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Foreword

Many diseases cause profound changes in the mechanical properties of tissue and the
normal function of tissues like skeletal muscle, heart, lungs, and gut are deeply rooted in
the complex mechanical characteristics of their constituent cells. Research now provides
growing evidence of the importance of tissue matrix mechanics on cellular function.
Cells react to the dynamic and static properties of their matrix environment through a
process known as mechano-transduction. It is now known that mechanobiology plays
an important role in the origin of many disease processes, including organ fibrosis and
cancer.

Magnetic resonance elastography (MRE) has emerged as a versatile technology to reli-
ably assess the mechanical properties of tissue. It has a proven ability to quantitatively
interrogate a range of novel mechanical biomarkers in almost all regions of the body.

An important milestone in the evolution of MRE was the demonstration that it can
serve as a reliable, painless, and less-expensive alternative to liver biopsy for assessing
liver fibrosis. This transformed MRE from a research technique into a clinical tool that
is now routinely used in patient care worldwide. In 2009, MRE became available as a
Food and Drug Administration (FDA)-approved upgrade for magnetic resonance imag-
ing (MRI) scanners. The installed base of MRE reached over 550 systems worldwide in
2015 and is expanding rapidly.

A remarkable aspect of the development of MRI over the last three decades is that
most innovations and new applications of the technology were developed by researchers
in the academic medical community and not by industry. MRI truly is a modality that has
been continually reinvented by its users. MRE is similar in this regard and this book has
been written by individuals who served as pioneering explorers of many of the frontiers
of MRE.

With broad and deep coverage of the field of MRE, this book addresses a full range
from fundamental principles to clinical applications. It provides a concise overview of
the medical and biological perspectives that drive the applications. It nicely integrates
important concepts in MR physics, viscoelastic theory, and signal processing and pro-
vides access in one volume to important background content that can be difficult to find
elsewhere.



xvi Foreword

This book should be read cover-to-cover. It provides a one-stop, in-depth review of
MRE technology and applications and is a wonderful source of information for students,
engineers, scientists, and physicians.

Richard L. Ehman
Professor of Radiology
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Professor of Medical Research
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Preface

The principal aim of this book is to provide a comprehensive introduction to magnetic
resonance elastography (MRE). Technically, MRE is based on two main research fields:
magnetic resonance imaging (MRI) and viscoelastic theory – two vast topics with
virtually no overlap in academic curricula. This motivated us to write a textbook that
allows physicists and engineers who want to commence research in this field to quickly
gather all information that is necessary to comprehend the rather intricate and complex
concepts underlying MRE. The scope of the book spans the theoretical background as
well as various practical and technical aspects.

A second goal of this book is to provide the background for using MRE as a clinical
routine method. We have therefore compiled data from the literature that provide the
preclinical and clinical foundations for measuring viscoelastic properties for diagnostic
purposes. While the number of relevant publications by far exceeds the amount of
information that could possibly be published in a single book, we aimed to discuss the
application of MRE to various organs in the human body from its inception up to
the current state of the art. This part of the book is less theoretical and technical than
the preceding parts and can serve as a valuable reference also for scientists without a
strong background in physics, engineering, or related fields.

This work is a joint effort by the members of the elastography group at
Charité – Universitätsmedizin Berlin, Germany, as well as our clinical collabora-
tors from the Department of Radiology, the Clinic for Pediatric Endocrinology and
Diabetology and the Ultrasound Research Laboratory of Charité. We strove to combine
our expertise and experience to facilitate entry into the fascinating research field that
is MRE. In doing so, we tried to maintain a balanced view on the globally distributed
research activities in this field.

We acknowledge that the part of the book discussing various methods of recon-
structing viscoelastic parameters from MRE measurements is biased toward a school
of thought that favors a concept that can be characterized as “inversion of the wave
equation,” as opposed to different approaches based on finite elements methods (FEM).
This is not meant to be a statement on the superiority of the former method over the
latter, it rather reflects the educational background of the members in our research
group. FEM is a highly sophisticated field with applications in various engineering
disciplines, and its use for viscoelastic parameter calculation in MRE must not be
understated. However, for lack of personal experience and familiarity with the method,
we restrict the discussion to a general overview and refer the inclined reader to
specialized literature on FEM in general or its use in MRE in particular.



xviii Preface

This is the first edition of the book. While we put a lot of work into ensuring that
all information is correct, we are fully aware that errors are inevitable in a book of this
volume. We therefore kindly ask our readers to point out any mistakes you encounter or
points that are not explained clearly, so that one day we will be able to release a revised
and improved edition. All feedback is highly appreciated. You can contact the authors
by sending e-mails to the address given below, or post your comments to the errata page
available in the website mentioned below.

We hope that you will enjoy reading this book and that it will be a reliable guide on
your journey through the exciting field of MRE, and we wish you all the best for your
studies and research! Or, to say it with the infallible words of a fortune cookie:

You could prosper in the field of

medical research

Berlin, February 2016 Sebastian Hirsch
mre-book@charite.de Jürgen Braun
http://www.wiley-vch.de/ISBN/978-3-527-34008-8 Ingolf Sack
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Notation

Much attention was paid to keep the mathematical notation throughout the book as
consistent and self-explanatory as possible. The following conventions were used:

• Matrices, tensors, and vectors are denoted by bold, upright Latin or Greek letters:
a = C ⋅ b.

• Unit vectors are denoted by a hat symbol: x̂ = x
|x|

.
• Integral transforms are denoted, depending on the context, by either a caligraphic

letter or a diacritic symbol: ℱ [u] ≡ ũ for the Fourier transform of u, ℒ [u] ≡ u for
the Laplace transform.

• The bullet • is used exclusively to denote the scalar product of two vectors or
vector-valued expressions: a • b, ∇ • u ≡ div u.

• Multiplication between a vector and matrix, or multiplication with a scalar quantity,
is denoted by a smaller dot: A ⋅ b.

• Where appropriate, temporal derivatives are marked by a dot, and spatial derivatives
by an apostrophe: 𝜕g

𝜕t
= ġ, 𝜕f

𝜕x
= f ′.

• Summation over an index is always specified explicitly by the sum symbol. Summation
over repeated indices (Einstein’s sum convention) is never implied.

• Only indices or exponents that take numerical values are printed in italic; super- or
subscripts that serve as a specification are always printed upright: xi, ab, ushear.

• The complex unit is always represented by an upright letter to make it distinguishable
from an index:

√
−1 = i ↔ ui, i ∈ ℕ.

• Matrices and vectors are surrounded by parentheses when all elements are listed
explicitly:

⎛
⎜
⎜
⎝

a
b
c

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

cos 𝛼 − sin 𝛼 0
sin 𝛼 cos 𝛼 0

0 0 1

⎞
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎝

x
y
z

⎞
⎟
⎟
⎠

.

• Brackets are used to denote that vectors or matrices are constructed by concatenat-
ing other vectors or matrices: A = [a,b, c] denotes that the matrix A is assembled by
concatenating three column vectors along the horizontal dimension.

• In equations, parentheses (), brackets [], and curly braces {} are used interchangeably
for grouping terms and to denote precedence: a ⋅ (b + c) ≡ a ⋅ [b + c] ≡ a ⋅ {b + c}.



xxiii

List of Symbols

The following table lists commonly used mathematical symbols. Note that some symbols
are reused in a local context to denote something else, but this will always be explained
in the text.

Roman symbols

B magnetic field
C elasticity tensor
c curl of the displacement field (shear strain)
d divergence of the displacement field (volumetric strain)
E Young’s modulus
G linear magnetic gradient field
G∗ complex shear modulus
I MR image
i imaginary unit (i =

√
−1)

K bulk (compression) modulus
k wave vector
M P-wave modulus
M magnetization
P vector of energy flux density
S (complex) MR signal; entropy
S compliance tensor
T vibration period
T1, T2, T∗

2 longitudinal / transverse relaxation times
TE echo time
TR repetition time
u displacement field

Greek symbols

𝛼 springpot interpolation parameter; flip angle
𝛿 Kronecker delta, Dirac delta distribution
𝝐 strain tensor
𝜂 viscosity
𝜅 compressibility
𝜆 wave length, first Lamé’s parameter
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𝜇 (real-valued) shear modulus
𝝁 magnetic moment of a spin
𝜈 Poisson’s ratio
𝜉 encoding efficiency
𝜌 mass density
𝝈 stress tensor
𝜙 MR signal phase, oscillation phase
𝜑 phase of the complex shear modulus (G∗)
𝜔 angular vibration frequency, angular precession frequency

Mathematical operators

∇ gradient operator
Δ Laplacian operator
ℱ (continuous) Fourier transform
ℒ Laplace transform
FFT fast Fourier transform (discrete)
tr trace (of a matrix)
ℕ natural numbers
ℤ integer numbers
ℝ rational numbers
ℂ complex numbers
𝟙 identity operator/identity matrix
⋆ convolution operator



1

Introduction

Approximately 50 000 years ago, during an age called upper paleolithic revolution [1],
mankind began to develop finer tactile senses and greater perceptional capabilities
than ever before. This great mystery of human evolution endowed our ancestors with
the tools and the intellectual prowess to investigate the origins of pain and disease.
The tools they probably used – auscultation, palpation, and sight – are still valuable
tools for diagnostic routine in modern clinical practice. The knowledge that ancient
physicians had accumulated by observing their patients and the precision with which
they drew their conclusions is exemplified in the Ebers Papyrus, one of the oldest
and most beautiful medical books of humanity, which was written during the reign of
pharaoh Ahmose I (1560–1525 BCE). As shown in Figure 1, Ahmose’s doctors paid
significant attention to palpation: manually deforming and shifting soft tissue layers and
carefully sensing the resistance of tissue against that deformation provided them with
an incredibly rich source of diagnostic information. The wealth of information attain-
able through palpation is still being explored today. On the one hand, physicists have
developed mechanical models of soft biological tissues that describe how structures on
several length scales, from the cellular level to larger fibers or vascular trees, translate to
the macroscopic level, affecting the haptic sensation that we perceive with our fingers.
On the other hand, modern biological and biophysical research has revealed that
altered mechanical properties play a key role in the progression of numerous diseases,
from fibrosis to tumors. It has even been suggested that these mechanical cues can
precede other signs or symptoms of diseases (see Figure 2).

Viscoelastic properties are one of the three main determinants of haptic sensation, the
other two being temperature and surface texture. Viscoelasticity provides a framework
to classify the response of a material when a force is applied to it. On the coarsest scale,
viscoelasticity is comprised of the complementary concepts of elasticity and viscosity.
Elastic materials can be deformed when a force is applied, but they will immediately
return to their original shape when the force is removed. Objects such as a steel spring
and gelatin dessert (“jelly,” “jello”) are typical examples exhibiting elastic behavior.
Viscous materials, on the other hand, also deform when a force is applied; however,
they will remain in their deformed shape after removal of the force. Honey and other
thick liquids are examples of such material properties. However, most materials possess
both elasticity and viscosity at the same time. For example, according to the above
classification, a rubber ball and metal ball would both be classified as elastic, since they
both tend to return to their original shape after deformation. Yet, when a rubber ball
and a metal ball bounce up from a hard surface after being dropped from the same

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 1 Papyrus Ebers, Columns 107 (right) and 108 (left). Demarcated sections highlight
descriptions of palpation examinations. Ebers 872: If a swelling presents spherical and stiff and recedes
pressure of the fingers, then it originates from the vessel and should be treated with a heated knife.
Ebers 873: If a swelling at internal layers of the skin appears nodular and feels compliant, like air-filled
cavities, then it is a tumor of the vessels and you should not treat it (with a knife), but rather use
remedies or incantations to improve the condition of the vessel in all affected areas of the human
body. Ebers 867: If a swelling in any part of the body feels elastic under the fingers and comes apart
under constant pressure, it is of fat and should be treated with the knife. Ebers 868: If a swelling has the
property of a son (or daughter, metastasis?) and it can be found isolated or spread and feels
moderately solid, then it should be treated with the knife. (Nonliteral translation by the authors, based
on the German text of Wolfhart Westendorf, Handbuch der ägyptischen Medizin, 1999, volume 2,
pg. 547, kindly provided by Marko Stuhr, Mayen, Germany. Reproduced with permission of Universität
Leipzig.)

height, the metal ball will reach a greater height than the rubber ball.1 The reason is
that the rubber ball converts a portion of the energy that was used to deform it into
heat, whereas the metal ball restores almost all of the deformation energy back into
kinetic energy, and therefore bounces back with higher velocity. Viscosity is also a
measure of how much of the deformation energy is converted into heat. Therefore, in
addition to being elastic, the rubber ball is characterized by a much higher viscosity
than the metal ball. We can therefore define what we call a “square of viscoelasticity,”
shown in Figure 3, that allows us to compare viscoelastic properties of different
materials. The four corners are characterized by the extreme cases found in solid bodies
(excluding liquids): “highly viscous/highly elastic2” (rubber), “purely elastic” (spring),
“low elasticity/high viscosity” (marshmallow), and “low elasticity/low viscosity” (jelly).

1 http://sciencenotes.org/why-a-glass-ball-bounces-higher-than-a-rubber-ball/
2 It is important to note here that, in contrast to colloquial use, “highly elastic” does not mean “easily
deformable.” On the contrary, it means “very resistant to deformation.”



Introduction 3

200

400

600

800

1000

1200

1400

1600

1800

2000

0 3 7 10 14 28 42 56 70

Days of CCl4 treatment

G
′ (

P
a)

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

%
 s

iri
us

 r
ed

G′
% sirius red

* *

*

*

*

**

**

**
**

**

**

Figure 2 Example of the importance of mechanical tissue properties in disease: Stiffness (storage
modulus G′) measured by shear oscillatory rheometry in fibrosis-induced rat livers. Fibrosis is
characterized by the accumulation of excess and abnormal extracellular matrix material. Samples were
stained for the presence of collagen by sirius red, which detects primarily type I collagen. The time axis
indicates time since initiation of fibrosis. Significant changes relative to day 0 are demarcated by
asterisks (∗P < 0.05, ∗∗P < 0.005). The data suggest that an increase in liver stiffness precedes fibrosis
and that increased liver stiffness may play an important role in initiating early fibrosis. (Georges 2007
[2]. Reproduced with permission of American Journal of Physiology.)

Figure 3 The “square of viscoelasticity:”
viscoelastic properties can be characterized in a
two-dimensional plot in terms of viscosity and
elasticity. The arrows indicate how viscoelasticity of
human organs is affected when the liver becomes
fibrotic, when a muscle contracts or when the brain
undergoes degradation. (Sack 2013 [3].
Reproduced with the permission of Royal Society
of Chemistry.)
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Different materials – including different types of organic tissue – can be characterized
in terms of their elasticity and viscosity and thus be represented by a point within the
square of viscoelasticity. If a disease alters the viscoelastic properties of a specific type
of tissue, for example, the liver, healthy and diseased tissue would therefore appear as
two different points in the diagram.

Diagnosis of disease can therefore be performed by comparing the viscoelastic
properties of a potentially diseased organ to those of a healthy one. This is the
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foundation of manual palpation. Through years of experience, physicians develop a
sense of the “correct” properties of different organs, and they can detect deviations
based on the haptic feedback that they receive when manually deforming the tissue.
While this method is very powerful, it has two major drawbacks:
• Assessment of tissue elasticity through a physician is qualitative rather than

quantitative, and hence subjective. For a widely applicable clinical instrument, a
quantitative method that also allows less experienced examiners to detect disease
based on numbers rather than sensation is desirable.

• Noninvasive assessment of tissue viscoelasticity is only feasible for a few organs that
can be palpated through the skin. This excludes most deeper organs as well as those
shielded by bones, such as the brain.

Both limitations can be overcome when medical imaging is employed to replace
palpation, leading to “elastography.” Elastography can be separated into two
independent steps: application of a force that causes tissue deformation and detection of
the response of the tissue to that force. Ultrasound (US) imaging or magnetic resonance
imaging (MRI) are capable of performing the latter, since they are both sensitive to
tissue motion on the order of micrometers. For achieving tissue deformation, various
approaches exist. Most of them rely on the application of an external force that is
transmitted through skin and bones into the organ of interest. In magnetic resonance
elastography (MRE), the most common type of applied force is harmonic vibration,
which stimulates mechanical waves that propagate through the body. By detecting the
displacement induced by these waves, viscosity and elasticity of tissue can be retrieved
quantitatively through wave inversion algorithms.

Mechanical testing and MRE experiments performed on phantoms3 has revealed that
minute structural changes can lead to huge differences in viscoelastic properties. For
example, the addition of less than one mass percent of agarose, a gelling agent extracted
from seaweed, turns liquid water into a solid block, thus increasing its elasticity by
many orders of magnitude. Furthermore, Guo and Posnansky demonstrated that adding
a small amount of structured elements, such as paper strips, to a homogeneous gel
induces viscous properties [4, 5]. In the context of clinical diagnosis, this means that
small structural modifications on the cellular level can translate into well-measurable
changes in the viscoelastic parameters of the whole organ. The same applies to findings
published by Lambert et al. [6], who analyzed the influence of microscatterers on
macroscopically observed wave characteristics. These results suggest that elastography
is capable of providing insight into structural alterations that occur far below
the spatial resolution of the underlying imaging technique. Furthermore, typical
resolution-limiting relations, such as the Abbe limit stating that optical systems cannot
resolve objects that are smaller than half a wavelength, do not apply to MRE, since
information on the microscopic scale is merely deduced from phenomena observed on
much larger scales, and not imaged directly.

In order to extract structural information from MRE measurements, viscoelastic
models are used that establish a relationship between the viscoelastic parameters of a
material and its response to deformation. The complexity of these models ranges from

3 Phantoms are simple model systems, such as a block of gelatin, used to isolate one particular aspect of
viscoelasticity from the plethora of concomitant physiological processes that coexist in living tissue and
render measurements more challenging.



Introduction 5

simple linear models, such as Hooke’s law, to much more refined exponential models
that are closely related to highly advanced mathematical disciplines, including fractional
calculus. Models of the latter type, for example, the springpot model, can be used to
characterize the frequency dependency – the dispersion – of viscoelastic parameters.
Their application requires more input information, such as data acquired at different
vibration frequencies. In return, their internal parameters can be directly linked to
very specific aspects of the cellular structure of tissue. In addition to being a clinically
relevant instrument for early and noninvasive diagnosis of disease and monitoring
progression of disease and therapy, its explicit dependence on microscopic structure has
rendered MRE a highly valuable tool for fundamental clinical and preclinical research.

In the first two parts of this book, we will present a comprehensive discussion of the
physical principles underlying MRI and viscoelastic theory. In the third part, we will
proceed to demonstrate how these inherently unrelated concepts merge into MRE. We
will also discuss various numerical and computational methods for data processing in
MRE that can serve as a guide to the reader to develop the ideal experimental setup
tailored to his/her specific requirements. Finally, in the fourth part, we will review
examination strategies and results that were published by the global MRE community
on MRE applied to various organs.

Berlin, February 2016.
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Part I

Magnetic Resonance Imaging

This chapter explains the physical principles behind magnetic resonance imaging (MRI).
It is subdivided into two parts. In the first part, we will explore the nuclear magnetic
resonance (NMR) effect. The physical phenomenon of NMR is the basis for magnetic
resonance imaging, and has also applications outside the field of medical imaging. In
(bio)chemistry, NMR spectroscopy is used as a tool to unravel the structure of molecules
and to quantify bond lengths. We will show how NMR can be manipulated in different
ways to generate echo signals and investigate their properties.

The second part will illustrate how the NMR effect can be exploited to generate
images. The mechanisms underlying spatial encoding will be discussed, and the most
important signal sampling and imaging strategies will be presented. Finally, more spe-
cialized techniques and concepts that are relevant for magnetic resonance elastography
(MRE) will be introduced.
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1

Nuclear Magnetic Resonance

1.1 Protons in a Magnetic Field

1H-Nuclear magnetic resonance (NMR) is based on the manipulation of the magnetic
moments of hydrogen nuclei (protons) in a strong magnetic field. A static magnetic
field, B0, typically with a field strength of 1.5 or 3 T in clinical magnetic resonance
imaging (MRI) scanners, induces macroscopic magnetization in the proton population
inside a given object. Microscopically, B0 defines a quantization axis for the proton
spin S. Henceforth, we assume that B0 is aligned with the z-axis of the coordinate
system: B0 = (0, 0,B0)T. The proton has a spin quantum number S = 1

2
, meaning that

|S| =
√

S(S + 1)ℏ =
√

3
4
ℏ. Projection of S onto B0 can assume one of two possible

values, Sz = ± 1
2
ℏ, whereas the x- and y-components of the spin, Sx and Sy, according to

the quantum mechanical uncertainty principle, remain undetermined. The proton spin
is associated with a magnetic moment

𝝁 = 𝛾S, (1.1)

with the gyromagnetic ratio 𝛾 = 2𝜋 ⋅ 42.58 MHz/T for protons [7]. Thus, the
z-component of the magnetic moment can assume either of two values

𝜇z = ±1
2
𝛾ℏ, (1.2)

while 𝜇x and 𝜇y form an arbitrary and undetermined transverse magnetization compo-
nent in the xy-plane. For each of the two possible values of 𝜇z, the potential energy of
the respective state is

E = −B0 • 𝝁 = −B0 ⋅ 𝜇z, (1.3)

indicating that the parallel alignment (↑↑) of 𝜇z with B0 has lower energy than the
antiparallel (↑↓) orientation1 [8]. The energy gap between the two states is therefore

𝛿E = E↑↓ − E↑↑ = 2 ⋅ B0 ⋅ 𝜇z = 𝛾 ⋅ B0 ⋅ ℏ. (1.4)

1 Note that the sign conventions are somewhat misleading. For a magnetic field, the B-vector points from
the north pole to the south pole. However, a magnetic dipole vector 𝝁 points from the south pole to the
north pole. The antiparallel orientation therefore means that the north poles of the field and the dipole are
aligned, creating a repulsive torque that tries to flip the dipole by 180∘ , which explains why the antiparallel
state possesses a higher potential energy than the parallel state.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Since protons are fermions, the distribution of the entire population of N protons over
these two states is governed by a Fermi statistics [9]:

N↑↑ = N ⋅
e−E↑↑∕kBT

e−E↑↑∕kBT + e−E↑↓∕kBT
(1.5)

N↑↓ = N ⋅
e−E↑↓∕kBT

e−E↑↑∕kBT + e−E↑↓∕kBT
. (1.6)

The magnetic moments of protons in the parallel and antiparallel states cancel each
other out. However, at human body temperature of 37 ∘C, the parallel, lower energy
state has a slightly larger population than the excited antiparallel state. The excess
population, with respect to the total population,

𝛿N =
N↑↑ − N↑↓

N
= e−E↑↑∕kBT − e−E↑↓∕kBT

e−E↑↑∕kBT + e−E↑↓∕kBT

is in the order of 10−6 at typical field strengths of clinical MRI scanners of 1.5 T or 3 T.
This imbalance causes a small net magnetization

M0 = 𝛿N𝜌|𝜇z|ẑ, (1.7)

with average proton density 𝜌 and the unit vector ẑ along the z-axis. M0 is aligned
with the static B0 field. Manipulation of this magnetization by means of additional
time-dependent magnetic fields is the basis for all types of MR experiments. Despite the
quantum mechanical nature of individual protons, the macroscopic magnetization can
be treated in a classical way, since individual protons are never probed in MR imaging
[9]. For a single proton, the transverse component of the magnetic moment (i.e., the
projection of 𝝁 onto the xy-plane) would have to be taken into account. However,
by averaging over a large number of protons (in the order of Avogadro’s constant,
NA ≈ 6 ⋅ 1023), these contributions cancel each other out, so that no net transverse
magnetization is observed in the equilibrium state.

1.2 Precession of Magnetization

For an arbitrary orientation of magnetization M with respect to the direction of B0, the
time evolution of M is characterized by [10]:

𝜕M
𝜕t

= 𝛾M × B0. (1.8)

Total magnetization M(t) can be decomposed into a longitudinal component M||(t) =
M||(t) ⋅ ẑ and a transverse component M

⊥
(t) so that

M(t) = M||(t) + M
⊥
(t). (1.9)

This allows us to separate Eq. (1.8) into
𝜕M||

𝜕t
= 𝛾M|| × B0 = 𝟎 (1.10)

𝜕M
⊥

𝜕t
= 𝛾M

⊥
× B0. (1.11)
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Equation (1.11) describes the precession of the transverse magnetization about the
axis defined by B0. The angular frequency of precession in a magnetic field of strength
B is 𝜔 = 𝛾B, corresponding to the energetic separation 𝛿E = 𝛾Bℏ of the two states
of 𝜇z of a single spin. If the magnetic field is solely determined by the static field B0,
all magnetization precesses at the same frequency 𝜔0, which is also called Larmor
frequency. In the presence of additional magnetic fields, B = B0 + 𝛿B, Eq. (1.8) becomes

𝜕M
𝜕t

= 𝛾M × (B0 + 𝛿B) (1.12)

= 𝛾M
⊥
× B0 + 𝛾M × 𝛿B. (1.13)

The right-hand side of Eq. (1.13) is a superposition of the previously mentioned preces-
sion of transverse magnetization and a rotation of full magnetization M about the axis
defined by the arbitrary field vector 𝛿B. In order to simplify the description, a coordinate
transform can be performed from the static laboratory system to a reference frame
(designated by primed symbols, e.g., M′) that rotates about the z-axis with the Larmor
frequency 𝜔0. Since this system rotates in synchrony with M

⊥
, transverse magnetization

appears static and the first precession term in Eq. (1.13) vanishes. If 𝛿B is designed
to rotate at the Larmor frequency in the transverse plane and to be aligned with the
x′-axis, 𝛿B′ = B′

1 = B1 ⋅ x̂′, the rotating-frame version of Eq. (1.13) can be formulated as
𝜕M′

𝜕t
= 𝛾B1 (M′ × x̂′), (1.14)

or alternatively for a flip around the y′-axis:
𝜕M′

𝜕t
= 𝛾B1 (M′ × ŷ′). (1.15)

In general, for an arbitrary vector 𝝎
′ = (𝜔′

1, 𝜔
′
2, 𝜔

′
3)

T = 𝛾B′, the motion of the
magnetization is given by

𝜕M′

𝜕t
= (M′ × 𝝎

′). (1.16)

Figure 1.1 illustrates how such a B1-field can tilt the longitudinal magnetization from
its initial equilibrium state into the transverse plane. Since the rotation frequency
of the magnetization about the direction of B′

1 is given by 𝜔F = 𝛾B′
1, the flip angle2

can be calculated as 𝛼(t) = 𝜔F ⋅ t = 𝛾B′
1 ⋅ t. Arbitrary flip angles can thus be achieved

by suitable combinations of B1 field strength and the duration for which the field is
switched on. Figure 1.1 illustrates the special case with 𝛼 = 90∘.

A numerical method to simulate spin behavior under different kinds of applied mag-
netic fields is described in Appendix A.

1.2.1 Quadrature Detection

A precessing transverse magnetization induces a sinusoidal voltage signal S(t) = S0 ⋅

sin((𝜔0 + 𝛿𝜔)t) ⋅ exp
(

− t
Tdecay

)

in a conductor loop (usually referred to as a receive coil),
as shown in Figure 1.2. 𝛿𝜔 denotes a small offset from 𝜔0 due to additional magnetic

2 “Flip angle” always refers to the angle by which a B1-pulse tilts the magnetization away from the direction
of B0. The subscript “F” in 𝜔F refers to “flip.”
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M(tflip) M(tflip)

M(0)
M(0)

(a) (b)

X X
y y

z z Figure 1.1 Time evolution of magnetization as seen
from the laboratory frame. The black line traces the
tip of M(t) over time. (a) During a 90∘-pulse, the
longitudinal equilibrium magnetization is tipped
toward the transverse plane. The combination of
precession at Larmor frequency and the tipping
induced by the B1 pulse causes the magnetization to
spiral on a spherical shell from the z-axis toward the
xy-plane. (b) After the B1 pulse, the magnetization
precesses at Larmor frequency. The transverse
component of M decays with time constant T∗

2 ,
whereas the longitudinal component relaxes back
toward the equilibrium value M(0) with time
constant T 1 (see Section 1.3).

B0 Transmit

M

Re(S) ∼ cos(δω·t)

Im(S) ∼ sin(δω·t)M⊥ ∼ sin([ω0 + δω]·t)

∼ sin (ω0t)

Quadrature
detector

Receive

M⊥ (t)    sin(ω0t) + lowpass×

M⊥ (t)    cos(ω0t) + lowpass×

Figure 1.2 Illustration of the quadrature detection step of the MR signal acquisition. Details are
explained in the text.

fields. The signal decay time constant3 is either T2 or T∗
2 , depending on the type of echo

(spin echo vs gradient echo, see Sections 1.5.1 and 1.5.2). The Larmor frequency 𝜔0
is irrelevant, and the desired information is only contained in the offset frequency 𝛿𝜔

(see Section 1.6.1). In order to isolate 𝛿𝜔, quadrature detection [11, pg. 371] is deployed.
Through quadrature detection, the received signal is divided into two branches and

each is multiplied by either cos(𝜔0t) or sin(𝜔0t). Because of the trigonometric relations

sin 𝛼 ⋅ sin 𝛽 = 1
2
(cos(𝛼 − 𝛽) − cos(𝛼 + 𝛽)) (1.17)

and

sin 𝛼 ⋅ cos 𝛽 = 1
2
(sin(𝛼 − 𝛽) + sin(𝛼 + 𝛽)) (1.18)

the product signal is a sum of two signals, one oscillating with 𝛿𝜔 and the other with
2𝜔0 + 𝛿𝜔. Since 𝛿𝜔 ≪ 𝜔0, a suitable low-pass filter will block the high frequency signal,
so that the slow component 𝛿𝜔 is obtained. The two filtered signals (from the sine and
cosine branch) represent the real and imaginary parts of S. The conversion to magnitude

3 The different types of signal relaxation and their sources will be discussed in Section 1.3.
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and phase can then be performed according to

|S| =
√
|Re(S)|2 + |Im(S)|2 (1.19)

𝜙 = arctan
(

Im(S)
Re(S)

)

. (1.20)

The signal magnitude is proportional to the magnitude of transverse magnetization
|M

⊥
|, and the phase 𝜙 is the angle between M

⊥
and the x′-axis of the rotating frame.

1.3 Relaxation

The above discussion of precessing magnetization did not take dissipative interaction
between spins and their environment into account. Since the parallel and antiparallel
orientation of a magnetic moment with respect to B0 differ by energy 𝛿E = 𝛾ℏB0, the
interaction of a spin with its surroundings can change the orientation of its magnetic
moment. This effect gives rise to relaxation effects, which are crucial for MRI signal and
contrast generation.

In the thermal equilibrium state, the resultant magnetization M0 is aligned with
B0, which defines the z-axis of the coordinate system. At any time point t, the total
magnetization M(t) can be decomposed into longitudinal and transverse component,
as introduced in Eq. (1.9). The presence of transverse magnetization indicates a
perturbation of the equilibrium state. Through interaction with the microscopic lattice
of the medium, excess energy is dissipated over time, so that the magnetization relaxes
to the initial longitudinal state. The rate of change of the longitudinal magnetization
component is proportional to its deviation from the equilibrium state:

𝜕M||

𝜕t
= 1

T1
(M0 − M||). (1.21)

T1 is the time constant of this relaxation process. It is dependent on the magnetic field
strength and material properties. The range of T1 in the human body at 37 ∘C and
B0 = 1.5 T ranges from 50 (muscle) to 4500 ms (cerebrospinal fluid) [10].

Thus far, spins have been treated as noninteracting particles. This is a rough
approximation, since every spin is exposed to not only the external magnetic field
but also the magnetic moments of its immediate surroundings. These interactions
overlay with B0, so that every spin experiences a magnetic field as a sum of those two
contributions. Hence, if the field strength is variable in space, B = B(r), 𝜔 will also
become position-dependent. This implies that magnetization vectors precessing at
different locations will dephase over time, thus diminishing the resultant transverse
magnetization. This effect is characterized by a first-order differential equation

𝜕M
⊥

𝜕t
= − 1

T2
M

⊥
, (1.22)

which is solved by a real-valued exponential function

M
⊥
(t) = M

⊥
(0) ⋅ e−

t
T2 (1.23)

with time constant T2 characterizing the signal decay due to loss of coherence of the
precession phase. Locally, T2 is an indicator of proton mobility. Mobile protons, such as
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those in free water, traverse regions of increased and reduced field strength in relatively
short time periods, so that opposing effects on the spin phase can partially cancel out,
thus slowing signal decay and prolonging T2. Stationary protons, on the other hand,
are subject to the same magnetic environment for extended periods of time and are
therefore less likely to experience cancellation of the effect. Regions of low proton
mobility are therefore characterized by small T2 values. T2 depends on the magnetic
field strength of the MR scanner, with higher field strengths leading to shorter T2.
At a given field strength, different types of biological tissue have characteristic T2
values (e.g., at 3 T: liver – 42 ms, skeletal muscle – 50 ms, white matter – 69 ms, gray
matter – 99 ms, and blood – 275 ms [12]).

Inhomogeneity of the static field B0 is another cause of signal dephasing. These devi-
ations are caused by the magnetic material response of the tissue. The external field can
be amplified or attenuated regionally, depending on the local susceptibility distribution
inside the object. Interfaces (between organs or between an organ and air or fluid)
and iron-rich regions induce abrupt spatial variation of susceptibility and therefore
strongly affect the magnetic field. Spatial variation of B0 leads to position-dependent
precession frequencies, which have a similar effect as the aforementioned spin–spin
interactions. The decay time constant due to B0 inhomogeneity is denoted Ti. The
compound effect of both dephasing mechanisms is quantified by T∗

2 =
(

1
T2

+ 1
Ti

)−1
,

and the corresponding differential equation and its solution are given by
𝜕M

⊥

𝜕t
= − 1

T∗
2

M
⊥

(1.24)

and M
⊥
(t) = M

⊥
(0) ⋅ e−

t
T∗

2 . (1.25)
The decay of transverse magnetization due to dephasing is always faster than the
restoration of longitudinal magnetization, T∗

2 < T2 < T1. The effect of the inhomogene-
ity contribution Ti can be reversed through spin echoes (SE), which will be discussed
in Section 1.5.1. In that case, the signal decays with the time constant T2 rather than
the shorter T∗

2 , yielding a stronger signal and hence better image quality. In NMR
spectroscopy, the T2 or T∗

2 decay curve is sampled, and its Fourier transform (a Lorentz
curve) is analyzed as the signal of interest.

1.4 Bloch Equations

The precession of the transverse component of magnetization and the relaxation effects
are combined in the Bloch equation:

dM
d t

= 𝛾M × B + 1
T1

(M0 − M||)ẑ − 1
T2

M
⊥

, (1.26)

where B is the total magnetic field, which can have contributions in addition to B0, but
it is assumed that its deviation from the z-direction (the direction of B0) is small.4 In the

4 Notable other contributions are magnetic field gradients, with a magnitude of typically tens of millitesla,
the B1 field with a strength of tens of microtesla, and the chemical shift, which modulates the precession
frequency by approximately 3.5 ppm (parts per million) between fat and water. All these contributions are
therefore very small compared to the strength of the static B0 field of typically 1.5 or 3 T and do not change
the direction of B significantly.
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absence of additional fields, that is, when B = B0, the solution to the Bloch equation is
given by [10]:

Mx(t) = exp
(

− t
T2

)

⋅ (Mx(0) ⋅ cos(𝜔0t) + My(0) ⋅ sin(𝜔0t)) (1.27)

My(t) = exp
(

− t
T2

)

⋅ (My(0) ⋅ cos(𝜔0t) − Mx(0) ⋅ sin(𝜔0t)) (1.28)

M||(t) = M||(0) ⋅ exp
(

− t
T1

)

+ M0 ⋅
(

1 − exp
(

− t
T1

))

. (1.29)

For the transverse components Mx and My, this represents a rotation about the z-axis
with angular frequency 𝜔0 and exponentially decaying amplitude. The longitudinal
component relaxes from its excited state M||(0) to the equilibrium value M0. The three
equations, (1.27)–(1.29), can be written equivalently in matrix form as follows:

⎛
⎜
⎜
⎝

Mx(t)
My(t)
M||(t)

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

e−t∕T2 cos(𝜔0t) e−t∕T2 sin(𝜔0t) 0
−e−t∕T2 sin(𝜔0t) e−t∕T2 cos(𝜔0t) 0

0 0 e−t∕T1

⎞
⎟
⎟
⎠

⎛
⎜
⎜
⎝

Mx(0)
My(0)
M||(0)

⎞
⎟
⎟
⎠

+
⎛
⎜
⎜
⎝

0
0

M0(1 − e−t∕T1)

⎞
⎟
⎟
⎠

.

(1.30)

Additional B1 fields are used to induce magnetization flips, as explained in Section 1.2,
usually as pulsed fields with a duration of a few milliseconds. For most imaging appli-
cations, it is sufficient to assume the flips to be instantaneous, so that Eqs. (1.27)–(1.29)
(or Eq. (1.30)) can be used to describe the situation before and after the pulse, with an
abrupt change of Mx, My, M|| (and potentially the precession phase) in between.

Maxwell’s equations state that time-varying magnetic fields are always accompanied
by an electric field, thus forming an electromagnetic field. Due to its frequencies of 63
and 126 MHz on 1.5- and 3-T MR scanners, respectively, a pulsed electromagnetic field
is referred to as a radiofrequency (RF) pulse.

1.5 Echoes

Thus far, we have seen how RF pulses can be used to flip the magnetization coherently
from the z-axis into the xy-plane to generate a measurable MR signal. However, due
to relaxation effects, the signal amplitude will decrease exponentially as the transverse
magnetization dephases. The signal following immediately after an excitation pulse is
called free induction decay (FID), and its decay constant is T∗

2 , the shortest of the three
relaxation constants T1, T2, and T∗

2 . Spin echoes and gradient echoes are two mechanisms
that allow one to modulate and partially recover these signal losses. In the following
sections, we will explain the underlying principles.

1.5.1 Spin Echoes

Spin echoes deploy a 180∘ RF-pulse to reverse the dephasing of the in-plane magneti-
zation after an excitation. The process is illustrated in Figure 1.3.
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Figure 1.3 Illustration of the spin-echo principle, from the rotating-frame perspective. The arrows
correspond to six isochromats at different positions within the imaging plane with different precession
frequencies. The direction of the static magnetic field is upward. (a) Equilibrium. (b) Excitation
(90∘ pulse). (c) Free precession. (d) 180∘ pulse. (e) Echo formation. (f ) Timing diagram.

Each arrow in Figure 1.3 represents the magnetization of an isochromat (ensemble
of spins with the same precession frequency) at different positions in the imaging
plane. The precession frequencies of the isochromats are distinct from one another
due to deviations of the magnetic field strength caused by susceptibility effects or B0
inhomogeneity. Initially, all isochromats are in thermal equilibrium and their magnetic
moments are aligned with the magnetic field along the z-axis (Figure 1.3a). An RF pulse
is irradiated (shown as a 90∘ pulse, but arbitrary flip angles are possible) and generates
transverse magnetization. Directly after the pulse, the magnetization vectors of all
isochromats are in phase (b). The isochromats start to precess about the direction of the
magnetic field at their individual precession frequencies𝜔p(x, y), indicated by the length
of the circular arrows. After a certain time t = TE∕2 of free precession, the magnetiza-
tion vectors have dephased, so that their vector sum |M

⊥
| is smaller than after the initial

RF pulse (c). Next, a 180∘ pulse is deployed, which flips the in-plane magnetization (d).
During the next TE∕2 interval, the isochromats continue to precess freely at their indi-
vidual precession frequencies 𝜔p(x, y). Finally, at time t = TE after the excitation pulse,
all isochromats are realigned, so that their magnetization vectors add up to maximum
amplitude, causing a peak in the recorded MR signal. TE is referred to as echo time.
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The refocusing pulse can only reverse the effect of spatially dependent precession
frequencies due to magnetic field inhomogeneities. As explained in Section 1.3, inter-
actions between spins lead to longitudinal (T1) and transverse (T2) relaxation and cause
additional decoherence and hence reduce the magnitude of the transverse magneti-
zation over time. If TE is short compared to T1, such that T1 relaxation during signal
evolution is negligible (which is a realistic assumption for most pulse sequences), the
echo amplitude can be approximated by |S0| ∝ |M

⊥
(TE)| ≈ |M

⊥
(0)| ⋅ exp (−TE∕T2).

1.5.2 Gradient Echoes

Gradient echoes use a pair of dephaser–rephaser gradients rather than a refocusing
pulse to generate an MRI echo signal. The working principle is illustrated in Figure 1.4.
As in the case of a spin echo, the equilibrium longitudinal magnetization (a) is fully or
partially flipped into the transverse plane by an RF pulse of arbitrary flip angle (b). Next,
a dephasing gradient (see Section 1.6.1) is applied along the readout axis (indicated
by the purple cone), imposing precession frequency dispersion along that axis (c)–(d).
The vector sum |M

⊥
| of the precessing magnetization thus decreases. Eventually, the

dephasing gradient polarity is reversed (e), indicated by the changed color of the cone.
For every isochromat, the amplitude of the gradient-induced field strength modulation
is constant, but the sign changes. Spins that initially experience a strong positive field
offset due to the dephaser gradient subsequently experience a strong negative field
offset. This affects the local precession frequency (in the rotating frame) in the same
way; rapidly precessing spins continue to precess rapidly, but the precession direction is
inverted. Finally, the rephasing gradient eliminates the effect of the dephasing gradient
(at the instance for which the area under the rephaser gradient waveform is equal to
the area under the dephaser) and |M

⊥
| is maximized.

Spatial modulation of the precession frequency due to B0 field inhomogeneity was
neglected in Figure 1.4. However, this introduces an additional contribution to spin
dephasing and cannot be compensated for by the rephasing gradient. Therefore, in con-
trast to a spin echo sequence, where decay of the echo amplitude is primarily governed
by T2, the gradient echo amplitude reduces as |M

⊥
(TE)| = |M

⊥
(0)| ⋅ exp(−TE∕T∗

2 ),
with T∗

2 < T2 (see Section 1.3). For a fixed TE, the gradient echo will thus have lower
signal amplitude (and hence lower signal-to-noise ratio) than a spin echo.

1.6 Magnetic Resonance Imaging

The previous sections have described how the NMR effect can be used to generate and
manipulate a signal from an ensemble of spins in a magnetic field. This mechanism is
sufficient to obtain time-resolved spectra that provide information on relaxation times
and chemical compounds contained in a sample. However, the methods introduced so
far can only access global properties of an object – we have not yet described how to
associate a signal with its position of origin, which is the prerequisite for any imaging
modality. In this section, we will therefore explain a process for encoding spatial
information in the MR signal and demonstrate how this information can be used to
convert a signal into an image. We will then look into different data sampling strategies
and finally present some methods for accelerating the imaging process.
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Figure 1.4 Illustration of the gradient echo principle, from the rotating-frame perspective. The arrows
correspond to six isochromats with different precession frequencies at different positions within the
imaging plane. The direction of the static magnetic field is upward. The cone indicates direction and
polarity of the gradient. Further explanations are given in the text. (a) Equilibrium. (b) Excitation
(90∘ pulse). (c) Dephasing gradient. (d) Dephasing gradient. (e) Rephasing gradient. (f ) Echo formation.
(g) Timing diagram.

1.6.1 Spatial Encoding

Mathematically, an image can be described as a discrete two-dimensional signal, where
each pixel can be assigned a unique position in space. In order to generate images from
the voltage induced by the precessing transverse magnetization in receive coils, it is
necessary to establish a mechanism for spatial encoding of information. The received
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signal S(t) can then be interpreted as a superposition of the signals from isochromats
(ensembles of spins with the same precession frequency) at different locations, and
image reconstruction comprises the decomposition of this compound signal into
spatially resolved information.

Three distinct steps are carried out to achieve spatial encoding in three-dimensional
space. Each of them requires the application of a gradient field. Gradients generate a
magnetic field parallel to the z-axis, with the magnitude being linearly dependent on
one coordinate:

B(x, y, z) = Gx x ⋅ ẑ (1.31)

for an x-gradient with amplitude Gx, and analogously for y and z. These magnetic fields
add to B𝟎, so that the resultant magnetic field becomes

B(x, y, z) = (B0 + Gx x + Gy y + Gz z)ẑ. (1.32)

Sequential application of three orthogonal gradients leads to three-dimensional spatial
encoding of the MRI signal.

1.6.1.1 Slice Selection
As described in Section 1.2, a transverse rotating magnetic field B1 can be used to tilt
magnetization away from its longitudinal equilibrium state and into precessing trans-
verse magnetization. This only works if the rotation frequency 𝜔 of B1 matches the spin
precession frequency 𝜔p. Assuming that a z-gradient field is active while the B1-pulse is
applied, 𝜔p becomes position-dependent5:

𝜔p(x, y, z) = 𝛾B(x, y, z) = 𝛾(B0 + Gz ⋅ z). (1.33)

This implies that B1 can only flip spins at the z-location z0 for which the resonance
condition is fulfilled, that is, where 𝜔p(x, y, z0) = 𝜔. If, instead of being monofrequent,
B1 is designed to be a superposition of precession frequencies with equal amplitudes
over a frequency range (𝜔 − 𝛿, 𝜔 + 𝛿), it will flip all spins in the range (z0 − Δz, z0 + Δz)
with Δz = 𝛿

𝛾Gz
. A waveform with uniform amplitude over the interval (𝜔 − 𝛿, 𝜔 + 𝛿),

constituting a rectangular pulse in frequency space, corresponds to a sinc6 in the time
domain. Hence, a combination of a slice-select gradient and a sinc-shaped B1-pulse can
be used to excite only the spins within a slice of arbitrary orientation and thickness.
This process is called slice selection (SS).

1.6.1.2 Phase Encoding
Phase encoding (PE)7 is the first of two in-plane spatial encoding steps following
slice-selective excitation. A phase-encoding gradient, GPE, is turned on for a limited
time TPE. Its direction lies in the imaging plane, perpendicular to the slice-select
gradient. This introduces in-plane dispersion of the precession frequency along the
direction of the gradient. Let us assume that the magnetization is excited in such a

5 B1 is about three orders of magnitude smaller than typical gradients, and five to six orders of magnitude
smaller than B0; therefore, its effect on the resonance frequency is negligible.

6 sinc(t) = sin(t)
t

.
7 PE in the context of MRI is not related to a technique of the same name used for digital data transmission,
also known as Manchester coding.
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way that it has zero phase offset in the rotating reference frame after excitation. For
simplicity, we will assume further that the imaging plane corresponds to the xy-plane
(i.e., SS along the z-axis) and that the phase-encoding direction coincides with the
y-axis, GPE = GPE ⋅ ŷ. After application of the phase-encode gradient pulse, the offset
phase is given by

𝜙(r) = r •
(

𝛾
∫

TPE

0
(B(x, y, z, t) − B0) dt

)

= 𝛾
∫

TPE

0
r • (GPE ⋅ ŷ) dt

= 𝛾 ⋅ GPE ⋅ y ⋅ TPE. (1.34)

This implies that the y-position of a previously excited spin is now encoded in its pre-
cession phase.

1.6.1.3 Frequency Encoding
The second in-plane encoding axis is referred to as frequency encoding or readout
(RO) direction. After PE, a readout gradient GRO, perpendicular to the slice selection
and phase-encoding directions, is applied while the MR signal is sampled by means
of an analog-to-digital converter (ADC) connected to the receive coil(s).8 If the
frequency-encoding axis coincides with the x-axis and t = 0 denotes the time at which
GRO is switched on, phase evolution can be expressed as

𝜙(x, y, z, t) = 𝛾(GPE ⋅ y ⋅ TPE + GRO ⋅ x ⋅ t). (1.35)

The receive coil will “see” this signal (after quadrature detection) as a superposition of
all individual signals averaged over space:

S̃(t) =
∫ ∫ ∫

z0+Δz

z0−Δz
S0(x, y, z) ⋅ exp(i𝜙(x, y, z, t)) dz dy dx, (1.36)

where S0(x, y, z) is the magnitude of the signal emitted at location r = (x, y, z). If we
use 𝜙 from Eq. (1.35) and substitute ky = 𝛾 ⋅ GPE ⋅ TPE and kx(t) = 𝛾 ⋅ GRO ⋅ t, this can
be rewritten as

S̃(kx, ky) =
∫ ∫ ∫

z0+Δz

z0−Δz
S0(x, y, z) ⋅ exp(i(kx ⋅ x + ky ⋅ y)) dz dy dx, (1.37)

which is the 2D Fourier transform of the in-plane magnetization (averaged over slice
thickness 2 ⋅ Δz along the z-direction). This means that S0(x, y, z) can be recovered
from the signal S̃(kx, ky) if sufficient data points in k-space, spanned by unit vectors
k̂x and k̂y, are sampled and then subjected to a discrete inverse 2D Fourier transform.
Since kx is explicitly time-dependent by definition, a line in k-space with fixed ky can be
sampled by recording the MR signal over time, while the readout gradient is switched
on. ky is defined by the area under the phase-encoding gradient waveform prior to
signal readout, determined by its amplitude GPE and duration TPE. Different lines in

8 Most modern MRI scanners use arrays of receive coils, rather than a single coil. Smaller coils, embedded
in a flexible mat or a rigid assembly, can be positioned closer to the object of interest than a single larger coil,
enabling increased signal quality. Furthermore, parallel imaging (see Section 2.3.3) requires multiple coils
with different spatial sensitivity profiles.
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k-space can therefore be acquired sequentially by changing the product GPE ⋅ TPE. A
more elaborate method for sampling an entire k-space with a single excitation will be
discussed in Section 2.2.2.

If readout of a k-space line were started immediately after the excitation of a
transverse magnetization component, T∗

2 relaxation would cause the signal amplitude
to drop continuously along that line so that the amplitude at one end of the line
would be larger than that at the opposite end. This asymmetry would inevitably cause
image artifacts after Fourier transform. One technique to overcome such issues is to
refocus the signal so that its amplitude reaches a local maximum at a certain time
TE after excitation. The local signal maximum is called an echo, and the interval TE
between the excitation and the echo is referred to as echo time. If readout is performed
symmetrically around the echo, so that the first half of the k-space line is sampled on
the rising slope of the signal envelope and the second half on the falling slope, the signal
amplitude is distributed symmetrically over the line (see Figure 2.4 for an example).
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2

Imaging Concepts

2.1 k-Space

It was mentioned earlier that the acquired signal in MRI is the k-space representation of
the spatial distribution of transverse magnetization (see Eq. (1.37)). The MRI data acqui-
sition process consists of filling k-space line by line, and then an image is calculated from
the complete k-space. We will now look at the image reconstruction process and discuss
some relationships between acquisition parameters in k-space and the corresponding
parameters of the reconstructed images.

k-Space is a two- (representing a single image slice) or three-dimensional (represent-
ing a volume to be reconstructed into multiple slices) discrete space equipped with an
orthogonal coordinate system. The coordinates are typically referred to as kx, ky, and kz
(hence the name).1 Alternatively, to draw the connection to MR image acquisition, the
axes can also be labeled in terms of readout (RO) and phase-encode (PE) directions, as
we will do below. For Cartesian imaging techniques, k-space points are sampled on a rec-
tilinear grid, whereas non-Cartesian MR acquisition schemes sample data points on a
curvilinear or irregular grid. Each data point in k-space is a complex number. Points that
are close to the center of k-space represent low spatial frequencies, corresponding to the
coarse structure of the image. Higher spatial frequencies are encoded in the periphery
of k-space and capture small details, which ultimately define the image resolution.

In the simplest case, image reconstruction is carried out by applying an inverse
discrete Fourier transform (DFT) to the k-space data. Since k-space can be either
two-dimensional or three-dimensional, the appropriately dimensioned version of the
DFT has to be used. In general, one-dimensional DFTs can be performed along all
spatial dimensions successively. A fast Fourier transform (FFT) algorithm is most
commonly chosen because of its speed and ubiquity. An example is presented in
Figure 2.1, where magnitude and phase of both k-space and image space are shown for
a 2D data set.

The Nyquist–Shannon sampling theorem establishes a correlation between the size
and resolution of an MR image and the geometric parameters of the corresponding
k-space [10]. Let LPE and LRO denote the size of the image along the PE and RO axes,
respectively, and RPE and RRO the spatial resolution in the image, that is, the distance
between the centers of adjacent pixels or voxels. The Nyquist–Shannon theorem states

1 k is the classical symbol for wave number.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 2.1 Example of MRI image of an agarose gel phantom with two soft and two hard inclusions, in
k-space and image space representation. The conversion between the two representations can be
achieved by a two-dimensional Fourier transform. The white arrows in the lower left image indicate
signal cancellation due to intra-voxel phase dispersion (see Section 3.2), caused by excessive vibration
amplitudes. The inclusions are visible in the magnitude image as bright and dark disks. The phase
image is affected by phase wraps, which would have to be removed by unwrapping before further
processing.
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Figure 2.2 An image (a) and its associated k-space
(b) with the relevant parameters. The RO and PE
axes are horizontal and vertical, respectively, as
commonly found in MRI literature. R represents the
pixel spacing (resolution), L the spatial extent of
the image, Δk the distance between adjacent
points in k-space, and kmax identifies the corners of
k-space.

that

kPE
max =

1
2 ⋅ RPE (2.1)

kRO
max =

1
2 ⋅ RRO (2.2)

ΔkPE = 1
LPE (2.3)

ΔkRO = 1
LRO , (2.4)

where kPE
max and kRO

max designate the coordinates of the corner points of the acquired
k-space and ΔkPE and ΔkRO represent the distance between adjacent sample points in
k-space. A graphical illustration of these parameters is presented in Figure 2.2.
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The total number of pixels in the image can be calculated as

Npixels =
LRO

RRO ⋅
LPE

RPE . (2.5)

In k-space, PE lines are sampled between −kPE
max and +kPE

max in steps of ΔkPE. The total
number of PE lines is therefore

Nlines =
2 ⋅ kPE

max

ΔkPE =
2 ⋅ 1

2⋅RPE

1
LPE

= LPE

RPE . (2.6)

The number of sample points in each PE line is given by

NRO =
2 ⋅ kRO

max

ΔkRO =
2 ⋅ 1

2⋅RRO

1
LRO

= LRO

RRO . (2.7)

The total number of sample points in the full k-space is therefore

Nsample points =
LRO

RRO ⋅
LPE

RPE = Npixels. (2.8)

Thus, Eqs. (2.1)–(2.4) imply that the number of data points is the same in the image
and its associated k-space. This fact can also be understood from a different perspec-
tive: DFT is a unitary operation; therefore, information is neither gained nor lost during
transformation, maintaining the number of data points.

Violating Eqs. (2.1) and (2.2) will reduce image resolution, whereas breaching Eqs.
(2.3) and (2.4) effectively decreases the field of view (FOV) and leads to fold-in (aliasing)
of all objects that are located outside the FOV (Figure 2.3). Along the RO axis, band-pass
filtering of the raw MR signal can suppress these fold-ins. Along the PE axis, care has to
be taken to ensure that the object does not exceed the FOV, since there is no easy fix for
this type of fold-ins.

Image size and resolution along the RO and PE axes are in principle mutually inde-
pendent; however, for the sake of simplicity, let us assume that they are equal – which is
not an uncommon situation at all – and hence drop the indices PE and RO. For an image
with a size of N × N pixels, N × N data points have to be sampled in k-space. While read-
out of a single line in k-space is usually a fast process that only takes few milliseconds,
each k-space line requires its own phase-encoding step. In highly segmented sequences,
such as FLASH, each readout requires its own excitation pulse, such that the total acqui-
sition time is proportional to the number of k-space lines. In other sequences, such as
EPI, where several or all lines are acquired in one readout train following a single exci-
tation pulse, the total acquisition time is only weakly affected by the number of k-space
lines, whereas the echo time is approximately proportional to that number. Long echo
times render the sequence more sensitive to signal relaxation (governed by either T2 or
T∗

2 , depending on the type of pulse sequence), resulting in a poorer signal-to-noise ratio
(SNR). In summary, an excessive number of PE lines either increases total acquisition
time or decreases image quality. Therefore, various strategies to decrease the number of
necessary k-space lines without severe penalties have been conceived and will be pre-
sented in this chapter. These strategies are collectively referred to as fast imaging.
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(a) (b) (c)

(d) (e) (f)

Figure 2.3 Illustration of k-space artefacts occurring when the Nyquist–Shannon theorem is violated.
(a,d) k-Space (magnitude) and image space representation of a fully sampled (256 × 256) T1-weighted
MRI scan. In (b), every second line in k-space was set to zero (simulating exclusion of these lines from
data acquisition). According to Eq. (2.3), this halves the field of view (FOV) in the direction of the
skipped lines. Since the object is larger than the reduced FOV, ghosting occurs, as shown in (e). In (c),
only the central 64 × 64 k-space points were used for image reconstruction. The resulting image (f )
has reduced resolution, as predicted by Eqs. (2.1) and (2.2).

2.2 k-Space Sampling Strategies

Despite a plethora of different MR pulse sequences – EPI, RARE, HASTE, TSE,
MP-RAGE to name a few – imaging in general can be understood as a modular
procedure including at least the following steps:
1) Excitation: Creation of transverse magnetization through application of one or more

radiofrequency (RF) pulses. This step usually includes the slice selection process dis-
cussed above. For more sophisticated imaging techniques, it can also include satu-
ration pulses to selectively suppress certain types of tissue (e.g., fat, blood, or free
water). However, these applications are beyond the scope of this book, and we refer
to the literature [10, 11] for further information.

2) Signal manipulation: This part of image generation can include additional RF pulses,
gradients, and delays for manipulation of longitudinal or transverse magnetization.
The 180∘ pulse of a spin-echo sequence and the dephasing gradient of a gradient-echo
sequence are typical examples. In more specialized scenarios, motion sensitization
(for magnetic resonance elastography (MRE) or diffusion-sensitive imaging) can
be performed here through the addition of appropriate gradient waveforms. The
phase-encoding step can be part of either this step or the following one.

3) Readout: The final step is sampling of the MR signal. Different strategies exist, from
the collection of a single k-space point per excitation pulse to the acquisition of an
entire k-space in a single-shot sequence. This component can include the PE gradient
(if it is not part of the second step), and it has to include the RO gradient.
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The first two steps can be understood with the concepts already discussed. In the fol-
lowing section, we will concentrate on the third step. The basis for virtually all MRI
experiments is Eq. (1.37), that is, the fact that a fully sampled k-space can be converted
into an image by means of an inverse Fourier transform. However, there are many dif-
ferent strategies of filling k-space.

The simplest case comprises the acquisition of a single k-space line for each excitation
pulse. The line to be acquired is determined by the area under the phase-encoding gradi-
ent before signal readout. Signal sampling in the presence of the RO gradient introduces
frequency dispersion along the RO axis, as explained in Section 1.6.1.3. Let us assume
that the size of the final image along the RO axis is Lx. Two pixels from opposite ends of
the image are then separated by frequency 𝛿𝜈 = 1

2𝜋
𝛾GRO ⋅ Lx, where GRO is the amplitude

of the RO gradient. The quantity 𝛿𝜈 is called the bandwidth. 𝛿𝜈 is the largest frequency
that has to be resolved to reconstruct the image. According to the Nyquist–Shannon
theorem, the signal has to be sampled in steps of 𝛿t = 1

2𝛿𝜈
. 𝛿t is usually referred to as

dwell time or the sampling time per data point.
Increasing the bandwidth – by increasing RO gradient amplitude GRO – leads to a

larger spectral separation of signals from adjacent voxels. At the same time, the dwell
time decreases so that individual k-space line can be sampled faster. However, reducing
data acquisition time has a negative impact on the SNR, as will be shown in Section 2.3.4.

2.2.1 Segmented Image Acquisition

In general, segmented acquisition refers to a sampling strategy that requires several
excitation→readout cycles for acquiring a full k-space. There are numerous concepts
for partitioning k-space; however, we will concentrate in the following chapter on the
most common one, which involves the acquisition of a single line (one phase-encoding
step) after each excitation.

2.2.1.1 Fast Low-Angle Shot (FLASH)
FLASH [13] (fast low-angle shot2) is a spoiled and segmented gradient-echo sequence.
In general, each repetition of the acquisition loop shown in Figure 2.4 acquires one line
in k-space, each time with a different PE gradient, illustrated by the superimposed PE
gradient shapes. Very short echo times and repetition times (on the order of 10 ms)
can be achieved. With a 90∘ excitation pulse, this would cause problems, since T1 is
much shorter than TR, so that there is hardly any longitudinal magnetization when the
second RF pulse is applied. As a remedy, much smaller flip angles – on the order of
15∘ – are used. Those low-angle RF pulses do not flip the entire longitudinal magneti-
zation M|| into the transverse plane, but only the fraction M|| ⋅ sin(𝛼), while the compli-
mentary portion, M|| ⋅ cos(𝛼), remains on the longitudinal axis. Hence, for 𝛼 = 15∘, each
RF pulse flips about 26% of the available longitudinal magnetization into the transverse
plane. During each TR interval, a certain amount of transverse magnetization relaxes
back to the longitudinal orientation. After a number of repetitions (typically 20–40), an
equilibrium is reached, in which the amount of magnetization that is flipped by each
pulse is equal to the amount of longitudinal magnetization that relaxes between RF
pulses. This steady state guarantees that the signal intensity is the same for all acquired

2 FLASH is the name used in the original publication. SPGR and T1-FFE are alternate names for this
sequence.
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Figure 2.4 Timing diagram of a FLASH pulse sequence,
according to [14]. Two iterations of the acquisition loop
are shown; in practice, one repetition is required for
each PE line. Spoiler gradients are shaded in gray. The
superimposed PE gradients indicate that a different
gradient is used in each iteration; the same holds true
for the slice-select spoiler gradient. Abbreviations:
SS – slice-selection gradient, PE – phase-encoding
gradient, RO – readout gradient, RF – radiofrequency
pulses, TE – echo time.

k-space lines. This technique removes the need to wait for full recovery of longitudinal
magnetization after each excitation, and hence accelerates the imaging process signif-
icantly.3 The flip angle that maximizes transverse magnetization in the steady state is
called Ernst angle, which can be calculated as [11]

𝛼E = arccos(e−TR∕T1 ). (2.9)

RF pulses do not only convert longitudinal into transverse magnetization, they also
have an effect on the existing transverse magnetization. Here, the analysis is more com-
plicated, since the effect of an RF pulse on transverse magnetization depends not only
on the flip angle but also on the phase of the pulse relative to the phase of the precess-
ing magnetization. Three or more pulses in quick succession can generate a number of
additional echoes (stimulated echoes or Hahn echoes [10], which are beyond the scope
of this book) that can interfere with signal acquisition. In order to circumvent this issue,
FLASH employs a process called gradient spoiling. Spoiler gradients are shaded in gray
in Figure 2.4. They are used to deliberately dephase transverse magnetization with the
goal of minimizing (or, ideally, nulling) the resultant transverse magnetization vector.
Any subsequent RF pulse will then “see” only the longitudinal magnetization. In each
repetition of the acquisition loop, a slice-select spoiler gradient with a different ampli-
tude is deployed to prevent coherent buildup of remaining transverse magnetization due
to imperfect spoiling.

The scheme shown in Figure 2.4 represents the basic implementation of a FLASH
pulse sequence. If the sequence is used for MRE, additional motion-encoding gradi-
ents (MEGs) are required to detect induced tissue vibration. This can easily be done by
inserting an appropriate MEG (see Section 3.1) waveform between the slice-select and
PE gradients; however, doing so will increase both the echo time and repetition time.

2.2.1.2 Balanced Steady-State Free Precession (bSSFP)
Balanced steady-state free precession (bSSFP4) [15] is an alternative steady-state imaging
strategy. It is very similar to FLASH; a sequence diagram is presented in Figure 2.5. In
contrast to FLASH, the gradients on each axis are fully balanced for each loop iteration,
preventing spoiling of transverse magnetization. Instead, the RF pulses are deployed
in such a way that part of the remaining longitudinal magnetization can contribute to

3 As a rule of thumb, the longitudinal equilibrium magnetization is reached after 5 ⋅ T1 in the case of a 90∘
pulse.
4 Also known as BFFE, FIESTA, and True FISP.
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Figure 2.5 Two repetitions of the acquisition loop of a
balanced steady-state free precession (bSSFP)
sequence, according to [14]. Gradients along all three
axes are balanced for each TR interval. The vertical
arrows along the PE axis indicate that the PE gradient
and its rewinder are of equal magnitude but opposite
polarity. For a list of abbreviations, see Figure 2.4.
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the steady state, thus leading to potentially higher signal amplitudes than with use of a
FLASH sequence. If all RF pulses have the same phase in the rotating reference frame
and are orthogonal to the in-plane magnetization, then each pulse has two effects:

1) Flipping longitudinal magnetization into the transverse plane.
2) Flipping part of the transverse magnetization onto the negative longitudinal axis.

If the increase in transverse magnetization per RF pulse due to the first effect is larger
than the decrease in transverse magnetization due to the second effect, the overall sig-
nal amplitude is larger than for a FLASH sequence, which annihilates the remaining
transverse magnetization component prior to each RF pulse.

However, the situation becomes much more complicated if the pulses (and hence the
axis about which the magnetization is flipped) are not orthogonal to the transverse mag-
netization. In this case, the flipping effect of a pulse has to be decomposed into two
components. While part of the transverse magnetization is again flipped onto the neg-
ative axis, the remaining in-plane component is then rotated by a certain angle in the
transverse plane so that the phase of the transverse magnetization changes. Over a series
of several RF pulses, this leads to the generation of complex magnetization patterns,
including all sorts of Hahn echoes and stimulated echoes that will interfere with data
acquisition.

Let us imagine that there is a linear gradient g of the static magnetic field, due to B0
inhomogeneities or improper shimming, such that

B(r) = (B0 + 𝛿B(r)) ⋅ êz (2.10)
𝛿B(r) = r • g. (2.11)

The modulation of B induces a position-dependent shift 𝛿𝜔(r) = 𝛾r • g of the spin reso-
nance frequency. Therefore, if the initial RF pulse excites all spins with a common phase
Ψ0, then the phase distribution at the beginning of the next pulse, TR later, will be

Ψ(TR) = Ψ0 + 𝛿𝜔 ⋅ TR = Ψ0 + 𝛾r • g. (2.12)

Note that the right-hand side of Eq. (2.12) depends explicitly on the position r of the
spin so that the phase of the magnetization is not homogeneous throughout the object.
This means that it is not possible to apply an RF pulse that has the same phase, relative to
the magnetization, at all positions within the imaging plane.5 Therefore, the steady-state

5 This is the case when a single-channel RF transmit system is used. Multichannel excitation, using several
independent transmit coils, can be employed to generate spatially varying B1 fields, but this is beyond the
scope of this book.
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magnetization will vary across the object, giving rise to inhomogeneous image intensity.
Reference [16] contains a comprehensive mathematical treatment of this phenomenon.
In summary, a gradient g imposes a periodic intensity modulation with period

𝜆 = 1
𝛾 ⋅ g ⋅ TR

, (2.13)

which manifests itself as a pattern of bright and dark stripes perpendicular to g
(banding). An example of banding is shown in the top right image of Figure 3.9. Since
bSSFP was used as the basis for MRE in the past [17–19], its specific properties when
used for harmonic motion detection will be discussed in Section 3.4.2.

2.2.2 Echo-Planar Imaging (EPI)

Echo-planar imaging (EPI, [20]) is an extremely fast MR imaging strategy that allows
acquisition of an entire 2D image with a single RF excitation. In contrast to other tech-
niques that are constrained to the acquisition of a single or several k-space lines, EPI
is capable of acquiring a full 2D k-space following a single excitation pulse. An oscil-
lating RO gradient is combined with short intermittent PE gradient pulses (“blips”) to
sample k-space in a zigzag pattern. EPI can be implemented as either a gradient-echo or
spin-echo pulse sequence. The following discussion focuses on the spin-echo case, the
gradient-echo case is analogous.

As explained in Section 1.5.1, an excitation pulse followed by a 180∘ pulse with delay
TE∕2 will result in the formation of a spin echo signal at time TE. Figure 2.6 depicts the
basic principles of the EPI sequence. For the sake of clarity, minor details have been omit-
ted from the figure. A full description can be found in [11] or [21], a concise explanation
is given below (the letters A© to E© refer to Figure 2.6).

The 90∘ pulse flips the longitudinal magnetization into the transverse (xy) plane. Due
to the slice-select gradient B©, only a slice of a certain thickness rather than the full
volume is excited. The negative lobe of the slice-select gradient rewinds the phase dis-
persion caused by the gradient so that after the end of the waveform, all spins in the
xy-plane precess in phase (neglecting dephasing effects such as B0 inhomogeneities and
dipole interaction). The prephasing gradients A© create an in-plane phase dispersion,
allowing k-space sampling to begin in one corner of the 2D k-space. The 180∘ refocus-
ing pulse flips the transverse magnetization, leading to the formation of a spin echo at
time TE with respect to the 90∘ pulse. The crusher gradients C© surrounding the refo-
cusing pulse serve to compensate for imperfect inversion (i.e., spatial deviations from
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Figure 2.6 Diagram of the EPI sequence and
its k-space trajectory. An explanation is given
in the text. RF denotes radiofrequency pulses.
RO, PE, and SS refer to readout, phase-encode,
and slice-select axes, the three orthogonal
gradient directions used for spatial encoding.
ADC (analog-to-digital converter) indicates
recording of an RF signal. Repetition time (TR)
is the duration of the acquisition of one slice.
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the expected nominal flip angle of 180∘ due to B0 or B1 inhomogeneities) and suppress
undesirable free induction decay (FID, [11]) signal, which would otherwise interfere with
the spin echo signal. In order to understand this concept, it is important to note that the
effect of two gradients with the same polarity before and after a 180∘ pulse will have
opposite effects on the spins, that is, if the first gradient causes dephasing, the second
one will rephase the signal.

Signal sampling starts immediately after the refocusing pulse. A trapezoidal RO
gradient D© is applied while the analog-to-digital converter (ADC) samples the resultant
gradient echo signal, acquiring a single line in k-space6 (indicated by the uppermost
green arrow on the right-hand side of Figure 2.6). Once the line has been recorded, the
RO gradient is turned off and a short PE gradient pulse E© (a blip) is deployed, shifting
the following RO to the next line in k-space (purple dashed arrow on the right-hand side
of Figure 2.6). Then the next RO gradient is deployed with inverse polarity, sampling the
second line of k-space in the opposite direction. This pattern of PE blips and alternating
RO gradients is repeated until all of k-space has been sampled. A two-dimensional
FFT can be used to convert the measured signal into an image of that slice. For clarity,
Figure 2.6 illustrates the acquisition of only five lines. Typically, however, a train of
64–256 lines is sampled after a single excitation within approximately 20–100 ms. This
highly efficient sampling scheme makes EPI one of the fastest MRI techniques available.

After acquisition of a 2D k-space, a different slice can be acquired by repeating the pro-
cess with a shifted center frequency of the RF pulses to excite a different region. Alter-
natively, the same slice could be acquired again, either with some parameters changed
or with identical parameters for signal averaging. The time required for the acquisition
of a single slice is called repetition time and denoted by TR. Since the main part of the
magnetization is in the transverse plane after the first image acquisition, one has to wait
for it to return to the longitudinal state before it can be flipped again by the next 90∘
pulse. This limits the minimum time between acquisitions of the same slice to the order
of 1–1.5 s at 1.5 T. However, while the magnetization in one slice relaxes back toward
thermal equilibrium, a different slice can be scanned to reduce total scanning time.

The oscillating RO gradient produces a series of gradient echoes. Meanwhile, the RF
refocusing pulse generates a spin echo signal, which acts as the envelope for the ampli-
tude of the individual gradient echoes. Because of the symmetry property of the spin
echo discussed in Section 1.5.1, the spin echo amplitude is maximum at time TE∕2 after
the refocusing pulse. The sequence timing exploits this by adapting the readout train,
such that the center line of k-space (the dashed red line in Figure 2.6) is sampled at that
time. This guarantees maximum SNR for the low spatial frequencies that constitute the
center of k-space and ultimately determine the overall image contrast. Conversely, the
k-space periphery is sampled at lower signal amplitudes, thus imposing a limitation on
the maximum attainable image resolution.

In the standard implementation of EPI, the time slot between the two RF pulses (the
first TE∕2 interval) is basically unused, with the exception of the acquisition of some
autocalibration data, which have been omitted from Figure 2.6. The overall timing
is determined by the duration of the readout train. The second TE∕2 interval is the
duration between the refocusing pulse and the readout of the center of k-space and

6 Sampling of a k-space line is shown here as a continuous process, whereas in reality the signal is
temporally binned into typically 64–256 discrete data points.
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is thus determined by the number of k-space lines to be sampled and the gradient
performance. The temporal separation of the 90∘ and 180∘ pulses is set to be equal to
this required TE∕2 interval. The empty time slot between the two RF pulses can be
used for MRE-relevant motion encoding, as described in Chapter 3.

2.2.3 Non-Cartesian Imaging

Non-Cartesian imaging strategies constitute an exception to the assumption that data
are acquired on a Cartesian grid in k-space. While Cartesian k-space sampling has the
advantage that image reconstruction can be performed directly by applying an FFT
(which requires data on a Cartesian grid), numerous imaging techniques exist that over-
come the constraint of a Cartesian k-space, for example, by reading data along spiral or
radial trajectories. For the reconstruction of such k-spaces, two fundamental approaches
exist: either the data are re-gridded onto the Cartesian grid by interpolation or other
mathematical procedures, or the canonical Fourier transform is replaced with a variant
that can deal with nonuniform sampling.

Non-Cartesian sampling and image reconstruction are very wide fields of research,
and in this book we can only scratch the surface. Reasons for opting for such a strategy
are faster data acquisition, lower demands on gradient performance, lower gradient slew
rates (causing less peripheral nerve stimulation), and reduced scanner noise. Depending
on the implementation of the sequence, not all of these advantages can be exploited at
the same time.

As an example of non-Cartesian imaging, we will discuss an EPI-based approach with
a spiral readout trajectory, which was proposed by Johnson in [22].

Typically, each readout in a spiral or radial sequence starts at the center of k-space.
This means that no pre-phasing gradients (such as A© in Figure 2.6) or in-plane
phase-encoding gradients are required. Instead, the RO gradient consists of a super-
position of the in-plane gradients (for 2D sampling) or all three gradients (for 3D
sampling) during signal RO, as shown in Figure 2.7. In the case of a spiral sequence, a
hybrid approach is employed: One three-dimensional k-space is sampled in multiple
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Figure 2.7 Spiral k-space sampling, as described in [23] and used in [22]. The RO gradient waveforms
for one spiral arm are shown on (a). Note that for spiral imaging there is no in-plane PE gradient; both
gradients act as RO gradients. (b) Three spirals are superimposed by modifying the phase of the
gradient waveforms. Note that the sampling density is higher in the center of k-space than in the
periphery, which can be exploited for correcting subject motion [22].
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shots following the excitation of a thick slab. Each readout follows a spiral trajectory
(in the kxky-plane), whereas the kz-position is determined by a short PE gradient along
the z-axis prior to readout. Since a spiral covering an entire 2D k-space would take
too long to acquire, an interleaved scheme is used, in which several spiral arms are
superimposed to obtain a fully sampled k-space.

2.3 Fast Imaging

2.3.1 Fast Imaging Strategies

Many applications require fast image acquisition, to either increase patient comfort
by shortening the total scan time or to optimize image quality by reducing repetition
time in single-shot sequences. However, in Section 2.1, we explained that the number of
k-space points to be sampled is determined by the desired image size and resolution, and
that violating these relationships will lead to severe image artifacts. Nevertheless, several
techniques exist to accelerate the acquisition process, by either exploiting redundancy
in the MR signal or complementing image reconstruction with additional information.
In this section, we will discuss the most common methods and their relevance to MRE.

The most obvious strategy to reduce the number of PE lines is to restrict the FOV
along the PE direction. Equation (2.8) states that a reduction of pixels translates to the
same reduction of required k-space points. Instead of a square image, one can acquire
a rectangular image with dimensions Nx × Ny. From here on, we will identify x with
the RO axis and y with the PE direction, as is common in MRI literature. If we require
isotropic resolution (Rx = Ry), then Eqs. (2.1) and (2.2) dictate that kx

max = ky
max = kmax.

However, if we introduce a scaling factor 0 < p < 1 such that Ly = p ⋅ Lx, the distance
between adjacent k-space points becomes direction-dependent:

Δkx = 1
Lx (2.14)

Δky = 1
Ly = 1

p ⋅ Lx = Δkx

p
> Δkx

. (2.15)

According to Eq. (2.6), this reduces the number of k-space lines by a factor 1
p
> 1,

whereas the number of points in each line remains unaffected. This method is applicable
if the object to be imaged does not exceed the FOV along the PE axis, otherwise fold-in
artifacts will occur. In many practical applications, the object to be imaged is longish
or ellipsoidal in shape. In these cases, the image can be oriented in such a way that
the long axis is aligned with the RO axis and the short axis with the PE axis. Reducing
the PE FOV is then possible without risk of fold-in artifacts. In other cases, there are
factors that constrain the choice of image orientation (e.g., sequences relying on high
gradient performance sometimes require the image to be aligned with the gradient
coordinate system of the scanner), and FOV reduction is not an option. In any case, this
strategy can be combined with the more complex methods described in the following
paragraphs.
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2.3.2 Partial Fourier Imaging

The (continuous or discrete) Fourier transform has one very useful property when
applied to real-valued data. Let I(x, y) designate an image in which every pixel is
characterized by one real number (the gray value, or intensity, at that point). Its
Fourier-transformed counterpart

Ĩ(kx, ky) = ℱ [I(x, y)](kx, ky) (2.16)

features a symmetry relation:

Ĩ(kx, ky) = Ĩ(−kx,−ky)∗, (2.17)

where the asterisk denotes complex conjugation. In other words, there is a level of redun-
dancy in k-space, since every data point (kx, ky) contains the same information as its
point-symmetric counterpart (−kx,−ky). Consequently, full image information is con-
tained in one-half of k-space, and sampling the entire k-space can be considered a waste
of time. This can be exploited by restricting data acquisition to the upper half of k-space,
only acquiring PE lines with ky ≥ 0, and then calculating the points in the lower half
through complex conjugation. In practice, a few lines of the lower half are sampled
to increase noise robustness. The partial Fourier factor PF denotes the portion of the
full k-space that is actually sampled. Typical values for clinical applications are PF ∈{

5
8
,

6
8
,

7
8

}

. Image acquisition time is reduced by the same factor PF , and the acceleration
factor is therefore given by

R = 1
PF

. (2.18)

However, there is a price to pay for the accelerated image acquisition. In real-world appli-
cations, each acquisition is tainted by a certain amount of noise. Therefore, each sample
point Ĩ(kx, ky) consists of the “actual” value Ĩ0(kx, ky) (the value that would be acquired
under hypothetical noise-free conditions) and noise ñ(kx, ky):

Ĩ(kx, ky) = Ĩ0(kx, ky) + ñ(kx, ky). (2.19)

Noise is a random quantity, and the values of ñ are not correlated between different
sample points. Therefore, in general, ñ(kx, ky) ≠ ñ(−kx,−ky)∗. If one acquires a full
k-space, the Fourier transform involves a kind of averaging between point-symmetric
data points, so that the impact of noise is reduced. On the other hand, if the partial
Fourier technique is used, no such averaging occurs since only one value is known for
every pair of points. In general, the SNR is related to acquisition parameters via [10]

SNR ∝
√

Ts ⋅ V , (2.20)

where Ts is the sampling time (the time during which data are actively sampled, inde-
pendent of other time parameters such as echo time, repetition time, or total imaging
time) and V is the volume of a single voxel. As a consequence, partial Fourier imag-
ing reduces the SNR by a factor of

√
PF. Section 2.3.4 will explain how this drawback

can – in some cases – be partially compensated for through echo time reduction.
Unfortunately, the symmetry in Eq. (2.17) only exists in the case of real-valued image

data. If one is only interested in a magnitude image that depicts the signal amplitude in
each pixel, partial Fourier imaging is a viable acceleration method. If the signal phase



2.3 Fast Imaging 35

is also of interest, the image data become complex, and k-space points become decou-
pled, such that the value of one point cannot be calculated from its point-symmetric
counterpart any more. In that case, partial Fourier techniques cannot be applied.

2.3.3 Parallel Imaging

The use of multiple small, localized coils instead of one large-volume resonator for
receiving the MR signal was introduced originally to increase image quality. As a rule
of thumb, a circular receive coil has a “sensitivity depth” that is approximately equal
to its diameter, meaning that small coils can only pick up signals that originate in
their vicinity and are blind to signals farther away from their surface. While this may
look like a drawback at first, there are some major advantages. First, the major part of
the noise in an MR image is caused by random signal from parts of the body outside
the FOV. Electronic noise in the coils and signal amplifiers only plays a minor role. The
volume resonator (or body coil) that is built into clinical MR scanners covers a relatively
large volume. This can be an advantage in some cases, for example, when one wants
to acquire a large FOV to get an overview of the subject’s anatomy at the beginning
of an examination. However, it also implies that every body part within the resonator
contributes to the noise level of the acquired image, thus oftentimes dramatically
affecting image SNR. Furthermore, there is an air gap between the subject and the
volume resonator, since it has to accommodate subject’s of very different physique.
Removing a receiving antenna from the signal source leads to a decrease in signal
amplitude, constituting another limitation for the SNR attainable with the body coil.

Surface coils, on the other hand, are available either as flexible mats that can be
wrapped around the body part of interest or embedded in rigid plastic housings that are
adapted to the shape of a certain body part (such as head coils). They are usually small
in diameter (∼10 cm) and are therefore only sensitive to signals from their proximity.
An image acquired with a single surface coil has a strong intrinsic geometric weighting,
with high signal amplitudes on the surface and a pronounced signal decrease toward
the interior parts of the body that are farther away from the coil.

However, several of those small coil elements can be combined into arrays with
fixed or flexible geometry (head coils with 64 or more individual coil elements are not
uncommon). One image can be reconstructed from each of the coils, with a specific
geometric weighting due to the position of that coil relative to the FOV. In the most
basic implementation, the magnitudes of those individual images are combined in
a sum-of-squares manner, achieving more or less homogeneous intensity across the
image. In order to avoid image artifacts, it is crucial to perform a measurement of
noise correlation between individual coils and apply a phase correction to the signals
from the individual coils to account for geometric effects (if two coils “see” a spin from
different angles, the signals they pick up will differ by a phase that corresponds to
the difference angle) and differences in signal travel time. The data required for these
corrections are usually collected at the beginning of a multicoil acquisition.

The use of multiple localized coils for accelerating data acquisition is termed parallel
imaging. It is based on the fact that, under ideal circumstances, the image information
acquired by different coils from the same object only differs in terms of the geometric
weighting effect induced by the spatial sensitivity profiles of the coils. In other words, no
two images from two different coils are equal, meaning that there is a specific intrinsic set
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of information contained in each single-coil signal. Parallel imaging exploits this fact by
intentionally acquiring undersampled k-spaces and then mathematically approximating
the missing data based on the intrinsic geometric information. Typically, one or more
PE lines are skipped so that only every g-th line is acquired. As a consequence, the dis-
tance between measured PE lines, ΔkPE, is increased by the same factor g. According
to Eq. (2.3), the FOV in the PE direction is reduced by g, causing fold-in artifacts for
anything outside the FOV. Parallel imaging reconstruction removes these artifacts by
exploiting the additional spatial information in each single-coil signal.

Most of the currently available parallel imaging techniques can be broadly subdivided
into two categories:

• Image space-based methods calculate individual images for every single-coil k-space.
Due to violation of Eq. (2.3), the resulting images are tainted by fold-in artifacts. The
additional spatial information from the single-coil images are used to mathematically
resolve the bias causing fold-ins, so that artifact-free images can be calculated for each
coil. Finally, those individual images, which still differ in their spatial weighting, are
combined to generate one compound image with homogeneous sensitivity profile.
The most common representative of this category is SENSE (Sensitivity Encoding,
[24]).

• k-space-based methods reconstruct complete k-spaces for each individual coil before
combining the single-coil images. Missing k-space lines are approximated from adja-
cent acquired lines and information on spatial coil sensitivity distribution. The most
prominent example from this category is GRAPPA (Generalized Autocalibrating Par-
tially Parallel Acquisition, [25]).

Other techniques exist to resolve bias in incomplete k-spaces, for example, by employ-
ing temporal regularization [26] or requiring nonstandard scanner hardware, such as
nonlinear gradient coils [27]. However, these methods are beyond the scope of this book.

In early implementations of parallel imaging, information on the geometric arrange-
ment of the coil elements had to be incorporated manually. In SENSE and GRAPPA,
a number of autocalibration scans (ACS) are performed prior to each scan, usually by
sampling a few PE lines close to the center of k-space, and allow for automated deter-
mination of image reconstruction parameters.

The following section will concentrate on GRAPPA. Further information on other
techniques can be found in the literature [11, 28, 29].

2.3.3.1 GRAPPA
As a k-space-based technique, GRAPPA aims at assembling complete k-spaces for each
individual coil prior to Fourier transform. The basic idea is to approximate the missing
PE lines in each single-coil k-space as a superposition of the adjacent acquired lines from
the k-spaces of all coils. Superposition weights are determined from a set of autocali-
bration scans performed prior to image acquisition.

Figure 2.8 illustrates the reconstruction procedure for the case of two coils and an
acceleration factor of g = 2. Solid lines are acquired PE lines, whereas dashed lines are
skipped and have to be reconstructed. The top row shows one option for estimating the
unknown line indicated by the arrow on the left in the k-space of coil 1 from the block of
three acquired gray lines in each of the single-coil k-spaces. C11 and C21 represent sets
of complex weighting factors with which each line is multiplied prior to being summed
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Figure 2.8 Principle of GRAPPA reconstruction for a
setup with two coils. Solid lines are acquired while
dashed lines are skipped, but are required for
artifact-free image reconstruction. The top and bottom
rows demonstrate two options for reconstructing the
line marked by the arrow on the left-hand side from
different blocks of three acquired lines, indicated in
gray.
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C21
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C12
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up to obtain an approximation for the missing line. The lower row in the figure portrays
a second option to reconstruct the same line from a different block of three acquired
lines using different weights C12 and C22, respectively. Note that each Cij contains one
complex factor for each line in the block. Cij depends only on the position of the line to
be reconstructed relative to the block of lines used, and not on the absolute position of
the line in k-space. The missing lines in the k-space of coil 2 can be reconstructed in a
similar way, using different weighting factors. In GRAPPA, each missing line is recon-
structed using different blocks, and the results are then combined to achieve optimal
image quality. The process is performed for every missing line in each of the single-coil
k-spaces. Eventually, every complete k-space can be converted to an artifact-free image.
However, since each of the images is an approximation of the signal that one of the coils
“sees,” each image is modulated with the spatial sensitivity profile of its associated coil.
In order to generate one image with homogeneous sensitivity, the individual images are
combined, by either sum-of-squares or more complex algorithms.

The determination of the weighting factors is accomplished by acquiring a few con-
tiguous lines in the center of k-space prior to the actual scan. The weights can then
be determined by fitting blocks of acquired lines to another acquired line and treating
the weighting factors as unknowns, thus obtaining sets of weights that yield the closest
approximation.

2.3.4 Impact of Fast Imaging on SNR and Scan Time

For the discussion of the impact of fast imaging on signal quality, it is necessary to
divide MR sequences into two distinct categories. On the one hand, there are segmented
sequences, such as FLASH or bSSFP, in which each PE line requires a full excitation →
phase-encoding→ readout cycle. On the other hand, single-shot sequences, such as EPI,
acquire a full k-space after a single excitation. The following discussion will be restricted
to those two extreme cases. Many sequences are hybrids of the two, acquiring two or
more k-space lines with one excitation pulse. In these cases, the analysis of the effect of
fast imaging on SNR and scan time is more complex, but can still be derived from the
principles outlined in the following paragraphs.

In the case of FLASH, repetition time TR corresponds to the length of one excitation
→ phase-encoding → readout cycle with acquisition of a single PE line. The total acqui-
sition time for Nphase PE lines is therefore TR ⋅ Nphase. Reducing the number of PE lines
will therefore decrease the number of repetitions and hence the total acquisition time,
but has no effect on the timing of each of the acquisition cycles. In particular, echo time
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TE is unaffected by the use of fast imaging. This means that the intrinsic SNR reduction
by the square root of the acceleration factor,

√
R, cannot be compensated for. The only

benefit of parallel imaging is hence the reduction of the total acquisition time, which can
improve patient comfort and patient throughput. Since a FLASH sequence typically has
rather high intrinsic SNR, it affords moderate acceleration.

For EPI sequences, repetition time TR designates the duration from the excitation
pulse to the end of the readout of an entire k-space. Echo time TE, on the other hand,
is measured from the excitation pulse to the readout of the k-space centerline, which
typically occurs in the middle of the full readout train. Parallel imaging shortens the
length of the RO train, moving the centerline readout closer to the excitation pulse,
leading to a reduction of both echo time and repetition time. After the excitation pulse,
the magnitude of the precessing longitudinal magnetization decays exponentially, with
either T2 (for spin-echo EPI) or T∗

2 (for gradient-echo EPI). The signal amplitude at the
time of centerline RO is therefore given by

|S(TE)| = |S(0)| ⋅ exp
(

− TE
Trelax

)

, (2.21)

where |S(0)| is the signal magnitude immediately after excitation and Trelax represents
either T2 or T∗

2 . From Eq. (2.21) it is obvious that shortening TE will increase the signal
amplitude. If the signal amplitude is taken into account as another parameter affecting
SNR, Eq. (2.20) can be extended to

SNR ∝
√

Ts ⋅ V ⋅ exp
(

− TE
Trelax

)

. (2.22)

Sampling time Ts is proportional to the number of PE lines and is therefore reduced
by acceleration factor R if fast imaging is applied. This translates to a reduction of the
SNR by a factor of

√
R. At the same time, the echo time is also reduced by a factor of

approximately R, thus increasing SNR due to higher signal amplitude. The result of these
two counteracting effects basically depends on the echo time and relaxation time, as
illustrated in Figure 2.9. If TE is short compared to Trelax, acquisition occurs in a region
in which the exponential relaxation curve is steep, so that a small reduction of TE can
achieve a significant increase in signal strength. For longer TE, the acquisition is located

tS(0) · exp

0
t

ΔT ΔT

TE2

TE1

Trelax
−

S(t) Figure 2.9 Effect of shortening echo time
on signal magnitude. The black dots
indicate signal strength for two arbitrarily
chosen echo times TE1 and TE2. The gray
diamonds represent the signal amplitudes
resulting when two echo times are
reduced by the same amount ΔT .
Obviously, the gain in signal amplitude is
much larger for shorter echo times.
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on the flat section of the signal relaxation envelope, and a variation of TE has virtually
no effect on signal strength.

In summary, for single-shot sequences, TE, TR, and total scan time are reduced if fast
imaging is employed. The degree to which the acceleration-induced SNR loss can be
compensated depends on the actual values of TE and Trelax, and no general estimate is
possible.
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3

Motion Encoding and MRE Sequences

The principle underlying MRE is to encode information on coherent tissue motion
into the phase of the complex MRI signal. During postprocessing, the signal phase is
converted into a displacement field, which is then subjected to an inversion algorithm
to derive viscoelastic material parameters. Since the relevant information is stored in
the signal phase, as opposed to the signal magnitude as in most other MRI applications,
MRE is a phase-contrast MRI technique. Due to the constrained reconstruction of the
signal phase, which is always mapped to the interval −𝜋 ≤ 𝜙 < 𝜋, irrespective of the
true values of 𝜙, phase unwrapping has to be employed to obtain physically correct
values. Phase unwrapping will be discussed in Chapter 9. An example of a wrapped and
an unwrapped phase image can be seen in Figure 3.1a.

In this book we will only cover time-harmonic MRE, in which time-harmonic waves
are used to induce tissue displacement. Other methods, based on image acquisition dur-
ing (or before and after) nonharmonic motion, exist, but are rarely used [30, 31]. In
dynamic MRE, where wave-induced displacement amplitudes are typically one to two
orders of magnitude smaller than the spatial resolution of the image (tens to hundreds
of micrometers versus ∼2 mm), a highly efficient mechanism for motion detection is
required. MR sequences can be equipped with a motion-encoding gradient (MEG) to
sense wave fields. By storing displacement information in the phase of the complex
MR signal, motion sensitivity becomes decoupled from image resolution. This distin-
guishes phase-contrast MRI from strain imaging techniques [32], in which deformation
information is retrieved from the image magnitude and is bound to image resolution.
However, the signal phase is also sensitive to inhomogeneities of B0 and modulations
of the magnetic field due to a spatially varying susceptibility distribution. The resulting
phase image is therefore a superposition of information from different sources. A sepa-
ration of the wave information from the other contributions is not possible with only a
single image.

Magnetic field inhomogeneities and susceptibility effects are usually static
(time-independent). Wave propagation, on the other hand, is an intrinsically dynamic
process with well-defined behavior in the time domain. The key to isolating wave
information is to acquire several images at different phases of the wave oscillation
cycle. At least two images are necessary to calculate phase difference images, from
which the motion information can be extracted: assume that the phase of each image

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 3.1 Illustration of wave image processing. In (a), two raw, wrapped phase images 𝜙1 and 𝜙2
with opposite vibration phase are shown. After unwrapping, each image is a superposition of the
propagating wave and the static background. Taking the phase difference image, as prescribed by
Eq. (3.3), removes most of the background while preserving the wave information. In (b), a stack of
images, capturing the wave at different phases of the vibration cycle, is first subjected to unwrapping
and then temporally Fourier-transformed. In the resulting frequency-resolved representation, the
static offset caused by the susceptibility and B0 inhomogeneity background is contained in the
zero-frequency component, whereas the wave information falls into the first harmonic frequency
image. The higher harmonic frequencies contain no information, since only the first harmonic
frequency was mechanically stimulated.

is a superposition of a static background, 𝜙0, and the wave-induced contribution,
𝜙wave, which is the quantity of interest. Since the background is static, it is identical
for both images. The two images are acquired such that they depict the wave at two
different oscillation phases, which are separated by 180∘. The second image hence
depicts the wave with an inverted sign. We can therefore write the phases of the two
images as

𝜙1 = 𝜙0 + 𝜙wave (3.1)
𝜙2 = 𝜙0 − 𝜙wave. (3.2)

Because of phase wraps in 𝜙1 and 𝜙2, it is not possible to take the difference of the two
images to discard the background signal, as this would lead to artifacts. However, the
problem can be solved in the complex domain:

𝜙wave =
1
2

arg
(

ei𝜙1

ei𝜙2

)

= 1
2

arg
(
ei(𝜙1−𝜙2)

)
= 1

2
arg

(
e2 i𝜙wave

)
. (3.3)
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Trigger
90° 180°

MEG
EPI readout

Δτ

τ

Figure 3.2 Diagram of a spin echo EPI-MRE sequence. At the start of the sequence, the MRI scanner
sends a trigger (indicated by the black arrow) to the vibration generator to initiate mechanical
vibration. The following delay is calculated in such a way that the offset 𝜏 between the trigger and the
MEG is exactly 100 ms. In the next repetition, 𝜏 is decreased by Δ𝜏 (first gray arrow), so that the MEG
encodes a slightly shifted wave propagation phase. One iteration of this diagram captures a single
slice. EPI-MRE and other MRE sequences will be discussed more thoroughly in Section 3.4.

A wave image that was calculated in such a way from two wave images with oppo-
site oscillation phase is referred to as a phase difference image. The process is shown
in Figure 3.1b.

Typically, more than two oscillation phases are acquired, and a one-dimensional
Fourier transform then separates static from dynamic effects. A comprehensive expla-
nation of the mechanism will be given in Section 3.1. This requires synchrony between
vibration and image acquisition. The general principle is outlined in Figure 3.2. A
trigger signal is sent by the MR scanner to the vibration generator to initiate vibration.
After a certain delay 𝜏 to allow for wave propagation into the region of interest, the
imaging sequence is started and a single image is acquired. Different wave phases can be
captured by repeating the process with different delays 𝜏 . If the mechanical frequency
is f , and N wave phases are acquired, 𝜏 is reduced N times in steps of Δ𝜏 = 1

f ⋅N
, so that

one vibration cycle is sampled with N equidistant data points. In the following sections,
we will first explain how motion information is stored in the phase of MR images and
how it can be recovered in postprocessing. We will then proceed to discuss several
common MRE imaging sequences.

3.1 Motion Encoding

MRE is not the only MR modality that requires quantification of motion. Diffusion MRI
and flow-sensitive MRI also rely on deriving motion information from MRI scans.1 This
section will explain the general working principle behind phase-contrast motion encod-
ing and how it is used to quantify time-harmonic motion.

In the presence of a gradient field G(t), a spin with trajectory x(t) accumulates a phase

𝜙(t) = 𝜙(t0) + 𝛾
∫

t

t0

G(t′) • x(t′) d t′. (3.4)

A graphical depiction of this mechanism is presented in Figure 3.3.

1 In flow-sensitive MRI, information on constant coherent motion is encoded into the phase of the MRI
signal in a way very similar to MRE. In diffusion MRI, on the other hand, incoherent diffusive motion is
encoded as a loss of signal magnitude.
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Motion-encoding gradient (MEG)

B

X

ϕ = 0

ϕ = γ ʃ G (t) · x(t) dt

t

Figure 3.3 Illustration of phase accumulation for a moving spin in the presence of a motion-encoding
gradient in the x-direction. For the static spin, the effects of the positive and negative lobes of the MEG
compensate each other, so that the net phase after the MEG is zero. The moving spin experiences the
two lobes at different locations, and hence with different strength, so that a net phase remains. The
spin phase after the MEG depends on the actual spin trajectory, and can be calculated using (3.4) (with
𝜙(t0) = 0).

For the following discussion, we will set 𝜙(t0) = 0, which is not strictly necessary
because any additional existing phase offsets will be removed by the temporal Fourier
transform over the acquired wave propagation steps. However, before we explain how
time-harmonic motion can be encoded, we have to first look at the effect of different
families of gradients on the phase accumulated by stationary and moving spins.

3.1.1 Gradient Moment Nulling

Any smooth trajectory x(t) of a signal-generating particle can be expanded into a Taylor
series at t0:

x(t) = x(t0) + ẋ(t0) ⋅ (t − t0) +
1
2

ẍ(t0) ⋅ (t − t0)2 + 𝒪(t3). (3.5)

Substituting Eq. (3.5) into Eq. (3.4) yields [11, pg. 336]

𝜙(t) = 𝜙(t0) + 𝛾
∫

t

t0

(

G(t′) • x(t0) + G(t′) • ẋ(t0) ⋅ (t′ − t0)

+ 1
2

G(t′) • ẍ(t0) ⋅ (t′ − t0)2 + · · ·
)

dt′

= 𝜙(t0) + M0(t) • x(t0) + M1(t) • ẋ(t0) +
1
2

M2 • ẍ(t0) + · · · (3.6)

with the kth gradient moment

Mk(t) =
∫

t

−∞
G(t′) ⋅ t′k d t′. (3.7)

Shifting the lower integration limit from t0 to −∞ is permissible, since in the previous
section we required that G(t) be zero for t < t0. The translation invariance

∫

t

−∞
G(t′) ⋅ (t′ − t0)k d t′ =

∫

t

−∞
G(t′) ⋅ t′k d t′

that is implicitly used in the last step of Eq. (3.6) is only true if all gradient moments
0,… , (k − 1) vanish. This is the case for all MEG waveforms considered in this book. We
will use the term “kth moment nulling” (abbreviated as 0mn, 1mn, and 2mn) to indicate
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Figure 3.4 Effect of an unbalanced gradient and zeroth, first, and second gradient moment nulling on
a stationary spin outside the scanner isocenter (solid line) and on spins with constant velocity (dotted
line) or constant acceleration (dashed line). The plots were obtained by calculating the integral in
Eq. (3.4) for different gradient shapes and spin trajectories. The gradient waveform is represented by
the thick gray line. The three curves in each diagram represent the phase encoded by the respective
gradient for the three types of motion. The scaling of the y-axis is arbitrary, but consistent across all
plots. It is clearly visible that for the unbalanced gradient, all motion types (including stationary) lead
to a nonzero phase for all spins. As the order of gradient moment nulling increases, higher orders of
the Taylor expansion of the spin trajectory (Eq. (3.5)) are suppressed at the end of the gradient, thus
rendering the spin phase insensitive to these types of motion.

that all gradient moments up to (and including) Mk are zero. Because of the resulting
time-translation invariance, we will henceforth use a time axis that is defined by the start
(t0 = 0) and end (t = T) of the gradient waveform. Since we are only interested in the
total effect of the MEG on the signal phase of a particle, 𝜙(T) is the relevant quantity.
In Figure 3.4, we illustrate the effect of different orders of gradient moment nulling on
three types of nonharmonic motion.

M0 = 𝟎 is the prerequisite for stationary spins not accumulating a position-dependent
phase by nulling the term x(0) in the series expansion of x(t). This implies that the total
area under the gradient waveform has to be zero. A commonly used waveform with
this property is a sine or its trapezoidal approximation. Higher-order gradient moment
nulling can be employed to suppress artifacts induced by laminar, turbulent, or pulsatile
flow of blood or cerebrospinal fluid.

If the first gradient moment is also nulled (M0 = 𝟎 and M1 = 𝟎), the constant-velocity
term t ⋅ ẋ(0) is eliminated from Eq. (3.5) in addition to the static position-dependent
contribution. Particles moving at constant speed, as in constant-velocity flow, will not
acquire an additional phase from the MEG. A cosine or its rectangular approximation
constitutes a suitable waveform.

