commonsense terms. It was time for a short history
lesson. Luckily, it was one in which food entered in unexpected and even
entertaining ways.

Until the middle of the nineteenth century, heat was believed to be an
actual fluid. This was a perfectly reasonable, commonsense view, since
heat is clearly able to ”flow” from hotter to colder places, and it is
difficult to imagine this happening unless heat is a real fluid. The fluid
even had a name — caloric — and it was believed that ”the sensation of
heat is caused by particles of caloric passing into our bodies.” The
commonsense picture of heat as caloric accounted for a lot of the known
facts. Addition of caloric to an uncooked piece of meat would, likewise,
produce a different material: the cooked version.

Although caloric lived on into the mid-nineteenth century, its death
knell was sounded some fifty years earlier by the American adventurer
Benjamin Thompson, a man whose personal and scientific lives were both
influenced by some unusual encounters with food. When he was in his
twenties, and in command of British troops during the American War of
Independence, his soldiers used tombstones from a cemetery to build a
bread oven. Some of the loaves were distributed to members of the local
community, unfortunately with the epitaphs of their dead relatives baked
backwards into the crusts. After this ”it was considered prudent that he
should seek an early opportunity of leaving the country.” He moved to
England, where his talent for personal advancement proved so great that
he became undersecretary of state within four years, and a Fellow of the
Royal Society for his research into gunpowder, firearms, and naval
signaling.

Moving to mainland Europe, he acquired the title of Count Rumford,
Count of the Holy Roman Empire, and became Minister of War for
Bavaria. It was in this capacity that he came to be in charge of the Munich
arsenal when he made the famous observations that led to his devastating
dismissal of caloric. In his own words:

Being engaged ... in superintending the boring of cannon, I was
struck with the very considerable degree of Heat which a brass



gun acquires, in a short time, in being bored; and with the still
more intense Heat (much greater than that of boiling water, as I
found by experiment) of the metallic chips ... the source of the
Heat generated by friction, in these Experiments, appears to be
inexhaustible. It is hardly necessary to add, that anything which
any insulated body ... can continue to furnish without
limitation, cannot possibly be a material substance; and it
appears to me to be extremely difficult, if not quite impossible,
to form any distinct idea of anything, capable of being excited
and communicated, in the manner that Heat was excited and
communicated in these Experiments, except it be MOTION.

Rumford′s conception of heat as motion is now commonplace among
scientists. We think of the effect of heat on a food, for instance, largely in
terms of the increased mobility of the molecules in the food, which
consequently become rearranged and disrupted. The long albumin
molecules in the white of a boiled egg, for example, which exist as loosely
folded balls at room temperature, unfold and wave around as the egg gets
hotter, eventually becoming entangled and creating a three-dimensional
network which traps the water in the egg white, turning it from liquid to
solid and from transparent to opaque. Computer simulations are now
available that demonstrate such molecular rearrangements in graphic
detail. No amount of picturesque detail, though, will answer a fundamental
question. Heat is one thing. Motion seems to be something totally
different. How could the two possibly be related?

The solution to this problem required a leap of imagination at least as
brilliant as that required for the development of quantum mechanics or the
Theory of Relativity. Yet, while everyone has heard of Einstein, few have
heard of Julius Mayer, the failed German physician who linked heat and
motion through the concept of energy.

The full story of Mayer′s despairing efforts to get his ideas accepted,
culminating in his attempted suicide, is given in Appendix 1 at the end of
this book. Suffice it to say here that his ideas were eventually accepted,
even though the credit often goes to others, and the notion of ”energy”
now underpins the whole of science.



What is ”energy”? Luckily for ease of communication, the scientist′s
definition is very close to the way in which we use the word in everyday
speech. Put simply, ”energy” is anything that can be made to perform
physical work, i.e., to move something. The more energy we have, the
more we can move, and the further we can move it. A beam of light, for
example, can be used to spin a tiny windmill known as a Crooke′s
radiometer. Light, then, is a form of energy, just as heat, electricity,
magnetism, and gravity are also forms of energy, all of which can be used
to drive different types of engine. Movement itself is a form of energy,
since one moving object may be used to move a second one. Energy of
motion has its own name — kinetic energy. When we heat food, as
Nicholas Kurti pointed out, the increased kinetic energy of the individual
food molecules lets them work harder to vibrate, wriggle, and strive to
break free from their moorings, eventually undergoing changes that
usually make the food more palatable.

The concept of heat as the energy of molecular motion lets us
understand many of the events in cooking that would have been a puzzle to
believers in caloric. If it is true that caloric + raw food = cooked food, then
the addition of caloric at any temperature should eventually cook the food.
Yet an egg can be left in water at 50°C for hours without the white setting,
while if the temperature is raised to 70°C the white will set within a
quarter of an hour; a time that reduces to the classic three minutes or so if
the temperature is raised to 100°C, the temperature of boiling water.

This temperature effect — inexplicable using the commonsense caloric
picture of old — is easily accounted for using the concept of heat as the
energy of molecular motion. The string-like albumin molecules in the egg
white have a loosely folded ball structure (technically known as a random
coil). This structure is held together by weak attractive forces between
those parts of the molecular chain that cross close to each other. The
structure is a dynamic one, fluctuating and wobbling as it is bombarded
from all sides by surrounding water molecules. As the temperature is
increased, the energy of the bombarding molecules correspondingly
increases, as does the energy of internal vibration of the albumin chain
itself. There comes a point where that energy is sufficient to disrupt the
weak linkages that hold the structure together. This happens at a fairly
precise temperature (around 68°C). Below that temperature, no amount of



cooking will disrupt the structure. Above it, the albumin molecules unfold
and become free to entangle themselves with other, similarly unfolded,
albumin molecules, creating a new structure — a three-dimensional net.

Just one thing needs to be clarified about this (slightly simplified)
picture — the difference between the words ”heat” and ”temperature.”
Einstein, writing in 1938, believed that ”these concepts are now familiar to
everyone,” but Einstein was wrong. Most people outside science (and a
surprising number inside) would still be hard-pressed to spell out the
difference between heat and temperature. We needed to be clear about the
distinction in our discussion of cooking. With the concept of energy under
our belts, the clarification (presented by Nicholas) took about thirty
seconds. The distinction, as Nicholas pointed out, is very simple. Heat
refers to total energy. The temperature of a material, on the other hand, is
a practical measure of the average energy per molecule in the material. In
cooking, the total energy that is delivered to the dish being cooked
depends on the cooking device. Hotplates and grills deliver heat energy at
a rate which is more or less constant for a particular setting, so the amount
delivered to the dish depends on the time and the setting. Microwave
ovens deliver energy in intermittent bursts of constant power, with the
relative ”on” and ”off” times being determined by the setting. The amount
of energy that is actually absorbed by the food depends on how much
moisture is present and its position in the spatially uneven microwave
field in the oven. The effect of the total amount of heat energy delivered
on the temperature depends on how much food there is (the more food, the
more molecules), on the type of food, and on how the heat energy is
distributed within the food. It is the temperature, rather than the total
amount of heat energy added, that determines what happens in cooked
food at a molecular level. One (usually minor) effect arises from the fact
that more energetic molecules, like more energetic people, need more
space, jostling each other aside to get it, which is why materials expand as
the temperature increases (e.g., the liquid in a thermometer). As the
temperature increases, molecules also change their shapes, move to
different places, break apart, and join chemically with other molecules.
All of these changes (see Appendix 2) alter the flavor and texture of the
food. The aim of cooking is to direct those changes in a gastronomically
appropriate manner.



The main problem in cooking is how to achieve the appropriate
temperature distribution in the food. There are simple physical laws that
can be used to predict the temperature distribution. Our aim at the 1997
Erice meeting was to find out whether these laws work in practice during
cooking, or whether some foods might have nasty surprises in store.

The two main processes by which heat energy might be transported
within food are conduction and convection. All materials conduct heat; the
difference between ”conductors” and ”insulators” lies only in the rate at
which they conduct heat. Meat, for example, is almost as efficient an
insulator as the rubber in a wetsuit, but its low heat conductivity is
nevertheless sufficient to permit the center to reach a reasonable
temperature during cooking.

If the hot material in a food can move, convection also becomes a
possibility. Although the notion now seems familiar (as in convector
heaters), it was in fact discovered by Count Rumford little more than two
hundred years ago, after another unfortunate encounter with food:

When dining, I had often observed that some particular dishes
retained their heat much longer than others, and that apple pies
... remained hot for a surprising length of time ... I never burnt
my mouth with them, or saw others meet with the same
misfortune, without endeavouring, but in vain, to find out some
way of accounting ... for this surprising phenomenon.

Twelve years later, he had a similar encounter with thick rice soup, which
had been brought to him hot but which he had left for an hour. His first
spoonful, taken from the top, was cold and unpleasant. The second, taken
from deeper down, again burned his mouth. Rumford was still puzzled.
His puzzlement was due to the fact that water was believed at the time to
be a good conductor of heat. Why, then, did these waterladen dishes not
cool down faster? As so often in culinary matters, alcohol eventually
supplied the answer. The alcohol was in the huge (4-inch) bulb of a
specially constructed thermometer that Rumford had taken to a high
temperature during an experiment and then left on a windowsill to cool. To
his intense surprise, he saw ”the whole mass of liquid in a most rapid



motion, running swiftly in two opposite directions, up, and down, at the
same time.” Looking more closely, he discovered that ”the ascending
current occupied the [central] axis of the tube, and that it descended by the
sides of the tube.” This process, which Rumford called convection, is
commonplace in cooking. When water is heated in a saucepan, for
example, the heated water at the bottom, which expands and becomes less
dense than the colder water above, rises to the top, and is replaced by an
inflow of cold water, which is again heated in turn, so that there is a
continual circulation of water carrying heat to all parts of the saucepan
(Figure 2.1).

Figure 2.1: How Convection Works. The movement of water in a
saucepan.

Convection is vastly more efficient than conduction as a mode of
transporting heat. Water was thought to be a good conductor only because
no one before Rumford had recognized that convection existed. Rumford
guessed that water is really a poor conductor of heat, and that his problems
with apple pies and rice soup had occurred because the free movement of
the water was somehow blocked in these dishes. To check his guess, he
deliberately blocked convection in two pans of hot water, dissolving starch
in one and stuffing an eiderdown in the second. He found that the water in
these pans cooled much more slowly than did the hot water in a pan to
which nothing had been added to hinder the convection process. Rumford



speculated (correctly) that, in dishes such as stewed apples and thick rice
soup, convection currents are slowed down or blocked by the presence of
fiber and dissolved substances that are released during cooking. The
surface layer may cool down, but the hot material inside cannot be
transported by convection to the surface.

Convection is likely to be similarly blocked in an egg that is being
boiled, since the heat-induced density gradients in the white are unlikely
to be large enough to cause substantial material movement of such a
viscous material. Convection is even less likely in dishes like vegetables
or roast meat, where the water is held trapped in a matrix of fibers.
Conduction, though slow, is likely to be the dominant mode of heat
transport in such foods. The disadvantage of this, from the point of view of
a chef, is that meat and large vegetable pieces take a relatively long time
to cook. The advantage, though, is that these foods (once cooked) retain
their heat for a long time. Another advantage is that its basic rules are easy
to write down. Those rules, though, are not always the ones that are given
in cookbooks or believed by chefs.

Take the simple case of a large, flat slab of meat, such as a steak,
cooked in a vertical grill so that it is being heated equally from both sides.
If the thickness of the meat is doubled, what does that do to the cooking
time? A consensus of chefs (not those at Erice!) got the wrong answer.
Many thought that it might not take even twice as long to cook the thicker
piece. The correct answer, proved by experiment, is that it will take four
times as long to cook the thicker piece, if one defines ”cooked” as
”reaching the same temperature at the center.” This is one example of the
fact that heat transfer by conduction generally follows a ”square rule.” To
get the heat twice as far takes four times as long.

”Why a square rule?” asked the chefs at Erice. The answer lies in the
way that kinetic energy is transferred between molecules in food.

The process starts in cooking when heat energy reaches the food
surface, increasing the kinetic energy of the surface molecules. These
molecules then pass some of that energy on to their less energetic
neighbors by a ”knock-on” effect. The energy continues to be passed on to
further molecules in relay fashion. The rules that govern this process are
statistical, and based on the idea that the energy may be passed in any



direction with equal probability, so that the governing equation is the same
as that which describes the random diffusion of molecules in a liquid (see
chapter one). This equation shows that the time taken for heat energy to
travel a given distance by conduction depends on the square of the
distance. To travel twice as far takes, on average, four times as long.

The equations for conductive heat transfer were written down by the
French mathematician Jean Baptiste Fourier, one of the savants who
accompanied Napoleon to Egypt in 1798. The square rule is a solution to
Fourier′s equation that is accurate for flat pieces of food where the width
is very much greater than the thickness. Would it work for a food such as
an irregularly shaped roast? There is every reason to expect it to. Solutions
of Fourier′s equation for shapes other than a flat slab are complicated, but
all contain a term in which the time depends on the square of the distance.

Theory, though, is no substitute for experiment, especially where
cooking is concerned. We decided at Erice to test the theory with a genuine
roast, lovingly prepared by chef Fritz Blank, proprietor of the famous
Philadelphia restaurant Deux Cheminées. My task was to lace the roast
with fine wire thermocouples, inserted so as to monitor the temperature
changes at different depths in the meat. The wires from these
thermocouples trailed across the kitchen from the oven to a multichannel
recorder, where Fritz and I sat watching while we sipped a reflective glass
of wine. Two hours later, the center of the roast had reached Fritz′s
prescribed value of 45°C, and conference talks were forgotten as the
speakers crowded with the rest, eager for a taste. First, though, Fritz
insisted that the roast had to be left for forty minutes to ”settle.” I couldn′t
understand the reason for this bit of chef′s folklore, though I was soon to
find out why. The delay gave me an opportunity to keep monitoring the
temperature of the roast as it cooled down, while analyzing the data
obtained so far. If the square rule held, then a graph of distance squared
against time to reach any particular temperature would be a straight line. I
tried it for a few different temperatures. When I saw the results, I felt that
the glass of wine had been justified. The temperatures in the meat during
roasting followed the square rule beautifully.

The roast, meanwhile, had a little surprise in store for us. The
thermocouples near the surface showed that the temperature had begun to
drop as soon as the roast was removed from the oven. Those nearer the



center, though, showed the temperature still rising! The center
temperature continued to rise for the next forty minutes, eventually
reaching 55°C, a temperature appropriate for somewhere between medium
and well-done. Does meat, then, disobey the normal rules of conduction?

I quickly realized that the normal rules of conduction were in fact
responsible. The cool center of a roast is surrounded by hotter meat, even
after the roast has been removed from the oven. The layer of highest
temperature will be somewhere between the outside and the middle, and
heat will flow from this layer to cooler places, which means that it will
flow both to the outside and the inside of the meat. Later analysis showed
that the rate at which this process occurs fits very closely with the
predictions of Fourier′s equation. The analysis also showed that the chef′s
habit of allowing large roasts to ”settle” before bringing them to the table
has a very solid scientific foundation. The center of the meat goes on
cooking, and the temperature profile also flattens out, so that the meat is
more evenly cooked. Meat will also be more evenly cooked if it is roasted
for longer at a lower temperature. But how can this be achieved when we
want high temperatures to promote the browning reactions at the surface,
giving that lovely crispy texture and flavor?

The answer is simple. Start the oven off at a high temperature, then turn
the temperature right down after a short time. This is what professional
chefs like Fritz do when they are not collaborating in experiments. The
square rule still applies, though the actual times are different because of
the lower oven temperatures. In fact, the square rule is a good guide for
many foods. The differences between cooking times based on the square
rule and those calculated from such traditional methods as ”20 minutes per
pound plus 20 minutes” or ”25 minutes per pound plus 25 minutes” are
interesting:



Table 2.1: Calculated Times to Cook a Piece of Roast Beef to “Rare”
Perfection in anOven at 190˚C (375˚F).

The traditional rule inevitably overestimates cooking times for smaller
pieces of meat and underestimates the times required to cook larger
pieces. There will be a crossover point where the two rules agree exactly
for a given weight of meat, usually the weight with which the writer
recommending the particular rule has had the most cooking experience.
The agreement between the two rules for a range of weights on either side
of this crossover point is reasonable. There is an interesting mathematical
reason for this range of agreement, with the main point for the practical
cook being that the calculated cooking times diverge more rapidly for
weights below the crossover point than they do for larger weights.

Top-class chefs are very good at estimating cooking times, and how
these times change with weight, without recourse to the square rule, with
which their estimates usually accord quite closely. The rule for the
intelligent domestic cook is: Practice until you produce the perfect result,
and keep a note of the weight of the portion and the time that produced the
result. Then use the square rule to alter the cooking times for portions with
different weights. This sounds very straightforward, but there is a trap.
The square rule applies to diameters, not to weights. To convert from one
to the other is tricky unless you are mathematically inclined. In
mathematical terms, the cooking time scales with the square of the
diameter but with the two-thirds power of the weight. The conversion is
doable but mathematically complicated, so forget it unless you are a dab



hand with a calculator. Instead, just add fifty percent to the cooking time if
you double the weight, and proportionately less or more otherwise (e.g., if
the weight increase is fifty percent, add twenty-five percent to the cooking
time). This simple approximation to the actual rule is surprisingly
accurate, as tests with the figures in the table above will quickly show. It′s
probably the rule that top-class chefs have intuitively worked out for
themselves.

The square rule, which applies to so many foods, should surely apply to
boiled eggs — and it does. We didn′t need to do the experiment at Erice,
though. Richard Gardner, Professor of Cell Biology at the University of
Oxford, had already done it nine years earlier when trying to understand
why his twoyear-old son Matthew was able to eat the yolk of a freshly
opened boiled egg, but steered clear of the white until it had cooled down.
Stimulated by scientific curiosity, Professor Gardner inserted a pair of
thermocouples into an egg, one in the white and one in the yolk, and set
the egg to boil. Professor Gardner did not interepret his data in terms of
the square rule, but we were able to, because he published his results in an
extraordinary anthology on food and drink by Fellows and Foreign
Members of the Royal Society. The editor of the anthology was (of
course!) Nicholas Kurti.

A graph of the results is shown in Figure 2.2. The lower ”wiggle” (A) in
the curve for the temperature of the white is an artifact, arising from
moving the thermocouple after the measurements had started. The upper
”wiggle” (B), however, has real meaning. It occurs at the temperature (and
time) when the white sets, and setting takes energy, therefore the
temperature of the white stays constant (if energy is coming in by
conduction as fast as it is being used to rearrange molecules) or even drops
(if more energy is required to rearrange the albumin molecules than is
available from conduction).

Professor Gardner allowed his egg to cook for thirty minutes, an
appropriate procedure for a lover of very hard-boiled eggs, and also for a
scientist interested in testing the application of the square rule, which
gives an excellent fit to Professor Gardner′s data. The production of a
perfect soft-boiled breakfast egg, though, requires the cooking to stop after
a much shorter time. In fact, if Professor Gardner had removed the egg
after three and a half minutes (the time at the end of the second ”wiggle”)



and opened it immediately, his egg would have been perfectly cooked
(assuming that the thermocouple in the white had been measuring the
temperature at a point very close to the yolk). We know that the egg would
have been perfectly soft-boiled because at the temperature when the white
sets, the yolk is still runny. This is due to the fact that the protein
molecules in the yolk are each wrapped around a tiny core of oil. It takes
more energy to release the protein from the oil surface than it does to
unwind an albumin molecule in the aqueous environment of the white —
the yolk proteins are not free to move around and become entangled until
the yolk reaches a higher temperature than the white. The yolk, in fact,
only sets above a temperature of 68°C, so the problem of boiling an egg
becomes a matter of getting the white above 63°C, while keeping the yolk
below 68°C.

Figure 2.2: Internal Temperature of an Egg During Boiling.

Redrawn from Richard Gardner, “On Boiling Eggs,” in Kurti, N. and G.
(eds.), But the Crackling Is Superb.



For the cook without a thermocouple, it′s a matter of delicate timing.
The square rule lets us calculate the length of time required, which is
astonishingly sensitive to the size of the egg concerned (and will also get
longer if you do your cooking on top of a mountain, where the boiling
point of water is lower). The calculation was performed by Dr. Charles
Williams of Exeter University in 1998:

Table 2.2: Calculated Times to Boil the Perfect Egg.



These figures show that James Bond was right — so long as the French
Marans hens laid at least some eggs that were 39 millimeters in diameter,
and that these eggs were kept at room temperature. Bond, in his fastidious
way, would of course have had a metal ring available with a diameter of 39
millimeters, and would only have used eggs that just fit through this ring,
so that a cooking time of three and-one-third minutes would have been
perfect. For medium eggs at room temperature, place directly into boiling
water, and allow around four minutes cooking time. The times will shorten
if the egg is allowed to ”settle” before being opened, since the center will
continue cooking even after the egg is removed from the boiling water,
just as the center of a roast joint keeps on cooking after it has been
removed from the oven. Such a procedure will produce a more delicately
textured egg, with the white not quite so rubbery, since fewer cross-links
will have been formed between the albumin molecules. A sophisticated
way of tackling this problem, devised by Fritz Blank and used in his
restaurant, is to cook the eggs for a shorter time than normal and then to
roll them in crushed ice while the inside goes on cooking, so that the
residual internal heat goes towards cooking the center but does not
overcook the outside of the white and create a rubbery texture. However,
as Nicholas pointed out, there is an even better way. His approach, later
elaborated by Hervé This in a letter to the magazine New Scientist, was
based on the knowledge that the white sets at a lower temperature than the
yolk. All that is needed, then, is to boil the egg in a liquid whose boiling
point is between the two setting temperatures. The white will eventually
set, but the yolk never will. And the egg can be boiled for as long as the
cook likes.

Someone with the resources of a scientific laboratory can achieve the
appropriate temperature (between 63°C and 68°C) by boiling the water
under reduced pressure. This requires elaborate (and expensive) apparatus,
together with appropriate safety measures. The alternative is to use a
different liquid altogether, one with a boiling point of 64–66°C. There are
a few such liquids. One, common in chemical laboratories, is methanol
(also known as wood alcohol), which has a boiling point of 64.6°C. There



are only three problems. The first is the flavor that the methanol is likely
to impart to the egg through its porous shell. The second is availability —
wood alcohol is available to chemists for scientific purposes, but its
commercial use is mostly as a poisonous adulterant in methylated spirits.
It is the third problem, though, that presents the most difficulty. Methanol
vapor is highly inflammable, and liable to catch fire even on an electric
hotplate. The conclusion is that there is an ideal, scientific, guaranteed
method to boil the perfect egg, but don′t, whatever you do, try it at home.
James Bond might have been able to get away with it, dousing the
resulting flames with one of Q′s special gadgets that he doubtless carried
in the trunk of his Bentley. He may even have been able to use the flaming
egg as a Molotov cocktail. For a proper gastronomic experience, though,
the rest of us will do far better by sticking to a combination of water and
simple arithmetic.



3

the tao of tools
One of my greatest problems as a student learning about science was
wanting to understand the logical basis of the ideas that were being
presented to me. It sounds like just the sort of problem that a scientist
ought to have, but many of the most fundamental ideas were simply
presented to us as facts to be accepted and used. My more successful
contemporaries accepted this approach, got on with things, and in due
course became professors and even vice chancellors. I, in the meantime,
spent endless hours trying to figure out where things like the Schrödinger
equation (which governs all of quantum mechanics) came from, or how
the concept of energy arose.

I eventually found out that the Schrödinger equation was a complete
guess, perhaps the most brilliant guess in the history of science, and that
the concept of energy grew gradually from efforts to understand what heat
was. When I looked more closely, though, I found that energy was always
defined in terms of its ability to perform physical work, so work,
therefore, was an even more fundamental concept than energy. Where did
this concept come from? It took me thirty-five years to find out. When I
did, the answer came as a complete shock. The definition of ”work,” the
most fundamental quantity in science, came entirely from intuition. We
don′t even know whose intuition. We do know, though, that the definition
can be used to figure out how best to use the tools that supposedly save us
work. They don′t, of course. What tools do is to make work possible, by
changing the balance between the force we need to exert and the distance
through which we have to move the point of application of that force to do
a given job. This chapter describes how that principle arose, and how
people from Archimedes onwards have used it to achieve objectives
ranging from lifting a Roman galley out of the water to removing
recalcitrant nails from hardwood. The same principle can be used to work



out the most efficient way to use tools. As the reader will find, this is not
always the way that they are usually used by handymen and tradesmen.

Is it best to drive a nail into a piece of wood with a series of light blows
rather than a few heavier blows? When removing a nail with a claw
hammer, does it help to place a small block of wood under the head of the
hammer? Are long screwdrivers easier to use than shorter screwdrivers
with the same blade size? How sharp does a chisel really need to be? From
practical experience, the answers to these questions are: yes, yes, yes, and
very. There is a right and a wrong way of using tools; an effective and an
ineffective way; a way that makes the work easier and a way that makes
work harder.

Practical experience is codified in books such as Morgan′s classic
Woodworking Tools and How to Use Them, a book that I devoured eagerly
when young, partly in the hope of showing my father that some aspect of
his workshop teaching had been wrong. Sadly for my youthful hopes, the
rules were just as he had said (I later found that he too had read Morgan′s
book). Nowhere, though, did the books say why the rules were as they
were. In this they differed from the other books that were shaping my
future life — the popular science books that addressed the question of why
instead of how. The world portrayed in those books seemed to me a more
important one, dealing with things that really mattered, and far removed
from the mundanely practical. I did not realize how the two worlds feed
off each other, and how they are both part of one larger, interconnected
world of understanding.

I was not the first to make such a mistake. Archimedes, born nearly
three hundred years before Christ, shared my misconception that practical
things are much less important than ideas. Even though he invented many
practical devices, he seldom thought them sufficiently important to write
down their details for posterity. It is because of this attitude that he left no
description of the first hand tool to be designed from scientific principles.

As hand tools go, it was rather large; large enough, in fact, to lift a
Roman galley clear of the water and shake the frightened soldiers out like
weevils from a sailor′s biscuit. Despite its size, though, it still fitted the
Oxford Dictionary definition of a tool as ”a mechanical implement for



working upon something ... held in and operated directly by the hand, but
also including some simple machines.” This particular one probably
required quite a few hands to operate. We know from historical records
that it took the form of an asymmetric lever, mounted on the seawall of
Archimedes′ home town of Syracuse as protection against an invading
Roman fleet. The lever arm must have been like a long tree trunk. The
short end hung over the sea, with a claw-like grab suspended from it. Once
the grab had hooked into some part of an attacking ship, teams of men or
animals pulling down on the long end of the lever could lift the ship clear
of the water. The device was so effective, according to the Greek historian
Plutarch, that if attacking Romans saw a piece of wood projecting over the
seawall it was enough to make them turn tail and head for the open sea
(Figure 3.1).

Archimedes′ great machine worked first time because he understood not
just how levers work (the ancient Egyptians knew that) but why they
function in the way that they do. He had worked out the law of the lever
years earlier, and described it in a book entitled On Balances or Levers, a
book that is unfortunately now lost. Put mathematically, as Archimedes
would have done, the law simply states that the product of the load and the
length of the lever arm is the same for both loads. An earlier writer,
mysteriously called the pseudo-Aristotle, worked out the law intuitively
and put it in a more understandable way: ”... as the weight moved is to the
weight moving it, so, inversely, is the length of the arm bearing the weight
to the length of the lever arm nearer the power.”

I discovered the lever principle experimentally, as many children do,
when I found that I was able to lift my father′s weight on a seesaw,
provided that he sat sufficiently close to the middle while I sat on one end.
He weighed three times as much as I did, so I had to sit three times as far
away from the middle (Figure 3.2).



Figure 3.1: Hypothetical Reconstruction of Archimedes’ Ship-Lifting
Lever.

Figure 3.2: Balancing on a Seesaw.

The fulcrum, or balance point, is the point about which rotation occurs.
Technically, a seesaw is a first-order lever, since the loads are on opposite



sides of the fulcrum.

I quickly learned to apply the lever principle to other situations,
including the memorable occasion when I used one of my father′s
carefully sharpened chisels to jimmy open the tightly stuck lid of a tin of
candies. My father said that he would teach me to use his chisels in that
way, but I already knew, and avoided the painful lesson by hiding in the
wardrobe.

As time went on I learned that there are other forms of lever, such as the
wheelbarrow. My struggling attempts at age twelve to use one to shift a
load of wet cement led a friend′s mother to scream in alarm: ”Oh, Lenny,
don′t do that; you′ll bust a kafoops valve!” The lever principle worked
fine, though, and I didn′t bust a kafoops valve, whatever that is (Figure
3.3).

It wasn′t until I reached high school that I learned the very simple
mathematics underlying the use of levers, and realized that this could be
used to calculate in advance, as Archimedes had, just where to put a
fulcrum and how to design a lever to do a given job. I now use this
knowledge in the design and construction of scientific measuring
instruments for my own and other people′s research. Only recently, though,
did I start to wonder whether I could apply this and a few other equally
simple physical principles to improve my efficiency in using hand tools to
tackle simple domestic jobs.



Figure 3.3: The Wheelbarrow.

Technically, a wheelbarrow is a second-order lever, since the load and the
lifting force are on the same side of the fulcrum, with the lifting force

being further away than the load.

The stimulus for the thought was a conversation over earlymorning
coffee in the Physics Department at Bristol University, where I raised the
question of why long-shafted screwdrivers appear to be easier to use than
shorter screwdrivers of the same blade width. It′s a typical scientist′s
”why?” question. Contrary to popular belief, there is no prescribed,
rigorous, logical path for finding the ”scientific” answer to such a
question. It′s very much a matter of style, with individual scientists
following one of three broad approaches. The first is to work out an
answer based on fundamental principles, not accepting or even caring what
others might have said before. Some of the scientists best-known to the
public, such as Archimedes, Newton, and Einstein, worked in this way.
Those who are capable of using this approach tend to be the gadflies of the
scientific community, respected, and sometimes feared, by their fellow
scientists.



One such was John Conrad Jaeger, the Australian coauthor of an
influential applied mathematics textbook. A friend of mine was present
when Jaeger was in the audience for a seminar given by a student just
finishing his Ph.D at the University of Tasmania. It was in the early days
of computers, and the student was reporting his success in using one to
tackle a particularly complicated problem. My friend describes how the
student ended his seminar with a flourish as he produced the complete
solution to the problem, then stood back with his supervisor, basking in
the adulation. Jaeger asked if he might come to the blackboard, which was
still covered with the student′s equations. Picking up a piece of chalk, he
began mumbling to himself, ”The limit of this function is so-and-so; that
expression is approximated as this; these two terms cancel ...” After a
minute or so, he produced the solution to the problem, glanced over at the
student′s results, said, ”Yes, that′s right,” and sat down.

Science could hardly survive without people like Jaeger, who have the
capacity to see straight through to the heart of a problem. I have been
privileged to work with a few such people in the course of my scientific
career. One was a mathematician who could solve problems where I
wouldn′t even know how to start. I could at least understand the answers,
since I had once done a degree in pure mathematics. I incautiously
revealed this fact one day, whereupon he turned, looked at me with
astonishment, and said, ”You?!” At Bristol they were more polite, but
equally forthright, when I raised the problem of the screwdriver. My
argument was that longer screwdrivers must be easier to use because they
can be tilted slightly without the head coming out of the slot, thus
providing added leverage. My colleague Jeff Odell calculated, in the time
that it took for one sip of coffee, that a tilt of a few degrees would add
little to the rotational force, and commented that, in any case, leverage had
little to do with it. ”A firmly held screwdriver,” he commented, ”is simply
an extension of the arm. The ease of rotating the forearm is the only thing
that counts. Longer screwdrivers are probably easier to use because the
handles are bigger and easier to grip without slipping.”

I had no answer to that other than to go away and try the experiment.
The results of this approach are given later in this chapter. It′s the
approach that I have most often used in my scientific career, and one that



puts me firmly in the second camp of scientists — those whose first
instinct is to measure something and think about the results afterwards.

My favorite example of this style of tackling scientific questions is that
of Lord Rutherford, the bluff New Zealander who dominated British
physics early in the last century. Rutherford was studying alpha-particles
— heavy, positively charged particles that are emitted from some
radioactive materials like bullets and which travel at an appreciable
fraction of the speed of light. He later recalled that ”One day Geiger [his
right-hand man, and the inventor of the Geiger counter] came to me and
said, ′Don′t you think young Marsden whom I am training in radioactive
methods ought to begin a small research?′ Now I had thought so too, so I
said, ′Why not let him see if any alpha-particles can be scattered through a
large angle [from a thin piece of gold foil]?′”

On the face of it, this was a crazy experiment, with no realistic chance
of success. At the time, atoms were believed to be like tiny individual
plum puddings, with negatively charged electrons (the raisins) dotted
randomly about in a spherical haze of positive charge (the pudding).
Speeding alpha-particles should pass straight through a material built from
such atoms with no more trouble than a rifle bullet through a real plum
pudding. Yet when Marsden tried the experiment, many alpha-particles
were deviated widely from their paths, and some were even reflected back
in the direction from which they had come. According to Rutherford, this
was ”quite the most incredible event that has ever happened to me in my
life ... It was almost as incredible as if you fired a fifteen-inch shell at a
piece of tissue paper and it came back and hit you.”

Rutherford had no reason to expect such a spectacular effect, but he had
done what many scientists with a good experimental instinct do; that is, to
try something that could be important if it worked, and not bothering too
much about whether it was actually likely to work. The less likely an
experiment is to work, the more significant the result is likely to be. In
this case, the result was very significant, and led Rutherford to develop the
modern picture of the atom, with the ”haze of positive charge” actually
concentrated as a central lump (the atomic nucleus), substantial enough to
deflect alpha-particles that approach too closely.



Rutherford′s approach of trying out an instinctive idea was probably the
one used by the early inventors of hand tools, including the unknown
person who first thought of tying a handle to the piece of rock used to
smash animal bones, thus turning that piece of rock into a hammer. The
real Rutherford of the hammer world, though, was the person who, after
several thousand years of poorly tied heads flying off hammer handles,
conceived the idea of putting a hole in the head and fitting the handle into
that.

Many varieties of hammer have since been developed. I was interested
to find out whether anyone had taken Rutherford′s next step, the one that
marks a true scientist, of asking why hammers, screwdrivers, and other
hand tools work in the way that they do and, if so, whether this
information had been or could be used to optimize the way that we now
design and use these tools. To do so, I enrolled myself in the third and
largest scientific camp — that composed of scientists who, sensibly, look
to find what others have done before they go on to consider a question
further themselves.

Some of the very best scientists belong in this camp, providing the
mortar that holds the whole structure of science together. They are people
like my early collaborator Jacob Israelachvili (now at Santa Barbara), the
scientist who first measured the forces between surfaces so closely spaced
that no more than a few atoms could have fitted between them — an
experiment that many, including myself, had thought impossible. He
performed these experiments for his Ph.D, and later told me that he had
spent two and three-quarter years out of the allotted three in studying what
others had done and using this knowledge to design and build equipment
to do the job better. He then took just two months to perform the
measurements that made him famous, but his success was due in large part
to the foreknowledge with which he had armed himself.

The design of Jacob′s equipment was based on an intimate
understanding of the scientific principles involved. Is the same true for the
development of hand tools? I went in search of the written evidence and
quickly found, with the help of a friendly engineering librarian, that
comparatively little has been written about the science underpinning the
use of hand tools. Only a few scattered references bore relation to the
subject. Even the closely printed thirty-two-page article entitled ”Tool” in



the famous 1911 edition of the Encylopaedia Britannica (an article still
referred to by the modern edition) failed to say a single word on why tools
are designed and used as they are. I sought out Stuart Burgess, a design
expert who runs a second-year course on machine tools at Bristol
University. Could he help? He was only too pleased. Not to help, but to
find that I was writing something on the subject. There was nothing of this
nature available, he said, and promised to recommend my book to his
students when it was finished. Perhaps, I thought, hand tools would feature
in physics courses as exemplifiers of simple mechanical principles. I
asked my physicist friends and found that, while the basic principles are
taught, such applications are not. I was on my own.

Well, not entirely on my own. A lifetime in science has given me plenty
of people to talk to and with whom to try out ideas. That′s how science
usually works — not by people sitting alone in ivory towers, but by people
sharing ideas, talking about results, and suggesting new approaches in
environments that are sometimes far removed from the traditional lab.
Science, in other words, is a community activity, and I have more than my
fair share of friends and colleagues who are willing to offer help, ideas,
and criticism, in varying proportions. It was to these people, and to my
handyman and tradesman friends, that I turned in my quest to understand
the scientific tao of tools.

My first question was ”Why do we use tools?” Galileo berated
tradesmen four hundred years ago for holding the mistaken belief that we
use tools because they make jobs easier. Despite Galileo′s strictures, I
suspected that the same belief would still be current today. I was wrong.
Every one of my practical friends gave me the scientist′s answer, which is
that tools don′t so much make jobs easier as make jobs possible, by
reducing the brute force required to manageable proportions. An example
is the use of a car jack. A person using an average car jack can lift a 500-
kilogram car with a force that would only lift 5 kilograms directly.2 The
weight lifted is a hundred times the force applied, and so the jack is said to
give a mechanical advantage of 100:1. When I used my childhood weight
of 25 kilograms to lift my 75-kilogram father from the ground on a
seesaw, I was exerting a mechanical advantage of 3:1.

The downside of a mechanical advantage is that the reduction in force
must be paid for by an increase in the distance over which the point of



application of the force is moved. Whatever height the car is raised to, the
jack handle must be pumped through a hundred times that distance.
There′s no escape. Why is there no escape? The reason was discovered by
Galileo, who used a series of very clever arguments to show that, in the
performance of any job requiring the application of force, force multiplied
by the distance through which its point of application is moved is a
constant quantity that can′t be changed, no matter how much we wriggle or
how cleverly we design our tool or machine.

Scientists now call force × distance by another name — work. It is a
basic principle of science, derived these days from the notion that energy
can neither be created nor destroyed, that the work that we have to do in
performing a job is unaffected by the way in which we do the job.

Galileo knew nothing of the principle of the conservation of energy, and
I had not even seen his approach to the question until I began putting
together the material for this book. When I eventually did find his
argument, written for a lay audience, I wished that I could write like that.
It was so audaciously simple that I burst out laughing while reading it. In
his own words: ”... the advantage acquired from the length of the lever is
nothing but the ability to move all at once [my italics] that heavy body
which could be conducted only in pieces by the same force ... and with
equal motion, without the benefit of the lever.” In other words, if we cut
our 500-kilogram car into a hundred equal pieces, each weighing 5
kilograms, and then lifted each of these pieces through 30 centimeters by
hand, we would be doing the same work (5 kg × 30 cm × 100) as if we had
pumped the jack handle through 30 meters to lift the whole car at once
(where the work would be 500 kg × 30 cm). All that the jack has done is to
let us change the balance between force and distance. The product of the
two remains the same. Galileo went on to show that the same argument
holds for any tool.

Galileo′s principle that a tool can′t change the actual amount of work
needed to do a job, but only change the balance between force and
distance, holds good so long as all of the work goes into doing the job. If
doing the job without a tool involves wasting some of the work, then the
use of a tool obviously does save work. If, for example, we try to slide a
load of bricks along a path by hand, then a lot of the work that we do goes
into overcoming friction between the bricks and the path rather than



moving the bricks. The extra work is turned into heat energy that is then
dissipated into the surroundings and cannot be recovered. If we carry the
same load of bricks along the path in a wheelbarrow, we avoid the friction,
and save the extra work.

It follows from the discussion above that there are two questions to be
answered when it comes to the effective use of hand tools:

1. Is the mechanical advantage as high as it could or should be?
2. Is the waste of energy (e.g., in friction) as low as it could be?

I decided to ask these questions of some of the common hand tools used
by tradesmen, handymen, and do-it-yourselfers. Even in the limited time
available, I ended up with enough material to make a whole book in its
own right. What follows is a selection of the points that I found most
interesting and which handymen and do-it-yourselfers might find most
useful.

In order to categorize the tools in some way, I turned again to the article
”Tool” in the authoritative Encyclopaedia Britannica of 1911. According
to the writer, the Victorian authority Joseph G. Horner, tools fall into just
five groups:

I Chisels
II The shearing group (e.g., scissors)
III Scrapers
IV The percussive group (e.g., hammers)
V The molding group (e.g., trowels)

There was no mention of tools based on the lever principle, and no
mention of another important group: tools that use a wedge action. At the
risk of incurring the wrath of Mr. Horner′s ghost, I decided to examine just
one of his categories, but to add two of my own. My full list is thus:

1. Tools based on the lever principle
2. Tools that use the wedge principle
3. Percussive tools

Tools Based on the Lever Principle



The Claw Hammer

According to published tables, the initial force needed to withdraw a 2-
inch (50-millimeter) nail driven into the side grain of a block of seasoned
hardwood is equivalent to lifting a weight of 26 kilograms. That is why it
is so difficult to pull a nail out with a pair of pliers, and why we use a claw
hammer as a lever to do the job.

The design of a typical domestic claw hammer makes it very easy to
start the pull. The mechanical advantage is enormous, since the fulcrum is
very close to the nail. My own 700-gram claw hammer has a handle length
of 330 millimeters, with the initial contact point of the hammer head with
the wood being only 10 millimeters from the nail axis. A mechanical
advantage of 330/10 = 33 means that I only have to apply a force of less
than a kilogram to get the nail started (Figure 3.4).

The mechanical advantage drops very fast as the nail starts to lift,
because the contact point of the head with the wood moves further away
from the nail as the hammer rocks on its curved spurs. Eventually, the
edge of the hammer face, 110 millimeters away from the nail for my
hammer, contacts the wood, by which stage the mechanical advantage has
dropped to a mere three and the nail has been lifted only 20 millimeters. If
the hammer is rocked any further, the head will make a dent in the wood.
The force that was originally pulling the nail straight up is also now
pulling it at an angle, with the potential for further damage.



