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 Preface

This book has been written with a view of what the future practice of graduates from Doctor 
of Nursing Practice (DNP) programs and other advanced health care providers looks like. In 
particular, graduates of DNP programs and other health care providers need to be advocates 
of using the best research evidence available to facilitate both practice and system changes. 
National organizations of many health professionals have emphasized the importance of using 
the best evidence to improve health care of individuals, decrease the cost of care, and prevent 
errors across health care systems. All of this requires a solid grasp of statistical reasoning, 
which underlies much of the empirical information presented in research journals. In this 
book, our aim is to provide the reader with more than an introductory level comprehension 
of statistics. In particular, our emphasis is on understanding the most commonly encountered 
statistical models in the research journals. We believe that the “cookbook approach” to statis-
tics, consisting of the memorization of formulas and rules, is not really helpful, as the correct 
interpretation of statistical tests and models requires an understanding of the underlying logic 
of the models employed.

The information provided in this book is divided into five parts, covering basic statisti-
cal reasoning and four different classes of statistical models. Part I covers the principles of 
statistical inference in clinical trials and observational studies, reasons for why we use sta-
tistical testing, and how we use it in the context of different research designs, as well as an 
overview of the basic descriptive statistics. Part II discusses statistical models used with con-
tinuous and interval-level outcome variables, which include t-tests, linear regression, analysis 
of variance, and some extensions of these models. Part III addresses statistical tests and mod-
els appropriate for categorical outcome variables. Part IV explores the use of time-to-event 
or survival analysis, which are often used in clinical research. Part V provides an overview of 
measurement models with an emphasis on reliability and validity of self-report and medical 
test data. In all chapters, we used examples relevant to clinical practice to provide informa-
tion on how to use and interpret each of the statistical analysis models introduced. Exercise 
questions at the end of each chapter, and selected answers at the end of the book, serve the 
purpose of deepening the understanding. The book can be used as a stand-alone text for 
those readers primarily interested in understanding the models, but we offer some data sets 
in SPSS, STATA, SAS, and Excel formats on an accompanying website (www.springerpub
.com/stommel.supplements) for those who want to engage in applied analysis themselves. 
The website also contains additional exercise questions and solutions.
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The health care provider of the future needs to understand how to read statistical 
research and evaluate the quality of the research. Given the ever-increasing sophistication 
of statistical analyses in health care journals, it is important that clinicians acquire a level 
of understanding that enables them to interpret the results of research studies correctly and 
translate this information into practice. Readers of this book will be able to accomplish these 
tasks as well as to choose appropriate statistical methods for their own translational research. 
At least, readers should be able to recognize when more sophisticated analyses are necessary, 
and should have sufficient understanding of statistical reasoning to engage and converse with 
a statistical expert when needed. One important aspect of the translation model is to apply the 
best evidence available about clinical conditions in real-life clinical settings. The statistical 
methods described in this book will help health care providers to evaluate outcomes of qual-
ity improvement projects and system changes to determine the effectiveness of the evidence 
within their own clinical population.

Finally, we sincerely hope that readers find the information in this book useful and actu-
ally grow excited about the contributions that statistics can make to health care. Statistical 
reasoning provides a different way of looking at the world, which is particularly helpful when 
thinking about the health of populations or the evaluation of health care systems. In short, we 
believe that the study of statistics does not only consist of the acquisition of techniques and 
tools, however necessary, but opens up new ways of thinking about health-related problems. 
If we succeed in conveying both the ideas and our enthusiasm for statistical analysis, we shall 
have accomplished our goals.

Manfred Stommel, PhD
Katherine J. Dontje, PhD, FNP-BC
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1

 Introduction: The Role of Statistics in 
Research and Clinical Practice

Many students in clinically oriented degree programs wonder why they are required to take 
statistics courses. There are several ways to answer this question, but it is probably best to start 
with a clinical example.

Suppose that you have a patient who has coronary artery disease and occasional  episodes 
of angina, but only when exercising heavily. The patient comes to you and asks whether he 
should have a cardiac catheterization and possible stents put in with the procedure. How 
would you go about evaluating this? There are, of course, numerous different opinions on the 
subject, and the patient has friends who are encouraging him to get the procedure, as these 
friends had four to five stents implanted and reportedly are doing well. You search the litera-
ture and find that, for stable coronary artery disease, there are three main choices of treatment 
(medical therapy, angioplasty, or bypass surgery); however, the statistics indicate that, among 
stable angina cases, none of these have any significantly greater long-term benefit in terms 
of length of life or recurrence of heart attacks over the other (Boden et al., 2007; Hueb et al., 
2004). As you review the studies, you are confronted with a variety of statistics, but how do 
you explain these convincingly to your patient, when “common sense” appears to suggest that 
opening up an artery should “save his life”?

Probably the first thing to emphasize would be that it is not enough to cite a few 
 individual cases for whom a particular clinical intervention appears to have been  successful. 
One reason we cannot rely on results from individual cases is that what works in one case may 
or may not work in another case. Human beings almost always show a range of responses 
to a given nursing or medical intervention. Thus the question arises: How do we then decide 
which treatment or intervention is better or worse? It turns out that statistics alone cannot 
answer this question either. The inference that an intervention is causally effective is also 
based on the quality of the research design of the intervention study. But statistical consider-
ations are an essential aspect of how to design an effective intervention study that can answer 
the desired question.

Given the almost infinite variability of human responses to clinical treatments and inter-
ventions, we need a method by which we can separate “accidental” individual variability from 
systematic, treatment-related effects. As we will see, statistical models can be used to estimate 
average effects of interventions as well as provide information on the amount of uncertainty 
or relative certainty that must be attached to these estimates.

 PART I. FOUNDATIONS FOR 
STATISTICAL THINKING
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We use statistics not only in the evaluation of clinical interventions or treatments but 
also to generalize from the evidence obtained in a study sample to the target populations of 
interest. For example, data from the National Health Interview Survey (NHIS) conducted by 
the National Center for Health Statistics (NCHS) linked to the National Death Index have 
been employed to estimate the effects of adherence to the 2008 Physical Activity Guidelines 
(Centers for Disease Control and Prevention [CDC]) on the subsequent mortality risk of adult 
U.S. residents (Schoenborn & Stommel, 2011). In such studies, we use sample data to draw 
inferences about health conditions in larger target populations. While the aim is to describe 
patterns of mortality, morbidity, and health behaviors in the target population, we use surveys 
that employ random/probability sampling designs that, in some sense, “represent” or “reflect” 
the characteristics of the target population with sufficiently high accuracy.

Statistics are, in fact, all-pervasive in today’s health care systems. We use it to evalu-
ate the performance of medical interventions, the effectiveness of screening programs, to 
gauge quality improvement projects in health care delivery, to assess the performance of 
nursing students on the NCLEX or certification exams, to establish critical test scores that 
should trigger nursing or medical interventions, and so forth. Statistical evidence plays a 
major role in judging not only the quality of care delivered, but also its cost effectiveness. 
Statistics are also an important tool for providers and public health officials, as they engage 
in assessments of how well they are doing compared to other health delivery organizations, 
or compared to benchmarks derived from nationwide or statewide studies. Last, but not 
least, the evidence to support and evaluate clinical practice guidelines or guidelines for 
healthy behaviors (e.g., the CDC 2008 Physical Activity Guidelines) is grounded in statisti-
cal information.

By contrast, consider personal experience. In a way, all of us are “reckless generalizers” 
in our personal lives. We all believe we have an idea of what “human nature” is like, even 
though we get to know well only a few dozen individuals in a lifetime (and they are decid-
edly not a representative cross-section of the human race!). Similarly, from the very limited 
experience we have as patients with our primary care providers, dentists, or nurses, we draw 
inferences about their quality as providers. Suppose a patient with a diphtheria infection is 
misdiagnosed by her provider as having mononucleosis (easy to do in the initial phases of 
these diseases) and receives the wrong treatment, should she conclude that the provider is 
“incompetent?” Suppose you have evidence that the provider in question made such a diag-
nostic mistake only once in 25 years of practice, while another provider accumulated a long 
list of complaints for misdiagnoses. As this example shows, we cannot make credible infer-
ences based on a single event; we need large amounts of data to discover a pattern of behav-
ior. Hence, we need statistics. It allows us to distinguish among isolated events (“outliers”), 
systematic patterns of events (average differences or “effects”), and events whose occurrence 
cannot be predicted (“random errors”). All of this information is needed to evaluate outcomes 
of interest to health care providers.

Let us look at this a bit further. Not only are no two individuals exactly alike in terms of 
their biological characteristics and life experiences; as living organisms they are also subject 
to continual change over time. For example, as every nurse knows, people’s “true” diastolic 
blood pressure (DBP) fluctuates, even during short time periods, before and after a meal, and 
so forth. On top of that, there are measurement errors associated with any clinical measure 
you can think of: For instance, blood pressure (BP) measures vary depending on whether the 
cuff is applied to the right or left arm, whether the cuff is more or less pressurized, whether 
the patient has more or less muscle tissue, and so forth. Similarly, any body temperature mea-
sure varies based on where the thermometer is applied (under the armpit, the tongue, etc.), and 
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any nurse, who has ever tried to establish the height of an infant, knows that it is impossible 
to get the “true” value. In short, uncertainty is part of everything we do, whether to estimate 
the likely survival of a patient with a recent Stage 4 lung cancer diagnosis or the recovery 
time after a triple bypass operation. Thus, we need to have realistic estimates of the uncer-
tainty attached to our predictions, so that we can make rational decisions about which clinical 
interventions are better or worse. Statistical methods do just that. You might say statistics is 
the branch of mathematics that puts uncertainty (and probability) at the center of its models. 
It allows us to estimate the risks we engage in when we make informed decisions. It is for that 
reason that statistics has become a central part of clinical reality.

Finally, there is also a very pragmatic reason why providers have to become savvier 
in the evaluation of statistical information. On a daily basis, many of our patients follow 
mass media reports on health-related topics or search the Internet to get information about a 
disease or illness they might have or a medical treatment that they believe they might need. 
Such reports very often cite statistics from clinical trials or epidemiological studies. Certainly, 
advertisements for pharmaceutical drugs or claims on highway posters that this or that hospi-
tal is in the “top 100” for knee surgery, and so forth, all tend to cite statistics that may or may 
not be relevant to the claims involved.

For users of statistics, the most important issue has become how to evaluate all this 
statistical information and how to make intelligent choices based on it. For current and future 
clinicians, an additional problem is that the statistical information in medical and nursing 
research journals is becoming ever more sophisticated: just witness a special issue of Nursing 
Research (Volume 61(3), 2012) entirely devoted to newer statistical models used by nursing 
researchers. Yet knowing more about statistics is essential for clinicians to understand and 
interpret clinically relevant evidence. While today’s clinicians do need a solid conceptual 
grounding in major statistical concepts, they do not need to know the particular mathemati-
cal structures of the major estimation techniques, for example, least squares, maximum like-
lihood, or partial likelihood estimation that underlie many statistical models (all of which 
require some knowledge of calculus). Instead, clinicians do need to understand the basic logic 
of statistical estimation, basic probability concepts, and how inferential statistical decisions 
are made. To draw correct inferences from statistical information also includes awareness 
that statistics are an integral part of the research design of a study. To take just one example: 
how one interprets the outcome of a t-test differs, depending on whether or not the data come 
from an experimental study with random assignment, a survey based on random sampling, 
or whether the data are cross-sectional or longitudinal. Thus, statistical evidence cannot be 
interpreted without knowing something about the study design context, the sampling design, 
as well as how measurement error can affect the results.

When an advertisement claims that a certain drug reduces bleeding by 35%, one should 
immediately ask how that figure was established. Without context, such a number is virtually 
impossible to interpret. What is the reference group compared to which the 35% reduction 
was observed? How large a sample of men/women was studied? Was the sample representa-
tive of the U.S. population at large or only of certain segments, for example, only women, 
only Whites, only persons younger than 40 or older than 65, or persons with a particular 
disease, and so forth? Were there measurement problems? Could the study show a causal 
connection between the drug or treatment and the outcome? Are there alternative treat-
ments that are even better? Does the treatment work only under certain conditions, and so 
forth? Many of these questions involve statistical reasoning and statistical methods; so it is 
no  accident that statistics has become a major component of the education and training of 
future clinicians.
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This book is intended as a textbook for graduate nursing students and others who are 
preparing for advanced clinical practice roles. As it is addressed to clinicians, we present the 
major statistical models most often encountered in nursing, medical, and epidemiological 
research. Past statistics textbooks for nursing students have almost exclusively focused on 
statistical models derived from psychometrics and educational research, but have neglected 
models that should be of primary interest to advanced practice nurses, such as life table and 
survival analysis as well as the evaluation of diagnostic and screening tests. This book is 
intended to close this gap without sacrificing the more traditional topics from psychometrics 
(e.g., reliability and factor analysis), which continue to be relevant, particularly for behavior-
ally oriented nursing research. The overall goal of this book is to provide the learner with 
a larger range of statistical models and concepts, which are used in clinical research and as a 
basis for evidence-based clinical practice. This includes skills in “mining” data sets that are 
needed for the clinical management of patient populations.

Despite our goal of providing the reader with an introduction to more complicated 
 statistical models than the t-test, analysis of variance (ANOVA), and linear regression, the 
presentation of the material does not require any calculus or matrix algebra, but relies on 
some knowledge of college algebra. Because students may have forgotten how to read and use 
exponential and logarithmic functions, a brief refresher has been provided in Appendix H to 
facilitate the discussion of logistic and survival regression models. On the whole, the empha-
sis in this book is on verbal explanations, and the use of worked out examples to explain the 
more complicated ideas of statistical inference. However, statistics is an inherently mathemat-
ical subject and it cannot be learned by completely shying away from mathematics. Neither 
can the science of nursing research be understood without mathematics (Henly, 2012). Some 
statistical formulas (e.g., standard deviations, covariance/correlations, odds ratios) are essen-
tial in understanding the material. Thus, they are not only introduced, but also accompanied 
by detailed verbal explanations. In addition, exercise questions at the end of each chapter 
(selected answers are provided in Appendix J) will provide opportunities to become familiar 
and comfortable with using such formulas and interpreting them correctly.

Our experience in teaching statistics for nurses at the graduate level shows that some 
students are apprehensive about taking a statistics course. We believe that part of the reason 
for this is that too many students were taught introductory statistics with an emphasis on 
memorizing formulas, but never really understood what the subject was about and how it 
relates to clinical practice. The information you will find in this book is designed to give you a 
solid understanding of the statistical methods we introduce. We believe that memorizing for-
mulas alone does not really give you an understanding of the value of statistical analysis, and 
besides, formulas will be forgotten as soon as the course is over. In this book you will have the 
opportunity to learn about statistical reasoning and how it can provide the clinician with the 
contextual information necessary to make clinical decisions in particular instances. However, 
that requires understanding the conceptual basis for statistical methods, which, incidentally, 
also provides a much better aid to memory.

In sum, we hope we have made a convincing case for why statistics should be part of 
any clinician’s tool kit, but more than that: We think of the subject of statistics as an exciting 
field that can transform the way you look at health care and clinical practice. If we succeed in 
changing students’ outlook on statistics, it is our experience that it changes their outlook on 
clinical practice forever.
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CHAPTER 2

 Properties of Variables: Levels 
of Measurement

Before discussing levels of measurement in more detail, we start with a small data set such 
as you might encounter in a clinical setting. Table 2.1 shows an excerpt from a data file 
containing information on 10 study participants who were patients at several rural clinics.1

The codebook in Table 2.2 provides additional information on how to read the numbers in 
Table 2.1. Note that information in quantitative data files, like the one presented here, is 
usually organized in spreadsheet format, using rows and columns.

In this format, the rows represent cases2 and the columns represent variables. For 
instance, look at the column labeled “ID.” Each row of this column contains the identifica-
tion number of a particular subject. In the column labeled “Age” we see different entries 
in each row, reflecting the age (in years) of each of the subjects denoted in the ID column. 
Now look at the column labeled “Sex.” From the codebook in Table 2.2 we learn that the 
number “1” of the variable “Sex” refers to women and the number “2” to men. As this 
column contains at least two distinct values, the entries in the column represent a variable 
in this data set.

The concept of a variable is fundamental to quantitative research and plays a central 
role in statistics. In the most general sense, variables are the measured representations of the 
concepts we are interested in. As clinicians we might talk about concepts like “depression” or 
“hypertension,” but after we collect information about these concepts, they become variables 
in our data sets. For example, the systolic and diastolic blood pressure (BP) readings consti-
tute variables in the data set; so do the scores that survey participants receive based on their 
responses to a measurement tool like the Center for Epidemiologic Studies-Depression Scale 
(CES-D). As the name “variable” implies, the scores vary across subjects, that is, as we go 
up and down a given column, we see several distinct values, which would be the individual 

1 Dates and other information were changed for confidentiality reasons.
2 “Cases” may be defined as different individuals, different emergency department visits, billing records, 
and so forth; in longitudinal studies with repeated measures of subjects, each row may represent obser-
vations of an individual subject taken at a single time point, and so forth.
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scores of the CES-D assigned to each of the patients in the study sample.3 In short, a  variable 
comprises the actual measurement outcomes or the scores that represent the concept in a study.

If in a particular study there is no variation among the scores in a column—let us say 
that all studied individuals are female and the only code in the column for “Sex” is “1”—then 
the numbers in the column would represent a constant in this study and data set. By contrast, a 
variable must take on at least two values for it to vary. For example, the variable sex normally 
consists of the two categories: female or male, here represented by the codes 1 and 2.

As, in the most general sense, statistical analysis shows how the variation in one or 
more variables is linked to the variation in other variables, constants in a data set are of no use 
other than describing a characteristic of the total study sample. For instance, if in a particular 
study all participants are female, then we could no longer analyze how sex is related to some 
outcome of interest, because there is no variation in sex.

TABLE 2.2 Codebook for Data in Table 2.1

VARIABLE VARIABLE LABELS VARIABLE CODES

ID Subject identifi cation no. 1–10

Site Clinical site no. 1–8

Date Date of clinic visit MM/DD/YYYY

Age Age (in years) at visit Range: 21–55

Sex Respondent’s sex 1 = female, 2 = male

SysBP Systolic blood pressure Recorded in mmHg

DiaBP Diastolic blood pressure Recorded in mmHg

CES-D Center for Epidemiologic Studies-Depression Scale Possible score range: 0–60

SRHealth Self-rated health scale 1 = poor, 2 = fair, 3 = good, 4 = excellent

3 Note that scores may not only vary among different subjects, but they may also vary within subjects 
over time, as when we take repeated BP measures on the same subject. As we will see later, the distinc-
tion between within-subjects variation and between-subjects variation is fundamental to many statistical 
models.

TABLE 2.1 Example of Quantitative Data File

ID SITE DATE AGE SEX SYSBP DIABP CES-D SRHEALTH

1 8 10/06/2006 21 1 110 76 9 4

2 2 10/14/2005 46 2 123 81 0 4

3 8 07/26/2006 34 1 119 82 14 4

4 6 02/09/2006 28 2 132 87 22 3

5 3 10/27/2005 55 2 141 94 11 3

6 4 09/23/2005 49 1 137 89 32 3

7 1 11/11/2005 51 2 150 108 6 2

8 2 09/25/2005 32 1 118 79 2 4

9 6 02/09/2006 40 1 123 83 15 4

10 6 09/12/2005 45 1 129 91 9 3



2. PROPERTIES OF VARIABLES: LEVELS OF MEASUREMENT  9

 LEVELS OF MEASUREMENT

When we analyze data, we must make assumptions about the measurement levels of the vari-
ables involved. According to a classic paper by Stevens (1946), we generally distinguish four 
levels of measurement: (a) nominal or categorical, (b) ordinal, (c) interval, and (d) ratio 
 levels. As we will see, the determination of levels of measurement is important because it 
affects what kinds of mathematical operations involving a particular variable are appropriate.

Whether or not to speak of a nominal level of “measurement” is, in some ways, question-
able. The creation of a nominal variable only requires us to use mutually exclusive categories 
into which we sort our objects or characteristics of study participants. Examples of nominal 
variables would be sex (female vs. male), blood types (A, B, O), or marital status. Such vari-
ables have categories that have no obvious ordering, which means that the assignment of 
numerical values to these categories is inherently arbitrary. For instance, let us consider the 
assignment of numerical values to the categories of the variable “marital status” (see Box 2.1).

Coding Scheme 1: 1 = married, 2 = single/never married, 3 = divorced, 4 = widowed

Coding Scheme 2: 1 = divorced, 2 = married, 3 = widowed, 4 = single/never married

Coding Scheme 3: 1 = single/never married, 1 = married, 3 = widowed, 4 = divorced

(There are 4 × 3 × 2 × 1 = 24 different coding schemes/sequences possible for this  four-category 
variable.)

EXAMPLES OF ALTERNATIVE CODING SCHEMES 
FOR THE VARIABLE “MARITAL STATUS”

BOX 2.1

The main principle to remember here is that each different coding scheme is equally 
defensible and equally valid. This is so because the numbers serve just as labels or “names” 
(that is why it is called a “nominal” level of measurement) of the categories, and the measure-
ment operation really consists only of grouping subjects into mutually exclusive categories: 
you may be either married or single, but you cannot be both at the same time. As the value 
labels are arbitrary, we cannot involve them directly in mathematical operations; for instance, 
it would be nonsensical to speak of the “average marital status” in a study sample as being 
“2.4.” The same can be said about blood types: They may be listed in any order, with the cat-
egories denoting differences, without ranking them as “better” or “worse.” We can, of course, 
count the number of cases in a study sample that fall into each of the categories defined by a 
nominal variable. As we will see, appropriate statistical tests for such nominal variables are 
all based on such counting operations.

With an ordinal level of measurement, the numerical values assigned to the categories 
of a variable are no longer completely arbitrary: the values assigned to the categories must 
form a rank order, indicating more or less of the attribute being measured. For instance, in 
Table 2.1 we can see the scores associated with the responses of 10 patients to a question 
asking them to rate their own health on a four-point scale: 4 = excellent, 3 = good, 2 = fair, 
1 = poor. Here we have a variable, whose categories form a rank order. It would have been 
perfectly fine to assign the values 19 = excellent, 8 = good, 5 = fair, and 2 = poor, as such an 
assignment would preserve the rank order: 19 > 8 > 5 > 2. In both the original data set and 
the alternative assignment of numerical values to the categories, the information contained 
in the assigned values is that of a rank order: the second highest values refer in both cases 
to “good,” the lowest value to “poor.” Thus, as long as the rank order is not changed, any 
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numerical scheme that preserves this rank order would be acceptable. However, the distances 
between the categories are not defined: a respondent would say that “good” health is better 
than “fair” health, but he or she would find it impossible to say that “excellent” health differs 
from “good” health as much as “fair” health differs from “poor” health.

Clinical judgments often result in ordinal scales. A prominent example would be the 
Apgar4 score (Casey, McIntire, & Leveno, 2001) to evaluate the health and progress of a newly 
born baby. Pain scales like the visual analog scale (Hawker Mian, Kendzerska, & French, 
2011) are another example of an ordinal scale frequently encountered in clinical settings.

Interval-level measures are less common in health- and illness-related data, except for 
the classic example of temperature. Both the Fahrenheit and Celsius scales are widely used, 
and they are perfectly equivalent as expressed in the equation °F = 9/5°C + 32. Yet both scales 
have zero points defined on the basis of an essentially arbitrary external criterion. (For Celsius, 
it is the temperature at which water at sea level freezes; for Fahrenheit, it is the temperature at 
which brine—a mixture of water and ammonium chloride—freezes.) While the scales define 
distances, for example, in the Celsius scale, the difference between the temperature at which 
water boils and at which it freezes is divided into 100 equal degrees, they cannot be used to 
construct ratios. For example, it would not be legitimate to say that 20°C is “twice as warm” 
as 10°C. You can see that by converting the degrees Celsius into degrees Fahrenheit: Using 
the conversion formula (°F = 9/5°C + 32), for 20°C we get 68°F, as 9/5 (20) + 32 = 58; and 
for 10°C we get 50°F, as 9/5 (10) + 32 = 50. Thus, expressed in degrees Fahrenheit, the two 
temperatures are °F = 68 and °F = 50, but the ratio of 68/50 is no longer equal to 2.

In addition to temperature, population-normed test scores are often interval-level vari-
ables. For instance, in standard IQ tests, the mean population score within an age group is 
arbitrarily set to 100, and any individual score is considered in relation to this population norm 
(Becker, 2003). Such scales do not have natural zero points, and so it would be inadmissible 
to consider a person with an IQ score of 160 “twice as intelligent” than a person with an IQ 
score of deviation 80. Pulse oximetry readings (Barker, 2002) are also interval measures, as 
they do not have a natural zero point (at least not in a living person). With interval measures, 
it is possible to calculate statistics like means, variances, and standard deviations because they 
only require that distances between values are well defined.

Ratio-level measures are quite common in clinical settings and research: Height and 
weight, time from surgery to recovery, gestational age, and so forth are all ratio-level mea-
sures familiar to clinicians. They have natural zero points and all basic arithmetic operations 
(addition, subtraction, multiplication, and division) can be performed on the values of ratio 
scales. For instance, you can say that a person weighing 270 pounds is three times heavier 
than a person weighing 90 pounds.

 STATISTICS AND LEVELS OF MEASUREMENT

It should be noted that many of the ratio- and interval-level measures are also continuous 
variables, even though in practice, such variables are recorded in discrete values. A continu-
ous variable is one that can take on any value on the real number scale. Thus we could, in 
principle, record a person’s age in minutes or even seconds, even though empirically such 
precise measures would be impossible to come by. They would also be unnecessary, as there 
is no reason to believe that such fine gradations in the age variable would have any substantive 
value. Still, it is worth noting that in many statistical models we assume that the underlying 

4 Named after Dr. Virginia Apgar, the word is also an acronym for: appearance, pulse, grimace, activity, 
respiration.
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variables are continuous, even though the actual measurements are discrete, that is, they have 
a certain degree of granularity, as when we measure age in terms of years among adults.

Even though we have divided variables into four measurement levels, in many ways the 
most important distinction is that between the first two types of variables (nominal/categorical 
and ordinal) and the latter two (interval and ratio variables). These two groups of variables are 
also referred to as qualitative versus quantitative variables; or as nonmetric versus metric 
variables. As we will see, statistical measures and tests appropriate for nominal and ordinal 
data, usually called nonparametric statistics, differ from measures and tests appropriate for 
interval- and ratio-level data, which are also known as parametric statistics.

Finally, it is worth noting that the distinction among variables with different levels of 
measurement is by no means absolute. In fact, we often convert variables with a higher level 
of measurement to ones with a lower level of measurement. One important clinical applica-
tion is the use of threshold values instead of the information from the full metric measures. 
For instance, low birth weight (LBW) is defined as a birth weight of less than 2,500 grams. 
The resulting categorical variable of low versus normal birth weight, which might be coded 
1 and 0, should be considered an ordinal-level variable even though the distinction between 
ordinal and nominal is not important, when only two categories are involved.5 Other exam-
ples of employing threshold values in clinical practice (and also clinical research) would be 
using cut-off points on diagnostic or screening tests such as tests for the detection of diabetes 
(Zhang et al., 2005). Threshold values for continuous scale measures are important in clini-
cal practice, because they are often used to trigger treatment recommendations or actions. On 
the other hand, to condense continuous scale measures into two or a few categories entails 
discarding a lot of information on individual variability.

 SUMMARY

The appropriateness of any statistical model depends on the degree to which the data meet 
the assumptions of the model. Data are made up of variables, which, in turn, may represent 
different levels of measurement. The categorization of variables according to their levels of 
measurement is important because it determines what kinds of mathematical operations are 
legitimate when involving particular variables in statistical analysis. The broadest distinction 
among statistical models is that between parametric and nonparametric statistics. For most 
purposes, variables measured at the interval level or higher can be analyzed using parametric 
statistics. However, in multivariate analysis of health care data, that is, statistical analysis that 
involves more than two variables simultaneously, we often find a mixture of categorical and 
continuous variables. As we will see later in this book, the choice of appropriate statistical 
models is largely governed by the properties of the dependent or outcome variables.

 EXERCISES

1. Determine the level of measurement for the following variables:
(a) Pap smear results
(b) Body mass index
(c) Food groups
(d) Biopsy results from breast tissue
(e) Food preferences
(f) Religious affiliation

5 Inconsistencies in rank order can only emerge, if there are at least three categories involved.
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2. Convert the diastolic blood pressure (DBP) scores in Table 2.1 into rank orders, assigning 
the rank 1 to the highest score (108) and rank 10 to the lowest score (76). Then compute 
the mean rank-order scores for men and women; also compute the mean original 
DBP scores for men and women. Do these two summary measures give you essentially 
the same information?

3. Is it legitimate to say that a baby with an Apgar score of 10 is twice as healthy as a baby 
with an Apgar score of 5? Why or why not?

4. List three applications in which threshold scores of continuous scale measures are used to 
trigger clinical actions.

5. The four levels of measurement (nominal, ordinal, interval, ratio) can themselves 
be rank-ordered according to a list of criteria, which shows each “higher” level of 
measurement possessing additional measurement properties that the “lower” level lacks. 
List the criteria appropriate for each level of measurement.
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CHAPTER 3

 Descriptive Univariate Statistics

In Chapter 2, we introduced the concepts of variables and levels of measurement. In this 
chapter, we are concerned with describing the numerical distributions that characterize 
variables in a particular study sample. More precisely, we are concerned with univariate 
descriptive statistics. Statistics are summary measures that describe and condense informa-
tion contained in the distributions of values on single or multiple variables. If a statistic refers 
only to the description of study sample data, it is called a descriptive statistic. If the statistic 
is used to characterize a larger target population, or if the intent is to generalize beyond the 
sample data, then we are dealing with inferential statistics.

Statistics are also often divided into univariate, bivariate, or multivariate statistics, 
depending on whether they describe data distributions for a single variable (univariate), two 
variables (bivariate), or multiple variables (multivariate). In this chapter, we are focusing on 
univariate descriptive statistics. Before one engages in more complex statistical modeling 
and statistical inference, it is always a good idea to inspect the study data at hand carefully, 
because errors in analysis are more easily detected if one “knows” the data and has acquired 
an “instinctive feel” for them.

 THE FREQUENCY DISTRIBUTION

The simplest way to summarize information on a variable is to represent the distribution of 
values or categories in a frequency distribution. For instance, Table 3.1 shows data from a 
nutrition study (Baker et al., 2007), in which 869 mothers were observed feeding their tod-
dlers. The table shows how the observers rated the amount of TV watching during mealtime, 
choosing one of four predetermined categories.1

As the name tells us, a frequency distribution associates mutually exclusive categories, 
which might be labeled using a verbal or numerical code, with the frequency of their occur-
rence. For instance, in Table 3.1, we can see that 19 study participants chose the rating “often,” 
which has been assigned the numerical code “3” in this data set. The table also provides infor-
mation on the percentages of study participants who chose each category/rating, as well as 
the cumulative percentages. The latter are counted from either the bottom or the top, given 

1 The four-point response scale constitutes an ordinal rating scale, as the quantities of TV watching are 
not determined in precise numerical time units.
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TABLE 3.1 TV-Watching Patterns During Mealtime: Observer Ratings

TV IS ON/WATCHED . . . CODE FREQUENCY PERCENTAGE CUMULATIVE PERCENTAGE

Not at all (1) 462 53.2 53.2

Occasionally (2) 28 3.2 56.4

Often (3) 19 2.2 58.6

Always/throughout the meal (4) 360 41.4 100.0

Total 869 100.0
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FIGURE 3.1 TV-Watching Patterns During Mealtime: Observer Ratings (Percentage of Mothers 

Observed to Watch TV During Mealtime).

the percentage of cases that fall into the current category plus all categories below (or above) 
in the distribution. For instance, in Table 3.1 we see that 56.4% of the observers responded 
that TV was either not watched at all or only occasionally during mealtime. Overall, it is rela-
tively easy to see that most mothers in the study sample either do not watch TV at all during 
mealtime (53.2%) or they watch it throughout (41.4%). This bimodal distribution, that is, 
a distribution with two peaks or modal categories, is even easier to see in a bar graph (see 
Figure 3.1).

All the information contained in the bar graph is already contained in the frequency 
distribution, but graphs often provide an easy way of seeing the pattern instantly. In the fre-
quency distribution, values (which denote the categories of the variable) are paired with their 
frequency of occurrence in the data. In the bar graph, the height of the bar indicates the abso-
lute frequency or, in this case, the relative frequency (= percentage) of cases that fall into each 
of the categories.

Yet another graph that can easily convey the distribution of a variable with few catego-
ries is the pie chart (Figure 3.2). The pie chart should include all categories of a variable, so 
that each slice represents the magnitude of a particular category relative to the total.

So far, the examples involved variables with a few discrete categories. Frequency dis-
tributions as well as pie charts and bar graphs become unwieldy if the number of categories 
exceeds 15 to 20. With truly continuous variables, like systolic blood pressure (SBP), it is often 
necessary to group the actual values into larger categories as shown in Table 3.2. The table 
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FIGURE 3.2 Race/Ethnicity of Mothers: Percentage Distribution Among 869 Subjects.
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shows the distribution of SBP among 7,529 participants in the 2009–2010 National Health 
and Nutrition Examination Survey (NHANES).2 In this table, the intervals below 172 mmHg 
are all of width 10 (e.g., 122–131), but the highest two categories are of width 20 (172–191) 
and width 51 (182–232). While this choice of intervals accommodates the sparsely populated 
extreme categories and saves a lot of space in the presentation of the frequency distribution, 
it can be misleading to the casual observer. In general, it is preferable to use  categories of a 
single width in a frequency distribution of grouped data, unless extreme  outliers (rare values 
at the high or low end of the distribution) make this difficult.

2 The table does not provide population estimates for U.S. residents, but only shows the distribution 
among individual participants in the mobile examinations of the NHANES.

TABLE 3.2 Distribution of SBP Among 7,529 U.S. Adult Residents

SBP CATEGORIES (in mmHG) FREQUENCY PERCENTAGE CUMULATIVE PERCENTAGE

   72–81 12 0.2 0.2

   82–91 199 2.6 2.8

   92–101 868 11.5 14.3

102–111 1,636 21.7 36.0

112–121 1,809 24.0 60.1

122–131 1,315 17.5 77.6

132–141 792 10.5 88.1

142–151 421 5.6 93.7

152–161 235 3.1 96.8

162–171 127 1.7 98.5

172–191 87 1.1 99.6

182–232 28 0.4 100.0

Total 7,529 100.0
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FIGURE 3.3 Systolic Blood Pressure Readings Among 7,529 Adults: 2009–2010 NHANES 

Participants in Mobile Examinations.
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SBP is a ratio-level, quantitative variable. Such variables are often displayed graphi-
cally in the form of a histogram. The histogram is similar to a bar graph in that the heights of 
the histogram bars indicate either absolute or relative frequency (percentage) of occurrence. 
However, as in the frequency distribution of Table 3.2, the histogram combines values into 
intervals, which are designed to give the “best” representation of the overall shape of a dis-
tribution.3 Figure 3.3 shows the histogram for the data in Table 3.2, except that the histogram 
does not combine the extreme categories with mmHg greater than 171 into larger intervals. 
On the other hand, the price to be paid is that the small frequencies in the extreme intervals 
make the bars almost invisible in height. Nonetheless, the histogram conveys at a glance the 
essential shape of the distribution: The SBP readings among 7,529 NHANES participants in 
the mobile examinations form a unimodal distribution that is skewed to the right. That is, this 
distribution shows a single peak (= the mode), with the largest number of participants having 
an SBP between 121 and 132, and it has a longer tail on the right or at the upper values.

In addition to skewness, single or multiple peaks, frequency distributions have other 
characteristics, such as extreme outliers, that may make it more difficult to summarize the 
information in a single statistic. How summary measures are affected by the characteristics of 
a frequency distribution will be shown in the following sections.

 MEASURES OF CENTRAL TENDENCY

Frequency distributions can provide a lot of information about a variable, but they become 
cumbersome instruments when we deal with many variables and want to make comparisons 
involving many groups. Thus, in most instances, we use summary measures that represent the 
distribution of values at a glance. Most important are the measures of central tendency. The 
purpose of a measure of central tendency is to indicate, using a single number, where the bulk 
of the cases are located.4 We commonly use three different measures of central tendency, the 
mode, the median, and the mean.

3 Statistical software like STATA, SPSS, or SAS use algorithms to “optimize” the graphical display of 
histograms, but the interval choices can be overridden by the user.
4 We discuss to what extent this is possible in this chapter.
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The mode is the most frequently occurring value in a frequency distribution.

DEFINITION OF THE MODE

The mode is simply the most commonly occurring value in a frequency distribution of a 
variable. For instance, in Table 3.1 the most frequently occurring value is the value 1, which 
is the numerical code for the category “not at all.” In Table 3.2 the most frequently occur-
ring SBP readings lie within the category “112 to 121 mmHg.” The mode is an appropriate 
measure of central tendency for all kinds of variables: nominal/categorical, ordinal, interval/
ratio, as counting cases for each category does not involve any assumption about the measure-
ment properties of the variables involved. Yet it is worth pointing out that the mode is quite 
an imperfect measure of central tendency, if a distribution is not unimodal or highly skewed. 
For instance, the frequency distribution in Table 3.1 is bimodal, having two high-frequency 
categories at the opposite end of the rating scale. Thus, while it is true that 53.2% of the ratings 
involved the “not at all” category, 41.4% of the ratings were in the “always” category. Clearly, 
in this situation, the mode is an imperfect measure of central tendency. Occasionally, a fre-
quency distribution may not have a unique mode if there are two or more categories that occur 
with the same frequency. On the other hand, the mode is not a bad measure of central tendency 
for the frequency distribution in Table 3.2. Over 60% of all SBP readings have values between 
102 and 131, that is, they fall into the modal category and the two adjacent categories. The 
reason for the representativeness of the mode is that the frequency distribution in Table 3.2 is 
unimodal and has only a moderately skewed distribution.

After rank-ordering all observations or cases in a distribution from those with the lowest 
values or scores to those with the highest, we obtain the median observation by counting 
(n + 1)/2 from either the bottom or the top of the rank-ordered distribution.

If the number of observations is uneven, the median value is the score of the 
(n + 1)/2th observation. If the distribution has an even number of observations, the median is 
the arithmetic mean of the two observations above and below (n + 1)/2.

DEFINITION OF THE MEDIAN

The median is the 50th percentile of a distribution or, what amounts to the same, the 
median is the value that divides a distribution into two halves: below the median there are the 
50% with the lower scores and above the median there are the 50% with the higher scores. As 
this definition implies, the values or scores that make up a variable must at least be capable 
of being rank-ordered, otherwise talking of “lower” or “higher” scores makes no sense. Thus, 
it would not be sensible to talk of the “median marital status,” as the scores assigned to a 
nominal variable like marital status, for example, 1 = married, 2 = single, and so forth, are 
completely arbitrary. By contrast, any ordinal rating scale, interval- or ratio-level variable 
yields scores that can be rank-ordered from lowest to highest values.

As a consequence, we can obtain a median value for such variables. Consider the two 
small frequency distributions of pulse oximetry scores in Table 3.3. Let us first look at the 
sample with 11 observations. We can write out the oximetry values or percentages in rank 



18 I. FOUNDATIONS FOR STATISTICAL THINKING

order from lowest to highest percentage, repeating each value as indicated by the frequency 
in Table 3.3:

92  93  95  95  96  96  96  96  97  97  98

There are n = 11 observations; thus the median observation is the sixth observation: 
(n + 1)/2 = (11 + 1)/2 = 6. That observation has an oximetry score of 96.

Now consider the second frequency distribution with 10 observations:

90  95  96  96  96  (96.5)  97  97  97  97  99

Note that the median value of 96.5 is not part of the distribution itself. Rather, with 10 obser-
vations, the median observation would be the 5.5th observation: (n + 1)/2 = (10 + 1)/2 = 5.5. 
As the 5.5th observation does not exist, we assign the arithmetic mean for the two adjacent 
values of 96 and 97 as the median value: (96 + 97)/2 = 96.5. This value meets our definition 
of the median, as it divides the distribution into two halves, such that 50% of the scores are at 
or above and 50% are at or below the median value.

The median may be employed appropriately as a measure of central tendency for vari-
ables with ordinal or higher levels of measurement, that is, interval- and ratio-level variables. 
As we will see after discussing the mean, the median is not sensitive to outlier value, which 
makes it often a preferred measure of central tendency.

The most common measure of central tendency is the mean. Strictly speaking, a mean 
requires that the variable for which it is computed is measured at the interval level of mea-
surement, because adding scores and dividing them by the number of scores assumes that 
the distances between the scores are defined. Going back to the oximetry readings shown in 
Table 3.3, we find the mean for the sample of 11 observations to be:

x =
+ + + + + + + + + +

=
90 93 95 95 96 96 96 96 97 97 98

11
95 5.

The mean for the sample of 10 observations is:

x =
+ + + + + + + + +

=
90 95 96 96 96 97 97 97 97 99

10
96

TABLE 3.3 Two Distributions of Pulse Oximetry Readings

PERCENTAGE OF ARTERIAL 

HEMOGLOBIN

SAMPLE OF 11 OBSERVATIONS: 

FREQUENCY

SAMPLE OF 10 OBSERVATIONS: 

FREQUENCY

90 1

92 1

93 1

95 2 1

96 4 3

97 2 4

98 1

99 1
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One of the advantages of the mean as a measure of central tendency is that it takes into 
account information from all observations. As it turns out, that is also its disadvantage. Recall 
that the median only involves rank-ordering of all values, but the actual median is either the 
exact value of the (n + 1)/2th observation or it is the mean of the values of the n/2th observa-
tion and the (n/2 + 1)th observation. The size of the extremely high or low values does not 
enter at all into the determination of the median. By contrast, the mean is sensitive to outliers, 
that is, extremely high and low values, particularly in a small data set. Consider the following 
age distribution in a small sample of 10 patients:

18  19  20  20  24  28  28  29  29  85

It is easy to see that the median is equal to 26, as it falls halfway between 24 and 28. Yet the 
mean of this distribution is 30. As the data show, all but one patient is younger than 30, yet the 
mean indicates an “average” age of 30. In this situation, the median is clearly a better measure 
of “central tendency,” as it gives a better indication of the age of most of the patients in the 
sample. While the sensitivity of the mean to a few outliers lessens with increasing sample size, 
the mean can still be a misleading measure of central tendency in highly skewed distributions. 
Relatively few billionaires and millionaires can substantially skew the “average” income; 
this is one reason why the Census Bureau often uses medians to describe the “average” U.S. 
income. It is also a reason why we should avoid the term “average” in the context of describ-
ing a central tendency. The term is ambiguous, and may refer to either the mean or the median.

 MEASURES OF DISPERSION

As important as measures of central tendency are, measures of dispersion are arguably even 
more important in characterizing a distribution of a variable.5 First and foremost, the disper-
sion or spread of a distribution tells us something about individual differences, about the 

5 Measures of dispersion/variation play a central role in statistical estimation and inference.

The mean is defined as follows:

x
n

x
n

i= ∑
1

1

In words: the mean is defined as the sum of all observations for a particular variable divided 
by the number of observations.

Comment: We use the symbol x (read: “x bar”) for the mean. This symbol is customarily 
used to denote the sample mean. Later, we encounter the Greek letter µ as the symbol for the 
population mean.

The summation operator ∑ indicates that the x values, ranging from the first to the 
nth value in the data should be summed. Thus, a more elaborate algebraic expression for the 
shorthand above would be:

x x x x
n

n
=

+ +…+1 2

DEFINITION OF THE MEAN
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inevitable variation in scores that results, whenever we measure attributes of individuals, such 
as height, or characteristics of organizations, such as the number of beds in a hospital or 
annual nursing school budgets. By far the three most common measures of dispersion are 
the range, the interquartile range (IQR), and the standard deviation (including its square, 
the variance).

All of these measures are applicable to quantitative variables, that is, variables with 
interval- and ratio-level measurement properties, but the standard deviation and variance may 
be questionable when applied to ordinal-level variables, as they assume that the distances 
between scale points are reflected in the actual scores. Note that none of these measures can 
be applied to nominal-level variables, as the scores assigned to categories of nominal vari-
ables are arbitrary, which implies that it does not make any sense to talk about “highest” and 
“lowest” scores.

The range is the difference between the highest and lowest score of a particular variable:

Range = maximum score – minimum score

DEFINITION OF THE RANGE

The range is the simplest of all measures of dispersion. We obtain it by subtracting the 
lowest from the highest score. For instance, in the SBP data shown in Table 3.2, the largest 
observed score is 232 and the lowest is 72; thus, the range is 232 − 72 = 160. The range is an 
important metric characterizing a distribution, because it is a measure of the largest observed 
distance between points on a variable, which, by definition, is occupied by the most extreme 
values. This is, of course, also the weakness of the range, because it is a measure of dispersion 
that relies only on two values and disregards the rest. For instance, among the 7,529 NHANES 
subjects, more than 99% had SBP values between 82 and 171, indicating considerably less 
variation than the range measure would indicate. To get a handle on how typical or rare the 
extreme values of a distribution are, we need a better measure of dispersion.

The IQR is defined as the distance between the values or scores occupying the lower and 
upper quartiles.

The lower quartile is found after rank-ordering all observations from lowest to high-
est values and selecting the (n + 1)(¼)th observation; the value or score of this observation 
divides the distribution into the lower 25% versus the higher 75% of values.

The upper quartile is the value of the (n + 1)(¾)th observation; the value or score of 
this observation divides the distribution into the lower 75% versus the higher 25% of values.

IQR = 75th percentile score – 25th percentile score

DEFINITION OF THE INTERQUARTILE RANGE (IQR)

The IQR provides us with more information on the distribution of a variable. The IQR 
refers to the middle 50% of a distribution. It is centered on the median. That is, the interval 
between the lower limit of the IQR and the median contains 25% of the observations, and 
the interval between the upper limit of the IQR and the median contains another 25% of the 
observations.
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We again consider the 11 observations of oximetry values in Table 3.3, rank-ordered from 
lowest to highest value. The median of this distribution is 96:

92  93  95  95  96  96  96  96  97  97  98

There are n = 11 observations; thus the lower quartile observation is the third observation: 
(n + 1)(¼) = (11 + 1)/2 = 3. That observation has an oximetry score of 95. The upper quar-
tile observation is (n + 1)(¾) = (11 + 1)(¾) = 36/4 = 9, which has an oximetry score of 97. 
If the lower and upper quartiles fall between two observations, the difference between the two 
adjacent values is usually apportioned by adding 0.75 times the distance to the lower values 
of the lower quartile and 0.25 times the distance to the lower value of the upper quartile, but 
other rules exist as well.

Having defined the range and the IQR, we are now in a position to construct a box-and-
whisker plot, which nicely summarizes a distribution using five to seven numbers. Figure 3.4 
provides a display of a box-and-whisker plot.

First, concentrate on the graph for the SBP in Figure 3.4. It depicts the box-and- whisker 
plot for the data displayed in the frequency distribution of Table 3.2. The median value 
(50th percentile) for this SBP distribution is 116, depicted in the graph by the line within the 
box. The upper limit of the IQR (75th percentile) is 130, and is depicted in the graph by the 
upper border line of the box. The lower limit of the IQR (25th percentile) is at 106, and is 
depicted in the graph by the lower border line of the box. Thus, the box contains the middle 
50% of the SBP distribution: IQR = 130 − 106 = 24. The whiskers (also known as Tukey6

hinges) are constructed by adding 1.5 × IQR to the 75th percentile value and subtracting 
1.5 × IQR from the 25th percentile value. Thus we get the following value for the upper 
whisker: 130 + 1.5 × 24 = 130 + 36 = 166; the lower whisker is drawn at SBP = 106 – 36 = 70. 
Any SBP value above the upper whisker or below the lower whisker would be considered 
an outlier. As the frequency distribution in Table 3.2 shows, the lowest recorded SBP value 
is 72; thus it is located above the lower whisker, but the distribution has outliers on the 
upper side with a maximum recorded value of 232. In the example of the diastolic blood 

6 Tukey (1977) .
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 pressure (DBP) distribution depicted in Figure 3.4, we have a median value of 66, a 75th per-
centile of 76, a 25th percentile of 58, and an IQR of 76 − 58 = 18. The upper whisker is drawn 
at DBP = 76 + 1.5 × 18 = 103 and the lower whisker is drawn at 58 – 1.5 × 18 = 31. There are 
outliers at both the upper and lower tails of the distribution with extreme values of zero (prob-
ably a recording error) and 134 as the largest recorded value.

Box-and-whisker plots offer a convenient graphical depiction of a frequency distribu-
tion. In Figure 3.4, it is immediately apparent that the distribution of DBP values is more 
or less symmetric, whereas the SBP values are skewed toward the upper tail. We also see 
that most of the DBP values are confined within a narrower range than the SBP values: the 
IQRs are 18 (DBP) versus 24 (SBP) and the ranges of the whiskers are 45 (DBP) versus 
96 (SBP).

Box-and-whisker plots are based on seven (sometimes five) numbers that offer a good 
description of unimodal frequency distributions:

Maximum Value
(75th Percentile Score + 1.5 × IQR)

75th Percentile Score
Median

25th Percentile Score
(25th Percentile Score − 1.5 × IQR)

Maximum Value

Sometimes, the whiskers (in parentheses) are omitted from the box plots resulting in a basic 
five-number summary to characterize a frequency distribution.

SEVEN (OR FIVE) NUMBER SUMMARY OF 
BOX-AND-WHISKER PLOTS

While box plots convey important information about a frequency distribution, by far the most 
important measure of the spread of a distribution of a quantitative variable is the standard 
deviation. As the definition of the standard deviation (and its square, the variance) shows, the 
standard deviation is a summary statistic that takes every value of a variable distribution into 
account. (By contrast, the range and the IQR each only rely on two numbers in the data.) The 
standard deviation thus provides a single index number, which can be interpreted as a measure 
of the average distribution of values around the mean of the distribution. Even though the 
computation of a standard deviation is straightforward, it becomes quickly unwieldy and time 
 consuming, even if one deals with only moderately large study samples. Of course, we use 
computers for this purpose, but it is instructive to work through a simple example to under-
stand what the formulas represent. Table 3.4 shows again a distribution of pulse oximetry 
readings (variable X), but to simplify manual calculations, the data involve only five readings 
from five persons.

 MEASURES OF THE SHAPE OF FREQUENCY DISTRIBUTIONS

For interval- and ratio-level variables, one can also compute measures of skewness, or 
“lopsidedness” versus symmetry, and kurtosis, or peakedness versus spread of a distribution. 
The use of such measures is most appropriate for unimodal distributions, that is, frequency 
distributions with a single peak.
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TABLE 3.4 Computation of Sample Standard Deviation for Five Pulse Oximetry Readings 
(X = Percentage of Arterial Hemoglobin)

(1) (2) (3) (4)

ID index (i = 1 to 5) Xi Xi – X
–

(  Xi – X
–  

)2

1 92 92 – 94 = −2 (–2)2 = 4

2 93 93 – 94 = −1 (–1)2 = 1

3 94 94 – 94 = 0 02 = 0

4 95 95 – 94 = 1 12 = 1

5 96 96 – 94 = 2 22 = 4

x
X

n
i

= =
+ + + +

=∑
( )92 93 94 95 96

5
94 s

X X
x

i2
2

4

4 1 0 1 4

4
2 5=

−
=

+ + + +
=∑

( ) ( )
.

s sx x= = =
2 2 5 1 58. .

Notes:

1.  Column (2) of Table 3.4 contains the deviations of each X-value from the mean. By necessity, the sum of the 

deviations from the mean equals zero.

2.  The squared deviations from the mean in column (4) are either positive or zero: they cannot be negative. Likewise, 

both the variance and the standard deviation are equal to or greater than zero: s
x
2 ≥ 0 and s

x
 ≥ 0.

3.  The standard deviation is a summary statistic that measures the spread of values around the mean in the original 

measurement units. By contrast, the variance is a measure of the average squared deviations from the mean.

4.  Like the mean, both the standard deviation and the variance can be strongly infl uenced by outliers, particularly in 

small samples. For instance, if we replace the lowest value in the above example (92) with 72, we get a variance 

of 102.5 and a standard deviation of 10.1.

The sample standard deviation of a variable x, denoted either as sx (or SDx), is defined as 
follows:

s x x
nx
i

=
−

−
∑

)2

1

In words: the standard deviation is the square root of the variance sx
2 and is a measure of the 

average deviation of the values of a variable x from its mean x.
Its square is the variance (the expression under the square root), which is the average 

squared deviation:

s x x
nx
i2

2

1
=

−

−
∑

( )

Comment: Notice that the denominator of the sample standard deviation (and variance) equals 
n − 1 and not n. We divide the sample value by n − 1 (known as the “degrees of freedom”), 
because there is a mathematical proof (see Appendix A for further explanation) that divid-
ing the sample variance by n − 1 gives us an unbiased estimate of the population standard 
deviation. The population variance uses N as its denominator and is usually symbolized by the 
Greek letter σ   2x (small sigma) instead of s.

σ x
i xx μ

N
2

2

=
−

∑
( )

DEFINITIONS OF THE STANDARD DEVIATION 
AND VARIANCE
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The definition/formula of the skewness statistic shows that the numerator, containing 
the deviations of individual values from the mean, is raised to the third power. Thus, a prepon-
derance of large positive deviations, raised to the third power, would lead to a skewness value 
that exceeds zero, indicating a tendency toward a right-hand longer tail.7 A preponderance 
of large negative deviations from the mean raised to the third power would imply a distribu-
tion with a longer left-hand tail. A skewness value of zero indicates perfect symmetry around 
the mean.

The sample skewness of a variable x is defined as follows:

Skewness n
x x

s

i

x

=

−∑( )

( )

1 3

3

In words: the skewness is defined as the ratio of the “third moment” divided by the standard 
deviation, sx, raised to the third power. The third moment is a measure analogous to the vari-
ance, but the sum of the deviations from the mean is raised to the third power.

The sample kurtosis of a variable x is defined as follows:

Kurtosis n
x x

s

i

x

=

−∑( )1 4

2

In words: the kurtosis is defined as the ratio of the “fourth moment” divided by the variance, 
sx

2. The fourth moment is a measure analogous to the variance, but the sum of the deviations 
from the mean is raised to the fourth power.

DEFINITIONS OF SAMPLE SKEWNESS AND KURTOSIS

The definition/formula for the kurtosis statistic shows that, in the numerator, both posi-
tive and negative deviations from the mean are raised to the fourth power. This means that 
the larger the deviations from the mean in either direction, the larger the kurtosis value. Thus, 
larger kurtosis values indicate a distribution with a wider spread or thicker tails as well as a 
sharper, thinned-out peak, and smaller kurtosis values indicate a distribution with a narrower 
spread, thinner tails, and a more rounded peak.

As we will see in Chapter 5, both skewness and kurtosis can be employed to examine 
how closely a given frequency distribution resembles the normal distribution.

For a graphical illustration of skewness and kurtosis, take a look at Figures 3.5 and 
3.6. In Figure 3.5, we see two distributions of baby-weight data (both samples of size 800) 
that differ primarily in terms of their skewness. The left distribution is almost symmetric and 
resembles the shape of a normal distribution (skewness value: 0.1), and the right distribution 
has a substantial right-leaning tail (skewness value: 1.1).

The skewness of a distribution can also be inferred from the relative values of the mode, 
median, and mean. We already saw that the mean is sensitive to extreme values or outliers. 

7 Recall that a squared number is always positive, for example, (−2)2 = (2)2 = 4, but a number raised to 
the third power changes its sign with the base number, for example, (−2)3 = −8, (2)3 = 8; in addition, 
as the base number increases, the number raised to the third power increases exponentially; thus, large 
positive or negative outliers would have a big effect on the skewness statistic, for example, (−3)3 = −27, 
(5)3 = 125, and so forth.
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Skewness.