Second-order gradient moment nulling (M0 = 𝟎, M1 = 𝟎, and M2 = 𝟎) can be imple-
mented as a train of four trapezoids of equal duration with relative amplitudes (+1∕3,
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−1, +1, −1∕3), constituting two cycles. In addition to the effects of first-order moment
nulling, M2 = 𝟎 suppresses the constant-acceleration term t2 ⋅ ẍ(0) in Eq. (3.5), so that
particles accelerating at a constant rate will not accumulate signal phase. This effect
becomes relevant in the presence of pulsating or turbulent flow.

3.1.2 Encoding of Time-Harmonic Motion

We assume that the spin undergoes harmonic oscillation about its equilibrium position
x0 with initial phase 𝜓 ,

x(t) = x0 + u0 ⋅ sin(Ωt + 𝜓).

We will further center the gradient on the time axis and require that G(t) is zero every-
where outside the interval −T

2
≤ t ≤ T

2
and that its direction does not change over time.

Therefore, it can be factorized into G(t) = Ĝ0 ⋅ g(t), where the hat denotes a unit vec-
tor. If we are only interested in the total accumulated phase after the gradient, 𝜙(t ≥ T

2
),

Eq. (3.4) can be rewritten as

𝜙(𝜓) = 𝛾

(

x0 • Ĝ0
∫

T∕2

−T∕2
g(t)d t + u0 • Ĝ0

∫

T∕2

−T∕2
g(t) sin(Ωt + 𝜓)d t

)

. (3.8)

Note that on the left-hand side, we introduce a dependence on the oscillation phase 𝜓 .
The gradient waveform g(t) is usually chosen in such a way that the area under the wave-
form is zero and the first integral in Eq. (3.8) vanishes. 𝜙(𝜓) is a sinusoidal function with
period 2𝜋 with respect to 𝜓 (see Appendix B for a proof). The phase and amplitude
of 𝜙(𝜓) are determined by the gradient waveform g(t), oscillation frequency Ω, oscil-
lation amplitude |u0|, and the angle between the gradient and oscillation polarization,
represented by the scalar product Ĝ0 • û0.

We now demonstrate the calculation of encoding efficiency, 𝜉, of a given gradient wave-
form g(t) for a vibration with frequencyΩ. This will allow us to derive physical oscillation
amplitudes ũ(r) from the measured Fourier-transformed MR signal phase �̃�i(r) via

ũi(r) = 𝜉�̃�i(r). (3.9)

The tilde denotes the Fourier-transformed quantity, evaluated at the vibration frequency
Ω. Encoding efficiency is defined as the maximum phase offset caused by the gradient
waveform for a vibration with unit amplitude and polarization parallel to the gradient
direction, such that û0 • Ĝ0 = 1:

𝜉 = max
𝜓

(

𝛾
∫

T∕2

−T∕2
g(t) sin(Ωt + 𝜓)d t

)

. (3.10)

We will analyze two cases, corresponding to symmetric and antisymmetric gradient
shapes.2 Symmetric gradients obey

g(t) = g(−t), (3.11)

whereas antisymmetric gradients satisfy

g(t) = −g(−t). (3.12)

2 There is no requirement that MEGs actually fulfill either of these conditions, but all typically used MEGs
belong to either class for a number of reasons.
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Figure 3.5 Illustration of an MEG waveform with
second-order gradient moment nulling and a
sinusoidal vibration with angular frequency Ω and
phase offset 𝜓 (dashed). The gradient can be
composed from a train of plateaus with height gi and
duration Πi , as discussed in the text. Since the gradient
is antisymmetric with respect to the origin, accumu-
lated phase (integral over g(t) ⋅ u(t)) is greatest when
𝜓 = 0, according to Eq. (3.18). Because of the symmetry
between the MEG and the oscillation, the part for t < 0
contributes the same as the part for t > 0, so that we
only calculate the latter and double the result.

For simplicity, we assume that the gradient waveform is a sequence of n plateaus with
height gi, starting point ti, and duration Πi, as outlined in Figure 3.5. This requirement
will be lifted later on, so that the results can be applied to arbitrary symmetric and
antisymmetric gradient waveforms. The encoding efficiencies of commonly used MEG
waveforms are presented in Table 3.1.

With the above simplifications, we can rewrite the integral as

𝜙(𝜓) = 𝛾 ⋅
n∑

i=1
gi ⋅

∫

ti+Πi

ti

sin(Ωt + 𝜓) ± sin(−Ωt + 𝜓) d t, (3.13)

where the plus and minus signs belong to symmetric and antisymmetric MEGs, respec-
tively. Executing the integral yields

𝜙(𝜓) = 𝛾 ⋅
n∑

i=1
gi ⋅

[

− 1
Ω

(cos(Ω(ti + Πi) + 𝜓) − cos(−Ωti + 𝜓))

± 1
Ω
(cos(−Ω(ti + Πi) + 𝜓) + cos(−Ωti + 𝜓))

]

. (3.14)

In order to identify the vibration phase 𝜓 that yields the largest phase contribution, we
take the derivative with respect to 𝜓 and equate it to zero:

0
!
= d𝜙

d𝜓
= 1

Ω

n∑

i=1
gi ⋅

[
sin(Ω(ti + Πi) + 𝜓) − sin(Ωti + 𝜓)

± (− sin(−Ω(ti + Πi) + 𝜓) + sin(−Ωti + 𝜓))
]
. (3.15)

We note that every term of the sum comprises two pairs of the form

sin(X + 𝜓) ± (− sin(−X + 𝜓)). (3.16)

The whole sum certainly vanishes if each of those pairs vanishes, that is, if

sin(X + 𝜓) − sin(−X + 𝜓) = 0 ⇒ 𝜓 = 𝜋

2
for symmetric MEGs (3.17)

or sin(X + 𝜓) + sin(−X + 𝜓) = 0 ⇒ 𝜓 = 0 for antisymmetric MEGs. (3.18)

In other words, the motion-induced phase is maximized if the vibration and the MEG
have the same type of symmetry with respect to t = 0. This guarantees that the contri-
butions of t < 0 and t > 0 to the integral are equal, so that the terms sin(−Ωt + 𝜓) and
sin(Ωt + 𝜓) can be combined to yield 2 ⋅ sin(Ωt + 𝜓). The final formula for calculating
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encoding efficiency thus reads

𝜉(Ω,T) = 2 𝛾 ⋅
n∑

i=1
gi ⋅

∫

ti+Πi

ti

sin(Ωt + 𝜓)d t (3.19)

with 𝜓 chosen according to Eqs. (3.17) and (3.18).
By decreasing plateau durations Πi and simultaneously increasing their number N ,

we can approximate arbitrary gradient waveforms (such as trapezoidal or sinusoidal) by
a sequence of infinitely short plateaus. The relations derived above are therefore also
valid for arbitrary MEGs, as long as they are compatible with one of the symmetry con-
straints, that is, Eq. (3.11) or Eq. (3.12). However, for gradient waveforms that are not
closely approximated by a small number of plateaus, such as sinusoids, it might be more
appropriate to calculate the integral

𝜉(Ω,T) = 2 𝛾 ⋅
∫

T∕2

0
g(t) ⋅ sin(Ωt + 𝜓)d t (3.20)

with the same optimum phase 𝜓 as above.
Returning to the three archetypical waveforms representing zeroth, first, and second

gradient moment nulling that we introduced in Section 3.1.1 and illustrated in Figure 3.4,
we can now analyze their sensitivity to harmonic motion. In Figure 3.6, the encoding
sensitivity of the three gradients is plotted as a function of the vibration frequency for a
fixed gradient timing.

Figure 3.6b corresponds to the encoding efficiency of a 20 ms waveform with zeroth
(0mn) and first (1mn) moment nulling, that is, one cycle at an MEG frequency of 50 Hz.
The sensitivity maximum for 1mn is shifted toward higher frequencies. While the peak
values for the two curves are similar, the 1mn waveform exhibits significantly lower sen-
sitivity to low mechanical vibration frequencies, indicating that it is less susceptible to
distortions induced by cardiac motion (∼1 Hz).

In Figure 3.6c, the sensitivity profiles for 40 ms waveforms are shown. For 0mn and
1mn, this corresponds to two cycles of the configuration shown in Figure 3.6a, whereas,
for 2mn, only one cycle of the compound waveform is employed. 2mn provides even
more robustness against low-frequency artifacts than 1mn at the cost of a lower peak
sensitivity and broader frequency spectrum. For 0mn and 1mn, peak encoding efficiency
and spectral selectivity (width of the central peak) are better if two cycles are employed.
However, the sensitivity nulls at odd multiples of the first subharmonic frequency have
to be taken into account, especially in acquisitions with multiple simultaneous mechan-
ical vibration frequencies [18, 33] (see Chapter 11).

In practice, gradient waveform g(t) and vibration frequency Ω are chosen to meet
the demands of wave mechanics, image resolution, signal quality, and hardware perfor-
mance. A balanced waveform is used for g(t), so that the x0-dependent term in Eq. (3.8)
is nulled. Wave images are then recorded as illustrated in Figure 3.2. G is applied to
three orthogonal axes in repeated acquisitions. For each direction of G, N wave phases
(typically N = 4 or N = 8) are recorded by gradually decreasing the delay 𝜏 . The phase
values 𝜙(𝜏i), i = 1,… ,N , represent N equidistant points across one cycle of the vibra-
tion. However, these values can be tainted by the static background of the phase image,
higher harmonics of the vibration frequency, and mechanical resonances of the patient
table or MR scanner. In order to separate these effects from the actual vibration signal, a
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Figure 3.6 Different orders of gradient moment nulling. (a) Waveforms with zeroth (solid), first
(dashed), and second (dotted) order moment nulling (mn), composed of individual trapezoidal
shapes. For zeroth and first mn, one cycle with period T is shown. Second mn can only be
implemented with an even number of cycles, each with period T . (b) Encoding sensitivity for one cycle
with zeroth and first mn with T = 20 ms and gradient amplitude 20 mT/m in the mechanical vibration
frequency range 0–100 Hz. (c) Encoding sensitivity for two cycles with T = 20 ms. All constellations
where fmech <

1

T
are referred to as fractional encoding.

discrete Fourier transform is performed with respect to 𝜏i, and the frequency component
�̃� is extracted. The oscillation amplitude ũ is then calculated according to Eq. (3.9).

3.1.3 Fractional Encoding

The sensitivity profiles in Figure 3.6 indicate that vibration frequency and MEG
frequency do not necessarily have to be equal. Encoding schemes with fmech < fMEG
were conceived by Rump et al. [18] and termed fractional encoding. In general,
longer motion-encoding periods with multiple MEG cycles offer superior sensitivity
characteristics, but they also require longer echo times, thus resulting in lower signal
quality due to T2 decay and longer total acquisition duration. Selecting a suitable MEG
waveform is therefore often a compromise between sensitivity and signal quality, as
illustrated in Figure 3.7. As an example, the optimal motion-encoding period TMEG for
a bSSFP-MRE sequence (T∗

2 weighting) is given in [18] as
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is a product of three contributions: a, b, and c, where a represents the encoding efficiency, as explained
in Figure 3.6. Contribution b quantifies the phase-to-noise ratio (PNR), which decreases exponentially
with either T2 or T∗

2 , depending on the type of sequence. The third contribution, c, relates to the
damping of the wave according to the Voigt model (Section 4.8.3), which is larger for higher vibration
frequencies. The curves were plotted for the following parameters: TMEG = 20 ms (a, c), fmech = 50 Hz
(b), T∗

2 = 20 ms, Voigt model for c: E = 1 kPa, 𝜂 = 1 Pa s, 𝜌 = 1000 kg/m3, evaluated at a depth of 1 cm.

T (opt)
MEG = 1

2
T∗

2 + 1
2

√

(T∗
2 )2 + 8𝜋2T∗

2
TMEG

Tvib
⋅
𝜂

𝜇
, (3.21)

where 𝜂 is the viscosity and 𝜇 the shear modulus of the tissue.

3.2 Intra-Voxel Phase Dispersion

MR imaging involves discretizing a continuous body into a set of cubic or cuboidal voxels
with finite volumes. The value assigned to each voxel is the contrast-generating physical
quantity Q (e.g., proton density or relaxation time), averaged over the voxel. It is hence
implicitly assumed that the spatial variation of Q occurs on a length scale much larger
than the voxel dimensions, so that approximating the continuous quantity Q(r) with a
discrete quantity Q(ri) is feasible.

As motion encoding affects the phase of the MR signal, care has to be taken when
selecting the motion-encoding parameters. The MR scanner only “sees” the aggregate
signal from each voxel, which is equivalent to the complex sum of all single-spin sig-
nals. If the phase dispersion introduced by the MEG is so strong that the phase varies
by as much as 2𝜋 across one voxel, the individual signal contributions will cancel out,
and there is little to no resulting signal.3 This effect is called “intra-voxel phase disper-
sion;” an example can be seen in the magnitude image of Figure 2.1, indicated by arrows.

3 It is important to keep the periodic nature of the signal phase 𝜙 in mind: If 𝜙 is uniformly distributed over
0 ≤ 𝜙 < 2𝜋, the average phase is ⟨𝜙⟩ = 𝜋. However, for the signal-relevant quantity ei𝜙, averaging yields
⟨ei𝜙⟩ = 0, or, more generally, ⟨ei𝜙⟩ ≠ ei⟨𝜙⟩.
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On the other hand, if motion encoding is too weak, there will be no signal cancellation
in one voxel; however, the average motion signal phases of adjacent voxels will also be
very similar, and their spatial derivatives will hence be small. Noise can therefore easily
become the dominating factor in acquisitions with low motion sensitivity. The same can
happen if the wavelength of the mechanical waves is in the range of spatial resolution.
It is therefore crucial to select the MEG waveform and amplitude, vibration frequency,
and imaging resolution in a way that achieves sufficient signal amplitude and acceptable
signal-to-noise ratio (SNR) in the spatial derivatives of the displacement field.

Glaser et al. proposed an algorithm to derive shear stiffness from the modulation of
the MRI magnitude image induced by intra-voxel phase dispersion, instead of relying
on phase image [34].

3.3 Diffusion-Weighted MRE

It was mentioned earlier in this section that diffusion-weighted MRI (DWI,
diffusion-weighted imaging) is an alternative way to encode motion information
in the MR signal. However, there are notable differences between DTI and MRE
regarding both the type of motion and the encoding mechanism. DTI uses gradients
similar to the MEGs in MRE to manipulate the phase of moving spins. Typically, a
gradient shape with zeroth moment nulling is utilized (even though there is usually
a gap between the two gradient lobes to maximize encoding efficiency). As a result,
stationary spins receive no accrued phase, whereas moving spins accumulate a phase
offset depending on their respective trajectory (see Figure 3.4). In contrast to MRE,
which aims at detecting coherent wave motion, DTI is sensitized to incoherent diffusive
motion. In a highly diffusive medium, spins that originate from the same voxel at the
beginning of the diffusion-encoding process are likely to end up in different locations
after the encoding step due to the random nature of diffusion. Since each of these
diffused spins reaches the final voxel on a different trajectory, they all possess different
offset phases. Therefore, when the MR signal is sampled, the vector sum of the spins
within one voxel is smaller than that in the nondiffusive case, where every spin stays
in its original voxel. The diffusion-encoding gradients thus cause a signal decrease
(relative to the same acquisition without diffusion weighting), and the magnitude of
that decrease can be used to quantify diffusion-related material parameters [11].

The fact that both the type of motion (coherent vs incoherent) and storage mechanism
(signal phase vs signal magnitude) in MRE and DTI are orthogonal was exploited by Yin
et al. [35], who combined these two methods into one technique, called diffusion MRE
(dMRE). The strength of the diffusion-weighting effect is quantified by the b-value. For
rectangular gradients, the b-value can be calculated as b = 𝛾

2G2T2(𝛿t − T∕3), where T
is the duration of each gradient lobe and 𝛿t their temporal separation [11]. High b-values
correspond to strong signal dephasing for moving spins; values up to b = 1500 s/mm2

are common. For a typical MRE waveform with an MEG frequency of 50 Hz, corre-
sponding to two rectangular lobes with a duration of 10 ms each and an amplitude of
30 mT/m, the b-value is approximately 43 s/mm2. The diffusion sensitivity of MRE is
therefore low. Yin et al. overcame this issue by using optimized gradient waveforms that
simultaneously accommodate the demands of MRE and DTI.
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3.4 MRE Sequences

Many pulse sequences can be and have been used for MRE. This section is not meant
as an exhaustive treatment of all MRE sequences ever employed. Instead, we will have a
look at how the previously discussed sequences – FLASH, bSSFP, and EPI – can be used
for MRE. We will also analyze how the properties of the derived sequences differ from
the original sequences.

In general, two steps are necessary to convert an arbitrary pulse sequence into an
MRE sequence. First, MEGs have to be inserted between excitation and signal read-
out to encode tissue oscillation into the signal phase. Second, synchronization has to
be established between the sequence and the vibration generator to acquire images at
well-defined points of the oscillation cycle. The most common way of achieving this is
by having the sequence send trigger pulses – either as a TTL4 signal via a coaxial cable
or as light pulses through an optical fiber – from the scanner to the vibration generator
to initiate vibration. The other direction, triggering image acquisition from the vibration
generator, is also possible; however, one has to ensure that the latency of the scanner and
its fluctuation are small compared to the vibration period.5

3.4.1 FLASH-MRE

Converting a FLASH sequence, as shown in Figure 2.4, into an MRE sequence [36]
is a rather straightforward task. A sequence diagram is shown in Figure 3.8. Each
acquisition loop begins with the scanner sending a trigger signal to the vibration
generator, which in turn activates the oscillation (black solid arrow and sinusoid). After
a delay 𝜏 (indicated by the interrupted time axis) to allow for wave propagation into
the organ of interest, image acquisition is started. The acquisition loop shown acquires
one k-space line and is repeated for all NPE phase-encode lines, and for all slices in a
multislice acquisition. After that, the delay between the trigger and the sequence is
reduced by Δ𝜏 = Tvib

Nt
(first gray arrow and sinusoid), where Tvib is the vibration period

and Nt the desired number of wave propagation phases. The scan is then repeated
with this adjusted delay, thus sampling a different wave propagation phase. The whole
process is repeated until all phase propagation steps (here, four) have been acquired.
Finally, the whole acquisition can be repeated with the MEG applied to a different axis
in order to acquire different projections of the tissue displacement field. The overall
number of iterations of the acquisition loop is

Niterations = Nslices ⋅ NPE ⋅ Nt ⋅ Nprojections. (3.22)

The addition of the MEG prolongs both the echo time and the repetition time
compared to the standard FLASH sequence. Being a gradient-echo (GE) technique,
FLASH is sensitive to signal decay governed by T∗

2 , which can be significantly shorter
than T2. Short MEG periods are therefore desirable to keep the increase of TE small.
The MEG period, TMEG, does not have to match the vibration period, as explained in

4 TTL= transistor–transistor logic, an electronic standard for signal transmission and processing based on
voltage levels.
5 The same is true if the scanner triggers the vibration generator; however, the latter usually has a lower
latency due to its significantly lower complexity.
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Figure 3.8 Schematic timing diagram of a FLASH-MRE sequence. In order to acquire the full
displacement field, the MEG is applied on all three gradient axes in successive acquisitions, as
indicated by the dashed lines. The gray gradients represent spoilers, as explained in Section 2.2.1.1.
The scaling of gradient amplitudes and the time axis is not accurate.

Section 3.1, and it is common to keep the former significantly shorter than the latter
by fractional encoding (see Section 3.1.3). As illustrated in Figure 3.6, an increasing
mismatch between Tvib and TMEG leads to a decrease in motion-encoding sensitivity.
As a consequence, care must be taken in selecting an MEG period that does not affect
image quality too strongly while maintaining a reasonable motion sensitivity for the
desired vibration frequency.

An increase in repetition time has both positive and negative effects. On the positive
side, a longer TR leaves more time for T1-driven signal relaxation between RF pulses,
thus augmenting steady-state magnetization and signal quality. The flip angle has to be
adapted, using the equation for the Ernst angle (see Eq. (2.9)). If several slices are to be
acquired, they can be scanned in an interleaved manner to increase the repetition time
for each slice. For example, after acquisition of one k-space line of slice #1, the same line
can be acquired in all other slices. Since remaining transverse magnetization is spoiled at
the end of each TR interval and the RF pulses are slice-selective, there is no interference
between slices. In the Ernst angle equation, the repetition time has then to be replaced
with Nslices ⋅ TR.

On the negative side, the increase in repetition time translates into an increase in
acquisition time by a factor of approximately Nrepetitions ⋅ (TMEG + 𝜏) in comparison to
the standard FLASH sequence.6

An alternative approach to FLASH-MRE prescribes an integer ratio of the vibration
period to repetition time:

TR
Tvib

=n (3.23)

or
Tvib

TR
=n with n ∈ ℕ. (3.24)

6 This is not exactly true, since the delay 𝜏 includes the time for the excitation pulse, which is also present in
the normal FLASH sequence. However, the duration of the RF pulse (∼2 ms) short compared to 𝜏

(∼50–100 ms in human applications).
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In the former case, by virtue of its periodicity, the vibration waveform v(t) fulfills the
relation

v(t + TR) = v(t + n ⋅ Tvib) = v(t). (3.25)

This means that the same vibration phase is sampled in each iteration of the acquisi-
tion loop, without the need for triggering. Therefore, one trigger pulse can be sent at
the beginning of the acquisition, and then all k-space lines of all slices can be acquired
during continuous vibration, without the inclusion of the delay 𝜏 in each TR. In order
to sample different wave propagation phases, it is still necessary to resynchronize the
vibration; however, this only needs to be done after all phase-encode lines of all slices
and for all projections have been acquired. The number of trigger pulses and 𝜏 delays
hence reduces from Nslices ⋅ NPE ⋅ Nt ⋅ Nprojections to Nt , which can significantly accelerate
the acquisition. Echo time is not affected, as 𝜏 is not contained in TE. This accelera-
tion mechanism requires Eq. (3.23) to be satisfied, which can limit the choice of other
sequence parameters or require the incorporation of fill times into TR.

In the second case (Eq. (3.24)), the vibration period is larger than the repetition time,
so that in the second repetition of the acquisition loop a different wave propagation
phase is sampled. The integer ratio between TR and Tvib guarantees that after n repeti-
tions, n different wave phases have been recorded during continuous vibration, so that
no resynchronization between the scanner and the vibration generator is required, given
that the internal clocks of the two devices are sufficiently precise. The acquired k-space
lines have then to be reordered to ensure that every k-space contains only lines recorded
at the same wave propagation phase.

3.4.2 bSSFP-MRE

Because of the similarity between bSSFP and FLASH, most of the timing-related con-
siderations regarding FLASH-MRE are also valid for bSSFP-MRE. However, due to the
absence of spoiling in bSSFP, transverse magnetization is carried over from one TR inter-
val to the next, rendering the signal generation far more complex. The first application
of bSSFP-MRE was published by Bieri et al. [17]. The following discussion is based on
analyses presented in [17, 19].

As in the case of FLASH-MRE, bSSFP-MRE matches the sequence repetition time TR
and the vibration period in order to acquire images of multiple vibration phases. Two
images with opposite vibration phase can then be combined into one phase difference
image that is devoid of the static susceptibility background (see Eq. (3.3)).

Since transverse magnetization is not spoiled after each acquisition, as in the case of
FLASH, the steady state depends on the offset phase being accumulated during each
shot. Let us assume that 𝜙0 is the static phase increment per shot, unrelated to motion
effects. It is composed of contributions from an inhomogeneous susceptibility distribu-
tion across the object and B0 inhomogeneities resulting from imperfect shimming. In a
spoiled sequence, the relationship between that phase increment 𝜙0 and the phase 𝜙 of
the acquired MRI signal would be simply

𝜙 = 𝜙0, (3.26)

since the spoiling at the end of each single acquisition destroys the transverse mag-
netization component, so that each excitation pulse generates a fresh precessing
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magnetization with a well-defined phase. However, in bSSFP, the remaining transverse
magnetization at the end of each shot is flipped by the next RF pulse, and the phase
of the in-plane magnetization after the pulse is determined by the phase of the
magnetization before the pulse relative to the flip axis (the direction of the B1 field in
the oscillating reference frame). In order to separate the irrelevant static background
from the motion-induced phase contribution, phase difference images are calculated
from pairs of images with identical timing relative to the vibration, but opposite signs
of the flip angle. The nonlinear phase response of bSSFP causes the phase of the
resulting phase difference image, 𝜙wave, to depend on the phase increment per shot,
𝜙0. This is illustrated in Figure 3.9 for two cases, one with TR = 1

fvib
, and one with

TR = 1
2fvib

. Obviously, the phase response is very different for these two scenarios.
In the first case, motion sensitivity is maximized when the phase increment per TR
is 𝜙0 = ±𝜋. In the second case, on the other hand, optimal sensitivity results from
𝜙0 = 0. We will first discuss the latter scenario, which is conceptually simpler. The
situation 𝜙0 = 0 corresponds to an ideal medium with a homogeneous susceptibility
distribution and perfect shimming, such that the Larmor frequency is constant across
the entire volume of interest and (in the absence of oscillation) all spins precess
in-phase. This requirement cannot be fulfilled under real-world conditions. Small
field gradients lead to two effects. First, it generates banding artifacts, as explained in
Section 2.2.1.2. Second, since 𝜙0 becomes position-dependent, the encoding sensitivity
and hence the conversion factor 𝜉 between the MR signal phase and the physical
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Figure 3.9 Illustration of the nonlinear phase response of bSSFP. The solid and dashed lines
correspond to the MR signal phase (𝜙) as a function of the phase increment per TR (𝜙0) for two
acquisitions with opposite oscillation phase. For a fixed value of 𝜙0, the motion-related phase 𝜙wave is
half the vertical distance of the two curves. The gray rectangles indicate ranges of 𝜙0 with optimal
motion sensitivity. In (a), one TR matches one vibration cycle, so that the wave has to be inverted
(dashed sinusoidal) in order to acquire the second phase image. In (b), one TR matches half an
oscillation cycle, so that two images with opposite oscillation phase are sampled automatically
without the need to invert the oscillation. The two images on the right-hand side illustrate the
position dependence of motion sensitivity of a sequence of type (b). The magnitude image (top)
suffers from banding, as explained in Section 2.2.1.2. The phase image (bottom) exhibits vertical
stripes of high (𝜙0 = 0) and low (𝜙0 = ±𝜋) motion sensitivity, as explained in the text. This modulates
the physically correct displacement field and causes problems for the reconstruction of elastic moduli.
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displacement (see Section 3.1.2) can also differ depending on the position within
the object. Since the field gradients cannot be easily measured, it is unfeasible to
quantify these parameters for every voxel in the image. Therefore, the reconstructed
displacement field is subject to spatial modulation, even if the wave amplitude is
constant. The calculation of elastic moduli is hampered by that modulation, which
is indistinguishable from viscous damping. This is shown in the two MR images
in Figure 3.9, where a horizontal field gradient causes vertical bands of high and
low motion sensitivity.

For the first case, where optimal motion sensitivity is achieved if 𝜙0 = ±𝜋 (or, more
accurately, if 𝜙0 is an odd integer multiple of 𝜋), perfect shimming (𝜙0 = 0) leads to
very poor motion sensitivity. However, the motion sensitivity can be increased locally
by applying a linear magnetic field gradient, and thus imposing a spatial modulation onto
𝜙0. Assume that we turn on a gradient along the x-axis, Gx, for a short time 𝜏 during each
TR interval. As a consequence, the offset phase becomes

𝜙0(x) = 𝛾 ⋅ Gx ⋅ x ⋅ 𝜏 . (3.27)

This implies that in regions where 𝜙0(x) is close to an odd multiple of 𝜋, motion sensitiv-
ity is maximized. Between those optimum bands, however, motion sensitivity is strongly
decreased. Using this technique, the displacement field can only be evaluated in regions
of high motion sensitivity, rendering it unsuitable for most extended organs. Since the
additional gradient cannot be balanced during the TR interval (otherwise, its effect on𝜙0
would be reversed), referring to such a sequence as a balanced SSFP is not technically
correct, but that distinction is usually not made. If the gradient is so strong (or long)
that the bands of high and low motion sensitivity become smaller than one voxel, the
sequence becomes a FLASH sequence and the gradient acts as a spoiler gradient that
effectively destroys all transverse magnetization. From this last point, we can see that
bSSFP possesses locally a higher motion sensitivity than a FLASH sequence. However,
the spatial variation of motion sensitivity is a major drawback for most applications, so
that bSSFP-MRE is not used any more.

3.4.3 EPI-MRE

Being one of the fastest sampling schemes available, EPI is a natural candidate for data
acquisition in MRE. Its capability to acquire either entire images (single-shot EPI) or
several k-space lines (segmented EPI) after a single excitation pulse drastically reduces
overall scan time. This gain can be reinvested in the acquisition of more data (e.g., three
orthogonal projections of the displacement field, more slices, or several vibration fre-
quencies), which would lead to unfeasibly long examination times with slower pulse
sequences.

EPI can be implemented as either a gradient echo (GE) or spin echo (SE) technique.
Both have been successfully applied for MRE (see Table 7.1). SE-EPI is usually slower
than GE-EPI because of the requirement to first let the magnetization dephase and then
to wait for it to rephase after the refocusing pulse. GE-EPI, on the other hand, induces
dephasing artificially by means of a gradient, and signal sampling can start immediately
after the dephasing gradient. SE-EPI is sensitive to T2 signal decay, whereas the GE-EPI
signal is modulated by the faster T∗

2 decay.
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MEGs can be inserted into an SE-EPI sequence in two ways. One option is shown in
Figure 3.1. The whole MEG is placed between the 90∘ and 180∘ pulses. This time slot
is usually empty in standard EPI sequences and its only purpose is to allow for dephas-
ing of transverse magnetization, which is then refocused by the 180∘ pulse. Using this
time slot for the MEG therefore does not increase TE and TR. However, that time slot is
usually rather short (a few milliseconds), requiring a short (and hence high-frequency)
MEG, which has low sensitivity to low vibration frequencies. In order to increase sensi-
tivity for low frequencies, it can become necessary to prolong the MEG, thus stretching
the separation between the two RF pulses. Due to the inherent symmetry of SE-EPI,7
increasing the interpulse interval by an amount Δt will increase echo time by 2 ⋅ Δt.

In some scenarios, it can be advantageous to split the MEG waveform into two parts
and arrange these on both sides of the refocusing pulse, as illustrated in Figure 3.10. Such
cases arise if the MEG waveform is composed of several cycles with a relatively high
frequency, yielding an MEG train that is longer than half the readout train (e.g., in seg-
mented EPI acquisitions). In these cases, the duration of the MEG dictates the length of
TE∕2. In order to restore the symmetry required for SE-EPI, a fill time has to be inserted
between the refocusing pulse and the EPI readout.8 This effectively increases the echo
time and leads to inferior signal quality due to T2 signal decay (see Figure 3.10a). If the
required fill time is longer than half the MEG train, substituting that fill time with the
second half of the MEG will reduce echo time.9 The second MEG following the inversion
pulse also has to be inverted, since gradients before and after an 180∘ pulse have oppo-
site effects on transverse magnetization. In addition, the “gap” between the two parts of
the MEG has to be an integer multiple of the MEG period to ensure that the two parts
act coherently. This is straightforward, since the first MEG section can be shifted freely
between the two RF pulses, and results in a shorter TE and hence in better SNR (see
Figure 2.9). Another benefit of placing the MEGs symmetrically around the refocusing
pulse is that it avoids the effects of concomitant gradient fields,10 as discussed in [37],
which can cause artifacts.

Due to the long readout train, EPI is particularly susceptible to B0 inhomogeneity.
Even small uncompensated field fluctuations can accrue to significant deviations of the
k-space trajectory, if multiple lines are sampled in quick succession. This will inevitably
lead to image artifacts, especially to geometric distortions in regions adjacent to air-filled
cavities, such as the parts of the brain surrounding the paranasal sinuses. The effect
can be attenuated by shortening the readout train, for example, by increasing readout
bandwidth, but this again decreases the SNR. Field inhomogeneities are not too much
of an issue at 1.5 T, but they gain importance at 3 T and beyond. However, single-shot
SE-EPI has already been performed successfully at 7 T [38].

7 The first half of TE, defined as the distance between the 90∘ and 180∘ pulses, has to be equal to the time
between the 180∘ pulse and the center of signal readout (see Figure 2.6).
8 Alternatively, the EPI readout could be stretched by, for example, reducing the readout bandwidth, but
this does not solve the underlying problem.
9 Strictly speaking, the MEG does not have to be divided into two identical parts. Any subdivision is valid.
10 Concomitant gradient fields refer to deviations of a magnetic field gradient from the ideal profile. Even
though each gradient coil produces a field that changes mainly along one axis, there is always a dependence
on the other two axes if the field is expanded up to the second order of a Taylor series. These concomitant
fields can cause nonlinearities in the encoded motion information. In most cases, these effects are simply
ignored.
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Figure 3.10 Different ways of placing MEGs within a spin-echo sequence. (a) A spin-echo sequence
with one MEG cycle is shown. If the resulting motion sensitivity is insufficient, a second MEG cycle can
be added. (b) The second MEG is appended to the first one. Because of the inherent symmetry of
spin-echo sequences, a fill time has to be inserted before the readout so that the refocusing pulse is in
the center of the TE interval. (c) the MEG is instead inserted between the refocusing pulse and the
readout. The timing between the MEGs has to be such that the gap is an integer multiple of the MEG
period (shown in dashed gray). Since the refocusing pulse inverts the spin phase, the second MEG has
to be of opposite polarity relative to the first one. A fill time has to be inserted in the first half of TE to
maintain spin-echo symmetry. This constellation leads to a significantly shorter TE than in (b). The fill
time in (b) could be used for a third MEG cycle; however, in media with short T2, the increase in TE
would cause significant signal loss, so that (c) would be the better compromise for that scenario.

Readout

MEG Spoilerα

Figure 3.11 Simplified timing diagram of a GE-EPI sequence, as used in [39]. Only the image
acquisition part is shown, vibration and synchronization are analogous to Figure 3.8. In the original
publication, a segmented image acquisition strategy was used, so the process illustrated here has to
be repeated several times to obtain a complete k-space. The MEG can be applied to all three gradient
axes in successive scans.

The structure of GE-EPI sequences is simpler than that of their SE counterpart. Due to
the absence of a refocusing gradient, there is only one possible location for the MEG. A
simplified diagram of the sequence used in [39] is shown in Figure 3.11. Because of the T∗

2
sensitivity of GE sequences, it is usually not advisable to use a single-shot sampling strat-
egy; segmented image acquisition is used instead. The spoiler gradient at the end of the
sequence nulls the remaining in-plane magnetization, so that subsequent RF pulses do
not generate undesirable echoes. Segmented data acquisition generally renders GE-EPI
sequences slower than single-shot SE-EPI sequences.
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Part II

Elasticity
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4

Viscoelastic Theory

Elasticity and viscosity are two physical concepts that describe the response of a solid
body to an external force. Both cases include a deformation of the body as a consequence
of that force. Initially, the body will exert an opposing force and resist deformation. In
a purely elastic body, this opposing force will restore the initial shape after the exter-
nal force has been removed. The resistance of a viscous medium decreases over time
as it “flows” into a new shape that is in equilibrium with the external forces. After the
removal of the force, the body will stay in its new shape and will not return to the original
pre-deformation state. Real materials usually have intermediate characteristics, exhibit-
ing viscous and elastic properties at the same time.

Viscoelasticity theory is an extremely rich and wide field, and a comprehensive discus-
sion is far beyond the scope of this book. We therefore introduce a couple of restraints
to narrow the topic down to a more manageable size:

• Linear elasticity: Viscoelastic parameters are constant and do not depend on the
degree of deformation.

• Small strains: Deformations are small compared to the size of the object.
• Isotropy: Viscoelastic properties do not depend on the direction along which a force

acts.
• Smooth variation of viscoelastic parameters: We assume that viscoelastic properties

do not change abruptly and that their spatial derivatives are negligibly small compared
to the variation of displacement amplitudes.

These assumptions are usually sufficient to explain most phenomena encountered
in magnetic resonance elastography (MRE). However, sometimes general models are
needed, such as anisotropy for the highly fibrous and ordered structure of muscles or
neural fibers, and in Section 4.10 we will look beyond these constraints.

4.1 Strain

The response of a medium to deformation can be described in terms of strain and
stress. Strain represents the deflection of a mass point from its original position in the
undeformed body. Stress quantifies the forces counteracting deformation throughout
the medium. Both stress and strain are physical quantities which can – at least in
principle – be measured directly, whereas the relationship between them is subject to
physical modeling.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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In the following section, a continuous medium will be represented as a number
of discrete masses arranged on a rectangular lattice. This formalism is useful to
illustrate the key concepts of elasticity; however, it is not limited to highly ordered
systems such as perfect crystals. All findings are also applicable to more unstructured
systems, such as biological tissue. The following sections are based on the presentation
in [40] and [41].

The deformation of a three-dimensional object can be described in terms of its associ-
ated displacement field u in the sense that every point r is shifted to a different position
r + u(r). A deformation can change the distance between two points. In the undisturbed
state, the distance between points r and r + 𝛿r is D = |𝛿r|. The deformation shifts these
points to r + u(r) and r + 𝛿r + u(r + 𝛿r), respectively, as shown in Figure 4.1. The varia-
tion 𝛿u = u(r + 𝛿r) − u(r) for infinitesimal distances 𝛿r is then

𝛿ui =
3∑

j=1

𝜕ui

𝜕rj
𝛿rj. (4.1)

In Appendix C, it will be shown that this can equally be expressed as [41]

𝛿ui =
1
2

(
𝜕ui

𝜕rj
+

𝜕uj

𝜕ri

)

+ 1
2
((∇ × u) × 𝛿r)i. (4.2)

The first term on the right-hand side of Eq. (4.2) is referred to as an infinitesimal strain
tensor :

𝜖ij =
1
2

(
𝜕ui

𝜕rj
+

𝜕uj

𝜕ri

)

= 1
2
(∇u + (∇u)T)

=

⎛
⎜
⎜
⎜
⎜
⎝

𝜕u1

𝜕r1

1
2

(
𝜕u1

𝜕r2
+ 𝜕u2

𝜕r1

)
1
2

(
𝜕u1

𝜕r3
+ 𝜕u3

𝜕r1

)

1
2

(
𝜕u1

𝜕r2
+ 𝜕u2

𝜕r1

)
𝜕u2

𝜕r2

1
2

(
𝜕u2

𝜕r3
+ 𝜕u3

𝜕r2

)

1
2

(
𝜕u1

𝜕r3
+ 𝜕u3

𝜕r1

)
1
2

(
𝜕u2

𝜕r3
+ 𝜕u3

𝜕r2

)
𝜕u3

𝜕r3

⎞
⎟
⎟
⎟
⎟
⎠

. (4.3)

where 𝝐 is a symmetric (𝜖ij = 𝜖ji) tensor of rank 2 which can be expressed as a 3 × 3
matrix. Due to its symmetry, only six of nine entries are independent. The second term
in Eq. (4.2) corresponds to an infinitesimal rotation in the vicinity of point r.

r + δr

r + δr + u(r + δr)

r + u(r)

δr

δr′

r

u(r)

u(r + δr)

Figure 4.1 Nomenclature used for positions and displacements in a solid body. The two points r and
r + 𝛿r are subject to a displacement u. Dashed lines represent connections between points before and
after a deformation. Solid lines correspond to displacements. Points and their position vectors before
and after deformation are shown in gray.
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Linear strain theory

The linear approximation made in Eq. (4.1) by using only the first-order rather than the
full (infinite) Taylor series has huge implications for the applicability of that equation.
It basically constitutes the foundation of linear elasticity, which deals with small, or
rather infinitesimal, strains. However, real-world strains are always finite quantities, so
that Eq. (4.1) and all subsequent derivations are always approximations rather than
exact descriptions. In MRE, it is generally reasonable to apply this approximation, since
the strains are usually very small (10−4–10−2). However, other scenarios involving large
deformations require a more precise theory, called finite strain theory. In this book, we
will always use infinitesimal strain theory and discard second and higher orders of strain
quantities, which are dominated by the linear order in the regime of small strains.

The trace of the strain tensor, tr(𝝐) = ∇ • u, quantifies a change in volume according
to V ′ = V ⋅ (1 + tr(𝝐)) for a small-volume element V . The off-diagonal elements of 𝝐
parametrize shear strain.

Figure 4.2 depicts the shear strain caused by a force acting in the horizontal direc-
tion. The associated displacement field obviously has only a horizontal component. The
vertical sides of the rectangle are tilted by an angle 𝜃. We can calculate the four spatial
derivatives of the two-dimensional displacement field. Since we already know that the
vertical component u2 = 0, we deduce 𝜕u2

𝜕r1
= 0 and 𝜕u2

𝜕r2
= 0. For the horizontal compo-

nent, we find
𝜕u1

𝜕r1
= 0 (the displacement is constant along horizontal lines)

𝜕u1

𝜕r2
= Δx

L
= tan𝜙.

The strain tensor, as defined in Eq. (4.3), is

𝝐 =

(
0 1

2
tan𝜙

1
2

tan𝜙 0

)

.

We can readily see that the main diagonal of the strain tensor contains only zeros, since
the area of the rectangle does not change under shear deformation. This result can be
generalized to 3D shear deformations: Let 𝜃ij, (i ≠ j) be the change in the angle between
the i-axis and j-axis caused by deformation.1 With the definition 𝛾ij = tan 𝜃ij, the strain

Figure 4.2 Geometrical representation of shear strain. The dashed rectangle
represents the undeformed state and the solid trapezoid the deformed body.

L

Δx

θ

ê2

ê1

1 Hence, 𝜃 in Figure 4.2 is 𝜃12 and 𝜃21, since the angle between the two sides of the rectangle changes from
90∘ to 90∘ − 𝜃.
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tensor for pure shear strain has the form

𝝐 =
⎛
⎜
⎜
⎝

0 𝛾12∕2 𝛾13∕2
𝛾21∕2 0 𝛾23∕2
𝛾31∕2 𝛾32∕2 0

⎞
⎟
⎟
⎠

.

For small deformations, we can linearize the tangent function:
𝛾ij = tan 𝜙ij ≈ 𝜙ij.

The definition of 𝜃ij as the difference angle between two sides of a cube implies that
𝜃ij = 𝜃ji and hence 𝛾ij = 𝛾ji.

A deformation can be described equivalently by using the deformation gradient [42]
instead of the strain tensor. Every point of a material under deformation can be labeled
with a pre-deformation coordinate r and a post-deformation coordinate r′. The relation
between these two coordinates then is

r′ = r + u(r), (4.4)
as shown in Figure 4.1. The deformation gradient F is defined as the derivative of the
deformed coordinate with respect to the undeformed coordinate:

F = ∇r r′

=⇒ Fij =
𝜕r′i
𝜕rj

,

where ∇r denotes differentiation with respect to r. Inserting Eq. (4.4) yields
F = ∇r(r + u(r)) = 𝟙 + ∇r u (4.5)

with the 3 × 3 identity matrix 𝟙. In first-order approximation, we can write
u(r) = ∇u(r) ⋅ r, dropping the subscript r on the gradient operator, and therefore
we can express Eq. (4.4) as

r′ = r + u(r) = (𝟙 + ∇u) ⋅ r = F ⋅ r. (4.6)
The deformation gradient can thus be interpreted as the linear transform that maps the
undeformed to the deformed state.

We can now calculate the magnitude of deformation
FTF = (𝟙 + (∇u))T ⋅ (𝟙 + ∇u)

= 𝟙 + ∇u + (∇u)T + (∇u)T ⋅ ∇u
= 𝟙 + 2 ⋅ 𝝐 + 𝒪((∇u)2).

If we omit the quadratic terms of ∇u, which is permissible in the small-strain regime,
we obtain the relationship

𝝐 = 1
2
(FTF − 𝟙). (4.7)

Alternatively, the link between F and 𝝐 can be expressed as

𝝐 = 1
2
(F + FT) − 𝟙. (4.8)

The deformation gradient is used in finite strain theory to describe and study arbi-
trary deformations. However, for this book and MRE in general, the strain formulation
is preferred over the deformation form.
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4.2 Stress

The strain tensor is a purely phenomenological description of the deformation of a body;
it contains no information on the cause of deformation. The forces acting at a point in a
solid body can be fully represented by a decomposition into force components parallel
and perpendicular to the faces of a small cubic volume element around that point. This
yields three forces for each of the three pairs of mutually parallel faces of the cube, result-
ing in a total of nine components. The forces, normalized to the area A of one face of
the cube, are termed stresses. The nine stress components are summarized in the stress
tensor 𝝈, where the element 𝜎ij, i, j ∈ {1, 2, 3} represents the stress along the ith Carte-
sian axis on the surface orthogonal to the jth axis. We assume that the cube is aligned
with the coordinate system. Let Aj denote the area of the face orthogonal to the êj basis
vector and Fi the force acting on that face in the direction of êi, then the elements of the
stress tensor can be represented as

𝜎ij =
Fi

Aj
, (4.9)

as illustrated in Figure 4.3.
The diagonal components 𝜎ii act orthogonally on the three surfaces. In other words,

these forces are directed either toward or away from the center of the cube, and they
either compress or expand the volume. The off-diagonal entries 𝜎ij, i ≠ j characterize
stresses tangential to their respective surfaces. They exert a torque on the volume ele-
ment, causing shear deformation while preserving volume. If the resultant torque of all
stresses does not vanish, the cube will rotate. Therefore, the necessary and sufficient
condition for a static (equilibrium) configuration is that 𝜎ij = 𝜎ji for all pairs (i ≠ j), so
that all torque components cancel. In Figure 4.3, this is shown for stresses 𝜎31 and 𝜎13,
which act on the same edge and with the same strength, therefore balancing each other.
The same must be true for all other pairs of tangential stress components. This condition
implies that only six of the nine entries of the stress tensor are independent as long as
bulk rotation of the object is prevented.

On the other hand, the diagonal elements, 𝜎ii, compress or expand the volume. Since
they act orthogonally on the surfaces of the cube rather than tangentially, they do not
cause rotation.

If the stress tensor is evaluated at the location of a surface with outward normal vector
n̂, the projection on n̂ is called (surface) tension or traction:

𝜏i =
3∑

j=1
𝜎ijnj =

3∑

j=1
𝜎jinj. (4.10)

Figure 4.3 Definition of the nomenclature to denote stress
tensor elements 𝜎ij . The same convention is also used for the
strain tensor elements 𝜖ij .
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Hence, 𝜏i represents the force acting on the surface along the ith Cartesian direction.
Using the outward normal vector in the definition implies that forces pulling on the
surface (trying to extend the enclosed volume) are positive, whereas compressive forces
are negative.

4.3 Invariants

We can see easily from Figure 4.3 that the individual elements of the stress tensor, 𝜎ij
(and analogously for the strain tensor elements, 𝜖ij) change if the coordinate system is
rotated. Being second-order tensors, stress and strain tensors depend on the orienta-
tion of the coordinate system. However, linear algebra states that three independent
invariants exist for each tensor:

I1 = tr(𝝐) = 𝜖11 + 𝜖22 + 𝜖33 (4.11)

I2 =
1
2
(tr(𝝐2) − tr(𝝐)2) = 𝜖

2
12 + 𝜖

2
13 − 𝜖11𝜖22 + 𝜖

2
23 − 𝜖11𝜖33 − 𝜖22𝜖33 (4.12)

I3 = det(𝝐) = (𝜖22𝜖33 − 𝜖
2
23) 𝜖11 − (𝜖12𝜖33 − 𝜖13𝜖23)𝜖12 + (𝜖12𝜖23 − 𝜖13𝜖23)𝜖13. (4.13)

These invariants and their implications apply analogously to the stress tensor. We can
see that I1 represents volumetric strain, which is therefore independent of the choice of
the coordinate system. However, none of the constants reflects the shear strain elements,
meaning that shear strain actually depends on the coordinate system. The symmetry of
the strain tensor guarantees the existence of three eigenvalues 𝜆i, which are determined
by the equation

det (𝝐 − 𝜆i ⋅ 𝟙) = 0 for i = 1, 2, 3. (4.14)

The eigenvalues can alternatively be expressed in terms of the three invariants:

𝜆
3
i − I1 ⋅ 𝜆

2
i + I2 ⋅ 𝜆i − I3 = 0 for i = 1, 2, 3. (4.15)

Each eigenvalue is associated with an eigenvector, and the three eigenvectors consti-
tute an orthonormal basis. It is therefore possible to express the strain tensor in the
coordinate system defined by the eigenvectors:

𝝐
′ =

⎛
⎜
⎜
⎝

𝜆1 0 0
0 𝜆2 0
0 0 𝜆3

⎞
⎟
⎟
⎠

. (4.16)

This means that in the eigenvector system the full deformation can be expressed by three
axial strains, with no shear. These strains are termed principal strains. On the basis of
these principal strains, the maximum shear, 𝛾max, strain can be calculated as the differ-
ence between the maximum and the minimum principal strain:

𝛾max = maximum principal strain − minimum principal strain. (4.17)

An alternative method of calculating maximum shear strain of a 3D displacement field
is octahedral shear strain (OSS), which was introduced into MRE by McGarry et al. [43].
OSS is defined as

OSS = 2
3

√

(𝜖11 − 𝜖22)2 + (𝜖11 − 𝜖33)2 + (𝜖22 − 𝜖33)2 + 6 ⋅ (𝜖2
11 + 𝜖

2
22 + 𝜖

2
33). (4.18)
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OSS can be quantified for each voxel separately, giving rise to its use as a spatially
resolved measure of shear wave amplitudes to estimate signal quality or to compare
wave amplitudes in different subjects.

As a consequence of the quadratic terms in Eq. (4.18), it would not yield sound results
if the complex wave u0 ⋅ ei𝜔t was inserted for the strain. Only strain derived from the
real or imaginary part of the complex oscillation is suitable for the calculation of OSS.
Therefore, OSS is not a constant quantity, but it oscillates about its mean at twice the
drive frequency 𝜔. Because of that oscillation, OSS measured at a single time point is not
a reliable measure of image quality; instead, the average over the full oscillation cycle has
to be calculated. This in turn requires some preprocessing of the acquired wave fields,
for example, to ensure that there are no temporal phase wraps between time points.
While some MRE data processing methods contain these steps as part of their standard
pipeline, others, such as those based on gradient unwrapping (see Section 9.2), follow
a different path and do not provide the quantities required for OSS calculation, so that
OSS estimation cannot be easily integrated into these pipelines.

4.4 Hooke’s Law

Stress and strain are not independent of one another. The relationship between the
two depends on the type of material and its characteristics. Hooke’s law models the
relationship between the two tensors in a linear manner:

𝜎ij =
3∑

k,l=1
Cijkl 𝜖kl. (4.19)

According to this relationship, every single stress 𝜎ij is a function of the full strain field
𝝐. A medium whose stress–strain relationship is accurately described by Eq. (4.19) is
classified as linear elastic. C is a fourth-order tensor with 34 = 81 elements. The strain
tensor 𝝐 is symmetric by definition (Eq. (4.3)). Equation (4.26) implies that the stress
tensor𝝈 possesses the same symmetry, which imposes some constraints on the elements
of C, namely Cijkl = Cjikl = Cijlk = Cklij, so that only 21 of its elements are independent.
As a formal simplification, Voigt notation can be introduced to replace four-digit indices
with two-digit indices according to the following scheme:

11 → 1, 22 → 2, 33 → 3,
23 → 4, 13 → 5, 12 → 6.

Hooke’s law (Eq. (4.19)) can then be formulated as a matrix equation:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C13 C14 C15 C16
C12 C22 C23 C24 C25 C26
C13 C23 C33 C34 C35 C36
C14 C24 C34 C44 C45 C46
C15 C25 C35 C45 C55 C56
C16 C26 C36 C46 C56 C66

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖13
2𝜖12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.20)

The factor 2 for the off-diagonal elements of the strain tensor results from summa-
tion over identical elements, for example, 𝜖23 + 𝜖32 = 2 𝜖23. Note that introducing Voigt
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notation does not actually reduce C from a fourth-order to a second-order tensor. Trans-
formations, such as reflections or rotations, have to operate on Cijkl rather than on Cmn,
as will be demonstrated in Section 4.6.

Hooke’s law can equivalently be formulated using the compliance tensor S, which is
the inverse of the elasticity tensor: S = C−1. Equation (4.19) then reads

𝜖ij =
3∑

k,l=1
Sijkl 𝜎kl. (4.21)

Compliance versus elasticity

The two formulations, Eqs. (4.19) and (4.21), represent the same physical situation, but
from different points of view. 𝝈 = C ⋅ 𝝐 describes the distribution of stresses if the defor-
mation (strain) of a body is known, whereas 𝝐 = S ⋅ 𝝈 gives the deformation if the acting
forces (stresses) are prescribed. Stating this might seem trivial; however, there are some
important implications to be considered. Since 𝝈 and 𝝐 are second-order tensors and C
and S fourth-order tensors, each element of 𝝈 is a weighted sum of all elements of 𝝐, and
vice versa. Analogously, there is no one-to-one correspondence between the elements of
S and C.

The most suitable representation of Hooke’s law therefore depends on the scenario
under consideration. If strain is the independent quantity, and stress as a function of strain
is to be derived, using C is the more natural choice. Conversely, if the stress is known and
the strain has to be determined, S is the preferable choice for the parametrization.

4.5 Strain-Energy Function

A body can be deformed in two ways. First, an external force can be applied to the
surface. Second, the body can be heated or cooled. In both scenarios, energy is either
transferred into the body or drained from it. This implies that a deformation is associ-
ated with a change in internal energy. It is shown in [41] that the rate of change of the
internal energy density U can be represented as

U̇ = Q̇ +
3∑

i,j=1
𝜎ij�̇�ij, (4.22)

where Q is the heat per unit volume. The differential of U is thus given by

dU = dQ +
3∑

i,j=1
𝜎ijd𝜖ij. (4.23)

According to the laws of thermodynamics, the differential of heat is related to the
absolute temperature Θ and the entropy per unit volume S via dQ = ΘdS, yielding

dU = ΘdS +
3∑

i,j=1
𝜎ijd𝜖ij. (4.24)
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If a deformation occurs in an adiabatic, reversible way, the entropy does not increase
(dS = 0), such that

dU =
3∑

i,j=1
𝜎ij d𝜖ij. (4.25)

Taking the derivative with respect to the strain component 𝜖ij leads us to

𝜎ij =
𝜕U
𝜕𝜖ij

. (4.26)

Hence, the stresses within a body under deformation can be derived from the internal
energy density. A function with the property exhibited by U in Eq. (4.26) is called
strain-energy function.2 For an irreversible process, an increase in entropy (dS > 0)
renders the step from Eq. (4.24) to Eq. (4.25) invalid. In that case, a more general
strain-energy function W has to be used instead of the internal energy U in Eq. (4.26).
We will therefore use W from here on.

From Eq. (4.26), it follows that W must be of the form

W = 1
2
⋅

3∑

i,j=1
𝜎ij𝜖ij =

1
2
⋅

3∑

i,j,k,l=1
Cijkl𝜖ij𝜖kl. (4.27)

Since 𝝈 and 𝝐 are related via a first-order differential in Eq. (4.26), an arbitrary offset can
be added to W without affecting the stress–strain relation. It is hence possible to define
the undeformed equilibrium state as W = 0. Furthermore, in equilibrium, all stresses
𝜎ij have to vanish, since otherwise they would constitute a driving force causing defor-
mation, contradicting the assumption of an undeformed state. Therefore, according to
Eq. (4.26), the equilibrium state is a stationary point of W with respect to strains 𝜖ij.

4.6 Symmetries

In Section 4.4, it was explained that the 81 elements of the most general linear elasticity
tensor Cijkl can be reduced to 21 independent elements through a series of symmetry
arguments, so that C can be represented by a symmetric 6 × 6 matrix. In this chapter,
we will demonstrate how this fact can be derived from material symmetries.

The elasticity tensor Cijkl and the compliance tensor Sijkl are both fourth-order tensors.
Hence, in order to transform them from one coordinate system to another, four “copies”
of the transformation matrix Q are required:

C′
ijkl =

3∑

a,b,c,d=1
QiaQjbQkcQldCabcd (4.28)

and analogously for S′
ijkl (we will use C throughout this chapter, but the same arguments

hold for S).
If a material possesses a symmetry, this means that there is an associated transforma-

tion matrix Q that leaves the system invariant, such that Cijkl = C′
ijkl for all entries. The

2 Despite its name, the strain-energy function represents an energy density. In order to obtain the actual
energy stored in a body due to deformation, one has to integrate over the whole volume.
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most commonly found symmetries in real-world materials are mirror symmetry (the
associated transform is a reflection about the mirror plane) and rotations.

A reflection about a plane orthogonal to one of the three coordinate axes can be
represented in matrix form as

P(1) =
⎛
⎜
⎜
⎝

−1 0 0
0 1 0
0 0 1

⎞
⎟
⎟
⎠

, P(2) =
⎛
⎜
⎜
⎝

1 0 0
0 −1 0
0 0 1

⎞
⎟
⎟
⎠

, P(3) =
⎛
⎜
⎜
⎝

1 0 0
0 1 0
0 0 −1

⎞
⎟
⎟
⎠

. (4.29)

Rotations, on the other hand, have the form

R(1) =
⎛
⎜
⎜
⎝

1 0 0
0 cos 𝜙 − sin 𝜙

0 sin 𝜙 cos 𝜙

⎞
⎟
⎟
⎠

, R(2) =
⎛
⎜
⎜
⎝

cos 𝜙 0 − sin 𝜙

0 1 0
sin 𝜙 0 cos 𝜙

⎞
⎟
⎟
⎠

,

R(3) =
⎛
⎜
⎜
⎝

cos 𝜙 − sin 𝜙 0
sin 𝜙 cos 𝜙 0

0 0 1

⎞
⎟
⎟
⎠

, (4.30)

with rotation angle 𝜙 for rotations about the ê1-, ê2-, and ê3-axes, respectively.
In order to demonstrate how the presence of symmetries reduces the number of inde-

pendent elements of C and S, we will follow the arguments presented in [42]. For the
simplest case, assume that the medium is symmetric with respect to the ê2ê3-plane at
r1 = 0. Such a medium is called monoclinic. A reflection of the r1 component must leave
the components of C invariant, since both the stress and strain components change their
signs:

𝜎ij =
3∑

k,l=1
Cijkl𝜖kl in the basis {ê1, ê2, ê3}

𝜎
′
ij =

3∑

k,l=1
C′

ijkl𝜖
′
kl in the basis {−ê1, ê2, ê3}

C′
ijkl = Cijkl ∀ i, j, k, l = 1, 2, 3. (4.31)

The transform that achieves a flip of the ê1-axis has the form

r′ = P(1)r (4.32)

with P(1) from Eq. (4.29). Inserting P(1) into the transformation equation (4.28), we
obtain

C′
ijkl =

3∑

a,b,c,d=1
P(1)

ia P(1)
jb P(1)

kc P(1)
ld Cabcd. (4.33)

P(1) has the form of an identity matrix, apart from the entry −1 in P(1)
11 . This implies that

every element C′
ijkl with n occurrences of the value 1 among its four indices is propor-

tional to (−1)nCijkl. Therefore, for each element with an odd number of 1’s, such as C1112
or C1234, we obtain C′

ijkl = −Cijkl. Together with the requirement of Eq. (4.31), this implies
that each of these elements has to be zero. The existence of a plane of symmetry there-
fore reduces the number of independent viscoelastic parameters from 21 in the general
case to 13.
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An analogous argument can be used to analyze orthotropic materials with three per-
pendicular planes of symmetry.3 In this case, elements with an odd number of 2’s or 3’s
among their four indices vanish as well, and only nine independent parameters remain.
The orthotropic elasticity tensor reads in Voigt notation

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C13 0 0 0
C12 C22 C23 0 0 0
C13 C23 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C55 0
0 0 0 0 0 C66

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.34)

Finally, the highest degree of symmetry that can be found in an anisotropic medium
is referred to as transverse isotropy. This term designates a material that has isotropic
properties in a given plane and different properties along the normal vector of that
plane. For example, there is no distinguished direction in a bundle of aligned fibers in
the plane orthogonal to the fibers, whereas the direction along the fibers stands out (see
Figure 4.5). Mathematically, transverse isotropy is characterized by rotational symme-
try about one axis for arbitrary rotation angles. This is equivalent to the existence of
infinitely many (nonperpendicular) symmetry planes that all contain the fiber direction
as a tangent vector.

If we assume that the fibers are aligned with the ê3-axis, the symmetry-preserving
rotation is R(3), as given for arbitrary rotation angles 𝜙 in Eq. (4.30) above. The elements
of the elasticity tensor transform according to

C′
ijkl =

3∑

a,b,c,d=1
R(3)

ia R(3)
jb R(3)

kc R(3)
ld Cabcd. (4.35)

Since every plane that has a normal vector in the ê1ê2-plane is a symmetry plane of the
material, this includes specifically the plane orthogonal to ê1, which was taken as the
symmetry plane in the discussion of a monoclinic medium. By the same argument as
above, all eight coefficients C′

ijkl with an odd number of 1’s across their subscripts have
to be zero. However, rotation symmetry prescribes additional relations that do not hold
in the monoclinic case. As an example, take the transformation of the component4

C′
1323 = R11 R33 R21 R33 ⋅ C1313 + R12 R33 R21 R33 ⋅ C2313

+ R11 R33 R22 R33 ⋅ C1323 + R12 R33 R22 R33 ⋅ C2323. (4.36)

Of course, the full transformation according to Eq. (4.35) contains more terms than
shown here; however, since R31 = R13 = R23 = R32 = 0, only the four terms listed above
remain. Of these, we know from the above argument that C2313 and C1323 are zero, since
they have an odd number of 1’s among their indices. The same is true for C1323 on the

3 There cannot be a medium with only two perpendicular planes of symmetry, because the reflection about
two such planes automatically establishes symmetry about a third perpendicular plane.
4 We drop the superscript that denotes the rotation axis for the matrix R to improve readability.
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left-hand side of the equation, so that we obtain (with R33 = 1)

0 = R11 R21 ⋅ C1313 + R12 R22 ⋅ C2323

=⇒ 0 = cos 𝜙 ⋅ sin 𝜙 ⋅ C1313 + (− sin 𝜙) ⋅ cos 𝜙 ⋅ C2323

=⇒ 0 = cos 𝜙 ⋅ sin 𝜙 ⋅ (C2323 − C1313)
=⇒ C2323 = C1313.

Similar considerations finally lead us to a stress–strain relation of the form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C1111 C1122 C1133 0 0 0
C1122 C1111 C1133 0 0 0
C1133 C1133 C3333 0 0 0

0 0 0 C1313 0 0
0 0 0 0 C1313 0
0 0 0 0 0 C1111−C1122

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖31
2𝜖12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.37)

There are only five independent parameters left for a transverse isotropic medium.
Notably, the last element, C1212, has been substituted with a linear combination of
C1111 and C1122. This justifies the term “plane of isotropy” for the ê1ê2-plane, since
shear deformations within that plane are governed by the same elastic constants as
axial deformations, analogous to isotropic materials. By contrast, shear strains with
an out-of-plane component (𝜖23 and 𝜖31) are governed by constant C1313, which is
unrelated to all other tensor elements. Using Voigt notation, the elasticity tensor can
be equivalently written as [42]

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C11−C12

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.38)

Since 𝝈 and 𝝐 share the same symmetry properties, the same line of arguments applies
to S, which has the same form and the same number of independent parameters as
C. We will give explicit expressions for S and C for the transverse isotropic case in
Section 4.7.4.

The highest possible degree of symmetry is isotropy, which means that the elastic
properties do not depend on the direction of strains and stresses. This case can be
derived from the transverse isotropic case by introducing either ê1 or ê2 as another rota-
tional symmetry axis for arbitrary rotation angles. By the same argument as above, we
find that

C2222 = C3333 =⇒ C22 = C33 (4.39)
C1122 = C1133 =⇒ C12 = C13 (4.40)

C1313 = C1212 =⇒ C44 =
C11 − C12

2
. (4.41)
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The elasticity tensor for an isotropic medium hence has the form

C =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

C11 C12 C12 0 0 0
C12 C11 C12 0 0 0
C12 C12 C12 0 0 0
0 0 0 C11−C12

2
0 0

0 0 0 0 C11−C12

2
0

0 0 0 0 0 C11−C12

2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.42)

Obviously, a linear isotropic medium is characterized by only two elastic constants, C11
and C12. The physical meaning of these constants will be discussed in Section 4.7.

4.7 Engineering Constants

The symmetry transforms we used in Section 4.6 to calculate the elasticity tensors C
for different degrees of symmetry apply identically to the compliance tensor S. For the
linear isotropic case, we can therefore represent the stress–strain relation as

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖31
2𝜖12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

S11 S12 S12 0 0 0
S12 S11 S12 0 0 0
S12 S12 S11 0 0 0

0 0 0 2 ⋅ (S11 − S12) 0 0
0 0 0 0 2 ⋅ (S11 − S12) 0
0 0 0 0 0 2 ⋅ (S11 − S12)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(4.43)

As in the case of the isotropic elasticity tensor, the compliance tensor only depends on
two constants, S11 and S12. In the following sections, we analyze the physical meaning
of these parameters and their relationship to the three principal types of strain: uniaxial
loading, shear, and volumetric strain.

4.7.1 Young’s Modulus and Poisson’s Ratio

Imagine a block of isotropic material that is subjected to a pushing force from above
(ê3), but is not constrained on its sides, as shown in Figure 4.4. This scenario is known
as uniaxial loading. The only acting stress is 𝜎33. From Eq. (4.43), we gather that

𝜖11 = 𝜖22 = S12 ⋅ 𝜎33 (4.44)
𝜖33 = S11 ⋅ 𝜎33 (4.45)
𝜖23 = 𝜖13 = 𝜖12 = 0. (4.46)

Not surprisingly, the strains orthogonal to the acting stress are equal since the medium
is isotropic. Furthermore, all shear strains are zero, indicating that purely axial stress
can only cause axial strains and no shear deformation. For the strain along the acting
stress, we introduce Young’s modulus, E, such that

𝜖33 = 1
E
𝜎33. (4.47)
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F

L0

δL

Figure 4.4 Diagram of applying uniaxial loading to a body to quantify its Young’s modulus. The force
acting on the plate on top of the body generates a stress according to 𝜎33 = F

A
, where A is the contact

area between the body and the pressure plate. The resulting strain is 𝜖33 = 𝛿L

L0
. Since the body is not

constrained laterally, it can expand perpendicular to the direction of the acting stress. The in-plane
strains are then determined by Poisson’s ratio, as explained in the text.

For the transverse strains, we introduce a second parameter, Poisson’s ratio 𝜈, such that

𝜖11 = 𝜖22 = − 𝜈

E
𝜎33. (4.48)

For positive values of 𝜈, Eq. (4.48) indicates that compressive strain (<0) along one axis
is compensated by expansive strain (>0) in the transverse plane, and vice versa. For
𝜈 = 1

2
, the medium is perfectly incompressible, whereas 𝜈 = 0 represents a perfectly

compressible medium, in which strains and stresses along different axes are uncoupled.
Most real-world materials possess intermediate properties, with 0 < 𝜈 <

1
2
, where

higher values represent reduced compressibility. Auxetic materials are characterized
by negative Poisson’s ratios, which means that compressive stress along one axis also
causes compression in the transverse plane. Such a behavior is caused by special
geometries of the microscopic structure. An example of an auxetic material is paper.

With these definitions of Young’s modulus and Poisson’s ratio, we find that

S11 =
1
E

(4.49)

S12 = − 𝜈

E
. (4.50)

In an anisotropic medium, the response of the object depends on the direction along
which a stress acts. This implies that Poisson’s ratio depends on the direction of defor-
mation. The more general definition is therefore

𝜈ij = −
𝜕𝜖jj

𝜕𝜖ii
. (4.51)

Young’s modulus becomes dependent on the direction of the strain as well. A represen-
tation for a compliance tensor of an anisotropic medium will be given in Section 4.7.4.

4.7.2 Shear Modulus and Lamé’s First Parameter

A second type of deformation occurs when a body is subjected to shear strain (see
Figure 4.2 for a graphical representation). Shear stresses and strains are represented by
the off-diagonal elements 𝜎ij and 𝜖ij (i ≠ j). From Eq. (4.43) we can see that, for pure shear
strain, the individual components are uncoupled. The proportionality constant between
stress and strain is the shear modulus 𝜇: 𝜖ij =

1
𝜇
𝜎ij. Therefore, we have S44 = 1

𝜇
.
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In the representation of the compliance tensor used in Eq. (4.43), the last three
diagonal entries were given by

S44 = 2 ⋅ (S11 − S12). (4.52)

By substituting S11 = 1
E

and S12 = − 𝜈

E
, we obtain

S44 = 1
𝜇

= 2 ⋅
( 1

E
+ 𝜈

E

)

= 2 ⋅
1 + 𝜈

E
. (4.53)

The shear modulus is thus not an independent quantity, but it is related to Young’s
modulus and Poisson’s ratio via

𝜇 = E
2(1 + 𝜈)

. (4.54)

We now know all parameters that are necessary to represent the compliance tensor of
a linear isotropic medium with physically meaningful quantities:

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜖11
𝜖22
𝜖33

2𝜖23
2𝜖31
2𝜖12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
E

− 𝜈

E
− 𝜈

E
0 0 0

− 𝜈

E
1
E

− 𝜈

E
0 0 0

− 𝜈

E
− 𝜈

E
1
E

0 0 0
0 0 0 1

𝜇
0 0

0 0 0 0 1
𝜇

0
0 0 0 0 0 1

𝜇

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎11
𝜎22
𝜎33
𝜎23
𝜎31
𝜎12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.55)

It is important to note that Young’s modulus and Poisson’s ratio are not by any means
distinguished quantities for the representation of elastic properties. Many other param-
eters can be used instead. However, due to the fact that the compliance (and elasticity)
tensors in isotropic materials depend only on two parameters, any pair of elastic con-
stants can be converted to any other pair.5 One useful parametrization is the pair (𝜇, 𝜆),
where 𝜆 is Lamé’s first parameter. It can be calculated from E and 𝜈 as

𝜆 = E𝜈
(1 + 𝜈) ⋅ (1 − 2𝜈)

. (4.56)

Unlike the previously discussed parameters, 𝜆 does not have a direct physical interpre-
tation. We can see that, in the case of a perfectly incompressible material (𝜈 = 1

2
), the

denominator becomes 0 and hence 𝜆 = ∞. For perfect compressibility (𝜈 = 0), on the
other hand, 𝜆 = 0. We can hence conclude that 𝜆 reflects how easily a material can be
compressed, however; it is not identical to compressibility or the compression modu-
lus, which we will denote by 𝜅 and K , respectively. Rather, 𝜆 combines K and 𝜇 and can
become negative. The significance of Lamé’s first parameter will become more obvious
in Section 4.9, when we decompose arbitrary deformation fields into pure shear and
pure compression components.

4.7.3 Compressibility and Bulk Modulus

From the above discussion it is clear that the Poisson’s ratio is closely linked to the com-
pressibility 𝜅 of a medium. The terms compression and, its opposite, expansion, refer to

5 A very useful conversion table can be found at https://en.wikipedia.org/wiki/Bulk_modulus
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volumetric strain

tr(𝝐) = 𝜖11 + 𝜖22 + 𝜖33, (4.57)

which is a scalar quantity. Volumetric strain is effected by axial stresses 𝜎ii. We will
assume that axial stresses act along all three coordinate axes, and that there are no shear
stresses. Under these circumstances, Eq. (4.55) reduces to

⎛
⎜
⎜
⎝

𝜖11
𝜖22
𝜖33

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎜
⎝

1
E

− 𝜈

E
− 𝜈

E
− 𝜈

E
1
E

− 𝜈

E
− 𝜈

E
− 𝜈

E
1
E

⎞
⎟
⎟
⎟
⎠

⋅
⎛
⎜
⎜
⎝

𝜎11
𝜎22
𝜎33

⎞
⎟
⎟
⎠

. (4.58)

Calculating volumetric strain according to Eq. (4.57) yields

tr(𝝐) = −2 𝜈

E
⋅ (𝜎11 + 𝜎22 + 𝜎33) +

1
E

(𝜎11 + 𝜎22 + 𝜎33)

= 1 − 2𝜈
E

⋅ (𝜎11 + 𝜎22 + 𝜎33). (4.59)

As mentioned in Section 4.1, volumetric strain can be understood as the relative volume
change of a body under deformation:

tr(𝝐) = ΔV
V

. (4.60)

On the other hand, the axial stresses 𝜎ii quantify the forces per area that push (or pull)
orthogonal to the surface of a cube aligned with the coordinate system (see Figure 4.3).
This is the equivalent of a differential pressure Δp that transforms the body from the
original to the deformed state.6 We can therefore define

Δp = −1
3
(𝜎11 + 𝜎22 + 𝜎33). (4.61)

By convention, when describing pressures, the minus sign indicates that an increase
in pressure yields compression, whereas a pressure decrease causes expansion. We can
now reformulate Eq. (4.59) as

ΔV
V

= −3Δp ⋅
1 − 2𝜈

E

=⇒ 𝜅 ≡ − 1
V

𝜕V
𝜕p

= 3(1 − 2𝜈)
E

, (4.62)

where we switched from finite differences to true derivatives to be more mathematically
correct. The quantity 𝜅 is called compressibility. Its inverse is referred to as bulk modulus
or compression modulus:

K ≡

1
𝜅
= E

3(1 − 2𝜈)
. (4.63)

The derivative 𝜕V
𝜕p

is always negative, since a pressure increase reduces the volume and
vice versa, such that K , 𝜅 ≥ 0. Low compressibility (and a high bulk modulus) indicates a
stiff material that permits only a small volume change for a given pressure, whereas high

6 We do not know, nor care about, the initial pressure that the undeformed state is balanced with, since it
does not contribute to the volumetric deformation.
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compressibility (low bulk modulus) characterizes easily compressible materials. 𝜅 = 0
and K = ∞ represent incompressible materials.

From Eq. (4.62), it is readily seen that perfect incompressibility (𝜅 = 0) implies 𝜈 = 1∕2
or an infinitely large Young’s modulus E. The first case corresponds to material that can
be elongated or jolted with no change in its volume (requiring contraction perpendicular
to the direction of elongation or expansion perpendicular to the direction of compres-
sion), while in the second case the material is resistant to any such deformation.

4.7.4 Compliance and Elasticity Tensor for a Transversely Isotropic Material

It was shown in Section 4.6 that a transversely isotropic medium is characterized by
five independent parameters. The stress–strain relation, using stress as the independent
quantity, for such a medium with the symmetry plane perpendicular to the 3-axis, has
the form

𝝐 = S ⋅ 𝝈 =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1∕E1 −𝜈21∕E1 −𝜈31∕E3 0 0 0
−𝜈21∕E1 1∕E1 −𝜈31∕E3 0 0 0
−𝜈13∕E1 −𝜈13∕E1 1∕E3 0 0 0

0 0 0 1∕𝜇13 0 0
0 0 0 0 1∕𝜇13 0
0 0 0 0 0 1∕𝜇12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎11
𝜎22
𝜎33

2𝜎23
2𝜎13
2𝜎12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(4.64)

which is the inverse of Eq. (4.20). Apart from the factor 2 for the last three entries of 𝝐,
𝝈 and 𝝐 have the same form. The block structure of the compliance matrix in Eq. (4.64)
ensures that the axial stresses (𝜎ii) translate to purely axial strains (𝜖jj). Compression
or elongation along each axis causes a strain along the same axis, with the respective
Young’s modulus Ei (E1 = E2 ≠ E3) as the proportionality constant. In addition, defor-
mation also occurs along the other two axes, which is governed by the ratio of Poisson’s
ratio to Young’s moduli. Coupling between in-plane stresses and strains is quantified by
the in-plane Young’s modulus E1, the Poisson’s ratio 𝜈21, and the in-plane shear modulus
𝜇12. Coupling between in-plane and through-plane components depends on E1, E3, 𝜈31,
and 𝜈13. Symmetry of the compliance tensor requires that 𝜈13 = 𝜈31 ⋅

E1

E3
.

The last three entries of the stress and strain vectors correspond to shear deforma-
tion. They are independent of axial deformation, and coupling between stress and strain
is parametrized by the shear moduli 𝜇12 and 𝜇13. The in-plane shear modulus is not
independent, but determined by the other parameters:

𝜇12 =
E1

2(1 + 𝜈21)
. (4.65)

Hence, there are a total of five independent elastic parameters in the compliance tensor
of a transversely isotropic medium: E1, E3, 𝜈12, 𝜈31, and 𝜇13 (Figure 4.5).

Since S is a positive definite matrix,7 it can be inverted to yield the elasticity tensor
C. For a transversely isotropic medium, the elasticity tensor has the form displayed in

7 This is a consequence of the strain-energy function being zero for the undeformed state and yielding
positive values for all deformed states. If this were not the case, it would imply the existence of a deformed
state with a lower potential energy than the undeformed state.
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(d) (e) (f)

(a)

isotropy

ê2

ê3

ê1

symmetry

E1 =      = E2

σ11
�11

(b)

μ12 = 
σ12

2�12

(c)

μ13 = 
σ13

2�13

E2 =      = E1
σ22
�22

E3 =
σ33
�33

Figure 4.5 (a) Shear moduli in a fiber-reinforced transversely isotropic material with planes of
symmetry (ê1ê3, ê2ê3) and a plane of isotropy (ê1ê2). Different types of deformation probe different
mechanical moduli: shear deformation perpendicular (b) and parallel (c) to the fibers probes the two
shear moduli, 𝜇12 and 𝜇13, respectively. Axial deformation along a single axis probes Young’s moduli
E1 = E2 and E3 (d–f ).

Eq. (4.38), with

C11 = C22 =
E1

1 + 𝜈21

1 − 𝜈
2
31E1∕E3

D

C33 =
(1 − 𝜈21)E3

D

C12 =
E1

1 + 𝜈21

𝜈21 + 𝜈
2
31E1∕E3

D

C13 = C23 =
E1𝜈31

D
C44 = C55 = 𝜇13

C66 = 𝜇12 with

D = 1 − 𝜈21 − 2𝜈2
31

E1

E3
. (4.66)

4.8 Viscoelastic Models

The term viscoelastic is composed of viscous and elastic. As outlined above, these two
properties characterize different types of responses of a medium to an external force.
This section will first analyze viscous and elastic behavior separately and then proceed
to combine them into a number of viscoelastic models.

In the following discussion, we will neglect inertia, which in reality gives rise to oscil-
latory effects and is a prerequisite for mechanical wave propagation. Hence, the models
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to be introduced here are abstract and do not apply to real materials. One way to imag-
ine such media is to separate structure from mass: remove all mass from a material,
so that only its structure – the component responsible for transmitting forces across
the body – remains. That way, mechanical coupling between different regions of the
medium is preserved, while its mass density is decreased to zero, allowing for instanta-
neous acceleration and deceleration without requiring infinitely large forces.

4.8.1 Elastic Model: Spring

A purely elastic medium deforms when a force is applied, but will immediately return
to its original state once the force is removed. In other words, deformation of an elastic
medium is a fully reversible process. This has a number of implications:
1) The fact that the body returns to its original shape means that no energy is dissipated

during deformation. The free energy of the medium can increase during deformation
(since deforming usually requires work to be performed on a body), but this energy
is later released when the original state is restored. Therefore, an elastic medium can
store energy but will not convert it to heat.

2) The response of an elastic body to deformation can be analyzed without considering
its history. Purely elastic media therefore do not exhibit hysteresis.

A model system for purely elastic media is a (massless) spring. In the one-dimensional
case, stress and strain are scalar quantities and the stress–strain relation can be
parametrized through Young’s modulus E of the spring:

𝜎e = E𝜖. (4.67)
The strain is the change in length relative to the original length L0 of the spring:

𝜖 = ΔL
L0

. (4.68)

If a certain amount of stress, 𝜎0, is applied, the spring is shortened or elongated to
L = L0 + ΔL, such that

ΔL =
L0

E
𝜎0. (4.69)

In agreement with the convention introduced in Section 4.2, positive stresses indicate
pulling forces, associated with an elongation of the spring and hence ΔL > 0, whereas
compressive stresses, causing a shortening of the spring, are characterized by 𝜎 < 0 and
ΔL < 0. Since the spring is considered massless, the strain can follow the stress without
delay, as no mass has to be accelerated or decelerated.8 As a consequence, Eq. (4.67) is
also valid for time-dependent deformation:

𝜎e(t) = E𝜖(t). (4.70)
Caution is in order when the terminology related to elasticity is used in a quantitative
sense. Elasticity is not a synonym for “deformability” or “compliance” but rather the
opposite. High elasticity means that large stresses are necessary to achieve even a small
deformation. It might be more intuitive to refer to the (elastic) modulus rather than to
elasticity when a quantitative statement or a comparison is intended.

8 This is, of course, an idealized assumption and real-world springs always possess a certain mass, which
causes them to oscillate about stationary points. Oscillations and waves will be discussed in Section 4.9.
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4.8.2 Viscous Model: Dashpot

In contrast to an elastic medium, a viscous body “flows” out of shape under stress and
does not return to its original shape once the load is removed. A highly viscous medium
resembles liquids such as honey or crude oil; however, in this treatment, we again neglect
inertia, so that the model does not have a real-world counterpart.

The fact that a viscous medium retains its deformed state even after the stress is
removed means that the work performed during deformation has been converted to
a different form of energy and is not available for performing mechanical work. In most
cases, internal friction during deformation converts the mechanical work into heat,
which is an irreversible process.

The model system for a purely viscous medium is a dashpot, a piston immersed in a
pot filled with a viscous fluid, such as oil. The piston can move through the oil, but due
to the viscosity of the fluid, friction causes resistive forces. Since friction is proportional
to the velocity of the moving piston, the stress–strain relation of a dashpot accounts for
the rate of change of the strain:

𝜎v = 𝜂�̇�, (4.71)
where 𝜂 quantifies the viscosity of the fluid. For a constant stress 𝜎0, Eq. (4.71) implies
a constant deformation velocity �̇�, meaning that the strain increases linearly with time.
Hence, there is no equilibrium under a constant stress condition, and the medium will
continue to “flow apart” until the stress is removed, at which point the body will retain
its shape. Furthermore, the medium does not resist the deformation itself – even large
deformation can be effected by small stresses over long periods of time.

Real-valued and complex moduli

Thus far, we have not discussed the range of values of elastic moduli. Young’s modulus
E of an ideal spring and the viscosity 𝜂 of an ideal dashpot are both real-valued posi-
tive quantities. However, if we analyze the stress–strain relations, Eqs. (4.70) and (4.71),
for an oscillating stress 𝜎(t) = 𝜎0 ⋅ exp(i𝜔t) with amplitude 𝜎0 and angular frequency 𝜔,
something remarkable happens:

𝜖 = 𝜎(t)
E

=
𝜎0

E
⋅ exp(i𝜔t) (spring)

�̇� = 𝜎(t)
𝜂

=⇒ 𝜖(t) =
𝜎0

𝜂
⋅
(

− i
𝜔

)

⋅ exp(i𝜔t) (dashpot)

A graphical representation of this scenario is given in Figure 4.6. Keeping in mind that
E, 𝜂, 𝜖0, and 𝜔 are all real-valued positive quantities, we find that, for the spring, strain is
just a scaled version of stress. For the dashpot, on the other hand, the factor i introduces
a phase shift of 90∘ between the two, such that strain lags behind stress by one quarter
of an oscillation period. If we condense Eqs. (4.70) and (4.71) into the general form of
the one-dimensional version of Hooke’s law, 𝜎 = Z𝜖, with a viscoelastic modulus Z, we
note that Z can be a complex quantity. If Z is strictly real, it characterizes a purely elastic
medium, such as a spring. Conversely, if Z is purely imaginary, it represents a perfectly
viscous medium. In most real-world cases, Z is located in the first quadrant of the complex
plane, with Re(Z), Im(Z) > 0, which is characteristic of a medium that exhibits both elastic
and viscous properties.
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Figure 4.6 The real part of an oscillating stress (red) with frequency 𝜔, and the resulting strain in a
purely elastic (solid) and a purely viscous (dashed) medium. The elastic strain is in phase with the
acting stress, whereas the viscous strain lags behind the stress by one quarter of the oscillation period.

4.8.3 Combinations of Elastic and Viscous Elements

Springs and dashpots can be combined in a manner very similar to the combination of
resistors and inductors in electrical circuits, and the resultant systems will exhibit hybrid
characteristics. The two most basic ways of combining two elements is to assemble them
either in series or in parallel and to apply a stress to the compound system. The parallel
arrangement of a spring and a dashpot is called Voigt model (or Kelvin–Voigt model),
whereas the serial alignment is referred to as Maxwell model.

An electrical analogy can be used to understand how stresses and strains behave
in arbitrarily complex arrangements of viscoelastic elements. In electrical circuits,
if resistors are arranged in series, the same current will flow through all of them,
but the voltage across each element will be different. On the other hand, in a par-
allel arrangement, the voltage across each element will be equal to the voltage
applied to the circuit, but the currents through each branch depend on the resis-
tance of that branch, and the total current through the system equals the sum of all
currents.

If we equate strain with voltage and stress with current, the same rules hold for
elastic networks. In a serial arrangement, all elements experience the same stress, while
the strain in each element depends on its viscoelastic parameters. Conversely, in a
parallel arrangement, strain is identical in each element, while the stresses differ and
the total stress is the sum of the stresses in each branch. This can be easily understood
if one imagines a parallel arrangement of a spring and an infinitely sturdy steel bar.
The bar will prevent the spring from being compressed, so it sustains the full stress
applied to the system, whereas the spring remains unloaded. If the bar is gradually
weakened, the spring will start to receive a part of the applied stress and will hence
shorten. Ultimately, if the bar is removed (or becomes infinitely weak), the spring
has to support the full stress, and its Young’s modulus will dictate the strain of the
system.

In theory, the set of equations resulting from these considerations is sufficient to
understand arbitrary arrangements of springs and dashpots:
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• Serial arrangement of N elements:

𝜎 = 𝜎1 = 𝜎2 = … = 𝜎N (4.72)

𝜖 =
N∑

i=1
𝜖i. (4.73)

• Parallel arrangement of N elements:

𝜎 =
N∑

i=1
𝜎i (4.74)

𝜖 = 𝜖1 = 𝜖2 = … = 𝜖N . (4.75)

However, there is a major drawback in the formulation of the stress–strain relations
for a spring (Eq. (4.67)) and a dashpot (Eq. (4.71)): the stress in a spring depends on the
strain, whereas the dashpot stress depends on the strain rate. Hence, simply inserting
these stress–strain relations into the above composition rules would lead to differen-
tial equations, which would have to be solved for 𝜖 and �̇� simultaneously. In complex
networks with many elements, this can become a challenging task. However, in the fre-
quency domain representation, these differential equations morph into much simpler
algebraic expressions. The standard procedure is therefore to perform the calculations
in the Laplace domain. The frequency-resolved modulus G∗(𝜔) can then be obtained by
substituting the Laplace domain variable s with i𝜔.

The Laplace transform

The Laplace transform is an integral transform defined as

ℒ [f (t)] (s) =
∫

∞

0−
e−stf (t)dt. (4.76)

It converts a function f (t), defined in the time domain (t ∈ ℝ), into a function that
depends on a complex frequency variable s ∈ ℂ. As a shorthand notation for the rather
clumsy left-hand side of Eq. (4.76), we will use the overbar to indicate pairs of functions
and their Laplace transforms: f (s) ≡ ℒ [f (t)] (s). The 0− in the lower integration bound
is meant to indicate that an impulse function at the origin, 𝛿(0), fully contributes to the
integral.

The integral in Eq. (4.76) does not necessarily converge for all values of s. For example,
if f (t) = 1, the integral converges only for Re(s) > 0. The imaginary part of s has no effect
on the convergence of the integral, and the region of convergence (ROC) is alwaysa deter-
mined by a condition Re(s) > a or Re(s) ≥ a, with −∞ ≤ a ≤ +∞. However, the function
resulting from the evaluation of Eq. (4.76) is usually defined for a larger range of s, usually
the entire complex plane without isolated points at which f (s) has poles.

The Laplace transform has a number of useful properties, which will be listed here
without proof:

• Linearity:

ℒ [a ⋅ f (t) + b ⋅ g(t)] (s) = a ⋅ f (s) + b ⋅ g(s) (4.77)
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for a, b ∈ ℂ.
• Differentiation:

ℒ
[

df
dt

]

(s) = s ⋅ f (s) − f (0). (4.78)

For higher-order derivatives, the relation reads

ℒ [f (n)(t)] (s) = sn ⋅ f (s) −
n∑

k=1

sk−1f (n−k)(0). (4.79)

• Laplace transform of the Heaviside step function:

ℒ [Θ(t)] (s) = 1
s

(4.80)

with

Θ(t) =
{

0 ∶ t ≤ 0
1 ∶ t > 0

(4.81)

This property is used when instantaneous loading or unloading is to be modeled.
• Time shifting:

ℒ [f (t − 𝜏) ⋅ Θ(t − 𝜏)] = e−𝜏sf (s) (4.82)

for 𝜏 ∈ ℝ.
• Inverse transform:

f (t) = ℒ−1[f (s)] = lim
q→∞

1
2𝜋i ∫

c+iq

c−iq
estf (s)ds, (4.83)

where c ∈ ℝ is larger than the real part of all poles of f (s) in the complex plane.
Equation (4.83) prescribes the evaluation of a line integral parallel to the imaginary axis
in the complex plane. However, evaluating this integral can be nontrivial, and instead,
inverse transforms are often calculated through algebraic manipulation and with the
help of transformation tables, which are available in textbooks or on the internet.b

The relevance of the Laplace transform in the context of viscoelasticity arises from the
fact that Eq. (4.79) can be used to rewrite differential equations together with their initial
value conditions in the time domain to algebraic equations in the Laplace domain, where
they are easier to solve. Each term in the sum represents the initial value condition for one
of the derivatives.
aConvergence analysis in general is more complicated than outlined here. Refer to mathematical
literature for a more rigorous treatment of this topic.

bFor example, https://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms

Because of the linearity of the Laplace transform, sums of stresses or strains translate
to sums of their transformed counterparts, such that the structure of the composition
laws is the same in the time domain and the Laplace domain. Due to the differentia-
tion rule of the Laplace transform (Eq. (4.78)), strain rate �̇� becomes s ⋅ 𝜖(s) − 𝜖(0). We
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will now illustrate how to apply the composition rule in conjunction with the Laplace
transform to obtain the stress–strain relation for the Voigt model (see Figure 4.7).

The constitutive equation for the Voigt model corresponds to the composition rule
for parallel alignment:

𝜎 = 𝜎spring + 𝜎dashpot = E𝜖 + 𝜂�̇�

and 𝜖 = 𝜖spring = 𝜖dashpot. (4.84)

After Laplace transform, this becomes

𝜎 = E𝜖 + 𝜂s𝜖 − 𝜂 𝜖(0)
⏟⏟⏟

=0

(4.85)

𝜖 =
(

s + E
𝜂

)−1

⋅
1
𝜂
𝜎, (4.86)

where we assumed that the initial strain at t = 0 vanishes.
We will now analyze the strain response of the Voigt model to a boxcar stress, which

corresponds to instantaneously applying a constant stress 𝜎0 to the system at t = 0 and
releasing the stress at t = T . Such a stress can be written as

𝜎(t) = 𝜎0 ⋅ (Θ(t) − Θ(t − T)) , (4.87)

where Θ(t) is the Heaviside step function. We can then obtain the Laplace transform of
𝜎 using Eqs. (4.80) and (4.82):

𝜎 = 𝜎0 ⋅
(

1
s
− e−sT

s

)

. (4.88)

We used the fact that 𝜎(0) = 0, according to the definition of the Heaviside function.9
Inserting Eq. (4.88) into Eq. (4.86) yields

𝜖 =
(

s + E
𝜂

)−1
𝜎0

𝜂

(
1
s
− e−sT

s

)

, (4.89)

which can be rewritten as

𝜖 =
𝜎0

𝜂

⎛
⎜
⎜
⎜
⎝

1

s
(

s + E
𝜂

) − e−sT

s
(

s + E
𝜂

)

⎞
⎟
⎟
⎟
⎠

. (4.90)

From a Laplace transformation table10 we gather that 𝛼

s(s+𝛼)
is the Laplace transform

of (1 − e−𝛼t) ⋅ Θ(t). With 𝛼 = E
𝜂

, the first term inside the bracket of Eq. (4.90) hence
corresponds to 1

𝛼
(1 − e−𝛼t) ⋅ Θ(t), whereas the second term is a time-shifted version:

1
𝛼
(1 − e−𝛼(t−T)) ⋅ Θ(t − T). Combining these results, the solution in the time domain can

9 There are different conventions for the value of the Heaviside function at t = 0. Other definitions
prescribe Θ(0) = 1 or Θ(0) = 1

2
. In these cases, some formulas used here might look different (and represent

different physical scenarios).
10 For example, https://en.wikipedia.org/wiki/Laplace_transform#Table_of_selected_Laplace_transforms
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be expressed as

𝜖(t) =
𝜎0

E

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(

1 − e−
E
𝜂

t
)

⋅ Θ(t)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

1©

−
(

1 − e−
E
𝜂
(t−T)

)

⋅ Θ(t − T)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

2©

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (4.91)

A graphical representation is shown in Figure 4.7. For a physical interpretation, we per-
form a temporal decomposition. The first term 1© characterizes the response to the
application of the stress after t = 0, when the second term 2© is still zero due to the
delayed step function. 1© is an exponential approach from zero toward 𝜎0

E
, with a time

constant E
𝜂

. To analyze the behavior after the removal of the stress at t = T , we evaluate
Eq. (4.91) for t > T , when both step functions yield 1. We perform a variable substitu-
tion, t′ = t − T , so that t′ = 0 marks the beginning of the relaxation process:

𝜖(t′ > 0) =
𝜎0

E
⋅
(

1 − e−
E
𝜂

T
)

⋅ e−
E
𝜂

t′
. (4.92)

The last factor is a time-dependent decay, again with a time constant E
𝜂

. The factor in
the brackets is a constant scaling factor that quantifies which fraction of the maximum
attainable strain, 𝜎0

E
, was reached during application of the stress over duration T . From

Eqs. (4.91) and (4.92) we can gain insights into the roles that the spring and the dashpot
play in the Voigt model. The maximum strain for a given stress, 𝜎0

E
, depends only on

the spring. The dashpot cannot limit the strain, since, as discussed above, it is sensitive
to the strain rate but not to the strain itself. However, the dashpot contributes to the
decay constant E

𝜂
. In this constellation, the dashpot counteracts the spring and delays

the otherwise immediate response. Increasing viscosity 𝜂 of the Voigt model hence slows
down the dynamic response of the system, whereas increasing the elastic modulus E has
an accelerating effect.

We will now look at how we can calculate the viscoelastic parameters of a compound
system from the parameters of the individual constituents. First, we choose the origin
of the time axis so that t = 0 always represents the undeformed, strain-free state and,
so that we can always neglect the term 𝜖(0) which arises when the Laplace transform is
applied to temporal derivatives (see Eq. (4.78)). Next, we introduce the complex mod-
ulus G∗, which can simultaneously represent viscous and elastic properties in a single
complex number.11 Two parameterizations are commonly used to represent G∗:

G∗ = G′ + iG′′ (4.93)
and G∗ = |G∗| ⋅ ei𝜑

. (4.94)

G′ and G′′ denote real and imaginary parts; the prime does not indicate derivatives. |G|

is sometimes used as a shorthand notation for |G∗|, and occasionally the same quantity
is referred to as absG. 𝜑 is the phase angle, and its range extends from 0 (pure elasticity)
to 𝜋

2
(pure viscosity). Its tangent is referred to as loss tangent and it quantifies the ratio

11 Note that the asterisk only marks G∗ as a complex quantity, it does not denote complex conjugation. This
notation has become standard in the elastography community.
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of viscous to elastic behavior:

tan(𝜑) = G′′

G′ . (4.95)

In the Laplace domain, G∗ represents the ratio of stress to strain:

G
∗
(s) = 𝜎(s)

𝜖(s)
. (4.96)

We can see that G
∗

depends on the Laplace domain variable s. We will see shortly that
this translates into a frequency dependency of the viscoelastic properties of a material.

The advantage of the introduction of G∗ is that we can now represent springs and
dashpots analogously in the Laplace domain:

𝜎(s) = G
∗
(s) ⋅ 𝜖(s) for a spring with G

∗
(s) = E (4.97)

𝜎(s) = G
∗
(s) ⋅ 𝜖(s) for a dashpot with G

∗
(s) = 𝜂s. (4.98)

Obviously, G
∗

is constant for a spring, whereas it depends on s for a dashpot.
We now revisit the strain and stress rules, Eqs. (4.72)–(4.75), for parallel and serial

arrangements of elements. For a parallel arrangement of two components with complex
moduli G∗

1 and G∗
2, we obtain

𝜖(s) = 𝜖1(s) = 𝜖2(s) and 𝜎(s) = 𝜎1(s) + 𝜎2(s)
=⇒ 𝜎(s) = G

∗
1(s) ⋅ 𝜖1(s) + G

∗
2(s) ⋅ 𝜖2(s)

= (G
∗
1(s) + G

∗
2(s)) ⋅ 𝜖(s) = G

∗
(s) ⋅ 𝜖(s)

with G
∗
(s) = G

∗
1(s) + G

∗
2(s). (4.99)

For a serial arrangement, a Maxwell model, we similarly derive

𝜖(s) = 𝜖1(s) + 𝜖2(s) and 𝜎(s) = 𝜎1(s) = 𝜎2(s)

=⇒ 𝜖(s) =
𝜎1(s)

G
∗
1(s)

+
𝜎2(s)

G
∗
2(s)

= 𝜎(s) ⋅

(

1
G

∗
1(s)

+ 1
G

∗
2(s)

)

= 𝜎(s)

G
∗
(s)

with 1
G

∗
(s)

= 1
G

∗
1(s)

+ 1
G

∗
2(s)

. (4.100)

We can see that these rules are very similar in form to the composition laws for
resistances in electrical circuits, but the rules for parallel and serial arrangements are
reversed. In fact, had we used inverse moduli (compliances) instead of G∗, the rules
would be formally identical to their electrical counterparts. However, we refrained
from this step to avoid introducing new physical quantities that do not really help to
advance the understanding of this matter.

From Eqs. (4.97) and (4.98) we can see that only the complex modulus of the dashpot
explicitly depends on the Laplace domain variable s, whereas the one of the spring is
truly a constant. We obtain a frequency-resolved representation of G∗(s) by substituting
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s = i𝜔, where 𝜔 is an angular frequency.12 The resultant quantity G
∗
(𝜔) can be inter-

preted as a representation of the viscoelastic properties of the medium if an oscillating
strain is applied at frequency 𝜔. For 𝜔 = 0, one obtains the properties under static con-
ditions. A spring is not frequency dependent, since, according to Eq. (4.70), it responds
instantaneously to arbitrary stresses. For a dashpot, on the other hand, the stress is pro-
portional to strain rate �̇�. If we assume an oscillating deformation, 𝜖(t) = 𝜖0 ⋅ e−i𝜔t , we
can see that �̇� ∝ 𝜔. The physical explanation is that at a constant amplitude, deforma-
tion has to occur faster at higher frequencies, which causes higher damping in a viscous
material than at low frequencies and speeds.

4.8.4 Overview of Viscoelastic Models

In addition to the models just discussed, numerous other types of varying complexity
exist. A spring and a dashpot are clearly only capable of representing pure elasticity or
pure viscosity. A combination of one spring and one dashpot leads to the Voigt model
(parallel arrangement) or the Maxwell model (serial arrangement). These are capable of
representing viscoelastic properties, while their suitability for modeling actual viscoelas-
tic materials is still limited. For example, the Voigt model does not predict the frequency
dependence of G′ as observed in biological tissue. The Maxwell model, on the other
hand, has a higher viscosity (G′′) in the low-frequency range, thus being more akin to a
viscous fluid than solid tissue. The addition of more elements to a model increases the
number of parameters and hence the number of degrees of freedom. The Zener model,
also known as standard linear solid (SLS) model, is an example for a system composed of
three elements: a spring in parallel to a Maxwell model, which better approximates the
properties of biological tissue. Some important viscoelastic models and their properties
are summarized in Figure 4.7.