Figure 3.4: Claw Hammer Used as a Lever to Remove a Nail.

Is this the best that can be done? Professional tradesmen sometimes
improve the situation by placing a small block of wood under the hammer
head. My father used to explain that this was to prevent damage to the
work, an advantage that has to be paid for by loss of the initial mechanical
advantage, since the fulcrum is now further from the nail at the start of the
pull (Figure 3.5).



Figure 3.5: Use of a Small Block of Wood to Improve the Range of
Movement of a Claw Hammer.

The mechanical advantage is still quite good, however, and also does
not change very much through the whole lifting process. If the piece of
wood is a 10-millimeter cube, for example, and placed near the base of the
handle, the mechanical advantage with my own hammer drops from 10:1
to 8:1 during a single pull, which means that I have to exert an initial force
of 2.6 kilograms, a value that is still satisfactorily low. Furthermore, the
job gets easier as the hammer is rocked, even though the mechanical
advantage is dropping. This is because the pulling force that is needed is
proportional to the length of embedded nail; with half the nail withdrawn,
only half the force is needed. The real advantage of the little block of
wood, though, is that the nail can be lifted through a full 35 millimeters in
a single pull. With only 15 millimeters left embedded, the job can now be
finished off by a direct pull with a pair of pliers, since this now requires a
force of only 26 × (15/50) = 7.8 kg.



In thinking all of this through, I came up with another idea, which I will
claim as my own until someone comes along and tells me that tradesmen
have been doing it for ages. Make a stepped block out of several pieces of
wood, and slip it progressively further under the hammer head as the nail
is lifted. The stepped block can be kept as part of a regular tool kit, and
enables nails of any length to be withdrawn in a single operation.

The Wrench

The ideal wrench is one that exerts pure torque — in other words, all the
force exerted goes into rotating the bolt or the nut. My ill-remembered
courses in applied mathematics taught me that this is only possible if the
wrench is symmetrical, as in the design shown in Figure 3.6. An advantage
of such a design for a hand wrench is that both hands can be used to exert
force.

Figure 3.6: Torque Generated by a Two-Handled Wrench.

The forces on the two ends are equal, but act in opposite directions. If
two such forces lie in the same line, as they would, for example, if
generated by two equally strong individuals pulling on a rope, then they
would be in balance and nothing would move. Separated laterally in space,
though, the forces constitute a couple. The torque, or twisting force,
exerted by a couple is simply the force multiplied by the separation
distance (my school physics teacher, well attuned to the preoccupations of
the adolescent mind, taught us that ”the closer the couple, the less the
torque”).



It is not so easy to work out the mechanical advantage that the wrench
above would convey over turning the bolt with the fingers, because the
grip and the actual movement of the muscles are quite different in using
the fingers or grasping two ends of a bar and pulling on one end while
pushing on the other. A better comparison is with wrapping a couple of
pieces of tape, one above the other, around the bolt head in opposite
directions and pulling on the free ends (quite a good trick, incidentally, if
no wrench is handy). In this case, the same force can be exerted as in using
the wrench. The mechanical advantage from using the wrench is just the
ratio of the torques in the two cases. Since the forces are equal, the
mechanical advantage is simply the ratio of the distances by which the
forces are separated laterally in the two cases, i.e., the ratio of the overall
length of the wrench to the diameter of the bolt head.

Unfortunately for the peace of mind of calculating physicists, most
wrenches have only one handle, and working out the mechanical advantage
is not so easy. A single-handled wrench does not exert pure torque — it
also exerts a lateral force which tends to move an unsecured job sideways.
If the job is secured by a clamp or other means, the sideways force is still
there, pushing on the bolt or nut and increasing the frictional resistance
that has to be overcome, thus decreasing the real mechanical advantage.
For the purposes of a simple analysis, a single-handled wrench can be
viewed as a lever, where the nearest point of contact on the nut or bolt
head is the fulcrum, and the furthest point of contact transmits the force to
turn the nut about that fulcrum (Figure 3.7).

This picture is oversimplified (since the fulcrum can move), but it does
let us calculate the mechanical advantage for such a wrench, which is
simply the distance from the end of the handle to the point of first contact
with the nut or bolt head divided by the length of one side of the nut or
bolt head. In the example above, the mechanical advantage is 25/5 = 5:1.
This is half the mechanical advantage that a similar wrench with two
handles would provide.



Figure 3.7: Lever Action of a Single-Handled Wrench.

An easier way of thinking about the difference between one-handled and
two-handled wrenches, and one that is very representative of how
physicists think, is to fall back on Galileo′s principle that the total work
done is not affected by how it is done. This means that force × distance
must be the same in the two cases. With the two-handled wrench, the two
points of application move a total of twice as far as the single point of
application for the one-handled wrench. Since the distance is doubled, the
force must be halved, which means that the two-handled wrench is twice
as efficient, i.e., it has twice the mechanical advantage of the one-handled
wrench. Even so, a single-handled wrench is a pretty effective weapon. But
why do we need such a weapon? What is the actual advantage of
tightening a nut or bolt using a wrench? The reason, as I found out in
practice when designing high-precision equipment, is that the use of a
wrench lets us apply enough force to actually stretch the bolt. The
stretched bolt acts as a very strong spring, generating a force that increases
the friction between the mating male and female threads, and which also
increases the friction between the head and the nut (if there is one) with
the corresponding surfaces of the work, making it more difficult for the
bolt to work loose. The amount by which a bolt needs to be stretched in
order to stay tight depends very much on its environment. The bolts in a
vibrating car engine, for example, obviously need to be done up more
tightly than those holding a wooden bench together. Bolts holding metal



pieces together can also be done up more tightly than those passing
through wood without risk of deforming or damaging the work. But how
tightly? How is the torque that is used to do up a bolt related to its degree
of stretching and to the spring force that it exerts? What spring force
should one aim for? Are there simple rules that the handyman can follow?

I searched for the answers in engineering reference books, and rapidly
found myself immersed in a morass of formulae which described the
effects of bolt diameter, bolt material, pitch, shape and depth of the thread,
and even whether the bolt is likely to be subjected to extra forces after it is
done up (e.g., bolts holding the head onto a car engine block). Typical of
the formulae that confronted me was that of the minimum length of
engagement between two mating threads to avoid stripping the external
thread before the bolt actually breaks:

I find it depressing enough when I am forced to use such formulae in a
professional context, and would be the last person to inflict them on a
handyman. I looked to see whether there might be a better way.

There was. Hidden among the formulae and tables was the information
that ”experiments made at Cornell University [on behalf of the car
industry] ... showed that experienced machinists tighten nuts with a pull
roughly proportional to the bolt diameter,” and that ”the stress due to nut
tightening was often sufficient to break a half-inch bolt, but not larger
sizes.” As a result of this study, engineering practice was changed — not
to reduce the force applied to the bolts, but to use larger bolts that the
mechanics couldn′t break!

It is possible, though, to use the information in a different way. The
tensile strength of the bolts in question was around 10,000 kilograms (in
other words, a rod made of the bolt material could support a weight of
10,000 kilograms). A box wrench designed to tighten such a bolt typically
has a length of 20 centimeters (0.2 meters), and by experiment I have
found that a reasonably strong man can pull on the end of such a wrench



with a maximum force of around 30 kilograms. A torque of 30 kg × 0.2 m
( = 15 kg.m) is thus sufficient to break a half-inch (12-millimeter) steel
bolt. Bolts made from weaker materials such as brass or aluminum will
require a correspondingly lower torque to generate the same breaking
tension. A practical compromise to fasten a half-inch bolt as tightly as
possible without the risk of breakage is to use a torque of no more than 8
kg.m. The limiting torque depends on the cross-sectional area of the bolt.
The limit for one-inch (25-millimeter) bolts, according to the criterion
above, is thus 32 kg.m, while that for quarter-inch (6-millimeter) bolts is 2
kg.m. This means that the ”experienced machinists” got it wrong — to
generate the same tension in bolts of different diameters, they should have
been pulling with a force proportional, not to the diameter, but to the
square of the diameter.

If you know the maximum force that you can exert one-handed (this can
be estimated by finding the heaviest weight that can be lifted one-handed),
you can use this information to work out where to grip a wrench so as to
produce the maximum safe torque. Table 3.1 provides some sample values,
with the assumption that the longest wrench available is 250 millimeters
in length.

Undoing a bolt is a different story. It takes more force to undo even a
clean, well-oiled bolt than it does to do one up, because the initial force to
overcome friction and get the mating surfaces sliding (head and nut
surfaces against the work, and two threads against each other) is greater
than that required to keep them sliding, so wrenches will need to be held a
little further out. When it comes to undoing a rusted bolt, the problem is
not that the two threads are ”stuck together” by the rust. The real problem
is that, as iron turns to rust (a complex reaction product of iron, oxygen,
and water) it expands, generating enormous pressures that increase the
frictional forces between the threads. One can see how high the pressures
can be by looking at a stone into which iron spikes have been driven. As
the iron rusts, it is not uncommon for the pressures generated to be so high
that the stone is split. Oil is of little use in reducing the frictional forces
caused by rust. A better trick (if you have the time) is to use a weak acid
such as vinegar to gradually penetrate and dissolve the rust. Alternatively,
if the joint is accessible to heat, application of a propane torch will expand
the bolt, the nut, and the gap in between to relieve some of the pressure.



Table 3.1: Where to Grip a Wrench.

Maximum force  t ha t
opera tor  can genera t e
(kg)

Bol t
di ameter
(mm)

Dis t ance  of  gr ip
f rom bol t  head
(mm)

10 4 88

6 200

8 Full length

10 Full length

12 Full length

20 4 44

6 100

8 170

10 250

12 Full length

30 4 30

6 67

8 113

10 170

12 Full length

40 4 22



6 50

8 85

10 125

12 200

The Wheelbarrow

Barrows did not always have wheels. Before the fourteenth century, a
European barrow consisted of ”a flat rectangular frame of transverse bars,
having shafts or ′trams′ before and behind, by which it is carried [by two
or more men].” Only after A.D. 1300 did the idea of putting a wheel
between the front shafts, invented a thousand years earlier in China,
finally make its way to the West and permit the contrivance to be operated
by just one man. This was one of those inconspicuous advances in
technology that helped to make possible such conspicuous markers of
progress as the great Gothic cathedrals of Europe. With it, a single worker
could now shift large blocks of stone. When some unknown genius put a
box between the shafts instead of a flat tray, building rubble and mortar
could also be carried.

The load that a single person can shift using a wheelbarrow depends on
the position of the wheel. In technical terms, a wheelbarrow is a second-
order lever, with the load between the fulcrum (the axle) and the point of
application of the force (the handles). If the axle were placed directly
under the load, as it was in flat-trayed medieval barrows designed to carry
piles of bodies during the plague years, the mechanical advantage would
theoretically be infinite, and a single person could move any load at all so
long as the barrow did not collapse. Such barrows, which survive in some
places as mortuary trolleys, had a wheel on either side, rather than a single
wheel in the center. That single wheel makes the barrow more
maneuverable, and is essential if the barrow is to be wheeled along narrow
planks or manipulated in tight corners. But why don′t modern wheelbarrow



designers put it in the middle, directly under the load, instead of at one
end? The answer lies in stability. So as long as the downward force
through the center of gravity of the load does not move outside the triangle
defined by the operator′s two hands and the point where the wheel contacts
the ground, the wheelbarrow will not tip. The reason for this is that the
downward force of the load, and the total

Figure 3.8a and 3.8b: Balancing the Load in a Wheelbarrow.

upward force provided by the operator′s hand and the reaction force of the
ground on the wheel, constitute a couple that tends to rotate the barrow
back in the direction from which it came. If the center of gravity of the
load moves outside a line between the operator′s hand and the wheel, the



situation becomes unstable, since the couple is now tending to rotate the
barrow further still. To avert disaster, the operator must exert a counter-
couple by lifting on the near handle and pushing down on the far handle.
The action must be fast, and the further the barrow tilts the more difficult
it becomes, as I found early on as a twelve-year-old.

The problem with putting the wheel in the center of the barrow, with the
load directly above, is that the situation is always unstable, since the load
is now at the apex of the imaginary triangle formed by the hands and the
wheel, and any load shift or wheelbarrow tilt is sufficient to take the
center of gravity outside that imaginary triangle. The only way to get
around this situation is to construct the wheelbarrow in such a way that the
center of gravity of the load is below the level of the point of contact of
the wheel with the ground. Then the couple created when the wheelbarrow
inevitably tilts will act to restore the original position rather than to tilt the
barrow further.

Such a wheelbarrow design is shown in cross-section (viewed from the
front) in Figure 3.9. It should work when wheeled along a plank, and a
similar design is used in monorail systems.

Figure 3.9: Design for a Wheelbarrow that Can Never Tip Over.

For the moment, though, I am stuck with using an ordinary
wheelbarrow. Is it possible to use such a barrow more efficiently? It′s a



compromise between mechanical advantage and stability, which really
depends on the load that the user wants to shift. For maximum mechanical
advantage, the center of gravity of the load should be as close to the front
of the barrow as possible. For maximum stability, the load should be as far
back as possible (so that the center of gravity stays within the imaginary
triangle even when the wheelbarrow is badly tilted), and spread so as to
keep the center of gravity as low as possible.

In the end, it′s up to the user. The only extra tip that I have received
from my tradesman friends is to keep a couple of lengths of hollow pipe
handy that can be slipped over the handles to increase their effective
length, and hence increase the mechanical advantage, if an extra-heavy
load needs to be moved.

Tools that  Use the Wedge Principle

Wedges

The wedge is a very ancient tool. As with other tools, its action is based on
a trade-off between force and distance. The action is simple to understand
by visualizing the wedge being used to lift something, such as a slab of
rock. The mechanical advantage is simply the ratio of the distance that the
wedge has to be driven divided by the height through which the rock is
lifted.

In the example shown in Figure 3.10, the mechanical advantage is 6:1.
The wedge thus allows the rock to be lifted with one-sixth of the force that
it would take to do the job directly, at the expense of having to move the
point of application of that force (i.e., the base of the wedge) six times as
far.

So far, so simple. The real advantage of a wedge, though, is that it lets
us change the direction of the force. We drive the wedge sideways, but the
rock is lifted upward (the same thing happens when we force a claw
hammer under the head of a nail). The mathematical reason for this is
explained later, in chapter six. All the information that is needed here is
that the mechanical advantage depends on the wedge angle, but only
becomes reasonably high for very shallow angles, as Table 3.2 shows. This
is why most wedges are constructed with relatively shallow angles.



Figure 3.10: Mechanical Advantage of a Wedge.

Table 3.2: Mechanical Advantage Generated by a Wedge.

Wedge angle (degrees) Mechanical advantage

5 11.4

10 5.7

15 3.7

20 2.7

25 2.1

30 1.7

35 1.4

40 1.2

45 1

Chisels

Cutting tools, in the form of stone or flint flakes, are the oldest tools
known to man. Most people (including the author of the Britannica article
mentioned earlier) view chisels as their modern equivalent. This is correct



if the chisel is being used to cut wood across the grain. Often, though,
chisels act along the grain, and here a chisel is not primarily a cutting tool.
It is a wedge. Once the chisel has entered the wood, the shape of the
opening crack ensures that the chisel edge is virtually floating free in
space, taking little further part in the action (Figure 3.11).

Typical wood chisels have a wedge angle of around 30°. This gives them
a mechanical advantage of approximately 2:1 which they don′t need after
the initial stages, since the process of cutting along the grain is analogous
to opening up a crack in any material. The work required to do this
depends on the sharpness of the crack tip, not the sharpness of the chisel,
except at the very start, when the sharpness of the chisel defines how easy
it is to start the crack. After that, the sharper the crack tip, the less the
work, as we saw earlier in the case of the dry cookie.

Figure 3.11: Chisel Cutting End-Grain (Showing “Floating” Edge).

If the chisel tip is not sufficiently sharp, it can ”catch” in the opening
split and tear at the wood fibers, making the job much more difficult. So,
how sharp does the chisel tip have to be? That depends on the shape of the
bent part of the wood near the tip — the part that is under the most stress.

To find the optimum shape, I turned to Formulas for Stress and Strain, a
book of engineering formulae that I discovered in the psychology section
of a secondhand bookstore. The calculations were complicated, but in the
end I found to my surprise that a chisel edge must be no more than 0.15
micrometers thick if it is not to catch the adjacent wood. Three hundred
such edges could fit side by side on a human hair. It is no wonder that my
father was so angry when I used one of his carefully sharpened chisels as a
lever.



When a properly sharpened chisel is used to split wood along the grain,
its main task (once the cut has started) is to slice any wood fibers that
happen to have spanned across the gap. This action is more efficient if the
edge is very sharp and if the chisel moves across the fiber in a shearing
action, which is why my father taught me to slide the chisel slightly
sideways as it progressed through the wood. That′s all that there is to using
a chisel to cut along the grain. The trick is to stop the sharp edge from
cutting into the adjacent wood, since this will take the developing split off
line. The slightest tilt of the handle towards the beveled side will result in
the edge ”catching” the wood. The obvious remedy is always to exert a
slight force in the opposite direction, so that the tip remains in free space,
out of contact with the wood.

The Screwdriver

Screwdrivers, one of the few hand tools that were not invented until
medieval times, are difficult to categorize. If a screwdriver blade is used
with a brace and bit, the assembly acts as a lever in the same way that a
wrench does. Most screwdrivers, though, are handheld, and their sole
purpose, as Jeff Odell pointed out in our coffee-room conversation, is to
provide a convenient linkage between the screw and the hand of the user. A
screwdriver thus used acts as a rigid extension to the operator′s arm, but
does not of itself convey a mechanical advantage if properly aligned with
the screw. What it does do is to permit the user to attach himself or herself
firmly to something that does convey a mechanical advantage — namely,
the screw.

A screw driven into the side-grain of a piece of wood acts as a wedge,
which is why I have listed the screwdriver in this section. The wedge
happens to be wrapped as a spiral around a central shaft, but it is
nevertheless a wedge, with the job of levering the wood fibers apart. This
is a very difficult task to perform directly (try pulling a piece of wood in
half across the grain with your bare hands). Even a softwood such as white
spruce has a breaking tension across the grain of 33 kg/cm2; hardwoods
can require three or four times as much. The mechanical advantage that a
woodscrew provides can be worked out by imagining the thread to be
unwrapped and stretched out at the same angle as the original pitch. A
”typical” woodscrew from my collection, for example, has a pitch of 5



turns per centimeter and a median diameter of 5 millimeters. From simple
geometry, the total thread length (per centimeter length of screw) is 7.8
centimeters, and the mechanical advantage is thus 7.8 (Figure 3.12).

Figure 3.12: “Unwrapped” Screw Thread

The area of wood penetrated by this screw is 0.2 sq. cm, and the force
needed to separate the wood fibers across this area is thus 0.2 × 33 = 6.6
kg. The mechanical advantage of 7.8 provided by the screw reduces this
figure to 6.6 / 7.8 = 0.85 kg, a figure that would rise to several kilograms if
the screw were being driven into hardwood.

I wondered whether I could generate such a force using a twisting
motion of my arm only. To find out, I wrapped a rope several times around
my wrist, and tied the free end to a series of progressively heavier
boulders. I found that I could lift boulders weighing up to 3 kilograms
fairly easily with a twist of the wrist (corresponding to a torque with my 7-
centimeter diameter wrist of 0.1 kg.m), but that the job thereafter became
progressively harder, with 10 kilograms being about my limit. From this
experiment, it seems that the mechanical advantage provided by
woodscrews is pretty well optimal for the job.

The figures above are approximate, coming from a ”back-ofthe-
envelope” calculation that takes no account of increasing friction between
screw and wood; the fact that the central core of the screw is not part of
the wedge; or the work needed to displace the wood to make way for this
core. The last problem can, of course, be avoided in practice by drilling
the wood first to make way for the core of the screw.

Can the job also be made easier by tilting the screwdriver to provide
extra leverage? I selected a woodscrew with a slotted head 7 millimeters



in diameter, and two screwdrivers of different shaft length, but each with a
tip that was a neat fit to the screw slot, and proceeded to use each
screwdriver in turn to drive the screw into a piece of softwood. There was
no doubt that the longer (25-centimeter) screwdriver was much easier to
use than the shorter (10-centimeter) screwdriver. How could this be? If the
handle on the longer screwdriver had been wider, this would have given an
additional mechanical advantage, but both handles had the same diameter.
A clue came when I found myself spontaneously tilting the screwdrivers
up to 20° from the vertical, in a direction perpendicular to that of the slot
(Figure 3.13). A 20° tilt will take the handle of the longer screwdriver
some 9 centimeters from the screw axis, but the lateral force that I might
have been applying to generate a turning couple is difficult to estimate.
Even if that force was only 0.5 kilograms, the torque generated would have
been 0.02 kg.m, which adds twenty percent to that provided simply by
rotating the wrist, compared to the corresponding improvement for the
shorter screwdriver of only eight percent. Perhaps this explains the
difference between long- and short-handled screwdrivers.

What, though, is the chance of the screwdriver slipping when used in
this way? Not much, as the scale diagram below shows. What about the
chance of bending the screwdriver tip? If the lateral force on the handle is
half a kilogram, the mechanical advantage is of the order of 250 (!) for a
25-centimeter screwdriver in a 1-millimeter slot, which means that the
screwdriver is pressing on the side of the slot with a force of 125
kilograms. It sounds like a disastrous scenario (which it might be for the
screw head), but the screwdriver is unlikely to be affected, since modern
screwdrivers (so Stuart Burgess informs me) are designed to be strong
enough to lever the lid off a can of paint. The screw, usually made of a soft
metal, is more likely to be damaged.



Figure 3.13: Screwdriver Tip in Slotted Screw Head, with Screwdriver
Tilted at 20°.

Scale diagram. The screwdriver tip would be a neat fit to the screw slot if
the screwdriver were held vertically. The diagram shows that such a tip is

unlikely to slip out even if tilted at 20° to the vertical.

My argument with Jeff Odell ended up as an honorable draw so far as
using a handheld screwdriver is concerned. The best way to drive in a
recalcitrant screw, though (apart from using a hammer), is to use a brace
and bit fitted with a screwdriver head. The span of a typical brace and bit
is around 20 centimeters, which is about the same as that of a large
wrench, and provides a mechanical advantage of around 30 for the screw
that I have been discussing. The only disadvantage of a brace and bit, so
long as it can fit in the working space, is that it makes the job too easy.

Percussive Tools

Hammers

With three of my four initial questions answered, it was time to turn to the
fourth — what is the best way to use a hammer? Is there a best weight of
hammer for a given nail? How hard should you swing a hammer at each
blow? Certainly not as hard as I did when learning as a child. The resultant
blow on the thumbnail created an excruciating pressure which my father
released by using a needle warmed in a blowtorch flame to red heat to drill



a hole in the nail. To this day I am grateful for that rapid piece of amateur
doctoring, but it would have been better if I hadn′t tried to hit the nail so
hard in the first place.

The problem was that I was trying to start the nail off with a single
heavy blow. Experience rapidly taught me that a nail needs to be started
off with a series of light blows. The reason for this is that, unless the blow
is absolutely accurate, there will be a small sideways component to the
force generated by the blow, sufficient to knock the nail sideways or for
the hammer to glance off the nail head if the blow is too hard.

The idea that a force, or a movement, can be separated into two
independent components is one that is not intuitively obvious. I once
checked out the question with a group in our village pub, and found that
some 30 percent believed that, if I freewheel on a bicycle at constant speed
down a hill and throw a stone vertically as I ride, the stone will land
behind me (for a full account of this story see chapter six). The correct
answer is that it will land beside me, because its forward velocity at the
moment of leaving my hand is totally independent of the upward velocity
with which I throw it, and so the stone will keep moving forward at the
same speed as the bicycle even after it has left my hand.

Scientists are now accustomed to the idea that any movement, or any
force, can be regarded as the sum of two other forces at right angles to
each other. Luckily, it is easy to work out how large the two different
components are with the aid of a simple diagram. The trick is simply to
regard the original force or movement as the long side (the hypotenuse) of
a right-angled triangle, and just fit the other two sides to it. The result of a
nail being struck at a slight angle is shown in Figure 3.14, where the
direction of the arrows gives the direction of the forces, and the length of
the arrows shows how strong those forces are.

Once the nail has been driven a few millimeters into the wood, the
horizontal component of an off-axis swing will be balanced by the
restoring elasticity of the wood rather than the grip of the fingers on the
nail, and the hammer need not be swung quite so slowly. But how fast
should it be swung? Is there an optimum velocity?



Figure 3.14: Triangle of Forces for a Hammer Swung “Off-Vertical.”

When a hammer is swung, some of the energy goes into recoil as the
hammer head bounces back off the head of the driven nail. My first
thought was that the hammer should therefore be swung slowly for
maximum efficiency, with less recoil and more time in contact with the
head of the nail. This time, I didn′t need Jeff Odell to tell me that I was
wrong. I worked it out for myself, realizing that even if some of the energy
that goes into the swing is expended in the recoil, it is still not wasted,
since it saves an equivalent amount of the work involved in lifting the
hammer for the next blow.

Some hammers are now designed with a layer of polyurethane on the
head that ”gives” slightly when the nail is struck, keeping the head in
contact with the nail for a longer time and allowing more of the energy to
be transferred. According to the above argument, this is a gimmick. The
only problem in driving a nail in is to maximize the downward component
of the force and minimize the sideways component. Even this becomes
less of a problem as the nail progressively enters the wood; so the correct
technique is to gradually increase the power of the blows, which is
something that most carpenters do by instinct. Most carpenters also drill a



lead hole, slightly smaller in diameter than that of the nail. This has the
advantage of ensuring that the nail is aligned more rapidly by the initial
blows, and also that the wood is less likely to split. Another surprising
advantage to drilling a lead hole is that the driven nail is harder to remove
from the wood than if no hole had been drilled. The reason is that, with no
lead hole, the wood is only in actual contact with the nail on two sides. If a
lead hole has been drilled, the contact is all the way around and the
frictional force is correspondingly greater (Figure 3.15).

Figure 3.15: Contact of Driven Nail in Wood Without (Left) and With

(Right) a Lead Hole.

Only one refinement remains — which part of the hammer head should
be used to strike the nail? Most people would say the middle — and most
people would be wrong. Hammers actually have a ”sweet spot” (very
similar to the ”sweet spot” in a cricket or baseball bat or a tennis racket),
where the jarring is least and the momentum transfer is at its maximum.
Its technical name is the ”center of percussion,” and its existence arises
from the fact that the hammer head is swinging in an arc rather than
straight up and down. Formulae exist for calculating the center of
percussion, which, for something like a bat, can be a lot farther from the
hand than the center of gravity. For a hammer, however, my rough
calculations showed that the difference was negligible, and that the main
problem with using a hammer remains in swinging it accurately in the first
place.



At the end of my survey of hand tools, I was disappointed to find that their
development, unlike many other commonplace activities, has contributed
comparatively little to our understanding of scientific principles. I was
very pleased to find, however, that scientific principles are very useful
when it comes to using the tools in the most efficient manner.



4

how to add up your supermarket bill
Physical concepts are not the only barrier between scientists and non-
scientists. Numbers and calculations can provide an even greater barrier.
Scientists are usually at ease with them, but many other people are not.

The scientist′s ease comes partly from familiarity, but also from the
shortcuts he or she has learned, which make it relatively easy to juggle
with numbers. Scientists apply these shortcuts to scientific calculations. I
wondered whether it might be possible to apply them to other areas of life,
and decided to try my hand at using them to check bills and assess the
pricing policies of my local supermarkets. I was amazed at what the
calculations revealed. The tricks are so simple that anyone can use them,
both to become more at ease with handling numbers and to check up on
what is going on in their own supermarket.

My wife, Wendy, and I live in a small rural English village, but we have
several supermarkets nearby, and that is where we do our shopping. Wendy
actually does most of the shopping, and when I sat down to write this
chapter, I told her that I had devised a statistically based, scientific,
simple-to-use method to let her keep a rough track of what she had been
spending as she went around buying. She laughed and replied that she
already had a method, which was to round down all of the prices ending in
”.49” or less, round up the rest, and keep a running total of the results. I
told her that it sounded like an interesting approach, but that I was sure my
method would be more accurate. You can probably guess the next bit.
When I checked the two methods out, Wendy′s was a clear winner. It
looked as if this was going to be a very short chapter.

Hoping to save something from the wreck, I sat down to analyze just
why her method worked while mine didn′t. The first clue came from a
friend′s supermarket bill, but the final piece of the puzzle was put in place



only after I had surveyed nearly a thousand supermarket prices. It
transpired that Wendy′s approach took almost perfect account of the fact
that supermarkets distribute their prices in a very selective way. My
supposedly more rigorous statistical approach had failed to cope with this
factor, which, as I will show later in this chapter, applies equally to some
major American supermarkets.

Armed with this knowledge, I was able to adapt my approach to give the
right answer, although Wendy still argues that her method is easier to use.
That is up to the reader to decide. More important, I found that the pricing
policies used by some supermarkets can be turned, judo-like, against them
by the shopper in pursuit of the best value for money.

Taking  Care of  the Pounds
Supermarket bills in England look pretty much the same as they do in
America, except that the English prices are in pounds and pence, rather
than dollars and cents. Luckily, the numerical additions are just as easy,
since there are one hundred pence in the pound, just as there are one
hundred cents in the dollar. So £1.49 + £2.51 = £4.00, just as $1.49 + $2.51
= $4.00. I will talk in dollars and cents where it is possible to do so
without ambiguity, but the actual bills that Wendy and I looked at will
obviously be in pounds and pence.

The English word pounds permitted Lewis Carroll to perpetrate one of
the more outrageous puns in the English language. In chapter 9 of Carroll′s
Alice in Wonderland, the Duchess advises Alice to ”take care of the sense
and the sounds will take care of themselves,” which is a wonderful
multiple pun on the old English saying, ”Take care of the pence and the
pounds will take care of themselves.” Poorly paid English scientists,
though, know that pounds are worth a lot more than pence, and concentrate
on the pounds first when it comes to adding up their bills. Wendy and I
both used this as our starting point. We ignored the figures that didn′t
matter and concentrated on those that did.

The figures that matter are called significant figures. If a supermarket
bill comes to $45.21, for example, the most significant figure is the 4,
representing forty dollars of the shopper′s hard-earned money. The next
most significant figure is the 5 — that extra five dollars matters to most
people. The 2 and the 1 hardly matter at all — few people would worry



about the extra 21 cents. So far as significant figures are concerned, we
can just call the bill $45 and be done with it.

The principle of significant figures is very useful in keeping a running
total of what you have spent in a supermarket. Dollars are more significant
than cents, and pounds are more important than pence, so a simple way to
keep a rough running total is to ignore the cents or the pence entirely. The
process is called truncation — literally ”cutting short.” It could also be
called guillotining.

The advantage of truncation is that it is an easy feat of mental
arithmetic. Its disadvantage is that it only gives what scientists call a first-
order approximation to the real total. In other words, it provides a rough
first guess with the mental proviso ”could do better.” In the real bill shown
in Figure 4.1, for example (the reader will guess that the flowers were for
my wife), truncation gives a total of £5, i.e., 0 + 0 + 2 + 3, compared to the
real price of £7.38.

Figure 4.1: Short Supermarket Bill.

The basis of my statistical approach is that truncation can lead to better
things. That rough first guess is a lower bound to the real total, i.e., the
real total could not possibly be less. It is also possible, and equally simple,
to use truncation to calculate an upper bound to the real total, simply by
adding the number of items purchased. In the sample bill, the total
obtained by truncation is £5, and there are four items in the bill. The upper
bound is therefore £(5 + 4) = £9. This total is the same that would have
been obtained by rounding up the price of each item to the next highest
pound before adding, because every time you round up the price of an



item, all you are doing is adding ”one” to the price that you would have
gotten by truncation.

Knowing the upper bound to your expected bill provides quite a handy
test at the checkout. If the checkout price is higher than the one you
worked out in your head, then the checkout total is wrong. An item may
have been entered twice, or a price may have been wrongly keyed in.
Whatever the cause, it′s worth checking.

Upper and lower bounds ”box in” the real total between them. Because
they are often relatively simple to calculate, scientists frequently use them
in the manner of a pincer movement to isolate and trap an otherwise
elusive number that would be difficult to pin down in hand-to-hand
combat. Archimedes, for example, when not engaged in designing and
building war machines, used the ”boxing in” technique in his relentless
pursuit of the value of π (pronounced ”pie”), a number that he needed to
know accurately so that he could work out the areas of circular spaces and
objects. The ancient Babylonians had known that the area of a circle of
radius R is π × R2, and took the value of π to be 3, although they weren′t
sure whether π was the same for big and small circles. Greek
mathematicians prior to Archimedes proved that π had a constant value,
but were not much closer to knowing what that value was. Two thousand
years later, the Indiana state legislature is said to have come within one
vote of resolving the difficulty by declaring the value of π to be 3.2.
Unfortunately for ease of calculation, circles are more wont to obey the
laws of Nature than the laws of Indiana. Archimedes did much better by
drawing two polygons, one circumscribing the circle and one
circumscribed by the circle.



Figure 4.2: Circle Inscribed and Circumscribed by a Pair of Eight-Sided
Polygons (Octagons).

It is easy to calculate the area of a polygon, since a polygon can always
be divided up into a set of triangles, and the formula for the area of a
triangle is well known. Archimedes took advantage of this ease of
calculation, together with the facts that the area of the outer polygon is
larger than the area of the circle (and hence provides an upper bound to the
value of π), while the area of the inner polygon is lower than that of the
circle (and hence provides a lower bound to π). By drawing polygons with
more and more sides, approximating more and more closely to the shape
of the circle, Archimedes approached π from above and below, eventually
finding (after drawing a polygon with 96 [!] sides) that π could not be
more than 3.1429 or less than 3.1408. The actual value (correct to five
significant figures) is 3.1416.

Supermarket  Mathematics

Archimedes could have done even better by averaging his upper and lower
bounds. This gives an answer of 3.1418 — close enough for most practical
purposes. My plan was to use a similar approach to estimate the total of a
supermarket bill. In the bill above, for example, the average of the upper
and lower bounds (£9 and £5 respectively) is £7, an answer that is
satisfactorily close to the true total of £7.38.



A simple, practical way to do this calculation is to keep track of the
dollars or pounds (i.e., truncate) while going around a supermarket or
adding a bill, and then add half the number of items in the bill to that total.
This is mathematically equivalent to averaging the upper and lower
bounds (the reason is given in the notes to this chapter), but is much easier
to do in practice. It also seemed to work at least as well as Wendy′s
method — or so I thought. My confidence in this approach was such that I
made a small bet on its accuracy while having a drink with a friend. He
immediately produced a crumpled bill from his pocket and challenged me
to have a go. I have kept that bill as a reminder that hubris, an
occupational disease among scientists, can strike at any time. As Figure
4.3 shows, the bill contained thirty-one items. Half of thirty-one is fifteen
and a half, and the total in the ”pounds” column is £25, so, according to
my rapid approximation technique, the overall total should have been
£40.50. Unfortunately, the real total was £45.60. Even more gallingly,
Wendy′s approach predicted a total of £46.



Figure 4.3: The Supermarket Bill that My Friend Produced.

Supermarket  Stat ist ics

Why was my answer so wrong? More to the point, why was Wendy′s so
right? Both methods, after all, seemed to rely on the same assumption,
which was that the average price in the ”pence” column over a large
number of items would be close to 50p (”p” is short for ”pence,” just as
”¢” is short for ”cents”). In my method, this assumption meant that the
pence total (expressed in pounds) would be equal to half the number of
items. In Wendy′s case, the assumption meant that her errors from



rounding up would cancel out those from rounding down. In any case, we
both seemed to be in the same statistical boat. Things became even more
puzzling when I looked at the actual average of the pence column in the
bill. This turned out to be 66p. Prices in the pence column were thus
clearly biased towards the upper end of the range. It was no wonder that
my method had given an answer that was far too low. Why, though, didn′t
Wendy′s approach give an answer that was equally low? It could only be
that the errors introduced in rounding up were still being balanced by the
errors introduced in rounding down.

When I looked at the bill in detail, I found that this was indeed the case.
In her rounding-up range (50p–99p), the average pence price was 81p, so
that each rounded-up price would be in error by 19p on average. The
average price in her roundingdown range (0p–49p) was 35p, so that each
rounding down would, on average, be in error by 35p — almost twice as
much as the error introduced by rounding up. This imbalance, which might
have been expected to wreck her method, was almost exactly compensated
for by the fact that there were twice as many items to be rounded up as
there were to be rounded down.

I wondered whether this was a one-time event, or whether the same
pattern was followed by other bills from this supermarket. There was only
one way to find out, and that was to examine a range of bills, preferably
from different shoppers. With the help of my village neighbors, I began to
amass a collection. Over the next week piles of bills poured in through the
mailbox, to the bemusement of our cat, whose cat door is situated directly
below. I also checked the prices for a different supermarket chain in a
different town, where unfortunately I had no friendly neighbors to help
me. I solved that problem by rooting around in the wastebaskets outside
the checkout counters for discarded bills. In the end, I was able to enter
nearly a thousand individual prices in my Excel spreadsheet — over six
hundred from the first store, and three hundred and fifty from the second,
where suspicious looks from the manager eventually forced me to give up
my search of his wastebaskets. As a pattern began to emerge, I
experienced the same sense of mounting excitement that I have often felt
in the scientific laboratory — the special thrill of chasing down and
eventually making sense of a set of results.



That feeling, far removed from the often sterile way in which results are
eventually presented for public consumption, is the ultimate reward in
science. I have seen the most sober-minded of scientists on these
occasions sing, dance, and, on one memorable occasion, strip naked and do
handstands for the sheer uninhibited joy of the moment. These moments
happen because of the tension that builds up during an experiment or
series of experiments. That tension wouldn′t be there if science operated in
the way that many people seem to think it does, with the scientist patiently
and objectively collecting ”data,” and only then thinking about what those
data might mean. But that′s not the way most experimental scientists
operate. Most of us start off with a picture that we are trying to check out.
The picture may be vague, or it may be very precise. Either way, every
fresh result is something to be thought about and incorporated, either as
reinforcement or as a step in a new direction. As more results come in the
excitement builds, reaching a peak when quick calculations show that the
results are going according to plan. The notebooks of Robert Millikan,
who was awarded the 1923 Nobel Physics Prize for measuring the value of
the charge on the electron, are full of comments like ”Beauty. Publish this
surely, beautiful!” and ”This is almost exactly right and the best one I ever
had!!!” My own notebooks are full of similar comments, although I have
taken more care with them since the occasion when my habitual Australian
adjectival expressions were faithfully recorded by my assistant alongside
the results.

The picture that I was trying to check out with my supermarket bills was
whether the pence prices of the goods in our local supermarket were really
biased towards the upper end of the scale, and whether there were more
actual goods priced in the upper half of the scale than there were in the
lower half. The act of entering a long string of prices into a spreadsheet
may seem boring to some, but I felt a quickening pulse as I noted the
number of prices that were not only in the upper half of the scale but
actually ended in .99. As I continued to list the prices from different bills I
also noticed that many of the prices that did not end in .99 ended in .49,
and of those that did neither, many still ended in 9. This was hardly an
original observation, but the scale of this pricing policy was staggering,
with 67 percent of all prices ending in 9.



Then I began to notice gaps. Prices never seemed to end in a 0, 1, or 2,
and prices ending in 3, 4, 6, and 7 were noticeably rare. When I turned to
bills from the second supermarket, I found a similar pattern. To view the
data as a whole, and to look for other patterns and for differences between
the supermarkets, I drew a frequency distribution of the prices for each
store (Figure 4.4).

Figure 4.4a and 4.4b: Distribution of Prices of Goods Bought from Two
Different Supermarkets.

If the prices in the pence columns had been randomly distributed, then
the graphs should not have had any peaks, let alone the huge ones that
actually appeared at regular intervals (£0.99, £1.99, £2.99, etc.),



decreasing in height with increasing price, and with smaller peaks
distributed about them. It appeared that both supermarkets priced many of
their goods as close to each whole pound as they could manage without
actually touching or going over that barrier. Looking more closely, I
observed a second set of peaks, almost invariably higher than their
neighbors, but not as high as the first set. These are the peaks at £0.49,
£1.49. £2.49, etc. They occur just below the middle of the range (£0.50,
£1.50, £2.50, etc.) for any particular pound band. With a high proportion
of prices concentrated in these two sets of peaks, it appears that that the
fundamental unit of price is actually 50p, and that the price of many goods
changes on average by 50p at a time, with the rest of the prices randomly
scattered about this mean.

At the higher end of the supermarket price range (not shown in the
graphs), this conclusion proved to be exactly right. For items priced above
£6, there were no prices that did not end in .49 or .99 in the bills that I
examined. Looking at the lower prices, though, it appeared that there was a
third series of peaks, separated by 10p, with many prices at 29p, 39p, 49p,
59p, etc. This pattern was especially evident for prices between £1 and £2.

It seems fairly obvious, then, and comes as no surprise, that those who
set supermarket prices perceive prices ending in zero as barriers not to be
passed, or even touched, but to be approached as closely as possible from
below. The major barriers are the whole pounds. Less important, but still
significant, are prices ending in £0.50. Even prices ending in other
multiples of 10p, though, still need to be taken into account for a full
picture.

The psychological rationale behind this sort of pricing policy is
presumably that we tend to truncate but not to round up when looking at
prices. I was more interested, though, to see whether the pence average in
the supermarket bill that I had started with was representative of local
supermarket bills generally. It was. The average pence price for goods
below £2 (representing 80 percent of the purchases of the average shopper)
was 60p for the first supermarket and 63p for the second supermarket,
with 55 percent of the prices in the upper half of the range for the first
supermarket and 64 percent in the upper half of the range for the second
supermarket. This suggested that the second supermarket was the more
expensive, a conclusion that was later borne out. The figures also showed



that Wendy′s calculation technique would be expected to work almost
perfectly for bills from the second supermarket, and would still be better
than mine for bills from the first supermarket.