This also influences the magnitude of the mean relative to the median and mode. As a general 
principle, the following relationships hold:

mode = median = mode (if distribution is symmetric, e.g., normal distribution);

mode < median < mean (if distribution is skewed to the right; panel 2, Figure 3.5);

mode > median > mean (if distribution is skewed to the left).

Figure 3.6 shows a left-hand distribution similar to that in Figure 3.5, but this time the 
emphasis is on the kurtosis value of 3.3 (a normal curve has a kurtosis value of 3.0). In the 
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right-hand panel, you can see an altered distribution with a kurtosis value of 2.0. It is flatter 
than the normal curve and both tails of the distribution are thicker, meaning they contain a 
larger proportion of cases than what would be expected, if the distribution were normal.

 SUMMARY

1. In general, before summary statistics are computed, it pays to look at the frequency 
distribution as well as bar charts or histograms and, specifically, look for outliers 
and bimodal or multimodal distributions. The latter may lead one to question the 
appropriateness of certain measures of central tendency or dispersion.

2. As a general rule, you can always use a measure/statistic that is appropriate for a lower 
level of measurement and compute it for a variable with a higher level of measurement. 
There are sometimes good reasons to do so. This is so because the appropriateness 
of a measure of central tendency or dispersion does not only depend on the level of 
measurement of a variable but also the shape of its frequency distribution. As we have 
seen, ordinal measures like medians and the IQR are not sensitive to outliers (because, 
strictly speaking, an outlier requires the assumption of distance!), whereas interval/ratio-
level measures are. Thus medians and the IQR are often used to characterize quantitative 
variables, even though means and standard deviations can be computed.

3. For all of these univariate statistics, we can also estimate the parallel population statistics; 
but that requires an understanding of statistical inference and the probability models on 
which it is based, a topic to which we turn in the next chapter.

 EXERCISES

1. The following data show 10 primary care patient depression scores based on the 
Center for Epidemiologic Studies-Depression questionnaire instrument, which produces 
standardized scores for depressive symptomatology: 5, 7, 8, 9, 11, 12, 13, 16, 18, 22. 
Using a hand calculator
(a) Compute the mean.
(b) Compute the median.
(c) Compute the standard deviation.
(d) Compute the IQR.
(e)  Replace the highest value—22—with a new highest value—38, and repeat the 

computations in (a) to (d).
(f)  What did you notice, when comparing the results using 22 as the most extreme score 

versus using 38 as the most extreme score?

2. Suppose you have three distributions of DBP scores, each with a mean of 87:
Distribution A: 80, 82, 84, 86, 88, 90, 92, 94
Distribution B: 78, 80, 82, 84, 90, 92, 94, 96
Distribution C: 78, 79, 80, 81, 82, 98, 99, 99
(a)  Rank-order the standard deviations of the three distributions by magnitude before 

actually calculating them; then provide your reasoning for the chosen rank order.
(b)  Based on visual inspection, which of the three distributions is skewed? Provide the 

reasoning for your answer.
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3. Total blood cholesterol (TBC) is measured in terms of milligram per deciliter (mg/dL). 
Suppose, you read about a study sample in which the standard deviation of TBC is 40 and 
the IQR is 30. What is the likely reason for this difference?

4. Suppose the mean age of a sample of eight patients is 40, with ages ranging from 
20 to 60. Is it possible (yes or no) that
(a) The standard deviation of age in this sample equals zero?
(b) The standard deviation of age equals 30?

Provide reasoning for your answers.
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CHAPTER 4

 Probabilities

So far, we have discussed descriptive statistics, that is, statistics that are used to summarize 
the information contained in the (sample) data at hand. However, in clinical research we 
are almost always interested in making inferences beyond the study sample at hand. When 
you read about a study conducted at a particular hospital or clinic, you are usually not inter-
ested in the individual study participants themselves (as they are not your patients), but you 
read the study in order to learn about an intervention or observation that may be relevant to 
your patients. In other words, you are interested in drawing inferences beyond the particular 
study sample at hand, which means you are interested in generalizing beyond the data of the 
study report. How can this be done?

 PROBABILITY

If we want to draw inferences beyond the data at hand, we need to know how well the 
sample data “reflect” the target universe we are interested in. For example, if a drug trial 
shows that an antihypertensive drug is effective among 90% of the study participants, we 
need to know how likely it is that this success rate can be repeated with a different sample 
of patients. As we already discussed in Chapter 1, variability in individual human beings is 
substantial; that fact alone should caution us that the results from any single study, however 
well executed, will reflect idiosyncrasies unique to the study participants. Furthermore, 
there are many other sources of variability and error. For instance, it is almost impossible 
to avoid all measurement errors: Just think of measuring a patient’s blood pressure; it can 
vary depending on equipment, correct size of a pressure cuff, positioning of patient, patient 
anxiety, or activities such as recent smoking or drinking of caffeine. So it is unlikely that 
we would have obtained exactly the same results if patient observations had been made 
at different times, if a different sample of study participants had been chosen, or different 
measurement techniques or tests had been employed. Because of this inherent randomness 
of all data, we need a probability model that allows us to make decisions about how likely 
or unlikely particular sample observations are, given the prevalence of such observations in 
the relevant target population.
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We call an event “random,” if an individual outcome of this event cannot be predicted.
However, we may well be able to predict the proportion of times that a certain outcome 

will occur “in the long run.” (Note: probabilities vary between 0 and 1.)
When we talk about the “probability” of an event, we refer to a statement about how likely 

it is (what are the chances?) that the event will occur, given our current state of knowledge.

DEFINITION OF RANDOMNESS AND PROBABILITY

Probabilities can be stated with or without conditions attached to them. For instance, 
we may want to know the chances that a U.S. resident will be infected with the flu during 
the period from January to April in a particular year. Or we may want to know a conditional 
probability: Given that a person has received a flu vaccine in October or November, what are 
the chances that this person will come down with severe flu symptoms between January and 
April? How would one answer such a question?

In principle, when it comes to calculating probabilities, we have two ways of doing it:

1. We sometimes use past empirical evidence to estimate the probability of an event 
occurring in the future. (Notice that the legitimacy of such an inference depends on 
the assumption that the process that produced the event in the past has not changed 
and will hold at least in the near future.)

2. Alternatively, we can use a priori reasoning and mathematics to come up with an 
answer based on a few assumptions and rigorous derivations.

 Probabilities Based on Past Empirical Evidence

Suppose a couple wanted to know before a pregnancy has commenced what the probabil-
ity is of having a boy. Consulting a U.S. Vital Statistics report (www.cdc.gov/nchs/data/nvsr
/nvsr53/nvsr53_20.pdf  ), you would find that in 2002 the sex ratio for firstborn children 
was 1,048.1 This tells us that, for every 1,000 girls born in the United States, there were 
1,048 boys born. We can convert this into a probability: The probability of having a boy 
is: P(Boy) = 1,048/2,048 = .512.2 As the historical data show, a similar sex ratio is observ-
able in many countries, but it has recently declined somewhat. Thus, if all we know is that 
a U.S. woman is about to become pregnant, it is a reasonable guess to say that the probabil-
ity that she will bear a boy is P(Boy) = .512 and the probability that she will have a girl is 
P(Girl) = 1 − P(Boy) = 1 − .512 = .488.

As it turns out, these probabilities do vary a little bit with birth order: The sex ratio declines 
somewhat if a woman bears multiple children, for example, from 1,055 for a first child to 1,040 
for a third child. If we convert the last two sex-ratio numbers into probabilities, we get so-called 
conditional probabilities: The probability of having a boy, given that it is a firstborn child, can 
be written as: P(Boy|1st born) = 1,055/2,055 = .513; the probability of having a boy, given that 
it is a thirdborn child can be written as: P(Boy|3rd born) = 1,040/2,040 = .510. The sex ratio var-
ies also a little bit by race/ethnicity, with non-Hispanic Whites having a slightly higher sex ratio 

1 The sex ratio is defined as the number of male births divided by the number of female births multiplied 
by 1,000.
2 As we have a ratio of 1,048 boys to 1,000 girls, the proportion of boys among all births is 1,048/
(1,048 + 1,000).
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(1,054) than non-Hispanic Blacks (1,032). Overall though, given the fairly stable sex ratios across 
different groups, we cannot improve our estimates substantially knowing the birth order or the 
race of the mother. In more technical language: In this case, the conditional probabilities are 
fairly similar to the overall or unconditional probability of a male or female child being born.

There is also very little evidence that the sex of prior babies to the same mother (say, 
the first two births were girls) changes the probability of a particular sex in subsequent births: 
The sex ratio for the third child born to the same woman, given that the first two births were 
boys, remains at 1,040.

 Probability Estimates Based on Mathematical (a Priori) Reasoning

Suppose you randomly select a sample of four hospital patients from a total “population”3 
of eight hospital patients with the following characteristics: Five of these patients have heart 
disease (HD) and three have cancer (CNC). What is the probability that all the patients in your 
sample of four have HD? We can reason as follows.

If we randomly draw the first patient from the hospital population using a simple ran-
dom sampling procedure, wherein each patient has the same chance of being selected into the 
sample, the chances are 5/8 = 0.625 that the first patient has HD. After the selection of the 
first patient with HD, there remain four HD and three CNC patients in the population. That 
means that the chances of selecting again an HD patient from the remaining population are 
4/7 = 0.571. With the remaining population now having three HD and three CNC patients, the 
chances of selecting a third HD patient from that population are 3/6 = 0.5. Finally the prob-
ability of selecting yet another HD patient from the remaining population is 2/5 = .4. What 
we have done here is to use a sampling process known as sampling without replacement: 
After each selection, the probability calculations were exclusively based on the distribution of 
cases remaining in the population, and are not influenced by any of the prior selections. Thus, 
we can use the multiplication rule of probabilities: When two or more events are independent 
of each other, we can multiply their probabilities to obtain an overall probability for all of 
the events occurring together. Here we want to know the probability of selecting a sample of 
four HD patients from a population of five HD and three CNC patients. The answer is that 
P(4HD) = (5/8) × (4/7) × (3/6) × (2/5) = .071 or 7.1%.

As this example shows, we often can calculate the expected probabilities of events 
occurring, if we can make reasonable assumptions about the process that generated the data. 
These assumptions are incorporated into our probability model. Here we used simple random 
sampling without replacement from a larger population. The full probability model would 
enumerate all possible sample outcomes (or “events”) and would attach a probability value 
to each of these outcomes. Together, the probabilities of all possible outcomes add up to 1, 
because it is certain that one of the outcome events will occur. For instance, in addition to the 
event described above (all four sample members have HD), there are other outcome possibili-
ties (such as the first three randomly chosen members having CNC). Using our probability 
model, we can make decisions about how likely or unlikely certain sample observations are.

The set of all possible outcomes or events constitutes the sample space. The probability model 
specifies the probabilities attached to each possible event in the sample space.

DEFINITION OF SAMPLE SPACE AND PROBABILITY MODEL

3 The small numbers are for illustrative purposes only.
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 Elementary Probability Rules

As we have already seen, a probability is a number between (and including) 0 and 1. More 
formally, we can write about the probability of an event A:

0 ≤ P(A) ≤ 1

The sum of the probabilities of all possible events in the sample space (S) equals 1. P(S) = 
P(A) + P(B) + … + P(Z) = 1, if events A, B, …, Z are mutually exclusive (disjoint) and 
account for all possible outcomes or events. The probability of an event not occurring equals 
1 – the probability of the event occurring: P(~A) = 1 – P(A).

A and B: Disjoint events

P(A)

e.g., probability 

of drawing a 

Queen in a 

set of 52 cards

P(B) 

e.g., probability 

of drawing a 

King in a 

set of 52 cards

P(~A + ~B) = 1 – P(A) – P(B) [P(S) = 1]

In order to discuss further probability rules, we must first consider if the events of inter-
est are independent or not.

Two (or more) events are considered independent if the probability of event A remains the 
same, regardless of the occurrence of event B.

DEFINITION OF INDEPENDENCE

Consider the following examples: Suppose the probability that a U.S. resident in the age 
group 50 to 59 gets the flu, P(F), in a given year is .06 or 6%. This probability is about the 
same for men and women: P(F|f) = P(F|m). Thus, the event “catching the flu and developing 
flu symptoms” is independent of gender in this age group. Another way of looking at this is: 
Knowing that an adult between 50 and 59 years of age is male or female does not improve 
our prediction of who will catch the flu in a given year. Now suppose that parents of school 
children (PSC) are three times more likely to get the flu in a given year than other adults of the 
same age who do not live with children in school: P(F|PSC) = .09 and P(F|~PSC) = .03, then 
parental status and the probability of catching the flu in a given year would be related; they 
would not be independent of each other.

If two or more events are independent, then we can ascertain the probability of their 
joint occurrence using the multiplication rule:

P(A and B and C) = P(A) × P(B) × P(C)

P(A and B and C) refers to the joint occurrence of events A and B and C. Earlier, we saw that 
the probability that a pregnant American woman will have a girl is .488. As the probability of 
having a girl for one woman (A) is independent of the probability of having a girl for another 
woman (B), we can calculate the probability that three randomly chosen pregnant women all 
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have a girl using the multiplication rule: P(A) × P(B) × P(C) = .488 × .488 × .488 = .4883 = 
.116. The chance that three randomly chosen pregnant women all give birth to a girl is less 
than 12%! For five women, that chance is less than 3%.

Many events are not independent, that is, the probability of their occurrence changes, 
given that some other event or condition has already occurred. We already alluded to this 
dependence in the example of parental status and the probability of catching the flu. A classic 
example of conditional probability is the change in the mortality risk conditional upon age. 
For instance, the unconditional probability of dying from HD in the United States during 
2009 was .001952 (CDC Vital & Mortality Statistics).4 In other words, among the estimated 
307,007,000 U.S. residents in 2009, some 599,413 individuals (195.2 per 100,000) died of 
HDs. The data also show that the conditional probability of dying from HD, given that a U.S. 
resident was between 45 and 64 years old, was 82.8 deaths per 100,000 and 431.7 per 100,000 
for a U.S. resident between 65 and 74 years of age.

AGE 
GROUPS 

U.S. 
POPULATION P(A) DEATHS FROM 

HEART DISEASES P(A and B) P(B|A)

45–64 44,592,000 .14525 36,922 .0001203 .000828
65–74 20,792,000 .06772 89,759 .0002924 .004318
Total 307,007,000 1.00000 599,413 .0019524 .001952

In 2009, the Census Bureau estimate of the total U.S. resident population was 307,007,000, 
with 44,592,000 persons between the ages of 45 and 64. If one had drawn a person randomly 
from among all U.S. residents of 2009, the probability of such a person being 45 to 64 years 
old would be P(A1) = .145, as 14.5% of the 2009 U.S. resident population was in that age 
group (A1). The joint probability of a person in that age group (45–64) dying from HD was: 
P(A1 and B) = .0001203 (= 36,922/307,007,000). As we know the overall probability of event 
A and the joint probability of events A1 and B, we can obtain the conditional probability of the 
event B, given that A is true:

P(B|A1) = P(A1 and B)/P(A1) = .0001203/.14525 = .00828

Labeling the “event” that a person of age 65 to 74 as A2, we obtain the conditional probability 
of dying from an HD in that age group as:

P(B|A2) = P(A2 and B)/P(A2) = .0002924/.06772 = .00438

CONDITIONAL (AGE-BASED) PROBABILITIES OF 
DYING FROM HEART DISEASE IN U.S. RESIDENT 

POPULATION OF 2009

Formally, conditional probabilities can be computed as follows:

P(B|A) = P(A and B)/P(A),

where P(B|A) is the probability that an event B occurs, given that event A has occurred, 
P(A and B) is the probability of the joint event (A and B), and P(A) is the probability of 

4 Because the probabilities (or proportions) of people dying from a specific disease tend to be small, the 
convention is to report the number of deaths per 100,000. In this case, this would be 195.2 deaths per 
100,000 U.S. residents.
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event A. In our example, the event A refers to being a member of a specific age group and the 
event B refers to deaths from HDs.

Two more basic probability rules need to be considered here, the addition and the gen-
eral multiplication rules. The addition rule can be formally stated as follows:

P(A or B) = P(A) + P(B) – P(A and B)

Suppose, the probability of suffering hypertension is P(A) = .3, the probability of having 
arthritis is P(B) = .05, while the joint probability of having both hypertension and arthritis is 
P(A and B) = .025. From this it follows that the probability of having hypertension or arthritis 
is P(A or B) = .3 + .05 – .025 = .325. Notice, we subtract the joint probability P(A and B) 
from the sum of the probabilities of hypertension and arthritis, because the two probabilities 
overlap, that is, they involve, in part, the same individuals. In the case of two disjoint events 
(see above), the addition rule simplifies to: P(A or B) = P(A) + P(B), if P(B|A) = P(A|B) = 0. 
If, in our example, no person with hypertension has arthritis [P(A|B) = 0] and no person 
with arthritis has hypertension [P(B|A) = 0], then we can simply add the two unconditional 
probabilities to get the joint probability.

P(A or B) = P(A) + P(B) – P(A and B)

P(A

and B)

Finally, we consider the general multiplication rule. It can be stated as follows:

P(A and B) = P(A)P(B|A)

Earlier we showed that the conditional probability of dying from HD, given that a U.S. resi-
dent was between 45 and 64 years old, was P(B|A) = .000828, while the probability of being 
between 45 and 54 years old in 2009 was P(A) = .14525. Thus the probability of a death 
from HD among persons aged 45 to 64 was P(A and B) = .000828 × .14525 = .0001203.

Notice that the general multiplication rule simplifies to the special multiplication rule 
in the case of independent events, as independence implies that P(B|A) = P(B). If the prob-
ability of dying from HD were the same regardless of age, then all conditional probabilities 
P(B|Ai) would be equal to the unconditional probability P(B) and the general multiplication 
rule  simplifies to the special multiplication rule for independent events:

P(A and B) = P(A)P(B|A) = P(A) × P(B)

 Bayes’ Theorem

When we employ screening tests, such as mammography or the prostate-specific antigen test, 
we judge their effectiveness using information about the accuracy of the tests as well as the 
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incidence of the disease in the target population. The accuracy of a screening test is usually 
summarized in two numbers: its sensitivity and its specificity.

Sensitivity is defined as the proportion of positive results, given that the tested person 
has the disease. This is a conditional probability of having a positive test result, given the 
person has cancer (C), which can be expressed more formally as: P(+|C). Based on informa-
tion from the National Cancer Institute (NCI, 2013), the overall sensitivity of mammography 
is approximately 79% (it is lower in younger women aged <49 and higher in older women). 
Thus, we write: P(+|C) = .79.

Specificity can be expressed as the probability of a negative test result, given that the 
tested person is free of the disease: P(−|~C).5 The average specificity for mammography is 
approximately 90% (again, it is lower in younger and higher in older women). More formally, 
P(−|~C) = .90.

Based on the Surveillance Epidemiology and End Results data of the Centers for Disease 
Control and Prevention (SEER, 2013), the prevalence of breast cancers among women aged 
40 to 49 was 904 per 100,000. Thus, the probability that a woman in this age group has breast 
cancer is P(C) = .00904. What we want to know about the screening test is, of course, this: 
What is the probability that a woman, whose test comes back positive, actually has breast 
cancer: P(C|+)? Bayes’ Theorem provides the answer:

P C
P C P C

P C P C P C P C
|

|
| |

+( ) =
+( )

+( ) ( ) + +( ) ( )

× ( )
[ × × ~ ]

,

where P(C) = the probability of having breast cancer, P(~C) = the probability of not having 
breast cancer, P(+|C) = the probability of a positive mammography among women who have 
breast cancer, and P(+|~C) = the probability of a positive mammography among tested women 
who do not have breast cancer.

BAYES’ THEOREM

This formula looks forbidding, but we can decompose it step by step:

1. In the numerator on the right-hand side, we have: P(+|C) × P(C), that is, the 
conditional probability of a positive test result, given that a woman is between 
40 and 49 years old, which is multiplied by the prevalence of cancer in that age 
group. As P(+|C) = .79 and P(C) = .00904, we get .00714 for the proportion of 
women with positive mammography tests. In other words, if mammography is 
performed on 100,000 women in this age group, some 714 of these women would 
have a positive test result and would have the cancer (“true positives”).

2. The denominator contains two expressions, with the first being the same as the 
numerator. The second expression after the plus sign, P(+|~C) × P(~C), is the 
product of two terms: the conditional probability of a positive test, given that the 
tested person does not have cancer, P(+|~C), times the probability that a woman 
aged 40 to 44 does not have cancer, P(~C). We already know the specificity of the 
average mammography test: P(−|~C) = .90. As among all tested women, who do 

5 The symbol “~” stands for “not” and “~C” refers to “not having cancer.”
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not have breast cancer, the test result from a mammography is either negative or 
positive, P(+|~C) must be 1 − P(−|~C), which is 1.00 − .90 = .10 in this example. 
Thus, 10% of the women, who do not have breast cancer, will have a positive 
mammography. Finally, as we know the prevalence of breast cancer among 
women aged 40 to 49 to be P(C) = .00904, P(~C) must be equal to 1 − P(C) or 
1 − .00904 = .99096. In short, among 100,000 women aged 40 to 49, 99,096 would 
not have breast cancer. However, as the mammography test has a specificity of 0.90, 
it will return 10% positive test results among these 99,096 women without breast 
cancer, which amounts to 9,910 false positive test results. Now, we can see that 
Bayes’ Theorem gives us the desired answer:

P C
P C P C

|
|

+( ) =
+( ) × ( )

[P(+|C) × P(C) + P(+|~C) × P(~C)]

      
=

+

=
× .

[ . × . × . ]
.0.79 0 00904

0 79 0 00904 0 10 0 99096
0 067

In short, if a woman aged 40 to 49 receives a positive mammography result, the probability 
that she actually has breast cancer is only 6.7%. If you go back to the formula of Bayes’ 
Theorem, you will see that it is a ratio of two probabilities: the probability of having a posi-
tive mammography if you have breast cancer, over the probability that all tested women have 
a positive mammography regardless of whether they have the disease or not. In other words, 
it is the ratio of true positives over all positive test results. This can be seen even better in the 
following 2 × 2 table that shows the mammography data standardized to 100,000.

Table 4.1 shows that out of 100,000 women between 40 and 49 years screened for 
breast cancer, we can expect a total of 10,624 positive test results. Of these, 714 would be true 
positive, which amounts to 6.7%. This number is also known as the positive predictive value 
(PPV). What Bayes’ Theorem allows us to do is to convert anterior probabilities, for example, 
the probabilities of having positive test results given the presence or absence of disease, into 
posterior probabilities, that is, the probabilities of having a disease given a positive test result.

 SUMMARY

In this chapter, we have discussed basic probability rules and some principal approaches to 
estimating probabilities. In the following chapter, we put some of this reasoning to use when 
we discuss one of the most fundamental concepts in statistical inference: the sampling dis-
tribution. As we will see, sampling distributions are probability distributions that enumerate 
all the different ways in which a study sample could be selected from a target population or 
all the different ways in which study participants could be randomly assigned to treatment or 

TABLE 4.1 Example of Mammography Screening Test Results for Women Aged 40 to 49

MAMMOGRAPHY TRUE STATE OF AFFAIRS TOTAL

HAS BEAST CANCER NO BREAST CANCER

Positive 714 9910 10,624

Negative 190 89,186 89,376

Total 904 99,096 100,000
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control groups. It is this information against which we judge how likely or unlikely certain 
study outcomes are as a result of mere chance events, such as random sampling. This will give 
us a basis for deciding whether or not study results should be taken seriously.

 EXERCISES

1. A box contains 50 balls, 30 of which are red and 20 of which are white.
(a)  What is the probability of drawing 5 red balls on 5 draws, if you draw each ball 

separately and replace it (put it back into the box) every time after the drawing?
(b)  What is the probability of drawing 5 red balls on 5 draws, if you do not replace the 

balls, but draw the balls successively without replacement?

2. Suppose, in the U.S. population, 15% of adults are “heavy drinkers” (more than 3 drinks 
daily for men, more than 2 drinks daily for women). Suppose also that 10% of such 
heavy drinkers develop liver cirrhosis over a lifetime, while only 1% of the other adults 
(including moderate drinkers and abstainers) develop liver cirrhosis over a lifetime. 
What would be the probability that any U.S. adult develops liver cirrhosis over a 
lifetime?

3. Three persons each throw a die independently. What are the chances that:
(a) All three persons throw a 5?
(b) Only two out of three persons throw a 5?
(c) Only one person throws a 5?
(d) Nobody throws a 5?
(e) Two persons throw a 5 and one person throws a 6?

4. Suppose, the probability of catching the flu in a given year is .06 and the probability 
of experiencing pollen allergies in a given year is .3. Does it follow that the probability 
of experiencing both the flu and the pollen allergies is P(F) × P(P) = .06 × .3 = .018 
or 1.8%?

5. Suppose, the probability of hypertension among underweight persons (body mass 
index [BMI] < 18.5) equals .025, among normal weight persons (18.5 ≤ BMI < 25) it is 
.05, among overweight persons (25 ≤ BMI < 30) it equals .15, and among obese people 
(30 ≤ BMI) it is equal to .35. What, if anything, can we conclude about the overall 
probability that a person is hypertensive?

6. A screening test has a sensitivity of 0.95 and a specificity of 0.98. The disease the 
screening test is used to test for has a population prevalence of 500 in 100,000 or 0.005. 
What is the probability that a person who tests positive on this screening test actually has 
the disease?

7. Suppose, the probability of having a stroke in a given year among older adults (80+) is 
.02, the probability of spending at least one night in a hospital is .2, and the conditional 
probability of ending up in the hospital, given that an older adult had a stroke, is .8.
(a)  What is the probability of an older adult to have a stroke and end up in a hospital 

overnight?
(b)  What is the probability of an older adult to not have a stroke and end up in a hospital 

overnight?
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(c)  What is the probability of an older adult to either have a stroke or end up in a 
hospital, but not both?

(d)  What is the probability of an older adult to neither have a stroke nor end up in a 
hospital overnight?
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CHAPTER 5

 Logic of Statistical Inference: The Sampling 
Distribution and Signifi cance Tests

 STATISTICAL INFERENCE AFTER RANDOM SAMPLING 
OR RANDOM ASSIGNMENT

As mentioned in the last chapter, using mathematical probability models to draw infer-
ences from samples about populations can only be done, if the sample selection is based 
on some type of probability or random selection procedure. Depending on the complexity 
of the  sampling plan and the particular statistical estimator1 in question, the mathematics of 
statistical inference can be quite involved. However, the basic principles are not that compli-
cated. Furthermore, understanding the underlying logic of statistical inference is essential for 
interpreting statistical output that is intended to provide information about particular target 
populations on the basis of observed sample values. Likewise, statistical output that reports 
on the results of a clinical intervention study, that is, a clinical trial, entails inferences that go 
beyond the particular data set. As it turns out, the statistical concepts involved are the same, 
whether we draw inferences after random sampling from a larger target population or random 
assignment in a clinical trial. This should not be surprising, as both procedures are based on 
the random selection of subjects, cases, or observations from a larger “population” of subjects, 
cases, or observations.

It is worth noting, though, that the purpose of statistical inference is different in the two 
situations. When we draw a random sample from a larger target population, we are usually 
concerned with the question of how well the sample represents this larger population. When 
we conduct a clinical trial, we select subjects from the study sample comprising all enrolled 
individuals and assign them randomly to intervention and control groups. The purpose of such 
random assignment is to create comparison groups with similar background characteristics 
so that we can draw causal inferences about the effectiveness of an intervention. The key 
concept that provides the link between the sample data and the target population or the link 
between a particular random assignment and inferences about the causal effectiveness of an 
intervention is that of the sampling distribution.

1 A statistical estimator is a formula used to estimate a population parameter based on observed sample 
values. For example, we use the sample mean (the sample statistic) to estimate the population mean (the 
population parameter). A particular sample value for the estimator is called a sample estimate.
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 THE SAMPLING DISTRIBUTION

One of the most fundamental concepts in all of statistics is the sampling distribution. It is 
the sampling distribution of a test statistic that bridges the divide between particular sample 
data on the one hand and generalizable estimates on the other. Given its importance, we dem-
onstrate how a sampling distribution can be derived in the case of a very simple random 
assignment process. This will shed light on the concept of a sampling distribution and show 
you how this concept is intimately connected to other fundamental statistical concepts such as 
significance testing and confidence intervals.

For the purposes of this discussion, we offer a somewhat unrealistic example of a physi-
cal activity intervention designed to lower blood pressure (BP) among eight hypertensive 
individuals. Table 5.1 shows the diastolic blood pressure (DBP) of these hypertensive indi-
viduals before any intervention takes place. In the simplest case of a clinical trial, we would 
randomly assign four of these subjects to an intervention group that participates in the physi-
cal activity intervention, while the remaining four subjects would be enrolled in a control 
group, which may involve some kind of group activity that is not physically demanding. As it 
turns out, there are 70 distinct ways of assigning four out of eight subjects to two groups 
(intervention and control).2

Let us take a look at a few particular random assignments. Suppose our random assign-
ment results in selecting individuals A, C, D, and E into the intervention group. This implies 
that individuals B, F, G, and H end up in the control group. In that case, the mean DBP score, 
before any intervention is undertaken, would be equal to (103 + 101 + 100 + 98)/4 = 100.5 
in the intervention group and (102 + 97 + 96 + 95)/4 = 97.5 in the control group. Thus, this 
particular random assignment outcome would result in a mean DBP difference between the 
intervention and control groups of 3 (=100.5 − 97.5) before the intervention takes place. Of 
course, the random assignment process could just as likely have selected individuals C, E, 
F, and H into the intervention group and individuals A, B, D, and G into the control group. 
In that case, the mean DBP difference between the intervention and control groups, before 

2 The number of distinct combinations can be computed using the following formula: n!/(n1!n2!), where 
n stands for the total sample size, n1 for the number of subjects in one of the comparison groups, say the 
intervention group, and n2 stands for the number of subjects in the other (control) group. The symbol “!” 
is read as “factorial” and is expressed as the following product: n × (n − 1) × (n − 2) × … × 2 × 1. For 
the data in Table 5.1, the formula amounts to: 8!/(4!4!) = (8 × 7 × 6 × 5 × 4 × 3 × 2 × 1)/(4 × 3 × 2 × 1 × 
4 × 3 × 2 × 1) = 40,320/(24 × 24) = 70.

TABLE 5.1 Diastolic Blood Pressure (DBP) 
Among Eight Hypertensive Individuals

INDIVIDUAL DBP

A 103

B 102

C 101

D 100

E 98

F 97

G 96

H 95
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TABLE 5.2 Frequency Distribution of Mean Differences Resulting From 70 Possible 
Random Assignments of Eight Hypertensive Individuals (Data in Table 5.1)

Mean difference −5.0 −4.0 −3.5 −3.0 −2.5 − 2 −1.5 −1 −0.5 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 5.0

Frequency 1 1 2 3 4 4 4 6 6 8 6 6 4 4 4 3 2 1 1

the intervention takes place, would be 97.75 − 100.25 = −2.5. As there are 70 distinct ways 
of assigning these 8 individuals to two groups with 4 members each, the random assignment 
process can maximally result in 70 distinct mean differences. However, some of the random 
assignments, though involving different sets of individuals, yield the same mean difference. 
As it turns out, for the data in Table 5.1, there are only 19 distinct mean differences that would 
be generated with the 70 distinct random assignments. We can present the results in a fre-
quency distribution (Table 5.2).

If we divide the occurrence of each unique mean difference by the number of all pos-
sible unique random assignments, we get a probability distribution as depicted in Figure 5.1. 
This probability distribution is the sampling distribution of the mean difference in DBP 
resulting from random assignment alone.

It is worth looking at Figure 5.1 in more detail. We have already seen that there are 
70 distinct ways of assigning 4 out of 8 individuals to an intervention group and the other 4 to 
a control group. If the random assignment process is truly unbiased, then each of the 70 dis-
tinct ways of selecting individuals into the intervention or control group is equally likely. 
Suppose, we select individuals A, B, C, and D into the intervention group and individuals 
E, F, G, and H into the control group. From the data given in Table 5.1 it can easily be calcu-
lated that this random split would result in an intervention group mean DBP of 101.5 and a 
control group mean DBP reading of 96.5.
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In short, this particular random assignment outcome would have resulted in a mean DBP 
difference of +5. For these data, no other assignment combination would result in a mean DBP 
difference of +5. As there are 70 possible distinct ways of assigning the 8 individuals to the 
two groups, the probability of this particular outcome occurring by chance, that is, by random 
assignment, is 1/70 or .014. In Figure 5.1, the number at the top of the bar associated with the 
mean difference of +5 is .014, indicating the probability that this outcome occurs by chance.

Now look at the mean DBP difference of −3. There are three distinct combinations of 
selecting individuals into the intervention and control groups that would result in a mean DBP 
difference of −3.3 Thus, the probability of a mean difference of −3 resulting from random 
assignment would be equal to 3/70 = .043. Now we can see why the sampling distribution is 
considered a probability distribution: Each distinct outcome, which in this example is any of 
the mean differences shown in Figure 5.1, has a certain “chance of occurring.” That “chance 
of occurrence” or “probability” is simply the proportion of times the assignment process 
produces this particular outcome among all possible outcomes.

What is the value of this information for making inferences in an experimental interven-
tion study (clinical trial) with random assignment? The sampling distribution shows us all the 
possible mean differences between treatment and control groups that can result from mere 
random assignment. In addition, the sampling distribution provides information on the proba-
bility with which each of these outcomes occurs. It is this information against which we judge 
the “significance” of our results after the intervention. Suppose that, after random assignment, 
subjects in the treatment group are exposed to a physical activity intervention and subjects 
in the control group are not (they may be exposed to a social activity intervention). After the 
intervention is completed, subjects in both the treatment and control groups are again com-
pared with respect to their mean DBP scores. Let us assume that, after the intervention, the 
mean DBP score in the treatment group equals 92 mmHg, and 96 mmHg in the control group.4 
If the study is well controlled and no other systematic differences in exposure occur between 
the intervention and control groups, we now have a relevant decision criterion in our hands.

From the sampling distribution, we know that a mean DBP difference between the 
intervention and control group of −4 or even more extreme occurs in only 2/70 or 2.9% of 
all possible random assignments. Conversely, 97.1% of all random assignments would have 
produced a mean difference in DBP above −4. Now we have a choice: Do we consider this 
evidence strong enough to conclude that the intervention produced the difference of −4? In 
this example, we would have 97.1% confidence that the intervention is effective, as only 2.9% 
of all random assignments could have produced the observed difference between intervention 
and control groups. However, a 2.9% risk (probability) remains that our inference concern-
ing the effectiveness of the intervention is wrong. This risk, or the probability of wrongly 
 concluding that an intervention is effective when in fact mere random assignment produced 
the results, is also known as the Type I error.

In short, the reasoning behind our inference concerning the effectiveness of an interven-
tion in a randomized study can be summarized as follows:

1. Subjects are randomly assigned to various treatment and control conditions. (In the 
simplest case, there is one intervention/treatment group and one placebo/control 

3 The combinations for intervention–control groups are: DEFH–ABCG, CEGH–ABDF, BFGH–ACDE.
4 In behavioral studies, one can often observe a “placebo effect”: Just the knowledge of subjects that 
they are participating in a physical activity trial with the aim of lowering their BP, may induce many 
individuals to watch their diet and improve their exercise. But this self-induced improvement should 
have the same average effect in either comparison group.
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group, but in many trials there are more comparison groups, as when we vary the 
“dosage” or intensity of an intervention.)

2. A test statistic is selected for the outcome variable(s) of interest. (In the current 
example, the test statistic is the mean difference in the DBP scores between the 
intervention and control groups.)

3. After random assignment, it is possible to construct a sampling distribution 
of the test statistic. That is, for each possible unique outcome of the test 
statistic generated by the chance assignment, the sampling distribution shows 
us the associated probability of its occurrence. (As the sampling distribution 
encompasses all possible outcomes from the random assignment process, the sum 
of the probabilities of all unique outcomes adds up to 1.)

4. If the random assignment process is unbiased, we can formulate the so-called 
null hypothesis about what we expect the mean test statistic to be in the absence of 
any intervention effect. (For example, in the case of a mean difference between 
the intervention and control group, some random assignments will result in 
a larger intervention than control group mean; other random assignments 
will result in a smaller intervention than control group mean. For all possible 
random assignments of subjects to an intervention and a control group, the 
average difference between the two groups would be expected to equal zero.)

5. In the next step, the test statistic computed on the data observed after the 
intervention is compared to the sampling distribution of the test statistic that 
would prevail if the null hypothesis were true. (Recall that, if the null hypothesis 
is true, the data are generated by random assignment alone and the intervention 
itself has no effect.) Thus, we can determine how probable or likely the observed 
(postintervention) test statistic would be under the null hypothesis.

6. Finally, we must have a criterion for deciding at what point we consider an outcome 
to be “unlikely” to have been produced by mere random assignment. This cut-off 
point is called the significance level and is usually denoted by the Greek letter α 
(alpha). If the significance level is set at, say, 0.05 or 0.01, we would then conclude 
that the intervention is effective (there is a “statistically significant effect”), if the 
probability of the observed outcome (or p-value) falls below this significance level. 
On the other hand, if we find that the observed difference might well have been 
the result of mere random assignment (say, p > .35), then we would have very little 
confidence in the effectiveness of the intervention.

The logic of random assignment fits very nicely with the statistical models used to 
analyze data from experimental studies or clinical trials. The value of the sampling distribu-
tion is that it gives us a context in which to interpret a particular sample result, as it answers 
the question of how likely or unlikely a specific result would have occurred by chance alone. 
It is important to understand, though, that for the correct estimation of the probabilities we 
need to know the shape of the sampling distribution of a particular test statistic. That is not 
always easy. In principle, we could generate sampling distributions of test statistics empiri-
cally, as we have done here. That becomes more tedious and time-consuming as sample sizes 
increase.5 In addition, when we generate random samples from an original target population, 

5 Even a very modest sample of 30 subjects can be split into 2 groups of 15 in over 155 million ways.
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say, all patients who stayed overnight in a Michigan hospital during a given year, we cannot 
resample from this target population, as it would be prohibitively expensive.6 However, there 
is an alternative.

In most instances of statistical inference, we can employ idealized mathematical descrip-
tions of the sampling distributions, some of which, like the t-, f-, normal, and chi-square dis-
tributions are the basis for the most common statistical tests found in the literature. Of course, 
the use of these idealized, theoretical sampling distributions should depend on the degree 
to which the data meet the underlying assumptions. How we determine whether particular 
variables in a data set meet the assumptions of the statistical models employed will be a recur-
rent theme in the chapters to follow. For now, we focus on understanding one very important 
mathematical (sampling) distribution, the normal or Gaussian7 distribution.

 THE NORMAL DISTRIBUTION

The normal distribution is one of the most important theoretical distributions used in statis-
tical inference. The formula for the normal curve, which describes the shape of the function 
containing the area of the normal density distribution, looks somewhat forbidding:
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However, it is actually fairly easy to work with the normal distribution. At first, we should 
note that the normal distribution involves a family of distributions, whose members are char-
acterized just by two numbers: the mean of the distribution (μ)8 and its standard deviation 
(σ)9. Every other symbol in the formula, for example, π and e, just stands for a particular fixed 
number that is shared by all normal curves.10 Figure 5.2 shows two normal distributions with 
different means and different standard deviations. The left distribution is normal with μ = 0 
and σ = 2 [also written as: N(0, 2)], and the right distribution is normal with μ = 10 and σ = 3 
[also written as: N(10, 3)]. As one can easily see, normal distributions are completely sym-
metric around the mean, with the area under the curve both to the right and left of the mean 
comprising 50% of the total area. Consequently, the mean of a normal distribution is also its 
median, as it divides the distribution into its upper and lower 50%. As can be seen from the 
height of the curve in the graph as well, the mode, which is the most frequent value of a dis-
tribution, also equals the mean and median in a normal distribution.

As the essential characteristics of all normal curves are the same, it is easier to work just 
with the standard normal curve, which has a mean of zero and a standard deviation of one 
[N(0, 1)]. Any normal distribution can always be transformed into a standard normal distribu-
tion by using the following transformation: z = (x – μ)  /σ. That is, if we take each value of a 
nonstandard normal distribution, subtract its mean, and divide by its standard deviation, we 
obtain N(0, 1).

6 Resampling from an already collected sample data set is, of course, possible with modern high-speed 
computers. This technique is increasingly employed to obtain approximate empirical constructions of 
sampling distributions that are mathematically intractable (a process known as bootstrapping).
7 Named after Karl Friedrich Gauss (1777–1855), who offered the first complete mathematical descrip-
tion of this distribution.
8 Recall from Chapter 3 that the Greek letter µ is the symbol for the population mean.
9 The Greek letter σ is the symbol for the population standard deviation.
10 π = 3.1416; e = 2.7183.
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FIGURE 5.2 Comparison of Two Normal Distributions.

0

.05

.1

.15

.2

–10 –8 –6 –4 –2 0 2 4 6 8 10 12 14 16 18 20

Left distribution: N(0, 2); right distribution: N(10, 3)

Figure 5.3 displays a standard normal curve. By definition, if we subtract the mean from 
a distribution, then the transformed distribution has a mean of 0; in addition, if we divide a dis-
tribution by its standard deviation, then the transformed distribution has a standard deviation 
of 1. That is why the standard normal distribution is written as N(0, 1). The graph in Figure 5.3 
divides the area under the curve into three zones. The area between ±1σ (short dashed vertical 
lines) encompasses 68% of the total area, the area between ±1.96σ (dot-dashed vertical lines) 
encompasses 95% of the total area, and the area between ±2.58σ (long dashed vertical lines) 
accounts for 99% of the total area. It follows that the areas outside the limits of ±1σ, ±1.96σ, 
and ±2.58σ must be equal to 32%, 5%, and 1%, respectively. The important part to notice is 
that this property of the standard normal curve, for example, that the area inside −1.96 and 
+1.96 standard deviation units accounts for 95% of the total area and the area outside these 
limits accounts for 5% of the total area, holds for all normal curves, regardless of the particular 
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FIGURE 5.4 Sampling Distribution of Mean Differences With Normal Curve: 70 Distinct Splits of 

8 Subjects Into 2 Groups With Normal Curve Superimposed.

values of their means or standard deviations. Thus, if we know that a sampling distribution 
is shaped approximately like the normal distribution, then we can use the normal distribution 
to estimate the probability that values in the distribution exceed a certain number. We already 
know some of the z-values and their associated probability values (p-values). For instance, 
the probability that a randomly drawn number from a normal distribution exceeds +1.96 stan-
dard units is 2.5%.11 As the table in Appendix B shows, the probability that a randomly drawn 
number from a normal distribution exceeds 2.32 standard units is .0102 or about 1.0%. While 
integral calculus is employed to compute the exact sizes of areas under the normal curve, we 
can use the convenience of either statistical software or printed tabulations (as in Appendix B) 
to tell us the probabilities associated with particular ranges of the z-values.

How useful is the normal distribution for statistical inference? That depends on whether 
or not we can assume that the sampling distribution of a test statistic actually follows the nor-
mal distribution, at least in an approximate way. Let us go back to the sampling distribution in 
Figure 5.1, but this time we superimpose a normal curve, as shown in Figure 5.4. Given that 
Figure 5.4 displays the sampling distribution of mean differences between two groups of a very 
small sample (n = 8), it is remarkable how close this distribution comes to the normal distribu-
tion. (In part, this is due to the fact that the underlying “population” distribution is at least sym-
metric, even though it follows the shape of a uniform distribution,12 not a normal distribution.)

Concerning the symmetry and approximate normal shape of this sampling distribution, 
it needs to be emphasized that, with very small samples (N < 30), sampling distributions 
of means are only symmetric, if the underlying population distribution is also symmetric. 
However, as samples grow in size, the sampling distributions of sample means and of sam-
ple mean differences become more and more symmetric, even if the underlying population 
distribution is not symmetric. What is more, the sampling distributions of mean and mean 
differences approach the shape of the normal distribution, when N > 120. This process is 

11 Recall that 5% of the area lies outside −1.96 and +1.96; thus with a symmetric distribution, 2.5% of 
the area lies either below −1.96 or above +1.96.
12 Table 5.1 shows that each of the eight individuals has a different DBP; thus each DBP value occurs 
with a probability of 1/8, which makes the distribution “uniform.”
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codified in the Central Limit Theorem.13 Its significance is that sampling distributions 
of means and mean differences take on the shape of a normal distribution in large samples, 
even if the underlying population distribution has a different shape. While the example in 
Figure 5.4 shows a sampling distribution derived from a very small sample, this tendency 
toward “normality” is already visible.

Suppose we use the normal distribution to determine the likelihood that certain mean 
differences in DBP between intervention and control groups for the data in Table 5.1 occur 
by chance alone. We know the exact probabilities from Figure 5.1. We saw that, for this 
sampling distribution, a mean difference of (−4) or more extreme occurs by chance in 2.9% 
of all random assignments.14 Now, let us use the normal distribution as an approximation. In 
order to convert the distribution in Figure 5.4 to a standard normal distribution, we employ 
the z-transformation. We already know that this particular sampling distribution has a mean 
of μ = 0, but we also need an estimate of the standard deviation of this sampling distribution 
(σ).15 Recall that this sampling distribution of mean differences consists of 19 distinct mean 
differences, which occur with the frequencies as indicated in Table 5.2. Thus, we can use the 
standard deviation formula of Chapter 3 to compute the standard deviation for the sampling 
distribution in Figure 5.1: It is 1.79. With this information in hand, we can now convert the 
mean difference of −4 into a z-score:

z x
=

−
=
− −

=−
m

s
4 0

2.085
1.92

On the normal curve, the area to the left of −1.92 occupies approximately 2.74% of the total 
area. In short, despite the very small sample used, our answer is already similar to the exact 
calculations that are the basis for Figure 5.1.

 SIGNIFICANCE TESTING

Let us go back to the problem of statistical inference after random assignment. Random 
assignment alone will occasionally produce large differences between an intervention and 
control group, even though there is no intervention effect. If we conclude in such a case that 
the intervention is effective, then we commit a Type I error. Random assignment can also 
result in a finding of no difference between the intervention and control group, even though 
there is an intervention effect. If data lead us to conclude that there is no intervention effect, 
even though there is one, we commit a Type II error. As we base our conclusions on data 
influenced, in part, by a random assignment process, we cannot completely avoid such errone-
ous inferences. The decision-making situation is shown in the graph of Figure 5.5. The figure 
shows two standardized sampling distributions of normal shape. (Again, as we can always 
convert measured scores into standardized scores using the z-transformation, we only have 
to consider the standard normal distribution.) The distribution on the right side (black curve) 
is centered on the null hypothesis value of zero. That is, it depicts the situation in a clinical 
trial when the null hypothesis (H0 = 0) is true. Even if the antihypertension intervention is not 

13 For a mathematical derivation, see Bulmer (1979).
14 We just add the probabilities of the (−4) and the (−5) mean differences, each of which occurs with a 
(rounded) probability of .014; actually, the probabilities are .01429, resulting in a combined probability 
of .02858 or .029.
15 The standard deviation of a sampling distribution goes by the special name of the standard error, 
because it captures the average error in estimating the “true” population parameter based on sample 
estimates.



48 I. FOUNDATIONS FOR STATISTICAL THINKING

effective at all, different random splits after random assignment would sometimes produce 
positive and sometimes negative differences in mean DBP. Occasionally, these differences 
will be large. Thus, with a large enough sample, we get a normal distribution of mean differ-
ences based on all random splits around the true null value of zero.

Now assume for the moment that the intervention is effective. Let us say our physical 
activity intervention reduces DBP by three standardized units. While the “true” mean differ-
ence between the intervention and control group would be −3, not all random splits will result 
in a difference of −3. Again, we can expect a normal distribution of all possible mean differ-
ences, this time centered on the true difference of −3 (depicted in the light gray normal curve 
on the left side of Figure 5.5).

Now we employ our decision criterion, according to which we either accept or reject the 
evidence as being strong enough to conclude that there is an intervention effect. This decision 
criterion is known as the significance level (or α-level). Suppose we decide, before the clini-
cal trial commences, that we will accept the research hypothesis of an intervention effect, if 
we can be 95% confident that our conclusion about the intervention effect is correct. This is 
the same as setting the significance level at α = 0.05, as it amounts to accepting a probabil-
ity of error of up to 5%. The error in question is the Type I error of falsely rejecting the null 
hypothesis and thereby implicitly accepting the research hypothesis. As in our example, the 
sampling distribution of the mean differences can be assumed to have a normal shape, and we 
know that 95% of the values of the normal distribution lie within the range of −1.96 to +1.96 
standard errors, we can draw the desired inference. If observed mean differences are either 
smaller than −1.96 or larger than +1.96 standard errors,16 then our decision criterion leads us 
to infer that these differences are of a magnitude that makes it unlikely that they are the result 

16 Note that we employ a so-called two-tailed test: If 5% of all z-values in a standard normal distribution 
fall outside the −1.96 and +1.96 limits, then on either side we get 2.5% below −1.96 and 2.5% above 
+1.96.
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of mere random assignment; in fact, we can be 95% confident that such differences are “real” 
and not due to chance.17

So far, we have looked at the decision situation only from the point of view of avoiding a 
Type I error, the error of wrongly concluding that an intervention is not effective, when in fact 
it is. Suppose someone asks: Why should we tolerate a Type I error as high as 5% (α = 0.05)? 
Why not make the risk smaller and shoot for α = 0.01 or even α = 0.001? As already men-
tioned, the true effect of the intervention may be to lower DBP in the intervention group by 
3 standard errors, a situation that is depicted in Figure 5.5 with the (light gray) normal curve 
centered on the value (−3). As we employ the significance level of α = 0.05, we would, in 
effect, reject the null hypothesis, whenever our data show a mean difference between the 
intervention and the control group that exceeds 1.96 standard errors. In Figure 5.5, a vertical 
dashed line is inserted at the value of z = (−1.96)18 in order to demarcate the decision line: 
Should the outcome after the intervention show a mean difference of less than −1.96, we 
would come to the correct conclusion that the intervention is effective, as we reject the null 
hypothesis in this situation. But suppose the observed mean difference after the intervention 
is somewhat larger than −1.96, say −1.5, then we would conclude that this difference is not 
large enough to warrant the conclusion that there is an intervention effect. However, we need 
to ask: What is the probability of observing a mean difference larger than −1.96, even though 
the true intervention effect equals −3? As we used random assignment and BP readings are 
subject to random measurement error, some outcomes will be larger than (−1.96), despite the 
fact that the true intervention effect equals (−3). As the normal curve centered on the true dif-
ference of −3 shows, a substantial area under this normal curve is located to the right of the 
dashed vertical line. In other words, mere random assignment may produce a mean difference 
outcome larger than −1.96, even if the true difference is −3 (Type II error).19 As the distance 
between −3 and −1.96 equals 1.04 standard units, the probability of a Type II error equals the 
area under the normal curve for all z-values that exceed 1.04. Appendix B tells us that this 
probability is .1492 (=1 − .8508) or about 14.9%. Thus, in 14.9% of all random assignments, 
we would declare the intervention to be not effective because we accept the null hypothesis 
whenever the outcome shows a difference above −1.96. Thus we commit the Type II error of 
concluding that there is no effect, when in fact there is one.

 TRADE-OFFS BETWEEN TYPE I AND TYPE II ERRORS

Table 5.3 shows the decision situation when making inferences about intervention effects in 
clinical trials after random assignment. There are four possible outcomes:

1. The intervention is effective, and we reject the null hypothesis based on the data 
and the predetermined significance level. That is the correct inference, also called a 
“true positive.”

2. The intervention is effective, but we accept the null hypothesis based on the data 
and the predetermined significance level. That is an incorrect inference, called the 
“Type II error.”

17 As we will discuss in the next chapter, there are sometimes good reasons to use significance levels 
other than 0.05 as our decision criterion.
18 We do not show a vertical dashed line for +1.96, as our general expectation is that the intervention 
will lower DBP.
19 The Type II error is also indicated by the Greek letter β (beta).
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3. The intervention is not effective, and we reject the null hypothesis based on the data 
and the predetermined significance level. That is an incorrect inference, called a 
“Type I Error.”

4. The intervention is not effective, but we accept the null hypothesis based on the 
data and the predetermined significance level. That is a correct inference, also 
called a “true negative.”

Given this decision situation, it can be seen that there are trade-offs between the magnitudes of 
the Type I and the Type II errors. Suppose, we are not satisfied with a Type I error of α = 0.05. 
We may want to have a higher level of confidence in the effectiveness of an intervention and 
stipulate that we desire at least 99% confidence that we draw the correct conclusion when 
we reject the null hypothesis. As we can see in Figure 5.3, if we reject the null hypothesis if 
α ≤ 0.01, then we would call a result “statistically significant” only, if the standardized mean 
difference score (z-value) is smaller than −2.58. In Figure 5.5, this newly chosen significance 
level would mean that the dashed vertical line is moved to the left, centered on the value of 
−2.58. While such a shift would reduce the area under the black normal curve to the left of the 
vertical line, it would increase the area under the light gray normal curve to the right of the 
dashed vertical line. In short, while this new decision criterion reduces the probability of a 
Type I error, it simultaneously increases the probability of a Type II error. How we should 
think about these trade-offs is discussed briefly in the next chapter.

 SUMMARY

In this chapter, we have discussed what can be considered the most fundamental idea in all 
of statistics. Statistical inference requires (a) the assumption that the data at hand have been 
generated by a process that includes random elements, such as random assignment or ran-
dom sampling; (b) that we have a probability model that describes how a statistic of interest 
fluctuates or varies among different data sets generated by the same process such as random 
assignment. Given these assumptions, we can generate sampling distributions of the statistics 
of interest, which allows us to test hypotheses about the magnitude of the true (population) 
values of these statistics.

TABLE 5.3 Statistical Decision Making for Signifi cance Tests

TEST OUTCOMES TRUE OUTCOMES

H
0
 IS NOT TRUE, THAT IS, 

THE INTERVENTION IS 

EFFECTIVE

H
0
 IS TRUE, THAT IS, 

THE INTERVENTION 

IS NOT EFFECTIVE

Conclusions 

based on 

evidence 

from the 

sampling 

distribution

H
0
 is rejected, that is, the observed 

mean difference is “suffi ciently 

rare” and thus qualifi es as being 

“statistically signifi cant” 

Correct inference 

(“true positive”)

Type I error (a)

H
0
 is accepted, that is, the 

observed mean difference could 

“well” have been produced 

by random assignment alone 

and thus is not considered 

“statistically signifi cant”

Type II error (  b  ) Correct inference 

(“true negative”)
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The concepts discussed in this chapter are subject to frequent misunderstandings and 
confusion; so it is worthwhile to clarify a few points:

1. The sampling distribution should not be confused with the actual distribution 
of variables in a (sample) data set or in the population. The sampling distribution 
is a theoretical distribution, which shows how sample statistics, that is, statistics 
actually computed on a particular data sample, would vary, if the experiment 
were repeated (infinitely) many times or if one were to draw all possible distinct 
samples from a given target population. Except in limited circumstances, sampling 
distributions can usually not be constructed empirically.

2. The measure of dispersion for sampling distributions is called its standard error. 
Do not confuse the standard error of a sample statistic with either the standard 
deviation of a particular variable in a study sample (denoted by s) or in the target 
population (denoted by σ). Later in the book we see how some of these standard 
errors are estimated on the basis of a single study sample data set.

3. The significance level (α-value) should not be confused with the p-value. This is a 
subtle distinction. The significance level is determined in advance before any data 
are collected. It represents the risk of a Type I error that researchers are willing to 
tolerate. By contrast, the p-value is the probability of observing the study outcomes 
if the null hypothesis is true. Thus, if the observed p-value is smaller than the 
predetermined significance level, the researchers will reject the null hypothesis and 
assume that they observe a “real” effect.