Springpot and fractional viscoelasticity

All viscoelastic models discussed so far incorporate a finite number of dashpots and
springs. In fractional viscoelasticity theory, the properties of viscoelastic materials are
modeled either as an infinite sequence of springs and dashpots (see the fractal ladder
in Figure 4.7), or by means of fractional calculus, a mathematical discipline that aims at
extending the concept of the nth derivative, dn

dtn
, to noninteger parameters (see, e.g.,

[44] for a mathematical overview and the application to viscoelasticity). The relevant
property of fractional derivatives is most easily expressed in the Fourier domain:

ℱ
[ d𝛼

dt𝛼
f (t)

]

(𝜔) = (i𝜔)𝛼ℱ [f (t)](𝜔). (4.101)

12 By substituting s with i𝜔 in the definition of the Laplace transform, Eq. (4.76), the Laplace transform
becomes a one-sided Fourier transform, ℱ [f ](𝜔) = ∫

∞
0 e−i𝜔t f (t) dt. Since we implicitly assume that the

object is in an undeformed state for t ≤ 0, stress and strain are zero for t < 0 and we can hence shift the
lower integration bound from 0 to −∞ without changing the result of the integral when applied to 𝜎(t) or
𝜖(t). The substitution s → i𝜔 hence yields the full frequency spectrum.
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For integer values 𝛼 = n ∈ ℕ, this reproduces the well-known relation for the Fourier
transform of the nth derivative. Applying Eq. (4.101) to the dashpot law, Eq. (4.71), and
denoting the Fourier transform with a tilde, we obtain

�̃�(𝜔) = 𝜂(i𝜔)𝛼 ⋅ 𝜖(𝜔), (4.102)

which tells us that, for any given oscillation frequency 𝜔, the phase shift between stress
and strain in such an element is given by (i𝜔)𝛼 , which is a powerlaw. For 𝛼 = 0, the system
thus represents a spring with modulus E = 𝜂. For 𝛼 = 1, the system reduces to a dash-
pot with viscosity 𝜂. For 0 < 𝛼 < 1, the system exhibits intermediate behavior that cannot
be reproduced by a combination of a finite number of springs and dashpots. In order to
maintain the purity of the constants,a we re-parametrize the model as

𝜂 → E1−𝛼 ⋅ 𝜂𝛼
, (4.103)

so that now 𝜂 always represents the viscous properties for 𝛼 = 1 and E Young’s modulus
for the case 𝛼 = 0. The resultant model

�̃�(𝜔) = E1−𝛼(i𝜔𝜂)𝛼 ⋅ 𝜖(𝜔) (0 ≤ 𝛼 ≤ 1) (4.104)

or, equivalently in the Laplace domain,

𝜎(s) = E1−𝛼(s ⋅ 𝜂)𝛼 ⋅ 𝜖(s) (0 ≤ 𝛼 ≤ 1) (4.105)

is referred to as a springpot [45]. The fractional ladder shown in Figure 4.7 is a special
case of the springpot with 𝛼 = 0.5 and has a straightforward geometric representation
in terms of an infinite sequence of springs and dashpots. The complex modulus of the
springpot in the Laplace domain is

G
∗
= E1−𝛼(𝜂s)𝛼 (0 ≤ 𝛼 ≤ 1). (4.106)

The springpot powerlaw parameter 𝛼 can be expressed in terms of the real and imaginary
parts of the complex modulus:

𝛼 = 𝜋

2
⋅ arctan

(
Im(G

∗
)

Re(G
∗
)

)

. (4.107)

Sometimes, the phase angle 𝜑 from the definition of the complex shear modulus (cf.
Eq. (4.94)) is used instead of 𝛼:

𝜑 = arctan

(
Im(G

∗
)

Re(G
∗
)

)

= 2
𝜋
⋅ 𝛼 (4.108)

and its tangent is referred to as the loss tangent, representing the ratio of viscous to elastic
properties

tan(𝜑) = Im(G
∗
)

Re(G
∗
)
=

sin
(

𝜋𝛼

2

)

cos
(

𝜋𝛼

2

) . (4.109)

aHaving 𝜂 denote elasticity rather than viscosity for 𝛼 = 0 is somewhat awkward, and the physical
dimension of 𝜂 would be Pa s𝛼 .
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Figure 4.7 Summary of important viscoelastic models in elastography assembled from basic spring
and dashpot elements. Compliance S∗ and modulus G∗ are analytically given in the Laplace domain s
(bars over the symbols, denoting the Laplace domain, have been omitted to improve readability). G∗ is
plotted over the angular frequency 𝜔 = 0,… , 100 ⋅ 2𝜋s−1. “log” refers to double logarithmic plots to
better illustrate powerlaw behavior. The rightmost column, on a time axis spanning 0.2 s, shows strain
𝜖(t) in response to a boxcar stress spanning the first half of the time axis, that is, 𝜎(0 ≤ t ≤ 0.1s) = 1 Pa.
Further simulation parameters correspond to typical values encountered in elastography of biological
tissues (e.g., E = E1 = 1 kPa), 𝜂 = 10 Pas, 𝜂1 = 1 Pas, 𝜂2 = 10 Pas, 𝛼 = 0.25, E0 = 0.2 kPa).
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4.9 Dynamic Deformation

The considerations thus far have concentrated on static scenarios or the relaxation of
a system following a single deformation. In this section, we will extend these concepts
to incorporate dynamic aspects, which ultimately serve as the basis for the modeling of
elastic wave propagation through viscoelastic materials.

4.9.1 Balance of Momentum

The discussion of viscoelastic models in Section 4.8 neglected the mass of springs
and dashpots, which allowed for instantaneous responses to applied stresses. For any
real-world scenario, mass has to be taken into account. This has two implications:
• Strains cannot follow stresses instantaneously, since finite forces can only cause finite

accelerations. In this sense, mass has a delaying effect because of the momentum
associated with its motion. For example, the oscillation frequency of an unattenuated
harmonic oscillator with spring constant D and mass m is given by 𝜔 =

√
D
m

.
• In the same way that inertia delays the response to a stress, it also leads to over-

shooting (unless the inertia is compensated for by strong viscous effects). Imagine
an elastic system that was deformed and returns to its zero-strain state once the
stress is relieved. Upon reaching the undeformed state, however, the individual mass
points that constitute the medium still have a momentum that is proportional to
strain relaxation rate �̇�. Since there is no resultant stress (and hence no associated
force) in the undeformed state, the system will not stop at the zero-strain state but
will overshoot and generate an opposing stress, causing a deceleration and a reversal
of the direction of motion, again toward the undeformed state. The process repeats
itself, either infinitely in the case of a purely elastic medium or with an exponential
attenuation in the presence of viscosity. If the medium is linear (stress and strain are
related via a proportionality constant), the system performs a harmonic oscillation
about its equilibrium state. This is the local equivalent of mechanical waves.
The interaction between stresses and inertial effects is described by the balance of

momentum. Basically, this is a reformulation of Newton’s law
F = ma, (4.110)

where F is the force acting on a body and a is the resulting acceleration. Since we are only
interested in motion associated with deformation of elastic bodies, we equate the accel-
eration with the second time derivative of the displacement field: a = ü. In continuum
mechanics, the total mass of the body is usually not considered, since strains and stresses
are local rather than global quantities (i.e., they can vary in space), and hence their effects
are also local. Instead, mass density 𝜌 is used. In incompressible homogeneous media, 𝜌
is constant throughout the body, which is a good approximation for MRE.

Forces in continuous media can broadly be subdivided into two categories: stresses
and body forces. While stresses arise from deformation, body forces have origins that are
not related to viscoelastic properties. They act upon each infinitesimal volume element
separately, and the total force can be calculated from a volume integral over the body.
One example is gravitation, which is of the form

b(r) = g𝜌(r) ⋅ êz, (4.111)
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if we assume that the body is near the earth’s surface and that it is small enough to neglect
spatial variation of the gravitation field g. Despite the name, body forces are rather force
densities, and the actual force is obtained by multiplication with the volume element.
The total gravitational force is then

B = êz
∫ ∫ ∫

body

g𝜌(r)dV . (4.112)

As explained in Section 4.2, the elements of the stress tensor, 𝜎ij, represent the force
(per unit area) acting along the ith Cartesian axis on the surface with normal vector êj
of an infinitesimal cubic volume element. The total force acting on this volume element
can thus be calculated by

F =
∫

𝜕S
𝝈 ⋅ dA + B, (4.113)

where 𝜕S is the surface of the volume element and A is the oriented13 surface element.
According to Gauss’s theorem, the surface integral can be rewritten as a volume integral
of the divergence14 of the integrand:

F =
∫V

∇ ⋅ 𝝈 dV + B, (4.114)

where (∇ ⋅ 𝝈)j =
∑3

i=1
𝜕𝜎ij

𝜕ri
. Forces acting on the surface of a body are therefore reflected

in the displacement field throughout the body, and the volume integral reconstructs the
total force by collecting the local deformations.

Newton’s law, Eq. (4.110), holds true not only for the bulk material but also for each
infinitesimal volume element individually. Therefore, it can also be formulated in a local
version in terms of force densities:

f = 𝜕F
𝜕V

= 𝜕m
𝜕V

a + 𝜕B
𝜕V

= 𝜌ü + b, (4.115)

where bulk density 𝜌 replaces bulk mass m.
In the absence of body forces (b = 𝟎), substituting Eq. (4.114) into Eq. (4.115), the

derivative cancels the volume integration, and one obtains

fj = 𝜌üj = (∇ ⋅ 𝝈)j =
3∑

i=1

𝜕

𝜕ri
𝜎ij. (4.116)

We can now insert the general version of Hooke’s law (Eq. (4.19)) and the definition of
the infinitesimal strain tensor (Eq. (4.3)):

𝜌üj =
3∑

i,k,l=1

𝜕

𝜕ri
Cijkl𝜖kl

=
3∑

i,k,l=1

1
2

Cijkl ⋅
(

𝜕
2uk

𝜕ri𝜕rl
+

𝜕
2ul

𝜕ri𝜕rk

)

. (4.117)

13 Pointing along the outward surface normal.
14 Note that we use the notation ∇ ⋅ 𝝈 for the divergence of the second-order tensor 𝝈, rather than ∇ • 𝝃 for
the divergence of a vector 𝝃. The divergence of 𝝈 is a vector, hence the expression 𝛁 ⋅𝝈 is equivalent to the
multiplication of a row vector with a square matrix, whereas • denotes scalar multiplication between two
vectors.
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We neglected the spatial variation of the elasticity tensor C, since we generally restrict
the discussion to relatively homogeneous materials with slowly varying mechanical
properties. Equation (4.117) is a second-order partial differential equation with a
second-order temporal derivative on the left-hand side and a second-order spatial
derivative on the right-hand side. This is a characteristic property of a wave equation.

We will now derive an explicit form of the wave equation for a linear isotropic
medium. We begin by calculating the elasticity tensor from the compliance tensor
given in Eq. (4.55) through matrix inversion. However, instead of using Poisson’s ratio
𝜈, Young’s modulus E, and the shear modulus 𝜇 (only two of which are independent,
with the third one being a function of the other two, as explained in Section 4.7.2),
we prefer to parametrize the result in terms of 𝜇 and bulk modulus K , since these are
the two most easily graspable parameters in the context of wave mechanics, as we will
illustrate below. Therefore, we refer to a conversion table15 and find the relations

E = 9K𝜇

3K + 𝜇
(4.118)

𝜈 = 3K − 2𝜇
2(3K − 𝜇)

. (4.119)

Inverting the compliance tensor and performing these substitutions finally yields16

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜎11

𝜎22

𝜎33

𝜎23

𝜎31

𝜎12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

K + 4
3
𝜇 K − 2

3
𝜇 K − 2

3
𝜇 0 0 0

K − 2
3
𝜇 K + 4

3
𝜇 K − 2

3
𝜇 0 0 0

K − 2
3
𝜇 K − 2

3
𝜇 K + 4

3
𝜇 0 0 0

0 0 0 𝜇 0 0
0 0 0 0 𝜇 0
0 0 0 0 0 𝜇

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

𝜖11

𝜖22

𝜖33

2𝜖23

2𝜖31

2𝜖12

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (4.120)

Here, the upper-left 3 × 3 submatrix couples the axial strains, whereas the lower-right
matrix establishes a one-to-one relationship between shear strains and stresses, relating
only to the off-diagonal entries of the stress and strain tensor. We can hence represent
the axial stresses as

𝜎ii =
3∑

k=1

(

K − 2
3
𝜇

)

𝜖kk + 2𝜇𝜖ii (4.121)

=
(

K − 2
3
𝜇

)

∇ • u + 2𝜇𝜖ii (4.122)

and the shear stresses as

𝜎ij = 2𝜇𝜖ij (i ≠ j). (4.123)

15 Such as https://en.wikipedia.org/wiki/Bulk_modulus.
16 Performing these calculations manually is tedious and not particularly insightful. We therefore refrain
from showing intermediate steps and recommend to use symbolic calculation software for such tasks.
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We combine these expressions by multiplying them with Kronecker-𝛿 symbols:

𝜎ij = 𝜎ij ⋅ 𝛿ii + 𝜎ij ⋅ (1 − 𝛿ij)
= 𝜎ii ⋅ 𝛿ij + 𝜎ij ⋅ (1 − 𝛿ij)

=
( (

K − 2
3
𝜇

)

∇ • u + 2𝜇𝜖ii

)

⋅ 𝛿ij + 2𝜇𝜖ij ⋅ (1 − 𝛿ij)

= 𝛿ij ⋅
(

K − 2
3
𝜇

)

∇ • u + 2𝜇𝜖ij. (4.124)

Substituting this expression into the balance of momentum (Eq. (4.116)) yields

𝜌üj =
3∑

i=1

𝜕

𝜕ri

(

𝛿ij

(

K − 2
3
𝜇

)

⋅ ∇ • u + 2𝜇𝜖ij

)

(4.125)

=
3∑

i=1

𝜕

𝜕ri

(

𝛿ij

(

K − 2
3
𝜇

)

⋅
3∑

k=1

𝜕uk

𝜕rk
+ 2𝜇1

2

(
𝜕ui

𝜕rj
+

𝜕uj

𝜕ri

))

(4.126)

=
3∑

i,k=1
𝛿ij

(

K − 2
3
𝜇

)
𝜕

2uk

𝜕ri𝜕rk
+

3∑

i=1
𝜇

(
𝜕

2ui

𝜕ri𝜕rj
+

𝜕
2uj

𝜕r2
i

)

. (4.127)

In the first step, the definition of the infinitesimal strain tensor (Eq. (4.3)) is used. In the
second step, the spatial derivatives of the parameters 𝜇 and K are neglected, as explained
above. The last line can be expressed in vector notation as

𝜌ü =
(

K − 2
3
𝜇

)

∇(∇ • u) + 𝜇∇(∇ • u) + 𝜇Δu (4.128)

=
(

K + 1
3
𝜇

)

∇(∇ • u) + 𝜇Δu. (4.129)

Equation (4.129) is called Navier equation17 [46]. It can equivalently be formulated as

𝜌ü =
(

K + 4
3
𝜇

)

∇ (∇ • u) − 𝜇∇ × (∇ × u), (4.130)

because of the vector calculus identity

∇ × (∇ × v) = ∇ (∇ • v) − Δv for v ∶ ℝ3 → ℝ3
. (4.131)

In most textbooks, the Navier equation is represented in terms of 𝜇 and 𝜆 as

𝜌ü = (𝜆 + 𝜇)∇(∇ • u) + 𝜇Δu (4.132)
or 𝜌ü = (𝜆 + 2𝜇)∇(∇ • u) − 𝜇∇ × (∇ × u), (4.133)

respectively. However, since 𝜆 has no physical interpretation of its own, we will stick
with Eqs. (4.129) and (4.130).

17 Also called Navier–Cauchy or Lamé–Navier equation.
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Helmholtz decomposition

Helmholtz’s theorem states that any well-behaveda three-dimensional vector field 𝚿 can
be decomposed into two complimentary fields,𝚿L and𝚿T, with the following properties:

∇ •𝚿T ≡ div 𝚿T = 0 (4.134)
∇ ×𝚿L ≡ curl 𝚿L = 𝟎 (4.135)

𝚿 =𝚿L +𝚿T. (4.136)

The indices L and T refer to “longitudinal” and “transverse,” respectively, for reasons that
will become obvious later on. The divergence of a vector field is the sum of its three
axial derivatives,∇ •𝚿 =

∑3
i=1

𝜕Ψi

𝜕ri
, whereas the curl consists of the tangential derivatives:

∇ ×𝚿 =
∑3

i,j,k=1 𝜖ijk
𝜕Ψi

𝜕rj
êk , with the Levi–Civita symbol 𝜖ijk and the unit vector along the

kth dimension, êk . The Helmholtz decomposition theorem hence guarantees that any dis-
placement vector field u can be expressed as the sum of one field uL with vanishing curl
and one divergence-free field uT.

It was explained in Section 4.1 that the diagonal elements 𝜖ii of the strain tensor rep-
resent compression, whereas the off-diagonal entries correspond to shear deformation.

From the definition of the infinitesimal strain tensor given in Eq. (4.3), 𝜖ij =
1
2

(
𝜕ui

𝜕rj
+ 𝜕uj

𝜕ri

)

,

it is obvious that there is a one-to-one correspondence between the diagonal elements
of 𝝐 and uL on the one hand and the off-diagonal elements of 𝝐 and uT on the other
hand. In other words, any displacement field u is a superposition of two fields, one causing
pure volumetric strain (compression or dilatation), and the other pure shear deformation.
Hence, we can express the total displacement field as

u = uL + uT with

∇ • uT = 0

and ∇ × uL = 𝟎.

aSufficiently smooth and fast decaying.

4.9.2 Mechanical Waves

The Navier equation is a second-order partial differential equation. From the represen-
tation Eq. (4.130) it becomes obvious that the right-hand side can be separated into two
parts. The first term, ∇ (∇ • u), is essentially the gradient of a scalar function. Because
of the general vector calculus identity

∇ × (∇f ) = 𝟎 for f ∶ ℝ3 → ℝ (4.137)

this term is curl-free and hence represents pure volumetric strain (compression or
dilation). Conversely, the second term, ∇ × ∇ × u, is divergence-free due to the identity

∇ • (∇ × v) = 0 for v ∶ ℝ3 → ℝ3
. (4.138)
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It therefore represents pure shear strain. Equation (4.130) hence exposes the sepa-
rability of the displacement field into its longitudinal (compressional) and transverse
(shear) components, as required by the Helmholtz theorem (Eqs. (4.134)–(4.136)).
However, performing the same separation on the left-hand side of the Navier equation
is less straightforward, as in most experimental situations the measured displacement
field u is the sum of compressional and shear components. In these cases, it becomes
advantageous to apply either the curl or the divergence operator to the whole equation
to filter out the undesirable field component. With the definitions

c ≡∇ × u (4.139)
d ≡ ∇ • u (4.140)

we obtain

𝜌c̈ = −𝜇∇ × ∇ × c
= 𝜇 (Δc − ∇( ∇ • c

⏟⏟⏟

=0

))

= 𝜇 ⋅ Δc (4.141)

and 𝜌d̈ =
(

K + 4
3
𝜇

)

∇ • (∇d)

= M ⋅ ∇ • (∇d) (4.142)

= M ⋅ Δd with M =
(

K + 4
3
𝜇

)

. (4.143)

These two equations have the form of wave equations that govern the propagation of
transverse (c, subscript T) and longitudinal (d, subscript L) waves. Through comparison
with the standard form of the wave equation,

�̈� = c2Δ𝜒 (4.144)

for arbitrary scalar or vector functions 𝜒 , we obtain the propagation velocities

cT =
√

𝜇

𝜌
(4.145)

cL =
√

M
𝜌

=

√

K + 4
3
𝜇

𝜌
. (4.146)

The parameter M = K + 4
3
𝜇 designates the P-wave modulus.18 Since M > 𝜇, the

longitudinal wave travels faster than the transverse wave.
A solution to Eq. (4.144) has the form

𝝌(r, t) = 𝝌0 ⋅ exp(±i ⋅ (k • r − 𝜔t))
𝜒(r, t) = 𝜒0 ⋅ exp(±i ⋅ (k • r − 𝜔t))

for vector and scalar fields, respectively, with polarization 𝝌0, amplitude 𝜒0, wave vector
k and angular frequency 𝜔. These functions are harmonic both in time and space. As

18 The “P” stands for “primary.” Pressure waves are the fastest kind of waves released during an earthquake,
and they are therefore the first waves to be detected by remote seismographs. The slower shear waves arrive
later and are hence denoted “secondary” or S-waves in seismology. Coincidentally, S and P can also be
understood as mnemonics for shear and pressure, respectively.
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a consequence, if 𝜒 and 𝝌 are associated with ∇ • uL and ∇ × uT, the corresponding
displacement fields must fulfill a wave equation as well:

üL/T = c2
L/TΔuL/T. (4.147)

There is no coupling between the individual field components, so that Eq. (4.147) can
be solved for each component separately:

üi = c2Δui. (4.148)

In isotropic materials, propagation velocity is the same for all three components.
For the transverse field, the divergence has to vanish:

∇ • uT = ±k • u0 ⋅ i ⋅ exp(±i ⋅ (k • r − 𝜔t))
!
= 0.

This is only possible if the wave vector k is orthogonal to the polarization u0, so that
k • u0 = 0, hence the designation “transverse.” In other words, for a transverse/shear
wave, the deflection is always perpendicular to the propagation direction.

The longitudinal wave, on the other hand, is characterized by the condition

∇ × uL = ±u0 × k ⋅ i ⋅ exp(±i ⋅ (k • r − 𝜔t))
!
= 𝟎,

necessitating that u0 × k = 𝟎, so that the polarization must be parallel to the propagation
direction.

In three-dimensional space, for any given direction of the wave vector, there are hence
two linearly independent polarizations for the transverse wave and only one for the
longitudinal wave. In an isotropic medium, the two transverse polarizations behave
identically, whereas, in an anisotropic medium, they can have different propagation
velocities.

4.9.2.1 Complex Moduli and Wave Speed
We previously introduced the complex shear modulus G∗ (Eqs. (4.93) and (4.94)). In a
viscoelastic medium, the shear wave equation (4.141) can be written with G∗ instead of
the real-valued shear modulus 𝜇, which represents only elasticity. The wave equation
then reads

𝜌c̈ = G∗Δc, (4.149)

or

𝜌ü = G∗Δu, (4.150)

if u is free of compressional waves. In the purely elastic case, the shear wave velocity
is given by cT =

√
𝜇

𝜌
. For a viscoelastic medium, the corresponding expression,

√
G∗

𝜌
,

becomes complex, with the real part representing wave speed and the imaginary part
quantifying the frequency-dependent exponential attenuation coefficient, Γ(𝜔), in a
plane-wave model:

u(r, t) = u0 ⋅ ei (k•r−𝜔t) −Γ(𝜔)⋅k̂•r
. (4.151)
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The damping constant for the two parameterizations ((G′
,G′′) and (|G∗|, 𝜑)) reads

Γ(𝜔) = 𝜔 Im
(√

𝜌

G∗(𝜔)

)

=
𝜔 ⋅

√

𝜌 ⋅
(√

G′2 + G′′2 − G′
)

√

2
(
G′2 + G′′2

)
(4.152)

or Γ(𝜔) =
𝜔 ⋅

√
𝜌 ⋅ (1 − cos(𝜑))
√

2|G∗|
, (4.153)

where the frequency dependence of G′′ and G∗ has been dropped for improved legibility.
For the wave speed, we obtain

c(𝜔) = 1

Re
(
√

𝜌

G∗(𝜔)

) =

√
√
√
√
√

2
(
G′2 + G′′2

)

𝜌

(

G′ +
√

G′2 + G′′2
) (4.154)

or c(𝜔) =

√

2|G∗|

𝜌 ⋅ (1 + cos(𝜑))
. (4.155)

Note that these equations only hold true if G′
> 0, that is, they are not applicable to

purely viscous media, in which the plane wave approach is invalid.

4.9.3 Navier–Stokes Equation

In the discussion so far, we have assumed that all positions are measured in a static
reference frame. This is an admissible assumption if the individual mass points oscillate
about their equilibrium positions, and if the oscillation amplitudes are small. This
approach is called Eulerian description. However, in the presence of flow, or large
amplitudes, particle motion can be more appropriately described by tracking the indi-
vidual mass points as they traverse across the object. In that case, the position becomes
time-dependent, so that instead of u(r, t) with a time-independent equilibrium position
vector r, we have to consider the trajectory of the particle r(t). Hence, the displacement
field has to be parametrized as

u(r(t), t). (4.156)

This approach is called Lagrangian description. Taking temporal derivatives of u in the
static reference frame then requires total derivatives rather than partial ones:

du
dt

= 𝜕u
𝜕t

+ 𝜕r
𝜕t

• ∇u = 𝜕u
𝜕t

+ v • ∇u =
(

𝜕

𝜕t
+ v • ∇

)

u, (4.157)

where v = 𝜕r
𝜕t

is the (local) flow velocity and ∇u is a tensorial derivative, that is,
(∇u)ij =

𝜕ui

𝜕rj
. A derivative of the form of Eq. (4.157) is called material derivative.

The analogue of the Navier equation (4.132) in the presence of flow is known as
Navier–Stokes equation. It can be formulated as

𝜌

(
𝜕v
𝜕t

+ (v ⋅ ∇)v
)

= −∇p + 𝜇 ⋅ Δv + (𝜆 + 𝜇) ⋅ ∇(∇ • v) + f, (4.158)
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with fluid pressure p and body force density f . In the case of an incompressible fluid,
the volumetric strain, as quantified by ∇ • v, vanishes, and the Navier–Stokes equation
reduces to

𝜌

(
𝜕v
𝜕t

+ (v ⋅ ∇)v
)

= −∇p + 𝜇 ⋅ Δv + f. (4.159)

As a note of mathematical curiosity, it has not yet been proven at the time of writing that
solutions to the Navier–Stokes equation always exist in three-dimensional space, and
that existing solutions are always smooth. The Clay Mathematics Institute has included
these two proofs in its list of Millenium Problems, and their solution will be rewarded
with one million US-$.19 MRE usually focuses on solid bodies and small strains, there-
fore the Navier equation will be used instead of the Navier–Stokes equation throughout
this book.

4.9.4 Compression Modulus and Oscillating Volumetric Strain

In elastography experiments, the compression modulus K , like the shear modulus 𝜇, is
not a directly measurable quantity; it can only be calculated from stress and strain. This
section discusses a simple relationship that can be used to detect changes in K between
different physiological states of body tissue by quantifying induced oscillating strain.

As discussed in Section 4.7.3, a pressure change ΔP can alter the volume of a com-
pressible material. For a linear medium, the relationship between the pressure change
and the volume change ΔV is linear:

ΔP = −K ΔV
V

. (4.160)

Equation (4.160) is not restricted to a static context but is also valid in a dynamic setting.
If an oscillating pressure P̃ = P0 ⋅ exp(−i𝜔t) acts on the medium, the relation can be
stated as

P̃ = −K ΔṼ
V

, (4.161)

where ΔṼ denotes the oscillation of the volume about its equilibrium value V at angular
frequency 𝜔. Mathematically, this corresponds to the temporally Fourier-transformed
displacement field U(𝜔), evaluated at the oscillation frequency. In the general case of a
viscoelastic medium, K is a complex number, with the real and imaginary parts repre-
senting elastic and viscous behaviors, respectively. Taking the magnitude of both sides
of the equation leads to

|P̃| = |K | ⋅
|ΔṼ |

V
.

The normalized volume change |ΔṼ | ∕V is equivalent to the divergence of the
pressure-induced displacement field, that is, the volumetric strain:

|P̃| = |K | ⋅ |∇ • U|. (4.162)

This implies that a measurement of the magnitude of the oscillating volumetric strain is
representative of the oscillating pressure magnitude, with the magnitude of the complex
compression modulus as the proportionality constant.

19 http://www.claymath.org/millennium-problems/navier%E2%80%93stokes-equation
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4.9.5 Elastodynamic Green’s Function

In the previous derivation of the wave equation, no explicit assumptions about the
source of the waves were made. In this section, we present a general tool to solve the
wave equation for arbitrary external forces. These source terms can be incorporated
into the Navier equation by adding localized and time-dependent force terms:

𝜌ü − (𝜆 + 𝜇)∇(∇ • u) − 𝜇Δu = f(r, t). (4.163)

This is an inhomogeneous version of the Navier equation, with the inhomogeneity term
f(r, t).

Inhomogeneous differential equations of the form

D̂y(r) = f (r) (4.164)

with an arbitrary differential operator D̂ can be solved if Green’s function G(r) of D̂ is
known. Green’s function is the solution to a modified version of the differential equation
with the inhomogeneity term replaced by a Dirac delta pulse 𝛿(r):

D̂G(r) = 𝛿(r). (4.165)

The inhomogeneity term f (r) can then be expressed as

f (r) =
∫

∞

−∞
𝛿(r − r′)f (r′)dr′ =

∫

∞

−∞
D̂G(r − r′) f (r′)dr′. (4.166)

If the differential operator D̂ commutes with the integration, so that the two can be
swapped, the solution to Eq. (4.164) can be calculated as

f (r) = D̂y(r) = D̂
∫

∞

−∞
G(r − r′) f (r′)dr′ (4.167)

=⇒ y(r) =
∫

∞

−∞
G(r − r′)f (r′)dr′. (4.168)

This means that the solution to an inhomogeneous differential equation can be
expressed as the integral over the source distribution f (r), where each source is
weighted with Green’s function G(r, r′) at that position.20 If the source terms have
an additional time dependence, such that f (r) → f (r, t), Green’s function inherits the
time dependence: G(r, r′) → G(r, r′; t, t′). In that case, Green’s function describes how
a distortion at the space–time coordinate (t′, r′) affects the solution at the coordinate
(t, r). The meaning of this statement will become clearer in the next paragraph.

The elastodynamic Green’s function for homogeneous and isotropic medium is the
solution to Eq. (4.129) or Eq. (4.130) with a source or body force term of unit strength

f (r, t; r′, t′) = 𝛿(r − r′) ⋅ 𝛿(t − t′). (4.169)

Green’s function describes the displacement field at (t, r) caused by a 𝛿-pulse at (t′, r′).
Due to the vector nature of the displacement field, two additional indices are necessary
to account for the direction of the deflection (polarization, index j) and the direction of

20 Mathematically, this is equivalent to a convolution of the source term with Green’s function of the
system.
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the force (index k). Unidirectional pulses cause both shear and pressure waves, so that
Green’s function is often divided into three parts:

Gs
jk(r − r′, t − t′) = − 1

4𝜋𝜌c2
s
⋅ (𝛾j𝛾k − 𝛿jk) ⋅

1
|r − r′|

⋅ 𝛿
(

t − t′ − |r − r′|
cs

)

, (4.170)

Gp
jk(r − r′, t − t′) = 1

4𝜋𝜌c2
p
⋅ 𝛾j𝛾k ⋅

1
|r − r′|

⋅ 𝛿
(

t − t′ − |r − r′|
cp

)

, (4.171)

Gc
jk(r − r′, t − t′) = 1

4𝜋𝜌
⋅ (3𝛾j𝛾k − 𝛿jk) ⋅

1
|r − r′|3 ∫

|r−r′|∕cs

|r−r′|∕cp

𝜏
′′
𝛿(t − t′ − 𝜏)d𝜏, (4.172)

where 𝛾j = (rj − r′j )∕|r − r′| are the direction cosines of the vector connecting r and r′.
The constants cs and cp represent the propagation velocities of the shear and compres-
sion waves. Gs

jk and Gp
jk describe the shear and pressure far-field, respectively, whereas

Gc
jk represents the coupling field or near-field. It comprises the shear and pressure near

field. The complete Green’s function is

Gjk = Gs
jk + Gp

jk + Gc
jk . (4.173)

A graphical representation of these three terms is shown in Figure 4.8. One way to think
about Green’s function is that it evaluates the displacement field at (t, r) and keeps track
of the contribution from events happening at (t′, r′). The full field can then be recon-
structed by summing up all these contributions through integration over t′ and r′. The
expression t − t′ − |r − r′|∕c in the argument of the delta function in Eqs. (4.170) and
(4.171) states that a source at (t′, r′) can only contribute to the displacement at (t, r) if
the time between emission (t′) and detection (t) is equal to the travel time of the signal
between those two points (|r − r′|∕c). Furthermore, since |r − r′|∕c ≥ 0, an event can
only have an effect after it has happened (t ≥ t′), reflecting a manifestation of causality.

The response of an elastic medium to a point source with arbitrary time dependence
is obtained by convolution of Green’s function with the time dependence of the source.
Moreover, the Green’s function can be used to express the displacement field resulting
from surface traction21

𝝉(r, t) that acts on some region R ⊆ S, where S is the surface
bounding the given volume. The remainder S ∖ R is assumed to be traction free. The
field can then be expressed implicitly as

uj(r, t) =
∫

∞

−∞ ∫ ∫ ∫

V

3∑

k=1
Gjk(r − r′, t − t′) fk(r′, t′) dV (r′) dt′

+ boundary terms. (4.174)

The first term in Eq. (4.174) can be interpreted in the sense of Huygens’ principle. Every
surface point with nonzero traction radiates a point source field. The second term
requires knowledge of the displacement field itself at the surface and corresponds to
possible surface effects such as Rayleigh waves or head waves. These effects have to be
calculated on a case-by-case basis, and no general solution can be given here.

If we assume that the source of the vibration is a rigid plate that is attached to the
object without slip on an area R ⊆ S and that the plate vibrates along the 3-direction, we

21 Traction is the force per area acting on a boundary or surface. See Eq. (4.10) for the definition.
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can represent the force term as

f1 = f2 = 0 (4.175)

f3(r′, t′) =
{

𝜁 ⋅ exp(i𝜔t′) if r′ ∈ R
0 otherwise. (4.176)

The amplitude of the oscillating force, 𝜁 , must have the dimension force/area, in contrast
to the case force/volume when the force is located within the body. We can therefore
reduce the volume integral in Eq. (4.174) to a surface integral over the contact surface R.
Furthermore, Green’s function does not take into account reflection at the boundaries,
assuming instead that waves will only travel through the object once and then disappear
(this is the equivalent of assuming perfectly absorbing boundary conditions). We there-
fore introduce Λ to denote the length of the longest straight line that originates in R and
ends somewhere on the surface of the object. As a result, the maximum travel time of
the wave through the object is given by 𝜏 = Λ

c
, where c is the propagation velocity. We

finally want the model to be causal, meaning that the behavior of the system at any given
time is only determined by the “vibration history” and not by the vibration happening in
the future. This allows us to also restrict the integration bounds for the temporal integral
to 0 and 𝜏 , meaning that we look back in time no further than 𝜏 and not at all into the
future. With these simplifications, we can express the displacement field as

uj(r, t) = 𝜁
∫

Λ∕c

0 ∫ ∫

R

Gj3(r − r′, t − t′) ⋅ exp(i𝜔t′) dA(r′) dt′, (4.177)

with the scalar surface element dA.

4.9.6 Boundary Conditions

The general solution of a differential equation defines a whole class of functions, since
each integration step introduces an arbitrary constant of integration. To narrow down
this solution space to a single solution, further information about the system has to be
incorporated. This is achieved by introducing boundary conditions, which specify the
behavior of the system on the boundary of the problem domain. The number of inde-
pendent boundary conditions is equal to the order of the differential equation, as every
condition fixes one constant of integration.

Generally, boundary conditions can be categorized into four types. Let S be the bound-
ary of the object under investigation:

1) Dirichlet boundary condition: This boundary condition prescribes displacement on
the boundary, which, in the case of a rigid (nondeformable) boundary, is

u(r) = 𝟎 for r ∈ S.

2) von Neumann boundary condition: Traction 𝝉 on the surface is prescribed. A
traction-free surface can be characterized by

𝝉(r) = 𝟎 for r ∈ S. (4.178)

3) Sommerfeld (nonreflecting) boundary condition:

𝜕n̂u = iku for r ∈ S, (4.179)



104 4 Viscoelastic Theory

Near field y Shear y Compression y

Near field x Shear x Compression x

Figure 4.8 2D simulation of the field generated by a point source according to Eqs. (4.170)–(4.172).
The source is located in the center of the image and oscillates in the y-direction, as indicated by the
red arrows. The x (horizontal) and y (vertical) components of the resulting displacement fields are
shown, as indicated by the white arrows. The simulation was performed assuming shear wave and
pressure wave velocity to be identical, which is unphysical but helps to appreciate the patterns created
by each mode. As a consequence, the x components of the shear and compression fields are identical,
which would not be the case if the velocities were different. Note that the near field decreases much
faster with the distance from the source than the far fields.

where 𝜕n̂ is the derivative along the surface normal and k is the wave number. Som-
merfeld boundary conditions suppress the reflection of an incident wave.

4) Mixed boundary conditions: Different parts of the boundary can be governed by
different boundary conditions. For example, S might be subdivided into two nonover-
lapping regions S1 and S2, such that S = S1 ∪ S2 and S1 ∩ S2 = ∅. S1 could be charac-
terized by prescribed displacement u and S2 by traction 𝝉 .

Boundary conditions will be considered in Section 8.4 in the context of numerical field
simulations. Examples of such simulated wave fields for different boundary conditions
in 1D and 2D are shown in Figure 8.15.

4.10 Waves in Anisotropic Media

The wave phenomena discussed in the previous sections were derived under the
assumption of an isotropic medium. However, many real-world materials exhibit
anisotropy, implying that viscoelastic moduli depend on the direction in which a force
is applied. In such materials, different wave modes exist, which are characterized by the
orientation of polarization and propagation directions relative to the principal axes of
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the material structure. In this section, we will first discuss the mathematical treatment
of waves in a generally anisotropic medium, and then we will focus on a transversely
anisotropic medium to highlight some of the effects that differentiate such a medium
from an isotropic one.

The Navier equation (4.129) is only valid for isotropic media. In the anisotropic case,
more than two parameters are required to represent the viscoelastic properties of the
material. The general balance of momentum equation for an oscillating displacement
field ui ∝ exp(i𝜔t) in an anisotropic medium reads (cf. Eqs. (4.116) and (4.117))

− 𝜌𝜔
2ui +

3∑

j,k,l=1

𝜕

𝜕rj

(

Cijkl(r)
𝜕

𝜕rk
ul

)

= 0, (4.180)

or, if we assume spatially constant viscoelastic parameters,

− 𝜌𝜔
2ui +

3∑

j,k,l=1
Cijkl

𝜕
2

𝜕rj𝜕rk
ul = 0. (4.181)

In contrast to the isotropic case, Eq. (4.181) is a system of three coupled differen-
tial equations for the three spatial components of the displacement field. No analytical
solution exists for the general case. Furthermore, the solution also depends on the afore-
mentioned terms in Green’s function, including boundary conditions, polarization, and
propagation direction of the waves. Nevertheless, in the next section, we will present a
useful tool for the treatment of such cases.

4.10.1 The Christoffel Equation

There is no closed-form solution to Eq. (4.181), neither for anisotropy nor for a general
geometry including boundary conditions. Therefore, we limit our discussion to plane
waves with harmonic frequency 𝜔. This approach ignores boundaries, but accounts for
specific polarization and propagation directions, which ultimately determine the wave
fields in anisotropic media, such as muscles or neuronal fiber tracts. Consider a plane
wave

ui = u0iei(k•x−𝜔t)
, (4.182)

where the u0i are constants determining the initial polarization and amplitude of the
wave and k is the wave vector with length k = 𝜔∕c, with the phase velocity of the wave,
c. Inserting Eq. (4.182) into Eq. (4.181), we obtain

3∑

j,k,l=1
(Cijklkjkk − 𝜌𝜔

2
𝛿il) u0i = 0 for i = 1, 2, 3. (4.183)

Here, 𝛿il is the Kronecker delta and cijkl = Cijkl∕𝜌. Nontrivial solutions (for which at least
one u0i ≠ 0) for the components ui exist only for angular frequencies 𝜔 that satisfy the
characteristic equation

det

( 3∑

j,k=1
Cijklkjkk − 𝜌𝜔

2
𝛿il

)

= 0, (4.184)
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which is referred to as Christoffel equation. Equation (4.184) is of order d in 𝜔
2, where

d is the spatial dimension. Consequently, in three-dimensional space, there exist three
solutions called modes.22 These modes are characterized by the relative orientation of
their polarization (u0) with respect to their propagation direction (k) as quasi-transverse
(two modes) and quasi-longitudinal (one mode). The Christoffel equation establishes
a relationship between the frequency 𝜔 of a wave and its wave vector k. Compatible
pairings (𝜔, k) are representations of plane waves in four-dimensional (3D + time)
Fourier-transformed space. Hence, for a fixed value of 𝜔, solutions k represent waves
with frequency 𝜔 that propagate in different directions. This means that a single plane
wave spreads into different directions like a wave package rather than a conventional
single wave, giving rise to the notion of group velocity. In other words, the set of wave
vectors for a given value of 𝜔 defines a surface of constant angular frequency in the
Fourier domain. The exact relationship between k and 𝜔 is determined by the elastic
properties of the material in the form of the elasticity tensor C. By dividing Eq. (4.184)
through |k|, one obtains a corresponding equation, whose solutions are surfaces of
constant phase velocity c, since c = 𝜔

|k|
. Although these surfaces are given in k-space or

wave normal space, their symmetry properties translate identically into position space.
This makes them particularly useful for analyzing waveforms.

In an anisotropic medium, phase speed depends on the direction of k. The direction
of energy transport is given by the aforementioned group velocity23

v = ∇k𝜔(k), (4.185)

where ∇k denotes the gradient with respect to the wave vector k. The direction of v in
anisotropic media differs from the direction of k.

4.10.2 Waves in a Transversely Isotropic Medium

In Section 4.7.4, we presented the explicit form of the elasticity and compliance tensors
for a transversely isotropic medium. In analogy to the procedure in Section 4.9.1, we sub-
stitute the stress gradient ∇ ⋅ 𝝈 into the balance of momentum (Eq. (4.116)). As a result,
we obtain the equation of motion for elastic waves in a material featuring transverse
isotropy with the parametrization defined by Eqs. (4.20) and (4.66):

𝜌ü − (A1𝜕
2
1 + A2𝜕

2
2 + A3𝜕

2
3 + A4𝜕1𝜕2 + A5𝜕1𝜕3 + A6𝜕2𝜕3)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡ L̂

u = 𝟎, (4.186)

22 Every possible solution for 𝜔
2 corresponds to two distinct physical solutions, +𝜔 and −𝜔. These

represent waves with opposite propagation directions but otherwise identical properties, so that they are
counted as one mode rather than two.
23 The difference between phase velocity, c, and group velocity, v, is that phase velocity represents the
speed at which a wave of a single frequency propagates through a medium, whereas group velocity quantifies
the speed of the envelope of a wave packet (a superposition of waves with different frequencies). In isotropic
media, c and v are always parallel, whereas in anisotropic media their directions can differ.
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with u = u(r, t), 𝜕i ≡
𝜕

𝜕ri
and

A1 =
⎛
⎜
⎜
⎝

C11 0 0
0 𝜇12 0
0 0 𝜇13

⎞
⎟
⎟
⎠

, A2 =
⎛
⎜
⎜
⎝

𝜇12 0 0
0 C11 0
0 0 𝜇23

⎞
⎟
⎟
⎠

,

A3 =
⎛
⎜
⎜
⎝

𝜇13 0 0
0 𝜇23 0
0 0 C33

⎞
⎟
⎟
⎠

, A4 =
⎛
⎜
⎜
⎝

0 C12 + 𝜇12 0
C12 + 𝜇12 0 0

0 0 0

⎞
⎟
⎟
⎠

,

A5 =
⎛
⎜
⎜
⎝

0 0 C13 + 𝜇13
0 0 0

C13 + 𝜇13 0 0

⎞
⎟
⎟
⎠

, A6 =
⎛
⎜
⎜
⎝

0 0 0
0 0 C23 + 𝜇23
0 C23 + 𝜇23 0

⎞
⎟
⎟
⎠

.

Matrices A1, A2, and A3 are multiplied with second-order uniaxial derivatives 𝜕
2
i u in

Eq. (4.186). These three matrices are diagonal, indicating that pure axial strain results
in pure axial stress and vice versa, as already discussed in Section 4.7.4. These three
terms hence represent volumetric deformation. The second set of matrices, A4, A5, and
A6, has symmetric pairs of off-diagonal entries as the only nonvanishing elements. They
are multiplied with second-order mixed derivatives (𝜕i𝜕ju, i ≠ j), which represent shear
deformation along different axes.

As an example of how to use such a model for elastography, we follow the path
described in [47]. First, we impose the assumption of incompressibility by requiring
that the volumetric strain vanishes,

𝜖11 + 𝜖22 + 𝜖33 ≡

𝜕u1

𝜕r1
+

𝜕u2

𝜕r2
+

𝜕u3

𝜕r3
= 0. (4.187)

This induces relations between the viscoelastic parameters, namely

𝜈31 =
1
2

(4.188)

𝜈12 = 1 − 1
2

E1

E3
(4.189)

for the anisotropic Young’s moduli and Poisson’s ratios. Therefore, we have reduced
the number of parameters in the original transversely isotropic model from five (in Eq.
(4.66)) to three, which obey the inequality

𝜇12 ≠ 𝜇13 ≠

E3

3
. (4.190)

For an isotropic medium, all three terms would be equal.
We now solve the Christoffel equation (4.184) for the transversely isotropic case. With

the introduction of the normalized wave vector, ni =
ki

|k|
, the Christoffel equation reads

[48]

det (Cijkl njnk − 𝜌c2
𝛿il) = 0. (4.191)

As explained in Section 4.10.1, there are three solutions for c, corresponding to three
different wave modes. One mode corresponds to a longitudinal mode, which we are not
interested in, since we assume incompressibility of the tissue. The other two modes are
referred to as the fast transverse (FT) and the slow transverse (ST) modes, depending on
the orientation of the polarization relative to the fibers (see Figure 4.9).
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FT wave mode

(b)

(a)

ST wave mode

Fiber direction

ê2

ê1

ê3

ê2

ê1

ê3

n̂

Figure 4.9 Illustration of the nomenclature for shear waves in a transversely isotropic medium. Wave
modes polarized parallel to the fiber direction are referred to as “fast transverse” (FT), whereas those
polarized perpendicular to the fibers are called “slow transverse” (ST). (Klatt 2010 [49]. Reproduced
with permission of Institute of Physics Publishing.)

• The FT mode applies to waves that are polarized parallel to the fibers. The velocity of
this mode is

𝜌c2
FT = (4𝜇13 − 𝜇12 − E3) ⋅ (n4

3 − n2
3) + 𝜇13. (4.192)

If such a wave propagates within the plane of isotropy (n3 = 0), the wave speed is
governed exclusively by 𝜇13, whereas all three elastic constants affect the speed if
the propagation direction has an out-of-plane component. Since shear waves cannot
propagate along their polarization direction, the FT mode does not apply to waves
that travel along the fibers. The direction dependence of the FT mode is shown in the
last column of Figures 4.10 and 4.11.

• The ST mode corresponds to shear wave propagation with polarization parallel to the
plane of isotropy, as illustrated in Figure 4.9. Wave speed in that case is

𝜌c2
ST = 𝜇12(n2

1 + n2
2) + 𝜇13n2

3. (4.193)

Waves propagating strictly within the plane of isotropy (n3 = 0) are governed by 𝜇12.
Propagation parallel to the fibers (n3 = 1) is characterized by 𝜇13. Waves traveling in
an oblique direction are described by a combination of 𝜇12 and 𝜇13 (but not E3, as
in the case of the FT mode). This is shown in the first two columns of Figures 4.10
and 4.11.

Note that the terminology “fast” and “slow” only makes sense if 𝜇13 > 𝜇12, which does
not necessarily have to be the case. Furthermore, the fast and slow modes can propagate
at the same velocity for specific directions.24 The categorization into slow and fast can

24 For example, cST =
√

𝜇13
𝜌

for n3 = 1 and cFT =
√

𝜇13
𝜌

for n3 = 0.
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Figure 4.10 Shear wave modes in a transversely isotropic medium with fibers along the z-axis. The
first row represents wave propagation in the plane of isotropy (xy-plane) and the second row depicts
one plane of symmetry (yz-plane). The three columns represent three orthogonal modes of excitation
along the three principal axes. The curved lines indicate wave fronts emanating from the center of the
image. Since only shear waves are considered here, propagation cannot be parallel to the polarization
direction. (Klatt 2010 [49]. Reproduced with permission of Institute of Physics Publishing.)
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0

Figure 4.11 k-Space representation of iso surfaces representing constant wave velocity for fast
transverse and slow transverse shear modes, that is, the solutions of the Christoffel equation (4.184) for
fixed values of c and 𝜌, plotted in 2D and 3D. The oblate ellipsoid represents the slow transverse mode

(Eq. (4.193), basically describing an ellipsoid with half axes
√

1

𝜇12
and

√
1

𝜇13
). The more irregular surface

corresponds to the fast transverse wave mode, reflecting the more complex structure of Eq. (4.192).
Note that this representation is given in un-normalized k-space; therefore, the coordinates are actual
k-values rather than their normalized equivalents (n1, n2, n3). (Papazoglou 2006 [48]. Reproduced with
permission of Wiley.)

therefore sometimes be misleading, and it is better to classify these waves as “polarized
parallel to the fibers” and “polarized perpendicular to the fibers.”

In Sections 10.8 and 10.9, we will discuss two methods that can be used to obtain
viscoelastic parameters from wave fields measured in anisotropic or transversely
isotropic media.
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4.11 Energy Density and Flux

This section was coauthored by Heiko Tzschätzsch from the Department of Radiology,
Charité – Universitätsmedizin Berlin, Germany.

In some applications of MRE, such as cardiac MRE (which will be discussed in
Chapter 13), information on tissue elasticity is derived directly from wave amplitudes
without inversion of the wave equation. Therefore, it is important to understand the
relationship between wave amplitudes and elastic tissue properties. Valuable insights
can be gained from analyzing energy transport by plane waves in an isotropic medium.

A traveling wave gives rise to changes in the potential and kinetic energy of the
medium. Potential energy is the result of local deformation, whereas kinetic energy
manifests itself in the deflective motion of mass points. The strain-energy function
introduced in Section 4.2,

W = 1
2
⋅

3∑

i,j=1
𝜎ij𝜖ij =

1
2
⋅

3∑

i,j,k,l=1
Cijkl𝜖ij𝜖kl, (4.194)

only accounts for potential energy density. Kinetic energy, on the other hand, is given by

T = 1
2
𝜌u̇2 = 1

2
𝜌

3∑

i=1
u̇2

i , (4.195)

where ui denotes the components of the displacement field. The total energy density is
the sum of the two:

Φ = W + T . (4.196)

The energy enclosed in a volume V can be calculated as the volume integral

E =
∫ ∫ ∫

V

Φ(r)dV . (4.197)

We will now investigate how the propagation of waves affects the distribution of energy
within a medium, following the path outlined in [50].

Gauss’s divergence theorem, which we already used on page 93, states that the volume
integral of a scalar function Θ(x) can be equivalently calculated as the surface integral
over a a vector field 𝚿 if 𝚿 is the divergence of Θ(x):

∫ ∫ ∫

V

Θ(x)dx =
∯

𝜕V

𝚿(x) • dA (4.198)

with Θ(x) = ∇ •𝚿(x),

where 𝜕V is the closed surface of V and dA is the oriented surface element with an
outward-pointing normal vector. We now apply this theorem to the total energy and
assume that the temporal derivative of the total energy density, Φ̇, can be expressed as
the negative divergence of a three-dimensional vector field P,

Φ̇(x) = −∇ • P(x) (4.199)
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(the purpose of the minus symbol will become obvious later), and that we can hence
rewrite Eq. (4.197) as

Ė = −
∯

𝜕V

P(x) • n̂(x)dA. (4.200)

Equation (4.199) has the characteristic form of a continuity equation. The vector entity
P is the energy flux density.25 Equation (4.200) then states that the change of the total
energy enclosed in a volume V is equal to the energy flux through the surface of the
volume and that energy cannot be created nor destroyed in the volume itself. By virtue
of the minus sign that we introduced in the definition of flux in Eq. (4.199), P points in
the direction of energy transport.

In the next step, we will link energy flux density to the displacement field u induced
by a propagating wave. The change of energy density can be expressed as

Φ̇ = Ẇ + Ṫ . (4.201)

Using Eq. (4.194), we obtain for the potential energy component

Ẇ = 1
2
⋅

3∑

i,j,k,l=1
Cijkl ⋅ (𝜖ij�̇�kl + �̇�ij𝜖kl) =

3∑

i,j,k,l=1
Cijkl ⋅ 𝜖ij�̇�kl

=
3∑

i,j=1
𝜎ij�̇�ij =

1
2

3∑

i,j=1
𝜎ij

(
𝜕u̇i

𝜕rj
+

𝜕u̇j

𝜕ri

)

=
3∑

i,j=1
𝜎ij

𝜕u̇i

𝜕rj
. (4.202)

For the kinetic energy density, on the other hand, we obtain using Eq. (4.195):

Ṫ = 1
2
𝜌 ⋅

3∑

i=1

𝜕u̇2
i

𝜕t
= 𝜌 ⋅

3∑

i=1
u̇iüi (4.203)

We can now calculate the rate of change of the total energy by volumetric integration:

Ė =
∫ ∫ ∫

V

(Ṫ + Ṫ) dV =
∫ ∫ ∫

V

3∑

i,j=1
𝜎ij

𝜕u̇i

𝜕rj
dV +

∫ ∫ ∫

V

𝜌 ⋅
3∑

i=1
u̇iüidV

(1)
=
∫ ∫ ∫

V

3∑

i,j=1

(
𝜕

𝜕rj
(𝜎ij ⋅ u̇i) − u̇i

𝜕𝜎ij

𝜕rj

)

dV +
∫ ∫ ∫

V

𝜌 ⋅
3∑

i=1
u̇iüidV

(2)
=
∯

𝜕V

(𝝈 ⋅ u̇) • n̂ dA +
3∑

i=1
∫ ∫ ∫

V

u̇i

(

𝜌üi −
3∑

j=1

𝜕𝜎ij

𝜕rj

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

dV

=
∯

𝜕V

(𝝈 ⋅ u̇) • n̂ dA. (4.204)

In step (1), we performed integration by parts in the first integral. In step (2), we invoked
Gauss’s divergence theorem to convert the volume integral of the first term into a sur-
face integral. We then merged the two remaining volume integrals. The term in the

25 P is the mechanical counterpart to the Poynting vector in electrodynamics.
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parentheses is a component-wise formulation of the balance of momentum (Eq. (4.116))
and hence yields zero in the absence of external forces.

By comparing the last line of Eq. (4.204) with Eq. (4.200), we can identify

P = −𝝈 ⋅ u̇. (4.205)

In isotropic media, the energy flux P is parallel to the wave vector k, which means that a
propagating wave transports energy. In anisotropic media, however, the directions can
differ, as discussed in Section 4.10.1.

In order to establish the relationship between elastic parameters and average energy
flow, we will now analyze a pure shear wave u(r, t) = u0 ⋅ sin(k • r − 𝜔t) propagat-
ing along the x-axis. Its wave vector is k = (k, 0, 0)T, and the polarization is u0 =
(0,u02,u03)T. Obviously, the wave only depends on the x-coordinate, and the only non-
vanishing components of the strain tensor are 𝜖12 = 𝜖21 = − 1

2
ku02 ⋅ cos(k • r − 𝜔t) and

𝜖13 = 𝜖31 = − 1
2
ku03 ⋅ cos(k • r − 𝜔t). Since these are shear strains, the corresponding

stresses are obtained through multiplication with 2𝜇. The energy flux vector thus reads

P1 =
3∑

j=2
ku0j𝜇 ⋅ cos(k • r − 𝜔t) ⋅ u0j𝜔 ⋅ cos(k • r − 𝜔t) (4.206)

= k𝜇𝜔 ⋅ cos2(k • r − 𝜔t) ⋅ (u2
02 + u2

03) (4.207)
=

√
𝜌𝜇𝜔

2 ⋅ cos2(k • r − 𝜔t) ⋅ u2
0 (4.208)

P2,3 = 0 (4.209)

with the substitutions k = 𝜔

c
and c =

√
𝜇

𝜌
. Energy flows along the x-axis parallel to the

propagation of the wave. The time average over the cos2 term yields an additional factor
1
2
, such that the time-averaged components of the energy flux become

P1 =
1
2
√

𝜌𝜇 ⋅ u2
0 (4.210)

P2,3 = 0 (4.211)

=⇒ |P| = |P1| =
1
2
𝜔

2u2
0 ⋅

√
𝜌𝜇. (4.212)

For a constant flux, we therefore derive the proportionality

|u| ∝ 4
√

𝜇. (4.213)

The magnitude of the energy flux is also referred to as wave intensity :

I = |P| =
√

𝜌𝜇𝜔
2u2

. (4.214)

We conclude this discussion by examining the distribution of the total energy into
potential and kinetic contributions. Again, we insert a monochromatic plane wave

u(r, t) = u0 ⋅ sin (k • r − 𝜔t) (4.215)

into Eq. (4.195) and obtain

T = u2
0𝜌𝜔

2k2cos2 (k • r − 𝜔t). (4.216)
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The time average is then

⟨T⟩t =
1
2

u2
0𝜌𝜔

2k2
, (4.217)

since 1
2𝜋

∫

2𝜋
0 cos2(t)dt = 1

2
.

For the potential energy density, we insert the plane wave into Eq. (4.194):

W = 1
2

3∑

i,j,l,m=1
Cijlm

1
2
(u0ikj + u0jki) cos(k • r − 𝜔t)

⋅ (u0lkm + u0mkl) cos(k • r − 𝜔t)

= cos2(k • r − 𝜔t)
3∑

i,j,l,m
Cijlmu0ju0mkikl. (4.218)

Again, the time average over the cos2 term yields 1
2
, so that

⟨W⟩t =
1
2

3∑

i,j,l,m
Cijlmu0ju0mkikl. (4.219)

T and W being energy densities implies that these relations hold true for arbitrarily
small volumes, hence it is correct even for individual particles.

Locally, for a fixed position r, a plane wave reduces to a harmonic oscillator. From the
virial theorem, we know that in the case of a potential W (r) ∝ ⋅|r|n, the time averages of
potential and kinetic energy (densities) behave as

2 ⋅ ⟨T⟩t = n ⋅ ⟨W⟩t. (4.220)

Since a harmonic oscillator is characterized by n = 2, we gather that ⟨T⟩t = ⟨W⟩t . Over
the course of one oscillation period, kinetic and potential energies contribute therefore
equally to the total energy, and the total energy density can hence be calculated as
Φ = 2 ⋅ ⟨W⟩t = 2 ⋅ ⟨T⟩t , depending on which information on the system is available.
There is no need to look at the time average of Φ, since the total energy is not subject
to change as long as dissipation is neglected.

4.11.1 Geometric Attenuation

Conservation of energy gives rise to a phenomenon known as “geometric attenuation.”
We assume that a point source emits waves at a constant power Π. The waves propagate
away from the source at velocity c. The medium is purely elastic, so that no energy is
lost. Over the time interval 0 ≤ t ≤ 𝛿t, the energy emitted by the source is

E = Π ⋅ 𝛿t. (4.221)

At a time t > 𝛿t, that energy is contained in a spherical shell with outer radius R(t) = c ⋅ t
and shell thickness 𝛿R = c ⋅ 𝛿t. The volume of the shell is given by

V = 4𝜋
3

⋅ (R3 − (R − 𝛿R)3) = 4𝜋
3

(3R2 ⋅ 𝛿R − 3R ⋅ 𝛿R2 − 𝛿R3)

≈ 4𝜋R2 ⋅ 𝛿R (4.222)
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if R ≫ 𝛿R. The energy density is therefore

Φ = E
V

= E
4𝜋R2 ⋅ 𝛿R

. (4.223)

Obviously, the energy density decreases as 1
R2 , since a fixed amount of the energy is

spread over an increasingly larger shell. We gather from Eqs. (4.194) and (4.195) that
both potential energy density W and kinetic energy density T are proportional to the
square of the displacement field.26 We can thus conclude that

Φ= W + T ∝ u2

Φ∝ 1
R2 =⇒ |u| ∝ 1

R
. (4.224)

Therefore, the amplitude of a spherical wave from a point source propagating in three
dimensions decreases as 1

R
. This effect is called geometric attenuation. Note that this is

the case in a purely elastic, nondissipative medium. The loss of wave amplitude does not
correspond to a loss of energy, but it is only caused by the reduction of energy density
caused by an increase in the illuminated volume. Total energy is preserved:

Etotal =
∫

Φ(r, t)dV = Π ⋅ t for t ≥ 0 (4.225)

if the point source was switched on at t = 0.
Note that geometric attenuation only occurs for waves propagating outward from a

spatially restricted source. For plane waves, which are modeled to originate from an
infinite plane, no such effect is observed since the volume that is illuminated by a cer-
tain amount of energy does not increase over time. In a dissipative medium, geometric
attenuation and dissipative damping coexist.

4.12 Shear Wave Scattering from Interfaces and Inclusions

This section was coauthored by Heiko Tzschätzsch from the Department of Radiology,
Charité – Universitätsmedizin Berlin, Germany.

Wave scattering occurs when an elastic wave hits a surface at which the elastic prop-
erties change discontinuously. It is a phenomenon that looks very different on different
length scales. A natural length scale is defined by the mean free path length. This is the
average distance that a wave can travel before it is scattered by a material inhomogene-
ity. If the mean free path length is much larger than the size of the object through which
the wave travels, waves are highly unlikely to be scattered and traverse the object mostly
unhindered. Conversely, if the mean free path length is significantly shorter than the
object size, incident waves undergo multiple scattering events before leaving the object.
In this case, each scattered wave travels in a different direction, and phase coherence
between waves scattered at different positions is lost. The superposition principle
leads to spatially dependent speckle patterns of the wave intensity. In the macroscopic
image, only the resultant intensity distribution is observed.27 As it becomes impossible

26 Kinetic energy is proportional to u̇2 rather than u2; however, a wave has the form u0 ⋅ f (r, t), so that
u2 ∝ u̇2.
27 This phenomenon is the contrast-generating mechanism in conventional medical ultrasound imaging.
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to observe individual waves in a strongly scattering environment, the wave equation
cannot be applied to describe the observations. Instead, the dynamics of wave intensity
is characterized by a diffusion-type differential equation (see Section 4.12.3).

On the microscopic scale, the interaction between a single wave and a single scatterer,
such as an inclusion, is analyzed. Since, in general, an elastic medium supports both
shear (S) and pressure (P) waves, a shear wave can also yield a scattered pressure
wave and vice versa. This phenomenon is called mode conversion. If the surface of the
elastic discontinuity, henceforth called interface, is a plane, one usually decomposes
the shear wave into a wave whose vector of polarization lies within the interface and
a shear wave whose vector of polarization meets with the interface at an angle. The
first type is called shear horizontal (SH) wave, while the other is called shear vertical
(SV) wave. An SH wave produces only scattered SH waves, while an SV wave produces
scattered SV and P waves. The wave equation is still valid for these individual wave
components, and certain kinds of continuity conditions have to be considered at the
interface.

If all scatter processes are considered elastic, that is, without loss of energy, scat-
tering does not affect the frequency of the waves. However, due to geometric effects
and variations in elastic material properties, the wavelengths of incident, scattered and
transmitted waves can differ.

It is customary to distinguish between welded and nonwelded interfaces. Welded
interfaces are characterized by the condition that displacement and traction across
the interfaces are continuous. For a nonwelded interface, on the other hand, only
traction across the interface is continuous, whereas displacement is allowed to be
discontinuous. The discontinuity in displacement can be interpreted as slip. If the
degree of discontinuity is proportional to the traction across the interface, then this
scenario is called linear slip.

4.12.1 Plane Interfaces

In this section, we will take a closer look at the behavior of a plane wave incident on
a plane interface between two different media, designated (1) and (2). The situation is
illustrated in Figure 4.12. We choose Cartesian coordinates such that the interface coin-
cides with the ê2ê3-plane at r1 = 0. The wave travels in the positive ê1-direction (but not
necessarily parallel to the ê1-axis), hitting the interface at an angle 𝛼(1) between its wave

Figure 4.12 Illustration of reflection and
transmission of an incident wave with wave vector k
at an interface between two different media. Medium
(2) is softer than medium (1), therefore the
wavelength of the transmitted wave is shorter than
the wavelength of the incident and reflected waves.
The amplitudes of the incident, transmitted, and
reflected waves are such that the conservation of
energy is fulfilled and that continuity of the
displacement at the interface according to Eq. (4.229)
is maintained.

Medium (1) Medium (1)

ktransmittedkreflected

k

ê1

ê2

ê3

α(1)
α(2)
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vector k and the ê1-axis. The wave vector is assumed to lie in the ê1ê2-plane,28 while
the polarization vector (black double-ended arrow) points in the ê3-direction, that is,
parallel to the interface. Thereby the elastic wave is characterized as an SH wave. Scat-
tering will change the wave vector k for the reflected and transmitted waves. However,
the horizontal component k2 of the wave vector is preserved. This parameter is the same
for the incident, transmitted, and reflected waves, whereas all other components of k are
subject to change.29

We designate the incident, reflected, and transmitted waves by ui, ur, and ut, respec-
tively. They can be expressed as

ui = exp
[

i𝜔
(k2

𝜔
r2 +

cos 𝛼(1)
c(1)

r1 − t
) ]

ê3 ,

ur = RA ⋅ exp
[

i𝜔
(k2

𝜔
r2 −

cos 𝛼(1)
c(1)

r1 − t
) ]

ê3 ,

ut = TA ⋅ exp
[

i𝜔
(k2

𝜔
r2 +

cos 𝛼(2)
c(2)

r1 − t
) ]

ê3, (4.226)

where c(1) and c(2) are the shear wave speeds in the left and right compartments, 𝛼(2)
is the angle between the transmitted wave vector and the ê1-axis and ê3 denotes the
Cartesian unit vector in the corresponding direction. The reflection and transmission
coefficients RA and TA are calculated by imposing boundary conditions at the elastic
interface. The subscript “A” refers to “amplitude,” to distinguish the coefficients from
similar coefficients, which will be calculated for energy flow later on. Since all three
waves are polarized along the ê3-axis, we only need to consider that component of the
displacement field and will henceforth drop the index 3. We will use the indices (1) and
(2) to refer to quantities measured in the left and right half spaces of Figure 4.12, respec-
tively. The displacements on either side of the boundary thus read

u(1)ê3 = ui + ur (4.227)
and u(2)ê3 = ut, (4.228)

and the boundary conditions at x1 = 0, defining a linear slip interface, require

u(2) − u(1) = 𝜉𝜏
(1)
13 = 𝜉𝜏

(2)
13 and 𝜏

(2)
13 − 𝜏

(1)
13 = 0, (4.229)

where 𝜉 is the specific compliance of the interface and

𝜏
(i)
13 = 𝜌(i)c

2
(i)
𝜕u(i)

𝜕x1
for i = 1, 2. (4.230)

The notation used in Eq. (4.230) indicates that the traction in either compartment can
be chosen to evaluate the right-hand side of the first equation in Eq. (4.229). Inserting

28 The coordinate system can always be rotated to fulfill these assumptions.
29 Imagine a billiard ball that bounces off the cushion on one side of the table. The velocity component
parallel to the cushion will be preserved, while the normal component is reflected and possibly decreased
due to inelastic effects.
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Eq. (4.226) into Eq. (4.229) yields for RA and TA:

RA =
𝜌(1)c(1) cos 𝛼(1) − 𝜌(2)c(2) cos 𝛼(2) − Δ
𝜌(1)c(1) cos 𝛼(1) + 𝜌(2)c(2) cos 𝛼(2) − Δ

,

TA =
2𝜌(1)c(1) cos 𝛼(1)

𝜌(1)c(1) cos 𝛼(1) + 𝜌(2)c(2) cos 𝛼(2) − Δ
, (4.231)

where

Δ = i𝜉𝜔𝜌(1)𝜌(2)c(1)c(2) cos 𝛼(1) cos 𝛼(2).

If we assume equal densities, 𝜌(1) = 𝜌(2) = 𝜌, the scenario can be described by Snell’s
law

sin 𝛼(1)

sin 𝛼(2)
=

c(1)
c(2)

. (4.232)

The formulas for RA and TA thus read

RA =
c(1) cos 𝛼(1) − c(2) cos 𝛼(2) − Δ∕𝜌
c(1) cos 𝛼(1) + c(2) cos 𝛼(2) − Δ∕𝜌

(4.233)

TA =
2c(1) cos 𝛼(1)

c(1) cos 𝛼(1) + c(2) cos 𝛼(2) − Δ∕𝜌
(4.234)

with Δ = i𝜉𝜔𝜌
2c(1)c(2) cos 𝛼(1) cos 𝛼(2). (4.235)

Even for the purely elastic case, the frequency dependence of Δ introduces frequency
dependence of the transmission and reflection coefficients. In the simplest case, two
pieces of the same material, 𝜌(1) = 𝜌(2) = 𝜌 and c(1) = c(2) = c, are in contact along a sur-
face with specific compliance 𝜉. For an incident wave propagating perpendicular to the
surface (𝛼(1) = 0 and 𝛼(2) = 0), we obtain

RA = − i𝜉𝜔𝜌c
2 − i𝜉𝜔𝜌c

(4.236)

TA = 2
2 − i𝜉𝜔𝜌c

. (4.237)

The plot of RA and TA versus frequency, as shown in Figure 4.13, illustrates that trans-
mission decreases at higher frequencies. As a consequence, cranial ultrasound suffers
from the fact that low wave amplitudes are achievable in the brain, since the high-slip
interface between the brain and the skull reflects most of the ultrasound energy in the
megahertz frequency range.

Specific compliance 𝜉 was introduced as a phenomenological parameter quantifying
the degree of “weldedness” between two elastic compartments. A three-layer model can
provide more physical insight. In such a model, a layer with thickness d and wave speed
c is sandwiched between the two compartments. Assume that the two outer compart-
ments have the same mechanical properties (c(1) = c(2) = c). The reflection and trans-
mission coefficients for an incident wave with a wave vector orthogonal to the middle
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Figure 4.13 Plot of transmission and reflection coefficients for a welded (a) and slip interface (b). The
points correspond to measurements performed using MRE on two blocks made of the same agarose
gel, either with a direct contact interface, or with a layer of a more liquid gel as a lubricant to allow slip.
The dashed lines represent least-squares fits of Eqs. (4.236) and (4.237), respectively, while the solid
lines indicate the margins of error. (Papazoglou 2007 [51]. Reproduced with permission of Institute of
Physics Publishing.)

layer (𝛼(1) = 0) then read

RA =
(c2 − c2) sin(𝜔d∕c)

2ic c cos(𝜔d∕c)) + (c2 + c2) sin(𝜔d∕c))
and

TA = 2ic c
2ic c cos(𝜔d∕c)) + (c2 + c2) sin(𝜔d∕c))

. (4.238)

In the limit of vanishing layer thickness, d → 0 and c ≪ c, Eq. (4.238) reduces to
Eq. (4.231) with 𝛼(1) = 𝛼(2) = 0 and

𝜉 = d
𝜌c

. (4.239)

Viscosity 𝜂 can be incorporated into this model by replacing real-valued phase speed c
with its viscoelastic equivalent according to Eq. (4.155). For a Voigt model (see Section
4.8.3) with shear modulus 𝜇 and viscosity 𝜂, we obtain

c(𝜔) =
√

2(𝜇2 + 𝜔2𝜂2)
𝜌 (𝜇 +

√
𝜇2 + 𝜔2𝜂2)

. (4.240)

4.12.2 Spatial and Temporal Interfaces

The discussion thus far has focused on spatial interfaces between media with different
mechanical properties, as illustrated in Figure 4.14. However, the same formalism can
be used to analyze wave effects at temporal interfaces, when the properties of a single
homogeneous medium change instantaneously, for example, in myocardial muscle,
which periodically alternates between relaxation and contraction (see Chapter 13).
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Figure 4.14 Example of a spatial interface between two
media with wave speeds c1 (white) and c2 (gray). The wave
propagates along the x-direction and is refracted at x = 0.
The slope Δx

Δt
corresponds to the wave speed.
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Rather than looking at wave amplitudes before and after the refraction process, we will
conduct the following analysis based on energy flux [50]. We introduced energy flux in
Eq. (4.205) as

Pj = −
3∑

i=1
𝜎iju̇i. (4.241)

In addition to the previously introduced amplitude-related transmission and reflection
coefficients, TA and RA, we can now introduce similar quantities that relate to the trans-
mitted and reflected portions of the energy flux:

TE ≡
|Pt|

|Pi|
(4.242)

RE ≡
|Pr|

|Pi|
. (4.243)

The subscripts i, t, and r again refer to the incident, transmitted, and reflected compo-
nents of the wave. Because of the conservation of energy, the relation |Pi| = |Pt| + |Pr|

requires that TE + RE = 1.
In the case of perpendicular incidence and a slip-less interface (see Figure 4.14), as

prescribed by the boundary conditions (Eqs. (4.227)–(4.230)), we obtain

TE =
4𝜌1c1𝜌2c2

(𝜌1c1 + 𝜌2c2)2 (4.244)

and RE =
(

𝜌1c1 − 𝜌2c2

𝜌1c1 + 𝜌2c2

)2

. (4.245)

Now we analyze the effect of an instantaneous change in elastic material properties
on a wave propagating through a homogeneous medium. For example, the medium
could be the cardiac muscle undergoing contraction (systole) and relaxation (diastole)
cycles. The change occurs at t = 0, as illustrated in Figure 4.15. The governing boundary
conditions are comparable to those at a welded spatial interface:

ui(r, 0) = ur(r, 0) + ut(r, 0) (4.246)
u̇i(r, 0) = u̇r(r, 0) + u̇t(r, 0). (4.247)
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Figure 4.15 Example of a temporal interface. The wave propagates
in the x-direction. At t = 0, the properties of the medium change
instantaneously, and the wave speed increases from c2 to c3,
causing a shortening of the cycle period, T (thus increasing the
frequency), of both the reflected and the transmitted waves. The
slope Δx

Δt
represents wave speed.

The second condition is a formulation of the conservation of linear momentum. The
sudden change in elastic modulus does not affect the instantaneous displacement pat-
tern. Hence, the wavelength remains constant, whereas wave speed c =

√
𝜇

𝜌
changes.

Therefore, according to c = 𝜆 ⋅ f , the frequency has to change. This is equivalent to
tuning a guitar by adjusting the tension of the string while the string is oscillating, thus
modulating the pitch instantaneously.

The above boundary conditions translate into the following amplitude ratios:

TA =
At

Ai
= 1

2

(

1 +
c2

c3

)

(4.248)

RA =
Ar

Ai
= 1

2

(

1 −
c2

c3

)

. (4.249)

These equations indicate that, in any case, there will always be both a transmitted wave
(which continues to propagate in the direction of the incident wave) and a reflected wave
that propagates in the opposite direction.

For the energy-related transmission and reflection coefficients, we obtain

TE =
1
4

c3

c2

(c3

c2
+ 1

)2

(4.250)

RE =
1
4

c3

c2

(c3

c2
− 1

)2

, (4.251)

and thus for their sum

TE + RE = 1
2

c3

c2

((c3

c2

)2

+ 1

)

. (4.252)

Obviously, this expression cannot be equal to unity if c2 ≠ c3. If the material stiffens
(c3 > c2), the energy of the wave after the transition is larger than before (TE + RE > 1).
Since the instantaneous displacement is not affected by the sudden change in elastic
modulus, the potential energy associated with the deformation rises in that case.
Increasing the elastic modulus thus requires energy in order to satisfy the conservation
of energy. Conversely, after the transition, a decrease in elasticity causes the waves to
have less energy than before (TE + RE < 1), so that this process releases energy. Conse-
quently, in contrast to spatial interfaces, energy flux is not constant in the case of tem-
poral interfaces. This is a clear limitation of wave amplitude-based cardiac elastography.
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In the presence of both temporal and spatial interfaces (as in the beating heart
muscle), both temporal and spatial reflections occur and the resulting wave field will be
a superposition of spatially and temporally scattered waves. Therefore, cardiac elastog-
raphy has focused on time intervals around systole and diastole, during which the shear
modulus is approximately constant, thus taking temporal variations out of the equation.

4.12.3 Wave Diffusion

In this section, we will analyze waves and diffusion on a one-dimensional grid with node
spacing Δx and discrete time steps Δt, based on the discussion presented in [52]. This
will illustrate similarities and differences between the apparently unrelated phenomena
of waves and diffusion. The latter becomes relevant in strongly scattering media, where
the mode of energy transport changes from linear propagation to a diffusive regime.

We denote by P(xj, ti) the probability of finding a wave30 or a particle at grid node xj
at time point ti. For an unattenuated propagating wave, we assume that the wave propa-
gates in the direction of increasing x, and that the time steps are chosen such that a time
step corresponds to the time the wave needs to travel from one grid point to the next.
Hence, we will observe a wave at (xj, ti) only if it was seen at the left neighboring node
at time ti−1:

P(xj, ti) = P(xj−1, ti−1). (4.253)

This is shown graphically in Figure 4.16a. Conversely, if we know that the wave is at
(xj, ti), we will find it at (xj+1, ti+1) with probability

P(xj, ti) = P(xj+1, ti+1). (4.254)

Adding Eqs. (4.253) and (4.254) and dividing the result by 2 yields

P(xj, ti) =
1
2

P(xj−1, ti−1) +
1
2

P(xj+1, ti+1). (4.255)

Figure 4.16 Illustration of discrete waves (a) and random
walk (b). If the wave is at (xj−1, ti−1), then the probabilities
P(xj, ti) and P(xj+1, ti+1) are all equal to 1. For the random
walk, we show all possibilities that lead to the particle
(indicated by the diamond) being found at (xj, ti).
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P = 1

2
P = 1

2

30 Since waves are extended rather than localized phenomena, “finding a wave” really means finding a
specific wave phase, e.g., the peak (or maximum), at a given time and position.
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This simple equation reveals an important quality of unattenuated plane waves : we can
mirror space and time simultaneously, that is,

ti−1 ↔ ti+1 and xj−1 ↔ xj+1 (4.256)

without changing Eq. (4.255). In other words, under time reversal, a propagating wave
looks exactly same as the original wave propagating in the opposite direction [53]. From
thermodynamics, we know that processes which can run forward and backward are
isentropic; a wave traveling through a nondissipative medium therefore does not affect
the entropy of the medium.

We will now apply the same formalism to a diffusive process. The mechanism under-
lying diffusion is the random walk. In the one-dimensional grid with discrete time, a
random walk of a single particle can be described like this: at each point (xj, ti), the parti-
cle transits with probability pl =

1
2

to the left neighbor xj−1, and with the same probability
pr =

1
2

to the right neighbor xj+1. It arrives at one of the two neighbors xj±1 at the next
time step ti+1, and the process begins anew.

Since the rules of the random walk do not allow a particle to stay at a given position,
the probability of finding it at P(xj, ti) is determined by the probabilities of finding it at
ti−1 at one of the neighboring positions xj±1, multiplied by 1

2
, since the particle could also

move away toward xj±2 as shown in Figure 4.16b. Hence,

P(xj, ti) =
1
2

P(xj−1, ti−1) +
1
2

P(xj+1, ti−1). (4.257)

By comparing Eqs. (4.255) and (4.257), we can see that the only difference between waves
and diffusion is the direction of the time step in the last term. However, this tiny differ-
ence has a huge physical implication: if we perform the time-and-space reversal defined
by Eq. (4.254) on Eq. (4.257), we obtain

P(xj, ti) =
1
2

P(xj+1ti+1) +
1
2

P(xj−1, ti+1), (4.258)

which is clearly not the same as the original equation. Thus, a diffusion process played
backward would not resemble to the original diffusion process. Diffusion is usually
defined with respect to an initial distribution of the concentration C(x) of a substance.
Each particle contributing to that concentration performs an independent random
walk, and, over time, the concentration always evolves toward a uniform distribution,
C(x, t → ∞) = const, with equal concentration everywhere. From thermodynamics, we
know that, of all possible concentration distributions, the uniform distribution has the
highest entropy. A diffusion process running backward in time would therefore entail
moving from the maximum-entropy state to a lower-entropy state. According to the
second law of thermodynamics, this is impossible.

We can derive the wave equation and diffusion equation from these simple principles.
For the wave equation, we can perform two index substitutions on Eq. (4.253):

(ti → ti−1) =⇒ P(xj, ti−1) = P(xj+1, ti) (4.259)
(xj → xj−1) =⇒ P(xj, ti+1) = P(xj−1, ti). (4.260)

Adding the two equations and subtracting 2 P(xj, ti) on both sides yields

P(xj, ti+1) − 2 P(xj, ti) + P(xj, ti−1) = P(xj+1, ti)
−2 P(xj, ti) + P(xj−1, ti). (4.261)
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By comparing this equation with the discrete first- and second-order derivative
operators, Eqs. (8.23b) and (8.27), which we will discuss later, we can see that we have
a second-order temporal derivative on the left-hand side and a second-order spatial
derivative on the right-hand side:

Δt2 𝜕
2P(x, t)
𝜕t2 = Δx2 𝜕

2P(x, t)
𝜕x2 . (4.262)

As stated earlier in this section, time step Δt and node spacing Δx are correlated such
that Δt is the time that the wave needs to propagate from one node to the next. Hence,
the wave velocity is given by c = Δx

Δt
. We therefore arrive at the general form of the wave

equation

𝜕
2P

𝜕x2 = 1
c2

𝜕
2P
𝜕t2 . (4.263)

In order to derive the diffusion equation, we subtract P(xj, ti−1) from both sides of
Eq. (4.257):

P(xj, ti) − P(xj, ti−1) =
1
2

P(xj−1, ti−1) − P(xj, ti−1) +
1
2

P(xj+1, ti−1). (4.264)

In analogy to Eqs. (8.23b) and (8.27), we can see that the right-hand side is a discrete
forward difference (with Δt = 1) as an approximation to the first temporal derivative,
whereas the left-hand side is again a second-order spatial derivative (with Δx = 1).
Therefore, in the limit Δx → 0,Δt → 0, we can write

Δt 𝜕P(x, t)
𝜕t

= Δx2

2
𝜕

2P(x, t)
𝜕2x2 (4.265)

𝜕P(x, t)
𝜕t

= D 𝜕
2P(x, t)
𝜕2x2 . (4.266)

The term Δx2

2 Δt
is called diffusion coefficient and quantifies how easily a particle can move

through the surrounding medium. One notable difference between waves and diffusion
is the scaling behavior: if we scale time and space homogeneously with a positive
parameter 𝜆, such that Δt → 𝜆 ⋅ Δt and Δx → 𝜆 ⋅ Δx, we can see that the wave equation
is invariant, since 𝜆 cancels out. However, in the case of the diffusion equation, the
diffusion coefficient D will depend explicitly on the scaling parameter: D → 𝜆D. In other
words, the propagation velocity of a wave is independent of the length scale on which
the wave is observed, and the value of c is also valid in the infinitesimal limit c = 𝜕x

𝜕t
. For

diffusion, on the other hand, the concept of an instantaneous particle velocity is not
applicable. We only observe the particle at discrete time points at discrete positions,
and we can conclude that the average velocity of the particle during that time must
have been Δx

Δt
. The dependence of D on the scaling parameter 𝜆 tells us that the average

particle velocity for a given diffusion coefficient D depends on the observation scale.
Conversely, maintaining the same particle velocity at different length scales would
require adapting the diffusion coefficient. This can be understood as a manifestation of
the stochastic nature of diffusion: if a particle moves to the right with a probability of
1
2
, the probability of two consecutive steps to the right is 1

2
⋅ 1

2
= 1

4
. Hence, if we average
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the velocity over two time steps rather than one, we have the following situation:

(LL) → P(xj−2, ti+2) = 1 ⋅ 1
2
⋅ 1

2
= 1

4
d = 2Δx

(LR,RL) → P(xj, ti+2) = 2 ⋅ 1
2
⋅ 1

2
= 1

2
d = 0

(RR) → P(xj+2, ti+2) = 1 ⋅ 1
2
⋅ 1

2
= 1

4
d = 2Δx.

“L” and “R” indicate a step to the left or to the right, and d is the distance by which the
particle is removed from the starting point after two steps. The average distance traveled
by a particle during an interval 2Δt is therefore

⟨d⟩2Δt =
1
4
⋅ 2Δx + 1

2
⋅ 0 + 1

4
⋅ 2Δx = Δx, (4.267)

and the average velocity is ⟨v⟩2Δt =
Δx
2Δt

, which is only half of the value ⟨v⟩Δt =
Δx
Δt

obtained for a single time step Δt. This explains why the diffusion coefficient, as a
marker of particle mobility, has explicit scale dependence. In any real-world situation,
grid spacing is determined by the microscopic structure of the medium (e.g., by the
mean free path length between particle collisions), and this spacing determines the
diffusion coefficient.

Scaling property of the wave equation

In contrast to diffusion, the wave velocity is independent of the spatial and temporal
scale of the network: ⟨c⟩Δt = ⟨c⟩2Δt and ⟨c⟩Δx = ⟨c⟩2Δx . This property translates to the vis-
coelastic parameters that determine the wave speed. Therefore, shear waves can serve
as a probe even for scale-invariant structures, such as the hierarchical geometry of bio-
logical tissue. In other words, structures occurring on a given length scale do not only
affect the wave speed (and hence elasticity) on that length scale, but also on all other
scales. The shear modulus is therefore sensitive to structures that are much smaller than
the wavelengths of the waves from which it was calculated.

From a different perspective, we can interpret the diffusion equation (4.266) and
the wave equation (4.263) as two special cases of the more general partial differential
equation

𝜕
2
𝜒

𝜕r2 − b ⋅
𝜕
𝛼
𝜒

𝜕t𝛼
= 0 (4.268)

with
(

𝛼 = 1, b = 1
D

)

for diffusion and
(

𝛼 = 2, b = 1
c2

)

for waves. This raises the question
whether there exists a physically meaningful connection between these apparently unre-
lated phenomena. In fact, with the methods of fractional calculus, the above equation
can be generalized to noninteger values of 𝛼. For 1 < 𝛼 < 2, we introduce the domain
of diffusive waves, which describe phenomena in between classical waves and diffusive
behavior.

A good overview of fractional calculus and its application to viscoelasticity can be
found in [44]. The mathematical framework of fractional calculus is beyond the scope
of this book, and we will therefore only discuss the results in a qualitative manner with-
out rigorous mathematical treatment. Fractional derivative and integration operators
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generalize the respective operations in a similar way as exponentiation with noninteger
arguments does for algebraic expressions. For example, in analogy to

x
1
2 ⋅ x

1
2 = x

1
2
+ 1

2 = x1 = x, (4.269)

we find

d
1
2

dt
1
2

d
1
2

dt
1
2

𝜒 = d
1
2
+ 1

2

dt
1
2
+ 1

2

𝜒 = d1

dt1 𝜒 = d
dt

𝜒, (4.270)

so that d
1
2

dt
1
2

can be characterized as the operator that has to be applied twice to obtain the
first temporal derivative of its operand. Analytical expressions for differential and inte-
gral operators of arbitrary noninteger order 𝛼 are given in [44]. However, we will restrict
the following discussion to a more intuitive approach based on Green’s functions.

4.12.3.1 Green’s Function of Waves and Diffusion Phenomena
As discussed earlier (see Section 4.9.5), inhomogeneous differential equations can be
solved for arbitrary inhomogeneity terms if Green’s function of the related homo-
geneous differential equation is known. In Section 4.9.5, we explained that Green’s
function G(x, x′

, t, t′) describes how an event at one space-time point (t′, x′) affects
the situation at another point (t, x). Since we are dealing with causal phenomena, we
require that the cause precedes the consequence, so that in the following discussion
we will always imply t′ ≤ t (and t = t′ implies x = x′ because of finite propagation
velocities). In a one-dimensional domain, the wave equation has a Green’s function

Gwave(x, x′
, t, t′) = 𝛿 ((t − t′) − |x − x′|∕c) (4.271)

with wave propagation velocity c. This implies that for any space-time point (t, x), the
wave field is fully determined by the sum of all distributions that occurred at other
space-time points (t′, x′) such that t − t′ = |x − x′|∕c. Hence, any excitation is assumed
to propagate along a straight line, since otherwise it would not be able to travel the
distance |x − x′| in time t − t′.

Green’s function for the one-dimensional diffusion equation (4.266) is [44]

Gdiff(x, x′
, t, t′) = 1

√
4𝜋D ⋅ (t − t′)

⋅ exp
(

− (x − x′)2

4D ⋅ (t − t′)

)

. (4.272)

By comparing this form with the Gaussian normal distribution with mean 𝜇 and stan-
dard deviation 𝜎

f (x|𝜇, 𝜎) = 1
𝜎

√
2𝜋

⋅ exp
(

−(x − 𝜇)2

2𝜎2

)

(4.273)

we see that the diffusion Green’s function has the shape of a bell curve with center 𝜇 = x′

and standard deviation 𝜎 =
√

2D ⋅ (t − t′). Because of the causality relation t ≥ t′, the
argument under the square root cannot become negative.

The difference between wave propagation and diffusion is therefore that the diffu-
sion Green’s function does not impose as strict limits on the spatiotemporal relationship
between causes and consequences as the wave Green’s function. In other words, wave
propagation requires motion along a straight line at wave speed c between the cause of
an event and its consequence elsewhere. For diffusion, the time for the propagation is
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r′ r

Figure 4.17 Three out of infinitely many possible paths from r to r′. Since the
path lengths differ, waves emitted at r′ at the same time will arrive at r with
different delays. Therefore, phase coherence between waves is lost, and the
resulting intensity at r cannot be predicted.

not as strictly coupled to the spatial distance between the two points, so that information
does not necessarily have to propagate along the shortest path or at a fixed velocity to
have an effect.

What happens if the wave no longer travels along a straight line? In the previous
sections, we have explained how scattering can change the propagation direction of
a wave. In the case of multiple scattering, there are several (actually, infinitely many)
paths a wave could take between two points r′ = (t′, x′) and r = (t, x), each with a dif-
ferent length. As scattering has no effect on the wave velocity, the partial waves that
travel from r′ to r have different transit times. Therefore, the strict relationship between
the geometric distance of r′ and r and the travel time has to be loosened to account
for all partial waves arriving at r simultaneously, irrespective of the path they followed
starting from r′. Thus, the 𝛿-peak of the original wave Green’s function, Eq. (4.271),
becomes “smeared,” and with an increasing number of scatterers approaches the shape
of the diffusion Green’s function (4.272). This intermediate regime between the two pure
phenomena is called “diffusive waves.”

In media with a randomly distributed scatterers, there is no restriction on the lengths
of possible paths from r′ to r. If the scatterer density is sufficiently high, the distribution
of path lengths approaches a continuum. As a consequence, the phase of each partial
wave arriving at r becomes arbitrary (depending on the length of its trajectory), and
phase coherence between these partial waves is lost (see Figure 4.17). The superposition
of all partial waves therefore yields random amplitudes, as we will discuss in the next
paragraphs.

4.12.3.2 Amplitudes and Intensities of Diffusive Waves

Energy transport of diffusion versus propagating waves

Despite the apparent similarity of the differential equations of propagating waves
(Eq. (4.144)) and diffusion (Eq. (4.266)), there are some fundamental differences that
need to be pointed out. First, the wave equation prescribes a finite propagation velocity
c; the wave can travel neither faster nor slower than c. It is therefore possible to calculate
how far an unscattered wave propagates in a given time interval. The diffusion equation,
on the other hand, does not make any statement about the velocity of the diffusing
particles. The underlying theory of Brownian motion states that the kinetic energy of
the particles is distributed according to a Boltzmann statistic, which covers the whole
range from zero to infinite velocity. This implies that immediately after the beginning
of the diffusion process, the probability of finding diffusing particles at arbitrarily large
distances is larger than zero. As the diffusion process continues, the particle cloud
spreads out, and the probability of finding particles at large distances increases. In the
long-time limit t → ∞, the diffusion Green’s function (Eq. (4.272)) converges toward a
spatial constant, meaning that the probability of finding a particle at a specific location
is the same as finding it everywhere else.
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Since classical waves are not discretized phenomena, we cannot speak of the “prob-
ability of finding a wave” at a specific location; but we can look at the amplitudes of
the waves as a function of the distance from the source. In the case of a point source,
a portion of energy that was emitted by the source over an interval t0 ≤ t ≤ t1 is dis-
tributed evenly over a spherical shell with inner radius R = c ⋅ (t − t1) and thicknessΔR =
c ⋅ (t1 − t0). The volume of the shell is 4𝜋R2 ⋅ ΔR ∝ t2. This means that the energy con-
tent of the shell spreads across an increasing volume and that the energy density inside
the shell decreases as 1

R2
= 1

c2t2
. Therefore, the wave intensity (see Eq. (4.214)) of an unat-

tenuated point source decreases as the squared distance from the source. This has two
implications. First, the energy emitted by a point source is always located in a spherical
shell with finite thickness. This is not the case for diffusion, since the concentration tends
toward a spatially constant distribution. Second, the wave model is suitable for treating a
continuously emitting source. The diffusion model, on the other hand, is based on a fixed
amount of a substance that is initially constrained to an infinitely small volume and dif-
fuses from there; it does not allow for a continuously emitting source (in other words, the
volume integral over the concentration is a time-independent constant).

An unscattered plane wave of the general form

u(r, t) = u0 ⋅ ei(k•r−𝜔t) (4.274)

has the same amplitude |u0| everywhere. We can then calculate the normalized wave
intensity I as

I(r) = |u(r)|2

⟨|u(r)|2⟩S
, (4.275)

which is the local wave intensity divided by the mean intensity over a region S. Since the
amplitude and hence the intensity is constant, the nominator and denominator yield the
same value and therefore I(r) = 1.

Alternatively, we can look at the probability of finding a certain value I of the nor-
malized intensity in a given spot. For the probability distribution in a plane wave, we
find

P(I) =
{

1 if I = 1
0 else. (4.276)

In a strongly scattering medium, there is a continuum of paths between two points r′
and r, each with its own phase offset determined by the path length. In practice, it is
virtually impossible to calculate the partial waves along all paths and to superimpose
them to obtain the resultant field intensity at a given point. Therefore, we will switch
from the microscopic view of individual scatter processes to the macroscopic view that
only takes into account wave intensities, without paying tribute to the underlying exact
scatterer geometry.

The superposition of many (multiply) scattered and unscattered waves becomes inco-
herent, since the phase of each individual wave depends on the distance it has traveled,
which in turn depends on its trajectory. Therefore, local intensity is subject to interfer-
ence effects, and wave intensity becomes dependent on space. In this scenario, the inten-
sity probability distribution yields a continuum rather than the sharp peak of Eq. (4.276)
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Figure 4.18 Intensity profiles and radial profiles for different real and hypothetical types of wave
phenomena. (a) Intensity probabilities for different types of waves. See Table 4.1 for the corresponding
formulas. (b) Radial intensity profiles. The diffusive wave scenario does not account for speckle
patterns and is therefore unphysical. (c) Hypothetical case of wave diffusion with a single excitation
and multiple repeated excitations. The curves are normalized to unity amplitude at the origin to
illustrate how repeated excitation makes the curve broader and flatter. This plot results from the
application of the diffusion equation to intensity (see Appendix D.3), which is unphysical.

and approaches a decaying exponential function [54] (see Figure 4.18)
P(I) ∝ e−I

. (4.277)
Note that this relation is derived assuming interference between scattered waves, which
is not included in the classical formulation of diffusion processes. For comparison, the
same calculation for classical diffusion is performed in Appendix D.3, and the result is
very different from the one above. The main reason for the difference is that interfer-
ence can lead to local extrema of the amplitude, called “speckles,” which are higher than
the amplitude at the source. Because of these speckle patterns, it becomes infeasible to
explicitly derive a radial intensity distribution I(r). The radial intensities labeled “wave
diffusion” in Figure 4.18b correspond to a hypothetical case of intensity diffusion which
is further discussed in Appendix D.3, but does not occur as a physical phenomenon,
since it would violate conservation of energy. It is only presented here to outline the dif-
ference between “classical” diffusion of particles and the diffusion of waves in a strongly
scattering environment. In the context of classical diffusion, the diffusing quantity is
real-valued (e.g., concentration of a solution), so that interference effects are precluded.
The analysis of speckle patterns in strongly scattering media can convey information on
the scatterer density [55].
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Table 4.1 Intensity probability functions for different types of waves.

Type Intensity probability function

Unattenuated spherical wave (3D) P(I) = 3
2

I−5∕2

c3(t−t0)3

Damped plane wave P(I) = L
2 c(t−t0)I

Diffusive waves P(I) ∝ e−I

Derivations and explanations are presented in Appendix D. See Figure 4.18a for plots of the
functions.

We now look at the propagation of a wavefront emanating from a plane source.
We define the wavefront as the component of the wave that has traveled the largest
distance from the source since the time of emission. This implies that at all times the
wavefront consists only of nonscattered wave components, since any scattering is a
deflection from a straight line of propagation and hence reduces the speed at which the
wave moves from the source. In other words, the wave contains only the components
of the wave that were transmitted at each single scattering event. We assume that the
scatterer density is constant throughout the medium, so that the average time between
two scattering events is 𝜏s, and that TA and RA are identical for each scatterer. Each
scatterer only permits a fraction TA of the incident wave amplitude to pass and remain
part of the wave front; the reflected part does not contribute to the wavefront any more.
Therefore, the reduction of wave amplitude per time interval Δt is given by

A(t + 𝜏s) = A(t) ⋅ TA. (4.278)
We also know that, for sufficiently small intervals 𝜏s, we can represent A(t + 𝜏s) by the
first order of the Taylor series around t:

A(t + 𝜏s) = A(t) + Ȧ(t) ⋅ 𝜏s. (4.279)
Combining the right-hand sides of these two equations yields

A(t) ⋅ TA = A(t) + Ȧ(t) ⋅ 𝜏s (4.280)

=⇒ Ȧ(t) =
TA − 1

𝜏s
A(t) (4.281)

=⇒ A(t) = A(0) ⋅ exp (−(1 − TA)∕𝜏s ⋅ t). (4.282)
The amplitude of the unscattered wavefront therefore decays exponentially with time
with a decay constant Λ = 1−TA

𝜏s
≥ 0, and, since the propagation velocity is constant,

exponentially with the distance from the source. Note that the wave amplitude
decreases even in nonabsorbing materials. However, the intensity of the scattered
waves is not lost, but concentrated in the area “behind” the wavefront. In this region,
superposition of multiply scattered wave occurs, and the phase relation depends on the
lengths of the different geometric paths that the interfering partial waves have taken
and the times at which they were emitted from the source.

In summary, elastic scattering does not constitute a dissipative process and hence
does not cause energy loss. Only the radial distribution of wave energy emanating from
a source is modulated compared to the nonscattering case, and energy propagation is
slower, as the major portion of the energy lags behind the unscattered wavefront.
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Poroelasticity

In this chapter, we will discuss the poroelastic tissue model, which contrasts more
common monophasic models that were the basis for all previous discussions. We will
describe the mathematical framework to characterize and assess poroelasticity with
MRE, and demonstrate the implications of the model for wave propagation.

Part of the following theory is original work, which we developed for addressing some
fundamental aspects of MR poroelastography. MRE cannot detect waves in different
tissue compartments – such as parenchyma, blood, and interstitial water – separately.
Instead, MRE integrates the phase signal within a voxel into an “effective medium”
motion. The presence of multiple tissue compartments gives rise to multiple wave
modes that do not exist in monophasic, isotropic materials. The origin of these wave
modes can be explained by extension of Navier’s equation to multiphasic media without
consideration of viscosity and fluid flow, as it is addressed by Darcy’s law. Specific
attention will be paid to the fact that the coupled equations converge toward the
well-known monophasic equation of motion in the limit of a single compartment.

Human tissue typically has a water content of approximately 70–85% [56, 57].
With a compression modulus of 2.2 GPa, water is considered incompressible in most
elastography experiments. Consequently, MRE usually makes the assumption that
tissue can undergo shear deformation but does not permit compression.

In the 1940s and 1950s, Maurice Biot introduced the theory of poroelasticity, extend-
ing previous work by Karl von Terzaghi. Biot’s research was aimed at describing the
behavior of fluid-drained soils and rocks under pressure. Initially, he was only interested
in the long-term characteristics of soil consolidation under a given stress [58, 59]. Later,
Biot extended his theory to the dynamic regime to analyze wave propagation through
poroelastic media [60, 61].

Poroelastic behavior arises from the interaction of the two compartments of a
biphasic medium, in which a solid but porous matrix is fully permeated by a fluid. The
pores form a contiguous and interconnected space, so that fluid motion through the
matrix is possible. This model, originally derived for soil, is also applicable to biological
tissue, in which vascular trees permeate the solid tissue matrix, constituting a biphasic
medium. Another type of poroelastic tissue is found in the lung, where – in a simplistic
view – solid tissue is interspersed with air-filled compartments. In any case, the
biphasic structure is visible only on the microscale, whereas in the macroscopic view
(determined by the voxel size in MRE), only a homogeneous effective medium is
observed.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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3. Unjacketed scenario
Effective medium
is compressible

1. Jacketed scenario
Effective medium
is compressible

2. Jacketed scenario
Effective medium
is incompressible 

Figure 5.1 Illustration of three scenarios for mechanical testing of a poroelastic material. On top, a
tissue volume consisting of fluid space (dark gray) and solid (light gray) is shown. The fluid is assumed
incompressible. Applying a pressure can yield different results, depending on the properties of the
solid and the interaction between the compartments. In scenario 1, the solid is compressed whereas
the fluid volume is preserved, resulting in a compressible effective medium. In scenario 2, one phase
can locally expand if the other phase can be pushed out of the way. The total volume is preserved (the
effective medium is thus incompressible), and the local distribution of the two phases is temporarily
altered. In scenario 3, fluid is allowed to leave the system, thus resulting in a compressible effective
material even when both phases are incompressible. The term “jacketed” refers to testing conditions
that surround the material with an impermeable jacket that prevents fluid from being squeezed out.

As long as none of the two phases is truly incompressible, one can envision three
modes of volumetric deformation (Figure 5.1). In the first mode, the two phases
undergo compression and dilatation in synchrony. This means that the bulk density
is subject to temporal and spatial variation, just as in the case of a compressible
monophasic medium. In the second scenario, both constituents undergo out-of-phase
deformation, with one being compressed while the other expands. In that case, the
density of one phase increases while that of the other decreases, so that the change in
bulk density can be much smaller than that of the individual phases. A third volumetric
deformation mode exists even if both constituents are truly incompressible. In that
case, a deformation of the matrix (which compresses the pore space, but not the
matrix phase itself ) can be balanced by an outflow of fluid into an external reservoir.
Conversely, if fluid is forced into the medium by an external pressure, the pore
space might dilate to accommodate the influx of fluid. This scenario is referred to
as “unjacketed condition” in the literature. On a microscopic scale, this means that
one phase is locally substituted partially or fully by the other phase. This mechanism
requires the existence of an external fluid reservoir. Furthermore, the duration of a
compression–dilatation cycle has to be long enough for fluid exchange to take place.
This requirement is more likely to be fulfilled in a quasi-static or low-frequency scenario
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than in the dynamic range typically probed by MRE. Poroelastic MRE aims to quantify
dynamic poroelastic properties that occur on the same timescales as the vibration
(tens of milliseconds). In the ultrasonic elastography community, mainly long-term
poroelastic effects (on the order of many seconds) are addressed.