I was not beaten yet, since I could modify my approach to take account
of the new statistical information. The overall pence average for both
supermarkets was 61p, which meant that I could get a more accurate total
than before by adding up the pounds column and then adding 0.61 times
the total number of items instead of half the number. This is not a
procedure that is likely to appeal to the average shopper, but a reasonable
approximation to it is to add two-thirds of the number of items to the
pounds total. In the supermarket bill on page 82, for example, the total
number of whole pounds is £25, and there are thirty-one items. Two-thirds
of 31 is approximately 20 (20.67, to be more exact), and £25 + £20.67 =
£45.67, which is pleasingly, if a little luckily, close to the actual total of
£45.60. Usually the overestimate of the total will be slightly greater — but
then, it is only an estimate.

Will It  Work for American Supermarkets?

My basic ideas for checking and comparing supermarket prices should
work anywhere, but the exact numbers to use obviously depend on the
pricing strategy of the particular supermarket. I looked up the price lists
for ten different American supermarket chains on the Internet, and
examined the prices of around a thousand items overall, to see whether
these supermarkets adopted similar pricing strategies to British
supermarkets. There were some very interesting differences.

The American chains concentrated some of their prices in a similar way
to British supermarkets, with major price peaks just below each whole
dollar (e.g., 99¢, $1.99, $2.99, etc.). These peaks account for some 30
percent of items in British supermarkets but for around 54 percent in the
average American supermarket. In some cases the percentage is even
higher. For one large supermarket chain, every unit price ended in .99!
Clearly my ”two-thirds” formula for quickly checking a bill wouldn′t work
here. On the other hand, this pricing policy lets the buyer estimate the bill
simply by rounding up each price to the next dollar and adding.



Alternatively, just add the dollars column and then add the number of
items.

For other supermarkets, there were two major peaks in the prices — one
where the price ended in .99, and one where the price was in whole dollars,
i.e., ending in .00. For most of these supermarkets there were nearly twice
as many items with prices ending in .99 as there were with prices ending
in .00. My ”two-thirds” trick for quickly checking a bill should work well
in these cases.

Comparing  Prices

Consumer organizations, and supermarkets themselves, compare prices
using a ”standard shopping basket” of the same goods. This can become a
game of minimizing the prices in the standard basket, while raising other
prices to counterbalance the loss. The individual consumer, armed with the
information from my surveys, can do better in a number of ways.

The first is to compare the average prices in the ”cents” column for bills
from different supermarkets. This comparison technique works best if it is
confined to items priced under $5, since the prices of goods that are more
costly almost invariably end in ”.99.” It has the advantage that the shopper
can use his or her own ”shopping basket” (which need not be identical
between the two stores for the procedure to work satisfactorily) to make
the comparison. The difference in the ”cents” averages might, of course,
reflect differences in the quality of the goods. It might also reflect
different prices for the same quality — that is up to the shopper to decide.
At least, with these calculations, the shopper will be better armed to make
the decision.

For a fair comparison, at least fifty items should be included in the
total. This usually means saving a number of bills, and the average
shopper may not think that it is worth the effort. Is there an easier way?
There is, based on the fact that 90 percent of the prices in a typical
American supermarket end in ”.99” or ”.00.” This simple pricing strategy
means that, if a supermarket is going to raise the price of an item marked
in whole dollars, it has virtually no choice, mathematically speaking, but
to jump the price all the way up to the next ”.99.” If the original price ends
in ”.99,” the store has the option of raising the price by just one cent to the



next whole dollar, which is a much lower percentage increase in price. So
the cheapest supermarket is likely to be the one with the highest
proportion of items marked in whole dollars, because the big price jumps
for these items haven′t happened yet. It′s that simple.

Florence Nightingale believed that ”to understand God′s thoughts, we
must study statistics, for these are the measure of His purpose.” Be that as
it may, there is no better weapon than statistics for understanding and
defeating the purposes of supermarket pricing controllers. The quick
methods that I have suggested for checking and comparing supermarket
prices rely on very simple statistics. I am aware that in suggesting their
use in shopping I am in the position of a man who has learned to swim
from a book but has not yet tried out his method in practice. There is a
simple reason for this — Ihate shopping, and will pay anything to get out
of the store as quickly as possible. For those with more patience, the
simple checks that I have outlined in this chapter should be of some value.
Keep in mind that the differences in prices might reflect genuine
differences in the quality of the goods, rather than different prices for the
same quality. That is up to the shopper to decide. With these simple tests,
however, at least the shopper no longer needs to shop in the dark.

Summary

To Quickly  Check the Addit ion of  a  Supermarket
Bill

Add two-thirds of the number of items to the total in the ”dollars” column
(unless it′s one of those supermarkets where everything ends in ”.99”).

To Compare Prices Between Supermarkets

If most of the prices at the supermarket end in ”.00” or ”.99,” check what
proportion actually end in ”.00.” The higher the proportion, the cheaper
the supermarket is likely to be. If the price spread at your local
supermarket is more uniform, just look at the prices ending in ”.99.” The
higher the proportion, the more expensive the supermarket is likely to be.
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how to throw a boomerang
Not many people get to invent a new category for the Guinness Book of
World Records. I was lucky enough to do so when I was briefly affiliated
with a television science program and asked to come up with an idea for a
science-based national competition that would attract public attention.

”Why not,” I suggested, ”get them to design and fly their own
boomerangs?” The producer patiently pointed out that outdoor filming was
very expensive, and that the idea was to have a competition where the final
could be held in a TV studio. ”Fine,” I said, ”we′ll get them to make the
boomerangs out of cardboard, and have a race to see how many times they
can throw them around a pole and catch them in one minute.”

The competition was a great success, and a ”new” world record was
duly established by the British thrower Lawrence West, who zipped his
boomerang around a pole three meters away a staggering twenty times in
one minute. Our attempts to explain just why boomerangs come back were
frustrated, though, when the producer would allow only a few seconds of
airtime for the explanation. This was a pity, because the explanation is
fascinating in itself, and goes far beyond the confines of spinning
boomerangs. In fact, it applies to any spinning object, from the atoms in
our brain to the wheels of a bicycle and the Earth in its orbit. All of these
respond in the same way when something tries to tilt them over. In the
case of a boomerang, the tilting force comes from the air rushing over the
”wings.” How it happens, and how it makes the boomerang come back, are
the subjects of this chapter. As a bonus, there is even a design for a ”world
record” cardboard boomerang to try.

Boomerangs? You mean the thinking person′s frisbee?”



The speaker was Sean Slade, secretary of the British Boomerang
Society. I had called him in desperation for help with a one-day course on
”Boomerangs: Physics and Flying,” where I planned to show non-
scientists how to design, build, and fly their own boomerangs. I had read
up on the physics of boomerangs, but, with only a week to go, I still hadn′t
managed to fly one. No matter how hard I tried, my boomerang wouldn′t
come back. Sean was surprised, to put it mildly, to encounter an Australian
who didn′t know how to throw a boomerang, and offered to introduce me
to the art. It is an art that Australian Aborigines have understood for at
least ten thousand years, although modern science is only just starting to
come to grips with it.

The next day, Sean turned up on my doorstep with a bag containing
more than 150 boomerangs. Some were made of wood, the traditional
material, but many more were made from the materials of modern science
— brightly colored plastics, carbon fiber–reinforced composites, and even
metals like titanium. The longest was almost as tall as him, and looked a
fearsome weapon.

Returning boomerangs were, in fact, hardly ever used as weapons.
Australian Aborigines, like modern-day boomerang throwers, used (and
still use) them for sport. The sport could be quite bloodthirsty, as the
following account from 1881 shows:

Ten or twelve warriors, painted with white stripes across the
cheek and nose, and armed with shields and boomerangs, are
met by an equal number at a distance of about twenty paces.
Each individual has a right to throw his boomerang at anyone
on the other side, and steps out of rank into the intervening
space to do so. The opposite party take their turn, and so on
alternately, until someone is hit, or all are satisfied ... As the
boomerang is thrown with great force, it requires very great
dexterity and quick sight to avoid such an erratic weapon, and
affords a fine opportunity for displaying the remarkable
activity of the aborigines. This activity is, no doubt,
considerably roused by fear of the severe cut which is inflicted
by the boomerang.



Some modern boomerangs can be equally frightening. Sean told me that a
new world distance record had just been established — not by an
Aboriginal thrower, but by a Frenchman competing in a contest at
Shrewsbury in England. The record distance was an incredible 149 meters,
but the triumph was nearly a catastrophe because a good distance
boomerang is like a flying razor blade, being very thin and sharp-edged to
reduce aerodynamic drag and to permit it to travel as far as possible before
returning. It is practically invisible to the thrower as it returns, edge-on,
and this one nearly removed the thrower′s head, eventually landing some
sixty meters behind him.

Despite their potential for damage, returning boomerangs, as
mentioned, are seldom used as hunting weapons because it is much easier
to hit a target such as an animal or an enemy with a direct throw of a spear
or a stone, rather than with something that not only follows a widely
curving path, but which also rises as it flies. When Australian Aborigines
use boomerang-shaped sticks as weapons for war or hunting, the sticks
(called kylies in some Aboriginal languages) are deliberately chosen not to
return. The arms are shaped to have aerodynamic ”lift” so that when the
stick is thrown horizontally, spinning at around ten revolutions per second,
it skims a meter or so above the ground in a straight path until it hits
whatever is unfortunate enough to be in the way. Some 95 percent of the
boomerang-shaped objects that have been collected fall into this category.

Boomerangs themselves are different. Their arms are also shaped to
give aerodynamic ”lift,” but the lift operates in such a way that when the
boomerang is thrown in an initially nearvertical orientation, it gradually
turns over as it travels in a circle until, by the time it returns to the
thrower, it is spinning in a horizontal plane and hovering, just waiting to
be caught.

As I looked at Sean′s large boomerang, and even those of more modest
proportions, I thought with some trepidation that they would be pretty
lethal even when hovering, and could easily take a couple of fingers off.
He demonstrated the way to avoid this, which was to catch the boomerang
between the palms of the hands by clapping them together. This turned out
to be easier than it looked, and was the start of my love affair with
boomerangs.



Records are plentiful in boomerang throwing, which is now an
organized sport, with competitions for ”fast catch,” ”distance thrown”
(this was also a competition among the Aborigines), ”maximum time
aloft,” and numerous other categories. The grand prize for ”maximum
time aloft” must surely go to Bob Reid, a British university physicist who
managed to keep a boomerang in the air for twenty-four hours and eleven
seconds. Impossible? Not if you are enthusiastic, and eccentric, enough to
take a boomerang to the South Pole and throw it through all the time
zones, thus adding twenty-four hours to the actual time of flight (Figure
5.1).

Figure 5.1: Dr. Bob Reid in the Process of Throwing a Boomerang
Around the South Pole.

With people such as Sean and Bob for support, I felt that I was in my
element as I settled down to address the question ”What makes a
boomerang come back?” The short answer is spin, together with the fact



that the two blades of a standard boomerang are oriented differently
(Figure 5.2).

Figure 5.2: Wing Shapes in a Traditional Boomerang.

Each blade is shaped like an airplane wing, but the two blades are joined
together in such a way that the rounded edge of both wings always leads as
the boomerang spins after it is thrown. Both wings thus provide ”lift” but,
because the boomerang is spinning in a vertical plane, the ”lift” pushes the
boomerang sideways, ultimately returning it to the thrower.

I hope that the above explanation does not satisfy you. It is the one that
I put together for the TV producer in response to nagging demands for a
ten-second ”sound bite” on how boomerangs work. Scientists are
frequently asked for such sound bites, the presumption being that the
audience could not possibly remain interested for any longer, or
understand anything more complicated. I don′t believe it, and I think that
audiences are being patronized by such practices.

The real reasons for the return of the boomerang are easier to
understand than the simplified explanation, which raises more questions
than it answers, and are also a lot more interesting and aesthetically
pleasing. In science, as in art, the beauty is in the detail. Not that visual



beauty is missing. Boomerangs themselves have a pleasing symmetry, and
are usually painted, although the paintings on pre-European Aboriginal
boomerangs were seldom intended for decorative purposes. They were
used in the same way as other Aboriginal art is used — as a reference to
ancestors and to the Dreamtime when the Earth was formed (Figure 5.3).
Most surviving examples have long since been snapped up by collectors,
and modern Aboriginal decoration is exclusively for the tourist market.

I came across one curious example when I was purchasing boomerangs
from Duncan MacLennan, an old-time Australian who has run a
boomerang school in Sydney for nearly sixty years. When he started, he
wanted Aboriginal motifs for the plywood boomerangs that he was
manufacturing, and approached the members of a local tribe to do the
painting. They were very interested, not only in doing the painting, but
also in the boomerangs themselves. It turned out that they had never seen
one, and Duncan had the unique pleasure of teaching an Aboriginal tribe
how to throw boomerangs.

Figure 5.3: Australian Aboriginal Decorated Boomerangs. a. Kimberley
Region of Western Australia. b. Diamantina River Region. Picture

provided by Philip Jones, Senior Curator, South Australian Museum.



The science of what happens when a boomerang leaves the hand of the
thrower is as aesthetically pleasing as the boomerang itself. The simple
key notion is that the two arms, even though they are identical and
symmetrically disposed about the axis of spin, experience different
aerodynamic forces because the boomerang is moving forward as well as
spinning. The net result is that the upper arm is moving faster through the
air than the lower arm, so that the sideways ”lift” is greater on the upper
arm than it is on the lower arm, and the boomerang tilts (Figure 5.4).

Figure 5.4: Flying Boomerang Viewed Along Flight Path (Central
Circle) from Behind.

(The magnitude of the aerodynamic force on each boomerang arm is
proportional to the length of the arrow.)

What happens next is that the boomerang′s flight direction changes to
follow the direction of the tilt. This phenomenon, called precession, is one
that we often experience, even if we can′t put a name to it. When we lean
sideways while riding a bicycle, for example, the spinning front wheel
automatically turns to follow the direction in which we lean (the back
wheel would do likewise if it could). The phenomenon also works in
reverse. If we turn the front wheel of a bicycle, we automatically lean in
the direction of the turn. This is not voluntary — it′s physics.

Precession can turn up in unexpected places. Hospital MRI (magnetic
resonance imaging) scanners use it, for example, in imaging soft tissues
such as the brain. The things that are spinning are not the patients but the
atoms in the patients′ brains. An MRI scanner subjects these atoms to a



weak radio signal that tilts them over. The spinning atoms respond just as
a tilted bicycle wheel would, by trying to recover the direction of their
spins. The speed at which they can do this depends on how ”sticky” the
local brain environment is, which can be different in sickness and in
health, so that the speed at which the spinning atoms recover after being
subjected to a radio pulse can give valuable clues about whether the part of
the brain that they inhabit is healthy or ailing. Precession in boomerangs,
bicycles, and brains works in the same way in each case, and is ultimately
describable by a very simple and beautiful rule, called the gyro rule, which
says that the spin axis chases the torque axis. It is easiest to explain this
rule with a diagram, as in Figure 5.5.

Figure 5.5: The Gyro Rule Applied to Boomerangs.

The spin axis is the line about which the spin is taking place (e.g., the
axle of a bicycle wheel). Similarly, the torque axis is the one about which
the tilt is taking place. For the boomerang shown in the diagram, the
torque axis is the line of flight, with its direction specified by the right-
hand screw rule. Bend the fingers of your right hand in the direction of
rotation or torque. The thumb will now be pointing in the direction of the
appropriate axis. The right-hand screw rule also applies to the spin of the
boomerang itself. The directions of the spin and torque axes, together with



the gyro rule, tell us that boomerangs swing to the left if they tilt to the
left, eventually swinging right around and coming back towards the
thrower. It is also possible to design a boomerang that tilts to the right
when thrown, and therefore turns around in the opposite direction. The
first type is usually used by right-handed throwers, and the second type by
left-handed throwers. So there are right-handed and left-handed
boomerangs, just as there are right-handed and left-handed corkscrews.

The gyro rule follows from one of the great conservation laws of
classical physics. There are just four of these, all enunciated in the
nineteenth century, and all describing a fundamental quantity whose total
throughout the universe remains forever unchanged. One of those
quantities is energy (see chapter two). The other three are electrical
charge, linear momentum, and angular momentum.3

Precession explains very elegantly why boomerangs come back, but that
is only a start, as Figure 5.6 reveals. The path shown is the simplest, and
typical of many boomerangs. Viewed from above, it is a circle. Viewed
from the side (as in the photograph), the boomerang rises ever more
rapidly as it leaves the thrower, then slowly settles as it returns, looping
and spinning as it does so. This photograph is the latest (and best) in a
long line that stretches back to a time-lapse photograph taken in front of
the old Australian Parliament House by Lorin Hawes, an eccentric
American physicist who gave up a job as a nuclear weapons instructor and
moved to Australia, where he set up as a boomerang designer and founder
of the wonderful Mudgeeraba Creek Emu Racing and Boomerang
Throwing Association.



Figure 5.6: Time-Lapse Photograph of a Boomerang in Flight. The
boomerang, thrown by Michael Hanson and photographed by Christian

Taylor, was lit by a small battery-powered bulb at the tip.

It seems impossible that such a flight path could be accounted for by
simple physical rules. People before Copernicus had a similar problem
with the planets. Viewed from Earth, they can appear to speed up, slow
down, and even occasionally do backwards somersaults. If we could put a
large enough sparkler on Mars and take a time-lapse photograph of its
movements, they would appear remarkably similar to those of a
boomerang. The Greek astronomer Ptolemy explained such complicated
planetary movements in terms of small-scale circular movements (called
epicycles) superimposed on the main orbit, and even smaller-scale circular
movements superimposed on these. It took the genius of Copernicus to
realize that all of Ptolemy′s problems stemmed from taking the Earth as
the point of observation. Viewed from the Sun instead, planetary
movements became extraordinarily simple, with all planets following
smooth elliptical orbits.

Boomerang movements become equally simple when viewed from the
point of view of the boomerang. The first step is to explain why the
boomerang flies in a circle. A circular orbit requires a force that is always



directed towards the center and which does not change in magnitude. This
force is provided by the aerodynamic lift. For it to stay constant, the angle
of attack of the airfoil (i.e., the angle of the boomerang wing to the
onrushing air) must be constant. This will only happen if the rate at which
the boomerang tilts is exactly the same as the rate at which it flies around
the circle. It takes only three lines of (admittedly complex) algebra to
show that a simple, ideal boomerang with wings of a uniform cross-
sectional shape obeys this condition. The mathematics, summarized in two
excellent articles by the irrepressible Bob Reid, leads to a ”boomerang
equation” that tells us a lot about boomerangs and how they work. Here I
have written the boomerang equation using words instead of algebraic
symbols:

In other words, the flight circle will be bigger if the material from
which the boomerang is constructed is denser and if the arms are thicker.
The flight circle will also be bigger if the lift coefficient (i.e., the
aerodynamic effectiveness of the wings) is smaller, if the arms are
narrower, and if the density of the air is lower. So if you want distance, go
to a high place, as the Swiss thrower Manuel Schütz did in 1999 when he
established a new world distance record of 238 meters (more than a
quarter of a mile, there and back!). The record was established at Kloten,
near Zurich, 409 meters above sea level, and with an air density four
percent less than that at sea level.

Even more interesting than the factors that are in the equation are the
factors that aren′t. The radius of the flight path is independent of both the
forward velocity and the angular spin velocity. It is also independent of the
length of the arms, except insofar as this length affects the lift coefficient,
and is even independent of the number of arms.

Some of the factors in the boomerang equation fight with each other. A
low lift coefficient, for example, usually needs a thin, flat arm, rather than
a thick one. Practical boomerang design, then, is more than a matter of
fitting an equation, even though the equation provides a useful guide.



Compromise, based on experience, can considerably improve the
performance.

Whatever the design of the boomerang, the radius of the flight circle is
built in, although factors such as the angle of tilt and speed of rotation at
the throw can sometimes have a substantial effect. The main result of
throwing a boomerang harder, though, is to make it travel around its flight
path faster, and come back sooner.

Lawrence West, the current world record holder for indoor boomerang
flying, took advantage of this fact in the competition that I organized for
the British TV show Tomorrow’s World. The competition was for the
maximum number of times that a cardboard boomerang could be thrown
and caught in one minute after passing around a pole three meters away.
Lawrence designed a boomerang where the balance of factors in the
boomerang equation provided a built-in flying radius of just over 1.5
meters, whipping it around the pole twenty-four times in practice, and
twenty times in the actual competition (Figure 5.7).

The science involved some interesting subtleties that I introduced to the
participants in my course when they were designing their own
boomerangs. The first concerned the stability of the boomerang, and the
angle between the arms. It might seem from the boomerang equation that
the angle between the arms doesn′t matter, since it isn′t mentioned. It does
matter, though, for a reason that is easy to understand intuitively although
rather complex to explain scientifically. If you imagine making a straight
boomerang, with the two arms in the same line, it is easy to see that this
would be very difficult to throw so that it kept spinning in the same plane.
It is all too likely also to start rotating about the longitudinal axis,
eventually resulting in a crazy tumbling.



Figure 5.7: Design of Lawrence West’s “World Record” Cardboard
Boomerang, Made from 1.5 mm-thick Mount Board.

Stability and rotation are favorite subjects of my Bristol University
colleague Professor Mike Berry, who has established a worldwide
reputation for demolishing long-held beliefs in this area. His latest
triumph earned him the spoof IgNobel Prize from Harvard University
because of its eye-catching description — ”Of Flying Frogs and
Levitrons.” The science, though, was very real. The frog was a toy that
seemed to disobey a fundamental physical law by remaining suspended in
space. The problem was not the defiance of gravity — this was achieved
by putting a set of magnets in the frog, with their north poles pointing
downwards, and placing the frog over a base containing a set of magnets
with their north poles pointing upwards. The real problem was that such an



arrangement has been known for at least one hundred years to be unstable.
The slightest touch, or puff of breeze, and the frog should flip over and fall
to the ground. Yet here was the frog, displayed in a shop window, lazily
spinning for hours on end.

The spin was the key, as Mike discovered when he sat down to do the
mathematics of the problem. It transpired that the arrangement is unstable
unless the frog is spinning, in which case there is a very narrow range of
parameters within which the arrangement remains stable. The inventor of
the levitating frog, not knowing that it was impossible to levitate a frog by
means of magnets, had stumbled on the precise set of conditions needed.

Boomerang designers have a similar problem. The physicist′s ”ideal”
boomerang, with wings of uniform cross-section, makes the job of
calculation easier, but isn′t particularly ideal when it comes to competition
throwing. With any other design, though, the thrower faces the immediate
problem of making the rate of tilt equal to the rate of rotation, which is
mathematically equivalent to saying that the angle of attack has to stay
constant. This means that the rate of tilt (i.e., the precession rate) must be
just right. Too slow, and the angle of attack gradually decreases so that,
after a promising start, the boomerang won′t come back. Too rapid, and the
angle of attack increases, the lift increases, and eventually the boomerang
stalls.

What can be done with a boomerang that won′t come back, either
disappearing into the distance or stalling and crashing? Some of the
students in my course thought that the answer would be to change the
shape of the boomerang by sanding it. The real answer is much simpler
than that — just tape small coins to the wings. For a boomerang that stalls,
the mathematics underlying the boomerang equation show that the coins
should be taped near the tip, slowing the boomerang down. To speed up the
boomerang, the coins should be taped near the center. The effect in the
latter case is the same as when a spinning skater with arms outstretched
pulls his or her arms in, speeding up as a result because angular
momentum is therefore conserved. Boomerang designers regularly use the
coin trick, only changing the basic design once the coins have shown
where weight needs to be added and where it needs to be subtracted.



The other main design problem with boomerangs is constructing them
so that they ”lie down” at just the right stage in the flying circle. But why
does a boomerang ”lie down” at all? The answer concerns yet another
subtlety of the boomerang, which is that one of the arms is always flying
in ”dirty air,” a phenomenon that will be familiar to yachtsmen, and
indeed to anyone who has been passed by a fast-moving truck on a
highway. This phenomenon happens because the two arms of a
traditionally shaped boomerang, apparently symmetrically disposed, are in
fact quite different. The arm with the sharp edge on the ”inside” is called
the leading arm. The other (with the sharp edge on the ”outside”) was
christened by Lorin Hawes the dingle, or dangling, arm. The poor dingle
arm is forever flying through the disturbed air created by the leading arm.
This means that if the two arms are identical, the dingle arm will provide
less lift than the leading arm. ”Averaged over a complete rotation,” says
Bob Reid, ”there is a net torque about the vertical axis, which in turn leads
to a precession about the direction of flight, i.e., the boomerang lies
down.”

After half an hour with Bob′s diagrams, I believed him. Others will have
to have faith, as my students did when they made their own boomerangs,
or read the original article themselves. The main practical point is that the
boomerang′s propensity to lie down can be controlled by shaping the
dingle arm so as to give it slightly more lift than the leading arm. This is
easily done with a touch of sanding, which fine-tunes the boomerang so
that it will lie down at just the right point, as Lawrence West′s did,
enabling him to catch and throw it with machine-like precision.

Most of this I learned when I was planning my one-day course, but all
of the theoretical knowledge in the world wasn′t getting my boomerang to
come back, and, as the time drew near, I was becoming increasingly
frustrated. Then I found out what the problem was: air resistance.

A boomerang transfers some of its momentum to the surrounding air
molecules as it travels, speeding them up (so the air becomes hotter) but
slowing down itself. The drag can be sufficient to slow both the forward
motion and the spin to the point where the boomerang simply gives up and
flops to the ground. The answer is to get the boomerang spinning as fast as
possible at the start, so that it still retains a reasonable proportion of its
angular momentum by the time it returns. The secret, as Sean showed me



just in time, is to tilt the boomerang right back and then to release it with a
whipping action, launching it at a few degrees above the horizontal to
counteract the effects of gravity on the flight.

When the time came for the course itself, I was throwing like the expert
I wasn′t, and the students were following my advice to produce some
wonderful boomerangs. I forbore to tell them that Australian Aborigines
mostly use their boomerangs as knives, digging tools, musical
instruments, and for cleaning their teeth. It would have been a pity to spoil
their pleasure as, one and all, their boomerangs came flying back.
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catch as catch can
Until recently, catching a ball was one of the few areas of sports that
science had not touched. Rackets, bats, and the other tools of sports have
long been designed along scientific principles, as have athletes′ diets and,
to some extent, athletes themselves. Many sporting techniques have also
been subject to scientific refinement — javelins, for example, are now
launched at a precisely calculated angle, with the thrower moving in a
scientifically guided way. Ball catching, though, has remained the
province of natural skill. The closest that science has come to it is
recounted in A. G. Macdonell′s classic 1933 account of an English village
cricket match, which remains the funniest account of any sporting moment
that I have read. The game (in baseball terms) is all tied up before the final
out, and the ”bowler” is equivalent to a pitcher, while the ”wicket-keeper”
is the equivalent of a catcher. Now read and enjoy!

The scores were level and there was one wicket to fall. The last
man in was the blacksmith.... He took guard and looked round
savagely. He was clearly still in a great rage.

The first ball he received he lashed at wildly and hit straight
up in the air to an enormous height. It went up and up and up,
until it became difficult to focus it properly against the deep,
cloudless blue of the sky, and it carried with it the hopes and
fears of an English village. Up and up it went and then it
seemed to hang motionless in the air, poised like a hawk,
fighting, as it were, a heroic but forlorn battle against the chief
invention of Sir Isaac Newton, and then it began its slow
descent.



In the meanwhile things were happening below.... The titanic
Boone had not moved because he was more or less in the right
place, but then Boone was not likely to bring off the catch,
especially after the episode of the last ball. Major Hawker,
shouting ”Mine, mine!” in a magnificently self-confident
voice, was coming up from the bowler′s end like a battle-
cruiser. Mr. Harcourt, the poet, had obviously lost sight of the
ball altogether, if indeed he had ever seen it, for he was running
round and round Boone and giggling foolishly. Livingstone and
Southcott, the two cracks, were approaching competently, their
eyes fixed on the ball.... In the meantime, the professor of
ballistics had made a lightning calculation of angles, velocities,
density of the air, barometerreadings and temperature, and had
arrived at the conclusion that the critical point, the spot which
ought to be marked in the photographs with an X, was one yard
to the northeast of Boone, and he proceeded to take up his
station there, colliding on the way with Donald and knocking
him over. A moment later Bobby Southcott came racing up and
tripped over the recumbent Donald and was shot head first into
the Abraham-like bosom of Boone. Boone stepped back a yard
under the impact and came down with his spiked boot,
surmounted by a good eighteen stone of flesh and blood, upon
the professor′s toe. Almost simultaneously the portly wicket-
keeper, whose movements were a positive triumph of the spirit
over the body, bumped the professor from behind ... and all the
time the visiting American journalist Mr. Shakespeare Pollock
hovered alertly upon the outskirts ... screaming American
university cries in a piercingly high tenor voice.

At last the ball came down.... it was a striking testimony to
the mathematical and ballistical skill of the professor that the
ball landed with a sharp report upon the top of his head. Thence
it leapt up into the air a foot or so, cannoned on to Boone′s
head, and then trickled slowly down the colossal expanse of the
wicket-keeper′s back, bouncing slightly as it reached the
massive lower portions. It was only a foot from the ground
when Mr. Shakespeare Pollock sprang into the vortex with a



last earsplitting howl of victory and grabbed it off the seat of
the wicketkeeper′s trousers. The match was a tie.

I can vouch for the essential truth of the above description, since I still
play cricket for the English village where I live. Surprisingly, science now
seems to have shown that the professor′s ability to rapidly calculate
trajectories is something that we all have, and which we use when we run
to catch a ball. Support for this idea came in a paper published in 1993 in
the prestigious journal Nature, where two psychologists analyzed video-
records of expert catchers running to catch a ball. The authors found that
the catchers varied their running speeds so that the rate at which they were
tilting their heads to follow the flight of the ball conformed to a specific
equation. They believed that the catchers could only achieve this feat by
solving the equation in their heads as they ran, and concluded that this
”demonstrates the power of the brain′s unconscious problem-solving
abilities.”

I was initially convinced by their argument, as were the newspapers of
the day, one of which even ran the story on its front page. When I looked at
what the equation really meant, though, I found that it conveys an absurdly
simple physical message about what we have to do to catch a ball. That
message is one that we learn as children, and what the psychologists′ work
really tells us provides a fascinating insight into how we adapt the simple
techniques that we learn as children to the more complex situations of
later life.

Children begin learning to catch by standing with their arms outstretched,
waiting for an adoring adult to lob a ball into their hands. The success of
this enterprise is not infrequently spoiled by the fact that most young
children tend to shut their eyes and turn their heads away as soon as the
ball is thrown. With time, children learn that this is not a particularly
efficient technique, and begin (after some encouragement) to watch the
ball, eventually learning to move their heads so as to follow its flight.

With repeated practice, children learn to use the rate of head-tilting as a
cue to tell them whether they are standing in the right place to make the
catch. If they are, then the cue is a very simple one, and can be described



by an equation that was worked out by two groups of physicists some
thirty years ago. The authors of the Nature paper showed that we continue
to use this same cue as adults, even when we have to run to make a catch.
How do we use it, though? Do we solve the equation in our heads, or does
the equation merely describe some simple physical action that we learn by
repetition, in the same way that a musical score might tell us to move our
fingers in a certain way on a keyboard, a way that we learn with practice
so that we do not therefore need the music to guide us?

To find the answer, I decided to repeat the earlier calculation for myself.
I had to use differential calculus, a method that scientists use for tracking
rates of change. Its principles are simple — far simpler than those
involved in reading music. They were splendidly revealed to me as a child
in a wonderful little book (still available) written by the impressively
named Silvanus P. Thompson, a Cambridge professor of engineering who
had as his motto: ”What one fool can understand, another can.” That was
good enough for my father, who owned the book, and it was good enough
for me.

This fool soon understood that the calculus tracks change by dividing
the change into small steps. When a ball is thrown, for example, its flight
path can be worked out by dividing the horizontal movement into small
steps, and working out the effect of gravity on the height after each step.
The principle is illustrated in Figure 6.1, where the smooth trajectory of a
thrown ball is approximated by eight discrete steps. In this diagram the
thrower has launched the ball at an angle of 45° to the horizontal. The
ball′s upward speed gradually decreases under the retarding influence of
gravity, and the upward movement eventually stops. The ball does not
disobey ”the chief invention of Isaac Newton” because the direction of its
motion is immediately reversed, and the ball starts to fall with ever-
increasing speed under the influence of gravity. These changes in vertical
speed have no effect on the horizontal speed of the ball. It can be quite
difficult to see this, as I found when I was called upon to settle an
argument on the subject in my village pub.

The discussion that night had touched on the weather, politics, and the
state of the thatched bus shelter in the village square, but had eventually
settled in some inscrutable way on the question of what happens if
someone riding a bicycle throws a ball straight up in the air. Opinions were



divided. Some claimed that when the ball came down it would land beside
the rider. The majority view, though, was that the ball would land some
way behind. Those who supported the latter view were quite disappointed
when I sided with the minority, giving as my reason that the ball would
keep moving forward at the same speed as the cyclist. Since several pints
of beer were riding on the outcome, I was challenged to fetch a bicycle and
prove my point experimentally.

Figure 6.1: Trajectory of a Ball Launched at an Angle of 45°,
Approximated by Eight Equal Horizontal Steps.

The vertical movement after each horizontal step is calculated from
Newton’s Law of Gravity, which says that the force of gravity changes the

vertical speed by 9.8 meters per second every second (i.e., the
acceleration, or rate of change of downward speed, is 9.8 m/s2).

I proved it only too well when I freewheeled down the hill past the
cheering crowd at the pub door and launched a small stone that I had
picked up from the road vertically into the air. The stone kept pace with
me and, a few meters further on, landed directly on the top of my head. I
was glad that it hadn′t been a cricket ball or a baseball.

An even more dramatic illustration of the independence of horizontal
and vertical motions is given by Lewis Wolpert in his book The Unnatural
Nature of Science. Suppose a marksman fires a rifle bullet horizontally,
and simultaneously drops a second bullet from the hand that is supporting



the rifle. Both bullets will hit the ground at the same time. The horizontal
speed of the first bullet makes no difference at all to its vertical
movement.

The independence of horizontal and vertical speeds has been proved
repeatedly under controlled laboratory conditions, but this is only half the
story when it comes to understanding why the stone landed on my head.
The other half concerns why the stone kept moving forward at the same
speed once I had let it go. It′s not obvious that it should. Common sense
suggests that things only move if they are pushed or pulled — in other
words, if a force is applied to them. This was the view taken by Aristotle
two and a half thousand years ago, and it is the view taken by many people
today. According to a recent survey, some 30 percent of people still share
Aristotle′s commonsense notion that things stop moving once there is
nothing to push or pull on them.

It took two thousand years, and the genius of Newton, to discover that
things actually stay still or keep moving at constant speed in a straight
line unless a force is applied to them (Newton′s First Law of Motion). My
stone was therefore obeying Newton′s First Law when it kept moving
forward at the same speed after it had left my hand. If I had looked up at
it, it would not have appeared to me to be moving in a horizontal direction,
since we were both traveling with the same horizontal speed.

From the point of view of the observers at the pub door, though, its
movement would have appeared to be very different. They also would
have observed the stone traveling forward at a constant speed (i.e.,
traveling twice as far in two seconds as it had in one second). In the
vertical direction, though, the stone was being accelerated downward
under the force of gravity. The law of acceleration, discovered by Galileo,
says that if the time of travel is doubled, the stone will travel four times as
far. Combination of this vertical accelerated motion with uniform
horizontal motion produces a parabolic path when viewed from the side.

A catcher standing in the right position to make a catch has a different
point of view again. He or she is not viewing the flight path from the side,
but sees it ”end-on,” and has to use the angle of gaze as the main cue to
judge the position of the ball. How does this angle of gaze change with
time as the ball approaches? We can make an intelligent guess by drawing



a diagram of the position of the ball in its parabolic flight at equal time
intervals, corresponding to equal horizontal steps in the diagram because
the ball is traveling at a constant horizontal speed (Figure 6.2).

Figure 6.2: Angle of Gaze at Successive Equal Time Intervals for a
Catcher Watching a Ball Approach Along a Parabolic Path.

It appears from this diagram that the changes in angle over successive
time intervals are pretty much the same up to an angle of 30° or so (line
from point A to catcher). In other words, a catcher standing in the right
position tilts his or her head at a constant rate to follow the flight of the
ball, so long as the trajectory doesn′t go too high. Conversely, tilting the
head at a constant rate provides a cue which tells the catcher that he or she
is standing in the right position. It seems that this is the cue that children
learn, and which they continue to use into later life.

It is not a cue that is always reliable. When the angle becomes too high
(e.g., line from point B to catcher) its rate of change slows down. If the
catcher continues to use the same cue, he or she will interpret this slowing
down to indicate that the ball is approaching more slowly than it is, and
will miss the catch. This may be the reason why high catches are so often
missed.

The diagram above provides a good guide to how the angle of a
catcher′s gaze changes when the catcher is in the right position, and may
be as far as some people would want to go. To me, the full and satisfying



answers would only come when I had worked out an equation to describe
how the angle changes with time, and when I could understand from that
equation whether catchers might need to adapt their technique for different
situations. I set to work with a light heart one Saturday morning before a
village cricket match, stimulated by a glass of Australian chardonnay and
by the thought that I could check out the answers against rough
experimental observations in the afternoon. As piles of paper grew around
me, each sheet containing one or more mistakes in the horribly
complicated algebra, I began to wonder what I had let myself in for.
Nevertheless, I pressed on, and was rewarded when most of the terms in
half a page of algebra canceled each other out, leaving a beautifully simple
solution.

My feeling on finding an elegant mathematical solution was akin to that
of an Australian traveler discovering an unexpected country pub. The fact
that someone else had found the same solution (albeit expressed in a
different form) some thirty years earlier did not detract from my feeling,
which was a mixture of triumph and relief — relief at having gotten the
answer, triumph that it told me something new about the science of
catching a ball.

Those readers who prefer to avoid mathematical symbols entirely can
safely skip the next three paragraphs. The symbols tell the story so
beautifully, though, that I include them here for those who would like to
see what I saw, and in the way in which I first saw it.

When I began the calculations, I expressed the angle of gaze in terms of
its gradient, called a ”tangent” in mathematical language, and abbreviated
to ”tan.” The term ”gradient” has exactly the same meaning that it has on a
road sign — in other words, the vertical distance climbed or descended
divided by the horizontal distance necessary to achieve the climb or
descent. In Figure 6.3, for example, the gradient of the hill is 1 in 4,
expressed by saying that .



Figure 6.3: A Hill with a Gradient of 1 in 4.

I wanted to find out how  changed with time — in this case, the rate
at which a catcher′s angle of gaze changes. Newton expressed rates of
change by putting a dot over the top — I did the same, so that what I was
after was .

What might  depend on? I put in everything that seemed to be
relevant, including the angle of launch, the time for the ball to travel from
thrower to hitter, and the distance of the catcher from the ball from the
thrower or hitter. In the end, all of these canceled out. All that I was left
with was the acceleration due to gravity (g) and the horizontal speed of the
ball (v). The gloriously simple answer was:

What does this equation tell us? For a start, it tells us that if a catcher is
standing in the right place to make a catch, the gradient of the angle of
gaze will change at a constant rate as he or she follows the flight of the
ball. Conversely, a constant rate of change in the gradient is a cue that tells
us we are standing in the right place.

For angles below about 30°, the gradient of an angle is proportional to
the angle, so the angle of gaze itself changes at a constant rate, just as the
earlier diagram suggested. For higher angles, the gradient changes more
rapidly than the angle, so we have to tilt our heads at a progressively
slower pace to keep the gradient changing at a constant rate. If we keep
tilting them at the same rate, obeying the lessons of our childhood, we will
miss the catch.



The equation also predicts the actual rate at which a catcher′s head
needs to tilt, which depends on the horizontal speed of the ball. If a ball is
approaching the catcher with a horizontal speed of fourteen meters per
second (50 km/hr), for example, the catcher needs to tilt his or her head at
around 17° per second to follow its trajectory, no matter what the angle of
launch. If the horizontal speed doubles, the rate at which the catcher has to
tilt his or her head halves, making it easier to judge where to place the
hands for the catch, even if the catcher′s reaction time isn′t fast enough to
achieve this in practice.

Finally, the equation says that the head has to keep tilting in the same
direction until the catch is made. If the direction reverses at any stage, that
is a sure clue that the catch is going to be missed, unless it is made below
eye level.

The real lessons of the equation, though, come when we consider how
we use it as a cue in the process of making a running catch. The authors of
the Nature paper showed that good catchers control their running speed in
this situation so that the simple cue provided by the equation continues to
be obeyed. What running strategy, though, must a catcher adopt to do this?

I tried to work it out mathematically, and the result was depressing
indeed — a horrendously complicated expression for the way in which a
catcher′s running speed changes with time. One thing was clear, though —
a catcher cannot run at a constant speed and still keep tilting his or her
head at a constant rate to follow the ball. To keep the head tilting at a
constant rate, the catcher′s running speed must change with time in a
complicated way that depends on the angle of launch, the speed of the ball,
and the distance of the runner from the correct spot. In all cases, the
runner is accelerating or decelerating as he or she makes the catch.

When I looked at the physics of the situation, it turned out that this
acceleration or deceleration gives the running catcher a clear advantage
over someone who is already on the right spot and does not have to move.
Running is one of the keys to catching a ball, because a person who is
running finds it easier to make small adjustments of position than one who
is standing still. The difference lies in the balance of forces that the people
experience.