4. The confidence level equals 1 minus the significance level. It is the probability that 
the decision to reject the null hypothesis, and thus accept the research hypothesis, 
is, in fact, correct. Thus a 5% significance level entails a 95% confidence level.

 EXERCISES

1. Define the following three concepts: distribution of sample data; distribution of 
population data; sampling distribution.

2. In your words: What is the difference between a standard deviation and a standard error?

3. Suppose the study sample in Table 5.1 only contains participants B to G, with A and H 
dropping out before random assignment.
(a) In how many ways can the remaining six subjects be randomly assigned to two 

groups consisting of three individuals each?
(b)  Construct the sampling distribution of all possible mean differences between 

intervention and control groups.
(c) Compute the SE of the mean difference.
(d) Would a mean difference of 4 be “statistically significant” at the 0.05 level?

4. Using Appendix B, find the area under the normal curve if
(a)  −0.67 ≤  Z ≤ +0.67
(b)  Z ≥ 1.04
(c)  Z ≤ −2.33 and Z ≥ +2.33
(d)  Z ≤ −1.65
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5. In a study of 256 randomly sampled nursing home residents, researchers find a mean 
low-density lipoprotein (LDL) cholesterol level of 148 mg/dL. The sample standard 
deviation is 20 mg/dL. The standard error of the mean is 1.25.
(a)  Is this evidence consistent with the hypothesis that the mean population LDL 

cholesterol level is at least 150 mg/dL, assuming you adopt a significance level 
of α = 0.05?

(b)  Is the evidence consistent with the hypothesis that the mean population cholesterol 
level is larger than 145?

(c)  Based on the data provided, can we say that at least 10% of the nursing home 
residents have LDL cholesterol levels above 181?

6. Figure 5.5 shows two normal distributions, each with standard errors of 1. If the normal 
distribution on the left were to be centered on the mean of −3.92, what could we say 
about the magnitudes of the Type I (α) and Type II (β) probabilities?

7. If the significance level for a test has been set to α ≤ 05 and the p-value associated with 
that test turns out to be .06, what should we conclude?

8. Which error in statistical inference do you consider to be greater, a Type I or a Type II 
error? Can this question be answered as a matter of general principle, or does it depend 
on the circumstances of a particular test?

 REFERENCE

 Bulmer, M. G. (1979). Principles of statistics. New York, NY: Dover.



53

CHAPTER 6

 Standard Errors, Confi dence Intervals, 
and the Power of Statistical Tests

In Chapter 5, we discussed the sampling distribution of a mean difference and noted that the 
shape of such a sampling distribution approaches that of the normal distribution, as long as the 
study sample in question is reasonably large (n > 120). This is the case even if the underlying 
population distribution is not normal. We also noted that any normal distribution is character-
ized by only two parameters, the values of which we need to know in order to convert it into 
a standard normal distribution: the mean µ and the standard deviation σ. Of course, µ and σ 
are population statistics (“parameters”), whose values are generally unknown. As to the value 
of the population mean, we usually hypothesize it; but in order to test whether our sample 
mean is consistent with our hypothesized population mean, we would need to know by how 
much sample means vary from one sample to the next. In short, we would need to have an 
estimate of the standard error of the mean (SEM). The same problem arises in an experi-
mental study (clinical trial) after random assignment. If the primary test statistic is a mean 
difference between the intervention and control group, we would need to know by how much 
such mean differences vary as a result of different random assignments; that is, we would need 
an estimate of the standard error of the mean difference. Thus, even if the study sample is 
large enough and the sampling distribution of the test statistic takes on the shape of a normal 
curve, we still cannot use the normal distribution to test for a specific hypothesized mean 
difference unless we know the magnitude of the standard error, that is, the standard deviation 
of the sampling distribution.

In Chapter 5, we computed the standard error directly, using the data from a hypothetical 
sampling distribution shown in Table 5.2 and Figure 5.1. In reality, we almost never construct 
the actual sampling distribution of a statistic like the mean difference. It is tedious and time 
consuming to calculate all possible outcomes of mean differences produced through random 
assignment: Even in the artificially small assignment process of 8 subjects to 2 groups of 
4 subjects each, we came up with 70 distinct assignments. If the sample had consisted of 
20 subjects, there would have been 184,756 distinct ways of assigning them to 2 groups 
randomly.1 Thus,  computing standard errors directly from the sampling distribution would 
quickly become a  taxing undertaking. In the case of random sampling from a larger target 

1 20!/(10!10!) = 184,756.
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population, it would simply not be feasible—due to time and monetary constraints—to draw 
a sufficiently large number of samples, let alone all possible random samples, of a given size 
from the same target population. Thus, in most situations, there is no way of obtaining an 
estimate of the standard error directly from data that contain information on the sampling 
distribution of a particular test statistic. Instead, we are usually limited to a single data set 
from a given target population. However, for many test statistics, statisticians have worked out 
formulas for the estimation of standard errors based on particular sample data.

 STANDARD ERROR OF THE MEAN (SEM)

The SEM of any variable is usually estimated based on data generated from a single random 
sample or after a single random assignment. Its formula is: SEM = s/ n.2 In words, the SEM 
is estimated by computing the standard deviation of the relevant variable from the sample 
data and dividing it by the square root of the sample size. Most important is the fact that 
the SEM varies inversely with the square root of the sample size. In other words, as sample 
sizes increase, standard errors become smaller and smaller. This is what we should expect: 
The SEM is a measure of how much sample means of the same variable vary across random 
samples of a given size drawn from the same target population. Intuitively, it is obvious that 
sample means from large samples vary/fluctuate less than sample means from small samples. 
That is, the latter are subject to a wider “margin of error.” Also note in the Definition of SEM 
box the effect of the finite population correction (FPC) on the standard error. As n grows 
larger and approaches N, [n → N], N – n approaches zero. Thus, if the “sample” actually 
comprises the total target population, there is no longer any sampling error since we would 
have population data.

This inverse relationship between sample size and sampling fraction on one hand, and 
the size of the standard error on the other, holds for standard errors of all sample statistics, 
not just the SEM.3 This implies that the precision of our estimates can be improved, if we 
increase the size of our study samples.4

 DRAWING INFERENCES ABOUT POPULATION PARAMETERS: 
CONFIDENCE INTERVALS

In Chapter 5, we showed how to use information about the sampling distribution of a test 
statistic to test hypotheses concerning the effectiveness of an intervention in a random-
ized clinical trial. However, in many situations, we are not just interested in the “statistical 

2 The rationale for the formula can be demonstrated as follows: A sample mean is really a sum of n inde-
pendent random variables, that is, each of the cases whose values are used to compute the sample mean 
is independently and randomly selected; formally, we can rewrite: X– = (1/n)(X1 + X2 + … + Xn) = (1/n)
X1 + (1/n)X2 + … + (1/n)Xn. But the variance of a sum of independent random variables is the sum of 
their variances (∑si

2). Since these variables are all drawn from the same population, they all must have 
the same variance: ∑si

2 = nsi
2. In addition, the variance of a variable multiplied by a constant (here: 1/n) 

equals the variance of the variable times the square of its constant: (1/n2)si
2. Since we have n variances 

involved in the mean, we get n(1/n2)si
2 or (1/n)si

2. The square root of this expression is the sought after 
expression for the estimated standard error: s/ n .
3 Later in this book, we encounter many other statistics like correlation coefficients, odds ratios, or 
regression coefficients, all of which are subject to sampling fluctuations, the magnitudes of which are 
estimated via their associated standard errors.
4 Of course, that adds to the cost and time of data collection.
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significance” of our findings. Rather, we want to have an estimate of the actual magnitude of 
the effect. Likewise, when health researchers sample from large target populations, they are 
usually interested in the accuracy of their estimates, that is, they want to be able to estimate 
the margins of error of their estimates.

As we have already emphasized,5 if a randomly selected study sample is reasonably 
large (n ≥ 120),6 we can assume that the sampling distribution of a mean or a mean difference 
takes on the shape of the normal distribution. If we also have an estimate of the standard error, 
then we can use the normal distribution to estimate the probability that sample means fall 
within various margins of error.

Suppose we employ data from a cancer registry, which contains diagnostic informa-
tion on thousands of (mostly) women with breast cancer.7 Suppose further, we wanted to 
know the average age of women at the time of their breast cancer diagnosis. One way to 
obtain the relevant information would be to draw a random sample of size 200,  compute 
the mean age in the study sample, and construct  confidence intervals (CIs) for the mean 
as follows.

From Figure 6.1, we know that, if the sampling distribution is normally distributed, 
95% (99%) of all sample means will lie between ±1.96 (2.58) standard errors of the true 
population mean. This fact is usually expressed in a more formal way as follows:

P(µ − 1.96 SEM < xi < µ + 1.96 SEM) = .95

5 This is the point of the Central Limit Theorem.
6 For samples drawn from normal populations with n < 120, we employ the t-distribution (see Chapter 8).
7 See the SEER data set for more information: seer.cancer.gov/data/

The SEM of a variable x is a measure of the average variation of sample means around the 
population mean. It is estimated as:

SEM = sx   / n ,

where sx stands for the sample standard deviation and n the sample size. The sample standard 
deviation is computed as usual:

s
x x
nx

i=
−( )
−∑

2

1

Comment: The formula for SEM assumes that the study sample is only a small fraction of the 
target population (say, less than 5%). If the study sample comprises a larger proportion of the 
target population, it is necessary to multiply the SEM with an FPC factor of

FPC = −
−

 N n
N 1

,

where N is the population size and n the sample size.

DEFINITION OF SEM
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In this expression, P is short for probability, xi  refers to any sample mean from randomly 
drawn samples of a given size, µ refers to the true population mean, and SEM to the standard 
error associated with the sampling distribution of the mean. This equation simply says that 
95% of all sample means of randomly drawn samples of a given size will fall within ±1.96 
standard errors of the true population mean, which is the same as saying that the probability 
of a sample mean falling within these limits is .95.

Now let us look at the inequality inside the brackets. A few simple algebraic manipula-
tions will get us a more interesting result still.

We start with the original inequality:

µ − 1.96 SEM < xi  < µ + 1.96 SEM

Then we subtract µ from all three segments (which preserves the inequality):

−1.96 SEM < xi  − µ < + 1.96 SEM

Then we subtract xi :

−xi  − 1.96 SEM < −µ < −xi  + 1.96 SEM

Then we multiply by (−1):

xi  + 1.96 SEM > µ > xi  − 1.96 SEM 8

At first blush, this transformation may not look like much, but the end result is really 
remarkable and useful. If we plug this result back into our original probability equation, we get:

P(xi  + 1.96 SEM > µ > xi  − 1.96 SEM) = .95

8 You may recall the result from algebra that multiplying an inequality by a negative number reverses 
the inequality sign; for example, if we multiply the inequality −5 < −2 by (−1), we get 5 > 2.

–4 –3   –2.58   –1.96 –1 0 1 1.96 2.58 3 4
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z-values (standard deviation units)

FIGURE 6.1 Probability Density of Standard Normal Distribution.
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In words, if we (a) take any random sample of sufficient size and compute a sample mean on 
a variable of interest, for example, the mean age at diagnosis for breast cancer patients, and 
(b) construct a 95% CI by way of adding or subtracting 1.96 standard errors from the sample 
mean, then 95% of all CIs so constructed will contain the true population mean. That is, with 
a single random sample, we can have 95% confidence that the CI covers the true population 
mean. Using a specific numerical example, we may find that the mean age in the sample of 
200 newly diagnosed breast cancer patients is 60 and the sample standard deviation for age is 
12. With this information, we can construct the 95% CI as follows:

P(xi  + 1.96 SEM > µ > xi  − 1.96 SEM) = .95

P(60 + 1.96 [12/ 200] > µ > 60 + 1.96 [12/ 200]) = .95

P(60 + 1.96 [0.85] > µ > 60 + 1.96 [0.85]) = .95

P(61.67 > µ > 58.33) = .95

In short, we can have 95% confidence that our CI with a lower limit of 58.33 and an upper 
limit of 61.67 contains the true population mean.

 RELATIONSHIPS AMONG CIS, SAMPLE SIZES, AND STANDARD ERRORS

The relationships among CIs, sample sizes, and standard errors can be shown using a few 
hypothetical examples, as in Table 6.1. Assume that four random samples of sizes n = 120, 
240, 480, and 960 have been drawn from the same population of newly diagnosed cancer 
patients. This time, researchers obtain standardized physical functioning (PF) scores from all 
study participants, ranging from 0 to 100.9 For each of the four random samples drawn from 
the same target population, sample means and standard deviations are computed (second and 
third columns of Table 6.1) and used in providing the estimates for the reported standard 
errors and CIs.

There are a number of important observations to be made about the results in Table 6.1:

1. Sample means (xi ) fluctuate/vary randomly from one sample to the next, with each 
sample mean being one estimate of the (usually unknown) population mean (µ).

2. Sample standard deviations (s) also fluctuate/vary randomly from one sample to 
the next, with each sample standard deviation being an estimate of the (usually 
unknown) population standard deviation (s).

3. Standard errors consistently decline in magnitude, as sample sizes increase.

4. CIs, associated with a given level of coverage probability, become smaller, as 
sample sizes increase; that is, with greater sample sizes, the accuracy of our 
estimates increases.

5. CIs for statistics from samples of a given size increase with the level of confidence 
required, that is, they increase with higher coverage probability. Thus, if we require 
greater confidence in our estimates, this comes unfortunately at the cost of lower 
accuracy or precision, as long as sample sizes are not changed.

9 See Given, Given, Azzouz, and Stommel (2001).
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TABLE 6.1 Standard Errors and Confi dence Limits of Mean Physical Functioning Scores 
Based on Samples of Varying Size

SAMPLE 

SIZES (ni)

SAMPLE 

MEANS (  x
–
i)

SAMPLE 

STANDARD 

DEVIATIONS (si)

ESTIMATED 

STANDARD 

ERRORS (SE)

95% CIs 

(±1.96SE)
99% CIS 

(±2.58SE)

n
1
 = 120 77.8 9.8 0.89 76.06 < μ < 79.54 75.50 < μ < 80.10

n
2
 = 240 74.9 10.7 0.69 73.55 < μ < 76.25 73.12 < μ < 76.68

n
3
 = 480 75.6 11.2 0.51 74.60 < μ < 76.60 74.28 < μ < 76.92

n
4
 = 960 76.5 10.4 0.34 75.83 < μ < 77.17 75.62 < μ < 77.38

Finally, a note of caution: A frequent mistake in the interpretation of the SEM is to assume 
that it is either an estimate of the population standard deviation (σ) or the sample standard 
deviation (s). Neither is the case. In fact, note that standard errors are, by definition, always 
smaller than the sample standard deviations, since we divide by the square root of the sample 
sizes (n). By contrast, sample standard deviations give us best estimates of the population 
standard deviations. Most importantly, sample standard deviations do not become systemati-
cally smaller as the sample size increases, since for each 1-unit increase in denominator of 
the standard deviation formula we also add another deviation from the mean in the numera-
tor. The data in Table 6.1 bear this out: There is no systematic relationship between the size 
of a sample and its standard deviation as well as its mean. As far as the standard deviation in 
the target population is concerned, it always stays the same, regardless of which samples are 
drawn from the target population. In sum, the SEM measures fluctuation/variation in different 
sample means, whereas the sample and population standard deviations are measures of the 
average variation in individual scores around their respective means.

 EFFECT SIZES AND STATISTICAL POWER

When researchers plan for a clinical study, one of the most important questions they must 
answer is: How large a study sample is needed in order to show the hypothesized effect of the 
planned intervention? To answer this question, the researchers would need information on the 
relevant minimum effect size (ES) and they would have to decide on how much statistical 
power they would need for their intervention study.

In the previous chapter (Chapter 5), we discussed a hypothetical example of a physical 
activity intervention designed to lower blood pressure. In the simplest case of a randomized 
clinical trial, we would compare a once obtained mean systolic blood pressure (SBP) in the 
intervention group to that in the control group.10 Since study participants in a clinical trial are 
randomly assigned to either the intervention or the control group, we would hypothesize that, 
before the intervention, there is no systematic mean difference in blood pressure between 
these comparison groups. This is our null hypothesis (H0). By contrast, the research (or alter-
native) hypothesis (HA) embodies the hoped-for ES of the intervention.

Let us say, the researchers settle on a minimum intervention ES of 4 mmHg; that is, 
they expect that after the intervention the mean SBP will be lower in the intervention than the 
control group by at least 4 mmHg. This number is not based on any statistical reasoning, but 
should reflect the considered judgment of the clinicians: How much of a difference should 

10 For a study employing multiple outcome measures of physical activity and a more complex repeated 
measures study design, see Buchan et al. (2011).
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the intervention make for clinicians to be able to call it a “clinically meaningful effect”? It is 
not always easy to come up with clinically meaningful minimum ESs, but these judgments 
should rest on clinical experience as well as already available research that links ESs to clini-
cal outcomes.11 For the sake of argument, let us say that lowering the mean systolic mmHg 
by 4 units is clinically meaningful in terms of demonstrably lower rates of heart disease and 
diabetes. So we use this number in our sample size calculations, but we must convert it to a 
 standardized effect size, which means we must divide the mean difference in SBP between 
the intervention and control groups by the standard deviation of this mean difference. Since 
we have two comparison groups (intervention [int] and control [ctrl]) with two estimates of 
the SBP standard deviation, we usually would employ a more complicated, weighted average 
of the standard deviation formula:

s =
−( ) + −

+ −

n s n s
n n

1 1
2

2 1
2

1 2

1 1
2

( )

Thus the standardized ES for the mean difference becomes: (xint – xctrl)/σ, with σ defined as 
before.

Now suppose that previous studies have shown SBP sample standard deviations that 
vary between 6 and 10 mmHg. Given this information, we may adopt as a reasonable guess 
that our future study sample will have an SBP standard deviation of around 8. This would 
make for a standardized effect size of ES = 4/8 = 0.5.

Finally, we need to address the concept of statistical power. In Chapter 5, we discussed 
the Type II error in statistical inference: It refers to the probability of concluding, on the basis 
of available sample evidence, that an intervention is not effective, even if “in reality” it is. 
If we denote this probability as β, then we can define the power of a statistical test as 1 − β. 
In words, the power of a statistical test is the probability that we arrive at the conclusion 
that an intervention is effective, when in fact it is. It seems obvious that we would want to 
maximize power and minimize the Type II error. Should we not design our experiments in 
such a way that, whenever there is an intervention effect, the resulting test confirms its exis-
tence? Unfortunately, we already know from the discussion in Chapter 5 that minimizing β 
(and maximizing power) involves increasing the size of α; that is, we must again consider the 
trade-offs between the Type I and the Type II errors.

For many studies, researchers choose conventional α-levels of 0.05 and β-levels of 0.20. 
This implies they are willing to accept a 5% risk that a positive inference about the effective-
ness of an intervention is wrong (Type I error). At the same time, they are willing to accept a 
20% risk that a negative inference about the effectiveness of an intervention is wrong (Type II 
error). Of course, whether these risk trade-offs are appropriate depends very much on the 
context of a study.12 For instance, in the early 1990s, when no effective HIV drugs were 
available, the primary concern of researchers was to find any effective drug. In that situation, 
researchers would want to maximize the power of their tests so that whenever a drug shows 
promise it would be discovered as having a significant effect in a trial. This implies preferring 
a low probability for β, say at 0.01, with power (1 − β) at 0.99, but accepting the risk of larger 
α-levels. In short, such researchers trade in a higher Type I error for the desired lower Type II 

11 It has become “fashionable” to group standardized ESs into arbitrary categories of “small,” “medium,” 
and “large” ESs (Cohen, 1992), but we strongly support the view that meaningful ESs in clinical research 
must involve clinical definitions of effectiveness.
12 Ellis (20 10).
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error. On the other hand, if researchers conduct clinical trials on “me-too” drugs, for which 
there are widely available substitutes, their primary concern would be that the new drug is, 
indeed, effective; thus, they would set a very low Type I (α) risk, say 0.01, but would be will-
ing to incur a higher Type II (β) risk. The reason is that the risk of failing to find a significant 
effect, even though the new drug is effective, is less problematic in a situation where many 
substitutes are available. On the other hand, in that situation, one would not want to run the 
risk of using a new drug in the belief that it is effective, even though it is not; thus, minimizing 
the Type I error has higher priority. In sum, while the power of a test is often set at 0.8, such 
decisions are subject to revisions, depending on the research project at hand.

 POWER ANALYSIS AND SAMPLE SIZE

Power analysis is primarily employed for the purpose of determining necessary sample sizes 
before the data collection commences. It involves complicated trade-offs among four indices, 
such that three of the four indices determine the value of the fourth. The actual calculations 
involved are mathematically complex in nature and beyond the scope of this book, but there 
are several good software programs, both specialized stand-alone programs and subroutines 
of comprehensive statistical package programs.13 To conduct a power analysis, a researcher 
must be able to specify the following information:

1. The significance level or willingness to commit a Type I error (α-level)

2. The desired power of the test (1 − β) or acceptable probability of finding an effect, 
if there is one

3. The standardized ES

4. The sample size

As mentioned, if we can determine or set the values of three of these four indices, then 
we get an answer to the fourth. Commonly, researchers are interested in determining sample 
sizes required for their studies. In those situations, they would make informed assumptions 
about how much of a Type I error they are willing to tolerate, how much power they desire, 
and the size of a clinically meaningful minimum effect, expressed as a standardized ES.

Let us start with some standard assumptions for the previous example of a physical 
activity intervention. We may assume that an α-level of 0.05 and power of 0.8 (i.e., β = 0.2) 
are adequate, while clinical experience may lead to the recommendation of a minimum stan-
dardized ES of 0.5. With these assumptions, our required sample size would be n1 = n2 = 63.14 
This means that each arm of the randomized clinical trial would need to enroll 63 subjects to 
meet the required assumptions.15

In Table 6.2, we provide sample size estimates for several combinations of α- and 
(1 − β)-levels, as well as for standardized ESs. For each of these indices, we offer three 
distinct levels in order to show the trade-offs involved between sample size and the other 
three indices. One important trade-off is that between minimum desired ES and sample size. 

13 Among the stand-alone programs are G*Power and PASS; STATA offers the “sampsi” routine.
14 All sample size calculations, including those for Table 6.2, were performed using STATA software.
15 Researchers customarily enroll more subjects to make up for anticipated loss to follow-up or 
dropouts.
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The smaller the effect we want or need to discover, the larger the study samples that are 
required. In particular, for given levels of α and power, required sample sizes increase expo-
nentially as standardized ESs become smaller. In short, if we want to discover small effects, 
we need very large study samples.

Required sample sizes also increase with greater desired power of the statistical tests. 
As the cells shaded light gray show, for given levels of α, and a given ES, power can only be 
increased at the cost of larger study samples.

Finally, required sample sizes increase when researchers want to reduce the probability 
of a Type I error (α). As the cells shaded dark gray show, for given levels of power and a given 
ES, reduced α risks can only be purchased at the cost of larger study samples.

It can be inferred from Table 6.2 that the usual trade-off between α-levels and power 
can be mitigated by raising the sample size. If it is important to increase the power while 
maintaining a and ES at a given level, this can be accomplished through greater sample size: 
The shaded cells in Table 6.2 show the trade-off between power and sample size for a given 
level of α and ES.

There is another situation in which power analysis is useful. Sometimes we encounter 
reports of intervention studies in the literature, in which the main hypothesis is not confirmed, 
that is, the hypothesized effect is not statistically significant. In this case, we must also ask 
whether the sample size was large enough so that the probability of finding the minimum ES 
was fairly high.16 Suppose you read about a physical activity intervention study in which the 
authors could not confirm that their intervention lowers blood pressure by a standardized ES 
of 0.5, employing a significance level of α < 0.05 as their criterion for statistical significance. 
You also learn that the study sample involved 20 subjects in each arm of the study (interven-
tion or control group). As it turns out, the probability that the study would produce a statis-
tically significant intervention effect under these assumptions would only be .35. In other 
words, the power of the test to find a significant result was quite low at 0.35. Thus, you may 
well conclude that a very small sample size may have been the problem with this study.

16 This is also called a post hoc power analysis.

TABLE 6.2 Variations in Required Sample Sizes (n) Depending on Three Levels of Type I 
Error (α), Power (1 − β), and Standardized Effect Size (ES)

α-LEVELS POWER (1 − β  ) STANDARDIZED ESS

ES = 0.2 (n  ) ES = 0.5 (n  ) ES = 1.0 (n  )

0.01 0.80 584 94 24

0.90 744 120 30

0.95 891 143 36

0.05 0.80 393 63 16

0.90 526 85 22

0.95 650 104 26

0.10 0.80 310 50 13

0.90 429 69 18

0.95 542 87 22



62 I. FOUNDATIONS FOR STATISTICAL THINKING

 EXERCISES

1. A researcher draws a random sample of test results from 400 patients among a total 
patient population of 900. The tests show a mean count of neutrophil granulocytes 
(white blood cells) of 80 × 108/L and a sample standard deviation of 20 × 108/L.17

(a) Compute the 95% CI for the mean neutrophil granulocytes count.
(b)  Is a hypothesized population mean of 50 × 108/L consistent with the evidence?

2. Assume you have data on the mean hemoglobin levels of all patients who stayed 
overnight during a given year at two hospitals. A random sample (n = 400) of 
9,000 patients at Hospital A showed a mean hemoglobin of 15 g/100 mL; a random 
sample (n = 400) of 10,000 patients at Hospital B had a mean hemoglobin level 
of 12 g/100 mL. The standard error for the difference in mean hemoglobin levels 
is 1.5 g/100 mL. Can we say that we are at least 95% confident that the patients at 
Hospital B had lower mean hemoglobin levels?

3. For the example in exercise 5 of Chapter 5, construct
(a) The 95% CI for the mean low density lipoprotein (LDL) cholesterol level;
(b) The 99% CI for the mean LDL cholesterol level.

4. In a single sentence: Why do larger study samples result in greater statistical power, all 
else being equal?

5. When you read in a research paper that a clinical intervention produced a “significant” 
effect, what exactly does that mean?
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CHAPTER 7

 Research Designs and Statistical Analysis

In Chapters 2 and 3, we considered different levels of measurement of variables and how they 
affect what kinds of statistics are appropriate to use when summarizing quantitative informa-
tion. In Chapters 5 and 6, we discussed basic principles of statistical inference, including how 
sample size considerations are closely related to the question of whether statistical inference 
is likely to yield significant results. However, statistical considerations do not only influence 
measurement and sampling decisions; they are also part and parcel of decisions about research 
designs. Conversely, the appropriateness of specific statistical models and the interpretation of 
statistical information also depend on measurement, research, and sampling design decisions 
made before the data were gathered or generated.

As there are many excellent books available focusing primarily on research design 
issues, we only provide a very brief outline of research design issues and terminology 
(Friedman, Furberg, & DeMets, 2010; Polit & Beck, 2003; Shadish, Cook, & Campbell, 2002; 
Stommel & Wills, 2004). The goal is to alert you to the fact that the specific statistical models 
discussed in the following chapters all make assumptions about the nature of the data that are 
to be analyzed. As we will see, the “fit” between data and model assumptions is an important 
 consideration in judging the appropriateness of a particular analysis.

 INTERVENTION VERSUS OBSERVATIONAL STUDIES

Probably the most basic distinction in study designs is that between an intervention and 
an observational study. An alternative terminology frequently encountered referring to the 
same distinction is that between an experimental and a nonexperimental study.

Suppose you want to know about the prevalence of vitamin D deficiencies in the U.S. 
resident population. That information has been obtained through the National Health and 
Nutrition Examination Survey (NHANES) conducted by the National Center for Health 
Statistics (NCHS; CDC, 2012). The biannual samples of the NHANES are representative 
of the U.S. population and involve both survey questionnaire data and the collection of bio-
markers and anthropometric information. This type of study is observational or nonexperi-
mental, as the researchers are only interested in gathering information and not in changing or 
affecting some outcomes of interest.

Now suppose, you design a nutrition study with the goal of reducing incipient obesity 
among toddlers of low-income mothers (Horodynski & Stommel, 2005). Here the researchers 
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are interested in producing change, in designing an intervention for a particular target popu-
lation, for example, low-income mothers of toddlers, which hopefully will reduce obesity 
rates. This type of study is experimental: Some study participants are deliberately exposed to 
an intervention, and other study participants are exposed to a control group condition. If the 
study participants are randomly assigned to either intervention or control group conditions, 
we call such a study design a randomized experiment or a randomized clinical trial.1

Why is the distinction between intervention and observational studies crucially  important? 
Suppose the NHANES survey shows that the proportion of U.S. residents with vitamin D 
deficiency is 35% larger among residents living in households below the federal poverty line 
than among residents living in households with annual income exceeding $150,000. How 
should we interpret this finding? Can we confidently say that lack of income is a causal factor 
contributing to vitamin D deficiency? The answer is “no,” as low-income and higher-income 
people differ in many other ways that might be relevant here: Low-income people tend to have 
less education; thus their knowledge of nutrition and the effects of sun exposure may be dif-
ferent from that of higher-income people. In addition, low-income people tend to differ from 
higher-income people with respect to a host of other possibly relevant characteristics. These 
include age- and ethnicity-composition, gender ratios, and so forth. All of these other variables 
may influence nutrition patterns and thus “confound” the relationship between income and 
vitamin D deficiency. While there are statistical models to “control for” some of the effects of 
these confounding variables, we can never be sure with observational data whether we have 
controlled for all relevant confounders (Shadish et al., 2001; Stommel & Wills, 2004).

Now suppose that a randomized nutrition intervention study shows a difference of 
similar magnitude, with the intervention group having a 35% lower rate of vitamin D defi-
ciency than the control group in a 6-month follow-up measure.2 Note that the results from the 
randomized intervention study can be interpreted causally: If the intervention was designed 
specifically to target reductions in vitamin D deficiency, and the subjects exposed to the inter-
vention are less likely to exhibit vitamin D deficiencies than the control group subjects after 
the intervention, then there is good reason to believe that the intervention made the differ-
ence. This is so, because random assignment of sufficiently large numbers of subjects to 
the intervention and control groups tends to create comparison groups with similar average 
background characteristics, thus removing systematic biases that would result from between-
group differences in these background characteristics. In this particular example, random 
assignment of sufficiently large comparison groups should result in similar average vitamin D 
deficiencies between the intervention and control groups. In addition, evidence in favor of 
the causal effectiveness of the intervention could be strengthened further with a pretest/post-
test design: Researchers may then be able to show that there is no systematic difference in 
vitamin D deficiency after the random assignment but before the intervention, while 6 months 
later, that is, after the intervention, vitamin deficiency rates have declined in the intervention 
group but not the control group.

It should be apparent now that the same statistic, say, a 35% difference in the proportion 
of persons with vitamin D deficiencies, must be interpreted differently, depending on whether 
the evidence comes from an observational or an experimental study. The reason for this is that 
the establishment of a cause–effect relationship between two or more variables does not only 

1 There are a number of good intervention study designs that do not employ random assignment. These 
are collectively known as quasi-experimental designs. For an excellent discussion, see Shadish et al. 
(2001).
2 We assume here that both results are “statistically significant,” meaning they are unlikely to be due to 
mere sampling fluctuation.
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require that we can show that they vary together, but that we must also show that no other 
variable is responsible for the effect that we are seeing (Shadish et al., 2001; Stommel & 
Wills, 2004). Thus, it is always hazardous to interpret patterns of association discovered in 
observational studies as sufficient evidence for the existence of a cause–effect relationship: 
Correlation is not sufficient evidence of causation.

As we see in later chapters, many statistical models—for example, all the different 
kinds of regression models—employ an explicitly causal language, as when the analyst is 
asked to identify dependent as opposed to independent variables. Do not be fooled by this 
 terminology! Just because we create a model and designate some variables as dependent or 
outcome variables, and others as potential independent or causal variables, does not mean we 
have proven the causal relationship. Statistics alone cannot establish that the assumption of a 
cause–effect relationship is, in fact, correct. In the final analysis, statistical analysis can only 
show that variation in presumed dependent or outcome variables is associated with variation 
in presumed independent variables. Causal interpretation rests on additional criteria, such as 
the features of the study design and the explanatory framework that links causes and effects.

 ANALYSIS OF CORRELATED AND UNCORRELATED DATA

Another important distinction for statistical analysis is that between study designs that pro-
duce correlated and uncorrelated data. The distinction is not only important in terms of the 
interpretation of statistical information, but also affects the choice of appropriate statistical 
models when analyzing such data. Correlated data are an integral feature of longitudinal, 
repeated-measures studies, but also occur in some cross-sectional study designs.

Cross-sectional studies involve the gathering of data on study participants at a single 
point in time.3 From a statistical point of view, the main feature of such data is that individ-
ual variation in characteristics, traits, or variables across different study participants can be 
assumed to be independent of each other. Thus, if we enroll two patients into a hypertension 
study, we can reasonably assume that variation in the systolic or diastolic blood pressure (BP) 
of the first patient does not influence, and is not correlated with, variation in the systolic and 
diastolic BP of the second patient.

That postulate of independence would not hold in a longitudinal study, in which we 
analyze repeated measures from the same subjects. Obviously, we would expect that earlier 
and later measurements, taken from the same individual, are correlated. If that is the case, the 
statistical models we employ must reflect this fact. In this book, we introduce several statisti-
cal models employed in the analysis of repeated-measures designs, as these study designs are 
very common in nursing and medical research. As we will see, statistical models appropriate 
for the analysis of data from repeated-measures studies all start with the fundamental dis-
tinction between within-subjects and between-subjects variation in scores. We generally 
assume that within-subjects variation results in correlated scores according to some pattern, 
for example, repeated BP scores on the same individual are obviously related. By contrast, 
between-subjects variation in scores can often, but not always, be assumed to be independent 
or uncorrelated.

There are some cross-sectional study designs, commonly employed in clinical studies, 
which also produce data that violate the independence assumption. Whenever study partici-
pants are part of relevant clusters or pairs, the analysis must take account of this feature. For 

3 Alternatively, some cross-sectional designs involve single measurements on study participants at 
varying time, but the important feature remains that for each study participant, data were collected only 
on a single occasion.



66 I. FOUNDATIONS FOR STATISTICAL THINKING

instance, it would not make sense to analyze data from study participants in a nutrition study, 
who are part of the same family and live in the same household, as if they are providing com-
pletely independent observations on nutritional intake. Likewise, the analysis of data from a 
study of the effects of laser surgery on correcting near-sightedness cannot assume that treatment 
outcomes for the two eyes of the same person are completely independent from each other.

 SAMPLING DESIGNS

The interpretation of statistical information and statistical tests also depends on the sampling 
design employed in a study. As a general rule, statistical inference from sample data to tar-
get populations of interest is only feasible, if the sampling design involves some form of 
probability sampling. A probability sampling design specifies for each study participant the 
probability of being selected into the study sample. In the case of simple random sampling, 
each member of the target population has the same probability of being selected into the study 
sample. Statistical software packages like SAS, STATA, or SPSS usually assume, as a default 
setting, that study samples are simple random samples. However, for many practical reasons,4 
large-scale survey studies, designed to be representative of the U.S. resident population as 
a whole, employ complex survey designs involving both cluster and stratified sampling.5 In 
such studies, the sampling ratio6 varies, depending on where a study participant lives or which 
population group he or she belongs to. As a result, the estimation of standard errors and 
probability values associated with significance testing must be adjusted, which requires spe-
cial software modifications.7 In this book, we will not deal with data from complex survey 
designs. However, we think it important that the reader is aware of these complications.

 SOURCES OF RANDOMNESS IN HEALTH CARE RESEARCH

Statistical models assume that the data to be analyzed are always subject to random error. That 
poses the question: What are the sources of this randomness?

As we have already seen, one major source of randomness in medical and nursing 
research is the “deliberately engineered” random assignment of study participants in clinical 
intervention studies to various treatment and control conditions. Here, random assignment 
serves the purpose of facilitating causal inferences after interventions.

As discussed in the previous section, another important source of randomness in the data 
we use in health care research stems from drawing random samples from larger target popu-
lations. Here, random sampling serves the purpose of drawing inferences about large target 
populations based on information obtained from random samples.

Yet, while randomized clinical trials or randomized intervention studies are quite com-
mon in the literature, the use of random samples for the purpose of generalizing to larger 
populations is far less common, except for the federal health surveys conducted by the NCHS 
and a few others, such as studies of health insurance claims. Despite the increased use of 

4 Among them is the cost of data gathering, which is substantially lower when subjects are sampled in 
geographic clusters; in addition, oversampling of smaller population groups, such as various minorities, 
allows one to make reasonably accurate inferences about these smaller groups.
5 See the description on the NCHS website for the National Health Interview Survey and the NHANES.
6 The sampling fraction is the ratio of sample size to population group size for a particular cluster of 
individuals.
7 STATA, SPSS, and SAS-SUDAAN all allow for taking complex survey designs into account in the 
analysis using special subroutines.
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probability sampling in health research, most clinical studies rely on convenience samples 
(“we take any patient we can get, who meets our eligibility criteria”), in which case one 
cannot use statistical methods to make inferences about the target populations.

There is, however, a third source of randomness in health care studies: measurement 
error. Anyone, who has taken BP measures on particular patients, knows that the readings of 
diastolic and systolic BP vary from one occasion to the next, both because a patient’s actual 
BP varies (due to having taken a prior meal, having slept insufficiently, being nervous, etc.) 
and because the measurement procedure itself is error prone (using different arms, using dif-
ferent cuff pressure, using different instruments, etc.). In addition, even with the best quality 
controls, errors in data entry cannot always be avoided. Because of this lack of reliability in 
measurement, we often require several measures before we have sufficient confidence in the 
results. All clinical tests and data have a certain degree of unreliability (presence of measure-
ment error), and when we employ statistical models, we must take account of this unreliability 
as it is a component of every individual score. In this book, we discuss a few classic statistical 
measurement models that incorporate the assumption of random measurement error.

Considering the major sources of random error, it should be apparent that no data are 
without some random error. Thus, it is always appropriate to use inferential statistical meth-
ods, even with data from a convenience sample of an observational study. However, it is 
important to understand what statistical significance and confidence intervals (CIs) mean 
under the various circumstances:

1. In a randomized experiment, the main source of random error is the random 
assignment process itself; thus, a “statistically significant” effect is one that is 
unlikely to be the result of mere random assignment.

2. In an observational study using simple or complex probability samples from a large 
target population, the primary source of random error is the sampling process; thus, 
a “statistically significant” correlation pattern is one that is unlikely to be the result 
of mere random sampling.

3. Finally, in an observational study based on a convenience sample, a “statistically 
significant” pattern is one that is unlikely to be the result of mere random 
measurement error. But note, in the latter case, statistical inference cannot be used 
to support causal conclusions, nor inferences about larger target populations.

In all of these situations, nonsignificant results should be treated with extreme caution: They 
may just indicate a nonrepeatable, inconsequential pattern and nothing more than that.

 SUMMARY

The appropriateness of any statistical model depends on the degree to which the data meet the 
assumptions of the model. When we employ a statistical test to draw causal inferences about the 
effectiveness of an intervention, it is not enough that we find “significant differences” between 
an intervention and a control group after the intervention has taken place. The validity of the sig-
nificance test in this situation is based on the assumption that study participants were randomly 
assigned to the various intervention and control conditions (if there are more than two groups).

When we assert that women in their 40s have a significantly greater risk of breast  cancer 
than women in their 30s, we assume that the study data on which we based our inference 
involved some form of probability sampling. Without it, the statistical inference from study 
samples to target populations and the CIs for our estimates are not valid.
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Whenever we employ statistical tests and engage in statistical inferences, we make 
assumptions about the nature of the data we are dealing with. Some of these assumptions 
are based on the study and sampling designs that were employed to generate the data. Other 
assumptions involve the measurement models employed. Further assumptions pertain to the 
actual data and their empirical distribution in the target population of interest. As we will see 
later, assumptions about the shape of the data can, and must, be tested to see whether the data 
conform to the assumptions of the model used in a particular analysis.

In the following sections of this book, we focus broadly on three classes of statisti-
cal models, distinguished for the most part in terms of the characteristics of the dependent/ 
outcome variable(s) involved. In particular, we focus on (a) linear models, often appropriate 
for the analysis of continuous outcome variables (Part II, Chapters 8–14); (b) models for 
categorical outcome measures (Part III, Chapters 15–18); and (c) models for time-to-event-, 
failure-, or survival-data (Part IV, Chapters 19 and 20). We also include (d) statistical models 
for the evaluation of measurement properties and measurement error (Part V, Chapters 21 
and 22), as measurement is an integral part of both research and clinical evaluations.

 EXERCISES

1. In a nursing home, mattresses in one wing are of Brand A and in another wing are 
of Brand B. Data collected over a year show nursing home residents in the rooms of 
wing A are 40% more likely to experience bed sores than residents of the same nursing 
home in rooms of wing B. Is this sufficient evidence that Brand A mattresses are inferior 
to Brand B mattresses? Why or why not?

2. A website that promotes a nutrient supplement claims that the supplement reduces 
attention deficit hyperactivity disorder. The claim is based on the fact that 87% of 
the users who responded to an online survey at the website, reported that their ability 
to concentrate and do work had substantially improved after 2 weeks of taking the 
supplement.
(a) Is that sufficient evidence of the effectiveness of the supplement?
(b) Suppose these testimonials reflect the experience of all persons who took the 

supplement. Is that sufficient evidence of its effectiveness? Explain why or why not?

3. Researchers (Stommel, Olomu, Holmes-Rovner, Corser, & Gardiner, 2006) have 
attributed historical improvements in the survival of postdischarge ambulatory-care-
sensitive patients to quality improvement in care between 1994 and 2003. Read the article 
and make a list of all possible alternative hypotheses that may account for why survival 
rates have improved over this 10-year span.

4. List as many sources of measurement error as possible when it comes to measuring a 
patient’s BP.
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CHAPTER 8

 t -Test

In this section of the book, we discuss statistical models for continuous outcome or dependent 
variables. A continuous variable is one that, in principle, can take on any value within some 
range. However, in practice, all measured variables are discrete, as the precision of measure-
ment is always limited by the measurement tool at hand. Take, for instance, time or age. 
Theoretically, we could divide time into nanosecond intervals, but practically this would be 
a complete waste of effort: The precision of measurement should depend on the purposes of 
measurement. Thus, in many health-related studies we measure the age of individual adults in 
years, those of babies sometimes in months or even weeks, but never in minutes or seconds. 
In practice then, even variables that are theoretically continuous end up as discrete numbers in 
our data sets. Important for the models in this section of the book is only that the outcome or 
dependent variables take on sufficiently many distinct values, so that they can “mimic” con-
tinuous variables. As a rule of thumb, we should not apply the statistical models for continu-
ous variables presented in this section of the book to outcome variables with less than 8 to 10 
distinct values.1 In Part III of this book, we introduce other models that can be used instead, if 
outcome variables have fewer values. The other common property required for the application 
of the statistical models discussed in Part II is that the outcome variables should be measured 
at the interval or ratio levels of measurement. This, too, is implied in the use of models that 
employ as their basic building blocks means and variances. In fact, as the discussion of the 
t-test shows, it is just one member of the “family” of linear statistical models, which all share 
the assumption that means and variances can be computed and be given a meaningful inter-
pretation when applied to the test variables in question.

 VARIETIES OF t-TESTS

The t-test is one of the most commonly used statistical tests in the nursing and medical litera-
ture. The t-test is employed to determine, if two mean scores should be considered equal or 
different from each other. It comes in three versions:

1. The one-sample t-test compares a study sample mean to some predetermined or 
hypothesized population mean value.

1 Just for starters: It makes no sense to assume that the error terms in statistical models come close to a 
normal distribution, if they can take on only very few discrete values.

 PART II. MODELS FOR CONTINUOUS/
INTERVAL-LEVEL OUTCOME MEASURES
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2. The independent-sample t-test compares mean scores in two different groups, 
such as male and female patients or subjects in the treatment and control group of a 
randomized trial.

3. The paired-sample (dependent-sample) t-test compares mean scores for the same 
group of subjects measured at two different occasions/times.

The t-test is an inferential statistical test. Thus, the comparison of means envisioned 
here involves more than the calculation and description of two particular sample means. That 
would just be a matter of simple algebra. As we have seen in Part I of this book, the value of a 
statistical test is that it gives us a context in which we can interpret a particular sample result. 
That context involves assumptions about how a particular data set was generated. Thus, when 
we interpret results from a t-test, it matters whether we are analyzing data from an experimen-
tal study with prior random assignment of subjects to treatment and control group,2 or data 
from an observational study with random sample selection,3 or data from a nonexperimental 
study using a convenience sample.4

 THE ONE-SAMPLE t-TEST

This version of the t-test is not often employed in the research literature but it does have its 
uses, as when we compare a sample mean on a measure of interest to existing population 
norms. For instance, Humphreys, Lee, Neylan, and Marmar (2001) compared mean scores 
on the subscales of Derogatis’s Brief Symptom Inventory to means from a normative popu-
lation; or Horsted, Rasmussen, Meyhoff, and Nielsen (2007) compared mean scores on the 
SF-36 subscales, which measure physical and psychological functioning, to Danish popula-
tion norms. In such situations, researchers start with a hypothesized population value of a 
mean score and test, if the observed study sample mean is consistent with the hypothesized 
population mean. In effect, researchers would be asking whether the study sample could have 
been a random sample drawn from this population.

In order to conduct the test, we need the following information:

1. Observed sample mean, x

2. Observed sample standard deviation, s

3. Sample size, n

As we already saw in Chapter 6, with this information in hand we can estimate the standard 
error of the mean (SEM), s n/ . In turn, this would allow us to construct relevant confidence 
intervals (CIs) as well as hypothesis tests. However, for the t-test to be validly applied, the 
data must meet several assumptions (see Box 8.1). Most of these assumptions can actually be 
tested using the data at hand, as long as the sample size is reasonably large.

2 The classic example would be the randomized clinical trial.
3 The best examples in the health care field would be the surveys conducted by the National Center 
for Health Statistics, such as the National Health Interview Survey or National Health and Nutrition 
Examination Survey, whose purpose is to obtain health-related information from representative samples 
of the U.S. resident population.
4 Many observational clinical studies rely on study samples from particular clinical settings, which may 
or may not be representative of larger patient target populations.
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The first assumption concerning the interval level of measurement of the test variable 
derives from the simple fact that the t-test requires the calculation of sample means and 
sample standard deviations. The second assumption refers to the requirement that individual 
test scores are independent of each other, that is, that the score of some individual (i) does 
not influence or predict the score of another individual (j). In addition, the t-test presup-
poses that the test variable approximates a normal distribution in the population from which 
the sample is drawn. These assumptions for the valid application of the t-test are the same 
as those that underlie the z-test or normal-distribution test, which we already employed in 
Chapter 6.

1. Interval/ratio level of measurement for test variable
2. Independence of individual observations (uncorrelated error terms)
3. Normally distributed variable in population
4. Randomly drawn sample

ASSUMPTIONS OF THE ONE-SAMPLE t-TESTBOX 8.1

What, then, is the difference between the t-test and the z-test? If the data meet all the 
assumptions listed in Box 8.1 and we have prior knowledge of the size of the population stan-
dard deviation σ, then we can indeed employ the z-test to test for mean differences, regardless 
of sample size. Recall, however, from Chapter 6 that, in most situations, we do not know the 
population standard deviation and have to estimate it from a single study sample. In that case, 
the use of the normal distribution is only legitimate for reasonably large study samples: We 
used n > 120 as a benchmark. When we estimate the SEM using information from a particu-
lar study sample, we introduce additional uncertainty into our estimates, as sample standard 
deviations are subject to sampling fluctuations as well. It is for this reason that we employ the 
t-distribution, rather than the normal distribution, to mimic the shape of the sampling distribu-
tion of the mean.

The t-distribution was so named by its inventor William Gosset, who published it under 
his pen name “Student” (1908). It actually comprises a family of distributions, shaped very 
similar to that of the normal distribution (see the graphs in Figure 8.1). Like the normal 
distribution, the t-distributions are completely symmetric, that is, the means of these dis-
tributions are also their medians and modes. The principle difference from the normal dis-
tribution is that t-distributions for small samples are somewhat flatter in the middle and 
have thicker tails. This is a reflection of the fact that the standard error estimates, s n/ , 
from small samples are subject to larger sampling fluctuations, resulting in the flatter shape 
of the distributions. However, for samples larger than n = 120, the t-distribution is barely 
distinguishable from the normal curve. As n grows in size, the t-distribution converges to the 
normal distribution.

Figure 8.1 shows two t-distributions, one with 2 “degrees of freedom” (df; in light 
gray), and the other with 6 “df” (in dotted line). Figure 8.1 also contains the standard nor-
mal distribution (in dark gray), N(0, 1), for comparison. For all three of these probability 
distributions, the graphs show the 95% confidence limits. For instance, for the graph of the 
t-distribution with 6 df (dark curve), 95% of the area under the curve is encompassed within 
the limits of −2.45 and +2.45 standard errors. Thus, if we repeatedly drew random samples 
of size 7 (df = 7 − 1 = 6) from the same target population, the sampling distribution of the 
corresponding sample means would follow the shape of this t-distribution, with 95% of all 
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sample means falling within ±2.45 standard errors of the population mean. Similarly, for 
means of samples of size 3 (df = 3 − 1 = 2), we would expect the sampling distribution to 
follow the t-distribution with 2 df (light gray). This distribution has a much wider 95% CI 
with limits of ±4.30 standard errors.

In practice, we do not have to calculate the appropriate t-values and their associated 
probabilities from graphs like in Figure 8.1. We either use tables, like the one in Appendix C, 
or standard statistical software packages to obtain the appropriate values. As we already noted, 
with increasing sample sizes (and degrees of freedom), the t-distribution converges toward the 
normal distribution. Already at 120 df, the 95% confidence limits are very similar to those of 
the normal distribution: ±1.98 for the t-distribution (with 120 df) versus ±1.96 for the normal 
distribution; the 99% CI limits are ±2.62 for the t-distribution (with 120 df) versus ±2.58 for 
the normal distribution. Because of this convergence of the t-distribution and normal distribu-
tion for larger df, statistical software does not distinguish between t-tests and tests based on 
the normal distribution: with higher df, the normal distribution is automatically “built into” 
the t-distribution tests.

 Conducting a One-Sample t-Test

If our data meet the assumptions for the one-sample t-test, all we need to do is construct the 
relevant test statistic. In the one-sample test, we compare a sample mean, x, calculated from 
observed data, to the hypothesized population mean, μ, and divide the difference between the 
two numbers by the estimated SEM: ( ) / ( )x s n− μ / . This expression is the t-value we need 
to calculate the associated probability or p-value. The ratio expresses the difference between 
the observed sample mean and the hypothesized population mean in terms of the number of 
standard errors by which they differ. As the t-distributions also show distances from their 
means in terms of standard errors (Figure 8.1), we can use them to figure out the probabilities 
that an observed t-value exceeds any particular number.

FIGURE 8.1 t-Distributions (2 df, 6 df) and Normal Distribution.
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Here is how it is done: Suppose we have birth-weight data from a sample of 100 newly 
born babies. We want to know if this sample comes from a target population that is similar to 
the overall U.S. population, with a mean birth weight of 7.48 pounds (CDC, 2012). All we need 
now is information on the relevant sample data. Table 8.1 shows the results from a STATA run.

For the variable “birthwgt” (birth weight in lbs) we have n = 100 observations 
(Obs = size of sample) with a mean birth weight of 7.2952 pounds. The sample standard 
deviation equals 1.284983. With a sample size of exactly 100, the estimated SEM equals: 
s n/ /= =1 284983 100 0 1284983. . . Now, we want to test if the observed sample mean of 
7.2952 is consistent with our hypothesis that the sample comes from a population with a true 
mean of 7.48. Thus, our null hypothesis is H0: x = μ = 7.48.5 Our alternative hypothesis, HA, is 
that our sample does not come from a population with mean 7.48. As we cannot know prior to 
having seen the data whether the sample mean will be smaller or larger than the hypothesized 
population mean, we state our alternative hypothesis as follows: HA: x − μ ≠ 0.

In short, we test the null hypothesis against the alternative hypothesis that the sample 
does not come from a population with mean 7.48, without specifying whether the difference 
will be positive or negative.

Before commencing with the calculations, we must also specify the significance level, 
that is, the risk that we commit a Type I error, if we reject the null hypothesis. Let us use the 
conventional significance level of α = 0.05. From the t-distribution table in Appendix C, we 
learn that there is a 5% (two-sided) probability that t-values could be smaller than −1.984 or 
larger than +1.984 as a result of mere random sampling.6

Now, we are ready for the final test. Table 8.1 shows the observed sample mean to be 
equal to 7.295; thus, the difference between the sample mean and the hypothesized popula-
tion mean is: x – μ = 7.2952 – 7.48 = −0.1848. Dividing this difference by the estimated SEM 
yields our test statistic: t x s n= − = − = −( ) ( ) ( . ) . . .μ / / /0 1848 0 1284983 1 4382  The absolute 
value of this t-value is smaller than the t-value corresponding to the 0.05 significance level. 
That implies that the observed sample mean differs from the hypothesized population mean by 
less than the critical value; so we will not reject the null hypothesis. In fact, Table 8.1 shows 
that the probability that a random sample from a population with mean μ = 7.48 produces 
a sample mean of x = 7.2952, thus differing from the population mean by at least ±1.4382 
standard errors, is equal to .1535.

5 Of course, this implies that x − μ = 0.
6 As n = 100, df = n − 1 = 99. Appendix C only shows the t-values and probabilities for df = 100, 
instead of df = 99. However, the differences are so small that they can be neglected in practice. Using 
the STATA software, the actual t-values corresponding to a two-sided significance level of 0.05 for the 
t-distribution with 99 df are ±1.984217.

TABLE 8.1 One-Sample t-Test

One-sample t-test
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 birthwgt | 100 7.2952 .1284983 1.284983 7.040232 7.550168
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 mean = mean(birthwgt) t =  −1.4382
Ho: mean = 7.48 degrees of freedom     =     99

 Ha: mean ≠ 7.48
Pr(|T| > |t|) = 0.1535
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Figure 8.2 provides a graphical illustration of this one-sample t-test. It shows the 
 t-distribution with 99 df, which is centered on the null value of H0: x − μ = 0. The solid verti-
cal lines are located at the observed sample t-values of t = ±1.4382. The gray areas to the left 
and right of these t-values indicate the probability that a random sample might return a t-value 
exceeding the absolute magnitude of |t| = |±1.4382|. That joint probability equals .1535, with 
separate probabilities of .07675 for the occurrence of t-values smaller than −1.4382 or larger 
than +1.4382. Figure 8.2 also shows the (dashed) vertical lines for the t-values corresponding 
to the significance level of 0.05 (or confidence level of 0.95). If the null hypothesis is true, 
then 95% of all random samples would return sample means that lie between ±1.984 standard 
errors of the null-hypothesis value. As we can see, the observed sample t-value lies inside the 
95% confidence limits. Thus, we do not reject the null hypothesis because we want to limit 
the Type I error to 0.05.

Finally, Table 8.1 provides estimates for the limits of the 95% CI: the CI ranges from 
7.040232 to 7.550168. As we have seen, 95% CIs for a t-distribution with 99 df are bounded 
by t-values of ±1.984. Thus, as long as sample means do not differ by more than 1.984 
standard errors from the (hypothesized) population mean, they fall within the 95% CI. With 
our estimate for the SEM being 0.1284983 (Table 8.1), we can now construct the 95% CI:

xi – 1.984 × SEM < µ < xi + 1.984 × SEM

7.2952 – 1.984 × .1284983 > µ < 7.2952 + 1.984 × .1284983

7.2952 – 0.254968 < µ < 7.2952 + 0.254968

7.040232 < µ < 7.550168
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 Testing the Assumptions for the t-Test

Earlier in this book we emphasized that any statistical test is valid only if the data fit the 
assumptions of the test, at least in an approximate way. The t-test is actually a robust test, 
which means that some deviation from the normality assumption about the population dis-
tribution of the test variable is not a big problem. More specifically, a robust test will return 
p-values that are similar to the ones obtained, if all the assumptions of the test are fulfilled. 
Part of the reason for this robustness is due to the already-mentioned Central Limit Theorem 
(Chapter 5): Large samples produce sampling distributions that are close to normal in shape, 
even if the underlying population distributions are not normal. Nonetheless, with smaller sam-
ples in particular, outliers can have pronounced effects on the standard deviations computed 
from a study sample; likewise, substantial skew in distributions also leads to large increases 
in sample standard deviations. As a result, estimates of the SEM are also affected, making the 
t-test less powerful, as larger standard errors increase the chance of a Type II error. How then 
do we detect pronounced deviations from normality?