While the theory of poroelasticity became popular in the 1950s, it has been used
mainly in geophysics as a tool for the analysis of rocks and soil under transient and
long-term stresses. The application of a poroelastic model in the context of biologi-
cal imaging of tissue was suggested by Leiderman et al. [62]. Berry et al. demonstrated
poroelastic behavior of a tofu phantom under uniaxial compressive stress by ultrasound
elastography [63]. Perriñez et al. demonstrated the feasibility of MR poroelastography
in tofu phantoms [64, 65].

In Biot’s dynamic framework, there are two constants that establish a coupling
between the solid and the fluid. The first parameter, henceforth referred to as the
coupling modulus H , characterizes how a stress in one compartment results in a strain
of the other compartment, and vice versa. The second parameter, denoted 𝜌12, has the
dimension of a mass density, but is always negative. It quantifies the energy transfer
from one compartment to the other due to friction caused by relative motion. However,
it is important to note that this is not a dissipative process, meaning that kinetic energy
is exchanged between the phases, but not converted into heat.

The composition of a biphasic material is characterized by the porosity f , which is
defined as the fraction of fluid contained in a volume element of the bulk material:

f = V f

V
, (5.1)

where V f is the volume occupied by the fluid in the volume element V . If we assume that
every pore of the matrix is filled with fluid (i.e., there are no air bubbles or “empty space”),
the volume fractions of the two phases have to add up to unity, so that the volume frac-
tion of the solid becomes 1 − f . Bulk density is therefore

𝜌 = f ⋅ 𝜌f + (1 − f ) ⋅ 𝜌s
. (5.2)

Indices “s” and “f” refer to the quantities associated with the solid and the fluid,
respectively.

5.1 Navier’s Equation for Biphasic Media

In this section, we will derive an analog of Navier’s equation for a biphasic medium that
will allow us to analyze wave propagation in such a material.

The total stress acting on the medium can be separated into stresses for the individual
compartments:

𝝈 = f ⋅ 𝜎f ⋅ 𝟙 + (1 − f ) ⋅ 𝝈s
. (5.3)

The deformation of the solid is described by a 3 × 3 stress tensor, whereas the fluid can
be characterized by a single scalar stress value 𝜎

f .
In contrast to the previous (visco)elastic models, a stress in one compartment arises

not only from its own deformation but also from the deformation of the other compart-
ment. This results in a set of coupled equations that can be combined into the elasticity
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with the volumetric strain of the fluid 𝜃 = 𝜖
f
xx + 𝜖

f
yy + 𝜖

f
zz. Zero entries are not shown

for improved readability. The upper left 6 × 6 matrix is the usual elasticity tensor of an
elastic solid, representing both shear and volumetric strains. The only difference is the
weighting by the solid volume fraction 1 − f . The entry f K f in the lower right corner
corresponds to fluid stress induced by fluid strain. We assume here that the fluid does
not support shear strains so that off-diagonal entries in the fluid strain tensor 𝝐f van-
ish. Finally, the first three entries in the last row and last column represent the coupling
between axial strains on the solid and fluid strain, and vice versa, via the coupling mod-
ulus H . The weighting of all entries of the elasticity tensor with either f , 1 − f , or f (1 − f )
ensures that the model reproduces a monophasic medium in the limits f = 1 (pure fluid)
and f = 0 (pure solid).

In analogy to the derivation of Navier’s equation (cf. Section 4.9), we will now derive
balance of momentum equations from this representation of the stress tensor by calcu-
lating ∇ ⋅ 𝝈s:
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(5.5)
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This derivation is very similar to the steps performed in the derivation of Navier’s
equation (Eqs. (4.124)–(4.127)). In vector notation,1 the same result can be repre-
sented as

(1 − f )∇ ⋅ 𝝈s = (1 − f ) ⋅
[(

K s + 1
3
𝜇

s
)

∇(∇ • us) + f H∇𝜃 + 𝜇
sΔus

]

. (5.6)

Performing the same calculations for the fluid stress tensor, as given in the last
component of Eq. (5.4), we obtain

f ⋅ 𝝈f = f (1 − f )H ⋅
3∑

i=1
𝜖

s
ii + f K f

𝜃, (5.7)

with 𝜃 =
∑3

i=1
𝜕uf

i

𝜕ri
= ∇ • uf . Applying the gradient operator to derive the resultant force

yields

f ∇𝜎f = f (1 − f )H∇(∇ • us) + f K f∇(∇ • uf ). (5.8)

We can thus equate these deformation-induced forces to the mass acceleration,
according to Newton’s law in analogy to Navier’s equation for homogeneous media (see
Section 4.9.1)

𝜌11üs + 𝜌12üf = (1 − f ) ⋅ ∇ ⋅ 𝝈s (5.9)
𝜌12üs + 𝜌22üf = f ⋅ ∇𝜎f

. (5.10)

In these equations, we have the acceleration terms on the left-hand side and the acting
forces on the right-hand side. The acceleration terms need some explanation: Through
the coupling between the two phases, a force acting on either phase will not only accel-
erate that phase, but due to the interaction it will also have an accelerating effect on the
other phase [60]. This effect is quantified by the coupling density 𝜌12. It can be parame-
terized in terms of pore geometry [66]

𝜌12 = −(T − 1)f 𝜌f
, (5.11)

where T is the tortuosity of the pore space. There are different definitions for the tortu-
osity of a curve. The most intuitive one is the ratio of the length of the curve, L, to the
distance D of its end points2: T = L

D
, as shown in Figure 5.2. The tortuosity of a straight

line is 1, whereas any other geometry results in T > 1. From this definition, we can see
that 𝜌12 is always negative. The densities 𝜌11 and 𝜌22 are related to the densities of the
solid and the fluid, 𝜌s and 𝜌

f , respectively, via3

𝜌11 = (1 − f )𝜌s − 𝜌12 (5.12)
𝜌22 = f 𝜌f − 𝜌12. (5.13)

Hence, we find for the bulk density of the compound material

𝜌 = f 𝜌f + (1 − f )𝜌s = 𝜌11 + 𝜌22 + 2𝜌12. (5.14)

1 As explained on page 93, the term ∇ ⋅ 𝝈 ≡

∑3
i,j=1

𝜕𝜎ij

𝜕ri
êj yields a vector.

2 Sometimes the square of that ratio is used instead.
3 We chose this notation to be consistent with the notation introduced by Biot [60].
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L

T = L
D

D

Figure 5.2 Illustration of the definition of tortuosity of a line that is used in
the text. L is the length of the curve and D is the Euclidean distance of its
endpoints.

By substituting the definitions (Eqs. (5.12) and (5.13)) into Eqs. (5.9) and (5.10), we
can understand how 𝜌12 is correlated with energy transfer:

(1 − f )𝜌süs + 𝜌12(üf − üs) = (1 − f ) ⋅ ∇ ⋅ 𝝈s (5.15)
f 𝜌f üf + 𝜌12(üs − üf) = f ⋅ ∇𝜎f

. (5.16)

The interaction term vanishes when both compartments are accelerated in the same
direction, whereas it is maximized when the compartments undergo opposite accel-
erations. In a one-dimensional system, assume that the solid experiences a positive
acceleration (üs

> 0). If the acceleration of the fluid is either negative or positive, but
smaller than the solid acceleration, the interaction term in Eq. (5.15) will be positive
because 𝜌12 < 0. This means that the left-hand side comprises two contributions with
equal sign: one accelerates the solid, whereas the other accelerates the fluid in the same
direction as the solid.

The displacement field us usually contains both shear deformation and volumetric
strain.4 We will therefore use the same strategy as in Section 4.9.2: invoke the Helmholtz
theorem (Eqs. (4.134)–(4.136)) to separate the equations of motion into a rotational
(∇ × u) and a compressional (∇ ⋅ u) component.

5.1.1 Pressure Waves in Poroelastic Media

Applying the divergence operator to Eqs. (5.9) and (5.10), we obtain

𝜌11 ⋅ ∇ • üs + 𝜌12 ⋅ ∇ • üf = (1 − f ) ⋅ ∇ • (∇ ⋅ 𝝈s) (5.17)
𝜌12 ⋅ ∇ • üs + 𝜌22 ⋅ ∇ • üf = f ⋅ ∇ • (∇𝜎f ). (5.18)

We can now substitute the expressions (Eqs. (5.8) and (5.6)) into Eqs. (5.18) and (5.17)
and use the shorthand notation 𝜃 ≡ ∇ • uf and 𝜁 ≡ ∇ • us:

𝜌11𝜁 + 𝜌12�̈� = (1 − f ) ⋅
(

K s + 4
3
𝜇

s
)

∇ • ∇𝜁 + Hf (1 − f )∇ • ∇𝜃 (5.19)

𝜌22�̈� + 𝜌12𝜁 = f (1 − f )H∇ • ∇𝜁 + f K f∇ • ∇𝜃, (5.20)

where we exploited the vector identity Δus = ∇2us = ∇(∇ • us) − ∇ × ∇ × us and
discarded the rotational part.5 Furthermore, we rewrite the above formulas using the
scalar Laplacian ΔX ≡ ∇ • ∇X and the P-wave modulus of the solid Ms

≡ K s + 4
3
𝜇

s:

𝜌11𝜁 + 𝜌12�̈� = (1 − f ) ⋅ Ms ⋅ Δ𝜁 + f (1 − f )H ⋅ Δ𝜃 (5.21)
𝜌22�̈� + 𝜌12𝜁 = f (1 − f )H ⋅ Δ𝜁 + f K f ⋅ Δ𝜃. (5.22)

4 The fluid phase, which can be either a liquid or a gas, may not support shear deformation if its viscosity is
low. However, in the case of a viscous liquid, there can also be a shear component in uf .
5 Doing so is legitimate, because ∇ • (∇ × 𝝌) = 0 for any 3D vector field 𝝌 .
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Next, we assume that both 𝜃 and 𝜁 are plane compression waves with oscillation
frequency 𝜔 and wave number k. We can therefore write6

𝜃(r, t) = 𝜃0 ⋅ e−i𝜔t ⋅ eik•r (5.23)
𝜁 (r, t) = 𝜁0 ⋅ e−i𝜔t ⋅ eik•r

. (5.24)

Substituting these expressions into Eqs. (5.21) and (5.22) and reordering the terms leads
us to

(
(1 − f )Msk2 − 𝜌11𝜔

2) ⋅ 𝜁 =
(
𝜌12𝜔

2 − f (1 − f )k2H
)
⋅ 𝜃 (5.25)

(
f K f k2 − 𝜌22𝜔

2) ⋅ 𝜃 =
(
𝜌12𝜔

2 − f (1 − f )k2H
)
⋅ 𝜁 (5.26)

with k = |k|. Multiplying these two equations and dividing the result by the product
𝜃 ⋅ 𝜁 yields7:

(
(1 − f )Msk2 − 𝜌11𝜔

2) ⋅
(
f K f k2 − 𝜌22𝜔

2) =
(
𝜌12𝜔

2 − f (1 − f )k2H
)2
. (5.27)

For a fixed oscillation frequency 𝜔 and a given set of material parameters, Eq. (5.27) is
a biquadratic equation in the wave number k (meaning that the only powers of k are k0,
k2, and k4), with a maximum of four distinct solutions. We can substitute Q = k2 and
solve the equation algebraically. The solution has the form

Q± = A ⋅
(

B ±
√

C
)

⋅ 𝜔2 (5.28)

with

A = 1
2f (1 − f )(MsK f − H2f (1 − f ))

(5.29)

B = 𝜌11f K f + 𝜌22(1 − f )Ms − 2𝜌12f (1 − f )H (5.30)

C = 𝜌
2
11 f 2K f 2 + 𝜌

2
22(1 − f )2Ms2 + 2f (1 − f )MsK f ⋅

(
2𝜌2

12 − 𝜌11𝜌22
)

− 4𝜌11𝜌12 f 2(1 − f )K f H + 4𝜌11𝜌22 f 2(1 − f )2H2 − 4𝜌22𝜌12 f (1 − f )2MsH.

(5.31)
We denote the two solutions of Eq. (5.28) by Q+ and Q−, depending on which option
for the ± sign under the square root was chosen. These two solutions correspond to two
waves with different values of k2 and hence different wavelengths. The full set of solu-
tions is given by (k+,−k+, k−,−k−) with k± =

√
Q±, representing waves of two different

wavelengths propagating in two opposite directions. The propagation velocity of the two
waves can then be calculated as c = 𝜔

k
.

We will now demonstrate that this poroelastic theory is compatible with the standard
monophasic theory in the sense that in the limits f = 0, f = 1 and vanishing interaction,
the equations reduce to those of a monophasic medium.

For the case f = 0 (pure solid), the relevant densities become

𝜌12 = 0, 𝜌11 = 𝜌
s and 𝜌22 = 0 (5.32)

6 The same results are obtained if one assumes that 𝜃 and 𝜁 are superpositions of plane waves, which can be
recovered from their spatial spectra via 𝜃(r, t) = 1

√
2𝜋

∫ 𝜃(k, t) ⋅ exp(ik • r)d k (and analogously for 𝜁 (r, t)).
Inserting this expression into Eqs. (5.21) and (5.22) and using the fact that exp(ik • r) for different k are
independent leads to the same equations, but some additional calculation steps are required.
7 Dividing by 𝜃 ⋅ 𝜁 is permissible, since both functions are complex harmonic functions that never
disappear, unless their amplitude is zero, in which case there would be no waves to look at anyway.
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according to Eq. (5.11), Eq. (5.12) and Eq. (5.13), respectively. Inserting these substitu-
tions into Eq. (5.25) yields

(Msk2 − 𝜌
s
𝜔

2) ⋅ 𝜃 = 0, (5.33)

whereas Eq. (5.26) vanishes completely. The result is a pressure wave equation for the
monophasic solid medium. Conversely, for f = 1 (pure fluid) and 𝜌12 = 0, it follows from
Eqs. (5.12) and (5.13) that 𝜌11 = 0 and 𝜌12 = 𝜌

f . Hence, Eq. (5.25) vanishes and Eq. (5.26)
is reduced to

(K f k2 − 𝜌
f
𝜔

2) ⋅ 𝜁 = 0, (5.34)

which is the pressure wave equation for the monophasic fluid.
Finally, in the case of vanishing interaction (𝜌12 = 0 and H = 0) with arbitrary volume

fraction, the equations of motion (5.25) and (5.26) decouple to
(
(1 − f )Msk2 − 𝜌11𝜔

2)
𝜁 = 0 (5.35)

(
f K f k2 − 𝜌22𝜔

2)
𝜃 = 0, (5.36)

which are wave equations for two independently oscillating media. According
to Eqs. (5.12) and (5.13), we can substitute 𝜌11 = (1 − f )𝜌s − 𝜌12 = (1 − f )𝜌s and
𝜌22 = f 𝜌f − 𝜌12 = f 𝜌f , we can see that the waves are independent of the volume fraction:

(
Msk2 − 𝜌

s
𝜔

2)
𝜁 = 0 (5.37)

(
K f k2 − 𝜌

f
𝜔

2)
𝜃 = 0. (5.38)

Equations (5.28)–(5.31) represent the most general solution for compressional
waves in a nondissipative biphasic medium with poroelastic interactions. We will now
introduce some simplifications to reduce the number of independent parameters in
Eq. (5.28), since we are primarily interested in the effect of the coupling parameters H
and 𝜌12.

First, we assume equal densities of the fluid and the solid, 𝜌s = 𝜌
f . This is justified, since

in biological tissue (with the exception of the lungs, which are air-filled) both phases
consist mainly of water. Usually, 1050 kg/m3 is used as tissue density, which is suffi-
ciently close to the density of pure water (1000 kg/m3). For the same reason, we make
the assumption that the compression moduli of the two phases are identical to that of
water, K s = K f = 2.2 GPa. The shear modulus of tissue is typically several orders of mag-
nitude smaller than that (∼2 kPa for human liver and brain), so that we can neglect this
contribution and approximate Ms = K s + 4

3
𝜇

s ≈ K s
≡ K . We also set the volume frac-

tion arbitrarily to f = 0.5, assuming equal amounts of solid and fluid. Together with
the assumption of equal densities of the fluid and the solid, this implies 𝜌11 = 𝜌22 ≡ 𝜌

′.
Inserting these identities into Eq. (5.27), multiplying the parentheses, and ordering by
powers of Q yield

1
4

(

K2 − 1
4

H2
)

Q2 +
(1

2
𝜌12𝜔

2H − 𝜌
′
𝜔

2K
)

Q + (𝜌′2 − 𝜌
2
12)𝜔

4 = 0. (5.39)

We now have to distinguish two cases: K2
≠

1
4
H2 and K2 = 1

4
H2. In the first case, the

coefficient of Q2 is distinct from zero. The solution of Eq. (5.39) is

Q± =
4𝜔2(𝜌′ ± 𝜌12)

2K ± H
, (5.40)
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where the same sign has to be used in the nominator and denominator. Resubstituting
𝜌
′ = 1

2
𝜌 − 𝜌12 thus yields the solutions

Q+ = 2𝜔2
𝜌

2K + H
(5.41)

Q− =
4𝜔2( 1

2
𝜌 − 2𝜌12)

2K − H
. (5.42)

There are hence two different wavelengths 𝜆± = 2𝜋∕
√

Q±, and two opposite propaga-
tion directions (because of Q = k2 ⇒ k = ±

√
Q). The solution Q+ only depends on the

coupling modulus H , but not on the coupling density 𝜌12. Since 𝜌12 was introduced as
the coefficient of friction-like energy transfer related to the relative motion of the two
compartments, its absence in the expression for Q+ can only mean that this represents
the case with no relative motion between the compartments, that is, the scenario in
which fluid and solid oscillate in phase (us = uf ). Conversely, the second solution, Q−,
represents the opposite case in which the effect of relative motion is maximized, corre-
sponding to an opposed-phase motion of the compartments (us = −uf ).

For the special case K = ± 1
2
H , however, the coefficient of Q2 in Eq. (5.39) vanishes

and we have a linear equation in Q instead. Since both K and H are positive quantities,
we only need to consider the case K = 1

2
H . The solution of Eq. (5.39) then reads

Q =
𝜔

2(𝜌′ + 𝜌12)
K

= 1
2
𝜔

2
𝜌

K
, (5.43)

where 𝜌 is the bulk density of the fluid and the solid (which we assumed to be equal) and
we used 𝜌

′ = 1
2
𝜌 − 𝜌12. Therefore, in this special case, the poroelastic medium behaves

like a monophasic medium with density 𝜌, but with only half the wave velocity.
We illustrate the dependence of the wave speeds for the two wave modes on the

poroelastic parameters, H and 𝜌12, in Figure 5.3, for viscoelastic parameters that are
closer to biological tissue than the simplified model discussed above. We can clearly
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Figure 5.3 Plot of the pressure wave speed for the two modes in a poroelastic medium for the
following parameters: K = M = 2.2 GPa (assuming the compressibility of water),
𝜌

s = 𝜌
f = 1000 kg/m3, f = 0.9. (a) H variable, 𝜌12 = −500 kg/m3. (b) 𝜌12 variable, H = 1 GPa.
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see that in the absence of poroelastic interaction, two wave modes with speeds of
approximately 500 and 1500 m/s exist. The speed of the slower mode further decreases
as the poroelastic parameters increase, whereas the faster mode becomes even faster
with stronger interaction. The literature on poroelasticity in the context of MRE is
relatively sparse, and different researchers have used different poroelastic models.
The suitability of the model presented above for poroelastic MRE yet remains to
be evaluated. A study performed by Dai et al. [67] in the human lung has revealed
the existence of two distinct compression modes propagating at different velocities.
In the low-frequency regime, the wave speeds were found to be <10 and <30 m/s,
respectively. Wave propagation in a poroelastic medium composed of air and lung
tissue is thus much slower than that in pure air. The effect can be explained by the fact
that the presence of lung tissue has a much larger effect on the bulk density than on the
effective compression modulus, thus slowing the wave down.

5.1.2 Shear Waves in Poroelastic Media

In order to analyze rotational (shear) waves, we apply the curl operator to Eqs. (5.15)
and (5.16):

(1 − f )𝜌sc̈s + 𝜌12(c̈f − c̈s) = (1 − f ) ∇ × ∇ ⋅ 𝝈s (5.44)
f 𝜌f c̈f + 𝜌12(c̈s − c̈f) = f ⋅ ∇ × ∇𝜎f = 𝟎, (5.45)

with cf/s = ∇ × uf∕s. The right-hand side of the second equation vanishes, since the
gradient of a scalar function is always curl-free.8 We can therefore solve Eq. (5.45)
for c̈f :

c̈f = − c̈s

f 𝜌f

𝜌12
− 1

(5.46)

and substitute this result into Eq. (5.44):

c̈s
(

(1 − f )𝜌s − 𝜌12

(

1 +
𝜌12

f 𝜌f − 𝜌12

))

= (1 − f ) ∇ × ∇ ⋅ 𝝈s
. (5.47)

In order to simplify the right-hand side, we apply the curl operator to Eq. (5.6):

(1 − f )∇ × ∇ ⋅ 𝝈s = (1 − f ) ⋅
[(

K s + 1
3
𝜇

s
)

∇ ×∇(∇ • us) + fH∇ × ∇𝜃 + 𝜇
s∇ × Δus

]

= (1 − f ) 𝜇s∇ × Δus

= (1 − f )𝜇sΔcs
. (5.48)

In the first step, we exploited the fact that the curl of a gradient vanishes. The validity of
the second step follows from the vector calculus identity

Δ𝝃 = ∇(∇ • 𝝃) − ∇ × ∇ × 𝝃 (5.49)

for an arbitrary vector field 𝝃.

8 The vanishing fluid stress is a manifestation of the model assumption that the fluid does not support shear
stresses. This does not mean that the fluid cannot be subjected to shear deformation, but that the fluid will
not resist shear deformation.
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We therefore obtain the equation of motion for a shear wave in a poroelastic medium:
(

(1 − f )𝜌s − 𝜌12

(

1 +
𝜌12

f 𝜌f − 𝜌12

))

c̈s = (1 − f )𝜇sΔcs
. (5.50)

Note that instead of a coupled system of equations, as in the case of compressional
waves, we only obtain one (vector) equation for shear waves. This can be explained by
the fact that the fluid does not support shear deformation; it therefore merely follows
the displacement of the matrix, which allowed us to write down the explicit relationship
between c̈s and c̈f in Eq. (5.46).

Equation (5.50) is a wave equation for the porous matrix. By comparing with the
standard shear wave equation of a monophasic medium (cf. Eq. (4.141)),

𝜌c̈ = 𝜇 ⋅ Δc, (5.51)

we can see that the poroelastic medium behaves like an effective medium with shear
modulus

𝜇effective = (1 − f )𝜇s (5.52)

and effective density

𝜌effective =
(

(1 − f )𝜌s − 𝜌12

(

1 +
𝜌12

f 𝜌f − 𝜌12

))

. (5.53)

Obviously, the shear modulus of the effective medium is equal to the matrix shear modu-
lus weighted by the solid volume fraction. This modulus would be obtained by a (quasi-)
static indentation experiment. In the dynamic case, the mass to be accelerated by the act-
ing stresses is given by 𝜌effective and includes the fluid and solid masses along with their
kinetic coupling density 𝜌12. The fluid behaves as a “parasitic” mass, which has to be
accelerated by the matrix in order for the poroelastic medium to undergo deformation.
The propagation velocity of the shear wave is

vshear =
√

𝜇effective

𝜌effective
=

√
√
√
√
√

(1 − f )𝜇s
(

(1 − f )𝜌s − 𝜌12

(

1 + 𝜌12

f 𝜌f−𝜌12

)) . (5.54)

If we substitute 𝜌12 with the tortuosity, T , according to Eq. (5.11), and assume equal
densities of the two phases, 𝜌s ≈ 𝜌

f = 𝜌, we obtain

vshear =
√

𝜇s

𝜌
⋅

√
√
√
√

1 − f
1 − f

T

= vmatrix ⋅

√
√
√
√

1 − f
1 − f

T

≤ vmatrix. (5.55)

The effective-medium shear wave propagation velocity is therefore equal to the matrix
shear wave velocity weighted by the square-root term. This weighting factor is always
between 0 and 1, since, by definition, T ≥ 1. For f = 0 (a solid slab of the matrix mate-
rial), Eq. (5.55) reproduces the matrix shear wave velocity. For f = 1 (pure fluid without
matrix), the shear wave velocity becomes zero, in accordance with the model assump-
tion that the fluid does not support shear waves. The poroelastic shear wave is therefore
slower than the monophasic shear wave because of the parasitic mass of the fluid.
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5.2 Poroelastic Signal Equation

The magnetic resonance imaging (MRI) signal is a superposition of signals from all
hydrogen atoms within an excited volume, and a decomposition into partial signals from
the fluid and solid phase of a poroelastic model is intractable. The poroelastic equations
of motion, (5.19) and (5.20), hence cannot be solved directly for the poroelastic param-
eters, since the displacement fields uf and us cannot be separated. However, an analysis
of the signal equation will reveal that it is possible to garner information about local
expansion or compression for certain poroelastic scenarios.

If equal densities 𝜌s = 𝜌
f = 𝜌 and incompressibility are assumed for both the matrix

(s) and the fluid (f) phase of a poroelastic model, fluid displacement or influx does not
lead to a change of the bulk density, since one material is merely replaced with the other
material of the same density. The continuity equation

𝜕𝜌

𝜕t
+ ∇ • j = 0 (5.56)

with mass flux j therefore reduces to
𝜕𝜌

𝜕t
= 0 ⇒ ∇ • j = 0 (5.57)

because of the incompressibility constraint.
MRI does not detect bulk material densities, as it is only sensitive to the proton signal

from hydrogen atoms. In the biphasic poroelastic tissue model, each hydrogen atom
belongs either to the matrix or to the fluid compartment. Because water content differs
between interstitial water and the surrounding tissue matrix, the MRI-relevant partial
hydrogen densities 𝜌f

MRI and 𝜌
s
MRI are distinct. The continuity equation

𝜕

𝜕t
(
𝜌

f
MRI + 𝜌

s
MRI

)
+ ∇ •

(
jf
MRI + js

MRI
)
= 0 (5.58)

therefore cannot be simplified to the form of Eq. (5.57).
In this model, the total hydrogen density, 𝜌MRI = 𝜌

f
MRI + 𝜌

s
MRI, is not constant

with respect to time. Rather, it will change as fluid is squeezed out or drawn into the
matrix, changing the relative volumes of matrix and fluid in the overall material. The
motion-encoding mechanism deployed in MRE is only sensitive to motion, not to
hydrogen density, hence only the hydrogen fluxes js

MRI and jf
MRI are detectable. The

hydrogen signal from a voxel is measured as a superposition of all spins contained in
that voxel and no separation into contributions from the matrix and the fluid is possible.
Given this constraint, MRE quantifies the overall hydrogen flux jMRI = jf

MRI + js
MRI and

the continuity equation reads
𝜕

𝜕t
𝜌MRI + ∇ • jMRI = 0. (5.59)

This implies that finite hydrogen fluxes are observable if the two compartments possess
different hydrogen densities, such that 𝜕𝜌MRI

𝜕t
≠ 0. In that case, signals from inward and

outward mass fluxes – even though perfectly balanced in terms of mass density – will
not fully cancel out, resulting in a phase signal indicative of the motion of the compart-
ment with the higher hydrogen density. The divergence of the hydrogen flux is therefore
an indicator of local compression or dilatation, and the magnitude |∇ • jMRI| serves as a
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measure of local compressibility. In the case of time-harmonic particle oscillations with
trajectory u(r, t), the oscillating flux of signal-generating particles can be represented as

jMRI(r, t) = 𝜌MRI(r, t) ⋅ u(r, t). (5.60)

If one or both phases are compressible, Eq. (5.58) is still valid, but a change in the signal
densities will arise not only from a change in the volumetric composition but also from
actual compression or dilatation of the two phases.

The complex MRI signal from each compartment c at the time of the signal readout
can be parameterized as follows:

Sc(r) ∝ 𝜌c(r) ⋅ fc(r) ⋅ nH
c (r) ⋅ exp(i𝜔t) ⋅ exp

(

−TE
T2

)

⋅ exp(i𝜙0,c), (5.61)

where 𝜌c is the bulk density of that compartment, fc its volume fraction and nH
c the

fraction of signal-generating hydrogen atoms in that phase, TE is the echo time of the
MR sequence and T2 is the transverse signal decay constant of the compartment.9 𝜙0,c is
the phase offset induced by motion encoding and field inhomogeneities.10 The constant
hidden behind the proportionality sign is determined by the magnetic field strength
of the scanner, flip angle of the radiofrequency pulses, geometry of the transmit and
receive coils, and characteristics of the receiver electronics. We will henceforth consider
the echo time fixed and condense the signal equation into a more compact form:

Sc(r, t) = |Sc(r)| ⋅ exp(i𝜔t + 𝜙0,c). (5.62)

We replace the time dependence of Sc with the complex phase at the time of the
readout, 𝜙c = 𝜙0,c + 𝜔treadout, and drop the explicit dependence on the position for the
sake of brevity.

The signal from the voxel can be described as the superposition of the signals
Sc = |Sc| ⋅ exp(i𝜙c), where c ∈ {1, 2} iterates over the two compartments of the
poroelastic model. The compound signal at the time of the readout is therefore

S = |S| ⋅ exp(i𝜙) = S1 + S2 = |S1| ⋅ exp(i𝜙1) + |S2| ⋅ exp(i𝜙2). (5.63)

A trigonometric analysis of these vectors (Figure 5.4) yields

|S| =
√
|S1|

2 + |S2|
2 − 2|S1||S2| ⋅ cos(𝜙2 − 𝜙1) (5.64)

𝜙 = 𝜙1 + arcsin

(
|S2|

√
|S1|

2 + |S2|
2 − 2|S1||S2| ⋅ cos(𝜙2 − 𝜙1)

)

. (5.65)

If the composition of the medium inside a given volume element changes, through
either compression/dilatation or one compartment being partially replaced by the other,
this will affect the phase 𝜙 of the compound signal, which is the quantity of interest
in MRE. In the case of in-phase oscillation of the two compartments (requiring com-
pressible constituents), the change of the signal phase can be translated into a change
of the bulk density via Eqs. (5.59) and (5.60). For opposed-phase motion, both in the

9 If a gradient-echo sequence is used instead of a spin-echo sequence, the relevant time constant is T∗
2 .

10 The motion information can be separated from susceptibility artifacts by temporal Fourier transform or
some other form of temporal normalization.
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Figure 5.4 The detected MRE signal in a
biphasic poroelastic model. The
contributions S1 = |S1| ⋅ exp(i𝜙1) and
S2 = |S2| ⋅ exp(i𝜙2) from the two
compartments add to form the combined
signal S = |S| ⋅ exp(i𝜙).

compressible and incompressible cases, the influx of one compartment into a volume
element is balanced by the outflow of the other phase. The signal of the compound MR
signal is then representative of the difference of these two effects, and its sign is indica-
tive of the motion with the larger signal amplitude.
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6

MRE Hardware

6.1 MRI Systems

MRE is neither limited to a specific MRI system nor does it require high magnetic
field strengths. Since motion information in MRE is encoded in the phase of the com-
plex MR signal, signal-to-noise ratio (SNR) and contrast of the signal magnitude are
of importance for the provision of sufficient phase-to-noise ratio only. As in all other
phase contrast-based MRI techniques, a homogeneous magnetic field is favorable to
avoid phase wraps. Furthermore, the gradient system of the MR scanner should be capa-
ble of delivering balanced gradients with great fidelity to avoid spoiling the signal and
guarantee a linear relationship between displacement field and accumulated spin phase.
Much effort of vendors of clinical MRI systems has been devoted to reduce those arti-
facts making the implementation of fast and robust MRE sequences easier today than
in the early days of MRE. A review of the literature demonstrates that MRE can be
implemented on any type of MRI scanners at almost all field strengths across a wide
range of vibration frequencies, as long as the imaging sequence is synchronized to the
tissue vibration. In fact, the timing of an MRE sequence with respect to the induced
mechanical motion is a strong requirement for capturing waves at different phases of
their propagation through the tissue. In the simplest case, TTL (transistor–transistor
logic) or optical trigger pulses are sent from the scanner to the vibration generator to
initiate vibration. In more complex implementations, the duration of the trigger pulses
can be modulated to convey further information to the vibration generator, for example,
to switch the vibration frequency during a multifrequency measurement [68]. Finally,
possible interactions between actuators and MRI, leading to imaging artifacts, have to
be excluded. For this reason, nonmetallic drivers are mostly used for clinical examina-
tions (see Section 6.2). The power supply of those actuators is based on either pneumatic
vibrations requiring waveguide ducts or electrical signals requiring filters to suppress
electromagnetic interference (EMI). Observing these principal requirements enables
researches and physicians to run MRE as a robust method for basic research as well as
in clinical applications. A comprehensive list of experiments that have been conducted
in the fields of preclinical and clinical MRE is beyond the scope of this book. However,
Tables 6.1 and 6.2 give an overview on experiments performed on representative systems
including relevant parameters.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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6.2 Actuators

In this chapter, we will review actuator systems that have been used in clinical MRE.
In general, MRE actuators can be categorized by the vibration source for generating
oscillation and the transducer system for transmitting the shear waves into the target
tissue. We will first recapitulate generalized criteria for the design of actuators in MRE
and then review several systems proposed in the literature for clinical applications. This
chapter is not concerned with actuators designed for preclinical applications. Two pre-
clinical setups for MRE studies in the mouse brain are shown in Figure 14.3. For further
reading, we refer to [151].

6.2.1 Technical Requirements

Vibration sources and transducers in MRE should avoid any unwanted interaction with
the MRI fields. This specifically applies when imaging sequences with high demands
on the homogeneity of the B0 and B1 fields are used. Time-varying magnetic fields
emitted by the radiofrequency (RF) and gradient coils of the scanner can induce eddy
currents in electrically conductive parts of the transducers. Eddy currents can cause
image artifacts and heat the transducers. For these reasons, conductive materials
should be avoided in the transducer design. Furthermore, MRI systems are susceptible
to EMI between RF signals for imaging and any other unwanted RF signal of similar
frequency. EMI can arise from electrical equipment outside the scanner room and be
transferred into the MRI room through cables for the power supply or control of the
actuator. Thus, all cables needed for MRE inside the scanner room must be electrically
filtered to remove high-frequency components. The synchronization of actuator and
MRI scanner is described in Section 6.1. Related to synchronization is the need of
connecting the wave generator with the MRI control computer, which is preferably
performed outside the MRI room. Taken together, most MRE actuators in clinical
use have entirely nonmagnetic/nonmetallic transducers inside the MRI scanner and
electrical power supply and control units placed outside the MRI room. Connections
through the walls of the MRI room have to be either nonconductive (e.g., plastic tubes
for air or hydraulic fluid) or fitted with electronic filters to avoid EMI-related image
artifacts.

6.2.2 Practicality

In clinical MRE, typical excitation frequencies range from 20 to 100 Hz with excitation
amplitudes up to 1 mm at the body surface. Under these conditions, safety problems
due to large amplitudes and high excitation frequencies are unlikely [152]. A linear
dynamic response of actuators is favorable for multifrequency MRE in a wide range
of vibration frequencies. Sufficiently high wave amplitudes are required, which are
normally only achievable by an efficient transfer of wave energy onto the body surface
near the tissue of interest. Therefore, different applications require different transducer
geometries and adaptation of the transducer position. Setup of actuator and transducer
should be operator-friendly and easy to handle by physicians and radiographers in
a clinical examination. The attachment of transducers to the body surface should
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Table 6.3 Mechanical actuators proposed in the literature for clinical MRE.

Direct (d) Rigid (r) Pneumatic (p) Hydraulic (h) Invasive (i)

Lorentz coils (LC) 1©
Loudspeakers (LS) 2© 3© 4©
Piezoelectrical (PZ) 5© 6© 8©
Pressurized air (PA) 7©

Power sources for motion generation vary along columns, and transmission systems vary along rows.
The numbers refer to the rows of Table 6.4.

be well defined and reproducible in order to maintain high test–retest consistency.
Platform-independent geometries are favorable for cross-platform and multicenter
studies. Finally, yet importantly, all transducers in contact with the patient should not
impose onerous vibrations. Patient comfort in MRE is highly demanded for both ethical
reasons and to ensure cooperation between patient and operator.

6.2.3 Types of Mechanical Transducers

Four major principles of motion generation have been identified and described in
the literature of clinical MRE: Lorentz coils (LC) inside the magnetic field of the MR
scanner, modified loudspeakers (LS), piezoelectric elements (PZ), and pressurized air
(PA). According to the literature, transmission of vibrational energy into the tissue
under investigation can be classified into five principles: direct (d, i.e., no transmission,
the actuator is placed within or near the field of view), rigid rods (r), pneumatic (p),
hydraulic (h), and invasive (i). Table 6.3 lists mechanical transducers in MRE based on
combinations of four power sources and five transmission systems. Table 6.4 shows
example setups classified by the labels which correspond to the rows and columns of
Table 6.3. For example, the label LS-p encodes a setup based on pneumatic (p) tubes
connected to a loudspeaker (LS).
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Table 6.4 Example setups of actuators proposed in the literature for clinical MRE.

1© LC-d
(a) (b)

Lorentz
coil

Vibration
lever

Lorentz
coil

Bite
bar

Lorentz coil-based actuators with direct transmission of vibrations. (a) Setup for prostate MRE
providing transperineal excitation. (Image courtesy of Ramin Sahebjavaher and Tim Salcudean,
University of British Columbia, Vancouver, Canada.) The black double arrow indicates the motion
direction of the transducer. (b) Setup for brain MRE using a bite bar.
Principle: Lorentz force generated by alternating current in a coil which is placed inside the B0 field
near the target tissue.
App: Prostate [153], brain [154], muscle [155], breast [156], liver [157].
Pro: Low hardware requirements, cost efficient, strong at higher field strengths, arbitrary waveforms
possible, platform independent.
Con: Lorentz-coil perpendicular to B0 field, generation of heat, field distortions, electrical filtering of
the power supply necessary.

2© LS-r

(a) (b)

Loud-
speaker

Loud-
speaker Head cradle

(c)

Loudspeaker-based actuator with rigid transmission. (a) Vertical deflection, (b) horizontal deflection,
(c) head cradle for brain MRE. White double-headed arrows indicate the motion direction of the
transducer.
Principle: Vibration transferred from a modified loudspeaker to the body surface by a rigid rod.
App: Brain [74, 109], lung [85], heart [79], liver [89], muscle [47, 82], intervertebral disk [101], prostate
[158].
Pro: Transmission of arbitrary waveforms, flexible with different types of passive transducers, cost
efficient, platform independent.
Con: Loudspeaker consists of metallic and magnetic parts, high demand on operator skills, electrical
filtering of the power supply necessary.

(continued overleaf )
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Table 6.4 (Continued)

3© LS-p

(a) (b)

Air
outlet

Air
cushion

Modified loudspeakers

Air
cushion

Air
cushion

(c)

(d) (e)

Actuator system

Loudspeaker-based actuators with pneumatic transmission. (a,d) Actuator systems for the generation
of blast waves based on loudspeakers. (b,e) Setup for brain MRE. (c) Setup for liver MRE. (a–c)
Resoundant®, Mayo Clinic, Rochester, MN, USA (courtesy of Neil Roberts, University of Edinburgh,
Scotland, UK). (d,e) From [159] with permission.
Principle: Vibration transferred from a loudspeaker membrane to the body surface by pneumatic
tubes.
App: Brain [159, 160], lung [86], heart [161], aorta [162], liver [163], spleen [164], pancreas [165],
kidney [108], uterus [166], muscle [167].
Pro: Flexible with different types of passive transducers; no electrical signals inside the MRI room,
platform independent, FDA-approved device commercially available (Resoundant®), validated by a
large number of clinical studies.
Con: Pneumatic tube requires wall ducts, possible interference of multifrequency wave signals.
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Table 6.4 (Continued)

4© LS-h

Water
hose

(a) (b)

Adjustable
piston unit

Water
outlet

Electro-
magnetic exciter

Electromagnetic exciter (loudspeaker principle) with hydraulic transmission. (a) Hydraulic
mechanism. (b) Transducer head for transperineal excitation of the prostate. The white
double-headed arrow indicates the motion direction of the transducer. (Images courtesy of Ramin
Sahebjavaher and Tim Salcudean, University of British Columbia, Vancouver, Canada.)
Principle: Vibration transferred from a loudspeaker membrane to the body surface by hydraulic tubes.
App: Prostate [106].
Pro: No electrical signals inside the MRI room, platform independent.
Con: Limited to lower vibration frequencies.

5© PZ-d

Piezo
actuator

(a) (b)

Vibration
lever

Piezo
actuator

Bite
bar

Piezoelectric actuator with direct transmission. (a) Setup for brain MRE using a bite bar. (b) Setup for
MRE of the muscle. Black double-headed arrows indicate the motion direction of the transducer.
(Images courtesy of Mark Ladd, Deutsches Krebsforschungszentrum Heidelberg, Germany.)
Principle: Vibration generated by a piezoelectrical actuator in vicinity to the target tissue.
App: Brain [169], muscle [170].
Pro: Arbitrary positioning relative to the B0 field, arbitrary waveforms possible, wide range of
vibration frequencies applicable, platform independent.
Con: Metallic parts near the field of view, electrical filtering of the power supply necessary.

(continued overleaf )
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Table 6.4 (Continued)

6© PZ-r

(a) (b)

(c) (d)

Piezo
actuator

Piezo
actuator

Rubber
mat

Head
cradle

Piezoelectric actuator with rigid transmission. (a) Horizontal deflection of the vibration lever.
(b) Setup for brain MRE using a head cradle. (c) Vertical deflection of the vibration lever. (d) Setup for
liver MRE using a rubber mat. White double-headed arrows indicate the motion direction of the
transducer.
Principle: Vibration transferred from a piezoelectrical actuator to the body surface by a rigid rod.
App: Brain [108], liver [95], spleen [98], kidney [102], uterus [105], prostate [171].
Pro: Transmission of arbitrary waveforms, wide range of vibration frequencies applicable, flexible
with different types of passive transducers, operator friendly.
Con: Adaptation to different platforms necessary, filtering of the power supply necessary.
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Table 6.4 (Continued)

7© PA-p

(a)

Electromagnetic valves

Pressure
pads

Pneumatic
hose

(b) (c)

Pressurized air-based actuator with pneumatic transmission and electromagnetic valves. (a) Control
unit, electromagnetic valves, and pneumatic hoses. (b) Setup for abdominal MRE using three pressure
pads. (c) Setup for MRE of the brain with remote thorax-based actuation.
Principle: Pillow- or drum-type passive actuators are driven by pulsed pressurized air which is
controlled by electromagnetic valves.
App: Brain [172], liver [172], prostate [173].
Pro: Flexible with different types of passive transducers, operator friendly, cost efficient, platform
independent, high-power mechanical forces, operation from outside or inside of the MRI room
feasible.
Con: Single-frequency rectangular pulses, forerun of 1–2 s to reach a steady state.

(continued overleaf )
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Table 6.4 (Continued)

8© PZ-i
Pieze

actuator

Biopsy
needle

Piezoelectrical actuators with invasive transmission for interventional MRE. Both devices show a
comparable technical setup consisting of a biopsy needle directly connected to the actuator unit.
(Images courtesy of Nadège Corbin and Jonathan Vappou, University of Strasbourg, France.)
Principle: Invasive needle vibrated by a piezoelectrical actuator.
App: MRE-controlled MRI-guided thermal ablation [174].
Pro: Point source, directly at region of interest, transmission of arbitrary waveforms, wide range of
vibration frequencies applicable, platform independent.
Con: Invasive, high demand on the skills of the operators, metal parts near the field of view, filtering of
the power supply required.

App: application examples, Pro: advantages, Con: disadvantages. The number and label in the left
column refers to Table 6.3.
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MRE Protocols

The basic types of magnetic resonance (MR) sequences used for MRE have been
introduced in Section 3.4. Most MRE exams nowadays use a variant of FLASH
(Section 3.4.1) or echo-planar imaging (EPI) (Section 3.4.3, segmented or single-shot),
whereas other sequences, such as bSSFP (Section 3.4.2), were mainly used in the past.
We present an overview over typical MRE sequences in Table 7.1. This table is by no
means comprehensive, since in most occasions a basic sequence is tailored toward the
specific requirements of an investigation, leading to a plethora of organ-specific MRE
sequences. Discussing all of them is far beyond the scope of this book.

A protocol is a set of acquisition parameters that are used in conjunction with a
specific MRI sequence to perform an MR scan. Protocol parameters are optimized
toward a specific objective, such as maximizing contrast or minimizing acquisition
time. By using different protocols for different organs, the same basic MR sequence
can be used for multiple exams with widely differing demands on sequence timing.
In MRE, protocols have to account for the amount of data required for subsequent
parameter reconstruction (i.e., number of wave phases, field components, and drive
frequencies), the spatial resolution, echo time (which mainly determines the SNR),
and total acquisition time. Virtually every MRE study uses a different protocol that has
been optimized with respect to some study-specific criteria, so that it is impossible to
provide an exhaustive list of MRE protocols. Therefore, we will present three exemplary
protocols that show how protocols can be used to adapt a sequence to the requirements
of examining a specific organ, and refer to specialized literature for information on
specific protocols.

As one example of how a protocol is used to modify a sequence to accommodate
a particular set of demands, we present a detailed diagram of a FLASH-based MRE
sequence for MRE of the myocardium (heart muscle) in Figure 7.1. Because of the
rapid pumping motion of the heart, fast data acquisition and high temporal resolution
are necessary to track the change of myocardial stiffness over the cardiac cycle. In
order to fulfill this requirement without excessive electrocardiogram (ECG) triggering,
the sequence acquires 360 instances of the same k-space line in quick succession.
The process is repeated for every single k-space line. This contrasts most other MRE
sequences, which tend to acquire a full k-space representing one point in time, before
scanning the k-space corresponding another time point. Furthermore, the timing in
the case of the cardiac FLASH sequence is fully determined by the duration of the
FLASH kernel, leading to a TR of 5.18 ms. This duration determines virtually all other
timing parameters: The temporal resolution is equal to TR, the vibration period is set

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Table 7.1 The most common sequences used for MRE, and some of their appli-
cations in human subjects. Note that the last column only presents a tiny frac-
tion of all the investigations that have been performed and published thus
far. Further details on MRE studies in various organs are presented in Part IV.

Sequence type Published Studied organs (selection)

Gradient echo (GRE)/
FLASH

[178]
[179]

Brain [180]
Biceps brachii [181]
Leber [182]

Balanced SSFP [183]
[184]
[17]

Biceps brachii [17]
Liver [185]

Segmented EPI [39] Biceps brachii [39]
Singleshot EPI [186] Brain[186]

Liver [187]
Spiral EPI [22] Brain [22]
DENSEa) [189] Heart [189]

a) Displacement encoding with stimulated echoes [188] uses two monopolar MEG
lobes to encode motion. Between the two MEGs, transverse magnetization is
flipped back to the longitudinal axis to prevent T2 signal decay.

Cardiac cycle: 800–1000 ms

45 cycles ≈ 1.9 s → 1 k-space line at 360 time points

8 TRs per vibration period (41.4 ms)

45 vibration periods → 360 × in 1 breath-hold (1.9 s)

= MRE–FLASH readout (1 k-space line), TR = 5.18 ms

Breathing window ≈ 2 s

First k-space line
360 time steps

Second k-space line
360 time steps

48 repetitions,
each time with a different
phase-encode gradient,
to fill 48 lines in k-space
→ 360 images

Repeat with three orthogonal directions of the motion-encoding gradient
→ 3 × 360 = 1080 complete images.

F F F F F F F F F F F F F

F

F

Vibration
24.1 Hz

Tvib = 41.4 ms

ECG

Figure 7.1 Sequence diagram of the FLASH-based sequence used for cardiac MRE [177]. The symbol F
indicates the readout of a single k-space line with a motion-sensitized FLASH kernel, as shown in
Figure 3.8, but without the trigger and the delays preceding the RF pulse. Each line in k-space is
sampled at 360 time points, over approximately two cardiac cycles. The process is repeated for each of
the 48 k-space lines. Using GRAPPA with an acceleration factor of 2 allows for the reconstruction of 96
k-space lines. The measurement is performed thrice, for three different directions of the
motion-encoding gradient to sample all three Cartesian components of the displacement field.
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Total duration

6–8 min

1.5–2 min

14 560 ms

1820 ms

182 ms

3D acquisition

Wave
dynamics

Respiration

MEG axis

Multifrequency

20 ms
MEG

Vibration

EPI image
acquisition

...

90°

...

180°

Trigger (Δt1, ..., Δt8) 
Single image
acquisition

Acquisition of one slice with
one motion encoding direction
and one time step

≈15 s

Interleaved acquisition
of 10 slices (one time step each)

Three orthogonal encoding directions

Four frequencies

Slice-select Phase-encode Read-out

30 Hz

Δt1

Δt

Δt2 Δt3 Δt4 Δt5 Δt6 Δt7 Δt8

Explanation

Slice 1 Slice 3 Slice 5 Slice 7 Slice 9 Slice 2 Slice 4 Slice 6 Slice 8 Slice 10

40 Hz 50 Hz 60 Hz

One breath-hold period

Acquisition of eight time steps
for each slice (different delays
Δti between trigger and MEG)

Figure 7.2 MRE protocol of an EPI-based multifrequency exam of human liver. Each row represents a
concatenation of several instances of the process illustrated in the row above. Within one breath-hold
period of 15 s (“respiration”), the whole volume, consisting of 10 slices, is sampled eight times to
obtain eight different points of the oscillation cycle (“wave dynamics”). A total of 12 breath-hold
intervals is required to acquire three Cartesian components of the displacement field (“MEG axis”) and
four frequencies. Total acquisition time is 6–8 min, depending on the duration of the recovery phases
between breath-holds. (Hirsch 2014 [98]. Reproduced with permission of Wiley.)

to Tvib = 8 ⋅ TR = 41.4 ms (so that one vibration cycle is sampled with eight points),
and the duration of the breath-hold is also a multiple of TR. In most other sequences,
TR is decoupled from the vibration period, and synchrony is achieved via triggering
and delays embedded in the sequence.

In Figures 7.2 and 7.3, we present two sample protocols for MRE exams of the liver [98]
and lung [85], respectively. In both cases, MRE data acquisition has to be split into sev-
eral breath-hold intervals, since respiratory motion would cause artifacts. MRE of the
lung has to deal with the additional challenge that several signal averages are required
because of the inherently weak MR signal attainable from lung due to its low density.

Other examples of highly customized sequences or acquisition schemes are published
in [175] for MRE of the lung, and in [176] for the investigation of brain pulsation.
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Total duration 

9–12 min

3.5–5 min

1.5–2 min

24 s

6 s

980 ms

140 ms

3D acquisition

Wave
dynamics

SNR
improvement

Respiration

MEG axis

Study design

SNR
improvement

τ = 7 ms

MEG

Vibration

1/ f = 20 ms

EPI image
acquisition

...

Δ t

90°

...

180°

trigger (Δt1...Δt6)
Single image
acquisition

Acquisition of one slice with
one motion encoding direction
and one time step

24 s

Interleaved acquisition
of seven slices (one time step each)

Acquisition of six time steps
for each slice (different delays

ti between trigger and MEG)

Four repetitions for online averaging

One breath-hold period

Three repetitions for offline averaging

Three orthogonal encoding directions
(i.e., MEG played out on the 
axis indicated)

Two respiratory states

Slice-select Phase-encode Read-out

Expiration Inspiration

1tΔ 2tΔ 3tΔ 4tΔ 5tΔ 6tΔ

Slice 1 Slice 3 Slice 5 Slice 7 Slice 2 Slice 4 Slice 6

Comments

Δ

Figure 7.3 MRE protocol of an EPI-based exam of human lung at a single-vibration frequency of 50 Hz.
Within one breath-hold period of 24 s (“respiration”), the imaging volume, consisting of six slices, is
scanned 24 times to acquire six points of the oscillation cycle (“wave dynamics”) and four repetitions
for online signal averaging. This process is repeated thrice for offline averaging (thus yielding 12 signal
averages). The measurement is then repeated to acquire three Cartesian components of the
displacement field (“MEG axis”), and finally two different respiratory states are probed. The total
measurement time is 9–12 min (depending on the duration of the recovery phases between
breath-holds), split across 18 breath-hold intervals. The high number of signal averages is necessary
since the lung, due to its low density, yields a very weak MR signal with intrinsically low SNR. (Hirsch
2014 [85]. Reproduced with permission of Wiley.)
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8

Numerical Methods and Postprocessing

8.1 Noise and Denoising in MRE

This chapter was coauthored by Eric Barnhill from the Department of Radiology,
Charité – Universitätsmedizin Berlin, Berlin, Germany.

The treatment of noise is a central issue in MRE. Denoising increases SNR of
elastograms, expands the feature space resolution, and provides numerical stability for
wave inversion. However, denoising techniques poorly suited to the data will achieve
this stability by removing valuable information. Appropriately chosen denoising
techniques will retain the structures in the data that provide meaningful information,
so that this information informs the inverse problem result. Denoising in MRE must
therefore not only provide stable and reproducible results, but also deliver results that
relate convincingly to other available information and aid the goals of clinical diagnosis
or experimental physiology.

The signal processing definition of noise is unwanted signal [190]. This is a broader
definition than the colloquial use of the term, which refers to sensor noise. Sensor noise is
stochastic and is generally high frequency with a smooth distribution, such as Gaussian,
Poisson, or Rician noise. The impact of sensor noise on solutions of the inverse problem
in MRE will be discussed in Chapter 10.1.

8.1.1 Denoising: An Overview

In recent years, the field of denoising has progressed rapidly as it has fused signal
processing with statistics. Denoising is formulated as a statistical process, in which
the denoising method is a statistical estimator used to reconstruct an unknown signal,
corrupted by noise, with minimal risk (i.e., minimal expected loss) [191]. This can be
formulated as

y = f {𝝓;M}, (8.1)

where y ≡ y1…m is a set of noisy observations, 𝝓 ≡ 𝜙1…n are the unknown parameters of
the system, and M is an observational model linking y to 𝝓. We wish to find estimated
parameters �̂�1…n to minimize the risk parameter R(𝝓), where

R(𝝓) =
n∑

1
𝜈{�̂�;𝝓} (8.2)

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Noisy
observables

Prior knowledge

Observational
model

Estimator

TRANSFORM

Projection

Filter

Signal Loss Noise

INVERSE
TRANSFORM

Dictionary

Predictor 1 Predictor 2 Predictor n

Figure 8.1 Process of denoising. Prior knowledge is used to construct a dictionary of predictors,
known as an estimator. The noisy observables are then projected onto the estimator space to sparsify
the data. A filtering or thresholding operation suppresses noise while retaining signal, and the
noise-reduced signal is recovered through an inverse transform.

and 𝜈 is a loss function measuring the error (most commonly, sum of squares of the
residuals).

This estimation process has four steps, which we will present in both abstract mathe-
matical form and Fourier transform terminology, which is the most ubiquitous filtering
method. Figure 8.1 illustrates the general concept and Figure 8.5 visualizes the Fourier
transform-based process, which will be discussed in more detail later in this section.

1) Prior knowledge about the signal from the observational model is used to choose,
as an estimator, a dictionary of functions, Φ1…p that are well suited to the unknown
signal. For the Fourier transform approach, the dictionary consists of harmonic func-
tions.

2) Φ is used to transform the observations by the projection ⟨y,Φ⟩ → Fy,Φ. The goal
of this transform is to make the information in the image sparse: the sparser the
information, the lower the loss of the filtering operation and the lower the risk of
the estimator. In the Fourier case, this is achieved by applying a discrete Fourier
transform (DFT), most commonly as a fast Fourier transform (FFT).

3) Noise is separated from signal using a filtering operation F → F̂ . A filter is defined as a
process that suppresses some components of a signal but retains others. If the Fourier
transform is used, this step corresponds to multiplying the k-space representation of
the data with a function that amplifies or attenuates specific frequency bands.

4) Frequently, the noise-reduced parameters �̂� are then recovered through inverse
transform of the thresholded data ⟨F̂ ,Φ−1⟩ → �̂�. This corresponds to applying an
inverse DFT to the modified k-space.
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This framework will be illustrated through the use of three denoising approaches
found in the MRE literature: least-squares polynomial smoothing using a Savitsky–Golay
filter, k-space filtering using a band-pass filter, and multiresolution analysis (MRA),
a method of data decomposition applying the fast wavelet transform (FWT), using
complex dual-tree wavelets (CDTWs) with soft thresholding.

8.1.2 Least Squares and Polynomial Fitting

The ubiquitous technique of ordinary least squares (OLS) may be the most widely used
form of statistical estimation, and has been used for smoothing in MRE data as well
[192–194]. In a simple case common to statistics, a series of two-dimensional data
points are regressed to a single line to identify significant trends. In OLS more broadly,
the unknown signal is assumed using prior knowledge to be a linear, low-rank polyno-
mial, and Φ is a dictionary of low-rank polynomials. The data are transformed by linear
projection onto the polynomial space, with �̂� determined to be the linear combination
of chosen polynomial functions yielding the smallest loss 𝜈, with 𝜈 the L2 norm.

To denoise data, polynomial fitting is done locally within a sliding window, modeling
each window of m points in the data as a polynomial of degree q. This case is shown
in Figure 8.2. Such least-squares smoothing gained widespread use after Savitsky and
Golay [195] identified that the procedure could be performed using a convolution or
weighted sum, about which more in the next section, and this approach is known as
a Savitsky–Golay filter. A particular strength of this filter is that images are smoothed
while maintaining peak values, in contrast to, for example, a moving average, which
reduces the values at peaks. (However, a moving average is, technically, a Savitsky–Golay

Signal

Retention of 
zeroth order
coefficients

Windowed
least-squares

projection

MRE complex
wave field

Loss

Fit to third-order
polynomial, window 9px

Polynomial basis vectors

Noise

Figure 8.2 Schematic of denoising applied to Savitsky–Golay filtering. Prior knowledge models the
data as a low-rank polynomial across a window. In this case, the data are modeled as third-order over a
9 × 9 window. This yields a dictionary of ten 9 × 9 basis vectors (DC not shown). Each sliding window is
projected onto the polynomial basis. The data are then smoothed by retaining the zeroth-order
coefficient at the center.
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filter of order 1, and therefore also well described within the framework of least-squares
estimators.) One way to explain this is to note that the filter is zero phase and flat in the
passband, preserving lower-frequency features exactly [196]. This can be seen in the
filter’s frequency response, about which more information is given below.

8.1.3 Frequency Domain (k-Space) Filtering

The most common form of denoising, and indeed signal manipulation in general, comes
from filtering in the frequency domain, with the 2D form known in MRI as k-space
(see Section 2.1). While the reasons for this are many, here it is most useful to focus
on the relationship of the Fourier transform to linear time-invariant (LTI) systems.
Indeed, the term “filter” is often used in an offhand way to refer to LTI systems. The
“time” portion of the LTI comes from audio-processing and, in the context of images
and k-space, the system might be more appropriately called linear shift invariant. An
LTI system produces as output a one-to-one, linear map (in other words, the transfor-
mation consists entirely of additions and multiplications by scalar) and is implemented
identically at all positions in the input (hence the term shift invariant). An LTI mapping
can always be expressed as a constant-coefficient difference equation (CCDE) [197]:

N−1∑

i=0
aiy[n − i] =

M−1∑

j=0
bjx[n − j], (8.3)

for input signal x, output signal y, and M and N input (a) and output (b) coefficients
that are combined to produce y. If the left-hand side only consists of a0, the system is
known as a finite impulse response (FIR) filter and the response at any point can be
completely characterized by a finite set of coefficients. If there are more a terms, then
the filter is recursive to some degree, dependent on all previous coefficients, and is
known as infinite impulse response (IIR).

An FIR filter, then, replaces each single data point with a position-independent
weighted average over a neighborhood of multiple data points. As a result of this, FIR
filters can be completely characterized by their response to a single unit spike (or delta
function) in the data. This response is known as the impulse response. An FIR filter
can be implemented by passing the impulse response function, known as a kernel,
over every position in the image, replacing each pixel with a weighted average of its
neighbors as specified by the impulse response. This is known mathematically as a
convolution, although full treatment of convolution is beyond the scope of this book.

Among the many strengths of FIR filters are that such filters can be implemented
algorithmically, the computation is linear to the input, the response is stable for any
finite input, and the phase of the response is linear, which means that features can be
expected to be preserved.

Some common FIR filtering operations in MRI and MRE are discussed below.

8.1.3.1 Averaging
In the simplest case, a smoothing filter applied to a one-dimensional noisy signal
replaces each data point with the average over the point and its nearest left- and
right-hand-side neighbors. One rationale behind this concept is that the signal at
adjacent data points is usually correlated, whereas the noise is not, so that taking the
average will emphasize the signal while reducing noise.
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Averaging models the measured signal, Si, as the sum of a coherent signal si and a
noise contribution ni:

Si = si + ni, (8.4)

where the index i enumerates the acquired data points. It is further assumed that noise
is symmetrically distributed around zero, so that its mean over a large number of data
points vanishes:

⟨ni⟩i = 0. (8.5)

If sampling is dense enough, the true signal does not change much between adjacent
data points:

si−1 ≈ si ≈ si+1. (8.6)

We can therefore approximate Si with the average over the three points i − 1, i, and i + 1:

S̆i ≡
1
3
(Si−1 + Si + Si+1) =

1
3
(si−1 + si + si+1) +

1
3
(ni−1 + ni + ni+1)

≈ 1
3
⋅ 3si +

1
3
(ni−1 + ni + ni+1)

= si +
1
3
(ni−1 + ni + ni+1). (8.7)

Because of Eq. (8.5), the sum of three independent noise samples is probably smaller
than each sample separately.1 If the variation of the true signal between adjacent sample
points is smaller than the average variation of noise, S̆i is a better approximation to si
than Si alone.

More generally, we can express the smoothing of a discrete signal S = [Si] (represented
as a row vector) as a convolution with a filter kernel. In the above example, the filter
kernel is

K =
[1

3
,

1
3
,

1
3

]

. (8.8)

In order to express a higher-dimensional convolution conveniently, stencil notation is
used for the kernel. For example, the stencil notation for a 3 × 3 moving average window
would be:

1
9

⎡
⎢
⎢
⎣

1 1 1
1 1 1
1 1 1

⎤
⎥
⎥
⎦

. (8.9)

In this case, the data point being convolved lies in the center of the stencil, and is being
averaged with all the values around it, which are given equal weight. In order not to
create signal gain, the sum of all elements of the kernel has to be equal to one:

p∑

j=−p
Ki

!
= 1. (8.10)

1 The correctness of this statement actually depends on the cumulative distribution function of noise.
In some cases, averaging over more than three data points is necessary to effectively decrease the noise
amplitude.
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Figure 8.3 Stencil and surface plot for 5 × 5 Gaussian kernel with 𝜎 = 1.3.

Filters where all elements are equal, such as Eq. (8.9), are referred to as boxcar filters, due
to the similarity of their graphical representation with a railroad boxcar. However, for
many applications, other filter shapes exhibit more desirable properties than a boxcar
filter. For example, Gaussian-type filter kernels are ubiquitous in signal processing, with
a shape corresponding to a discrete sampling of the Gaussian function

g(x) = 1
√

2𝜋𝜎
⋅ e

(

− x2

2𝜎2

)

. (8.11)

A 2D Gaussian kernel, assuming a 5 × 5 neighborhood and a standard deviation of
1.3, is specified by the stencil and surface plot shown in Figure 8.3.

It can be seen in this case that the center is weighted more than the periphery and that
values are exponentially decreasing with distance as specified in Eq. (8.11). However,
time domain or image domain stencils are a poor representation to analyze the strengths
and weaknesses of FIR filters. This is why they are generally analyzed in the Fourier
domain.

8.1.3.2 LTI Filters in the Fourier Domain
The Fourier transform diagonalizes LTI systems; that is to say, it transforms them into
their sparsest basis, because the Fourier basis vectors are eigenvectors of circulant matri-
ces, and LTI operators are always circulant. Resulting from this, convolution in the time
domain, due to the properties of Fourier integrals, becomes multiplication in the Fourier
domain, that is [191]

f1(t) ⋆ f2(t) = ℱ −1 [ f̃1(𝜔) ⋅ f̃2(𝜔)
]

, (8.12)

where ⋆ is the convolution operator and f̃ is the Fourier transform of f . With an LTI
system, Fourier transformation turns an integral into a multiplication, or calculus into
algebra.

LTI systems are analyzed in the Fourier domain by evaluation of their frequency
response (as opposed to their impulse response in the time domain). The frequency
response is generated via a discrete time Fourier transform (DTFT) analysis, which
is beyond the scope of this section; the reader is referred to [197] for a detailed
introduction. However, even without detailed understanding of the theory, frequency
response plots are intuitive and useful for filter analysis.

A frequency response plot ranges from 0 to 𝜋, with 0 representing a steady constant
or DC value, and 𝜋 being the highest-frequency signal possible within the constraints of
the Nyquist sampling theorem, for example, a vector alternating zeros and ones. Both
magnitude and phase are plotted, with the former in decibels (dB) and the latter in
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Figure 8.4 Frequency response plots of three common filters: (a) Five-tap moving average filter;
(b) Gaussian smoothing kernel, width 5, 𝜎 = 1.3; (c) Fourth-order Butterworth filter, with normalized
frequency cutoff of 0.6.

radians (rad). Such a plot shows the impact of any LTI on the frequency content of the
image. Three relevant frequency response plots are shown in Figure 8.4 and discussed
below:
• Plot (a) is the frequency response of a five-sample moving average. While averaging is

straightforward in the time domain, the frequency response plot shows complications
that can cause artifact. First, the “in-spectrum loss,” or attenuation of frequencies
in the passband, is considerable, suggesting that a moving-average filter will remove
information even within the frequencies of interest. Second, the “side lobes” found in
the higher frequencies of the plot show that certain higher frequencies will be poorly
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suppressed, resulting in, for example, ringing effects. However, the phase is linear in
the passband (from 0 to the first minimum in the magnitude plot), meaning there will
be no distortion from this filter.

• Plot (b) is the Gaussian filter of the same width, with 𝜎 of 1.3. The frequency response
of the Gaussian filter is considerably better behaved. There are no side lobes, such
that the higher the frequency, the more it is suppressed, and this will eliminate
ringing. The phase is linear, ensuring no distortion. However, the in-spectrum loss
is substantial, making the Gaussian a poor choice to isolate frequency content
of interest; the Gaussian affects all frequencies of the image and is thus not well
“targeted.”

• Plot (c) is a fourth-order Butterworth low-pass filter. The Butterworth filter, which
will be discussed more below, is IIR, with both a and b terms in its CCDE formulation.
The Butterworth shows superior performance in the frequency response magnitude:
the passband is flat, which means that there is near-complete preservation of all
information at the frequencies of interest, the transition region is steeper, and the
higher frequencies are better suppressed. However, the phase is not linear, which
means that there will be distortion of features in the image. An example of such
distortion is shown in the later wavelet–Fourier comparison in Figure 8.7.

8.1.3.3 Band-Pass Filtering
Band-pass filtering is a frequency response-oriented approach to filtering, in which
optimal filters are chosen to “pass” or “stop” various frequency content. Desired filters
generally preserve the frequencies of interest as much as possible (i.e., have the flattest
passband), minimize the transition band (where frequencies are semi-suppressed),
minimize the “error” (passed frequencies in the stopband and vice versa), and/or have
linear phase response. Filter schemas containing all of these properties are called “ideal”
filters, but practical implementations require weighting some of these concerns over
others. In some cases, particularly IIR filter design, the filter does not have a convenient
algorithmic representation in the time domain (or image domain) and image filtering
is designed in k-space. The Butterworth filter, which has a maximally flat passband for
a given order, is one such filter.

k-Space filtering is fit into the initial denoising schematic in Figure 8.5, using the
Butterworth band-pass filter as the example filtering operation. In this case, the prior
knowledge is that only certain spatial frequencies are of interest, which we wish to
isolate. The Fourier basis is then used as the dictionary, and the data are projected onto
it by Fourier transform. Here a 2D fourth-order Butterworth band-pass filter is then
applied to the data using an element-wise multiplication. (All k-space images in the
schematic are log-magnitude). The resultant image is then inverse Fourier-transformed,
resulting in the smoothed “signal” image at the left-hand side and the “noise” image,
which can be seen to contain both very high- and very low-frequency components, at
the right-hand side.

8.1.4 Wavelets and Multi-Resolution Analysis (MRA)

For smooth functions, a dictionary of Fourier basis vectors will be an optimal minimax
estimator for a given dictionary size [191, 198]. However, not only are images rarely
smooth, but the features of greatest interest in images are often edges, textures, and
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Figure 8.5 Denoising in k-space. The dictionary used is the Fourier basis vectors in 2D; real
components of a small sample are shown. The filtering operation is a Butterworth filter. This results in
smoothed data with very small and very large frequencies removed.

other sharp transitions that are a poor fit for a Fourier basis. Lowering the estimator
risk requires sparser dictionaries. This is of importance for MRE, as MRE images
contain piecewise-smooth waves with discontinuities at boundaries and interfaces. As
illustrated in Figure 8.7 below, images with edges or discontinuities are not sparse in
the Fourier domain and hence frequency-based denoising is a poor fit for these images.
As many images contain discontinuities as features of interest, wavelets provide an
appealing alternative.

A simple explanation of wavelets contains two parts. (1) A wavelet is a wavefunction
with finite local support. That is, it generally appears as a single isolated wave. Some
examples are shown in Figure 8.6. (2) In wavelet transforms, the idea of frequency is
replaced with the more general idea of scale. A wavelet is dilated to varying scales in
octave relation (2j with j an integer), then translated like any other sliding window oper-
ator such as a moving average. A wavelet dictionary can thus be defined as [191, 199]:

D =

{

𝜓j,n(t) =
1

√
2 j

𝜓

(
t − 2 jn

2 j

)}

, (8.13)

where n represents the translation of the window relative to position t and j is the
scaling coefficient that dilates or expands the wavelet to a given scale.

To complete the MRA, a wavelet is complemented by a scaling function𝜙 at the lowest
level chosen for the analysis. The relationship between 𝜙 and 𝜓 is beyond the scope
of this chapter, but can be found in any foundational textbook on signal processing,



174 8 Numerical Methods and Postprocessing

1

0.8

0.6

0.4

0.2

0

50 100

Ricker Morlet Daubechies 4

150 200 250 50 100 150 200 250 20 40 60 80 100 120

–0.2

–0.4

1

0.8

0.6

0.4

0.2

0

–0.6

–0.8

–1

–0.2

1

0.5

0

–0.5

–1

1.5

–0.4

Figure 8.6 Examples of three commonly used wavelet functions. As the name suggests, they have the
appearance of isolated waves. Wavelets are a sparser basis than the frequency domain for piecewise
smooth images with discontinuities.

for example, [199] or [191]. For the purposes of the present discussion, the MRA takes
the form of high-pass coefficients at multiple scales, and a single low-pass image at the
coarsest scale, which together critically sample the image in the wavelet basis and enable
its perfect reconstruction.

The advantages of wavelet bases for piecewise continuous images are shown in
Figure 8.7. In Figure 8.7a, a single-frequency wave is plotted with a single discontinuity
and 5% noise; Figure 8.7b shows the Fourier transform of this wave. Without the
discontinuity, the wave would be a smooth function and would plot sparsely in the
Fourier domain. However, the discontinuity causes ringing throughout the image, and
particularly at neighboring low frequencies. As the ringing approaches the noise level,
or as the artifact reaches the stopband, the information is lost. The net can be seen in
Figure 8.7g. The sharp detail of the interface is lost, and its placement is distorted.

Three levels of the MRA are shown in Figure 8.7c–e and the MRA scaling function
result is shown in Figure 8.7f. The MRA handles the discontinuity in a sparse and
spatially resolved manner, as shown by the spike in magnitude at the spatial location of
the interface at each scale. Further, the magnitude of the discontinuity is easy to separate
from the surrounding noise in a filtering operation. While discussion of thresholding
methods is also beyond the scope of this chapter, it can be seen in this illustration that
a simple “hard threshold,” setting to zero all wavelet coefficients below some threshold,
separates discontinuity from noise without error. This result is shown in Figure 8.7h.
The Butterworth approach, on the other hand, smooths and shifts the discontinuity as
seen in Figure 8.7g. Figure 8.8 outlines the denoising schematic in wavelet space.

8.1.5 FFT versus MRA in vivo

The impact of the sparser denoising approach is also visible in vivo, as illustrated in
Figures 8.8 and 8.9. Figure 8.9 compares the noised image with results under several
denoising techniques. A plot across a heterogeneous portion of the image allows for
inspection of details. The blue line shows the noised original. The yellow line shows
denoising with a divergence-free wavelet [outside the scope of this chapter/see chapter
on artifact]. This method removes a small amount of low-frequency spectrum, which is
most visible in the brain image, where the yellow line both rises above and falls below
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Figure 8.7 Comparison of Fourier and complex dual-tree wavelet transforms of a (a) single-frequency
wave with a discontinuity and 5% noise. The discontinuity does not have a sparse (b) Fourier
representation, causing ringing throughout the image. However, the MRA handles both smooth and
discontinuous elements sparsely. The Fourier domain denoise, with a fourth-order Butterworth filter,
rounds and shifts the feature (g), while the wavelet domain hard thresholding maintains feature
sharpness and location while removing noise (h). The lines (c) through (f ) represent the wavelet
decomposition from finest (c) to coarsest. It is obvious that the wavelet scaling function captures the
global shape of the signal, whereas the finer resolutions are necessary to deal with the localized
discontinuity.

the blue line. However, the image is not yet sufficiently denoised for MRE inversion.
Finally, the image is denoised with CDTWs. The result is smooth enough for wave
inversion, with much more detail in the curvature of the wave.

In both ideal and in vivo data, wavelet thresholding can preserve informational
structures lost in k-space filtering that may be of clinical interest.

8.1.6 Sparser Approximations and Performance Times

The top-performing denoising methods often go beyond choice of a priori dictionaries.
They may use machine-learning techniques, patch-based or multiscale sampling, or
collaborative filtering between multiple nonlinear methods. However, many of these
methods are computationally intensive, making their integration into radiological
workflow a challenge. When performance is taken into account, wavelets are still
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Figure 8.8 Denoising in wavelet space. The dictionary used is one of 2D wavelets. They are applied
recursively using the fast wavelet transform (FWT) to generate a multi-resolution analysis (MRA). The
wavelet coefficients are then thresholded, and the image is recovered using an inverse FWT (IFWT).

competitive for many applications. For example, CDTWs have been shown to be
“optimal” [200] for waves with discontinuities, suggesting they are both fast and well
suited to MRE phase data. Similarly, the well-understood relationships between image
and k-space, as well the linearity of the operations, among other qualities, cause k-space
filtering to still be the most widespread and useful method of image manipulation.

8.2 Directional Filters

In Chapter 10, we will discuss different methods for the calculation of viscoelastic
moduli from MRE wave images. Waves propagating in different directions can
confound reconstruction of viscoelastic parameters, unless superposition is included
in the underlying model. While methods based on the full wave equation are immune
to these effects (as long as all waves have the same wavelength), those based on the
evaluation of the wave vector k are easily biased. As a remedy, directional filters can
be applied before inversion to separate waves with different propagation directions.
Instead of suppressing noise, the k-space filters in this section will be used to pick waves
that propagate in a specific direction from a complicated superposition of waves.

In order to understand directional filters, it is important to keep in mind that every
point k in k-space can be understood as representing a plane wave that propagates in
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Figure 8.9 Comparative denoising results on central slice of muscle and brain acquisitions. Images
(a) and (e) are phase-unwrapped, but not denoised (blue lines in plot); (b) and (f ) show denoising
results for a low-pass filter cutoff of 10 mm (green lines in plot); (c) and (g) show the impact of the
divergence-free wavelet denoising, which removes some of the low-frequency spectrum (yellow
lines); (d) and (h) show the additional impact of the CDT wavelet denoising (red line). In order to study
the denoising results, a vertical plot line was drawn across heterogeneous tissue features in each
image. Comparison of the dark red and dark green lines shows the increase in detail from
wavelet-basis multiscale filtering (red) as opposed to low-pass filtering (green), even as both produce
data sufficiently smoothed for wave inversion.
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the direction of k with wave number |k|. Therefore, if one is only interested in the waves
propagating approximately in one given direction, one can cut out a wedge in k-space
that is centered about the desired propagation direction. By nulling all k-space points
outside the wedge, inverse Fourier transform back into image space yields the wave field
resulting only from those waves whose wave vectors lie within the wedge. However, pre-
scribing a hard cutoff in k-space will introduce artifacts in the filtered wave image, such
as Gibbs ringing. It is therefore common to use instead filters with a smooth transition
between the interior and the exterior of the wedge. The filter is then multiplied with the
k-space representation of the wave image:

ufiltered = ℱ −1[𝜉(𝜗) ⋅ ℱ [u]], (8.14)

where 𝜗 is the polar angle in two-dimensional k-space. Equation (8.14) can be extended
to 3D by introducing a second angular variable. As an example for 2D directional filters,
we define a bank of N = 12 directional in-plane filters according to

𝜉n(𝜗) =
1

√
2𝜋𝜎

𝜗

⋅ exp

(

−1
2

(
𝜗 − 𝜗n

𝜎
𝜗

)2
)

, n = 1,…,N (8.15)

with 𝜗n = 2𝜋 ⋅
n − 1

N
. (8.16)

The application of this filter bank to a wave field consisting of superposed plane waves
is depicted in Figure 8.10. Further, this decomposition fits into our denoising schematic
as another form of k-space filtering, and this is presented in Figure 8.11. In the case of
directional filtering, the decomposition is lossless overall, so the result is not divided
into “signal” and “noise” as in the other schematics. The noise removed is rather artifact
due to inversion methodology assumptions, to be discussed further in Section 10.6.

Directional filters can be combined with wave number-based filters, such as low-pass
or band-pass filters, by multiplying the directional filter kernel with a function that
depends only on the radial k-space variable.

Original waves

Im
(u

)
R

e(
u)

Directional filter kernels Unidirectional plane waves

Figure 8.10 Illustration of the effect of directional filters. Real and imaginary parts of a superposition
of waves propagating in different directions are shown in the first column. The block in the center
depicts 12 directional filters corresponding to Eq. (8.15) with N = 12. The block on the right-hand side
represents the real part of the corresponding directionally filtered waves (shown in the same order as
the filter kernels).
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Figure 8.11 Directional filtering. As spatial frequencies are targeted, prior knowledge is used to
project the complex wave field onto the Fourier basis. Here, the filtering process is redundant, using a
bank of filters to generate a bank of directionally decomposed waves. The waves can then be inverted
using inversion assumptions that do not account for superposition.

8.3 Numerical Derivatives

This chapter was coauthored by Eric Barnhill from the Department of Radiology, Charité
–Universitätsmedizin Berlin, Berlin, Germany.

The wave equations used throughout this book have been based on the infinitesimal
formulation of the differential operator:

f ′(x) ≡
d f
d x

= lim
h→0

f (x + h) − f (x − h)
2 h

. (8.17)

However, real-world measurement processes are inherently limited to discrete sampling
with a finite number of samples, N , and finite spacing (both temporally and spatially),
𝛿t and 𝛿x, respectively. In that case, we have to reformulate the quantity of interest in
terms of a discrete variable2:

f (x), x ∈ ℝ −−−→ f (xi), i ∈ {1, 2,…,N} and xi+1 − xi = 𝛿x. (8.18)

2 We will focus here on spatial discretization, since this aspect is more relevant for the chapters to follow,
but the same arguments and techniques apply to temporal sampling.
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We cannot apply Eq. (8.17) for the calculation of discrete derivatives, since, for h < 𝛿x,
we do not know the value of f (x ± h). However, we can use the best possible approxima-
tion by choosing h = 𝛿x. In that case, we obtain

f ′(s)(xi) =
f (xi + 𝛿x) − f (xi − 𝛿x)

2𝛿x
=

f (xi+1) − f (xi−1)
2𝛿x

. (8.19)

The superscript (s) references the fact that f ′(s) is symmetric, since both the left- and
right-hand-side neighbors of xi contribute equally to the derivative. This formula is also
known as the midpoint rule. There are also asymmetric formulations of the discrete
derivative:

f ′(b)(xi) =
f (xi) − f (xi−1)

𝛿x
(8.20)

f ′(f)(xi) =
f (xi+1) − f (xi)

𝛿x
, (8.21)

where superscripts (b) and (f) signify “backward” and “forward,” respectively. In both
cases, only one of the neighbors contributes to the derivative. The symmetric difference
can also be interpreted as the arithmetic mean of forward and backward differences:
f ′(s) = 1

2
( f ′(b)(xi) + f ′(f)(xi)).

It is apparent that in all three formulations the discrete derivative is just a weighted
sum of the function values in the vicinity of xi. We can therefore represent the calculation
formula as

f ′(xi) =
∑

q=−1,0,1
wq ⋅ f (xi+q). (8.22)

Using the discrete convolution introduced in Section 8.1.3.2 for a compact represen-
tation of Eq. (8.22), we can assemble the three weights in a vector w = [w−1,w0,w1].
The kernels for the three types of discrete differences then read

w =

⎧
⎪
⎪
⎨
⎪
⎪
⎩

1
𝛿x

[−1, 1, 0] for f ′(b) (8.23a)

1
𝛿x

[0,−1, 1] for f ′(f) (8.23b)

1
2 𝛿x

[−1, 0, 1] for f ′(s) (8.23c)

If we write the function values into a row vector, f = [f1, f2,…, fN ] = [f (x1), f (x2),…,

f (xN )], we can represent the derivative as

f ′ = w̌ ⋆ f , (8.24)

where w̌ denotes w in reverse order. When applying the operator w̌, care has to be taken
when the values at the boundaries are to be calculated. For calculating the derivative
at x1 and xN , at least one of the values x0 and xN+1 is required, which do not exist. In
order to obtain the derivative on the boundary nonetheless, boundary conditions are
assumed. For example, the data f can be zero-padded on both sides, implying that the
function vanishes everywhere outside the domain [x1, xN ], which is an example for a
Dirichlet boundary condition (see Section 4.9.6). Other boundary conditions can be
used to enforce a vanishing derivative on the boundary (a von Neumann-type boundary
condition), or by making x1 and xN neighbors (periodic boundary condition). The
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appropriate boundary condition is determined by the underlying physical description
of the system under investigation.

The second spatial derivative, Δf , can be calculated by repeated application of the first
discrete derivative operator. However, doing this results in suboptimal noise robustness
and a kernel with width 5 rather than 3. Alternatively, we can inspect the Taylor series
expansion of f at xi:

f (xi + 𝛿x) = f (xi+1) ≈ f (xi) + f ′(xi) ⋅ 𝛿x + 1
2

f ′′(xi)𝛿x2. (8.25)

Next, we solve the above equation for f ′′(xi):

f ′′(xi) =
2
𝛿x2 ( f (xi+1) − f (xi) − f ′(xi) ⋅ 𝛿x) (8.26)

= 1
𝛿x2 ( f (xi−1) − 2f (xi) + f (xi+1)). (8.27)

In the second step we used Eq. (8.19). We can now substitute the function values with
the corresponding kernels, which would have the same effect when applied to f :

f ′′ = 1
𝛿x2 [1,−2, 1] ⋆ f . (8.28)

In this way, we have found the representation Δ = 1
𝛿x2 [1,−2, 1] for the kernel of the dis-

crete one-dimensional Laplacian.
It must be borne in mind that there is no unique representation of any of these discrete

derivative operators. Various convolution kernels can be designed as approximations to
Eq. (8.17) with specific characteristics. One way to compare the performance of differ-
ent kernels is to look at their k-space representation, that is, their Fourier-transformed
counterpart. As mentioned above, one very useful property of the Fourier transform is
that it translates derivatives to algebraic expressions:

ℱ [f ′(x)](k) = −ikℱ [f (x)](k) (8.29)
ℱ [f ′′(x)](k) = −k2ℱ [f (x)](k). (8.30)

Combining this with the Fourier convolution theorem (Eq. (8.12)), which states that
the convolution of two images in image space is equivalent to multiplying their Fourier
transforms in k-space, we can conclude that the ideal filter ̃̌w would have the shape −ik
for the first derivative and −k2 for the second derivative in k-space. In Figure 8.13, we
present several commonly used derivative kernels and their k-space representations.
Obviously, all of them deviate significantly from the ideal shape, especially for higher
spatial frequencies. Since noise is typically located primarily in the high-frequency
regions of k-space, this can actually be an advantage over the ideal derivative oper-
ator, which tends to overweight noise-containing regions. On the other hand, real
information in the high-frequency range is also suppressed by these kernels.

An alternative strategy to calculating derivatives would be to multiply f̃ by −ik or −k2

and inverse Fourier transform the result, which would – in theory – yield the best pos-
sible approximation to the true derivative. However, in image space, the representations
of −ik and −k2 have infinite support, resulting in infinitely wide convolution kernels,
rather than the compact three-element kernels of Eqs. (8.23b) and (8.23c) and Eq. (8.28).
Since any real-world data vector f has finite length, application of an infinitely wide
kernel would result in truncation of the kernel, which in turn could introduce severe
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Figure 8.12 Illustration of the relationship between the step width Δx and the frequency–space
characteristics of difference schemes approximating first- and second-order derivatives. In the k-space
representation, the ideal characteristic is shown as the dashed straight line k (first derivative) and the
dashed parabola k2 (second derivative) for a very small step size Δx = 0.001. Apparently, the
approximation becomes better as Δx decreases. Both schemes ultimately fail when |k ⋅ Δx| ≥ 𝜋

(indicated by the black arrows), which represents the Nyquist criterion. However, even when the
Nyquist criterion is satisfied, the difference between the actual and ideal characteristics can be
substantial, especially for larger values of k. Therefore, the stricter criterion k ⋅ Δx ≪ 1 should be
applied to obtain reliable numerical differences.

image artifacts, such as Gibbs ringing. A compact convolution kernel is therefore often
a better choice than the mathematically exact form. If a three-element kernel is used,
only the first and last data point in f require special treatment as they have only one
neighbor, whereas all other values are untainted by boundary effects. The standard
treatment of the edge values is to revert from symmetric kernels to single-sided
ones, such as the forward and backward differences (Eqs. (8.23a) and (8.23b)). This is
implemented in Matlab’s gradient function, which uses one-sided derivatives for the
outermost values, and symmetric differences for all other data points.

The relationship between the spatial resolution and the k-space characteristic of
numerical differences is presented in Figure 8.12.

8.3.1 Matrix Representation of Derivative Operators

An alternative way of representing Eq. (8.24) is to use matrix multiplication instead of
the convolution. In this section, we will assume that f is a column vector. We can then
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express the first derivative, using single-sided differences for the edge values and sym-
metric differences for all other points, as

f ′ = 1
2 𝛿x

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 2
−1 0 1

−1 0 1
⋱

⋱
−1 0 1

−2 2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

D

⋅

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

f (x1)
f (x2)
f (x3)
⋮
⋮

f (xN−1)
f (xN )

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⏟⏞⏞⏟⏞⏞⏟

f

. (8.31)

All values off the three main diagonals in D are zero. Analogously, we can also give a
matrix representation of the discrete Laplacian3:

L = 1
𝛿x2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

−2 1
1 −2 1

1 −2 1
⋱
1 −2 1

1 −2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (8.32)

Note that L ≠ D2. While D2 would also be a valid representation of the Laplacian
operator, it would correspond to a kernel of size 5 rather than 3, which exacerbates
boundary artifacts and attenuates noise at the same time.

The advantage of the matrix representation over the convolution representation is
that the matrix operators can be inverted, which constitutes a method for numerical
integration and is used in finite-difference wave field simulations (see Section 8.4 or
Laplace unwrapping (Section 9.3)). However, for a vector f containing N values, the
matrix operators are of dimension N2, which can quickly become a challenge in terms
of computer memory and computation time. Because of the tridiagonal structure of
the derivative matrices, the number of nonzero values is of the order of N , whereas
the number of zeros is of the order of N2, so that a representation as a sparse matrix is
beneficial or even mandatory.

8.3.2 Anderssen Gradients

Noise is one of the principal challenges when reconstructing viscoelastic parameters, as
we will discuss in Section 10.1. Spatial derivatives are particularly prone to producing
artifacts due to their noise-amplifying high-pass characteristics. In order to ameliorate
these issues, we will describe a numerical scheme to calculate derivatives that is more
resilient to noise than the ones discussed above. It is based on calculating derivatives by
averaging over differentiation kernels of different sizes. The initial idea was published
by Anderssen and de Hoog [201], and the first application to MRE was proposed by
McLaughlin et al. [202].

3 The operator shown here is valid for the case of Dirichlet boundary conditions, for which the value of f on
the boundary is prescribed (see Section 4.9.6). If von Neumann boundary conditions with a fixed value of
the first derivative are desired instead, the first and last elements of the main diagonal have to be −1.
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In Eq. (8.23c), we introduced the symmetric difference kernel 1
2𝛿x

[−1, 0, 1]. Similarly,
we could introduce a kernel with a larger step as 1

4𝛿x
[−1, 0, 0, 0, 1]. More generally, we

can define a derivative kernel for the 1-direction as

D(1)[s] = 1
2s ⋅ 𝛿x

[−1, 0, 0,…, 0
⏟⏞⏟⏞⏟

(s − 1) times

, 1] for s ∈ ℕ. (8.33)

The integer parameter s denotes the distance of the two points from which the derivative
is calculated to the point in the center of the kernel, for which the derivative is calcu-
lated. Narrower spacing of these points (corresponding to small values of s) constitutes
better approximations to the true derivative; however, at the same time, it is also more
noise-sensitive than wider spacing. Therefore, one can calculate approximations with
different spacings and average over the results:

D(1)
n = 1

n
⋅

n∑

s=1
D(1)[s] for n ∈ ℕ. (8.34)

In terms of computational complexity, it is more advantageous to combine the different
kernels D(1)

n into a single kernel than to apply the convolution to each kernel separately.
Because of the linearity of the convolution operation, this step is straightforward:

D(1)
n = 1

2n ⋅ 𝛿x

[

−1
n
,− 1

(n − 1)
,…,−1

1
, 0, 1

1
,…,

1
n

]

. (8.35)

The x1-derivative of an m-dimensional function 𝜒(r1, r2,…, rm) is
𝜕𝜒

𝜕x1
= Ď(1) ∗ 𝜒 , (8.36)

where the symbol ̌ indicates reversal of the elements, as introduced on Page 180. For
all other directions, D(i)

n can be obtained by aligning the elements of D(1)
n along the

respective dimension i.
In [203], several other ways of improving the stability of numerical discrete derivatives

are discussed. One option is to average the obtained derivatives over adjacent voxels
along all dimensions (including the direction along which the derivative is taken). This
publication discusses the noise characteristics of such schemes and their dependence on
the sizes of the derivative kernel and the averaging window. The authors conclude that
differentiation benefits from high dimensionality of the problem (since high dimension-
ality increases the number of points suitable for averaging within a given distance to a
reference point), and that best results are achieved if the aforementioned parameters are
adapted to the problem at hand.

For many applications, the authors of this book opted to employ a hybrid scheme for
numerical differentiation based on a kernel of the type described by Eq. (8.35), with
averaging over all dimensions except the one along which the derivative is calculated.
In a two-dimensional scenario, for a derivative in the horizontal direction, the resulting
kernel would be a (2n + 1) × (2n + 1) matrix, where each row is a copy of D(1)

n .
In order to illustrate the effect, Figure 8.13 presents a simulation of a one-dimensional

wave with different amounts of noise added. First- and second-order derivatives
were calculated utilizing forward differences (Eq. (8.23b)), symmetric differences
(Eq. (8.23c)), and the Anderssen scheme (Eq. (8.35)) for n = 3.
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Figure 8.13 Simulation results demonstrating the noise sensitivity of different numerical derivative
schemes. For the comparison, a wave with a wave speed of 1.5 m/s at a frequency of 30 Hz was
simulated. Different amounts of Gaussian noise were added to the real and imaginary parts. The noise
level was defined as noise level = Enoise

Ewave
⋅ 100%, with Ewave and Enoise denoting the energy contained in

the wave and the noise spectrum, respectively. One cycle of such a wave at three different noise levels
is shown in (a). First- and second-order spatial derivatives were calculated for these waves using three
different schemes: forward differences (Eq. (8.23b)), symmetric differences (Eq. (8.23c)), and the
Anderssen gradient scheme (Eq. (8.35)) with n = 3. (b) Shows the relative error for the calculation of the
first and second (by repeated application of the operators) derivatives relative to the noiseless case.
(c) The k-space representations of the three schemes are shown for the first and second derivatives.

Obviously, the Anderssen gradient scheme performs much better than forward or
symmetric differences. In general, all operators tend to overestimate k and k2 in the
presence of noise. The reason is the overemphasis of the noisy parts of the spectrum,
as will be explained in Section 10.1. However, at low noise levels, the Anderssen
scheme tends to underestimate the parameters, which is a discretization artifact
caused by the different kernel sizes contributing to the Anderssen kernel. Effects of
discretization are also explained in Section 10.1. The last two diagrams of the figure
present the frequency spectra of the first- and second-order derivatives. For the
low-frequency range, close to the origin, all gradients possess similar characteristics.
These low spatial frequencies typically contain the major part of the MRE-relevant
signal, whereas the higher frequencies are dominated by noise. We can clearly see
that, for the Anderssen gradient scheme, the weighting of the higher frequencies is
much smaller than for the other two schemes, thus leading to a lower sensitivity to
noise.

8.3.3 Frequency Response of Derivative Operators

Similar to the low-pass operators analyzed in Section 8.1.3, it is useful to analyze the
frequency response of the above derivative operators to gain a deeper understanding of
their properties. The frequency response for ideal, forward, symmetric, and Anderssen
gradients, as well as the compact Laplace operator (in 1D), are shown in Figure 8.14.

At the top of Figure 8.14 is the “ideal gradient,” the Fourier domain gradient operator.
Its phase response is constant, while it can be seen to give increasing weight to high
frequencies. All the following operators have linear phase. The forward difference
has a near-identical magnitude response, which is one reason for its popularity. Like
the ideal gradient filter, it weighs high more than low frequencies. The symmetric
differences operator attenuates this effect, and the Anderssen gradient attenuates it
more, having a flatter frequency response through a large range of image frequencies.
The benefits of this filter are thus seen clearly in its frequency response. Finally, the
compact Laplacian operator is also presented, which has characteristics similar to the
forward difference, only with a more severe weighting of high frequencies over low
frequencies.
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Figure 8.14 Frequency response plots for: ideal gradient, forward difference, centered difference,
Anderssen gradient, and compact Laplacian operator.

8.4 Finite Differences

The discrete derivative operators introduced in the previous section can be used
for the calculation of numerical solutions to differential equations. This set of tech-
niques is referred to as finite difference methods. As an example, we discretize the
one-dimensional inhomogeneous Helmholtz equation

𝜕
2u
𝜕x2 u + k2u = F (8.37)

→ Δu + k2𝟙u = F, (8.38)

where u and F are the vectorized versions of the displacement field and the external
driving force, obtained by concatenating the N spatially discretized values, as explained
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Algorithm 8.1 Matlab code to simulate 2D wave fields for different boundary conditions
using the finite difference method. Results are shown in Figure 8.15.

k=2; % wave number
dx=0.1; % pixel spacing

% define a point source in the center of the image
F=zeros(101,101); F(51,51)=1;

si=size(F);
N = prod(size(F)); % number of pixels

% Choose boundary conditions:
BC= -1; % Dirichlet
% or
BC=0; % v. Neumann
% or
BC=1i*k*dx; % Sommerfeld

% Assemble the forward Laplacian as a sparse matrix
% from second-order derivatives in 4 directions:
E=ones(si);E(1,:)=0;
Lap_left=spdiags([-E(:) E(:) ∼E(:)*BC],[0 1 0],N,N);

E=ones(si);E(end,:)=0;
Lap_right=spdiags([-E(:) E(:) ∼E(:)*BC],[0 -1 0],N,N);

E=ones(si);E(:,1)=0;
Lap_up=spdiags([-E(:) E(:) ∼E(:)*BC],[0 si(1) 0],N,N);

E=ones(si);E(:,end)=0;
Lap_down=spdiags([-E(:) E(:) ∼E(:)*BC],[0 -si(1) 0],N,N);

Laplacian=(Lap_left+Lap_right+Lap_up+Lap_down)/dx∧2;

% The Helmholtz equation Lu+k∧2*u = 0
Helmholtz_equ=Laplacian+spdiags(ones(N,1)*k.∧2,0,N,N);

% Solve the Helmholtz equation for u and reshape the
% solution vector into an image:
Wave_image=reshape(Helmholtz_equ\F(:),si(1),si(2));

in Section 8.3, Δ is the discrete Laplacian defined in Eq. (8.32), 𝟙 is the N × N iden-
tity matrix, and k is the wave number. Since the Helmholtz equation is derived from
the general wave equation for a single mode at a fixed frequency 𝜔 (and hence a fixed
wave number k = 𝜔

c
), we treat u and F as temporally Fourier-transformed quantities,

evaluated at frequency 𝜔.
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Dirichlet Sommerfeld (real part)

u (x)

Dirichlet von Neumann

Sommerfeld (real) Sommerfeld (imag)

x
(a)

(b)

Sommerfeld (imaginary part)von Neumann

Figure 8.15 1D (a) and 2D (b) simulations of 2D wave fields from a point source in the center of the
object (indicated by arrows in the 1D case) with different types of boundary conditions. The 2D
simulations were performed with the code shown in Algorithm 8.1.



190 8 Numerical Methods and Postprocessing

We can then solve the equation algebraically for u:

u = (Δ + k2𝟙)−1 ⋅ F (8.39)

⇒

⎛
⎜
⎜
⎜
⎜
⎝

u1
u2
⋮

uN−1
uN

⎞
⎟
⎟
⎟
⎟
⎠

= 1
𝛿x2

⎛
⎜
⎜
⎜
⎜
⎝

(a + k2
𝛿x2) 1

1 (−2 + k2
𝛿x2) 1

⋱
1 (−2 + k2

𝛿x2) 1
1 (a + k2

𝛿x2)

⎞
⎟
⎟
⎟
⎟
⎠

−1

⋅

⎛
⎜
⎜
⎜
⎜
⎝

F1
F2
⋮

FN−1
FN

⎞
⎟
⎟
⎟
⎟
⎠

.

(8.40)

The parameter a determines the type of boundary condition:

• a = −2: Dirichlet boundary conditions (values on the boundary are prescribed).
• a = −1: von Neumann boundary conditions (values of the first derivative on the

boundary are prescribed).
• a = ikΔx − 1: Sommerfeld boundary conditions.

The resulting wave field u can thus be directly calculated from the force field F.
However, care has to be taken that k ⋅ 𝛿x < 1, since otherwise the approximation of the
numerical derivative that was used to construct the discrete Laplacian becomes invalid,
as illustrated in Figure 8.12. In Algorithm 8.1, we list a simple example of Matlab code
for simulating 2D wave fields; and the results are shown in Figure 8.15.

As explained in the previous section, because of memory constraints and compu-
tation time, it can become mandatory to use sparse matrices for the representation of
the matrix operators. In Matlab, the inversion can be performed by using the backslash
operator a\b. A comprehensive introduction into different schemes to solve the sound
wave equation using finite differences can be found in [204].
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Phase Unwrapping

In MRE, oscillation information is encoded in the phase, 𝜙, of the complex MRI signal.
There is a linear relationship between 𝜙 and oscillation amplitude u: 𝜙 = 𝜉 ⋅ u. The
proportionality factor 𝜉 is the encoding efficiency (see Section 3.1). However, the
MRI phase is always wrapped into the half-open interval [−𝜋, 𝜋), which means that
phase wraps occur if the oscillation amplitude exceeds ± 𝜋

𝜉
. These phase wraps present

themselves as phase discontinuities, where the phase jumps from −𝜋 to 𝜋 (or vice
versa). An example is shown in Figure 9.1. Since they would cause singularities in the
spatial derivatives or distort the temporal Fourier transform, phase wraps have to be
removed by a process termed phase unwrapping prior to further processing.

Phase unwrapping is not a problem unique to MRI; it arises in many other fields, such
as interferometry or synthetic aperture radar (SAR) image reconstruction. Hence, a
multitude of phase unwrapping algorithms exist, each with different strengths and weak-
nesses. For illustration purposes, we will discuss the unwrapping of a one-dimensional
function first, before introducing more complex and useful algorithms.

Before we start the discussion, a word on notation: in this chapter, 𝜙, without any
subscript, will always represent the physically correct phase, that is, the quantity that
is to be reconstructed. We will use 𝜙w to designate the wrapped phase, which is the
quantity that we obtain as a result of the image acquisition process. The output of an
unwrapping algorithm will be denoted 𝜙u, which we also refer to as the “unwrapped
phase.” For reasons that will become obvious further down, it is not always the case that
𝜙 = 𝜙u.

Let 𝜙(x) be a scalar function of a one-dimensional variable x, which could be either
a spatial variable or time. We designate the wrapped phase as 𝜙w(x) = W𝜙(x), with the
wrapping operator W. One way to represent W is by

W𝜙 = 𝜙 − 2𝜋 ⋅
⌊
𝜙 + 𝜋

2𝜋

⌋

, (9.1)

where the brackets ⌊ ⌋ denote rounding toward negative infinity. In other words, if 𝜙 is
outside the interval [−𝜋, 𝜋), it is shifted by adding or subtracting integer multiples of 2𝜋
until it falls into that interval.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 9.1 Wrapping and unwrapping of a smooth one-dimensional function. The solid and dashed
lines on (a) represent the function before and after wrapping according to Eq. (9.1). The circles and
boxes indicate samplings of the wrapped data at two sampling rates (differing by a factor of 2). In (b),
the sampled data are shown after applying a one-dimensional unwrapping operator as described in
Algorithm 9.1. The data series with the higher sampling density, denoted by squares, is reconstructed
correctly, since all jumps between adjacent data points are less than 𝜋. For the series with the lower
sampling rate, there are jumps larger than 𝜋 (indicated by the arrow in (a)), and the unwrapping hence
fails.