A person who is standing still experiences two major forces: the force
of gravity, acting downwards, and the force of the ground′s reaction on the
feet, acting upwards. So long as these forces stay in line, everything is
fine. The balance is precarious, though, because human beings are
relatively long and thin, with a high center of gravity, so that balancing a
human body is rather like trying to balance a pencil on its end. A tilt of no
more than 6° is sufficient to transform the gravitational and reactional
forces into a couple that tilts the person further until, like an overloaded
wheelbarrow, he or she falls over, unless the person is quick enough to
move the feet wider apart or move the arms, like a tightrope walker, to
shift the center of gravity.

Some animals, such as tortoises, lizards, frogs, and toads, overcome the
balance problem by having widely spaced feet and a low center of gravity.
Such animals are not notable ballcatchers, and one may wonder why
humans, with their more unstable configuration, are so much more
successful at this and other tasks that require coordinated movement.

The answer is that our more unstable configuration makes us much
more maneuverable, since a relatively small force can shift our position
rapidly and substantially. That force comes from pushing down and back
with our feet when we run. This extra force changes the balance situation
so that we can tilt but still remain stable, because the net thrust is a
diagonal one, so the reaction force passes through our center of gravity
even though we are tilted forward (Figure 6.4).

The extra force only cuts in when we are accelerating, which scientists
define as changing speed and/or changing direction. Running at a constant
speed requires surprisingly little force — just enough to overcome wind
resistance, friction in the joints, and wasted energy in the muscles.
Without the extra force required for acceleration, runners have to adopt a
virtually upright position for balance. The exception occurs at the start of
a race, when the athlete is accelerating (i.e., changing speed) and can
hence lean forward and use the additional force to maintain balance.



Figure 6.4: Forces When Standing or Moving at a Constant Speed (Left)
and When Accelerating (Right).

The black arrows represent the force of our bodies on the ground. The
white arrows are the reaction force (equal and opposite) of the ground on

our feet. Balance is maintained if the net reaction force passes through
our center of gravity.

According to Newton′s First Law, a person who is standing still or
running at a constant velocity does not generate the extra force required
for balance and maneuverability produced by someone who is
accelerating. From this point of view, the best way to catch a ball is not to
run at a constant speed to intercept it as it falls, but to be accelerating or
decelerating when the catch is made. This is exactly what the ”ball-
catching” equation predicts, when modified for the case of a running
catcher, and is also what the authors of the Nature paper found from their
experiments.

It is also what I found from watching my fellow village cricketers, and
what I observed from watching cricket and baseball on television. There
was one exception — professional baseball players appear to run to the
correct position and then wait when catching a high fly ball. The practical
reason for this is that the final vertical speed of the ball is much greater
for a high catch, so that the catcher has to be close to the optimum spot to
have any chance of making the catch at all. There is also a more subtle
reason, which is that the tangent of an angle begins to increase much more



rapidly for angles over 30° (as in baseball), so that someone tilting their
head at a constant rate at the start of a ball′s flight will be left far behind
towards the end of the flight. By getting close to the optimum spot, there
is less room for error, which more than compensates in this case for the
loss of maneuverability that comes from standing still.

My conclusion, then, is that the running catch is the better technique for
balls launched at angles below 45°, while the ”get there and wait”
technique is better for high fly balls. In both cases, the successful catcher
is the one who judges the catch (unconsciously) through the cue of tilting
the head at a constant rate, or better still at a rate that keeps the gradient of
the viewing angle changing at a constant rate. Rapid mental calculation
has little to do with it — we actually use very simple cues indeed as we
keep our eye on the ball.



7

bath foam, beer foam, and the meaning of
life
The story of science is not simply a matter of high points and great peaks
of discovery. The scientists who reached those peaks generally did so by
dogged perseverance and by focusing on the detail each step of the way.
Stories of the pursuit of this detail can be just as fascinating as stories of
the great achievements themselves, although they undoubtedly make more
demands on the reader because of the amount of background explanation
necessary to understand what that detail means. The following chapter
tells one such story. It is the story of a relatively minor advance in science,
concerning how molecules ”self-assemble” to form complicated structures
such as foams. The results now permeate every corner of our lives, from
the way we wash our hair to the way we administer drugs. Our
understanding of the processes involved has even influenced our view of
how life itself was originated and evolved on Earth.

The story is told from my perspective as a privileged inside observer.
By talking about it in more detail than is usual in a popular science book, I
hope to convey something of what it feels like to be a real scientist doing
real science, where the beauty resides much more often in the day-to-day
detail than in the grand conceptions that the public hears much more
about.

According to the American scientist Sidney Perkowitz, the twentyfirst
century will be remembered as the ”Foam Age.” Aluminum foams will be
used to make cars with light, strong bodies. Concrete foams that support
normal loads but crumple under heavy weights have already been made,
and will form the ends of airport runways to safely slow down airplanes
that have overshot on takeoff or landing. NASA, Perkowitz said, has even



launched a rocket with an ultra-lightweight foam section designed to
capture particles from the tail of a comet.

Perkowitz′s foams have bubbles with solid walls that give them their
strength. The foams that I discuss in this chapter, such as beer foam and
bath foam, have liquid walls. How those walls form, and how they
maintain their strength, has been a perennial puzzle that goes right back to
Newton and his experiments with soap bubbles. I like to think that he
experimented with them in his bath, but the truth is that he probably blew
them in a glass bowl of soapy water placed on a table. What he saw was
what we have all seen but, being Newton, he was able to take his
observations of a common phenomenon just that one step further, as he
later reported in his 1704 book on Opticks:

If a Bubble be blown with Water first made tenacious by
dissolving a little Soap in it, it will appear tinged with a great
variety of Colours. To defend these Bubbles from being
agitated by the external Air (whereby their Colours are
irregularly moved one among another, so that no accurate
Observation can be made of them,) as soon as I had blown any
of them I cover′d it with a clear Glass, and by that means its
Colours emerged in a very regular order, like so many
concentrick Rings encompassing the top of the Bubble. And as
the Bubble grew thinner by the continual subsiding of the
Water, these Rings dilated slowly and overspread the whole
Bubble, descending in order to the bottom of it, where they
vanish′d successively.

Newton knew that the colors depended on the thickness of the soap film,
which varied from top to bottom. He also noted that ”Sometimes the
Bubble would become of a uniform thickness all over ...” By comparing
the bubble color at this stage with the colors produced by gaps of known
thickness between two pieces of glass, he was able to calculate the
thickness of a soap film that had drained to a uniform silvery color as ”3⅛
ten hundred thousandths” of an inch — in modern units, 80 nanometers
(80 billionths of a meter), which means that his soap film was around five



hundred water molecules thick. That′s about ten times thinner than can be
observed with the naked eye. How does such a gossamer-thin film remain
so stable? Newton thought that it was because the soap dissolved in the
water and made it ”tenacious.” It was another two hundred years before it
was recognized that soap molecules prefer to inhabit the surface of water,
and exert their magical effects mainly at that surface.

The person who first recognized why detergent molecules behave in this
way was Irving Langmuir, a scientist at the General Electric Company in
Schenectady, New York, who had the enviable brief of studying anything
that he might find interesting. At various stages in his career he discovered
a way to greatly extend the life of the tungsten filament lamp, developed
new vacuum tubes for use in radio broadcasting, and was awarded a Nobel
Prize for his ideas on how atoms bind together to make molecules. During
the Second World War he became involved in rain-making experiments
that had the unexpected consequence of one American state threatening to
sue another for the theft of its rain. Underpinning it all was Langmuir′s
interest in how molecules behave at surfaces (one modern journal devoted
to this topic is now called Langmuir). He began by studying molecules on
solid surfaces, but eventually turned his attention to liquid surfaces,
where, in the early 1930s, he quickly realized that detergent-type materials
prefer to reside at the surface of water because their molecules have
chemically different ends. One end, called the hydrophilic (water-loving)
end, is chemically similar to water, and has a preference for being in
water. The other end, called the lipophilic (oil-loving) end, is chemically
similar to oil, and prefers an oily environment. If there is no oil around, air
will do almost as well. Scientists who have become bored with long Greek
words simply call the hydrophilic and lipophilic ends heads and tails
respectively.

The peculiar structure of detergent molecules makes them surface
active — if shaken up in water, they will move to the surface, where they
sit like feeding ducks with their hydrophilic heads in the water and their
oily tails sticking up in the air (Figure 7.1). As many detergent molecules
as possible will seek to occupy the surface, jostling for position and
eventually becoming packed together as closely as they can manage.
Those left under the water (the majority) will still seek to arrange



themselves so their tails are hidden from the water while their heads are
immersed in it.

Figure 7.1: Monolayer of Detergent Molecules (Represented as “Ducks”
with Hydrophilic Heads and Hydrophobic Tails) on the Surface of Water.

There are two basic ways that they can do this. The first is to arrange
themselves in a ball (called a micelle), with the tails in the middle and the
heads at the surface (Figure 7.2). Micelles can take grease into their oily
centers, and do most of the work in washing up. The other type of structure
that detergent molecules can arrange themselves into underwater consists
of a pair of flat sheets (called a bilayer), aligned so the heads point
outwards with tails on the inside, again hidden from the water (Figure 7.3).

Figure 7.2: Detergent Molecules Packed in a Ball (a “Micelle”)
Underwater.



Figure 7.3: “Bilayer” of Detergent Molecules Underwater.

The problem with such a bilayer is that the molecules at the edges still
have their tails exposed. This problem is overcome when the bilayer
spontaneously curves around on itself to form a closed sphere called a
liposome (Figure 7.4). These, like micelles, can carry materials in their
centers, hidden from the water outside. The difference is that micelles
carry oil-soluble materials such as grease, whereas liposomes can carry
materials that are soluble in water.

Figure 7.4: “Liposome” of Detergent Molecules Underwater. Liposomes
are often encapsulated by concentric shells of bilayers. Technically, a
liposome consisting of just one bilayer is called a vesicle, but I have
avoided using the term in this chapter in favor of the more familiar

generic term liposome to cover all types.



The membranes that encapsulated the first living cells were probably
liposomes formed spontaneously from lecithins manufactured naturally
under the conditions that then prevailed on Earth. There is great interest in
using such liposomes to carry drugs to their site of action in the body
while keeping them hidden from destructive enzymes en route. The
targeting is achieved by incorporating marker molecules into the outer
wall of the liposome. The challenge is to do this in such a way that the
liposome bilayer structure is not disrupted. This means understanding the
forces that hold the liposome together, and how these forces might be
affected by the introduction of foreign molecules into the bilayer
structure. It also means understanding how the shapes of detergent
molecules affect the way they pack together to form different structures.
These two lines of thought were brought together in a grand synthesis in
the late 1970s. Up until then, though, they had developed as almost
separate lines of inquiry.

How Do Detergent  Molecules St ick Together?
The first line of inquiry concerned the forces between detergent
molecules, and how these forces convey stability — not just to soap films,
but to a much wider class of materials called colloids.

I was introduced to colloids in the early 1960s by Professor Alexander
E. Alexander (invariably known as Alex), my favorite university lecturer
and a thorn in the side of the Australian education authorities. Scarcely a
week passed without a strongly worded letter from Alex appearing in at
least one Sydney newspaper, usually about the lack of state support for
scientific education or the iniquitous behavior of some member of the
education bureaucracy. Alex′s fellow professors frowned on his practice of
opening up the closed academic world of the time to public scrutiny, but
Alex couldn′t have cared less. He was having too much fun in his own
world, populated by scientists who were almost as gregarious as he was.
When I eventually met and worked with some of them, I already knew
quite a bit about their personal foibles through the anecdotes that peppered
Alex′s lectures.

Alex was the coauthor of an authoritative textbook on colloids, and won
the hearts of his undergraduate audience by declaring that this massive
tome was a book that ”need never have been written.” Nevertheless, it was



loaded with interesting, if not always relevant, information, such as the
fact that kolloid was the ancient Greek word for glue. In modern
terminology, a colloid is simply a suspension of small particles in a
medium. Milk is a colloid, because it is a suspension of milk fat globules
in water, and so is paint, a suspension of solid pigment granules in oil or
water. Cigarette smoke is a colloid, because it is a suspension of ash
particles in air (smoke will appear white if the particles are large enough
to reflect light from their surfaces, and bluish if the particles are so small
that all they can do is scatter the light). Blood, a suspension of living cells
in serum, is also a colloid, together with a host of other materials vital to
life.

The defining feature of colloids is that the particles are small and
consequently the total surface area is huge. The surface area of the milk
fat globules in a pint of homogenized milk, for example, is around two
hundred square meters — about the floor area of an average house. Forces
between the surfaces of the particles thus dominate the behavior of a
colloidal suspension. These forces (called surface forces) arise largely
from the single layer of molecules at the surface of each particle. Normal
red cells, for example, repel and slide past their neighbors because their
surfaces are coated with a layer of negatively charged sugar molecules.
Milk fat globules stay apart for a similar reason, except that in this case
the protective molecules are natural milk proteins.

In the absence of the repulsive forces provided by protective layers,
similar particles will stick together because they are pulled towards each
other by a universal attractive force of electrical origin called the Van der
Waals force, which increases rapidly in strength as the particles get closer
to one another. This can cause problems. If milk fat globules stick
together, for example, the milk separates into a layer of cream above and a
layer of water below. If red blood cells stick together, they can no longer
squeeze through tiny capillaries, and the capillaries become blocked. This
happens to people suffering from sickle-cell anemia, one of the
”molecular” diseases in which the alteration of one small group of atoms
in the hemoglobin molecule causes that molecule to adopt a different
shape, leading in turn to the deformation of the whole red cell. The
molecular changes also make the outside of the cell slightly sticky, so that
instead of repelling and sliding past its neighbors, it adheres to them,



especially in tight corners such as those in joints, where the cells clump
together, blocking blood flow and causing excruciating pain.

Particles such as milk fat globules or red blood cells will only stay apart
if the repulsive force is sufficient to overcome the attractive Van der
Waals force at some stage in the approach. If the repulsive force is not
present naturally, it can be added. One of the principal ways of doing this
for suspensions of hydrophobic particles in water (e.g., grime in
bathwater) is to add detergent molecules. The hydrophobic tails of the
detergent molecules anchor themselves to the particle surfaces, thus
hiding both from the surrounding water, while the electrically charged
heads of the detergent molecules form a protective outer layer that repels
other, similarly coated particles and keeps them in a loose suspension that
can easily be rinsed away instead of collecting as a sticky layer on the
sides of the bath.

The idea that a balance of attractive and repulsive forces controls
colloid stability was developed independently in the early 1940s by two
groups of scientists, Boris Deryagin and Lev Landau in Russia and Evert
Verwey and Theo Overbeek in Holland. Both groups published their ideas
after the Second World War and, after a brief battle over priority, the
theory became democratically known as the Deryagin-Landau-Verwey-
Overbeek theory, universally abbreviated to ”DLVO.”

Deryagin dominated Russian surface science for some seventy years,
and made many important discoveries sometimes wrongly attributed to
Western scientists, owing to the slowness with which Russian publications
were disseminated and accepted in the West. He also made more
controversial claims. When I heard him give his last major conference talk
in Moscow in 1992, he laid claim to the debatable phenomenon of ”cold
fusion,” which he had attempted to initiate in a typically ingenious manner
by having his students fire a Kalashnikov rifle at the experimental
apparatus from close quarters. Deryagin seldom left Russia, but he did
make one visit to Australia when he was in his eighties, although he was
still active — active enough, in fact, to be dropped off in the red light
district of Sydney at ten o′clock at night, not to reappear until three the
following morning, by which time his hosts were beside themselves with
anxiety.



The Dutch scientists Verwey and Overbeek were much more sedate
when I first met them in 1976, and very generous with their time and
expertise to a junior, rather brash researcher from Australia. Theo
Overbeek even offered to give his lectures in English rather than Dutch for
my benefit. I was impressed, but declined. I would have been even more
impressed if I had known that he spoke five other languages as well.

DLVO theory was just that — a theory. It needed testing, and soap films
seemed to be an ideal vehicle, since the repulsive forces due to the charged
head-groups limited how thin the water could get. The Dutch group in
particular performed many experiments with soap films, varying the
ultimate film thickness by adding different amounts of salt to the water.
DLVO theory predicted that the salt would reduce the repulsive force
between the charged head-groups on opposite sides of the soap film, and
so allow the film to become thinner. Measurements of the film thickness
using reflected light produced numerical values that were very close to
those predicted (Figure 7.5).

Studies of soap films eventually yielded a great deal of information
about the repulsive forces between detergent head-groups, but did not
contribute directly to solving the problem of why some detergent
molecules spontaneously form flat films while others form structures like
micelles. Nevertheless, when the answer did come, it turned out that the
repulsive forces measured by the soap film enthusiasts were a key
component.



Figure 7.5: Molecular Detail of Draining Soap Film Being Examined by
Reflected Light.

One of the problems with soap films is that the force tending to thin the
film comes from hydrostatic pressure rather than from Van der Waals
forces, which become important only when the gap between the two
surfaces is less than ten nanometers or so (a gap that could be spanned by
a chain of about sixty water molecules). Soap films are usually
considerably thicker than this, and new techniques had to be developed to
measure forces at smaller distances.

All of these techniques made use of ultra-smooth solid surfaces
mounted on springs stiff enough to keep them apart under the large close-
range attractive forces predicted. The Russian school measured the forces
between crossed wires, while the Dutch school used polished glass lenses.
The advantage of glass was that the experimenter could see through it, and
could use reflected light to measure the distance between the surfaces. Its
disadvantage was that glass surfaces are relatively bumpy at an atomic
level. Wire is smoother, but it is impossible to measure the separation
distance directly. The stage was set for a fiery confrontation, which duly
occurred at a conference that I unfortunately missed, although the



reverberations were still being felt when I entered the field some ten years
later.

By that time a new technique had been developed by David Tabor in
Cambridge, England, who used mica, which was transparent and which
could also be cleaved to atomic smoothness. A succession of Ph.D
students refined the technique, with the final, crucial step being taken by
Jacob Israelachvili, who performed the astonishing feat of controlling and
measuring the distance between the mica surfaces to within one atom. He
later told me with some relish that when he had reported his results at a
scientific meeting in America one of the older-style scientists in the
audience had sat stolidly through his presentation, and then told him that it
was physically impossible to do such measurements.

Jacob′s original measurements were made in air. I met him when he had
moved to Australia and had begun to refine his technique to make similar
measurements with water between the surfaces, which he was eventually
to coat with detergent and other molecules. Our meeting was pure
serendipity. I happened to drop in on a talk that Jacob was giving about his
new technique, and rapidly realized that it would be ideal for the totally
different problem on which I was then working. I outlined my idea over
coffee after the talk. The result was a collaboration that lasted several
years and totally changed the direction of my research.

Every few months over those years I would drive or fly the three
hundred kilometers from Sydney to Jacob′s laboratory in Canberra to
indulge in an intense week of experimentation, often working through
until two or three in the morning. Situated in an old wooden cottage on the
shores of Lake Burley Griffin, the Department of Applied Mathematics
where Jacob then worked was rapidly becoming one of the great world
centers of surface science. Coffee-room conversations seemed to cover
almost every aspect of the field, questioning old shibboleths and
producing new ideas in profusion.

The department was founded and run by Barry Ninham, a
mathematician of extraordinary versatility who had chosen surface science
as his field, and who had already written a book on the theory of Van der
Waals forces, so complete that the theory need never be touched again.
Now Barry was looking for new fields to conquer. Jacob provided an ideal



opportunity when he began to talk about his ideas of how detergent-type
molecules pack together in different ways to form micelles, liposomes,
and other structures. The secret, he believed, lay not just in the forces
between the molecules, but also in the shape of the molecules within these
structures. Those that packed in layers, he thought, would need to have
heads with approximately the same cross-sectional area as the tails so that
they could fit easily into a planar structure. Those that packed more easily
into micelles, though, would have larger heads, and so would pack more
naturally into spheres, with the heads on the ouside where there is more
room (Figure 7.6).

Figure 7.6: Packing Strategies for Surface-Active Molecules with
Different Shapes.

How Do Molecules Shape Up?

The idea that molecules have three-dimensional shapes goes back to Louis
Pasteur, whose deduction in 1844 arose from the fact that solutions of two
chemical compounds with apparently identical composition could



nevertheless twist a beam of light in opposite directions. The difference,
he thought, must be because the molecules of the compounds have
different three-dimensional shapes.

Pasteur was right, and his observations led to the modern subject of
stereochemistry, the science of molecular shapes and how these shapes
affect molecular behavior. It was the subject of my very first research
project, and nearly my last. The project was to measure the shapes of some
small molecules called sulfoxides dissolved in benzene, a highly
inflammable solvent. The technique, called the Kerr effect, followed
Pasteur in using the twisting of a light beam to provide information about
the molecules that could be used to deduce details of their shapes. To make
the light rotate sufficiently, though, the molecules had to be aligned in a
strong electric field, which means putting ten thousand volts across the
solution.

In such a situation, a spark would have caused a catastrophic explosion
just a couple of centimeters away from my eye, and the benzene had to be
thoroughly dried to prevent this from happening. I did this by the approved
technique of adding fresh sodium metal to take up the residual water.
Unfortunately, I failed to notice that a speck of sodium was still present
when I disposed of some residual benzene down the sink (a procedure that
would never be allowed these days). The sodium reacted vigorously with
the water in the pipes, producing a jet of flaming hydrogen that in turn set
fire to the benzene, sending a scorching flame up the laboratory wall and
nearly putting paid to my scientific career before it had fairly started.

Indirect approaches like the Kerr effect have been largely replaced by
direct techniques, such as X-ray crystallography, that permit the
experimenter to measure the positions in space of all of the individual
atoms in a molecule. X-ray crystallography, which works with any
material that can be persuaded to form a solid crystal, however tiny, was
the technique that permitted the helical structure of DNA to be worked out
in the early 1950s. The technique has now progressed so far that scientists
can even use it to watch enzymes swallow their molecular prey and
regurgitate it in a different form in real time.

Even more exciting than X-ray crystallography is the new technique of
scanning probe microscopy, which permits scientists to see individual



molecules — or, at least, to feel them. The technique is similar to that
used by a blind person who waves a white cane back and forth on the
pavement as he or she walks. The cane senses bumps and dips in the path,
and could in principle be used to map its contours. Scanning probe
microscopy does the same thing at an atomic level, with the ”cane” being
a miniature pointed tip attached to a tiny spring, whose deflections map
the surface to atomic resolution. The modern scanning probe microscope
is a lovely little instrument, about the size of an electric toaster, and can
be used to view just about any molecule, from relatively small detergent
molecules to huge biological molecules such as DNA (Figure 7.7).

Figure 7.7: Scanning Probe Microscope Picture of DNA Molecule.

Early workers studying the shape and size of detergent molecules did
not have the advantage of such techniques, and had to develop other
approaches. These usually involved spreading the molecules as a single
layer on the surface of water. The very first measurement of the size of a
molecule worked in this way and was developed fortuitously by the
American scientist and statesman Benjamin Franklin.



The story began on a sea journey in 1757, when Franklin noticed that
the wakes behind two of the accompanying ships were smooth, while those
behind his own and the rest of the ships were rough. He called the
attention of the ship′s captain to this remarkable phenomenon, and later
reported the captain′s contemptuous reply in a letter to a friend: ”The
Cooks, says he, have I suppose, been just emptying their greasy Water
thro′ the Scuppers, which has greased the Sides of those Ships a Little.”

Franklin thought that it was much more likely that the oil was having an
effect on the waves rather than the ships, but wisely kept his thoughts to
himself. He tested this idea on and off over the next seventeen years,
culminating with the experiment he performed on a pond in London′s
Clapham Common. The wind was ruffling the water when he tried pouring
a teaspoon of olive oil onto the surface. He later wrote to his friend
William Brownrigg:

the Oil tho′ not more than a TeaSpoonful produced an instant
calm, over a Space of several yards square, which spread
amazingly, and extended itself gradually, until it reached the
Lee Side, making all of that Quarter of the Pond, perhaps half
an Acre, as Smooth as a Looking Glass.

Franklin thought that he had discovered a method for calming rough
seas, and kept proposing the method thereafter, even though his later
large-scale experiments at Spithead in northwest England produced
nothing more than the world′s first oil slick. What he had in fact done was
develop the first method for measuring the size of a molecule.

Franklin didn′t realize what he had really done — he didn′t even know
that molecules existed. Nevertheless, his experiment keeps turning up in
modern-day examination papers, usually with the volume of the teaspoon
chosen so as to give the right answer. The plain fact is that we don′t know
exactly how big Franklin′s teaspoon was. What we do know is that a film
of oil such as that which he described keeps on spreading until it is just
one molecule thick, but does not spread further because the molecules in
the film are held together by Van der Waals forces. If the volume and the
area of the film are known, the thickness can be calculated. A hundred and



sixteen years later, Lord Rayleigh repeated Franklin′s experiment ”in a
sponge bath of extra size,” using a carefully measured volume of oil and
floating pieces of camphor to mark the boundary of the film. He concluded
that the thickness of the film was 1.6 ”micro-millimeters” — in modern
units, 1.6 nanometers. This means that Franklin′s teaspoon must have had
a volume of about 3 ml, which is approximately that of a Georgian
teaspoon in my possession.

The key step in turning Franklin′s and Rayleigh′s experiments into a
proper, scientific tool for studying the shape and size of surface-active
molecules was taken in 1891, the very next year, by one of the few women
scientists of the time, the German Miss Agnes Pockels, who discovered
that a surface film of such molecules could be compressed by a sliding
barrier. It was not until 1935, though, that a working scientific instrument
based on this principle was built by the American scientist Irving
Langmuir. This was developed in collaboration with another woman
scientist, Dr. Katherine Blodgett, but neither Blodgett′s nor Pockels′
contribution is acknowledged in the modern name for the instrument,
which is simply called a Langmuir trough. The nomenclature is not
Langmuir′s fault — he was one of the few scientists of his time who
apparently showed no regard for status or gender, but treated everyone on
an equal footing. The Langmuir trough (not even mentioned among
Langmuir′s scientific achievements in his entry in the Encyclopaedia
Britannica) is simply a flat shallow trough filled to the brim with water,
and with a dilute layer of the surface-active molecules spread on the
surface. The layer is compressed by a sliding barrier, with the
experimenter using a spring-mounted hanging plate to monitor the
response of the layer to compression (Figure 7.8).



Figure 7.8: Schematic Side View of Langmuir Trough Before and After
Compression of Molecular Surface Layer.

The Langmuir trough provided two vital pieces of information. The first
came from the change in area as the barrier was moved, which told the
experimenter how closely the molecules were packed. Eventually the
packing density reached a limit that depended on the shape and size of the
individual molecules. A ”typical” detergent molecule has a cross-sectional
area of about 0.25 square nanometers.

The second piece of information came from the change in surface
tension (registered by how far the spring-mounted hanging plate was
pulled down) as the film was compressed, which gave a measure of the
work needed to push the surface molecules together, and hence gave
information about the forces between those molecules. For charged
surface-active molecules, the net force is repulsive. Given enough room,
the molecules will get as far away from each other as possible, like
relatives at a wedding.



I was introduced to the Langmuir trough technique by Alex, who was an
authority on its use, and who taught us that the trough and the water in it
must be scrupulously clean. Modern troughs are made from Teflon, the
polymer material that is used to coat nonstick pans. Teflon is relatively
easy to keep clean, but earlier metal or plastic troughs had to be coated
with a protective material as a barrier against contamination. Alex and his
Cambridge-trained contemporaries used cheap paraffin wax for this
purpose, but some other experimenters really went to extremes. Alex was
particularly scathing about an American colleague named James William
McBain, who had coated his entire apparatus with gold.

The trough sounds very simple, but was quite tricky to use, because the
amount of material required to cover the surface completely is invisible to
the naked eye — a visible speck would have been far too much. The trick
lay not in wearing the strong magnifying spectacles that go with the
traditional image of a scientist, but in dissolving the material in a
relatively large volume of a volatile solvent, such as ether, and then
putting a small measured drop of the solution on the trough′s surface. The
ether evaporated, leaving the material behind as a single layer of
molecules (a monolayer) covering the surface of the trough.

The Langmuir trough had by now been used to settle many outstanding
questions about the shapes and packing of molecules at surfaces. One of
the earliest of these concerned the shape of the cholesterol molecule,
which is one of the basic molecules of life. Cholesterol receives bad press
these days because of its role in forming plaques that can block blood
vessels and cause heart attacks or strokes, but it causes harmful effects
only when present in excess. The effects would be even more harmful if
you didn′t have enough of it — you would be dead. The shape of the
cholesterol molecule dictates how it behaves chemically in our bodies. At
the time when the Langmuir trough was invented, the atomic composition
of the cholesterol molecule was known, but the atoms could have been
arranged in two quite different ways, with each structure corresponding to
a different molecular shape. Each shape had its proponents, who were
happily arguing in the knowledge that there was no experimental method
available to settle the argument. The two proposed structures predicted
quite different cross-sectional areas for the cholesterol molecule, and the
famous surface scientist N. K. Adam realized that the difference would be



shown up clearly by the newly invented Langmuir technique, because one
structure was flat, so that the molecules would stack like plates arranged
vertically, side by side on the water surface, while the other structure
predicted a more ”three-dimensional” shape, so that the area per molecule
would be much greater. It took just one experiment to resolve the
argument in favor of the first alternative.

Many similar arguments about molecular shape, molecular size, and
how closely molecules could pack together at surfaces were settled by the
Langmuir technique. Scientists, however, were still no closer to
understanding what it was about detergent molecules that made them pack
spontaneously into different structures. The question was especially
important in the case of lecithin (the material that is sold in health food
shops), since lecithin is a major component of biological cell membranes,
and it had been found that lecithin spontaneously forms liposomes when
shaken up in water. The exciting possibility was that the first cell
membranes ever to occur on Earth might have been formed in this way,
especially since it had been shown that lecithin molecules were probably
present in the prebiotic soup.

Suddenly everyone, including myself, was trying to work out how
lecithin molecules get together. My approach had to be indirect because by
now I was working in a government food research laboratory and
experiments on the origin of life were rather outside my remit. Lecithin
was a food material, often used to hold water in place in the oily matrix of
foods like margarine, so I tackled the question of how much water the
lecithin could carry, although this was mostly a pretext for keeping in
contact with what others were finding out about the aggregation of lecithin
molecules to form complex structures.

They were finding out a lot, though not much that was of lasting value,
partly because it was difficult to obtain pure lecithin. It was for this reason
that some scientists decided to try materials that could be obtained in pure
form and which would also form bilayers. One of those people was a
Cambridge scientist named Denis Haydon. The materials that he tried
were the monoglycerides, which are molecules formed by the breakdown
of oils and fats as part of our natural digestive processes. I never got
around to asking Denis just why he chose these materials, but it seems in
retrospect that he had a glimmering of the revolution that was to come,



and sought to use surface-active molecules whose shapes ensured that they
would pack neatly into flat sheets. He knew that one monoglyceride in
particular, called glycerol monooleate, or GMO, had the right dimensions
to fit the bill, partly owing to some earlier work on monoglycerides by a
group whose star student in the use of the Langmuir trough was a young
grocer′s daughter called Margaret Roberts, who was then embarking on a
career as a food scientist. As it turned out, Margaret Roberts′ first piece of
scientific work was also her last. She married a man named Denis
Thatcher, decided that politics was a far more exciting and rewarding
occupation, and became Britain′s first woman prime minister.

It turned out that GMO was an ideal material for making artificial
bilayers. Denis Haydon made them by dissolving the GMO in oil and
painting the solution over a hole in a piece of Teflon separating two halves
of a small tank full of water. The oil drained away to the boundary, leaving
a film whose structure was basically similar to that which occurs in
natural membranes (Figure 7.9).

Such films became known as black lipid membranes, or BLMs, because
they were so thin that they reflected very little light. The boundary, which
is the reservoir to which all of the excess solvent drains, is known as the
Plateau border in honor of the Belgian Josef Plateau, whose fame among
surface scientists comes partly from the fact that he worked out
experimentally the elegant rules governing the angles between the corners
and edges in a foam (which are also called Plateau borders), but still more
from the fact that he did all of this after he had been blinded during
experiments in which he had looked for too long at the sun. Despite this,
his published papers are full of the most beautiful and accurate diagrams,
produced with the aid of a sighted assistant.



Figure 7.9: Schematic Representation of Glycerol Monooleate Bilayer.

Denis′s work on black lipid membranes ultimately gave a good deal of
information on the processes that guide self-assembly, and in particular on
how other molecules can worm their way into bilayers without disrupting
the whole structure. Many of the molecules that he studied were local
anesthetics, and he discovered that these work by fattening the bilayer
structure so that membrane molecules whose job it is to pass material
from one side to the other can no longer span the full distance.

Among the other questions that Denis tackled was the vexed
phenomenon of why the tails of detergent molecules prefer their own
company to that of water. It was a case of ”oil and water don′t mix” — but
why? He was unable to come up with an answer — in fact, no one was.
Even now, we don′t really know what it is that makes oil virtually
insoluble in water. It′s not the lack of attraction between the molecules —
individual oil and water molecules can cohabit quite happily. It is more
that water molecules prefer to arrange themselves in a flickering,
evanescent array. An individual oil molecule penetrating this array forces
the nearby water molecules to adopt a more permanent arrangement, and
is about as welcome as a marriage celebrant in a ménage à trois.



At least Denis was able to measure the driving force that pushes oil and
water apart, by measuring the work required to increase the area of contact
between oil and water surfaces — in other words, the interfacial tension. It
was data such as these, together with information on the repulsive forces
between the head-groups, the shapes of different sorts of detergent
molecule, and the ultimate packing density of different types of
hydrophobic tail, that Jacob, Barry, and their colleague John Mitchell
brought together in one beautiful synthesis that enabled them to predict
just what sort of detergent molecules would form what sort of structures.

A Grand Synthesis

I was particularly interested in what they were doing because I had just
written a review summarizing what was known about how molecules pack
to form micelles. It had become abundantly clear that there was no way
that most detergent molecules could pack to form a spherical micelle:
there was simply no room in the middle for the ends of all the tails. There
were plenty of suggestions about how this problem might be overcome,
some involving very weird micelle shapes. My coauthor, David Oakenfull,
and I favored the simplest, which was that micelles must have the shape of
either a prolate or an oblate ellipsoid — in other words, they were either
egg-shaped or discus-shaped — to allow room for the tails in the middle.

Even before our review appeared in print, Jacob, Barry, and John were at
work on an idea that would leave our simpleminded arguments far behind.
They argued that the only molecules capable of forming micelles would be
those that could pack to form essentially spherical structures. As pointed
out earlier by the American scientist Charles Tanford, molecules with
other shapes would simply pack to form other structures. Jacob, Barry, and
John refined this idea into a quantitative model that was complicated
mathematically, but which led to one extraordinarily simple result. It
turned out that the sort of structure into which detergent molecules pack
depends on only three things: the length of the tail ”L,” the volume of the
molecule ”V,” and the ”optimal” cross-sectional area of the head-group
”A” — in other words, the amount of space that the head-group prefers to
have when in company with others of its kind. If (V/(A × L)) is less than
one-third, the molecules pack as spherical micelles. If it is between one-
third and onehalf, the micelles become ellipsoidal. If it is between a half



and one, the molecules pack as bilayers or liposomes. If it is greater than
one, inverted micelles are formed. The model was an immediate success,
and a profusion of papers followed in which scientists around the world
explained their results in terms of it.

One thing that the theory could explain was transparent microemulsions
which, unlike normal emulsions such as milk and mayonnaise, were
indefinitely stable. This was a difficult pill to swallow for scientists like
myself, who had been brought up with the idea that emulsions, which are
suspensions of droplets of one liquid in another (e.g., oil in water), would
eventually ”break” as the droplets floated to the surface and coalesced. We
knew that we could slow the process down by coating the droplets with a
protective layer of surface-active material such as glycerol monooleate or
the lactoglobulin protein with which milk fat globules are coated, but we
also knew that this was a holding measure at best, and that the oil and
water would eventually separate as the droplets coalesced.

Here, though, were new emulsions that seemed to be indefinitely stable.
Their existence had been known for some forty years, but the way in which
they were stabilized was not understood until the ”packing” theory was
developed, when Barry and others quickly realized that the secret lay in
the shape of the detergent molecules that formed them. Two sorts of
molecule with complementary shapes were used, so that the voids between
one group were filled by the other. The result was an emulsion containing
extraordinarily tiny droplets — so small that the emulsion appeared
transparent. Some microemulsions contained no droplets at all. The oil
and water phases simply wound in and out of each other in a series of
intricate curves, generating what came to be called a bicontinuous phase.
The mathematical theory of such systems permitted Barry and others to
design new microemulsions. One of the consequences of this was that
Barry became an experimentalist, rather to Jacob′s disapproval. Another
was that a range of new detergent products hit the market, with an
attractive transparency of appearance and flow properties that let them sit
as a gel until shaken, when they promptly flowed at the user′s command. A
market niche for these products was found in hair shampoos, for which the
detergents in microemulsions are ideal.

By this time I was 12,000 miles away, spending a sabbatical year with
Denis Haydon in Cambridge, pursuing an idea that I had about black lipid



membranes. My proposal was to use water pressure to bulge them up like
balloons, so that they could be pushed together in the same way that Jacob
had pushed mica surfaces together, but here modeling what happens when
two cell membranes come into contact. As it turned out, I got no results
for the whole year. In fact, it took a further three years before I was able to
bulge black lipid membranes successfully and push them together, and a
further two years before I published the results of these experiments with
Denis. The results showed that the black lipid membranes jumped together
from a distance of some thirty nanometers, immediately fusing to produce
an unusual structure not normally seen when two real biological
membranes fuse. For this and several other technical reasons the black
lipid membranes were not good models, and I abandoned this line of
inquiry in favor of working with real biological cells, which others were
finding contained a small proportion of molecules called
lysophospholipids that had relatively large heads and which would
normally be expected to occur as micelles. It is now believed that
lysophospholipids are normally dispersed within the membrane, but can
get together when required to open up a hole — the first step towards two
membranes fusing to become one in such processes as fertilization.

Was the work that I started with Denis wasted? In one sense, yes,
although it did lead to the development of a new experimental technique
that is now finding application in such diverse fields as oil recovery and
the manufacture of ice cream. In another sense, no scientific effort is truly
wasted, so long as the question being asked is a serious one. The answers
may not prove relevant to the original question, but their consequences are
largely unpredictable, as Pasteur, Franklin, and a host of others have found
by persistently pursuing particular lines of inquiry. Persistence is one of
the most valuable attributes that a scientist can have. Without the
persistence of many scientists, some going in the right direction, some
concerned with what may have appeared to be lost causes, we would never
have realized that the membranes that envelop living cells are formed
spontaneously by the ”self-assembly” of many small molecules, and that
the very existence of living membranes depends critically on the shapes of
those molecules. This knowledge, applied in other areas, has led to the
development of better hair shampoos, new foams for fire extinguishers,
and other practical applications. Applied to medicine, and to the better



understanding of ourselves and our evolution, it is possible that it may
even be the saving of the human race.
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a question of taste
I was once asked to give an after-dinner speech at an important conference
in Philadelphia on food tastes and aromas. On the night of the dinner I
discovered that the after-dinner speech given the previous year was made
by a Nobel Prize winner and that, on another occasion, the entertainment
had been provided by a full dancing troupe from India. Any confidence
that I might have had rather evaporated after I received this information,
but at least I knew that I was going to be way ahead of the Indian dancing
troupe in the popularity stakes. They had positioned themselves so as to
block the path to the toilets, and then danced for half an hour longer than
expected, just when the bladder-expanding effects of a particularly good
chardonnay were being felt by the majority of those present.

My host, the chairman of the conference, had asked me to give a speech
that was ”informative but amusing.” It was difficult to see what I could
offer to an audience of world experts at a conference where even the
dinner menu contained a detailed analysis of the flavor combination in
each dish. If I tried to talk about flavor from the diner′s point of view, then
the amusement, I thought, would mostly be at my ignorance.

I thought that I could see a way, however, in looking at eating from the
point of view of a physical scientist, and to concentrate on how foods
release their tastes and aromas. I was reasonably well qualified for the
task, having spent twenty years working as a physical scientist in a
government research laboratory, and having spent quite a bit of time since
working with chefs and food scientists. Even so, I found that there was a
lot that I didn′t know and, as I soon discovered, that no one else knew
either, and I was forced to develop some new ideas that turned out to be
novel to many present as well. Other scientists have since picked up on
these ideas, or developed them independently, again showing how science



is a community affair, and how you can never tell where something might
lead.

I have looked at eating from the point of view of the speech many times
since — sometimes as serious science, sometimes using food as a hook to
exemplify how scientists look at the world. Some of those stories are
given in the following chapter, where I examine the science of eating a
meal. All of the science is serious, even if not all of the stories are.

Introduction
A friend of the great nineteenth-century French gastronome Jean
Anthelme Brillat-Savarin told the story of how he had visited the famous
man in midafternoon, only to be kept waiting for some time. Eventually
Brillat-Savarin appeared, full of apologies: ”I was in the drawing room,
enjoying my dinner.”

”What?” said his guest, who knew that Brillat-Savarin always had his
dinner served formally at the dining-room table. ”Eating your dinner in the
drawing room?”

”I must beg you to observe, Monsieur,” replied Brillat-Savarin, ”that I
did not say that I was eating my dinner, but enjoying it. I had dined an
hour before.”

Brillat-Savarin was one of the first people to analyze the art of
gastronomy. He summarized a lifetime spent largely at the meal table in a
two-volume compendium published in 1826 with an unwieldly title that
begins Physiologie du goût, ou Méditations de gastronomie transcendante,
ouvrage théorique, historique et à l’ordre du jour (The Physiology of
Taste, or Meditations on Transcendent Gastronomy, a Work Theoretical,
Historical, and Programmed), which lists precepts, anecdotes, and
observations on how to enhance the pleasures of the table. We still follow
many of Brillat-Savarin′s precepts, in principle if not always in practice.
The science underlying those precepts, however, is only just now
beginning to be understood, and many basic questions remain unanswered.
Why, for example, does the visual appearance of a meal affect our
perception of its flavor? How do taste, aroma, and other factors interact to
produce the sensation that the French call goût, and for which the closest
English word is flavor? How do foods release taste and aroma molecules



that affect receptors in the tongue and the nose respectively to produce this
sensation?