Essentially, there are two methods to discover deviations from normality in the popula-
tion: graphical methods and statistical tests. In Chapter 3, we introduced the box-and-whisker 
plot (Figure 3.4), which offers an easy way to check for the existence of outliers and skew 
(or asymmetry) of a sample distribution. The histogram (Figure 3.6) also provides a way 
of checking for approximate normality of a sample distribution. Another common graphical 
device is the (cumulative) normal probability plot. It is constructed by first ordering the val-
ues of a particular variable from lowest to highest; then one computes the proportion of cases 
that fall below the lowest 1%, 2%, 3%, . . ., 100% of the empirical distribution; and, finally, 
one compares the cumulative proportions from the empirical distribution to the probability of 
occurrence expected in a normal distribution. The plot is constructed in such a way that under 
perfect congruence of the variable and the normal distribution, all data points should lie on 
a straight diagonal line, as the cumulative probability of the empirical and the ideal normal 
distribution would progress at the same rate. Figure 8.3 offers an example for the data with 
the birth weights of 100 babies. The figure shows that the empirical distribution mirrors that 
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of the normal distribution quite closely: The increases in the cumulative proportions of cases 
in the empirical distribution are almost identical to those in the normal distribution; thus, no 
substantial skew or outliers can be observed.

Another way of testing the normality assumption would be to use a formal statistical 
test. Recall that the normality assumption refers to the distribution of a variable in the popula-
tion from which the sample is drawn. As samples rarely reflect the population distributions 
exactly, some deviation from the normality assumption may well be within expected sampling 
chance. One test to use would be the Kolmogorov–Smirnov (K–S) test,7 which compares the 
shape of an empirical sample distribution from a particular data set to an ideal distribution like 
the normal distribution. Its null hypothesis is that the sample data could have come from a nor-
mal distribution, with the alternative hypothesis that the sample data most likely come from a 
nonnormal distribution. Under this assumption, a p-value less than .05 would lead us to reject 
the null hypothesis, that is, it is unlikely that the sample comes from a cumulative normal 
distribution. For the baby weight data we find that p > .682, when testing the null hypothesis 
of the K–S test. Thus we accept that these data come from a normal population distribution.

There is, however, a caveat when using statistical tests to see whether sample data could 
have come from normal population data: If study samples are very small (n < 30), such tests 
lack the requisite power to detect deviations from normality; on the other hand, if study sam-
ples are quite large (say n > 1000), then even trivial deviations from normality are “statistically 
significant.” Thus, there is no single foolproof test; however, the combination of graphical 
inspections and specific tests will alert us to major violations of the normality assumption.

 THE INDEPENDENT-SAMPLE t-TEST

The independent-sample t-test is frequently encountered in the medical and nursing literature 
(Bentley, 2006; Dombrowski, Yoos, Neufeld, & Tarshish, 2012; Meydani et al., 2004). This 
version of the t-test compares two group means, with the null hypothesis being that the underly-
ing population means are equal: H0: μ1 = μ2 or  μ1 – μ2 = 0. Here are the assumptions of this t-test:

1. Interval/ratio level of measurement for test variable
2. Independence of individual observations (uncorrelated error terms)
3. Normally distributed variable within both populations compared
4. Equal variances (or standard deviations) within both populations
5. Randomly drawn sample

ASSUMPTIONS OF THE INDEPENDENT-SAMPLE t-TESTBOX 8.2

The independent-sample t-test is used with data from both randomized intervention 
studies (clinical trials) and observational studies. In the case of a randomized study, both 
groups come from the same population, with sample group differences due to the results of 
the randomization process. In the case of an observational group criterion, like sex, which 
cannot be randomly assigned, the groups come from separate populations in which the test 
variable may have differently shaped distributions. While it is advisable to test for the equality 
of variances (or standard deviations) prior to all group mean comparisons, this is particularly 
relevant in the comparison of two naturally occurring populations.

7 Available in all common statistical software packages, for example, SPSS, STATA, and SAS.
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 Conducting an Independent-Sample t-Test

As with the one-sample t-test, we can test the normality assumption using the graphical and 
statistical testing methods outlined earlier. However, it is important to note that the normality 
assumption refers to the distribution of the test variable within each of the two groups being 
compared. Furthermore, when we estimate the SEM difference between the two comparison 
groups, we encounter an additional problem: With two groups, we could obtain two different 
estimates of population standard deviations. While we still use as our test statistic the mean 
difference between the two comparison groups divided by the standard error, ( )x x1 2− /SE, the 
estimate of the SEM difference relies on a weighted sum of the two variances involved:

SE = +
s
n

s
n

1
2

1

2
2

2

If the variances in the two groups are the same, then we estimate the SEM difference using a 
modified expression, which includes a single estimate of the sample standard deviation that is 
the square root of the weighted average of the two variances involved:

SE =
−( ) + −

+ −
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1 2 1 2

1 1
2

1 1( )

While it is not essential to remember the particular formulas for the estimation of the 
standard errors of the mean difference, it is important to check whether assumption 4 in 
Box 8.2 about equal variances in the comparison groups is violated. If yes, we need to modify 
the t-test accordingly. To see whether the assumption of equal variances holds for the two 
independent groups, we first conduct a test of the equality of variances between the two 
groups before applying the t-test for the equality of group means. This test of the equality of 
variances is also known as Levene’s (variance-ratio) test.

Going back to the birth-weight data from a sample of 100 newly born babies, we 
find that 50 of these babies are female and 50 are male. We are interested in finding out 
whether the mean birth weights in these two groups differ in the populations from which they 
were drawn. Prior to applying the t-test, we conduct the Levene’s variance-ratio f-test. The 
results are given in Table 8.2:

TABLE 8.2 Levene’s f-Test of Equality of Variances Prior to t-Test of Equality of Means

Variance ratio test
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    male |  50 7.2892 .2029456 1.435042 6.881366 7.697034
  female |  50 7.3012 .1597898 1.129885  6.98009   7.62231
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
combined | 100 7.2952 .1284983 1.284983 7.040232 7.550168
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 ratio = sd(male) / sd(female) f =  1.6131
Ho: ratio = 1 degrees of freedom =  49,  49

 Ha: ratio ≠ 1
 2*Pr(F > f) = 0.0975
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The only pieces of descriptive information in Table 8.2 that are relevant to the 
 variance-ratio test are the two standard deviations of birth weight among male (1.435042) 
and female babies (1.129885). Squaring them gives us the respective variances: 2.059346 
(male) and 1.276640 (female). If the variances are equal, as stipulated in the null hypoth-
esis for this test, the ratio of the variances must be: H0 = 1. The test statistic, which is a 
ratio of two variances, s s1

2
2
2/ , has a sampling distribution shaped like the F-distribution with 

49 df in the numerator and 49 df in the denominator.8 For the data in Table 8.2, we have 
f = 2.059346/1.276640 = 1.6131. Here we only ask: What is the probability of observing a 
sample f-ratio as large as 1.6131, if the null hypothesis is true, which would imply the f-ratio 
in the respective target population is equal to 1? Table 8.2 provides the answer: p = .0975. 
As our conventional  significance-level criterion of α = 0.05 would lead us to reject the null 
hypothesis only if p ≤ .05, we accept H0. Thus, for the subsequent t-test, we assume that the 
variances for birth weight are approximately equal among male and female babies in the 
population.

After this preliminary variance-ratio test, we are now ready to conduct the t-test for 
equality of group means. Table 8.3 provides the results from the independent-sample t-test, 
with equal variances assumed in both population groups.

Table 8.3 offers information on combined as well as separate descriptive statistics for the 
male and female babies. We learn that each gender group contains 50 babies, with mean birth 
weights of 7.2892 pounds among male and 7.3012 pounds among female babies, resulting in a 
difference of  7.2892 – 7.3012 = −0.012. To get the relevant test statistic or t-value, we express this 
mean difference in terms of standard error units: t x x= − = − = −( . . . .1 2 0 012 0 2583 0 0465)/SE /  
Then we locate this t-value on the relevant t-distribution, which, in this case, has 98 df. Recall 
from the earlier discussion that the df are generally computed as: sample size minus the number 
of population parameters to be estimated. In a two-sample t-test, we estimate two population 
means; thus, the df of this test equal: df = n − 2. In the example data, we get: df = 100 − 2 = 98. 
Locating a t-value of −0.0466 on the t-distribution with 98 df yields a p-value of ≥.936 (the 
software provides the p-value at the bottom of Table 8.3). In other words, if we were to reject 

8 More discussion on the f-distribution follows in Chapter 9 on one-way ANOVA.

TABLE 8.3 Independent/Two-Sample t-Test of Equality of Means

Two-sample t-test with equal variances
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
      male |  50 7.2892 .2029456 1.435042 6.881366 7.697034
  female |  50 7.3012 .1597898 1.129885  6.98009   7.62231
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
combined | 100 7.2952 .1284983 1.284983 7.040232 7.550168
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
      diff  |    −.012 .2583016  −.5245911 .5005911
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
      diff  = mean(male) − mean(female) t =  −0.0465
Ho:   diff  = 0 degrees of freedom =     98

Ha:   diff  ≠ 0
Pr(|T| > |t|) = 0.9630
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the null hypothesis that there is no difference in the mean birth weight of the male and female 
babies, we would be almost certainly wrong, as the Type I error for a  rejection of H0 is >0.96. 
Thus, we accept the null hypothesis of no mean difference.

Table 8.3 also provides estimates for the 95% CI of the mean difference. The 95% CIs 
for a t-distribution with 98 df are bounded by t-values of ±1.9844675.9 This yields the 95% CI 
for the mean difference in birth weight between male and female babies:

−0.12 – 1.9844675 × 0.2583016 < µm – μf < −0.12 + 1.9844675 × 0.2583016

−0.5245911 < µm – μf < 0.5005911

Notice, that the 95% CI contains the null value of 0. As the observed sample mean difference 
of −.012 differs very little from the null value, the null value lies inside the 95% CI, confirm-
ing that there is no “statistically significant” difference.10

Finally, if the Levene’s variance-ratio test had led to the rejection of the null hypothesis 
that the variances in the comparison groups can be considered equal in magnitude, then we 
would still have proceeded with the t-test for the equality of means, but that test would use a 
t-distribution with modified df, known as Welch’s test (Welch, 1947). Some software pack-
ages print out the p-values for the Levene’s test and Welch’s correction to the t-test automati-
cally (SPSS), in others, it must be requested (STATA, SAS).

 THE PAIRED-SAMPLE t-TEST

In the previous discussion of the independent-sample t-test, we introduced a statistical 
model that rests on the assumptions listed in Box 8.2. For paired (or dependent) sample 
data, the assumption of independence of individual observations (or uncorrelated error 
terms) cannot be maintained. Such data often consist of repeated measures on the same 
individuals, as would be the case with a pretest–posttest design, where a sample of patients 
is first tested for their blood pressure, then asked to exercise 15 minutes on a treadmill, 
followed by a second reading of their blood pressure. Paired data may also involve purely 
observational data, as when measuring the height and weight of a sample of adolescents at 
two different times spaced 1 year apart. In either case, we would expect that the earlier and 
later measures taken from the same individual would be correlated. Paired or correlated 
data also arise with samples consisting of matched pairs, sharing an important charac-
teristic with respect to the test variable. For instance, in a randomized block design for a 
hypertension intervention trial, researchers may want to make sure that, for each hyper-
tensive female smoker aged 45 in the treatment group, there will be another individual 
with the same characteristics in the control group. Alternatively, in an observational study 
of nutrition, two children living in the same household would be expected to have similar 
(“correlated”) diets. Given the lack of independence among paired observations, a modi-
fied version of the t-test is used to test for changes in mean scores over time or differences 

9 While df = n − 2 = 98, Appendix C shows the t-values and probabilities for df = 100, which are still 
“close enough.” Using the STATA software, the actual t-values corresponding to a two-sided signifi-
cance level of 0.05 for the t-distribution with 98 df are ±1.9844675.
10Note: The sample mean difference always lies within the 95% CI, as CIs are constructed around the 
sample estimates; however, the hypothesized null value of no mean difference may or may not lie within 
the CI, depending on how the sample data fall out.
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in mean scores among matched pairs. This version of the t-test is also quite common in the 
clinical literature (Mallory, 2003).

The paired-sample t-test compares two mean scores for related or paired groups. In 
order to demonstrate the inferential logic of the paired t-test, we use a hypothetical exam-
ple. Table 8.4 shows data from a small study of six hypertensive primary care patients, 
who are assumed to have taken a hypertension-reducing drug every day for a period of 
2 months.

The table shows individual diastolic blood pressure (DBP) readings taken at time 1, 
before the drug therapy commenced (xi1), and a second reading at time 2, 2 months into 
the therapy (xi2). At the bottom of the table several descriptive statistics are listed, includ-
ing the mean DBP before the start of the drug therapy (x.1 = 97), the mean DBP 2 months 
later, (x.1 = 91), and the mean change score, representing the average change or decline in 
paired DBP scores over 2 months (D = −6). The data in the fourth column indicate that the 
decline in DBP scores varies among individuals, from (−4) to (−11). In short, the decline 
is not uniform, but shows individual change Di deviates from the mean change score of 
D = −6. By definition, the sum of all these deviations must always be 0: Σ(Di − D) = 0. The 
column on the right adds the sum of squared deviations of individual change scores from 
their mean; this measure is the basic building block for the variance and standard deviation 
(see Chapter 3). While these descriptive results tell us the story about the individuals in this 
particular sample, we need again the inferential t-test to provide a context for judging if the 
observed mean decline in DBP scores is “statistically significant” and not just a sampling 
fluke.11

Given the available data, it is not difficult to construct the new test statistic. We start 
with the six pairs of difference or change scores constructed from the 12 DBP readings. We 
have seen that, in this particular sample, the mean change score is D = −6. We now need 
to express the difference between the sample mean change score, D, and the hypothesized 
population mean change score, μδ, in terms of the appropriate standard error. Recall that we 
estimate the SEM scores using the formula: SEM = s n/ . The only modification for the paired 

11 Again, the presence of measurement error and sample selection would likely produce different change 
scores in different samples.

TABLE 8.4 Sample Data for Paired t-Test: Two Diastolic Blood Pressure Readings Taken 
2 Months Apart

ID x
i1
 (TIME 1) x

i2
 (TIME 2) D

i
 = x

i2
 − x

i1
D Di − ∑ −( )D Di

2

1  92 86 −6 0 (0)2 = 0

2  94 90 −4 2 (2)2 = 4

3  96 92 −4 2 (2)2 = 4

4  98 92 −6 0 (0)2 = 0

5 100 95 −5 1 (1)2 = 1

6 102 91 −11 −5 (−5)2 = 25

n = 6 x
.1
 = 97 x

.2
 = 97 D = −6 ∑ −( ) =D D

i
0 ∑ − =( )D Di

2 34
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t-test is that, instead of the sample standard deviation s of the original scores xi, we use the 
sample standard deviation of the individual difference scores, Di:

s
D D
nD

i
i
=

−

−

= =
∑( )

.
2

1
34
5

2 6077

The SEM change scores, SEDi, then becomes: SE /D Di i
s n= . For the data in Table 8.3, we 

get SE /D Di i
s n=  = 2.6077/ 6 = 1.0646. As the t-value for the paired t-test is defined as 

t D Di= −( )μ
δ

/SE , our test statistic becomes:

t D Di= − = − − = −( ) ( ) . .μ
δ

/SE /6 0 1 0646 5 636

The null hypothesis, as usual, states that there is no real difference in mean diastolic 
blood pressure before and after the drug treatment. In other words, we assume that the true 
mean change, which we denote by the Greek symbols μδ (“mu of delta” or the population 
mean change), equals 0. However, in our data, the observed sample mean change of D = −6 
differs quite a bit from the hypothesized population mean change of μδ = 0: We now know that 
D is 5.636 standard errors below the hypothesized population mean of 0.

All that is now left to find is the probability that a sample t-value would exceed ±5.636. 
The appropriate t-distribution to answer this question has 5 df (df = 6 − 1 = 5), as we only 
estimate one population parameter, that is, the mean of the paired change scores, of which 
there are n = 6. The probability of exceeding |t ± 5.636| is very low, namely p ≤ .00244. That 
is, less than two in a thousand random samples of size 6 would produce this result by chance 
alone. Our conclusion would be that the two DBP means do differ: There is a “statistically 
significant” decline in diastolic BP, with an average decline of −6. Table 8.4 summarizes the 
results.

A note of caution: The paired-sample t-test (Table 8.5) allows us to evaluate average 
change in a group between two time occasions. It is less well adapted to estimating individual 
change. For instance, assume somewhat different data in Table 8.4: A mean change score of 
D = −6 could also have occurred, if individuals 2 and 3 had shown no change at all (0), while 
individuals 1 and 4 had change scores of (−10). Thus, from the mean change score, we will not 
know, if all or most individuals in the patient sample showed a decline in DBP. In Chapter 10, 

TABLE 8.5 Paired-Sample t-Test of Equality of Means

Paired t-test
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Variable | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  time2 | 6 91    1.21106 2.966479  87.88687   94.11313
  time1 | 6 97 1.527525 3.741657  93.07337  100.9266
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   diff  | 6 −6 1.064581 2.607681 −8.736593 −3.263407
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 mean(diff ) = mean(var2 - var1) t =   −5.6360

Ho: mean(diff ) = 0 degrees of freedom =      5

     Ha: mean( diff ) ≠ 0
Pr(|T| > |t|) = 0.0024
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we discuss the Pearson correlation and apply it to this problem. As we will see then, a high 
correlation would indicate that most, if not all individuals in the sample experience a change 
in the same direction.

 Assumptions of the Paired-Sample t-Test

Box 8.3 provides a short list of the main assumptions underlying the application of the paired 
t-test. The test statistic for the paired t-test involves individual change scores between two vari-
ables, for which we compute means and standard deviations. This requires at least an interval-
level measurement of the original variables. The paired t-test also assumes that the individual 
change scores in the underlying population are normally distributed; otherwise, we cannot 
assume that the sampling distribution of the test statistic has the shape of a  t-distribution. Even 
though the paired original variables are likely to be correlated, the paired t-test elegantly cir-
cumvents this problem, in that the two original variables are converted into a single individual 
change score variable. There is every reason to assume that the change scores of different indi-
viduals are independent of each other, meaning that the change in individual i does not influ-
ence the change in individual j. As always, generalization beyond a particular study sample 
requires that the study sample is a probability sample from a specified target population.

1. Interval/ratio level of measurement for test variable
2. Independence of individual change scores
3. Normally distributed change scores within population
4. Randomly drawn sample

ASSUMPTIONS OF THE PAIRED-SAMPLE t-TESTBOX 8.3

 SUMMARY

The t-test is a useful, and frequently used, inferential statistical test that allows us to deter-
mine whether two sample means (paired or unpaired) come from populations with the same 
or different means. The t-test can also be used to determine whether a sample mean differs 
from a predetermined population mean. t-tests may be applied to observational data as well 
as randomized clinical trial data. In the latter case, the t-tests are often used to gauge the suc-
cess of the randomization at baseline, or they may be used to determine whether the mean 
outcome scores in an intervention group differ from those in the control group. For all appli-
cations of the t-test, we assume an interval level of measurement of the test variable as well 
as approximately normally distributed test variables in the underlying populations. While the 
t-tests are robust, extreme skew or substantial outlier problems may invalidate the use of the 
t-distribution to obtain correct p-values. In those cases, researchers may sometimes be able to 
“normalize” skewed distributions (see Appendix D) or may choose alternative “distribution-
free” or “nonparametric” tests, which do not make these assumptions. Chapter 16 introduces 
some of these alternative tests.

As the t-test can only be used in the comparison of two means, it remains limited in its 
applications. In the following chapter(s), we introduce several analysis-of-variance (ANOVA) 
and regression models, which can be considered generalizations of the t-test, allowing for the 
comparison and modeling of multiple mean outcomes.
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 EXERCISES

1. In a preliminary study of a new antihypertensive drug, researchers obtained a 
baseline mean diastolic BP of 94 mmHg. After 4 weeks of taking the new drug, these 
same patients had a mean diastolic BP of 86. The standard deviation of this mean 
difference was SD = 26 and the total study sample had a size of n = 169 patients. Which 
of the following conclusions is correct?
(a) The findings are statistically significant: We can reject the null hypothesis that the 

mean diastolic BP did not decline over time.
(b) Given the information provided, we cannot compute the relevant t-value.
(c) The standard error of the test statistic (mean difference) is 26; thus, the t-value is 

−0.31 (= −8/26).
(d) As the t-value equals −4.0 and the probability of such a t-value occurring by chance 

is less than 1 in 1,000, we conclude that the decline in diastolic BP measures is just a 
random occurrence, and not “for real.”

(e) The 95% CI for the test statistic includes the null value of 0. Thus we conclude that 
the antihypertensive drug treatment is effective.

2. You have the following information about a random sample of adult Michigan Medicaid 
recipients: The mean sample weight of 900 randomly chosen subjects is 145 pounds, and 
the sample variance of the weight variable is 441. Which of the following values show the 
95% CI for the mean weight of the target population (adult Michigan Medicaid recipients)?
(a) 145 ± 1.121
(b) 145 ± 1.8

Read: Kim, I. S., Chung, S. H., Park, Y. J., & Kang, H. Y. (2012). The effectiveness of an 
 aquarobic exercise program for patients with osteoarthritis. Applied Nursing Research, 25(1), 
181–189.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define precisely the target population to which the statistical analysis can be generalized 
(be sure to mention ALL exclusion criteria applied).

(c)  List all dependent/outcome variables, provide a clear definition of them, and determine 
their level of measurement.

(d)  List the main independent/explanatory variable in the study.

(e)  List all instances of t-tests in this article; formulate the null hypothesis for each test and 
state in a sentence what the associated probability value indicates.

(f)  In Table 5, the authors show “changes in dependent variables between the experimental 
and control groups”; however, the authors did not conduct paired t-tests, but independent-
sample t-tests. What outcome measures were compared across the two groups?

(g)  Given the information in the column titled “diff” in Table 5, perform separate paired t-tests 
within the experimental and control groups. Are all paired t-tests “statistically  significant” at 
the α = 0.05 level?

LITERATURE APPLICATION
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(c) 145 ± 1.372
(d) 145 ± 1.764
(e) 145 ± 2.178

3. The Central Limit Theorem asserts:
(a) That the distribution of variables in the population follows the normal distribution, if 

populations are large
(b) That the distribution of sample means follows the distribution of sample values
(c) That the distribution of variables in the study sample follows the normal distribution 

if samples are large
(d) That the sampling distribution of the mean of large samples is normally distributed, 

even if the population distribution of the variable in question is not normally distributed
(e) Normality of variables can be assumed, when we have a large number of samples

4. The following table shows the weights of 10 individuals, who enrolled in a physical 
exercise class scheduled three times a week for 2 months, at the time of enrollment.

SEX WEIGHT AT TIME 1 WEIGHT AT TIME 2

1 78 74

1 59 56

1 62 57

1 64 62

1 71 65

2 93 90

2 78 79

2 69 65

2 82 79

2 86 81

(a) Using a hand calculator, compute the t-value to test the null hypothesis that there is 
no statistically significant difference between the average weight of women (sex = 1) 
and men (sex = 2) at time 1.

(b) Using a hand calculator, compute the t-value to test the null hypothesis that there is 
no statistically significant difference between the average weight of women (sex = 1) 
and men (sex = 2) at time 2.

(c) Using a hand calculator, compute the t-value to test the null hypothesis that there is 
no statistically significant difference between the average weight of women (sex = 1) 
at time 1 and time 2.

(d) Using a hand calculator, compute the t-value to test the null hypothesis that there is 
no statistically significant difference between the average weight of men (sex = 2) at 
time 1 and time 2.

(e) Using a hand calculator, compute the t-value to test the null hypothesis that there is 
no statistically significant difference between the average weight of all individuals 
(men and women) at time 1 and time 2.
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 Notes:
1. For all tests, the statistical significance criterion is α = 0.05.
2.  The t-distribution table in Appendix C shows the appropriate cut-off points. 

(Tip: Make sure to choose the t-distribution with the appropriate df.)
3.  Check your results using a statistical software of your choice (SPSS, Minitab, 

STATA, SAS, etc.) or Microsoft Excel.
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CHAPTER 9

 One-Way Analysis of Variance

In the last chapter, we introduced the t-test, a statistical model for comparing the magnitudes 
of two mean scores. While often useful, it is a model of limited applicability. For many health-
related studies, we need models to examine more complex data patterns. For example, in the 
classic pretest/posttest randomized control group design, we end up with two baseline mean 
scores (intervention and control group) and two posttest mean scores (again for the inter-
vention and control group) after the experimental stimulus has been administered (Oenema, 
Burg, & Lechner, 2001). Thus, to take full advantage of the data generated by such a study, 
we would need to be able to evaluate simultaneously all the patterns arising among four mean 
scores. Other common study designs in the nursing and medical literature involve even more 
measurements: many intervention studies have repeated follow-up measures (within-subjects 
variation), commonly between two and six such measures (Manchikanti, Cash, McManus, 
Pampati, & Fellows, 2012). Randomized controlled trials involve often more than just two 
comparison groups (between-subjects variation), for example, when the intervention arm is 
split into multiple groups distinguished by different treatment combinations or different dos-
ages of a drug they receive (Suh, 2012), or the intervention consists of a combination of dif-
ferent treatments or drugs all of which are tested simultaneously in a single study (Epstein, 
Sidani, Bootzin, & Belyea, 2012). Such studies may also have several outcome variables to 
keep track of. Many observational studies also have more complex designs. For instance, 
panel studies are a major source of information about the health states of individuals, as they 
involve following individuals over lengthy time periods, allowing us to observe patterns of 
growth and decline (Soto-Campos, 2007). In short, we need a generalized method of compar-
ing means scores in multiple groups and over multiple occasions within groups.

One important class of statistical models for continuous outcome/dependent variables 
that can accommodate all the mentioned complications is the analysis of variance (ANOVA) 
model. All of the ANOVA models are based on the principle of decomposition of variance, 
hence the name ANOVA. In this chapter, we demonstrate the basic idea of how variance is 
decomposed, starting with the simplest between-subjects model: the one-way ANOVA. This 
statistical model makes the same assumptions about the nature of the data as the independent-
sample t-test (see Box 9.1).

To fix the idea of decomposition of variance, we present some made-up sample data, 
with numbers selected for computational convenience. Suppose that a randomized clini-
cal trial of the effectiveness of a physical therapy intervention is being conducted among 
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10 elderly residents of an assisted-living facility. The goal of the study is to see whether the 
intervention has an effect on alleviating physical impairments, measured as the number of 
functional limitations in activities of daily living (ADL). (In this case, 11 activities such as 
dressing oneself, eating, or walking are considered. That means a person’s impairment score 
can vary from 0 [no limitation in ADL] to 11 [need for assistance in all ADL].) Five nursing 
home residents are exposed to a daily hour of tailor-made exercises with a physical therapist 
for 3 months (intervention group). Five other nursing home residents participate daily in a 
card game club (control group). Assignment to either group is based strictly on the luck of the 
coin.1 In the following, we consider only two variables:

• The independent variable or factor2 is symbolized as Xg, which indicates the treat-
ment exposure: g takes on two values—1 = intervention (physical  therapy) group, 
2 = control (card game) group.

• The dependent variable Yig is a score that represents a count of the functional impair-
ments in ADL for each study participant at the end of the study period: i is a sub-
script for the individual study participant (in this example, case numbers vary from 
1 through 10) and g represents again the exposure group an individual belongs to.

Table 9.1 contains the data and a few calculations necessary for the analysis. Our main goal 
is to show that the mean number of ADL impairments among residents who received the 
physical therapy intervention is lower than the mean impairment score among residents who 
participated in the card- playing club. We accomplish this goal by the establishing to what 
extent ADL impairment scores vary systematically according to treatment exposure. As the 
Y-values in Table 9.1A show, there are substantial differences in impairment scores among 
the 10 individuals. This between-subjects variation is to be expected, as each resident brings 
unique physical attributes and health histories to the situation. In addition, it is unlikely that all 
individuals, exposed to the same therapy, would show exactly the same reaction. Then there 
is the problem of measurement: Establishing whether or not a nursing home resident should 
be considered “dependent” in an activity like eating or walking is, to some extent, a judgment 
call. Thus, even trained observers might disagree in a particular case.3 For all these reasons, 
it is not surprising to find lots of between-subjects variation in ADL impairment scores. If we 
want to make sense out of these data, we need to find a way of distinguishing “systematic” 

1Particularly with a small sample, researchers would normally use blocked randomization to reduce 
across-group variability of other important predictor variables such as age.
2 In experimental studies, the independent variable is often called the independent “factor.”
3 However, the use of multiple observers/judges allows us to estimate the consistency and thus the 
reliability of such judgments; see Chapter 21 for more on measurement reliability.

• Interval/ratio level of measurement for test variable
• Independence of individual observations (uncorrelated error terms)
• Normally distributed variable in population groups compared
• Equal variances (or standard deviations) within all comparison populations
• Randomly drawn/assigned study sample

ASSUMPTIONS OF THE ONE-WAY ANOVABOX 9.1



9. ONE-WAY ANALYSIS OF VARIANCE 91

TABLE 9.1 Data for Study on the Impact of a Physical Therapy Intervention on Physical 
Functioning Among Residents of an Assisted-Living Facility

(A) TOTAL SAMPLE (INTERVENTION + CONTROL GROUPS)

ID Xg Yig Y Yig −( ).. Y Yig −( )..

2

1 1 1    1 − 6 = −5     (−5)2 = 25

2 1 3    3 − 6 = −3    (−3)2 = 9

3 1 5    5 − 6 = −1    (−1)2 = 1

4 1 7     7 − 6 = 1      (1)2 = 1

5 1 9     9 − 6 = 3      (3)2 = 9

6 2 3    3 − 6 = −3    (−3)2 = 9

7 2 5    5 − 6 = −1    (−1)2 = 1

8 2 7     7 − 6 = 1      (1)2 = 1

9 2 9     9 − 6 = 3      (3)2 = 9

10 2 11   11 − 6 = 5      (5)2 = 25

∑ =Yig 60 ∑ −( ) =Y Yig .. 0 Y Yig − =( )∑  ..

2

90

Total sample (grand) mean: Y
n

Yig.. = ∑
1

 = 60/10 = 6

(B) SUBJECTS EXPOSED TO PHYSICAL THERAPY (INTERVENTION GROUP 1)

ID X1 Yi1
Y Yi1 1− .

Y Yi1 1

2

−( ).

1 1 1    1 − 5 = −4     (−4)2 = 16

2 1 3    3 − 5 = −2     (−2)2 = 4

3 1 5    5 − 5 = 0      (0)2 = 0

4 1 7    7 − 5 = 2      (2)2 = 4

5 1 9    9 − 5 = 4      (4)2 = 16

∑ =Yi1 25 ∑ −( ) =Y Yi1 1 0. Y Yi1 1

2
40− =( )∑ .

Intervention group 1 mean: Y
n

Yig.. = ∑
1

 = 25/8 = 5

(C) SUBJECTS EXPOSED TO CARD CLUB (CONTROL GROUP 2)

ID X2 Yi Y Yi2 2−( ). Y Yi2 2

2
−( ).

6 2 3    3 − 7 = −4     (−4)2 = 16

7 2 5    5 − 7 = −2      (−2)2 = 4

8 2 7    7 − 7 = 0     (0)2 = 0

9 2 9    9 − 7 = 2     (2)2 = 4

10 2 11   11 − 7 = 4      (4)2 = 16

∑ =Yi2 35 ∑ −( ) =Y Yi2 2 0. Y Yi2 2

2
40− =( )∑ .

Control group 2 mean: Y
n

Yi. /2

2
2

1
35 5 7= = =∑
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variation in impairment scores, attributable to the treatment levels, from other, “unexplained” 
sources of variation in  impairment scores.

A useful way to start is with a measure of the overall variation in the scores of the 
dependent variable. This is called the total sum of squares (TSS; see the last column of 
Table 9.1A: ∑(Yig – Y..)2 = 90. In words, we subtract from each observed ADL impairment 
score Yig of individual i in group g the grand or overall sample mean, Y––, square the differ-
ence, and sum over all individuals. This TSS is always a positive number, as all individual 
deviations from the sample mean are squared. In the limiting case, when all individuals have 
exactly the same score, the TSS is zero; but then, there is no variation to explain!

Next, we construct a measure that represents individual variation in Yig scores that 
is not accounted for by the treatment variable or factor. As individuals within each group 
or factor level are exposed to the same treatment (physical therapy or card-playing 
club), individual variation within each group cannot have been caused by the variation 
of the factor levels. We thus choose the within-group sum of squares (WGSS) as our mea-
sure of individual variation unaccounted for by the factor in question. The WGSS represents 
the sum of all squared deviations of individual scores of Yi1 and Yi2 from their respective fac-
tor level group means: Y.1 and Y.2 (see the last columns of Table 9.1B and C: ∑(Yi1 – Y.1)

2 + 
∑(Yi2 – Y.2)

2 = 40 + 40 = 80 = WGSS).
Finally, we compute the amount of variation in Yig that can be attributed to Xg, also 

known as the between-group sum of squares (BGSS). This measure can be obtained in two 
ways:

1. Directly, by summing the squared deviations of the group means from 
the grand mean for all cases in a group: ∑(Y–.1 – Y.. )

2 + ∑(Y–.1 – Y–
–

.. )
2 = 

5 × (5 − 6)2 + 5 × (7 − 6)2 = 5 + 5 = 10.

2. Indirectly, by subtracting the WGSS (also called the “error sum of squares” or 
“unexplained sum of squares”) from the TSS: TSS − WGSS = 
BGSS → 90 − 80 = 10.

Look at what we have accomplished! We have divided the total variation in the scores of 
an outcome variable into two groups: explained and unexplained variation. The unexplained or 
“error” variation reflects individual differences among study participants regardless of which 
study arm they were assigned to. Because of the random assignment, we should expect that 
within-group variances of individual scores are quite similar in the two comparison groups. In 
fact, the ANOVA model makes the stronger assumption that scores within factor levels (i.e., 
within the groups defined by the factor) are normally distributed.

The explained variation captures the systematic differences in mean scores across 
treatment levels. The more the means differ, the larger the BGSS. If participants in a clinical 
trial are randomly assigned to their respective treatment levels and efforts are made to control 
the environment, we are able to interpret the mean differences in causal terms, as in a well-
designed experiment the exposure to different treatment levels is the only systematic differ-
ence between subjects in the treatment and the control group.

There is one question that we have not yet addressed. Should we consider any differ-
ence in mean outcome scores as evidence of the causal effectiveness of the treatment? From 
our discussion of the t-test in the last chapter, we know that the answer is “no.” Recall that 
after random assignment, some observed differences between the group means should be 
expected, as is reflected in the sampling distribution of such mean differences. Thus, what we 
need now is a variance-based test statistic, on the basis of which we can decide to what extent 
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the observed differences between the comparison groups are likely to be the result of mere 
chance events.

In ANOVA, this test statistic is the ratio of two variances: the between-group variance 
divided by the within-group variance. This test statistic is also known as the f-ratio in honor of 
the statistician R. A. Fisher, who worked it out for the first time. How do we obtain estimates 
of the two variance measures? In general, variances are defined as average squared deviations 
from a mean, or in short mean squares. We already obtained measures of the sums of squared 
deviations (refer to the computations for BGSS and WGSS); the only remaining issue now is 
to divide these sums of squares by the appropriate numbers to get the mean squares.

When we estimate variances or mean squares from sample data, we divide the sum of 
squares not by n, the number of cases or observations in the sample, but instead, we divide 
by the degrees of freedom. The degrees of freedom are calculated by subtracting from the 
number of independent observations involved the number of population parameters to be 
estimated, which is the same as the number of linear restraints imposed on the independent 
observations. The concept of degrees of freedom is a frequent source of confusion, but its 
meaning can be illustrated in a straightforward manner (see Box 9.2).

In order to compute a sum of squared deviations from a mean, we must already know the 
mean. However, if the mean is given, it is easy to see that only n − 1 deviations from the mean 
are free to vary, while the last deviation is fixed. That is the linear constraint.

Example: Suppose you start with a sample of three numbers: 5, 7, and 9. The mean of these 
three numbers is 7. If we know that two of the numbers are 7 and 9 and all three numbers are 
subject to the constraint that their mean equals 7, then the third number must have the value 
of 5. In this sense, it is “fixed” and no longer free to vary.

THE CONCEPT OF DEGREES OF FREEDOMBOX 9.2

Now we are ready to construct the test statistic, which helps us decide whether or not 
the observed differences in sample group means are “statistically significant” (see Table 9.2).

With the ANOVA model, the test for the mean differences between comparison groups 
is indirect. The test statistic consists of the ratio of the systematic or between-group variance 
in the numerator and the error or within-group variance in the denominator. Both variances 
are themselves ratios of the familiar sums of squares, BGSS and WGSS, and their requisite 
degrees of freedom (see the column titled “Mean Squares” in Table 9.2).

Let us take a closer look at the between-group variance. There are k group means; in this 
example k = 2, as we have only one treatment and one control group. These two group means 
are subject to one constraint: Together they must average out to the total sample mean. Thus, 
the associated degrees of freedom are k − 1, or 1 in the two-group case.

Now we look at the within-group variance. Its numerator (WGSS) actually combines 
two sums of squares calculated from data within the treatment and control groups. The com-
putation of the WGSS for the five cases in the treatment group is subject to the constraint that 
their scores average out to the treatment group mean. The same constraint occurs within the 
control group. Consequently, the overall WGSS is subject to two constraints or, in general, 
to as many constraints as there are comparison groups. This leaves us with n − k degrees of 
freedom for the WGSS.
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The TSS is also subject to one constraint, as its computation already assumes a known 
sample mean. Its degrees of freedom are n − 1. Note how all the degrees of freedom for the 
variance components add up: Just like TSS = BGSS + WGSS, so does n − 1 = k − 1 + n − k.

We already emphasized the indirect nature of the ANOVA test statistic. The f-ratio is the 
ratio of the systematic or between-group variance (BGSS/k − 1) to the error or within-group 
variance (WGSS/n − k). It is now clear that the greater the differences between the group 
means, the larger the between-group variance relative to the  within-group variance. If all 
group means in the sample are exactly equal, the between-group variance equals zero, and the 
f-ratio also equals zero. Of course, under conditions of random assignment, we do not expect 
all the group means to be exactly equal, even if the null hypothesis is true and the intervention 
or treatment has no effect. The reason for this is, of course, that mere random distribution of 
cases across the comparison groups is likely to make for some observable group differences. 
However, if the f-ratio grows larger and larger, it becomes less and less plausible to argue that 
mere random assignment produced it.

All we need to know now is the shape of the sampling distribution of f-ratios, computed 
from a large number of samples generated either through random assignment in an experi-
ment or through random sampling from the same target population. If we know the shape 
of the sampling distribution, we can determine the probabilities that are attached to f-ratios 
of a given magnitude or larger. As Fisher and Yates (1938) have shown, the f-ratio follows 
the eponymous f-distribution, which is again a family of distributions whose exact shapes 
depend on the degrees of freedom in the numerator and denominator of the f-ratio. As with 
the t-distribution, the requisite probabilities can be obtained from tables (see Appendix E) 
or directly from statistical software. Figure 9.1 shows the f-distribution with one degree of 
freedom in the numerator and eight degrees of freedom in the denominator and the associ-
ated  cut-off point for the 0.05 significance level.

With this information, we can now decide whether an observed f-ratio in a particular 
sample is likely or unlikely to occur, should the null hypothesis be true, that is, under the 
assumption that the intervention is not effective. If the observed f-ratio is associated with a 
probability of <.05, we would reject the null hypothesis using the customary  significance level 
of α = 0.05.

In our example (Table 9.2), the observed f-ratio is equal to 1. As can be seen from 
Figure 9.1, the critical f-value = 5.3177, meaning, for this f-distribution (df1 = 1, df2 = 8) 
only f-values equal to or larger than 5.3177 occur by chance in less than 5% of all random 
samples. With the observed f-ratio being smaller than the critical value, we would not reject 
the null hypothesis. In fact, as is shown in Table 9.2, the probability that a random sample 

TABLE 9.2 ANOVA Table for a Single-Factor (Two-Groups) Between-Subjects Design

SUM OF SQUARES DEGREES OF FREEDOM MEAN SQUARES (VARIANCES)

BGSS = ∑ ∑− − =+( ) ( ). .. . ..Y Y Y Y1
2

2
2 10 k − 1 = 2 − 1 = 1 BGSS/k − 1 = 10/1 = 10

WGSS = ∑ ∑− −+ =( ) ( ). .Y Y Y Yi i1 1
2

2 2
2 80 n − k = 10 − 2 = 8 WGSS/n − k = 80/8 = 10

TSS = ∑ − =( )..Y Yig
2 90 n − 1 = 10 − 1 = 9 TSS/n − 1 = 90/9 = 10

f-ratio = (BGSS/k − 1)/(WGSS/n − k) = 10/10 = 1; f-probability = .3466

k, number of factor levels or group categories defi ned by the independent variable; n, number of cases in 

the sample.
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FIGURE 9.1 f-Distribution With Cut-Off for f-Value at α = 0.05.

returns an f-ratio of 1 or larger is equal to .347. Thus, we conclude that the observed sample 
difference in group means of 2 (= 7 − 5) is well within sampling chance: Almost 35% of 
all random assignments alone would result in f-ratios of this magnitude or larger. It follows 
that we do not have strong evidence that the physical therapy intervention makes any differ-
ence. We would say that the observed differences between the groups fail to reach “statistical 
significance.”

The reader might now wonder why we went through all the trouble of calculating a 
new, complicated test statistic, when in fact the t-test introduced in the last chapter could 
have done the job. In fact, it can be shown that for a two-group comparison, there is a 
simple relationship between the t- and the f-statistic: f = t   2.4 Every other statistic associated 
with the t-test or the one-way ANOVA, from p- values to confidence intervals, is identi-
cal. However, as we already mentioned, the great virtue of the ANOVA approach is that it 
is perfectly general and applies to all kinds of complicated study designs. Just imagine a 
four-group comparison, as in a drug trial with one control group and three groups who get 
different dosages of the drug. The fundamental test of the effectiveness of the interventions 
would still be the f-statistic. Only this time, the WGSS and BGSS are calculated from four 
comparison groups. Otherwise, the logic is the same: Larger treatment effects translate 
into larger observed mean  differences among the comparison groups, thus increasing the 
between-group variance relative to the within-group variance. When f-ratios become larger, 
the probability of a mere chance effect declines, and we become more confident in our 
conclusion that the treatment(s) must have produced real differences. This is the principle; 
everything else is just elaboration.

4 This relationship between the t- and the f-statistic does not hold for models with more than 1 df in the 
numerator of the f-ratio.
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 ONE-WAY ANOVA WITH MULTIPLE GROUPS

We already mentioned that many clinical trials involve the comparisons of more than two 
groups. In addition, in both randomized trials and observational studies, it is common practice 
to compare mean scores for multiple groups defined by the categories of a nominal variable. 
Study participants’ characteristics, such as race/ethnicity or marital status, are cases in point. 
For instance, we may be interested in knowing whether babies have different mean birth 
weights depending on whether they are non-Hispanic Caucasians, Latinos/Hispanics, African 
Americans, or part of some other ethnic group. Table 9.3 provides an example from a study of 
birth weights of 100 babies in low-income families.

The descriptive information in Table 9.3 tells us that the 41 non-Hispanic Caucasian 
babies in the study sample had the highest mean birth weight (7.56 lbs), followed by the 
42 Hispanic babies (7.33 lbs), 3 babies from other ethnic groups (6.27 lbs), and 14 African 
American babies (6.26 lbs). Of course, a different sample drawn from the same target popula-
tion would have given us somewhat different sample means. So the question arises: Do these 
data provide strong enough evidence for us to conclude that mean birth weights in the target 
population differ for babies from these four groups?

Just as with the t-test, before we apply the f-test, we must first establish whether the 
variances of the test variable can be considered equal across the four comparison groups. For 
the t-test, we used Levene’s variance-ratio test; here we use Bartlett’s equality of variance 
test, which is a chi-square test with three degrees of freedom. The null hypothesis for this 
test states that all within-group variances (or standard deviations) are equal. The observed 
p-value for this test is p ≥ .815 (see Table 9.3). Thus, the probability that the null hypothesis 
is true is very high and we accept it and proceed to the f-test concerning the equality of group 
means.

The null hypothesis concerning the group means is H0: μ1 = μ2 = μ3 = μ4, that is, the 
mean birth weights are the same among all four population groups. We would accept this 
null hypothesis, if the observed f-ratio is smaller than the critical value of f = 2.699, as only 
f-values larger than 2.699 occur by chance less than 5% of the time (see the f-distribution 
table in Appendix E).5 Table 9.3 shows the observed f-value to be 4.44. The corresponding 
p-value is p ≤ .0058 for the f-distribution with df1 = 3 and df2 = 96. Thus, we can reject the 
null hypothesis and conclude that at least some of the group means differ from each other 
significantly.

Having established that there are some group mean differences, we may want to know 
which group means differ from which other group means. As there are four groups, there are 
six independent pairwise comparisons possible,6 which can be tested employing the standard 
independent-sample t-test. Table 9.3 shows all possible sample group mean differences and, 
underneath, a p-value associated with the null hypothesis that the mean difference in question 
is equal to zero. For example, the mean sample birth weight among African American babies 

5 Appendix E does not show f-values for the required f-distribution with df1 = 3 and df2 = 96; instead, it 
shows only the f-values for f-distributions with df1 = 3, df2 = 60 and df1 = 3, df2 = 120. The correspond-
ing f-values are 2.758 and 2.680. A rough approximation can be obtained through linear extrapolation: 
2.68 + (2.758 − 2.68) × [(120 − 96)/(120 − 60)] = 2.711. In practice, computer software will print out 
the exact f-value.
6 (4 × 3)/2 = 6; the pairs of group means are: 1–2, 1–3, 1–4, 2–3, 2–4, 3–4, where 1 = non-Hispanic 
Caucasian, 2 = Latinos/Hispanics, 3 = African American, 4 = Other ethnic group(s).
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TABLE 9.3 One-Way Analysis of Variance

 | Summary of Child’s birth weight
Race/ | (lbs)
Ethnicity | Mean Std. Dev. Freq.
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    NH Cauc | 7.557 1.2496 41
    Lat/Hisp | 7.334 1.2302 42
    AfrAmer | 6.259 1.1862 14
          Other | 6.273 1.8894  3
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
             Total | 7.243 1.3132 100

 Analysis of Variance
        Source SS df MS F Prob > F
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Between g roups (BGSS)      20.7825 3 6.9275 4.44 0.0058
    Within groups   (WGSS) 149.9361 96 1.5618
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
                     Total    (TSS) 170.7186 99 1.7244

Bartlett’s test for equal variances:  chi2(3) = 0.9423  Prob>chi2 = 0.815

         Comparison of Child’s birthweight (lbsoz) by Race/Ethnicity
                                                         (Bonferroni)
Row Mean– |
Col Mean |  NH/Cauc  Lat/Hisp  AfrAmer
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
Lat/Hisp |          –.223 
 |              1.000
 |
AfrAmer |        –1.298   –1.076
 |          0.007     0.038
 |
      Other |        –1.284            –1.061       .015
 |          0.535              0.952    1.000

is 1.298 lbs lower than among non-Hispanic Caucasian babies (7.557 − 6.259 = 1.298). The 
associated p-value is .007; thus, we reject the null hypothesis, as there is less than a 1% chance 
that this sample mean difference is a random occurrence. By contrast, all the mean  differences 
involving the Other group are nonsignificant. This should not be  surprising, as  statistical tests 
involving samples of n = 3 lack the requisite power, even if the (descriptive) sample differ-
ences are large.

The results in Table 9.3 also show that differences among racial and ethnic groups 
account for 12.2% of the variation in babies’ birth weight (BGSS/TSS = 20.7825/170.7186 = 
0.1217). In ANOVA, this statistic (variance accounted for by an independent variable or vari-
ables) is known as eta-squared (η2). Thus, rejecting the null hypothesis for the f-test is equiv-
alent to rejecting the null hypothesis that η2 = 0.
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 MULTIPLE COMPARISONS AND THE APPROPRIATE 
SIGNIFICANCE-LEVEL CRITERION

When we compare more than two groups, a new issue arises in statistical analysis: the effect 
that multiple comparisons have on the choice of appropriate significance levels. For the 
most part, we have employed the conventional significance level of α = 0.05, meaning we 
were willing to accept a Type I error of 5% for our tests.7 But when three or more comparison 
groups are involved, there are also additional contrasts that can be tested. For instance, in 
a study with four groups, there are six pairwise comparisons or contrasts. Let us assume for 
each of the six t-tests we set an α-level of 0.05. That is, on each individual test we run a 5% 
risk of concluding there is a difference when there is none. As the probabilities associated with 
independent comparisons are independent of each other, we can multiply them. Furthermore, 
with a Type I error of 0.05, the probability of not making a Type I error is .95. Again, with 
independent t-tests, the probability of not making a Type I error in two t-tests is .95 × .95 = 
.9025. For six independent comparisons we get: .956 = .735. Thus, .735 is the probability of 
not committing any Type I error in the six tests. It follows that there is a 26.5% probability that 
we commit at least one Type I error (1 − .735 = .265) in six independent tests! It is apparent 
from this that the more tests we undertake, the more likely it becomes that we commit a Type 
I error: In short, we would conclude there is some effect, when in fact there is only random 
noise. This is the problem with multiple comparisons.8

One way to guard against the deteriorating α-values is: (a) to refrain from interpreting 
pairwise comparisons, as long as the overall f-test is not significant (p > .05), and (b) to adjust 
the significance level (α) to account for multiple comparisons.

A simple way to adjust α is to use the Bonferroni criterion for multiple tests (Dunn, 
1961): If there are m tests to be performed, set the significance level for each individual test 
at αnew = α/m. For the example in Table 9.3, we get α = 0.05/6 = 0.0083. Using this new crite-
rion, we would reject the null hypothesis (and accept that there is a mean difference in birth 
weights) only for the comparison of African American babies and non-Hispanic Caucasian 
babies. As we will have more occasions to see, multiple comparisons arise in many analysis 
situations.

 SUMMARY

In this chapter we introduced the one-way ANOVA model and, with it, the fundamental idea 
underlying all linear models with continuous/interval-level dependent variables: the decom-
position of variance into explained variance, or joint covariance between the dependent and 
independent variable(s), and unexplained or error variance. This distinction is the basis for the 
overall goodness-of-fit test of linear models: the f-test.

As we will see in the following chapters, more complex ANOVA models and linear 
regression models are all based on the same principle of decomposition of variance. It is for 
this reason that this principle is fundamental in understanding linear models and interpreting 
them correctly.

7 Recall that in drug trials, depending on the prior state of development, adjustments to Type I and 
Type II errors are sometimes made (see discussion in Chapter 6).
8 It is a common problem in clinical research reports, as when researchers only offer information on 
their “statistically significant” results without telling the reader how many tests were run in the first 
place.
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 EXERCISES

1. The results from a one-way ANOVA show the following output: BGSS = 15,000; 
WGSS = 45,000; k = 4 (k = number of group means compared); n = 304 
(n = sample size).
(a) Compute the f-value/ratio (with a calculator).
(b) What percentage of variance is accounted for by the independent factor?
(c) How large is the error variance?
(d)  Does t he f-value indicate a significant association between the dependent and 

independent variables? (Tip: Use the f-distribution table in Appendix E.)

2. In a one-way ANOVA table, the BGSS = 120, the TSS = 520; the study sample comprises 
204 study participants, and the one-way ANOVA compares mean scores among four 
comparison groups (three intervention groups with different dosages and one control 
group). What is the value of the f-ratio?

3. In a study comparing depression symptoms among randomly selected autoworkers 
in a large factory, a researcher finds the following sample mean scores on the Center 
of Epidemiologic Studies-Depression scale (CES-D): 12.7 (among 400 nonsmokers), 
13.8 (among 169 former smokers), 15.6 (among 144 current smokers). The f-test for 
the one-way ANOVA results in a p-value under the null hypothesis of >.14. The t-test 
comparing nonsmokers and former smokers yields a p-value of >.23, the t-test comparing 
nonsmokers and current smokers yields a p-value of <.03, and the t-test comparing 
former smokers and current smokers yields a p-value of <.06.
(a)  Can we say anything about the association of smoking status and depression 

symptoms among the autoworkers?
(b)  The TSS for the one-way ANOVA = 17,750 and η2 = 20%. What is the value of the 

error variance?

Read: den Uil-Westerlaken, J., & Cusveller, B. (2013). Competencies in nursing students 
for organized forms of clinical moral deliberation and decision-making. Journal of Nursing 
Education and Practice, 3(11), 93–100.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define precisely the target population to which the statistical analysis can be generalized.

(c)  List all dependent/outcome variables, provide a clear definition of them, and determine 
their level of measurement.

(d) List the main independent/explanatory variable in the study.

(e) State the null hypothesis for each one-way ANOVA test performed.

(f)  Do the authors offer evidence that the assumptions of the one-way ANOVA tests are met?

(g)  Do the authors provide a statistical test that moral deliberation and decision making 
(MDD) knowledge scores “increase faster” during the nursing education than MDD 
 attitude s cores?

(h)  Does the comparison of MDD scores for the three groups of nursing students offer a test 
of how nursing students “gain” competencies over the course of their education?

LITERATURE APPLICATION
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(c)  Can we draw any causal conclusion from a study such as this about the effects of 
smoking on depression? Why or why not?

(d)         What s hould t he l evel of  s ignificance be f or t he t-tests in this study?

4. A randomized sleep deprivation study involving three groups of 12 subjects each is 
designed to test the effects of sleep deprivation on reaction times. The overall f-test 
associated with the one-way ANOVA is 7.65.
(a) Provide the degrees of freedom associated with the f-test.
(b)  Can we conclude that different levels of sleep deprivation have an effect on 

reaction time?
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CHAPTER 10

 Linear Regression 
and Pearson’s r Correlation

In Chapter 9, we introduced one-way analysis of variance (ANOVA) to model the relationship 
between one interval- or ratio-level dependent variable and one nominal or categorical inde-
pendent variable. If the data meet the assumptions listed in Box 9.1, we can use the ANOVA 
model to examine whether mean scores of the dependent variable are equal to or different from 
each other for all the categories of the independent variable. In the example in Chapter 9, we 
showed that at least some of the mean birth weights of babies from four different racial or ethnic 
groups differed from each other, with sample estimates of 7.56 lbs for non-Hispanic Caucasian 
babies, 7.33 lbs for Latino/Hispanic babies, 6.26 lbs for African American babies, and 6.27 lbs 
for babies from other ethnic groups. As membership in a racial or ethnic group constitutes a 
categorical variable without any inherent ordering, we could recode the categories of the inde-
pendent variable yielding a different ordering, as demonstrated in Figure 10.1. With categorical 
independent variables, all we can do is test whether group means differ from each other more 
than what is expected due to random fluctuations. However, suppose in the birth-weight example 
the independent variable is gestational age (measured in weeks of pregnancy). Gestational age 
is itself a ratio-level variable; accordingly, we may now ask whether there is a systematic rela-
tionship between mean birth weights and weeks of gestation. Using data from 400 babies, the 
graph in Figure 10.2 appears to indicate that there is indeed a tendency for mean birth weights to 
grow with the length of the pregnancy. In fact, when we draw a (solid) line of “best fit” through 
the scatter of data, it seems that the increase in mean birth weights follows almost a linear pat-
tern; that is, for each additional week of gestation, the mean birth weights seem to increase by a 
fixed amount. If that is the case, then we can describe this relationship in a much more succinct 
fashion, instead of comparing multiple mean scores using the one-way ANOVA model. For the 
birth-weight example with data on 22 weeks of gestation, instead of estimating 22 separate mean 
birth-weight scores, we could use a much more parsimonious way of describing the relationship: 
a single linear equation that depicts the relationship between birth weights and weeks of gesta-
tion,  Yi = β0 + β1 Xi + εi, where Yi represents the birth weight of individual babies in the population, 
Xi represents gestational age, measured in weeks, β0 and β1 are the intercept and the slope coef-
ficients of the linear equation, and εi stands for the error term1 or the deviation of an individual’s 
birth weight from the birth weight predicted by the equation for a particular gestational age (Xi).