The simplest approach to unwrapping a wrapped discrete function 𝜙w(n), n = 1,…,N
is to take the first value 𝜙w(1) as the reference, and assume that is was not wrapped.1
Hence, the first point of the unwrapped function 𝜙u(n) becomes 𝜙u(1) = 𝜙w(1). The
next step is to iterate through the function values, comparing the last unwrapped point
(i − 1) to its right-hand-side neighbor (i) (the first wrapped point). If the difference
between them exceeds ±𝜋, an integer multiple of 2𝜋 can be added to the second point
to make the difference smaller than 𝜋. This yields the unwrapped value for 𝜙u(i). This
procedure is referred to as Itoh’s method [205]. More formally, the algorithm can be
formulated as shown in Algorithm 9.1 in pseudocode. It is important to emphasize

Algorithm 9.1 A simple one-dimensional unwrapping algorithm
𝜙u(1) ← 𝜙w(1)
for i = 2 to N do

if |𝜙w(i) − 𝜙u(i − 1)| > 𝜋 then
𝜙u(i) ← 𝜙w(i) + k ⋅ 2𝜋, where k is chosen such that |𝜙u(i) − 𝜙u(i − 1)| < 𝜋.

else
𝜙u(i) ← 𝜙w(i)

end if
end for

the assumption underlying this algorithm: the phase difference between two adjacent
points is always assumed to be 𝜋 or less. If this is not the case, unwrapping will
introduce artifacts, as illustrated in Figure 9.1. For a physical system, this means that
𝜙 has to be a reasonably slowly varying function. However, if 𝜙 is representative of
viscoelastic behavior in an elastography experiment, there is no guarantee that the

1 This assumption determines the global phase offset for the reconstructed function. Since there is no way
to recover the true phase of the first point from the wrapped data, this assumption is as good as any other.
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underlying parameter varies smoothly across organ boundaries or organ/air interfaces.
Denser sampling of 𝜙(i), corresponding to a higher image resolution, ameliorates this
issue. However, as long as sampling remains discrete, there is always the probability of
phase jumps exceeding 𝜋 and thus giving rise to unwrapping artifacts.

From a mathematical point of view, phase unwrapping is an ill-posed problem, and
there is no unique solution but an infinite number of solutions. In fact, if the unwrapping
problem is stated as

𝜙u(i) = 𝜙w(i) + 2𝜋 ⋅ c(i), (9.2)

where c is a list of integers representing additive phase offsets for each sampling point,
then any choice for c yields a mathematically sound solution. The physically correct
solution is just one of the infinitely many solutions, and, in the general case, there
is nothing that distinguishes it from all the “false” solutions. Therefore, unwrapping
is always dependent on an assumption about the nature of the function to be recon-
structed. Smoothness, as assumed above, is one of the commonly used criteria. Other
models might use different assumptions and hence require other mechanisms to
perform successful unwrapping.

MRE typically yields three-dimensional (2D+ time) or four-dimensional (3D+ time)
data sets. Coherence of the phase data is required along all dimensions, which renders
any one-dimensional unwrapping approach unsuitable.2 Two-dimensional phase
unwrapping algorithms have been developed for various image-processing applications
[206], and discussing them all is far beyond the scope of this book. Therefore, we will
only introduce a small selection of unwrapping methods that are of particular relevance
for MRE. Some of the algorithms can be scaled to three or more dimensions in a
straightforward manner, whereas others are inherently limited to the two-dimensional
case. However, computational complexity increases dramatically with the dimension-
ality of the problem, so that some algorithms are not feasible for higher-dimensional
unwrapping due to computational costs.

Unwrapping can be performed by taking only the phase image into account, or by
incorporating further information to improve the results. One common approach
is to provide a quality map, which gives an estimate of the reliability for each voxel.
Usually, these maps are generated from magnitude images, which map the relative
signal strength in each voxel. Voxels with a stronger signal are considered less noisy
than low-signal voxels, and their phase values are assumed to be less corrupted.
Quality-guided algorithms usually process the voxels from high quality to low quality
to prevent noise-induced artifacts from propagating excessively into the unwrapped
phase image. Many available algorithms can work with and without a quality map.

9.1 Flynn’s Minimum Discontinuity Algorithm

The minimum discontinuity approach was suggested by Flynn in 1997 as a
two-dimensional phase unwrapping method [207]. This discussion follows the
presentation in [206]. The method is based on the observation that a wrapped
two-dimensional function, when plotted as a gray-scale image, has closed lines along
which the color abruptly changes from black to white. These lines, henceforth referred

2 Successive application of a one-dimensional unwrapper along all dimensions is not feasible, since every
unwrapping step can destroy the effect of a previous unwrapping step along another dimension.
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to as “fringe lines,” represent phase wraps, and they are easily spotted by the fact that
the phase difference between adjacent pixels on both sides exceeds 𝜋 (“phase jump”). If
such a closed fringe line can be identified in the image, unwrapping can be performed
by adding an integer multiple of 2𝜋 as an offset to every pixel in the region encircled
by the line. However, the presence of noise might corrupt the fringe lines, rendering
them more difficult to identify (phase differences between adjacent pixels slightly larger
than 𝜋 are either indicators of phase wraps, or they have been induced by noise if the
actual phase difference is less than 𝜋). Alternatively, noise can cause fringe lines to be
open-ended, so that there is no well-defined enclosed region.

Flynn’s approach is based on minimizing jump counts. The jump count between two
horizontally adjacent voxels is defined in the wrapped phase image as

h(i, j ) = round
(
𝜙w(i, j ) − 𝜙w(i + 1, j )

2𝜋

)

, (9.3)

and the vertical jump count is

v(i, j ) = round
(
𝜙w(i, j ) − 𝜙w(i, j + 1)

2𝜋

)

, (9.4)

where round(x) rounds its argument to the nearest integer. A nonzero jump count
between two adjacent voxels simply indicates that the phase difference between the
voxels exceeds 𝜋.

Flynn introduced a grid in the image plane that has nodes wherever four voxels touch,
that is, it is shifted with respect to the voxel raster by Δ∕2 in both directions, where Δ
is the edge length of the square voxels. Adjacent nodes of the grid can be connected by
horizontally or vertically directed edges. Edges exist wherever the jump count between
adjacent voxels is nonzero. Every edge has one of four possible directions (up, down,
left, and right). The edges have the following meaning:

• A horizontal edge indicates that a nonzero vertical jump count exists between the two
voxels separated by the edge. If the jump count is positive (round

(
𝜙w(i,j )−𝜙w(i,j+1)

2𝜋

)

> 0),
the edge points to the left, whereas a right-pointing edge represents a negative jump
count.

• Similarly, a vertical edge reveals a nonzero horizontal jump count. By convention,
an edge points downward if it represents a positive jump count, and upward for a
negative jump count.

The edges can therefore be interpreted as tangents to phase jumps. Hence, if one can find
a closed path by following edges, this means that there is an area that is separated from
its surroundings through a phase jump. Such a closed path is the equivalent of a closed
fringe line. The objective of the algorithm is to add an appropriate offset (multiples of 2𝜋)
to all voxels within that region, which removes all phase jumps between the interior and
exterior. Flynn’s unwrapping algorithm solves this task by calculating all phase jumps
in a given image, translating them into the node-edge picture, and then continuously
searching for closed paths in the edge space. The voxels enclosed by such a path are then
unwrapped by adding an appropriate offset, the node-edge representation is updated
and the process continues until no further closed paths exist. The edges are organized in
a tree structure, which allows for an efficient implementation of the search and update
procedures. The algorithm can also be extended to incorporate voxel-wise quality
information. Further implementation details and source code can be found in [206].
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9.2 Gradient Unwrapping

If the quantity of interest is not the phase itself but its first- or higher-order derivative
(with respect to time or space), the chain rule of calculus provides a useful shortcut:

𝜕

𝜕x
f (g(x)) =

𝜕f
𝜕g

⋅
𝜕g
𝜕x

. (9.5)

Instead of calculating derivatives of the (unknown) physical phase directly as 𝜕𝜙

𝜕x
, we can

instead look at the expression
𝜕

𝜕x
ei𝜙w(x). (9.6)

First, it is important to note that eix is 2𝜋-periodic, and since the values of 𝜙w are
restricted to a contiguous interval of length 2𝜋, the exponential function ei𝜙w(x) is
continuous in the complex plane, even in the vicinity of phase wraps. Furthermore,

ei𝜙w(x) = ei𝜙u(x) = ei𝜙(x) (9.7)

for the same reason.3 Applying the chain rule to Eq. (9.6) and dropping the argument x
yields

𝜕

𝜕x
ei𝜙 = i𝜕𝜙

𝜕x
⋅ ei𝜙 (9.8)

=⇒ 𝜕𝜙

𝜕x
= −i ⋅ e−i𝜙 ⋅

𝜕

𝜕x
ei𝜙

. (9.9)

On the right-hand side, we can now substitute ei𝜙 with ei𝜙w because of the identity
Eq. (9.7) and obtain

𝜕𝜙

𝜕x
= −i ⋅ e−i𝜙w ⋅

𝜕

𝜕x
ei𝜙w . (9.10)

This means that we have found a way to calculate the derivative of the physical phase
from the wrapped phase, with no explicit unwrapping step. In theory, one could also
integrate the derivative to return to 𝜙(x). However, there is a drawback. The chain rule,
as formulated in Eq. (9.5), is only valid for continuous functions. In the case of discrete
functions, where differentiation has to be approximated by finite differences between
adjacent data points, the chain rule becomes an approximation itself. The quality of
the approximation depends on the sampling density (i.e., on the distance Δx between
adjacent points) and the rate of change of the function. The previously mentioned
constraint that unwrapping will fail if the phase between neighboring points differs
by more than 𝜋 also holds true for derivative-based unwrapping. For a continuous
function, if 𝜙w is a real-valued function, the complex value on the right-hand side of
Eq. (9.10) will also yield only real values. For a discrete function, due to discretization
artifacts, the same expression will yield complex numbers with a small imaginary part.
For practical purposes, it is advisable to discard the imaginary part and only use the
real part of Eq. (9.10). This discrepancy is also the reason why integrating 𝜕𝜙

𝜕x
is not

3 Also, the wrapped phase is calculated by the scanner through the inverse process as 𝜙w = arctan Im(S)
Re(S)

,
where S = S0 ⋅ exp (i𝜙) is the complex MR signal.
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a viable way to obtain unwrapped phase images, since integration will accumulate
those discretization artifacts, which can corrupt the integrated image. However, if one
wants to separate the field into longitudinal and transverse waves by applying the curl
or divergence operator, as discussed in Section 4.9.2 (see Eqs. (4.141) and (4.143)),
gradient unwrapping can directly provide first derivatives.

The name “gradient unwrapping” became established because derivatives can be
calculated along all three spatial dimensions by means of the gradient function in
Matlab. The method was first used in the context of MRE for taking temporal rather
than spatial derivatives in cardiac MRE [208].

9.3 Laplacian Unwrapping

Similar to gradient unwrapping, Laplacian unwrapping [209] exploits the fact that
ei𝜙 = ei𝜙w . However, instead of taking the first derivative, the Laplacian of the complex
phase is calculated:

Δei𝜙w = Δei𝜙 = ei𝜙

(

i Δ𝜙 −
(
𝜕𝜙

𝜕x

)2
)

. (9.11)

Hence, by dividing by ei𝜙w and taking the imaginary part afterward, we obtain

Im(e−i𝜙w ⋅ Δei𝜙w ) = Δ𝜙. (9.12)

As a last step, we can calculate the unwrapped phase, 𝜙u, by applying the inverse
Laplacian:

𝜙u = Δ−1 (Im(e−i𝜙w ⋅ Δei𝜙w)
)

. (9.13)

By substituting ei𝜙w = cos(𝜙w) + i ⋅ sin(𝜙w) and e−i𝜙w = cos(𝜙w) − i ⋅ sin(𝜙w), we can
write this equivalently as

𝜙u = Δ−1 (Im
((

cos(𝜙w) − i ⋅ sin(𝜙w)
)
⋅
(
Δ cos(𝜙w) + i ⋅ Δ sin(𝜙w)

)))
(9.14)

= Δ−1 (cos(𝜙w) ⋅ Δ sin(𝜙w) − sin(𝜙w) ⋅ Δ cos(𝜙w)
)
. (9.15)

Matlab code illustrating the application of Eqs. (9.12) and (9.13) on multidimensional
data is shown in Algorithm 9.2.

This last equation enables us to calculate the unwrapped phase by applying the discrete
forward and inverse Laplacians. Different techniques exist to achieve these calculations.
One is to utilize the matrix representation of the discrete Laplacian, which is introduced
in Eq. (8.32). Alternatively, the discrete fast Fourier transform can be deployed [209]:

Δf (x, y) = −4𝜋2

N2 FFT−1[(k2
x + k2

y ) FFT[f (x, y)]] (9.16)

Δ−1f (x, y) = − N2

4𝜋2 FFT−1

[

1
k2

x + k2
y

FFT[f (x, y)]

]

. (9.17)
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In most cases, the Fourier-based method is faster and requires less memory than the
matrix operator approach. The discrete cosine transform (DCT) has also been used
instead of the fast Fourier transform to better accommodate boundary conditions [210,
211]. In either case, the implementation of the Laplacian and its inverse should be
complementary (e.g., based on the same kernel), so that no numerical bias is introduced.
As a second-order differential operator, the Laplacian removes the zeroth and first
order (i.e., constant and linear terms) from the data. Applying the inverse Laplacian
cannot recover these terms, so that two unknown constants of integration remain. This
means that a constant offset and linear trends (as caused by global B0 inhomogeneities)
are suppressed, which can be a desirable effect.

Algorithm 9.2 Matlab code for slice-based Laplacian unwrapping of a 4D (3D + time)
or higher dimensional (including, e.g., displacement field components and different
vibration frequencies) data set, as published in [69]. This approach is based on Eqs. (9.12)
and (9.13) and the inversion of a finite-difference Laplacian operator. Temporal Fourier
transform is used to extract only the vibration frequency.

% wWrapped is at least a 4D array (x,y,z,time) containing wrapped
% data scaled to [-pi, pi).
si = [size(wWrapped) 1 1 1 1];

% Finite difference Laplacian with Dirichlet boundary conditions
E = ones(si(1)*si(2),1);
L = spdiags([E E -4*E E E],[-si(1) -1:1 si(1)],si(1)*si(2),...

si(1)*si(2));

% Convert the real-valued phase into a phasor exp(1i*pi), and
% convert each 2D image into a row vector containing all voxels.
% Concatenate all row vectors into a big matrix that contains the
% full 4D dataset.
PHI = reshape(exp(1i*wWrapped),[si(1)*si(2) prod(si(3:end))]);

% Apply forward Laplacian to complex phase, then remove complex
% phase. laplacianPHI is equivalent to the Laplacian of the real-
% valued phase.
laplacianPHI = imag((L*PHI).*conj(PHI));

% perform temporal Fourier transform and extract the vibration
% frequency (which is stored at index 2 after FFT).
ft = fft(reshape(laplacianPHI, [prod(si(1:3)), si(4), ...

prod(si(5:end))]), [],2);
wx = reshape(ft(:,2,:),[si(1)*si(2) prod([si(3) si(5:end)])]);

% numerical integration through inversion of the Laplacian
wUnwrapped = L\wx;

% convert the matrix representation of the data back to a
% multidimensional array
wUnwrapped = reshape(wUnwrapped,[si(1:3) si(5:end)]);
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Raw phase image Flynn unwrapping Gradient unwrapping (↔) Gradient unwrapping (↕) Laplacian unwrapping

Figure 9.2 Comparison of different 2D phase unwrapping methods in the liver (upper row) and brain
(bottom row). While Flynn’s method performs well in the brain, it is disturbed in regions of multiple
wraps in the liver (arrow). Furthermore, Flynn’s algorithm adds an arbitrary global phase offset n ⋅ 𝜋,
n ∈ ℤ. Gradient unwrapping, which is stable but direction-dependent and noisy, can be used as a
high-pass filter or for subsequent curl calculations. Laplacian-based unwrapping is stable,
noise-robust, and suppresses zeroth- and first-order components of the field, which are often
undesirable. However, the Laplacian averages information from adjacent pixels, and unwrapping
based on the Laplacian does not reconstruct the real wave field.

In Figure 9.2 we demonstrate the performance of the different unwrapping methods
in the liver and the brain.
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Viscoelastic Parameter Reconstruction Methods

Data processing and parameter recovery in elastography always face an inverse problem.
Specifically, the aim is to derive information about the spatial distribution of elastic
parameters (shear modulus, Young’s modulus, bulk modulus, etc.) from measured
dynamic quantities, typically the displacement field u(r, t) or ũ(r, 𝜔). In this chapter, we
will discuss various methods to achieve this goal.

Constant or not constant?

In the derivation of the general form of the elastic wave equation, Eq. (4.117), we
neglected the spatial variation of the elastic parameters by discarding the spatial deriva-
tives of the elasticity tensor C. Mathematically, this is only admissible if the neglected
terms are exactly zero, which would imply that the elastic properties are constant
throughout the object. On the other hand, when we talk about wave inversion, we
intend to calculate spatial maps of the distribution of the viscoelastic parameters, which
only makes sense if there is some spatial variation. This is obviously a contradiction.
The solution is that we assume the parameter variation to be small enough to yield
no significant contribution to the wave equation. In this sense, every wave equation
presented in this book is only an approximation. The treatment of the exact equations is
more complicated, and solving for the elastic parameters and their spatial derivatives at
the same time is not feasible by direct inversion (DI). Alternative approaches rely on finite
elements approaches and can be applied to spatially varying parameters, as outlined
later in this section.

A wave equation – such as Eq. (4.129) – predicts the propagation of waves through a
medium, if the parameter fields 𝜇(r) and 𝜆(r) as well as the boundary conditions on the
surface of the object (see Section 4.9.6) are known. The calculation of a wave field from
these parameters is a typical forward problem, whereas the associated inverse problem
constitutes the estimation of the mechanical parameters from the measured wave field.
More generally, forward problems relate to predicting the behavior of a system if all
of its defining parameters are known. Conversely, inverse problems revolve around
calculating model parameters from measurements of the behavior of the model.

The inversion methods that have been established in the context of MRE can
be broadly subdivided into two categories: iterative reconstruction and direct
inversion (DI).

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Iterative reconstruction transforms the solution of the inverse problem to repeated
calculation of the related forward problem. An initial guess 𝜻0 is used together with
information about boundary conditions and the mechanical excitation pattern as the
input to a finite-elements model (FEM), which is then used to calculate the resultant
displacement field ucalc. The deviation between ucalc and the measured field umeas is then
used to derive an update for the parameter estimate, 𝜻1, and ucalc is calculated again.
This process continues until the difference between ucalc and umeas becomes lower
(in a suitable metric) than a predefined threshold, and the parameters 𝜻 used in the
last calculation step constitute the final result. Additional constraints can be inte-
grated into the model, such as a compartmentalization derived from a priori anatomical
information [212]. Furthermore, the resolution of the resultant parameter maps is deter-
mined by the density of the mesh used for the finite element model, which does not have
to be identical to the image resolution. It has also been demonstrated that individual
parameters can be reconstructed on meshes of different coarseness. On the other hand,
the computational complexity of this method can be very high, demanding several hours
of reconstruction time for a single data set on standard hardware. Furthermore, the
model depends critically on the boundary conditions, and these cannot be measured
reliably through an experiment. Hence, the assumptions made about boundary
conditions can have a significant influence on the resultant parameter estimates [213].

For the DI strategy, it is necessary to formulate the wave equation as a general linear
equation:

𝜌ü = (Du)M(𝜻)⋅, (10.1)
where Du is a matrix containing second-order spatial derivatives of the displacement
field and M is a vector whose entries depend only on the unknown parameters 𝜻 . If we
use the Fourier domain representation for u instead of the time domain representation,
we can substitute ü with (−𝜔2ũ). Ideally, such an equation could be solved simply as

M(𝜻) = −𝜌𝜔2(Du)−1 ⋅ u. (10.2)
However, in most cases, Du is not a square matrix, so that its inverse does not exist.
Instead, numerical optimization procedures can be deployed that yield parameter
estimates 𝜻 which minimize the residual

N(|𝜌𝜔2u + (Du) ⋅ M(𝜻)|), (10.3)

where N is a suitable metric. The L2-norm N(x) =
√

∑
i x2

i is a common choice for N ,
thus minimizing the sum of squares of the data mismatch. One possibility to implement
this strategy is to multiply Eq. (10.1) with the left Moore–Penrose pseudo-inverse
of (Du):

M(𝜻) = −𝜌𝜔2(Du)+ ⋅ u. (10.4)
Alternatively, other optimization or fitting techniques can be deployed to minimize the
mismatch between the parameter estimate and the measured data. One example for DI
will be presented in Section 10.3.

A second type of DI strategies is not based on the wave equation, but rather on one
convenient property of harmonic waves: If we represent a wave by a complex-valued
plane wave

u(r, t) = u0 ⋅ ei(k•r−𝜔t) = u0 ⋅ ei𝜙(r,t)
, (10.5)
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we can simply extract the wave vector k by applying the gradient operator to the phase
of the wave:

k = ∇𝜙 = ∇(k • r − 𝜔t). (10.6)

Since 𝜙 is the phase of the motion-encoded complex MR signal, the above equation
represents a straightforward way to calculate the wave vector from the acquired data.
This method is known as phase gradient (PG), and will be discussed in Section 10.2.

10.1 Discretization and Noise

Two important sources of error have to be considered when dealing with measured
data: discretization and noise. Both introduce a bias into the reconstruction of
viscoelastic parameters, and it is essential to understand the effects of these factors
when interpreting and comparing results.

We model noise as an independent additive contribution to a complex quantity Q. The
measured value, Qm, can thus be represented as

Qm = Q + n with n = |n| ⋅ ei𝜁
. (10.7)

We assume that |n| is distributed over [0,∞) according to some probability distribution
function P(|n|) ∶ ℝ+

0 → [0, 1], and that the phase 𝜁 is uniformly distributed over the full
circle [0, 2𝜋). The magnitude of the measured quantity is |Qm| = |Q + n|, and it obeys
the triangle inequality

|
|
|
|Q| − |n|||

|
≤ |Q + n| ≤ |Q| + |n|. (10.8)

Even though |Qm| can be either smaller or larger than |Q|, noise generally leads to
an overestimation of the magnitude of a complex quantity. A graphical explanation is
given in Figure 10.1. The effect can also be explained by the fact that if n is Gaussian
complex noise, the measured quantity |Q + m| will be distributed according to a Rician
distribution, which is asymmetric and skewed toward larger values. The effect becomes
stronger as |n| increases and |Q| decreases.

We can now use these findings to analyze the effect of noise during the reconstruction
of viscoelastic parameters. The noise in the acquired displacement field u is determined
by a number of measurement parameters, such as the vibration frequency, vibration
amplitude, and motion sensitivity of the MR sequence and various MR sequence param-
eters. However, certain postprocessing steps, such as the calculation of derivatives, can
further affect the noise level. For example, we will show in Section 10.3 that the mag-
nitude of the complex modulus, |G∗|, can be calculated as |G∗| = 𝜌𝜔

2|u|∕|Δu|. Taking
derivatives tends to amplify noise, since they act as high-pass filters, which can be
easily seen from the k-space representation of the ideal derivative operator: ℱ [ f ′(x)] =
k ⋅ ℱ [ f (x)], applying a weight identical to the k-value. The term Δu is thus noisier than
u. Therefore, when taking the absolute value of each, the denominator |Δu| receives a
stronger bias toward larger values than the nominator |u|, which subsequently leads to
an underestimation of |G∗|. The effect is more pronounced if u has a low signal-to-noise
ratio (SNR). Multifrequency inversion methods based on the magnitude of Δu therefore
tend to weight each frequency by the induced vibration amplitude to reduced artifacts
from frequencies with low amplitudes, which we will discuss in Section 10.5.
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Figure 10.1 Illustration of the effect of noise on the magnitude of a measured signal in the complex
plane. The true quantity Q is an arbitrary vector in the complex plane. We simulate the effect of noise
by attaching a vector n, representing the noise contribution of the measurement, to the tip of Q,
yielding the measured magnitude |Qm| = |Q + n|. The dashed circle around the origin indicates all
possible signals with a magnitude equal to |Q|. The solid circle around the tip of Q represents all
possible values Qm if |Q| and |n| are fixed and only the noise phase 𝜁 is variable. Since we assumed 𝜁 to
be uniformly distributed over [0, 2𝜋), the measured signal is uniformly distributed over the black solid
circle; and the probability of finding Qm in a given segment of that circle is proportional to the arc
length of the segment. The dashed circle divides the solid circle into two segments, the “inside” (light
gray) and “outside” (dark gray). The arc length of the outside segment (where |Qm| > |Q|) is larger than
the arc length of the inside segment, where |Qm| < |Q|. Hence, the probability for |Qm| > |Q| is larger
than that for |Qm| < |Q|. This means that, on average, noise tends to increase the magnitude of a
complex quantity. The effect becomes more significant as the magnitude of the noise increases. This
argument holds true if we consider the fact that usually the noise amplitude is not fixed, but
distributed according to some probability density function.

Discretization artifacts arise when derivatives of the discrete displacement field have
to be calculated. Since analytical derivatives are formulated as infinitesimal differences,
a finite voxel spacing 𝛿x introduces deviations that can affect subsequent processing
steps.

Assume that we calculate the Laplacian of the displacement field according to
Eq. (8.28). In a one-dimensional scenario, we have

Δu = 1
𝛿x2

(
u(xi−1) − 2 ui + u(xi+1)

)
. (10.9)

We insert a plane wave with unit amplitude, u = exp(ik ⋅ x) (we neglect the
time-dependent part e−i𝜔t , since it is irrelevant for spatial derivatives):

Δu = 1
𝛿x2

(
eik⋅(x−𝛿x) − 2eik⋅x + eik⋅(x+𝛿x)) = eikr

𝛿x2

(
e−ik⋅𝛿x − 2 + eik⋅𝛿x) (10.10)

= 2 eikr

𝛿x2 (cos(k ⋅ 𝛿x) − 1) . (10.11)

In the limit of infinitesimal 𝛿x, using L’Hospital’s rule twice, the result of the continuous
case is reproduced:

Δu|
𝛿x=0 = 2 eikr

𝛿x2 (cos(k ⋅ 𝛿x) − 1)
|
|
|
|𝛿x=0

= 2eikr ⋅
−k sin(k ⋅ 𝛿x)

2𝛿x
|
|
|
|𝛿x=0

(10.12)

= 2eikr ⋅
−k2 ⋅ cos(k ⋅ 𝛿x)

2
|
|
|
|𝛿x=0

= −k2eikr
. (10.13)
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Figure 10.2 Illustration of the effect of discretization and noise on the reconstructed shear wave
velocity. Displacement fields acquired at drive frequencies (and hence different wavelengths) from
10 to 100 Hz were subjected to algebraic Helmholtz inversion (AHI, Section 10.3) and the shear wave
speed at each frequency was retrieved. It is obvious that for low resolution, discretization artifacts
dominate and the wave speed (and hence the elastic modulus) is overestimated. For higher
resolutions, discretization effects are suppressed and noise-induced underestimation of the wave
speed and elastic modulus occurs. (Papazoglou 2008 [214]. Reproduced with permission of Institute of
Physics Publishing.)

We substitute Eq. (10.11) into the Helmholtz equation to calculate the elastic modulus:

G∗ = −𝜌𝜔2 u
Δu

= −𝜌𝜔2 𝛿x2

2(1 − cos(k ⋅ 𝛿x))
. (10.14)

If 𝛿x is smaller than the wavelength 𝜆 = 2𝜋
k

, so that k ⋅ 𝛿x ≪ 1, we can approximate the
denominator by the Taylor series

1 − cos(k ⋅ 𝛿x) ≈ 1 − (1 − k2
𝛿x2 + k4

𝛿x4) = k2
𝛿x2(1 − k2

𝛿x2) < k2
𝛿x2

. (10.15)
We can thus see that discretization leads to an underestimation of the denominator
(the correct value would be k2), and hence to an overestimation of the modulus (see
Figure 10.2):

G∗ = −𝜌𝜔2 1
k2(1 − k2𝛿x2)

=
(G∗)true

1 − k2𝛿x2 . (10.16)

We can also see that a singularity occurs in Eq. (10.14) if k ⋅ 𝛿x = 𝜋

2
. Therefore, inversion

is only feasible if
𝜋

2
> k ⋅ 𝛿x = 2𝜋

𝜆
⋅ 𝛿x =⇒ 𝛿x <

𝜆

4
. (10.17)

Hence, we need an absolute minimum resolution of more than four pixels per wave-
length in order to perform inversion. However, discretization artifacts begin to manifest
themselves much earlier, to that a much better resolution should be chosen to obtain
reliable estimates for the elastic modulus. An approximation for the reconstructed shear
wave speed in the presence of both noise and discretization is presented in [214] as

c ≈ 𝜔

k0

(

1 − 𝜎
2

2

(

1
k2

0𝛿x2
− 1

))

, (10.18)
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where k0 is the physically correct wave number and 𝜎 is the noise-to-signal ratio
(reciprocal of SNR).

10.2 Phase Gradient

The phase gradient (PG) method is arguably the simplest way of deriving elastic infor-
mation from a propagating wave. A single one-dimensional propagating wave with a
potentially complex wave number k = kr + iki can be represented as

u(x, t) = u0 ⋅ ei(krx−𝜔t) ⋅ e−kix = u0 ⋅ ei𝜙

⏟⏟⏟

phasor

⋅ e−kix

⏟⏟⏟

damping

. (10.19)

The phasor1 determines the phase of the wave, whereas the damping part describes
exponential attenuation along the propagation path in a dispersive medium. We can
see that for a fixed time point, the phase of the wave is a linear function of the spatial
coordinate:

𝜙 = krx − 𝜔t. (10.20)

Applying a spatial derivative (which we will denote by ∇, since it easily generalizes to
three dimensions when applied to each vector component separately) to the phase will
therefore yield the wave number:

∇𝜙 = kr. (10.21)

Since 𝜙 is the motion-encoded phase directly obtained from an MRE measurement,2
this is the most basic way of recovering elastic information from a wave image.
The PG method only requires first-order spatial derivatives, in contrast to the wave
equation-based methods discussed in Section 10.3, and is therefore more resilient
toward noise. However, the PG method depends critically on spatial unwrapping, since
every remaining phase wrap produces a spike in the derivative, which in turn taints the
calculation of the wave number.

An alternative method of calculating the PG of a 1D discrete displacement
field with voxel spacing 𝛿x, which is inspired by the gradient unwrapping method
(cf. Section 9.2), is

k = 1
2𝛿x

(
arg(u∗

i−1 ⋅ ui) + arg(u∗
i ⋅ ui+1)

)
(10.22)

= 1
2𝛿x

(
−𝜙i−1 + 𝜙i − 𝜙i + 𝜙i+1

)
(10.23)

= 1
2𝛿x

(
𝜙i+1 − 𝜙i−1

)
, (10.24)

which is exactly the symmetric derivative scheme (Eq. (8.23c)) and thus yields an
approximation to ∇𝜙. The method translates to multidimensional displacement field

1 Some authors define the phasor such that it only contains the time-independent contribution, thus
excluding the term 𝜔t.
2 To suppress artifacts from an inhomogeneous susceptibility background, the temporally
Fourier-transformed MRE signal, evaluated at the vibration frequency, should be used here instead of the
raw phase.
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in a straightforward manner by using the corresponding multidimensional central
difference schemes.

Since only the real part of the wave vector contributes to the phase, the PG method is
completely insensitive to damping, which is quantified by ki instead. Furthermore, the
PG cannot cope with a superposition of waves propagating along different directions,
and it will yield incorrect results when applied to such a scenario. In Section 10.6, we
will present a method which overcomes these two limitations by applying directional
filters and normalizing the displacement field gradient.

10.3 Algebraic Helmholtz Inversion

The Helmholtz equation is the solution to the general wave equation for a monofre-
quency wave field. Formally, it can be derived from the wave equation by applying a
temporal Fourier transform and exploiting its property (Eq. (8.30)):

Δu(x, t) = 1
c2 ü(x, t)

FFT
−−−→ Δũ(x, 𝜔) = −𝜔

2

c2 ũ(x, 𝜔). (10.25)

As an added benefit, the Fourier transform suppresses nonmotion-related con-
tributions to the MR signal phase, such as the static susceptibility background, and
oscillations at frequencies other than the drive frequency, thus improving the quality of
the inversion. The elastic properties of the tissue enter Eq. (10.25) via (see Eqs. (4.145)
and (4.146))

c =
√

Γ
𝜌
⇒ k2 = 𝜌𝜔

2

Γ
, (10.26)

where Γ is the elastic modulus that governs wave propagation.3 In the case of a scalar
wave field, Eq. (10.25) can be solved algebraically for k, such that the elastic properties
can be assessed directly from the acquired wave field. However, the wave phenomena
typically studied in elastography are two- or three-dimensional, and the displacement is
therefore represented by a vector ũ. In that case, Eq. (10.25) holds true for each vector
component separately:

Γi = −𝜌𝜔2 ũi

Δũi
. (10.27)

If the medium is isotropic, every component should yield the same value for the
modulus. In anisotropic media, however, the elastic properties depend on the direction
of the displacement, and the moduli retrieved for the three vector components can
differ.4 This method of calculating elastic moduli from displacement fields is termed
Algebraic Helmholtz Inversion (AHI) or Direct Inversion (DI).

If isotropy is assumed, the simplest type of inversion is to perform the Helmholtz
inversion separately for the two or three components of the displacement field, and
then to average the resultant moduli. One of the major issues with this approach
is the second derivative in the denominator of Eq. (10.27). Derivatives exhibit
noise-enhancing characteristics (which can be seen from the k-space representation of

3 The shear modulus 𝜇 or G∗ for shear waves, the P-wave modulus M for pressure waves.
4 In Section 10.8, we present a DI method for transverse isotropic media.
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discrete derivative operators in Figures 8.12 and 8.13, where higher spatial frequencies
are weighted more strongly than lower frequencies). Therefore, even relative small
fluctuations in the wave field can be amplified by the double application of the derivative
operator, with severe impact on the calculated modulus.

In multifrequency MRE, Helmholtz inversion is valid for each frequency component
separately, so that the resulting modulus is also a function of frequency, Γ = Γ(𝜔).
If Γ varies with frequency, this phenomenon is called dispersion and it occurs in all
scenarios involving viscosity. The dispersion curve Γ(𝜔) is equivalent to the frequency
dependence of the viscoelastic models summarized in Figure 4.7 (with s = i𝜔) and can
potentially yield valuable information about the viscoelastic properties of the tissue.
In another approach, viscosity is neglected, and the values of Γ(𝜔) obtained from
single-frequency AHI are averaged over all acquired frequencies. However, a better
approach for multifrequency MRE is discussed in Section 10.5.

Helmholtz inversion does not consider boundary effects. Therefore, standing waves
caused by reflections at organ boundaries can cause nodes of the wave field, where no
deflection occurs. In these regions, the modulus cannot be reliably reconstructed by
Eq. (10.27). Instead, multifrequency inversion methods, which will be discussed in the
following sections, can help to ameliorate these issues at the cost of losing information
about the frequency dependence of the modulus.

In contrast to the PG discussed in Section 10.2, the Helmholtz equation can deal with
superpositions of waves propagating along different directions, as long as their wave
numbers k = |k| are the same. We can easily verify this by substituting a superposition
of two waves into the vector equivalent of Eq. (10.25):

Δ(u1 ⋅ ei(k1•r−𝜔1t) + u2 ⋅ ei(k2•r−𝜔2t)) = − k2
1 ⋅ u1 ⋅ ei(k1•r−𝜔1t)

− k2
2 ⋅ u2 ⋅ ei(k2•r−𝜔2t) (10.28)

ü = −𝜔
2
1 ⋅ u1 ⋅ ei(k1•r−𝜔1t)

− 𝜔
2
2 ⋅ u2 ⋅ ei(k2•r−𝜔2t)

. (10.29)

If we now assume that the waves have equal wave number and frequency, k2
1 = k2

2 ≡ k2

and 𝜔1 = 𝜔2 ≡ 𝜔, we can combine these two equations:

−k2(u1 ⋅ eik1•r + u2 ⋅ eik2•r) ⋅ e−i𝜔t = −𝜔
2

c2 (u1 ⋅ eik1•r + u2 ⋅ eik2•r) ⋅ e−i𝜔t (10.30)

=⇒ k2 = 𝜔
2

c2 , (10.31)

which is the same result as for a single wave. Therefore, inversion methods based on the
wave equation are intrinsically capable of dealing with monofrequent waves traveling
along different directions, and no directional filtering is necessary.

Real-world wave fields are typically a superposition of shear (transversal) and pressure
(longitudinal) waves, which are governed by different elastic moduli. Applying AHI to
such a wave field will result in erroneous results, since Eq. (10.27) is formulated with
respect to only a single elastic modulus. There are two possibilities to resolve this issue:
Multiparameter inversion, or separation of the two wave fields by means of Helmholtz
decomposition. We will discuss both methods in the following two sections.
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10.3.1 Multiparameter Inversion

AHI is only feasible for very simple material models that are characterized by a single
elastic constant. However, more realistic models depend on two (in the isotropic case)
or more parameters, and solving the equations of motion for these parameters simulta-
neously is nontrivial. Oliphant et al. published the first inversion method, termed AIDE
(algebraic inversion of the differential equation), capable of retrieving multiple model
parameters from an MRE scan with a sufficient number of independent measurements
[215]. In this section, we will present a different formulation of a multiparameter
inversion algorithm based on the two-parameter Navier equation.

We repeat the Navier equation (Eq. (4.132)) with elastic parameters 𝜇 and 𝜆:

𝜌ü = (𝜆 + 𝜇)∇(∇ • u) + 𝜇Δu. (10.32)

The first term on the right-hand side relates exclusively to pressure waves (∇ • u = 0 for
shear fields), whereas the second term contains both shear and volumetric deformation.
In the case of a monofrequency oscillation, we can express the Navier equation in the
Fourier domain, with ũ being the temporally Fourier-transformed displacement field
at the vibration frequency. Using the derivative property of the Fourier transform (see
(8.30)) and reordering the right-hand side by elastic parameters, we obtain

− 𝜌𝜔
2 ⋅ ũ = 𝜆 ⋅ ∇(∇ • ũ) + 𝜇 ⋅ (∇(∇ • ũ) + Δũ). (10.33)

This allows us to express the right-hand side in vector notation:

− 𝜌𝜔
2ũ = [∇(∇ • ũ),∇(∇ • ũ) + Δũ]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

≡A

⋅
(
𝜆

𝜇

)

, (10.34)

where the 3 × 2 matrix A is composed of second-order derivatives of the displacement
field:

A =
⎛
⎜
⎜
⎜
⎝

𝜕

𝜕x
∇ • ũ, 𝜕

𝜕x
∇ • ũ + Δũ1

𝜕

𝜕y
∇ • ũ, 𝜕

𝜕y
∇ • ũ + Δũ2

𝜕

𝜕z
∇ • ũ, 𝜕

𝜕z
∇ • ũ + Δũ3

⎞
⎟
⎟
⎟
⎠

. (10.35)

We can now solve Eq. (10.34) for the elastic moduli:
(
𝜆

𝜇

)

= −𝜌𝜔2 ⋅ (ATA)−1AT ⋅ u. (10.36)

The same procedure can be performed for other pairs of elastic parameters. For example,
see [176] for the choice (𝜇,K).

10.3.2 Helmholtz Decomposition

We also discussed in Section 4.9.2 that the divergence and curl operators can be used
to separate an arbitrary wave field into longitudinal and transversal displacement fields.
We refer to that chapter for the mathematical background. As a result, we can separate
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the Navier equation into two decoupled equations:

−𝜌𝜔2c = 𝜇 ⋅ Δc (10.37)

−𝜌𝜔2d =
(

K + 4
3
𝜇

)

⋅ Δd (10.38)

with

c ≡ ∇ × u and d ≡ ∇ • u. (10.39)

These two equations are again of the Helmholtz type and can be solved for 𝜇 and K
by substituting c and d for u in Eq. (10.27). Two factors have to be considered when
choosing Helmholtz decomposition for recovering elastic moduli: First, since c and d
are already first-order derivatives of the measured displacement field u, the solution
of Eqs. (10.37) and (10.38) requires third-order derivatives of the field, rendering the
method even more noise-sensitive than regular AHI with its second-order derivatives.
Second, Helmholtz decomposition is only exact for continuous functions. In the case
of discrete displacement fields with numerically approximated derivatives, there can
be a small amount of cross talk between the calculated longitudinal and transversal
displacement fields. This latter effect becomes stronger as the spatial resolution
decreases.

10.4 Local Frequency Estimation

Local frequency estimation (LFE) [216, 217] is a method to estimate the wave number5 k
from a wave image. It was first introduced into MRE by Manduca et al. [218]. LFE does
not directly calculate spatial derivatives, as all previously discussed inversion methods.
Instead, it is based on applying pairs of band-pass filters to the wave images and extract-
ing the wave number from the ratio of the filtered images. The effect of the filters is
similar to applying the gradient operator in k-space. A very thorough discussion of the
method can be found in [219]; we will only present a general overview without going
into implementational or mathematical details.

We recall the Fourier convolution theorem, which states that the convolution of two
image space functions f (r) and g(r) can be equally expressed as the point-wise product
of their Fourier transforms, f̃ (k) and g̃(k):

f (r) ⋆ g(r) = ℱ −1[f̃ (k) ⋅ g̃(k)]. (10.40)

We now look at a pair of filters H1 and H2 with the property that their k-space
representations behave like

H̃2(k, 𝜗)
H̃1(k, 𝜗)

= kp
, (10.41)

where (k, 𝜗) represent polar coordinates of a two-dimensional k-space, and p ∈ ℝ. For
a monofrequency plane wave ũ(k0, 𝜗) with wave number k0 and arbitrary propagation

5 The “frequency” in LFE relates to spatial frequencies, as quantified by the wave number, rather than
oscillation frequencies.
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direction, the filters H1 and H2 can extract the wave vector from the wave:

u ⋆ H2

u ⋆ H1
=

ℱ −1[ũ ⋅ H̃2]
ℱ −1[ũ ⋅ H̃1]

= kp
0 . (10.42)

If the wave is not truly monochromatic, but its spectrum is concentrated around some
value k0, Eq. (10.42) will instead yield an average wave number instead.

The filter functions used for LFE are drawn from a class known as log-normal
quadrature filters [216, 217]. Their k-space representation is given by

H̃1(k, 𝜗, kc) = exp
(

− 1
2 ln 2

ln2
(

k
kc

))

⋅
Nd∑

m=1
Dm(𝜗), (10.43)

where kc is the characteristic frequency of the filter, Nd is the number of spatial
dimensions, and

Dm(𝜗) =
{
(k̂ • n̂m)2 if k̂ • n̂m > 0
0 else

, (10.44)

where n̂m is the unit vector along the mth dimension of k-space and k̂ = k∕|k|. Each Dm
defines a directional filter that is aligned with one of the coordinate axes and only lets
wave vectors with a component parallel (as opposed to antiparallel) to the coordinate
axis pass.

A second filter can be defined as

H̃2(k, 𝜗, kc) = k ⋅ H̃1(k, 𝜗, kc) = kc

√
2H̃1(k, 𝜗, 2 ⋅ kc). (10.45)

The filter pair (H̃1, H̃2)hence satisfies the relation (10.41) for p = 1, and one can therefore
obtain an estimate of the local wave number (known as the “local frequency” in signal
processing, hence the name of the method) by filtering the displacement field u with
both filters and taking the quotient of the results, as prescribed by Eq. (10.42). The wave
number can then be converted into a wave velocity via k = 𝜔

c
, and further into a shear

modulus via 𝜇 = 𝜌c2.
Usually, the local wave number is not precisely known a priori, and it can also vary

significantly over inhomogeneous tissue regions or in the vicinity of tissue boundaries.
The two filters H̃1 and H̃2 vary by a factor 2 (one octave) in their characteristic frequency,
according to Eq. (10.45). If the true local frequency does not fall into that interval, the
estimate of k will be incorrect. Therefore, it is common practice to use a bank of fil-
ters with different center frequencies, and to inspect the output of pairs of filters whose
characteristic frequencies differ by one octave.

Because of the relation

ℱ [ f ′(x)] = k ⋅ ℱ [ f (x)], (10.46)

we can see from Eq. (10.45) that applying the filter H̃2 is similar to applying a spatial
derivative to the output of the filter H̃1. Solving for k by LFE is therefore comparable to
the PG method discussed in Section 10.2, which is also based on a first spatial derivative
of the displacement field and contrasts the (AHI) methods based on the inversion of the
wave equation, which require second-order derivatives. Hence, LFE can be considered
more resilient to noise than AHI because of the noise-amplifying characteristics of
derivatives. On the downside, the application of filters with an extended spatial support
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Figure 10.3 Comparison of different inversion methods in the literature. (a) Simulated data and the
LFE, direct inversion (DI, here: AIDE), and phase gradient (PG) reconstructions for the noiseless data
(from left to right). LFE is smoother than DI and PG. Since no directional filters were used, PG is badly
disturbed by phase discontinuities. (b) Phantom data reconstructed by LFE, DI, and PG, here including
directional filters prior to the inversions. With directional filters, PG performs better; however, artifacts
below the inclusions presumably due to diffraction are still more apparent than in other methods. Of
note, phantom data comprise only a single wave field component at a single frequency.
Multicomponent, multifrequency data can further reduce those artifacts toward the method
described as k-MDEV inversion (see Section 10.6). (Manduca 2001 [194]. Reproduced with permission
of Elsevier (a) and Manduca 2003 [220]. Reproduced with permission of Elsevier (b).)

means that in inhomogeneous tissue the reconstructed elasticities converge rather
slowly toward their true value. This means that near a boundary between two different
media, the boundary region becomes fuzzy, and the true elastic properties can only be
reconstructed at a certain distance from the boundary. Similarly, the elastic estimates
of small inclusions will be biased toward the elastic properties of the surrounding
medium. The spatial resolution LFE is therefore determined by the width of the filters,
and it can be dramatically lower than the actual image resolution.

In Figure 10.3, we present a comparison of different single-frequency inversion
methods in numerically simulated data.

10.5 Multifrequency Inversion

The previously discussed inversion methods can be performed on data that were
acquired using a single vibration frequency. However, single-frequency schemes suffer
from a number of problems, including inhomogeneous illumination of the organ of
interest due to standing wave nodes and attenuation especially in the higher frequency
(≳ 60Hz) range. Standing waves are characterized by nodes with zero displacement
amplitude. While under ideal, noise-free conditions, it is possible to recover correct
moduli even for these nodes; in the presence of noise, the process is highly unstable
and the results become random. Regions with low wave intensity tend to have lower
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SNR and consequently yield lower elasticity estimates because of the noise-enhancing
Laplacian in Eq. (10.27), for example. These issues can be ameliorated by performing
averaging over several distinct vibration frequencies. This approach is implicitly based
on the assumption the elastic moduli are independent of the vibration frequency,
that is, G∗ = G∗(r) rather than G∗(r, 𝜔). The absence of dispersion is strictly only
true for purely elastic media, whereas viscous effects inevitably introduce dispersion
(see Section 4.8.2 and Figure 4.7). However, for the sake of simplicity, we demonstrate
the principle of frequency averaging for resolution improvement without relying on
any particular viscoelastic model.

In Section 10.3, we mentioned that independently calculated G∗ maps obtained at
different vibration frequencies can be combined by averaging over frequencies. A better
way than averaging over elastic moduli is to combine the raw wave fields acquired
at these frequencies into a single composite wave field, which is then subjected to
an inversion algorithm. The first version of this approach was published in [221] and
termed MDEV (multifrequency dual elasto-visco inversion).6 In the following section,
we will present an improved version of this method published in [69].

We begin the discussion by formulating the Helmholtz equation in terms of the
complex shear modulus

G∗ = |G∗| ⋅ ei𝜑
. (10.47)

The phase angle 𝜑 quantifies the ratio of elastic to viscous properties of the tissue.
𝜑 = 0 corresponds to purely elastic characteristics, whereas 𝜑 = 𝜋

2
designates pure

viscosity. Values outside of this range are unphysical. The phase angle is also related
to the interpolation parameter 𝛼 in the springpot model (see Eq. (4.106)) via 𝛼 = 2

𝜋
𝜑.

Thus, for a medium characterized by a springpot model, 𝜑 provides an intrin-
sic, frequency-independent property. The goal of multifrequency inversion is to
reconstruct both parameters on the right-hand side of Eq. (10.47) independently.

10.5.1 Reconstruction of 𝝋

Let ṽ be an arbitrary component of the displacement field ũ(r, 𝜔), then

G∗(r) ⋅ Δṽ(r, 𝜔) = −𝜌𝜔2ṽ(r, 𝜔) (10.48)

=⇒ Δṽ = − 𝜌𝜔
2

|G∗|
⋅ e−i𝜑ṽ, (10.49)

which tells us that Δṽ is just a scaled (with factor − 𝜌𝜔
2

|G∗|
) and rotated (with angle −𝜑)

copy of ṽ. In order to retrieve the rotation angle 𝜑, we can multiply both sides with
(−ṽ†), where the dagger indicates complex conjugation:

− ṽ† ⋅ Δṽ = 𝜌𝜔
2

|G∗|
⋅ |ṽ|2 ⋅ e−i𝜑

. (10.50)

6 The term “dual” alludes to the fact that elasticity and viscosity are retrieved from two mutually
independent calculation steps.
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The exponential function is the only complex quantity on the right-hand side. Therefore,
we can retrieve 𝜑 by extracting the complex phase on both sides and exploiting the fact
that arg(a† ⋅ b) = − arg(a ⋅ b†):

arg(−ṽ ⋅ Δṽ†) = 𝜑. (10.51)

Equation (10.51) yields the phase angle of the complex modulus for a measurement
with a single vibration frequency 𝜔 and one Cartesian component of the displacement
field. If measurements at N different frequencies 𝜔i and assessing all three components
ũj of the field are performed, there are two options to combine these data into one
value of 𝜑. First, Eq. (10.51) could be evaluated for all frequencies and components
separately, with v = ũj(𝜔i), and then an average value of 𝜑 could be calculated. However,
this would again be a single-frequency inversion with subsequent averaging, with all
disadvantages discussed above. Second, assuming that there was no dissipation, all
components should yield the same value inside the parentheses of the arg function.
Therefore, averaging can also be performed before the arg is applied. The equation then
reads7

𝜑 = arg

(

−
N∑

i=1

3∑

j=1
ũj(𝜔i) ⋅ Δũ†

j (𝜔i)

)

. (10.52)

Each term in the sum is intrinsically weighted by the product |ũj(𝜔i)| ⋅ |Δũj(𝜔i)|.
Weighting by |ũj| ensures that frequencies with higher vibration amplitude, and hence
higher SNR, contribute more to the result than frequencies with lower amplitudes
and lower signal quality. This prioritizes lower frequencies, which tend to have larger
amplitudes than higher ones. Weighting by |Δũj|, on the other hand, emphasizes waves
with greater curvature, which corresponds to better SNR in the Laplacian of the wave
field. Since curvature is inversely related to the wavelength, the curvature is larger for
higher frequencies than for lower ones at the same vibration amplitude.

An alternative way of calculating the phase angle is to utilize the scalar product
relation a • b = |a| ⋅ |b| ⋅ cos(∢(a,b)). We can hence recover the phase angle as

𝜑 = arccos
(

− ṽ • Δṽ
|ṽ| ⋅ |Δṽ|

)

, (10.53)

if we treat ṽ and Δṽ as two-dimensional vectors in the complex plane. For noiseless
data, this is identical to Eq. (10.51). However, in the presence of noise, the two methods
differ (see Figure 10.4). Imagine a purely elastic medium, with a phase angle 𝜑 = 0 (i.e.,
ṽ and Δṽ are colinear). Measurement noise causes the actual value of 𝜑 to fluctuate
around zero. If 𝜑 is calculated for each voxel separately and then averaged over the
region of interest, these fluctuations cancel out and the resulting value of 𝜑 should
be very close to zero. This is the result obtained when Eq. (10.51) is used. However,
due to the definition of the arccosine function with image domain 0 ≤ arccos(x) ≤ 𝜋,
small negative values of 𝜑 are actually mapped to small positive values. This means
that the fluctuations over a region of interest cannot cancel, since each contribution is
≥ 0. Therefore, the averaged value of 𝜑 obtained by the latter method is biased toward
higher values of 𝜑, thus overemphasizing the imaginary part. The effect becomes

7 Since dividing by the number of components and frequencies inside the arg function would have no effect
on the phase, this factor is left out of the equation.
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Figure 10.4 Comparison of the two formulas for the reconstruction of 𝜑, Eq. (10.52) (“method A”) and
Eq. (10.53) (“method B”). Noisy one-dimensional waves were subjected to inversion at different SNR
levels. Ideally, the true phase angle (which was used as the simulation parameter, plotted on the
horizontal axis) should equal the calculated phase angle (obtained from the inversion, shown on the
vertical axis). For method A, the agreement between the two values is indistinguishable from the ideal
line 𝜑computed = 𝜑true even at a very low SNR= 1. For method B, we see a systematic overestimation of
the calculated 𝜑-value due to the bias of the arccos function toward positive values, especially when 𝜑

is close to zero. Method B only yields accurate results in the noise-free case. Every inversion step was
repeated 105 times, and the averaged results are shown to minimize stochastic fluctuation. (Dittmann
2015 [69]. Reproduced with permission of Wiley.)

smaller as the viscosity of the medium increases, since in that case the true value of 𝜑
becomes larger, and noise is less likely to shift 𝜑 to negative values.

10.5.2 Reconstruction of |G∗|

For reconstructing the magnitude of G∗, we can take the absolute value of Eq. (10.49).
Again, assuming that G∗ is the same for all frequencies and field components, we can
sum both sides of the equation over i and j:

N∑

i=1

3∑

j=1
|G∗| ⋅ |Δũj(𝜔i)| =

N∑

i=1

3∑

j=1
𝜌𝜔

2
i |ũj(𝜔i)| (10.54)

=⇒ |G∗| = 𝜌 ⋅

N∑

i=1

3∑

j=1
𝜔

2
i |ũj(𝜔i)|

N∑

i=1

3∑

j=1
|Δũj(𝜔i)|

. (10.55)

Again, this is a true multifrequency inversion, since the wave fields are first averaged
over all components and frequencies before the division is performed, as opposed to
solving Eq. (10.49) for each (i, j) separately and averaging over the results.

The complex modulus can then be calculated using Eq. (10.47), with the values for
|G∗| and 𝜑 obtained from Eq. (10.55) and Eq. (10.52) (or Eq. (10.53)), respectively.
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It should be noted that parameters reconstructed by multifrequency inversion are
influenced by tissue-specific wave attenuation properties. Those parameters represent
a frequency-weighted average, and the relative weighting is likely to change as the wave
moves deeper into the tissue, where higher frequencies experience stronger attenuation.
Indeed, frequency-dependent attenuation is a challenge for all types of multifrequency
elastography methods, especially for those relying on transient mechanical stimulations,
such as many ultrasound-based methods. Viscosity of the tissue acts as a low-pass
filter, hence lower frequencies dominate at longer sampling times in ultrasound-based
elastography. Compared to transient impulses as, for example, used by acoustic
radiation force impulse (ARFI) techniques (see Section 12.3), the frequency band
exploited by MRE is relatively narrow. Nevertheless, frequency averaging by MDEV
inversion ignores the fact that soft biological tissue displays frequency dispersion of
|G∗| and thus depends on the used frequency range, similar to all other MRE methods
not based on viscoelastic modeling. Comparisons of values between different types of
tissue and cross-validation of parameters should be based on single-harmonic MRE
even though the encountered inverse problem is often more affected by noise and
amplitude nulls.

10.6 k-MDEV

In Section 10.2, we introduced the PG method for estimating the wave number k
based on first-order derivatives. We also mentioned the shortcomings of the methods,
particularly its inability to cope with superposition of waves traveling in different
directions. In this section, we demonstrate how these issues can be overcome through
improved postprocessing and spatial filtering.

A novel inversion method has been devised recently and termed k-MDEV (k-based
MDEV inversion) [222]. In contrast to the other inversion routines mentioned thus far
(except LFE), it does not require second-order derivatives. It is built upon the principle
that the real and imaginary parts of the complex wave vector, k′ and k′′, respectively, can
be calculated from first-order spatial derivatives of the temporally Fourier-transformed
displacement field. A full k vector can be calculated for every component ũj of the
displacement field. While it is in principle possible to obtain three-dimensional
wave vectors, technical limitations have thus far restricted the method to in-plane
applications, yielding two-dimensional k vectors. We introduce the notation

k(j) = k′
(j) + ik′′

(j) in-plane (2D) wave vector obtained from ũj (10.56)
k′
(j) = ||k′

(j)|| Real part of the complex wave vector (10.57)
k′′
(j) = ||k′′

(j)|| Imaginary part of the complex wave vector (10.58)

with the Euclidean in-plane norm

‖𝜒‖ =
√

𝜒
2
1 + 𝜒

2
2 . (10.59)

For each of the three displacement field components, we calculate the magnitude of
the real and imaginary parts of the wave vector as
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k′
(j) =

‖
‖
‖
‖
‖

∇(2D)
( ũj

|ũj|

)‖
‖
‖
‖
‖

(10.60)

k′′
(j) =

‖
‖
‖
∇(2D)|ũj|

‖
‖
‖

|ũj|
(10.61)

with the in-plane gradient operator ∇(2D). Normalization of ũj by |ũj| renders the
reconstructed real part of the wave vector immune to bias from geometric attenuation
(see Section 4.11.1), which would otherwise be mistaken for dissipative damping.
However, for the imaginary part k′′

(j), geometric attenuation cannot be separated
from dissipative damping, since the normalization is performed after calculating the
gradient. Therefore, k′′

(j) does not represent purely viscous properties, but it is tainted
by geometrical factors. We will thus restrict the further discussion to k′

(j).
Remember that k′

(j) refers to the magnitude of the wave vector, ||k′
(j)||, which is the

in-plane wave vector derived from the jth Cartesian component of the displacement
field, it is not the jth component of k′. Ideally, in an isotropic medium, the relation ||k′|| =
k′
(1) = k′

(2) = k′
(3) should hold.

Equations (10.60) and (10.61) can be easily verified if a plane wave
ũj = u0j ⋅ eik′

(j)•x−k′′
(j)•x is inserted:

|ũj| = u0j ⋅ e−k′′
(j)•x (10.62)

∇(2D)
( ũj

|ũj|

)

= ∇(2D)eik′
(j)•x = ik′

(j) ⋅ eik′
(j)•x (10.63)

⇒
‖
‖
‖
‖
‖

∇(2D)
( ũj

|ũj|

)‖
‖
‖
‖
‖

= ‖k′
(j)‖ (10.64)

∇(2D)|ũj| = u0j∇(2D)e−k′′
(j)•x = −k′′

(j) ⋅ e−k′′
(j)•x (10.65)

⇒
‖∇(2D)|ũj|‖

|ũj|
=

‖−k′′
(j)‖ ⋅ u0j ⋅ e−k′′

(j)•x

u0j ⋅ e−k′′
(j)•x

= ‖k′′
(j)‖. (10.66)

Using Eqs. (10.60) and (10.61) for the determination of the wave vector is heavily
biased if the wave field is a superposition of several waves propagating in different
directions.

Directional filters (Section 8.2) can be utilized to decompose the full wave field into
waves propagating in different directions 𝜗n prior to reconstruction of k′

(j). Finally,
all wave field components (index j), vibration frequencies (index i), and propaga-
tion directions (index n) can be combined into one inversion that yields the wave
speed c(r):

1
c(r)

=

∑
i,j,n

k′
(j)(r,𝜔i,𝜗n)

𝜔i
wi,j,n

∑
i,j,nwi,j,n

(10.67)

with an empirical weight factor wi,j,n = |uj(r, 𝜔i, 𝜗n)|4. Equation (10.67) is similar to the
MDEV principle for the solution of the Helmholtz equation for multiple frequencies
and polarization components (Section 10.5), which inspired the name k-MDEV
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Figure 10.5 Illustration of the principle behind k-MDEV in the abdomen. (a) 12 direction-filtered
images at 45 Hz vibration. Each image is the superposition of the three displacement components, and
the white arrows indicate the direction of the directional filter. (b) Wave speed images for individual
frequencies, and the final imaging combining all frequencies (bottom right). Each single-frequency
image is the superposition of 12 direction-filtered images, as shown in (a). The compound image thus
incorporates all three Cartesian components of the displacement field, captured at seven vibration
frequencies. (Tzschätzsch 2016 [222]. Reproduced with permission of Elsevier.)

for this method. The weighting factor emphasizes frequencies with high vibration
amplitude and good SNR over those with lower amplitudes and poorer signal quality.

The wave velocity c can be converted into a shear modulus via c =
√

|G∗|

𝜌
. An example

of abdominal MRE using k-MDEV inversion is shown in Figure 10.5.
Figure 10.6 illustrates the noise robustness of k-MDEV as compared to DI by AHI. The

graphs represent spatially averaged inversion results of simulated 1D complex-valued
waves of 30 and 60 Hz vibration frequencies at different noise levels. AHI is demon-
strated to result in severe underestimation of mean wave speed values, especially at low
frequencies and high noise level (low SNR), even though the noise-suppressing filters
were identical to those used in k-MDEV. As explained in Section 10.1, the effect of
noise is predominant at low frequencies, whereas at high frequencies we note a slight
overestimation due to discretization (as in k-MDEV at 60 Hz).
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Figure 10.6 Simulated sensitivity of k-MDEV and direct inversion to noise. Simulations were based on
one-dimensional waves with c = 1.5 m/s and two frequencies (30 and 60 Hz). Gaussian noise was
added to a complex harmonic function u = eik⋅x with 2 mm pixel spacing. The resulting noisy waves
were subsequently analyzed by k-MDEV (k = ∇ u

|u|
) and direct inversion based on AHI (|G∗| = 𝜌𝜔

2 |u|

|Δu|
).

k-MDEV performs well even at low SNR whereas AHI severely underestimates values due to
second-order derivatives in the Laplacian. (Tzschätzsch 2016 [222]. Reproduced with permission of
Elsevier.)

10.7 Finite Element Method

This chapter was coauthored by Abbas Samani from the Department of Electrical and
Computer Engineering and the Department of Medical Biophysics, University of Western
Ontario, Canada.

The term “finite element method” (FEM) relates to a class of procedures that can be
used to solve partial differential equations (PDEs). Different implementations of FEM
vary significantly; however, all of them are founded on a weak form derived from the
original PDE before their approximate solutions are obtained in a discretized form of
the problem’s spatial domain. FEM is a very sophisticated and well-developed tech-
nique, with applications in almost all engineering fields. This chapter can barely scratch
the surface of this topic and it is intended to provide a relevant introduction. Here,
we will describe underlying principles of the method. For implementation pertaining
to complex real-world applications, we refer the reader to specialized literature, for
example, [223].

A typical FEM algorithm can be subdivided into a number of steps, which will be
discussed below. The most fundamental part of FEM formulation is PDE conversion into
one or more algebraic equations. There are a number of mathematical frameworks that
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can be used for this conversion such as the variational method and Galerkin method.
The main steps involved in a typical FEM algorithm are:
1) The problem domain is discretized into appropriate geometric primitives called finite

elements. Typical choices are intervals of constant or variable length for 1D problems,
triangles in 2D, and tetrahedra in 3D problems. Unknown problem parameters (e.g.,
displacements) are assigned at nodes of these finite elements.

2) A set of basis functions (shape functions) are introduced to interpolate the problem
parameter inside the finite element in terms of the nodal parameters. In order to
decrease computational complexity, each shape function has a small support limited
to the domain of its associated finite element.

3) The governing PDE is converted into algebraic equations valid for the domain of
each finite element using a suitable mathematical framework such as the variational
method. This method involves the so-called weak formulation as it approximates the
PDE such that the solution and boundary conditions do not match the PDE solu-
tion and the domain boundary conditions exactly, but approach them as the element
size gets smaller. This framework involves the shape function of the elements, lead-
ing to algebraic equations in terms of these shape functions. The resulting algebraic
equations are referred to as element stiffness equations.

4) The element stiffness equations are assembled in a systematic way to satisfy
fundamental equations governing the problem (e.g., force equilibrium equations) at
each node in the discretized domain. This leads to a system of algebraic equations
governing the entire domain, called the global stiffness equations.

5) The problems boundary conditions are applied before the global stiffness equations
are solved to calculate the unknown nodal parameters (e.g., displacements).

It is noteworthy that FEM is used for forward modeling where the object geometry,
distribution of its viscoelastic properties, and loading are given to calculate displace-
ment, stresses, and other parameters. In contrast, elastography is an inverse problem
where the displacement field is given along loading to determine the viscoelastic
parameter distribution inside the material. Inverse FEM is one of the several methods
used to calculate an approximation of the viscoelastic parameter distribution. This
can be done either directly using the measured displacements in conjunction with
the global stiffness matrix arranged in terms of the unknown viscoelastic parameters.
Another alternative for viscoelastic parameter reconstruction is using an iterative
scheme, which uses the forward FEM equations iteratively to refine the parameters
estimated by minimizing the mismatch between the FEM-simulated displacement field
and its measured counterpart.

The following example will demonstrate how to formulate an FEM solution for the
one-dimensional wave equation using the variational method as described in [204].

10.7.1 Weak Formulation of the One-Dimensional Wave Equation

In an incompressible medium, the single-component Navier equation (4.129) can be
written in compact form as

𝜌ü(x, t) − 𝜇(x) Δu(x, t) = f (x, t), (10.68)
where 𝜌 is the mass density, 𝜇 represents the elastic modulus of the medium, and
f (x, t) is the force applied to the medium. In this context, it is assumed that 𝜇 is
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position-dependent but slightly varying. Hence, all of its spatial derivatives in the
equation can be neglected. By dropping the time and space annotation in the equation
and moving all terms to one side, the following equation can be obtained:

𝜌ü − 𝜇Δu − f = 0. (10.69)

In order to solve the wave equation in its spatial domain Ω, which can be one-, two-, or
three-dimensional, we define a vector space of test functions V = {v|v ∶ Ω → ℂ} that
map the problem domain into complex numbers space. Next, we multiply both sides
of Eq. (10.68) with the arbitrary test function v(x) ∈ V and integrate over Ω. This is a
mathematical trick, borrowed from the calculus of variations, that allows us to rewrite
Eq. (10.68) into a more suitable form. We will see later that the obtained solution is
independent of the choice of v. Therefore, we do not need to specify v explicitly:

∫Ω
(𝜌 ü − 𝜇Δu − f ) ⋅ v dx =

∫Ω
0 ⋅ v dx = 0. (10.70)

We can rewrite the middle term of the integral on the left-hand side by exploiting the
Gaussian divergence theorem

∫Ω
∇ • Fdx =

∫
𝜕Ω

F • n̂ d𝜎 (10.71)

for an arbitrary vector field F, where n̂ is the outer normal unit vector to the surface
element 𝜎 and 𝜕Ω is the boundary of Ω. Choosing F = v∇u allows us to write

∫Ω
∇ • (v∇u)dx =

∫
𝜕Ω
(v∇u) • n̂ d𝜎 (10.72)

⇔
∫Ω

∇v • ∇u dx +
∫Ω

vΔu dx =
∫
𝜕Ω
(v∇u) • n̂ d𝜎 (10.73)

⇔
∫Ω

vΔu dx =
∫
𝜕Ω
(v∇u) • n̂ d𝜎 −

∫Ω
∇v • ∇u dx. (10.74)

In the second line, we used the product rule of differentiation. This intermediate result
allows us to rewrite Eq. (10.70) as

∫Ω
(𝜌 ü ⋅ v + 𝜇∇v • ∇u − f ⋅ v)dx − 𝜇

∫
𝜕Ω
(v∇u) • n̂ d𝜎 = 0. (10.75)

The fundamental theorem of the calculus of variations states that a function u(x, t) is
a solution to Eq. (10.68) only if it satisfies Eq. (10.75) for any v ∈ V . The problem was
hence reformulated from solving the PDE directly to finding a suitable solution u(x, t)
for Eq. (10.75). This in itself does not simplify the problem yet, as the solution space for
u(x, t) has infinite dimension. However, in a later step, we will substitute the general
functions u and v with linear combinations of shape functions with small support,
which will significantly reduce the size of the solution space.

10.7.2 Discretization of the Problem Domain

The concept underlying FEM is to substitute the continuous problem domain Ω with a
discretized domain. As a consequence, the solution is obtained at a certain set of points
(called nodes) that sample the domain, whereas values for other points in the domain
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Figure 10.7 Discretization of the problem domain in 3D. A block of material is indented locally, and
the resulting deformation is reflected in the deformation of the mesh. (Reiter 2014 [224]. Reproduced
with permission of Elsevier.)

have to be obtained by interpolation. For a one-dimensional problem, discretization
means dividing the line domain into several small segments, where nodes are located at
the two ends of each segment. In 2D and 3D, the domain is subdivided into geometric
primitives, typically triangles and tetrahedra, but other primitives such as quadrilaterals
and hexahedrons are also viable (Figure 10.7). The nodes coincide with the vertices
of the primitives. High node density increases the accuracy of the solution at the
cost of higher computational complexity. Variable node density can be prescribed
in cases where the solution is expected to have local high gradients. In such cases,
high node density is used in anticipated solutions including high gradient regions.
In order to form a consistent FE mesh, element nodes can only intersect with other
element nodes, that is, nodes cannot intersect with another element’s edge. Nodes are
denoted using a single index (xi, i = 1,…,N). Together with the edges of the geometric
primitives, the nodes form a mesh, called FE mesh, which defines the space on which
calculations are performed. FEM provides the sought solution of unknown parameters
(e.g., displacements) at the mesh nodes directly, while the parameters at other points
within an element can be calculated using the element shape function. The notation x
will henceforth denote a node belonging to the FE mesh.

10.7.3 Basis Function in the Discretized Domain

Here, we introduce a set of simple shape functions that are involved in FEM formula-
tion. We mentioned earlier that in order to facilitate computations, the shape functions
should have local support and minimal overlap. This can be guaranteed if the shape
functions are chosen such that their support is limited to exactly one node and one
finite element containing that node (excluding the other nodes defining that element).
In the 1D case, this simply means that the support of a shape function is limited to the
one node and the space between that node and its nearest left- and right-hand-side
neighbors where the function’s value is 1 and 0 at the node and its neighboring nodes,
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Figure 10.8 Illustration of the shape
functions 𝜓i(x) on a one-dimensional
mesh with N = 4 equidistantly spaced
nodes.

respectively. For a triangulation of a 2D surface, the support of a shape function
corresponds to one node and one triangle adjacent to that node where the function’s
value is 1 and 0 at the node and its neighboring nodes, respectively.

For our 1D example, we define shape functions as hat functions, as illustrated in
Figure 10.8. Each shape function 𝜓i is equal to unity at the node xi, and scales linearly
to zero toward its two neighbors. In this case, each node is associated with exactly one
shape function. As a consequence, the shape functions are orthonormal with respect to
the scalar product

⟨𝜓m, 𝜓n⟩ ≡

N∑

i=1
𝜓m(xi) ⋅ 𝜓n(xi) = 𝛿mn. (10.76)

Note that this scalar product only takes into account the nodes, and not points between
nodes.

The scalar product (Eq. (10.76)) allows us to expand arbitrary functions g(x) in terms
of the shape function {𝜓i}:

ǧ(x) =
N∑

i=1
ai ⋅ 𝜓i(x) (10.77)

with ai = ⟨𝜓i, g⟩. (10.78)

The expansion ǧ is exact only at the nodes, whereas along the edges, ǧ and g can differ.
The amount of deviation depends on the smoothness of g and how coarse the mesh is.

10.7.4 FE Formulation of the Wave Equation

We now aim to express the weak formulation of the wave equation (10.75) in terms of
the shape functions {𝜓i}. However, the solution u(x, t) has an explicit time dependence.
We can account for this by introducing time-dependent expansion coefficients 𝛾i(t):

ǔ(x, t) =
N∑

i=1
𝛾i(t) ⋅ 𝜓i(x). (10.79)

FEM provides a way to calculate the coefficients 𝛾i(t) so that the approximate solution
ǔ becomes a time-dependent linear combination of the spatial shape functions.
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We also expand the arbitrary test function v(x) in terms of {𝜓i}:

v̌(x) =
N∑

i=1
𝛽i ⋅ 𝜓i(x) (10.80)

with 𝛽i = ⟨𝜓i, v⟩. (10.81)

Since v is time-independent, the coefficients 𝛽i are constant. Inserting the expansions
(Eqs. (10.79) and (10.80)) into Eq. (10.75) yields

N∑

i,j=1

(

∫Ω
(𝜌�̈�i𝜓i ⋅ 𝛽j𝜓j + 𝜇𝛾i𝛽j∇𝜓i • ∇𝜓j − f ⋅ 𝛽j𝜓j)dx

−𝜇
∫
𝜕Ω
(𝛾i𝛽j𝜓j ⋅ ∇𝜓i) • n̂ d𝜎

)

= 0. (10.82)

The coefficient 𝛽j is contained in every term of the equation and can therefore be factored
out:

N∑

i,j=1
𝛽j⋅

(

∫Ω
(𝜌�̈�i𝜓i ⋅ 𝜓j + 𝜇𝛾i∇𝜓i • ∇𝜓j − f ⋅ 𝜓j)dx

−𝜇
∫
𝜕Ω
(𝛾i𝜓j ⋅ ∇𝜓i) • n̂ d𝜎

)

= 0. (10.83)

Equation (10.83) can be satisfied if the term in the parentheses vanishes for each value
of j independently, leading to:

𝜌 ⋅
N∑

i=1
�̈�i
∫Ω

𝜓i ⋅ 𝜓jdx
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=Aij

+ 𝜇 ⋅
N∑

i=1
𝛾i
∫Ω

∇𝜓i • ∇𝜓jdx
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=Bij

− 𝜇 ⋅
N∑

i=1
𝛾i
∫
𝜕Ω
(𝜓j ⋅ ∇𝜓i) • n̂d𝜎

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=Cij

=
∫Ω

f ⋅ 𝜓jdx
⏟⏞⏞⏞⏟⏞⏞⏞⏟

=fj

. (10.84)

In vector notation, the equation can be expressed as follows:

𝜌 ⋅ �̈� ⋅ A + 𝜇(x) ⋅ 𝜸 ⋅ B − 𝜇(x) ⋅ 𝜸 ⋅ C = f, (10.85)

where 𝜸 and f are vectors composed of the entries 𝛾i and fi, respectively. Equation (10.85)
is a system of second-order ordinary differential equations, for which a number of
solution algorithms exist [225]. The matrices A, B, and C are sparse, since the integrals
in Eq. (10.84) vanish if i and j do not refer to the same or adjacent nodes because of
the local support of 𝜓i. It can be further seen that the solution 𝜸 is independent of
the choice of the test function v(x) as long as it is a linear combination of the shape
functions. We can use Eq. (10.85) to calculate the resultant wave field for given force
f and elasticity distribution 𝜇(x). As such, this equation can be used in an algorithm to
solve the elastography inverse problem iteratively. In the first step of such algorithm,
an initial guess for 𝜇(x) is used to calculate the field ǔ. This field is compared to the
measured displacement field. The estimate of 𝜇(x) can be refined using a mathematical
framework (e.g., optimization) based on the difference between the calculated and
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measured displacement fields. This procedure is repeated iteratively, until the mismatch
is lower than a predefined threshold in a suitable metric. In order to enforce certain
properties of the solution, such as smoothness of the field, additional constraints can
be incorporated into the mismatch metric.

Another alternative to solve the elastography inverse problem is to solve Eq. (10.85)
directly for 𝜇(x):

𝜇(x) ⋅ 𝜸 ⋅ (B − C) = f − 𝜌�̈� ⋅ A. (10.86)

The measured displacement field umeas(x) can be expanded in the discretized basis
functions according to Eq. (10.79) by using the scalar product:

𝛾i(t) = ⟨𝜓i(x),umeas(x, t)⟩. (10.87)

Equation (10.86) can then be solved by appropriate iterative or direct matrix inversion
schemes.

It is noteworthy that the description provided here is only a rough overview of the
FEM. As such, applying the above equations to actual displacement data may yield
poor results. The method contains several parameters that could be tuned for optimal
results. These include the shape functions, FE mesh composition, design of the cost
function, and the numerical algorithms for matrix inversion. More detailed treatments
of FEM in the context of MRE or ultrasound elastography can be found in [213].

The iterative finite element inversion and DI are two fundamentally different
approaches to the same problem of deriving viscoelastic moduli from displacement
fields. Both methods have their advantages and disadvantages, and neither is generally
superior to the other. To conclude this section, we list the main differences between
these methods.

• In contrast to DI methods, which make implicit assumptions about boundary
conditions, iterative FEM inversion requires force or displacement boundary condi-
tions to be explicitly specified. This can be an advantage if these boundary conditions
are known. However, in medical applications, the geometry of organs and boundaries
between them make it difficult to correctly model boundary conditions.

• Some formulations of FEM allow for numerical derivatives of the displacement field to
be substituted with analytical derivatives of the shape functions, thus circumventing
the noise amplification pertaining to the derivatives that DI algorithms have to cope
with.

• Equation (10.68) is based on the assumption that the induced displacement field is
purely transverse without any compressional waves. This is not always the case, and
the full Navier equation (4.129) has to be used instead to account for a finite (though
possibly very large) bulk modulus K , thus increasing the complexity of the model and
hence computation time. In DI, the field can be separated into compressional and
shear components by applying the divergence and curl operators, respectively (see
Eqs. (4.141) and (4.143)). A similar concept for iterative FEM inversion was suggested
in [226].

• Reconstruction time for iterative FEM inversion is often a matter of hours compared
to seconds to minutes for DI methods.
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10.8 Direct Inversion for a Transverse Isotropic Medium

In Section 4.10, we discussed the physical concept used to describe wave propagation in
anisotropic media. For the special case of a transverse isotropic medium, the equations
of motion were presented in Eq. (4.186). However, since the differential operator L̂,
defined in that equation, does not commute with the curl operator,

∇ × (L̂u) ≠ L̂(∇ × u) = L̂c, (10.88)

we cannot achieve a separation of the shear field by simply substituting u with q = ∇ × u,
as we did in the isotropic case (Eqs. (4.141) and (4.143)). We will therefore present an
alternative inversion strategy to determine the three complex viscoelastic constants 𝜇12
(shear modulus in the plane of isotropy), 𝜇13 (shear modulus along the fibers), and E3
(Young’s modulus along the fibers) of an incompressible transverse isotropic medium.

Even though the operators do not commute, we can still apply the curl operator to
both sides of Eq. (4.186). As a result, the equation of motion for shear waves in an
incompressible transverse isotropic medium reads

𝜌 ⋅ q̈ = 𝜇12 ⋅ Δq + 𝜏1 ⋅

⎡
⎢
⎢
⎢
⎣

𝜕
2q
𝜕z2 +

⎛
⎜
⎜
⎜
⎝

𝜕
3u3

𝜕y𝜕x2 +
𝜕

3u3

𝜕y3

− 𝜕
3u3

𝜕x3 − 𝜕
3u3

𝜕x𝜕y2

0

⎞
⎟
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

A

+ 𝜏2 ⋅

⎛
⎜
⎜
⎜
⎝

𝜕
3u3

𝜕y𝜕z2

− 𝜕
3u3

𝜕x𝜕z2

0

⎞
⎟
⎟
⎟
⎠

⏟⏞⏟⏞⏟

B

(10.89)

with

𝜏1 = 𝜇13 − 𝜇12 (10.90)
and 𝜏2 = E3 − 3𝜇13. (10.91)

The solution of this three-parameter model for complex-valued moduli 𝜇∗
12, 𝜇∗

13, and E∗
3

is given by

𝜇
∗
12 = −𝜌𝜔

2

Γ

⎛
⎜
⎜
⎝

B2A3
−B1A3

B1A2 − B2A1

⎞
⎟
⎟
⎠

• q (10.92)

𝜇
∗
13 = −𝜌𝜔

2

Γ

⎛
⎜
⎜
⎝

B2(A3 − Δq3)
−B1(A3 − Δq3)

B1(A2 − Δq2) − B2(A1 − Δq1)

⎞
⎟
⎟
⎠

• q (10.93)

E∗
3 = −𝜌𝜔

2

Γ

⎛
⎜
⎜
⎝

3B2(A3 − Δq3) + A2Δq3 − A3Δq2
−3B1(A3 − Δq3) + A3Δq1 − A1Δq3

3B1(A2 − Δq2) − 3B2(A1 − Δq1) + A1Δq2 − A2Δq1

⎞
⎟
⎟
⎠

• q (10.94)

with Γ = (A2Δq3 − A3Δq2)B1 + (A3Δq1 − A1Δq3)B2.

Equations (10.92)–(10.94) therefore constitute a recipe for the calculation of the
viscoelastic parameters from the curl of the measured displacement field u.

It is important to keep in mind that the above equations are valid only in the special
case that the fibers are aligned with the z-axis of the coordinate system. In muscles,
where the fibers are fairly straight and their direction is known a priori, the image slices
can be aligned with the fiber direction during the MRE scan, so that postprocessing is



10.9 Waveguide Elastography 225

straightforward. In other organs, such as the brain, where nerve fibers follow curved
paths, additional information about fiber directions is necessary in order to apply the
method to the displacement field. As an example, diffusion tensor imaging (DTI) is
capable of providing maps indicating the principal direction of fiber tracts in each
voxel. By using these data, it is possible to calculate a local coordinate system, in which
the z-axis is aligned with the principal fiber direction in that respective voxel. Hence, a
local rotation of the coordinate system has to be performed for each voxel individually
prior to calculation of displacement field derivatives parallel and perpendicular to the
local fiber direction. However, DTI itself is often compromised by noise, which affects
the reliability of this approach. As an alternative, waveguide elastography based on
directional Fourier decomposition is recommendable (see Section 10.9), since it obtains
its directional information from reconstructed fiber tracts rather than from raw DTI
data, the former being a smooth vector field.

10.9 Waveguide Elastography

MR tractography, based on DTI, is capable of reconstructing fiber tracts as
three-dimensional curves [227]. These data can be used for an alternative approach to
wave analysis in fibrous media, termed waveguide elastography [72]. The underlying
assumption is that fibrous structures, particularly nerve bundles in the brain, guide
waves because of their highly anisotropic properties. Waveguide elastography is based
on an orthotropic material model (see Eq. (4.34)) with nine independent elastic con-
stants. We introduce a local coordinate system {n̂1, n̂2, n̂3}, in which the n̂3-direction
is the local tangent to the fiber bundle, and n̂1 and n̂2 span a plane perpendicular to the
fibers. With knowledge of the fiber directions in each voxel, we can use spatial–spectral
filtering to separate the different wave modes propagating along and perpendicular to a
fiber tract, which ultimately allows us to determine all nine constants of the orthotropic
elasticity tensor. In the following discussion, we assume that the wave field, u, and the
position, r, are already expressed in the local coordinate system, so that the components
u1,u2,u3 correspond to the projections onto the local basis {n̂1, n̂2, n̂3} and not onto
the image coordinate system.8

In essence, the spatial–spectral filtering approach performs a one-dimensional
Fourier transform along a local tangent or normal vector n̂ to the fiber tract and picks
all wave vectors from the wave field that are aligned with that vector (spatial filter),
and which have a wave number within an interval Ik = [kmin, kmax] (spectral filtering).
A fiber tract can be represented as a curve through three-dimensional space, R(𝜏),
where 𝜏 can be understood as the position along the tract. For the derivation of the
spatial–spectral filtering formula, we will use the tangent vector n̂ ≡ n̂3, but the result
will also be valid if the normal vectors n̂1 and n̂2 are substituted for n̂.

The local tangent vector is then the normalized tangent to the tract at every point:

n̂(R(𝜏)) = dR
d𝜏

/
|
|
|

dR
d𝜏
|
|
|
. This is illustrated in Figure 10.9. Spatial–spectral filtering is then

8 The two coordinate systems are related by a rotation about two angles, which can be obtained from DTI.
However, since fiber bundles are usually curved rather than straight, every voxel can have its own rotation
matrix.
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Fiber tract R (τ) 

Propagation

direction

n3ˆ
n1ˆ

ˆu1
T(n3)

n2ˆ
n̂

τ Figure 10.9 Illustration of the local coordinate system
used in waveguide elastography.

performed for each voxel along the curve separately and yields for each point only those
waves that propagate locally parallel to the fiber with wavelengths that fall into a given
window Ik (thus allowing one to separate pressure waves from shear waves based on
their differences in wavelength).

The starting point for the mathematical treatment of the spatial–spectral filter is the
Fourier transform in three dimensions:

U(k) =
∫

u(r) ⋅ e−ik•rdr (10.95)

u(r) = 1
(2𝜋)3 ∫

U(k) ⋅ eik•rdk. (10.96)

Instead of performing the full three-dimensional Fourier transform, we calculate a local
one-dimensional transform that follows the tangent vector along the curve R(𝜏). We can
then formulate a one-dimensional Fourier transform that only takes into account wave
vectors k = kn̂(R(𝜏)) parallel to the local tangent vector:

U(kn̂(R(𝜏))) =
∫ℝ3

u(r) ⋅ e−ikn̂(R(𝜏))•rdr. (10.97)

Now, U has been filtered with respect to the wave vector direction, but it contains all
wave numbers 0 ≤ k < ∞. To constrain the analysis to only those wave components
that have wave numbers in an interval Ik , the inverse transform can be restricted to
integration over Ik instead of the full real axis:

uSF(R(𝜏)) =
1

2𝜋∫Ik

U(kn̂(R(𝜏))) ⋅ eikn̂(R(𝜏))•R(𝜏)dk. (10.98)

For example, consider a plane wave component
u(r) = u0 ⋅ eiq•r

. (10.99)
Insertion into Eq. (10.97) yields

U(kn̂(R(𝜏))) =u0
∫ℝ3

eiq•r ⋅ e−ikn̂(R(𝜏))•rdr

= u0
∫ℝ3

e−ir•(kn̂(R(𝜏))−q)dr

= 2𝜋u0 ⋅ 𝛿(kn̂(R(𝜏)) − q), (10.100)
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that is, only plane wave components in the image with q || n̂ show up as a peak in the
k-space image. Insertion into Eq. (10.98) yields

uSF(R(𝜏)) = u0
∫Ik

𝛿(kn̂(R(𝜏)) − q) ⋅ eikn̂(R(𝜏))•R(𝜏)dk

=
{

u0 ⋅ eiq•R(𝜏) if q || n̂(R(𝜏)) and |q| ∈ Ik .

𝟎 else. (10.101)

This technique allows one to reduce complex three-dimensional wave fields to
one-dimensional waves that propagate along fibrous structures, which greatly simpli-
fies wave inversion. By selecting suitable windows Ik , one can separate different wave
modes based on their wavelengths. The same procedure can be performed for the
two transverse directions n̂1 and n̂2. The nine elements of the orthotropic elasticity
tensor can then be reconstructed by solving the Helmholtz equation for different
combinations of propagation direction and polarization. We use the notation ui(n̂j),
indicating the polarization component i that was extracted by a spatial–spectral filter
in the direction n̂j, as illustrated in Figure 10.9. In this notation, i = j represents a
longitudinal (compression) wave, and i ≠ j a transverse (shear) wave. We denote these
two modes with L and T, respectively.

C11 ⋅
𝜕

2uL
1(n̂1)
𝜕r2

1
= −𝜌𝜔2uL

1(n̂1) (10.102)

C22 ⋅
𝜕

2uL
2(n̂2)
𝜕r2

2
= −𝜌𝜔2uL

2(n̂2) (10.103)

C33 ⋅
𝜕

2uL
3(n̂3)
𝜕r2

3
= −𝜌𝜔2uL

3(n̂3) (10.104)

C44 ⋅
𝜕

2uT
3 (n̂2)
𝜕r2

2
= −𝜌𝜔2uT

3 (n̂2) (10.105)

and C44 ⋅
𝜕

2uT
2 (n̂3)
𝜕r2

3
= −𝜌𝜔2uT

2 (n̂3) (10.106)

C55 ⋅
𝜕

2uT
3 (n̂1)
𝜕r2

1
= −𝜌𝜔2uT

3 (n̂1) (10.107)

and C55 ⋅
𝜕

2uT
1 (n̂3)
𝜕r2

3
= −𝜌𝜔2uT

1 (n̂3) (10.108)

C66 ⋅
𝜕

2uT
2 (n̂1)
𝜕r2

1
= −𝜌𝜔2uT

2 (n̂1) (10.109)

and C66 ⋅
𝜕

2uT
1 (n̂2)
𝜕r2

2
= −𝜌𝜔2uT

1 (n̂2). (10.110)

For the three missing tensor elements C12, C13, and C23, we have to analyze longitu-
dinal waves propagating in oblique directions. We define propagation unit vectors n̂12
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(in the n̂1–n̂2 plane), n̂13 (in the n̂1–n̂3 plane), and n̂23 (in the n̂2–n̂3 plane):

(C12 + C66) ⋅
𝜕

2uL
2(n̂12)

𝜕r1𝜕r2
+ C11 ⋅

𝜕
2uL

1(n̂12)
𝜕r2

1
+ C66 ⋅

𝜕
2uL
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𝜕r2

2
= −𝜌𝜔2uL

1(n̂12)

(10.111)
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2uL
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𝜕
2uL
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2uL
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2uL
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(10.116)

This is an overdetermined system of six equations that have to be solved for all three
unknown quantities (C12, C13, and C23) simultaneously (i.e., with the same basis
vectors n̂12, n̂13, n̂23 for all equations). The angles of the basis vectors relative to the
local coordinate system are chosen such that the geometric distance between the two
solutions for each complex parameter is minimized. The separation of the wave field
into transverse and longitudinal waves can be performed in k-space as follows:

UT(k) = − k
|k|2 ⋅ (k • ũ(k)) (10.117)

UL(k) = − k
|k|2 × (k × ũ(k)). (10.118)

A derivation of these relationships is provided in [72].
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Multicomponent Acquisition

The standard way of acquiring data in MRE is to sample one frequency and one
Cartesian component of the displacement field in one scan. The measurement is
repeated for different directions of the MEG to assess all three Cartesian components.
In addition to that, the multifrequency inversion techniques presented in Sections
10.5 and 10.6, or single-frequency inversions aimed at sampling the dispersion of the
viscoelastic moduli, require the acquisition of displacement fields at multiple vibration
frequencies. Several strategies have been devised to achieve such a data acquisition
scheme and will be presented in this chapter.

The most straightforward approach is to apply the individual vibration frequencies
separately in subsequent scans. This strategy is the most commonly used method.
Its major drawback is that the total scan time is proportional to the number of
frequencies. The benefit of additional frequency information therefore has to be
balanced against reduced patient comfort due to prolonged examination time. On the
positive side, single-frequency measurements ensure that the entire vibration power
is concentrated in a small interval around the vibration frequency, leading to optimal
signal-to-noise ratio (SNR) in the resulting phase images. Furthermore, the parameters
of the motion-encoding gradient (MEG) can be tuned to each vibration frequency
independently, guaranteeing good motion sensitivity.

Another approach, first published in [33], exploits the high bandwidth of MEGs to
gather information from several vibration frequencies in the same scan. The motion
sensitivity curves shown in Figure 3.6b,c illustrate that oscillatory motion is still
encoded when the MEG frequency and the oscillation frequency are unmatched
(fractional encoding, [18]). The idea behind simultaneous acquisition of multiple
vibration frequencies is to deploy a vibration waveform that is composed of several
vibration frequencies, which are integer multiples of a common base frequency, and
to use a wide-band MEG to detect all vibrations at the same time. Temporal Fourier
transform then allows for a separation of the frequencies during postprocessing. In
the original publication, the waveform was a superposition of four frequencies: 25,
37.5, 50, and 62.5 Hz. The corresponding base frequency is 12.5 Hz (note that the base
frequency itself does not have to be contained in the waveform). The MEG comprised
four cycles at a frequency of 50 or 60 Hz (depending on the organ). In total, 40 wave
propagation phases were scanned with a temporal resolution of 2 ms, thus spanning an
interval of 40 ⋅2 ms = 80 ms, one period of the base frequency. The frequency resolution
after Fourier transform was therefore 12.5 Hz, so that the four vibration frequencies

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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were separated into adjacent bins in frequency space. Wave images at each vibration
frequency could thus be generated separately.

The major advantage of this technique is that all frequencies are applied at the same
time, and switching frequencies between measurements, as in the serial approach, is
not necessary, thus avoiding user errors. However, this benefit comes at the cost of
decreased image quality. First, the vibration energy is not concentrated around one
frequency, but spread across all frequencies contained in the vibration waveform. The
maximum achievable vibration amplitude is usually limited by either the maximum
output level of the vibration generator or the strongest vibration tolerated by the patient.
Therefore, in a simultaneous multifrequency measurement, the vibration amplitude per
frequency is lower than in a single-frequency experiment. Second, since all vibration
frequencies are encoded by the same MEG, the motion sensitivity cannot be tuned
to the optimum for each frequency separately, but only a global maximum across all
frequencies can be achieved. Both effects combined lead to a significantly lower SNR
in the wave images than in the case of serial arrangement of single-frequency scans.

Rather than acquiring several frequencies simultaneously, a novel approach, termed
SLIM-MRE (SampLe Interval Modulation) [228, 229], aims to acquire all three
Cartesian field components at the same time. The basic idea is somewhat similar to
simultaneous multifrequency acquisition in that several data are stored in the MR
signal phase and later separated through a temporal Fourier transform. In Section
3.1, we discussed the fundamental mechanism behind motion encoding, which can be
summarized in a single equation

𝜙(𝜓) ∝
∫

T

0
G(t) ⋅ sin(Ωt + 𝜓)d t, (11.1)

where T is the duration of the MEG, Ω is the vibration frequency, and 𝜓 the initial
vibration phase. For the following discussion, it will be advantageous to perform a
temporal translation of the equation, so that the MEG starts at t = t0 and 𝜓 = Ωt0:

𝜙(Ωt0) ∝
∫

t0+T

t0

G(t) ⋅ sin(Ωt + Ωt0)d t. (11.2)

In Appendix B, we prove that 𝜙 is 2𝜋-periodic with respect to its argument. Therefore,
we can interfere the motion parameters from 𝜙 if we sample Eq. (11.2) with different
values of t0 and perform a temporal Fourier transform, as explained in Section 3.1.

The discrete Fourier transform has the property that the sampling time is equal to
the period of the fundamental frequency. In other words, if we sample a signal with N
points (assume that N is even for the sake of simplicity) and a temporal spacing 𝛿t, then
the frequency spectrum after the Fourier transform is composed of data points at the
frequencies

fn = n ⋅
1

N ⋅ 𝛿t
, n = 0,…,

N
2

. (11.3)

We will now look at a sinusoidal signal with period 2𝜋 and three different sampling
strategies. As visual representation of the process is shown in Figure 11.1. For the first
sampling strategy, we choose a sampling interval 𝛿t1 such that N ⋅ 𝛿t1 ⋅ f = 1. In other
words, we distribute N sampling points equidistantly over one period of the signal. The
signal hence corresponds to the fundamental frequency f1 after Fourier transform. For
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the second strategy, we double the sampling interval, such that N ⋅ 𝛿t2 ⋅ f = 2. In this
case, we distribute N sample points over two cycles of the signal. As a consequence,
the Fourier-transformed signal will have a peak at the second frequency f2 = 2 ⋅ f1
rather than at the fundamental frequency. For the third strategy, we triple the original
sampling interval, N ⋅ 𝛿t3 ⋅ f = 3, and hence sample N points across three signal cycles.
Therefore, we will see the signal in the third frequency bin f3 = 3 ⋅ f1 after Fourier
transform. This allows us to encode the information about the sampled signal in either
of the three frequency bins: f1, f2, or f3, depending on how we choose the sampling
interval 𝛿t. SLIM-MRE exploits this mechanism by encoding the three displacement
field components into three different frequencies bin, which can then be separated by a
Fourier transform over the sampled points.

In contrast to usual MRE sequences, which employ only one MEG at a time,
SLIM-MRE uses three MEGs simultaneously. However, the timing of the gradients is
not fixed, but it changes in every repetition. Assume that the vibration frequency is Ω,
and the vibration period is hence Tvib = 2𝜋

Ω
. In order to acquire N = 8 sampling points,

the conventional sampling interval would be 𝛿t = Tvib

8
. In SLIM, three different intervals

are used for the three MEGs: 𝛿t, 2𝛿t, and 3𝛿t. This cannot be achieved by shifting the
trigger pulse relative to the start of the MEG, as in normal MRE. Instead, the start times
of the three MEGs are delayed in increments of 𝛿t, 2𝛿t, and 3𝛿t. The motion-encoded
phase is then a superposition of the contributions from the three MEG directions.
However, due to the different sampling intervals, each direction is placed in a different
frequency bin after Fourier transform (the Fourier-transformed signal would be the
sum of the three spectra in Figure 11.1).

Since the start times of the MEGs are not fixed relative to the other parts of the
sequence, additional delays have to be introduced into the sequence to allow for
time-shifting the MEGs. This causes a significant increase of the echo time and thus
a dramatic SNR reduction in the acquired image. For application in humans, where
typically only one MEG cycle is utilized, the technique is therefore unfeasible. However,
in animal experiments, vibration frequencies are much higher (up to ≈1 kHz), and

−f1 f1 −f2 f2 −f3 f3
f

t

f f
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Figure 11.1 Illustration of the encoding principle behind SLIM-MRE. A sinusoidal signal is sampled
with eight points across one (•), two (◽), and three (×) periods. The spectra resulting from these
sampling strategies are shown in the three boxes. The original information is encoded in three
different frequency bins of the frequency spectrum.
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several MEG cycles are deployed to warrant sufficient motion sensitivity. In that case,
the number of MEG cycles can be slightly reduced, and the resulting void intervals in
the sequence can be used to shift the start times of the three MEGs, with only a small
decrease in motion sensitivity and no adverse effect on the echo time and signal quality.

A second implementation of SLIM-MRE modulates the shape of the MEGs instead
of shifting their start times [230]. This is easiest to understand in the case of sinusoidal
MEGs. Instead of using an MEG waveform G(t), a variable form G(t + q⋅m

N
T) is used for

each of the N repetitions, and G(t) is treated as T-periodic. The index m iterates over
the N sampling points, and q is set to 1, 2, or 3 for the three MEG directions. This mod-
ification of the gradient shape has the same effect as shifting the MEGs, but it does not
require any additional delays within the echo time, thus allowing for better image quality
than the previous approach. However, modulating the MEG shapes introduces differ-
ent amounts of flow sensitivity in each single acquisition,1 so that especially in organs
with significant blood flow, such as the brain or liver, flow will be encoded as oscillatory
motion and cannot be removed during postprocessing. For less flow-affected organs,
or in scenarios where flow effects are negligible compared to the induced vibration,
SLIM-MRE has a huge potential to accelerate MRE exams without any major drawback.

1 A sinusoidal gradient has maximum sensitivity toward constant flow, whereas a cosinusoidal gradient is
flow-compensated. Intermediate gradient possess varying levels of flow sensitivity.
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12

Ultrasound Elastography

This chapter was coauthored by Heiko Tzschätzsch, Department of Radiology,
Charité – Universitätsmedizin Berlin, Berlin, Germany.

Medical elastography was developed in the ultrasound (US) imaging community in
the 1980s, whereas the first application of MRE was not reported until 1995. Since then,
a plethora of US-based elastography techniques have emerged, which differ both in the
method of wave excitation and the data acquisition and processing technique. In this
chapter, we will present an overview of the most common techniques of ultrasound
elastography (USE).

An in-depth discussion of the principles underlying medical US is beyond the scope
of this book. In general, US imaging involves the use of a transducer to send ultrasonic
pulses (typically in the megahertz range) into the tissue, which are reflected by tissue
boundaries or inhomogeneities and detected by a dedicated receiver, or, more com-
monly, the transducer operating in receive mode. The depth of the reflecting particle
can be calculated from the time of flight of the echo (assuming a constant pressure wave
speed of c = 1540 m/s) via d = c ⋅ t

2
(the factor of 2 arises from the fact that the signal

has to travel from the transducer to the location of reflection and back to the transducer
in the given time). Being a sound wave, an ultrasonic pulse propagates as a compres-
sion wave and its velocity is determined by the P-wave modulus (see Eq. (4.145)). To
guarantee that an echo is assigned the correct depth within the object, all echoes from
a pulse must have returned before the next pulse is emitted. The pulse repetition fre-
quency (PRF) is thus limited by the maximum depth. Three different acquisition modes
are most commonly used in USE:
• A-mode (amplitude mode): The amplitude envelope of the reflected signal from a sin-

gle straight line emanating from the transducer is recorded as a function of time. Time
is then converted to a distance between the transducer and the reflecting particle, so
that a depth profile is obtained. Since only a single line is scanned, the frame rate in
this mode is very high.

• B-mode (brightness mode): Multiple A-mode scans are performed successively, and
the line of sight is moved slightly in the lateral direction for each acquisition, so
that a two-dimensional sector is sampled. The resulting data can be converted into
a two-dimensional image. In comparison to A-mode scanning, the frame rate is
reduced by a factor equivalent to the number of lines of sight.

• M-mode (motion mode): This is a hybrid between A- and B-mode. An image is sam-
pled using B-mode. The central line of sight is sampled with much higher frequency

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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than all other lines by interleaving it into acquisitions of other lines. As a result, a
B-mode image and an A-mode scan are acquired, with the latter having a much higher
frame rate than the former.