In this chapter I follow the science of eating a meal from start to finish,
to examine the progress that scientists have made in understanding what
happens as we look, chew, and swallow.

Perception
A good meal begins with expectation, continues with gratification, and
ends with satisfaction. Brillat-Savarin was one of the first to recognize
that the first of these, expectation, is an important part of the enjoyment of
a meal. He believed that the expectation produced by an appropriate
ambience was especially important, and that the enjoyment of a meal
when dining out was enhanced by ”an elegant room [and] smart waiters,”
as well as ”a choice cellar, and superior cooking.”

Modern psychologists would agree with Brillat-Savarin. They have
shown that expectations based on ambience, lighting, the company
present, the food′s appearance, aroma, and texture, and even the quality of
the table napkins, can all affect the way that food actually tastes to the
diner. These effects are not confined to gourmets, or to those who imagine
themselves to be gourmets. A commercial hamburger that tastes great to a
teenager when eaten in the company of a group of friends may taste
terrible to the same teenager when eaten in the company of his or her
parents. A restaurant meal that melts in the mouth when shared with a
lover will not taste quite the same to someone having a domestic argument
with his or her spouse. The expression ”the food turned to ashes in my
mouth” has real meaning when it comes to the perception of flavor. We
taste with our brains. All that our tongues and noses do is send sensory
information to the brain about the taste and aroma molecules reaching
them. The brain processes the information, together with whatever other
information it perceives to be relevant, and produces a response.

The ”other information” can come from some curious sources. The
Italian Filippo Tommaso Marinetti reported in his Futurist Cookbook of
1932 the experiment of eating the same food while resting his fingers
lightly on either velvet or sandpaper. The perceived texture of the food, he
reported, was quite different in the two cases. Marinetti dined his way
from Milan to Paris to Budapest, staging eye-catching demonstrations



with his talks as he ate meals that included ”Raw Meat Torn Apart by
Trumpet Blasts,” and a recipe that included chickpeas, capers, liqueur
cherries, and fried potato chips, all eaten individually between carefully
clocked stretches of silence. The Futurist movement ”disdain[ed] the
example and admonition of tradition in order to invent at any cost
something new which everyone considers crazy.” Their aim was to shock.
Their modern successors are chefs such as Heston Blumenthal, chef-
proprietor of the Fat Duck restaurant at Bray beside the River Thames near
London, who aims to use the brain′s responses to create new flavor
experiences that might not shock, but certainly surprise.

Aromas, for example, usually contain hundreds, or even thousands, of
different chemical compounds, and some aromas, such as garlic and
coffee, have major components in common. Heston has tried mixing the
two materials in a crème brulée. The mixture sounds horrible, but it seems
to fool the brain, which can′t decide whether it is experiencing garlic or
coffee, and oscillates between the two, enjoying each one separately but
never being able to ”mix” them.

Aroma is not the only thing that appears to trick the brain. Heston also
makes a beet jelly, to which he adds tartaric acid, the main component in
the ”crust” thrown by a good wine. Tartaric acid, as its name suggests,
makes the jelly taste ”tart,” and this, combined with the visual appearance,
gives the taster the impression that he or she is eating blackcurrant rather
than beet. One taster, when told that the jelly was beet, said that it tasted
disgusting. When told it was really blackcurrant, however, she decided
that it was actually delicious. But it was really beet.

Heston bases much of his culinary art on the premise that the human
brain loves surprises, a premise that has now been supported by scientific
experiments. Surprises arise from a contrast between expectation and
experience, but expectation can prove dominant in many cases. It starts
with the appearance of the food on the plate, which can even affect
whether the diner is prepared to put the food into his or her mouth. Most
people have heard of experiments where meat is served under green or
yellow lighting, with the result that diners cannot face eating the food. So
far as I know, the experiments have not been extended to the effects of
flickering TV light on the perception of a meal — it would be an
interesting study.



Even if the lighting is normal, appearance can still have a dramatic
effect on the acceptability of a food. When I was working in an Australian
government food research laboratory, I was a member of a tasting panel
whose job was to evaluate the flavor of vegetarian sausages, produced
from soybean protein by a local agricultural college. The sausages were
perfectly normal in appearance, a good crisp brown, and neatly presented
on a white china plate with stainless steel cutlery. All was well until we
applied our knives and forks to one end of the sausages, when the contents
promptly ran up to the other end in a liquid mess. There was no way that I,
or any other member of the taste panel, could put those sausages in our
mouths.

The appearance and texture of food on the plate give important, though
sometimes misleading, cues as to what we might expect when we put the
food in our mouths. That we respond to these cues so strongly suggests
that the response is deeply embedded in our psyche, perhaps from
prehistoric times where crucial distinctions had to be made between foods
and the positively dangerous. The really strong cue, though, is the one that
is used by most animals, including ourselves — aroma.

There is nothing like the aroma of a fresh meal, and so far there is
nothing to replace it. At a meeting I attended in Sicily, the French chef
Anne-Marie DeGennes produced two ratatouilles, one which had been
flavored by fresh thyme and bay leaf, and the other by extracts from these
same plants. The first was undoubtedly preferable, even though no aroma
compounds had been lost in the extraction process. The difference was
probably due to the fact that the extraction procedure was more efficient
for some aroma compounds than others, so that the balance in the complex
mixture of aromas was subtly changed.

Even so, flavor scientists are making progress. A drop of the compound
hexanal, which produces the ”green note” characteristic of fresh fruit and
vegetables, can restore that note of freshness to a cooked dish. Some may
balk at adding a ”chemical,” but the world is made of chemicals, and
hexanal is one that plants produce for themselves and which we eat all the
time. Why not add it in pure form, rather than following the chef′s
procedure of throwing in a handful of fresh material, as they do when they
add a purée of fresh asparagus tips to enhance the aroma of asparagus
soup? Chefs often ”cheat” in this way, if you can call it cheating. So do



home cooks. Who has not heard of, and probably used, the trick of putting
a few coffee beans under the grill so that the aroma will enhance the
appeal of instant coffee? This trick has been the subject of psychological
tests, where blindfolded subjects were given hot water to drink while being
allowed to smell the aroma of fresh coffee. All of them were convinced
that they were drinking the real thing.

We often enhance the aromatic appeal of our meals prior to ingestion by
coating them with gravy and sauces. Because of their liquid constitution,
these materials release their aromas more readily than do the foods that
they coat, and provide an enhanced aroma experience and flavor
expectation even before the food reaches the mouth. People quickly come
to associate appearance and aroma, which is one of the reasons a rich
brown gravy is so favored on roast meals, especially in England, the home
of the roast dinner. The use of gravy is so common that one would think it
had few surprises left to offer, but one would be wrong, as I found when I
was asked by an advertising firm to investigate the science of gravy.

I only undertake such projects on rare occasions, if I can see them as a
way of drawing public attention to the fact that science is everywhere
around us, and not just confined to medical advances, the destruction of
nations, or the fate of the universe. This project certainly drew public
attention, to the extent that I received a delighted e-mail from Marc
Abrahams, organizer of the IgNobel Prizes, saying that I might be in line
for a second award. In the beginning, all I could think of doing was to look
at how much gravy would be taken up by the various components of a
traditional roast dinner. Meat, I thought, would obviously take up quite a
bit, as would mashed potatoes, while roast potatoes, peas, and beans would
absorb very little. As it turned out, I was almost 100 percent wrong.

I performed the experiments with the help of my colleague, Peter
Barham, who did the necessary cooking in his home kitchen. My wife,
Wendy, kept the experimental records and acted as umpire in cases of
dispute. Our procedure was simple. We drew up a list of the most common
ingredients in a traditional roast dinner, weighed them, cooked them
separately, weighed them again, soaked them in the gravy specified by the
advertisers, wiped off the excess gravy, and weighed them yet again. For
good luck, we measured the dimensions of the food pieces before and after



cooking, following the basic scientist′s principle of measuring everything
that might conceivably be relevant.

Some of the weight changes were only a fraction of a gram. It soon
became apparent that Peter′s kitchen scales were not sufficiently accurate,
so we borrowed a top-loading balance that was normally used to weigh out
small quantities of fine chemicals, cleaned off the more poisonous of the
residues, and started again.

Our first surprise was that roast meat does not take up any gravy at all
— none. The second was that mashed potato does not take up gravy either
— in fact, mashed potato loses weight when dipped in gravy. There were
more surprises to follow. Peas and beans, it turned out, take up quite a lot
of gravy. So do roast vegetables (up to 30 percent in the case of roast
potatoes). For some vegetables, such as parsnips, the amount of gravy
absorbed turned out to depend on how the vegetable was cut before
cooking. The amount of gravy taken up also seemed to depend on which
end of the cooked vegetable was dipped in the gravy.

We put our results together in a table, where we included the traditional
English Yorkshire pudding, a porous dough that takes up an incredible
amount of gravy, and bread, which many people use to mop up excess
gravy. The results are shown in Figure 8.1.

Figure 8.1: Gravy Uptake Ratings (Percentage of Cooked Weight).



What were we to make of all this? The simplest picture that we could
think of was that the moisture lost in cooking leaves a void volume that
can be refilled with gravy (Figure 8.2). Was there some way that we could
test this picture?

There was. We had weighed the materials before and after cooking, so
we could work out the percentage moisture loss during cooking. If this was
the same as the percentage weight gain when the cooked food was dipped
in gravy, our model was proved, or at least extremely well supported.

As every cook knows, though, some foods shrink when they are cooked,
reducing the space available for refilling by gravy. So we had to include a
correction factor, calculated from the change in the physical dimensions of
the food, to allow for this shrinkage effect. It was just as well that we had
taken the appropriate measurements. The shrinkage factor was small for
most foods, but for meat it turned out to account completely for the water
loss, and there was no void volume left for the gravy to enter. That was one
puzzle explained. Another puzzle concerned the peas and beans, which do
not shrink when cooked — if anything, they swell. A closer look soon
revealed the answer — the outer casing of peas becomes loose, and the
seeds drop out of many beans, in both cases leaving void volumes that fill
up when the vegetable is dipped in gravy. That was another puzzle
explained. The third query concerned the mashed potatoes. This time we
used the Hercule Poirot approach, and our little gray cells, fed by suitable
wine, soon reminded us that potato mashed with a little milk is already
totally saturated with liquid, and has no room for more.

With these problems out of the way, we sat down to compare the
percentage moisture loss (corrected for shrinkage) with the percentage
gravy uptake for the various foods that we had cooked. If our hypothesis
was right, then the two quantities should have been the same for each food.
They were, with a closeness of fit that would have pleased any
experimental scientist, as Figure 8.2 shows.

Our model seemed pretty good, although there was still plenty left to
chew over. Why, for example, did baked potatoes take up to ten minutes to
absorb the maximum amount of gravy, while baked parsnips took less than
a minute? Why did parsnips cut ”across the grain” absorb no gravy at all
after roasting, while those cut lengthwise absorbed up to 10 percent? Why



did roasted vegetables take up more gravy through the side that had been
in contact with the roasting pan?

These questions didn′t bother the media, who were in-trigued by the idea
that science had something to say about something as homely as gravy,
and that a scientist had come up with a ”Gravy Equation.” They bothered
me, though, because unanswered questions are always a bother to a
scientist. The answers were unlikely to be useful to mainstream science,
like Rumford′s observations on apple pies, or Benjamin Franklin′s insight
after seeing ship′s cooks toss their greasy water overboard. The best I
could hope for was that some of the answers might be relevant to
restaurant and cooking practice — in other words, the science of eating.

Figure 8.2: Gravy Uptake Ratings (Percentage of Dry Weight).

Chewing
The science of eating was defined by the satirist Ambrose Bierce in his
Devil’s Dictionary as ”performing successively (and successfully) the acts
of mastication, humectation and deglutition” — in other words, biting and
chewing, mixing the chewed food with saliva, and swallowing the result. I



once attended a meeting on the science of gastronomy where this whole
process was displayed in a stomach-turning X-ray video that showed a
shadowy skull, complete with spectacles, rhythmically chewing and
eventually swallowing a bolus of food (Figure 8.3). Fortunately, not many
of us get to view eating in this way, unless our eating partners are
particularly open-mouthed. Once the food disappears into our own mouths,
all that matters is the flavor, or goût.

Figure 8.3: X-Ray Video of Chewing Head.

The person who showed the film was concerned with what happens
when people experience problems in eating, and was using the film to
show what ”normal” eating looks like. One of his conclusions was that we
tend to orient asymmetric pieces of food with the long edge parallel to the
line of our teeth, and that the pieces of chewed material from the two ends
do not mix. If the tastes at the two ends are different, as they will be on a
slice of toast with, say, pâté on one end they will not mix initially as we
chew. One will stay on the right side of the mouth, and the other will stay
on the left. Clearly, the way in which we cut and present our food can
affect the taste outcome, although as far as I know this aspect of food
presentation has received little or no attention.



There are two main points to chewing. One is to break the food into
pieces small enough to swallow. The other is to release tastes (experienced
by the tongue) and aromas (experienced by the back of the nose), both of
which contribute to the final flavor experience. The tastes and aromas, in
turn, promote the flow of saliva, making the food easier to swallow.

The forces that go into breaking up the food are transmitted both by the
teeth and the tongue, and are extraordinarily difficult to model
satisfactorily; far more difficult than those involved in sending a rocket to
the Moon, which has been modeled successfully on a number of occasions.
By ”model” I mean writing down equations (which may be fed into a
computer) that will predict the course of events. The word can also have a
practical meaning: the food industry is full of instruments that ”model”
how we eat our food. Most of these are instruments designed to measure
texture. They range from the simple pea maturometer, which is nothing
more than a spring-loaded pin that is stuck into peas to measure how hard
they are, to complicated instruments that mimic the action of a chewing
jaw. All of these instruments, without exception, are close to useless when
it comes to predicting the texture, or ”mouth-feel,” of a food when it is
actually eaten.

The problem, in physical terms, is that chewing is a highly ”nonlinear”
process: in other words, the effect is not proportional to the action. In the
case of chewing, a very small change in the way we chew can have a huge
effect on the outcome. A bite on a gingersnap with a force of 4.99
kilograms, for example, might fail to break the cookie, whereas a force of
5.00 kilograms may shatter it. It is difficult to study nonlinear processes,
even in a laboratory, and still more difficult to translate the results into
practical situations. This applies especially when the effects progress all
the way down the line, as they do in chewing, where breaking up food
particles is only the first step. As they are broken up, the particles gather
together in a lump called a bolus, whose response to the forces exerted by
the teeth and tongue is also likely to be nonlinear. The bolus may, for
example, be ”shear-thickening,” becoming stiffer as it is chewed on, or
”shear-thinning,” where the more it is chewed, the more liquid-like it
becomes.

The normal bolus can show both behaviors, a fact that seems to have
been known to the nineteenth-century British prime minister Sir William



Gladstone. Gladstone, a careful and patient man, recommended chewing
each mouthful of food thirty times. As it turns out, the bolus is normally
shear-thickening over this range, reaching its maximum cohesion after
thirty or so chews, a point which the body takes as a signal to swallow.
With more chewing, the bolus becomes shear-thinning and eventually
breaks up. A further complication in the analysis of the bolus is the
presence of saliva, which makes solid pieces of food easier to break up.
Gravy and sauces have a similar effect, which arises because the presence
of a liquid makes it easier to stretch, bend, and open cracks in a solid
surface.

Overall, we know a lot less about what happens during chewing than we
do about what happens in the interiors of stars. One thing that we do know,
though, is that chewing works, not just to break food into manageable bits,
but also to release its flavors. This is an area we are now learning quite a
lot about, especially when it comes to understanding what happens when
taste and aroma molecules reach the tongue and the nose respectively.

Flavor — A Mixture of  Taste,  Aroma, and Pain
The molecules that are released from the food bolus in the process of
chewing induce three main sensations — taste, smell, and, surprisingly,
pain.

Taste happens, obviously enough, on the tongue and palate, which can
distinguish five basic taste sensations — bitter, sweet, salt, sour, and
”umami,” described as ”meaty, brothy, full-flavored.” Bitter tastes are
experienced because the molecules that induce them bind to particular
protein molecules (called receptors) in a sensory cell′s membrane. The
sensory cells are gathered together in taste buds, which are housed in
groups of three to fifteen in the tiny but visible bumps on the tongue called
papillae. When a molecule binds to a receptor (often because the molecule
has a shape that allows it to fit as a ”key” into the receptor′s ”lock”), the
receptor protein passes a chemical message to the inside of the cell to say
that binding has occurred. The cell′s response is to emit an electrical
signal that is sent to the brain, which registers, ”Ah, bitter!” Bitter tastes
are there for a reason: to warn us against eating a particular food, often
because it is poisonous (”bitter almonds,” for example, contain traces of
cyanide). It is surprising, then, that some of our foods of choice (such as



beer and dark chocolate) owe much of their appeal to bitterness, and there
is no real explanation why this should be so, although it is noteworthy that
the majority of ”preferred” bitter foods are pharmacologically active. We
have some sixty different receptors for compounds that taste bitter; when a
person is missing one of these receptors, they become ”bitter-blind” to the
compounds that it responds to. Around a quarter of the population, for
example, is genetically bitter-blind to the compound phenylthiocarbamide,
which is detected as incredibly bitter by the remaining 75 percent. Another
quarter of the population (mostly women) seem to be bitterness
supertasters, able to detect bitter compounds at abnormally low levels. In
these people the papillae are tightly clustered and surrounded by a unique
ring structure, whose function is not yet known.

There are taste buds that respond to bitterness all over the tongue,
although most are concentrated towards the back. Taste buds that respond
to sweetness are concentrated towards the front, which is hardly surprising
as it is this part of the tongue that first encounters the lactose (one of the
sweetest of sugars) in mother′s milk. Curiously, ”sweet-blindness” is
practically unknown, perhaps because a taste for sweetness is a survival
trait.

The other taste that uses a receptor is the controversial ”umami,” a taste
described variously as ”brothy” or ”meaty,” and which I have named the
”Wow!” factor in a newspaper column. It is induced by monosodium
glutamate, the well-known MSG that is frequently added to Chinese food
in particular as a flavor enhancer. MSG occurs naturally in many foods,
including tomatoes and Parmesan cheese. It exists in the cheese as visible
white crystals that can be dissolved in water, leaving a cheese distinctly
lacking in flavor.

Umami has been claimed to be a separate taste because a receptor for
glutamate has been discovered on the tongue, but there is still some
argument whether MSG (and some other compounds that also bind to the
receptor) itself has a separate taste or not. Perhaps the choice itself is a
matter of taste. The two other tastes — saltiness and sourness — use
different types of receptor and are general effects of acid (for sourness) or
salt on the tongue as a whole.



Tastes can affect each other in surprising ways. One is the well-known
enhancing effect of a small amount of salt on the perception of sweetness,
which is why recipes for sweet scones often specify the addition of a pinch
of salt. Salt can also affect the perception of bitterness. I once participated
in a tasting of red wine where we were asked to assess the bitterness
caused by the presence of tannins, which are universal components of red
wine. We were then given some salty crackers to eat, and asked to repeat
the test. The bitterness of the wine was definitely diminished, which is
perhaps one reason why red wine goes well with savory food.

Bitter foods can saturate the bitterness receptors and thus wipe out the
bitterness of a subsequently eaten food, which is why chefs avoid such
combinations or progressions. Try drinking some tonic water before eating
your next piece of dark chocolate. The bitterness of the chocolate will be
eliminated, leaving only the taste and the mouth-feel of wax.

There is also a well-established relationship between a liking for sweet
things and a liking for alcohol. Both of these materials seem to activate
the same nerve signals to the brain. Conversely, an induced aversion to
sweet things can induce an aversion to alcohol, although so far as I know
this effect has so far only been observed in mice.

Taste is complicated enough, but the complications multiply when it
comes to aroma, where there are over 3,000 types of receptor to be
considered, 2,000 of which are active in humans. We have most of these
receptors in common, but hardly any of us has exactly the same set. Even
for the limited range of odors so far studied, there are some for which only
10 percent of the population have a receptor, others for which around 1
percent of the population are missing a receptor, and some twenty or thirty
odors in between these two extremes. It is likely, then, that each of us has
an experience that is a little, or even a lot, different when it comes to
picking up the aroma of a meal. A case in point is the famous truffle,
described by Rossini as the Mozart of fungi, where some 40 percent of the
population are ”tone-deaf” to the central aroma that gourmets rave about.
Even among those who can detect this aroma, the effect ranges from
sensual arousal to outright repulsion.

Aroma is generally more important than taste when it comes to flavor
perception. This point can be shown very clearly by cutting an apple and



an onion into equal-size cubes, and having a friend feed them to you in
random order while you pinch your nose shut and close your eyes. Without
the aroma and visual cues, most people find it impossible to distinguish
between the two foods, even though their flavors are very different. Even
with aroma cues, people cannot always distinguish between apparently
dissimilar foods. Gruyere cheese and honey, for example, are very difficult
to distinguish by aroma alone.

Aroma reaches us in one of two ways. The first is from the outside, as
when we initially detect the smell of a meal. The second is from the
inside, when the aroma reaches the back of the nose retronasally — that
is, via the back of the mouth and nose after we have taken the food into
our mouths. Aromas that reach us from the outside seem much more
powerful when we sniff, but it is only recently that a group of scientists,
led by Andy Taylor at the University of Nottingham, have found out why.
The answer is not that we take in more of the aroma, but that we take it in
at a more rapidly varying rate. It is the rate at which aroma concentration
changes in the nose, rather than the concentration itself, that determines
how strong we perceive the aroma to be.

The same effect happens from the inside. This was only discovered
through the use of a clever piece of technology developed by Andy and his
team called ”MSNose,” although I prefer the slightly more surreal name of
”NoseSpace.” The technique analyzes food aromas released to the back of
the nose during chewing and measures their concentration in the nose in
real time (Figure 8.4).



Figure 8.4: MSNose.

Aroma molecules from chewed food reach the olfactory bulb (where
smelling takes place) retronasally, i.e., from the back of the mouth.

MSNose takes samples of each breath to analyze the aroma molecules that
have reached the back of the nose at that time.

It does this by taking a sample of each breath as the subject chews. The
sample is taken via a tube inserted (quite painlessly) into the subject′s
nose. This hardly creates ideal conditions for gourmet enjoyment, but it is
all worthwhile in the cause of science, as I discovered when I used it to
study the effect of dunking a cookie on flavor release. This project was a
follow-up to the original ”cookie-dunking” exercise. The premise, or
hypothesis, that we were testing was that dunking improves cookie flavor,
and that it does so because the drink helps to release aroma molecules
from the solid matrix of the cookie. Hot tea, we expected, would give the
most release by warming up the volatile aromatic materials. For
completeness, though, we tried cold tea, hot and cold chocolate, hot and
cold milk, and even orange juice. As things turned out, it was just as well
that we did.

My guide in the use of MSNose for these experiments was Rob
Linforth, who had been happily unemployed until he joined Andy′s group



as a result of a casual chat outside the local newsdealer, and who now
directed the use of the technique. Rob sports a magnificent, foot-long red
beard, symmetrically divided to reveal the fact that he seldom wears a tie,
and was ideal photogenic material for the advertisers who were supporting
the project. The only person who didn′t think so was Rob, whose
excellence as a scientist is matched only by his dislike of cameras,
especially when they interfere with the smooth running of his laboratory.

There was very little time to use the MSNose in between more serious
research applications, but thanks to Rob′s expertise we managed it, and an
experiment that should have taken weeks was completed in just one day,
albeit with the odd shortcut. Rob kindly sacrificed that day, although I felt
at the time that my own sacrifice was just as great, since I had to dunk and
eat 140 cookies with a stainless steel tube thrust up my nose, chewing for a
prescribed count while Rob pressed buttons and recorded and analyzed the
results.

The outcome was very surprising. Hot tea, it turned out, had no effect
whatsoever on the concentration of aroma molecules released from the
cookie and reaching the back of the nose. We later worked out that this
was because the aroma molecules were washed down the throat before
they had a chance to reach the nose. The drinks that worked really well
were cold milk and, better again, cold chocolate. It was easier to find a
retrospective explanation than it had been to predict this result. The
explanation I eventually came up with was based on the fact that most
aroma molecules dissolve easily in fats and oils, but not in water (which is
one reason why ”fat-free” foods tend to be so dull to eat). Milk contains
fatty globules, which absorb aromas from the dunked cookie and which
coat the tongue and tend to linger in the mouth when the dunked cookie is
eaten. These globules will gradually release aromas that they have
absorbed from the cookie, even though the cookie itself has long since
disappeared down the throat. Chocolate milk, on this hypothesis, should be
even more effective, because it contains cocoa solids, which are fatty and
which will also absorb aroma molecules from the cookie. Such solids also
hang around in the mouth (just look in a child′s mouth after he or she has
had a chocolate drink), and will gradually release aromas absorbed from a
dunked cookie.



That was the hypothesis, which we were unable to test further because
the machine had to be returned to other activities. Nevertheless, it made
sense, and turned out to be a great hit with the media, who turned up in
droves for a series of photo sessions, much to Rob′s dismay. One of those
sessions, a live broadcast on CBS television′s Early Show, provided
incidental evidence of the extent to which scientists travel when a friend
from the next-door laboratory back home rang to say that he had seen me
on TV in his New York hotel room the previous morning.

MSNose has revealed unexpected facets of the way that we detect and
interpret aromas. It has shown, for example, that many of the aromas
released by a tomato when we eat it are not present in the original tomato.
The aromas that our brains interpret as flavor are produced mainly once
the tomato is damaged by cutting or biting, processes that burst the cells
within the tomato, permitting the contents to mix and react chemically.

Another success of MSNose concerns the effect of sweetness on the
perception of mint flavor. Most people will have noticed that a minty
chewing gum slowly loses its flavor as it is chewed. Gum chewers find
that the flavor can be refreshed by taking a sip of a sweet drink.
Experiments with MSNose have shown that the concentration of minty
aroma molecules in the nose is unchanged throughout the whole process. It
seems that the nose gradually becomes accustomed to the presence of a
minty aroma, and its response becomes dulled. Sugar, which has no direct
effect on the nose, nevertheless stimulates the brain to ”notice” that there
are still signals coming in which say that there is a minty aroma present.
This is an extraordinarily clear case of how one sense can affect another.
There are many others. Menthol, for example, the active component of
minty sweets, can modulate our perceptions of hot or cold. A menthol
solution in warm water will feel hotter in the mouth than water at the same
temperature. Conversely, a menthol solution in cold water will feel colder
than water at the same temperature.

Some ”pure” odors, such as pinene (pine odor) and cadinene (juniper, an
important component of gin), can even produce a sense of pain. The nerves
concerned are called the trigeminal nerves. It is through these that we feel
the acute pain of a blocked sinus. When we sniff pinene, cadinene, or a
small range of other odors, the trigeminal nerves are stimulated. An oddity



of this effect, as carefully controlled experiments have revealed, is that we
can′t locate which nostril the odor is coming from.

That′s not so much of a problem when we eat food containing hot chili
peppers, where the pain comes instead from the tongue. The hotness of
chili peppers is due to a family of tasteless, odorless chemical compounds
called capsaicinoids, which are manufactured and stored in the seed-
producing glands along the ribs of the fruit. The capsaicinoid molecules
bind tightly to the surfaces of trigeminal cells in the mouth, nose, throat,
and stomach, whose normal job is to warn the brain of pain-causing
damage. Capsaicinoid binding causes the cells to send the same message,
even though there is no actual damage. This is what the chili pepper addict
has been waiting for. According to one unproven theory, the brain responds
by releasing endorphins, natural painkillers that create a feeling of
euphoria in the absence of pain (the source of ”runner′s high”). An
alternative theory, also unproven, ascribes the attraction of chili peppers to
”benign masochism,” like the thrill of riding on a roller-coaster, where the
rider can experience feelings of fear in safety, knowing that all will be OK
in the end.

How Does Chewing  Release the Flavor?
The effect that a molecule produces, whether it is pain, aroma, or taste,
can only occur if the molecule is released from the food and can reach
receptors or other sites in the mouth and nose. How does this happen? This
question, obviously an important one for gastronomy, was the central
theme of my speech in Philadelphia, but it is not a question that is often
asked. When I began hunting around in the relevant literature, I found that
the few answers posited had not stood up to experimental test. The
common picture seemed to be that aroma molecules diffuse out of the
food bolus and are then swept by air currents (caused by breathing) to the
back of the nose. The problem with this picture, it seemed to me, is that
the bolus is generally a pretty watery mix, whereas most aroma molecules
dissolve in oils or fats, which are likely to be dispersed as droplets or
particles in the bolus. I pointed out to my audience that this leaves the
aroma molecules with two problems. The first is to get to the surface of
the droplet. The second is to get across the water barrier into the air space
above.



I already had some information about the first problem through
experiments that I had done with chef Fritz Blank in Erice. We had made a
flavored mayonnaise in two ways: one was gently stirred and the other was
beaten vigorously in order to make the oil droplets smaller. The flavor of
the second mayonnaise came through much more strongly to tasters, partly
because the droplets were smaller and so the flavor molecules took less
time to reach the surface by diffusion, and partly because there was a
much larger surface area for the molecules to escape through.

When William Gladstone claimed that he chewed every mouthful thirty
times, he was probably doing the right thing according to this experiment,
since chewing will tend to break the oily constituents in the food into
smaller and smaller droplets, making it easier for aroma molecules to
escape. They still have to make their way across a wide watery expanse,
however. It was not clear to me how this could happen until I remembered
some experiments that I had done years previously in connection with an
entirely different problem, that of mineral flotation in mining. In this
technique the ore is crushed, placed in a vat of water and detergent, and
bubbles are blown up through it. The bubbles capture the desirable mineral
particles in the ore and carry them to the top of the tank, leaving unwanted
materials such as quartz behind. My task was to investigate how the
particles are selectively captured.

It turned out that the surfaces of the mineral particles are oil-like (the
technical term is hydrophobic), and when an air bubble approaches them
the film of water in between the particles suddenly collapses at a thickness
of a micrometer or so, allowing the air bubble to stick to the solid surface.
”Could the aqueous film separating an oil drop from the air in a food bolus
collapse in the same way when an oil drop gets within a micrometer or so
of the surface?” I wondered out loud to my audience. ”Could the thin film
of water between the droplet and the air suddenly burst to let the droplet
and its cargo of aroma molecules out into the air space above?”

The aqueous film contains more than just water, of course — it is full of
salts, proteins from the food, and carbohydrates both from the food and the
saliva. The presence of these materials may affect the chance of a water
film bursting; but nobody knows, because nobody, to my knowledge, has
looked. I speculated to my audience, some of whom were still eating, that
food aromas are released in lumps, a droplet-full at a time as each droplet



gets close enough to the surface of the bolus for the water film between it
and the air to burst (Figure 8.5). Aroma molecules could then diffuse
rapidly out of the droplets, providing aroma bursts to the nose, which is
just what it needs to get the full effect, as Andy Taylor and his group
discovered. As I made this suggestion, I noticed that the tardy diners had
begun to chew their food more vigorously.

My host, Gary Beauchamp, director of the Monell Chemical Senses
Institute in Philadelphia, pointed out after the talk that the mechanism that
I had suggested also allows for a new possibility, which is that the droplets
themselves, and not just molecules diffusing out of them, might be carried
on air currents and reach the nose as an aerosol, bringing with them not
only volatile aroma compounds but also involatile compounds that could
not reach the nose by any other route, but which might in this way play a
part in our aroma experience.

Figure 8.5: Taste and Aroma Release from a Food Bolus.

A model such as the one above is only the first step in the scientific
process. The picture that it portrays may sound convincing, but there have



been plenty of models that have sounded even more convincing which
have turned out to be wrong. These range from Aristotle′s notion that
objects only move if they are being pushed or pulled, to Thompson′s
”plum pudding” model of the atom. Each of these was believed in its day,
because the model made sense of so many observations. But testing
eventually proved that each model was wrong.

Much of the speculative ”science” that appears in the media these days
is no more than the presentation of a model developed to account for some
set of known facts. No reputable scientific journal would accept such a
model unless the author had made an effort to check it out in some way,
usually by testing its predictions against reality. I could test out my model
for aroma release, for example, by stirring a food bolus and monitoring the
space above for a spray of oil droplets. I could also pass a current of air
over a stirred food bolus, pass the air directly into MSNose, and watch to
see if the aromas arrive in bursts. I have not yet done either of these
things, and without such testing my model remains just that — a model.

People outside science often think that models, such as that for the
behavior of light which Einstein proposed in his Special Theory of
Relativity, are the sine qua non of science, the ultimate output of the
scientific mind. It does not take an act of genius, though, to devise most
scientific models — just a little imagination. That imagination may be fed
by prior knowledge, insight, or even the memory of a dream. In a few
cases, the models may even be a genuine product of genius. The true worth
of any model, though, is that it is able to pass rigorous testing. Without
this, the model is worthless, no matter how convincing it may appear to its
creator or to others. The theory of relativity, however inspired, would be
valueless if it were not for the fact that its predictions have turned out to
be true.

On a rather lower plane, my picture of how food aromas are released
will only have value if it turns out to be true. Nor did it need me to
develop it, although as far as I know I was the first to enunciate it in
public. Six months later, I mentioned its outlines informally at another
food conference, and was promptly accused (tongue-in-cheek) of
industrial spying by one of the other participants, who had, as it turned
out, developed a very similar picture quite independently. It often happens
that way in science, which is why linear ”histories” of how one discovery



led to another are so misleading. There is a community of people involved
in any discovery, and most of the members of that community will be well
aware, at least at a subliminal level, of what the major unanswered
questions are, and will have put some thought into what the answers might
be.

My picture of aroma release is now out in the open, as any piece of
science should be, to be thought about, tested, dissected, and used if others
so wish as a starting point for further work. I may or may not do some of
that work myself — that depends, as detective-story writers say, on motive
and opportunity. Even if the picture turns out to be true, it may or may not
be important in the overall scheme of things gastronomical. Like the
presentation of food on a plate, it is only a first step, and is yet to be
chewed over, swallowed, and digested.



9

the physics of sex
I was once asked to give a talk to a school science club on any subject that
I chose. I suggested ”The Physics of Sex,” a topic on which I had recently
written an article, and was a little taken aback when the organizer agreed. I
was told later that the audience had been rather larger than most meetings
of the science club, and was also unique in that there were more teachers
than students present.

Even the senior students were surprisingly vague in their knowledge of
the physical aspects of sex. The highlight for me came at the end of the
talk, when an earnest adolescent wanted to ask a private question. ”Is it
true,” he asked in a conspiratorial whisper, ”that if the girl is a virgin it
goes bang?”

I don′t know how he came by this curious belief; but at least it was a
relatively harmless one. Other teenage beliefs may have more serious
consequences. A survey of British general practitioners in April 2001
revealed that current adolescent thinking maintained that ”Putting a watch
around your penis before sex means the radioactivity of the dial kills off
sperm.” Other teenagers believe that standing on a telephone book during
sex prevents conception, presumably because of some imagined effect of
gravity on the sperm. This is a belief that goes back to Aristotle, who
thought that males were conceived on the right side of the womb, and
females on the left. He therefore recommended that a woman should lie on
her right side after intercourse if she wanted a male baby, so that the sperm
would drain in this direction.

Aristotle′s beliefs were transmitted in a curious hotchpotch of
information and misinformation for midwives called Aristotle’s Complete
Masterpiece, which appeared during the seventeenth century and was the
most widely used source of information about sex in the English-speaking



world up until the end of the nineteenth century. Its origin is unknown —
only a little of the information in it can be traced back to Aristotle. It was
banned in England for a long time on account of the explicit nature of its
illustrations. When I bought my own copy, I found a newspaper cutting
from the 1930s inside it with a reader′s question, ”Where may I buy a copy
of Aristotle’s Complete Masterpiece, and how much may I expect to pay?”
The answer was a model of pragmatism: ”You may not buy a copy of
Aristotle’s Complete Masterpiece. You may expect to pay three-and-
sixpence.”

Sex is even now regarded as a somewhat dubious topic for a scientist to
be discussing outside a medical setting. I found this out when I was asked
to give a predinner talk for a scientific society, and chose, once again,
”The Physics of Sex” as my theme. Most people seemed to enjoy the talk,
but one member of the society′s executive sat through it with an air of
obvious and deepening disapproval. It turned out that he had been led by
my title to think that I was going to talk about the role of women in
physics.

What I did talk about was the physical problems that a sperm has to
overcome in the race to the egg, which involve diving, tunneling, surfing,
and even synchronized swimming. At every stage, from the rocket-
propelled launch to the final construction of an electrically guarded
rampart, the sperm cell′s journey is a model of the realpolitik of physics,
and the winning sperm is the one with the greatest mastery of physics. The
odds for any particular sperm′s success are about the same as winning the
lottery, but the reward is incalculable — life itself.

Step 1:  Preparing  for the Launch
Mammalian species such as man use the rocket launcher to propel
spermatozoa on the first stage of their journey. Conventional wisdom
decrees that the launcher must be erect and rigid to perform its function,
but there is always someone who has to be different. One rebel, a
forerunner of today′s sensitive new-age guys, was an eccentric Australian
who decided in the 1930s that erections were an unnecessarily forceful
way of inserting sperm into a female partner, and that men of refinement
ought to be content to permit the female partner to draw the flaccid penis
in. Not content with maintaining this worthy policy as a private individual,



he insisted on proclaiming it publicly every Sunday in the Sydney Domain
(a public space reserved for soapbox declamations). In the climate of the
day this was nothing less than pornographic, and the poor man was duly
hauled off to the lockup each week, to be fined on the Monday and
released to try again the following Sunday. Possibly the policemen who
arrested him were aghast at what might happen if their wives heard of his
arguments and took them seriously. At any rate, his arguments have
disappeared into oblivion, and the rocket launcher continues to be used in
the erect position.

The erection is a matter of hydrostatics, the branch of physics
concerned with fluid pressure and the application of that pressure in the
right place. The pressure in this case is blood pressure, generated by the
pumping of the heart to push blood out through the arteries and have it
return through the veins. In the penis, the arteries lie across the veins.
Hormones released during sexual excitement relax the smooth muscle in
the artery walls. The distended arteries press down on the veins and stop
the blood that is entering the penis from escaping. The result is an
erection, maintained by hydrostatic pressure. You can get the same effect
by turning on a hose after putting a crimp in it or blocking off the nozzle.

When the pressure cannot be maintained, the result is impotence, a
condition that is rumored to have been suffered by Henry VIII in his
relationship with Anne of Cleves. It is a condition that I am assured by my
medical friends can nowadays almost always be cured. One nineteenth-
century ”cure” was a splint made from bamboo and fitted over the penis, a
procedure that must have been incredibly uncomfortable for both parties.
Nowadays a simpler and more comfortable first approach is the brief
application of a small vacuum device to induce a ”passive erection.”

For most men, the libido is a sufficient driving force to produce an
erection. Some people are never satisfied, though, and have sought ways to
enhance the libido by the use of aphrodisiacs. Unluckily for these people,
there is no such thing as an aphrodisiac substance — the only real
aphrodisiac is in the mind. That hasn′t stopped people of both sexes from
trying such things as tripe, rhubarb, and the necks of snails in the search
for enhanced sexual gratification. These and other equally odd materials
come under the heading of ”sympathetic medicine” — in other words, they



bear a fancied resemblance either to a penis (e.g., asparagus, ginseng) or to
a vulva (e.g., oysters).

Some so-called aphrodisiac materials act as irritants to the sensitive
mucous membranes. One such example is the nettle, which the Roman
author Pliny suggested rubbing on the penises of underperforming bulls.
This may explain why the ancient Romans were such fast runners. The
best-known material in the irritant class, though, is cantharidin, the active
principle in Spanish fly, i.e., blister beetles of the Cantharis or Mylabris
genus. Cantharidin, formerly listed as an aphrodisiac by some commercial
drug companies, was classified as a Schedule I poison on its last
appearance in the British Pharmacopoeia of 1953. It is a very dangerous
material, with a toxic dose of three milligrams and a fatal dose of thirty
milligrams. Its effects include dry mouth, gastric pain, blood in the urine,
and, eventually, death following kidney failure. The irritant effect of
cantharidin may not enhance the libido, but at just the right dose it can
produce erections. In a famous case in 1869, several battalions of French
troops in North Africa reported to their medical officer with gastric pains
and permanent erections. It transpired that they had been eating the legs of
the local frogs, which had been feeding on the blister beetles prevalent in
the area.

The British answer to cantharidin was cocoa. In the early 1950s sales of
cocoa shot up when a rumor went around that it had libido-enhancing
properties. The New Statesman magazine ran a competition in 1953 for the
best poem celebrating this myth. The winning entry, ”Cupid′s Nightcap,”
was written by the appropriately named Stanley J. Sharpless:

Half-past nine — high time for supper; 
”Cocoa, love?,” ”Of course, my dear.” 
Helen thinks it quite delicious, 
John prefers it now to beer. 
Knocking back the sepia potion, 
Hubby winks, says, ”Who′s for bed?” 
”Shan′t be long,” says Helen softly, 
Cheeks a faintly flushing red. 
For they′ve stumbled on the secret 



Of a love that never wanes. 
Rapt beneath the tumbled bedclothes, 
Cocoa coursing through their veins.

Cocoa, like many ”aphrodisiacs,” was thought to have an equal effect on
both sexes. One substance which does actually have an effect on both men
and women, albeit in a negative sense, is alcohol, a vasodilator that may
relax the inhibitions, but which unfortunately relaxes other things as well
on the male side of the equation — hence the expression ”brewer′s droop.”
On the female side, it has been found by a substantial proportion of
women to produce dryness and discomfort.