1 Error terms in linear regression models are often called “residuals.”
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As always, the population parameters (the intercept and the slope) are unknown; 
 consequently, we have to estimate their values using sample data: Yi = b0 + b1Xi + ei. That is, 
we need to find values for b0 and b1 that draw the line in such a way that it provides a “best 
fit” to the scatter of data. The criterion for best fit in linear regression models is known as the 
least squares criterion. In Figure 10.2, we added two (dashed) vertical lines at X = 29 and 

FIGURE 10.1 Mean Birth Weight by Race/Ethnicity.
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X = 39 weeks of gestation. These lines show the distance between the birth weights of two 
particular babies and the predicted birth weight for all babies born after 29 or 39 weeks, which 
is represented by the height of the straight (regression) line. These distances are the “errors” 
or “residuals” resulting from the imposition of the straight line on the data points. According 
to the least squares criterion, the values for the regression coefficients, b0 and b1, are chosen 
in such a way that the sum of the squared deviations of all data points from the regression line 
is minimized: min(∑(ei)

2 = ∑(Yi − Ŷ   )2 = ∑(Yi − b0 − b1Xi)
2). As it turns out, if we set b0 and b1 

equal to the following expressions:

b
X X Y Y

X X
i i

i
1 2=

− −

−

∑

∑

( )( )
( )

b Y b X0 1= − ,

we obtain the equation for the regression line that minimizes the squared residuals from the 
regression line.2

Now, let us look at the output from the linear regression model, run on the birth-weight 
data (Table 10.1). In the lower half of the table, you see a column labeled “Coef.” The num-
bers in that column are the estimates for the linear regression coefficients, with the intercept 
b0 labeled the “constant” and the slope coefficient associated with the predictor variable b1 
labeled after the independent variable, with which it is associated (“gestation”). With this 
information, we can now write the estimated regression equation:

Ŷ = 0.631 + 0.190X
  (0.251) (0.007),

where Ŷ refers to the predicted birth weight, and X to the gestational week(s). The equation 
shows a regression intercept of b0 = 0.631 and a regression slope coefficient of b1 = 0.190, with 
their respective standard errors in parenthesis below them.

2 For the reader familiar with some calculus, we obtain the derivatives of the equation ∑(Yi − b0 − b1Xi)
2 with 

respect to b0 and b1 and set them to zero: ∂∑(Yi − b0 − b1Xi)
2/∂b0 = 0, ∂∑(Yi − b0 − b1Xi)

2/∂b1 = 0. Solving 
these equations will yield the “normal equations,” which in turn will yield the expressions for b0 and b1.

TABLE 10.1 Simple Linear Regression: Birth Weights on Gestational Age

regress birthweight (bwt) gestation

   Source | SS df MS Number of obs =   400
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – F(1, 398)  = 688.02
    Model |   671.2265    1 671.22640 Prob > F  = 0.0000
 Residual |   388.2844 398     .97559 R-squared = 0.6335
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared = 0.6326
  Total | 1059.5109 399   2.65542 Root MSE = .98772

– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    bwt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
gestation | .19030 .00726 26.23 0.000 .17604   .20456
   _cons | .63135 .25141    2.51 0.012 .13710 1.12562
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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What does this equation tell us? For the moment, we ignore the standard errors and 
focus right away on the regression equation itself. It predicts that, for every increase in the X 
variable by one unit, the dependent Y variable increases by 0.19 units. Thus, for each addi-
tional week of gestation, the average birth weight increases by 0.19 pounds. If we substitute 
certain values for X, we can calculate the predicted Ŷ value. Assume we have two babies, one 
born after 30, the other after 36 weeks of gestation. According to our regression equation, we 
predict the following birth weights:

Ŷ30 = 0.631 + 0.190(30) = 6.33; Ŷ36 = 0.631 + 0.190(36) = 7.47

These predictions tell us that we expect the average birth weight of a baby born after 30 weeks 
of gestation to be 6.33 pounds and, after 36 weeks of gestation, that average is estimated to 
be 7.47 pounds.

Now let us go back and focus on the standard errors associated with these regression 
coefficients. As with estimates of means and mean differences in ANOVA, estimates of regres-
sion coefficients will vary depending on the particular study sample drawn. In fact, it can be 
shown that, if the data meet the assumptions of the linear regression model (see Box 10.1), 
the regression coefficients (both intercept and slope coefficients) each are distributed like the 
t-distribution with n − 1 degrees of freedom (df). Just like we obtained the relevant t-value 
in a one-sample t-test by dividing the difference between the observed sample mean and the 
hypothesized population value by its standard error, we do the same here: We divide the dif-
ference between the sample estimate of a regression coefficient and zero by its standard error 
and we obtain the requisite t-value. In Table 10.1, we get an intercept estimate of 0.63135 with 
a standard error of 0.25141; thus, we obtain a t-value of t = 0.63135/0.25141 = 2.51; similarly, 
the t-value for the slope coefficient equals t = 0.1903/0.00726 = 26.21.

The value of this information is that we can now test our statistical hypotheses. First, we 
must establish the relevant null hypotheses. As in most situations, the null hypothesis posits 
the absence of a relationship or the absence of an effect. In the current example, this means 
that we hypothesize that gestational age is not related to variations in average birth weight. 
This implies that the regression coefficients would equal zero: H0: b0 = 0 and b1 = 0. However, 
we know from our t-values that the intercept differs by 2.51 standard errors from 0 and the 
slope coefficient differs by 26.23 standard errors from 0. Consequently, it is highly unlikely 
that this data set comes from a population, in which gestational age and birth weight are not 
related. In fact, the output in Table 10.1 provides us with the relevant p-values: There is only 
a 1.2% chance (p ≤ .012) that we commit a Type I error, if we reject the null hypothesis about 
the intercept, and there is a chance of less than 0.0005 that we commit a Type I error3 if we 
reject the null hypothesis about the slope coefficient. In other words, we are very confident 
that there is a relationship between these two variables. That the regression coefficients differ 
from zero is also indicated by their respective 95% confidence intervals (CIs). Neither the CI 
for the intercept nor the CI for the slope coefficient include zero, that is, the null value.

When we interpreted the regression equation, Ŷ = 0.631 + 0.190X, we did not dwell on 
the value of the intercept, b0 = 0.631. The reason is that, in this example, the intercept term 
has little meaning in itself. Technically, this value is the predicted mean birth weight, if X = 0; 
in other words, it answers the (nonsensical) question of what the expected mean birth weight 
would be after 0 week of gestation. This situation points to a general principle of caution that 
should be observed when interpreting the results from regression analysis: Predictions are 

3 Statistical software usually cuts off p-values after three digits. p-values < .0005 would be rounded to 
.000 and p = .0005 would be rounded to .001.
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only valid within the range of available sample observations for the predictor variable(s). In 
the example used here, we had data for babies born between 22 and 44 weeks of gestation. 
Thus all predictions made on the basis of this model should be limited to this range and cannot 
be extrapolated beyond it.

 THE ANOVA APPROACH TO LINEAR REGRESSION

Table 10.1 provides additional information about the regression model in the upper panel, 
which presents the results from an ANOVA. As with all ANOVA models, we start with the 
total sum of squares (TSS), which is our measure of the overall variation in the dependent 
scores; that is, in the current example, we compute the mean birth weight of all study sample 
babies, subtract it from each individual birth weight, square that difference, and sum it over all 
cases to obtain the TSS. Then we divide the TSS into two subsets: the model sum of squares 
(MSS), also called the “regression sum of squares” (RegSS), which represents variation in 
mean birth weights associated with the independent variable (gestation), and the residual 
sum of squares (RSS), a measure of the unexplained variation in individual birth weights 
at each given level of gestational age. Of course, MSS + RSS = TSS and MSS/TSS = the 
 percentage of variance accounted for by the regression model.

In ANOVA, we used the term “between-group sum of squares” (BGSS) for systematic varia-
tion in test scores among group means, which is analogous to “regression sum of squares” 
(RegSS) in regression. “Model sum of squares” (MSS) is a term used with both ANOVA and 
linear regression models.

In ANOVA, the most common term for the measure of unexplained individual variation 
around group means is “within-group sum of squares” (WGSS); in regression analysis, the 
usual term for unexplained variation in individual scores is “residual sum of squares” (RSS). 
“Error sum of squares” (ESS) is also a term in common usage, referring to unexplained residu-
als in both regression and ANOVA.

ANOVA AND REGRESSION TERMINOLOGY

The ANOVA results in Table 10.1 show that MSS/TSS = 671.23/1,059.51 = 0.6335. From 
this it follows that the linear regression model with gestational age as the predictor  variable 
accounts for 63.35% of the variance in birth weight. In regression analysis, this ratio of model 
over total sum of squares is usually referred to as R-squared (R2). The output in Table 10.1 does 
show that R-squared equals 0.6335.

In addition to the familiar decomposition of the sums of squares into MSS and RSS, in 
Table 10.1 we also are given the requisite df and the associated mean squares or variances. 
Finally, we have the, by now familiar,4 f-ratio, comparing the magnitude of the model variance 
to the residual variance. In this example, f = 671.2264/0.97559 = 688.02. We do not need to 
look up the probability that an f-ratio equals or exceeds the value 688.02 on the  f-distribution 
with numerator df = 1 and denominator df = 398, as the software already provides it: p < .0005. 
As in ANOVA, the null hypothesis for the f-test is that none of the independent variables of 
the regression equation have an effect on/are correlated with the outcome variable. With a 
p-value smaller than .0005, we reject this null hypothesis and accept the alternative  hypothesis 

4 See Chapter 9.
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that there is a relationship. Of course, in the current situation, we did not learn anything new 
beyond the t-test: This simple linear regression model5 has only one independent variable: 
gestational age. Thus rejecting the null hypothesis for the t-test associated with the slope 
coefficient and for the overall f-test is the same thing. In fact, in the special case of a single 
independent variable, f = t2. The output in Table 10.1 confirms this: 688.02 = 26.232.

 ASSUMPTIONS OF THE LINEAR REGRESSION MODEL

The use of the linear regression model requires that the data meet assumptions that are essen-
tially identical to those for the ANOVA model. As with ANOVA, the dependent variable must 
be measured at the interval or ratio level of measurement; observations must vary indepen-
dently from each other (in the example, one baby’s birth weight has no effect on another 
baby’s birth weight—assuming they are babies from different mothers); within each category 
formed by the independent variable (in the example, babies born during the same gestational 
week), birth weights are normally distributed in the relevant population (“error” terms are 
normally distributed) and have equal variances across the categories/levels of the indepen-
dent variable. The only additional assumption, compared to one-way ANOVA, concerns the 
linearity of the relationship between the dependent and (interval/ratio-level) independent 
variable.

1. Interval/ratio level of measurement for outcome variable
2. Linearity of relation between dependent and independent (interval/ratio-level) variable(s)
3. Independence of individual observations (uncorrelated error terms)
4. Normally distributed error terms, that is, normally distributed variables within the  categories 

defined by the independent variable
5. Equal variances (or standard deviations) within all comparison populations defined by the 

independent variable(s)
6. Randomly drawn study sample for population inferences

ASSUMPTIONS OF LINEAR REGRESSION MODELBOX 10.1

As in the case of ANOVA models, we need to examine whether the data conform to 
the assumptions of the model. Again, we use a mixture of graphical inspections and a few 
statistical tests. Figure 10.3 shows the residuals or error terms plotted against all the levels 
of the independent variable (ranging from 22 to 44 weeks of gestation). The assumption of 
equal variances seems to be borne out. In fact, a test for heteroskedasticity6 (Cook–Weisberg) 
 confirms no significant differences among the variances at different levels of gestation 
(p ≥ .67 for H0 that all variances are equal); this test is similar to Bartlett’s test in one-way 
ANOVA. Likewise, the Kolmogorov–Smirnov test does not show any significant deviations 
from  normality (p ≥ .239). However, as the pattern of the residuals suggests, there seems 
to be some (slight) nonlinearity in the relationship between the dependent and independent 
 variable. This issue is explored further in the following.

5 A “simple,” as opposed to a “multiple,” regression model has only a single independent/predictor 
variable.
6 This forbidding word is of Greek origin and means “unequal spread” or variance.
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 LINEAR REGRESSION WITH CATEGORICAL PREDICTOR VARIABLES

The similarity of ANOVA and linear regression models is no accident: Mathematically, they 
are actually the same model. That is, every t-test and ANOVA model can also be expressed as 
a linear regression model producing identical results. To see this, we compare output from the 
different procedures directly.

First, we use the independent-sample t-test to compare the mean birth weights of pre-
maturely born babies to those of term babies. Of course, we would expect to reject the null 
hypothesis of no difference in this case. Table 10.2 shows the results, comparing the mean 

TABLE 10.2 Independent-Sample t-Test: Birth Weight by Prematurity

. ttest bwt, by(premature)

Two-sample t-test with equal variances
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    Group | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    0 | 281 7.8548 .06567 1.10076 7.7255 7.9841
    1 | 119 5.3086 .11267 1.22908 5.0854 5.5317
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
combined | 400 7.0973 .08148 1.62955 6.9372 7.2575
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     diff  |  2.5462 .12472  2.3011 2.7914
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 diff  = mean(0) − mean(1) t  =  20.42
Ho:  diff  = 0 degrees of freedom =   398

Ha:  diff  ≠ 0
Pr(|T| > |t|) = 0.0000
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birth weights from 119 premature babies (7.85 lbs) to the mean birth weight of 281 term 
babies (5.31 lbs). As expected, the t-value associated with this test is large (p < .00005) and 
we are confident that birth weights are generally lower for premature babies.

Now we run the same analysis as a linear regression model, with birth weight as the 
dependent variable, and the independent variable sex coded X = 1, if the baby is female, and 
X = 0, if the baby is male. Here is the regression analysis output:

TABLE 10.3 Linear Regression of Birth Weight on Prematurity (1 = yes, 0 = no)

. regress bwt premature

    Source | SS df MS Number of obs =    400
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – F(1,   398)  = 416.82
   Model |  541.9898    1 541.9898 Prob > F = 0.0000
    Residual |    517.5210 398   1.3003 R-squared = 0.5115
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared = 0.5103
    Total | 1059.5108 399   2.6554 Root MSE = 1.1403

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     bwt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   premature | −2.5462 .12472 −20.42 0.000 −2.7914 −2.3011
    _cons |   7.8548 .06803 115.47 0.000    7.7211  7.9885
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

As we already discussed, an estimated linear regression equation with one independent 
variable takes on the general form of Ŷ = b0 + b1Xi. Given the coefficients in Table 10.3, this 
translates into the following specific estimate of the equation:

Ŷ = 7.8548 − 2.5462Xi

As Xi in this example is a dichotomous/binary variable, taking on the value 1 for babies born 
prematurely and 0 for term babies, we get the following mean birth-weight estimates for the 
two groups:

Ŷprem = 7.8548 − 2.5462(0) = 7.8548

Ŷnot prem = 7.8548 − 2.5462(1) = 5.3086

The mean estimates from the independent-sample t-test and the linear regression are identical. 
So is the t-test itself. The slope coefficient in the regression model represents the difference in 
mean birth-weight scores between the term babies and the premature babies. The null hypoth-
esis asserts that this coefficient does not differ from 0, which is the same null hypothesis as 
in the independent-sample t-test: The mean difference does not differ from 0. The resulting 
t-value is also identical (20.42).

The linear regression model can also be used to estimate one-way ANOVA models, but 
that requires the recoding of categorical independent variables with more than two catego-
ries. There are several ways of recoding categorical variables; here we focus on one popular 
method: dummy coding (Hardy, 1993). In the data set containing the birth weights of 400 
babies, there is also information on the marital status of the mother. Among the 400 moth-
ers, 232 were married at the time of the birth, 137 were single, and 31 were either divorced 
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or separated. The original codes for the marital status variable were 1 = married, 2 = single, 
and 3 = divorced/separated (a combined category). In this form, we cannot use this variable 
in a regression model, because the category numbers 1, 2, 3 are arbitrary labels representing 
nominal categories. Consequently, it makes no sense of speaking of a “one-unit increase” in 
the independent variable, if we look at the difference between categories 1 and 2, or 2 and 3. 
Table 10.4 shows how the marital status variable with three categories can be represented by 
two binary variables, each coded (0, 1).

In general, a variable with j categories can be represented by j − 1 dummy-coded (0, 1) 
variables, as the mean of the default or “reference” category is represented by the intercept 
or constant coefficient in the regression equation. Here is how it works: Let us adopt Coding 
Scheme 1 from Table 10.4, for which we created two binary variables (0, 1): X1 = single (coded 
1, if the mother is single, coded 0 if she is not single) and X2 = divorced/separated (coded 1, if 
the mother is divorced or separated, coded 0 if she is not divorced or separated). Thus we get 
the following regression equation with two independent dummy variables: Ŷ = b0 + b1X1 + b2X2. 
It is apparent from this equation that Ŷ = b0 + b1(0) + b2(0) = b0, if X1 and X2 are both coded 0. 
In short, the default or reference category for this coding scheme, which is “married,” is repre-
sented by the intercept/constant coefficient. Table 10.5 shows both the output from the one-way 
ANOVA and the linear regression model using the first dummy coding scheme from Table 10.4. 
It is easy to see that the linear regression model provides identical results to those from the 
ANOVA. As with the t-test, to recover the estimated group means, we substitute the estimates 
for the regression slope coefficients one at a time into the equation:

Ŷmarried = 7.35473 − 0.67539(0) − 0.33692(0) = 7.35373

   Ŷsingle = 7.35473 − 0.67539(1) − 0.33692(0) = 6.67934

  Ŷdivsep = 7.35473 − 0.67539(0) − 0.33692(1) = 7.01781

Again, we see that the linear regression model is just an alternative representation of ANOVA 
with the underlying assumptions and mathematics being identical. This is apparent from the 
decomposition of the sums of squares, the variances (or mean squares) as well as the f-test. 
However, the regression output provides some additional information, most important of 
which is the result that the coefficient comparing the reference group of married women to the 
divorced or separated women (−0.33692) is not statistically significant (p ≥ .272). In short, 
while the overall f-test is significant (p ≤ .0005), meaning that some mean comparisons are 
statistically significant, the t-test comparing the birth-weight means for married and divorced/
separated women is not. This test is identical to the independent-sample t-test comparing these 
two groups.

TABLE 10. 4 Coding Schemes to Convert a Nominal Variable With j Categories to 
j − 1 Binary Dummies

Original Codes: Coding Scheme 1: Coding Scheme 2: Coding Scheme 3:
  single div/sep  single married married div/sep
Married (1)   0    0   0    1    1    0
Single (2)   1    0   1    0    0    0
Divorced/Sep. (3)   0    1   0    0    0    1

Reference group: married div/sep single 
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TABLE 10.5 Comparison of Output From One-Way ANOVA and Regression With Dummies

. oneway bwt marital, tab

 | Summary of bwt
  marital | Mean Std. Dev. Freq.
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
1. married | 7.3547285 1.5098641 232
2.    single | 6.6793358 1.7431223 137
3.  div/sep |   7.0178065 1.6346909    31
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    Total |    7.097295 1.6295446 400

 Analysis of Variance
   Source SS df MS F Prob > F
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Between g roups   39.50349   2 19.75174 7.69 0.0005
 Within groups 1020.00739 397  2.56929
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Total 1059.51087 399  2.65542

. regress bwt single divsep

   Source | SS df MS Number of obs =       400
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – F(2,   397)  =       7 .69
   Model |    39.50349    2 19.75174 Prob > F  =  0.0005
   Residual | 1020.00739 397   2.56929 R-squared =  0.0373
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared =  0.0324
    Total | 1059.51087 399   2.65542 Root MSE =  1.6029

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    bwt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   single | −.67539 .17271  −3.91 0.000 −1.01493 −.33585
  divsep | −.33692 .30652  −1.10 0.272   −.93953   .26568
    _cons | 7.35473 .10524 69.89 0.000    7.14784   7.56162
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

As linear regression and ANOVA are identical statistical models, the preference for one 
or the other is often a matter of taste. However, if the focus is on the comparison of relatively 
few group means, as is often the case in experimental studies, ANOVA offers the more effective 
presentation. On the other hand, if the model contains many interval- or ratio-level independent 
variables, regression is clearly preferable, as it can present the relationship among continuous 
variables in a much more parsimonious manner: a single slope coefficient in a regression equation 
can often replace numerous mean estimates assessed at each level of the independent variable.

 EXTENSION OF THE LINEAR REGRESSION MODEL: 
MODIFIED FUNCTIONAL SHAPES

If applicable, linear regression models are more efficient than ANOVA models, but as always, the 
main issue in the choice of statistical models is the fit to the data. While linear relationships do 
exist, deviations from linearity are actually quite common in the medical and nursing literature. 
Luckily, the linear regression model is quite flexible and can accommodate a variety of different 
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functional shapes as long as the coefficients themselves are first-power coefficients. Above, we 
commented on the graph in Figure 10.3 that there might be some nonlinearity in the relationship 
between birth weight and gestational age. Figure 10.2 also seemed to suggest a pattern deviat-
ing somewhat from strict linearity. As it turns out, we can (a) test for deviations from linearity, 
and (b) suggest alternative functional specifications to have a better fitting regression model. In 
Figure 10.4, we compare the estimated linear regression line, using the birth-weight data from 
400 babies to the estimated mean birth-weight scores from the one-way ANOVA, which does 
not impose any functional shape on the sequence of means. As the means suggest a small but 
noticeable deviation from a strictly linear relationship between birth weights and weeks of gesta-
tion, we have also added an additional regression model. From algebra we know that the general 
functional shape suggested by the data is that of a polynomial function of third degree:

Y ̂  = b0 + b1X1 + b2X2
2 + b3X3

3

In Table 10.5, we present the results from a regression model with X1 = weeks of gestation, 
X2 = (weeks of gestation)2, and X3 = (weeks of gestation)3. This model adds the quadratic and 
cubic terms of the independent variable (weeks of gestation) to the equation as additional 
predictor variables. The results in Table 10.5 show that both the additional independent vari-
ables are statistically significant with the absolute values of the t-statistics exceeding 2.6 and 
the associated p-values < .01. In addition, compared to the linear model in Table 10.1, the 
R-squared value increased from 63.35% to 67.25%. This is almost as good as the fit of the 
unconstrained one-way ANOVA model that gives us an eta-squared value of 67.91%, a differ-
ence that is not statistically significant (p > .997).7

The graphs in Figure 10.4 confirm the very close fit of the polynomial regression model 
to the data (Table 10.6). The important point here is that the linear regression model is a 
 versatile tool, which can often be employed to model relationships among variables of interest 
to nurses and physicians.

7 This probability is based on an additional f-test (df1 = 20, df2 = 379).
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In the nursing and medical literature, we find other common transformations of the 
linear regression model, such as logarithmic and exponential transformations (McCusker,  
Cole, Dendukuri, & Belzile, 2003; Mold, Lawler, Schauf, & Aspy, 2012; Stommel & 
Schoenborn, 2009; Suarez et al., 2004). As in all such cases, which functional shape to employ 
depends on theoretical reasoning as well as the actual fit to the data.

 PEARSON’S r CORRELATION

Among the correlation coefficients found in the nursing and medical literature, the Pearson’s 
r correlation coefficient is the most commonly used. As it turns out, this correlation coef-
ficient is closely related to linear regression coefficients as well as a number of other linear 
statistics, such as variance and covariance. Because of this, Pearson’s r also shares the limita-
tions of these other statistics. Given its prominent use, it is important that we have a thorough 
understanding of its meaning.

 Covariance

In Chapter 3, we introduced the (sample) variance of a variable X as the average squared 
deviation from the mean of an interval- or ratio-level variable:

Var X
X X
n

X X X X
n

i i i
( )=

−

−

=

− −

−

∑ ∑( ) ( )( )2

1 1

TABLE 10.6 Comparison of Output From One-Way ANOVA and Polynomial Regression

 Analysis of Variance
   Source SS df MS F Prob > F
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Between groups  719.56533  23 31.285449 34.60 0.0000

 Within groups  339.94554 376     .904110
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   Total 1059.51087 399   2.655416

Bartlett’s test for equal variances: chi2(23) =  13.2461 Prob>chi2 = 0.946

. regress birthweight (bwt) gestation gest^2 gest^3

   Source | SS df MS Number of obs =     400
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – F(3, 396)  =  27 1.05
    Model |  712.516075    3 237.505358 Prob > F =  0.0000
   Residual | 346.994799 396     .876249 R-squared =  0.6725
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared =  0.6700
    Total |  1059.51087 399    2.655416 Root MSE =  .93608

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     bwt | Coef. Std. Err. t P>|t| [95% Conf. Interval]
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  gestation |  2.22638  .60222  3.70 0.000  1.04243   3.41033
gestation^2 |   −.05584  .01869 −2.99 0.003  −.09259    −.01909
gestation^3 |    .00049  .00019  2.60  0.010     .00012     .00086
     _cons | −23.09928 6.31374 −3.66 0.000 −35.51192 −10.68663
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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The covariance between two variables X and Y is a measure of the joint variation between 
two interval- or ratio-level variables, and is constructed in formal analogy to the variance:8

Cov XY
X X Y Y

n
i i

( ) =

− −

−

∑( )( )
1

What exactly is the covariance a measure of? In the numerator, you see the sum of all cross-
products, (Xi − X )(Yi − Y ). These cross-products show the deviation of an individual’s  value 
from the sample mean of X, multiplied by the deviation of the same individual’s  value from 
the sample mean of Y. As the denominator (n − 1) will always be positive,9 the covariance 
will be positive, if the sum of the cross-products is positive. For that to happen, it must be true 
that positive deviations of X from its mean are generally associated with positive deviations 
of Y from its mean and negative deviations of X are associated with negative deviations of Y.10 
On the other hand, if the predominant pattern is that positive deviations of X are associated 
with negative deviations of Y, and vice versa, then the sum of the cross-products will be nega-
tive and the covariance, which is nothing but the average cross-product, will also be nega-
tive. In short, a positive covariance implies that higher (lower) than average values on the 
X variable tend to be associated with the higher (lower) values on the Y variable. Figure 10.5 
provides a graphical illustration of the covariance, with X  being the weight and Y the height 
of 100 children between the ages of 6 and 30 months.

The graph in Figure 10.5 is divided into four quadrants, drawing a vertical line at the 
mean of the height variable, X = 32.42, and a horizontal line at the mean of the weight vari-
able Y = 26.34. Thus, the first quadrant shows all the data points of toddlers with larger than 
average height and weight, and the third quadrant shows all the data points with smaller 
than average height and weight. As most babies’ data lie in the first and third quadrants, the 
sum of the cross-products, and the covariance, are positive: Cov(XY) = 14.55. Had we found 

8 For easier recognition of this analogy, we have written out the squared term in the numerator of the 
variance on the previous page.
9 The sample size n cannot be smaller than 1.
10 The multiplication of two positive numbers or two negative numbers always yields a positive number.
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most of the data points in the second and fourth quadrants, that would have meant that larger 
than average X values would be associated with smaller than average Y values, leading to a 
 negative (<0) covariance.

 Pearson’s r as Standardized Covariance

While the covariance tells us whether a relationship between two variables is positive or nega-
tive, it does not give us a direct indication for how strong such a relationship is. The reason is 
that the specific covariance values depend on the underlying scaling units of the two variables 
involved. For instance, had we used centimeters instead of inches and kilogram instead of 
pounds, we would have obtained a different covariance estimate: Cov(XY) = 2.59.

This is obviously not desirable, but we can solve this problem by first standardizing the two 
variables involved. That is, if we first change X into its standardized z-score: zx = (Xi − X)/sx, and Y 
into its z-score: zy = (Yi − Y)/sy, we obtain the standardized covariance, which is more commonly 
known as the Pearson’s r correlation:

r z z
X X Y Y

n s s
z z

nxy x y
i i

x y

x y
= ( ) =

− −

−

=

−

∑ ∑Cov
( )( )

( ) ( )1 1

The standardized rxy correlation has several important characteristics:

1. rxy is invariant to changes in the measurement scales of either or both variables 
involved.

2. rxy is bounded by ±1, with +1 representing a perfect positive linear relationship 
and −1 representing a perfect negative linear relationship.11

3. rxy = 0 implies the absence of any linear relationship.

Figure 10.6 provides some examples of scatterplots of two variables and the Pearson’s r cor-
relation describing the data pattern. The upper two panels in Figure 10.6 show fairly strong 
linear relationships, one positive (+0.86) and the other negative (−0.81). The lower left panel 
shows a data pattern of essentially no correlation (neither linear nor any other functional rela-
tionship), as low values on one variable are just as likely to be paired with low and high val-
ues on the other variable, and vice versa. The final, lower-right, panel shows a well-behaved 
nonlinear relationship between two variables, yet the linear correlation coefficient provides 
an estimate of r = +0.05, which is close to 0. It is important to remember that Pearson’s r is a 
linear correlation coefficient; that means it is designed to capture linear relationships. It fol-
lows that r-values close to 0 only document the absence of a linear relationship, but not the 
absence of all correlation patterns.

As with all sample estimates of particular statistics, we can construct 95% CIs around 
the sample estimate. In most applications in the literature, researchers do not report the CIs 
of the r-correlation coefficient, even though it would provide more precise information on 
the likely population value. Instead, researchers mostly report the sample estimate of the cor-
relation and the associated p-value, which is calculated for the null hypothesis that ρ = 0 in 
the population.12 Thus, if we see in a research report the following results: r = 0.14 (p > .28), 
we would conclude that the sample correlation of 0.14 does not differ significantly from the 

11 A “perfect” linear relationship means that all (x, y) data pairs lie on a straight line.
12 The Greek letter ρ (“rho”) refers to the population value of r.
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null value of zero. In other words, there is a 28% chance that a sample correlation of this 
magnitude might have been the result of mere random fluctuations. Thus we do not reject the 
null hypothesis and conclude that it is unlikely that there is a linear relationship between two 
variables of interest in the population from which the sample data were obtained. By contrast, 
a finding of r = 0.38 (p < .02) would indicate that there is some degree of linear relationship in 
the population from which the sample is drawn, as the Type I error associated with the rejec-
tion of the null hypothesis of no linear relationship is less than 2%.

 Alternative Versions of the Pearson’s r Correlation

The Pearson’s r correlation can be employed if one or both of the variables being correlated 
is/are dichotomous or binary measures, meaning they take on only two values. In the case of 
correlating two binary categorical variables, such as sex and colon cancer (having been diag-
nosed or not), the Pearson’s r is also known as the phi correlation.13 If only one of the two 
variables involved is binary, the Pearson’s r is also known as the point-biserial correlation. 
As these two correlations can be shown to be mathematically identical to the Pearson’s r and 
modern computers can compute the r correlation very quickly, there is no need for the simpler 
computational formulas of these two alternative correlations.

 Pearson’s r and Linear Regression

In Table 10.1, we showed the results of a simple (bivariate) linear regression model with 
one independent variable (weeks of gestation) predicting the birth weight of the newly born 
baby. We showed that the R-squared statistic equals the percentage variance in the dependent 
variable accounted for by the independent variable: RegSS/TSS. As the name “R-squared” 

13 See Chapter 15.
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FIGURE 10.6 Pearson’s r Correlations and Data Patterns.
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indicates, if we take the square root of this statistic, we obtain R. What is more, in the case of a 
simple regression model with one independent variable, this R = r. The latter is the Pearson’s 
r correlation between the dependent and independent variable. Of course, this relationship 
can also be made use of the other way around. Suppose you find that the linear correlation 
between two variables is r = 0.7. Squaring this correlation yields r2 = 0.49. Thus, we can con-
clude that, in the sample data on which this correlation was computed, one variable accounts 
for 49% of the variation in the other variable.

 SUMMARY

In this chapter, we have explored the linear regression model with a single independent vari-
able, also referred to as “simple linear regression.” In particular, we focused on the “family 
resemblance” of linear regression and ANOVA, the t-test, and the Pearson’s r correlation. In 
fact, all of these statistics are part of the general linear model (GLM), but it is important to 
establish that the data meet the assumptions of the model. In many cases, simple modifications 
in the functional shape of the independent variable(s) can be employed to meet the linearity 
assumption of the model. While the GLM is a flexible and versatile tool, not all types of data 
encountered in nursing and medical studies meet its assumptions.14

In the next four chapters, we explore important extensions of the linear model to accom-
modate more complex data. In particular, we focus on the analysis of models with multi-
ple independent variables and their simultaneous effects on a dependent variable (factorial 
ANOVA and multiple regression) and on models that can accommodate repeated observations 
or measures on the same individuals (repeated measures ANOVA and multilevel regression). 
However, we will find that many of the principles governing simple linear regression and 
one-way ANOVA also apply to these more complex models.

Read: Hart, S. E. (2005). Hospital ethical climates and registered nurses’ turnover intentions. 
Journal of Nursing Scholarship, 37(2), 173–177.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define precisely the target population to which the statistical analysis can be generalized. 
Is the study sample a random sample of the target population?

(c)  List all dependent/outcome variables, provide a clear definition of them, and determine 
their level of measurement.

(d)  List the main independent/explanatory variable(s) in the study.

(e)  State the null hypothesis for each Pearson’s r correlation in Table 1. What do the “statisti-
cally significant” findings imply?

(f)  Do the (simple) linear regressions in Tables 2 and 3 offer any additional information over 
the information contained in the first row of Table 1? Show how the results in Table 1 and 
those in Tables 2 and 3 are related.

(g)  Do the authors offer evidence that the assumptions of the linear regression model and the 
Pearson’s r correlation are met?

LITERATURE APPLICATION

14 Alternative statistical models for these situations will be explored in Parts III and IV of this book.
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 EXERCISES

1. You read that the sample covariance between X and Y equals Cov(XY) = 8.0, and the 
variances for X and Y are Var(X) = 9.0, Var(Y) = 16.0. What is the value of the Pearson 
correlation coefficient rxy?

2. Given the formula for the slope regression coefficient in a simple regression, 
b1 = ∑(Xi − X)(Yi − Y)/∑(Xi − X)2, do the data provided in exercise 1 allow us to compute 
the sample regression coefficient? If yes, what is its value?

3. If a particular estimate of the Pearson’s correlation is rxy = −0.7, does it follow that 
lower than average values on X tend to be associated with lower than average values 
on Y  ? (yes/no); explain your reasoning.

4. An estimate of a linear regression model, predicting adult weight (Y, measured in lbs) 
from adult height (X, measured in inches) results in the following equation: 
Y = −149 + 4.9X. The standard error for the intercept coefficient is 4.8 and for the slope 
coefficient, it is 0.08.
(a) Write a sentence that captures the information in this estimated regression model.
(b) How heavy would we expect a person to be who is 6 foot 1 inch tall?
(c) What is the significance, if any, of the intercept estimate of −149?
(d) If the standard error for the slope coefficient had been 4.0, would that alter our 

inferences?

5. In the regression equation of Y = 20 − 0.2X, where Y = the depression score and X = age, 
what are the relevant null hypotheses and what do they imply?

6. In a simple linear regression model of Y on X, the regression or model sum of squares 
equals 80 and the residual or error sum of squares equals 420. What is the value of the 
correlation coefficient r between X and Y?

7. Using data from a randomly selected study sample of caregivers (N = 265), aged 35 to 85, 
a researcher finds the following Pearson’s r correlation between the variable age 
and the CES-D depression score (which can vary from 0 to −60): r = +0.14 (p = .435). 
What precisely can we conclude? Choose one of the following:
(a) The relationship between depression and age is nonlinear.
(b) In the study sample there is a weak positive correlation of 0.14, but the p-value 

of .435 tells us that this positive correlation may well be the result of sampling 
chance.

(c) As 43.5% of all samples of size N = 265 drawn from this same target population 
result in a correlation of +0.14 or larger, this indicates that, as one gets older, 
depression increases as well, even though by a small amount.

(d) Had the study sample been larger (say over 1,000), we would have seen a 
“statistically significant” correlation between depression and age.

(e) As p = .435, there is a 43.5% probability that depression increases with age among 
people over 34 years of age.

8. You are given the following information about the variances of two variables and 
the Pearson’s r correlation between them: variance of Y = 64, variance of X = 100, 
Pearson’s r = 0.5. From this, it follows that the covariance equals . . .
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CHAPTER 11

 Factorial Analysis of Variance and 
Analysis of Covariance

 FACTORIAL ANOVA

In Chapter 9 we introduced the one-way ANOVA model, which can be used to analyze the 
relationship between one interval- or ratio-level dependent variable and a single nominal or 
categorical independent or predictor variable. In this chapter, we will extend this model to 
include two (or more) simultaneous predictor variables in the analysis. In both the nursing 
and medical literature, reports on intervention studies with two or more intervention vari-
ables are quite common (Conn et al., 2001; Gary et al., 2003; Venkateswaran et al., 2009). 
Such randomized clinical trials employ factorial designs (Stommel & Wills, 2004), which 
involve the simultaneous manipulation of two or more independent variables (or “factors”). 
The key advantage of such studies is that one cannot only examine the main effects of each 
separate treatment, but also their interactions, that is, the joint effects of the treatments on the 
outcome(s).

Let us look at an example of how this might play out. Here we present a two-way 
 factorial design for a hypothetical (but not too far-fetched!) clinical problem in need of 
research. The logic underlying this example of a two-way ANOVA can readily be extended to 
factorial designs with more factors or more categories (treatment levels) per factor.

Suppose a researcher has received funding to study the efficacy of two treatments (zinc inhalers 
and super-potent chicken broth) to shorten recovery time from viral upper respiratory infections 
(URIs), a commonly encountered problem in primary care settings. We assume that previous 
research has already provided some support for the effectiveness of either intervention in reduc-
ing recovery time, but this research was primarily based on observational studies. Furthermore, 
it may well be the case that the effects of the either intervention may reinforce the other, so that 
taking both remedies together may yield additional benefits.

A problem like this is well suited for a randomized clinical trial  employing a 2 × 2 factorial 
design. The outcome variable, recovery time until the symptoms disappear, can be measured 
with reasonable accuracy, and exposure to the treatments can be easily manipulated. While 
treatment implementation requires cooperation of study participants in using the zinc inhaler 
or consuming the chicken broth, study conditions need not be “ideal.” If patient cooperation 
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were to exceed greatly the cooperation levels during usual clinical practice, the measured 
study effects could be unrealistically large. In short, in this kind of study, we aim for enough 
subjects to adhere to the protocol so that positive average outcomes can be documented, 
if there are some.

In this 2 × 2 factorial design, we would manipulate two independent two-level  factors, 
involving exposure or nonexposure to either chicken broth or zinc inhaler or both, and 
randomly assign study subjects to the various conditions. Given the possible combinations 
of the two independent factors, the study design creates four groups with different exposure 
levels as indicated in Table 11.1.

In the factorial ANOVA model with two experimental factors, j and k, we conceive 
of individual outcome scores, Yijk, as being influenced by membership in the groups formed 
by the two experimental variables, their possible interaction, and whatever unexplained 
individual differences, εijk, remain. In our example, we have:

Yijk = μ… + δj + δk + δjk + εijk

This equation shows an individual’s outcome score as the sum of the overall mean score 
for all individuals in the relevant target population and various deviation terms. The effect of 
the intervention j is captured by the positive or negative deviation (δj) of the intervention or 
control group means from the overall mean score. Similarly, the main effect of intervention 
k is also captured as the deviation (δk) of the group means for exposed and nonexposed sub-
jects from the overall mean score. The interaction effect consists of the deviation (δjk) of the 
mean score for doubly exposed individuals from the expected mean if no interaction is pres-
ent, which would be reflected in the addition of the two main effects of δj and δk. Finally, each 
individual score  may also have its idiosyncratic error component, εijk.

After the experiment has been carried out with the study participants exposed to the four 
treatment combinations and recovery times measured, the researchers would test three major 
hypotheses via the rejection of three parallel null hypotheses:

1. H01: δj = 0 (recovery time for subjects exposed to chicken broth does not differ from 
the recovery time of subjects not exposed to chicken broth, that is, the mean outcomes 
in the chicken broth exposure/nonexposure groups do not differ from the grand mean)

2. H02: δk = 0 (recovery time for subjects exposed to the zinc inhaler does not differ 
from the recovery time of subjects not exposed to the zinc inhaler, that is, the mean 
outcomes in the zinc exposure/nonexposure groups do not differ from the grand 
mean)

3. H03: δjk = μjk − (μ... + δj + δk) = 0 (recovery time for subjects exposed to both chicken 
broth and zinc inhaler does not differ from the addition of the separate effects of 
exposure to either treatment on recovery time)

TABLE 11.1 Random Assignment of 160 Study Subjects in Two-Way Factorial Design

NO ZINC INHALER

N

ZINC INHALER

N

TOTAL

N

NO CHICKEN BROTH 40 40 80

CHICKEN BROTH 40 40 80

TOTAL 80 80 160
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TABLE 11.2 Factorial ANOVA With One Main Effect

Means & Standard Deviations for recovery time

 chicken | zinc inhaler
 broth | yes no | Total
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
 yes | 75.69 76.66 | 76.18
 | 3.39 3.21 |  3.32
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
   no | 82.90 83.53 | 83.22
 | 2.71 3.52 | 3.13
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
 Total | 79.29 80.09 | 79.69
 | 4.75 4.81 | 4.78

ANOVA recovery time chicken-broth zinc inhaler interaction: chick X zinc

 Number of obs = 120 R-squared = 0.5553
 Root MSE = 3.22514 Adj R-squared = 0.5438

 Source | Partial SS df MS F Prob>F
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 

 Model | 1506.747    3 502.249 48.29 0.0000
 Chicken broth | 1486.619 1 1486.619 142.92 0.0000
 Zinc inhaler | 19.209 1 19.209 1.85 0.1768
 Chickenbr X Zinc | .919 1 .919 0.09 0.7668
 Residual | 1206.580 116 10.402

– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 
 Total | 2713.327 119 22.801

In Tables 11.2 through 11.4, we present three typical result patterns in a two-way ANOVA 
of a randomized intervention study with a 2 × 2 factorial design. The evidence in Table 11.2 
supports the research hypothesis that only chicken broth shortens recovery time, as on the 
basis of the evidence we would reject H01, but accept H02 and H03. The ANOVA table shows 
that the sum of squares (SS) associated with chicken broth (1486.619) accounts for 98.7% of 
the “Model” SS (1506.749), which means that almost all between-group mean differences 
are accounted for by exposure or nonexposure to chicken broth. As always, we need to move 
beyond the description of sample statistics and ask whether the evidence is strong enough to 
reject the null hypothesis in question (H01). The f-ratio comparing between-group variance 
to within-group/error variance is large, and the probability that an f-statistic with (df1 = 1/
df2 = 116) would exceed 145.92 as a result of mere random assignment is exceedingly small: 
p < .00005. Based on these study sample data, we would reject H01 and conclude that the 
observed differences in mean recovery time (76.2 hours for subjects eating the chicken broth 
and 83.2 hours for subjects who did not eat it) are due to the exposure to chicken broth. None 
of the other f-tests associated with the exposure to zinc inhalers or the interaction of the two 
treatments are statistically significant, which is to say their p-values exceed the usual signifi-
cance criterion of 0.05.

The result shown in Table 11.3 would lead us to reject H01 and H02, but to accept H03.
Thus, the research hypotheses about the main effects are supported: Both chicken broth 
and zinc inhalers separately have the effect of shortening recovery time. As in Table 11.2, 
the main effect of exposure to chicken broth remains the same, with a mean difference of 
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TABLE 11.3 Factorial ANOVA With Two Main Effects

Means & Standard Deviations for recovery time

 chicken | zinc inhaler
 broth | yes no | Total
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
 yes | 74.79 77.56 | 76.18
 | 3.39 3.21 |  3.32
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
   no | 82.00 84.43 | 83.22
 | 2.71 3.52 | 3.13
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
 Total | 78.39 80.99 | 79.69
 | 4.75 4.81 | 4.78

ANOVA recovery time chicken-broth zinc inhaler interaction: chick X zinc

 Number of obs = 120 R-squared = 0.5553
 Root MSE = 3.22514 Adj R-squared = 0.5438

 Source | Partial SS df MS F Prob>F
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 

 Model | 1690.369    3 563.456 54.17 0.0000
 Chicken broth | 1486.619 1 1486.619 142.92 0.0000
 Zinc inhaler | 202.831 1 202.831 19.50 0.0000
 Chickenbr X Zinc | .919 1 .919 0.09 0.7668
 Residual | 1206.580 116 10.402

– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 
 Total | 2896.949 119 24.344

76.18 − 83.22 = −7.04. However, the main effect of exposure or nonexposure to zinc inhal-
ers has changed: A mean difference of 78.39 − 80.99 = −2.6 in Table 11.3 replaces a differ-
ence of −0.8 in Table 11.2, with SS, MS, and f-statistic all larger, resulting in a p-value of 
p < .00005. Given this evidence, we would reject H02: δk = 0 and conclude that exposure to 
zinc has an independent effect on shortening recovery, independent, that is, of the effect of 
exposure to chicken broth.

Table 11.4 shows results, which support all three research hypotheses, as the evidence 
would lead us to reject H01, H02, and H03. However, the main story in the results pattern we see 
in Table 11.4 is the new interaction effect, which posits an effect on recovery time that goes 
beyond the main effects. A good way to grasp the meaning of the interaction effect is to look 
back at the sample means in Table 11.3 and compare them to those in Table 11.4. Focusing 
on the right-hand column in Table 11.3, we see that the chicken broth effect is captured as the 
overall sample mean difference of 76.18 – 83.22 = −7.04. The mean differences within the 
separate groups, defined by exposure or nonexposure to a zinc inhaler, are also quite similar: 
77.56 − 84.43 = −6.87 and 74.79 − 82.00 = −7.21. In fact, the nonsignificant interaction effect 
(p > .7668) in Table 11.3 tells us that these differences are well within the margin of sampling 
chance alone. In other words, the absence of an interaction effect tells us that the effect of chicken 
broth on recovery time is the same, regardless of exposure or nonexposure to a zinc inhaler.1

1 Readers should convince themselves from the results in Table 11.3 that the effect of exposure to zinc 
inhalers is also essentially the same, whether or not a person also consumes chicken broth.
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TABLE 11.4 Factorial ANOVA With Two Main and One Interaction Effect

Means & Standard Deviations for recovery time

 chicken | zinc inhaler
 broth | yes no | Total
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
 yes | 71.59 79.36 | 75.48
 | 3.39 3.21 |  5.11
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
   no | 82.70 85.13 | 83.91
 | 2.71 3.52 | 3.34
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – –
 Total | 77.15 82.25 | 79.69
 | 6.38 4.42 | 6.04

ANOVA recovery time chicken-broth zinc inhaler interaction: chick X zinc

 Number of obs = 120 R-squared = 0.5553
 Root MSE = 3.22514 Adj R-squared = 0.5438

 Source | Partial SS df MS F Prob>F
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 

 Model | 3131.760    3 1043.920 100.42 0.0000
 Chicken broth | 2136.732 1 2136.732 205.42 0.0000
 Zinc inhaler | 780.360 1 780.360 75.02 0.0000
 Chickenbr X Zinc | 214.668 1 214.668 20.64 0.0000
 Residual | 1206.580 116 10.402

– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 
 Total | 4338.340 119 36.457

Now contrast these results to those in Table 11.4. For persons not exposed to the zinc 
inhaler, the effect of chicken broth consumption on recovery time is captured in the following 
mean difference: 79.36 – 85.13 = −5.77; for those using the zinc inhaler, the effect of chicken 
broth consumption is 71.59 – 82.70 = −10.56, which is to say almost twice as large. Clearly, in 
this hypothetical example, a synergistic effect is present, that is, the two treatments mutually 
reinforce each other. To say this in another way: The effect of one treatment variable depends 
on the level of the other treatment variable. It should now be apparent why it does not make 
much sense to talk of a “main effect,” if an interaction effect is present: Its existence implies 
that there are no uniform effects across the levels of the other exposure variables. By contrast, 
a main effect is simply the effect of a single independent variable or factor on a dependent 
variable, which remains the same, regardless of the level of exposure to the other factor(s).

Figure 11.1 offers a graphical depiction of the different effect patterns shown in 
Tables 11.2 through 11.4. The left-hand panel corresponds to the results in Table 11.2: The 
steep decline in mean recovery time associated with exposure (yes) as opposed to nonexpo-
sure (no) to chicken broth is evident for both the groups exposed to the zinc inhaler (solid line) 
and the group not exposed to the zinc inhaler (dashed line). On the other hand, the very small 
vertical difference between the parallel lines for the two zinc exposure groups indicates a non-
significant difference based on this exposure. The parallel lines in the middle panel again indi-
cate that exposure to chicken broth has a strong and similar effect on reducing recovery time 
in both zinc exposure groups. However, the much larger distance between the parallel lines 
indicates that exposure to the zinc inhaler at all levels of exposure to chicken broth reduces 
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FIGURE 11.1 Patterns of Main Effects and Interactions in Two-Way ANOVA.

recovery time. The third panel (on the right) is a graphical depiction of the interaction effect 
shown in the results of Table 11.4: While exposure to chicken broth reduces mean recovery 
time among persons not exposed to the zinc inhaler (dashed line), the reduction in recovery 
time is steeper for persons exposed to both treatments (solid line).

GENERAL INTERPRETATION OF INTERACTION EFFECTS

What statisticians call “interaction effects” or “moderator effects” (Whisman & McCelland, 
2005) are common phenomena in health care and clinical practice. To assert that one treat-
ment interacts with another treatment is to say that the generality of the treatment’s effect is 
limited to specific conditions under which the intervention works better or worse. In short, the 
effect on a dependent variable is “moderated” by another independent variable.2 The classic 
medical example is that of drug interactions, as when the simultaneous intake of a second drug 
might either enhance (“synergistic”) or reduce (“antagonistic”) the effects of a given drug.3

However, interaction effects do not only occur as a result of the interplay of multiple inter-
ventions or treatments. They are also common in the interplay of interventions and certain 
population subgroups. For instance, a particular nursing educational intervention may work 
with adults, but not necessarily with adolescents (Pbert, 2011). The call for cultural sensitivity 
in providing nursing and medical care implies that the same approach to care may not work as 
well among all ethnic or religious groups in society (Chang, 2007). In short, care interventions 

2 The terms “moderation” and “statistical interaction” are used interchangeably. 
3 For a quick overview, see the Wikipedia article on “drug interactions”: en.wikipedia.org/wiki/Drug
_interaction
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“interact” with patient characteristics such as ethnic or religious affiliations. To test the effec-
tiveness of care interventions empirically, a study employing a factorial design would allow 
one to test explicitly whether the effectiveness of an intervention differs, depending on certain 
patients’ ethnic, religious, educational, or other cultural backgrounds.

 DECOMPOSITION OF VARIANCE IN FACTORIAL ANOVA WITH 
ORTHOGONAL/BALANCED DESIGNS

One of the intuitively attractive features of ANOVA is that it often allows us to decompose the 
variation in the outcome variable and attribute it to the various factors. However, the ability to 
attribute variation in outcomes uniquely to independent factors requires data with orthogonal4

independent factors.
The ANOVA example of the chicken broth and zinc inhaler interventions we introduced 

rests on such an orthogonal study design. The study is deliberately designed, so that exposure to 
the chicken broth and the zinc inhaler treatment are independent from each other (uncorrelated). 
Recall from Chapter 4 that two events A and B are considered independent, if the probability of 
event A remains the same, regardless of the occurrence of event B. In the intervention study dis-
cussed here, the probability of being assigned to the zinc inhaler intervention is 0.5, regardless 
of whether a person is or is not also assigned to the chicken broth intervention. That makes these 
events independent, with the important consequence that the SSs and variances associated with 
each of the effects do not overlap and can be added, regardless of the order in which the inde-
pendent factors appear. Thus, in Table 11.4, the Model SS is simply the sum of the separate SSs 
attributed to chicken broth, zinc inhaler, and their interaction, and we would get the same num-
bers, if we changed the order, for example, computing the SS for zinc inhaler first, and so forth. 
This allows us to attribute a unique percentage of variance to each separate factor and the model 
as a whole. As a consequence, with an orthogonal study design the decomposition of variance in 
an ANOVA model gives us an estimate of the relative effectiveness or contribution that several 
factors make to variation in the dependent variable. As we will see in the next chapter on mul-
tiple regression analysis, when we analyze observational data, we have no control over whether 
or not two or more independent variables are correlated; consequently, with observational data 
it is no longer possible to assign explained variance uniquely to each independent variable.

 ANALYSIS OF COVARIANCE (ANCOVA)

In our discussion of factorial ANOVA, we chose as our example the simplest possible factorial 
design: the simultaneous manipulation of two treatments, each with only two levels (presence 
or absence) of treatment. Factorial designs and factorial ANOVA are not limited to treatments 
with only two levels, nor are they limited to only two simultaneous treatments. While adding 
to the complexity in the analysis, the main principles of distinguishing between main and 
interaction effects remain the same. Factorial designs may also be used to analyze data from 
randomized block designs. In such study designs, researchers undertake the random assign-
ment to treatment and control groups within blocks, with the blocks defined by variables that 
have a known effect on the dependent variable in question (Friedman et al., 2010; Polit & 
Beck, 2003). For example, in a study designed to test learning abilities of schoolchildren, age 

4 The term “orthogonal” refers to the geometric representation of variables and means literally “right-
angled.” It is used synonymously with “uncorrelated,” as the geometric representation of two vectors 
representing uncorrelated variables is the right angle. 
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would certainly be an important predictive factor. To separate the age effect from the com-
parison of the treatment and control groups, one would create age blocks consisting of pairs 
of children of the same age. The random assignment to either the treatment or control group 
would then proceed within each pair of age peers, guaranteeing the same age distribution in 
the treatment and control groups. In this way, researchers can make certain that age cannot 
account for group differences (as it is uncorrelated with group membership), and, in the analy-
sis stage, they can separate out the variance associated with age from the outcome variable.

The ANCOVA is yet another way of dealing with possible nuisance variables in the 
analysis stage of a study. ANCOVA extends the ANOVA model by including continuous 
interval- or ratio-level variables into the model. In effect, ANCOVA combines ANOVA and 
linear regression into a single model.

Here is how it works: Let us go back to the example of chicken broth and zinc inhaler. 
We know from clinical experience that a person’s age is likely to affect recovery time, such 
that older people, on average, take longer in their recovery from viral URIs. Knowing this, we 
would collect information on the age of all study participants. Why? Wouldn’t the fact that we 
randomly assign study participants to the four treatment conditions (exposure to chicken broth 
only, to zinc inhaler only, to both, or to neither) take care of possible age differences between 
the comparison groups, as long as the study samples are sufficiently large? True, but random 
assignment of sufficiently large comparison groups would only lead to roughly equal mean ages 
in the comparison groups. Within-group variation in age would remain and, if age is a strong 
predictor of recovery time, this would add to the individual within-group variation in recovery 
time. Now recall, that our statistical tests concerning group mean differences in the dependent 
variable are based on the f-ratio, which compares the relative magnitude of between-group 
variance in outcome scores (BGSS/k − 1) to within-group variance (WGSS/n − k). If we could 
reduce the size of the within-group individual, that is, error variance, we would increase the 
magnitude of the f-ratio, resulting in greater power to detect differences in outcomes between 
the experimental and control groups. In short, our tests would become more efficient.