To focus, direct, and shape the ultrasonic beam, the transducer consists of a
one-dimensional array of piezoelectric elements, which can be controlled indepen-
dently. The resulting beam form can then be predicted by treating each element as a
point source and applying Huygens’ principle.

Whereas in magnetic resonance imaging (MRI) the image coordinates are referred to
as slice-selection, phase-encode, and readout, US imaging distinguishes between axial
(away from the transducer) and lateral (parallel to the transducer) directions.

A special US technique, termed Doppler imaging, can determine the axial velocity
of the reflecting particle relative to the transmitter/receiver by detecting the frequency
shift of the returned signal caused by the Doppler effect. Since this technique is capable
of imaging functional physiological aspects, such as cardiac motion, it is also referred to
as functional ultrasound.

US imaging is affected by speckles, which are caused by interference of echoes from
adjacent scatterers (see Section 4.12). While this is considered an artifact that degrades
image quality in conventional US imaging, tracking speckle patterns can yield valuable
information on tissue deformation in USE.

One of the first USE methods used an external driver for shear wave generation and
the Doppler technique for detecting induced tissue motion, thus requiring additional
hardware for excitation. In 1990, Sugimoto presented a technique called acoustic radia-
tion force impulse (ARFI), in which a focused US beam is used to generate a mechanical
force in the tissue [231]. ARFI allows the excitation of shear waves directly in the region
of interest. These shear waves can be detected with the same transducer and without
the need for additional hardware.

Common US frame rates are on the order of tens of Hertz, which limits the obser-
vation of rapid events such as fast pulse waves or cardiac motion. A major develop-
ment to increase the frame rate is plane wave imaging, which sends an unfocused wave
using all piezo elements and focuses only during signal detection [232]. With plane wave
imaging, the frame rate is equal to the PRF, which is on the order of several kilohertz;
however, image quality is deteriorated. The decrease in image quality can be overcome
by a method known as coherent plane wave compounding [233–235]. This method gen-
erates several plane wave images with different tilting angles of the plane wave. The
quality of the compound image is comparable to conventional B-mode images, but the
frame rate is on the order of a few hundred Hertz. This technique imposes very high
demands on the acquisition speed of the scanner.

Unlike MRE, which typically aims to reconstruct (visco)elastic moduli, USE typically
quantifies shear wave velocity (and sometimes its dispersion) instead. It is important to
note that the excited shear waves propagate at much lower velocity than the compression
waves that are used for US imaging. Furthermore, changes in shear wave velocity do not
necessarily translate into changes in US velocity, which is assumed to be constant for
image reconstruction.

Due to the wide variety of USE techniques available, many authors have published
review articles over the last two decades [236–243]. We will briefly revise the most
common techniques. Since many of these methods have been applied with numerous
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variations, we will also reference review articles for each technique. A graphical
overview is presented in Figure 12.1.

12.1 Strain Imaging (SI)

Strain imaging (SI) was developed in 1991 by Ophir et al. [244], and an overview is given
in [245].

SI is based on imaging quasi-static (<10 Hz) tissue deformation. This can be accom-
plished by external and continuous or low-frequency manual deformation or internal
excitation via respiration, cardiac muscle deformation, or cardiovascular sources. This
deformation can be detected using Doppler imaging, which is only sensitive to the axial
component, or speckle-tracking techniques, which are sensitive to both the axial and
lateral deformation. Integration of displacement during deformation over time yields
images of tissue strain in real time. When no information on the applied forces is avail-
able, SI is a qualitative rather than a quantitative technique, and only relative shear
moduli can be reconstructed [246]. Due to its simplicity, SI requires no additional hard-
ware, but should be performed by a well-trained investigator.

SI has been used for examinations of the breast, prostate, thyroid, muscle, and lymph
nodes. In principle, all organs accessible to manual palpation can be examined.

12.2 Strain Rate Imaging (SRI)

Strain rate imaging (SRI) has its origin in the field of cardiac Doppler velocity measure-
ment [247]. It is based on the fact that the gradient of the (normalized) displacement
speed is equivalent to the strain rate, as we can easily see for the uniaxial deformation
of a medium of original length L = L0 with displacement speed v = 𝜕L

𝜕t
[248]:

�̇� = 𝜕

𝜕t

(
1
L0

⋅
𝜕L
𝜕x

)

= 1
L0

𝜕

𝜕x
𝜕L
𝜕t

= 1
L0

𝜕v
𝜕x

. (12.1)

The tissue deformation velocity resulting from cardiac motion is detected by Doppler
(1D) or speckle tracking (2D). Calculating the spatial gradient of the velocity field enables
real-time tracking of the strain rate, including information on tissue dilatation (�̇� > 0)
and contraction (�̇� < 0).

SRI is only suitable for investigating tissue with an intrinsic motion source, such as the
heart, muscles, and the gastrointestinal wall.

12.3 Acoustic Radiation Force Impulse (ARFI) Imaging

Acoustic radiation force impulse imaging (ARFI) was published in 2002 by Nightingale
et al. [249] and 1998 by Sarvazyan et al. [250]. An overview is given in [251].

Instead of relying on an external driver or physiological motion as the strain source,
ARFI uses focused US pulses, which induce rapid expansion of the heated tissue, thus
generating shear deformations on the order of tens of micrometers. Repeatedly scan-
ning the area surrounding the focus point allows sampling the propagating strain. ARFI
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Figure 12.1 Categorization of the most common USE methods in terms of tissue excitation method and measurement quantity.
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imaging has been applied to abdominal organs, the heart, vessels, breast, nerve, and
prostate, and for monitoring of thermal ablation procedures. Since the depth of the
focus point is limited to approximately 8 cm, deep organs or abdominal organs in obese
patients can be inaccessible.

12.4 Vibro-Acoustography (VA)

Vibro-acoustography (VA) was developed by Fatemi and Greenleaf [252, 253] in 1998
and later reviewed by Urban et al. [254].

For tissue excitation, two ARFI beams of slightly different ultrasonic frequencies are
focused at the same point within the tissue. Their superposition acts as a point source
that pulsates at the difference frequency, which is typically in the range of 10–70 kHz.
The sound waves emanating from this source are detected by a hydrophone. For image
acquisition, the focus point is swept across the imaging region, and the region of interest
is hence rasterized. VA images are speckle-free and highly sensitive to calcifications.
The acquisition of a 5 × 5 cm2 image using standard hardware takes several minutes;
however, utilizing a linear transducer can reduce scan time to approximately 1 min.

VA has been applied to the breast, liver, thyroid, ex vivo prostate, and porcine arteries.

12.5 Vibration-Amplitude Sonoelastography (VA Sono)

Vibration-amplitude sonoelastography (VA Sono) was the first USE method based on
harmonic shear waves and an external driver. It was developed by Lerner et al. [255] in
1988 and later reviewed by Parker [256]. The external driver generates one or multiple
frequencies in the audible range of 20–1000 Hz. The resulting tissue motion is detected
by Doppler imaging, and the vibration envelope is extracted in postprocessing. Tissue
stiffness is then reconstructed qualitatively from the detected VA in a given voxel. Quan-
titative reconstruction is not possible, since this would require knowledge of the applied
stresses.

VA Sono has been used to examine the liver, kidney, prostate, breast, eye, and to char-
acterize lesions.

12.6 Cardiac Time-Harmonic Elastography (Cardiac THE)

Cardiac time-harmonic elastography (THE) was published in 2012 by Tzschätzsch et al.
[257] based on results obtained with cardiac MRE [177, 208] and is similar to VA Sono.

An external driver is used to generate a harmonic 30 Hz vibration, and the result-
ing myocardial wall vibration is captured by A-mode scans acquired over several car-
diac cycles. The time-resolved amplitude reflecting myocardial tension is displayed in
real time. Wave amplitudes are thus low during contraction (systole) and higher during
relaxation (diastole).

Cardiac THE has a potential application for diagnosing cardiac diastolic dysfunction,
which is currently the domain of cardiac MRE.
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12.7 Vibration Phase Gradient (PG) Sonoelastography

Vibration phase gradient (PG) sonoelastography is based on VA Sono, and was devel-
oped in 1990 by Yamakoshi et al. [258] and reviewed by Parker [256].

While setup and acquisition are similar to VA Sono, the PG technique captures the
vibration phase in addition to the signal magnitude. A phase gradient method (see
Section 10.2) is used to reconstruct shear wave speed in the image. When multifre-
quency excitation is used, the frequency dispersion of the shear wave speed can be
calculated as well.

Vibration PG sonoelastography has been applied to skeletal muscle.

12.8 Time-Harmonic Elastography (1D/2D THE)

Time-harmonic elastography (THE) is related to vibration PG sonoelastography. The
1D version developed in 2014 by Tzschätzsch utilizes multifrequency excitation and
A-mode acquisition of the waves along multiple profiles in the liver to provide a
single shear wave speed value [259]. Zhao et al. extended this technique into a 2D
quasi-harmonic method: external vibration multidirectional ultrasound shear wave
elastography (EVMUSE) [260], which uses bursts of 50-Hz vibrations and captures
tissue displacement during the relaxation phase a few milliseconds after stopping the
vibration. In 2015, Tzschätzsch et al. presented 2D THE with multifrequency excitation
[261].

For 2D THE, the tissue is excited by an external driver with a multifrequency wave
form in a range of 30–60 Hz. Motion is captured by conventional B-mode scanning with
a frame rate of 80 Hz. The shear waves corresponding to the different excitation fre-
quencies can be reconstructed separately by using controlled aliasing in the frequency
domain. After directional filtering (see Section 8.2) and wave normalization, the shear
wave phase gradient is calculated (see Section 10.2). The shear wave speed is imaged
over the entire B-mode size.

THE is currently used for imaging of the liver, spleen, and prostate.

12.9 Crawling Waves (CW) Sonoelastography

Crawling waves (CW) sonoelastography was developed in 2004 by Wu et al. [262] and
later reviewed by Parker [256].

VA Sono only detects the envelope of the vibration; it is not fast enough to capture
the entire wave. CW sonoelastography aims to overcome this limitation by generating
slow waves. Two vibration sources, 𝜔 − Δ𝜔

2
and 𝜔 + Δ𝜔

2
in the range of 25–300 Hz, with

a small frequency difference, Δ𝜔 ≪ 𝜔, are placed on opposite sides of the tissue sample.
The envelope of the resulting interference pattern has a wavelength corresponding to the
mean frequency 𝜔 of the two sources, but the velocity of the envelope corresponds to
v ≈ Δ𝜔

2𝜔
⋅ vshear, which is much slower than the proper shear wave velocity. Therefore,

CW can be captured even with common frame rates. The observed wavelength can be
converted to shear wave speed. In addition, dispersion can be detected. In order to over-
come the requirement of two separate drivers, CW sonoelastography was implemented
by using ARFI to generate wave sources [263, 264].
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CW sonoelastography with external drivers has been demonstrated in ex vivo prostate
and liver; and CW based on ARFI has been tested in skeletal muscle.

12.10 Electromechanical Wave Imaging (EWI)

Electromechanical wave imaging (EWI) was developed in 2005 by Pernot and Konofagou
[265] and later reviewed by Konofagou et al. [266].

The periodic intrinsic electrical activation of the heart that triggers the heart beat
causes electromechanical stimulation patterns that propagate across the myocardium.
The resulting myocardial displacement can be captured by acquiring B-mode images
with a very high frame rate on the order of 500 images per second. This is achieved
by dividing the full B-mode image into sectors, which are acquired during successive
heart beats. A speckle-tracking algorithm is used to calculate a strain image, and after
segmentation, the isochrones1 of tissue deflection due to electromechanical waves are
reconstructed in 3D. Several studies have shown a linear correlation between electrical
activation times and EWI isochrones. EWI can be used to visualize the spreading of
electromechanical activation across the myocardium.

EWI has been demonstrated in mice and humans.
An alternative approach was developed in 2001 by Kanai and Koiwa to capture

acoustic waves caused by the heart sounds [267]. By reducing the lines of sight to 16, a
frame rate of 450 Hz can be achieved. Cross-correlation can be used to calculate and
image the phase of shear waves. In addition, the phase along the septum is imaged in a
time–distance image and the shear wave velocity can be estimated [268].

12.11 Pulse Wave Imaging (PWI)

Pulse wave imaging (PWI) was developed in 2007 by Pernot et al. [269] and reviewed by
Konofagou et al. [266].

PWI aims at retrieving the Young’s modulus of the aorta from the measurement of
displacement of the aortic wall induced by the passing cardiac pulse wave. The pulse
wave causes “bulging” of the aortic wall, which travels at the same velocity as the pulse
wave inside the vessel. The pulse wave velocity, c, and the Young’s modulus of the wall,
E, are related via the Moens–Korteweg equation [266]:

E = 2𝜌Rc2

b
, (12.2)

where R is the inner radius of the aorta and b and 𝜌 are the thickness and density of the
aortic wall, respectively.

An early method, devised by Kanai et al. [270] in 1994 identifies the arrival time of the
pulse wave at two points on the aortic wall using Doppler ultrasound. The pulse wave
velocity can then be calculated from the time delay between the two points and their
distance. However, since measurements are only performed at two points, this is not an

1 Isochrones are hypothetical lines connecting the points that receive the activation signal at the same time.
They can also be interpreted as wave fronts of the electromechanical wave.
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imaging method. PWI, on the other hand, uses high frame rates (plane wave imaging
with up to 8000 frames per second) to capture the pulse wave displacement at multiple
time points. From the time-resolved images, the progression of the pulse wave can be
tracked and the velocity can be measured.

PWI has been used to investigate the aorta in mice and humans.

12.12 Transient Elastography (TE)

Transient elastography (TE) was developed in 2002 by Sandrin et al. to characterize
stages of liver fibrosis [271].

An external piston driver generates shear waves by applying a transient burst of a
single 50 Hz cycle. As a consequence, waves propagate from the body surface into the
tissue; the tissue displacement is then recorded continuously by A-mode US along a
single line. The shear wave modulates the signal reflected by moving scatterers toward
and away from the transducer; and the shear wave velocity can be extracted algorith-
mically from the time-resolved data. TE only provides a single value for wave speed,
and is hence not an imaging technique. TE is the most extensively studied USE method.
It has also been tested in skeletal muscles, breast, skin, and blood clots. However, the
technique is limited by a relatively low penetration depth of approximately 8 cm. Fur-
thermore, due to the absence of a B-mode image, positioning the A-mode beam can be
challenging.

12.13 Point Shear Wave Elastography (pSWE)

Point shear wave elastography (pSWE), sometimes also referred to as ARFI quantifica-
tion, was published in 2008 by Palmeri et al. [272] and reviewed by Nightingale [251].

Tissue is excited by transient ARFI, but in contrast to ARFI imaging, the resulting dis-
placement is acquired outside the excitation region. A time-of-flight algorithm is used
to estimate the averaged speed of the spherically propagating shear wave, from which
the mean wave velocity inside the region is obtained. The method has been applied to
prostate, liver, breast, kidney, spleen, and cardiac tissue.

12.14 Shear Wave Elasticity Imaging (SWEI)

Shear wave elasticity imaging (SWEI) was developed in 2003 by Nightingale et al. [273]
based on previous work by Sarvazyan et al. [250]. An overview can be found in [251].

SWEI is based on the same principle as pSWE. However, instead of using a single point
source, SWEI places the focus of the ARFI beam in different lateral positions within
the region of interest in successive measurements. The group velocity of the spherically
propagating wave is reconstructed by wave-peak detection and time-of-flight calcula-
tion at lateral ranges. As a result, the wave velocity is mapped in a small (3 × 4 cm2)
region, unlike pSWE, which only yields one spatially averaged value. SWEI is applied to
prostate, liver, and cardiac tissue.
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12.15 Comb-Push Ultrasound Shear Elastography (CUSE)

Comb-push ultrasound shear elastography (CUSE) was developed in 2012 by Song et al.
[274].

CUSE works similar to SWEI; however, multiple ARFI beams are applied simulta-
neously rather than successively. Plane wave imaging is used to acquire displacement
maps with a frame rate in the kilohertz range, thus sampling the full image within a few
milliseconds. Displacement is calculated using 2D autocorrelation; and, after directional
filtering, the shear wave speed can be reconstructed using a time-of-flight algorithm. The
shear wave speed is thus imaged in a small region (4 × 4 cm2).

CUSE was demonstrated in phantoms, breast, and thyroid.

12.16 Supersonic Shear Imaging (SSI)

Supersonic shear imaging (SSI) was developed in 2004 by Bercoff et al. [275].
Most ARFI-based shear wave methods create a single or multiple laterally distributed

point sources with spherically propagating shear waves, yet invoke a plane wave model
for wave speed reconstruction. SSI generates multiple point sources in quick succession
along an axial line. This procedure is equivalent to moving a point source at supersonic
speed (hence the name of the method) through the tissue. This excitation pattern results
in a shear wave Mach cone with nearly cylindrical geometry. Displacement is captured
laterally with a frame rate in the kilohertz range by plane wave imaging. A time-of-flight
algorithm reconstructs shear wave speed, and an elastogram with a size of a few square
centimeters is created at a frame rate of 3–4 Hz.

SSI has been applied to breast, thyroid, liver, spleen, prostate, skeletal muscle, and
transplanted kidneys.

12.17 Spatially Modulated Ultrasound Radiation Force
(SMURF)

Spatially modulated ultrasound radiation force (SMURF) was developed by McAleavey
et al. [276] in 2007.

In contrast to most other methods, which prescribe the temporal characteristics of
the deformation, for example, by utilizing time-harmonic excitation, SMURF dictates
the wavelength of the excited wave by applying a laterally modulated ARFI pattern.
The temporal characteristic, that is, the frequency of the oscillation, is then observed
by repeatedly acquiring each image line with a high PRF. The shear wave speed can then
be calculated according to c = 𝜆 ⋅ f .

SMURF was demonstrated in a phantom and an ex vivo sample of porcine liver.

12.18 Shear Wave Dispersion Ultrasound Vibrometry (SDUV)

Shear wave dispersion ultrasound vibrometry (SDUV) was developed in 2004 by Chen
et al. [277] and reviewed by Urban et al. [278].
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For quantifying dispersion, elasticity has to be probed at different frequencies. SDUV
achieves this by applying ARFI pulses at a base frequency and its first few harmonics,
typically in the range of 200–800 Hz. The detected tissue displacement is then separated
into the excited frequency components by Kalman filtering. For each frequency, the
shear wave velocity is calculated by analyzing the oscillation phase shift at two points
along a lateral propagation path. The Kelvin–Voigt model (see Section 4.8.3 and
Figure 4.7) is then utilized to analyze the dispersion of elasticity and viscosity.

SDUV was demonstrated in ex vivo skeletal muscle, cardiac muscle, liver, in vitro kid-
ney, prostate, and excised arterial vessels.

A variant of SDUV, termed Lambwave dispersion ultrasound vibrometry (LDUV), was
used to analyze the variation of shear wave speed in the myocardium over the car-
diac cycle [279]. However, the only application of the method thus far was in porcine
myocardium during open-chest surgery.

12.19 Harmonic Motion Imaging (HMI)

The harmonic motion imaging (HMI) was developed by Konofagou and Hynynen in
2003 with the motivation to monitor viscoelastic behavior during thermal ablation with
high-intensity focused ultrasound (HIFU) [280]. A short review is given in [281].

Harmonic vibration on the order of 50 Hz is accomplished by amplitude-modulated
HIFU. A second imaging transducer is embedded in the HIFU transducer. Due to a
limited number of lines of sight, the imaging transducer reaches a frame rate of a few
hundred hertz and can hence capture vibration with sufficient temporal resolution.
After temporal Fourier transform, the shear wave speed near the focus is calculated
using a phase gradient method (see Section 10.2). The HMI setup is unique in that it
permits to observe vibration during HIFU ablation in real time, which helps to control
ablation duration. In addition, the phase shift between the excitation force and the
tissue vibration can be measured. This phase is identical to the phase of the complex
shear modulus.
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13

MRE of the Heart

This chapter was coauthored by Thomas Elgeti from the Department of Radiology,
Charité – Universitätsmedizin Berlin, Berlin, Germany.

The heart is the motor of blood circulation. It propels blood through the systemic
and pulmonary circulatory systems by periodic contraction and dilatation of the four
cardiac chambers. This mechanical action can be described in terms of a number of
time-dependent physical parameters such as volume, strain, shear modulus, and pres-
sure. Noninvasive quantification of these parameters is desirable for the assessment of
vital aspects of cardiac function such as the generation of mechanical forces and pres-
sure. However, so far only sparse and preliminary in vivo data on the myocardial shear
modulus in volunteers have been reported in the literature – most of them obtained
by MRE. A major reason for the lack of data is the requirement of synchronization of
heart beat, breathing, image acquisition, and external harmonic stimulation. Ultrasound
elastography (USE) studies based on acoustic radiation force impulse (ARFI) or exter-
nal vibration (see Chapter 12) were invasive when applied to the heart and have thus
focused on animal models or ex vivo hearts. Notwithstanding its current limitations,
cardiac elastography using MRI and ultrasound has been shown to allow measurements
of basic mechanofunctional properties of the living heart, and is thus of considerable
clinical interest. Hence, the studies published on cardiac elastography can pave the way
for further technical developments toward quantitative mechanical biomarkers of car-
diac function. Before we continue with reviewing seminal studies in the field, we will
briefly address a few fundamentals of normal heart physiology, which are necessary to
understand the clinical motivation for the development of cardiac MRE.

13.1 Normal Heart Physiology

The cardiac cycle can be divided into a relaxation phase, termed diastole, and a con-
traction phase, termed systole. From the state of relaxed myocardium at end-diastole to
the contraction state at end-systole, pressure can increase as high as 20 kPa at a rate of
change of 300 kPa/s. Such high left ventricular (LV) pressure alteration is necessary to
propel blood through all tissues of the body supplied by the systemic circulation. The
right heart pumps deoxygenated blood into the pulmonary circulation for reoxygena-
tion. Blood transport and gas exchange in the lungs occur at a low systolic pressure
on the order of 4 kPa. Oxygen-saturated blood in the lungs is directed through the pul-
monary veins into the left atrium; it then passes into the left ventricle through the mitral

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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valve. During the systolic ejection phase, the blood leaves the LV lumen through the
aortic valve and the aorta to enter the systemic circulation for supplying the body with
oxygen and nutrients and removing carbon dioxide and metabolic waste products. After
delivery of oxygen through the highly branched vasculature of arterioles, capillaries, and
venules, the oxygen-depleted blood returns to the heart through the superior and infe-
rior vena cava, entering the right atrium and passing through the tricuspid valve into
the right ventricle (RV). RV contraction propels the blood back into the pulmonary
circuit for reoxygenation. The normal adult heart pumps between 5 and 25 l of blood
per minute, depending on demand. Each contraction cycle of the heart is initiated by
a synchronized depolarization of cardiac muscle cells. This electromechanical activa-
tion originates at the sinus node in the roof of the right atrium. In normal hearts, the
sinus node generates 60–100 electrical impulses per minute, which propagate to the
atrioventricular (AV) node located in the interatrial septum near the tricuspid valve.
There, fibrous tissue acts as an insulator that prevents uncontrolled spread of electrical
activation across the ventricular myocardium. The bundle of His, or AV bundle, is a col-
lection of muscle cells specialized for electrical conduction that transmits the electrical
activation further downstream from the AV node to the left and right bundle branch,
Purkinje fibers, and cardiac myocytes.

In clinical routine, the propagation of the electrical impulse is measured by electro-
cardiography (ECG). There are five prominent signals in the ECG, identified as P, Q, R,
S, and T waves, corresponding to major events of the electromechanical stimulation of
the heart. While the P-wave reflects the depolarization of the atria toward the AV node,
the QRS complex represents the rapid depolarization of the right and left ventricles.
Since the ventricles have a larger muscle mass than the atria, the QRS complex has a
much larger amplitude than the P-wave.1 The T-wave indicates ventricular repolariza-
tion. Although several cellular mechanisms contribute to myocardial stiffness, the for-
mation of actin–myosin cross-bridges is the major mechanism underlying the increase
in myocardial stiffness during contraction. Therefore, as the electrical action potential
stimulates cross-bridge formation, myocardial stiffness follows the electrical propaga-
tion paths [282, 283]. The increase in myocardial stiffness results in a significantly higher
pressure inside the ventricle than that of the atrium. This pressure difference causes
abrupt closure of the AV valves (mitral valve and tricuspid valve), thereby inducing
acoustic vibration of myocardium and enclosed blood, which is the first heart sound.
The second heart sound arises from closure of the semilunar valves (aortic valve and pul-
monary valve) at the beginning of diastole. At early systole and early diastole, all heart
valves are closed for short time periods, giving rise to an isovolumetric change in ven-
tricular pressure. These periods are referred to as isovolumetric contraction time (IVC)
and isovolumetric relaxation time (IVR), respectively. Figure 13.1 presents a diagram
illustrating important features of normal heart physiology. Typical parameters used to
assess cardiac function and values indicating normal cardiac function are summarized
in the box on page 252.

1 The cardiac P-wave is unrelated to mechanical compression waves, which are also referred to as P-waves,
particularly in the context of seismography.
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Figure 13.1 Normal heart physiology.
The upper row schematically depicts
electrical stimulation phases of the
heart beginning with depolarization of
the sinus in the right atrium 1©,
disseminated depolarization of right
and left atria, which triggers atrial
systole 2©, depolarization of the right
and left ventricles at early systole ( 3©,
4©) and the repolarization phase at the

beginning of diastole 5©. ⬤1 and ⬤2

demarcate the heart sounds produced
by closure of the AV and semilunar
valves, respectively. Note that stroke
volumes are identical for LV and RV.
Abbreviations: IVC – isovolumetric
contraction time, IVR – isovolumetric
relaxation time, LV – left ventricle,
RV – right ventricle.

13.1.1 Cardiac Fiber Anatomy

Similar to skeletal muscle, the heart muscle, or myocardium, is composed of bundles
of myocytes, which are oriented along a principal axis and hence induce transversely
isotropic mechanical properties. However, cardiac myocytes are branched and their
higher-order, macroscopic architecture is more complex than that of skeletal muscle.
In fact, the heart demonstrates par excellence how mechanical requirements lead to
the development of anatomical features. On a microscopic scale, the heart muscle is
composed of linearly arranged myocytes, which develop uniaxial forces by sarcomere
shortening. On a macroscopic level, the heart muscle is arranged in three-dimensional
intertwined bands of counterdirectionally crossing fibers, which effectively translate
forces that are aligned along the fibers within the walls into lateral forces, which pro-
duce volumetric ventricular strain. Figure 13.2 demonstrates a way to dissect the heart’s
macroscopic anatomy by unfolding a band of intertwined fiber bundles [284]. In this
model, the myocardium is composed of a bilayer of endocardium and epicardium, which
represent the ascending and descending branches of fibers with nearly orthogonally
crossing directions in the left ventricle. A more detailed view reveals that fibers gradually
change their directions from endocardium to epicardium. During systole and diastole,
this helical loop architecture results in a spiral wall motion, imposing rotational flow.
Streamlines of intraventricular flow can be measured by ultrasound Doppler techniques
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(a) (b)

Figure 13.2 Myocardial fibers of the left ventricle around the apex of the heart. (a) Tissue specimen.
(b) Simplified model of the helical ventricular myocardial band illustrating the crossing of fibers due to
descendant and ascendant segments. (Kocica 2006 [284]. Reproduced with permission of Oxford
Journals.)

or flow-sensitive MRI. From those techniques, it is known that normal flow inside the
chambers, which results from in- and out-streaming blood, forms vortex rings due to
rotational patterns imposed by the walls [285]. Vortex ring formation has wide impli-
cations for cardiac health, since vortices are thought to ameliorate convective pressure
losses and facilitate fluid transport [286]. A further example of how tissue architecture
is designed to address rheological needs can be seen in arterial walls, where spiral folds
on the endoluminal surface impose spiral flow patterns [287]. Similar to the increased
stability gained by precession of a bullet, which is imposed by spiral patterns inside a
gun barrel, spiral flow is more stable, requires less energy to drive blood through the
arterial system, and protects the vessel walls from laterally directed forces [287]. Anal-
ogously, the intricately intertwined helical structure of myocardial tissue appears to be
optimized for the rheological needs of pulsatile chamber flow by enhancing turbulences,
which better protect walls and propel blood more efficiently though the chamber than
it is predicted for laminar flow [285]. Elastography has to account for those anatom-
ical features when performed for parameter quantification in the heart. Alternatively,
effective or apparent stiffness measures have been proposed, which, while oversimplify-
ing myocardial structures, nevertheless provide mechanics-based imaging markers for
clinical applications of cardiac elastography.

MRE of the biceps has shown that two different types of muscle contraction have
to be distinguished (see Chapter 16). First, a muscle can contract without generating
much force, for example, when the unloaded arm is flexed at the elbow. This state is dis-
tinguishable from the elongated state by an increase in T2, whereas the MRE-derived
shear modulus does not differ significantly [288]. Second, the contracting or contracted
muscle can generate a force, for example, when lifting a weight or acting against a pulling
force. This state is associated with an increase in shear modulus, which can be detected
by MRE. In the myocardium, contraction of muscle fibers and the increase in shear
modulus occur simultaneously. The contraction is necessary for decreasing the ventric-
ular volume, which in turn is the prerequisite for pumping blood into the aorta. The
force required to overcome the luminal pressure and to accelerate blood into the aorta
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is effected by stiffening of the muscle in conjunction with the specific geometry of the
myocardium, as we will explain in the next section.

The 3D volumetric strain of the heart chambers is directly translated into intraven-
tricular pressure. As a result, the heart performs pressure–volume (p–V ) work which –
similar to adiabatic thermodynamic processes – can be described by the area enclosed
in p–V diagrams. This p–V work represents the primary heart function. Hence, assess-
ment of cardiac function requires in vivo imaging modalities sensitive to cardiac geom-
etry and pressure. The cyclic alteration of the cardiac shear modulus 𝜇 over the heart
beat causes a cyclic alteration of ventricular pressure, as will be theoretically derived in
the next section. Since elastography is sensitive to 𝜇, the 𝜇–p relationship offers a way to
noninvasively measure cardiac pressure by elastography, which can be combined with
3D ventricular imaging for a full assessment of cardiac function.

13.1.2 Wall Shear Modulus versus Cavity Pressure

We will now present a model that illustrates how the myocardial shear modulus is related
to ventricular pressure. We therefore use Hooke’s law in spherical coordinates to find
a relationship between shear modulus and pressure. Hence, we assume linear elastic,
isotropic conditions, which clearly is an oversimplification of cardiac mechanics, but
allows us to approximate the ventricle by a fluid-filled spherical shell in the regime of
small displacements. In this model, fluid pressure inside the LV lumen is produced by
the radial component of the stress field acting on the encased fluid:

𝜎rr = −plumen (13.1)

We note that large strains occur mainly during the ejection phase and the ventricu-
lar distension phase, that is, when the valves are open and blood streams into or out
of the ventricles. By contrast, during isovolumetric phases IVC and IVR, the volumet-
ric strain of the cardiac walls can be considered negligible while plumen rapidly rises or
drops, respectively. How is a pressure change produced by a change in myocardial shear
modulus? A straightforward answer is provided by Eq. (4.122) (in spherical coordinates),
which, for the radial stress component, yields:

− plumen =
(

K + 4
3
𝜇

)

𝜖rr +
(

K − 2
3
𝜇

)

⋅ (𝜖
𝜃𝜃
+ 𝜖

𝜙𝜙
), (13.2)

where K and 𝜇 denote compression and shear modulus of the myocardium, respectively.
Collecting volumetric strain 𝜖rr + 𝜖

𝜃𝜃
+ 𝜖

𝜙𝜙
= tr(𝜖), which denotes the volumetric strain

inside the wall, we arrive at

− plumen = 2𝜇𝜖rr −
2
3
𝜇 ⋅ tr(𝜖) + K ⋅ tr(𝜖). (13.3)

For incompressible tissue, volumetric strains are very small, that is, tr(𝜖) ≪ 𝜖rr , canceling
out the second term in Eq. (13.3). In the third term, however, tr(𝜖) is balanced by the very
high compression modulus, giving rise to a finite value of K ⋅ tr(𝜖), which we identify as
intramural tissue pressure −pwall. Equation (13.3) thus becomes

𝜇𝜖rr = −1
2

plumen + pwall. (13.4)
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The right-hand side of Eq. (13.4) represents the ventricular pressure combining blood
and myocardial tissue, which is proportional to the MRE-measured shear modulus 𝜇.
An alternative derivation of the 𝜇-p relationship is presented in [308], demonstrating
that a spherical shear strain field of tr(𝜖) = 0 comprises a radial component if integrated
over a sphere with an aperture. Such net radial strain gives rise to a radial stress, which,
according to Eq. (13.4), relates to intraventricular pressure.

13.2 Clinical Motivation for Cardiac MRE

Heart failure is a major cause of death in Western societies and will become even more
prevalent with increasing life expectancy. Early detection of cardiac abnormalities is key
for the timely initiation of treatment of cardiovascular disease and reduction of the enor-
mous death toll. As outlined above, the complete description of heart function including
p–V work by imaging markers is highly desirable for diagnosis and therapy monitoring
in cardiology [290]. Today, one of the most important imaging markers for cardiac fail-
ure is the LV ejection fraction (EF). EF represents the total volumetric strain of the entire
ventricle from diastole to systole (i.e., the stroke volume divided by end-diastolic vol-
ume). It is well known that EF is influenced by multiple parameters of heart physiology
including preload, afterload, and myocardial contractility. Preload is the pressure that
stretches the myocardial fibers prior to contraction, while afterload is the blood pressure
against which the heart contracts to eject blood. Afterload arises from the downstream
vascular system, comprising the aorta and its periphery for the left ventricle, whereas
for the RV afterload originates from the pulmonary circulatory system [291]. Myocar-
dial contractility refers to the ability of the heart muscle to contract. This parameter is
normally quantified by the velocity of pressure generation (ṗlumen) at a given ventricular
volume. Cardiac preload, afterload, and contractility are intrinsic mechanical properties,
whose quantification in humans in vivo presents a continuing challenge. By contrast, EF
can be assessed by standard imaging methods and has therefore become established
as a routine marker for heart failure associated with a reduced ejection capacity of the
left ventricle. EF of the LV is also an important marker to discriminate systolic from
diastolic heart failure. Both types of heart failure fundamentally differ in their p–V per-
formance and pose different challenges to diagnostic imaging, as will be explained in the
next section.

13.2.1 Systolic Dysfunction versus Diastolic Dysfunction

Systolic function is characterized by blood ejection due to ventricular contraction
and ventricular pressure generation against afterload. Different myocardial injuries
or stresses lead to reduced myocardial contractility and increased volume – the
dominant abnormalities in systolic dysfunction (SD). End-systolic pressure remains
unchanged in SD since low contractility is compensated by increased muscle mass and
volume. In general, an altered contractile behavior of the ventricle reflects widespread
micromechanical changes and myocardial remodeling at the level of cardiomyocytes
and the extracellular matrix. In most cases, SD arises from degradation and disruption
of the collagen matrix. By contrast, accumulation of collagen causes increased passive
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Figure 13.3 LV pressure–volume relationship in normal hearts and hearts with abnormal systolic
and diastolic function. (a) Schematic p–V cycles, normal and altered by systolic dysfunction (SD) and
diastolic dysfunction (DD). While left ventricular (LV) pressure is normal in SD, DD is characterized
by a significantly elevated LV pressure. Conversely, as LV volumes are increased in SD (with reduced
EF), DD does not change LV volumes, rendering an image-based diagnosis more challenging than
the diagnosis of SD. (b) LV diastolic pressure–volume data from normal controls (solid line), patients
with diastolic heart failure (DHF) (dotted line), and patients with systolic heart failure (SHF) (dashed
line). In DHF, the p–V cycle displays normal volumes but elevated pressure, indicating increased
passive stiffness of myocardium. (Aurigemma 2006 [294]. Reproduced with permission of Wolters
Kluwer.)

muscle stiffness, which often manifests in reduced distensibility or relaxivity of the
ventricle. Such abnormal mechanical relaxation of the myocardium combined with
normal EF and LV volume is the hallmark of diastolic dysfunction (DD). DD is highly
prevalent in patients with cardiac failure – nearly half of the patients suffer from DD
and face reduced survival [292]. Unlike SD, contractility and LV volume in DD remain
widely unchanged, whereas increased passive myocardial stiffness gives rise to an
elevated filling pressure. As seen in Figure 13.3, SD is revealed by a shift of the p–V
cycle along the V -axis, whereas DD is associated with an elevation of pressure and
normal volume changes. For this reason, detection of DD remains challenging for
morphometry-based imaging techniques. In the past, measurement of p–V curves
was considered the standard of reference for evaluation of DD. However, the high
risks of catheterization such as hazardous aortic valve passage have limited the use
of this procedure as a diagnostic tool for DD. Today, echocardiography with tissue
Doppler techniques combined with serological parameters serves as the standard of
reference for the diagnosis of DD in clinical routine. However, the exact parameters and
threshold for the diagnosis of DD are still under debate. Recent reports suggest that LV
hypertrophy, elevated LV filling pressure and high pulmonary artery pressure predict
an increased cardiovascular death and hospitalization rate, which cannot be predicted
by LV volumes and LV–EF alone [293]. Therefore, imaging techniques sensitive to
myocardial relaxation during diastole are urgently required to assess LV dysfunction
in heart failure with preserved EF and to detect preclinical stages of heart failure
[290]. Detecting the altered myocardial shear modulus by MRE was demonstrated
to be sensitive to myocardial relaxation abnormalities [79]. The quantification of
myocardial stiffness in a time-resolved fashion is the major aim of cardiac MRE in the
future.
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Typical parameter values characterizing normal cardiac function

Values from [56]:
Isovolumetric contraction time (IVC): 40 ms
Isovolumetric relaxation time (IVR): 70 ms
Duration of systole: 280 ms @ 70 bpm, 250 ms @ 150 bpm
Duration of diastole: 580 ms @ 70 bpm, 150 ms @ 150 bpm

Values from [295]:
LV end-diastolic volume: 86–178 ml (women), 106–214 ml (men)
LV end-systolic volume: 22–66 ml (women), 26–82 ml (men)
LV stroke volume: 57–117 ms (women), 72–144 ms (men)
LV ejection fraction: 57–77% (women), 57–77% (men)
LV mass: 56–140 g (women), 92–176 g (men)
RV end-diastolic volume: 77–201 ml (women), 118–250 ml (men)
RV end-systolic volume: 24–84 ml (women), 41–117 ml (men)
RV stroke volume: 48–120 ml (women), 68–144 ml (men)
RV ejection fraction: 51–71% (women), 52–72% (men)
RV mass: 21–49 g (women), 25–57 g (men)

Values from [296]:
LV end-systolic pressure: 138 ± 15 mmHg
LV end-diastolic pressure: 10 ± 11 mmHg
LV p–V (stroke) work: 0.62 ± 0.14 J

RV end-systolic pressure: 26 ± 4 mmHg [297]
RV end-diastolic pressure: 6 ± 4 mmHg [297]
RV p–V (stroke) work: ≈ 0.1 J [56]

13.3 Cardiac Elastography

Despite the clear motivation and high relevance of cardiac MRE, a relatively low number
of studies have been reported in the literature. The lack of data may be attributable to
a number of technical challenges, including the highly complex geometry of the heart
with multiple boundaries, its intricate microstructure, and the high temporal dynam-
ics of parameter changes. Moreover, the position of the heart inside the thoracic cavity,
protected by the lungs, diaphragm, fat, and bones effectively shields the heart from most
types of exogenous mechanical stimuli. Therefore, cardiac elastography methods used
in humans are based on time-harmonic waves in the low-frequency regime, which can
penetrate the thorax better than transient stimuli. Time-harmonic cardiac elastography
has been demonstrated to be feasible using MRI [289, 298] and ultrasound [257]. Tran-
sient ultrasonic methods such as acoustic radiation force impulse (ARFI) imaging and
shear wave imaging (SWI) (see Chapter 12) have been studied in ex vivo hearts [299] or
invasively [300, 301]. Table 13.1 summarizes principal approaches of cardiac elastogra-
phy reported in the literature. Note that the term “cardiac elastography” is ambiguous,
since it sometimes denotes measurement of intrinsically induced cardiac strain and



13.3 Cardiac Elastography 253

Table 13.1 Overview of the currently available methods of cardiac elastography.

Mechanical stimulus,
modality

Imaging
modality

Reconstruction approach/
sought quantity

Application,
reference

Time-harmonic 80 Hz,
MRE

MRI Inversion by LFE/shear
modulus

In vivo, healthy
volunteers [161]

Time-harmonic 25 Hz,
MRE

MRI Wave amplitude
variation/relative shear
modulus alteration

In vivo, patients
with diastolic
dysfunction [79]

Time-harmonic 30 Hz,
THE

A-mode US Wave amplitude
variation/relative shear
modulus variation

In vivo, healthy
volunteers [302]

Time-harmonic
100–350 Hz, SDUVa)

B-mode US Anti-symmetric Lamb
waves/elasticity, viscosity

Pigs, invasive [303]

Transient, SWIb) B-mode US Time-of-flight/group
velocity

Pigs, invasive [301]

Transient, ARFIc) B-mode US Strain/relative deflection Dogs, invasive [282]
Endogeneous,
intraventricular septum
vibration

B-mode US Anti-symmetric Lamb
waves/elasticity, viscosity

In vivo, healthy
volunteers [304]

a) SDUV = shear wave dispersion ultrasound vibrometry (see Section 12.18).
b) SWI = shear wave imaging (see Section 12.14).
c) ARFI = acoustic radiation force impulse (see Section 12.3).
Only methods assessing shear stiffness, shear viscosity, or other parameters related to external
stimulations are considered here. Further details on ultrasound elastography are given in Chapter 12.

strain rate [305]. Albeit related to myocardial mechanics, these parameters alone cannot
reveal intrinsic elastic properties, since the stress term in the balance of motion equation
remains unknown. We will therefore disregard strain- and flow-sensitive methods in the
further discussion. In the following sections, selected studies of cardiac elastography
using ultrasound and MRI are presented to provide reference values and to demonstrate
the sensitivity of cardiac MRE for future studies.

13.3.1 Ex vivo SWI

Shear wave imaging (SWI) was investigated in Langendorff perfused isolated adult rat
hearts to measure the variation in shear modulus over the cardiac cycle [299]. The study
was designed to simulate various physiological conditions and to measure the effect on
elastography-derived stiffness values. Myocardial contractility was modified by infu-
sion of isoproterenol, which resulted in a clear increase in systolic stiffness. Systolic
stiffness was correlated with an increase in ṗlumen, as a direct measure of contractility,
whereas diastolic stiffness remained unchanged. The major findings are summarized in
Figure 13.4.

13.3.2 In vivo SDUV

Shear wave dispersion ultrasound vibrometry (SDUV) is based on the measurement of
Lamb waves in the myocardial wall [303] (see Section 12.18). Lamb waves are two modes
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Figure 13.4 Myocardial stiffness measured by SWI in a perfused Langendorff rat heart, and LV
pressure evolution on the same time axis (a). (b) Linear relationship between systolic shear modulus
of the LV wall and LV pressure. LV pressure was modified by isoproterenol infusion. (Pernot 2011 [299].
Reproduced with permission of Elsevier.)

of plate waves (parallel and antiparallel), whose velocities depend on the ratio between
wavelength and plate thickness. Antisymmetric Lamb waves represent bending vibra-
tions, which arise in the heart wall upon external stimulation by harmonic waves. SDUV
measures the dispersion of Lamb wave speed over the excitation frequency, which can
be fitted by a viscoelastic model such as the Voigt model (see Section 4.8). The Lamb
wave model explicitly depends on the plate thickness; therefore, SDUV requires infor-
mation on the finite plate thickness prior to inversion. Figure 13.5 shows normal values
of myocardial elasticity and viscosity measured in porcine hearts exposed by sternotomy
for measurement. In addition, myocardial infarction was induced by ligature of the ante-
rior descending coronary artery, followed by reperfusion for 1–2 h. Similar to results
obtained by SWI in ex vivo rat hearts (see Figure 13.4), the SDUV-measured shear mod-
ulus was higher in systole than in diastole (≈12-fold). Shear viscosity varied less over the
cardiac cycle (≈ twofold). Infarction caused myocardial stiffening mainly in the relaxed
heart phase, whereas no change was observed during systole. Myocardial viscosity after
infarction was increased in both diastole and systole.

13.3.3 In vivo Cardiac MRE in Pigs

In vivo cardiac MRE in pigs was performed to measure shear modulus values across
the cardiac cycle using 80-Hz harmonic vibration [298]. Reconstruction of effective
myocardial stiffness was accomplished based on the flexural plate speed in a 2D
spherical shell. By using this model, wave speed can be converted to a shear modulus
as long as wall thickness is known. As a result of its 2D nature, this model shows
in-plane singularities at the poles. Moreover, an unknown load term causes the
stiffness measurements to be relative rather than reflecting intrinsic properties [306].
Shear moduli obtained in this study were ≈9.3 and ≈6.0 kPa for systole and diastole,
respectively. This corresponds to a relatively small change (≈1.5-fold) compared to ex
vivo SWI (≈7.3-fold) and in vivo SVDU (≈12.8-fold). Nevertheless, good correlation
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Figure 13.5 Shear wave dispersion ultrasound vibrometry (SDUV) of exposed pig hearts in vivo. Shear
modulus 𝜇1 (a) and viscosity 𝜇2 (b) (corresponding to E and 𝜂 of the Voigt model in Section 4.8) were
measured in normal LV wall and after reperfused acute myocardial infarction. Notably, the highest
increase in stiffness following infarction and reperfusion was observed in diastole. (Pislaru 2014 [303].
Reproduced with permission of Elsevier.)

between pressure and stiffness was observed in some animals, further corroborating
the use of shear wave-based elastography for cardiac pressure measurement. This major
finding was confirmed by a further cardiac MRE study in pigs following intravenous
injection of dextran-40 to alter the end-diastolic cardiac load [306]. In this study,
MRE confirmed the correlation between increased end-diastolic LV pressure and
myocardial stiffening at different time intervals following dextran administration. In
view of limitations of wave inversion in highly bounded media such as the heart, an
alternative “inversion-free” approach was developed based on the simple relationship
between wave amplitudes and shear modulus, |u| ∝ 4

√
𝜇 (see Eq. (4.213)) [208]. This

approach is appealing since the change in 𝜇 is directly reflected in the magnitude of
shear wave amplitudes |u| at the image resolution of the underlying imaging sequence.
This method, often denoted wave amplitude variation (WAV) approach, does not rely
on wave inversion and thus does not require high wave numbers. Instead, steady-state
flux of shear wave energy is required to fulfill Eq. (4.213), which is better obtained
by low vibration frequencies in the range of 20–30 Hz than at higher frequencies,
where attenuation and reflections are more pronounced. More details on WAV-MRE
sequences and postprocessing are given in the next section. To highlight the potential
of WAV-MRE in measuring the cyclic variation of cardiac pressure, Figure 13.6 shows
the reciprocal correlation between pressure and MRE-derived wave amplitudes in pigs.
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Figure 13.6 Cardiac MRE in pigs to test the correlation between MRE and invasively measured LV
pressure. ((a) Kolipaka 2010 [298]. Reproduced with permission of Wiley and (b) [308] used under CC
BY 2.0 licence.)

13.3.4 In vivo Cardiac MRE in Humans

13.3.4.1 Steady-State MRE (WAV-MRE)
The first cardiac MRE experiments in humans were conducted similar to measurement
of wave amplitudes as shown in Figure 13.6 for pigs. Initially, a balanced steady-state free
precession (bSSFP) MRE sequence was used, which is superior to other MRE methods in
terms of signal-to-noise ratio (SNR) and image quality. However, as discussed in Section
3.4.2, bSSFP suffers from a nonlinear phase response to motion. This results in spatial
modulation of the encoded motion phase, which does not reflect true displacement.
Such displacement may result in apparently propagating waves when the offset phase
changes during the heart beat. These propagating sensitivity patterns affect elasticity
estimates by MRE. Therefore, [19] introduced the so-called phase preparation gradi-
ents for use with bSSFP-MRE, which produce parallel banding perpendicular to the
gradient direction with regions of high signal magnitude in between. With increasing
gradient amplitude, these stripes become narrower and increase in number. In the limit
of fully dephased magnetization, the lines of high and low signals collapse into a sin-
gle voxel, producing homogeneous image contrast, which basically resembles that of
steady-state fast low-angle shot (FLASH). In contrast to bSSFP, FLASH ensures a linear
relation between displacement amplitude and accumulated spin phase, as presented in
Table 3.1. Therefore, steady-state FLASH was used for cardiac MRE [208]. A sequence
scheme is displayed in Figure 7.1. This protocol creates a steady state of magnetization,
during which time-harmonic waves are continuously excited. The patient is asked to
hold his/her breath for approximately 1.8 s, during which one k-space line is acquired
360 times in quick succession. By repeating the same process for every k-space line,
a time series of 360 images covering 1.8 s can be reconstructed. After each single line
acquisition, a 2- to 3-s delay is inserted for breathing. This acquisition scheme provides
high reproducibility for in vivo cardiac MRE. Figure 13.7 demonstrates the timing of
steady-state FLASH MRE of the heart.

The relatively high temporal resolution of approximately 5 ms makes steady-state
FLASH-MRE well suited for analysis of WAV during the heart beat. The change in shear
wave energy or altered wave flux due to a change in the myocardial shear modulus gives
rise to the WAV effect, which constitutes a relative measure of myocardial elasticity. Two
experimental observations led to the development of WAV-MRE: (i) wave amplitudes
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Figure 13.7 Illustration of cardiac steady-state FLASH MRE (Elgeti 2010 [177]). (a) Collecting
morphological information such as LV diameter from magnitude MRE images. (b) Analysis of phase
MRE images comprising (i) unwrapping using gradient unwrapping corresponding to Eq. (9.10) but
along the time axis, yielding phase velocity �̇� and (ii) calculation of the wave deflection amplitude
from �̇� by accounting for all three vector field components of the displacement. Figure (c) illustrates
the relative timing of the sequence.

change ahead of geometry (wall motion or LV volume) and (ii) wave amplitudes are not
limited to myocardial tissue but can also be measured in the blood-filled LV lumen. The
first observation is demonstrated in Figure 13.8 using both MRE and ultrasound-based
cardiac elastography. The fact that geometry lags behind MRE-derived alterations in
the shear modulus provides evidence for the aforementioned correlation between MRE
and cardiac pressure. The time delay between MRE and geometry was exploited for the
detection of isovolumetric times [177, 302].

Cardiac USE – in contrast to ultrasound-based cardiac strain measurement
methods – was developed after the feasibility of WAV-MRE had been demonstrated
in healthy volunteers [257]. As mentioned above, WAV-MRE requires a relatively
high sampling rate to ensure that the continuous flux of shear wave energy through
the heart is monitored with a sufficient time resolution. As a compromise, the WAV
effect is analyzed inside the full ventricle and spatial resolution is sacrificed. Such a
setup can be realized with even higher temporal resolution by using USE. Cardiac USE
was introduced in the literature under the name “time-harmonic elastography” (THE,
see Section 12.8) since it utilizes a time-harmonic monofrequency stimulus similar
to that applied in cardiac MRE [257]. The THE–USE method measures a single wave
field component, and the high sampling rate (≈1 kHz) renders the method sensitive
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Figure 13.8 In vivo WAV-based MRE and ultrasound-based cardiac elastography (USE) in healthy
volunteers. The principal finding is that cardiac wall motion (geometry) lags behind wave amplitudes
|u(t)| (elastography). The delay between the curves of geometry and elastography represents the
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point to modulations that are related to temporal scattering as explained in Section 4.12.2. ((a) Sack
2009 [208]. Reproduced with permission of Wiley. (b) Tzschätzsch 2012 [257]. Reproduced with
permission of Elsevier.)

to the elasticity variation of the heart wall. This high temporal resolution sheds light
on the interaction between shear waves and cardiac elasticity. Figure 13.8 illustrates
modulations of shear wave amplitudes within elasticity transition times (IVC and
IVR) measured by THE–USE. This frequently observed phenomenon is related to the
mechanism explained in Figure 4.15, in which backward-running waves caused by
a “temporal interface” (sudden changes in elasticity) interfere with forward-running
waves. In other words, allowing the shear modulus to vary in the energy flux density
Eq. (4.212) violates the underlying equality of potential and kinetic energy: elasticity
changes influence the potential energy of a body, which must also affect the kinetic
term in Eq. (4.212). Although WAV-MRE has a lower time resolution than THE–USE,
this observation can help correctly determine cardiac time intervals in the future, as it
was proposed in the studies reviewed below.

WAV-MRE was shown to allow noninvasive measurement of pressure–volume cycles
in the human heart [289]. However, the relative change in wave amplitudes |u(t)| accord-
ing to Eq. (4.213) had to be scaled by the peripherically measured systolic pressure,
psystole, in order to obtain an intracardiac pressure value pMRE:

pMRE =
|usystole|

|u(t)|
⋅ psystole. (13.5)

Although psystole provides only a rough approximation of systolic LV pressure, it enabled
the quantification of the mechanical work performed during one p–V , as 0.84 ± 0.19 J
which is on the order of invasively derived values for the normal heart (see the box on
page 252). Figure 13.9 illustrates two p–V cycles from a normal and a dysfunctional
volunteer (mild mitral valve insufficiency). The latter volunteer had markedly lower
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Figure 13.9 In vivo p–V cycles determined in
two volunteers. The dashed line indicates mild
mitral valve insufficiency, which results in a
lower pressure increase than seen during
normal IVC. pMRE relates to Eq. (13.5). (Based on
data published in [309].)

IVC pressure increase rate, indicating a symptomatically elevated volume change during
pressure increase.

Diastolic Dysfunction and Isovolumetric Cardiac Times Elasticity-based IVC and IVR
times were measured by WAV-MRE in 27 patients with relaxation abnormalities and
20 healthy controls [80]. The magnitude of the complex signal was used to deduce
morphological information, and magnitude combined with the phase of the complex
signal was used to derive tension relaxation information during systole and diastole.
Wave amplitudes decreased during systolic contraction and increased during diastolic
relaxation of the left ventricle. In healthy volunteers, mean IVC and IVR times were
136 ± 36 and 75 ± 31 ms, respectively. In patients with DD, IVC was only weakly altered
(161 ± 45 ms), while IVR was significantly prolonged (133 ± 57 ms).

Diastolic Dysfunction and Wave Amplitude Maps As it is known that myocardial stiffness
increases not only with myocardial disease but also with age, a young (18–39 years,
N = 10) and an old healthy group (40–68 years, N = 10) were compared to patients
with DD (N = 29) [79]. LV wave amplitudes were normalized by wave amplitudes mea-
sured in a reference region anterior to the heart and adjacent to the RV. Normalized
wave amplitudes decreased with age and DD severity, indicating progressive stiffening
of myocardial tissue caused by aging or dysfunctional diastolic relaxation. A cutoff value
of 0.43 for normalized wave amplitudes was found to be optimal for identifying patients
with DD with an overall diagnostic performance of 0.92 as quantified by AUROC (area
under the receiving operating characteristic curve) analysis and with 90% sensitivity
and 89.7% specificity when compared with echocardiography as the reference standard.
Figure 13.10 illustrates the DD-related decrease of LV wave amplitudes.

13.3.4.2 Wave Inversion Cardiac MRE
The wave inversion (WI)-MRE approach uses excitation frequencies of 60–80 Hz, result-
ing in a temporal resolution of 50–100 ms in the heart. A standard gradient-echo MRE
sequence with 160-Hz motion-encoding gradient (MEG) (thus using fractional encod-
ing, see Section 3.1.3) allowed the acquisition of wave images in eight phases of the
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Figure 13.10 Shear wave amplitude maps generated using WAV-MRE (steady-state cardiac
FLASH-MRE). Short-axis views of the heart and corresponding amplitude maps of a normal volunteer
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The white solid line outlines the outer contour of the left ventricle during systole. The region of
interest for normalizing the induced shear waves anterior to the heart is outlined by a white dashed
line. (Elgeti 2014 [79]. Reproduced with permission of Radiological Society of North America.)

cardiac cycle at four samples over one vibration cycle [161]. Unlike data processing in
swine, conventional local frequency estimation (LFE, see Section 10.4) was used to ana-
lyze these data, providing shear stiffness values similar to other MRE studies in larger
organs such as the liver (discussed in Chapter 15). Using this approach, Wassenaar et al.
[161] observed a weak linear correlation between stiffness and age. Interestingly, the
deviation between end-systolic and end-diastolic stiffness was observed to increase with
age, which was interpreted as an effect of higher afterload during systole attributable to
changes in aortic compliance that occur with age.

13.3.5 MRE of the Aorta

In addition to the heart itself, the aorta is a major determinant of cardiovascular health
and has recently gained attention as a potential clinical target of MRE. Large arteries
such as the aorta deliver blood to peripheral tissues and serve as blood buffer according
to the Windkessel principle: the walls of large arterial vessels distend when the blood
pressure rises and recoil when the blood pressure falls. The distensibility of large elas-
tic arteries is therefore analogous to a capacitor, which stores blood during systole and
discharges blood during diastole. An estimated 50% of stroke volume is accumulated
by the central large vessels during systole and delivered into the periphery during dias-
tole. This effect enhances coronary blood flow, reduces afterload of the left ventricle, and
improves ventricular relaxation [310]. With aging, the aorta stiffens, thus reducing the
capacity to store blood during systole. This mechanical impairment of the aorta is accel-
erated by arterial hypertension [311]. A reduced mechanical compliance of the aorta also
promotes vascular stenosis, formation of atherosclerotic plaques, and the risk of vascu-
lar rupture [312, 313], motivating the application of MRE to the central great arteries
for assessing cardiovascular risk factors and monitoring antihypertensive therapy.
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Current arterial MRE methods image and analyze harmonic shear wave propagation
through the wall and lumen, considering arteries as fluid-filled tubes. Although shear
waves do not propagate in fluids, vibration of the aortic wall causes the blood to vibrate
with the same oscillatory pattern, thus enabling stiffness measurement in regions that
incorporate both the wall and the lumen of the aorta [143]. Friction between blood
and the oscillating vessel wall transfers kinetic energy to the blood and causes it to
oscillate. Similar to WAV-MRE, which also relies on endoluminal vibrations, MRE
of the aorta exploits the larger volume and high MRI signal of blood to indirectly
capture the vibration properties of the adjacent vessel wall. Several studies investigated
this approach adjusting the standard MRE setup used in liver examinations for the
abdominal aorta [314–316]. Wave images in sagittal views of the abdominal aorta
were acquired by gradient-echo MRE sequences [315]. Parameter reconstruction was
either based on LFE assuming a boundary-free isotropic medium [316], by measuring
wavelength along the principal axis of the aorta [315] or by a phase gradient method
[314]. The MRE-derived stiffness values increased with age and were higher in systole
than diastole [162, 315, 316]. Arterial stiffness can also be recovered from pulse wave
velocity (PWV), that is, the speed at which the arterial pulse wave propagates through
the vessel. PWV can accurately be determined by phase-contrast MRI and Doppler
ultrasound methods [317, 318]. Recovery of arterial stiffness is usually based on the
Moens–Korteweg equation (12.2), which is applicable in the linear elastic regime of
elastic wall deformation for incompressible fluids and wall tissue [143]. In this simple
model, PWV depends on either hydrostatic input pressure or the rate of deformation,
which contradicts the observation reported by Xu et al., who found a strong correlation
between pressure and PWV in porcine aorta [315]. Furthermore, it is known that PWV
increases during systole and is influenced by variation in the heart rate [319]. It has to be
noted that PWV and MRE provide different mechanical measures, which is confirmed
by only moderate correlation between stiffness parameters retrieved with the two
methods [162]. Future improvements of the method need to include faster acquisition
(single-shot MRE), 3D data acquisition, and a more refined inversion algorithm. A
preliminary application of aortic MRE in patients demonstrated high sensitivity of the
method to hypertension [314], raising the prospect of future clinical applications of
MRE for arterial wall stiffness measurement.
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14

MRE of the Brain

MRE is unique among all testing methods that have been used to assess mechanical
properties of brain tissue in that it is not restricted to the surface and that it can quantify
viscoelastic parameters without opening the skull. Therefore, cerebral MRE can serve as
the reference method for the measurement of in vivo shear modulus data of brain tissue
[320]. Beyond the objective of providing a gold standard for numerical simulations or
ex vivo methods, cerebral MRE has been developed to serve as a diagnostic imaging
modality [321]. The use of MRE for neuroradiological examinations depends on a num-
ber of assumptions about the sensitivity of brain mechanical properties to disease, most
of them still awaiting scientific confirmation. This illustrates the twofold challenges of
brain MRE today: on the one hand, MRE has to evolve into a method which provides
consistent and quantitative measures of cerebral shear moduli in vivo by accounting
for individual and physiological variations. On the other hand, the clinical potential
of measuring mechanical constants in the brain has to be investigated in a wide range
of potential applications. Mechanical properties of the brain have never been used for
diagnostic purposes, despite a few encouraging reports from clinical pilot studies in
patients with tumors, hydrocephalus, multiple sclerosis (MS), or neurodegenerative
diseases [3, 75, 110, 322]. Albeit promising, the reported diagnostic value of cerebral
MRE has not yet reached its full potential and remains to be improved by further
technical development of mechanical drivers, MRI sequences, and post-processing.
Furthermore, basic studies are needed to elucidate the mechanical structures of brain
tissue at multiple length scales and to understand the mechano-biological function
of the living brain. Yet, cerebral MRE in the mouse has already revealed important
insight into the mechanical response of the brain to a variety of physiological and
pathological effects, including aging, inflammation, neuronal degeneration, and tumors
[126, 128, 323, 324]. After more than a decade of development and research, MRE
has opened a new window into the networks and interactions of brain tissue on a
mechanical basis. This chapter is intended as an introduction to the basic concepts of
cerebral MRE from a technical perspective as well as a summary of the current state
of knowledge of brain MRE in humans and mice. Specific applications of cerebral
MRE related to brain tumors are discussed in Chapter 17. Before reviewing selected
experiments and findings, we will discuss some fundamental aspects and considerations
of cerebral MRE.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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14.1 General Aspects of Brain MRE

14.1.1 Objectives

The development of MRE of the human or murine brain is motivated by three aspects.
First, any quantitative and reproducible imaging marker is highly valuable in clinical
routine. MRE provides such parameters, which can be acquired in a fast and noninva-
sive way without administration of contrast agents. The mechanical characterization of
brain tissue may contribute to the diagnosis of neuronal disorders related to changes in
the mechanical support of neurons, altered vascularization, extracellular matrix (ECM)
structures, or blood and cerebrospinal fluid (CSF) flow.

Second, cranial pressure is a highly relevant parameter for diseases associated with
cerebral blood pressure and CSF flow obstruction. Neurosurgeons would benefit from
an imaging technique capable of measuring cranial pressure noninvasively.

Third, the academic interest in structure-functional mechanisms of the brain includ-
ing biophysical interactions at multiple scales is closely related to mechanical parame-
ters. Scientists studying the brain want to understand the mechanisms of brain function
and disease development in cerebral tissue. MRE adds new and unique information to
this puzzle.

14.1.2 Determinants of Brain Stiffness

The contributors to brain stiffness remain to be identified and the search for them is still
an active field of research. At any rate, multiple structures simultaneously contribute to
the gross mechanical properties of the brain. Therefore, different dynamic regimes in
MRE possess different sensitivities to different structures and processes. On the basis
of the publications discussed later in more detail, there is growing evidence that the
following effects are relevant for brain mechanical parameters:

• cell density and neuronal network density
• myelination of neurons
• inflammatory processes
• ECM structures
• vascular density
• blood and arterial pulse wave pressure
• functional activation.

14.1.3 Challenges for Cerebral MRE

Many challenges in brain MRE also apply to other organs; however, the combination of
the following points makes cerebral MRE particularly demanding:

• high degree of mechanical shielding of the tissue
• high tissue heterogeneity/prevalent fluid–solid interfaces
• anisotropy of elastic parameters
• pulsation
• reflecting boundaries with subject dependent geometry
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• high vascular density/fluid fraction
• high mechanical attenuation/shear modulus dispersion.

However, despite these challenges, some issues that are encountered in MRE of other
organs do not apply to the brain, thus rendering cerebral MRE simpler than, for example,
cardiac MRE (see Chapter 13). Three properties facilitate application of MRE to the
brain:

• The brain is a volume organ in which normally more than one shear wavelength can
be captured, permitting quantitative measurements of viscoelastic parameters.

• The brain does not move to the same extent as the heart, and breathing has so far not
yet been reported as a confounding variable in brain MRE.

• Anisotropy and time variation of brain mechanical constants is not as pronounced as
in the heart.

As a result of these challenges and advantages, most current methods are built on the
following compromises:

• Property estimates based on viscoelastic models normally require spatial averaging
over larger tissue volumes, thus diminishing spatial resolution.

• Higher spatial resolution based on multifrequency wave data is currently obtained
only by ignoring or oversimplifying the dispersion relation of the shear modulus.

• Poroelastic effects are very subtle compared to shear waves and easily biased by phys-
iological effects such as cardiac pulsation. Proper validation of poroelastic property
estimates would require acquisition of the full 3D wave field using cardiac triggering
or gating; however, the acquisition time for that would become prohibitively long.

• Reconstruction of anisotropic elastic parameters requires long scan times, including
time-consuming techniques such as diffusion tensor imaging (DTI).

Brain MRE therefore ideally includes acquisition of the full 3D vector displace-
ment field and multiple vibration frequencies to account for viscosity or to enable
high-resolution MRE based on multifrequency inversion (see Section 10.5). In addition,
complementary information, such as fiber tract directions derived from DTI, can be
utilized for specialized inversion strategies including anisotropic inversion (Section
10.8) or waveguide elastography (Section 10.9).

14.2 Technical Aspects of Brain MRE

14.2.1 Clinical Setup for Cerebral MRE

Common MRE systems are detailed in Section 6.1; most of the systems discussed in
that chapter have also been used for brain MRE. Because the ovoid geometry of human
heads, geometry-induced field distortions are less prevalent in cerebral MRI than in
other organs, making single-shot EPI-MRE favorable because of its acquisition speed.
EPI-based MRE of the brain was the imaging method of choice in recent clinical studies
[75, 108, 111]. Newer sequences include single-shot spin-echo EPI with retrospective
slice reordering for a minimized acquisition time [69], spiral readout-based multislab,
multishot acquisition for whole-brain MRE [22, 325], and SLIM-MRE for optimized
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3D wave field acquisition in the brain [229]. These methods allow acquisition of
multislice and multicomponent and multifrequency data in a short time (Chapter 11).
For example, the method of Dittmann et al. [69] acquires a full 3D set of wave field
data at three frequencies, 15 slices of 2 × 2 × 4 mm3 isotropic voxel size and eight time
steps in approximately 3 min. Such short protocols can easily be integrated into clinical
neuroradiological MRI examinations. Remaining challenges relate to motion artifacts
and field distortions (“warping”). Fluctuations of motion phases across slices in 2D
image acquisition are particularly relevant for all postprocessing methods involving
derivative operators in the through-plane direction [176]. Such fluctuations arise
from stochastic motion or pulsation, which are encoded in the motion phase of the
wave signal. Furthermore, head motion including pulsation blurs spatial resolution
in elastograms, which has to be accounted for in order for brain MRE to become a
high-resolution modality. Field distortions at tissue-air interfaces cause geometric
distortions of the object and impair estimates of wavelengths and elastic properties.
However, such deteriorations mainly appear in images acquired by single-shot EPI
sequences; and correction methods exist [326]. Finally, cardiac-gated multifrequency
MRE acquisition using external wave stimulation relevant for poroelastic inversion has
not yet been achieved in 3D.

In order to generate shear waves in the brain, MRE technology offers many solutions
including bite bars, pneumatic pillows, head cradles, remote drivers based on a thorax
mat, and compressed-air drivers. As a consequence of the high viscosity of brain tissue,
shear wave amplitudes are more strongly attenuated at higher frequencies, motivating
the use of low drive frequencies of <60 Hz. Figure 14.1a demonstrates two dispersion
functions of the complex shear modulus, G∗, of in vivo brain tissue. Inducing frequen-
cies in the 50–60 Hz range requires wave sources near the field of view, whereas lower
frequencies of <40 Hz can also be produced farther away from the head, which greatly
improves the clinical applicability of cerebral MRE [327]. Another aspect is hardware
flexibility. A rigid head cradle, as proposed in [328, 329], requires adaptation of the setup
to specific scanner hardware including RF coils and patient table for mounting the actu-
ator on the table. This can be cumbersome when MRE hardware needs to be used on
different scanner types. On the positive side, the head cradle does not require adapta-
tion to body shape and surface and induces waves in a direct way without significant
attenuation from the wave source to the actuator. Therefore, most studies in brain MRE
were conducted using this type of actuator. By contrast, bite bar actuators need an indi-
vidually molded polymer mouthguard, which is difficult to implement clinically [330],
thus limiting this approach to fundamental studies with few subjects. Ideally, drivers
for cerebral MRE should produce high amplitude shear waves inside the cranial cav-
ity using a remote source and be adaptable to the individual’s physique and the MRI
hardware used.

14.2.2 Choice of Vibration Frequency

The requirement to induce intracranial shear waves in a gentle way seems to be fulfilled
best by remote wave stimulation at low frequencies [327]. A recent analysis of viscoelas-
ticity estimates by brain MRE obtained in a wide range of frequencies demonstrated
that low-frequency elastograms can have the same resolution of anatomical detail as
high-frequency elastograms [69]. Figure 14.1b shows elastograms from the literature
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and G′′, represent springpot model dispersion. (b) Elastograms of |G∗| obtained by three-frequency
MDEV inversion in three different frequency ranges. (Dittmann 2015 [69]. Reproduced with permission
of Wiley.)

obtained with the use of different vibration frequencies, illustrating that brain MRE is
feasible in a wide range of vibration frequencies from 10 to 60 Hz. However, patient
comfort and detail resolution are not the only parameters that determine the best
choice of frequencies in cerebral MRE. The sensitivity of mechanical constants to
disease can vary with drive frequency. In view of the hierarchy and complexity of brain
tissue networks, an optimal range of frequencies may exist for specific diseases. Würfel
et al. [73] reported 2D multifrequency MRE in patients with MS to be more sensitive
at 25 Hz compared to 37.5, 50, and 60 Hz. More data are needed here, especially in the
range below 20 Hz, which is entirely unexplored in patients. Solid–fluid interactions
are expected to be relevant in the lower frequency range, making low-frequency
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Table 14.1 Shear modulus values of brain tissue from the literature.

Frequency range
(Hz)

Study G′ (kPa) G′′ (kPa) G∗ (kPa) 𝝋 (rad) References

Static (micro
indentation)

Ex vivo murine
spinal cord
(GM/WM)

0.13/0.07 [332]

Static (macro
indentation)

Ex vivo porcine
Bovine
(GM/WM)

0.40/0.60 [333]
0.46/0.68 [334]

20–30 Hz (shear
test)

Ex vivo lamb
(GM/WM)

0.29/0.4–0.62 [335]

1 Hz (arterial
pulsation)

In vivo human 2.3 [336]

0.1 Ex vivo porcine 0.39 0.08 0.4 0.19 [131]
1.0 0.47 0.09 0.47 0.20
10.0 0.65 0.19 0.68 0.28
10–20 In vivo human 0.57 0.24 0.62 0.39 [69]
25–35 1.53 0.31 1.56 0.20
40–50 2.12 0.52 2.18 0.24
30 In vivo human 0.69 0.59 0.90 0.71 [337]
25 In vivo human 1.50 0.70 1.66 0.44 [78]
37.5 1.82 0.84 2.00 0.43
50 1.94 0.98 2.17 0.47
62.5 2.38 1.20 2.67 0.47
50 In vivo human

(GM/WM)
1.8/2.4 0.7/1.2 1.9/2.7 0.37/0.46 [325]

45 In vivo human
(GM/WM)

2.8/3.7 0.8/1.3 2.9/3.9 0.28/0.34 [338]
60 3.1/3.3 1.7/2.0 3.5/3.9 0.50/0.54
80 4.4/4.7 2.3/2.4 5.0/5.3 0.48/0.47
90 In vivo human

(GM/WM)
3.1/2.7 2.5/2.5 4.0/3.7 0.68/0.75 [339]

Only reports of complex shear modulus (either given as G′ and G′′ or |G∗| and 𝜑) are listed, while
wave speed values or reports on “shear stiffness” were not considered in this table. Static tests
measuring Young’s modulus (scaled to G′ by the factor 1∕3) are presented for comparison purposes.
Two values separated by a slash refer to gray matter (GM)/white matter (WM).

MRE potentially more sensitive to fluid-related diseases such as hydrocephalus than
high-frequency MRE [78]. As seen in Figure 14.1, the pronounced shear modulus
dispersion of in vivo brain tissue yields low values at frequencies between 10 and 20 Hz.
In this frequency range, |G∗| values on the order of 0.6 kPa are measured. Table 14.1
lists published shear modulus values obtained at different vibration frequencies.
Despite some variation, there seems to be agreement that brain matter is soft (between
1 and 3 kPa) at 50 Hz and very soft (≈0.5 kPa) toward low frequency or quasi-static
stimulation.
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14.2.3 Driver-Free Cerebral MRE

Head stimulation and setup of driver hardware can be avoided by exploitation of endoge-
nous brain motion. The brain is a pulsating organ with deflection amplitudes on the
order of millimeters. The arterial pulse wave passes through the branched arterial sys-
tem from the circle of Willis to parenchymal arteries. Arterial pulsation produces a
propagating shear deformation of the vessel walls in the vascular tree. The speed of this
effective-medium shear wave is determined by a number of parameters including the
compression modulus of the fluid, the shear modulus of the vessel walls and the com-
pliance of the embedding matrix. Elastographic parameter reconstruction based on the
1 Hz component of this pulse wave-driven shear wave was demonstrated by Weaver
and colleagues [336]. Intriguingly, pulse wave-based shear modulus maps have similar
detail resolution as the maps generated with most current inversion methods based on
exogenous stimulation (see Figure 14.2). The mean shear modulus obtained by intrin-
sic MRE is in the order of 2.3 kPa and thus higher than the values obtained by external
stimulation at low frequencies (see Table 14.1). However, the mechanism of shear wave
generation differs considerably between both methods, and overlapping results are not
expected. It would be interesting to see if this promising technique is sensitive to physi-
ological conditions such as blood pressure, CO2 saturation, and functional activation or
diseases such as atherosclerosis or vascular dementia. A drawback of intrinsic methods
is their higher susceptibility to physiological variations such as irregular heart rate and
the need for cardiac gating. Retrospective gating discards and re-acquires nonmatching
data, which results in longer acquisition times (on the order of 30 min [336] instead of
3 min as mentioned above). An alternative method of driver-free cerebral MRE exploits
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Figure 14.2 Elastograms obtained by intrinsically activated MRE displaying the shear modulus
corresponding to 1 Hz harmonic motion [336]. (Reproduced with kind permission of John Weaver and
Keith Paulsen from Dartmouth College, USA.)
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vibrations produced in the scanner by strong gradients. This approach demonstrates
the sensitivity of MRE to low-frequency vibrations. Indeed, vibrations produced by an
external driver at low frequencies, such as 25 Hz, are often reported by patients as less
noticeable than the vibrations induced by the gradient system. For this reason, applying
strong gradients with some time delay before motion encoding for stimulating waves is a
feasible technique of cerebral MRE [340]. The main limitation here is the actual effort of
vendors to avoid these vibrations. Patient tables decoupled from the scanner preclude
those experiments. Furthermore, this approach is limited to a single frequency – the
resonance frequency of the table – and transient effects have to be considered.

14.2.4 MRE in the Mouse Brain

Investigation of the viscoelastic response of the mouse brain in disease models is a
viable way to infer the relationship between mechanical constants and pathological pro-
cesses. A number of technical solutions exist for performing MRE on the mouse brain.
Figure 14.3 shows two examples based on a Lorentz coil in the fringe field of the MRI
scanner and a piezo element vibrating inside the magnet. Images are normally acquired
by spin-echo sequences with motion-encoding gradients (MEGs) symmetrically placed
around the spin echo pulse (see Figure 3.10) or gradient recalled echo (GRE) pulse
sequences with a single train of MEG's (see Figure 3.11). High excitation frequencies
(in the range of 1 kHz) are required to capture shear waves with sufficiently short wave-
lengths inside the small mouse brain. Motion encoding synchronized to high-excitation
frequencies, as often used at high field strengths, allows the application of multiple MEG
cycles, constituting an ideal scenario for SLIM-MRE (see Chapter 11) [228]. SLIM-MRE
is capable of acquiring the same amount of data as sequentially scanning the three wave
field components in one-third of the time, which is important in view of the fact that
mouse MRE is slower than MRE of the human brain. Susceptibility artifacts are more

MRI scanner

Lorentz coilBite
bar

Gas inlet

(b)

(a)

Bite bar

Flexible
bearing

Transducer
rod

Oscillation

Actuated bite bar
Amplified piezoceramic

actuator (APA)

Ear pin Anesthesia nose cone

Figure 14.3 Two types of actuators for mouse brain MRE based on a piezo driver ((a), Clayton 2011
[341]. Reproduced with permission of Institute of Physics.) and a Lorentz coil in the fringe field of the
MRI scanner (b) as it was used in multiple studies [121–124].
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Table 14.2 Overview of mouse brain MRE and ultrasound elastography (USE) studies published
in the literature.

Frequency (Hz) Mouse strain G′ (kPa) G′′ (kPa) Region References

Transient,
SSWIa

Sprague Dawley
rats

11.6–12.3b Central brain [342]
8.6–10.0b Hippocampus
7.8–21.4b Corpus callosum

1200 C57/BL6 13.8 Central cortical
gray matter

[117]

600–1800 BALB/cAnNHsd 1.8–7.9 1.5–2.5 Central brain [341]
900 SJL 6.1 2.0 Central brain [124]
1500 WT 25.0 Central brain [128]
180 Sprague Dawley

rats
8.4 7.1 Central brain [130]

1000 C57BL/6 7.8c 5.5c Corpus callosum [324]
900 C57BL/6 4.6 1.4 Hippocampus [122]
900 C57BL/6 6.9 1.8 Central brain [123]
900 C57BL/6 4.8 1.4 Cerebrum [121]

3.9 1.2 Cerebellum
aUltrasound-based elastography by supersonic shear wave imaging.
bValues dependent on the position of the of ultrasound probe (a large difference as in the corpus
callosum indicates high anisotropy).
cEstimated from the relation G∗ = |G∗| ⋅ exp (i𝛼𝜋∕2).

of a problem in the mouse brain than in cerebral MRE in humans due to the prevalence
of tissue-air interfaces in the mouse head. Therefore, single-shot EPI-MRE has not yet
been applied in the mouse, which considerably limits the amount of wave informa-
tion accessible to preclinical MRE as compared to MRE in humans. The potential of
MRE in the mouse is far from having been fully exploited with respect to detail reso-
lution and consistency. Table 14.2 lists in vivo storage modulus values measured in the
mouse brain.

14.3 Findings

The results reviewed in Tables 14.1 and 14.2 illustrate the range of cerebral shear mod-
ulus values in healthy subjects and rodents. Note that there is a significant variation
of values due to different excitation frequencies, imaging methods, and reconstruction
approaches used. Nevertheless, similar to other more established mechanical testing
methods, cerebral MRE is self-consistent (with less than 2% variation) within the same
experimental protocol and postprocessing pipeline [343]. Significant variation in brain
stiffness was observed among healthy subjects, which raises the question as to what
degree the cerebral shear modulus is affected by physiological factors including age,
sex, blood pressure, and hydration compared to the effect of diseases. In the following
discussion, this question is addressed in the light of published evidence.
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14.3.1 Brain Stiffness Changes with Age

A decrease in viscoelasticity of the adult brain over the lifespan was first reported
in 2009 [331]. It was demonstrated by multifrequency MRE that the normal adult
brain becomes considerably softer during aging at an annual rate of 0.7% at lower
frequencies (25 Hz) and 0.4% at higher frequencies (50 Hz), which suggests that fluid
compartments contribute to the age-related softening of brain tissue. Multifrequency
data were combined into frequency-independent parameters 𝜇 and 𝛼 using the
springpot model (see Section 4.8 and the box on 82), which allowed separation of
elastic effects from viscosity-related modulus dispersion. By this, an annual decay of
shear elasticity (𝜇) of −15 Pa was measured, while the slope of modulus dispersion
as given by 𝛼 remained unchanged. The relative stability of 𝛼 was interpreted as an
unchanged viscoelastic network topology – in contrast to the inherent network rigidity
as quantified by 𝜇, which decreases with age. These initial findings were reproduced
by 3D single-frequency MRE [70] and by the same 2D multifrequency MRE method
correlated to volumetry [71]. Compared to MRE, brain volume was less affected by age
with rates of change (full brain matter atrophy) of approximately 0.23% per year (see
Figure 14.4). The highest rate of softening was observed in the frontal lobes [71] and
in the temporal lobes [70]. Notably, these studies were performed in the adult brain
(18–72 years [71], 56–89 years [70]), while children and adolescents are still unexplored.
The linear regression model used in adults presumably requires extension toward a
level of maximum elasticity in the juvenile age range. Such a maximum shear modulus
during adolescence is suggested by the quadratic regression analysis in Figure 14.5,
which suggests a plateau-like behavior in younger brains. In the mouse, only limited
data exist on the influence of age on the viscoelasticity of neuronal tissue. All studies
summarized in Table 14.2 reported age-pooled data and could not reveal significant
softening of murine brain tissue as seen in humans. It has to be noted that most MRE
experiments in small animals are conducted in a much higher frequency range than
human studies. Static indenter tests in the rat brain (postmortem) showed an inverse
age effect, meaning that stiffness increased from juvenile to adult rats [344]. In essence,
brain MRE is sensitive to age effects in the human brain. This sensitivity needs to be
accounted for in clinical studies by considering age as a confounding variable of brain
stiffness.

kPa
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Figure 14.4 Brain shear modulus and brain volume in adults versus age. (Modified from [71] with
permission.)
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Figure 14.5 High-resolution MRE based on multifrequency MRE from 30 to 60 Hz and MDEV inversion.
(a) Group-averaged maps of magnitude shear modulus (|G∗|) and shear modulus phase angle (𝜑)
Guo [329]. (b) An MDEV-based elastogram (|G∗|) together with a standard T2-weighted image acquired
at 7 T magnetic field strength. High signal intensities in |G∗| correspond to high stiffness. Scaling from
0 to 2 kPa. Image voxel size was 1 mm3, allowing distinction of cortical gray matter from white matter
based on their mechanical properties. (Braun 2014 [38]. Reproduced with permission of Elsevier.)

14.3.2 Male Brains Are Softer than Female Brains

Sexual dimorphism of brain architecture is known from MRI volumetry [345] and histo-
logical studies, which suggests differences in the number of neurons and glial cells [346,
347]. It is therefore not surprising that MRE revealed statistically significant differences
in brain elasticity between men and women. Both 2D multifrequency MRE and 3D MRE
were sensitive to gender differences, measuring lower stiffness in male brains compared
to female brains [70, 331]. Arani et al. [70] reported female occipital and temporal lobes
to be 230 and 90 Pa, respectively, stiffer than male ones of the same age, consistent with
reports on springpot-𝜇 of the central brain, which was about 180 Pa lower in men than
in women [331]. The positive correlation between brain stiffness and volume does not
imply a causal relationship. Instead, the observed gender-based disparity suggests that
MRE measures intrinsic properties rather than geometry: since female brains are statis-
tically smaller than male brains, their higher stiffness may relate to the higher neuronal
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density found in many regions of the female brain [346, 347]. Yet, the effects of age or
gender are weak relative to the variation in brain stiffness between individuals [328, 343].
It therefore remains an open question which contributors ultimately influence stiffness
of in vivo brain tissue in healthy subjects. Gender and age appear to have a statistically
significant but relatively weak effect compared to the variability between individuals.

14.3.3 Regional Variation in Brain Stiffness

Much effort has been put into creating an atlas of brain mechanics, which, however,
still has to be improved with respect to detail resolution and by cross-validation with
different techniques of neuronal MRE. The most consistent mapping of |G∗| and 𝜑

derived from MDEV inversion (see Eqs. (10.52) and (10.55)) has been achieved by calcu-
lation of group averages after registering brain volumes. Exemplary maps are shown for
illustration in Figure 14.5. In these maps, finer structures such as thalamus (TH), head
of caudate nucleus (HCN), and genu of the corpus callosum (GCC) are delineable in
order to tabulate group-averaged values for healthy adults. Corpus callosum (CC) and
corona radiata (CR) were resolved by Johnson et al. [348], while [327] analyzed struc-
tures along the corticospinal tract (CST), namely capsula interna, crus cerebri, and pons.
The reported values suggest a correlation of stiffness with the packing density of fibers,
with both quantities exhibiting the highest values in corpus callosum and crus cerebri
and lower values in regions, where fibers fan out (corona radita) or cross (pons). Com-
pared to the central cerebrum, the cerebellum appears to be softer [343, 349]. Using
high-resolution MRI at 7 T with 1 × 1 × 1 mm3 resolution allowed delineation of cortical
gray matter with a thickness of 3–6 pixels instead of 1–2 pixels as common in “normal”
cerebral MRE of ≈8 mm3 voxel volume. Such high-resolution 7T MRE maps show cor-
tical gray matter to be softer than white matter (Figure 14.6), consistent with [129, 160,
338, 348] (in vivo MRE) and [333–335] (ex vivo tests) but in conflict to [339] (in vivo
MRE) and [332] (microindentation of the murine spinal cord).

14.3.4 Anisotropic Properties of Brain Tissue

To date, regional variations in viscoelastic constants in the brain were analyzed without
consideration of anisotropic properties. The aforementioned correlation of stiffness
with fiber density [327, 348] may point to direction-dependent (anisotropic) properties.
Static tests on ex vivo white matter tissue samples measured anisotropic properties with
a higher shear modulus when the shear was applied parallel to the direction of fibers,
whereas no orientation dependence was detected for the shear moduli of gray matter
samples [335]. Few data exist on in vivo anisotropic elastic constants in the human
brain, and they have all been obtained using waveguide elastography (see Section 10.9)
[72]. This method is capable of measuring the full orthotropic elastic tensor according
to Eq. (4.34) with nine independent elastic constants, three of which representing
shear moduli while the others are related to compression. In a waveguide, wave speeds
(including the compression, i.e., longitudinal, wave speed) are related to the geometrical
thickness of the vibrating rod, and thus represent effective properties of the material,
which combine intrinsic properties and boundary conditions. Waveguide elastography
presupposes that waves propagate along the nerve fibers, whose directions are deduced
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Figure 14.6 Preliminary functional MRE at four mechanical excitation frequencies. The global
response of |G∗| to visual stimulation (averaged over five transverse slices) is shown for 60 experiments
in which a checkerboard pattern was repeatedly (six times) shown during five consecutive MRE scans
followed by five baseline scans without visual stimulation. In the 25 Hz response, the inverse BOLD
effect (quantifying neuronal activity based on the oxygen level of the blood) is also included which
was derived from the 3D fMRI data in the same subjects (N = 10). In all cases, a decrease in |G∗| due to
visual stimulation was observed. (Fehlner 2014 [358]. Reproduced with permission of ISMRM.)

by DTI-based tractography. Intriguingly, it was shown in five healthy volunteers that
the full orthotropic elasticity tensor in the CST is redundant in seven elements (two in
each of the diagonal, off-diagonal, and shear coefficients are equal plus the relationship
C66 = 1

2
(C11 − C22) from transversely isotropic (TI) materials, see Eq. (4.37)), leaving

five independent coefficients. As outlined in Section 4.6, such a material is characterized
by a principal direction of the elasticity tensor along the fibers and a plane of isotropy
perpendicular to them, hence the material is called TI. TI material models have been
proposed for many fibrous soft tissue structures in the body. For example, skeletal
muscles exhibit TI properties as validated in vivo by MRE, with a higher shear modulus
parallel to the fibers than perpendicular to them [47, 48, 350, 351]. However, the ratio of
shear stiffness in white matter seems to be the inverse of that found in muscle tissue: the
CST displayed lower shear moduli parallel to the fibers (𝜇13 = C44 = C55) than within
the plane of isotropy (𝜇12 = C66). While in lower leg muscles, the ratio 𝜇13∕𝜇12 is on the
order of 1.3 [47, 81], a ratio of 0.88 was measured in CST [72]. The same ratio in the
corpus callosum and external capsula of the mouse brain measured by ultrasound-based
elastography (SSWI) was even lower, on the order of 0.4–0.6 [342]. These results sug-
gest that there is a principal difference between white matter tissue and “normal” TI
materials (soft elastic matrix materials reinforced by stiffer fibers), which may relate to
the fundamental structural differences between muscle fibers and nerve fibers. While
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muscle architecture is essentially characterized by continuous parallel fibers, the myelin
sheath of axons is highly organized in lipid bilayers oriented transversely to the main
fiber direction, which – in addition to the presence of periodic discontinuities named
nodes of Ranvier – could present a transverse rather than longitudinal mechanical
element. Albeit not validated, this interpretation highlights the sensitivity of MRE to
microstructures as a result of the scaling properties of the shear modulus (see the box
on 124). Without further elucidation of the cause of this neuron-specific mechanical
behavior, waveguide elastography was already performed in patients with amyotrophic
lateral sclerosis (ALS) – a progressive neurodegenerative disease affecting the upper
and lower motor neurons. Like other neurodegenerative diseases, ALS is difficult to
detect based on imaging markers alone. ALS-related degradation of the cerebrospinal
tract appears in DTI data as increased mean diffusivity and radial diffusivity. This
suggests increased diffusion perpendicular to white matter fibers, which is indicative
of disruption of myelin sheaths and modulation of extracellular spaces between myelin
membranes [352]. Reduced shear moduli 𝜇13 and 𝜇12 were measured in patients with
waveguide elastography, demonstrating that these pathoanatomical hallmarks of ALS
can also affect the mechanical vibration characteristics of neuronal fiber bundles in the
CST [353].

14.3.5 The in vivo Brain Is Compressible

The basic concepts of compressibility of soft biological tissue are illustrated in Figure
5.1. For the sake of simplicity, we presume brain tissue to be a biphasic effective material
consisting of a solid phase including interconnected cells and interstitial fluid and a
liquid phase of blood and CSF, which can move independently of the solid phase. The
unjacked scenario allows the fluid fraction to change volume, resulting in expansion
and contraction of the entire brain. By contrast, the jacked scenario for incompressible
constituents allows only a relative shift of particles with preservation of volume. This
scenario results in slow and fast compression waves stimulated by external vibration
according to Eq. (5.28). While the first scenario occurs in each physiological event
that modulates the flow of fluids into or out of the brain (e.g., by arterial pulsation
or the Valsalva maneuver), the second scenario applies to MRE, in which the fluid
content is not affected by the waves. Both scenarios are characterized by their own
specific effective-medium compression moduli, which – hypothetically – converge in
the quasi-static limit. Unfortunately, very sparse data exist on the effective compression
modulus of the brain. The lack of data can be explained by the challenge of applying
ex vivo testing methods to perfused tissue. Moreover, compressibility as an intrinsic
mechanical tissue property has not been in the workscope of scientists working on
flow and perfusion quantification, leaving this field to the elastography community,
which initially addressed compressibility using Poisson’s ratio [354]. A very simple
experiment to estimate the static (unjacked) compression modulus of the brain is the
Vasalva maneuver combined with 3D MRI and image registration for calculation of
volumetric strain: (VValsalva − Vnormal)∕Vnormal. Mousavi et al. measured this strain to
be 3.1% in healthy volunteers [355]. Estimating the increase in intracranial pressure
to be 775 Pa based on measurement of outblow pressure translates the measured
volumetric strain into a compression modulus on the order of 26 kPa [355]. This
very low value is not surprising in view of the fact that arterial pulsation causes an
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expansion of the brain on the order of a few millimeters. It seems as if our brains can
be described by material properties of fluid-saturated sponges subjected to static or
quasi-static compression. The situation changes when vibration stimuli are applied in
MRE. Harmonic vibration in the acoustic frequency range of MRE is expected to induce
motion in both fluid and solid phases, which, in a certain limit, can oscillate antiparallel
to each other. The latter scenario gives rise to an effective compression modulus lower
than that of the same material without independent motion but monophasic behavior.
Using cardiac-triggered flow-encoding MRI, cerebral volumetric strain due to arterial
pulsation was quantified with (2.8 ± 1.9) ⋅ 10−4, which translates into an effective
compression modulus on the order of several hundreds of kPa [176]. The large disparity
of strain data between static and dynamic measurements illustrates the relevance of
the considered frequency range in compression-sensitive MRE: while ultrasound in the
regime of MHz barely encounters any biphasic properties of biological soft tissue, in
vivo MRE with stimuli on the order of up to 50 Hz was demonstrated to be sensitive to
volumetric strain in the brain [176], liver [356], and lung [85].

14.3.6 Preliminary Findings of MRE with Functional Activation

The neuronal network transmits electrical signals within the brain and is central to
brain function. However, its contribution to brain stiffness as a mechanical scaffold
is still unknown. The mobility of fluids enables blood flow and ionic gradients, which
are required to trigger neuronal activity, but it also attenuates tissue motion and influ-
ences the arterial, venous, and interstitial pressures within the cranium. It has been
hypothesized that cerebrovascular flow and related mechanical tissue properties con-
tribute to normal brain function and/or vice versa – brain function modulates cerebral
hemodynamics, and concomitantly, brain tissue mechanics as measured by MRE [357].
A feasibility study of functional MRE (fMRE) is shown in Figure 14.6 [358]. During
multifrequency MRE acquisition, a flickering (at 8 Hz) black–white checkerboard pat-
tern was presented to healthy volunteers. Figure 14.6 presents an fMRE experiment in
2D for examining the time-resolved response of the cerebral shear modulus to visual
stimulation. In a second experiment, using 3D fMRE, the spatial distribution of the
effect was visualized and showed disseminated mechanical activation patterns. On the
basis of the fast 2D fMRE experiments, Figure 14.6 demonstrates a negative correlation
between shear modulus and stimulus (i.e., decrease in shear stiffness due to activa-
tion). Furthermore, frequency-resolved analysis revealed a decrease in the magnitude of
the correlation coefficient (R) with increasing drive frequency, suggesting the involve-
ment of poroelastic effects since the fluid and vascular contributions to soft tissue vis-
coelastic properties are expected to be higher at lower vibration frequencies. While
these first results indicate that a robust fMRE signal exists, more research is required
on image-resolved mapping of mechanofunctional parameters including shear modulus
and pressure-related parameters.

14.3.7 Demyelination and Inflammation Reduce Brain Stiffness

MRI has improved early MS diagnosis by demonstrating spatiotemporal lesion dissem-
ination. Notwithstanding this success, conventional MR parameters only moderately
correlate with clinical disability – a phenomenon termed “clinicoradiological paradox”



278 14 MRE of the Brain

0.26 0.27 0.28 0.29

Power law exponent αPower law exponent α

Group mean viscoelastic parameters in MS

(a) (b)

Viscoelastic parameters in chronic MS

S
he

ar
 e

la
st

ic
ity

 μ
 (

kP
a)

S
he

ar
 e

la
st

ic
ity

 μ
 (

kP
a)

0.3 0.31 0.32
0

1

2

3

4
1

2

1 Controls (18 –30 years)

Controls (females)
Controls (males)
MS (females)
MS (males)

2 Controls (50 –60 years)

MS (CIS) (22–47 years)

MS (RR) (21–51 years)

MS (PP and SP) (33–64 years)

0.25 0.26 0.27 0.28 0.29 0.3 0.31
1.5

2.0

2.5

3.0

3.5

4.0

Figure 14.7 MRE in multiple sclerosis (MS). (a) The plot summarizes the MS-induced decrease in shear
modulus, 𝜇, and power law exponent, 𝛼, according to the springpot model. Three stages of MS are
compared: the clinically isolated syndrome (CIS) is considered one of the earliest manifestations of MS,
although the disease may remain silent in some cases; remitting-relapsing (RR) is a solid manifestation
of MS, but still considered an early phase; primary and secondary chronic progressive disease (PP and
SP) represent chronic phases of MS. Notably, reduction in 𝜇 occurs at a very early time point of disease
progression. (Fehlner 2015 [68]. Reproduced with permission of Wiley.) (b) Springpot constants 𝜇 and
𝛼 for the detection of MS (PP&SP). The area under the receiver operator characteristics curve (AUROC)
values for separating healthy volunteers from MS patients was 0.896 and 0.936 for 𝜇 and 𝛼,
respectively. (Streitberger 2012 [74] used under CC BY 2.0 license.)

[359]. Therefore, the first clinical pilot study of cerebral MRE aimed at identifying new
imaging markers for MS. Motivated by the scaling properties of the shear modulus, MRE
was chosen to test the integrity of the multiscale neuronal network under the influence
of demyelination and inflammation. Figure 14.7 summarizes MRE experiments in MS
published in the literature [68]. Data of shear modulus 𝜇 and power law exponent 𝛼 are
based on the springpot model fitted to storage and loss moduli at several frequencies.
The plot suggests that MS-related tissue degradation in the brain is associated with a
decrease in both 𝜇 and 𝛼, indicating widespread degradation of tissue integrity beyond
the few T2 lesions visible in conventional MR images [73]. In early MS, no alteration of 𝛼
was ascertainable in comparison to healthy volunteers, while there was a decrease1 in 𝜇

(Δ𝜇 = −14.68%, Δ𝛼 = 0.29% [74]). Conversely, chronic MS also had a significant effect
on 𝛼 (Δ𝜇 = −20.46%, Δ𝛼 = −6.07% [74]). The areas under the receiver operator char-
acteristics curve (AUROC) for separating healthy volunteers from patients with chronic
MS were 0.896 and 0.936 for 𝜇 and 𝛼, respectively. Schregel et al. [324] demonstrated
in a cuprizone mouse model of MS that the magnitude of the complex shear modulus
decreases with both progressive demyelination and alterations in the structural integrity
of the ECM. This work was confirmed by an MRE study in a model of experimental
autoimmune encephalomyelitis (EAE), demonstrating a clear correlation between vis-
coelastic tissue alteration and the magnitude of perivascular T-cell infiltration [124].

1 All values denoted by Δ𝜇 and Δ𝛼 in this paragraph refer to the difference between normal and diseased,
expressed in percent of the normal value.
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A recent study in the mouse quantified macrophages and microglia in inflamed central
nervous system tissue. This marker was linearly correlated with the magnitude of reduc-
tion in the storage modulus in the cerebellum (R = 0.9191, P = 0.0096) [121]. Of note,
the EAE-related decrease in brain stiffness was not correlated with demyelination, but
sensitive to early inflammatory processes in the brain.

14.3.8 Neurodegeneration Reduces Brain Stiffness

Neurodegenerative disorders are characterized by a progressive loss of neurons and
oligodendrocytes, which results in gross atrophy of affected brain regions. Atrophy can
be quantified by volumetric MRI. However, in preclinical and early stages of neurode-
generative disorders, patterns of brain atrophy are subtle and difficult to detect by con-
ventional MRI. It was hypothesized that the intrinsic mechanical properties of the brain
are highly responsive to atrophy since reduced neuronal connectivity and lost neurons
dilute the viscoelastic matrix of the brain, causing an overall reduction in brain stiff-
ness. A mouse study in a model of Alzheimer’s disease (AD) reported a disease-related
decrease in brain stiffness [128]. This finding was reproduced by preliminary studies
in seven patients with AD [76] and five patients with frontotemporal dementia [360].
Patients with idiopathic Parkinson’s disease (PD) and progressive supranuclear palsy
(PSP) were examined by MRE for differential diagnosis and assessment of the potential
to rule out symptomatic Parkinsonism based on MRE [75]. Both neurodegenerative
disorders have overlapping clinical symptoms but different neuropathology: PD is a
rather slowly progressive neurodegenerative disease that affects focal regions including
substantia nigra, locus coeruleus, and raphe nuclei. PSP, on the other hand, progresses
rapidly by causing marked atrophy of the midbrain, superior cerebellar peduncle, and
cerebellar dentate nucleus. The results show that cerebral viscoelasticity in PSP and
PD is affected by the underlying neurodegeneration in different ways; whereas in PSP,
a disseminated reduction of elasticity and viscosity was detected, a similar effect in PD
attained significance only within the lentiform nucleus. In these groups, the impact of
neurodegeneration on cerebral viscoelastic properties was also revealed by a significant
negative correlation between clinical markers (disease severity in PD quantified by
motor part of the UPDRS2 during ON3; disease stage in PSP, staging system according
to Golbe scale) and viscoelasticity parameters (|G∗| of the lentiform nucleus in PD, full
brain |G∗| in PSP). Altogether, MRE in neurodegenerative diseases consistently revealed
softening of brain matter, which confirms the initial hypothesis of reduced neuronal
connectivity and loss of structural elements within the neuronal network. Since this
viscoelastic network degradation was detected in different neurodegenerative and neu-
roinflammatory diseases, this mechanical signature appears to be a general response
of affected brain tissue also in disorders that are not considered neurodegenerative dis-
eases, such as normal pressure hydrocephalus (NPH). NPH is associated with CSF flow
obstruction causing ventricular enlargement and severe clinical symptoms including
gait disorder, dementia, and urinary incontinence, while CSF pressure measurements
remain in the normal range. The occurrence of transient intracranial pressure peaks
is discussed as a possible cause of symptoms. Consistent with previous studies in

2 Unified Parkinson’s disease rating scale.
3 ON = phase with good response to medication.
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patients, MRE in NPH also demonstrated marked softening of brain tissue (decrease in
springpot-related shear modulus 𝜇) particularly within the periventricular regions [78].
In contrast to other diseases discussed above, NPH can be treated effectively by surgical
implantation of a shunt to relieve obstructed CSF flow. Freimann et al. performed two
MRE scans in the same group of patients, one pre-shunt and a second scan 3 months
after the treatment [77]. The measured 𝜇 parameter remained symptomatically low,
while the power law exponent 𝛼 re-increased after shunting, suggesting reordering of
viscoelastic structures without changes in inherent rigidity of structural elements [3, 77].