No drug is yet known that can excite the libido, but there are quite a few
that can help to produce and maintain an erection that the libido has failed
to stimulate. One of the earliest was papavarin, whose effects were
spectacularly demonstrated by the psychiatrist Charles Brindley at a
meeting of the British Andrology Society. Brindley, a born showman,
began his talk by lowering his trousers, injecting a solution of the drug
into his thigh, and ”displaying the results throughout the duration of his
hour-long talk.” The exact dose of papavarin is critical, and cases have
been recorded of people having to cut short holidays and return in pain
with the same erection that they started with four days earlier. The idea of
having an injection as a prelude to sex is also not one that many people
would enjoy. Most people would prefer a stimulant that could be taken
orally. It is this, rather than any aphrodisiac effect, that is the main
advantage of Viagra (sildenafil citrate), a substance that can make even
wilting flowers stand up straight.

Viagra was originally developed by Pfizer Pharmaceuticals as a drug for
treating angina. According to one report, its dramatic effects on the
rigidity of the male penis were only discovered after someone wondered
why all of the male participants in the experiment had failed to return
leftover pills once the trial finished. Viagra received the approval of the
U.S. Food and Drug Administration as a treatment for impotence early in
1998, and has already built up a considerable folklore. One French
restaurateur even developed a beef piccata in Viagra sauce, infused with
fig vinegar and herbs. The creator of this dish, Jean-Louis Galland, said



that he wanted to make his customers happy, particularly grandfathers and
their wives. Unfortunately for Galland and his customers, the French
authorities decided that he was dispensing drugs without a license.

Step 2:  The Race Begins
Muscle spasms within the erect penis eventually launch the sperm on its
journey. The ejaculate has been through a similar process to that of
gasoline in a modern gas pump, where various additives are incorporated
as the gas proceeds through the pump, until the final mixture that emerges
is ready for action.

The manufacture of sperm cells (spermatogenesis) occurs in the testes,
within the seminiferous tubules. The cells are transported through the
epididymus, where they become motile, and then through the vas deferens
in a solution of salts and proteins to their point of projection. The solution
in which they are carried is enriched from the seminal vesicles by an
alkaline yellow fluid called the seminal plasma. This solution contains
hormones, enzymes, and metabolites, many of which have an unknown
function.

The seminal plasma that is eventually ejected contains some 200–400
million wriggling spermatozoa. The odds that one of these will reach and
fertilize the egg in any particular month are roughly 3:1 against, which
means that a normal couple have a 90 percent chance of success in twelve
months of trying. The odds of one particular sperm winning the race,
though, are rather worse than the odds of a particular person winning the
lottery with one ticket at the first attempt.

Human spermatozoa are about sixty micrometers long, with a flattish
wedge-shaped head like a mini-surfboard. They must swim a thousand
times their own body length to reach the egg — equivalent to a human
swimming 1500 meters. For at least half of that distance, the sperm must
swim through a material with the consistency of a thin jelly. First, though,
it must escape from the seminal plasma that has carried it to the starting
point of the race. Then, it must break into the jelly-like material, which is
called cervical mucus. Nature has conspired to make sure that neither job
is at all easy.



Figure 9.1: A Physicist’s View of the Vagina, Cervix, Uterus, and
Fallopian Tubes — An Obstacle Course for Spermatozoa.

The first obstacle is the seminal plasma itself, which is inimical to the
health of the spermatozoa trapped in it, and will kill them unless they
escape within twenty minutes. The semen settles as a pool near the
entrance to the cervix, with the volume of the semen pool averaging three
milliliters. Simple geometry says that the furthest distance that a
spermatozoon needs to swim to get to the surface of such a pool is around
nine millimeters. Most spermatozoa can swim at around three millimeters
per minute in watery fluids, and so should make it to the surface in three
minutes or so. Unfortunately for those optimistic spermatozoa, the
seminal plasma, which travels through the penis in liquid form, sets
instantly to a jelly on emergence. Only the luckiest or most vigorous
spermatozoa make it out of this jelly. If the spermatozoa are sufficiently
close to each other, they may display ”synchronized swimming” — a
hydrodynamic effect where the ”waves” created by one spermatozoon
affect the motion of closely adjacent spermatozoa, so that they end up
swimming in unison. This phenomenon is used to assess the quality of bull
semen.

Those spermatozoa that escape from the seminal fluid are immediately
confronted with another barrier — the column of mucus that fills the
cervical canal linking the vagina and the uterus (Figure 9.1). This extends
between the internal and external os — a word of equal use to
gynecologists and Scrabble players alike. The consistency of the mucus
varies under the influence of the two hormones progesterone and estrogen.
Progesterone makes the mucus more viscous, while estrogen induces it to
take up water and become less viscous. The balance between these two
hormones changes throughout the monthly cycle, and the consistency of
the cervical mucus changes with it, becoming most easily penetrable near



midcycle, although there is always a chance of some sperm finding their
way in at any stage of the cycle.

There are various tests for the ”goodness” of cervical mucus, i.e., the
ease with which spermatozoa can penetrate and swim through it. The
simplest, called the Billings test, is the one used in ”natural” family
planning, where a woman takes a small amount of her own cervical mucus
between thumb and forefinger and measures how far it can be extended
without breaking. The further it stretches, the better it is, from the point of
view of the chance of conception. The degree of stretching seems to
correlate quite well with the concentration of water in the mucus, and is
easy to measure without recourse to complicated equipment. It is
technically known as spinnbarkeit, for which the World Health
Organization gives the following ratings:

Table 9.1: Stretch Ratings for Cervical Mucus.

St re t ching l ength (cm) Rat ing

1 0 (worst)

1–4 1

5–8 2

> 9 3 (best)

If a microscope is available, it is also possible to measure ”ferning,”
where some mucus is placed on a microscope slide, allowed to dry, and the
resulting crystalline deposit is examined under a microscope. The more
”branches” that the feathery crystals have, the better the mucus.

The most complete test reproduces the initial stages of the fertilization
process in vitro — literally ”in glass.” Semen and cervical mucus are
introduced to each other as thin films trapped between a glass microscope



slide and a glass coverslip. Sufficient cervical mucus is placed in the gap
to cover about half the area, and a drop of freshly collected semen is then
introduced at the far side, where it is drawn in by capillary action, in very
much the same way that tea is drawn into a dunked cookie (Figure 9.2).

Figure 9.2: Semen and Mucus Being Introduced to Each Other on a
Microscope Slide.

I was introduced to this procedure by Dr. Eileen McLaughlin and her
staff in the fertility unit at St. Michael′s Hospital in Bristol. I was
surprised to see through the microscope that, when the semen and mucus
first come into contact, the interface between the two rapidly develops a
series of cusps (Figure 9.3).



Figure 9.3: The Interface Between Semen and Mucus, Showing
Formation of Cusps.

The spermatozoa, I was told, enter the cervical mucus through the tips
of these cusps. It was the cusps themselves that intrigued me, though. How
were they formed, and why should spermatozoa enter only through the
tips?

Although liquid/liquid interfaces are a speciality of mine, I had only
seen cusps like this on one previous occasion, when I had dipped an oil
droplet into a solution of protein. As more and more protein molecules
competed for space at the droplet surface, the sideways pressure that they
generated in trying to push each other out of the way was sufficient to
collapse the surface into a series of folds. This case seemed different. It
appeared that something in the semen was reacting chemically with
something in the cervical mucus to form a surface film that spontaneously
folded.



The surface film is obviously important, since it could form a barrier to
sperm penetration. To find out more about it, I decided to check out what
would happen if the semen was replaced by water. To my intense surprise,
the same type of cusp appeared. Whatever was going on, it didn′t involve
chemicals in the semen. My guess was that protein from the mucus was
accumulating at the mucus/water interface in the same way that protein
had accumulated at the surface of my oil drop. This made some physical
sense from the point of view that the tips of the cusps are likely to be the
weakest points in such a structure, and hence the most easily penetrated by
a wriggling spermatozoon.

My experience of surface chemistry told me that if protein was going to
accumulate at the mucus/water interface, it should also accumulate at a
mucus/air interface. If this were the case, the rigid protein film should
collapse into folds as soon as water touched any part of it. When I looked
more closely, I was gratified to find that my scientific instinct had, for
once, been right (Figure 9.4).

Figure 9.4: Cusps Formed at Air/Water Interface When Semen or Water
Comes into Contact with Cervical Mucus.

The folds, which will eventually be covered with water (or semen), are
likely to crack at the tips, exposing the underlying mucus. For a
spermatozoon to be able to push its way in to this mucus, it needs to exert
a pressure greater than the yield stress of the mucus, which is (roughly)
the pressure at which the mucus gives way. The yield stresses of jelly-like
materials are measured in units of pressure called Pascals (Pa). For the
purposes of reference, a thin paperback book lying on a desk exerts a
pressure of around 100 Pa. The pressure in a car tire is around 200,000 Pa.



The yield stress of cervical mucus at midcycle is around sixty Pascals, a
characteristic figure for jelly-like materials that can hold their own shape
but are still fairly easy to work (like an industrial hand-cleaning gel, for
example). For cervical mucus, Nature has worked things out pretty well. A
yield stress of 60 Pa means that any spermatozoon capable of swimming
faster than 2 mm/min can push its way through the surface. On either side
of midcycle, the yield stress rises rapidly, so that the mucus provides an
efficient, though not guaranteed, barrier to conception.

The final word on whether spermatozoa can penetrate the cervical
mucus may come from the female partner in a couple, since a link has
been discovered between her enjoyment of a particular sexual encounter
and the quantity of sperm in the cervical mucus afterwards. This may
partly be a matter of orgasm (there is some evidence that spermatozoa are
sucked in during orgasm), but seems to embrace many other factors,
including the moistness and receptiveness of the vagina. These are, of
course, physical factors, so perhaps physics has the last word after all.

Step 3:  The Race Is On
Once one spermatozoon has penetrated, others follow. They don′t swim off
in any old direction, but play follow-the-leader. If several spermatozoa
have initially penetrated at different places, the result is lines of
spermatozoa traveling in lanes, often at different speeds. The type of
mucus in which this happens is evocatively called motorway mucus. This
is the ”best” mucus, with properties that give as many spermatozoa as
possible a chance of making it to the uterus after a swim of some thirty
millimeters. How, though, can spermatozoa swim at all in this jelly-like
material? It would be impossible if the swimming movements of a
spermatozoon were reversible (like the oar movements of a rowing boat,
or the movements of a swimmer who is swimming ”stiff-armed”) because
any movement that would drive the spermatozoon forward in the glutinous
medium would be canceled out by an opposite movement that would drive
it right back again (Figure 9.5).



Figure 9.5: The Problem of Swimming in a Viscous Medium Using
Reversible Movement of the Arms.

(Left) starting position; (center) body moves forward as arms move back;
(right) body returns to starting position as arms move forward. In a

medium of low viscosity, the problem can be overcome in part by making
the driving movement faster in one direction than the other, e.g., pulling

the arms back rapidly, then moving them forward slowly. If viscosity
dominates, this tactic fails.

When I asked Eileen how sperm were thought to manage it, she told me
that it was still very much a matter of opinion. Some workers believe that
the answer lies in the fine structure of the mucus, which contains long
string-like molecules called mucopolysaccharides. These workers claim
that the mucopolysaccharides form bundles about 0.5 μm in diameter
(one-tenth of the diameter of a sperm head), with aqueous channels in
between that the sperm can squeeze along. Other authors believe that the
mucus itself moves. Some believe that the beating of the sperm tails sets
up a resonance with the natural frequency of the mucopolysaccharides,
like walkers crossing a bridge in step and setting it swaying, and that the
resulting rhythmic waves in the mucus carry the sperm along. Still others
claim that the rhythmic beating of the kinocilia (tiny hairs that line the
cervix) produces waves that enhance sperm migration.



There may be some measure of truth in each of these explanations, but
to me none was completely satisfactory, because none took into account
how large, string-like molecules actually behave in solution. I had had
some experience of this behavior as a food scientist when studying the
way that jellies set. Most food jellies are based on gelatin, a long thin
molecule that wriggles around freely in hot water. As the water cools, the
gelatin molecules begin to form a three-dimensional net, held together by
weak links at the points where the molecules randomly cross over each
other. If the weak jelly is stirred at this stage, it rapidly becomes more
liquid; in other words, it is shear-thinning. Stirring disrupts the weak
linkages and lines up the long molecules along the flow lines, so they can
slide past each other more readily.

I knew that cervical mucus, like edible jelly, is a solution of long
molecules that has shear-thinning properties, so that mucus stirred by the
lashing tail of the spermatozoon would form a trail of lower viscosity than
the surrounding mucus, a line of least resistance for subsequent
spermatozoa to follow. This explained the ”motorway mucus” effect, but
still did not explain the ability of spermatozoa to swim through cervical
mucus in the first place. I was puzzling out loud over this question one
morning in the departmental coffee room. My new Ph.D student Rachel
was busy reading her e-mails, and overheard my question. Later that day
she silently handed me a reprint of a 1976 article that told me everything I
wanted to know.

The article was the transcript of a talk by E. M. Purcell called ”Life at
Low Reynolds Numbers” — in other words, life under circumstances
where viscous drag dominates every attempt to move. Organisms like
spermatozoa manage to swim under such circumstances by using the tail
(or flagellum) as a flexible oar, or whip. This dodges the problem that a
human swimmer with rigid arms or a rower with rigid oars would
experience, because a flexible arm or oar can bend one way during the first
half of a stroke and then change shape to bend the other way during the
second half.

Some small organisms, such as the biflagellate alga Chlamydomonas,
use their flexible flagellae in this way to do the breaststroke (Figure 9.6).
Human sperm do it in a different way, lashing their single flagellum from
side to side under the drive of a molecular motor. The tail lashing does the



trick be-cause it flexes so that a two-dimensional wave appears to be
continually traveling along it. Even though viscous drag always opposes
the direction of motion, Purcell showed that a tail moving in this way can,
incredibly, use viscous drag to propel itself forward. A fuller explanation
is given in Figure 9.7. The diagram may look complicated but, like many
scientific diagrams, it is relatively simple to follow if taken step by step.

Figure 9.6: Swimming Motion of Chlamydomonas.

It takes 10–15 minutes for the fastest human sperm to swim the length
of the cervical canal. A few spermatozoa make it much more quickly by a
process called rapid transport, which can carry inert particles through
within two minutes. No one knows how this process works, but the sperm
that take advantage of it are not as lucky as they appear, because the time
that their companions spend in the cervix is needed for chemical changes
that allow them to penetrate and fertilize the egg.



Figure 9.7: Viscous Drag on a Flagellum.

The flagellum is the wavy line. The segment portion shown as a filled
rectangular box is moving upward with velocity V; the open box portion is
moving downward with velocity V. Each velocity can be broken into two

separate velocities — one parallel to the segment, and one perpendicular
to it. The principle is the same as that of the knight’s move in chess, which
is a steep diagonal move that can also be thought of as two steps parallel
to one side of the board, followed by one step parallel to the other side.

For the filled rectangular segment, the two separate velocities are marked
Vpar and Vperp (with similar nomenclature for the clear rectangular

segment). The forces F of the viscous drags that oppose these velocities
are labeled Fpar and Fperp respectively.

Now for the clever bit. We recombine Fpar and Fperp to give an overall
drag force F, and then break this down again, but this time into a force
parallel to the horizontal axis (Fhoriz) and one perpendicular to the axis
(Fvert). The perpendicular one acts downwards, and the parallel one acts
forwards. When we go through the same procedure for the open segment,
the final perpendicular component Fvert of the viscous drag acts upward,
canceling the effect of that on the filled segment. The parallel component
Fhoriz, however, acts forward, adding to the parallel component acting on

the filled segment. The overall viscous drag, then, acts to push the
spermatozoon forward.



Those spermatozoa that make it to the uterus have yet more problems to
overcome. The first is similar to that experienced by surfers on some
Sydney beaches — the water is full of sharks. The ”sharks” are white cells
produced by the immune system, and whose job it is to scavenge foreign
cells and other materials not recognized as ”self.” Nothing could be more
foreign than a spermatozoon in a uterus, and lucky indeed is the
spermatozoon that makes it to the neck of one or other Fallopian tube. Of
the original few hundred million, only a few hundred are now left. Most of
these have made it through the uterus by surfing on uterine waves, induced
by prostaglandins in the seminal plasma. The waves seem to go towards
the oviduct and the cervix, so the spermatozoon has to catch the right one.
Once in the Fallopian tube, the spermatozoa begin jostling for position
like adolescent youths at a street corner, waiting for the egg to arrive.
When it does, it is plastered in makeup — alayer of jelly so thick that it
takes all of the efforts of the spermatozoa to penetrate it (Figure 9.8).

Figure 9.8: Fertilization of the Egg.

This is a very simplified picture, giving the main outlines only. Even the
picture of the egg itself is simplified. In real life, it is surrounded by a
cloud of cells that includes cumulus cells, which secrete a matrix of

hyaluronic acid, similar to the lubricating material in the joints.



The process is a complicated one, involving enzyme action and
biochemical and structural changes. In outline, the sperm first has to drill
through the surrounding cell layer (called the cumulus oophorus) using a
combination of mechanical movement and chemical dissolution. Once
through, the sperm encounters a rigid layer, the zona pellucida, where the
cap of the sperm that was the drill bit is lost in a complicated process
called the acrosome reaction. The sperm now has to work through the zona
in its more-or-less naked condition. It does this by using its asymmetric
tail motion to rock the bladeshaped head back and forth, generating
sufficient force to break individual molecular bonds as the head levers and
cuts its way through.

The sperm eventually reaches a gap called the perivitelline space, where
the thin membrane surrounding it makes contact with the membrane
surrounding the egg (oolemma). The two membranes fuse, and the whole
sperm, with its DNA-carrying head, is engulfed by the egg. The winning
spermatozoon is like a knight of old, scaling the defended ramparts and
eventually breaking through to the maiden within. Like any cautious
knight, it takes the precaution of turning the key on the inside of the door
as soon as it is through, by releasing a burst of calcium that irreversibly
alters the egg membrane so that other sperm cannot enter while the winner
is combining its DNA with that of the egg nucleus.

A new life has now begun. Perhaps it is no more than Darwinian
evolution at work which dictates that the sperm with the greatest mastery
of physics is the one which has the best chance of initiating that life.



coda

I have attempted to convey something of what it feels like to be a scientist,
with the daily task of working out how some small part of the world
functions. We enjoy ourselves, just as anyone in a satisfying and rewarding
occupation does, but underneath the pleasure and excitement there is a real
sense of purpose. As the stories in this book have shown, there is always
the possibility that an answer to even the most trivialsounding question
might help to produce a new insight into the nature of the world in which
we live. Scientists live for these moments.

People outside science often picture scientists as solitary geniuses,
occupying pinnacles far above the rest of us. That may be true for a few,
just as it is true for a few musicians or artists or writers. Fortunately for
most working scientists, including myself, it is perfectly possible to make
useful contributions to science without being a genius. This is because
science is largely a communal activity, to which people with many
different skills contribute. These include some who are good with their
hands, compulsive gatherers and arrangers of facts, persistent seekers of
answers to niggling questions, those with a ”feel” for animals or rocks or
plants, and many others. All have their parts to play. Our main common
characteristic is an openness to criticism, albeit sometimes with gritted
teeth. We share results and ideas through open publication, which
sometimes leads to more criticism, but produces an awareness of
important questions, and acts as a resource of information that has passed
the critical test and which can lead to fresh insights. Without this
communal sharing, there would be no such resource, and ultimately no
science.

Would it matter if there were no science? It would to me and my fellow
scientists, of course, because science provides our livelihood. It would
also have mattered to me personally because I would be dead by now but
for the invention of modern antibiotics. This and other practical benefits



for our lives and lifestyles are often advanced as major reasons for
supporting and investing in science, and it cannot be denied that we are
immeasurably better off, in this sense, as a result of scientific discoveries.
The practical results of science extend well beyond the biomedical and
communication fields that tend to dominate the headlines. Even the
shelves in our supermarkets would be relatively empty if scientific
advances had not let us understand and control decay processes in plant
and animal products.

Practical benefits, though, are outweighed in many people′s minds by
practical problems. Of what use is a longer life, or even a loaded
supermarket shelf, when that life and lifestyle are threatened by an atomic
bomb or a genetically engineered virus?

Some people, when faced with such problems, take the extreme view
that this science should have been stopped earlier, and should be stopped
now, before we get into even deeper waters. Others believe that man′s best
(and possibly only) chance is to press on, seeking further understanding of
our world ourselves and the ways in which we might use science for good
rather than ill.

A compromise, supported by the majority of people, is to encourage the
pursuit of science, but to direct scientific research towards peaceful
applications only. Given that it is impossible to quell our natural human
curiosity, they ask, surely it must at least be possible to direct that
curiosity towards peaceful ends? Unfortunately for those of us who wish
only for peace and cooperation, the answer is ”no.” Even if all direct
military research could be stopped, we would be little further forward,
because it is simply not possible to predict where an advance in scientific
understanding might lead. A prime example occurred in 1939, just before
the outbreak of the Second World War, when two German scientists
published the key theory which made the atom bomb possible, in the
British journal Nature. Only when American and British scientists began
to consider whether an atom bomb could be built did this finding assume
significance. If its consequences had been obvious, the German group
would not have revealed their discovery so openly.

The consequences of any particular scientific discovery are often not
obvious, even to the discoverer. Rutherford, commenting on the



possiblility of splitting the atom (the first step along the road to the atom
bomb), was quoted as saying, ”Anyone who thinks that any practical
benefit can be gained from splitting the atom is talking moonshine.” Nor
was he looking for practical benefit. The prime reason for attempting to
split the atom was to find out what was inside, and thence to understand a
little more about the material from which we and the whole universe are
built. The technological consequences (so far) have included, not only the
atomic bomb, but nuclear power stations (whose utility some will debate),
new methods of revealing and healing diseased and abnormal tissue, and a
truer picture of the nature and origin of the universe. In the future they
may include ”clean” atomic power through nuclear fusion, and even ways
of reaching distant stars and saving the human race from extinction as the
Sun′s own nuclear power plants run down. Who is to say, then, whether the
consequences of Rutherford′s discovery will ultimately be ”good” or
”bad”?

I myself believe that curiosity-driven scientific research is not
intrinsically ”good” or ”bad.” The motivations of individual scientists may
sometimes be classified in this way, but in general it is so difficult to
predict the answer to any seriously asked question, let alone any
applications of that answer, that ethical judgments on the question or
questioner are simply inappropriate. Such judgments only come in when
we begin to think of how we might use the answers, and they involve not
only scientists, but the whole community. It is the applications that we
need to control, not the process of discovery.

This is not to say that scientists should abdicate responsibility, but the
responsibility should be placed squarely where it belongs — in sharing
their knowledge with the wider community, so that the community and its
political leaders can make informed judgments. Scientists can do no more
than that, but they should do no less.

One of the prime things that we need to share, and which I hope that this
book has gone some way towards sharing, is how science actually works.
The fact that we cannot predict which questions will produce trivial
answers (or no answers at all) and which questions will produce
significant answers means that we need people with many different
approaches to provide the variety from which a few major results will
emerge. The problem is akin to that of genetic diversity in the wild. If we



end up with a scientific monoculture, with everyone working on the same
few questions (those perceived to be important by politicians,
businessmen, or technocrats), the result will be no science at all.

Unfortunately, that is the way that things seem to be heading. The
direction of science is largely in the control of committees who dole out
money for specific projects. Pressure from the money providers (mostly
government and industry) increasingly means that support is not
forthcoming unless the applicant can show a reasonable prospect of
getting a ”useful” result. The inevitable consequence is a focus on
problems where the answer is either known or is predictable with such
assurance that it is hardly worth checking. Genuinely important questions
are pushed to the margins, eventually to become extinct, and,
consequently, the diversity of science decreases daily.

The above process might have some merit if the answers to particular
scientific questions could lead to predictable advances in technological
application. As many of the examples in this book have shown, though, the
most important applications of scientific advances are seldom related to
the original scientific motivation. The American biochemist Hans
Kornberg once drew up a list of the ten most significant medical advances
of the twentieth century. Seven out of the ten arose from research that had
nothing to do with the eventual application.

The driving force for genuine research comes from each individual
scientist′s perception that a question is important, and worth investigating.
Many questions turn out to be unimportant, but we cannot always tell in
advance which is which. The very best that we can do is to encourage
scientific diversity. All attempts to pick out in advance which questions
are worth pursuing, and to focus only on those, will produce a lesser result.

With diversity comes responsibility, which is not that of the scientist
alone, but also that of the community of which the scientist is a part. At
the moment, scientists are too often apart rather than a part, and other
members of the community can consequently feel suspicious and
disempowered. It is up to us, as scientists, to share what science is about,
and what it can and cannot do, with the rest of our community. I hope that
this book has at least taken one small step along the way.



appendix 1:

mayer, joule, and the concept of energy
Mayer′s unlikely inspiration for the concept of ”energy” was the sight of a
horse sweating as it pulled a load up a hill. His key idea was that the horse
was getting hot, not because it was moving, but because of the physical
work that it had to do to generate the movement. He thus turned the
question of the relationship between heat and movement into a question of
the relationship between heat and the physical work needed to produce
movement. Having reframed the question, he drew three far-reaching
conclusions. The first was that when we use heat to do work (e.g., to drive
a steam engine) or perform physical work to generate heat (e.g., when we
rub our hands together), the two are literally transformed into each other.
Heat becomes work, and works becomes heat. That idea was remarkable
enough, but he went further to deduce that heat and work must be inter-
convertible in a constant ratio. Otherwise, he argued, we could use an
initial small amount of heat to do as much work as we want, simply by
using the work produced initially to generate more heat than we started
with, and so on. Such processes don′t work, or else we could fly a Boeing
747 by striking a match. There is no such thing as a free lunch.

Mayer tried to prove his thesis by arranging an experiment at a paper
factory where the pulp in a large cauldron was stirred by a horse going
around and around in a circle. Measuring the rise in the pulp temperature,
he obtained a figure for the amount of heat produced by a given amount of
mechanical work done by the horse.

Mayer′s experiments were crude, and he does not receive any credit for
them in modern textbooks, despite having been the first to conceive or
attempt them. The credit goes instead to an English brewer named James
Prescott Joule, who used a paddle wheel driven by a falling weight to stir a
bucket of water, finding that the temperature of the water rose by twice as



much when the weight dropped twice as far, so that twice as much
physical work was generating twice as much heat.

Joule deserves his credit, since he was the first to perform experiments
whose results were sufficiently accurate and reproducible to be
convincing. It is more difficult, though, to reject Mayer′s claim to priority
for his third and most important insight, which was that heat and physical
work are not only transformable into each other, but are actually different
forms of the same thing. We now call that thing energy.

What Mayer had enunciated became what we know now as the principle
of conservation of energy, the cornerstone of modern science. Yet his name
is hardly ever associated with it. Mayer committed the cardinal sin — he
was an outsider. Some establishment scientists of the time defended his
priority, but others, especially the British scientist Peter Guthrie Tait,
poured xenophobic scorn on his rather metaphysical style of argument as
”subversive of the method of experimental science.” Even his fellow
German, Hermann Helmholtz, initially a defender of Mayer′s
innovativeness, subseqently derided his ”pseudo-proof.” Under these
criticisms, Mayer attempted suicide by jumping out of a window thirty
feet above the street. Luckily, his lack of experimental ability was once
again proven and he survived the attempt. He was eventually honored as a
genuine innovator, although his methods lacked the rigor needed to
convince others of the correctness of his remarkable insights.

Mayer was a man of ideas. Joule was a man of action, eager to confront
ideas with hard facts. If Joule′s experiments to prove that the heat
generated by physical work is in direct proportion to the amount of work
done were truly correct, then the rest of Mayer′s logic follows.

First, though, Joule had to decide what ”physical work” meant. Mayer
had been quite vague about it. Obviously, ”physical work” is something
that we do when we move an object by pushing or pulling — in other
words, by applying a force. Joule decided, apparently intuitively (and
following Carnot′s earlier ideas, published in 1824 under the title
”Reflections on the Motive Power of Fire”), that the amount of work that
we do in moving an object depends only on the force that we apply and on
how far the object is moved. The further we push, and the harder we have
to push, the more work we are doing. In simple mathematical terms: work



= force × distance. The definition makes good intuitive sense. When we
have to push a car whose engine has failed, for example, the work that we
feel we are doing surely depends on how hard we have to push and how far
we have to push the car. The further we push, or the harder we push, the
more work we feel we are doing.

The intuitive idea of ”work” underlies almost the whole of modern
physics. All of our measurements of ”energy,” for example, rely
eventually on measuring how much work the energy can be made to do.
Since energy is now believed to be the stuff of the universe, the correct
definition of ”work” is crucial. Joule′s intuitive guess at the definition,
apparently so simple, has turned out to be the one that provides a totally
selfconsistent picture, and is the one that we still use. It is remarkable that
the whole of modern physics, rigorous as it is, has as its foundation a
totally intuitive guess.

Joule was able to demonstrate his guess practically by constructing his
famous paddle-wheel experiment. Shortly after he had completed it, Joule
married, and took his new bride for a honeymoon at the famous Chamonix
falls in the Swiss Alps. One can imagine his wife′s chagrin when she found
that Joule had secreted a thermometer in the baggage, intending to
measure the temperature of the falls as the water fell through different
distances. It can only have been matched by Joule′s chagrin when he found
that any increase in temperature was offset by the effects of the cold air as
it carried the heat away.

Mayer′s insight has now been extended to encompass the idea that all
forms of energy can be transformed into each other. All of them, for
example, can be transformed into heat and hence used in cooking. The
final step was made by Einstein when he showed that matter itself may be
regarded as compressed energy, transformable directly into the heat of a
nuclear power station or the heat and light of an atomic bomb. Mayer′s
logic is formalized these days into the first of the three laws of
thermodynamics. This law (well known, even if its meaning is not always
fully appreciated) states that energy cannot be either created or destroyed.
The second law states that converting any form of energy to work is never
one hundred percent efficient (some is always converted to heat), except at
a temperature of absolute zero. The third law states that we can never



reach absolute zero. These laws are equivalent to the laws of gambling in
the old Wild West:

1. You can′t win.
2. You can′t break even.
3. You may not leave the game.



appendix 2:

the effect of temperature on food molecules
The effect of temperature on food molecules depends on the type of
molecule. There are four main types of molecule to consider — water,
fats, carbohydrates, and proteins. From the point of view of the chef, water
was an unfortunate choice by Nature as the universal, dietetically
innocuous liquid base for our existence. Essential for life it may be, but
the gastronomically unfortunate fact is that it is not only boring in its
contribution to flavor, but also boils at a temperature where hardly any of
the interesting processes in cooking occur. The convenience of the
temperature is such, nevertheless, that boiling water is frequently used in
cooking as a safe and efficient method of transferring heat. Only the
surface of the food initially reaches the boiling temperature of 100°C. The
secret of using boiling water is to time the cooking so that the inside of the
food only heats up to the ideal cooked temperature (usually well below
100°C).

Water in the food itself also frequently contributes to other desirable
changes. When we cook rice, pasta, or potatoes, for example, water acts
not just as a medium to transfer heat but also to help change the very
texture and palatability of the cooked food.

If higher temperatures are desired, fats and oils can be used as heat
transfer media. They also occur as important dietary components of many
foods. Most of the flavors that we perceive are carried by the oily
component of the food (this is why diet foods, lacking oil, can taste so
bland), and the oil when digested releases twice as much energy as an
equivalent quantity of carbohydrate.

An oil is simply a fat in the melted, liquid state. There is a big
difference, though, between the oils found in foods and those used to
lubricate car engines. It is the difference between Jake the Peg and Long



John Silver. Food oil molecules, like Jake the Peg, have three legs attached
to a common backbone. Lubricating oils, like Long John Silver, have only
one. The shape of the legs affects the thermal behavior of the oil or fat.
Each ”leg” consists of a jointed chain of carbon atoms. At sufficiently low
temperatures, the legs can pack side by side to form a solid crystal. Fat
molecules with straight legs (”saturated” fats) pack closely, vibrate little,
and require a relatively high energy to separate them. Those with bent legs
(”unsaturated” fats) pack less well, are easier to separate, and melt at a
lower temperature. Some, like those from peanut and safflower, may even
be oils at room temperature.

Figure A.1: Computer-Generated Pictures of Different Types of Food
Molecule. A Molecule Consists of Atoms (Represented Here as Spherical



Balls) Linked Together by Chemical Bonds (Represented Here by Sticks
Joining the Atoms).

These diagrams are intended to show the shapes and relative complexities
of the molecules that go to make up our food.

a. Water — Here there are just three atoms — an oxygen atom in the
center, linked to two hydrogen atoms.

b. Fat — Fats contain three long hydrocarbon chains (i.e., chains of
linked carbon atoms with hydrogen atoms attached to each carbon
atom), with all three chains attached to a common glycerol head-
group (on the left of the diagram). They typically contain several

hundred atoms. The particular fat shown is an unsaturated fat, which
means that a bond in at least one of the chains is doubled up. This has
the effect that the chain itself doubles up, as if kicked in the stomach.

The one shown here has such double bonds in two of its chains.
c. Carbohydrate — Carbohydrates are built from small sugar molecules

such as glucose, which comprises a ring of five carbon atoms and one
oxygen atom, with other oxygen and hydrogen atoms attached to its
periphery. It contains 24 atoms. Most carbohydrates (such as the

starch in potatoes and cereals) consist of many such rings joined in a
line, and can contain tens of thousands of atoms.

d. Protein — Proteins, such as the egg albumin shown here, can also
contain thousands of atoms, joined together in chains that can fold to
form helices, flat sheets, or an apparently random mess. The mess can
be resolved by concentrating on the shapes of the chains rather than

the positions of the individual atoms. Here are four albumin
molecules with the shapes they adopt in space revealed by this

technique.

Fat and water molecules are relatively small, and the effect of
temperature on their culinary behavior is relatively simple, consisting
largely of freezing or melting. Protein and carbohydrate molecules are
usually much larger. A typical fat molecule may contain a couple of
hundred atoms, whereas proteins and carbohydrates may contain many
thousands. The smallest carbohydrate molecule, glucose, is actually rather
smaller than a fat molecule. Plants store glucose, however, not as single
molecules, but mostly as long chains of linked molecules in the form of



starch. These chains in turn pack into elaborate structures, where
crystalline layers alternate with amorphous layers in a series of concentric
rings, beautiful to observe under the microscope.

All of this natural beauty is undone when we cook starchy foods such as
rice, pasta, or potatoes. As the temperature increases, water molecules
gradually insinuate themselves between the starch chains. The delicate
energetic balance between the attraction of the chains for water or for each
other is gradually shifted until, at a particular temperature (62°C for
potato starch), the chains suddenly separate hugely to accommodate an
influx of water that turns the starch granules from hard gritty particles to a
soft swollen jelly. Higher temperatures don′t produce any further effect —
potatoes, for example, can be cooked quite comfortably at 70°C. It just
takes longer for the heat to reach the center.

Meat and fish are major sources of proteins, which generally require
lower temperatures than carbohydrates for the disruption of their structure.
The energy needed to disrupt the three-dimensional structure of many
folded protein chains, for example, corresponds to a temperature of around
40°C (this is why our body temperatures are locked at 37°C). A high-
quality steak, such as fillet or sirloin, consists principally of the muscle
proteins actin and myosin, which adopt an extended configuration in the
relaxed muscle that is maintained by weak cross-links. The muscle
proteins shorten when their cross-links are broken; a process that makes
the meat tougher. Such steaks should not be heated at the center to
temperatures much above 40°C, which is why we use such short cooking
times for them.

The proteins in connective tissue (the white strands and sheets in meat)
require much higher temperatures for disruption of their three-
dimensional structure. The principal component of connective tissue is the
protein collagen, which actually consists of three protein chains, wound
around each other to give a strong rope-like structure, which is why meat
with a lot of connective tissue in it is so tough. To disrupt this structure
requires a temperature of around 60°C, together with the presence of
water. A combination of the two converts the triple-stranded collagen into
single-stranded gelatin, which is much softer and more digestible.
Unfortunately, at such a high temperature the muscle proteins will have



become very tough. The solution, such as it is, is either to choose high-
quality meats or to accept a compromise in texture.

At even higher temperatures, the kinetic energy of the molecules can
become greater than the energy of the bonds between individual atoms in
the chain. The chain may break up, and the bonds can become available to
form new links with other molecules. This is what happens in browning,
where the kinetic energy at temperatures above 140°C is so high that
protein and carbohydrate chains can form complicated new cross-links
with each other, producing new materials that are both brown and tasty.
We start our roasts off at high oven temperatures to promote these
browning reactions.
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chapter 1:  the art  and science of  dunking
Page
1 Market research on cookie dunking. Informal survey conducted in
London in connection with the ”cookie dunking” project.

2 ... an elastic net of the protein gluten. Network was defined tongue-in-
cheek in Johnson′s 1755 Dictionary of the English Language as ”anything
reticulated or decussated at equal intervals, with interstices between the
intersections.” It is the interstices, or cross-links, that count; without them
there would be no net. For the last fifty years it has been believed that
these cross-links in wheatflour dough are formed by disulphide bonds.
Only recently has it been discovered (Tilley, K., Journal of Agricultural
and Food Chemistry, vol. 49, p. 2627) that they are formed by cross-links
between the totally different tyrosine residues, and that the disulphide idea
was not based on hard evidence.

3 ... seven thousand calls in a quarter of an hour. Not all of the calls were
about dunking. Many inquirers wanted to know about the science
underlying other familiar activities, such as cooking, sunbathing, and
using mobile telephones. The supposedly abstruse and difficult scientific
principles involved in the answers seemed to pose little difficulty for the
questioners, since the principles were being related to something with
which they were already familiar.

3 Robert Hooke and the Royal Society. ”Hooke, Robert,” article in
Encyclopaedia Britannica, 11th edition, Cambridge University Press,
Cambridge, 1911.

The exact terms of Hooke′s appointment, as recorded in the
Journal Book of the Royal Society for 5 November 1662, were:
”Sir Robert Moray proposed a person [Hooke] willing to be
employed as a curator by the Society, and offering to furnish
them every day, on which they met, with three or four
considerable experiments, and expecting no recompence till the
Society should get a stock enabling them to give it.”



”Considerable,” it transpired, meant ”original.” And today′s
Ph.D students think that they have it tough!

4 The structure of DNA. Watson, James D., The Double Helix, Atheneum,
New York, 1968.

5 Francis Bacon and the nature of scientific research. Bacon, Francis, The
Novum Organon, or, A True Guide to the Interpretation of Nature, Kitchen,
G. W. (transl.), Oxford University Press, Oxford, 1855. An amazing
number of people still think that science works in the way that Bacon
suggested.

5 Paradigm shifts in science. Kuhn, Thomas, The Structure of Scientific
Revolutions, 2nd edition, Chicago University Press, Chicago, 1970.

5 Proof in science. Medawar, Peter, The Limits of Science, Oxford
University Press, Oxford, 1985.

6 The mathematics of a drunkard’s walk. ”Drunkard′s Walk Helps Unfold
Secret of Polymers,” New Scientist magazine (136), 12 December 1992.
This article summarizes the principles of random walks in an accessible
way, and shows how the square relationship and the factor of four that
follows arises. There are also numerous Web sites that cover the subject of
random walks at different levels of sophistication.

7 Washburn’s experiments (and equation). Washburn, E. W., Physics
Review (17), 1921, p. 374.

8 Graphs, symbols, and equations. These are an immense source of
confusion to non-scientists (and to some scientists!), but they needn′t be.
The principle is very simple. An equation describes how one thing
depends on another. If a car is traveling at 60 kilometers per hour, for
example, then the equation (distance in kilometers) = 60 × (number of
hours) shows just how the distance traveled depends on the time spent.

To avoid writing everything out in full, scientists use
abbreviations. D is a common abbreviation for distance, and t
is the universal abbreviation for time. The equation above thus



becomes D = 60 × t, which is much easier to write and just as
easy to read with a little practice.

A graph is simply another way of writing an equation to
display visually how one thing depends on another. By
convention, the thing that is depended on (in this case, the
time) is drawn along the bottom (horizontal) axis, and the thing
that depends on it (the distance) occupies the vertical axis. It′s
that simple.

10 Young’s version of the Young-Laplace equation. Young, Thomas,
Philosophical Transactions of the Royal Society of London (95), 1805, p.
65. See also Young, Thomas, A Course of Lectures on Natural Philosophy
and the Mechanical Arts (2 vols.), J. Johnson, London, 1807. Young hated
mathematical symbols and wrote his equations out entirely in words,
which makes reading his papers incredibly hard going.

11 Laplace’s version of the Young-Laplace equation. Laplace, Pierre
Simon de (Marquis), Supplément au dixième livre du traité de mécanique
céleste, 1806. Translated and annotated by Bowditch, N. (4 vols.), 1829–
1839, Boston. Reprinted by Chelsea Publishing Co., New York, 1966.

12 Scientists investigating familiar phenomena. This has frequently led to
important and fundamental discoveries. The famous story that Newton
discovered the universal law of gravitation after being hit on the head by a
falling apple unfortunately has no foundation (although it is interesting to
note that the modern unit of force [the Newton] is approximately equal to
the force of gravity on an average-sized apple). There are, though, plenty
of real examples of universal laws being derived from the observation of
commonplace phenomena. These include: Galileo′s discovery of the
pendulum laws after observing the swinging of a chandelier in the
cathedral of Pisa; Mendel′s deduction of the laws of genetics from his
observations of peas growing in a garden; Rumford′s hypothesis that heat
is a form of motion, a conclusion that he came to after observing the
enormous amounts of heat generated during the boring of brass cannons
(anyone who has ever had occasion to drill a hole in a piece of metal will
be aware of this phenomenon on a smaller scale). In modern times, the
universal theory of chaos, which dominates such diverse topics as the



growth and decline of animal populations and financial movements in the
stock market, originated from Lorenz′s efforts to understand weather
patterns.