In the ANCOVA model with two experimental factors, j and k, we conceive of indi-
vidual outcome scores, Yijk, as being influenced by membership in the groups formed by the 
two exposure variables as well as their covariate attribute Xijk, and whatever unexplained error 
variance remains εijk. In our example, we have:

Yijk = μ… + δj + δk + δjk + β(Xijk – X–…  ) + εijk

This equation is modeled after the factorial ANOVA and shows that an individual’s 
score on the outcome variable is the sum of the overall mean score for all individuals in the 
relevant target population, the effect of the intervention j as captured by the deviation (δj), the 
effect of intervention k as captured by the deviation (δk), the interaction effect as captured in 
the deviation (δjk), and a term that captures all other, unaccounted for influence εijk. What is 
new here, compared to the factorial ANOVA, is the regression term, β(Xijk – X–  …). It captures 
the linear effect of the nuisance or control variable on the outcome variable. If we now com-
pare the error terms in the ANCOVA to the error terms in ANOVA model without the covari-
ate, it is easy to see that the former is smaller than the letter, as long as β ≠ 0:

εijk = Yijk – μ… – δj – δk – δjk – β(Xijk – X–…)  [ ANCOVA]

εijk = Yijk – μ… – δj – δk – δjk [ANOVA]

Again, if the covariate is related to the outcome variable, removing its effect on the 
dependent variable will lead to a more efficient f-test. For illustration, we present a numerical 
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TABLE 11.5 ANCOVA With Two Main, One Interaction Effect and 
a Continuous Covariate

. correlation: recovery-time age
(obs=120)

  | recovery~ age
– – – – – – – – – – – – + – – – – – – – – – – – – – – –
recovery-time | 1.0000
 age | 0.4170 1.000
   (0.0000)

ANOVA recovery time chicken-broth zinc inhaler interaction: chick X zinc

 Number of obs = 120  R-squared = 0.5553
 Root MSE = 3.22514 Adj R-squared = 0.5438

 Source | Partial SS df MS F Prob>F
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 

 Model | 3646.706    4 911.676 151.59 0.0000
 age |    514.945 1 514.945 85.62 0.0000
 Chicken broth | 2033.604 1 2033.604 338.13 0.0000
 Zinc inhaler | 672.925 1 672.925 111.89 0.0000
 Chickenbr X Zinc | 198.139 1 198.139 32.95 0.0000
 Residual | 691.635 115 6.014

– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – 
 Total | 4338.340 119 36.457

example of a covariance analysis for the randomized two-way experiment involving chicken 
broth and zinc inhaler as treatments and age as the continuous covariate factor: We started 
with the interaction model in Table 11.4, but added age as the covariate. The information in 
Table 11.5 tells us that the linear correlation between recovery time and age (in years) is 0.417 
(p < .00005); thus, we use age in the ANCOVA as a control variable (covariate).

As mentioned before, ANCOVA can be thought of as a two-step procedure: linear 
regression of the within-group error terms on the covariate, followed by a regular ANOVA 
on the remaining error terms after the covariate effect has been subtracted. Comparing the 
output in Table 11.5 to the output in Table 11.4, notice that there is no change in the total SS 
(4338.34), but age is now part of the “Model” SS (3646.706) and the unexplained or error 
SS has shrunk from 1206.58 in the ANOVA model of Table 11.4 to 691.635 in the ANCOVA 
model of Table 11.5. Dividing the error SS by its degrees of freedom (df), we get an error 
variance of 6.014 compared to 10.402 in the ANOVA model of Table 11.4. With the remaining 
random error about 40% smaller in the ANCOVA, every f-ratio comparing systematic to error 
variances test is now larger, increasing the probability that an intervention effect will be found 
statistically significant, if there is such an effect. In this example, even without the covariate 
adjustment, the interventions were found to be statistically significant; in other cases, that 
may not be so. In short, covariate adjustments in randomized clinical trials  can increase their 
efficiency and reduce the required sample size to find an effect, if there is one.

 ASSUMPTIONS OF ANOVA AND ANCOVA

None of the assumptions are new: Like factorial ANOVA, ANCOVA assumes multivariate 
normal distributions of the individual error terms within each population group formed by the 
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treatment factor combinations. And like linear regression, the covariate is thought to have a 
linear relationship to the dependent variable. The F-test is quite robust in the face of deviations 
from the normality assumption about the error terms, as long as the samples are sufficiently 
large and heteroskedasticity5 is not a major problem. The model is not robust with respect to 
deviations from the assumption of a linear relationship between the outcome variable and the 
covariate; however, as in regression analysis, algebraic transformations of the covariate (e.g., 
logarithmic, exponential, and so forth) can sometimes “linearize” the relationship between the 
covariate and the dependent scores.

 SUMMARY

In this chapter, we have discussed two common extensions of the simple one-way analysis of 
variance: factorial ANOVA and ANCOVA. The discussion was limited to data from (hypo-
thetical) randomized experiments, instead of observational data. ANOVA models were origi-
nally developed for experimental studies, but they can be applied to observational data, even 
though this adds a number of complications to be considered when interpreting the results. In 
particular, when the independent factors or variables are correlated, as is usually the case with 
observational data, the decomposition of variance becomes more complicated as well.

As the ANOVA model is mathematically identical to the linear regression model, and 
regression analysis was originally designed to deal with observational data, we will take up 
the issue of how to interpret ANOVA tables based on observational data in the next chapter on 
multiple (linear) regression models.

Read: Gary, T. L., Bone, L. R., Hill, M. N., Levine, D. M., McGuire, M., Saudek, C., & 
Brancati, F. L. (2003). Randomized controlled trial of the effects of nurse case manager and 
community health worker interventions on risk factors for diabetes related complications in 
urban African Americans. Preventive Medicine, 37(1), 23–32.

(a) Provide a very brief (3–4 sentences) summary of what this study is about.
(b)  Define the target population to which the statistical analysis can be generalized. What 

were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  The researchers used a randomized block design, blocking on sex and clinic site. What is 
the purpose of this?

(d)  List all dependent/outcome variables, provide a clear definition of them, and determine 
their level of measurement.

(e)  List the main independent/explanatory factor(s) in the study. Do the authors control for 
covariates?

(f) Do the comparison groups differ according to baseline characteristics?
(g)  State the null hypotheses for each of the effects shown in Figure 1. Is the evidence strong 

enough to reject the null hypotheses?
(h)  Do the authors provide evidence that the data meet the assumptions of their statistical 

tests?
(i)  Summarize the main findings in your own words: Are the conclusions of the authors 

consistent with the evidence presented?

LITERATURE APPLICATION

5 Heteroskedasticity refers to the existence of unequal within-group variances across comparison groups. 
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 EXERCISES

1. The following output shows the ANOVA results from a randomized intervention study, 
exposing study participants to a physical exercise (yes or no) and/or a nutrition (yes or 
no) intervention in a 2 × 2 factorial design. The outcome measure is the body mass index 
(BMI) measured after 6 months of the ongoing interventions.

Factorial ANOVA With Two Main and One Interaction Effect

Means and Standard Deviations of BMI 6 months after continuous nutrition 
& exercise intervention

Exercise |
Intervention |

vs. | Nutrition Intervention
Control | vs. Control Group

Group | control-gp intervention-gp | Total
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – –

control | 26.46(n=23) 24.74(n=23) | 25.60(n=46)
group | 5.01 3.58 | 4.39

– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – –
intervention | 24.14(n=23) 19.05(n=23) | 21.60(n=46)

group | 5.13 3.83 | 5.16
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – –

Total | 25.30(n=46) 21.90(n=46) | 23.60(n=92)
| 5.15 4.66 | 5.17

anova BMI ExGroup NutGroup ExGroup x NutGroup

Number of obs =    92    R-squared = 0.2876
Root MSE =  4.43925  Adj R-squared = 0.2633

Source | Partial SS df MS F Prob >
– – – – – – – – – – – – – – – – – – –  + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –   –  – – –

Model | 700.193 3 233.398 11.84 0.0000
|

ExGroup | 368.433 1 368.433 18.70 0.0000
NutGroup | 266.538 1 266.538 13.53 0.0004

ExGroup#NutGroup | 65.222 1 65.222 3.31 0.0723
|

Residual | 1734.211 88 19.707
– – – – – – – – – – – – – – – – – – –  + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –   –  – – –

Total | 2434.404 91 26.752

Answer the following questions about the results in the table:
(a) Does exposure to physical exercise have an effect on the BMI? (Write a short 

paragraph incorporating all the relevant information in the table.)
(b) Does exposure to the nutrition intervention have an effect on the BMI? 

(Write a short paragraph incorporating all the relevant information in the table.)
(c) Do the two interventions/treatments interact to provide a synergistic effect?
(d) Why is the df associated with each intervention effect equal to one?
(e) Why does the model SS equal the sum of the SSs associated with the individual 

interventions?
(f) Show how the f-ratio associated with the effect of the nutrition intervention (13.53) is 

computed from the available results.
(g) How much variation in BMI scores is accounted for by the two main effects?
(h) Which one is more effective, the exercise or the nutrition intervention?
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2. Researchers are interested in the relative effectiveness of physical exercise and 
medication on reducing hypertension among sedentary individuals. They devise a 
randomized intervention study in which different subjects are exposed to three levels 
of exercise graded in terms of strenuousness (minimal, moderate, strenuous) and 
four dosages of an antihypertensive drug (placebo, 10 mg, 20 mg, 30 mg). The study 
design is a fully crossed, 3 × 4 balanced design, with each of the 12 groups containing 
12 subjects.
(a) Construct the df table for all main and interaction effects, as well as the model and 

error components.
(b) Assuming the p-values associated with each of the effects are all p < .01, can we 

conclude from this information that 20 mg of the drug has a bigger effect on reducing 
hypertension than 10 mg?

(c) Given the information provided, can we conclude that the interaction effect is 
synergistic, for example, that exercise and drug exposures together produce a bigger 
reduction in hypertension than the sum of the two main effects?

(d) If the total SS of the hypertension measure equals 840 and the interventions together 
account for 30% for the variation in blood pressure scores, how large is the error or 
residual SS?

3. Give three examples of “interaction effects” you are familiar with or may have observed 
in clinical practice.

4. The following data are a small subset of data from a study comparing the adherence 
to a healthy nutrition regimen after exposure to written material provided only once 
(control group) or weekly written material plus biweekly phone contacts over 3 months 
(intervention group). Subjects were split into men and women, with random assignment 
to intervention and control groups within the gender groups. The outcome measure is an 
adherence scale score ranging from 0 to 20. Here are data from eight cases:

DATA FOR ADHERENCE TO INTERVENTION STUDY

INTERVENTION/CONTROL Ctrl. gp Ctrl. gp Ctrl. gp Ctrl. gp Int. gp Int. gp Int. gp Int. gp

Sex Male Male Female Female Male Male Female Female

Adherence score 12 13 11 13 14 16 19 20

(a) Compute all separate SSs adding up to total sum of squares.
(b) Construct the df table associated with the SSs.
(c) Compute the f-ratio and compare it to the appropriate critical f-value in the 

f-distribution table for a significance level of α = 0.05 (Appendix E).
(d) Write a short paragraph summarizing your findings.

(Tip: At first, use a hand calculator to get the results before employing any statistical 
program to check your results.)
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CHAPTER 12

 Multiple Linear Regression

In the previous chapter, we introduced factorial analysis of variance (ANOVA) and analysis 
of covariance (ANCOVA) as extensions of one-way ANOVA, adding additional independent 
or predictor variables to the model. In this chapter, we discuss a parallel extension of the 
simple linear regression model: multiple regression analysis. Such models involve at least 
two, sometimes many more, independent variables used to predict variation in one dependent 
interval- or ratio-level variable. We already showed in Chapter 10 that the one-way ANOVA 
model can be expressed as a regression model with dummy-coded independent variables 
providing identical results. Similarly, factorial ANOVA and ANCOVA models can also be 
expressed as multiple regression models. Again, there is no difference in the mathematical 
underpinnings and assumptions about the data in ANOVA and linear regression models; how-
ever, historically, ANOVA models were developed for the analysis of data from experimental 
studies, and regression models were originally developed independently for the analysis of 
data from observational studies (Snedecor & Cochran, 1989). While both ANOVA and the 
regression models can be used to analyze either experimental or observational data, in prac-
tice, it is important never to lose sight of the fact what types of data one deals with. There are 
two major reasons for this:

1. Just because we use statistical models that make a distinction between dependent 
and independent variables, this does not mean that we have already established 
causality. Rather, the statistical models assume it, and we must look elsewhere for 
justifications to draw causal inferences.1

2. With observational data, we cannot guarantee that the multiple independent 
variables are uncorrelated. As we will see in this chapter, this has consequences for 
how we can decompose variance and attribute it to various independent variables.

Beyond the question of whether or not we should interpret associations between a dependent 
and independent variable in causal terms, the choice of ANOVA/ANCOVA or linear regres-
sion models to analyze data is largely a matter of personal preference. However, the regression 
model is generally more efficient and easier to handle in the presentation, whenever a particu-
lar analysis involves many continuous or interval-/ratio-level independent variables.

1 Primarily, the justification for causal inference depends on the strengths of the research design and 
theoretical rationale(s).
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 GENERAL FORM OF THE MULTIPLE LINEAR REGRESSION MODEL

The general form of the multiple linear regression looks like this:

Y X X X Xi i i i k ik i= + + + +…+ +β β β β β ε0 1 1 2 2 3 3

where Yi refers to the dependent variable score of an individual i, β0 is the intercept (or “con-
stant”) in the equation, and the βkXik terms refer to k independent variables, Xik, multiplied by 
their respective regression coefficients, βk. Finally, we use εi to refer to the residual or error 
term, which captures the difference between the actual score of individual i and the predicted 
score based on the regression equation. Employing the Greek letters for the coefficients indi-
cates that we are referring to the population parameters. When estimating the regression 
coefficients based on available sample data, we make several assumptions about the data, 
which are already familiar from the simple linear regression model. They are  summarized 
in Box 12.1.

1. Interval/ratio level of measurement for outcome/dependent variable
2. Linearity of relation between dependent and independent (interval/ratio-level) variables
3. Independence of individual observations (uncorrelated error terms)
4. Normally distributed error terms with mean 0, that is, normally distributed error terms 

around the estimated regression line, that is, for all the categories defined by the  independent 
variables

5. Equal variances (or standard deviations) within all comparison populations defined by the 
independent variables: σ = constant

6. Randomly drawn study sample for population inferences

ASSUMPTIONS OF MULTIPLE LINEAR 
REGRESSION MODEL

BOX 12.1

As with simple linear regression, we use the same least squares criterion to calculate 
the sample estimates of the regression coefficients: We choose the values for the coefficient 
estimates so as to minimize the squared error terms, which is to say, we minimize the squared 
deviations of the observed dependent variable scores from the scores predicted by the regres-
sion equation: min(Σei

2 = Σ(Yi − Ŷ    )2).

 EMPIRICAL EXAMPLE OF A MULTIPLE LINEAR REGRESSION ANALYSIS

For an example of a multiple regression analysis, we go back to the birth-weight data of 
Chapter 10. For the simple regression model presented in Table 10.1, we only used gestational 
age (measured in weeks) as a single predictor variable of birth weight. This time, we add the 
smoking status of the mother, the mother’s age at the baby’s birth, and the mother’s years of 
formal education as additional predictors of the baby’s birth weight. The results from the mul-
tiple regression analysis with data on 400 births are shown in Table 12.1. In this table, we see 
the estimates for the regression coefficients (column labeled “Coef.”), their standard errors 
(“Std. Err.”), and p-values for the t-tests (“P > |t|”). We are also provided summary statistics 
like the overall f-test for the equation as a whole, and R-squared, the measure of explained 
variance.
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TABLE 12.1 Multiple Linear Regression: Birth Weights on Gestational Age, Mother’s Age, 
Mother’s Education, and Mother’s Smoking Status

regress birthweight(bwt) gestation, smoking[Y/N](smoke), mother’s age(mage), years of 
formal education(educyrs)

  Source | SS df MS Number of obs =     400
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – F(4, 395)  = 207.34
  Model |  717.689    4 179.422 Prob > F = 0.0000
 Residual |  341.821 395    .865 R-squared = 0.6774
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared = 0.6741
  Total | 1059.511 399   2.655 Root MSE = .93025

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    bwt | Coef. Std. Err. t P>|t| [95% Conf. Intervl] Beta
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
gestation |   .17126 .00738 23.20 0.000   .15674   .18577   .71630
   smoke | −.65882 .11960  −5.51 0.000 −.89396 −.42369 −.16268
    mage |   .02188 .00751   2.91 0.004   .00711   .03664  .08648
  educyrs |   .05537 .01987   2.79 0.006    .01631   .09443  .08325
   _cons |   .12542 .34322   0.37 0.715 −.54934    .80019 
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

With the information provided in Table 12.1, we can write out the estimated regression 
equation:

Estimated equation2: Ŷ = 0.125 + 0.171X1 − 0.659X2 + 0.022X3 + 0.055X4

Standard error of coefficients:   (0.343) (0.007)  (0.120)  (0.008)   (0.020)

p-values:   >0.715 ≤0.001     ≤0.001     ≤0.004  ≤ 0.006

Summary statistics:    R2 = 0.667, F(4/395) = 207.34, p < 00005

In the estimated equation, Ŷ is the predicted birth weight, based on the equation and 
the values substituted for the independent variables; 0.125 is the estimated value of the inter-
cept or constant coefficient ( )b� 0 ; 0.171 is the estimated regression coefficient ( )b�1  associated 
with X1, the measure for weeks of gestation; −0.659 is the estimated regression coefficient 
( )b� 2  associated with X2, the dichotomous measure of a mother’s smoking status (1 = smoker, 
0 = nonsmoker); 0.022 is the estimated regression coefficient ( )b� 3  associated with X3, the mea-
sure of the mother’s age (in years) at the baby’s birth; and 0.055 is the estimated  regression 
coefficient ( )b� 4  associated with X4, the measure of formal education (in years) achieved by 
the mother. Note that three of the predictor variables (weeks of gestation, mother’s age and 
education) are ratio-level variables, and one predictor (smoking status) is a dummy-coded 
categorical variable.

Before we interpret the estimated regression equation, let us briefly review the sum-
mary statistics: The model R-squared3 equals R2 = 0.667, which means that the independent 

2 All coefficients in the book have been rounded to the third decimal.
3 Recall that R2 is also the ratio of Model SS over total SS; in Table 12.1, we have: 717.689/1059.511 = 
0.6774. R2 in a multiple regression model can also be interpreted as the square of the linear correlation 
(Pearson’s r) between the observed, Yi, and predicted, Ŷ, values of the dependent variable, with the 
prediction based on the estimated equation.
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variables together account for 66.7% of the variation in birth weights among the 400 sample 
babies. The null hypothesis for the f-test is that none of the independent variables account 
for any variation in birth weights in the target population. An observed f-ratio of 207.34 is 
extremely unlikely (p < .00005) to occur in a sample, if the null hypothesis is actually true. 
Thus, we reject the null hypothesis for the f-test and conclude that at least some of the inde-
pendent variables predict variation in birth weights. The summary statistics also include the 
root mean square error (MSE) of 0.93. This statistic is a measure of the standard deviation 
of the residuals,4 which can be thought of as the average error associated with this regression 
model.

Now we turn to the estimates of the individual regression coefficients. In each case, 
the null hypothesis stipulates that the coefficient does not differ from zero in the popula-
tion, as this would imply that the predicted Ŷ does not change, regardless of the values or 
levels of the associated independent variable (Xk). The results in Table 12.1 show that, with 
the exception of the intercept term, all regression coefficients are statistically significant, 
as their p-values are substantially smaller than the usual significance criterion of α = 0.05. 
These significance tests are based on the relevant t-distributions, with the t-values calculated 
as the ratios of the estimated regression coefficients and their associated standard errors. For 
instance, the regression coefficient for mother’s age (0.02188) and its associated standard 
error (0.00751) yield a t-value of t = 0.02188/0.00751 = 2.91. The probability that a sample 
regression coefficient differs from zero by 2.91 standard errors, even though the popula-
tion coefficient is zero, is very small indeed: A t-value as large or larger than 2.91 on a 
 t-distribution with 395 degrees of freedom (df)5 has a p-value of less than .0045, that is, less 
than 5 in 1,000 samples would return such a value as a result of mere sampling fluctuation. 
Thus, we reject the null hypothesis and infer that the true regression coefficient for mother’s 
age differs from zero. Similar inferences can be made about the other regression coeffi-
cients, except for the intercept: We would not reject the null hypothesis that the intercept 
coefficient differs from zero, as the sample evidence is consistent with the null hypothesis; 
the chance of observing a sample intercept of 0.125, even though the null hypothesis is true, 
is quite large—it is 71.5%.

 INTERPRETING A LINEAR REGRESSION EQUATION

As we have shown that the regression coefficients are “statistically significant,” we are now 
ready to interpret the regression equation.

1. The intercept or “constant” is an indicator of the expected average value of birth 
weights, if all independent variables are equal to zero. Because of the lack of 
statistical significance, we would infer that the true population intercept equals zero. 
However, it is often the case—and this example is no exception—that the intercept 
coefficient does not have a meaningful interpretation. In the example of Table 12.1, 
it would not make much sense to ask: What is the mean birth weight of babies, 
born after zero weeks of gestation to mothers, who are zero years old, and have no 
education?

4 Root MSE = 
Σ( )Y Y
n k

i −
− −

2

1
ˆ

.
5 The df for the t-test of regression coefficient equal n − k − 1, with n = sample size and k = number of 
regression coefficients associated with the independent variables.
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2. The estimate for the first regression coefficient, b�1 0 171= . , tells us that, for every 
additional week of gestation, we can expect the average baby weight to increase 
by 0.171 pounds. Thus, a 10-week difference in the length of the pregnancy 
would result in an average difference in birth weight of 1.7 pounds, independent 
of the effects that the other predictor variables have on the outcome. As with all 
regression predictions, they retain validity only for the range of tested values in the 
predictor variable. As the data on which the estimates are based include a range of 
22 to 44 weeks of gestation, one should not extrapolate beyond this existing range 
and “predict” average birth weights for babies born, for instance, after 14 weeks 
of gestation. Such a prediction assumes that the same linear relationship between 
gestation and birth weight continues outside the covered range; an assumption for 
which there is no empirical evidence.

3. The estimate for the second regression coefficient is: b� 2 0 659= − . . As X2 is a 
categorical variable coded (0, 1), we can say that the average expected birth weight 
for babies of smoking mothers should be lower, by more than half a pound, than the 
average expected birth weight for babies of nonsmoking mothers.

4. The estimates for the last two regression coefficients are: b� 3 0 022= .  and b� 4 0 055= . . 
The estimate for the regression coefficient associated with X3 indicates that older 
mothers tend to give birth to heavier babies, such that for each additional year of 
the mothers’ age babies’ average birth weight is 0.022 pounds higher. Similarly, 
for additional year of a mother’s formal education (X4), her baby’s birth weight 
increases by 0.055 pounds on average. As with gestational age, these predictions 
should be limited to the actual ranges of mothers’ ages (17–44 years) and 
educational levels (8–20 years), on which the prediction is based.

When we look at the magnitudes of the estimated regression coefficients, we should be care-
ful not to compare them directly. For instance, the coefficient estimates for b� 4 0 055= .  and 
b� 3 0 022= .  do not imply that years of mother’s formal education have more than twice the 
effect on birth weights than her age. Similarly, the regression coefficient for smoking status 
(−0.659) is almost four times as large as that for weeks of gestation (+0.171), but this does 
not imply anything about their relative importance as predictors. One reason for this noncom-
parability of the unstandardized estimates of regression coefficients is simply that they are 
measured in different units. Years of education are not equivalent to years of life, not to speak 
of weeks of gestation. In addition, we could easily change the units of measurement (e.g., 
months of gestation), which would also change the magnitude of the regression coefficient 
estimates, as they show the change in the dependent variable for a one-unit change in the inde-
pendent variable. In the nursing and medical literature, results from multiple regression mod-
els are often reported in terms of standardized regression coefficients, sometimes called betas 
as opposed to bs for the unstandardized coefficients. Standardized coefficients are obtained 
by converting all variables in the regression model from the original to standardized scores, 
using the familiar z-score transformation: z x x si i= −( ) ./  This is done in order to make the 
effects of independent variables, measured in different measurement units, more comparable. 
The standardized coefficients provide estimates of how many standard deviations the depen-
dent variable changes for a one-standard-deviation change in the independent variable(s). In 
Table 12.1 we see, for instance, that the magnitudes of the betas (regardless of sign) show the 
following rank order: gestation > smoking > mother’s age > years of education. The unstan-
dardized coefficients, on the other hand, show this rank order: smoking > gestation > years 
of  education > mother’s age. According to the standardized regression coefficients, it seems 
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clear that “weeks of gestation” has a bigger effect on birth weight than smoking; but that 
conclusion would be too hasty. For a number of reasons, standardized regression coefficients 
(“betas”) do not provide an unambiguous measure of the relative magnitude of the effects 
of various independent variables on the dependent variable. One reason for this is that stan-
dard deviations of independent variables are sensitive to the skew of these variables, with 
more heavily skewed independent variables having comparatively larger standard deviations. 
Thus, standard deviations may not provide an unambiguous metric for comparisons of effects. 
Another reason for this is the presence of confounding.

 CONFOUNDING AND DECOMPOSITION OF VARIANCE IN DATA 
FROM OBSERVATIONAL STUDIES

In the last chapter on ANOVA and ANCOVA, we used data from a randomized intervention 
study. Such studies are deliberately designed so that the exposure and nonexposure to simulta-
neous treatments are independent of each other, that is, the independent factors’ variables are 
uncorrelated with each other. In observational studies, we do not have this luxury. It is rarely 
the case that one gathers information on several variables in a particular target population, and 
these variables turn out to be completely uncorrelated. As an illustration of this point, for the 
multiple regression model in Table 12.1, we display the sample (Pearson’s r) correlations, and 
their p-values, in Table 12.2.

Notice that all sample correlations differ from zero and, with the exception of the cor-
relation between the mother’s age and her smoking status, all are statistically significant at 
the α-level of 0.05. This means that the predictor variables in this multiple regression model 
do not vary independently: their variation partially overlaps (see Figure 12.1 for a graphical 
illustration). Consequently, when we talk about “accounting for” variance in the dependent 

TABLE 12.2 Pearson’s r Correlations Among Variables in Multiple 
Regression of Table 12.1: Birth Weights on Gestational Age, Mother’s Age, 
Mother’s Education, and Mother’s Smoker Status

correlations birthweight(bwt), gestation, smoking[Y/N](smoke), 
mother’s age(mage), years of formal education(educyrs)

 | bwt gestation smoke mage educyrs
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    bwt | 1.0000
 |
gestation | 0.7959 1.0000
 | 0.0000
 |
  smoke | −0.3431 −0.4204 1.0000
 |  0.0000 0.0000
 |
  mage | 0.2988 0.2584 −0.0968 1.0000
 | 0.0000 0.0000  0.0530
 |
    educyrs | 0.3074 0.2576 −0.1704 0.1379 1.0000
 | 0.0000 0.0000  0.0006 0.0058
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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variable, there is no longer a straightforward answer. For instance, X1, which is our measure 
of weeks of gestation is correlated with X3, the age of the mother. Thus, part of the variance 
accounted for in the dependent variable is explained jointly by these two predictor variables 
(see overlapping circles for X1 and X3 in Figure 12.1). That poses the question: Should this 
overlapping area be attributed to X1 or X3, when we apportion “explained” variance in the 
dependent variable?

In fact, when we hierarchically, or sequentially, decompose the sums of squares (SSs), it 
matters in which order the predictor variables are entered into the model. This is so, because, with 
hierarchical decomposition of variance, we attribute to the first predictor variable all the variance 
in the dependent variable it can account for; predictor variables entered later into the model each 
explain the remaining variance,6 not yet accounted for by the previous independent predictor(s). 
In terms of the graph in Figure 12.1, the variance attributed to X1 would be represented by the 
whole X1 circle, the variance attributed to X3 would be represented by the circle of X3 minus its 
overlapping areas with X1 and X2, and so forth. For a numerical example, see Table 12.3.

In Table 12.3, we revisit the multiple regression model in Table 12.1, but show two 
more detailed ANOVA tables comparing the hierarchical decomposition of the variance after 
entering weeks of gestation as the first predictor variable (Model 1, as in Table 12.1) and 
after entering it as the last predictor variable (Model 2). Notice that the overall Model SS 
remains the same: The variance accounted for by all predictor variables combined remains the 
same, regardless of the order of the independent variables in the model. However, in Model 1, 
weeks of gestation account for 63.35% (671.226/1,059.511 = 0.6335) of the variation in birth 
weights, while in Model 2, the same variable accounts for only 43.95% (465.632/1,059.511) 
of the variation in birth weights. This difference of about 20% points is the result of the fact 
that the variable “weeks of gestation” is correlated with the other predictor variables, and it is 
not possible to attribute this joint variation uniquely to one or the other independent predictors.

If independent variables in a multivariate model are correlated, we witness the presence 
of confounding effects. Usually, researchers focus on one or a few potential predictor vari-
ables whose relationship to the outcome variable they want to explore or test. In our example, 
the primary interest of a researcher may be to obtain estimates of the strength of the association 
between gestational age and birth weight. However, the existing literature has already shown 
that mothers’ age, education, and smoking also affect birth weight (Cogswell & Yip, 1995). 

6 The SSs associated with the remaining, uniquely attributable variance are also called partial SS.

FIGURE 12.1 Overlapping Variances.
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Thus, these confounding variables cannot be ignored. Even though confounding variables 
may not be of primary interest, controlling for them changes the estimates of the  relationship 
between the dependent and the focal independent variable. If you go back to Chapter 10, you 
will find an estimate of the regression coefficient associated with weeks of gestation that dif-
fers from the one in the multiple regression model: b�1 0 1903= .  (Table 10.1) versus b�1 0 171= .
(Table 12.1). This is the result of the fact that the model in Table 10.1 is a simple regression 

TABLE 12.3 Two Hierarchical Decompositions of Variance in Multiple Linear Regression: 
Birth Weights on Gestational Age, Mother’s Age, Mother’s Education, and Mother’s 
Smoker Status

Model 1: Gestational Age as 1st Predictor Variable:

regress birthweight(bwt) gestation, smoking[Y/N](smoke), mother’s age(mage), 
years of formal education(educyrs)

Number of obs =    400    R-squared    = 0.6774
Root MSE    = .930253    Adj R-squared = 0.6741

  Source | Seq. SS df MS F Prob > F
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  Model |  717.689   4 179.422 207.34 0.0000
 |
gestation |  671.226   1 671.226 775.65 0.0000
   smoke |    31.311   1   31.311   36.18 0.0000
    mage |    8.431   1    8.431     9.74 0.0019
  educyrs |    6.721   1    6.721    7.77 0.0056
 |
 Residual |  341.821 395     .865
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Total | 1059.511 399   2.655

Model 2: Gestational Age as last Predictor Variable:

regress birthweight(bwt) smoking[Y/N](smoke), mother’s age(mage), years of 
formal education(educyrs), gestation

Number of obs =    400    R-squared    = 0.6774
Root MSE    = .930253    Adj R-squared = 0.6741

  Source | Seq. SS df MS F Prob > F
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  Model |   717.689   4 179.422 207.34 0.0000
 |
   smoke | 124.735   1 124.735 144.14 0.0000
    mage |   75.418   1   75.418   87.15 0.0000
  educyrs |   51.905   1   51.905  59.98 0.0000
gestation | 465.632   1 465.632 538.07 0.0000
 |
 R esidual |   341.821 395     .865
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Total | 1059.511 399    2.655
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model with “weeks of gestation” as the only predictor variable. After accounting for the moth-
ers’ age, education, and smoking status, we see that the remaining effect of gestational age on 
birth weights is a bit smaller than originally estimated.

From our discussion of confounding, it should be apparent that estimates of supposed 
“effects,” which are based on observational data, are always subject to the critique that they 
may have omitted important confounding variables, which would have modified the reported 
estimates. For instance, in the current example, it is likely that the mothers’ nutrition and 
alcohol consumption as well as family income, with its attendant social consequences, all 
have the potential to modify the regression coefficient estimating the relationship between 
gestational age and birth weight. It follows that the reader of a study using observational 
data should always ask whether the analysis has properly controlled for already known con-
founders. These would be other variables, whose effects on the dependent variable have been 
demonstrated in the literature and which are correlated with the primary predictor variable of 
interest. While one can never rule out for certain that there are no unrecognized confounders, 
the credibility of an empirical investigation, using observational data, depends on the care 
with which the researchers address confounding variables in the analysis.

 CONFOUNDING AND MULTICOLLINEARITY

Confounding can pose technical problems in the estimation of a regression model, if the inde-
pendent variables are correlated too highly. This so-called multicollinearity problem arises 
because highly correlated independent or predictor variables imply that we cannot separate 
out the independent contribution that each of these predictor variables makes toward account-
ing for variation in the dependent or outcome variable. For example, suppose an epidemi-
ologist is studying physical fitness among school-age students. The study sample contains 
students from grades 1 to 12. The data set contains a variable for the grade a student is in and 
a variable with information on the student’s age. The correlation between these two variables 
can be expected to be larger than 0.9, as most students advance both in school grades and age 
at the same pace. It would not make any sense to use both variables as predictors in the same 
regression equation, as their independent effects could not be determined. Take an even more 
extreme example: Suppose you had data on only Black women and White men, but no Black 
men and White women. In that case, race and sex would be completely confounded (r = 1.0); 
as a result, it would be impossible to distinguish a “race effect” from a “sex effect.” In short, 
when multicollinearity is present, there is not enough independent information, that is, varia-
tion among some or all independent variables, so that separate effects can be estimated. In 
terms of Figure 12.1, just imagine that the circle for X4 almost completely overlaps with those 
of X1 to X3 leaving only a tiny sliver representing independent variation.

How does a reader recognize the presence of a multicollinearity problem in a published 
analysis? The telltale sign is the combination of a highly significant f-test with insignificant 
t-tests for the individual regression coefficients, whose standard errors would be compara-
tively large. This makes sense, because jointly the independent variables do predict variation 
in the dependent variable, but we cannot separate out the independent contributions. If multi-
collinearity is present, the analyst must drop one or more of the problematic variables from the 
model equation. However, statistics alone does not offer an answer as to which of the highly 
correlated independent variables should be dropped; that is a question of theory and the objec-
tives of the analysis. For instance, in the example of student age and school grades, it depends 
on the primary research question as to which variable to highlight and which to drop. In the 
case of the race–sex confounding example, only additional data collection, such as including 
Black men and White women, could help disentangle race from sex effects.
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 A NOTE ON CONFOUNDING AND STANDARDIZED 
REGRESSION COEFFICIENTS

We wrote earlier that standardized regression coefficients do not necessarily provide unambig-
uous measures of the relative magnitude of multiple predictor variables in a regression model. 
While it is true that standardization ignores the original measurement units, it also needs to be 
remembered that regression coefficients, whether standardized or not, only capture the unique 
associations of independent variables with the dependent variable, that is, independent of the 
effects of all other variables in the equation. Thus, variables with smaller betas may well have 
larger overall associations with the dependent variable. In addition, some of the indepen-
dent variables in a model may be intervening or mediating variables (Bennett, 2000). In our 
example of smoking and weeks of gestation, there is little doubt that the mother’s smoking 
has an indirect effect on weeks of gestation: As the negative correlation in Table 12.2 shows 
(r = −0.42), the smoking mothers tend to have shorter gestation periods. Thus, comparing the 
magnitudes of betas does not necessarily provide a simple answer to the  question—which 
independent variable has the biggest effect on or association with the dependent variable?

 INTERACTIONS IN MULTIPLE REGRESSION MODELS

The linear regression equation associated with the estimates in Table 12.1 is a so-called 
main-effects model. Just as in ANOVA, interaction effects can also occur in regression mod-
els, and they have the same general interpretation. The regression model based on Table 12.1 
contained the following estimates for the regression coefficients:

Y X X X X�
= + − + +0 123 0 171 0 659 0 022 0 0551 2 3 4. . . . .

where all coefficients, except the intercept, differ significantly from the null value of zero. If this 
model were a true reflection of reality, it would lead us to the conclusion that, for every addi-
tional week of gestation, baby weights can be expected to increase by 0.171 pounds on average, 
regardless of whether or not the mother is a smoker, whether or not she is younger or older, or 
what educational achievements she has. Similarly, the absence of all interaction effects would 
posit that the effect of age on birth weights is the same, regardless of whether the mother is a 
smoker or not, and so forth. These are assumptions, which the researcher needs to test against 
the data before presenting the main-effects model as the proper representation of the reality.

Interaction effects in multiple linear regression (and ANOVA) models are modeled as 
additional independent predictors consisting of multiplicative terms involving two or more 
independent variables already in the model. For example, let us test the assumption that the 
effect of the mother’s age on birth weights is the same, regardless of whether the mother is a 
smoker or not. The expanded model would look like this:

Y X X X X Xi i i i i i i= + + + + + +β β β β β β ε0 1 1 2 2 3 3 4 4 5 5

where X X Xi i i5 2 3= .
Table 12.4 shows the results of estimating this regression model with the interaction 

term: Overall, this model has a better explanatory power than the main-effects model, as 
shown by the significant coefficient for the interaction effect (Mother’s Age × Smoking 
Status) or b� 5 0 046= − .  (p ≤ .008) as well as the somewhat improved R2 estimate of 0.6831. To 
see how we can interpret the interaction effect, we show first the estimated equation for the 
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total population and simplify the model, by listing separate models for smoking and nonsmok-
ing mothers:

Y X X X X X�
= − + + + + −0 107 0 170 0 512 0 033 0 056 0 0461 2 3 4 5. . . . . .

Recall that the variable indicating smoking status, X2, is coded 0 for nonsmoking mothers 
and 1 for smoking mothers. As the interaction term involving smoking status and mother’s 
age is X5 = X2X3, it follows that X5 = 0, if X2 = 0. Thus, for nonsmoking mothers the equation 
simplifies to:

Y X X X X�
= − + + + + −0 107 0 170 0 0 0 033 0 056 0 046 01 3 4 3. . ( )( ) . . . ( )

(We substitute (0) for the regression coefficient of X2 because it is not statistically significant 
[p > .259] and we cannot reject the null hypothesis; we substitute (0) for X3, which is one 
component of X5, as X5 = X2 X3.)

The final equation for nonsmokers becomes:

Y X X X�
= + + +0 107 0 170 0 033 0 0561 3 4. . . .

For smoking mothers, this equation will be simplified as follows:

Y X X X X�
= − + + + + −0 107 0 170 0 1 0 033 0 056 0 046 11 3 4 3. . ( )( ) . . . ( )

(As before, we substitute (0) for the regression coefficient of X2 and (1) for X2; as X5 = 
X2 X3, it become X3, if X2 = 1; combining the two terms involving X3 yields (0.033 − 0.046) 
X3 = −0.013X3.)

The final equation for smokers becomes: 

Y X X X�
= + − +0 107 0 170 0 013 0 0561 3 4. . . .

TABLE 12.4 Multiple Linear Regression With Interaction: Birth Weights on Gestational Age, 
Mother’s Smoking Status, Age and Education, and Mother’s Age ¥ Smoking Status

regress birthweight(bwt), gestation, smoking (Y/N)(smoke), mother’s age (mage), 
years of formal education (educyrs)

    Source | SS df MS Number of obs =   400
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – F( 5, 394)  =  169.89
     Model |  723.799   5 144.760 Prob > F = 0.0000
   Residual |   335.712 394    .852 R-squared =  0.6831
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared =  0.6791
     Total | 1059.511 399   2.655 Root MSE = .92307

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     bwt | Coef. Std. Err. t P>|t| [95% Conf.    Interval]
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   gestation |  .16950 .00736 23.04 0.000    .15504  .18396
     smoke |   .51224 .45316   1.13 0.259  −.37867 1.40315
     mage |  .03283 .00850   3.86 0.000   .01611  .04954
   educyrs |  .05552 .01971   2.82 0.005    .01676  .09428
mage x smoke | −.04624 .01727  −2.68 0.008   −.08018 −.01229
    _cons | −.10736 .35149  −0.31 0.760  −.79839  .58367
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Now we can better see what the meaning of the interaction term is: Among nonsmoking 
mothers, greater age is associated with higher average birth weight; for each additional year 
of age, average birth weights increase by 0.033 pounds. By contrast, among smoking moth-
ers, higher age is associated with declining average birth weight: For each additional year of 
age, average birth weights are 0.013 pounds lighter. Figure 12.2 offers a visual representation 
of this interaction. Again, as in ANOVA, an interaction effect in a regression model indicates 
that the effect of one predictor variable on the outcome changes, depending on the level of 
another predictor variable.

CHECKING THE ASSUMPTIONS OF THE MODEL

As mentioned in Box 12.1, the multiple linear regression model assumes interval/ratio levels of 
measurement for the dependent variable; linearity of relations between dependent and indepen-
dent (interval/ratio-level) variables; uncorrelated error terms; normally distributed error terms 
around the estimated regression line with mean zero and equal variances or standard deviations 
across different levels of the predicted outcome: σ = constant (homoskedasticity assumption).

A simple way to test these assumptions is to plot the error terms against the predicted 
value of Y in a scattergram, as depicted in Figure 12.3.

As can easily be seen, the mean of these residuals is indeed close to zero; the variances 
appear to be constant across different levels of the predicted dependent variable, that is, visu-
ally the spread of data points is about the same regardless of the level of the predicted depen-
dent variable. There is only one major outlier with a standard deviation larger than 3, and there 
appears to be no discernible nonlinear pattern in the distribution of these error terms around 
the predicted regression line. Thus, we conclude that the multiple regression model with the 
age and smoking-status interaction term provides a reasonable fit to the data at hand.

When reading the empirical literature in the clinical journals, the reader will notice that 
information on whether the data meet the assumptions of the statistical model chosen is often 
missing or incomplete. While many careful researchers do check the assumptions, it cannot 

FIGURE 12.2 Change in Average Birth Weight by Mother’s Age: Interaction of Mother’s Age and 

Smoking Status.
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always be taken for granted. As a reader, your trust in research results should increase, if 
the researchers provided you with the information necessary to assess the adequacy of the 
 statistical m odel.

SUMMARY

In this chapter we reviewed multiple linear regression models, which are among the most fre-
quently employed analysis models in the clinical literature. While mathematically equivalent 
to ANOVA and ANCOVA models, linear regression models are more often employed in the 
analysis of observational data, such as data from health surveys. The most important issue in 
the statistical analysis of observational data is the ever-present problem of confounding: If a 
correlated predictor is omitted from the regression model, this can lead to substantial biases in 
the estimates of regression coefficients, as the omission of confounders will have the effect of 
attributing accounted for variance to variables in the model, which should have been attributed 
to the confounding variable(s). While the linear regression model is quite versatile and can be 
employed with many types of data, successful use requires care in checking the assumptions: 
Chief among them is testing for interactions and nonlinearity of relationships as well as viola-
tions concerning homoskedasticity and, particularly in small data sets, normality of error terms.

So far, all statistical models we have discussed dealt with cross-sectional data, that is, 
data collected once and referring to a particular point in time. However, clinicians are often 
interested in longitudinal data, as when they follow up patients recovering from an illness or 
want to know about the trajectory of growth and decline patterns in aging human beings. In 
the next chapter, we will discuss repeated-measures ANOVA, which is a statistical model that 
is often appropriate for the analysis of clinical trials with repeated measures. The last chapter 
in this section (Chapter 14) will then provide a brief overlook of newer statistical models, 
which have become common in the clinical literature, that can be used to analyze many kinds 
of longitudinal data.
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FIGURE 12.3 Plot of Regression Residuals Against Predicted Birth Weight.
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EXERCISES

1. In Table 12.1, the R-squared estimate is given as 0.6774. Show how this value is derived 
from the ANOVA table accompanying the regression output.

2. A study of 450 randomly selected community hospitals in the United States predicts 
annual turnover rates among hospital nurses (as percentage of the nursing labor force 
in a hospital). The predictor variables are: X1 = deviation of nurses’ average earnings in 

Read: Andrews, M. E., Stewart, N. J., Morgan, D. G., & D’arcy, C. More alike than  different: 
A comparison of male and female RNs in rural and remote Canada. Journal of Nursing 
Management, 20(4), 561–570.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  The researchers used a randomized block design, blocking on sex and clinic site. What is 
the purpose of this?

(d)  Provide a clear definition of the outcome/dependent variable and a short description of 
the instrument used to measure it. Is the level of measurement likely to be interval level?

(e)  In table 6 of the article, the authors show the results of a multiple regression analysis for 
male and female nurses as well as both groups combined (“full model”). In a sentence or 
two, interpret the regression coefficients associated with age and gender. What do they 
mean?

(f)  Calculate the t-values for the “colleague support in medicine” variable across all three 
regression models and look up the associated p-values in the appropriate t-distribution 
table of Appendix B.

(g)  What appears to be the main reason why many more regression coefficients for the male 
regression model are not statistically significant?

(h)  Do the authors provide evidence that the data meet the assumptions of their statistical 
tests?

(i)  Comparing the results from the regression models for male and female nurses, do you 
suspect interaction effects between gender and some of the other independent variables? If 
yes, how should one test an interaction hypothesis involving gender?

(j)  State in your own words, what an interaction effect involving gender means.

(k)  The regression models in table 6 contain a binary predictor variable answering the 
 question: Have you looked for other employment opportunities in the past year? 
When considering the dependent or outcome variable, would you classify the potential 
causal status of this variable? What does it suggest to you about the interpretation of the 
regression model?

(l)  Summarize the main findings in your own words: Are the conclusions of the authors 
consistent with the evidence presented?

LITERATURE APPLICATION
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a hospital (measured in $1,000) from the median earnings of active RNs in the United 
States ($64,000), X2 = deviation of average age of nursing labor force in a hospital from 
the mean age (46) of active U.S. nurses, and two dummy variables indicating location of 
the hospital: X3 = rural (1) versus nonrural (0), X4 = urban (1) versus nonurban (0), with 
the reference category being suburban location of the hospital. The estimated regression 
equation (with standard error in parentheses) is as follows:

Ŷ = 17.70 − 0.70X1 + 0.50X2 − 0.85X3 − 2.23X4

 (1.82)  (0.25)  (0.18)   (0.38)   (0.76)

(a) Write a short paragraph summarizing the essential information contained in this 
equation.

(b) What is the expected annual turnover rate among nurses in a hospital that is located 
in the suburbs, has a nursing staff with mean age = 46 and pays its nurses, on 
average, $3,000 more than the U.S. median earnings?

(c) Are all regression coefficients statistically significant at the α-level 0.05? Provide the 
reasoning for your answer.

(d) What is the meaning of the intercept coefficient (17.7)?

3. Suppose a researcher studies predictors of the frequency of emergency department visits 
in an urban area, with [X1] race (1 = African American, 0 = other ethnic groups), 
[X2] family income (measured in $1,000), and [X3] having health insurance 
(1 = yes, 0 = no) as predictors. The researcher reports the results from three (hierarchical) 
regression equations, in which the additional predictors are entered successively:

1. Ŷ = 2.7 + 0.90X1
2. Ŷ = 3.3 + 0.50X1 − 0.10X2
3. Ŷ = 3.5 + 0.10X1 − 0.05X2 − 2.85X3

 In all three equations, the intercept coefficient is significant at the 0.05 level, but the race 
coefficient declines in size and is no longer statistically significant (p > .46) in the third 
equation. The coefficients for family income and health insurance status in the second 
and third equations are all statistically significant (p < .05). Explain, why this pattern 
might occur.
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CHAPTER 13

 Repeated-Measures Analysis of Variance

Suppose you are interested in the effectiveness of a physical activity intervention to reduce 
obesity among mobile residents of assisted-living facilities. You devise two programs for 
group activities: a three-times-a-week walking program for the intervention group and a 
three-times-a-week social club for the control group, which involves a variety of physically 
undemanding social activities. You enroll 92 volunteers, who agree to be randomly assigned 
to either the intervention or control (social club) group. At the start of the programs, each 
subject’s height and weight are measured (pretest) using standardized procedures. After 6 
months of enrollment in the study, you again obtain each subject’s height and weight measures 
(posttest). Your primary outcome measure to gauge the success of the physical activity inter-
vention is the body mass index (BMI), which is obtained by dividing a person’s weight (in 
kilograms) by his or her squared height (in meters): BMI = kg/m2. Table 13.1 shows the mean 
BMI scores of the pretest and posttest measures for both comparison groups: There appears 
to be a noticeable decline in the mean BMI within the intervention group, but not the control 
group. However, we need a statistical test to determine whether this decline is “statistically 
significant” and not just a sampling fluke due to random assignment or due to the inevitable 
random measurement error.

We might be tempted to employ a series of t-tests, each of which could be used to test 
for mean differences between a particular pair of measures. Table 13.2 shows the four relevant 
t-tests: using the two-sample t-test to compare the intervention and control groups at Time 1 
(pretest) and Time 2 (posttest) and using the paired t-test to compare the change in means 
within the intervention and the control group. The results confirm a pattern that could have 
been expected based on the description of the intervention study:

1. After random assignment, but before the start of the intervention programs, we 
would not expect statistically significant differences in the BMI pretest scores 
between intervention and control groups. In fact, the test confirms this: The 
observed sample mean difference is −.1858 (p > .844).

2. Six months later after participation in either of the two programs, we would 
anticipate statistically significant differences in the BMI posttest scores between 
the intervention and control groups. The results again confirm this: The observed 
sample mean difference is −4.002 (p < .001).
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3. Considered separately, we would not necessarily expect a statistically significant 
change of BMI scores in the control group. However, the observed change in 
sample means is −0.2261 (p < .148); thus, while the change may be small, we 
do observe a statistically significant decline in mean BMI scores, using the 
conventional significance level of α = 0.05 as the criterion.

4. In the intervention group, we would definitely expect a statistically significant 
decline in BMI scores. The results again confirm this: The observed change in 
sample means is −4.0827 (p < .001).

There are a number of issues with an analysis such as this. To begin with, there is the 
sheer cumbersomeness of having to use four separate tests to confirm that the intervention had 
an effect. If possible, we would prefer to incorporate all this information into a single omni-
bus test that answers the question about the effectiveness of the intervention. Alternatively, 
we could have just ignored the pretest scores and concentrated on the posttest results alone, 
comparing the BMI scores in the intervention and control groups after random assignment. 
This would be a valid test of the intervention’s effectiveness; and, in this example, we did 
find a statistically significant difference in the posttest scores with lower mean BMI scores in 
the intervention compared to the control group. However, by not incorporating the informa-
tion contained in the pretest scores, the power of the posttest only comparison is lower than 
it would have been otherwise. Particularly with smaller study samples, we might have been 
unable to show statistically significant differences. In addition, a posttest only comparison 
does not provide a direct estimate of how much mean BMI scores change as a result of the 
physical activity intervention.

Relying on separate paired t-tests in either the intervention or the control group does 
give us estimates of mean changes in BMI scores, but these tests entirely ignore what is 
happening in the other comparison group(s). For instance, we found that participants in the 
control group exposed to a social club program experienced a small, but statistically signifi-
cant decline in BMI scores. Whatever the reasons for this decline, we could not adequately 

TABLE 13.1 Mean BMI Scores for 92 Subjects in Physical Activity/
Walking-Intervention Study

Means, Standard Deviations of BMI and No. of Subjects
Intervention |
vs. Control | Time:
Group |  Pretest  Posttest | Total
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – + – – – – – – – –
control | 25.87 25.60 | 25.73
group |   4.50   4.39 |   4.42
(social club) |    46   46 |   92
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – + – – – – – – – –
intervention | 25.68 21.60 | 23.64
group |   4.54   5.16 |   5.25
(exercise) |   46   46 |   92
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – + – – – – – – – –
Total | 25.77 23.60 | 24.69 (BMI Means)
 |   4.49   5.17 |   4.95 (BMI St.Dev’s)
 |    92   92 |   184 (n)
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gauge the intervention effect of exposure to the walking program, unless we acknowledge that 
changes/declines in BMI scores could occur even without any walking intervention. What we 
need is a way to incorporate all the information contained in the data into a single test.

 THE ANCOVA APPROACH TO ANALYZING DATA FROM 
PRETEST/POSTTEST STUDY DESIGNS

One possible way to take advantage of all the information collected in a pretest/posttest 
 randomized intervention study is to employ an analysis-of-covariance (ANCOVA) model, 
with the pretest scores used as a continuous covariate, that is, as an additional independent 
control variable. The results of such an analysis are shown in Table 13.3.

As was discussed in Chapter 11, the ANCOVA combines the between-group analysis-
of-variance (ANOVA) approach with the linear regression approach, controlling for at least 
one independent continuous variable. Using this approach, we can compare the mean BMI 

TABLE 13.2 Four t-Tests of Mean BMI Scores in Physical Activity Intervention Study

Two-sample t test with equal variances for Time 1 (pretest):
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 | Obs Mean Std. Err.  [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Group diff  | 92 −.1858 .9418  −2.0568 1.6851
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Group diff = mean(intervention) − mean(control) t = 0.1973
Ho: diff  = 0,    deg. of freedom = 90,    Ha: diff  ≠ 0, Pr(|T| > |t|) = 0.8440

Two-sample t test with equal variances for Time 2 (posttest):
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 | Obs Mean Std. Err.  [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Group diff  | 92 −4.002 .9990  −5.9871 −2.0176
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Group diff = mean(intervention) − mean(control) t = 4.0063
Ho: diff  = 0,    deg. of freedom = 90,    Ha: diff  ≠ 0, Pr(|T| > |t|) = 0.0001

Paired t test (Time 2 – Time 1) in Control Group:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Time diff  | 46 −.2661 .1304 .8844 −.5288  −.0035
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   mean(diff )  = mean(BMI2 − BMI1)  t = −2.0411
Ho: mean(diff ) = 0,    deg. of freedom = 45,    Ha: diff  ≠ 0, Pr(|T|>|t|) =   0.0471

Paired t test (Time 2 – Time 1) in Intervention Group:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 | Obs Mean Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Time diff  | 46 −4.0827 .2723 1.8467 −4.6311 −3.5343
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     mean(diff ) = mean(BMI2 − BMI1) t = −14.9945
Ho: mean(diff ) = 0,   deg. of freedom = 45,    Ha: diff  ≠ 0, Pr(|T|>|t|) =   0.0000
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score at the time of the posttest between the intervention and the control group, after remov-
ing the variation in individual posttest BMI scores that are accounted for by the BMI pretest 
scores. In effect, this test would be equivalent to a between-group test on the change scores 
of BMI posttest minus BMI pretests. In Table 13.3, the f-test associated with the comparison 
of BMI-posttest scores in the walking-intervention and control group yields: f(df1 = 1/df2 = 
89) = 157.99, p < .00005, a much more powerful f-test than that from one-way ANOVA: 
f(df1 = 1/df2 = 90) = 16.05, p ≤ .0001, which is equivalent to the two-sample t-test on the 
posttest only data in Table 13.2.1

 REPEATED-MEASURES ANOVA

While the ANCOVA approach works with data from a randomized controlled pretest/posttest 
study and is commonly employed in the literature (Good et al., 2013; Tsay & Hung, 2004; 
Tseng et al., 2010), it cannot handle more complex study designs with additional repeated 
measures. For instance, researchers may decide to continue the study for another 6 months 
and collect information on a second posttest to gauge the longer-term effects of the interven-
tion. Furthermore, while the ANCOVA approach offers valid and efficient tests of the mean 
differences between intervention and control groups at the time of the posttest, it does not 
offer direct comparisons of the magnitudes of average changes in the intervention and control 
group scores. This can be accomplished more easily with a model that treats the BMI scores at 
the different times of measurement as dependent outcomes and models the change explicitly.