14.3.9 The Number of Neurons Correlates with Brain Stiffness

After having reviewed these encouraging pilot studies of cerebral MRE in patients, it
remains open whether the neuronal network itself is a mechanical supporter of brain
matter. Lu et al. investigated the mechanical properties of single cells and measured a
higher stiffness in neurons than in glial cells, which further supports the hypothesis
that neurons establish the mechanical scaffold of the brain [361]. Evidence for this
hypothesis was provided by two complementary MRE studies in mouse models. In
one experiment, the number of neurons was reduced within one hemisphere of the
mouse brain by middle cerebral arterial occlusion (MCAO) [123]. Neurons were
counted histologically in both affected and contralateral hemispheres. The second
experiment employed a mouse model of Parkinsonism based on the administration of
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP), which induces
dopaminergic neurodegeneration and enhances adult neurogenesis in the hippocam-
pus [122]. Figure 14.8 presents results of both studies, demonstrating that elasticity
increases in brain regions following enhanced proliferation of neurons. The plot on
the right-hand side of Figure 14.8 complements this finding by demonstrating the
correlation between number of neurons and whole-brain elasticity.

14.3.10 Preliminary Conclusions on MRE of the Brain

The studies discussed here support the hypothesis of the neuronal network being a
major contributor to the gross mechanical properties of the whole brain. We have seen
that physiological aging or male gender as well as pathological processes such as neu-
rodegeneration, inflammation, demyelination, and neuronal loss by ischemic infarction
can cause reduction in brain stiffness. Conversely, one study, MRE in the MPTP mouse
model, demonstrates the “positive” effect of enhanced neuronal proliferation on brain
stiffness, suggesting a correlation between brain stiffness and neuronal network integrity
and/or density. However, such a correlation does not imply a causal relationship. The
simplified model of the neuronal network as the major viscoelastic lattice in the brain
becomes more complicated when accounting for vascular contributions, pressure, and
anisotropy. For example, an increased blood pressure as occurring with aging may lead
to a higher proportion of fluid compartments in brain tissue, which in turn could reduce
stiffness as, for example, observed with aging. An increase in brain perfusion may also
explain the decrease in brain stiffness upon functional activation, as demonstrated in
Figure 14.6. The influence of CSF, interstitial fluids, and blood perfusion may increase
toward lower excitation frequencies. It is therefore important to account for the range
of vibration frequencies used for MRE when analyzing brain mechanical properties. In
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Figure 14.8 Correlation between storage modulus 𝜇 and number of neurons in the murine brain.
(a) Time courses of the storage modulus in the hippocampus region in a Parkinson mouse model.
MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) was administered on day 20, causing a transient
increase in neuronal proliferation. The significant increase in storage modulus on day 6 after injection
followed by a decay to baseline values is correlated with the number of new neurons. (Based on data
published in [122].) (b) Inversely to (a), a decrease in the number of neurons by middle cerebral artery
occlusion (MCAO) correlates with a decline of the storage modulus in the mouse brain. (Based on data
published in [123].)

tumors, the mechanical signatures of cell accumulation, ECM modulation, angiogene-
sis, necrosis, and tissue pressure overlap. This prevents a straightforward interpretation
of viscoelastic constants in terms of tissue structure. We therefore discuss MRE in brain
tumors to an extra chapter, which is dedicated to the viscoelastic properties of tumors
in general (see Chapter 17). Altogether, MRE has the potential to become a new imag-
ing biomarker for many neurological diseases as well as for fundamental research on
the biophysical interactions in living brain tissue. In view of the latest developments in
high-resolution mapping of viscoelastic and poroelastic properties, cerebral MRE can be
expected to significantly contribute to both basic research and diagnostic neuroimaging
in the future.
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15

MRE of Abdomen, Pelvis, and Intervertebral Disc

The abdominal cavity contains the digestive organs, including the stomach, small and
large intestines, liver, gallbladder, spleen, and pancreas (Figure 15.1). The neighboring
pelvic region hosts constituent parts of the female and male reproductive organs such
as uterus and prostate. Many of these organs are prone to diseases, which are often
associated with structural changes of the affected tissues. The lack of noninvasive
biomarkers for the detection and staging of structural tissue changes motivates the
ongoing search for a quantitative, biophysics-based imaging method such as MRE.
In this chapter, current applications of MRE in abdominal and pelvic organs will be
presented. We will start with the liver, since this organ covers major applications of
MRE today, and then review MRE of the spleen, pancreas, kidneys, uterus, prostate,
and intervertebral disc (IVD). Since the number of studies in the area of abdominal
MRE is too large for a compact review within the scope of this textbook, we will present
a selection of fundamental work. For further reading, we refer the reader to review
articles on MRE of the abdomen [362] and the liver [363–367].

15.1 Liver

This chapter was coauthored by Christian Hudert from the Clinic for Pediatric
Endocrinology and Diabetology, Charité – Universitätsmedizin Berlin, Germany

The liver is the largest parenchymatous organ in the body and part of the digestive
system, accounting for roughly 3% of total body weight in adults. It consists of two main
lobes, the larger right lobe and the smaller left lobe, both of which are further subdivided
into segments. The two main lobes are separated by a band of tissue (falciform ligament
or broad ligament), and a layer of connective tissue (Glisson’s capsule) covers the entire
liver. The liver is unique in that its blood supply is provided by two large vessels. One
is the hepatic artery supplying oxygen-rich blood from the heart (≈25% of the liver’s
total blood supply). The second is the portal vein carrying nutrient-rich blood from the
digestive system to the liver (≈75% of its total supply). These vessels branch into smaller
vessels and finally into capillaries that end in thousands of lobules (see Figure 15.2). Liver
lobules are the basic anatomical units of the liver and are mainly composed of hepato-
cytes. Hepatocytes monitor, add, and remove substances from blood and produce bile
(see Figure 15.3). Sinusoids (see also Section 15.1.2.1) then drain into the central vein,
and blood is removed from the liver through three main hepatic veins (right, middle,

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 15.1 Overview of abdominal organs, most of which have been studied using MRE.
Organ-specific discussion will be presented in the following sections.

and left hepatic veins). Bile is gathered in bile ducts merging into common hepatic
ducts before storage in the gallbladder or further transport to the small intestine.

The liver performs a wide range of functions in human physiology comprising:

• Filtration and detoxification of blood to prevent accumulation of harmful substances
coming from within (e.g., hormones) or outside (e.g., alcohol or other drugs) the body.

• Metabolism of proteins and carbohydrates, which are stored in the form of glycogen
in the liver and released into the blood to maintain a normal blood sugar level.

• Production and secretion of bile in the small intestine, essential for absorbing lipids,
cholesterol, and fat-soluble vitamins.
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Human liver:
~1400 cm3 volume   

Hepatocyte:
~0.02–0.03 mm  

Anatomical unit: liver lobule
~1 mm diameter  

Right lobe Left lobe
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Figure 15.2 Morphology of the liver and architecture of liver tissue with liver lobules as basic
anatomical units and hepatocytes as the main constituents of liver parenchyma.

Figure 15.3 Schematic cross-sectional view of a
liver lobule illustrating blood and bile flow.
The hepatic artery, portal vein, and bile duct are
arranged in a distinctive pattern known as the
portal triad or portal field at the center of liver
lobules.

Hepatic artery
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Bile duct
Blood flow
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• Absorption and enzymatic processing of indirect bilirubin, which is formed from
hemoglobin during red blood cell depletion, and is converted into water-soluble
direct bilirubin by the liver.

• Production of plasma proteins, for example, albumin and nearly all blood-clotting
factors.

• Storage of vitamins (A, D, E, K, and B12), minerals, and iron for the synthesis of new
red blood cells.
In the industrialized world, chronic liver diseases (CLD) are a major cause of

morbidity and mortality, and their prevalence is still increasing. The main contributors
to the pathogenesis of CLD are nutritive-toxic conditions (alcohol abuse, obesity,
and metabolic syndrome) and viral hepatitis. Pathophysiologically, CLD is heralded
by progressive fibrosis, ultimately leading to cirrhotic transformation of the liver. A
peculiarity of CLD is their often silent progression without serious, specific clinical
symptoms until they reach a threshold stage characterized by the sudden and eventually
often life-threatening onset of severe liver failure. The main reason why the diagnosis of
liver disease is often delayed is the liver’s unique capability to partially counterbalance
functional deficits in localized steatotic, fibrotic, or cirrhotic regions by elevating the
functional performance of still intact regions of the liver parenchyma. Against this back-
ground, better diagnostic tools for early diagnosis of ongoing liver disease are urgently
needed in order to initiate treatment before the disease has reached an irreversible stage.

At present, monitoring of the disease course in patients with CLD is hampered
by the unavailability of screening methods that can reliably quantify silent structural
changes of liver tissue before morphological changes start to become apparent.
Elastography – intrinsically sensitive to tissue structures across many length
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scales – has become an important clinical marker of advanced hepatic fibrosis.
Current technological improvements in the area of liver elastography aim at the
detection of early fibrosis. This endeavor is challenged by the intrinsic variability of
histology-based staging of hepatic fibrosis – the current gold standard for elastography.
In fact, hepatic fibrosis is a heterogeneous and highly dynamic process, which is still
incompletely understood. The next section will briefly review the epidemiology and
basic physiological aspects of CLD.

15.1.1 Epidemiology of Chronic Liver Diseases

CLD usually have an insidious course and rarely cause any obvious signs or symptoms
until they are fairly advanced and the liver is considerably damaged. Irrespective
of etiology, chronic liver disease leads to liver fibrosis. Long-term consequences of
progressive hepatic fibrosis are cirrhosis and increased risk for primary liver cancer,
estimated to be responsible for around 170 000 and 47 000 deaths per year in the EU
[368], respectively. Liver cirrhosis and primary liver cancer are the fifth most common
cause of mortality in Europe. Furthermore, liver diseases are one of the major causes
of death still increasing every year. Prevalence rates of CLD in the Western world are
around 15% and have been stable over the last 15 years [368, 369]. Prevalence rates of
hepatitis B and hepatitis C infections are slightly decreasing, while alcohol-induced liver
disease has remained fairly stable over the last two decades. Of note is the prevalence
of nonalcoholic fatty liver disease (NAFLD), which doubled in the last two decades.
Today, NAFLD accounts for roughly 75% of CDL, a rate that is expected to grow even
further given the increasing rate of obesity.

Major causes of CLD

• Alcohol-related liver disease (ALD): The liver is damaged after perennial misuse of
alcohol.

• Nonalcoholic fatty liver disease (NAFLD): Storage of fat within liver cells (hepatic
steatosis), usually seen in overweight or obese people without the necessity of other
causes for secondary hepatic fat accumulation (e.g., heavy alcohol consumption)
being present. NAFLD can be subdivided into fairly benign nonalcoholic fatty liver
(NAFL) and nonalcoholic steatohepatitis (NASH). In NAFL, hepatic steatosis is present
without evidence of significant inflammation, whereas in NASH, hepatic steatosis is
associated with lobular inflammation (steatohepatitis) and progressive fibrosis.

• Chronic viral hepatitis: Chronic viral infection of the liver, for example, hepatitis B, C,
D, E.

• Hemochromatosis: An inherited disorder characterized by gradual build up of iron in
the body, usually around the liver.

• Causes with lower prevalence:
– Autoimmune hepatitis
– Primary biliary cirrhosis
– Wilson’s disease
– Drug-induced liver injury

It is important to note that all types of liver disease can cause cirrhosis (scarring of the
liver) and may lead to liver failure with the need for liver transplantation.
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15.1.2 Liver Fibrosis

Liver fibrosis, or scarring of the liver, is a wound-healing response to injury resulting
in the accumulation of excess extracellular matrix (ECM) material including fibrillar
collagens, fibronectin, and proteoglycans. Sustained signals such as virus infection,
drug exposure, or metabolic disorders are required to develop fibrosis. In advanced
fibrosis, the liver contains approximately three to six times more ECM than normal1

including fibril-forming collagens (types I and III) and matrix glycoconjugates such as
proteoglycans, fibronectin, and hyaluronic acid.

ECM (Extracellular matrix):

The ECM can be defined as the collection of all secreted molecules that are immobilized
outside a cell. Originally considered a mere support system for cells, ECM is now
recognized as a central regulator with tissue-specific roles including structural support,
transmission of forces, signaling, and macromolecular filtration. Under normal conditions,
ECM continuously regenerates itself by remodeling while the original composition and
structure is maintained. Once established, the ECM provides the cells with important
biomechanical and biochemical cues that guide their morphology and function. ECM
can be subdivided into the interstitial matrix and the basement membrane, which
separates connective tissue from epithelia, endothelia, muscle fibers, and the nervous
system. Major components of ECM are:

• Fibrillar collagens: collagen is a main structural protein in mammals, making up approx-
imately 30% of the body’s protein content. It has the capacity to bind to cell surface
receptors, proteins, glycosaminoglycans, and nucleic acids. The most abundant types of
collagens are type I (component of, e.g., organs, bone, and skin) and type III (component
of reticular fibers). The fibrillar collagen types I and III self-assemble into a hierarchical
collagen structure capable of withstanding tensile forces and thus providing mechan-
ical integrity to the interstitial matrix.

• Proteoglycans and glycosaminoglycans (GAGs): proteoglycans form the basis of
higher-order ECM structures. Proteoglycans consist of core proteins covalently
linked to GAGs. GAGs are long, negatively charged, linear chains of disaccharide
repeats. Major GAGs include heparan sulfate (component of the basement mem-
brane), chondroitin sulfate (cartilage and neural ECM), dermatan sulfate (skin, blood
vessels, tendons, lungs), hyaluronan, and keratan sulfate (cornea, cartilage, bone).
Proteoglycans provide hydration and compressive resistance to ECM and hold
numerous other biological functions including support of cell signaling, prolifera-
tion, and migration, as well as wound repair, binding of growth factors, cytokines,a

and ECM proteins.
• Fibronectin: high-molecular-weight multidomain glycoprotein with binding capacities

to cell surfaces through integrins and other biologically important molecules such
as collagen and heparan sulfate proteoglycans. Fibronectin plays a major role in cell
adhesion, growth, migration, and differentiation, and is involved in wound healing.

1 ECM volume in healthy liver is approximately 3%.
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• Nonfibrillar collagen type IV and the laminin family of glycoproteins: components
of the basement membrane that form loose, sheet-like structures and influence cell
differentiation, migration, adhesion, and angiogenesis.

aCytokines are small proteins that are important in cell signaling and are involved, for example, in
defense of infection, immune response, inflammation, and cancer.

In case of time-limited injuries, changes in composition of ECM are reversible and
both liver architecture and function are successfully restored. If injuries become chronic
(see Figure 15.4), the structure of the liver parenchyma is progressively changed by the
formation of fibrous scar tissue. During this period of ongoing reorganization processes
(which can exceed some decades), most affected patients typically show only marginal
and diffuse symptoms of disease. Progressive fibrosis ultimately leads to cirrhosis,
which is characterized by the development of nodules of regenerating hepatocytes
surrounded by fibrotic septa. Cirrhosis represents the end stage of liver pathology with
hepatocellular dysfunction and increased intrahepatic resistance to blood flow, which
further leads to portal hypertension and functional hepatic insufficiency. Patients
with cirrhosis can remain free of major complications for several years (compensated
cirrhosis) or develop various sequelae of hepatic decompensation, including variceal
hemorrhage, ascites, hepatic encephalopathy, hepatic and renal failure, as well as
hepatocellular carcinoma (HCC).

Normal liver Early fibrosis Cirrhosis

• Inflammatory damage
• Matrix deposition
• Parenchymal apoptosis
• Angiogenesis

• Distorted architecture
• Loss of function
• Disbalanced parenchymal
   regeneration/apoptosis

Intoxication, mainly due to
• Alcohol 
• Metabolic disorders 
• Viral infection 

Chronification period (5–50 years) 
Liver failure
Portal hypertension

Hepatocellular
carcinoma

Figure 15.4 Progression of liver fibrosis with characteristic changes in structure and function. Starting
from initial insults and progression over many years, liver cirrhosis marks the end stage of liver
diseases with an increased risk of hepatocellular carcinoma.
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15.1.2.1 Pathogenesis of Liver Fibrosis
The organization and structure of healthy liver parenchyma is depicted in Figure 15.5a.
The main constituents of healthy liver tissue are hepatocytes and endothelial cells.
Hepatic stellate cells (HSCs) and Kupffer cells (KCs) are nonparenchymal cells residing
in the subendothelial space of Disse and inside the sinusoids, respectively. The sinusoids
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Figure 15.5 (a) Schematic view of healthy liver parenchyma. (b) Schematic view of fibrotic liver
parenchyma showing characteristic alterations such as an increase in activated myofibroblasts and
fibril-forming collagens, enlarged portal fields, loss of endothelial fenestration, distortion of veins, as
well as changes in the basal membrane.
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are the smallest microvascular units of liver parenchyma, transferring inflowing blood
from the portal vein and hepatic artery to the draining hepatic vein. Metabolic
exchange between the bloodstream and hepatocytes occurs through two porous
membrane-based structures in the space of Disse or perisinusoidal space. On the one
hand, this is a fenestration of pores built by the endothelial lining of the sinusoids; on the
other hand, this is the low-density basal membrane enclosing hepatocytes. Figure 15.5b
illustrates the major structural changes in fibrotic liver. In the presence of injury,
HSCs become activated mainly by paracrine stimulation (e.g., endothelial cell damage,
hepatocyte apoptosis) and undergo transition from a quiescent vitamin A-rich cell to
a proliferative, contractile, and highly fibrogenic myofibroblast (MF). Furthermore,
HSCs communicate with inflammatory cells mediated by cytokines. Although HSCs
are the main source of MFs in the liver, other cells such as portal fibroblasts, bone
marrow-derived cells, and epithelial cells can undergo MF transition. The result is a loss
of the carefully regulated balance of ECM synthesis and loss of degradation of excess
collagen. This leads to an increase in fibril-forming collagens, enlarged portal fields, loss
of endothelial fenestration, changes in the basement membrane (from the physiologic
low-density type to an interstitial high-density matrix), loss of hepatocyte surface
(loss of microvilli, not shown in Figure 15.5), and distortion of veins. Consequences
are impairments of the bidirectional metabolic exchange between blood flow and
hepatocytes and increased intrahepatic resistance to blood flow.

The distribution of this fibrotic material depends on the origin of the injury, the
type of involved fibrogenic cells, and fibrogenic mechanisms. In alcohol-induced
liver disease, fibrosis is observed in pericentral and perisinusoidal areas, whereas in
chronic viral hepatitis and chronic cholestatic disorders (impairment of bile drainage
from the liver) it is initially located around portal tracts. With the progression of liver
fibrosis, initially isolated collagen bands become cross-linked. Figure 15.6 presents a
simplified chart of the development of liver disease. As an initial insult, hepatotoxic
agents progressively damage hepatocytes, Kupffer cells, and biliary cells, inducing
the recruitment of inflammatory cells such as lymphocytes. Release of inflammatory
cytokines mediates the activation of several intracellular signaling pathways including
suppression of ECM degradation and activation of resident HSCs to highly proliferative
MFs (see Table 15.2). HSC activation can further be perpetuated by hepatocytic
apoptosis, HSC self-expressed cytokines, and mutual stimulation of inflammatory
cells and HSCs. Furthermore, HSCs can also act as vasoactive mediators that can alter
intrahepatic blood flow by influencing sinusoidal capillarization.

If the liver injury persists, the MFs synthesize large amounts of ECM structural
proteins, and hepatic scaring increases. Progression of liver fibrosis with ongoing
structural changes of liver parenchyma and an increasing loss of function ultimately
lead to cirrhosis. The associated increase in intrahepatic resistance to blood flow
causes portal hypertension as well as oxidative stress due to the decreased effective
hepatocyte perfusion. Together with inflammation and HSC activation, the decrease
in hepatocyte perfusion by itself is an elicitor of angiogenesis. In many ways, the liver’s
response to injury is angiogenic, including new blood vessel formation and sinusoidal
remodeling. The development of new blood vessels plays a major role in the formation
of primary cancer and metastases and affects portal systemic blood flow, resulting
in many life-threatening complications of cirrhosis such as gastroesophageal varices,
massive upper gastrointestinal bleeding, or ascites.
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Figure 15.6 Simplified process chart of the pathogenesis of liver diseases with liver injury caused by
hepatotoxic agents. Bold font indicates liver diseases and dashed arrows indicate potential
self-perpetuating processes. For further details, see text.

15.1.2.2 Staging of Liver Fibrosis
In many liver diseases, the determination of the degree of liver fibrosis is essential
for diagnosis and treatment planning. Liver biopsy with successive histological anal-
ysis is still the gold standard for staging liver fibrosis (see Figure 15.7). It primarily
provides information on the extent of established fibrosis (stage) and the degree of
necroinflammatory activity (grade). While no generally accepted scoring system is
available, most of the classification schemes in clinical use today are based on five to
seven distinct categories ranging from healthy liver to cirrhosis. Common systems are
METAVIR (Meta-analysis of Histological Data in Viral Hepatitis), the classification of
the International Association for the Study of the Liver (IASL) and the more complex
Ishak score (which distinguishes seven categories). For comparison, see Table 15.1 for
histologic staging of liver fibrosis.

Although liver biopsy is still the gold standard for staging hepatic fibrosis, it has some
generally acknowledged drawbacks:

• Significant complications with prolonged hospital stay occur in 2–6% of patients due
to significant complications with a mortality rate of about 1:10 000 [374–376].

• Needle biopsy removes only about 1/50 000 of the liver volume and thus inherently
carries substantial sampling error.

• Accuracy is limited, and cirrhosis may be missed in 25% of cases [377].
• Evaluation of liver pathology is subjective and prone to inter- and intraobserver error.
• Patients’ refusal to undergo repeated biopsy limits its use for monitoring disease

course and treatment response.
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Figure 15.7 Histological micrographs of human fibrotic liver showing fibrosis stages F1–F4 according
to the METAVIR classification system. (Sack 2013 [3]. Reproduced with permission of Royal Society of
Chemistry.)

Table 15.1 Scoring systems for histologic staging of liver fibrosis.

Stage METAVIR [371] IASL [372] Ishak [373]

0 No fibrosis No fibrosis No fibrosis
1 Periportal fibrotic

expansion
Mild fibrosis Fibrous expansion of some portal areas with or

without short fibrous septa
2 Periportal septae Moderate fibrosis Fibrous expansion of most portal areas with or

without short fibrous septa
3 Portocentral septae Severe fibrosis Fibrous expansion of most portal areas with

occasional portal-to-portal bridging
4 Cirrhosis Cirrhosis Fibrous expansion of most portal areas with

marked bridging (portal-to-portal and
portal-to-central)

5 Marked bridging (portal-to-portal and
portal-to-central) with occasional nodules
(incomplete cirrhosis)

6 Cirrhosis

Source: Modified from [370].

15.1.2.3 Noninvasive Screening Methods for Liver Fibrosis

Liver fibrosis can be assessed noninvasively by determination of biomarkers and use of
radiological modalities such as contrast-enhanced (CE) imaging or elastography. Serum
biomarkers are categorized into two groups: (i) direct biomarkers, which reflect ECM
turnover (fibrogenesis and fibrolysis) and/or fibrogenic cell changes mainly affecting
HSC; (ii) indirect markers sensitive to molecules originating from hepatic inflammation
or altered liver function. Table 15.2 lists some serum biomarkers and corresponding
variables. For further information, refer to publications such as [378–380].

Advanced imaging modalities based on sonography and MRI for staging liver fibrosis
include elastography, perfusion measurement, and diffusion-weighted and dynamic
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Table 15.2 Biomarkers of fibrosis.

Type Category Biomarkers

Direct Collagen/ECM molecules
and enzymes

Collagen type IV, fibronectin, hyaluronate, N-terminal
pro-collagen peptide, MMP-2/-9

Cytokines TGFβ, TNFα, TIMP-1/-2
Indirect Liver function tests Aminotransaminases (ALT, AST), bilirubin, albumin

gamma-glutamyl transpeptidase (GGT)
Hematological parameters Platelet count, prothrombin time
Other Globulins, insulin, apolipoprotein, cholesterol, haptoglobin

Abbreviations: MMP: matrix metalloproteinase (enzymatic degradation of collagenous and
noncollagenous ECM substrates); TIMP: tissue inhibitor of metalloproteinase (cytokine responsible for
inhibiting ECM degradation); TGFβ: transforming growth factor-β (HSC-activating cytokine); TNFα:
tumor necrosis factor-α (apoptosis-inducing cytokine).

imaging with extracellular or hepatobiliary contrast agents. At present, noninvasive
biomarkers show high accuracy for determining advanced fibrosis and cirrhosis
(METAVIR stage 4), while accuracy is only modest for mid-level stages (METAVIR
stages 1–3). A comprehensive overview of the accuracy of noninvasive biomarkers for
the diagnosis of diffuse liver diseases including elastography is given in Table 15.5.

15.1.2.4 Reversibility of Liver Fibrosis
Against the longstanding paradigm of irreversibility of fibrotic changes, a reduction
in ECM content has been observed in animal models and patients with alcoholic,
viral, and metabolic fibrosis, and even cirrhosis. However, fibrosis regression may
take years and does not necessarily restore normal ECM architecture. Mechanisms of
fibrosis regression include enzymatic degradation of collagenous and noncollagenous
ECM substrates by matrix metalloproteinase (MMP), upregulation of myofibroblast
apoptosis,2 and senescence3 of activated HSCs to reduce the fibrogenic response to
tissue damage. Liver transplantation is currently the only therapeutic option for liver
failure due to cirrhosis. However, an increasing number of effective pharmaceuticals
for treatment of liver fibrosis are becoming available.4 With the advent of antifibrotic
therapies, long-term monitoring of fibrosis regression by reliable noninvasive
biomarkers such as elastography becomes increasingly important.

15.1.2.5 Biophysical Signs of Liver Fibrosis
So far, we have focused on the biochemical description of the pathogenesis of liver
fibrosis. However, cells also respond to mechanical forces such as shear or tensile
stress [381–383]. Mechanical forces acting on cells can arise either from internal
mechanochemical signals or from outside through the mechanical milieu, which
is established by ECM, cellular adhesion, and interstitial fluids. Hence, mechanical

2 Apoptosis is a highly regulated and controlled process of programmed cell death.
3 Cellular senescence refers to the essentially irreversible arrest of cell proliferation that occurs when cells
experience potentially oncogenic stress.
4 For example, treatment of hepatitis C with agents acting against viral replication.
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properties of both the cells and ECM environment are critical determinants of vital pro-
cesses such as cell differentiation, oncogenic transformation, or hepatic fibrosis. Several
experiments in animal models point to an intimate link between fibrogenesis and tissue
stiffness by demonstrating that ECM cross-linking occurs before MF activation [383,
384]. Complementary experiments with primary cells from healthy liver corroborated
that HSCs and portal fibroblasts produce both collagen and cross-linking enzymes
[385]. Moreover, the expression of collagen and cross-linkers by HSCs is enhanced
in the presence of TGF-β1, a cytokine of central importance in liver fibrosis (see
Table 15.2) [386]. Interestingly, prestrained ECM releases higher rates of active TGF-β1
than unorganized or relaxed ECM [387]. This observation sheds light on the relevance
of mechanical stress exerted on liver tissues as a possible precondition for the activation
of HSCs and transformation to MF [388]. Taken together, these studies provide
evidence that liver fibrosis is caused by changed biophysical properties of the ECM
resulting from deposition and cross-linking of collagen fibers. In this process, HSCs and
portal fibroblasts play a key role due to their ability of early expression of cross-linking
enzymes and collagen. Of note, this function is distinct from their classic role as
precursors of MFs, which are highly proliferative matrix-producing cells. Early ECM
stiffening may further enhance the allocation of TGF-β1 and thus activation and trans-
formation of HSCs and portal myofibroblasts into major collagen-secreting MF cells.
Liver fibrosis would then result from the ongoing activation of mesenchymal cells to
fibrogenic myofibroblasts, leading to a vicious circle of self-perpetuating effects. In this
scenario, ECM stiffening occurs first and initiates the vicious circle leading to fibrosis
rather than being a sequela of fibrosis (see also Figure 2 in Introduction). Figure 15.8
summarizes basic biomechanical signs associated with the progression of liver fibrosis.

15.1.3 MRE of the Liver

At present, quantification of viscoelastic parameters of the liver for staging hepatic
fibrosis is one of the major applications of MRE. This is reflected by a large number of
publications covering a wide range of methodological and application-related aspects
including possible influencing factors such as etiology [389–394], ethnicity [395, 396],
and age [397, 398]. For ease of reading, the following overview of major studies of MRE
of the liver is organized into six broad topics: (i) studies of animals and tissue samples, (ii)
early clinical studies and further developments, (iii) MRE in NAFLD, (iv) MRE in com-
parison to other noninvasive biomarkers, (v) further applications of liver MRE including
assessment of portal hypertension and transplanted livers, and (vi) confounders.

15.1.3.1 MRE in Animal Models of Hepatic Fibrosis and Liver Tissue Samples
The fundamental agreement between MRE and mechanical testing has been demon-
strated in a cross-validation study using bovine liver samples [399]. The results show
that mechanical tissue characterization by multifrequency MRE (MMRE) agrees well
with oscillatory rheometry. Initial results of animal studies addressing hepatic fibrosis
were published simultaneously with first studies in humans. In a knockout mouse
model, a linear correlation between liver elasticity and degree of histologically proven
fibrosis was found [134]. In this study, fatty infiltration – which is common in hepatic
fibrosis – did not interfere with MRE-based fibrosis grading (see Section 15.1.3.3
below). The correlation of viscoelasticity parameters with toxin-induced hepatic
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Figure 15.8 Summary of microstructural changes associated with the pathogenesis of liver fibrosis as
revealed by basic experiments in animal models and cell cultures. In the pre-inflammation stage of
early liver injury, HSCs can express both collagen and collagen cross-linking enzymes, leading to ECM
stiffening already at an initial stage of disease.

fibrosis was demonstrated in a rat model [400]. In this study, significant correlations
were found between viscoelastic parameters and the extent of liver fibrosis. Liver slices
from a similar rat model were analyzed by 3D MMRE [132]. When the frequency
dispersion of viscoelastic parameters was fitted with a power law model, elasticity
correlated significantly better with severity of liver fibrosis than viscosity.

Overall, these preclinical studies demonstrate that viscoelastic parameters quantified
by MRE correlate well with established methods of mechanical materials testing.
Furthermore, these studies indicate that liver elasticity increases with progression of
fibrosis with only little influence of the amount of fat present in the liver. However,
it should be noted that the influence of fat on the assessment of hepatic fibrosis by
elastography is still under investigation. We further discuss this in light of more recent
findings in the section dedicated to confounders.

15.1.3.2 Early Clinical Studies and Further Developments
First feasibility studies of liver MRE in healthy volunteers and patients with different
stages of liver fibrosis were published in 2006. This preliminary work addressed basic
methodological aspects such as the calculation of viscoelastic parameters [157, 185],
driver positioning, directionality of motion encoding [182], and fractional encoding
[185]. Technical parameters and results of the studies presented in this section are
summarized in Table 15.3. These early studies already demonstrated that liver elasticity
[157, 182, 185, 408] and viscosity [157, 408] are higher in patients with liver fibrosis
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Table 15.3 Fundamental in vivo studies of MRE of the liver.
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5 volunteers [157] SE 3D 65 DI 2.1 ± 0.3 1.7 ± 0.2
25 patients
11 0–1 2.2 ± 0.2 2.4 ± 0.9
4 2–3 2.6 ± 0.2 2.3 ± 0.4
10 4 4.7 ± 1.6 5.2 ± 1.9

12 volunteers [185] SSFPa) 1D 150a) DI 2.6 ± 0.3
2 patients 3 4.4 ± 2.0

12 volunteers [182] GRE 1D 80 DI 2.1 ± 0.3
11 patients 1–4 5.6 ± 5.0

35 volunteers [88] GRE 1D 60 LFE 2.2 ± 0.3
48 patients 0–4 5.8 ± 2.6

96 patients [402] SE 3D 65 DI
22 0 2.2 ± 0.2
22 1 2.4 ± 0.1
19 2 2.9 ± 0.2
15 3 3.5 ± 0.5
18 4 5.3 ± 0.7

85 patients [90] EPI 3D 50 DI
56 0–1 1.6
29 2–4 2.9

21 patients [403] GRE 1D 60 LFE
1 0 2.1
3 1 2.2
4 2 3.1
3 3 4.4
10 4 5.7

94 patients [404] GRE 1D 65 LFE
47 1–4 3.5 ± 0.3
47 1–4 3.4 ± 0.2

20 volunteers [405] GRE 1D 60 LFE 2.1 ± 0.4

49 volunteers [87] GRE 1D 60 LFE 2.1

20 volunteers [406] GRE 1D 60 LFE 2.4 ± 0.1
10 patients 4.0 ± 0.5

(continued overleaf )
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Table 15.3 (Continued)
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10 volunteers [407] EPIa) 3D 30–60 MDEV 1.3 ± 0.2

10 volunteers [98] EPIa) 3D 30–60 MDEV 1.4 ± 0.2
4 patients 2.0 ± 1.0

Abbreviations: SE – spin echo, GRE – gradient echo, SSFP – steady-state free precession GRE,
1D – single-displacement field component, 3D – full-displacement field, LFE – local frequency
estimation, DI – direct inversion, MDEV – multifrequency dual elasto-visco inversion.
a) Fractional motion encoding.
“Stiffness” refers to 𝜌 ⋅ c2 (for LFE), |G∗| or G′ (for DI, not specified), and |G∗| for MDEV inversion,
“viscosity” refers to the shear viscosity as defined in [401]. All values are given as group mean ±
standard deviation (if available).

than healthy volunteers. Furthermore, it was shown that the measured viscoelasticity
correlated well with the degree of liver fibrosis [157, 408], raising the prospect of MRE as
a clinical tool for staging liver fibrosis. Figure 15.9 depicts some results of this early work.

Further important early work focused on the diagnostic accuracy of MRE in liver
fibrosis and comparison with other noninvasive biomarkers. Yin et al. [88] compared
MRE with MRI for fat quantification and estimated the influence of fatty infiltration
on sensitivity and specificity of MRE for staging fibrosis. This study confirmed the
previously observed increase in liver elasticity with fibrosis and, for the first time,
demonstrated a high sensitivity and specificity of MRE for detecting all stages of fibro-
sis. Area under receiver operating characteristic (AUROC5) analysis provided evidence
that MRE can discriminate between patients with any fibrosis (≥stage 1), significant
fibrosis (≥stage 2), advanced fibrosis (≥stage 3), and cirrhosis (stage 4) with AUROC
values of 1.00, 0.92, 0.92, and 0.92, respectively (see Figure 15.10). The high sensitivity
and specificity for the detection of all grades of liver fibrosis encouraged the further
development and application of MRE as a noninvasive biomarker of liver fibrosis.

The comparison of success rate and diagnostic accuracy of MRE with other promising
noninvasive biomarkers such as transient ultrasound elastography (TE, Section 12.12)
and aspartate aminotransferase-to-platelets ratio index (APRI6) was studied in patients
with chronic liver disease [402]. MRE was successfully completed in 94% and TE
in 84% of all subjects. For diagnosis, MRE performed better than TE and APRI
(see Figure 15.11). MRE discriminated patients with any fibrosis (≥stage F1) from
significant fibrosis (≥stage F2), advanced fibrosis (≥stage F3), and cirrhosis (stage F4)

5 The AUROC measures discrimination. In the medical context, it is the ability of a test to correctly classify
individuals with and without a disease. The accuracy depends on how well the test separates the group being
tested into those with and without the disease in question. Accuracy is measured by the area under the ROC
curve: an area of 1.0 represents a perfect test, whereas an area of 0.5 indicates random results. If not
otherwise stated, AUROC values are normally given for a 95% confidence interval.
6 APRI is a combination of serum markers calculated from the ratio of aspartate aminotransferase to
platelet count.
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Figure 15.9 Principle and early results of MRE of the liver. (a) Wave images of two patients with mild
(F1) and severe (F4) fibrosis. The apparent increase in shear wavelength reflects stiffening of liver tissue
with progressing fibrosis. (b,c) Box plots showing elasticity in kPa based on the Voigt model (b) and
viscosity in Pa s (c) in patients with hepatic fibrosis. Both, elasticity and viscosity increase with the stage
of fibrosis. (Huwart 2007 [408]. Reproduced with permission of Radiological Society of North America.)

with AUROC values of 0.96, 0.99, 0.99, and 1.00, respectively, significantly better than
TE (0.80, 0.84, 0.91, and 0.93) and APRI (0.68, 0.71, 0.82, and 0.82).

Numerous studies followed to further evaluate the diagnostic potential of MRE in
the liver. The variability of liver biopsy was addressed in a study comparing the inter-
observer agreement of MRE with histopathological staging of liver fibrosis in a cohort
of hepatitis patients [90]. Interestingly, interobserver agreement for the staging of
liver fibrosis expressed by the intraclass correlation coefficient (ICC7) was significantly
higher for MRE (ICC = 0.99) compared to histopathology (ICC = 0.91), corroborating

7 ICC is a general measure of agreement or consensus between two or more raters or evaluation methods
on the same set of subjects. ICC assesses the reliability of ratings by comparing the variability of different
ratings of the same subject with the total variation across all ratings and all subjects. ICC has advantages over
the calculation of correlation coefficients in that it is adjusted for the effects of the scale of measurements.
A prominent application is the assessment of reproducibility of quantitative measurements made by different
observers measuring the same quantity. If not otherwise stated, ICCs are given for a 95% confidence interval.
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Figure 15.11 Staging of hepatic fibrosis with different biomarkers. (a) MRE; (b) transient ultrasound
elastography (TE, Section 12.12); and (c) APRI. (Huwart 2008 [402]. Reproduced with permission of
Elsevier.)

the generally accepted fact that interobserver variability of liver biopsy is high. In this
context, MRE was also compared with a morphology-based quantification algorithm
(Fibro-C-Index8) of liver biopsy samples [409]. The study reported similar accuracies

8 The Fibro-C-Index was developed to reduce high inter- and intraobserver discrepancies in the scoring of
liver biopsies.
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for MRE and Fibro-C-Index (AUROC MRE vs Fibro-C: 0.87 vs 0.81 for ≥F1, 0.95 vs 0.94
for ≥F2, 0.98 vs 0.96 for ≥F3, and 1.00 vs 0.92 for F4). The high interobserver reliability
of MRE was confirmed in a further study on 110 patients (ICC = 0.91) [403]. Another
study correlated MRE with liver biopsy addressed the reproducibility and repeatability
of MRE [404]. In this study, ICC for intraobserver reliability was 0.96, repeat analysis of
mean liver elasticity by one observer yielded an ICC of 0.83, and repeat measurements
in patients gave an ICC of 0.95. Overall, similar experimental conditions with respect to
driver location and patient positioning must be retained to ensure high reproducibility
of MRE [410].

All studies presented so far determined liver viscoelasticity by averaging values over
predefined regions of interest (ROIs) within the liver parenchyma. The influence of
the choice of ROI was addressed by several studies showing that MRE values vary
with placement [405] and size of ROIs [87, 405] in healthy volunteers but do not vary
with age and gender [87]. The highest reproducibility was achieved by averaging over
cross sections of the whole liver (ICC = 0.84) [405] or by averaging over a single-slice
cross-sectional area of the liver (ICC = 0.85) [87].

Two meta-studies analyzing the diagnostic accuracy of MRE in liver fibrosis based
on 989 patients [411] and 697 patients [412]. Su et al. [411] reported AUROC values of
0.95, 0.97, 0.96, and 0.99 for detection of fibrosis ≥F1, ≥F2, ≥F3, and F4, respectively. In
a more recent analysis, MRE achieved lower precision with AUROC values of 0.84, 0.88,
0.93, and 0.92 for the diagnosis of the pooled five stages of liver fibrosis [412]. However,
these meta-studies are limited by marked technical variations of the MRE methods
used for acquisition of the included data. Therefore, thresholds calculated to separate
distinct fibrosis stages showed different ranges and overlaps [411]. The trend toward fast
acquisition techniques and MMRE might improve comparability of values in the future.

Excellent reproducibility of liver MRE parameters was demonstrated by a
cross-platform study performed in two scanner systems on the same day and including
the same groups of healthy volunteers and patients [98]. Since pulse sequences, drivers,
and postprocessing methods were the same for both systems, almost identical results
were reported. Further improvements in consistency of liver MRE can be expected
from MMRE and noise-robust recovery such as k-MDEV (see Figure 15.12). The
gradual increase of intensity in the liver elastograms with the degree of fibrosis is
well perceptible – particularly in comparison with the spleen, which does not change
to the same extent. As a drawback, MMRE is more time-consuming than the classic
approach of MRE using a single excitation frequency. For this reason, the images shown
in Figure 15.12 are based on fast single-shot echo-planar imaging (EPI) MRE, which is
detailed in Section 3.4. Notably, the signal-to-noise-ratio (SNR) of EPI-based MRE of
the liver has been found to be similar to that of standard spin – echo MRE [406].

Most work published on liver MRE is related to stiffness measures. Viscosity is
another important source of diagnostic information in MRE. Roughly speaking, elastic-
ity is related to the rigidity of a mechanical network as well as to the number of internal
cross-links. By contrast, viscosity relates to the attenuation of mechanical energy,
which is dramatically increased in polymer networks by the prevalence of free chains
[413]. In general, the dispersion function of the global viscoelastic modulus of complex
hierarchically ordered systems reveals information on the topology and geometry of the
underlying mechanical network [414]. This phenomenological approach to viscoelastic
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Figure 15.12 Multifrequency MRE of the liver and spleen based on k-MDEV inversion (see Section
10.6). (a) T2-weighted images of a healthy volunteer and patients with hepatic fibrosis of grades F2 and
F4. (b) Stiffness maps, represented by shear wave speed. An increase in elasticity can be observed for
both organs with fibrosis progression; however, this increase is clearly more pronounced in the liver
than in the spleen. (Tzschätzsch 2016 [222]. Reproduced with permission of Elsevier.)

networks was established by methods from polymer physics and has been adopted for
the interpretation of MRE data of biological tissues [3].

Measuring the dispersion of the complex shear modulus requires MMRE. An
early technique of in vivo liver MMRE used a superposition of four harmonic drive
frequencies and model fits based on rheological models frequently used in the literature
including springpot, Voigt, Maxwell, and Zener models [33, 415, 416]. In these early
studies, significant differences between healthy and fibrotic livers were detected based
on the Zener and springpot model. The two-parameter springpot model (see Figure 4.7)
is numerically more stable than the three-parameter Zener model (see Figure 4.7)
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[33]. This observation motivated the further use of the springpot model for analysis
of clinical MRE data. The validity of the springpot-inherent power law relationship of
shear modulus in liver tissue was demonstrated in bovine liver specimens investigated
by MMRE over a wide range of vibration frequencies from 25 to 800 Hz [125].

On a microscopic level, the viscoelasticity of healthy liver parenchyma is determined
by the organization of sinusoids consisting of hepatocytes, endothelial cells, the space
of Disse, blood, and bile vessels, which all integrate into very soft and highly viscous
effective-medium properties. Fibrosis results in a dominating mechanical network
characterized by extended, mechanically strong elements made up of fibrillary collagen.
The replacement of soft hepatocytes by thick and extended connective tissue fibers
translates into increased stiffness and decreased viscosity on the macroscopic scale.
This was observed by springpot-based MMRE in 16 healthy volunteers and 74 patients
with histologically proven fibrosis [89]. The springpot-related shear modulus 𝜇 was
found to accurately detect fibrosis ≥F1, ≥F2, ≥F3, and ≥F4 with AUROC values of
0.91, 0.92, 0.97, and 0.99, respectively. Lower sensitivity was observed for the springpot
parameter 𝛼. A presentation of data of this study in the 𝜇 − 𝛼 viscoelasticity space is
shown in Figure 15.13.

The principal finding of increased stiffness and reduced viscosity due to liver fibrosis
was reproduced by wideband MRE from 200 to 1200 Hz performed in a preclinical
MRI scanner [224]. This study of human liver specimens combined preoperative in
vivo functional tests with wideband MRE, static indentation experiments, histology,
and biochemical quantification of connective tissue. Interestingly, MRE-based
viscoelasticity parameters were more sensitive to the degree of fibrosis than other
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Figure 15.13 Changes in elasticity and the springpot parameter 𝛼 for progressing liver fibrosis
(F0–F4). (Sack 2013 [3]. Reproduced with permission of Royal Society of Chemistry.)
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measures. Quantification of collagen based on hydroxyproline was less correlated with
fibrosis than MRE-measured elasticity. This result suggests that fibrogenesis causes
cross-linking of collagen chains, resulting in increased stiffness and reduced viscosity
of liver tissue. Since tissue structure is not directly linked to liver function, neither
histology nor MRE correlated with the in vivo functional state of the liver.

15.1.3.3 MRE of Nonalcoholic Fatty Liver Disease
As introduced in Section 15.1.1, NAFLD has become one of the most common causes
of chronic liver disease with increasing prevalence [417]. NAFLD describes the accu-
mulation of fat in the liver not associated with alcohol abuse. NAFLD is becoming more
common in children and is strongly associated with physical inactivity, obesity, and
metabolic syndrome. NAFLD is characterized by four pathological features: (i) lipid
storage; (ii) fibrosis; (iii) inflammation; and (iv) hepatocyte injury (ballooning). NAFLD
covers a variety of diseases from simple isolated NAFL (also called steatosis) to NASH
and advanced fibrosis and cirrhosis. NAFLD can be classified into four types [418]:

• type 1: fatty liver alone
• type 2: fat accumulation and lobular inflammation
• type 3: fat accumulation and ballooning degeneration
• type 4: fat accumulation, ballooning degeneration, and fibrosis.

In this classification scheme, types 1 and 2 correspond to NAFL. The sole presence
of hepatic steatosis is considered as a benign condition. Types 3 and 4 are considered
as NASH. Within the NAFLD spectrum, only NASH progresses to fibrosis and to
end-stage liver disease. Detection of fibrosis, inflammation or liver injury is required
to discriminate NASH from NAFL. Diagnostic tests can predict the degree of liver
injury without the need for liver biopsy. For example, FibroMeter9 has been shown to
provide good predictive value and reliable diagnosis (AUROC = 0.94) for the detection
of fibrosis in patients with NAFLD [419]. Medical imaging by sonography, CT and MRI
can assess hepatic fat and liver size and can help to rule out other diseases. However,
standard imaging techniques do not allow accurate determination of the severity of
fibrosis in NAFLD.

MRE in NAFLD has to account for the complex interaction of confounders such as
steatosis and inflammation. A fundamental study in NAFLD patients shows that liver
elasticity is significantly higher in case of coexisting steatosis and lobular inflammation
as compared to liver elasticity in the presence of steatosis alone [93]. Otherwise, liver
elasticity is highest in patients with concurrent steatosis and fibrosis [93]. MRE was
found to have high accuracy (AUROC = 0.93) for discriminating patients with NASH
from those with simple steatosis [93], suggesting that benign steatosis affects neither
hepatic elasticity nor the assessment of liver fibrosis.

These findings are in general agreement with results obtained in animals [133]. NASH
was investigated by MRE in rat models of steatosis, steatohepatitis, and acute liver injury.
It was observed that viscosity increased in rats with steatosis alone, while elasticity

9 FibroMeters are blood tests for liver fibrosis comprising six different tests: one for staging and one for
quantitation of liver fibrosis in each of the three main causes of chronic liver disease: chronic viral hepatitis,
alcoholic liver disease, and NAFLD.
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remained unchanged. By contrast, rats with steatohepatitis displayed an increased elas-
ticity and viscosity of the liver due to the simultaneous presence of steatosis, inflam-
mation, and myofibroblast activation. The highest increase in elasticity was observed in
rats with acute liver injury, while fibrogenesis and inflammation were observed without
substantial fibrosis or steatosis. The results of both studies indicate that the interac-
tion of several symptoms inherent to the spectrum of NAFLD can be resolved by MRE,
providing strong evidence for the potential of MRE in NAFLD. Furthermore, elasticity
and viscosity were found to increase before the onset of fibrosis, which is presumably
linked to changes of the ECM structure. This finding agrees with reports on early hepatic
fibrosis in a rat model mentioned in Section 15.1.2.5.

Clinical MRE studies in NAFLD proposed optimal cutoff values for the detection of
mild (F1–F2) and advanced fibrosis (F3–F4) in adults and children. The best discrimi-
nation between mild and advanced fibrosis was found for an elasticity threshold of 3.63
kPa (AUROC = 0.92) in adult patients [420] and 2.71 kPa (AUROC = 0.92) in children
[421].

To date, only few medications for the treatment of NAFLD [422] exist; however, a
growing need for large clinical trials of new medications monitored by quantitative
imaging methods can be expected. MRE and MR-derived proton density fat fraction
measurements were used in one study to examine the efficacy of an intestinal choles-
terol absorption inhibiting drug in reducing liver fat [423]. Although this longitudinal
study did not reveal a reduction of liver fat by the drug, it showed MRE to be a reliable
imaging marker for monitoring the response to drug treatment in NASH. Several studies
investigated the diagnostic accuracy of MRE in NAFLD based on pooled data from dif-
ferent centers. Singh et al. [424] analyzed MRE data from 232 NAFLD patients with liver
biopsy, demonstrating good diagnostic accuracy with AUROC values of 0.86, 0.87, 0.90,
and 0.91 for detecting fibrosis of ≥F1, ≥F2, ≥F3, and F4, respectively. Diagnostic accu-
racy was found to be independent of the degree of inflammation present. In a study of
102 patients with biopsy-proven NAFLD, the diagnostic accuracy of MRE was compared
against that of eight noninvasive clinical lab tests. A major result of this study was that
MRE had a significantly higher accuracy (AUROC = 0.96) than all clinical blood mark-
ers included (AUROC = 0.80–0.86) [425]. MRE also outperformed transient ultrasound
elastography (TE) in 142 patients with liver fibrosis (F > 2) and steatosis [426]. Similar
mean AUROC values were found for MRE- and MRI-based proton density fat fraction
(0.91 and 0.9), whereas TE yielded lower values for both elasticity and viscosity (0.82 and
0.73). A study comparing MRE with ARFI-based ultrasound elastography in 125 patients
reported a lower difference between ultrasound elastography and MRE [94]: maximum
AUROC values of 0.9 and 0.93 were found for ARFI and MRE, respectively. Interestingly,
no significant difference between both methods was found in nonobese patients. This
suggests that due to the limited penetration depth of ARFI-based elastography, obese
patients seem to be more reliably investigated by MRE. Results and technical parameters
of clinical MRE studies in NAFLD are summarized in Table 15.4.

15.1.3.4 Comparison with other Noninvasive Imaging and Serum Biomarkers
The diagnostic accuracy of MRE for staging liver fibrosis was tested against a variety
of noninvasive biomarkers. The studies presented here compared MRE with other
MR-based imaging techniques, ultrasound elastography methods, and serum biomark-
ers. With the advent of MRI and sonography, a number of morphologic features
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Table 15.4 Data of published MRE studies on NAFLD patients.
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58 [93] GRE 1D 60 DI
22 simple steatosis 2.5
7 inflammation 3.2
29 fibrosis 1–4 4.2

117 [420] 0–4 GRE 1D 60 DI 3.2 ± 1.2a)

142 [92] GRE 1D 60
50 0 2.8 ± 0.6
34 1 3.1 ± 0.8
12 2 3.6 ± 0.9
10 3 5.3 ± 2.2
36 4 6.4 ± 2.0

50 [423] 0–4 GRE ID 60 DI 3.3 ± 1.1/3.2 ± 1.1b)

EPI 3D 40 DI 2.1 ± 0.9/2.2 ± 1.0b)

60 2.7 ± 1.3/2.8 ± 1.2b)

232 [424] 0–4 60–62.5 3.6 ± 1.4a)

102 [425] 0–4 GRE 1D 60 DI 3.2 ± 1.2a)

142 [426] GRE 1D 60 DI
14 0 2.2
51 1 2.6
32 2 4.3
34 3 5.2
24 4 7.9

125 [94] 0–4 GRE 1D 60 DI 3.1 ± 1.27a)

Abbreviations: GRE – gradient echo, EPI – echo planar imaging, 1D – single displacement field
component, 3D – full displacement field, DI – direct inversion.
a) Average over all patients.
b) Baseline values of longitudinal study averaged over drug and placebo group, respectively.
“Stiffness” relates to |G∗| or G′, depending on the study. All values are given as group mean ±
standard deviation (if available).

were identified and have since been extensively used for the diagnosis of hepatic
fibrosis. Different sets of features have been proposed for the best possible staging
of liver fibrosis. One set of features includes (i) the texture of liver parenchyma, (ii)
surface nodularity, (iii) signs of volumetric changes, and (iv) portal hypertension [409].
Another study [427] used a combination (i) the ratio of caudate to right lobe volume,
(ii) nodularity, (iii) indirect assessment of portal venous hypertension, for example, due
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to esophageal varices, (iv) posterior hepatic notch, (v) expanded gallbladder fossa, and
(vi) right hepatic vein caliber. The use of both sets of morphology-based parameters
showed a significantly lower diagnostic accuracy for the staging of fibrosis than MRE.
AUROC values reported in [409] ranged between 0.71–0.81 and 0.61–0.80, which is
significantly lower than the values reported for MRE (0.99 and 0.94, respectively).

Similar to MRE, diffusion-weighted imaging (DWI) is sensitive to tissue structures and
promises sensitivity to liver fibrosis. However, a number of studies [428–431] showed
that MRE outperforms DWI in discriminating different fibrosis stages (AUROC values
0.98 for MRE and 0.86 for DWI). An interesting option is the combination of DTI and
MRE in the same examination, which is accomplished by deriving diffusion information
from MRE motion-encoding gradients (see Section 3.3) [35]. It remains to be validated
whether such a multiparametric approach can further improve staging of liver fibrosis.

Transient ultrasound elastography (TE) is a simple and cost-effective noninvasive
method for the staging of liver fibrosis. Although confounding factors such as ascites
and obesity exist, the method has been used more widely than other elastography
methods for liver imaging. Due to methodological differences, absolute numbers of
viscoelastic parameters measured by TE and MRE are not necessarily comparable. In a
cross-validation study in cohorts with low and high grades of fibrosis, elasticities mea-
sured by TE were significantly different from those obtained with [432] for low and high
fibrosis stages. By contrast, a phantom study covering the elasticity range typical for
fibrosis patients (1–8 kPa) [433] showed no evidence of a systematic difference between
MRE and TE. Published reports on the diagnostic accuracy of MRE compared to TE
are somewhat inconsistent. A 3D EPI-based MRE study reported similar accuracy for
TE [434] (AUROC MRE vs TE: 0.91 vs 0.91 for ≥F2, 0.93 vs 0.90 for ≥F3). By contrast, a
more recent study [91] based on analysis of 2D wave images found significantly higher
diagnostic accuracy for MRE than for TE (AUROC MRE vs TE: 0.97 vs 0.87 for ≥F1,
0.98 vs 0.87 for ≥F2, and 0.97 vs 0.93 for F4).

A comprehensive study [435] comparing MRE and ARFI-based elastography found
MRE to be more accurate than ARFI, particularly in diagnosing early stages of hepatic
fibrosis (AUROC MRE vs ARFI: 0.94 vs 0.82 for ≥F1, 0.97 vs 0.85 for ≥F2, 0.96 vs 0.94
for ≥F3, and 0.97 vs 0.94 for F4).

Studies comparing ultrasound-based shearwave elastography (SWE) with MRE [436]
showed similar diagnostic accuracy for both methods (AUROC: 0.99 for F4 [436] and
0.85 for ≥F2 [437]). Moreover, the number of patients who were successfully examined
with both methods was comparable (∼96%) [437]. However, the sensitivity for the
diagnosis of fibrosis ≥F2 was significantly higher for MRE than SWE [437]. An earlier
systematic review addressing the diagnostic accuracy and technical performance
of several imaging modalities including DWI, ultrasonography (US), Doppler US,
contrast-enhanced US, TE, ARFI, SWE, and MRE [438] found that most of these
modalities allowed differentiation of normal and cirrhotic livers but failed in detecting
mild fibrosis. DWI, MR elastography, and US elastography seemed to be the best
candidates for accurate staging of hepatic fibrosis. At this time, only MRE was able to
stage fibrosis or to diagnose mild degrees of fibrosis. Comparison of MRE with the
serum-based aspartate aminotransferase-to-platelet ratio index (APRI) test found MRE
to be superior [408] (AUROC MRE elasticity vs MRE viscosity: 1.00 and 0.86 for ≥F2,
1.00 and 0.96 for ≥F3, and 1.00 and 0.99 for F4 compared to AUROC APRI: 0.85 for
≥F2, 0.89 for ≥F3, and 0.85 for F4).
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Table 15.5 Noninvasive biomarkers of liver fibrosis.

AUROCa)

Method Parameter ALD NAFLD HCV HBV

Fibrotest Age, sex, bilirubin, GGT,
α2-M, haptoglobin,
Apo-A1

0.83 [439] 0.85 [440] 0.85 [441] 0.78 [442]

Hepascore Age, sex, bilirubin, GGT,
α2-M, HA

0.83 [439] 0.75 [443] 0.83 [444] 0.76 [445]

Fibrometer Age, AST, platelets, α2-M,
HA, prothrombin index,
urea

0.79 [389] 0.94 [419] 0.86 [446] 0.78 [445]

APRI AST, platelets 0.59 [439] 0.73 [447] 0.76 [448] 0.72 [445]

ELF panel Age, HA, TIMP-1, PNPIII n.a. 0.82 [449] 0.82 [450] n.a.

TE Shear modulus 0.83 [451] 0.94 [452] 0.91 [453] 0.90 [454]

ARFI Shear modulus 0.87 [455] 0.90 [456] 0.81 [457] 0.80 [458]

SSI Shear modulus 0.95 [459] 0.88 [460] 0.95 [461] n.a.

MRE Shear modulus 0.92 [389] 0.96 [425] 0.98 [394] 0.96 [390]

a) Mean AUROC over all fibrosis stages.
Numbers in brackets denote literature references.
Explanation: ELF: European liver fibrosis panel, TE: transient elastography, ARFI: acoustic radiation
force impulse ultrasound elastography, SSI: supersonic ultrasound elastography, Apo-A1:
apolipoprotein-A1, AST: aspartarte aminotransferase, α2-M: α2-macroglobulin, bilirubin: breakdown
product of heme catabolism, GGT: Gamma-glutamyltransferase, HA: hyaluranic acid, haptoglobin:
protein produced in the liver, platelets: correlate with thrombocyte concentration, PNPIII: procollagen
N-terminal peptide III, prothrombin index: derived from measuring the clotting tendency of blood,
TIMP-1: tissue inhibitor of metalloproteinases-1, n.a.: not available.

In essence, MRE is currently one of the most precise imaging modalities for the
staging of liver fibrosis and outperforms most other noninvasive biomarkers. At
present, only SWE shows a comparable high diagnostic performance. With improved
elastography methods using both MRE and ultrasound, a further increase in diagnostic
precision for early stages of hepatic fibrosis can be expected. An overview of the
diagnostic accuracy of selected noninvasive serum and imaging biomarkers of liver
fibrosis is given in Table 15.5 (see also Section 15.1.2.3 for the categorization of serum
biomarkers).

15.1.3.5 MRE of the Liver for Assessing Portal Hypertension
The liver is supplied with blood by two separate vascular circuits: the arterial system
originating from the aorta for maintenance of vital liver functions and the hepatic portal
venous system, which consists of numerous veins and tributaries, including the hepatic
portal vein (see Figure 15.14). The portal venous system is responsible for directing
blood from parts of the gastrointestinal tract into the liver. A proportion of 75% of the
liver’s blood supply depends on other organs including venous drainage from the gut,
spleen, and pancreas. The multiscale hierarchic blood flow in the liver contributes to the
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Figure 15.14 Schematic representation of major vessels of the hepatic portal system. The hepatic
portal vein is one of the largest veins in the abdomen, connecting the spleen and the gastrointestinal
tract with the liver. The hepatic vein, which begins at the junction of the splenic vein and the superior
mesenteric vein, drains the blood coming from the large and small intestine as well as from the spleen
into the liver.

effective medium viscoelastic properties on the macroscopic scale [462]. The shear mod-
ulus measured by MRE in the liver reflects not only a solid tissue property but also fluid
properties such as volume, viscosity and pressure of the blood phase and mechanical
coupling between fluid phase and solid tissue. Conversely, the mechanical properties of
the solid phase influence vascular flow in the liver. Increased flow resistance due to liver
fibrosis results in portal hypertension, which contributes to the development of severe,
frequently life-threatening complications such as ascites, esophageal varices and hepatic
encephalopathy.

The gold standard for assessing portal hypertension is to measure the hepatic venous
pressure gradient (HVPG) through invasive hepatic vein catheterization. MRE can be
used to diagnose portal hypertension either based on the sensitivity of the effective
medium shear modulus to liver perfusion or by directly assessing the compression
properties of the liver through the measurement of volumetric strain. By nature of the
intimately linked hepatic and splanchnic vasculature, MRE in portal hypertension has
been concerned with both organs. We will therefore review more studies related to
portal hypertension in the section dedicated to the spleen. Besides the shear modulus,
volumetric strain measured by MRE can potentially serve as a biomarker for elevated
HVPG values [356]. The idea and the basic concepts of compression-sensitive MRE
are outlined in Chapter 5. A simple version of compression-sensitive MRE uses fast
3D vector field MRE followed by decomposing the wave field into its shear part (by
the curl operator) and compression part (by the divergence operator). This approach
was demonstrated in ex vivo sheep liver whose portal vein was connected to a water
reservoir for adjusting portal inflow pressure [356]. While volumetric strain decreased
with excess pressure in the portal vein, the shear field did not change. The same
method was used in patients with pathologically increased HVPG (Figure 15.15),
showing a significant increase in volumetric strain after reduction of HVPG as a result
of decompression of the liver after a transjugular intrahepatic portosystemic shunt
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Figure 15.15 Normal T2-weighted MRI and maps of volumetric strain in a patient with hepatic
hypertension before and after TIPS intervention demonstrating an increase in volumetric strain
(reduced compression modulus) following TIPS. (Hirsch 2014 [356]. Reproduced with permission of
Wiley.)

(TIPS10) procedure (Figure 15.16). Although this study did not reveal a significant
effect of TIPS on the shear modulus of the liver, a more recent study based on MMRE
and MDEV inversion showed exactly this [95]. However, it should be noted that
decompression of the liver spleen vascular system by TIPS is more pronounced in
the spleen. For this reason, other MRE studies and ultrasound-based elastography in
portal hypertension focused on the spleen since the liver – due to abundant connective
tissue in severe fibrosis stages – was reported to be less responsive to the relief of portal
venous pressure by TIPS [95].

15.1.3.6 MRE in Liver Grafts
Effective noninvasive methods for assessment of liver fibrosis are needed to guide
transplant decisions, to monitor posttransplant structural changes, and to predict the
risk of graft failure. In this context, MRE has successfully been used for the noninvasive

10 TIPS is a procedure to create a direct connection between the portal vein and the hepatic vein. It is
primarily used in patients with cirrhosis causing increased resistance to blood flow by architectural changes
of the liver parenchyma.
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Figure 15.16 Linear regression analysis of the relative change in volumetric strain after TIPS versus
HVPG. (Hirsch 2014 [356]. Reproduced with permission of Wiley.)

identification of appropriate donors and for identifying potential recurrence of liver
fibrosis in transplanted organs and the heterogeneity of fibrosis progression based on
MRE-guided biopsies.

Increased stiffness due to mild fibrosis and NASH, both contraindications to liver
donation, was observed with MRE with AUROC values of 0.85 for F ≥ 1 [463]. For
the stiffness-based detection of recurrent severe fibrosis (F ≥ 3) in liver transplant
recipients, AUROC values of 0.92 [464] and 0.87 [465] were reported. Both studies
reported lower AUROC values for staging lower grades of fibrosis (e.g., 0.65 for F ≥ 2
[465]) and no sensitivity was observed for the springpot parameter 𝛼 [465]. This finding
suggests an influence of unknown confounding factors on the MRE-measured variables
in liver grafts.

MRI-guided biopsy based on MRE data was proposed in a study which investigated
the heterogeneity of fibrosis progression in transplant recipients [356]. This allowed
a significant histology-based intraindividual discrimination of low- and high-grade
fibrosis suggesting a nonuniform progression of liver fibrosis. Regional analysis by
high-resolution MRE of the liver is becoming increasingly important to further improve
the imaging-based characterization of liver fibrosis not only in transplant livers but also
in all CLD independent of etiology.

15.1.3.7 Confounders
Early studies showed that MRE in liver fibrosis is neither affected by the fat con-
tent of the liver [93, 399] nor by administration of contrast agents [466, 467].
However, ultrasound-based elastography studies in animal models and patients clearly
demonstrated a decrease in elasticity due to the amount of fat in the liver [468, 469]. The
influence of the postprandial state on MRE-measured liver elasticity was analyzed with
partially controversial results. An MRE study of healthy volunteers showed no effect
of food intake [470], whereas another study of volunteers and patients demonstrated
liver stiffness to increase postprandially [471]. A postprandial increase was confirmed
by time-harmonic elastography based on ultrasound, which was found to be sensitive
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to pure water ingestion [472]. The guidelines for ultrasound elastography [473] include
the postprandial status as confounder, and a defined fasting state is recommended for
patients undergoing ultrasound elastography of the liver. Other studies demonstrated
increased liver elasticity in an animal model of isolated portal hypertension [474] or,
clinically more relevant, in the presence of active hepatitis [475] and necroinflammation
in mild fibrosis [476]. Ultrasound elastography further demonstrated an overestimation
of liver elasticity in patients with extrahepatic cholestasis [477] and congestive heart
failure [478]. Although fewer confounders have been reported for MRE, similar
sensitivities to liver perfusion, portal pressure, cholestasis, and fat accumulation as
encountered in ultrasound elastography can be expected for MRE.

15.2 Spleen

The spleen is located in the left upper abdominal cavity (see Figure 15.1) and consists
of a tree of branching arterial vessels, in which the smaller arterioles end in a venous
sinusoidal system. The parenchyma of the spleen is divided into two types of tissue,
red and white pulp. The red pulp constitutes the bulk of the splenic volume and is
composed of a network of cell cords arranged in series with vascular sinuses. The
splenic cords contain macrophages, plasma cells, lymphocytes, and other mature blood
cells such as granulocytes and erythrocytes. White pulp is made up of lymphoid tissue
that forms sheaths around the smaller branches of the arterial tree and contains T cells,
B cells, and macrophages. Thus, the spleen is a major lymphoid and blood filtration
organ responsible for antibacterial and antifungal immune reactivity as well as removal
of older erythrocytes, blood-borne microorganisms, and cellular debris.

The spleen is also part of the hepatic portal system (see Figure 15.14). Due to the
circulatory link between the liver and spleen, many diseases affect both organs. As
mentioned earlier, portal hypertension alters blood flow throughout the hepatosplanch-
nic venous system and affects perfusion in the connected organs. Splenic syndromes
such as splenomegaly are associated with severe complications of portal hypertension
including ascites, esophageal varices, and hepatic encephalopathy. Being less prone to
fibrosis than the liver, the spleen is more compliant to changes in vascular perfusion
pressure as caused by portal hypertension. The resulting increase in effective stiffness
of the spleen may render elastography sensitive to the noninvasive detection of portal
hypertension. While invasive hepatic vein catheterization continues to be the gold
standard for quantification of portal hypertension, it cannot routinely be used for
diagnostic purposes only. Other possible noninvasive markers of portal hypertension
such as spleen size or serum markers have limited diagnostic accuracy.

15.2.1 MRE of the Spleen

In healthy subjects, the spleen is stiffer than the liver as demonstrated by the elastograms
shown in Figure 15.12. This figure presents a standard transverse MRE view through the
liver, which also covers the spleen, thus underlining that both organs should be examined
at the same time. Normal values of splenic stiffness measured by MRE were established
in [479] with consideration of a number of physiologic parameters such as body mass
index, arterial mean blood pressure, age, spleen volume, and liver stiffness. The results
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Table 15.6 MRE-measured stiffness of the spleen from the literature.
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16 volunteers [479] GRE 1D 60 LFE 4.3 ± 0.6

12 volunteers [97] GRE 1D 60 LFE 3.6 ± 0.3
38 patients 5.6 ± 5.0

10 patients [95] EPIa) 3D 25–60 MDEV
Pre-TIPS 8.4 ± 1.4 8.3 ± 2.2
Post-TIPS 7.1 ± 1.3 7.0 ± 1.5

93 patients [480] GRE 1D 60 DI
49 no GEV 6.5 ± 2.1 4.0 ± 1.4
30 mild GEV 8.5 ± 2.9 5.6 ± 2.3
14 severe GEV 9.8 ± 1.7 6.1 ± 1.6

139 patients [481] EPIa) 3D 60 LFE
94 mild GEV 7.1 5.1
45 severe GEV 9.1 7.1

126 patients [482] GRE 1D 60 LFE
102 mild GEV 5.8 ± 2.3
24 severe GEV 8.5 ± 2.2

49 patients [483] GRE 3D 60 DI
40 noncirrhotic 5.2 ± 1.3 2.6 ± 1.2
9 cirrhotic 8.2 ± 2.0 4.6 ± 1.1

36 cirrhosis patients [96] GREa) 3D 28 DI 0.8 0.6
56 4.4 3.1
84 8.3 6.1

Abbreviations: 1D: single displacement field component, 3D: full displacement field, GRE: gradient
echo, EPI: echo planar imaging, LFE: local frequency estimation, DI: direct inversion,
MDEV: multifrequency dual elasto-visco inversion, TIPS: transjugular intrahepatic portosystemic
shunt, GEV: gastro esophageal varices.
a) Fractional motion encoding.
“Stiffness” refers to 𝜌 ⋅ c2 (for LFE), |G∗| or G′ (for DI, not specified), and |G∗| for MDEV inversion.
Stiffness values are given as group mean value ± standard deviation (if available).

suggest that spleen stiffness is not significantly influenced by any of the physiologic cri-
teria taken into consideration by the investigators. However, the investigators also used
different actuator positions and found an effect on the results. Talwalkar et al. [97] shows
that splenic elasticity is higher in patients with liver fibrosis than in healthy volunteers
and that the stiffness values of the liver and spleen are correlated. Table 15.6 summarizes
technical parameters and basic results from the literature on in vivo MRE of the human
spleen compared to liver values.
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The effect of portal hypertension on splenic stiffness was studied in a canine model
of cholestatic chronic liver disease [164]. In this study, splenic and hepatic stiffness
measured by MRE correlated well with the invasively measured HVPG. The results
were confirmed by MRE in a porcine model of intra-arterial dextran infusion, which
allowed the authors to adjust the level of portal hypertension [474]. Again, the stiffness
values of both the liver and spleen were highly correlated with portal pressure.

Portal hypertension can be treated by the implantation of a TIPS, which diverts
blood flow from passing through the liver by establishing a direct connection between
portal and hepatic veins. HVPG is reduced after successful TIPS placement, making the
intervention an appropriate model for testing the sensitivity of clinical MRE to portal
hypertension. In [95], MMRE of the liver and spleen was performed in patients with
portal hypertension before and after TIPS placement. This study reported a reduction
of HVPG by TIPS based on the MRE-measured viscoelasticity (|G∗|) in both the liver
and spleen (see Figure 15.17). Notably, |G∗| was more sensitive to HVPG in the spleen
as compared to liver values, giving rise to the correlation between relative changes in
HVPG and relative changes in splenic viscoelasticity (see Figure 15.18).

The diagnostic accuracy of spleen and liver elasticity for the prediction of esophageal
varices was investigated in [95]. Liver elasticity, spleen elasticity, and spleen volume
identified gastroesophageal varices in patients with chronic liver disease with AUROC
values of 0.75, 0.76, and 0.73, respectively [95]. The high diagnostic value of splenic
elasticity for detection of esophageal varices was confirmed by Shin et al. [481],
reporting an AUROC value of 0.83. Additionally, the authors compared the diagnostic
value of splenic elasticity with that of dynamic contrast-enhanced MRI, geometry
(spleen length) and liver elasticity, which gave similar or lower results (AUROC = 0.84,
0.70, and 0.82, respectively). The highest diagnostic accuracy in the prediction of
esophageal varices was reported by Sun et al. [482] for liver elasticity (AUROC = 0.86).

Viscosity-related parameters in the spleen are still subject of research. Encouraging
findings were obtained in an MRE study of cirrhotic patients which included an analysis
of splenic viscoelasticity, HVPG, and endoscopy to assess esophageal varices [96]. It was
shown that splenic viscosity based on the loss modulus G′′ best enabled detection of
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Figure 15.17 MRE magnitude images and corresponding elastograms of a patient before and after
TIPS demonstrating lower |G∗| values in liver and spleen in the post-TIPS experiment. (Guo 2015 [95].
Reproduced with permission of Wolters Kluwer.)
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Figure 15.18 Linear correlation between
relative changes in spleen stiffness and relative
changes in the HVPG (P = 0.013). No such
correlation was found for the liver. The relative
changes are shown as percentages calculated
by dividing the difference of pre-TIPS and
post-TIPS values by the pre-TIPS values. (Guo
2015 [95]. Reproduced with permission of
Wolters Kluwer.) ΔH
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severe portal hypertension and high-risk esophageal varices (AUROC = 0.81 and 0.93,
respectively), while liver and spleen elasticity were not correlated with HVPG.

The potential value of splenic viscosity for detection of an altered tissue perfusion is
also indicated by 𝜑, the phase angle of G∗ retrieved by MDEV inversion [95, 98]. These
studies reported higher 𝜑 values in the spleen in patients with hepatic fibrosis than in
healthy volunteers (0.85 ± 0.19 (pre-TIPS) vs 0.64 ± 0.15 [95]). However, the cause of
higher 𝜑 values in patients is still unclear since, unlike |G∗|, 𝜑 was not correlated with
HVPG, suggesting an effect of an altered tissue structure such as vascular tree geometry
or fibrosis rather than perfusion pressure.

15.3 Pancreas

The pancreas is part of the portal hepatic system and is important for proper digestion.
It is supplied with blood by branches of the splenic, hepatic, and superior mesenteric
arteries and is drained by veins that open into the portal vein. The pancreas is composed
of exocrine and endocrine tissues. The exocrine pancreas is the larger part and secretes
enzymes (pancreatic juice) for carbohydrate, protein, and fat digestion. The pancreatic
juice is drained through the pancreatic duct, which merges with the common bile duct
originating from the gallbladder and liver. The combined pancreatic juice and bile finally
drain into the duodenum (see Figure 15.1). The duodenum is the first part of the small
intestine that receives partially digested food from the stomach, absorbs nutrients, and
passes digested food to the jejunum. A small number of the cells in the pancreas are
endocrine cells secreting hormones for the regulation of blood glucose concentration,
such as insulin and glucagon, into the blood. Insulin lowers the amount of sugar in the
blood by stimulating the liver, muscles, and fatty tissues to absorb and store glucose. The
antagonist of insulin is glucagon, which increases the amount of sugar in the blood by
stimulating the liver and other tissues to release stored sugar.

The detection of pancreatic diseases is limited by the relative inaccessibility of
the pancreas, being located behind the stomach and surrounded by other organs,
such as the spleen, liver, and small intestine. Despite progress in blood testing and
imaging-based detection and characterization, there are instances in which surgical
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exploration is the only way to confirm the diagnosis of pancreatic disease. Pancreatic
cancer is the fourth most common cause of cancer death in men and the fifth in
women, growing insidiously over years with inconspicuous symptoms. It is resistant to
many standard treatments including chemotherapy and radiation therapy. If detected
early, pancreatic cancer can be cured by surgical resection. However, differentiation
of pancreatic cancer from other diseases such as chronic pancreatitis can be difficult.
Chronic pancreatitis is a progressive disorder associated with the destruction of the
pancreas. Patients with advanced chronic pancreatitis may develop diabetes mellitus.

15.3.1 MRE of the Pancreas

The number of reports on elastography, including ultrasound methods, for assess-
ment of the pancreas is still small. It still remains to be determined to which extent
mechanical properties of the pancreas vary with disease. Therefore, current ultrasound
elastography practice guidelines do not recommend elastography-based imaging and
analysis for diagnostic evaluation of the pancreas [241]. However, tissue stimulation
by time-harmonic waves as used in MRE is potentially better suited to efficiently
excite the very soft and viscous pancreatic tissue, which is surrounded by mechanically
absorbing tissues and organs, than transient ultrasound elastography methods. For
this reason, efforts have been undertaken to utilize MRE for examinations of the
pancreas. Shi et al. proposed a pancreatic MRE setup using the Resoundant system for
inducing 40 and 60 Hz vibrations, EPI-MRE with fractional encoding and 3D direct
inversion [100]. Mean stiffness values (based on 𝜌 ⋅ c2 according to Eq. (4.154)) in a
group of 20 healthy volunteers were 1.2 ± 0.2 kPa for 40 Hz, and 2.1 ± 0.3 kPa for 60
Hz, suggesting very soft tissue properties. Similar values were measured in the liver
at 60 Hz (2.1 ± 0.2 kPa), whereas stiffness of the liver was higher at 40 Hz (1.6 ± 0.2
kPa), indicating stronger viscoelastic dispersion of pancreatic tissue compared to liver
tissue. Furthermore, the results suggest that the use of lower vibration frequencies is
preferable since the intrasubject variation coefficient was lower at 40 Hz than 60 Hz.
Although this sole study of pancreatic MRE needs to be reproduced and extended in
a clinical pilot study, these very encouraging results suggest that MRE is a promising
candidate for staging chronic pancreatitis and for early detection, differential diagnosis
and treatment monitoring in patients with pancreatic cancer.

15.4 Kidneys

The kidneys are composed of highly complex tissues such as the outer renal cortex
and the inner renal medulla. Each kidney hosts 8–18 cone-shaped renal lobes known
as the renal pyramids. Each pyramid comprises a segment of the outer renal cortex and
the inner renal medulla (see Figure 15.1). The smallest functional units of the kidney
are the nephrons, which extend from the cortex via medulla into collecting ducts and
hilus for drainage of urine. The main task of the kidneys is related to blood filtration.
From a total of 900 l of blood passing both kidneys per day, 160 l of water are washed
out, from which 158 l become reabsorbed, while 2 l of urine remain as waste [484]. This
intricate filter function is accomplished in millions of nephrons and is important for
maintaining extracellular homeostasis of pH and blood components such as glucoses
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and electrolytes. Kidney failure causes a number of syndromes that affect other organs
or the entire cardiovascular system. For this reason, early detection of renal dysfunction
is of great importance for initiating or adapting treatment to improve long-term
outcome and preserve native kidney function or to ensure renal graft survival in
kidney transplant recipients. Current clinical practice relies on a multimodal approach
including blood tests (serum creatinine level) and urinalysis for evaluating kidney
function, and routine biopsy for histology. However, there are no specific biochemical
markers for chronic renal injury in general. MRE might be a suitable biomarker of renal
function for two reasons: (i) its sensitivity to the effective perfusion pressure in highly
perfused organs such as the spleen and (ii) its sensitivity to fibrosis and excessive ECM
accumulation. Renal fibrosis – a severe condition which develops in virtually every type
of chronic kidney disease – is associated with increased tissue stiffness [485]. On the
other hand, the kidneys are shielded by the vertebra and spinal muscles, which has so
far limited in vivo studies of MRE and ultrasound elastography in the native kidneys.
Furthermore, renal tissue is – on the macroscopic scale – more complex than liver
tissue, featuring a high degree of heterogeneity and anisotropy, which poses a great
challenge for measurement of meaningful in vivo viscoelasticity constants [486].

15.4.1 MRE of the Kidneys

Preclinical renal MRE has been performed to assess renal fibrosis in the cortex [138],
deposition of calcium salts in the renal medulla (nephrocalcinosis) [139], and the influ-
ence of blood circulation on renal stiffness [487]. In [138], renal fibrosis secondary to
renal artery stenosis was studied in a pig model. Despite histological evidence of renal
fibrosis, MRE detected increased stiffness only in the medulla while cortical stiffness
was not significantly different from normal. In [139], a decrease in renal blood flow
led to a gradual decrease of cortical stiffness while medullary stiffness decreased only
when there was total interruption of blood flow. Both results suggest that hemodynamic
variables may modulate kidney stiffness measured by MRE and may mask the presence
of fibrosis. By contrast, deposition of calcium salts in the medulla led to an increase
in stiffness persisting even beyond calcium exposure. This might also be attributed to
altered fluid dynamics. Altogether, these preclinical experiments suggest that renal stiff-
ness measured by MRE is highly influenced by hemodynamic factors.

So far, most human MRE studies addressed the feasibility and reproducibility of
MRE or optimization of imaging protocols. To maximize the pixel count of kidney
parenchyma, a coronal slice orientation has been proposed [488]. Gradient-echo MRE
was optimized to achieve high accuracy of 6% test–retest variability [103] despite the
long scan times of 56–105 min. More recent publications proposed fast single-shot
spin-echo EPI-MRE [489] and demonstrated high repeatability and interrater agree-
ment. MMRE based on single-shot EPI and MDEV inversion has been proposed
recently by Streitberger et al. [102]. The total acquisition time of less than 10 min
achieved in this study [102] may allow incorporation of this examination into clinical
MRI protocols. Renal cortex, medulla, and hilus showed significant differences in
elasticity (see Table 15.7 and Figure 15.19a).

Renal MRE in patients is preferably performed in transplant kidneys due to the
better accessibility compared with native kidneys. Lee et al. [104] investigated kidney
recipients in whom fibrosis was determined by needle biopsy according the Banff score.
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The authors discussed the small sample size, missing baselines studies of renal stiffness
immediately after transplantation, and technical limitations as possible reasons for a
nonsignificant correlation between renal stiffness and fibrosis. The feasibility of MRE
for detection of decreased renal function in patients with hepatorenal syndrome was
demonstrated in [168]. Renal elasticity was significantly lower in patients with impaired
kidney function compared to patients with normal kidney function. The reported
AUROC values increased with increasing vibration frequencies (AUROC=0.89 at 60
Hz vs 0.94 at 90 Hz), indicating the need for a large enough number of shear waves
in smaller organs for direct inversion at a single frequency. In a recent study [222],
k-MDEV inversion (see Section 10.6) was used to address this issue by reevaluating
data from [102]. Figure 15.19 demonstrates the superior wavespeed contrast in the
kidney as compared to noise-sensitive MDEV inversion.

A compilation of published viscoelastic parameters measured by renal MRE is
presented in Table 15.7.

Table 15.7 Results of renal MRE studies in healthy volunteers and kidney transplant recipients
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11 volunteers [488] Below ribcage 1D 60 LFE 6.8 ± 0.1 5.5 ± 0.5 4.4 ± 0.3

10 volunteers [103] Back/under 3D 45 LFE 5.4 ± 0.7 4.8 ± 0.6

kidneys 76 9.6 ± 1.4 9.4 ± 1.0

16 volunteers [489] Back/under 3D 60 LFE – 3.5 ± 0.5R, 3.5 ± 0.5L –

kidneys 90 – 6.0 ± 3.4R, 5.4 ± 1.9L –

9 volunteers [102] Kidney belt 3D 30–60 MDEV 1.2 ± 0.2 2.7 ± 0.5 1.6 ± 0.2

Ktx patients [104] Over allograft 3D 90 DI

1 ns – 6.9a)–

6 mild – 6.0a)–

2 mod – 7.2a)–

HRS patients [168] Back/under 3D 60/90 LFE

6 normal function kidneys – 3.4a)/5.1a)–

14 reduced function – 2.6a)/3.3a)–

Abbreviations: 1D: single displacement field component, 3D: full displacement field, LFE: local
frequency estimation, MDEV: multifrequency dual elasto reconstruction, DI: direct inversion, R,L:
group mean value of stiffness for entire right/left kidneys ± standard deviation values given in
brackets represent group mean values of stiffness for whole kidneys.
a) Group mean value of stiffness of kidneys without hilus ± standard deviation (if available).
Ktx: kidney transplant recipients, ns: no significant fibrosis, mild: mild fibrosis, mod: moderate fibrosis
(fibrosis staging according to Banff score), HRS: hepatorenal syndrome.
Stiffness corresponds to 𝜌 ⋅ c2 according to Eq. (4.154) for LFE and DI whereas for MDEV inversion,
|G∗| is reported. Stiffness values are given as group mean value ± standard deviation (if available).
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Figure 15.19 Renal MRE. (a) MMRE and MDEV inversion of central slices in a healthy volunteer. The
anatomical regions for spatial averaging of |G∗| are encircled by green (cortex), cyan (medulla), and
red (hilus) lines. (Streitberger 2014 [102]. Reproduced with permission of Elsevier.) (b) MMRE and
k-MDEV inversion showing superior detail resolution in the wavespeed maps.

15.5 Uterus

The uterus is a major female reproductive organ and mostly consists of a smooth muscle
layer known as myometrium, which surrounds the uterine cavity. The endometrium is
the inner layer of the myometrium adjacent to the uterine cavity. The functional layer of
the endometrium is built up periodically during the menstrual cycle under the influ-
ence of ovarian hormones and are shed or reabsorbed if no pregnancy occurs. The
perimetrium is the outer layer enveloping the uterus. The cervix connects the body of
the uterus with the vagina (see Figure 15.1).

MRE may contribute to the differentiation of benign uterine fibroids or leiomyomas
from cervical cancer. Both conditions present with the same clinical symptoms of pain
and bleeding. Uterine fibroids are estrogen-dependent benign tumors that originate in
the smooth muscle layer of the uterus. They are one of the most common health prob-
lems in women during the third and fourth decades of life. As fibroids are muscular
in origin and have a solid consistency, they are stiffer than the uterine fundus. Cervical
cancer is the most common malignancy of the genital tract in women. Malignant lesions
are significantly stiffer than healthy tissue [490].

15.5.1 MRE of the Uterus

So far, only two MRE studies of the uterus have been published [105, 166]. Challenges of
uterine MRE are related to the irregular shape and high heterogeneity of the uterus, peri-
odically varying baseline values and high wave attenuation for mechanical stimulation.
In published work, piezoelectric [105] and pneumatic [166] actuators were employed,
both positioned on the anterior surface directly above the uterine cervix. Baseline values
for healthy volunteers taking different phases of the menstrual cycle and regional varia-
tions into account were reported in [105]. The study combined multifrequency EPI-MRE
in the frequency range from 30 to 60 Hz with MDEV inversion. An intriguing finding
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Figure 15.20 MMRE of the uterus from [105]. Shown are standard T2-weighted MRI (MRE magnitude),
|G∗|, and 𝜑 in a representative image slice of the uterus of a healthy volunteer. The uterine corpus,
endometrium, and cervix are demarcated by red, blue, and green lines, respectively. (Jiang 2014 [105].
Reproduced with permission of Springer.)

of this study is the higher stiffness of the uterine body as compared to the cervix (|G∗|=
2.6 ± 0.5 vs 2.0 ± 0.3 kPa) (see Figure 15.20). Viscosity-related 𝜑 was similar in both
regions (uterine corpus: 𝜑 = 0.5 ± 0.1 rad; cervix: 0.6 ± 0.1 rad). High reproducibility
was demonstrated by repeat measurements over 2 months in one volunteer (uterine cor-
pus: |G∗|= 3.5 ± 0.1 kPa, 𝜑 = 0.60 ± 0.05 rad; cervix: |G∗|= 1.9 ± 0.1 kPa, 𝜑 = 0.53 ±
0.10 rad). Significant variation of |G∗| was observed with the menstruation cycle (see
Figure 15.21). Myometrial stiffness was lower in the secretory phase than in the prolif-
erative phase (2.2 ± 0.3 kPa vs 3.0 ± 0.3 kPa), similar to the stiffness of the endometrium
(2.0 ± 0.3 kPa vs 3.3 ± 0.4 kPa). These results were reproduced by k-MDEV-based data
evaluation [222]. Taken together, these experiments provide the baseline for future clin-
ical studies of MRE of the uterus.

A preliminary study tested the feasibility of MRE for the detection of uterine fibroids
in subjects with body mass indices ranging from 23 to 38 [166]. On the basis of GE-MRE
and LFE reconstruction, fibroid stiffness values ranging from 4.0 to 6.7 kPa were found.
Further studies of uterine MRE in patients are necessary for a definitive assessment of
its diagnostic potential.

15.6 Prostate

The prostate is an exocrine gland and is part of the male reproductive and urinary
systems. The size of the prostate varies individually from the size of a walnut to a
small apple. The prostate is covered by a layer of connective tissue called the prostatic
capsule. The gland itself consists of different cell types including fibrous cells providing
the supportive structure, cells producing the fluid portion of semen, and smooth
muscle cells controlling urine flow and ejaculation. As shown in the magnification of
Figure 15.1, the gland can be subdivided into three zones:

• Peripheral zone: The largest zone of the prostate and closest to the rectum. Thus, it
can be palpated by physicians in a digital rectal examination. Approximately 75% of
all prostate tumors arise in the peripheral zone.
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Figure 15.21 Variation of |G∗| over the menstruation cycle in a healthy volunteer: (a) |G∗| of
myometrium (filled circles) and endometrium (open circles) plotted separately over the normalized
menstrual cycle days. (b) |G∗| of endometrium covering two complete menstrual cycles, the beginning
of menstruation is indicated by arrows. Mean values and standard deviations of |G∗| in the
endometrium (c) and the myometrium (d) in the proliferative (PP) and the secretory phase (SP).
(Jiang 2014 [105]. Reproduced with permission of Springer.)

• Transition zone: The part between the peripheral and central zones surrounding the
urethra and comprising approximately 20% of the volume of the prostate gland until
the age of 40. After that age, the transition zone starts to enlarge (benign prostatic
hyperplasia) and ultimately becomes the largest region of the prostate.

• Central zone: The part of the prostate that is farthest away from the rectum. Therefore,
prostate tumors in this zone are difficult to assess by digital rectal examination.

The main function of the prostate is to secrete the fluid portion of semen. The
prostate also plays a role in controlling the flow of urine.

15.6.1 MRE of the Prostate

The use of elastography for examining the prostate is motivated by the clinically
established practice of digital rectal examination, in which the mechanical rigidity
of the gland is manually assessed. This palpation is performed to identify prostatic
disorders, notably inflammation, tumors, and benign prostatic hyperplasia. So far, MRE
of the prostate has focused on the characterization of tumors and is therefore described
in Section 17.3.3. In Table 15.8, we tabulate in vivo MRE values for normal and diseased
prostate tissue published in the literature.
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Table 15.8 In vivo data of MRE studies of the prostate in healthy volunteers and patients with
prostate tumors.
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12 volunteers [107] Endorectal 1D 100 LFE 2.5 ± 0.7 2.7 ± 0.6
200 9.0 ± 2.0 9.0 ± 2.0
300 19.0 ± 5.0 17.0 ± 3.0

6 volunteers [153] Transperineal 3D 70 FEM 3.3 ± 0.5 2.6 ± 0.3
1 patient 7 2.7 ± 1.1 3.1 ± 4.1

6 volunteers [116] Transperineal 3D 70 FEM 4.6 ± 1.5 3.8 ± 1.0 4.4 ± 1.7
11 patients 6–8 3.2 ± 1.0 2.5 ± 0.6 3.0 ± 1.1

7 volunteers [493] Pubic bone 3D 65 DI 2.2 ± 0.3 3.3 ± 0.5

10 volunteers [494] Pubic bone 3D 100 n.s. 2.3 ± 0.5
2 patients 5 – 5.8a) –

3 patients 6 – 6.0a) –

2 patients 7 – 7.5a) –

1 patient 8 – 8.0a) –

Abbreviations: 1D: single-displacement field component, 3D: full-displacement field, LFE: local
frequency estimation, FEM: finite element method based on the wave equation (see text), DI: direct
inversion, n.s.: not specified, CZ: central zone, PZ: peripheral zone, TZ: transition zone, the data
given are averaged over the respective zone.
a) Group mean stiffness for the entire gland.
Stiffness refers to 𝜌 ⋅ c2 for LFE and DI (according to Eq. (4.154)) and 1

3
E (shear modulus calculated

from the Young’s modulus assuming incompressibility). Stiffness values are given as group mean value
for respective zones ± standard deviation (if available).

15.7 Intervertebral Disc

The IVD is a fibrocartilaginous joint that acts as a shock absorber in the vertebral
column while at the same time facilitating complex spinal movement. Structurally, the
IVD can be subdivided into the gelatinous nucleus pulposus (NP), the anulus fibrosus
(AF) made up of fibrocartilage tissue, a transition zone between NP and AF, and the
cartilaginous endplates [491]. Being predominantly composed of type I collagen fibers
organized in concentric lamellae, the AF is a stiff solid material with cartilage-like prop-
erties characterized by high shear modulus on the order of MPa. By contrast, the NP is
soft and viscous due to high water content and a disordered ECM, which is composed
of type II collagen fibers and proteoglycans, leading to a high water storage capacity.
At low dynamics (on the order of minutes), the NP cannot bear static shear stress,
suggesting fluid-like rather than solid material properties, while at higher dynamics (on
the order of less than a second), the NP shows distinct solid behavior and transmits
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shear forces [492]. This duality of fluid–solid properties may reflect an important
functional property of NP in the adsorption of shock and sudden transient load.

Since the dual function of the disc is to provide mechanical support and ensure
mobility of the spine, MRE has high potential to directly assess the IVD functional state
by medical imaging. Accurate staging of IVD degeneration is of high socioeconomic
relevance since degenerative disc disease is a common cause of chronic back pain – a
costly and widely prevalent health disorder in Western countries. IVD degeneration is
characterized by progressive cell death, tissue dehydration, and aging of the endplates.
As a result, blood vessels and nerves can invade the disc, causing pain and inflammation.
In addition, the IVD becomes vulnerable to shear stress-related microtrauma, making
degenerative disc disease a possible precursor of IVD herniation [495]. Various classi-
fication systems exist for assessing the grade of disc degeneration. The grading system
proposed by Pfirrmann et al. is the most accepted tool due to its high feasibility using
T2-weighted MRI and accurate reliability [496]. Although the Pfirrmann score is widely
used in radiological routine, the morphological MRI appearance of the IVD is not
significantly correlated with the severity of symptoms or the risk of future herniation
events. Other less validated MRI-based biomarkers for IVD degeneration include
changes in water diffusivity, sodium content, and ECM macromolecule contents [497].

15.7.1 MRE of the Intervertebral Disc

In terms of MRI signal intensities and shear elasticity, NP is well accessible by in vivo
MRE. By contrast, AF has not yet been analyzed by MRE due to short signal relaxation
times and very high stiffness, which is on the order of MPa. Mechanical tests of ex
vivo NP specimens, ex situ and in situ, were performed to investigate compression,
poroelastic, hyperelastic, and shear elastic properties over a wide dynamic range from
static to a few hundred hertz [498–502]. The reported NP shear modulus values vary
between 10.5 and 17.4 kPa [492] and nearly 1000 kPa [500]. This variability indicates that
the results are strongly influenced by mechanical testing conditions, osmotic swelling
pressure, and whether the tissue was examined in vivo or ex vivo. MRE of human motion
segments (vertebra–disc–vertebra) yielded shear modulus values of 661 kPa (normal
IVD), 135 kPa (mild degeneration), and 71 kPa (severe degeneration) using a mechanical
frequency of 1250 Hz and a finite element-based inversion method (see Section 10.7). A
preliminary study using MRE at 1000 Hz in two baboon lumbar spine motion segments
(L3/L4) reproduced these findings, yielding an averaged LFE-based shear stiffness of
79 kPa [503]. However, lower values were measured at lower frequencies. Streitberger
et al. analyzed NP properties of ex vivo bovine discs by mechanical indentation and by
MMRE at different precompression states in the frequency range between 50 and 70
Hz and reported values of G′ = 5.3 kPa (indentation), |G∗|= 11.3 kPa (uncompressed
state, MRE), and |G∗|= 4.9 kPa (compressed state, MRE) [101]. The marked reduction
of |G∗| after compression suggests that degeneration leads to softening of NP tissue.
This was validated in the same study in the lumbar spine (IVD L3/4 and L4/5) of healthy
volunteers covering a range of Pfirrmann scores. Averaged |G∗| values decreased with
increasing Pfirrmann scores of 1, 2, and 3 by 6.51, 5.29, and 4.03 kPa, respectively (see
Figure 15.22). This encouraging study is the reference for further in vivo MRE studies
of the IVD based on noise-robust k-MDEV inversion. Tzschätzsch et al. [222] used the
same data as reported by Streitberger et al. [101] and obtained similar stiffness values
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Figure 15.22 Results of MRE of the IVD obtained in ex vivo bovine samples by static indentation (a) or
by MRE at two different states of the disc, once in its native state and a second time in a compressed
state to simulate tissue degeneration (b). (c) Results from in vivo experiments in healthy volunteers of
two IVD (L3/4, L4/5) with varying degrees of degeneration according to the Pfirrmann score.
(Streitberger 2015 [101]. Reproduced with permission of Wiley.)

based on wave speed (3.22 ± 0.71 m/s). An ultrasound-based SWE study found a similar
range of wave speed values in the NP (3.0 ± 0.4 m/s) with softening over age [504].
Notably, the NP of IVD is visible in many k-MDEV-based elastograms acquired in an
axial abdominal plane (cf. Figures 10.5 and 15.12), where it normally appears to be much
stiffer than other tissues. The clinical use of this new information still awaits validation.
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16

MRE of Skeletal Muscle

This chapter was coauthored by Jing Guo from the Department of Radiology,
Charité – Universitätsmedizin Berlin, Germany

Skeletal muscle tissue is composed of macromolecular functional units, the
actin–myosin filaments, which are organized into a hierarchy of sarcomeres, myofibrils,
myocytes, and bundles of fibers (see Figure 16.1). The actin–myosin filaments of
synchronized myofibrils generate the macroscopic contraction force, which acts via
tendons on the bones. The directionality of forces generated in muscle implies a
principal direction of the effective mechanical network of muscle tissue. As such,
muscle tissue is anisotropic, which is visible to the naked eye by the alignment of the
fascicles surrounding the fiber bundles. In longitudinally arranged fusiform muscles
(e.g., the biceps brachii), fibers run parallel to the axis of force generation. In unipennate
muscles (e.g., vastus lateralis), the fibers are all oriented at the same angle relative to
the axis of force generation. Bipennate muscles (e.g., rectus femoris) are made of fibers
arranged in V-shaped patterns. Multipennate muscle fibers are arranged at multiple
angles relative to the axis of force generation, and are the most general and most
common architecture of skeletal muscle.

The fibrous structure of muscle tissue implies – at least locally – rotational symmetry
of the mechanical network. Applying rotational symmetry to the full orthotropic
elasticity tensor results in the transversely isotropic (TI) elasticity tensor (Eq. (4.38)).
The full TI elasticity tensor has five independent elements, which reduce to three free
constants in case of incompressibility (Eq. (4.190)). Green’s function of the solution of
the wave equation accounts for both wave polarization and wave propagation direction
(see Section 4.9.5). Therefore, the full solution of the elastodynamic wave equation
including anisotropy needs to account for the directionalities of motion encoding and
wave propagation in MRE wave data. Possible waveform scenarios in TI materials con-
sidering MRE imaging plane, wave field polarization, and wave propagation direction
are schematically drawn in Figure 4.10. Early work in ultrasound elastography of skele-
tal muscles used transient elastography with shear waves of a preferred propagation
direction [505]. The axis of the exciter rod was rotated so that the shear waves are
propagated at controlled angles relative to the muscle fibers. The measured wave speed
values reflected the shear modulus properties 𝜇12 and 𝜇13 (see Eq. (4.64)). Unlike MRE,
ultrasound elastography is limited in acquiring the full wave field and cannot resolve the
full anisotropic elasticity tensor [506]. Two more requirements are needed to retrieve
all elements of the orthotropic elasticity tensor as achieved by waveguide elastography:
(i) knowledge of the local coordinate system of elasticity and (ii) wave propagation

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Figure 16.1 Sketch of the hierarchy of tissue architecture in skeletal muscle.

parallel and perpendicular to the local fiber direction. The first point can be addressed
by diffusion tensor imaging (DTI), which retrieves the local fiber direction and
thus the local principal axis in TI materials. The second requirement ensures that
directional filtering as applied in waveguide elastography results in sufficient wave
amplitude in each field component and that all elasticity components C11 to C66 (Eqs.
(10.102)–(10.110)) can be determined. A simplified version of waveguide elastography
is the curl-based direct inversion as outlined in Section 10.8, which yields the three
independent constants of an incompressible TI material: 𝜇12, 𝜇13, and E3 (Eq. (4.190))
[47]. However, this approach also requires knowledge of the local fiber direction, from
either a priori assumptions (see Figure 16.2) or additional experimental information
from DTI. So far, neither waveguide elastography nor DTI-based three-parameter
direct inversion have been applied to skeletal muscle tissue. All published studies
of MRE of anisotropic media, specifically of skeletal muscle, made several assump-
tions to reduce the complexity of the five-parameter problem in TI materials or the
three-parameter problem in incompressible TI materials. Group velocity inversion was
proposed to determine the wave propagation speed of the slow transverse (ST) wave
along different directions relative to the muscle fibers, which basically yields 𝜇12 and
𝜇13 similar to the aforementioned TE approach [48]. Simplification was achieved here
by adapting the experiment, so that only ST-waves were induced, similar to studies in
thigh muscles [82, 507] or by employing profile-based determination of wavelengths of
unidirectional filtered waves [508, 509].