12 Mean radius of curvature. I have used the technical term ”mean” here
so that my fellow specialists in the field don′t shoot me down. Most
menisci are curved differently in different directions, and the calculation
of a ”mean” is used to account for this fact.

12 measurements … have confirmed the essential correctness of this
theory See, for example, Tyree, Melvin T. ”The Cohesion-Tension theory of
sap ascent: current controversies,” Journal of Experimental Botany (48),
1997, p. 1753. 14 Poiseuille’s equation. The equation is simply:

where L is the distance traveled by a liquid of viscosity η in
time t along a cylindrical tube of radius R under a pressure
head ΔP (Poiseuille, J. L. M., Comptes Rendus de l’Académie
de Sciences, Paris (11) 961, 1041 (1840); (15) 1167 (1844)).
Note: Δ is the usual scientific shorthand for ”a change in.”

16 Experiments on the swelling of individual starch granules.
These were reported in Fisher, L. R., Carrington, S. P., and
Odell, J. A., ”Deformation Mechanics of Individual Swollen
Starch Granules,” Starch, Structure and Functionality (P. J.
Frazier, P. Richmond, and A. M. Donald, eds.), Royal Society
of Chemistry (London), Special Publication, no. 205, 1997, p.
105.

18 Stress. The term has a precise technical definition, which in
this case is just the force divided by the area over which it is
applied. Since the area at the crack tip is tiny, the stress is huge.

18 The science of how cracks form and grow. The phenomenon
is discussed in an entertaining and simple fashion in The New
Science of Strong Materials, Gordon, J. E., 2nd edition,



Pelican, London, 1976, which also gives a photograph of the
Majestic′s near-disaster. A picture of the Schenectady actual
disaster is given in Structures, Gordon, J. E., Pelican, London,
1978.

20 Media coverage of cookie dunking. The story was featured
in all major British newspapers over 24–25 November 1998,
appeared on TV and radio news worldwide, and even found a
place in the Wall Street Journal. It also became the subject of
numerous features.

21 Nature article on cookie dunking. Fisher, Len, ”Physics
Takes the Biscuit,” Nature (397), 469, 1999.
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23 James Bond’s gourmet pretensions. These are amusingly dealt with by
Kingsley Amis in The James Bond Dossier, Jonathan Cape, 1965.

24 Nicholas Kurti. His remarkable life is documented in Biographical
Memoirs of the Royal Society of London (46), 2000, pp. 299–315.

24 The Physicist in the Kitchen. This was the topic of one of the famous
Friday Evening Discourses presented at London′s Royal Institution
(founded by Rumford). Nicholas broke with tradition in having his lecture
televised live, and also by refusing to be locked up beforehand, a tradition
that developed after a lecturer in the last century (Charles Wheatstone)
took fright and ran away before the lecture.

The actual date of the broadcast was Friday, 14 March 1969.
Unfortunately, the BBC has destroyed the only tape of this
historic event. The only record is the script, published in
Proceedings of the Royal Institution (42), no. 199.

26 ... the sensation of heat is caused by particles of caloric passing into
our bodies. Maunder, S., Scientific and Literary Treasury, 1841.

26 The life of Benjamin Thompson. This has been written up in many
places. A particularly interesting account is given in the ineffable 11th
edition of the Encyclopaedia Britannica (article on ”Rumford, Benjamin
Thompson, Count,” Encyclopaedia Britannica, 11th edition, Cambridge
University Press, Cambridge, 1911). When Rumford gained his title, his
American origins asserted themselves, and he took the title of ”Count
Rumford” in recognition of his wife′s home town of Rumford, New
Hampshire, now known as Concord and the state capital.

Rumford was an insatiable observer of life′s minutiae, and a
prime example of a scientist who used observations of
commonplace phenomena as a basis for advancing our



scientific understanding. His personal philosophy, very
appropriate to the present book, was that: ”... in the ordinary
affairs and occupations of life, opportunities [often] present
themselves of contemplating some of the most curious
operations of Nature ... a habit of keeping the eyes open to
everything that is going on in the ordinary course of the
business of life has oftener led ... to useful doubts, and sensible
schemes of investigation and improvement, than all the more
intense meditations of philosophers ...”

One of the ”ordinary affairs” in which Rumford interested
himself was cooking. He wished ”to inspire cooks with a just
idea of the importance of their art, and of the intimate
connection there is between the various processes in which they
are daily concerned, and many of the most beautiful
discoveries that have been made by experimental philosophers
in the present age.”

The story of Rumford and the bread oven was brought to my
attention by the food writer Harold McGee, who reported it in
his fascinating book The Curious Cook, North Point Press, New
York, 1999, p. 22.

26 The history of the demise of caloric. This is fascinating in its own right
as an example of how science really works — not by definitive experiment
and immediate acceptance of a new idea, but by test and countertest,
argument and counterargument, and above all by openness, a too frequent
casualty in today′s world of industrial and military secrecy. The history is
discussed in most standard histories of science, and, for those with a
scientific background, Harman, P. M., Energy, Force and Matter,
Cambridge University Press, Cambridge, 1982, and Brush, S. G., The Kind
of Motion We Call Heat, North-Holland, 1976.

26 ... it was considered prudent that he should seek an early opportunity of
leaving. See ”Rumford, Benjamin Thompson, Count,” Encyclopaedia
Britannica, 11th edition, Cambridge University Press, Cambridge, 1911.

26 Rumford’s observations on boring cannons. These are reported in his
Collected Works, vol. II, essay IX. Read before Royal Society, 25 January



1798.

28 Mayer’s ideas. These were first reported in The Motions of Organisms
and their Relation to Metabolism, published in 1824 (reprinted in Lindsay,
R. Bruce, Energy: Historical Development of the Concept, Dowden,
Hutchinson Ross, Inc., 1975).

28 The notion of heat as motion. This was finally codified by John Tyndall
in Heat: A Mode of Motion, 6th edition, Longmans, Green & Co., London,
1880, a book in which he also presented a spirited defense of Mayer′s
contribution.

29 Einstein on heat and temperature. The quote is from Albert Einstein
and Leopold Infeld in The Evolution of Physics, Cambridge University
Press, Cambridge, 1938. The presence of Infeld as a coauthor provides
another insight into how science really works. When Einstein moved to
Princeton, he made it a condition of his employment that a second position
be created so that he would have someone to talk to. The person who
gained that position was Infeld. The story shows that even scientists such
as Einstein do not live in ivory towers. Communication and exchange of
ideas is the name of the game, for Einstein and for almost every scientist I
have known.

29 Temperature as average kinetic energy. To be precise, the energy of a
molecule is given by k × T, where k is a number called Boltzmann′s
constant. The multiple weak intrachain links that maintain the three-
dimensional structures of long carbohydrate and protein molecules
typically require an energy of a few kT to break them. To break a chemical
bond within the chain requires an energy of around 80 kT.
31 Rumford’s discovery of convection. This is described in Rumford′s
Collected Works, vol. II, essay VII. Quoted in Magie, W. F., A Source Book
in Physics, Harvard University Press, Cambridge, Mass., 1965, p. 146.

33 Chefs and the rules of conduction. I am again indebted to Harold
McGee for the story of an informal poll by the American food writer
Edward Behr which resulted in a consensus among the chefs polled that a
fish fillet twice as thick as another would take less than twice the time to
cook (see The Curious Cook, North Point Press, New York, 1999, p. 33).
Harold has recently produced a computer model of the temperature



distribution in a piece of steak cooked under various conditions (McGee,
H., McInerney, J., and Harrus, A., Physics Today, November 1999, p. 30).

34 Solutions to Fourier equation for objects of different shape. These are
discussed in an understandable manner by my colleague and frequent
coauthor on food matters, Dr. Peter Barham, in his book The Science of
Cooking, Springer-Verlag, 2000, p. 43.

35 The ”interesting mathematical reason.” In this instance the reason for
the range of agreement between the square rule and classical rules for
cooking times comes from the fact that, if the cooking time t is
proportional to the square of the thickness d for a slab of meat, then a
small increase Δd in the thickness means that the cooking time will
increase by a factor (d + Δd)2 / d2, which is equal to (d2 + 2d + (Δd)2) / d2.
The point, as those who have learned calculus will know, is that if (Δd)2 is
very small compared to the other two terms, and can be neglected, then the
cooking time increases linearly with thickness, just as predicted by Mrs.
Beeton (and my mother). The point is made in a different way by P. B.
Fellgett in Kurti, N. & G. (eds.), But the Crackling Is Superb, Adam
Hilger, 1988, p. 40 (an anthology on food and drink by Fellows and
Foreign Members of the Royal Society).

37 Richard Gardner. His temperature measurements on boiling eggs are
reported in Kurti, N. & G. (eds.), ibid., p. 53.

39 Charles Williams. His calculations of egg-boiling times, and Hervé
This′s comments on the relative setting temperatures of white and yolk,
were reported in New Scientist, 13 June 1998.

40 The effects of temperature on food molecules. For more detail see, for
example, McGee, H., On Food and Cooking, Fireside Books, New York,
1997, and, Barham, P. J., The Science of Cooking, Springer-Verlag, 2000.
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43 Woodworking Tools and How to Use Them. This classic book was
reworked by Jack Hill (David & Charles, Newton Abbot, 1983).

44 The Greek author called the ”pseudo-Aristotle.” This author derived
the law of the lever around a hundred years before Archimedes, but the
derivation only stands up to critical examination if it is assumed that the
author was aware of the modern ”principle of virtual velocities,” which he
probably was not (Lindsay, R. B., ed., Energy: Historical Development of
the Concept, Dowden, Hutchinson & Ross, Inc., 1975, p. 32).

48 Geiger counters. These are designed to register the passage of particles
such as alpha-particles that are emitted during radioactive decay. A reader
of the Australian magazine Radio and Hobbies (a monthly periodical on
which I and many others cut our electronic teeth) did not know this, and
wrote to the editor to ask what Geiger counters counted. The editor,
straight-faced, replied: ”Why, Geigers, of course,” and went on to explain
that Geigers were what modern scientists counted in order to get to sleep.
He even provided a picture of one:

Fig. N.1: A “Geiger.”

48 Geiger and Marsden. Their observations were published in June 1909,
and the whole world had a chance to work out what they meant. Rutherford



got there first, although it took him eighteen months.

Rutherford tried two pictures of the atom — one where all
the positive charge was in the middle, and one where all the
negative charge was in the middle. In the first case, the
positively charged alpha-particles would be repelled if they
came too close. The second case was not ruled out, though,
because, although alpha-particles in this instance would be
attracted to the nucleus, they could well swing around it and
return in the direction from which they came, like a comet
around the sun. When Rutherford did the mathematics for the
two cases, the answers came out the same. It needed other
evidence to show that the first answer was the correct one.

Rutherford′s picture of the atom was not just based on one
imaginative conceptual leap, important though that was. There
have been plenty of equally brilliant conceptual leaps that have
landed on the wrong answer. Rutherford, though, used his
picture to predict just what fraction of alpha-particles would be
scattered through various angles, and found that his
quantitative predictions agreed with Marsden′s measurements.
This was the real clincher.

Rutherford announced his idea, not in the prestigious
Proceedings of the Royal Society as Geiger and Marsden had
done, but to a meeting of the Manchester Literary and
Philosophical Society. This says something for the status of
such societies and for public interest in real science at that
time.

48 Rutherford and the atom. Rutherford was fond of recounting the story
of Marsden′s experiments. The version here is assembled from several
sources, the principal one being David Wilson′s Rutherford: Simple
Genius, MIT Press, Cambridge, Mass., 1984, p. 291.

49 The less likely an experiment is to work, the more significant the result
is likely to be. Unfortunately, the powers now in charge of providing



support for science often view things in the opposite light, and pay out
largely on the basis of the a priori chances of success. This has led to
some interesting games, where scientists do experiments first and then
apply for the money, using that money to secretly fund the next round.

49 History of the hammer. See Goodman, W. L., History of Woodworking
Tools, Bell, 1964.

My grandfather, a carpenter, claimed to have used the same
hammer through his entire working life, and only had to
replace the head twice and the handle three times.

49 Fitting the hammer handle through a hole in the head. Australian
Aborigines used rocks with holes in the middle as spear straighteners, but
apparently did not take the next step of fitting axe heads, etc., in a similar
way.

52 Work = force × distance. My search through old scientific articles,
books, and encyclopedias has revealed that no one scientist has ever
proved that work = force × distance. All that happened was that the
conserved quantity (force × distance), identified as important by Galileo,
gradually became identified with the word ”work,” so that by 1855, 150
years after Galileo′s death, scientists had hijacked the word from common
language for good. Its new definition was accepted without question by
scientists such as Joule when he established the equivalence of heat and
work.

53 Conservative forces and friction. Scientists call the force used to move
a load in the absence of friction a conservative force, because the moved
load can in principle subsequently be used to then move another one, so
that the effort isn′t lost. Frictional forces, though, are non-conservative,
since the work that has gone into generating heat is usually lost.

54 The force required to remove a nail. This is given in Marks’ Standard
Handbook for Mechanical Engineers, 8th edition, McGraw-Hill, 1978, pp.
12–29. The actual force depends on the 2.5 power of the density of the
wood, and is also proportional to the diameter of the nail and the length of
embedment.



56 The length of engagement formula. This, together with other formulae
too numerous and exciting to mention, are given in Ryffel, Henry H. (ed.),
Machinery’s Handbook, 23rd edition, Industrial Press Inc., New York,
1988, p. 1278.

57 Tightening bolts. Stuart Burgess has made some interesting further
points, which I quote here with his permission:

1. A neat way to tighten a bolt is to heat it up first, and then do it up to
hand tightness. When it cools down it shortens, and becomes
pretensioned.

2. Many screws are made of soft metals, and are easily damaged by
hardened screwdrivers, and still more by hardened misusers of
screwdrivers.

3. Spring washers are good at indicating the correct preload in screws
and bolts.

4. There is apparently a special screwdriver available with an offset in
the middle section of the handle, so that the tightening hand sweeps
through a larger circle than just twisting. This does provide a true
”lever” mechanical advantage.

63 The historic definition of a ”barrow.” See the complete edition of the
Oxford English Dictionary.

63 The wheelbarrow in China. This is discussed in Needham, Joseph,
Science and Civilisation in China (abridged by Colin Ronan), Cambridge
University Press, Cambridge, 1978, p. 75.

67 Cutting tools ... are the oldest. Stone flakes discovered in the Nihewan
Basin of China, for example, have now been dated as 1.36 million years
old (Nature, vol. 413, p. 413).

68 Formulas for Stress and Strain, Roark, R. J., 3rd edition, McGraw-Hill,
1954.

69 A screwdriver thus used acts as a rigid extension to the operator’s arm.
Stuart Burgess claims that ”a screwdriver is really a wrench used in-line.”
I leave it to the reader to decide between Stuart and Jeff.

69 Engineering reference information. Most of this is taken from
Baumeister, T., Avallone, E. A., and Baumeister, T., III, Marks’ Standard



Handbook for Mechanical Engineers, 8th edition, McGraw-Hill, 1978.
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79 The principle of concentrating on significant figures. This is a principle
that scientists use all the time. The trick is to recognize which figures are
significant and which aren′t. Failure to do this can lead to scientific ruin,
as happened to the congenial Viennese physicist Felix Ehrenhaft, a
frequent host to Einstein and others.

Ehrenhaft spent much of his life trying to measure the charge
on the electron, using a technique where a cloud of tiny water
droplets was sprayed between two horizontal charged metal
plates. Most of the droplets would fall slowly under the
influence of gravity. Occasionally, however, a droplet would
pick up a stray electron liberated by a passing cosmic ray. The
charged droplet would then start to move towards the positively
charged upper plate. By measuring the rate of movement, the
experimenter could calculate the electrical charge. The
problem was that some of the droplets, unaware of the
experimenter′s intentions, inconveniently chose to pick up
more than one electron. Ehrenhaft knew that this was a
possibility, and took many measurements, calculating the
charge on each drop and looking for a common factor which
would be the charge corresponding to just one electron. He
drew a frequency distribution of his results, showing how many
times each particular value of the charge occurred. His results
for 500 separate experiments are redrawn here as faithfully as I
can manage from the full set of data reproduced in G. Holton′s
excellent book, The Scientific Imagination: Case Studies,
Cambridge University Press, Cambridge, 1978, p. 74.

The charge on an individual electron is now known to be
4.80 × 10-10 electrostatic units, and it seems obvious in
retrospect that Ehrenhaft′s first (and largest) peak corresponded
to drops carrying just one electron, while the subsequent peaks
(somewhat displaced because of an unknown experimental



artifact) corresponded to droplets carrying two, three, four, etc.,
electrons. The scatter in the results (something that all
scientists have experienced) could have been due to dust, pairs
of droplets sticking together, convection currents in the air, or
any of a number of other reasons.

Ehrenhaft didn′t see it that way. He believed that all of his
results should be given equal weight, since he could see no
reason to believe one more than another, and that they were all
accurate to three, four, and even five significant figures, so that
each tiny horizontal step represented, not experimental error,
but the addition of another electron. He thus ended up
calculating the charge on the electron to be about a hundred
times smaller than it actually is. He eventually performed
thousands of experiments. The more experiments he did, the
smaller the elementary charge on the electron appeared to
become.



Figure N.2: Results of Ehrenhaft’s First 500 Measurements
of the Charges on Water Droplets.

The American Robert Millikan was meanwhile performing
very similar experiments to Ehrenhaft, but robustly choosing to
focus only on the most significant figures and to ignore later
figures as being due to experimental variation and therefore not
significant. Using this approach, he obtained the correct value
for the charge on the electron, for which he was awarded the
1923 Nobel Prize for physics. Poor Ehrenhaft, meanwhile,
carried on for another twenty years claiming that there must be
”subelectrons” with much smaller charges — but nobody was
listening.

There are some very deep statistical issues here, concerning
the extent to which prior expectations should influence
statistical analysis, and if so just how they should be allowed
for. Many of these issues remain unresolved to this day.

80 Averaging of upper and lower bounds. This is easily shown to be
equivalent to adding half the number of items to the total in the ”pounds”
column. If the total of the ”pounds” column is P, and the total number of
items is N, then the lower bound is £P, and the upper bound is £(P + N).
The average of the two is £(P + (P + N)) / 2, which comes to £(P + N/2),
which is the same as adding half the number of items (N/2) to P.
83 Cancellation of errors. A surprising number of scientists have come to
a correct conclusion after making two mistakes that have canceled each
other out. One famous case was when the American scientists Gorter and
Grendel were trying to measure the composition of the thin membrane that
surrounds all living cells. They eventually concluded (correctly) that this
membrane was just two molecules thick. This was a major result, and set
modern cell biology on its path. It was only thirty years later that someone
pointed out that the Gorter and Grendel paper contained two errors, each
of a factor of two, which luckily canceled each other out. See E. Gorter
and F. Grendel in Journal of Experimental Medicine, vol. 41, 1925, p. 439.



85 Robert Millikan. His notebooks are now preserved in ninety-nine file
boxes in the California Institute of Technology Archives.

85 Patterns in supermarket prices. When I showed these frequency
distributions to my colleague Jeff Odell, his immediate suggestion was
that I should attempt a Fourier transform. This is a mathematical
technique, now made easier with the advent of powerful computers, for
revealing underlying patterns, or periodicities. Pictures from space probes
are invariably treated in this way before being released to the public.

I was very tempted to try it with supermarket bills,
especially since, as Jeff pointed out, there is an experimentally
neat way to do Fourier transforms, which is to take a 35 mm
slide of the object (here, the graph of the supermarket price
distribution) and shine a laser through it. The light will be
deflected through different angles via a phenomenon called
interference, with each angle corresponding to a particular
periodicity in the price distribution. In the end, though, it
turned out to be too messy.

You can do your own Fourier transform simply by looking at
the reflection of a light from a CD. Pick one color to watch, and
look for the reappearance of that color as the CD is tilted. Each
reappearance corresponds to a different periodicity. Those at
the shallowest angle represent the spacing between adjacent
tracks; those farther in correspond to the gaps between every
second track, every third track, etc.

85 The underlying statistics. The statistics of the methods that I have
suggested really deserve an essay in their own right, focusing on what we
mean when we speak of an ”average.”

The average that most people are familiar with is technically
called a ”mean.” If the figures in a ”cents” column are
randomly distributed, it makes sense to say that the ”mean”
value is approximately 50, for example (49.5, to be exact). It



also makes sense to talk about a ”mean” if the figures are not
randomly distributed, so long as the distribution is smooth.

”Means” correspond to expectations, but are not always
appropriate for a situation. The ”mean” number of humps on a
camel, for example, is 1.5, but no one has ever seen a camel
with one and a half humps — they always have either one
hump or two humps.

I have avoided talking about ”means” when it comes to
overall supermarket prices, since the distribution of these
prices is very spiky. There are many mathematical tricks for
handling such nonsmooth distributions, most of which are way
out of my league, and probably the reader′s as well. One that is
within everyone′s grasp, though, is to focus on the median, i.e.,
the value that occurs with the highest frequency. This is what I
have done in the simple methods that I have suggested for
comparing prices between different supermarkets.

89 The use of calculators. A friend to whom I was explaining some of the
tricks in this chapter asked: ”Why not just use a calculator?” My answer
was that a calculator is far from a foolproof aid to addition — it is more
like a ticking bomb. The bomb becomes primed the moment that a number
or a symbol is entered incorrectly. The subsequent explosion may be a
personal one, after the operator has used a calculator to add up the same
column of figures three times, and produced three different answers. It
may even involve other people if the wrong figure is used to challenge
someone else′s calculation. No professional scientist would dream of
trusting the output of a calculator (or a computer, which for most purposes
is just a programmable calculator) unless the result agreed reasonably with
that arrived at by approximate calculation. Even then, he or she would
probably repeat the calculation, just to make sure. There is just too much
chance of hitting a wrong key, resulting in GIGO — garbage in, garbage
out.

Some spectacular examples of GIGO have been recorded. On
21 July 1962, a misplaced comma in a computer program was



sufficient to cause the spacecraft bearing America′s first probe
to Venus to explode shortly after liftoff. In 1988, the Soviets′
first

Mars mission, Phobos 1, was lost when Russian controllers sent a long
sequence of commands with a single error: a plus symbol where a minus
symbol belonged. A single erroneous keystroke is not likely to cost the
average person quite as much, but if trained space scientists can make
such mistakes, then it behooves the rest of us to be wary.

The easiest way to be wary is to use quick mental shortcuts to check that
the figure calculated by you or someone else is at least approximately
correct. It is surprising how often such calculations help to avoid paying
out on your own or someone else′s mistake.

Further examples of GIGO in the space program can be found in an
interesting article by Bruce Neufeld called ”Software Reliability in
Interplanetary Probes,” published on the Internet at
http://web.tampabay.rr.com/dneufeld/sftrel.html

Belief in the infallibility of calculators, and more so of computers, has
reached such a level in some quarters that the meaning of GIGO has been
upgraded to ”garbage in, gospel out.”

http://web.tampabay.rr.com/dneufeld/sftrel.html
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93 The oldest wooden boomerang. The oldest wooden boomerang
discovered in Australia was found by radiocarbon dating to be 10,000
years old. The age record for boomerangs, though, goes to one made from
a mammoth tusk in what is now Poland, and which was dated at 23,000
years.

Boomerangs appear to have been invented independently in
many places, including Egypt, where many boomerangs were
found in an annex to Tutankhamen′s tomb, including some with
gold tips.

93 Modern boomerang materials. These even include the ultra-strong
material Kevlar, used in bulletproof vests and to tether spacecraft, and
”borrowed” on this occasion from the brake linings of a Russian MIG
fighter by the Bulgarian boomerang enthusiast Georgi Dimanchev.

93 Aboriginal boomerang ”sport.” The account is from Dawson, J., The
Australian Aborigines, Facsimile edition, AIATSIS, 1881.

94 The boomerang distance record. The record of 149.12 meters (long
since surpassed) was set by Michel Dufayard at Shrewsbury in 1992.

94 Invisible boomerangs. Sean Slade tells the story of the time that he
made a boomerang from transparent polycarbonate plastic. He put some
effort into polishing the surfaces and sharpening the edges, and it was only
after he launched it that he realized that he had no idea of where it was
going to land when it returned. Passersby were treated to the sight of a
man running frantically from a totally invisible pursuer.

94 Boomerangs as hunting weapons. These are occasionally used for
catching ducks, where the boomerang hovers above a flock and appears to
the birds as a hawk, driving them towards the ground where they are
clubbed.



95 The best time for maximum time aloft. This was achieved by John
Gorski of the United States with a boomerang that caught a thermal over
the Potomac River, returning to within seventy meters of the thrower after
an incredible seventeen minutes and six seconds. Unfortunately, the throw
was a practice shot, and so the time doesn′t count as a world record.

96 What makes a boomerang come back. The rationale for this applies with
equal validity to boomerangs with more than two arms.

96 Aerodynamic lift. A complex subject: the classical explanation is that
the air flows faster over one side of a wing (the upper side in the case of an
aircraft; the ”inner” side in the case of a boomerang) than it does over the
other, creating a lower pressure on the side where it flows faster
(Bernoulli′s principle). The reader can observe this effect by holding two
sheets of paper close to each other and blowing between them. The sheets
will be drawn towards each other.

This classical explanation has recently been challenged
controversially by David Anderson and Scott Eberhardt in a
book called Understanding Flight. Anderson, a Fermilab
physicist, claims that lift is very simple — it′s just a reaction
force, as described by Newton′s Third Law of Motion (for
every action there is an equal and opposite reaction). The wing
pushes the air down, so in turn air pushes the wing up. I haven′t
been through Anderson′s argument in detail, but it′s likely that
he′s right. This doesn′t make Bernoulli wrong. The two
explanations produce the same equations — it′s only the
imagery that is different.

97 Art on boomerangs. The decorative imaging has been described by
Philip Jones, curator of the collection of over 3,000 Aboriginal
boomerangs at the South Australian Museum, in the lavishly illustrated
Boomerang: Behind an Australian Icon, Wakefield Press, South Australia,
1996.

98 Aboriginal ignorance of boomerangs. When I told the story of Duncan
MacLennan teaching Aborigines to throw boomerangs, Sean Slade



promptly topped it with the story of Andy Furniss, a well-known British
boomerang enthusiast, who was hitchhiking across Australia and had been
dropped off in the middle of nowhere. While waiting for his next lift, he
idly took out a boomerang and began to throw it. A local Aborigine came
up and asked ”what the feller thing?” Andy told him, and proceeded to
teach him how to throw it. Just as the man was getting the hang of it, a bus
full of American tourists drew up and proceeded to photograph what they
perceived to be an Aborigine teaching a white man how to throw a
boomerang.

99 Hospital MRI scanners. These used to be called by the technically
correct title of Nuclear Magnetic Resonance scanners. ”Nuclear” refers to
the nuclei of the hydrogen atoms in the tissue water, but the name was
changed when patients (and the media) mistakenly associated ”nuclear”
with the idea of nuclear weapons, which get their energy from disrupting
the nuclei of much larger atoms, whereas MRI scanning gently tilts the
single spinning proton at the core of a hydrogen atom.

101 The Mudgeeraba Creek Emu Racing and Boomerang Throwing
Association. One of its rules reads: ”The decisions of the judges are final
unless shouted down by a really overwhelming majority of the crowd
present. Abusive and obscene language may not be used by contestants
when addressing members of the judging panel or, conversely, by
members of the judging panel when addressing contestants (unless struck
by a boomerang).”

101 Simplification of physical rules by changing viewpoint. The most
stunning example of this was when German female physicist Emmy
Noether pointed out that the law of the conservation of linear momentum
arises directly from the fact that the laws of physics do not change when
the point of view is shifted linearly in space, and that the law of
conservation of angular momentum amounts to no more than the fact that
the laws of physics do not change when the point of view is rotated in
space. It says something for the masculine orientation that science had in
the early twentieth century (and unfortunately still has) that Emmy
Noether did not receive a Nobel Prize for this incredible insight.

102 The mathematics of boomerang flight. This was spelled out in a
semipopular article by the Dutch physicist Felix Hess (Scientific



American, 219, 1968, pp. 124–136) and elucidated in excruciating detail
by the same author in a 500-page Ph.D thesis published some seven years
later. Bob Reid made the physics accessible in ”The Physics of
Boomerangs” (Mathematical Spectrum, vol. 17, 198⅘, p. 48, published by
the University of Sheffield), and amplified his account of how boomerangs
lie down in a recent edition of the British Boomerang Society Journal
(Summer 1998, p. 19). A more detailed, step-by-step account was also
presented by E. C. Zeeman in the splendid Royal Institution Mathematics
Masterclass ”Gyroscopes and Boomerangs,” which was intended ”to
provide enrichment material for gifted thirteen-year-olds.”

104 ... eventually resulting in a crazy tumbling. The mathematical reason
for this is that the moment of inertia about the spin axis must be at least 30
percent greater than the next largest moment of inertia about an axis
perpendicular to the spin axis, otherwise the spin can transfer from one
axis to the other with disastrous results.

104 The physics of levitating frogs. This is described by Michael Berry
and André Geim in European Journal of Physics, vol. 18, 1997, p. 307.



chapter 6:  catch as catch can
Page
108 The description of an English village cricket match. This is from
Macdonell, A. G., England, Their England (MacMillan, 1933; The Reprint
Society, London, 1941), pp. 122–124. Despite the interval of time, nothing
has changed, thank goodness.

I have added a couple of explanatory words (e.g., ”the poet”
after Mr. Harcourt) to clarify the background without doing
violence to the flavor: that of a village life which still exists in
spite of everything.

110 ”Running to Catch the Ball” is a paper by Peter McLeod and Zoltan
Dienes, published in Nature, vol. 362, 4 March 1993, p. 23.

110 The brain’s unconscious problem-solving abilities. The psychologist
and writer Oliver Sacks tells the story of identical twins who were savants,
able to ”just see” numbers and how they go together. Their ability to
visualize numbers was such that, when Sacks accidentally dropped a box
of matches, one of them glanced at the scattered pile and said
immediately: ”A hundred and eleven.” His brother promptly commented,
”Thirty-seven, thirty-seven, thirty-seven.” Sacks counted the matches;
there were indeed a hundred and eleven (3 × 37).

The twins′ unconscious calculating abilities were
extraordinary. They were, for example, able to work out in a
few seconds whether or not a given twelve-digit number was
prime — something for which scientists still do not have an
algorithm (i.e., a set of rules to guide the calculation).

There is thus nothing intrinsically impossible about McLeod
and Dienes′ postulation of unconscious mental abilities that
help us to catch a ball. It is just that the scientist′s guiding
principle (known in philosophy as Occam′s razor) in choosing
between two otherwise equal explanations is to accept the



simplest. This doesn′t mean that the simplest explanation is
always the right one; it is just that Occam′s razor has turned out
from experience to be the procedure that gives us the best
chance of selecting the right explanation. McLeod and Dienes′
explanation uses the blunt edge of Occam′s razor.

110 Newspaper report of the ”ball-catching” equation. The journalist who
managed to get the ”ball-catching” equation published on the front page of
his newspaper made a brave attempt to explain what the equation meant in
lay terms. The result was rather reminiscent of President Kennedy′s
famous attempt to declare in German: ”Ich bin ein Berliner.” Not really
understanding, he used a word that seemed like the right one, but which
came out in translation as ”I am a doughnut.” Every German in the
audience caught President Kennedy′s mistake. Only a few of my journalist
friend′s readers picked up on his mistake, because only a few understood
the language of mathematics. That′s a pity, because mathematics gives a
picture of how things happen, a picture well worth the thousand or so
words that a verbal description would take. The description in this case
was of how our angle of gaze changes when we run to catch a ball. The
equation was described by my journalist as:

d2(tanθ) = 0, where θ is the angle of gaze, t is the time, and d is the
distance dt2

If he had known how to read the language in which the
equation was written, he would have realized that distance
doesn′t come into it at all; d isn′t a symbol in a conventional
sense, and the expression (d2 / dt2) only has meaning if taken as
a whole. It means ”acceleration” (Newton would have written it
by putting two dots above the θ). All that the equation is saying
is that, when we run to catch a ball, we judge the catch by
running in such a way that our rate of head tilting does not
accelerate or decelerate (i.e., it equals zero).



111 Silvanus P. Thompson, ”Calculus Made Easy.” This book has recently
been updated and reprinted — see Thompson, S. P., and Gardner, M.,
Calculus Made Easy, St. Martin′s Press, New York, 1999.

112 From the point of view of the observers at the pub door. The same
principle applies to the many satellites that are now in geostationary orbit,
and which appear to hover above one spot on the Earth′s surface. Viewed
from outside, they are whizzing around the Earth once every twenty-four
hours. The Earth, however, is rotating at the same speed, so that the
satellite appears stationary when viewed from a point directly below on
the Earth′s surface.

113 Some 30 percent of people still share Aristotle’s ... notion. Miller, J.
D., Daedalus 112(2), 1983, pp. 29–48; Durrant, J. R., Evans, G. A., and
Thomas, G. P., Nature 340, 11, 1989.

Aristotle′s was a reasonable, commonsense approach to
understanding motion, but flying arrows appeared to constitute
an exception, since there was nothing pushing on them.
Aristotle was so convinced of the correctness of his approach,
though, that he eventually concluded that the bowstring must
push the air, even from afar, with the air then pushing the
arrow.

Modern-day Aristotelians follow Aristotle in trying,
perfectly reasonably, to apply common sense to situations
where Nature has decreed that common sense shall not apply.
The history of science is littered with such situations, and
could, in fact, be said to consist largely of man′s attempts to
understand and resolve such conflicts between common sense
and reality.

113 Galileo’s discovery of the law of acceleration. This is discussed in
Tricker, R. & B., The Science of Movement, Mills & Boon, 1968, a book
full of absorbing ideas that I found very helpful in writing this chapter. It
throws an interesting sidelight on how even the greatest scientists can
make mistakes, and also how lucky they can be:



... the hypothesis that the velocity of a body increased
uniformly with the distance through which it had fallen was the
one that was generally accepted. Galileo himself adopted it at
first. At the same time he also made a mistake in his early
calculations which neutralized the error in this assumption, and
he thus arrived at the correct result that the distance that a body
would fall in a given time would be proportional to the square
of the time ...

(He later saw the error in his earlier calculation, and also
realized that the ”uniform velocity” hypothesis was wrong).

113 The formula for a parabola. This takes the form (vertical distance) =
(constant) × (horizontal distance)2. Since a projectile travels horizontally
at a constant speed, the horizontal distance traveled is proportional to the
time of flight, so that the equation can be written (vertical distance) =
(different constant) × (time)2, i.e., the distance fallen is proportional to the
square of the time.

A parabola is one of the ”conic sections” originally
described by the Greek mathematician Apollonius of Perge.
Their shapes can be obtained by slicing a cone at different
angles. One of these sections is the circle (obtained by slicing a
cone parallel to the base). Another is the ellipse (obtained by
slicing the cone at an angle to the base). The parabola is a third,
obtained by slicing a cone parallel to the side.

114 It is not a cue that is always reliable. As the mathematics eventually
showed, it is the tangent of the angle that needs to change at a constant
rate, rather than the angle itself. Our childhood cue of using the angle,
rather than its tangent, works well because an angle is proportional to its
tangent for small angles, and is actually nearly equal to its tangent if the
angle is expressed in ”natural” units, rather than the more familiar



degrees, which arbitrarily divide a circle into 360 equal parts and which
derive from a Babylonian counting system based on the number 60.

The ”natural” unit is the radian. An angle of one radian
corresponds to a wedge of a circle where the length of the
circumferential arc is the same as the length of the radius
(Figure N.3).

Figure N.3: An Angle of One Radian.

The table below shows how close the tangent of an angle is
to the angle itself, when the angle is expressed in radians:

Table N.1: Closeness of Angles and Radians.

Angle  (degrees) Angle  ( r adi ans) Tangent  of  angle

10 0 0

10 0.18 0.18

20 0.35 0.36



30 0.52 0.58

40 0.70 0.84

50 0.87 1.19

60 1.05 1.73

70 1.22 2.75

The error in the approximation is around ten percent or less
for angles up to 30°, but rapidly worsens for larger angles,
which may partly explain why we find it so difficult to judge
high catches.

115 The ”ball-catching” equation for the case of a catcher standing in the
right place. The equation  leads directly to that published by
McLeod and Dienes (d2 (tanα) / dt2 = 0), since the expression (g/(2 × v))
has a constant value for any particular catch, so that the rate at which d
(tanα)/dt) itself changes with time (i.e., d2 (tanα)/dt2) is zero.

This was also the form in which the equation was originally
published by S. Chapman (American Journal of Physics 36,
1968, pp. 868–870) and P. Brancazio (American Journal of
Physics 53, 1985, pp. 848–855). Both of these references are
quoted in the subsequent Nature paper. It was probably the
difference in form that led McLeod and Dienes to miss the
obvious physical interpretation that I have discussed in this
chapter.

118 Action and reaction. This is Newton′s Third Law of Motion (”For
every action there is an equal and opposite reaction”). In other words, if
we push on something, it pushes back just as hard. From the ”something′s”



point of view (e.g., the ground) it is pushing on us, and we are pushing
back just as hard. It just depends on your point of view.



chapter 7:  bath foam, beer foam, and the meaning
of  life
In this chapter I have tried to give a picture of how science actually works,
which is not usually by preplanned strategies but more often by a
combination of awareness of what questions are important, a readiness to
take up new ideas that might be relevant to those questions, and sheer,
dogged persistence in following up the consequences of these ideas.

In order to give the detail, I have focused on work where I
have had direct knowledge of what was going on, and even then
I have been able to mention only a few of the scientists
concerned. I have reported most of the incidents from the point
of view of how I saw things at the time, and I was not always
privy to everything that was going on. Others may well have
seen things differently, or with a different emphasis. In other
words, to quote from Lawrence Bragg′s introduction to The
Double Helix, ”this is not a history, but an autobiographical
contribution to the history that [may] someday be written.”
(Bragg was the head of the Cavendish laboratory during the
period when James Watson and Francis Crick devised their
double helical structure for DNA [1951–1953]. Watson, J. D.,
The Double Helix, Atheneum Press, New York, 1968).

Page
121 How molecules self-assemble. A good starting point for non-specialist
scientists who wish to follow up is the articles in Current Opinion in
Colloid and Interface Science (February 1999).

121 American Scientist Sidney Perkowitz. On the BBC radio program Lord
Kelvin’s Bedspring, Sidney Perkowitz and I discussed the science of foams
at some length. Those pundits who believe that the public is interested
only in the showier aspects of science might like to note that this program,
dealing with such an apparently mundane subject, became BBC Radio 4′s
”Pick of the Week.”



122 Sir Isaac Newton. Newton published his observations of the colors of
soap bubbles in Opticks (G. Bell & Sons, London, 1730), a wonderfully
readable account of his ingenious (though incorrect) corpuscular theory of
light.

123 ... about ten times thinner than can be observed with the naked eye.
Even with the aid of a powerful microscope, the human eye can only
resolve objects that are more than a micrometer or so apart. It can detect
the presence of much smaller objects, though, through their ability to
scatter light, which is why car headlights stand out so vividly in a fog,
even though the observer can′t make out the shapes of the individual water
droplets.

123 Irving Langmuir. Langmuir′s very interesting biography is given in
The Selected Papers of Irving Langmuir, vol. 12, Pergamon Press, 1962.

123 Stories surrounding Irving Langmuir. These are many and varied. He
looked for science in everything about him, and was never without a
notebook and measuring tools. On one famous occasion he used the entire
toilet paper supply of a remote guest house where he was staying in
pursuit of an experiment. He was also a keen amateur pilot, and fond of
playing a game which involved close encounters with clouds. On one
occasion he passed his wheels through the top of a cloud, and was
astonished to find that the wheel-tracks remained. In following up this
observation he eventually developed new methods of weather
modification, mostly concerned with ”cloud seeding” by dropping dry ice
into the cloud to initiate precipitation.

I once met a scientist who had worked down the corridor
from Langmuir, and who told me that Langmuir′s laboratory
was a constant source of surprises. On one occasion this
scientist walked into it, only to find himself enveloped in a
snowstorm, artificially created by Langmuir and his colleague
Vincent Schaefer as part of their experiments on weather
modification.



126 Liposomes formed spontaneously from lecithins manufactured
naturally under the conditions that then prevailed on Earth. The
destructive oxidizing nature of the atmosphere of the early Earth has led to
some speculation that complex organic molecules could not have been
formed there and were actually ”seeded” via carbonaceous chondrites,
such as the Murchison meteorite discovered in central Australia. My
colleague Professor Richard Pashley has found surface-active materials in
the core of this meteorite, which is dated 200 million years older than the
Earth itself (Deamer, D. W., and Pashley, R. M., ”Surface properties of
amphiphilic components of the Murchison carbonaceous chondrite,”
Origins of Life and Evolution of the Biosphere, 19, 21–38 (1989).

127 Liposomes as precursors for living cell membranes. This notion was
first proposed by Deamer and Oró (Biosystems, vol. 12, 1980, p. 167).

127 Alex’s authoritative textbook on colloids. The book was modestly
entitled Colloid Science (A. E. Alexander and P. Johnson, Oxford
University Press, 1947).

128 The adhesive properties of sickle cells. These were studied by Evan
Evans at the University of British Columbia in Vancouver. Evan, a former
engineer, turned his attention to the mechanical properties of living cells,
where he rapidly became the world authority, and much feared at
conferences for his devastatingly straightforward questions and refusal to
accept evasive answers.

In his studies on sickle cells, Evan found that their inability
to recover from deformation was an important factor, perhaps
more important than their adhesiveness.