One approach to analyzing such data is the repeated-measures ANOVA. It combines 
the traditional ANOVA approach of comparing mean outcomes in different groups of indi-
viduals, defined by the “between-subjects” factor(s), with comparing mean outcomes among 
the same set of individuals at different times, defined by the “within-subjects” factor.

To understand how this works, we reuse the previous example of the Physical Activity/ 
Walking-Intervention Study, but extend it to a second follow-up observation of the participants’ 

1 Recall from Chapter 9 that in a single two-group comparison, the one-way f-test and the t-test are 
related: f = t2.

TABLE 13.3 ANCOVA Approach to Testing Mean BMI Scores for 92 Subjects 
in Physical Activity Intervention Study

ancova BMI2(posttest) c.BMI1(pretest) Walking, seq

 Number of obs =   92 R-squared   = 0.9226
 Root MSE = 1.4551 Adj R-squared = 0.9209

    Source |    Seq. SS df MS F Prob > F
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     Model | 2245.975    2 1122.988 530.42 0.0000
 |
 Pretest BMI1 |   1911.474   1  1911.474 902.84 0.0000
Walking(Y/N) |    334.501    1   334.501   157.99 0.0000
 |
    Residual |   188.429 89   2.117
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     Total | 2434.404  91   26.752 
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BMI at 12 months after the baseline enrollment. Table 13.3 shows the descriptive information 
for the three observation times in both the intervention and control groups.

The data in Table 13.4 represent summaries of individual BMI scores for 92 individuals, 
split into 46 individuals in the intervention and 46 individuals in the control group at three 
different occasions: pretest, posttest at 6 months, and posttest at 12 months. Thus, the design 
involves one between-group factor with two levels and one within-group factor with three lev-
els. As the 92 study individuals were measured at three different occasions, we have a total of 
276 individual BMI scores with an overall mean of 24.12. When considering the decomposi-
tion of variance in an ANOVA model like this, we start, as usual, with the total sum of squares 
(TSS) as the measure of how much overall variation there is among all 276 BMI scores. This 
TSS is obtained in the familiar fashion: by subtracting from each individual BMI score the 
overall mean, squaring the differences, and summing them: Σ Σ( ) ( . ) ...Y Y Yigt igt− −=

2 224 12 2

From the results shown in Table 13.5, we see that this TSS equals 7,408.223.
With a repeated-measures design, we need to distinguish two basic types of variations 

in outcome scores: variation across different individuals (“between-subjects”) and varia-
tion across different measurement occasions (time) within individuals (“ within-subjects”). 
When we compute the between-subjects sum of squares (SS), we disregard the within-
subjects variation by averaging the scores of each individual at the different measure-
ment occasions (such as baseline, 6 months, and 12 months). With the current data, this 
will yield 92 timed- averaged BMI scores. The total between-subjects SS would thus be 
Σ Σ( ) ( . ) , . ...Y Y Yigt igt− −= =

2 224 12 6 571 446  This particular number for the total between-
subjects SS can easily be recovered from the ANOVA table in Table 13.4: It is the sum of 
the  between-group SS associated with membership in either the walking treatment or the 
control group and the residual SS, which is a measure of the squared deviations of individual 

2 Note: i (1…92) is the subscript for individual study participants, g (1, 2) indicates a study partici-
pant’s group assignment (experimental vs. control), and t (1, 2, 3) indicates the time a particular 
BMI score was measured.

TABLE 13.4 Mean BMI Scores for 92 Subjects in Physical Activity/Walking-Intervention 
Study

Means, Standard Deviations of BMI and No. of Subjects

Intervention | Time:
vs. Control |  Pretest  Posttest 1  Posttest 2 
Group | (baseline) (6 months) (12 months)   | Total
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – + – – – – – – – –
control | 25.87 25.60 25.42   | 25.63
group |   4.50    4.39   4.47   |   4.43
(social club) |   46    46   46   |  138
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – + – – – – – – –
intervention | 25.68 21.60 20.55   |  22.61
group |   4.54   5.16   5.37   |   5.47
(walking) |    46     46   46   |    138
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Total | 25.77 23.60 22.99 | 24.12 (BMI Means)
 |   4.49   5.17 5.49 |   5.19 (BMI St.Dev’s)
 |    92   92 92 |  276 (n)
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time-averaged BMI scores from the mean group scores3: 629.512 + 5,941.934 = 6,571.446. 
By contrast, the within-subjects variation in BMI scores only captures the individual varia-
tion of BMI scores over time as they differ from each individual’s time-averaged BMI score: 
Σ(Yigt − Y.t)

2. This sum of squared deviations can be thought of as a one-way ANOVA with all 
276 BMI measures as the only outcome variable and id as the only independent factor with 92 
levels. In effect, the id variable creates 92 comparison groups, each one representing a single 
study participant, and the outcome is each participant’s mean BMI score over the three mea-
surement occasions. This SS equals 836.777, and can be recovered from the ANOVA table in 
Table 13.4 as the sum of the time effect, the time-by-group interaction effect, and the remain-
ing individual over-time variation captured by the residuals: 394.361 + 285.941 + 156.476 = 
836.777. Adding the SSs for between-subjects and within-subjects variation yields the TSS: 
6,571.446 + 836.777 = 7,408.223.

3 This residual SS would be considered the within-group or error SS in a one-way ANOVA.

TABLE 13.5 Mean BMI Scores for 92 Subjects in Physical Activity/Walking-Intervention 
Study

. anova BMI Walking / id|walking time walking*time, repeated(time)

Number of obs = 276 R-squared   = 0.9789
Root MSE    = .932369 Adj R-squared = 0.9677

       Source | Partial SS df MS F Prob > F
– – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
        Model |  7251.747  95  76.334   87.81 0.0000
 |
     Walking(Y/N) |   629.512   1 629.512   9.53 0.0027
 Btw-Subject R esidual | 5941.934  90   66.021  
– – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
         time |   394.361   2  197.180 226.82 0.0000
     Walking*time |   285.941   2 142.970  164.46 0.0000
 |
Within-Subj. Residual |   156.476 180     .869  
– – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
          Total |  7408.223 275   26.939

Between-subjects error term: id|walking
            Levels: 92    (90 df)
    Lowest b.s.e. variable: id
   Covariance pooled over: walking  (for repeated variable)

Repeated variable: time
Huynh-Feldt epsilon =  0.6301

Greenhouse-Geisser epsilon =  0.6188
Box’s conservative epsilon = 0.5000
– – – – – –– – – – – – – – Prob > F  – – – – – – – –

     Source |  df   F Regular   H-F   G-G   Box
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     time |   2 226.82  0.0000 0.0000 0.0000 0.0000
Walking*time |   2  164.46  0.0000 0.0000 0.0000 0.0000
   Residual | 180
– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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In order to obtain the relevant variance estimates for the f-test, we must divide these SSs 
by their associated degrees of freedom (df; see Box 13.1). Adding up the df for the between-
subjects and within-subjects components, we get: (n − 1) + (N − n) = N − 1;4 in the example, 
we have: 91 + 184 = 275.

Total between-subjects degrees of freedom: dfi = n − 1 = 92 − 1 = 91

Between-group degrees of freedom: dfg = g − 1 = 2 − 1 = 1

Remaining residual degrees of freedom between subjects: dfbs-res = (n − 1) − (g − 1) = 91 − 1 = 90

Total within-subjects degrees of freedom: N − n = 276 − 92 = 184

(N = total number of observations [276] consisting of 92 triplets, each containing three within-
subjects observations)

Within-time degrees of freedom: dft = t − 1 = 3 − 1 = 2

Within time-by-group degrees of freedom: dfg × dft = (2 − 1)(3 − 1) = 2

Remaining residual degrees of freedom within subjects: dfws-res = N − n – (t − 1) – (g − 1)
(t − 1) = 180

DEGREES OF FREEDOM FOR REPEATED-MEASURES ANOVA 
MODEL WITH A TWO-GROUP X THREE-OCCASION DESIGN

BOX 13.1

From the previous discussion of ANOVA and ANCOVA models, we know that the f-test 
compares the systematic variance attributable to differences in experimental exposure to the 
variance of the error terms. As we have both between-subjects and within-subjects effects, 
we also have two separate residual or error terms. For example, the output in Table 13.4 
shows that the f-ratio for the averaged between-groups effect compares the between-group 
variance (629.512) to the residual between-subjects/within-group variance (66.021), yielding 
an  f-statistic of 629.512/66.021 = 9.53. By contrast, the f-ratio for the within-subjects effects 
of time is f = 197.18/0.869 = 226.82.

Now we are finally in a position to address the hypotheses associated with this study. 
It is obvious that the main purpose of this physical activity/walking-intervention study is 
to show that regular walking programs, instituted at assisted-living facilities, will lead to a 
reduction in average BMI and associated obesity rates. Looking at the specific study design 
with a two-group comparison of intervention and control group, and BMI measures obtained 
at baseline and two follow-up occasions (6 months and 12 months), we can formulate three 
null hypotheses:

1. Averaged over all three measurement occasions, the intervention and control groups 
do not differ in mean BMI: H0: μ1. = μ2.. This is the test for a main group effect. In 
Table 13.3, this effect is represented by the two averaged sample group means in the 
right-hand column: 25.63, 22.61.

2. Averaged over the two comparison groups, the mean BMI scores do not differ over 
time: H0: μ.1 = μ.2 = μ.3. This is the test for a main time effect. In Table 13.3, this 
effect is represented by the three average sample group means in the bottom row: 
25.77, 23.60, and 22.99.

4 In the current context, n refers to the number of subjects, and N refers to the number of observations.
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3. Changes in mean BMI scores over time do not differ between the intervention 
and control groups. This is the test for the group-by-time interaction effect. In 
Table 13.3, this effect is represented by the comparison of the three time-related 
group means in the intervention and the three parallel group means in the control 
group: 25.87, 25.60, 25.42 versus 25.68, 21.60, 20.55.

The reader might ask whether we should consider all three null hypotheses (and their comple-
mentary research hypotheses) equally important. For this study, the answer would be “no.” 
For instance, the first null hypothesis involves differences between the intervention and the 
control group concerning the time-averaged BMI scores. This means the test also includes 
the baseline BMI scores as one of the three time-averaged scores. But that implies that this 
between-group test is not a pure measure of the intervention effect, as we would not expect any 
mean differences in BMI after randomization and before the intervention programs get started. 
The second null hypothesis does test whether or not there are any changes in mean BMI scores 
over time; but, because this test does not separate out the intervention and control groups, it too 
is not a pure measure of the intervention effect. That leaves us with the third null hypothesis 
(and associated research hypothesis). This is clearly the one of highest interest: If we cannot 
reject this null hypothesis, then we are essentially saying that the intervention has no effect, 
as over-time changes in mean BMI scores do not differ in the intervention and control groups.

The results in Table 13.4 show that we would reject all three null hypotheses; however, 
as just discussed, it is the rejection of the third null hypothesis that is of the greatest interest 
here. To see what a statistically significant interaction of the group-by-time effect looks like, 
take a look at the graph in Figure 13.1. As we saw earlier, there is, in fact, a small but still 
significant (p < .02) decline of mean BMI scores in the control group from 25.87 to 25.42, 
but the statistically significant (p < .00005) decline in the intervention group from 25.68 to 
20.55 is substantially larger.5 Further tests reveal that, while the rate of decline in mean BMI 

5 The p-values for the separate within-group changes are not shown in Table 13.4.

FIGURE 13.1 Mean BMI by Walking Intervention: Repeated-Measures ANOVA. 

Between-Subjects Factor: Walking Versus no Walking; Within-Subjects Factor: Time.
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scores is greater in the intervention than the control group for both time periods (baseline 
to 6 months and 6 months to 12 months), the decline in the intervention group slows for the 
second period.

 The Sphericity Assumption and the Appropriate f-Test

Using the ANOVA approach to analyzing data from repeated-measures designs should only 
be done if the data are consistent with the assumptions of the model. If not, the statistical tests 
have to be modified. While independence of observations across different individuals remains 
a reasonable assumption, the assumptions of independence are not reasonable with respect 
to repeated measures obtained from the same individuals. If one were to apply the ANOVA 
model without modification to such repeated-measures data (see Box 13.2), the data must at 
least meet the assumption of sphericity, which posits that the covariances between any two 
different time measures of the same individuals must be equal. While this assumption is often 
violated with repeated measures, there exist a number of modified f-tests that provide cor-
rected p-values. Table 13.5 shows three modified tests by Huynh–Feldt, Greenhouse–Geisser, 
and Box, all of which adjust the f-tests by modifying the df based on the epsilon statistic. 
If epsilon equals one, no adjustments are necessary. If epsilon is less than 1, the p-values 
 associated with the modified f-tests for the within-subjects effects should be used, instead of 
the p-values associated with the original f-test. As a general rule, Box’s epsilon adjustment 
is the most conservative (minimizing the Type I error), followed by Greenhouse–Geisser and 
Huynh–Feldt, and the uncorrected f-test. In the above example, we get the same results with 
or without modifications of the f-test.

1. Interval/ratio level of measurement for outcome/dependent variable
2. Independence of observations across individuals (uncorrelated between-subjects error 

terms)
3. Normally distributed dependent variable in populations defined by the within- and 

between-group factors
4. Equal variances (or standard deviations) within population groups defined by the between-

group factor(s) and the measurement occasions or within-group factor(s)
5. Equal covariances for all pairs of within-subjects measures at time j with time k; this is 

known as the sphericity assumption
6. Randomly drawn/assigned study sample

ASSUMPTIONS OF THE ANOVA MODEL APPLIED TO DATA 
FROM REPEATED-MEASURES DESIGNS

BOX13.2

 ATTRITION AND ITS EFFECTS ON STATISTICAL TESTS

When you look back at the data in Table 13.4, you see information on 92 individuals, split into 
46 treatment and 46 control group subjects, all providing information on their measured height 
and weight, three times over a 12-month period. In “real life” it would be highly unusual to 
conduct a clinical intervention study and obtain information on all outcome measures for all 
study participants during the follow-up data collections. Even with the best study management, 
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it is usually impossible to avoid all dropouts, especially if the follow-up periods are lengthy, 
spanning weeks, months, and even years. There are many reasons for this: Over extended 
periods of time, study participants may become weary of continued participation and refuse to 
be contacted further, even if they originally agreed; they may become sicker or healthier, both 
of which can become a reason for dropping out; sometimes it is family members who pres-
sure the participants to cease participation, and sometimes study participants move and can no 
longer be found, and some may even die. This type of subject attrition can wreak havoc with 
the random assignment process. In turn, statistical tests, which are based on the assumption 
that the data represent randomized comparison groups, may become invalidated.

Traditionally, some researchers have simply ignored this problem and analyzed only 
cases with complete data (“complete case analysis”); such approaches are still common 
enough in the clinical literature (Anderson et al., 2005). One alternative for clinical trial data 
has been to conduct an “intent-to-treat” (ITT) analysis. The main principle of ITT analysis is 
to include all cases in the analysis that were originally randomized to the various treatment 
and control groups. To accomplish this, one must impute values for the missing outcome 
measures, usually following the principle of “last observation carried forward” (LOCF). This 
is still a widely practiced principle in the analysis of randomized clinical trial data, and, for a 
long time, it was thought that this was a “conservative” approach.6 However, as the example 
of the walking-intervention study in this chapter shows, LOCF need not be conservative: For 
instance, if a control group subject had dropped out after 6 months, we would assume that the 
12-month BMI score is unchanged from the 6-month score, even though the control group 
also shows a significant decline in BMI scores. In this case, the LOCF could actually widen 
the difference between the intervention and control groups (Salim et al., 2008). There are now 
better imputation methods available, but they are beyond the scope of this book (Olsen et al., 
2012). However, it is important to realize that the repeated-measures ANOVA and ANCOVA 
models can only be used to analyze cases with complete information on all variables involved 
in the model. If information is missing on some outcome variables, ANOVA and ANCOVA, 
as well as linear regression models, either are performed only on cases with complete data, 
which often generates a sampling bias, or the analyst must have used some imputation method 
to substitute for missing values. As a reader of clinical research, you should expect a clear 
accounting of all cases originally enrolled in the study; likewise there should be clear explana-
tions as to how the attrition problem in an intervention study was addressed, lest there remain 
biases in the estimates of the effects.

 SUMMARY

In this chapter we discussed repeated-measures ANOVA, which is a statistical model that can 
be used to explore longitudinal data with continuous outcome variables. While commonly 
employed to analyze data from randomized clinical trials or intervention studies, there is no 
principal reason why it could not also be used with observational data. However, some of the 
assumptions underlying the correct application of repeated-measures ANOVA are restrictive 
as, for example, the sphericity assumption. Other problems arise, when data are incomplete, 
as is often the case with longitudinal data. In the next chapter, which will conclude our survey 
of linear models predicting continuous outcome variables, we provide a brief introduction 
into alternative regression models that can be used to analyze longitudinal data. Such “mixed 
method” models are now commonly seen in the clinical literature.

6 If one carries the last observation over to later outcome measures, for example, the pretest scores 
are substituted for missing posttest sores, one is implicitly assuming there is no change.
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 EXERCISES

1. In your own words: What is the advantage of a repeated-measures pretest/posttest design 
over a posttest only design?

2. Formulate the null hypothesis for a time-by-group interaction.

3. In a the analysis of data from a pretest/posttest randomized design with one treatment and 
one control group, researchers find no significant difference for the main between-group 
effect, no significant difference for the time-by-group effect, but a significant change 
for the time effect. Does this pattern of results suggest that the intervention is effective? 
If yes, why? If no, why not?

 REFERENCES

   Anderson, R. M., Funnell, M. M., Nwankwo, R., Gillard, M. L., Oh, M., & Fitzgerald, J. T. (2005). Evaluating 
a problem-based empowerment program for African Americans with diabetes: Results of a randomized 
 controlled t rial. Ethnicity  & Disease, 15(3), 671–678.

   Good, M., Albert, J. M., Arafah, B., Anderson, G. C., Wotman, S., Cong, X., . . . Ahn, S. (2013). Effects on postoper-
ative salivary cortisol of relaxation/music and patient teaching about pain management. Biological Research 
for Nursing, 15(3), 318–329.

Read: Anderson, R. M., Funnell, M. M., Nwankwo, R., Gillard, M. L., Oh, M., & Fitzgerald, 
J. T. Evaluating a problem-based empowerment program for African Americans with diabe-
tes: Results of a randomized controlled trial. Ethnicity & Disease, 15(3), 671–678.

(a)  Provide a very brief three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized (be sure to 
mention exclusion and inclusion criteria). Can the study sample be considered representa-
tive of the target population?

(c)  List all dependent/outcome variables, provide a clear definition of them, and determine 
their level of measurement.

(d)  List the main independent/explanatory variable in the study. Do the researchers control 
for any covariates?

(e)  What is the most important sentence in the text of the paper about the content of table 3?

(f)  Compare the number of cases (N) in tables 4 and 5; are they consistent?

(g)  Table 6 shows a complete case analysis, resulting in much lower numbers of cases for 
each individual outcome measure. How does this analysis approach affect the interpreta-
tion of the results? Discuss.

(h)  In table 6, the authors show statistically significant changes over time for the serum cho-
lesterol and high-density lipoprotein measures. Are these changes interpretable?

(i)  Do the authors provide any information on whether or not the data meet the assumptions 
of the statistical tests underlying repeated-measures ANOVA?

LITERATURE APPLICATION
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CHAPTER 14

 Introduction to Mixed-Effects 
Regression Models

In this chapter, we provide a short overview of mixed-effects regression models, introducing 
some of the basic ideas and vocabulary underlying these models. A full treatment of mixed-
effects models is beyond the scope of this book. As statistics is a multidisciplinary effort 
with models developed by biostatisticians, psychometricians, econometricians, and so forth, 
it is no surprise that there is a lack of unified terminology in the field. For instance, you 
may encounter such terms as multilevel models, hierarchical linear models, linear mixed-
effects models, and generalized estimating equations, all of which start with relaxing the 
assumptions in classical analysis-of-variance (ANOVA) and linear regression models that 
individual observations are assumed to vary independently of each other. Here we aim at a 
basic understanding of the principal ideas that differentiate these models from the classical 
linear models, as the employment of such models has become increasingly common in the 
nursing and medical research literature (Marion, Finnegan, Campbell, & Szalacha, 2009; van 
Weert, Jansen, Spreeuwenberg, van Dulmen, & Bensing, 2011; Woods-Giscombe, Lobel, & 
Crandell, 2010). There exist several good, fairly nontechnical articles in the literature that 
the interested reader might want to consult for deeper understanding (Atkins, 2005; Hayat & 
Hedlin, 2012).

The basic idea underlying mixed-effects regression models is that there are two kinds 
of independent or predictor variables: those whose levels are fixed, and those whose levels 
vary depending on the study sample in question. The classic example of a fixed factor is 
the intervention variable in a drug trial, which defines the different dosages of the drug to be 
administered, including the placebo condition. In this situation, the researcher is interested 
in inferences about the relative effectiveness of the given treatments, but not in inferences 
about other dosages not administered in the trial. By contrast, when we study the effects of 
a behavioral intervention, such as standard protocol of telephone reminders, on adherence to 
a specific drug regimen, the particular nurses in the randomized intervention study may vary 
in their personal effectiveness. From the point of view of the effectiveness of the intervention 
protocol in another clinical setting, the variation due to personal differences among local study 
personnel would be a random effect. As random effects do affect the variance of the outcome 
variable, it is sometimes important to take them explicitly into account in the analysis.

A second related principle about mixed-effects models is that they involve multiple 
levels (thus the term “multilevel analysis”) in which individual observations are thought to 
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be nested within larger contexts, with the consequence that the nested observations can no 
longer be assumed to be independent of each other. This idea of nested observations actu-
ally fits well with the concerns and experiences of health care providers: While clinicians are 
primarily concerned with the health outcomes of individual patients, these patients live lives 
that are nested within families, institutional settings, or particular communities. As such, the 
factors that affect their health outcomes or recovery from an illness are not only individual-
level factors (e.g., a patient’s education, income, access to health insurance, patient mobil-
ity, and so forth); their health outcomes are also partially determined by the environment in 
which they live. For instance, geographic neighborhoods differ by the availability of public 
transportation (a possible factor contributing to obesity), pollution (a possible lung disease 
impact), or the proximity to an emergency room (a possible factor in stroke or heart disease 
outcomes). Similarly, hospitals differ in their organizational procedures designed to reduce 
infection rates; nursing schools differ in terms of per-student resources, affecting learning 
behavior beyond the individual’s efforts; families differ by nutrition patterns or emphasis on 
health behaviors. In all those cases, individuals are nested within these macro units and tend 
to share characteristics and outcomes they do not share with individuals located in different 
macro units. As a result, we should expect that many variables of interest are correlated within 
the macro units, but not across the macro units, violating the assumption of classical linear 
models of uncorrelated error terms.

Longitudinal data share the same basic structure, except that we conceive of the individ-
ual as the “macro unit” and the repeated observations about the individual as nested within the 
individuals. Again, we would expect that multiple observations of the same individuals taken 
at different occasions are, in part, caused by unique characteristics of the individual. Thus, 
within-subjects observations should share common antecedents not shared by observations 
from different individuals. Either way, multilevel models put the nesting of particular obser-
vations in a common context at the center of the modeling process. This has consequences for 
how we think about variance decomposition and different sources of variation.

In the last chapter, we introduced repeated-measures ANOVA as a model to analyze 
repeated measures of a continuous outcome variable from a randomized experiment. As we 
discussed, in addition to the need for adjustments to the f-test, if the sphericity assumption is 
not met, ANOVA models also require complete data on all the variables involved. Yet the real-
ity of following patients over time shows that complete data for all study participants are often 
impossible to obtain. In particular, extended follow-up of patients with chronic diseases often 
results in data with complex missing patterns, with some individuals dropping out, others skip-
ping a particular repeated measure only to participate again at a later data (Stommel, Kurtz, 
Kurtz, Given, & Given, 2004). In short, longitudinal data are rarely balanced.1 ANOVA mod-
els are also not well suited in analyzing repeated-measures data, if time differences between 
any pair of two observations show substantial individual variation. Again, such variations are 
not uncommon in panel studies with long-term follow-up.

To get a handle on data with repeated observations, we will look at two ways of format-
ting such data. In the traditional “wide” format, each row represents an individual case and 
the columns represent variables, including both repeated and one-time measures on these 
individuals. For instance, the data in wide format in Table 14.1 show four cases (IDs 1–4), 
their ages at the time of the study, their sex (1 = female, 2 = male), and up to three diastolic 

1 In experimental studies, a balanced study design is one in which each comparison group contains an 
equal number of subjects. In a repeated-measures study, balanced data would mean an equal number of 
observations on all subjects.



14. INTRODUCTION TO MIXED-EFFECTS REGRESSION MODELS 163

TABLE 14.1 Two Data Formats for Longitudinal Data

WIDE FORMAT

ID AGE SEX DBP1 DBP2 DBP3

1 21 1 81 76 77

2 46 2 84 81

3 34 1 80 82 82

4 28 2 87 85

LONG FORMAT

ID TIME AGE SEX DBP

1 1 21 1 76

1 2 21 1 81

1 3 21 1 77

2 1 46 2 84

2 3 46 2 81

3 1 34 1 80

3 2 34 1 82

3 3 34 1 82

4 1 28 2 87

4 2 28 2 85

blood pressure readings (DBPi) taken at different times. As is apparent, for ID No. 2, the 
second DBP measure is missing, and, for ID No. 4, the third is missing. The same data have 
been transformed to “long” format in the lower part of Table 14.1. All of the data contained 
in the wide format are also contained in the long format, but in the long format, each row 
represents only a single DBP observation, while time-invariant variables like ID, Age,2 and 
Sex remain the same and are repeated in each row. Notice also that the long format shows the 
unbalanced design, with unequal numbers of observations per study participants. Still, we can 
analyze such data with mixed-effects models, whereas an analysis of the data in wide format 
would have excluded any case with missing observations on any of the relevant variables. 
We can also take explicit account of the time between the observations, if that is important 
for the analysis. Suppose we recode all the dates at which the DBP measures are made, then, 
instead of simply using a categorical/ordinal Time variable with three categories (first to third 
observations), we could count the number of days since the baseline measure for the second 
and third observations on each individual. That way we could explicitly model the time effect 
on the dependent variable and would be able to accommodate different time intervals for 
 different individuals.

Here is how this looks. We start with an equation that models the within-subjects changes 
in individual scores over time. Here, we choose the simplest model, using a linear equation:

Y tti i i i ti= + +β β ε0 1 1 ,

2 As age is measured in years, it appears as a time-invariant variable, but over longer time periods, this 
variable could certainly change.
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where Yti refers to the within-subjects DBP scores of individual i over time, b0i is the intercept 
(or “constant”) in the equation for the ith individual, and t1i is the time variable, either coded 
1, 2, 3 for each observation period or, more precisely, indicating the actual time between the 
observations for individual i. The symbol b1i refers to the regression coefficient for individual 
i, indicating how the observed scores of Y for individual i change over time; and finally, we 
use eti to refer to the residual or error term, which captures the deviation of observed scores 
from the linear model. Figure 14.1 shows the fitted regression lines for the four individual 
cases in Table 14.1.

In a second step, we can now model the between-subjects effects. Remember that for 
each individual case we have a linear equation modeling the over-time change. Thus we get n 
intercepts3 and n slope coefficients from step one, which are subsequently modeled as part of 
the separate between-subjects equation: 

β γ γ γ ρ0 00 10 10 20 20 00i iB B= + + +

β γ γ γ ρ1 01 11 11 21 21 01i                                                                           iB B= + + +

As the intercept and slope coefficients vary across individuals, we can treat them as out-
come variables, whose variation across different groups of individuals can be predicted based 
on any between-subjects difference of interest. In the example, one between-subjects variable 
is age (B1), the other is sex (B2), and they can be used to predict individual variation in the inter-
cept and slope coefficients associated with all individuals in the within-subjects models. If one 
substitutes the equations in step two into the equation in step one, one gets a more complicated 
model, which contains both within-subjects (εti) and between-subjects error terms (ρ01i). How 
one proceeds now depends on one’s interest and hypotheses. We may not be interested in the 
subject-specific random-effects per se, but may instead average these effects across popu-
lation groups of interest. Nonetheless, the estimation must take account of the correlation 
among within-subjects scores.

FIGURE 14.1 Within-Subjects Linear Regression Lines of DBP on Time.
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TABLE 14.2 Summary Statistics for DBP Readings Over Three 
Occasions (Sample N = 20)

. sum DBP if  time==1

Variable | Obs Mean Std. Dev. Min Max
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
DBP(time 1) | 20 86.85  4.05586 79 93

DBP(time 2) | 17 84.82353 4.111498 76 90

DBP(time 3) | 18 83.11111 3.802304 77 88

Age(time 1) | 20 30.3 6.883237 21 46

Age(time 2) | 17 29.35294 6.194162 21 41

Age(time 3) | 18 30.5 7.245688 21 46

Sex(time 1) | Freq. Percent Cum.
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
Male | 10 50.00 50.00

Female | 10 50.00 100.00
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
Total | 20 100.00

Sex(time 2) | Freq. Percent Cum.
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
Male | 8 47.06 47.06

Female | 9 52.94 100.00
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
Total | 17   100.00

Sex(time 3) | Freq. Percent Cum.
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
Male | 9 50.00 50.00

Female | 9 50.00 100.00
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
Total | 18 100.00

To illustrate the general idea, we use an example of a data set of 20 primary care patients, 
for whom we have up to three repeated DBP measures taken one week apart. On 15 subjects 
we have all three measures, on 2 subjects we have only the first two DBP readings, and on 
3 subjects we have only the first and the third DBP reading, resulting in a total of 55 sample 
observations with an unbalanced distribution of the observations across individuals. The data 
are organized in long format, as illustrated in Table 14.1, with each DBP observation occupy-
ing a separate row.

Table 14.2 presents summary statistics for the variables of interest. Note that the out-
come measure (DBP readings) varies over time, while subjects’ age and gender are fixed over 
the time period in question. Any differences in mean age scores and in the percentage distribu-
tion of male and female patients over time are due to the fact that not all patients participated 
in all measurements over time.

Ignoring the fact that the DBP measures involve both readings from different individu-
als and repeated readings of the same individuals, we could run a regular linear regression 
model with time, age, and sex as independent predictors of the DBP readings. Table 14.3 gives 
the results. Based on this model, we would conclude that average DBP readings declined by 



166 II. MODELS FOR CONTINUOUS/INTERVAL-LEVEL OUTCOME MEASURES

TABLE 14.3 Linear Regression Model of 55 DBP Observations on Time (Three Occasions), 
Sex, and Age of Subjects (Sample of Observations: N = 55)

. regress DBP time age sex

  Source | SS df MS Number o f o bs =           55
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – F(3, 51) =      7.34
  Model |  288.237956  3 96.0793186 Prob > F = 0.0000
 R esidual |  673.762044 51   13.2110205 R-squared = 0.2996
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – Adj R-squared = 0.2584
  Total | 962 54 17.8148148 Root MSE = 3.6347

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    DBP | Coef. Std. Err. t P>|t| [95% Conf. Intervl]
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   time | –1.892998 .5902226     –3.21 0.002 –3.077919 –.7080764
   age |  .2535532 .0739647    −3.43 0.001  .1050629 .4020434
    sex | –.0716446  .9813029     0.07 0.942 –2.041692 1.898403
   cons |    81.20024  2.895136   28.05 0.000    75.38801 87.01247
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

1.89 (p ≤ .002) after each month and increased by 0.25 (p ≤ .001) for each additional year of 
age. There appears to be no significant difference in average DBP readings by sex. However, 
this conclusion would be erroneous, as our statistical model ignores (a) the uneven number 
of observations per subject (giving more weight to between-subjects factors like age to sub-
jects with complete observations), and (b) the fact that the repeated measures of the same 
subjects are correlated; in other words, that multiple observations are nested within the same 
individuals.

Instead of the regression model that treats each outcome observation as independent, we 
can run a mixed-effects linear regression model that includes both fixed effects and random 
effects. The focus is still on the fixed effects of time, age, and sex, but we allow for randomly 
varying intercepts of the within-subjects regressions of DBP on time. As Figure 14.2 shows, 
for the most part the decline in DBP over 2 months is nearly linear among the individuals, 
with little variation in the slopes but larger variation in the intercepts. That is, the random indi-
vidual variation primarily involves inter-individual differences in the level of DBP resulting 
in parallel lines, but not differences in the decline over time, which would indicate different 
slopes.4

Table 14.4 shows the output from the mixed-effects linear regression model. At first, we 
review some basic information: The number of total DBP observations is 55 obtained from 
20 “groups,” which in this panel study are the 20 individuals in the sample. We also learn that 
there are at least two observations and a maximum of three observations per individual/group, 
with an average of 2.8 observations per individual/group. The estimation method employed 
is known as restricted maximum likelihood (REML), but we ignore the specifics here and 
move on to the regression coefficient estimates for the fixed effects predictors. The estimate 
for the time effect is very similar to the one from the previous linear model without a random 
effect component: −1.87 (p ≤ .0005); however, age is no longer a significant predictor: 0.21 
(p ≥ .081), while sex remains insignificant: −0.33 (p ≥ .839). Table 14.4 also provides some 

4 An alternative model specification allowing for individual slope variation showed no significant 
improvement over a model with only a random intercept.
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FIGURE 14.2 Within-Subjects Changes in DBP for 20 Individuals for Data Summarized in 

Table 14.2. (Note: Individuals With the Same DBP Trajectory Overlap.)

TABLE 14.4 Mixed Effects Linear Regression Model of 55 DBP Observations on Time 
(Three Occasions), Sex, and Age of Subjects (Sample of Observations: N = 55)

. xtmixed DBP time age sex, || ID:, covariance(identity)

Mixed-eff ects REML regression
Group variable: ID

Log restricted-likelihood = −115.87402

 Number of obs =     55
 Number of groups =     20
 Obs per group: min =       2
 avg =    2.8
 max =         3
 Wald c hi2(3) =    105.00

 Prob > c hi2 =    0.0000
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

DBP | Coef. Std. Err. z P>|z| [95% Conf. Interval]
– – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

time | −1.866109 .184719 −10.10 0.000 −2.228151 −1.504066

age | .2132989 .1223018 1.74 0.081 −.0264082 .453006

sex | −.333784 1.64027  −0.20 0.839 −3.548653 2.881086

_cons | 82.72779 4.386016 18.86 0.000 74.13135 91.32422
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Random-eff ects Parameters | Estimate Std. Err. [95% Conf. Interval]
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
ID: Identity    sd(_cons) | 3.592632 .6383852 2.536065 5.089384
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

sd(Residual) |  1.124235 .1362756   .886498 1.425728
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

LR test vs. linear regression: chibar2(01) = 62.67 Prob >= chibar2 = 0.0000

Likelihood-ratio test
(Assumption: randint nested in randslope)

LR chi2(1) =   1.46
Prob > chi2 =  0.2277
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information on the random intercept effect: The individual intercepts or constants from the 
20 individual (for each ID) linear regressions of DBP on time have an estimated standard 
deviation of 3.59 with a 95% confidence interval of 2.54 to 5.09. The output also shows an 
additional residual standard deviation [sd(Residual)], which is the estimated standard devia-
tion of the overall error associated with the 55 observations. Finally, the likelihood ratio test at 
the bottom compares this mixed-effects model to the ordinary regression model in Table 14.3; 
the test indicates a significant difference between the two models: In short, the mixed-effects 
model offers an improvement over the ordinary linear regression model, which ignores the 
distinction between within- and between-subjects effects. On the basis of these sample data, 
we cannot confidently conclude that the mean DBP levels differ by age for individuals 21 to 
46 years old, as the ordinary linear regression model would have suggested.

 SUMMARY

In this chapter, we have provided some rudimentary description of the mixed-effects regression 
model. The focus here was on linear models, but the basic principles of mixed-effects models 
apply to all regression models, including the regression models addressed in later chapters of 
this book (logistic and survival regression models). Multilevel modeling is an attractive tool, 
because the data of interest to nurses and other health professionals often involve clusters of 
individuals in different institutions or longitudinal panel data with multiple measures on the 
same individuals. In either case, the number of observations within clusters or individuals 
may vary. Classical repeated-measures ANOVA cannot deal with such complexities. We have 
provided only a very brief introduction to mixed-effects models; the interested reader may 
want to consult a more comprehensive, but accessible treatment in Kreft and Leeuw (1998).

This chapter concludes Part II of the book, in which we discussed linear models for 
interval-level outcome variables. These models are versatile and robust, and they continue to 
be frequently employed in the health care literature; still, many data of interest to nursing and 
medical researchers do not even approximately meet the assumptions of measurement level 
and normally distributed error terms. Thus, in Part III of this book, we turn to the statistical 
models that can be employed in the analysis of categorical outcome data, followed by models 
for censored data in Part IV.
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CHAPTER 15

 Nonparametric/Ordinal Statistics

So far in this book we have discussed only parametric statistics. The t-test, analysis of vari-
ance (ANOVA), linear regression as well as the Pearson’s r correlation all share the assump-
tion that at least the dependent variable (in the case of ANOVA and t-test) or sometimes both 
the dependent and independent variables (in the case of linear regression and the Pearson 
correlation coefficient) are continuous and measured at an interval or ratio level. The reason 
for the assumption of continuous outcome variables is obvious: All of these statistical mod-
els assume that one can calculate means and distances from means, that is, deviation scores, 
which are the basic components of the variance and standard deviation. In addition, statistical 
inference based on these linear models relies heavily on the normality assumption, meaning, 
these models assume that error terms, that is, deviations of observed values from predicted 
values within the categories of the independent variable(s), are normally distributed in the 
target populations.

Even though the linear models perform well (are “robust”) in the presence of minor 
deviations from the assumptions about the normality of the distribution of error terms and 
homoskedasticity, that is, equal variances across comparison groups, they can lead to  wrong 
inferences in cases of pronounced nonlinearity of relationships, substantial skew, outliers, 
lack of sufficient numbers of categories/values, and the presence of purely ordinal rankings. 
As we have seen in the previous chapters, there are several “fixes” available for skewed 
distributions and nonlinearity of relationships, but dependent variables consisting of ordinal 
rankings with few categories present a challenge for linear models. So do dependent variables 
with large outliers. Yet in health-related research we often use rating scales—as do nurses and 
physicians in clinical practice (Brunelli et al., 2010; Wong, Holroyd-Leduc, Simel, & Straus, 
2010)—which do not meet the assumptions of interval-level measurement. Outliers are also 
a common occurrence in health care data, as, for example, systolic blood pressure readings 
above 160 or extreme obesity levels with a body mass index (BMI) greater than 40 (Ogden 
et al., 2006).

As we discussed in Chapter 2, ordinal levels of measurement represent rankings or rank 
orders. Strictly speaking, for such variables the distances between two values or categories 
are not defined. Table 15.1 provides an example of a frequency distribution showing 360 
 self-rated responses to the question: “How often do you exercise?”

 PART  III. MODELS FOR CATEGORICAL 
OUTCOME MEASURES
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The labels for the four categories clearly indicate a rank order of more or less frequent 
exercising, but computing the mean for this variable (it is 2.16) is problematic: We would have 
to assume that the distance between 1 and 2 is the same as between 3 and 4. Yet, we cannot 
be sure that the difference in frequency of exercising between “rarely” and “sometimes” is 
the same as between “often” and “routinely,” nor can we be sure that all respondents use a 
similar “internal” frequency scale. Furthermore, this frequency distribution takes on only four 
distinct values/categories. As we can see from the following graph (Figure 15.1), such a dis-
tribution will never be smooth enough to approximate a normal or t-distribution. While there 
are no absolute rules about how many categories a dependent variable in a linear regression 
or ANOVA model ought to have, when there are fewer than 10 categories, it will often be the 
case that the normality assumptions about error terms are substantially violated, in particular, 
as the skew of a distribution of few categories cannot easily be remedied with any algebraic 
transformation.

TABLE 15.1 Survey Responses to the Question: 
“How Often Do You Exercise?”

tab exercise

   exercise | Freq. Percent Cum.
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – –
1. Rarely | 102  28.33   28.33
2. Sometimes | 142  39.44    67.78
3. Often |   71  19.72    87.50
4. Routinely |  45   12.50 100.00
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – –
  Total | 360 100.00
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FIGURE 15.1 Distribution of Responses to an Exercise Frequency Question: Four Ordinal 

Responses With Normal Distribution Superimposed.
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Outliers in interval-level variables can also have a substantially distorting effect on 
summary statistics, particularly in smaller data sets. Suppose you have BMI data on 30 indi-
viduals (15 women and 15 men) as shown in Table 15.2. Notice that one man has a very 
high BMI score of 54 and the range of BMI scores among these men is 18 to 54. Among 
the women, the range of the BMI scores is 19 to 33. The t-test shows a great disparity in the 
standard deviations (or variances) of BMI scores between the men and women, but even after 
Welch’s adjustments to the degrees of freedom (df) for unequal within-group variances, the 
overall t-test for the mean differences is not significant (p > .057). The reason for this is that 
large outliers can substantially inflate the sample variances and standard deviations, which, 
in turn, affects the estimates of the standard errors. As we know by now, large standard errors 
make it less likely that we find significant differences between the means of the groups 
compared.

It is in cases like these, of ordinal scales with only a few categories or highly skewed 
variables with outliers, that we look for alternative statistical models that are impervious to the 
impact of outliers or do not assume a measurement level beyond ordinal ranking.

 THE WILCOXON RANK-SUM TEST AND THE MANN–WHITNEY U TEST

The Wilcoxon rank-sum test and the Mann–Whitney U test are essentially the same test. 
They are used instead of the independent sample t-test to answer the question: Is the average 
rank in the two populations, from which the study sample is drawn, the same or different? 

TABLE 15.2 BMI Data for 30 Individuals: 1–15 (Female), 16–30 (Male)

Female ID:   1  2  3  4  5  6  7  8  9 10 11 12 13 14 15
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    BMI: 20 28 23 26 22 19 25 22 25 22 23 27 19 21 33
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
     Male  ID: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    BMI: 28 25 23 26 30 29 34 27 18 26 29 23 24 28 54
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

t test bmi, by(sex) unequal welch

Two-sample t test with unequal variances
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    Group | Obs Mean Std. Err.  Std. Dev. [95% Conf. Interval]
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  1. female | 15 23.66667 .9742722  3.77334 21.57706 25.75627
  2. male | 15 28.26667   2.07127 8.021994 23.82423    32.7091
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
combined | 30 25.96667   1.20295 6.588827 23.50636 28.42698
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
      diff  |       −4.6 2.288966  −9.363665  .1636647
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    diff  = mean(1.female) − mean(2.male) t = −2.0096
Ho: diff  = 0 Welch’s degrees of freedom = 20.7497
Ha: diff  ≠ 0; Pr(|T| > |t|) = 0.0577
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In Table 15.2 we saw the output from the t-test: Based on these results, we could not reject the 
null hypothesis that the mean BMI scores are equal between the men and women. We may 
doubt, however, that the distribution of BMI scores meets the t-test assumptions. In this situ-
ation, we may want to use the Wilcoxon rank-sum test (or its “cousin,” the Mann–Whitney 
U test).

To show how the test works, we turn again to the BMI data. In Table 15.3 the data are 
displayed again, but this time rank scores are added. Proceeding from the lowest to the high-
est, the rankings are applied to all study participants in the total sample based on their BMI 
scores (18 is the lowest score, so it gets the rank no. 1.0; 54 is the highest score, so it gets 
rank no. 30.0). For individuals with the same BMI score (“ties”), we use the convention of 
assigning an average rank associated with that group. For instance, there are three individuals 
with a BMI score of 22. Five others have a lower score. Thus, the three individuals occupy 
ranks 6, 7, and 8, and the average rank for individuals in this group equals 7. At the bottom of 

TABLE 15.3 BMI Data for 30 Individuals With Ranks Added

   BMI   BMI |  BMI  BMI |  BMI   BMI
  scores  rank s |  scores   ranks | scores ranks
 (Total) (Total) | (women) (women) |  (men) (men)
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 18  1.0 |   | 18   1.0
 19  2.5 | 19   2.5 | 
 19  2.5 | 19   2.5 |
 20  4.0 | 20   4.0 |
 21  5.0 | 21   5.0 |
 22   7.0 | 22   7.0 |
 22   7.0 | 22   7.0 |
 22   7.0 | 22   7.0 |
 23 10.5 | 23 10.5 |
 23 10.5 |   | 23 10.5
 23 10.5 |   | 23 10.5
 23 10.5 | 23 10.5 |
 24 13.0 |   | 24 13.0
 25 15.0 | 25 15.0 |
 25 15.0 | 25 15.0 |
 25 15.0 |   | 25 15.0
 26 18.0 |   | 26 18.0
 26 18.0 | 26 18.0 |
 26 18.0 |   | 26 18.0
 27 20.5 | 27 20.5 |
 27 20.5 |   | 27 20.5
 28 23.0 | 28 23.0 |
 28 23.0 |   | 28 23.0
 28 23.0 |   | 28 23.0
 29 25.5 |   | 29 25.5
 29 25.5 |   | 29 25.5
 30 27.0 |   | 30 27.0
 33 28.0 | 33 28.0 |
 34 29.0 |   | 34 29.0 
 54 30.0 |   | 54 30.0
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Sums: 779 465.0 | 355 175.5 | 424 289.5
Means:   25.97   15.5 |   23.67   11.7 |   28.27    19.3
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Table 15.3, the rank sums and rank means are displayed. Focus first on the sum of ranks for the 
total sample: For any given sample size, the sum of ranks will always be equal to n(n + 1)/2, 
where n = total sample size. Thus, with a sample size of n = 30, we get here: 30(30 + 1)/2 = 
30 × 31/2 = 465. By the same token, the mean rank for the total sample is always equal to the 
sum of all ranks divided by the number of cases. In our case the mean rank is 465/30 = 15.5. 
As we do not change the ranks, when splitting up the sample into the two comparison groups 
of men and women, the rank sums for women (175.5) and men (289.5) must add up to the 
total sample rank sum. Under the assumption that there is no difference between the two com-
parison groups, the null hypothesis states that the mean ranks in the two groups are the same. 
If both comparison groups are of equal size, we would also expect that, if the null hypothesis 
is true, the rank sums in both groups would be of equal size. As the two comparison groups 
may not always be of equal size, the actual test statistic used in the Wilcoxon test is slightly 
different: It is the sum of ranks in the comparison group with the smaller sum, which, in our 
example, is the female group.

Now, we are ready to construct our test statistic: We compare W1, the sum of observed 
ranks in the group with the smaller rank sum, to We, the expected sum of ranks in that group. 
The latter is computed under the assumption that the null hypothesis (mean ranks in the 
 comparison groups are equal) holds. It turns out that We can be computed as follows:

We = n1(n1 + n2 + 1)/2,

where n1 = the sample size of the first comparison group (here: women) and n2 = sample size 
of the second comparison group (here: men). As there are both 15 men and women, we get:

We = n1(n1 + n2 + 1)/2 = 15(15 + 15 + 1)/2 = 15 × 31/2 = 465/2 = 232.5

Again, when the comparison groups are equal in size, their rank sums should be equal as well, 
if the null hypothesis holds, as the rank sums are nothing but the product of the average rank-
ings times the number of cases in each group. With a total sample rank sum of 465, the expected 
rank sum of either of two equal-sized groups should be equal to 232.5. As Table 15.3 shows, 
the actual rank sum in the female group is 175.5. This leaves us with the final question: Is the 
difference of 175.5 − 232.5 = −57 between the observed rank sum and the expected rank statis-
tically significant under the null hypothesis?

This question can only be answered, if we have an estimate of the appropriate standard 
error for this statistic. Without providing the (somewhat involved) proof, here is the way we 
estimate the standard error for the W statistic from the sample data: SE /w ( ) .n n s n1 2

2  The vari-
ance expression in this formula, s r rn i

2 21
1= −
−
Σ( ) , is nothing but the ordinary variance com-

puted on the rankings, while n1 refers to the sample size of the first comparison group and n2 to 
the sample size of the second comparison group, with n representing the combined sample size.

For the data in Table 15.3, we can calculate a total sample variance of the rankings 
of 77. Thus we get: SE //w = = × × = =( ( ) . . .)n n s n1 2

2 15 15 77 30 577 5 24 03  With this esti-
mate of the standard error of the W statistic, we then convert the W statistic into a standardized 
z-score (observed W1 minus expected We under the null hypothesis) using the standard error: 
(175.5 − 232.5)/24.03 = −2.372. This is the value shown in Table 15.4. We know from the 
normal distribution that a z-score of −2.372 differs significantly from 0 (it is more than 1.96 
SE away from the null value of zero). Thus we would reject the null hypothesis (p < .018) and 
conclude that the mean rank orders of BMI scores are indeed different from each other in the 
population from which they were drawn.
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In sum, if we want to compare two group means in independent population groups, but 
the outcome variable is either measured at an ordinal level of measurement, or it is an interval-
level variable that is highly skewed with large outliers, then we can employ the Wilcoxon 
rank-sum test instead of the t-test. Often, the t-test and the rank test will give us the same 
results, but in the case of divergent outcomes, that is, one test shows statistical significance 
while the other does not, then we should trust the Wilcoxon test over the t-test, because it 
makes fewer assumptions (see Box 15.1) about the data.

• Interval/ratio or ordinal level of measurement for single dependent variable
• Independent/predictor variable is categorical and limited to two groups
• Outcome observations are independent of each other (uncorrelated)
• Randomly drawn study sample for population inferences

ASSUMPTIONS OF WILCOXON RANK-SUM TESTBOX 15.1

 THE WILCOXON SIGNED-RANK TEST

Just like the paired t-test is a test of mean differences between paired variable scores, for 
example, pulse rates of the same individuals before and after an exercise intervention, we can 
also construct a test based on the rankings of the paired differences. When we rank difference 
scores, the ranks are based on the absolute value of the differences |di|, that is, the rankings 
are performed on the magnitude of the differences, disregarding whether they are positive 
or negative. Then we can test whether the average rank of the paired differences is positive 
(implying an average increase in paired scores) or negative (decrease in paired scores), or if 
positive or negative differences are roughly balanced (null hypothesis of no change). This test, 
known as the Wilcoxon signed-rank test, should be used as a substitute for the paired t-test, 

TABLE 15.4 Wilcoxon Rank-Sum Test for Ranked BMI Data Comparing 
15 Women and 15 Men

. ranksum bmi, by(sex)

Two-sample Wilcoxon rank-sum (Mann-Whitney) test

   sex | obs rank sum expected
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  1. female | 15 175.5 232.5
  2. male | 15 289.5 232.5
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
combined | 30 465 465

unadjusted variance   581.25
adjustment for ties    −3.75
 – – – – – – – 
adjusted variance 577.50 Ho: bmi(sex=1.female) = bmi(sex=2.male)

 z = −2.372  Prob > |z| = 0.0177
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if the assumption that the actual differences between the original scores, or change scores, 
are roughly normally distributed does not hold. Notice however, that this test differs from the 
rank-sum test in that it does make the assumption of interval-level measurement for the origi-
nal scores, as the rankings are performed on the original difference or change scores, whose 
magnitudes can only be compared if the numbers reflect comparable distances. Still, the test 
is useful if the normality assumption cannot be maintained.

Suppose we have data on 16 adults, whose initial BMI scores are based on measured 
height and weight at the ages 28 to 33. After a period of 10 years, we obtain a second set 
of measurements for the same group of adults, now aged 38 to 43. As the BMI is a ratio-
level variable, we initially analyze the data using the paired t-test (see Chapter 8) to examine 
 possible changes in the mean BMI over time. Table 15.5 shows the results.

The data show a mean increase in the BMI of 1.6 units from 25.8 at Time 1 to 27.4 at 
Time 2. Testing the null hypothesis that no change occurred over the 10 years, that is, H0 = 
mean change = 0, the paired t-test results in a p-value of .0417, which would normally lead 
us to reject the null hypothesis and accept the research/alternative hypothesis that a change in 
mean BMI occurred. In fact, the p-value for the one-sided t-test with the alternative hypoth-
esis that the mean BMI score increased is .0208, providing seemingly stronger evidence of 
an increase in weight. However, the paired t-test assumes normally distributed change scores 
within the target population (see Box 8.3). Yet, the following histogram (Figure 15.2) of the 
16 change scores throws doubt on this assumption.

As an alternative to the paired t-test, we may employ the Wilcoxon signed-rank test. 
The results are shown in Table 15.6. The test is based on the following logic. There are 
16 Time 1 BMI measures and 16 Time 2 BMI measures. Between them, we have 16 pairs of 
Time 2–Time 1 difference scores. For each pair of BMI scores, we compute the difference or 
change score di and rank all pairs from smallest to largest, while disregarding the sign during 
the ranking process. Table 15.6 shows that among the 16 paired change scores, 11 have a posi-
tive sign (BMI2 > BMI1), 4 have a negative sign (BMI2 < BMI1), and one difference score 
remains unchanged (BMI2 = BMI1).

As there are 16 change scores, ranked from smallest (1) to largest rank (16), the sum of 
all ranks must be 136: n(n + 1)/2 = 16(16 +1)/2. Table 15.6 shows that the rank sum for the 11 
pairs with an increase in BMI scores over 10 years is equal to 104, the rank sum for the 4 pairs 

TABLE 15.5 Paired t-Test to Examine 10-Year Changes in BMI Among 16 Individuals

Paired t test
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Variable | Obs Mean  Std. Err. Std. Dev. [95% Conf. Interval]
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   bmi2 | 16 27.4375 .9352751 3.741101 25.44401 29.43099
    bmi1 | 16 25.8125 .8476376 3.390551  24.0058    27.6192
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    diff  | 16   1.625 .7295832 2.918333 .0699302   3.18007
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    mean(diff ) = mean(bmi2 − bmi1) t =  2.2273
Ho: mean(diff ) = 0 degrees of freedom =     15

Ha: mean(diff ) ≠ 0 Ha: mean(diff ) > 0
Pr(|T| > |t|) = 0.0417 Pr(T > t) = 0.0208
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FIGURE 15.2 Changes in BMI Scores During One Decade: 16 Adults Measured at Ages 28 to 33 

and Again at Ages 38 to 43.

showing a decline in the BMI is 31, and the rank sum for the pair showing no change is 1.1

If there is no systematic tendency toward change as asserted under the null hypothesis, we 
would expect the same rank sum for increases (positive changes) as for decreases (negative 
changes) in BMI scores over the 10-year period. Thus, the basic test statistic can be expressed 
as the difference of the observed rank sum for positive changes minus the expected rank sum 
for positive changes. Under the null hypothesis, this difference would be equal to zero:

H Exp0 : r ri j+ +∑ ∑− ( ) = 0

The variance needed to compute the relevant standard error is estimated using the formula:

Var(Test Statistic) = n(n + 1)(2n + 1)/2

This is the unadjusted variance formula, which assumes that all change scores are different 
and thus have a unique rank. When ranks are tied, this reduces the variance; similarly a zero 
change in the original score reduces this variance. Table 15.6 shows the adjusted variance, 
and we get our test statistic expressed as a z-score: z = − =( . ) . . .104 67 5 366 68 1 907/  The 
associated p-value is .0565, which is larger than .05. Given the evidence from just 16 cases, 
we cannot reject the null hypothesis that no change occurred in the mean BMI values over 
the 10 years.