16.1 In vivo MRE of Healthy Muscles

The variation of approaches in MRE of skeletal muscle with respect to anisotropy, recon-
struction, mechanical excitation frequency, and studied muscle groups hampers a direct
comparison of values. For example, in vivo MRE of the lower extremity measured elastic
modulus values between 1 and 2 kPa in thigh muscle at 50 Hz vibration frequency [82],
but higher values of 3.7–7.5 kPa were obtained in the frequency range of 90–120 Hz
[508]. Soleus elasticity was measured by MRE to be 12.5 kPa at 100 Hz [170].

Anisotropic shear moduli of lower leg extremity muscles obtained using in vivo
MRE at 60 Hz were reported to be 𝜇13 = 0.8 ± 0.22 kPa and 𝜇12 = 0.65 ± 0.13 kPa
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30 Hz

40 Hz

50 Hz

60 Hz

Sym

iso

(a) (b) (c)

Figure 16.2 Appearance of shear waves in MRE of skeletal muscle. (a): Imaging planes relative to the
muscle. Two typical scenarios are shown for measuring the ST wave mode (polarization/propagation
directions are perpendicular/parallel to the principal axis of the muscle, respectively) in a plane of
symmetry (sym) or the plane of isotropy (iso). Therefore, vibration is induced at the distal or proximal
end of the muscle (blue arrow) and free wave propagation is captured within the imaging planes
aligned with the coordinate axes of the elasticity system (sym and iso). (b): Example MRE magnitude
images (left) and wave images (right) showing the preferred direction of wave propagation along
the muscle fibers within the plane of symmetry. Both motion encoding and vibration direction are
through-plane (blue cross). This scenario corresponds to the lower left panel in Figure 4.10.
(c): Appearance of shear waves (in-plane curl component, 𝜕u2

𝜕r1
− 𝜕u1

𝜕r2
) in the lower extremity muscles

(right leg and left leg) at different frequencies. In contrast to (b) and as prescribed by the plane of
isotropy in TI media, no preferred directionality of the shear wave patterns is apparent.

in the soleus; 𝜇13 = 0.86 ± 0.15 kPa and 𝜇12 = 0.66 ± 0.19 kPa in the gastrocnemius;
and 𝜇13 = 0.78 ± 0.24 kPa and 𝜇12 = 0.66 ± 0.16 kPa in the tibialis [81]. The modulus
ratios (𝜇13∕𝜇12) obtained in these three muscles were 1.3, 1.3, and 1.2, respectively,
which are lower than the same shear modulus ratio observed in the biceps brachii using
supersonic shear wave imaging (3.7, 𝜇13 = 5.86 ± 0.20 kPa, 𝜇12 = 1.58 ± 0.15 kPa) [510].
TE-based ultrasound elastography of the biceps reported a much higher modulus ratio
of 16 [505]. The same ratio was derived by waveform analysis of MRE data acquired
in the biceps muscle at 200 Hz (𝜇13 = 54 ± 3 kPa, 𝜇12 = 3.4 ± 1.1 kPa) [511]. In this
study, E3 was preliminarily derived from a plane stress model with 185 ± 60 kPa, which
is ∼3.5 ⋅ 𝜇13, lower than the ratio E3∕𝜇13 of five as measured in the soleus based on
three-parameter inversion [47]. Group velocity inversion of biceps MRE data acquired
at approximately 100 Hz yielded a shear modulus ratio of 5.7 with 𝜇13 = 29.3 ± 6.3 kPa
and 𝜇12 = 5.5 ± 0.29 kPa [48]. It has to be noted that 𝜇12 values of the biceps vary to a
large extent throughout the literature. Gennisson et al. [512] measured very low values
of 0.927 ± 0.55 kPa by transient elastography at 150 Hz, indicating the influence of
prestretching and positioning on the elasticity of relaxed muscle.
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Table 16.1 In vivo MRE of skeletal muscle of healthy volunteers in the literature.
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Upper
extremities
[181]

Biceps 150 Load range
0–10 kPa

𝜆 14.5 ± 1.8
per kg load

Thigh [508] Vastus 90 120 Resting 𝜆 3.73
medialis 10% MVC 6.11

20% MVC 8.49
Vastus Resting 3.91
lateralis 10% MVC 4.83

20% MVC 6.40
Sartorius Resting 7.53

Thigh [509] Rectus 90 Resting 𝜆 3.9 ± 10.16
femoris
Vastus 3.95 ± 0.32
medialis
Vastus 4.23 ± 0.25
intermedius
Vastus 3.74 ± 0.23
lateralis
Sartorius 5.15 ± 0.18
Gracilis 6.15 ± 0.45
Semimem- 4.22 ± 0.14
branosus
Semiten- 5.32 ± 0.10
dinosus
Biceps 4.07 ± 0.19

Thigh iso-DI
[507] Quadriceps 25 Resting 𝜇13 0.77 ± 0.14

femoris 37.5 Resting 1.18 ± 0.15
50 Resting 1.52 ± 0.10
62.7 Resting 2.02 ± 0.14
25 Contracted 0.67 ± 0.07
37.5 Contracted 1.41 ± 0.16
50 Contracted 2.05 ± 0.19
62.7 Contracted 2.67 ± 0.27

(continued overleaf )
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Table 16.1 (Continued)
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Thigh [82] 50 iso-DI
Rectus Resting 𝜇13 0.98 ± 0.23
femoris lift 1.46 ± 0.98
Vastus Resting 1.93 ± 0.38
medialis lift 2.44 ± 0.76
Vastus Resting 1.47 ± 0.23
intermedius lift 1.59 ± 0.53
Vastus Resting 1.73 ± 0.54
lateralis lift 2.10 ± .57

Extremities Biceps 142 Resting n.a. 17.9 ± 5.5
brachii

[170] Flexor 142 8.7 ± 2.8
digitorum
profundus
Soleus 100 12.5 ± 7.3
Gastrocnemius 100 9.9 ± 6.8

Shoulder
[518]

Trapezius 90 Resting n.a. 2.72 ± 0.60

120 4.66 ± 1.20
Infra- 90 3.20 ± 0.52
spinatus 120 4.38 ± 0.92

Upper 99 Resting GVI
extremities Biceps 𝜇12 5.5 ± 0.9
[48] brachii 𝜇13 29.3 ± 6.2

Lower 60 Resting 2para-DI
extremities Soleus 𝜇12 0.65 ± 0.13
[81] 𝜇13 0.83 ± 0.22

Gastrocnemius 𝜇12 0.66 ± 0.19
𝜇13 0.86 ± 0.15

Tibialis 𝜇12 0.66 ± 0.16
𝜇13 0.78 ± 0.24

Lower 30–60 Resting 3para-MDEV

extremities Soleus 𝜇12 1.06 ± 0.12
[47] 𝜇13 1.33 ± 0.10

E3 6.92 ± 0.95

(continued overleaf )
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Table 16.1 (Continued)

M
us

cl
e

g
ro

up
[r

ef
er

en
ce

]

Su
b

g
ro

up

V
ib

ra
ti

on
fr

eq
.(

H
z)

M
us

cl
e

st
at

e

In
ve

rs
io

n

St
iff

n
es

s
in

(k
Pa

)

Gastrocnemius 𝜇12 0.90 ± 0.11
𝜇13 1.30 ± 0.15
E3 8.22 ± 1.37

Tibialis 𝜇12 1.26 ± 0.15
𝜇13 1.27 ± 0.10
E3 9.26 ± 1.65

Abbreviations: 𝜆: wavelength estimation by profiles (in most cases, profiles were placed along the
principal fiber direction, thus reported values reflect 𝜇13 rather than 𝜇12, but deviations are likely).
iso-DI: isotropic direct inversion applied within the plane of isotropy to waves polarized along the
fiber direction, thus analyzing the FT-wave mode, which yields 𝜇13. GVI: group velocity inversion
yielding 𝜇13 and 𝜇12. 2para-DI: two-parameter anisotropic direct inversion yielding 𝜇13 and 𝜇12.
3para-MDEV: three-parameter anisotropic MDEV inversion yielding 𝜇12, 𝜇13, and E3 (Young’s modulus
along the muscle fibers). MVC: maximum voluntary contraction.

Not only elasticity, but also viscosity of skeletal muscle is anisotropic [510]. Only a few
studies have investigated the in vivo viscous properties of skeletal muscle so far. In the
gastrocnemius, Hoyt et al. [513] measured a shear modulus of approximately 5 kPa and
shear viscosity of 9.3 Pa s using sonoelastography and Voigt model fitting in a frequency
range between 80 and 200 Hz. Klatt et al. used a specialized MRE setup to quantify the
springpot-model based parameter 𝜇13 in the femoral muscle between 25 and 62.5 Hz
[507].

So far, we have not considered muscle contraction. Since muscle function is based
on contraction and relaxation, MRE-measured parameters in different states of con-
traction are intrinsically sensitive to muscle function. One of the first in vivo studies of
MRE addressed the relationship between muscle stiffness and load [181]. In this study,
the authors demonstrated that MRE is capable of assessing muscle function in vivo and
reported a positive linear relationship between shear stiffness and muscle load. Many
other studies in the field used different loading paradigms and proposed nonmagnetic
load apparatuses for applying muscle load in different regions in a reproducible manner.
Table 16.1 provides a summary of major studies in the field including the used definition
of muscle activity.

16.2 MRE in Muscle Diseases

Table 16.2 summarizes clinical MRE studies of skeletal muscle. Since muscular dys-
function is the impairment of the muscle’s capability to perform mechanical work, the
MRE-measured shear modulus is a direct image-based biomarker for muscle disease.

The first in vivo application of MRE to diseased muscles was reported in [155], where
lower extremity muscle stiffness was significantly higher in patients with neurologic
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Table 16.2 In vivo MRE of skeletal muscle in patients.
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Patients with lower extremity neuromuscular dysfunction

Lower extremity Tibialis anterior 150 Resting 𝜆 Pat: 38.2 ± 81.89
Con: 12.03 ± 0.39

Muscles [155] Medial
gastrocnemius

Pat: 47.48 ± 1.23
Con: 24.86 ± 0.71

Lateral
gastrocnemius

Pat: 38.40 ± 0.77
Con: 16.16 ± 0.19

Soleus Pat: 51.79 ± 1.82
Con: 16.77 ± 0.24

Patients with Duchenne muscular dystrophy

Thigh muscle
[514]

Vastus medialis 90 Resting 𝜆 Pat: 4.75 ± 0.50
90 Con: 3.06 ± 0.21

10% MVC Pat: 7.50 ± 0.62
Con: 15.89 ± 2.38

20% MVC Pat: 10.96 ± 0.60
Con: 15.13 ± 2.96

Hypogonadal patients before and after testosterone substitution therapy

Lower extremity
muscles [515]

Soleus 100 Resting with
ankle ∼90∘

LFE Pat(pre): 13.42 ± 0.92
Pat(post): 19.54 ± 2.19
Con: 15.96 ± 1.00

5% MVC Pat(pre): 14.02 ± 1.05
Pat(post): 18.93 ± 1.85
Con: 18.52 ± 1.26

10% MVC Pat(pre): 15.96 ± 1.03
Pat(post): 20.49 ± 2.09
Con: 19.18 ± 1.21

15% MVC Pat(pre): 17.11 ± 1.13
Pat(post): 21.00 ± 2.28
Con: 19.13 ± 1.11

20% MVC Pat(pre): 16.44 ± 0.99
Pat(post): 22.63 ± 3.01
Con: 19.75 ± 0.99

(continued overleaf )
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Table 16.2 (Continued)
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Hyperthyroid patients before and after medical treatment

Thigh muscle
[84]

Vastus medialis 90 Resting 𝜆 Pat(pre): 2.11 ± 0.61
Pat(post): 4.56 ± 0.40
Con: 5.52 ± 1.52

Abbreviations: 𝜆: wavelength estimation by profiles (in most cases profiles were placed along the
principal fiber direction, thus reported values reflect 𝜇13 rather than 𝜇12, but deviations are likely).
LFE: isotropic inversion based on local frequency estimation, Pat: patients, Con: controls, pre: MRE
prior to therapy, post: MRE after therapy, MVC: maximum voluntary contraction.

disease than that in the control subjects under resting state. In addition, the muscles
stiffened with increased load in both controls and patients. Quite recently, MRE was
employed to investigate elastic properties of the vastus medialis (VM) in children with
Duchenne muscular dystrophy (DMD) in both relaxed and contracted states [514]. It
was observed that due to muscle fibrosis and lack of muscle contractile properties, VM
stiffness in DMD was higher in the resting state and lower in the contracted state than
the healthy control muscle. MRE was also used to evaluate therapeutic effects in patients
with hypogonadism [515] and hyperthyroidism [84] with muscular effects. In hypogo-
nadal patients, a significant increase of the VM shear modulus of was observed after
6 months of testosterone therapy, which was comparable to the healthy age-related
control group. In patients with hypogonadism, VM stiffness was lower than in healthy
controls. An increase in stiffness after treatment was observed in hyperthyroid patients
in the resting state. The only in vivo MRE study on animal skeletal muscles was per-
formed on mdx mice, a model of muscular dystrophy [127]. In this study, the mechanical
anisotropic ratio (𝜇13∕𝜇12) was calculated for the lateral gastrocnemius and plantaris
muscles. This mechanical anisotropic ratio was found to be sensitive for distinguishing
the muscles of mdx and wild-type mice and correlate with the percentage of necrotic
muscle area.

In essence, MRE of skeletal muscle is an active area of research including both prin-
cipal studies on anisotropic elastic constants of soft tissues and clinical applications
toward better characterization of muscular dysfunction. Using advanced driver tech-
nologies, 3D wave field acquisition, and sophisticated anisotropic inversion strategies,
MRE is capable of recovering all elements of the unknown TI elasticity tensor. These
experiments have been complimented by numerical simulations [516] and studies using
anisotropic phantom materials [517]. However, these methods still need validation in
clinical applications by accounting for complex muscle geometries, locally changing
fiber directions and different loading states of the muscle.
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17

Elastography of Tumors

Tumor growth is associated with extensive alterations of tissue structures resulting
from a number of processes such as neovascularization, accumulation of cells, and
remodeling of the extracellular matrix (ECM). Furthermore, leaky tumor blood
vessels and impaired lymphatic drainage lead to interstitial fluid accumulation and
elevated hydrostatic pressure. The altered structure and fluid turnover are mirrored
by significant changes in the effective shear modulus of the tumor. Therefore, tumors
frequently present as rigid masses, which are well detectable by manual palpation.
In fact, the high sensitivity of palpation for the detection of stiff tumors was one
of the initial motivations for the development of elastography. Today, ultrasound
elastography is a routine clinical method for tumor diagnosis and treatment moni-
toring. Clinical trials have demonstrated that the macroscopic mechanical properties
of tumors provide a rich source of diagnostic information. The success of in vivo
tumor elastography has been paralleled by intriguing discoveries of mechanosen-
sitivity, mechanosignaling, and mechanical interactions in cancer cells and their
ECM. Over the last decade, biophysical methods have uncovered the significance of
mechanical tissue properties for the progression and malignant transformation of
tumors.

17.1 Micromechanical Properties of Tumors

From a clinical perspective, malignant transformation is the most dramatic process in
tumorigenesis. Malignant tumors can invade other organs, spread to distant locations
by metastases, and become life-threatening. Cancer metastases are still largely incur-
able and are closely related to patient death [519]. Formation of metastases involves
escape of cancerous cells from the primary tumor, migration through ECM, and spread
to distant organs. Thus, the metastatic potential of a tumor increases with the number
of cells that are able to leave the solid tumor [520]. Invasive cells have often under-
gone significant changes in cell–cell adhesion and cytoskeletal composition, suggesting
that escape from the tumor mass is also controlled by specific changes in mechanical
properties of both individual cells and the surrounding tissue [521]. From a physics per-
spective, cells must overcome energy barriers [522] caused by various biological, chem-
ical, and physical mechanisms, such as adhesion-induced tissue cohesion or jamming
effects [523], to escape from the primary tumor and to migrate through the surround-
ing ECM.

Magnetic Resonance Elastography: Physical Background and Medical Applications, First Edition.
Sebastian Hirsch, Jürgen Braun, and Ingolf Sack.
© 2017 Wiley-VCH Verlag GmbH & Co. KGaA. Published 2017 by Wiley-VCH Verlag GmbH & Co. KGaA.
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Cancer cell invasion falls predominantly into two categories: mesenchymal invasion
(“path generating”) and amoeboid invasion (“path finding”) [524]. Mesenchymal inva-
sion requires proteolytic activity to digest the surrounding ECM and to open a path for
invading cancer cells. Amoeboid invasion involves dynamic cell shape changes, allowing
cells to squeeze into small gaps when finding their way through ECM pores. Amoe-
boid motility is improved by soft and contractile cell properties, making it easier for
cells to migrate through the ECM. Cellular stiffness and contractility is regulated by
the cytoskeleton, which consists of intermediate filament bundles. During mitosis, thick
filament fibers are degraded and replaced by diffusely distributed smaller elements, giv-
ing rise to greater mechanical compliance of dividing cells [525]. It is therefore not
surprising that the high proliferation rate of tumor cells is often associated with cell soft-
ening. In fact, results obtained by micromechanical test methods such as the optical cell
stretcher1 suggest that, with tumor progression, cancer cells become softer against small
deformations [527]. Moreover, high-grade cancer cells show faster relaxation, which is
related to reduced viscosity and increased contractility (see Figure 17.1). Fast mechan-
ical relaxation after mechanical stimulation of the cells correlates, to some extent, with
the invasiveness of cancer cells [528]. In general, the biophysical signature of softening
combined with reduced viscosity (increased contractility) seems to endow cancer cells
with the flexibility required for their migration through ECM and tissue boundaries.
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Figure 17.1 Creep experiments with
the optical cell stretcher (each curve
is the average of more than 500 cells,
G3− and G3+ denote stage 3 cancer
without and with nodal metastasis,
respectively). Cancer cell compliance
increases with the tumor stage.
Cancer cells become softer, but show
faster relaxation due to increased
contractility. This tendency is more
pronounced for breast cancer and is
in agreement with observations that
breast cancer is more invasive than
cervical cancer. (Jonietz 2012 [527].
Reproduced with permission of
Nature publishing group.)

1 The optical stretcher is a device that measures elasticity of single cells by deforming them with focused
laser beams [526].



17.1 Micromechanical Properties of Tumors 335

Cell proliferation is always associated with displacement of masses. Therefore, a
growing tumor expanding against surrounding tissue produces mechanical pressure
acting on the tumor boundaries. Beyond a threshold, this “homeostatic pressure”
impedes further tumor progression and invasiveness [529, 530]. Plants prevent cancer
cell migration by rigid cell membranes and stiff ECM structures [531]. In animal and
human tissue, tumors favorably grow at membranes, folds, or boundaries between
tissues, where solid stress is lower than that in regions with homogeneous dense tissue
[529]. The mechanical environment influences tumor growth and metastatic dissem-
ination and – vice versa – tumor cells can gain control of their microenvironment by
ECM degradation and remodeling to make it permissive for invasion [532, 533]. For
example, malignancies frequently deposit collagen in their ECM to prepare “invasion
highways” for accelerated migration of metastatic cells [534]. Pathologists use excessive
ECM deposition as a marker of poor prognosis [535]. However, in areas where fibrillary
proteins are absent, such as the brain, the tumor’s ability to produce its own stiff ECM is
limited and alternative ways of invasion are exploited.2 This may explain why high-grade
neuronal tumors, unlike malignant breast tumors, are softer than the surrounding
parenchyma [108, 126, 322]. Breast tumors – similar to other malignancies which have
access to connective tissues – appear stiffer due to abundant cross-linked collagen
fibers in their ECM [537]. The fibrillar proteins expressed in the ECM of such tumors
may conceal to large-scale test methods that embedded tumor cells have undergone
malignant transition. Conversely, micromechanical methods such as atomic force
microscopy (AFM) can elicit this clinically important mechanical footprint. Using AFM
of breast tumor samples, Plodinec et al. demonstrated stiffness to be heterogeneous in
cancerous lesions, whereas premalignant lesions displayed more homogeneous stiffness
patterns [538]. Results of this study are presented in Figure 17.2 and show that – in
agreement with palpation – healthy glandular tissue is softer than tissue from a benign
breast lesion. However, a prominent peak arises in the histogram at low elasticity
values, which indicate patches of infiltrating and aggressive cells. This “soft cancer”
peak is contrasted by a distinct portion of stiff tissue consistent with the overall fibrotic
structure of the tumor. The integrated stiffness response of the tumor as it presents to
the fingers would be that of a solid mass. In vivo MRE might be sensitive to the presence
of soft spots in solid tumor tissue and identify malignant cancer cells provided that
sufficient detail resolution and precise measurement of elasticity and viscosity can be
achieved.

In essence, mechanical forces acting on cancer cells determine growth, malignant
state, and aggressiveness of tumors, and should therefore be measured by in vivo
elastography to aid cancer diagnosis. Given the unique scaling properties of the
shear modulus, ultrasound elastography and MRE are potentially sensitive to the
highly specific micromechanical properties of tumors. It remains an eminent goal of
elastography for the future to translate the mechanical predictions from biophysical
models into predictive diagnostic markers of tumor progression and tumor boundary
identification.

2 For example, it was observed that glioma cells can directly exploit existing stiff myelin sheath bundles as
migration routes [536].
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Figure 17.2 Stiffness response of breast tumor samples to microindentation. Left-hand side:
Biopsy-wide histograms showing stiffness distribution for normal glandular breast tissue, benign
lesion, and invasive cancer. Normal tissue appears to be homogenously soft. The benign lesion
exhibits a similar unimodal stiffness distribution, however, with a higher stiffness than healthy breast
tissue. By contrast, invasive cancer is identified by heterogeneous stiffness distribution with a
characteristic soft peak for malignant tumor tissue. Corresponding micrographs of H&E-stained
histological sections are shown on the right-hand side (scale bar applies to all images, 50 μm).
(Plodinec 2012 [538]. Reproduced with permission of Nature publishing group.)

17.2 Ultrasound Elastography of Tumors

This chapter was coauthored by Thomas Fischer from the Department of Radiology
and Ultrasound Research Laboratory, and Anke Thomas from the Departments
of Gynecology and Obstetrics, and Ultrasound Research Laboratory, both at
Charité – Universitätsmedizin Berlin, Berlin, Germany.
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Since the early 1990s, the term sonoelastography has been used as a cover term for
a variety of ultrasound (US) techniques that were developed to assess the elasticity of
biological tissues [244, 258, 539]. Some of these techniques are discussed in Chapter 12.
An important clinical advantage of sonoelastography is that it is generally available and
quick to perform at little extra cost. The high spatial resolution of US allows determi-
nation of the elastic properties of small structures (less than 5 mm). Real-time strain
imaging is widely used in clinical examinations today, but becomes increasingly substi-
tuted by quantitative methods based on shear wave speed measurements. As compared
to MRE, sonoelastography has some technical disadvantages including the limited pen-
etration depth of only 5–6 cm, the susceptibility to artifacts related to acoustic shading,
and examiner dependence. Examples of the diagnostic value of sonoelastography are
applications to tumorous lesions in the breast and prostate.

17.2.1 Ultrasound Elastography in Breast Tumors

Inclusion of tissue elasticity as an additional diagnostic parameter for breast lesions
has been shown to increase specificity and to improve the separation of benign and
malignant tumors classified as BIRADS (Breast Imaging Reporting and Data System
[540]) category 3 or 4. This improvement reduces the number of false-positive find-
ings and could thus spare many women unnecessary breast biopsies in the future. In
women with involuted glandular tissue, qualitative strain-based real-time elastography
has been shown to increase specificity from 69% to 80% [541]. By contrast, the diagnostic
accuracy of B-mode US decreases with involution of breast parenchyma. A multicenter
study of 779 women has confirmed these results [542]. For further standardization of
strain-based elastography, the fat-to-lesion strain ratio (FLR) has been developed [543].
FLR estimates the degree of strain in a lesion in relation to that in fat [544, 545] by assum-
ing individual differences being less pronounced in fat than normal mammary gland. In
a European patient population, an FLR cutoff value for discrimination of benign and
malignant lesions ranging between 2.3 and 2.5 has been identified using different US
systems [544, 546]. This range of values was lower than that reported for a Chinese pop-
ulation [547], possibly due to ethnic variations in normal glandular breast density [546],
precluding the definition of a single standardized FLR. Nevertheless, FLR is a simple
accessible and reproducible parameter for the characterization of known breast lesions
and a first large meta-analysis of RTE was conducted in 2012, including 5511 breast
lesions [548]. This study reported some interesting results: (i) in agreement with previ-
ous studies [541, 542], inclusion of mechanical strain as a diagnostic parameter increases
the specificity of US imaging in breast tumors from 70% to 88% and thus reduces the
need for breast biopsy in screening populations with low risk of breast cancer; (ii) in
low-risk populations, strain measurements should be applied after B-mode US indi-
cated breast lesions; (iii) in high-risk populations, strain measurements should be used
in combination with FLR to ensure the highest possible correct classification rate. Lim-
itations of FLR exist for the differentiation of recurrent breast cancer from scar tissue,
the latter developing after surgery and radiotherapy. Both tissue types exhibit compa-
rable stiffness and can thus not be distinguished with FLR alone. Therefore, MRI or
biopsy with US guidance [544] are still indispensable for ruling out cancer recurrence.
Because of general limitations of strain measurements, such as interexaminer variabil-
ity, limited reproducibility, and qualitative values [549, 550], quantitative US shear wave
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Figure 17.3 Strain-based elastography and quantitative shear wave elastography for characterization
of invasive ductal mammary carcinoma. The tumor presents with irregularly shaped boundaries and
perifocal edema in B-mode US. Both strain and shear wave speed maps indicate high tumor stiffness
(corresponding to low strain amplitudes), which is typical for invasive ductal carcinoma. The shear
wave speed map is confused by artifacts related to the near field of the US probe.

imaging methods promise further improvements in the specificity of breast US imaging
(Figure 17.3). Supersonic shear wave imaging (SSI, see Section 12.16) was applied in a
multinational study to 939 BIRADS-classified breast masses [551]. It was shown that
inclusion of quantitative stiffness information to BIRADS-feature analysis improved
specificity of breast US mass assessment without loss of sensitivity (AUROC= 0.96).

An almost identical AUROC value was found for the differentiation of malignant and
benign breast lesions in a meta-analysis [552], which aimed to assess the diagnostic per-
formance of quantitative ARFI elastography (see Section 12.3) based on 1408 breast
lesions from 1245 women. It was also observed that the identification of breast muci-
nous carcinoma and breast carcinoma in situ was limited. A recent comprehensive meta
study on 5838 lesions from 5397 patients analyzed the pooled diagnostic performance
of SSI and ARFI [456]. AUROC values of 0.94, 0.92, and 0.94 were found by pooling data
of both methods, and for the ARFI and SSI subgroups, respectively.

In practice, ultrasound elastography of the breast fits seamlessly to standard examina-
tion protocols. Today, ultrasound elastography is an adjunct to conventional sonography
to (i) improve the differentiation between benign and malignant lesions and (ii) refine
the BIRADS score. With the increasing standardization of quantitative methods such as
ARFI or SSI, objective measures for differentiating malignant from benign breast lesions
might find a broad application in the diagnosis of breast masses.

17.2.2 Ultrasound Elastography in Prostate Cancer

Men with an elevated prostate-specific antigen (PSA) level or abnormal prostate find-
ings in digital rectal examination undergo workup by transrectal ultrasound (TRUS) in
combination with systematic biopsy for histologic confirmation [553]. In a subgroup of
these patients, TRUS-guided biopsy fails to detect cancer despite increasing PSA lev-
els, and multiple biopsies may be necessary before a diagnosis can be made [554–557].
Many suggestions have been made to improve the cancer detection rate of TRUS. Since
it is known that prostate cancer is associated with changes in metabolism, perfusion,
and stiffness [558], techniques such as color Doppler US and contrast-enhanced ultra-
sound (CEUS) as well as elastography have been proposed for prostate cancer detection,
however, without achieving decisive progress [559–563]. Data on TRUS elastography,



17.3 MRE of Tumors 339

for example, are highly variable with reported sensitivities for prostate cancer detection
ranging from 25% to 92% [564, 565].

A breakthrough was finally achieved by combining multiparametric 3T-MRI for
localizing suspicious lesions with subsequent use of these data for real-time MRI/US
fusion biopsy [566]. Initial results with MRI/US fusion biopsy in subgroups of patients
showed detection rates that were comparable to those of the more time-consuming and
expensive method of MRI-guided biopsy [567]. Fusion biopsy can also be performed
using a multiparametric approach combining color Doppler, CEUS and elastography
(see Figure 17.4). The advantage of this technique is in the assessment of focal lesions
in a given plane, which takes the high detection rate of prostate cancer by MRI
into account. Both CEUS and strain elastography have shown high specificity in
multiparametric US imaging [568].

Quantitative ultrasound elastography methods yielding absolute values for focal
lesions are of particular interest for the identification of suspicious lesions and subse-
quent targeted biopsy with routine TRUS-based techniques. Recently, the combination
of B-mode and acoustic radiation force impulse (ARFI, see Section 12.3) imaging has
been proposed to complement multiparametric MRI for diagnosis and treatment plan-
ning of prostate cancer [569]. This feasibility study showed the possible demarcation
of different prostatic zones on ARFI images as well as good geometrical agreement of
B-mode and T2-weighted MRI. Initial publications based on shear wave elastography
(SWEI, see Section 12.14) have proposed cutoff values on the order of 35 kPa for
discriminating benign from malignant lesions [570].

It remains to be determined whether the limited penetration depth of ARFI and SWEI
can be improved further and whether these initial results can be confirmed by multi-
center trials. US elastography has the potential to provide supplementary information
that could be used for routine TRUS-guided biopsy in patients with abnormal B-mode
findings [570].

17.3 MRE of Tumors

Notwithstanding the initial motivation for exploring the potential of MRE in the detec-
tion and characterization of neoplasms, a relatively low number of studies investigating
tumor diagnosis by MRE have been published. A major limitation of tumor MRE in
the past was its low detail resolution and, as a result, low consistency. More studies
are being published now as MRE methods have improved, making it easier to generate
elastograms with higher resolution. This development contributes to a growing overall
awareness of the relevance of biophysical properties of cancer and in vivo mechanical
imaging markers. Many cancer research groups have started to show an interest in bridg-
ing micromechanical test methods with in vivo MRE. Mouse tumor models represent a
viable way of testing the viscoelastic parameters of tumors under in vivo conditions and
investigate the changes in tissue structures by histology. This effort is paralleled by clini-
cal MRE studies addressing the diagnostic potential of mechanical parameters for tumor
detection and differentiation of benign and malignant tumors. Until now, MRE has been
investigated for tumor imaging in the breast, liver, prostate, and brain. Mouse tumor
models of lymphoma, colon cancer, and intracranial tumors were studied by MRE. A
brief overview of these studies is given in the following sections.
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Figure 17.4 Multiparametric image fusion in prostate cancer. (a) hypointense tumor in T2-weighted
MRI (left) and contrast-enhanced ultrasound (CEUS) showing increased perfusion related to high
aggressiveness of the tumor (Gleason-socre 4+4, right). (b) T2-weighted MRI (left) with strain image
showing the tumor as a solid-encapsulated mass. (c) Shear wave elastography revealing high stiffness
within the tumor boundaries. This elasticity-based contrast could be used for guidance of the biopsy.
Notably, this patient received previously two biopsies without result. SWE could increase the detection
rate of prostate tumors.

17.3.1 MRE of Tumors in the Mouse

Intracranial tumors implanted in the mouse were investigated by MRE in [126] and
[571]. Specifically, Jamin et al. used human glioblastoma cells, rat glioma cells, and
human breast carcinoma cells to induce tumors in the mouse brain for studying the
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viscoelastic properties of intracranial tumors in relation to their invasiveness [126].
Guo et al. studied tumor properties relative to surrounding brain tissue in a mouse
glioblastoma model [571]. Consistent with cues from biophysics, all studied tumors
were softer than surrounding brain parenchyma. Furthermore, Jamin et al. [126]
observed reduced tumor viscosity, corroborating the predicted correlation between
contractility and invasiveness of cancer cells (cf. Figure 17.1). Beyond this “reductionist
view” on single cells [527], larger-scale structures such as vessels, ECM, or cell clotting
need to be accounted for the interpretation of global values. Figure 17.5 presents results
from [126], which correlated MRE-derived storage modulus and loss modulus with the
tumor’s cell density and microvessel density. Good correlation was observed between
MRE and cell density, while correlation with microvessel density was only moderate.
The correlation between MRE and cell density suggests that either the cohesiveness
of intracranial tumors increases with increasing cell adhesion at higher cell numbers
or that cellular viscoelasticity is higher than that of the ECM, resulting in an overall
increase in MRE parameters with an increasing number of cells. In the latter case,
cellular properties would dominate the gross mechanical response of neuronal tumors
and allow MRE to be directly correlated with mechanical cell tests such as the optical
stretcher. A preliminary study of human neuronal tumors, reviewed below, reported
exactly this correlation [572] (see Figure 17.6).

However, as indicated by Figure 17.5, other structure elements such as microvessels
significantly contribute to an overall increase in MRE parameters. MRE in colon tumors
implanted in mice reproduced this principal finding [141]. Furthermore, the effect of
antivascular treatment was demonstrated by showing a significant decrease in complex
shear modulus |G∗| with reduction of vascularity after treatment. The observed effect
on |G∗| was even higher than that of water diffusion measured by the apparent diffu-
sion coefficient (ADC), which also increased after treatment [141]. In general, tumor
treatment by cytotoxic and antivascular agents reduces tissue integrity, degrades mem-
branes and vascular architecture, and decreases cell–cell contact. The induced necrosis
ultimately leads to tissue liquefaction. Intuitively, these processes are associated with a
reduction in MRE-derived stiffness parameters and an increase in free water diffusion.
Comparing the sensitivity of MRE and ADC in monitoring tumor response to treatment
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Figure 17.5 MRE-derived viscoelasticity (storage modulus G′, loss modulus G′′) versus cell density and
microvessel density obtained in mouse models of intracranial tumors. (Data courtesy of Yann Jamin
and Simon Robinson (The Institute of Cancer Research, London) [126].)
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reveals that MRE detects vascular disruption earlier than water diffusion [573]. A pos-
sible explanation is the scaling property of the shear modulus, as outlined on page 124,
which provides sensitivity across multiple scales of a vascular tree with fractal geometry.
The decrease in tumor stiffness in response to treatment was also detected by MRE in a
lymphoma mouse model [574]. The authors discussed their results in view of microme-
chanical methods, which predict that cells exposed to chemotherapy become stiffer
due to their reduced metastatic potential [575, 576]. However, it should be noted that
chemotherapeutical agents massively affect the integrity of the entire tumor including
ECM and vascular tree, which ultimately causes a reduction of viscoelasticity parame-
ters due to the decomposition of tumorous tissue by treatment.

17.3.2 MRE in Liver Tumors

Higher liver stiffness increases the risk of hepatocellular carcinoma [577]. Thus, the pro-
gression and metastatic potential of liver tumors is intimately linked to the mechanical
properties of the liver [530]. As reviewed in Section 15.1, liver viscoelasticity is altered
by a number of processes, among which fibrosis is one of the most relevant ones. Mea-
suring liver viscoelastic constants by MRE may provide a unique biomarker for assessing
whether or not the mechanical milieu in which a tumor grows is favorable for the tumor’s
further progression and invasiveness. Moreover, the viscoelastic properties of a lesion
itself may contribute to multiparametric MRI, which is superior to radiological reading
based on single-parameter maps alone for characterizing liver tumors [578].

So far, two studies using single-frequency MRE analyzed the averaged viscoelastic
properties of liver tumors [114, 115]. On the basis on the mean shear stiffness of the
entire tumor, Venkatesh et al. concluded that malignant liver tumors are stiffer than
benign tumors [114]. By contrast, Garteiser et al. found a significant increase in malig-
nant versus benign tumors only for their loss properties [115]. Venkatesh et al. [114]
reported that cholangiocarcinoma had the highest stiffness among all tumors, followed
by hepatocellular carcinomas. Similar results were reported based on |G∗| [115] (see
Figure 17.7).

Measurement of intratumor heterogeneity of viscoelastic constants may improve the
sensitivity and specificity of MRE. Multifrequency MRE combined with multifrequency
parameter recovery based on MDEV or k-MDEV inversion (see Sections 10.5 and
10.6, respectively) showed promising preliminary results. Figure 17.8 illustrates a case
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Figure 17.6 Mechanical properties of seven in vivo tumors
(three glioblastoma multiforme (GBM), one metastasis
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(MEN)) measured by multifrequency MRE (MMRE) and the
optical stretcher. (Sack 2015 [572]. Reproduced with
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Figure 17.7 In vivo MRE of liver tumors. (a) A stiffness threshold of 5 kPa separates malignant liver
tumors from benign tumors (Venkatesh 2008 [114]. Reproduced with permission of American Journal
of Roentgenology.) (b) Separation of benign from malignant tumors based on |G∗| was less
pronounced according to Garteiser et al. [115]. This study found a significant separation based on the
loss modulus G′′ of the tumors. (Garteiser 2012 [115]. Reproduced with permission of Springer.)
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Figure 17.8 k-MDEV-based multifrequency MRE in a patient with hepatocellular carcinoma.
(a) Standard proton-density (PD) and T2-weighted (T2w) MRI. (b) Wave speed map. (c) Cross-sectional
view through the excised tumor. (d) Micrographs of histological analysis (H&E stain) corresponding to
regions identified by arrows 1–3 in the c map shown in (b). Specimens were taken from the edges of a
rectangular tissue sample demarcated by the dashed line in (b). (Tzschätzsch 2016 [222]. Reproduced
with permission of Elsevier.)

analyzed by k-MDEV inversion of seven frequencies acquired by full-field, single-shot
spin-echo EPI MRE [222]. The figure shows standard MRI (proton-density and
T2-weighted sequences), a wave speed map, and a cross-sectional view of the excised
tumor, which corresponds to the other images. The blue arrow indicates regions
of excessive cholestasis with obstructed bile flow – often the result of mechanical
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obstruction by a tumor. These regions are characterized by high wave speed values. On
average, the tumor is stiffer than the surrounding, unaffected tissue, which is consistent
with reports of [114, 115] summarized in Figure 17.7. The high detail resolution in the
wave speed map in Figure 17.8 allows pixel-wise correlation of MRE and histopathology.
The micrographs show three tissue portions whose locations have been identified inside
the elastogram. Tissue 1 (red arrow) indicates a region that consists mainly of tumor and
cysts with wave speeds (soft, ≈1.2 m/s). Areas characterized by a mixture of tumorous
and necrotic tissue (yellow arrow) show intermediate wave speed values (≈1.9 m/s),
while c is higher in regions consisting mainly of tumor (black arrow, ≈2.3 m/s).

17.3.3 MRE of Prostate Cancer

Prostate cancer is the most prevalent type of cancer in men. Currently, prostate cancer
is commonly detected by PSA levels, digital rectal examination, US imaging, and MRI.
However, histological confirmation remains indispensable for diagnosis and thera-
peutic decision making despite the limitations of biopsy in screening and follow-up
examinations. Hence, research is being conducted to improve the diagnostic power of
medical imaging in prostate cancer screening. Currently, multiparametric MRI based
on T2-weighted, diffusion-weighted, and dynamic contrast-enhanced imaging provides
the best anatomic and functional imaging of the prostate [579]. MRI-derived parame-
ters are combined in the PI-RADS (Prostate Imaging Reporting and Data System) scale
for assessing the likelihood of prostate malignancy by assigning a score of 1–5 [580].
Reported by trained radiologists, PI-RADS provides an excellent negative predictive
power, whereas the positive predictive value of the method is only moderate [579].
This means that current multiparametric MRI will typically not miss out significant
prostate cancer lesions while resulting in a substantial number of unnecessary biopsies.
Therefore, adding viscoelasticity to multiparametric MRI could help to increase
specificity of imaging-based detection of prostate cancer. This motivation is supported
by current reports on ADC-based diffusion measurement and MRE in prostate cancer,
showing that MRE performs better than ADC in distinguishing normal from cancerous
tissue [140].

17.3.3.1 Ex Vivo Studies
Many studies investigating ex vivo tissue samples suggest that prostate cancer lesions are
stiffer than healthy glandular tissue. Using a mechanical indenter device in 113 speci-
mens, Krouskop et al. reported shear modulus values for 2% precompressed healthy
prostate tissue, benign prostatic hyperplasia (BPH), and cancerous prostate tissue on
the order of 20, 12, and 33 kPa, respectively (calculated from Young’s moduli by assum-
ing incompressibility) [581]. The observation that prostate cancer is stiffer than healthy
glandular tissue was confirmed by Zhang et al. based on stress relaxation tests com-
bined with Kelvin–Voigt fractional derivative model fitting (see Figure 4.7) [582]. Hoyt
et al. investigated prostate samples in the relevant dynamic range of in vivo elastography
(0.1–150 Hz) and measured shear modulus values of 1.3–5.3 kPa for healthy prostate
tissue and of 2.6–13.5 kPa for cancerous tissue [583]. The first prostate specimen MRE
was presented by Dresner et al. [584] in 1999. The so far most comprehensive study of
MRE in human prostate specimens with correlation to histopathology was published
by Sahebjavaher et al. [140]. In this study, 112 tumors were analyzed, revealing storage
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moduli in the peripheral zone of 65 kPa (normal tissue) versus 69 kPa (cancer) and in
the central zone of 55 kPa (normal tissue) versus 63 kPa (cancer). However, effects of fix-
ation of the specimens were observed, which reduced the discriminative power of the
method.

17.3.3.2 In Vivo Studies
First in vivo MRE of the prostate was published by Kemper et al. using an external actu-
ator attached to the pubic bone [493]. The shear modulus measured in healthy prostate
correlated with the zonal anatomy of the gland with values of 2.2 kPa for the central gland
and 3.3 kPa for the peripheral zone. A similar setup was used by Li et al. in a clinical pilot
study of 10 patients with prostatitis and cancer lesions [494]. At 100 Hz vibration fre-
quency, shear stiffness of the healthy peripheral zone was 2.3 kPa, while prostatitis and
cancer were associated with 2.0 and 6.5 kPa, respectively [494]. An alternative strategy
of mechanical excitation was proposed by Sahebjavaher et al., who used a transperineal
driver setup, once based on hydraulic force transmission [585] and, more recently, by
vibrating Lorentz coils [116]. The latter setup was used in a pilot study of 11 patients
with prostate cancer. At 70 Hz single-frequency excitation, elasticity was measured to
be 8.2, 7.5, 9.7, and 9.0 kPa in the prostate capsule, peripheral zone, central gland, and
transition zone, respectively. The authors found cancerous tissue to be not always stiffer
than normal tissue, resulting in only moderate diagnostic performance [116]. Further
studies of in vivo MRE of the prostate used endorectal and transurethral drivers [107,
158, 586], which allowed application of higher vibration frequencies (100–300 Hz) and
enabled higher detail resolution than surface-based prostate MRE. Values obtained by
endorectal MRE in 12 volunteers fall into the range obtained by other methods (2.5–19
kPa for the central gland and 2.7–17 kPa for the peripheral zone) [107]. When using
MRE as a screening method, endorectal actuators appear less suited than surface-based
drivers. In the future, surface-based drivers combined with multifrequency MRE might
add information on microstructural changes to multiparametric MRI of the prostate,
which cannot be measured by other techniques.

17.3.4 MRE of Breast Tumors

Breast cancer is the most common type of cancer in Western women. Most women who
die of breast cancer are not killed by the primary tumor but by its metastases at dis-
tant sites. Current biomarkers only poorly reflect the risk for metastasis in an individual
patient, which leads to many unnecessary treatments by chemotherapy or mastectomy.
MRE may improve the specificity of MRI breast screening, once the biophysical signa-
tures of malignant transformation as shown in Figures 17.1 and 17.2 can be reproduced
in vivo. Furthermore, the mechanical forces measured by MRE acting on tumor bound-
aries or being exerted by the tumor on the surrounding tissue may contribute to the
differential diagnosis and staging of breast tumors.

Early work on the viscoelastic properties of breast tissue was performed using ex vivo
tissue samples. Krouskop et al., using the same indenter-based test method as in prostate
specimens, investigated 142 samples of breast tissue [581]. The shear modulus at 5% pre-
compression and 4 Hz frequency (computed from Young’s modulus via 𝜇 = 1

3
E) was

7.3, 11.7, 38.7, 8.7, and 37.3 kPa for fat, glandular tissue, fibrous tissues, intraductal
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Table 17.1 Young’s modulus values for different breast lesions measured by inversion-based
indentation.

Breast tissue type Number of samples Young’s modulus
(kPa) mean ± std

Normal fat 71 3.25 ± 0.91
Normal fibroglandular tissue 26 3.24 ± 0.61
Fibroadenoma 16 6.41 ± 2.86
Low-grade infiltrating ductal carcinoma (IDC) 12 10.40 ± 2.60
Infiltrating lobular carcinoma (ILC) 4 15.62 ± 2.64
Ductal carcinoma in situ (DCIS) 4 16.38 ± 1.55
Fibrocystic disease 4 17.11 ± 7.35
Intermediate-grade IDC 21 19.99 ± 4.20
High-grade IDC 9 42.52 ± 12.47
Invasive mucinous carcinoma (IMC) 1 20.21
Fat necrosis 1 4.45

Values should be divided by 3 for comparison with MRE shear modulus values.
Source: From [587] with permission.

carcinoma, and infiltrating ductal carcinoma, respectively [581]. Samani and cowork-
ers investigated 169 breast tissue samples by an inversion-based indentation technique
[587]. Results are listed in Table 17.1. The data show that fibroadenomas are softer than
most breast pathologies but stiffer than fat and fibroglandular tissue. This is particularly
relevant for MRE as a means to improve the specificity of dynamic contrast-enhanced
MRI of the breast, in which fibroadenomas can frequently enhance in a manner similar
to many breast cancers, leading to a high number of unnecessary biopsies. By contrast,
differentiation of other tissues such as malignant lesions solely based on their macro-
scopic elastic properties may not be possible.

17.3.4.1 In Vivo MRE of Breast Tumors
The technical feasibility of MRE for the mechanical characterization of breast tumors
was demonstrated by Sinkus et al. [401, 588], Plewes et al. [589], and van Houten et al.
[590]. Although aimed at breast tumors, these studies introduced general approaches
to imaging, mechanical excitation, and postprocessing in MRE, which stimulated fur-
ther developments in the field. A preliminary clinical test in six healthy women and
six patients with known breast cancer was published by McKnight et al. [112]. The
elastograms of patients with breast cancer showed focal areas of high shear stiffness,
corresponding to the sites of known cancer within the breast. A total of 39 malignant
and 29 benign lesions were investigated by in vivo 3D MRE and 3D reconstruction in a
study by Sinkus et al. [156]. Storage and loss modulus as well as the springpot power law
exponent were analyzed for their sensitivities to the degree of malignancy predefined by
the BI-RADS score [156]. The authors observed a significantly increased storage and loss
modulus of the tumors. In addition, the springpot power law exponent was found to be
higher in tumors, which the authors suggested might be related to more liquid-like tissue
properties. Altogether, the specificity of breast cancer diagnosis could be increased by
approximately 20%. A second pilot study from the same group investigated 57 patients
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and reproduced prior findings of increased specificity (from 75% to 90% at 90% sensi-
tivity) by combined analysis of MRE with contrast-enhanced MRI [113]. Again, a higher
discriminative power of benign versus malignant lesions was obtained by accounting
for viscosity rather than elasticity, which explains the high diagnostic value of the power
law exponent. The authors concluded that malignant lesions are significantly more liquid
than benign lesions despite higher elasticity values [113].

17.3.5 MRE of Intracranial Tumors

Neuroradiological assessment of brain tumors and image-based differential diagnosis
of intracranial masses is challenging [591, 592]. As a consequence, diagnostic biopsy
remains inevitable for a definitive diagnosis despite possible complications [593]. MRE
may add important information to established neuroradiological tumor markers and
hence increase the diagnostic precision of imaging of intracranial tumors. Specifically,
quantification of the tumor’s intrinsic cohesiveness, heterogeneity, or infiltration into
surrounding tissue could benefit from MRE. Furthermore, preoperative information on
the mechanical consistency of a tumor as well as adhesion of a tumor to surround-
ing tissue is of high clinical relevance for treatment planning. For example, resection
of harder tumors is often more challenging than treatment of softer tumors. The lat-
ter types of tumors can sometimes be treated by minimally invasive approaches such as
suction, which minimizes the risk of damage to healthy tissue. Meanwhile, both motiva-
tions for MRE assessment of intracranial tumors – tissue mechanical characterization
and treatment planning – have been supported by reports in the literature. The diag-
nostic capability of MRE is highlighted by Figure 17.9, in which three cases are shown:
anaplastic oligoastrocytoma (WHO III), benign meningioma (WHO I), and high-grade
glioblastoma (WHO IV). These cases presented with high similarity on conventional
MRI, whereas the MRE property maps clearly differentiated the tumor entities as already
visible to the naked eye [322]. This preliminary study relied on MRE with mechani-
cal single-frequency vibration of 45 Hz and was thus limited by providing only coarse
detail resolution. Therefore, a revised setup of multifrequency MRE (30–60 Hz) was
used in two subsequent studies addressing the in vivo mechanical characterization of
altogether 49 tumors [108, 109]. Figure 17.10 presents the averaged intratumor MDEV
inversion parameters |G∗| and𝜑 from both studies. Both parameters are plotted as ratios
between tumor tissue and normal-appearing white matter. On average, normalized |G∗|

was lower in high-grade glioblastoma (GB) than in meningioma despite significant over-
lap of values. 𝜑 fully separates both types of tumors, suggesting lower attenuation prop-
erties or more elastic behavior of GB than meningioma. It remains to be determined if
this large difference in 𝜑 is related to the increased contractility (reduced viscosity) of
malignant cells as observed by the optical stretcher (see Figure 17.1). The heterogene-
ity of values as seen on the |G∗| axis did not correlate with tumor size but reflected
minor influences of geometry and tumor morphology [108]. Morphology-based tumor
scores vary largely due to the presence of heterogeneous tissue fractions such as solid,
cystic, and necrotic portions inside a single lesion. This heterogeneity is more markedly
reflected in |G∗| than in 𝜑. 𝜑 represents an attenuation-related measure, which appears
to be more markedly influenced by how efficiently waves are introduced into the tumor,
which in turn reflects the tumor’s invasiveness into surrounding tissue. To account for
the heterogeneity of |G∗| values, Streitberger et al. further assessed GBs by measuring
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Figure 17.9 Anatomical scans and parameter maps of three cases with high similarity on conventional
MRI (FLAIR and T1-weighted MRI). By contrast, the parameter maps derived from |G∗| measured by
MRE clearly differentiate these three tumor entities. (From [322]. Reproduced with permission from
Institute of Physics.)

|G∗| values in three regions: tumor, edema, and intratumor homogeneous-appearing
matter [108]. An outline of these regions is presented in Figure 17.11 for two cases. Inter-
estingly, tissue in homogeneous regions within the tumor displayed higher |G∗| values
than full tumor regions without significant differences to healthy tissue, suggesting that
homogenous tissue in GB is less affected than the remaining tumor. Some of the lesions
investigated in [109] were further studied by the optical stretcher [572]. In this prelimi-
nary study, tissue samples were obtained in seven patients who underwent surgery after
MRE (see Figure 17.6). On the basis of MRI, the surgeon defined the regions in which
the tissue was obtained for cell dissociation and further analysis by the optical stretcher.
Within these regions, MRE-measured |G∗| values were averaged and correlated with the
shear modulus of cells of the same tissue obtained with the optical stretcher. Despite the
preliminary nature of this study, the excellent correlation between in vivo MRE and opti-
cal stretcher shown in Figure 17.6 is encouraging in that it raises the prospect for the
translation of the high sensitivity and specificity obtained by micromechanical methods
into a quantitative imaging marker for staging tumors.

Two studies of brain MRE addressed the preoperative assessment of meningioma stiff-
ness for treatment planning [110, 111]. Both studies showed an excellent agreement
between meningioma stiffness measured in vivo and haptic assessment by the surgeon,
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Figure 17.10 Viscoelastic properties of intracranial tumors based on the parameter ratios of |G∗| and
𝜑 between tumor and healthy reference tissue (normal) as published in [109] and [108].
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Figure 17.11 Anatomical T2-weighted images (T2w), MRE magnitude images, and MDEV
inversion-based parameter maps (|G∗| and 𝜑) of two glioblastoma patients (upper row: 61-year-old
man with a tumor with central necrosis and hemorrhage; bottom row: 72-year-old woman with a
cystic tumor without hemorrhage). The selected regions demarcate the tumor (dotted lines), edema
(solid line), and the region of homogeneous-appearing matter (dashed line). The arrows indicate
compartments of soft tissue properties (low |G∗|) but different dissipative behavior (𝜑) in both tumors.
|G∗| was scaled from 0 to 3 kPa; 𝜑 was scaled from 0 to 2.5 rad. (From [108]. Reproduced with
permission of PLoS.)
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Figure 17.12 Images of a 32-year-old man with a left vestibular schwannoma. (a) T2-weighted fast
spin echo (FSE) and (b) T2-weighted FLAIR images. The CSF cleft is classified as a partial cleft. The slip
interface can be observed as a (c) low-signal shear line with (d) large OSS values around the whole
surface of the tumor, indicating independent motion between the tumor and the adjacent tissues,
classified as a complete slip interface. Surgical findings demonstrated no adhesion between the
tumor–brainstem interfaces, in agreement with the slip interface imaging [595] predictions.
(Reproduced with kind permission of Dr Ziying Yin, Mayo Clinic College of Medicine, USA.)

in particular for lesions smaller than 3.5 cm. However, tumors below this threshold or
vascular tumors were found to be softer than scored by the surgeon. Higher detail reso-
lution achieved by multifrequency acquisition could potentially increase the accuracy of
the method for measuring the consistency of intracranial tumors in the routine clinical
setting.

A further interesting prospect for MRE in brain tumors is the evaluation of shear
forces around lesions for quantification of tumor adhesion to surrounding brain
parenchyma. Well-encapsulated tumors with slip boundaries to surrounding healthy
tissue have a better prognosis and are easier to remove by the surgeon than inva-
sively growing tumors with poorly defined boundaries. Low-frequency shear waves
propagating through the brain become scattered at interfaces between compartments
with relatively large differences in impedance [594]. Scattering also occurs at slip
boundaries, which can be regarded as an intermediate layer of very soft tissue [51].
Scattering changes the amplitudes of shear waves. If this occurs at the edge of a tumor,
the steep change in wave amplitude gives rise to a high shear strain, as demonstrated in
Figure 17.12 in a case of a vestibular schwannoma [595]. Quantification of octahedral
shear strain (see Section 4.3) in nine patients with vestibular schwannomas excellently
matched the intraoperative assessment of tumor adhesion to brain parenchyma [595].
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Part V

Outlook

During the period of slightly more than 20 years between the advent and publication of
this book, magnetic resonance elastography (MRE) has evolved into a mature imaging
technique with applications in clinical routine as well as preclinical and clinical research.
Over the years, MRE has seen many gradual improvements, adaptations, and extensions,
and we have done our best to incorporate most of them into the contents of this book.
However, the development of MRE is still far from being complete, and a number of
challenges remain to be solved in the future to either improve existing techniques or
open up new areas of application for MRE. The authors of this book subjectively iden-
tified four key issues to be addressed in future MRE research, which relate to the high
dimensionality of MRE data, exploitation of sparsity, heterogeneity of mechanical tissue
properties, and comparability and reproducibility of MRE parameters across platforms.
These points will be briefly discussed in the final chapters of this book.

Dimensionality

Material waves are represented by vector fields in 3D space, resulting in
four-dimensional data structures.1 Adding time and vibration frequency readily
extends the dimensionality of MRE data to six. By contrast, most MRE sequences are
still slice-based, that is, a 3D volume is sampled slice by slice. Single-shot sequences,
such as echo-planar imaging (EPI), acquire images of a single slice with just one
radiofrequency (RF) excitation pulse, whereas segmented sequences require several
excitations for the same purpose. In both cases, the acquired data set consists of a
stack of independently scanned slices. For 3D inversion techniques , it is necessary to
calculate derivatives of the displacement field not only within each slice but also across
adjacent slices (“through-slice derivative”). While this is not an issue in theory, some
practical issues remain to be solved. First, in pulsatile organs, such as the heart and
brain, the recorded MR signal represents not only the induced oscillatory tissue motion
but also contributions from pulsation and blood flow that are encoded by the imaging
gradients and the motion-encoding gradients (MEGs). Temporal Fourier transform is
not capable of fully separating these different components, so that a certain amount
of motion will erroneously be classified as oscillation. This can become an issue when
adjacent slices are acquired during different phases of the cardiac cycle. For example, in

1 three spatial coordinates + polarization component.
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the brain, the arrival of the cardiac pulse wave causes a strong expansive motion of the
brain parenchyma [176], along with elevated flow velocities in the cerebral arteries and
arterioles. This phase is shorter than the diastolic phase, during which the brain relaxes
back to its equilibrium state. Images acquired during the two phases will differ signifi-
cantly, even if they represent the same wave information, and calculating through-plane
derivatives will therefore be tainted by these effects. Standard gating strategies such as
retrospective electrocardiogram (ECG) triggering are not viable here, since MRE needs
synchrony between image acquisition and externally induced vibrations. 3D k-space
acquisition as proposed in [22] helps; however, appropriate k-space segmentation and
gating to physiological motion should be maintained. More research in this direction
would be desirable to better understand the effects of physiological processes, such
as pulsation, on different data acquisition strategies, with the ultimate goal of finding
optimal artifact suppression methods.

The high dimensionality of MRE data is associated with some common problems in
postprocessing such as consistent denoising or phase unwrapping. Because of its rele-
vance in numerous fields of signal processing, phase unwrapping is a topic of ongoing
research. However, the majority of available algorithms are limited to 2D or 3D. For
MRE, on the other hand, it would be desirable to have phase unwrapping algorithms that
are not restricted to slices or volumes, but are capable of operating across the spatial,
temporal, and field component dimensions simultaneously to achieve optimal data con-
sistency prior to reconstruction of elastic moduli. Some existing algorithms are inher-
ently limited to a certain dimension and cannot be generalized to a higher-dimensional
space. Others can be formulated for an arbitrary number of dimensions, but compu-
tational complexity increases overwhelmingly with dimensionality, so that application
to more than three dimensions is unfeasible. Ideally, an algorithm tailored for the spe-
cific needs of MRE would also account for the time-harmonic property of the signal
to improve the conditioning of the problem at hand. While some of these aspects have
been considered already, algorithms satisfying all of these requirements simultaneously
are still lacking.

Sparsity

The frequency domain representation of an MRE data set is highly sparse, and the spec-
trum should only contain the drive frequency (or frequencies) as notable peaks, since
all other frequency components are caused by noise. Therefore, in principle, MRE is
an ideal candidate for accelerated acquisition techniques, such as compressed sensing ,
which exploit sparsity to reduce the amount of data – and hence acquisition time – that
is necessary to reconstruct the data set. However, only a few studies have investigated
methods to accelerate MRE acquisition, among them SLIM [228] for the simultane-
ous acquisition of multiple displacement field components. Shorter acquisition would
increase patient comfort or could allow radiologists to perform exams that would be
too long for clinical application when unaccelerated acquisition techniques are used.
As an example, because of the aforementioned pulsation-induced artifacts, it would
be beneficial to perform MRE acquisitions in synchrony with the heart beat by using
cardiac triggering. However, current data acquisition strategies are not fast enough to
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accomplish this goal for 3D volumes within a reasonable time span. Therefore, acquisi-
tion schemes with fewer repetitions could open up new perspectives for more accurate
and reproducible 3D MRE of pulsating organs.

Heterogeneity

Most inversion techniques are implicitly based on the assumption of spatially constant
moduli, and they neglect the spatial derivatives of the viscoelastic moduli to be recon-
structed. Clearly, this assumption is violated in highly inhomogeneous tissues or close
to boundaries, where mechanical properties are discontinuous. Strategies which do not
assume local homogeneity can be found in the literature, mostly based on finite-element
formulations of the inverse problem. Apart from high computational costs, some of
these methods are limited by a high demand on data consistency with respect to field
components, time behavior, and a priori knowledge of boundary conditions. Conse-
quently, more elaborate inversion strategies accounting for heterogeneities often fail
for in vivo MRE data affected by physiological motion, inconsistent boundary condi-
tions or noise, and still need to be proven robust for clinical MRE. New strategies may
include concepts such as super-resolution, which can reconstruct viscoelastic param-
eter maps at higher resolution than the underlying scans, thus reducing artifacts near
boundaries and improving detection of small anatomical structures [596]. Irrespective
of which inversion method is chosen, this rich field of research steadily enhances the
amount of information that can be extracted from mechanical wave fields by MRE.

Reproducibility

Various viscoelastic parameter reconstruction algorithms have been devised by a
number of research groups worldwide, each with its specific strengths and weaknesses.
As with any quantitative method, MRE values should be as close to ground truth
as possible. Material properties are related to neither the imaging system or the
dynamic range of the measurement nor the postprocessing method. In a clinical
context, standardized, platform-independent values would greatly improve diagnosis,
treatment planning, and longitudinal therapy monitoring. Notably, the search for
quantitative, platform-independent imaging markers exceeds the field of MRE, and
has been identified by the broader imaging community as an urgent research goal. On
the one hand, MRE has been demonstrated to be highly reproducible across platforms
[597]. On the other hand, every reconstruction algorithm has its own characteristics in
terms of sensitivity to noise, boundary conditions, and other parameters that cannot
be controlled in a clinical environment. Therefore, a certain degree of standardization
of viscoelastic parameter reconstruction procedures would be desirable. As a first
step in that direction, the International Society for Magnetic Resonance in Medicine
(ISMRM) founded an MRE study group in 2015. The objectives of this group include
manufacturing standardized phantoms and providing sample MRE data sets that can
be used to compare different reconstruction algorithms.

In conclusion, MRE has already evolved into a mature and robust noninvasive imaging
modality with applications in both clinical diagnostics and medical research. The use of
externally stimulated waves as a “physical contrast agent” has the potential to replace
magnetic resonance imaging (MRI) contrast agents and invasive procedures – such as
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biopsies – in a number of diseases. With more ready-to-use MRE hardware and soft-
ware packages becoming available from MRI scanner manufacturers and third-party
vendors, MRE is expected to evolve into an affordable routine tool that improves diag-
nostic accuracy and patient comfort at the same time. Simultaneously, a growing num-
ber of scientific groups committed to research in this field worldwide address open
issues and aim to further refine all aspects of MRE, thus advancing this exciting tech-
nology to its fullest potential.
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A

Simulating the Bloch Equations

In a real MR experiment, there are many sources of magnetic fields in addition to B0. The
chemical shift modulates the effective field strength that a nucleus experiences due to
shielding effects of the electron shell. The strength of the effect depends on the bonding
state of the hydrogen atom, and is therefore different for spins constituting free water
and those that are part of lipids, giving rise to the fat–water shift. In addition to B1-fields
used to flip the magnetization into the transverse plane, position-dependent magnetic
field gradients along the z-axis (see Section 1.6.1) are used to manipulate the magneti-
zation during the experiment. We can therefore express the effective magnetic field in
the rotating frame as

B′ =
⎛
⎜
⎜
⎝

B′
1,x

B′
1,y

B0 + Bchem. shift + Gx + Gy + Gz

⎞
⎟
⎟
⎠

. (A1)

Of all these field components, B0 is the strongest with a typical magnitude of 1.5 or 3 T
on clinical magnetic resonance imaging (MRI) scanners. The gradients typical induce
field variations in the order of a few tens of millitesla. B1 usually has a magnitude in
the range of tens of μT. The chemical shift is very weak, causing a field modulation of
1.3 ppm (parts per million) between water and fat. It is therefore only relevant for B0
and is negligible for all other field components. B1 fields are designed to rotate in the
(x, y)-plane and therefore do not have a z-component. The precession in such a complex
setting can be parameterized by a precession frequency vector

𝝎
′ =

⎛
⎜
⎜
⎝

𝜔
′
1

𝜔
′
2

𝜔
′
3

⎞
⎟
⎟
⎠

= 𝛾B′, (A2)

and the angle between the magnetization and the magnetic field is given by

𝜶
′ = 𝝎

′t (A3)

if M’ was aligned with B at t = 0.
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With this vector notation, we can express the precession in the rotating frame1 as

𝜕M′

𝜕t
= M′ × 𝛾B′ = 𝛾

⎛
⎜
⎜
⎝

M′
2 ⋅ B′

3 − M′
3 ⋅ B′

2
M′

3 ⋅ B′
1 − M′

1 ⋅ B′
3

M′
1 ⋅ B′

2 − M′
2 ⋅ B′

1

⎞
⎟
⎟
⎠

=
⎛
⎜
⎜
⎝

0 𝜔
′
3 −𝜔′

2
−𝜔′

3 0 𝜔
′
1

𝜔
′
2 −𝜔′

1 0

⎞
⎟
⎟
⎠

⋅ M′. (A4)

By adding T1 and T2 relaxation terms, we can express the Bloch equation (1.26) in the
rotating frame as

𝜕M′

𝜕t
= W′ ⋅ M′ + 1

T1
M0 (A5)

with

W′ =
⎛
⎜
⎜
⎜
⎝

− 1
T2

𝜔
′
3 −𝜔′

2

−𝜔′
3 − 1

T2
𝜔

′
1

𝜔
′
2 −𝜔′

1 − 1
T1

⎞
⎟
⎟
⎟
⎠

(A6)

and the longitudinal equilibrium magnetization M0 as defined in Eq. (1.7) (which is inde-
pendent of the coordinate system and therefore not marked with a prime). In order to
solve the differential equation (A5), we introduce the quantity h′:

h′ = M′ + 1
T1

(W′)−1M𝟎. (A7)

By taking the temporal derivative, we see that
𝜕h′

𝜕t
= 𝜕M′

𝜕t
= W′ ⋅ M′ + 1

T1
M0 = W′ ⋅ h′, (A8)

which can be solved by a matrix exponential function:

h′(t) = h0 ⋅ eW′⋅t . (A9)

The initial value h0 = h′(0) translates to

h′
0 = M′(0) + 1

T1
(W′)−1M0, (A10)

and reversing the substitution Eq. (A7) yields

M′(t) = eW′t ⋅ M′(0) + eW′t ⋅
1

T1
(W′)−1 ⋅ M0 −

1
T1

(W′)−1M0. (A11)

In order to simulate the time evolution of the magnetization, Eq. (A11) can be solved
for a number of time steps tk = k ⋅ 𝛿t. It is important to note that Eq. (A11) was derived
under the assumption of a constant matrix W′, implying a constant B′-vector in the
rotating frame. This means that to simulate experiments with time-variable magnetic
fields, Eq. (A11) has to be solved in small time steps, for which all magnetic fields can
be assumed to be constant.

1 For the following discussion, we chose the rotating frame since it will allow for a time-independent matrix
representation of the time evolution operator. In the laboratory frame, the same description would be more
complicated.
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B

Proof that Eq. (3.8) Is Sinusoidal

Section 3.1 uses the fact that

𝜙(𝜑) = 𝛾 u0 • G0 ⋅
∫

T

0
sin(Ωt + 𝜑) ⋅ sin(𝜔Gt)dt

is a sinusoidal function with respect to 𝜑. As a proof, it will be shown that

g(𝜑) =
∫

t1

t0

sin(t + 𝜑) ⋅ f (t)dt

is sinusoidal for any real-valued integrable function f (t) and arbitrary limits t0 ≠ t1.

Proof : Taking the second derivative of g with respect to 𝜑 yields
d2g
d𝜑2 = 𝜕

2

𝜕𝜑2 ∫

t1

t0

sin(t + 𝜑) ⋅ f (t)dt

= −
∫

t1

t0

sin(t + 𝜑) ⋅ f (t)dt

= −g(𝜑), (B1)

which is a second-order differential equation with two linearly independent real-valued
solutions sin(𝜑) and cos(𝜑), both of which are sinusoidal. They constitute a complete
basis of the solution space, such that any solution to Eq. (B1) is a linear combination of
these, and therefore is sinusoidal itself.
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C

Proof for Eq. (4.1)

To be shown:
3∑

j=1

𝜕ui

𝜕rj
𝛿rj =

1
2

3∑

j=1

(
𝜕ui

𝜕rj
+

𝜕uj

𝜕ri

)

𝛿rj +
1
2
((∇ × u) × 𝛿r)i. (C1)

Proof : The cross product can be expressed in index notation as

(a × b)i =
3∑

j,k=1
𝜖ijkajbk (C2)

with the totally antisymmetric Levi–Civita tensor 𝜖ijk . Translating the last term in
Eq. (C1) to this notation yields

1
2
((∇ × u) × 𝛿r)n = 1

2

3∑

i,m=1

3∑

j,k=1
𝜖ijk

𝜕uk

𝜕rj

⏟⏞⏞⏞⏟⏞⏞⏞⏟

(∇×u)i

𝜖nim 𝛿rm

= 1
2

3∑

i,j,k,m=1
𝜖ijk 𝜖imn

𝜕uk

𝜕rj
𝛿rm. (C3)

In the second step, the fact that 𝜖abc is invariant under cyclic permutations of the indices
was used: 𝜖abc = 𝜖bca = 𝜖cab. Equation (C3) can be further simplified by contracting the
two 𝜖 tensors over the common index i:

3∑

i=1
𝜖ijk 𝜖imn = 𝛿jm𝛿kn − 𝛿jn𝛿km. (C4)

Substituting Eq. (C4) into Eq. (C3) yields

1
2
((∇ × u) × 𝛿r)n = 1

2

3∑

j,k,m=1
(𝛿jm𝛿kn − 𝛿jn𝛿km)

𝜕uk

𝜕rj
𝛿rm

= 1
2

3∑

m=1

(
𝜕un

𝜕rm
𝛿rm −

𝜕um

𝜕rn
𝛿rm

)

. (C5)
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After performing the index substitution n → i and m → j, Eq. (C5) can be substituted
into the right-hand side of Eq. (C1):

1
2

3∑

j=1

(
𝜕ui

𝜕rj
+

𝜕uj

𝜕ri

)

𝛿rj +
1
2
((∇ × u) × 𝛿r)i

= 1
2

3∑

j=1

(
𝜕ui

𝜕rj
+

𝜕uj

𝜕ri
+

𝜕ui

𝜕rj
−

𝜕uj

𝜕ri

)

𝛿rj

=
3∑

j=1

𝜕ui

𝜕rj
𝛿rj.
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D

Wave Intensity Distributions

D.1 Calculation of Intensity Probabilities

In this section, we will show how to calculate intensity probabilities for different types
of waves. First, we will derive the general formula for intensity probabilities, and then
apply them to several wave phenomena.

From the conservation of energy, we know that in an unattenuated medium, the
energy that was emitted by an isotropic point source over the time interval t0 ≤ t ≤ t1 is
evenly distributed across a spherical shell with inner radius R = c(t − t1) and thickness
ΔR = c(t1 − t0). The radius is obviously a function of time; hence, as the wave
propagates, the radius of the shell increases. The shell volume can be calculated as

V (t) = 4𝜋 R(t)2 ⋅ ΔR. (D1)

The wave intensities at the inner and outer surfaces of the shell are I(R) and I(R) + ΔI =
I(R − ΔR), respectively. By using a minus sign in front of ΔR, we account for the fact that
the intensity decreases with increasing radius, so this trick allows us to have ΔI and ΔR
both positive. For the following analysis, we need to find a way to convert ΔI to ΔR. We
can achieve this by means of a Taylor expansion:

I(R) + ΔI = I(R − ΔR) = I(R) − d I
d r

(r = R) ⋅ ΔR (D2)

⇒ ΔR = −
(

d I
d r

(r = R)
)−1

ΔI. (D3)

Second, we also need to invert the relation I(r), so that we can calculate the distance
from the source at which we find the intensity I. This step of course depends on the
actual form of I(r), but in any case it will yield a function r(I).

From these steps, we can assemble the sought intensity probability distribution. First,
we calculate the volume V (I,ΔI) of the shell, in which the intensities I0 ≤ I ≤ I0 + ΔI
are located. The probability of finding an intensity in that range is then

P(I) ΔI = V (I,ΔI)
V

, (D4)
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where V is the total volume illuminated by the source. We start by rewriting Eq. (D1) in
terms of I instead of r:

V (I,ΔI) = −4𝜋 r(I)2 ⋅
(

d I
d r

(r = r(I))
)−1

ΔI. (D5)

The total volume V , on the other hand, can be calculated as the volume of a ball with
radius Rmax, where Rmax is the distance of the first emitted wave front from the source.
We thus have

V = 4
3
𝜋 R3

max. (D6)

We can see that this formula is divergent for Rmax → ∞, so that P(I) is not properly
defined in the long-term limit t → ∞. We are now prepared to apply these formulas to
different wave phenomena.

D.2 Point Source in 3D

For a point source in three-dimensional space with an isotropic radiation characteristic
and a nonabsorbing medium, conservation of energy dictates that the intensity behaves
as

I(r) ∝ 1
r2 . (D7)

For the sake of simplicity, we will set all involved proportionality constants to one and
ignore all arising inconsistencies regarding physical units; this allows us to write

I(r) = 1
r2 . (D8)

Hence, we have

r(I) = 1
√

I
(D9)

and d I
d r

= − 2
r3 = −2 I

3
2 . (D10)

Substituting these findings into Eq. (D5) yields

V (I,ΔI) = −4𝜋

(

1
√

I

)2

⋅
(

−2 I
3
2

)−1
ΔI = 2𝜋

I
5
2

ΔI. (D11)

If the source has been turned on for a duration T , the first emitted wave front has prop-
agated a distance Rmax = cT . We can therefore calculate the intensity probability from
Eqs. (D4) and (D6):

P(I)ΔI = 3
2

1
I

5
2 ⋅ c3T3

ΔI. (D12)

Finally, we have to account for the fact that the smallest occurring intensity
Imin = I(Rmax) is found at the first emitted wave front, further away all intensities
are zero everywhere. Thus, we will not be able to find intensities in the interval
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0 < I < Imin. We therefore have to correct Eq. (D12) manually by introducing a case
distinction:

P(I)ΔI =

{
3
2

1
I

5
2 ⋅c3T3

ΔI. if I ≥ I(cT)
0 otherwise.

(D13)

However, we can also incorporate this constraint by using proper integration bound-
aries, such as Rmax = cT instead of ∞.

A plot of that function for a fixed time T is presented in Figure 4.18a. Note that for
T → ∞ the intensity probability tends toward zero everywhere, but more slowly for
small intensities than for larger ones, because large intensities can only be found in a
relatively small region in the vicinity of the source, whereas the major part of the illumi-
nated volume only receives comparatively small intensities.

In order to be consistent with the discussion of diffusive waves in Section 4.12.3, we
would have to normalize the intensity to the average intensity over the entire illuminated
volume. Calculating this spatial average is equivalent to calculating the average intensity
from the probability function:

⟨I⟩ = 3
4𝜋R3

max ∫

Rmax

0
4𝜋r2I(r)d r =

∫

∞

I(Rmax)
I ⋅ P(I)d I = 3

R2
max

. (D14)

Hence, in order to obtain normalized amplitudes, one would have to substitute

I →
R2

max

3
I (D15)

ΔI → 3
R2

max
ΔI (D16)

in Eq. (D12). However, this only rescales the function and does not affect its overall
shape.

D.3 Classical Diffusion

Note that this section treats actual diffusion, as in the case of mass concentrations,
and not the diffusion of wave amplitudes discussed in Section 4.12.3. It serves only as
a comparison to illustrate some fundamental differences between those two diffusive
phenomena.

The solution to the three-dimensional diffusion equation is given by Green’s function

G(r, r′, t) = 1
(4𝜋 Dt)

3
2

⋅ exp
(

− |r − r′|2

4 Dt

)

. (D17)

This means that if we assume an infinitely short excitation at t = 0, r′ = 𝟎, the distribu-
tion of the diffusing quantity will be

A(r, t) = 1
(4𝜋 Dt)

3
2

⋅ exp
(

− |r|2

4 Dt

)

for t ≥ 0. (D18)
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If we associate A with a wave amplitude, the resulting intensity will be given by 1 I = A2:

I(r, t) = 1
(4𝜋 Dt)3 ⋅ exp

(

− |r|2

2Dt

)

for t ≥ 0. (D19)

Inverting this relation to obtain r(I) yields

r(I) =
√
−2 Dt ⋅ ln ((4𝜋Dt)3I) (D20)

and the scaling factor between ΔR and ΔI is

d I
d r

= − r
64𝜋3D4t4 ⋅ exp

(

− r2

2 Dt

)

= −
I ⋅

√
−2 Dt ⋅ ln ((4𝜋 Dt)3 ⋅ I)

Dt
. (D21)

The square root is real-valued for 0 ≤ I ≤ Imax with

Imax =
1

(4𝜋Dt)3 . (D22)

Combining these results according to Eq. (D5) results in

P(I)ΔI =

{
4
√

2𝜋D2t2⋅
√
− ln ((4𝜋 Dt)3I)

√
Dt⋅I

ΔI if 0 ≤ I ≤ Imax

0 otherwise
(D23)

which is shown in Figure D1. We can see that this is clearly different from the e−I law pre-
sented in Section 4.12.3. The reason is that the diffusion model presented in this section
is based on real-valued amplitudes, which were merely squared in order to obtain inten-
sities. In a physically correct treatment, the relative phase between interfering waves at
a given point would have to be considered, and doing so yields fundamentally different
results. The derivation of the e−I law is presented, for example, in [54].

107
P(I)

106

105

104

0 1e−4 2e−4 3e−4 4e−4 5e−4
I

Figure D1 Intensity probability distribution for a hypothetical case of intensity diffusion.

1 Note that this is just a thought experiment and that such a wave would offend conservation of energy.
Also, we are ignoring any proportionality constants between A and I by setting them to unity.
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D.4 Damped Plane Wave

In analogy to the previous section, we will now calculate the intensity distribution
of a damped plane wave. In contrast to the previous examples, a plane wave does
not have spherical symmetry, so that the above formulas have to be adapted for the
one-dimensional case.

The intensity of the wave along the propagation direction is given by

I(x) = I0 ⋅ exp
(

−2 x
L

)

. (D24)

The damping length L is usually defined for the damping of the amplitude A, which
explains the factor 2 in the exponential because of I ∝ A2. Inverting this relation yields

x(I) = −𝜆

2
ln
(

I
I0

)

. (D25)

The intensities between I and I + ΔI are located in a strip between x(I + ΔI) and (I), and
its width Δx(I,ΔI) is equal to the volume V (I,ΔI), which we need to calculate. Thus, we
convert Eq. (D5) from the 3D spherical case to the 1D linear case and obtain

V (I,ΔI) = Δx(I,ΔI) = −
(

d I
d x

)−1

ΔI = L
2I

ΔI. (D26)

Again we assume that the wave source was switched on at t0, so that the first wave
front has traveled a distance Xmax = c(t − t0). This first wave front has experienced the
most damping, and has hence the lowest intensity. The maximum intensity, on the other
hand, can be found directly at the source. All other intensities must therefore lie between
these extreme cases Imin = I(Xmax) = I0 ⋅ exp

(

− 2Xmax

L

)

and Imax = I(0) = I0:

P(I)ΔI =

{ L
2XmaxI

ΔI if Imin ≤ I ≤ Imax

0 otherwise.
(D27)

A plot of this function for a fixed propagation time is shown in Figure 4.18a.
As in the previous section, we will finish the discussion by transcribing the intensity

probability to normalized intensities, as introduced in Section 4.12.3. First, we calculate
the average intensity over the entire illuminated region:

⟨I⟩ = 1
X ∫

X

0
I(x) d x =

∫

Imax

Imin

I ⋅ P(I) d I =
I0L
2X

(

1 − e−2 X
L

)

. (D28)

We can therefore translate Eq. (D27) to normalized intensities by substituting

I →
( I0L

2X

(

1 − e−2 X
L

))−1

I (D29)

ΔI →
I0L
2X

(

1 − e−2 X
L

)

ΔI. (D30)
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Index

a
Abbe limit 4
abdominal cavity 283
abdominal organs 284
acoustic radiation force impulse (ARFI)

imaging 214, 234–235, 237, 245
alcohol-related liver disease (AL) 286
algebraic Helmholtz inversion (AHI)

Helmholtz decomposition 207–208
isotropy 205
multifrequency MRE 206
multiparameter inversion 207

Algebraic inversion of the differential
equation (AIDE) 207

Alzheimer’s disease (AD) 279
amoeboid invasion 334
aminotransferase-to-platelets ratio index

297, 306
amplitude mode 233
amyotrophic lateral sclerosis (ALS) 276
Anderssen gradients

discretization effects 186
frequency response plots 186–187
low noise levels 186
symmetric difference kernel 184

anti-symmetric gradients 46
anulus fibrosus (AF) 321
aorta, MRE of 260–261
apparent diffusion coefficient (ADC) 341
areas under receiver operator

characteristics (AUROC) 297
ARFI elastography 338
atrioventricular (AV) node 246
autocalibration scans (ACS) 36
auxetic materials 76

b
balanced steady-state free precession

(bSSFP) 28–30, 55, 256
nonlinear phase response 56

balanced waveform 49
balance of momentum 92–95
band-pass filtering 172
bandwidth 27
benign prostatic hyperplasia (BPH) 344
biphasic material, composition of 133
biphasic poroelastic tissue model

continuity equation 142
hydrogen density 142

Bloch equations 14–15
boundary conditions 103–104
boxcar filters 170
brain MRE 263 see also Cerebral MRE

brain stiffness determinants 264
challenges, cerebral MRE 264
compressibility 276
mouse model 270
multifrequency 267
objectives 264
preliminary findings, functional

activation 277
technical aspects of 265–271

brain shear modulus 272
brain stiffness

changes with age 272
demyelination and inflammation

277–279
gender differences 273–274
neurodegeneration 279–280
regional variation in 274
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brain tissue, anisotropic properties
274–276

brain volume 272
Breast Imaging Reporting and Data System

(BIRADS) 337
breast lesions 337
breast tumors 335

MRE of 345–347
stiffness response of 336
ultrasound elastography 337–338

brightness mode 233
bSSFP-MRE 55–57
bulk modulus 77–79
bundle of His/AV bundle 246

c
Cardiac cycle 245
cardiac elastography

ex vivo shear wave imaging 253
in vivo shear wave dispersion ultrasound

vibrometry 253–254
in vivo cardiac MRE in humans

256–260
cardiac fiber anatomy 247–249
cardiac FLASH sequence, diagram 161
cardiac MRE

clinical motivation 250
in pigs 254–256
wave inversion 259–260

cardiac steady-state FLASH MRE, timing
257

Cartesian imaging techniques 23
causal phenomena 125
cell proliferation 335
cerebral MRE 264 see also Brain MRE

clinical setup for 265
driver-free 269

cerebrospinal fluid (CSF) flow 264
cervical cancer 318
Christoffel equation 105–106
chronic liver diseases (CLD) 285

causes 286
epidemiology 286

coherent plane wave compounding 234
compliance tensor transverse isotropy 325
compliance vs. elasticity 70
compressibility 77–79

compression modulus 100
constant-coefficient difference equation

(CCDE) 168
corticospinal tract 274
corona radiata 274
corpus callosum 274
cranial pressure 264
crawling waves (CW) sonoelastography

238–239

d
damped plane wave 365
Darcy’s law 131
decay time constant 14
deformation

gradient 66
magnitude 66
of three-dimensional object 64

demyelination and inflammation, brain
stiffness 277–279

denoising, in MRE
description 165
frequency domain filtering 168–172
ordinary least squares 167–168
polynomial fitting 167–168
process, schematic illustration 166
Savitsky–Golay filter 167

dephaser–rephaser gradients 17
diastolic dysfunction

and isovolumetric cardiac times 259
vs. systolic dysfunction 250–251
and wave amplitude maps 259

differential operator 179
diffusion, classical 363
diffusion-encoding process 52
diffusion tensor imaging (DTI) 225, 265
diffusion-weighted imaging (DWI) 52, 306
diffusion-weighted MRE 52
diffusive waves 126–129
3D inversion techniques 351
direct inversion (DI) 199–201

for transverse isotropic medium
224–225

directional filters
2D directional filters 176, 179

Dirichlet boundary condition 103
discrete cosine transform (DCT) 197
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discrete Fourier transform (DFT) 23
discrete time Fourier transform (DTFT)

170
discretization artifacts 202–203
dispersion 206
2D k-space, acquisition of 31
Doppler imaging 234
2D phase unwrapping methods, in liver and

brain 198
Duchenne muscular dystrophy (DMD)

332
dwell time 27
dynamic deformation

balance of momentum 92–95
boundary conditions 103–104
compression modulus and oscillating

volumetric strain 100
elastodynamic Green’s function

101–103
mechanical waves 96–98
Navier–Stokes equation 99–100

e
echoes 21

gradient 17
spin 15–17

echo-planar imaging (EPI) 30–32, 161,
300

echo time 21
ejection fraction (EF) 250
elastic wave equation 199
elastodynamic Green’s function 101–103
electrocardiography (ECG), signals in 246
electromechanical wave imaging (EWI)

239
encoding efficiency 46

of sinusoidal MEGs 48
of trapezoidal MEGs 48

encoding sensitivity 50
endocardium 247
endometrium 318
energy density and flux 110–114

geometric attenuation 113–114
energy gap 9
epicardium 247
EPI-MRE 57–59
Ernst angle 28

Eulerian description 99
experimental autoimmune

encephalomyelitis (EAE) 278
external vibration multidirectional

ultrasound shear wave elastography
(EVMUSE) 238

extracellular matrix (ECM) 264, 287, 333

f
fast Fourier transform (FFT) 23
fast imaging

partial Fourier imaging 34–37
SNR and scan time impact 37–39
strategies 33

fast low-angle shot (FLASH) 27, 37, 161,
256

fast transverse (FT) 108
fast wavelet transform (FWT) 176
FE mesh 220
fibrillar collagens 287
fibronectin 287
finite difference methods 187–190
finite element method (FEM)

algorithm, steps involved in 217–218
description 217
vs. direct inversion 223
one-dimensional wave equation

218–219
wave equation, formulation of 221–223
discretization

node density 220
one-dimensional problem 220
in three dimension 220

discretized domain, basis function in
220–221

forward FEM equations 218
finite impulse response (FIR) filter

averaging 168–170
characterization 168
convolution 168
kernel 168

finite strain theory 65
FLASH-MRE sequence 53–55

for cardiac MRE 161–162
flip angle 11
Flynn’s minimum discontinuity algorithm

193–194
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forces, in continuous media 92
forward FEM equations 218
Fourier domain gradient operator 186
fourth-order Butterworth low-pass filter

172
fractional calculus 124
fractional encoding 50–51, 229
free induction decay (FID) 15, 31
frequency domain (k-space) filtering 168

see also Finite impulse response
(FIR) filter

band-pass filtering 172
LTI system (see Linear time-invariant

(LTI) system)
frequency encoding, MRI 20–21
fringe lines 194
functional MRE (fMRE) 277
functional ultrasound 234

g
Galerkin method 218
Gaussian complex noise 201
Gaussian filter 172
Gaussian-type filter kernels 170
GE –EPI sequence

structure of 59
timing diagram of 59

geometric attenuation 113–114
Gibbs ringing 178, 182
glioblastoma 341
global stiffness equations 218
glycosaminoglycans (GAGs) 287
gradient echoes 17, 53
gradient moment nulling, orders of

50
gradient spoiling 28
gradient unwrapping 195–196, 204
gradient waveform 45, 49
GRAPPA 36–37
Green’s function 125–126
group velocity 106

h
head of caudate nucleus (HCN) 274
heart physiology 247
Helmholtz decomposition 96,

207–208

Helmholtz equation 205
hemochromatosis 286
hepatic fibrosis staging 299
hepatic steatosis 286
hepatic stellate cell (HSC) 289
hepatic venous pressure gradient 308
hepatocellular carcinoma (HCC) 288
higher-order gradient moment nulling 45
high-intensity focused ultrasound (HIFU)

242
Hooke’s law 69–70
Huygens’ principle 102, 234

i
imaging concepts

fast imaging 33–39
k-space 23–26
k-space sampling strategies 26–33

impulse response 168
incident wave, reflection and transmission

115
infinite impulse response 168
infinitesimal strain tensor 64
in-plane magnetization 56

2D Fourier transform 20
intervertebral disc (IVD) 283, 321

anulus fibrosus 321
MRE 322–323
nucleus pulposus 321

intraclass correlation coefficient (ICC)
298

intracranial tumors, MRE of 347–350
intra-voxel phase dispersion 51–52
invariants 68–69
inversion methods

direct inversion 200–201
iterative reconstruction 200

isochromat, magnetization of 16
isovolumetric contraction time (IVC)

246
isovolumetric relaxation time (IVR) 246
iterative reconstruction 200
Itoh’s method 192

j
jacketed scenario 132
jamming effects 333
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k
Kelvin–Voigt model 83
kernel 168
kidney, MRE of 315–318

functional units 315
viscoelasticity 316

kMDEV
in abdomen 216
directional filters 215
geometric attenuation 215
noise robustness 216
principle 214
simulated sensitivity 217
wave vector 214–215

k-space
artefacts 26
data points 23
description 23
DFT 23
echo-planar imaging 30–32
non-Cartesian imaging 32–33
Nyquist–Shannon sampling theorem

23–24
readout 26
readout and phase-encode directions

23
sampling strategies 26–33
segmented image acquisition 27–30

k-space representation, of iso surfaces 109
Kupffer cell (KC) 289

l
Lagrangian description 99
Lamb wave dispersion ultrasound

vibrometry (LDUV) 242
Lamé–Navier equation 95
Lamé’s first parameter 77
Laplace transforms, in viscoelastic models

84–85
Laplacian unwrapping 196–198
Larmor frequency 11, 12, 56
left ventricular (LV) pressure 245, 251
LFE see Local frequency estimation (LFE)
linear shift invariant 168
linear slip 115
linear strain theory 65
linear time-invariant (LTI) system

Fourier domain 170–172
frequency response plots 171

five-tap moving average filter 171
fourth-order Butterworth low-pass

filter 172
Gaussian filter 172
in-spectrum loss/attenuation 171

mapping 168
liver

blood supply 283
chronic liver disease, epidemiology of

286
elasticity 313
functions 284
grafts, MRE in 309–310
injury 290–291
lobules 283
morphology 285
MRE 294–311
MRE portal hypertension 307–309
parenchyma 289
transplantation 293
tumors, MRE in 342–344

liver fibrosis 287
biomarkers of 293
biophysical signs of 293–294
microstructural changes 295
noninvasive screening methods

292–293
pathogenesis of 289–291
progression of 288
reversibility of 293
scoring systems 292
staging of 291–292

local frequency estimation (LFE) 208–210
description 208
direct inversion vs. phase gradient

210
filter effects 208
filter functions 209
Fourier convolution theorem 208
noise-amplifying characteristics 209
spatial resolution 210

log-normal quadrature filters 209
longer motion-encoding periods 50
longitudinal equilibrium magnetization

12
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loss tangent 90
lung, poroelastic tissue in 131

m
magnetic field

inhomogeneities and susceptibility effects
41

protons in 9–10
magnetic resonance imaging (MRI) 17–21

frequency encoding 20–21
phase encoding 19–20
slice selection 19
spatial encoding 18–21

magnetization
of isochromat 16
precession of 10–13
quadrature detection 11–13
thermal equilibrium state 13
time evolution of 12

matrix metalloproteinase (MMP) 293
matrix representation, of derivative

operators 182–183
Maxwell model 83, 89
Maxwell’s equations 15
mechanical waves

complex moduli and wave speed 98–99
Navier equation 96

mesenchymal invasion 334
meta-analysis of histological data in viral

hepatitis (METAVIR) 291
midpoint rule 180
mitral valve 246
mixed boundary conditions 104
motion encoding gradient (MEG) 28, 43

fractional encoding 50–51
gradient moment nulling 44–46
time-harmonic motion encoding

46–50
motion-induced phase 47
motion mode 233
multifrequency dual elasto-visco inversion

(MDEV) 211
multifrequency inversion 210–214
multifrequency MRE (MMRE) 210,

229
multiparameter inversion 207
multiple sclerosis (MS) 263, 278

multi-resolution analysis (MRA)
vs. FFT 174–175
wavelets 172–174

muscular dystrophy 332
myocardial contractility 250
myocardial fibers 248
myocardial stiffness measurement 254
myocardium 247
myofibroblast (MF) 290
myometrium 318

n
Navier equation 95
Navier–Cauchy equation 95
Navier–Stokes equation 99–100
Navier’s equation, for biphasic medium

elasticity tensor 134
Helmholtz theorem 136
momentum equations 134
one-dimensional system 136

neurodegeneration, brain stiffness
279–280

neurodegenerative diseases 263
noise 52

in acquired displacement field 201
numerical derivative schemes, sensitivity

of 186
sensor noise 165
signal processing definition of 165

nonalcoholic fatty liver disease (NAFLD)
286

nonalcoholic steatohepatitis (NASH)
286

MRE 303–304
non-Cartesian imaging 32–33
noninvasive biomarkers, of liver fibrosis

307
nonwelded interface 115
normal pressure hydrocephalus (NPH)

279–280
nuclear magnetic resonance (NMR)

Bloch equations 14–15
echoes 15–17
magnetic field, protons in 9–10
magnetic resonance imaging 17–21
magnetization precession 10–13
relaxation process 13–14
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nucleus pulposus 321–322
numerical derivatives

Anderssen gradients 183–186
boundary conditions 180–181
differential operator 179
Fourier transform 181
frequency response, of derivative

operators 186–187
matrix representation, of derivative

operators 182–183
midpoint rule 180
Nyquist criterion 182

Nyquist–Shannon sampling theorem
23–26, 170

o
octahedral shear strain (OSS) 68, 69
OLS see Ordinary least squares (OLS)
one-dimensional unwrapping algorithm

192
optimal motion sensitivity 57
ordinary least squares (OLS) 167
orthotropic elasticity tensor, elements of

227, 228
oscillating volumetric strain 100

p
pancreas

diseases of 314
MRE 315

parallel imaging
description 35
GRAPPA 36–37
image space-based methods 36
k-space-based methods 36
reconstruction 36

Parkinson’s disease (PD) 279
partial Fourier imaging 34–35
pelvic region 283
Pfirrmann scores 322
phase difference image 43
phase encoding 19–20, 26–27
phase gradient (PG) 204–205

spatial unwrapping 204
phase unwrapping 41

algorithms 191

gradient unwrapping 195–196
Itoh’s method 192
Laplacian unwrapping 196–198
one-dimensional function 191–192
quality map 193
smoothness 193

phase wraps 191
plane of isotropy 74
plane wave imaging 234
point source, in 3D 362–363
Poisson’s ratio 75–76
poroelasticity theory 131
poroelastic media

pressure waves in 136–140
shear waves in 140–141

poroelastic MRE 133
poroelastic signal equation 142–144
porosity 133
portal hypertension

assessment 307–309
splenic stiffness 313

position-dependent precession frequencies
14

precession frequency, spatial modulation of
17

pressure waves, in poroelastic media
136–140

principal strains 68
progressive supranuclear palsy (PSP)

279
prostate

MRE 320–321
zones of 319–320

prostate cancer
MRE 344–345
ultrasound elastography 338–339

prostate-specific antigen (PSA) 338
prostate, zones of 319–320
proteoglycans 287
protons

in magnetic field 9–10
magnetic moments of 10
quantum-mechanical nature of 10

pulse repetition frequency (PRF) 233
pulse sequences 53
pulse wave velocity (PWV) 261
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q
quadrature detection 11–13
quality-guided algorithms 193
quality map 193

r
radiofrequency (RF) pulses 26
relaxation process 13–14
renal pyramids 315
repetition time 31
right ventricle (RV) contraction 246
RO gradient waveforms 32

s
sample interval modulation-MRE

(SLIM-MRE) 230
sampling time 38
Savitsky–Golay filter 167
scatterers 234
second-order gradient moment nulling 45
segmented image acquisition

balanced steady-state free precession
28–30

description 27
FLASH 27–28

sensor noise 165
serum biomarkers, liver 304–307
sexual dimorphism, brain architecture 273
shape function 218–221
shear horizontal (SH) wave 115
shear modulus

and Lamé’s first parameter 76–77
shear strain, octahedral 68–69
shear vertical (SV) wave 115
shear wave amplitude maps 260
shear wave dispersion ultrasound

vibrometry (SDUV) 241–242
shear wave elasticity imaging (SWEI) 240
shearwave elastography (SWE) 306
shear wave imaging (SWI) 252
shear wave scattering

description 114
interface 115
mean free path length 114
mode conversion 115
plane interfaces 115–118
shear horizontal and vertical wave 115

spatial and temporal interfaces 118–121
speckle patterns 114
three-layer model 117–118
wave diffusion 121

amplitudes and intensities 126–129
diffusion coefficient 123
discrete waves 121
Green’s function 125–126
grid spacing 124
propagation velocity 123
random walk 121–122
scaling property 124
stochastic nature 123
unattenuated plane wave 121
unattenuated propagating wave 121

welded and nonwelded interface 115
shear waves, in poroelastic media

140–141
shear waves, in transverse isotropic medium

nomenclature 108
wave modes 109

signal dephasing 14
signal sampling 31
signal-to-noise ratio (SNR) 25, 52
single-channel RF transmit system 29
skeletal muscle

composition 325
tissue architecture in 326

skeletal muscle MRE 326–330
slice-based Laplacian unwrapping, Matlab

code for 197
slice-select gradient 19, 30
slice selection, MRI 19
SLIM (Sample Interval Modulation) 230
slow transverse (ST) mode 108
Snell’s law 117
Sommerfeld (nonreflecting) boundary

condition 103
sonoelastography 337
spatial encoding, MRI 18–21
speckles 128
spin echo (SE) 14, 57, 59

EPI–MRE sequence 43
MRI 15–17
signal formation 30

spin–echo sequence, MEG placement 59
spin quantum number 9
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spleen
elasticity 313
location 311
splenic stiffness 311, 313

spoiler gradients 28
springpot and fractional viscoelasticity

89–90
square of viscoelasticity 2, 3
standard linear solid (SLS) model 89
standing waves 210
static magnetic field 9
steatohepatitis 286, 303
steatosis 286, 303
strain 63–66

finite strain theory 65
linear strain theory 65
principal strains 68
shear strain 65–66, 68
tensor 65

strain-based elastography 338
strain-energy function 70–71
supersonic shear imaging (SSI) 241
surface coils 35
symmetric difference 180
symmetries 71–75
systolic vs. diastolic dysfunction 250–252

t
temporal resolution 163
thalamus 274
three-dimensional k-space 32
time-dependent magnetic fields 10
time-harmonic elastography (THE)

237–238, 257
time-harmonic motion encoding 46–50
time-translation invariance 45
time-varying magnetic fields 15
timing diagram, of FLASH pulse sequence

28
tortuosity 135, 136
transient ultrasound elastography (TE)

306
transjugular intrahepatic portosystemic

shunt (TIPS) 308–309
transmission and reflection coefficients,

for welded and slip interface
117–118

transverse isotropy 73
transversely isotropic elasticity tensor 325
transversely isotropic (TI) material

compliance and elasticity tensor 79–80
models 275

transverse magnetization 11, 13, 16, 19,
29, 55, 57

creation of 26
decay of 14
first-order differential equation 13
k-space 23
magnitude of 17
RF pulses 28

tricuspid valve 246
trigger pulse 55, 147, 231
tumors

growth 333
micromechanical properties 333–336
MRE 339–350
ultrasound elastography 336–339

two-dimensional phase unwrapping
algorithms 193

u
ultrasound-based cardiac strain

measurement methods 257
ultrasound elastography (USE) 233, 245,

271
breast tumors 337–338
prostate cancer 338–339

uniaxial loading 75
unjacketed condition 132
unwrapped phase 191
uterus, MRE of 318–319

v
variational method 218
vertical edge 194
vibration energy 230
vibration frequency 231

choice of 266–268
vibration period 55
vibration phase gradient (PG)

sonoelastography 238
vibro-acoustography (VA) 237
viscoelasticity 80
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viscoelastic models
dashpot (viscous model) 82
description 80
Laplace transform 84–85
spring (elastic model) 81
springpot and fractional viscoelasticity

89–90
stress–strain relations 83–84, 86

viscoelastic parameter reconstruction
algebraic Helmholtz inversion

205–208
algorithms 353
discretization and noise 201–204
finite element method 217–223
inversion methods 199–200
k-MDEV 214–217
local frequency estimation 208–210
multifrequency inversion 210–214
phase gradient 204–205
transverse isotropic medium, direct

inversion for 224–225
wavguide elastography 225–228

viscoelastic theory
assumptions 63
engineering constants

compliance and elasticity tensor
79–80

compressibility and bulk modulus
77–79

Lamé’s first parameter 77
shear modulus 76–77
Young’s modulus and Poisson’s ratio

75–76
Hooke’s law 69–70
invariants 68–69
strain 63–66
strain-energy function 70–71
stress 67–68
symmetries 71–75

viscosity-related parameters, spleen 313
Voigt model 83, 89
volume resonator/body coil 35
volumetric deformation modes 132
von Neumann boundary condition 103

w
wall shear modulus versus cavity pressure

249–250
WAV-based MRE 258
wave(s)

in anisotropic media
Christoffel equation 105–106
transversely isotropic medium

104–109
image 43
intensity 112
oscillation cycle, phases of 41
wave phenomena, intensity and radial

profiles 128
wave amplitude variation (WAV) 255
waveguide elastography 228

local coordinate system 226
principle 225
spatial–spectral filtering

description 225
Fourier transform 226
plane wave component 226–227
tangent vector 225

wave inversion cardiac MRE 259–260
wavelets 173
welded interfaces 115
wrapped phase 191

y
Young’s modulus 75–76

z
Zener model 89