128 The DLVO quartet. Theo Overbeek is the only one still alive. He was
still scientifically active at the time of writing — aremarkable record.

129 The repulsive forces between charged head-groups. These actually
arise from the overlap of the clouds of charged ions that gather about each
head-group. For this reason, the forces are technically called ”double
layer” forces. Foam stability is not a matter of DLVO theory alone. One
Dutch scientist showed me this when he took me on a tour of Amsterdam



bars, pointing out that some of the beers kept their heads very well, while
others collapsed much more quickly. The difference, he had discovered,
was that the more rapidly collapsing froths contained ”natural” carbon
dioxide from the brewing process, while the longer-lasting ones had been
produced with nitrogen from a gas cylinder. Carbon dioxide, unlike
nitrogen, dissolves in water, and can hence escape into the atmosphere
through the water films surrounding the bubbles, so that the bubbles in a
”natural” froth shrink rapidly with time.

I kept meeting this scientist at conferences over the next
twenty years. He was often accompanied by his wife, a lady of
rather forbidding appearance, who was never more so than at a
conference in Bulgaria, when the local organizers produced a
troupe of nubile dancing girls for our entertainment at the
conference dinner. Her husband was fascinated, but his wife
appeared to be rather less so.

131 Jacob Israelachvili. The work of Tabor and his school was
summarized by Israelachvili in his excellent book Intermolecular and
Surface Forces, Academic Press, 1985. The term ”surface forces” simply
refers to the close-range attractive and repulsive forces between surfaces
whose interplay dominates many of the processes of life, including self-
assembly. Jacob points out in his introduction that the Greeks needed only
two such forces to account for all natural phenomena. One was Love, and
the other was Hate.

132 Barry Ninham. His book (with Mahanty) on Van der Waals forces is
Mahanty, J., and Ninham, B. W., Dispersion Forces, Academic Press,
1978.

133 Louis Pasteur. As a scientist, Pasteur is mostly famous for having
discovered the principles of sterilization (which led, among other things,
to the process of ”pasteurization” and of vaccination using attenuated (i.e.,
live, but weakened) vaccines). Going against the advice of colleagues, he
dramatically tried his untested rabies vaccine in 1885 on a nine-year-old
boy, Josef Meister, who had been bitten by a rabid dog. Meister lived to
become caretaker of the Pasteur Institute, and died fifty-five years later by



committing suicide rather than open the tomb of Pasteur to invading Nazi
forces.

133 Pasteur’s discovery that molecules have three-dimensional structures.
When Pasteur discovered this he wasn′t trying to understand molecular
shape, any more than the scientists who initiated the foam revolution were
trying to understand the origins of life. It was an insight that came, as so
often in science, from an attempt to answer a totally different question.

The question was posed by the French wine industry, whose
members wanted to know whether the newly discovered
racemic acid, a by-product of some industrial processes in the
Alsace region of France, was the same as tartaric acid (the
main component in the ”crust” thrown by a good wine).

133 Twisting a beam of light. More technically, the tartaric acid solutions
that Pasteur studied rotated the plane of polarization, while the apparently
identical racemic acid solutions did not. Pasteur traced the difference to
the fact that racemic acid is in fact a mixture of two acids, one of which is
tartaric acid and the other of which has molecules that are mirror images
of those of tartaric acid, and which rotate the plane of polarization in the
opposite direction to those of tartaric acid, so that in a mixture there is no
net effect.

If Pasteur had been a cuttlefish, he could have seen these
effects directly, since cuttlefish eyes are adapted to respond to
the rotation of a beam of light that has passed through
otherwise invisible prey, such as the glass shrimp. As it was,
Pasteur had to use a relatively new invention called a
polarimeter. A rough polarimeter can be made by taking two
pairs of (genuine) Polaroid sunglass lenses, placing one behind
the other, and looking through both together at a bright light. If
one is rotated, a point will be found where the light is
practically cut out. This is because the first lens selects light
waves vibrating in one direction, but the second is set only to



pass light waves vibrating at 90° to that direction, and to cut
out all light waves vibrating in the original direction.

If a thick piece of clear plastic, or a concentrated sugar
solution, is placed between the two lenses, the light will
reappear because both of these materials rotate the plane of
polarized light.

133 My one and only paper on the Kerr effect. This was published in the
Journal of the Chemical Society, 1963, p. 4450.

134 The scanning probe microscope picture. This was kindly provided by
my Bristol University colleague Professor Mervyn Miles, a world
authority on the imaging of biological molecules by this technique, and a
remarkably fine pianist at the annual departmental Christmas show.

135 The Franklin quotes. These are taken from his collected papers. The
pond where he did his experiments on Clapham Common was called
Mount Pond, which was dug by his friend (and banker!) Henton Brown.

135 Franklin’s letter to William Brownrigg. The letter was transmitted by
his friend to the Royal Society, which promptly published it (with slight
modifications) in Philosophical Transactions of the Royal Society, vol.
LXIV, 1774, p. 447. Would that it was as easy to get a piece of work
published these days.

135 Pouring oil on troubled waters. This idea goes back to the Venerable
Bede, who gave this sage advice in his Ecclesiastical History, book 3,
chapter 15 (”Remember to throw into the sea the oil which I gave you,
when straightway the winds will abate, and a calm and smiling sea will
accompany you throughout your voyage”). Unfortunately, it doesn′t work
with waters that are not so much troubled as psychotic. My Australian
contemporary, Bill Mansfield, found this in the 1950s when he repeated
Franklin′s experiment with the aim of using the surface film to reduce the
rate of evaporation of water from Australian dams. Instead of olive oil, he
used a waxy surface-active material called stearic acid. Stearic acid,
unlike olive oil, will spread indefinitely on a water surface unless
confined, but Bill′s idea was to put enough stearic acid on the dam surface
to form a packed layer of molecules, with the walls of the dam limiting the



spread. It was a clever idea that worked well in small-scale experiments,
but which failed on a larger scale because high winds caused ripples large
enough to break up the stearic acid layer and exposed the underlying water.
If the idea had succeeded, it would have been a remarkable, almost
pollutionfree achievement. Stearic acid is a natural molecule that degrades
fairly easily, and in any case a layer of stearic acid containing sufficient
material to cover a dam would still contain only a few grams of material.

136 Lord Rayleigh’s bathtub experiments. These were reported in
Proceedings of the Royal Society, vol. XLVII, March 1890, p. 364.

136 Agnes Pockels. Her experiments were reported in Nature, vol. 43,
1891, p. 437.

136 The first description of a Langmuir trough. This appears to have been
given by Langmuir in Journal of the American Chemical Society, vol. 39,
p. 1848.

138 ... molecules will get as far away from each other as possible, like
relatives at a wedding. The repulsion between the electrically charged
head-groups usually outweighs the Van der Waals attractive forces
between the tails at all distances.

138 The single layer of molecules on the surface of a Langmuir trough.
The molecules can actually be picked up on a glass slide that is lifted up
through the surface. A second layer can be picked up on top of the first one
by passing the slide back down through the surface, and the process
repeated indefinitely so long as there are molecules left to pick up. This
technique, originated by Irving Langmuir and Katherine Blodgett, is at
least known by both names and is called the Langmuir-Blodgett technique.
It could in theory be used to make ”thin film” electronic devices with
unique characteristics, but despite many efforts, small imperfections in the
films have proved to be an almost insuperable problem.

138 Cholesterol. This substance is an ideal candidate for the Langmuir-
Blodgett technique, which I used early in my career to make multiple
layers of cholesterol that showed brilliant interference colors in reflected
light.

138 The early uses of the Langmuir trough to measure molecular shapes.
These were summarized by Alex in a review (Annual Reports of the



Chemical Society, vol. 41, 1944, p. 5).

140 Margaret Thatcher’s contribution to science. This is recorded by H. H.
G. Jellinek and M. H. Roberts in Journal of the Science of Food and
Agriculture, vol. 2, 1951, p. 391. Margaret Thatcher′s political career took
her to Parliament, where, as leader of the Conservative Party, she served as
prime minister for a number of years, overlapping with Ronald Reagan,
for whom she had a great (and mutual) admiration.

140 Denis Haydon. Haydon described his early work on BLMs with his
many coworkers in a typically thorough review in Methods in Membrane
Biology, vol. 4, 1975, p. 1. He became a father figure, or at least an uncle
figure, to the many students who passed through his laboratory, and stories
about his natural inclination to take the lead were legion. One that he used
to tell against himself concerned his favorite sport of rock-climbing, in
which he was indulging alone on the Isle of Skye. Camped at the base of a
cliff, he fell into conversation with a fellow camper, and offered to lead
him on a climb. The fellow camper, it appears, was no climber, but Denis
had a very persuasive way with him and, as I found when working with
him, would not usually take no for an answer.

They set off the next morning with Denis leading and his
reluctant follower roped on behind. Denis had to do most of the
work and was relieved when he made it to a high ledge where
he sat, waiting for his follower to appear. He waited for some
time, and eventually pulled on the slack rope, to discover that it
was supporting a dead weight. Alarmed, he began to pull on the
rope, and after some time the other end appeared. It was tied to
a huge boulder. When Denis peered over the edge of the ledge,
he saw the small figure of his erstwhile follower running off
into the distance. I often use this story as a metaphor for what it
feels like to be a scientist.

Denis died of bone cancer some years after the publication of
our results. In his Biographical Memoir for the Royal Society
(Biographical Memoirs of Fellows of the Royal Society, vol. 36,
1990, pp. 199–216), he described me as ”persistent” — a true
compliment to a scientist.



141 Josef Plateau′s original papers are unfortunately hard to obtain. I
eventually tracked them down in the Annual Reports of the Smithsonian
Institution for 1864–1866!

141 Plateau’s results. These, together with many other fascinating facts
about the science of soap bubbles, were popularized in a series of packed
lectures ”intended for juveniles” by a remarkable Victorian scientist called
Charles Vernon Boys, inventor of the highspeed camera. Boys, apart from
being a top-class experimental scientist, was also one of the first scientific
humorists, whose activities included the creation of giant smoke rings that
he dropped over unsuspecting passersby from the window of his laboratory
on the first floor of London′s Royal Institution. He is most famous among
surface scientists for persuading the Society for the Promotion of
Christian Knowledge that the book of his lectures, Soap Bubbles and the
Forces that Mold Them, was a suitable subject for their imprint. I am
fortunate enough to possess a first edition of this book, which was
published in 1890 (the year that Rayleigh published the results of his
”bathtub” experiments), and which is the only book I know that is
dedicated to a school science master.

141 Denis Haydon’s work on anesthetics. See, for example, D. W. R. Gruen
and D. A. Haydon in Pure and Applied Chemistry, vol. 52, 1980.

142 The phenomenon that keeps oil and water molecules apart. This is
known as the ”hydrophobic effect,” and has been the subject of an intense
amount of research. Technically, it occurs because the entry of an oil
molecule into liquid water forces the water to adopt a more ordered
structure, decreasing its entropy, a process which is the opposite of
spontaneous. How this happens, though, remains a mystery. The trouble is
that the effect on the energy of the system is composed of several different
changes, each of which is huge, but which go in different directions, so
that the overall effect is tiny. To calculate that tiny effect, though, each of
the huge changes must be known to incredible precision, still way beyond
the power of the present generation of computer models.

143 The seminal ”molecular packing” paper. This was published by Jacob
Israelachvili, John Mitchell, and Barry Ninham in the Journal of the
Chemical Society, Faraday Transactions, vol. 72, 1976, p. 1525.



144 Barry Ninham’s work on microemulsions. See, for example, Zemb, T.
N., Barnes, I. S., Derian, P. J., and Ninham, B. W., Faraday Transactions of
the Royal Society of Chemistry, vol. 81, 1990, p. 20.

144 Commercial dishwashing liquids. Such liquids are formulated to clean
well, but also to foam. The foam is stabilized by molecules with a
different shape than those which contribute to the cleaning, and is only
there as an optional extra, designed to impress the consumer with the
efficacy of the product, but stabilized by molecules whose shapes mean
that they do little of the actual work.

144 The interaction between two BLMs. This was reported in the Royal
Society of Chemistry Faraday Discussion, no. 81, 1986, p. 249.

145 The saving of the human race. For example, it may be possible to
preserve our genetic record for future reproduction by encasing DNA in
artificial bilayers produced by self-assembly.



chapter 8:  a  quest ion of  taste
Page
147 Brillat-Savarin. One of the best-known names in gastronomy. His
remarkable book, whose title is usually shortened to Physiologie du goût,
was published shortly before his death. ”Goût” (pronounced ”goo”) is an
untranslatable French word that reflects the full flavor experience, which
is more than just a combination of taste and aroma. Its untranslatability is
verified by the fact that my computer spellchecker, with unintentional
humor, keeps correcting the spelling to ”gout.”

It may say something about cultural attitudes to food that
Brillat-Savarin′s book was not translated into English until
1884 (the American food writer M. F. K. Fisher′s 1949
translation is now generally regarded as the best). If it were not
for this book, his name would live on only in the dish called a
Brillat-Savarin, which is a method of serving lamb in small
pieces, accompanied by duchess potatoes, foie gras, truffles,
and green asparagus tips in butter. I find myself salivating at
the very thought of this dish, which is another example of the
fact that good food is as much a matter of expectation as
experience.

Brillat-Savarin′s reverence for the aftereffects of eating were
reflected by Rossini, who was no mean gourmet himself, in
four musical pieces collectively entitled The Gourmet Life and
intended to represent the process of digestion. Their subtitles
were, in sequence, Interrupted Contentment, Over-Indulgence,
Juices (a piece which combined the sound of hardworking
gastric juices with some repetition in unexpected places), and
Relief. I believe that I possess the world′s only recording of this
little-known set of pieces, kindly made privately for me by the
British composer Malcolm Hill.

149 The Futurists. See Marinetti, Filippo Tommaso, The Futurist
Cookbook, Brill, S., transl., Bedford Arts, 1989. A massively entertaining



account of ”Food as a Performance Medium was published by Barbara
Kirshenblatt-Gimblett in Performance Research, volume 4, page 1 (1999).

149 Heston Blumenthal. Blumenthal is chef-proprietor of the Fat Duck
restaurant at Bray (near Windsor), in the U.K. I am indebted to him for
much information and many enjoyable conversations about cooking styles.

149 ... garlic and coffee. Professional flavorists have a similar concept of
”bridging the gap” between two dissimilar aromas to improve the overall
impression.

149 the brain ... can’t decide whether it is experiencing garlic or coffee,
and oscillates between the two. This ”explanation” is admittedly
speculative, and Gary Beauchamp, director of the Monell Chemical Senses
Institute, has cast some doubt on it.

150 ... the human brain loves surprises. Experiments at Emory University
Health Sciences, reported on www.sciencedaily.com. Perhaps an alternative
interpretation is that the brain hates boredom and cuts out signals that
have been around too long. This obviously has survival value when we are
constantly bombarded by lots of different aromas. I am indebted to my
friend and colleague Dr. Alan Parker, of Firmenich Plc, for making this
and a number of other interesting points about this chapter.

151 ... flavor scientists are making progress. A great deal of exciting work
in this area is emanating from the Monell Chemical Senses Institute in
Philadelphia, led by Gary Beauchamp, and the research laboratories of
Firmenich Plc in Geneva, Switzerland, led by Tony Blake, a fount of
information on many things sensual.

151 ... putting a few coffee beans under the grill. Another way to fool
people with instant coffee is to add a little ground cardamom, filtering off
the residue before serving.

152 The gravy project. This was sponsored by Bisto, makers of a range of
instant gravies. The difference between such commercial gravies and those
prepared by cooking a little flour in meat juice lies mainly in the fact that
the starch usually comes from a different source in the commercial gravy,
and the commercial gravy is fat-free, an advantage for health, but a
disadvantage when it comes to flavors that only dissolve in fats.

http://www.sciencedaily.com/


152 Peter Barham. Barham is the author of The Science of Cooking
(Springer-Verlag, 2001), and is also the person who introduced me to the
wonderful world of gastronomical science.

153 The Gravy Equation:

where W is the wet (or uncooked) weight of the food, D is the
dry (or cooked) weight, and S is the shrinkage factor. I
published the details in ”The Theory of Gravy,” Annals of
Improbable Research, vol. 7, 6, November/December 2001, p.
4.

153 One food that didn’t make it to the final gravy report. Popcorn was the
most porous food material that we could think of, and therefore the one
likely to take up the highest percentage of gravy. It did — it took in six
times its own weight. Wendy opined that the taste of gravy and popcorn is
disgusting, and that individual Yorkshire puddings, which take up 90
percent of their own weight, were much to be preferred. She was very
disappointed when we threw the puddings out after we had weighed them.
Peter had to cook some more.

155 ... unanswered questions. I have not had a chance to return to these
questions, although I have passed the information on to a few chefs, and
also published the data in the aptly named Annals of Improbable Research.
155 The Devil’s Dictionary. The Unabridged Devil’s Dictionary, Bierce,
Ambrose, Schultz, D. G., and Joshi, S. T., eds., University of Georgia
Press, 2002.

156 The X-ray video of a chewing head. The video was shown by Professor
Robin Heath of the Royal London School of Medicine and Dentistry.
Robin makes a particular study of problems in eating, which are
surprisingly common, especially among older people. The main problem,



he tells me, is an increasing inability to secrete sufficient saliva, a
problem often exacerbated by particular drugs.

Robin did a survey of which food patients found easiest to
eat, and was surprised to find that the hard and brittle
gingersnap cookie came high on the list. These cookies can
support a weight of five kilograms when suspended across a
gap, so Robin had every right to be surprised. He eventually
discovered that none of his patients had thought to mention that
they dunked the cookies in tea to make them softer before
eating them.

158 ”shear-thickening” and ”shear-thinning.” The bolus becomes more
coherent as we chew, which makes it harder to distort. The terms that I
have used to describe this have a more precise scientific meaning, which
may or may not strictly apply.

159 this part of the tongue . . . first encounters the lactose (one of the
sweetest of sugars) in mother’s milk. This is only true if the infant licks
before suckling. Once suckling starts, the milk is expressed to the back of
the mouth.

165 Menthol modulates oral sensations of warmth and cold. Details of this
can be found in Green, Barry, Physiology and Behaviour, vol. 35, 1985, p.
427.

165 Chili pepper hotness. This is measured in ”Scoville units,” a measure
of the concentration of capsaicinoids. The popular jalapeno chilis weigh in
at up to 5000 Scoville units, but for real heat try the waxy, thumb-sized
habanero (up to 300,000). Pure capsaicin registers a staggering 15 million.

Like many of the aroma molecules, capsaicinoids are soluble
in oil, but insoluble in water or cold beer. For the non–chili
pepper addict, or the addict who has had enough, the secret to
clearing chili pepper heat from the mouth is to drink plenty of
milk. Coconut also works because it is loaded with oil.



Overconsumption of chili peppers, incidentally, can lead to
hemorrhoids.

167 The collapse of an aqueous draining film. My results for this
experiment were reported in Colloids and Surfaces, vol. 52, p. 163.

167 The ”spraying” of droplets containing aroma molecules. The original
idea that aroma droplets might somehow be ”sprayed” from a food bolus
was suggested to me by Professor Robin Heath.



chapter 9:  the physics o f  sex
Page
171 I was once asked to give a talk. The aim of my talk, and of this
chapter, was to make science accessible and to use the journey of the
sperm to show that science is not divided into watertight compartments
labeled ”physics,” ”biology,” ”chemistry,” etc. It was not my intention to
give scientific answers to sexual problems, although a surprising number
of people have asked me to do just that. My answer has always been that I
am not qualified in this area, and have never worked in it professionally.
The best I can offer is information that people may be able to use to help
them to formulate the right questions to someone suitably qualified.

171 There were more teachers than students present. Middle-aged male
teachers may have had a special interest. According to my Bristol
University colleague, Professor Shah Ebrahim, middle-aged men who have
sex three or more times a week are half as likely to have strokes or heart
attacks as those who are sexually inactive (continuing studies on 2400
Welsh men, reported at the World Stroke Congress in November 2000).

Ebrahim′s results are in stark contrast to the belief of John
Harvey Kellogg, inventor of Kellogg′s Cornflakes, that those
who engage in sex, even for procreative purposes, should limit
their activities or insanity would result (Kellogg, J. H., Plain
Facts for Old and Young, Senger, Burlington, Iowa, 1882).

171 The radioactive watch and telephone book stories. These were
reported in a survey for Doctor, a weekly newspaper for the British
medical profession (quoted in The Editor, 21 July 2001).

Reports of teenage misunderstandings about sex are endless.
Two of my favorites come from Miami. One pregnant teenager
attending a Miami Beach clinic insisted that she had suffered
from contraceptive failure. ”What method did you use?” she
was asked.



”Jelly,” she replied.

”What type of jelly?”

”Grape.”

The same clinic gave a seventeen-year-old boy a
demonstration of how to use a condom. ”I′ve been doing it
wrong for two years,” he said. ”I thought you had to poke a
hole in it so your testicles wouldn′t explode.”

172 Sex is even now regarded as a somewhat dubious topic for a scientist
to be discussing. A history of sex research is given by the American
academic Vern Bullough in Science in the Bedroom (Basic Books, 1994).
Professor Bullough claims that a great deal of the stigma still associated
with sex research goes back to St. Augustine′s doctrine ”that the sin of
Adam and Eve is transmitted from parents to children through the sexual
act, which, by virtue of the lust that accompanies it, is inherently sinful.”
My own belief is that a great many people in the Western world still
subscribe to this doctrine implicitly, even if they do not do so explicitly.

Some of the people at the talk to which I referred may have
been a little shocked when I introduced a study by Swedish
scientists who persuaded a couple to make love in a hospital
MRI scanner of the type used to study brain abnormalities. In
this case, the couple′s sexual organs were the focus of attention.
One can only admire their dedication to duty as they managed
to have intercourse while being bombarded by a series of
instructions through a microphone.

173 Blood pressure generated by pumping of the heart. The blood pressure
is kept within ”normal” limits by the elastic stretching of the blood vessels
with each pumping stroke. If it were not for this, the systolic blood
pressure (the higher of the two readings normally quoted) would be
incredibly high, because liquids are virtually incompressible, as anyone
who has ever belly-flopped from a high diving board will know. One of the



causes of high blood pressure is in fact a gradual stiffening of the blood-
vessel walls so that they are unable to dilate sufficiently.

173 Hormones ... relax the smooth muscle of the artery walls. In fact, they
stimulate the release of nitric oxide, a small molecule whose chemical
symbol (NO) rings rather oddly in this context. It is nitric oxide that
produces the relaxation. The nitric oxide is eventually destroyed by
adrenaline, or men would be sporting day-long erections.

174 Vacuum device for passive erection. Researchers at the Novosibirsk
Research Institute in Russia claim that a course of this treatment,
combined with the use of an infrared laser to irradiate the top of the penis
for five minutes each time, eventually leads to a situation where the
vacuum device is no longer necessary because the laser treatment
produces ”a massaging of the veins which leads to increased metabolism
and nutrition of the tissue.”

174 There is no such thing as an aphrodisiac. There are, however,
materials that can produce orgasms in some people. The antidepressant
clomipramine makes some women have an orgasm when they yawn or
sneeze (New Scientist, 27 March 1998, p. 27). A friend of one sufferer
asked what she was taking for it. She answered, ”Pepper” (New Scientist,
20 June 1998, p. 56).

Other antidepressants have the opposite side effect. At least
one-third of people taking antidepressants along the lines of
Prozac suffer a loss of libido or have difficulty attaining
orgasm (New Scientist, 29 September 2001, p. 17).

174 Fancied resemblance to a penis or a vagina. The range was fairly
wide. In the words of Piet Hein′s little ”grook” (Hein, P., Grooks, MIT
Press, Cambridge, MA, 1966):

Everything′s either concave or -vex,

So whatever you dream will be something with sex.



174 Aphrodisiacs. Ginseng has recently been shown to reduce the number
of sperm entering the cervical mucus.

One of the more unusual ”aphrodisiacs,” described in the
Kama Sutra, consists of a powdered mixture of the dried plant
Vajnasunhi (its Sanskrit name — I have been unable to find the
English equivalent), red arsenic (As2S2), and sulphur. The
mixture is set on fire. If the moon, viewed through the
exceedingly poisonous smoke, appears golden, then the
amatory experience will be successful. There is some
fascinating physics involved here, since the moon will appear
golden only if the smoke particles are the same size as the
wavelength of blue-green light (about 500 nm), so that they
will scatter this light but leave the red/yellow end of the
spectrum relatively unaffected.

The mixture is also unusual in that it can be turned into an
anaphrodisiac by adding monkey excrement and throwing it
over the maiden. This ensures that she will not be given in
marriage to anyone else, which is hardly surprising.

174 Spanish fly and French troops. Reported by Meynier, Dr. J., Archives
of Military Medicine and Pharmacology, vol. 22, 1893, p. 52.

175 ”Cupid’s Nightcap.” New Statesman and Nation, 7 November 1953.

176 Effects of Viagra on cut flowers. British Medical Journal, vol. 313,
1999, p. 274.

The FDA site for consumer information on medical aspects
of Viagra is:
http://www.fda.gov/cder/consumerinfo/viagra/default.htm.

Viagra acts by slowing the degradation of nitric oxide. It is
not the only orally administered drug that can help sufferers of
impotence. Losartan, a drug used to combat high blood
pressure, was found in a clinical trial to help nearly ninety

http://www.fda.gov/cder/consumerinfo/viagra/default.htm


percent of sufferers (Capo et al., American Journal of Medical
Sciences, vol. 321, 2001, p. 336).

176 The physics of ejaculation. I have used the example of ejaculation
with some success to teach Newton′s Laws of Motion to an otherwise
reluctant class of first-year university students. The speed with which the
ejaculate emerges can be worked out by the application of Newton′s
Second Law of Motion (force = mass × acceleration), which can be used to
calculate the vertical speed of a projectile from the maximum height that
it attains. In this case the ”projectile” is a teaspoonful of ejaculate. The
only published description I could find about the height it can attain
appears in Philip Roth′s Portnoy’s Complaint, where Portnoy is reported to
have hit the light bulb. Information from other sources, however, revealed
that the average male is unlikely to be able to launch his teaspoonful of
ejaculate more than a foot or so straight up into the air. In this case,
Newton′s Second, Law says that its initial velocity must be around two
meters/second, i.e., around seven kilometers per hour, which is a fast
walking speed.

This doesn′t create too many problems on Earth, but it does
add an interesting twist to the problem of making love in space.
The problem is not just an academic one — NASA has now
begun to issue pregnancy testing kits to female personnel on
the International Space Station, thereby admitting that a group
of men and women cooped up together for five months in space
might get up to more than a bit of meter-reading and dial-
twisting.

According to NASA technician Harry Stine (in Stine, G. H.,
Living in Space, M. Evans & Co., 1997), NASA has already
conducted ground-based experiments on the feasibility of
making love in space. The experiments were conducted in a
buoyancy tank, although the names of the volunteers are
unfortunately not on public record. The conclusion was that
making love in weightless conditions is barely feasible, but that



it is made much easier if a third person is present to hold one of
the bodies in place.

Whales found this out eons ago, and many species of whale
use the practice to this day. In physical terms the third person
(or whale) is there to provide a defense against Newton′s First
Law of Motion, which says that if you push on something, it
will accelerate away unless there is a balancing force that stops
it from doing so.

In space, there is another of Newton′s Laws to be considered
— his Third Law, which says that action and reaction are equal.
This principle explains why a shell fired from a cannon
produces a recoil that drives the cannon backwards. The
principle applies equally well to gases and predicts, for
example, that burning fuel ejected from a rocket will produce a
recoil that drives the rocket forward. It also applies to liquids,
including those produced during ejaculation.

The exact amount of recoil can be calculated from the
principle of the conservation of momentum, which says that the
forward momentum (i.e., mass × velocity) of the ejaculate must
be balanced by the backward momentum of the body ejecting
it.

According to my calculations, if an eighty-kilogram man
ejects three grams of ejaculate traveling at seven kilometers
per hour, he will recoil at an initial speed of (0.003 × ⅞0) =
0.00026 kilometers per hour. In a gravitational field this doesn′t
matter too much. If the sperm is directed downwards, for
example, the man will recoil upward by a maximum distance of
five micrometers before being brought back to earth under the
influence of gravity.

In space, though, the man will keep moving, covering one
meter every three hours, until he hits one of the walls of the
spaceship. If the spaceship is eight meters long, he could take
as long as twenty-four hours to reach the far wall — just nice
time for the libido to build up for a return bout.



177 Chances of conception after discontinuation of intrauterine and oral
contraception. These were reported by C. Tietze in the International
Journal of Fertilization, vol. 13, October–December 1968, p. 385.

177 ... with a flattish wedge-shaped head like a mini-surfboard. The actual
dimensions are typically 4.5 micrometers long by 2.5 micrometers wide
by 1.5 micrometers thick.

177 The semen pool. This is actually below the external os if the female
partner is lying on her back. The cervix relaxes afterwards for the external
os to dip into the pool.

178 Seminal plasma gelling. The gelling reaction occurs when proteins
from one accessory gland come into contact with enzymes secreted by
another accessory gland. In technical terms, the crosslinking molecule is
ε- (γ glutamyl) lysine from the seminal vesicle, and the enzyme is a
calcium-dependent transglutaminase.

178 The Billings test and ”ferning.” These are described in the World
Health Organization Laboratory Manual for the Examination of Human
Semen and Sperm Cervical Mucus Interaction, 4th edition, Cambridge
University Press, Cambridge, 1999.

179 Ferning. When I first came across this test, no one could tell me what
the crystals were. I had them analyzed, and found that they were sodium
chloride — in other words, common salt, the principal salt in our body
fluids. Why, though, should common salt form needle-like, branched
crystals, rather than the small cubic ones that we find in our salt shakers?
The answer is that the surfaces of the crystals, identical to the eye, are
chemically different. Mucopolysaccharides stick preferentially to some
faces, preventing them from growing further, so the crystal grows
unequally in different directions. This principle of controlled crystal
growth is now recognized to permeate nature. It appears to underlie, for
example, the development of the shapes of seashells.

It is unclear why ”ferning” relates to the ”goodness” of the
mucus. Presumably it is a matter of the hydration and
unfolding of the mucopolysaccharides, which affects both the
consistency of the mucus and the ability of the molecules to



stick to different crystal faces. This is a Ph.D topic waiting for
a candidate.

180 Lateral pressure in a protein film on an oil drop. Fisher, L. R.,
Mitchell, E. E., and Parker, N. S., ”A critical role for interfacial
compression and coagulation in the stabilisation of emulsions by
proteins,” Journal of Colloid and Interface Science, vol. 119, 1987, p. 592.

182 Ability of spermatozoa to fertilize the egg. It still seems to be an open
question as to what proportion of the spermatozoa that penetrate the
cervical mucus are actually capable of fertilizing the egg. Robin Baker, in
Sperm Wars (Basic Books, 1997), puts the proportion as low as ten
percent.

182 Pushing into cervical mucus. The force that a sperm swimming at 3
mm/min can exert is given by:

Force = 6π × radius of head × viscosity of medium × velocity
of sperm ≈ 10-10 Newtons

The same result has been obtained by direct experiments,
where motile spermatozoa were stuck to a tiny spring and the
force generated calculated from the deflection of the spring.
The pressure that this force produces is simply the force
divided by the cross-sectional area of the head, and comes to
300 Pascals (i.e., about one three-hundredth of atmospheric
pressure).

A simplified picture of sperm penetration is that this
pressure will enable the swimming spermatozoon to push its
way into anything with a yield stress of less than a third of this
value, i.e., 100 Pascals.

182 Effect of female sexual enjoyment on sperm penetration. Results of a
survey by Jacky Boivin of Cardiff University, reported in New Scientist, 12
September 1998, p. 20.



182 Swimming in cervical mucus. We normally think of swimming in
terms of the conservation of momentum. A swimmer ”throws” water
backwards, and gains an equivalent forward momentum. If the swimmer
stops moving the arms, he or she will glide forward under his or her own
momentum for several body lengths before being brought to a stop by the
viscous drag of the water. Someone carried forward under their own
momentum is said to be under the influence of inertial forces. The relative
importance of inertial forces and viscous forces is given by the Reynolds
number, which is simply the ratio of the two forces. For a person
swimming, the Reynolds number is between ten thousand and a million,
which explains why the person can glide forward under their own
momentum without being dragged to an abrupt halt by viscous forces. For
a swimming spermatozoon, though, the Reynolds number is between 0.1
and 0.01, and viscous forces dominate. Under these conditions, the
spermatozoon can only ”coast” under its own momentum for a distance
given by:

distance = (2 × initial velocity × radius2 × density) / viscosity
of liquid

This formula tells us that a spermatozoon swimming at 3
mm/min can only ”coast” three micrometers in water, i.e.,
about a twentieth of its own length, before being brought up
short by viscous drag on the head. If viscous drag on the now-
motionless tail is added in, the distance will be even shorter.

183 Mucopolysaccharide molecules from bundles. See review article by
Carlstedt, I., and Sheehan, J. K., in Symposium of the Society for
Experimental Biology, vol. 43, 1989, p. 289.

184 The shear-thinning behavior of cervical mucus. This has been reported
by Ford, W. C., Ponting, F. A., McLaughlin, E. A., Rees, J. M., and Hull,
M. G., in International Journal of Andrology, vol. 15, 1992, p. 127.



It is an open guess as to why Nature has made cervical
mucus shear-thinning, but one result is that it can stop bacteria
penetrating from the vagina to the uterus, since bacteria are too
small and their movements are insufficiently vigorous to
induce shear-thinning.

184 Beating of the tails. See The Cervix, Jordan, J. A., Singer, A.,
Saunders, W. B., and Co. (eds.), London, 1976, p. 169.

184 Beating of the kinocilia. Davajan, V., Nakamura, R. M., and Kharma,
K., Obstetric and Gynecological Survey, vol. 25, 1970, p. 1; Odeblad, E.,
Acta Obstetrica et Gynecologica Scandinavia, vol. 47, 1968, p. 57.

184 Purcell’s article on ”Life at Low Reynolds Numbers.” This can be
found in American Journal of Physics, vol. 45, p. 3.

186 How human sperm flagellae move. See article by Phillips, D. M., in
Journal of Cell Biology, vol. 53, 1972, p. 561.

Bacterial flagellae also use viscous drag to drive themselves
forward. The flagellae in this case are rigid helices, attached to
a rotating disc driven by a molecular motor at the base of the
head (such motors are the only examples that I know of the use
of the wheel in Nature).

186 Volume of the uterus. The normal volume is incredibly small — about
300 microliters, or one-tenth of a teaspoon. The walls can easily distend,
though, to hold a three-kilogram baby.

187 Surroundings of the egg. See Cherr, G. N., Yudin, A. L., and Katz, D.
F., Development, Growth and Differentiation, vol. 32, 1990, p. 353.

coda
Page
190 Nuclear fission. The discovery of nuclear fission, reported by Otto
Hahn and Fritz Strassmann in the German magazine Naturwissenschaften



(vol. 27, 1939, p. 11 and p. 89), and the huge amount of energy that could
be released was predicted by the theoretical explanation of Lise Meitner
and Otto Frisch in Nature, vol. 143, 11 February 1939, p. 239.

appendix  1:  mayer,  joule,  and the concept  o f  energy
Page
196 Joule’s experiments. These were reported by him in Philosophical
Magazine, series 3, vol. XXVII, 1884, p. 205 (reprinted in Lindsay, R. B.,
ed., ibid.).
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mechanical advantage

chisels
claw hammers
screwdrivers
wedges
wheelbarrows

Meister, Josef
Mendel, Gregor
meniscus
menthol
meringues
methanol
micelles
microemulsions
microwave ovens
Miles, Mervyn
milk fat globules
Millikan, Robert
mineral flotation
mint flavor
Mitchell, John
models, scientific
molecular attraction
molecular shapes
momentum

angular
linear

monolayers
monosodium glutamate (MSG)
Motion, Newton′s Laws of
motion (movement)

as heat
vertical and horizontal



motorway mucus
MRI (magnetic resonance imaging) scanners
MSG
MSNose
mucopolysaccharides–184, 242
mucus. See cervical mucus
Mudgeeraba Creek Emu Racing and Boomerang Throwing Association
Murchison meteorite

nails
NASA
Nature
Newton, Isaac
Newton′s Laws of Motion
Newtons (measure of force)
Nightingale, Florence
Ninham, Barry
nitric oxide (NO)
Noether, Emmy
noses
nuclear fission
nuclear fusion
nuclear power
nuts and bolts

Oakenfull, David
Occam′s razor
Odell, Jeff
oil on troubled waters
oils
onions
Opticks (Newton)
os
Overbeek, Theo

pain, aromas and
paint
papavarin
parabolas
paradigm shifts
parsnips
Pascals (Pa)
Pashley, Richard
pasta
Pasteur, Louis
peas
penis
perception



percussion, center of
perivitelline space
Perkowitz, Sidney
The Physicist in the Kitchen
Physiologie du goût (Brillat-Savarin)
pinene (pine odor)
pi (p)
planetary movements
Plateau, Josef
Plateau borders
Pockels, Agnes
Poiseuille, Jean-Louis-Marie
Poiseuille′s equation
polarimeter
polygons
popcorn
Portnoy’s Complaint (Roth)
potatoes
precession
proteins
Ptolemy
Purcell, E. M.

rabies vaccine
racemic acid
radians
random coils
rapid transport
Rayleigh, Lord
recoil
Reid, Bob
Relativity, Theory of
reproducibility
repulsive forces
research
Reynolds number
right-hand screw rule
roast beef
Rossini
Roth, Philip
Royal Institution
Royal Society
Rumford, Benjamin Thompson, Count
rusted bolts
Rutherford, Lord

Sacks, Oliver
Sagan, Carl



saliva
saltiness
satellites
sausages, vegetarian
scanning probe microscopy
Schenectady, USS
Schrödinger equation
Schütz, Manuel
science. See also scientists

Baconian definition of
as communal activity
consequences of discoveries
discoveries from investigation of familiar phenomena
funding
models
paradigm shifts
practical benefits,
190–92
reproducibility
and sports

Science in the Bedroom (Bullough)
The Scientific Imagination: Case Studies (Holton)

scientists. See also science
cancellation of errors and
and non–scientists
persistence of
responsibilities of
styles of tackling questions
thrill of experimental results

screwdrivers and screws
Second Law of Motion
seesaws
semen
semi-empirical equations
seminal plasma
sensory cells
sex

ejaculation
erection
fertilization
misunderstandings about
research
semen and cervical mucus interface
in space
sperm migration

Sharpless, Stanley J.
shear-thickening–37
shear-thinning



sickle-cell anemia
significant figures, principle of
Slade, Sean–20, 221
soap bubbles
soap films
sourness
spacecraft
Spanish fly
speed, independence of vertical and horizontal
spermatogenesis
spermatozoa
spin
spin axis
spinnbarkeit
sports
square rule
stability

and ball catching
of boomerangs
of wheelbarrows

starch granules
stearic acid
stereochemistry
Stine, Harry
stochastic process
stress
sugar
supermarket bills

comparing prices
distribution of prices
pounds and pence vs dollars and cents
truncation
using boxing in technique to calculate

supertasters
surface-active molecules. See also detergent molecules
surface forces
surface tension
surprises and the brain
sweetness
swimming
symbols (abbreviations)
sympathetic medicine

Tabor, David
Tait, Peter Guthrie
Tanford, Charles
tangent
tartaric acid



taste buds
Taylor, Andy
temperature

distribution in cooked foods
food molecules and
vs. heat

Thatcher, Margaret
thermodynamics, laws of
Third Law of Motion
This, Hervé
Thomas, Elizabeth
Thompson, Benjamin. See Rumford, Benjamin Thompson, Count
Thompson, Silvanus P.
tilt
tomatoes
tongue and palate
tools

brace and bit
car jack
chisels
definition of
hammers
lever principle
screwdrivers
types of
wedge principle
wedges
wheelbarrows–66, 64, 65
work and
wrenches

torque
torque axis
trajectories
trees, uptake of water by
trigeminal nerves
truffles

umami
unconscious problem-solving abilities
Understanding Flight (Anderson, Eberhardt)
The Unnatural Nature of Science (Wolpert)
upper and lower bounds–81, 217
uterus

vaccination
Vajnasunhi
Van der Waals forces
vegetarian sausages



Verwey, Evert
Viagra
viscous drag
vision

Washburn, E. W.
Washburn equation
water

cooking and
droplets
molecules

Watson, James
wedges
West, Lawrence
whales
wheelbarrows
white cells
Williams, Charles
Wolpert, Lewis
work–198
wrenches

X-ray crystallography

yield stresses
Yorkshire pudding
Young, Thomas
Young-Laplace equation–13, 14

zona pellucida



1 Nicholas Kurti, CBE, FRS, died in November 1998, shortly after his
ninetieth birthday. This chapter is dedicated to his memory.

2 Scientists are used to thinking of force in terms of Newtons. To lift 5
kilograms would take a force of 49 Newtons, a quantity that most people
outside science would find hard to visualize. To make life easier for the
reader, I will henceforth refer to forces in terms of the mass that they
would lift. When I say, for example, ”a force of 5 kilograms,” I mean ”a
force that would lift 5 kilograms at the Earth′s surface” (the same force
would lift more on the Moon), with a brief nod of apology toward those
who would prefer more exactitude of nomenclature.

3 Linear momentum is just mass × linear velocity (i.e., speed in a given
direction). Angular momentum is mass × angular velocity (i.e., rotational
speed). Linear momentum is conserved unless a force is applied, and the
direction of the force determines the direction of the new momentum.
Angular momentum is conserved unless a tilting force (a torque) is
applied, and the direction of the torque determines the new direction of the
angular momentum. The spin axis defines the direction of angular
momentum. When the torque axis is at right angles to the spin axis, then
the latter is forever chasing the former.
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