 THE SIGN TEST

As we have seen, the Wilcoxon signed-rank test still makes the assumption that the change 
scores or paired differences can be ranked in terms of their magnitude, thus assuming that 
the underlying original measurement of the variable involved is at least an interval-level 

1 Why 1? Recall that we rank the absolute value of changes; thus a zero change is the smallest possible 
“change,” which gets rank 1. 
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measurement. For the BMI data, this assumption is valid. However, if both the earlier and later 
measurements in a pair are truly ordinal, as in the responses to the exercise frequency ques-
tion shown in Table 15.1, we should not rank the change scores based on the magnitude of the 
change. For instance, if the responses of one individual are “rarely” (=1) at Time 1 and “some-
times” (=2) at Time 2, while another individual’s responses are “sometimes” (=2) at Time 1 
and “routinely” (=4) at Time 2, we would get a change score of 2 − 1 = 1 for the first individ-
ual and a change score of 4 – 2 = 2 for the second individual. Yet, it is problematic to assume 
that the first individual’s change over time (from “rarely” to “sometimes”) is smaller than the 
second individual’s (from “sometimes” to “routinely”). We can, however, legitimately say 
whether an individual chooses a higher or lower ranking response, or whether the response 
remains the same at the second data collection time. This leads to a very simple test statistic: 
We ask how many pairs of individual responses show an increase (+), a decrease (−), or no 
change in the rankings over time. Under the null hypothesis, increases and decreases should 
balance each other out, that is, if there is no systematic change in individuals’ ordinal ratings 

TABLE 15.6 Wilcoxon Signed-Rank Test to Examine 10-Year 
Changes in BMI Among 16 Individuals

Wilcoxon signed-rank test

   sign | obs sum ranks expected
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – –
  positive | 11 104 67.5
negative |  4   31 67.5
  zero |   1    1     1
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – –
     all | 16 136 136

unadjusted variance 374.00
adjustment for ties   −7.38
adjustment for zeros   −0.25
 – – – – – – –
adjusted variance 366.38

Ho: bmi2 = bmi1
 z = 1.907, Prob > |z| = 0.0565

Sign test

   sign | observed expected
– – – – – – – – + – – – – – – – – – – – – – – – – – – – –
  positive | 11 7.5
negative |  4 7.5
  zero |  1    1
– – – – – – – – + – – – – – – – – – – – – – – – – – – – –
     all | 16   16

Two-sided test:
 Ho: median of bmi2 − bmi1 = 0 vs. Ha: median of bmi2 − bmi1 ≠ 0
 Pr(#positive >= 11 or #negative >= 11) =
 min(1, 2*Binomial(n = 15, x >= 11, p = 0.5)) = 0.1187



178 III. MODELS FOR CATEGORICAL OUTCOME MEASURES

over time, then the probability of a positive or negative change is .5. After making some 
adjustments for ties (no change in the ordinal responses of an individual), we can employ the 
binomial probability distribution to estimate the probability that a sample of paired responses 
shows positive (or negative) changes that exceed a certain number.

Even though the data underlying the test in Table 15.6 do meet the interval-level require-
ments of the Wilcoxon signed-rank test, we can use these data to show how the sign test 
works. We already know that there are 16 paired BMI scores, of which 11 show an increase, 
4 a decrease, and 1 no change. As we have 15 change scores, and observe 11 increases and 4 
decreases, we can ask: What is the probability of observing an increase in 11 or more change 
scores or the reverse, a decrease in 4, or fewer of them? If that probability is less than the con-
ventional .05 level, we would say that the sample evidence is inconsistent with the assumption 
that increases and decreases in change scores are equally likely. In short, we reject the null 
hypothesis that there is no systematic trend in the change scores.

The binomial distribution, p n
k n k

k n k
= −

−( )

−!
! ! ( ) ,π π1  can be used to estimate the probabil-

ity that 0, 1, 2, 3, or 4 of the paired difference scores show a decline and that 11, 12, 13, 14, or 
15 of the change scores show an increase, for example:

p p( ) ( )
!

! !
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! !
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0 15
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0 15
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Adding up the probabilities of observing 11 or more increases in the paired difference scores, 
we get: .0416565 + .0138855 + .0032044 + .0004578 + .0000305 = .05935. As the probability 
of having fewer than 5 increases among the 15 paired difference scores is also .05935, the 
two-sided probability of observing more than 10 increases or more than 10 decreases (fewer 
than 5 increases) is .1187 (see Table 15.6). Thus, according to the sign test, we again come 
to the conclusion, that the sample evidence is not strong enough for us to conclude with at 
least 95% confidence that there has been a general weight gain over the 10-year observation 
period.

 KRUSKAL–WALLIS TEST

Just as one-way ANOVA is a generalization of the independent sample t-test to the compari-
son of more than two groups, the Kruskal–Wallis test is a generalization of the Wilcoxon rank-
sum test. The Kruskal–Wallis test is designed to test the hypothesis that median outcomes 
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in several samples come from the same population and thus do not vary significantly from 
each other. Going back to the self-rated exercise question of Table 15.1, we may want to 
know whether people with different smoking history (nonsmoker, former smoker, or current 
smoker) differ in their median response to this question. As the outcome variable is a rank-
order variable with few categories asking respondents to rate the frequency of their exercise 
using four categories, there is some doubt as to whether one-way ANOVA is appropriate in 
comparing mean scores (as strictly speaking, neither means nor distances from the means are 
defined here). Table 15.7 shows the results from this test applied to data from 297 respondents  
between the ages of 20 and 59. With 297 cases, the total rank sum equals [297 × (297 + 1)]/2 = 
44,253 and an average rank of 149. The test compares the observed rank sum in each compari-
son group to the one expected under the null hypothesis. For instance, with an average rank of 
149 among 37 current smoker, the expected rank sum under the null hypothesis for this group 
would be 149 × 37 = 5513, while the observed rank sum of 4561.5 (implying an average rank 
of 123.3) appears to indicate that current smokers rate their exercise activities as less frequent. 
However, with three comparison groups, the chi-squared test with ties in the rankings and 
3 − 1 = 2 df results in a p-value of .1098. Thus, based on the available evidence, we would not 
reject the null hypothesis that the median self-rated exercise frequency rankings differ among 
the three groups of smokers and nonsmokers.

FRIEDMAN TEST

The Friedman test can be considered a generalization of the Wilcoxon signed-rank test, as it 
can be used to test for changes in median ranks over time at more than just two occasions. In 
short, just as repeated-measures ANOVA is a generalization of the paired t-test, the Friedman 
test allows for the comparison of more ordinal measures taken at more than two occasions 
among the same group of people. The test can also be used with interval- or ratio-level data 
as an alternative to ANOVA, in case the assumption of normally distributed error terms is 
substantially violated, as would be the case with large outliers (see Box 15.2).

TABLE 15.7 Kruskal–Wallis Test to Compare 
Average Rank Orders in Three Groups

kwallis exer if age>19 & age<60, by(newsmoke)

Kruskal-Wallis equality-of-populations rank test

+ – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +
| newsmoke | Obs | Rank Sum |
|– – – – – – – – – – – + – – – – – – – + – – – – – – – – – – – –|
|       0 | 182 | 27480.00 |
|       1 |   78 |  12211.50 |
|       2 |   37 |   4561.50 |
+ – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +

chi-squared = 4.019 with 2 d.f.
probability  = 0.1340

chi-squared with ties = 4.418 with 2 d.f.
probability = 0.1098
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As with other ordinal statistics, we start with converting the original scores into  rankings; 
but this time we rank-order the responses of each subject over time. For example, Table 15.8 
shows the health self-ratings of eight patients on an ordinal scale with 5 points: 1 = poor, 2 = 
fair, 3 = good, 4 = very good, 5 = excellent. Each of these patients rated their own health one 
day before surgery (pretest), 1 week after surgery (Posttest 1), and 3 months after surgery 
(Posttest 2). Rather than using the original ratings, we convert them to within-subjects rank-
ings such that the lowest of the three rankings receives a 1, the second lowest a 2, and the 
highest a 3.2 Under the null hypothesis, we assume that the mean rankings do not change over 
the three measurement occasions. Friedman’s statistic amounts to comparing observed rank 
sums for each measurement occasion to expected rank sums under the null-hypothesis of no 
difference. The test statistic has a chi-square distribution with df equal to the number of mea-
sures − 1. As the results show, the Friedman test is significant with p < .002; thus we reject the 
null hypothesis that self-rated health does not change over time.

TABLE 15.8 Friedman Test to Compare Average Rank Orders Over 
Three Occasions

 Original Subject Ratings: | Within-Subject Ranks:
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +
  N | pre post1 post2 | Rpre Rpost1 Rpost2 |
 – – – | – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – |
  1 |  3  3  5 | 1.5    1.5    3 |
  2 |  2  2  4 | 1.5    1.5    3 |
  3 |  3  3  3 | 2    2    2 |
  4 |  1  2  2 | 1 2.5 2.5 |
  5 |  2  4  4 | 1 2.5 2.5 |
  6 |  1  2  4 | 1    2    3 |
  7 |  1  3  5 | 1    2    3 |
  8 |  3  4  5 | 1      2    3 |
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +
 Sums: 16 23 32 | 10  16 22
Means:   2   2.875   4 |   1.25    2   2.75

Friedman’s Chi-squared statistics: 12.0, df.: 2, p<0.002

Wilcoxon signed-rank test

 Ho: Rpre = Rpost1  Ho: Rpost1 = Rpost2  Ho: Rpre = Rpost2
    z = −2.191      z = −2.206     z = −2.487
Prob >|z| = 0.0285  Prob >|z| = 0.0274 Prob >|z| = 0.0129

2 In the case of ties, the same rules apply as for the Wilcoxon rank-sum test; see Table 15.3.

• Interval/ratio or ordinal level of measurement for single dependent variable
• Single group/sample measured at three or more occasions (correlated measures)
• Randomly drawn study sample for population inferences

ASSUMPTIONS OF FRIEDMAN TESTBOX 15.2
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As we used the Friedman test in the example to test for significant changes in the aver-
age rankings over three occasions, it is a multivariate test. If the test is significant (α < 0.05), 
it usually makes sense to follow up with three Wilcoxon signed-rank tests, each of which 
compares pairs of rankings from two rating occasions at a time. At the bottom of Table 15.8, 
we see that all rating pairs exhibit significant increases in the average rankings between the 
two time points.3

 SPEARMAN’S RANK-ORDER CORRELATION AND KENDALL’S TAU-B

When we discussed the Pearson’s r correlation in Chapter 10, we emphasized two important 
assumptions concerning its usage: Pearson’ r is designed as a correlation coefficient between 
two interval- or ratio-level variables, because the actual formula assumes one can compute 
mean and distance values for the two variables involved. Pearson’s r also assumes that two 
variables are linearly related. Ordinal correlation coefficients do not make such assumptions; 
thus, they turn out to be more appropriate correlations in many situations. As is the case 
for other ordinal statistics, Spearman’s rank-order correlation rho (ρ) can be used with vari-
ables measured at the ordinal, interval, or ratio level. In fact, Spearman’s ρ is equivalent to 
the Pearson’s r correlation computed on the rank scores, instead of the original scores. Like 
Pearson’s r, and many other correlation coefficients, Spearman’s ρ is bounded by −1 and 
+1 with zero indicating the absence of any correlation between the two rank-order variables 
 compared. The simplified computational formula for Spearman’s ρ is:4

ρ = −

−

∑1
6

1

2

2

d
n n

i

( )
,

where di refers to the differences in paired rankings and n equals the number of pairings 
(sample size).

The example data in Table 15.9 show diastolic blood pressure (DBP) readings for eight 
individuals taken within 10 minutes. Notice the big outlier of 126 mmHg: It influences both 
the mean and the standard deviation (and variance) of the Time 1 measure, all of which are 
sensitive to outliers.

The same can be said about the Pearson’s r correlation: It too is sensitive to outliers 
and nonlinearity in the relationship between the two variables involved. As Spearman’s ρ 
is calculated on the ranks, the existence of outliers does not necessarily reduce the fit of the 
correlation model to the data, as shown in Figure 15.3. As long as there is a largely mono-
tone increasing (decreasing) relationship between the two variables involved—higher ranks 
on one variable are associated with higher (lower) ranks of the other variable—Spearman’s 
ρ will be large, even if the relationship is not linear. On the other hand, outliers often have 
a disproportionate impact on the linearity of a relationship. As a result, in the example of 
Table 15.9 we have a Pearson’s r correlation of 0.58 versus 0.88 for Spearman’s ρ. The two 
graphs in Figure 15.3 confirm the better fit of ρ compared to r. This suggests a quick useful 
test for correlations based on interval-level variables: If Spearman’s ρ exceeds Pearson’s r by 
a substantial margin, there is likely to be some nonlinearity in the relationship involved. In 
that situation, we would graph the relationship and see whether a better fitting function can be 
found through  transformations of one or the other variable.

3 The negative z-scores are a result of the fact that the later higher ranking is subtracted from the earlier 
lower ranking in each pair.
4 A more detailed discussion can be found in Siegel, Nonparametric Statistics.
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TABLE 15.9 Diastolic Blood Pressure Data for Spearman’s Rank-Order Correlation r

ID DBP 

READINGS 

TIME 1 

DBP 

READINGS 

TIME 2

DBP 

RANKINGS 

TIME 1

DBP 

RANKINGS 

TIME 2

DIFFERENCE IN 

PAIRED RANKINGS 

d
I

d
I
2

1 75 1 1 1  0 0

2 84 3 3 3  0 0

3 91 4 6 4  2 4

4 126 7 8 7  1 1

5 87 5 5 5  0 0

6 95 8 7 8 −1 1

7 86 6 4 6 −2 4

8 83 2 2 2  0 0

x
1
 = 90.875

SD
1 
= 15.36

x
2
 = 87.625

SD
2 
= 5.40

∑d
i
2 = 10
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ρ = −

−

= −
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 SUMMARY

In this chapter, we discussed several ordinal statistics as alternatives to the t-test, one-way 
ANOVA, repeated-measures ANOVA, and the Pearson’s r correlation coefficient. The statis-
tics discussed in this chapter may all be applied to original ordinal variables as well as inter-
val- or ratio-level variables. In the latter case, comparing the results of the parametric to the 
nonparametric statistics is often instructive in shedding light on the effects of violations of the 
underlying assumptions of the parametric models.

While ordinal statistics are often encountered in the clinical literature (Nathanson et al., 
2011; Prendergast, Jakobsson, Renvert, & Hallberg, 2012), statistics used to analyze nominal 
categorical data that cannot be rank-ordered are even more important. Many data sets relevant 
to clinical problems involve simply counting the number of patients, who fall into one or 
another diagnostic category or who do or do not experience a clinical outcome of interest. It 
is to the analysis of such categorical outcomes that we will turn next.

Read: Prendergast, V., Jakobsson, U., Renvert, S., & Hallberg, I. R. (2012). Effects of a stan-
dard versus comprehensive oral care protocol among intubated neuroscience ICU patients: 
Results of a randomized controlled trial. Journal of Neuroscience Nursing, 44(3), 134–146.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  Provide a clear definition of the outcome/dependent variables and a short description of 
the instrument used to measure them.

(d)  Provide a clear definition of all independent/predictor variables and a short description of 
the instruments used to measure it.

(e)  Describe the study design: How many comparison groups? How many observations per 
subjects? Randomization? Attrition?

(f)  On page 139, the authors mention the specific statistical models used to compare subjects 
in the intervention and control groups and over time. List each of the ordinal tests and pro-
vide a rationale for why they were used. Why did the authors use a Bonferroni adjustment 
for the Wilcoxon signed-rank test, and why did they set the α-level for this adjustment to 
0.017?

(g)  In tables 4 and 5, the authors associate specific tests with specific variables tested. Provide 
rationales for the authors’ choices.

(h)  Summarize the main findings in your own words. Are the conclusions of the authors 
 consistent with the evidence presented?

LITERATURE APPLICATION

 EXERCISES

1. Compute the Pearson’s r correlation for the rankings of the DBP1 and DBP2 measures 
in Table 15.9 and verify that this sample correlation is identical to the Spearman’s ρ 
correlation. You may either use software or a hand calculator using the Pearson’s r 
formula from Chapter 10.



184 III. MODELS FOR CATEGORICAL OUTCOME MEASURES

2. The following data show the rankings of 12 hospitals by two independent inspection 
teams in terms of a safety score. The safety score is a composite measure that takes into 
account infection risks, surgical errors, other bodily harm attributable to interventions, 
and so forth, with a theoretical range of 0 to 100.

Hospital:  A B C D E F G H I J K L
Team A Score: 95 87 74 93 96 88 99 86 85 92 94 81
Team B Score: 93 90 78 96 94 89 97 90 89 90 93 88

(a) What test would you use to determine whether the two teams report similar safety 
rankings for the 12 hospitals?

(b) State the null hypothesis for the test statistic.
(c) Report your results.

3. The following safety rankings compare two groups of 10 hospitals each, randomly chosen 
from two states.

Hospital:  A B C D E F G H I J
State A Score: 94 85 74 94 91 86 95 85 83 89
State B Score: 93 90 78 96 90 84 92 90 89 90

(a) What test would you use to compare the safety of the hospitals in the two states?
(b) State the null hypothesis for the test statistic.
(c) Can we conclude that the safety records of hospitals in State B are better than those 

in State A?

4. When comparing mean outcomes on an interval-level variable, would it ever be 
preferable to use the Kruskal–Wallis test over ANOVA? If yes, why? If no, why not?

5. In a study of several thousand adults, the Pearson’s r correlation between two variables 
(age and the BMI) is +0.28 (p < .046) and the Spearman’s ρ correlation between the 
same two variables is +0.47 (p < .001). What could be the reason for the difference in the 
magnitude of the correlations?

 REFERENCES

 Brunelli, C., Zecca, E., Martini, C., Campa, T., Fagnoni, E., Bagnasco, M., . . . Caraceni, A. (2010). Comparison of 
numerical and verbal rating scales to measure pain exacerbations in patients with chronic cancer pain. Health 
Quality Life Outcomes, 8, 42.

 Nathanson, B. H., Henneman, E. A., Blonaisz, E. R., Doubleday, N. D., Lusardi, P., & Jodka, P. G. (2011). How 
much teamwork exists between nurses and junior doctors in the intensive care unit? Journal of Advanced 
Nursing, 67(8), 1817–1823.

 Ogden, C. L., Carroll, M. D., Curtin, L. R., McDowell, M. A., Tabak, C. J., & Flegal, K. M. (2006). Prevalence of 
overweight and obesity in the United States, 1999–2004. The Journal of the American Medical Association, 
295(13), 1549–1555.

 Prendergast, V., Jakobsson, U., Renvert, S., & Hallberg, I. R. (2012). Effects of a standard versus comprehensive 
oral care protocol among intubated neuroscience ICU patients: Results of a randomized controlled trial. 
Journal of Neuroscience Nursing, 44(3), 134–146.

 Wong, C. L., Holroyd-Leduc, J., Simel, D. L., & Straus, S. E. (2010). Does this patient have delirium? Value of 
bedside instruments. The Journal of the American Medical Association, 304(7), 779–786.



185

CHAPTER 16

 Frequency Cross-Tabulations: 2 × 2 Tables

In the last chapter, we discussed some commonly encountered ordinal statistics. While nurses 
and physicians often employ rating scales, one example being visual analog scales for pain 
measurement (Hjermstad et al., 2012), even more important is the “simple” classification of 
patients for both clinical practice and research. Examples include knowing a patient’s blood 
type, clinical diagnosis, presence or absence of a certain genetic trait, family situation, and so 
forth. All of this information may trigger different courses of clinical actions, making clas-
sification a fundamental component of clinical work.

In our general discussion of levels of measurement in Chapter 2, we emphasized that a 
good classification system only requires the establishment of mutually exclusive categories. 
For convenience in the statistical analysis of data sets, we usually assign numerical labels 
to the nominal categories; yet, as illustrated in Table 16.1, such numerical labels are com-
pletely arbitrary. This implies we cannot use them in our mathematical calculations at all: 
For instance, to say that the “average blood type” among U.S. residents is 3.4 would be a 
nonsensical statement.

This begs the question: How should we analyze categorical data? The answer at its most 
basic level is simply that we can count the number of people, cases, or observations that fall 
into certain categories of interest. As it turns out, that does not prevent us from using sophisti-
cated statistical models to explore the relationships among categorical variables, but they are 
different from both the parametric and ordinal models we have dealt with so far.

Looking at the eight blood types listed, one might want to know whether the prevalence1

of particular blood types is the same across ethnic or gender groups. Or one might be inter-
ested in establishing whether the risk2 of leukemia is the same or differs across blood types. 
These kinds of comparisons involve counts and proportions as the basic staple of describing 
clinical phenomena.

In this chapter, we will start our discussion of statistical models for categorical data with 
an exposition on the 2 × 2 frequency table. This table format is used to display the simplest 

1 The prevalence is simply the proportion of cases in a well-defined population at a given time that has 
the trait or disease in question.
2 The absolute risk is a measure of the rate of (new) occurrence of a disease or adverse event in a popula-
tion over a specified period of time. It is also known as the incidence rate. The relative risk (RR) is the 
ratio of the incidence rates in two comparison groups. See the discussion of RR below.
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TABLE 16.1 Alternative Numerical Codes for Blood Types

BLOOD TYPE CODING SCHEME 1 CODING SCHEME 2 CODING SCHEME 3

A+

A−

B+

B−

AB+

AB−

O+

O−

1

2

3

4

5

6

7

8

8

7

6

5

4

3

2

1

1

3

8

6

2

4

7

5

possible example of a bivariate distribution, that is, the simultaneous distribution of cases 
across two variables, each having two categories. Not only are such tables frequently encoun-
tered in health care research, but they can be used to demonstrate the calculation of many 
statistical measures commonly found in the health care literature.

(Caution: Do not confuse the 2 × 2 frequency table with the 2 × 2 factorial analysis-of-
variance (ANOVA) table. In the case of a factorial ANOVA with two factors, the tables show 
the mean scores for the outcome variable within the categories created by crossing two factor 
variables. That is, in a two-factor ANOVA we are dealing with three variables, including the 
two independent factors and the outcome variable, which is measured at the interval level).3

Going back to the 2 × 2 frequency table, the capitalized letters in Table 16.2 are used to 
indicate the numbers of cases or study subjects in each of the cells. These letters can then be 
employed to define various statistical measures.

In Table 16.2, both variables are examples of nominal/categorical variables forming a 
2 × 2 table, in which each variable has only two categories: One variable represents the gender 
of a subject, the other the absence or presence of (a diagnosis of) diabetes. In this situation, the 
data entries in the various cells (represented here by the letters) refer to frequency counts. For 
instance, A represents the number of female subjects who have been diagnosed with diabetes 
and D represents the number of male subjects who do not have diabetes, and so forth. Overall, 
a 2 × 2 table has four (inner) cells denoted here by their frequency counts: A, B, C, and D. 
There are also four marginal cells: E, F, G, and H, which contain sums of the number of cases 
in their respective rows or columns. Thus, the number of cases in the first row (=G) equals the 

TABLE 16.2 2 × 2 Table Showing Joint Distribution of Study Subjects Across 
Two Variables: Gender and Diabetes Status

DIABETES STATUS ROW MARGINAL FREQUENCIES

HAS DIABETES NO DIABETES

Gender
Women A B G = A + B

Men C D H = C + D

Column marginal frequencies E = A + C F = B + D Totals I = E + F = G + H = A + B + C + D

3 Recall the nutrition and exercise data introduced in Chapter 11, in which the outcome measure is the 
body mass index (BMI), and study participants are exposed to two types of interventions designed to 
reduce persons’ BMI. In such a study, the results are reported as mean BMI scores in four cells repre-
senting four groups formed by the independent factors: nutrition and exercise intervention, nutrition 
only intervention, exercise only intervention, neither intervention–control groups.
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sum of the cases in the inner cells for women, such that A and B equal all women in this study, 
the number of cases in the first column (=E) equals the sum of the cases in the inner cells for 
diabetics, such that A and C equal all persons with diabetes in this study, and so forth. Finally, 
cell I refers to the table total, which is simply the sum of the frequencies in all inner cells, or 
the number of all study participants (=total sample size).

 MEASURES OF ASSOCIATION FOR 2 × 2 TABLES

 The Odds Ratio

The odds ratio (OR) is a very common measure of association in the biomedical and epide-
miological literature. As the name “odds ratio” implies, the OR is a ratio of two odds.

Thus, we first begin by defining the odds themselves. In a 2 × 2 table, there are two 
row odds and two column odds. The row odds for the first row are defined as A/B and for 
the second row, they are defined as C/D. In the case of Table 16.2, A/B refers to the odds of 
having diabetes versus not having diabetes among female subjects (first row) and C/D refers 
to the odds of having diabetes versus not having diabetes among male subjects ( second row). 
The column odds are, respectively, defined as A/C (first column) and B/D (second  column). 
In Table 16.2, they represent the odds of being female versus male among diabetics (first 
 column) and the odds of being female versus male among subjects who are not diabetic 
( second c olumn).

Now we can define the odds ratio. The OR is a symmetric measure, which means it does 
not matter whether we use the column odds or the row odds in defining it; the result will be 
the same either way:

OR = = =

A
B
C
D

A
C
B
D

AD
CB

Before we continue, let us use the numerical example in Table 16.3, substituting frequencies 
for the capital letters.

From Table 16.3 we get:

Odds of having diabetes among females: A/B = 100/300 = 0.333

Odds of having diabetes among males: C/D = 120/180 = 0.667

Odds ratio (male/female): OR = (120/180)/(100/300) = 2.0; according to the sample data in 
this table, the odds of having diabetes are 2.0 times greater (or twice as large) among men 

TABLE 16.3 2 × 2 Table Showing Joint Distribution of Study Subjects Across 
Two Variables: Gender and Diabetes Status (Numerical Example)

DIABETES STATUS ROW MARGINAL FREQUENCIES

HAS DIABETES NO DIABETES

Gender
Women 100 300 400

Men 120 180 300

Column marginal frequencies 220 480 700
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compared to women. (We can also take the inverse: 1/OR = (100/300)/(120/180) = 0.5, which 
means the odds of having diabetes are only half as large among women than men, but it is 
easier to say it the other way around.)

Earlier we mentioned that the OR is a symmetric measure.4 This means it does not mat-
ter whether we compute the OR as a ratio of the row odds (as above) or the ratio of the column 
odds. For the example in Table 16.3, we would get the following result with column odds:

OR = (B/D)/(A/C) = (300/180)/(100/120) = 2.0,

or using the inverse: 1/OR = (A/C)/(B/D) = (100/120)/(300/180) = 0.5

Thus, the OR behaves like a correlation coefficient: It does not change, regardless of which 
variable we consider the dependent or independent variable.

There is an alternative way of writing odds and ORs that is also common in the litera-
ture. Odds are often defined as the ratio of the probability of an event occurring over the 
probability of the event not occurring: odds = p/(1 − p). As a probability can be viewed as 
the proportion of an event occurring in the relevant universe, this alternative formulation 
of the odds is nothing new. For instance, in Table 16.3, we have 400 women, 100 of whom 
have been diagnosed with diabetes. Thus, the probability of diabetes among these women 
is p = 100/400 = .25. It follows, the probability of not having diabetes is .75, and the odds 
of having diabetes are: odds = .25/.75 = .333. As the probability of having diabetes among 
men is p = .4 (=120/300), it follows that the probability of not having diabetes among men is 
1 − p = .6; thus, the odds are again p/(1 − p) = .4/.6 = .667. Forming the ratio of the two odds 
among men and women, we again obtain:

OR = [pm/(1 − pm)]/[pw/(1 − pw)] = [0.4/0.6]/[0.25/0.75] = 2.0

Thus, whether we use the original cell frequencies or the probabilities, we get the same 
results. We mentioned earlier that ORs can be thought of as measures of association, just 
like a correlation coefficient. However, the neutral value of “no relationship” for correlation 
coefficients is zero; for the OR, the neutral value is one. To see why, consider the following 
example. Suppose the data in Table 16.3 had shown that 160 of the 400 women had been 
diagnosed with diabetes. In that case pw = pm = .4 or the probability of diabetes would be 40% 
among members of both genders. Given the formula for the OR, we would get the following 
results: OR = (0.4/0.6)/(0.4/0.6) = 1. If the odds of having diabetes are the same among men 
and women (which implies that OR = 1), then there is no relationship between diabetes and 
gender, as gender would not account for any variation in diabetes.

Another feature of the OR is that it can only be positive5 and its distribution is asym-
metric around the neutral value of 1. For instance, the inverse of 5 is 1/5; consequently, the 
following statements are perfectly equivalent: (a) “the odds of leukemia in population A are 

4  The symmetry of the OR is the reason why this measure of association is used in case-control studies, 
in which cases with a disease are compared to controls without the disease with respect to their odds 
of having been exposed to a suspected risk factor. As the OR is symmetric, we get the same estimate, 
whether we are looking for the odds of contracting the disease given exposure status or the odds of 
exposure given the disease state. For more detailed discussion of case-control studies, see Stommel and 
Wills (2004).
5 Recall that ORs are based on frequency counts in cells, with zero being the lowest possible number of 
cases in a cell; however, a ratio with zero in the denominator (N/0) is not defined.
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5 times larger than in population B,” or (b) “the odds of leukemia in population B are only 
one-fifth of the odds in population A.” We can, however, convert ORs using the natural loga-
rithm transformation [ln(OR)], which results in a symmetric distribution around the value of 
zero.6 As we will see in the following section, this transformation allows us to construct fairly 
easily the confidence intervals (CIs) for the OR.

 CONFIDENCE INTERVALS FOR ODDS RATIOS

So far, we have only considered the sample OR, but as always, we must be able to draw infer-
ences about the population OR. Given the asymmetry of OR values around one, it is no surprise 
that the sampling distribution of the original OR is positively skewed; however, the sampling 
distribution of the log-transformed OR is approximately normal. Thus, we can use the same 
procedure as for the t-test to construct 95% CIs of the OR. Recall from Chapter 8, that we obtain 
the 95% CI for a mean as follows: We calculate the point estimate of the mean from the sample 
data and add or subtract the t-value.95 multiplied by the standard error of the mean (SEM):

x xt t− × < < + ×SEM SEMμ

Likewise, we can construct the 95% CI for the log-transformed OR as follows:

ln(sample-OR) ± t-value × SE(ln(OR)), or

ln(sample-OR) – t × SE(ln(OR)) < ln(population-OR) < ln(sample-OR) + t × SE(ln(OR))

All we need now to construct the 95% CI is an estimate of the standard error of the log-
transformed OR and the appropriate t-value. The formula for the standard error of ln(OR) is: 

SE of ln(OR) = 
1 1 1 1
A B C D
+ + +

where A, B, C, and D are the frequencies of the inner cells of the 2 × 2 table. With a sample of 
n = 700, the t-distribution is virtually identical to the normal distribution (see Appendix C) and 
the cut-off points for a 95% CI on the normal distribution equal ±1.96 standard errors. With 
this information, we can use the data in Table 16.3 to estimate the 95% CI for log-transformed 
OR as follows:

ln( . ) .0 5 1 96 1
100

1
300

1
120

1
180

± × + + +

−0.693 ± 1.96 × 0.165

−0.693 ± 0.3234

−1.0164, −0.3696

Taking the antilog (exponentiating using the base e) of −1.0164 and −0.3696, we get the fol-
lowing estimate of the 95% CI of the original OR: 0.362 < pop(OR) < 0.691. Notice that this 
CI is not symmetric around the point estimate: 0.5 − 0.362 = 0.138 and 0.691 − 0.5 = 0.191. 
Also note that this CI does not contain the neutral value of one. Thus, we would reject the null 

6 For an informal refresher on how to use exponentiation and logarithms, see Appendix H.
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TABLE 16.4 Cross-Tabulation of Gender and Diabetes Diagnosis

gender

|
|
|

diabetes:

has diabetes  no diabetes | Total
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

female
male

|
|

100
120

300
180

|
|

400
300

– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
Total | 220 480 | 700

Pearson chi2(1) = 17.8977  Pr = 0.000
Fisher’s exact =         0.000

 1-sided Fisher’s exact =         0.000

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
diabetes | OR(female/male) z P|z| [95% Conf. Interval]

– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
gender | 0.5 –4.20 0.000 .361850 .690894

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
diabetes | OR(female/male) z P|z| [95% Conf. Interval]

– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
gender | 0.2 –4.20 0.000 1.447401 2.763574

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
diabetes | OR(female/male) z P|z| [95% Conf. Interval]

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
gender | 0.625 –4.20 0.00 .502008 0.778124

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
diabetes | OR(female/male) z P|z| [95% Conf. Interval]

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
gender | 1.6 –4.20 0.00 1.285142 1.991998

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

pwcorr gender diabetes, sig

|  gender  diabetes
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – 

gender

diabetes

|
|
|
|

1.0000

–0.1599
0.0000

 1.0000

hypothesis that the OR = 1 in the population, or that gender is not related to the odds of having 
a diabetes diagnosis. Table 16.4 shows the 2 × 2 table from Table 16.3, the OR and its inverse, 
the 95% confidence limits associated with the OR, and the p-value associated with a z-value 
of 4.2 on the normal distribution. Recall that our point estimate for the log-transformed OR 
was −0.693 and our standard error estimate was 0.165. The z-value of −0.693/0.165 = 4.2 indi-
cates that the observed log-transformed OR is 4.2 standard errors away from the null hypoth-
esis value of zero.7 The associated p-value is smaller than .0005, making it very unlikely that 
the observed sample OR is just the result of random fluctuations.

7 Remember: The neutral value for OR equals one, but the neutral value for the log-transformed OR 
equals zero.
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 THE RELATIVE RISK RATIO

The relative-risk ratio (RRR) is (sometimes) defined as the ratio of two probabilities. If the 
individuals in a study group are followed for the same period of time, the risk or probability 
of an adverse outcome is simply the proportion of people in any given group of interest that 
experiences the outcome (disease) in question.8 The relative risk (RR) is the ratio comparing 
the risk in one group to that in another: RR = p1/p2.

Going back to Table 16.1, there are two rows indicating the gender of a person. In the 
second row, we have a total of H women; of these C men have been diagnosed with diabe-
tes. Thus the proportion of diabetics among these men equals C/H = pm. The first row shows 
the proportion of diabetics among women: A/G = pw. The ratio of these two proportions or 
probabilities is the relative risk of having diabetes, with gender being the “risk factor”:

RR = = =

p

p

C
H
A
G

CG
HA

m

w

Even though it does not make much sense from a causal point of view, we could ask what is 
the “relative risk” of being a man, comparing diabetics and those not diagnosed with diabetes. 
This “RR” would be:

RR = =

C
E
D
F

CF
ED

Notice the important difference to the OR: While the OR is symmetric (it does not matter 
whether we start with the column odds or the row odds), the RRR is not symmetric:

CG
HA

CF
ED

≠

As with the OR, the “neutral” value (indicating an absence of any association) is equal to one. 
If two groups, such as men and women, face the same risk of diabetes, then group membership 
(gender) is not related to the risk of diabetes; but if p1 = p2, RR = 1.

From the data in Table 16.3 we get:

Risk/probability of having diabetes among males: C/H = 120/300 = 0.4

Risk/probability of having diabetes among females: A/G = 100/400 = 0.25

Relative risk (male/female): RR = (120/300)/(100/400) = 0.4/0.25 = 1.6

In words: According to the sample data in this table, the risk of having diabetes is 1.6 times 
greater among men than among women.

(We can also take the inverse: 1/RR = (100/400)/(120/300) = 0.25/0.4 = 0.625, which 
means the risk of diabetes among women is only 62.5% as large as the risk among men.)

8Note: In Chapter 19, we encounter a more precise definition of RR as the ratio of two incidence rates. 
As mentioned, if individuals in the two comparison groups are observed for the same time, the two 
definitions are identical. Both definitions are used in the literature.
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 CONFIDENCE INTERVALS FOR RELATIVE-RISK RATIOS

Again, we have only considered the sample RR, but we need to be able to draw inferences 
about the population RR. Like the OR, RR values are always positive with no upper limit; 
it follows that they have a sampling distribution skewed to the right. Again, we can normal-
ize this distribution through logarithmic transformation: ln(RR) is approximately normally 
distributed. Thus, in order to construct CIs, we only need an estimate for the standard error of 
ln(RR). It is given by the following formula:

SE of RRln( )
( ) ( )

=

+

+

+

B
A A B

D
C C D

With this information, we can use the data in Table 16.3 to estimate the 95% CI for the 
 log-transformed RR as follows: ln(sample-RR) ± t-value × SE(ln(RR)), which yields the 
 following es timates:

ln(16) 196

47 196 1

. .

. . .

( ) ( )
± =

= ± ×

+

+

+

300
100 100 300

180
120 120 180

0 0 1118 47 2191= ±0 0. . .

Consequently, the lower CI limit equals 0.47 − 0.2191 = 0.2509 and the upper CI limit 
equals 0.47 + 0.2191 = 0.6819. Taking the antilog of 0.2509, e0.2509, yields an estimate of 
1.2852 for the lower limit of the 95% CI of the original RR; the antilog of the upper limit, 
e0.6891, yields 1.9919. Thus the 95% CI for this RR is: 1.2852 < pop(RR) < 1.9919. Notice 
again, this CI is not symmetric around the point estimate of RR = 1.6: 1.6 − 1.2852 = 0.3148 
and 1.9919 − 1.6 = 0.3919, but it is symmetric around the point estimate of ln(RR).

 SIMILARITIES AND DIFFERENCES IN THE 
MAGNITUDES OF OR AND RR

In general, the point estimates of the OR and RR, when using the same data, are not identi-
cal or even of the same magnitude. In our numerical example, we computed an OR of 2.0 
and an RR of 1.6. Their inverses are obviously also different from each other: 1/OR = 0.5, 
1/RR = 0.625. However, epidemiologists sometimes invoke the rare disease assumption as 
an exception to this rule. If a disease is quite rare, say its overall prevalence in the popula-
tion is 2 in 2,000, then the risk or probability of its occurrence is 2/2,000 and the odds of 
its occurrence is 2/1,998. Suppose further that we have collected case-control data from 
a large-scale registry. We find that the odds of exposure to a suspected risk factor among 
individuals with the disease are 5/1,995, while the odds of exposure among individuals 
without the disease are 1/1,999. Computing the OR, we get (5/1,995)/(1/1,999) = 5.01. 
In other words, the odds of exposure to the risk factor are approximately 5 times larger 
among people with the disease than among those without it. As we know that the OR is 
a symmetric measure, we might just as well say that the odds of contracting the disease 
among individuals exposed to the risk factor are 5 times larger than among people not 
exposed to the risk factor. However, with prospective data we could have computed an RR 
of (5/2,000)/(1/2,000) = 5. Thus, if the data involve rare diseases, the OR and RRR yield 
approximately the same values: OR ≈ RR.
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 THE CORRELATION COEFFICIENT PHI (Φ)

Another commonly used measure of association for a 2 × 2 table is the correlation coefficient 
Phi (Φ). As shown in Appendix F, this measure is identical to Pearson’s r correlation coef-
ficient, but it can be computed in a simple way from the frequency counts in the 2 × 2 table:

Phi ( )=Φ
( )AD BC

EFGH

−

In words, the Phi coefficient can be computed (using a calculator) by dividing the difference 
between the cross-products of the inner cells by the square root of the product of all marginal 
cells. Like the Pearson’s r (and unlike the OR), this correlation coefficient is bounded by ±1, 
with zero (not one) indicating “no relationship.” However, in most cases, the sign of this 
coefficient should be ignored. Recall that the two variables involved are often nominal or cat-
egorical variables with arbitrary numerical labels. Thus, recoding gender from “1 = women, 
0 = men” to “0 = women, 1 = men” would reverse the sign of the coefficient, but leave the 
magnitude of the estimate unchanged. Only the latter, that is, the magnitude, is of interest in 
such a situation.

For a numerical example, we go back to Table 16.3:

Phi ( )=Φ
( ) ( )100 180 300 120

220 480 400 300

18000 36000

12672

× − ×

× × ×

=
−

0000000

18000
112569 9782

0 1599=
−

= −

.
.

Ignoring the sign, we can say that the observed sample correlation between gender and diabe-
tes status is moderately small at 0.16. However, as the results in Table 16.4 show, the correla-
tion is statistically significant at p < .00005. Thus again, we would reject the null hypothesis 
of no relationship between the two variables.

 THE PEARSON CHI-SQUARED ( χ2) STATISTIC

So far, we have considered three measures of association commonly applied to data from 
2 × 2 tables. The three measures of association we just introduced (the OR, the RRR, and Phi) 
were estimated from the available sample data. We reported p-values, based on the normal 
distribution test, for the null hypotheses that OR = 1 and RR = 1 and Phi = 0. There is another 
significance test frequently applied to categorical data, the Pearson Chi-squared (χ2) test. 
It is easily one of the most frequently used statistical tests to determine whether two variables 
can be considered related “beyond a reasonable doubt.” This is an inferential question rather 
than a descriptive one. As we have emphasized before, any study sample data are subject to 
numerous sources of measurement and sampling error; thus we can expect that another data 
set from the same target population would show somewhat different results. Consequently, 
we must ask: Is the observed sample pattern substantial enough, so that it cannot be easily 
“explained away” as the result of mere sampling fluctuations?

To answer such a question, we need (a) to construct an appropriate test statistic, and 
(b) to employ an appropriate probability model that tells us how likely or unlikely a particular 
sample result is under the conditions assumed in the null hypothesis.

In order to construct the χ2-statistic, we first state a null hypothesis. The most common 
one would be to assume that the two variables (in Table 16.2, it is gender and diabetes status) 
are not related. If they are not related, what result should we expect to observe in the sample 
data? As stated before, we should expect the same prevalence of diabetes among both men and 
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women. (Again, that is the same as saying: Knowing that someone is male or female does not 
help in improving the prediction of his or her diabetes status.)

For Table 16.2, the expected values in the inner cells, if gender and diabetes are not 
related, are as follows:

for cell A for cell B for cell C for cell D: , : , : , :E G
I

F G
I

E H
I

F H
I

× × × ×

(For instance, the overall proportion of individuals diagnosed with diabetes is E/I. If we mul-
tiply both the number of females [G] and the number of males [H] by E/I, we get the expected 
number of female and male sample subjects with diabetes, as we assume under the null 
hypothesis that male and female individuals do not differ with respect to their probability 
of having diabetes. Thus, the formula guarantees that the “expected” percentage of males or 
females with diabetes is the same. By the same token, the formula also guarantees that the 
percentage of males or females without diabetes is the same.)

In the final step, we can construct the Pearson χ2-statistic. For each of the four inner 
cells, we subtract the expected cell frequency (Ex) from the observed cell frequency (Ob), 
square the difference, and divide it by the expected cell frequency number. This is our test 

statistic: χ2
2

=
∑ −( )Ob Ex

Ex
. Using the letters from Table 16.2, we can write out the χ2-statistic as 

follows:

χ
2

2 2 2

=
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⎝
⎜
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⎜
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C E H
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E H
I

D −−
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×

⎛

⎝
⎜
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⎟
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I

2

Substituting the numbers from Table 16.3, we get:

χ
2

2 2

100 220 400
700

220 400
700

300 480 400
700

48
=

⎛

⎝
⎜

⎞

⎠
⎟
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⎜
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×

×
+

−
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00 400
700

120 220 300
700

220 300
700

180 480 300
700
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( . )
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100 125 71
125 71

300 274 29
274 29

120 94 29
94 29

2 2 2

++
−( . )

.
180 205 71

205 71

2
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−
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+

+
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.
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.
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.
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2

2 2 2 2

005 71
661 00
125 71

661 00
274 29

661 00
94 29

661 00
205 71.

.

.
.
.

.
.

.

.
= + + +

 = 5.258 + 2.410 + 7.010 + 3.213 = 17.891

Except for small rounding errors, this is the χ2-value reported in Table 16.4. To understand the 
use of this statistic, we need to look at its behavior under different assumptions. Suppose the 
null hypothesis is literally true. That means the observed frequency values in the inner cells do 
not deviate from the values expected on the basis of the null hypothesis. In that case, numera-
tors associated with each cell must be equal to zero, as each cell difference, such as (A − EG/I) 
or (B − FG/I) must be zero. Now suppose the observed sample cell frequency A differs from 
the expected frequency EG/I. As the difference is squared, it does not matter, whether the dif-
ference is positive or negative. What we can say for sure though is that larger deviations lead 
to larger χ2-values. Now, suppose the null hypothesis is true. It states that, in the population 
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from which the study sample is drawn, gender and diabetes are not related. Because of the 
usual sampling fluctuations, we do not expect that any sample drawn from such a population 
would return an observed χ2-value that is exactly equal to zero. Given the sampling fluc-
tuations, we would be quite prepared to observe some deviations from zero. However, the 
larger the observed χ2-statistic becomes, the less compatible it is with the null hypothesis, as 
it is unlikely that mere random sampling fluctuations would produce very large deviations of 
observed frequencies from expected frequencies. If the observed value is quite unlikely, say it 
occurs in less than 5% of all samples by chance, then we would reject the null hypothesis and 
would claim that the evidence is inconsistent with the null hypothesis.

In the numerical example of Tables 16.3 and 16.4, the observed sample χ2-statistic is equal 
to 17.8977. Under the assumption that the null hypothesis is true, we ask: Could mere sampling 
fluctuations have produced a χ2-value this large? In order to answer this question, we compare 
the observed sample value of the test statistic to the theoretical χ2-distribution with 1 degree of 
freedom. Tabled values of this distribution (see Appendix G) show that a χ2-value larger than 
3.841 occurs in only 5% of all samples as a result of random chance alone.9 In fact, χ2-values 
larger than 7.879 would occur as a result of random fluctuations in fewer than 5 out of 1,000 
samples. Thus, an observed χ2-value of 17.9 is “almost certain” evidence that the sample obser-
vations are not the result of a mere random fluke. We conclude with a high degree of confidence 
that gender and diabetes status are related, or that this relationship is “statistically significant.”

 FISHER’S EXACT TEST

The Pearson chi-squared test is one of the most frequently used statistical tests for categori-
cal data; however, it is inexact and produces misleading probabilities if the sample sizes are 
small. In particular, if any cell of an m-by-n frequency table has fewer than five cases and the 
total sample size is less than n = 30, we should use Fisher’s exact test as an alternative. This 
test follows the so-called hypergeometric sampling distribution (we skip the details here) and 
is computationally demanding. Most statistical software programs print out the probabili-
ties associated with Fisher’s exact test. These p-values, computed under the null-hypothesis 
assumption of no relationship between the two variables examined, are interpreted the same 
way as the probabilities associated with the χ2-test.

 SUMMARY

In this chapter, we discussed the analysis of 2 × 2 frequency tables. Pearson’s χ2-test can eas-
ily be extended to frequency tables of variables with multiple categories (m × n tables). The 
Phi correlation coefficient is limited to the comparison of two variables with two categories, 
while the OR and RRR are indices that are used to compare binary outcomes in two groups at 
a time. What all the statistical methods introduced in this chapter have in common is that they 
are based on the assumption that the variables involved are categorical, which means that the 
basic mathematical “building material” for statistical indices is the frequency counts in all the 
cells defined by the cross-classifications of the categorical variables.

As we will see in the following chapters, both the OR and the RR are also basic build-
ing blocks of multivariate regression models with categorical outcomes. As such, a thorough 
understanding of these statistics is imperative for further discussion of such models as logistic 
and hazard regressions.

9 In practice, we do not even have to look up the p-value associated with a χ2-value of 17.9, as the 
 computer printout usually provides it as shown in Table 16.4.
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Read: Baratin, D., Del Signore, C., Thierry, J., Caulin, E., & Vanhems, P. (2012). Evaluation 
of adult dTPaP vaccination coverage in France: Experience in Lyon city, 2010–2011. BMC 
Public Health, 12, 940.

(a) Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  Provide a clear definition of the outcome/dependent variables and a short description of 
the instrument used to measure them.

(d)  Provide a clear definition of all independent/predictor variables and a short description of 
the instruments used to measure them.

(e)  Describe the study design: How many comparison groups? Is the study cross-sectional or 
longitudinal?

(f)  Table 3 on page 4 contains a column of p-values. For each of these p-values, formulate 
the null hypothesis and specify the statistical test that was used to test it. What do we learn 
from these p-values? 

(g)  Table 4 also contains a column of p-values. Again, for each of these p-values, formulate 
the null hypothesis and specify the statistical test that was used to test it. What do we learn 
from these p-values?

(h)  Use ORs to test the strength of the relationship between age groups and vaccination coverage.

(i)  Table 5 shows, for four types of vaccination, the number of study respondents who reported 
the vaccination and the number whose vaccination was confirmed. Create a 4 × 2 table to 
test the null hypothesis that there is no difference in the rate of confirmation among the 
four types of vaccinations, using the chi-squared test.

(j)  Summarize the main findings in your own words. Are the conclusions of the authors 
 consistent with the evidence presented?

LITERATURE APPLICATION

 EXERCISES

1. The following 2 × 2 table shows the distribution of smokers among juniors and seniors 
in a suburban high school:

SMOKERS NONSMOKERS

Seniors 100 350
Juniors 80 520

(a) Compute the ORs and RRs and compare their magnitudes.
(b) Compute 95% CI for ORs and RRs.
(c) Formulate the null hypotheses and compute the chi-squared test.
(d) Compute the Phi correlation.
(e) Write a short narrative conclusion about your findings concerning the relationship 

between class level and smoking. 
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2. If the OR for a particular 2 × 2 table equals 1, the RRR must also be equal to 1. True or 
false? Demonstrate why your conclusion is correct.

3. If RR > 1, it follows that OR > RR; if RR < 1, it follows that OR < RR. True or false? 
Demonstrate why your conclusion is correct.

4. Suppose that the RR of falling in two nursing home populations is 3 times larger in home 
A than home B. In addition, we also know that the absolute risk of falling is 0.1 (or 10%) 
in home B. Is it true that the odds of falling in home A are more than 4 times larger than 
in home B?

5. You are given the following information: Two shipments of blood tests are tested 
for contamination. You randomly select 60 tests from Shipment A and 40 tests from 
Shipment B. Your test samples from A show that 10 are contaminated, and your test 
samples from B show that 30 are contaminated. Can we conclude with high certainty that 
Shipment B is more contaminated than Shipment A? Calculate the Pearson chi-squared 
test statistic and use the table in Appendix G to make a decision.

6. You are given the following data: In nursing home A, out of 100 residents, 10 develop 
pneumonia during the winter quarter (January–March). In nursing home B, 30 out of 120 
residents develop pneumonia during the same period.
(a) What is the RR of developing pneumonia in B over A?
(b) What is the OR comparing the odds of pneumonia in the two nursing homes?
(c) Why is OR > RR?
(d) True or false? If Phi = 0.23 in a study sample, then the OR for the same two variables 

must be different from 1.
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CHAPTER 17

 Logistic Regression With One 
Independent Variable

 ODDS, ODDS RATIOS, AND PROBABILITIES

In the last chapter, we discussed the odds ratio (OR) as a measure of association for 2 × 2 
frequency tables. As it turns out, the OR is also a major component of the logistic regression 
model. The methods we used in the last chapter to predict binary outcomes such as dead or 
alive, diagnosed with heart disease or not, rehospitalized or not, are limited as they can at best 
accommodate a few categorical predictor variables. Logistic regression on the other hand 
allows us to employ information from multiple, categorical as well as continuous independent 
variables to predict a binary outcome.

As we discussed in the last chapter, an OR is a ratio of two odds, which themselves are 
ratios of two probabilities. More precisely, the odds are a ratio of the probability of an event 
occurring over the probability of the event not occurring, where p + (1 − p) always equals 1. 
Thus we have:

odds p
p

=

−1

One can always convert the odds back into a probability, if we only know the odds: 

p odds
odds

=

+1

From this it follows that, as a general rule, p ≠ odds. If we compare the odds of an event occur-
ring in two different population groups, where p1 is the probability of the event in one group 
and p2 the probability of the same event in another group, we get the OR:

OR = =

−

−

=

−

−

odds
odds

p
p

p
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Suppose the probability of developing arthritis among persons older than 70 years 
of age is .25 (=p1) and the probability of developing arthritis among persons between the 
ages 50 and 70 is .1 (=p2); then the odds1 of developing arthritis among 70+ old persons are 
equal to:

odds p
p1

1

11
25

1 25
25
75

1
3

333=

−

=

−

= = =

( )
.

( . )
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.

.

The odds2 of developing arthritis during the younger age of 50 to 70 are equal to:

odds p
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This yields the following OR:

OR = = = =
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In words, the odds of developing arthritis in the older population (70+ years of age) are 
three times larger than in the younger population (50–70 years of age). Note again that, as 
a general rule, the OR ≠ RR. The relative risk (RR) in this example would be: RR = p1/

 p2 = 
.25/.1 = 2.5. While it would be correct to say in this instance that older persons (70+) are 2.5 
times more likely to develop arthritis than younger persons (50–70), it would be incorrect to 
say, based on the OR being equal to 3, that older persons (70+) are three times more likely to 
develop arthritis than younger persons (50–70). Instead, we should say something like this: 
The odds of developing arthritis are three times larger in the older age group.1

There are several important observations about ORs that we need to keep in mind when 
using and interpreting them:

1. We use ORs to compare the odds of an event occurring in two different 
groups. Often it is arbitrary which group is in the numerator and which is in 
the denominator. For instance, we could have expressed the above relationship 
between the age groups and the odds of arthritis as follows: The odds of developing 
arthritis in the younger population (50–70 years of age) are only one third the 
odds in the older population (70+ years of age). The strength of the relationship 
between age and arthritis is the same, whether we express it as 3 times larger in 
group A compared to group B, or as 1/3 as large in group B compared to group A. 
Thus, which group is in the numerator or the denominator can be changed through 
recoding, which may take into account which description is easier to verbalize.

2. Odds ratios are multiplicative: As OR = odds1/ odds2, it follows that 
odds2 = odds1 × OR. For example, if the odds of a specific disease are 3 times 

1 Comment: The (mistaken) interpretation of ORs as ratios of probabilities is unfortunately all too com-
mon in the clinical research literature. As mentioned in Chapter 16, in the case of a rare disease/event, 
the OR does approximate the RR ratio. Still, it is important not to confuse OR and RR, because some-
times they can be quite different in magnitude.
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larger among low-income people (say, family income <$20,000) than among 
middle-income people ($40,000–$80,000), OR1 = 3, and the odds of the same 
disease are 2 times larger among middle-income than among high-income people 
(>$80,000): OR2 = 2, then the odds among low-income people are 6 times larger 
than among high-income people: OR1 × OR2 = 3 × 2 = 6.

3. Odds ratios produce highly skewed distributions, which is a direct result of their 
mathematical properties: From the discussion in Chapter 16, we know that the 
“neutral value” for an OR, indicating no relationship between two variables, is 
equal to 1. At the upper end, the OR is unrestricted in size, but at the lower end, the 
OR is greater than zero. For instance, the odds of an event occurring in one group 
could be 10,000 times larger than in the comparison group, but the inverse of that 
ratio is 1/10,000. In short: 0 < OR < ∞ (infinity).

 THE LOGISTIC REGRESSION MODEL

Suppose we are interested in predicting a binary outcome like a low birth weight (LBW = 
<2500 g) baby versus a normal birth weight (2500+ g) baby among 400 live births drawn 
randomly from the rosters of several hospitals in a large city. One of the predictor variables we 
have information on is gestational age at birth. For the time being, we divide the gestational 
age into a simple binary predictor variable: Babies are either premature, that is, born before 
the 37th week (X = 1) or not premature (X = 0). Table 17.1 shows the distribution of cases 
displayed in a 2 × 2 frequency table.

From the discussion in Chapter 16, we already know how to analyze a table like this. 
Among the term babies we have 12 low-weight births and 215 normal-weight births; thus 
the odds of a low-weight birth among term babies are 12/215 = 0.0558. Among premature 
babies, these odds are 71/102 = 0.6961. The OR comparing premature to term babies thus is 
OR = 0.6961/0.0558 = 12.475. In words: The odds of a low-birth-weight baby are approxi-
mately 12.5 times larger among premature than among term babies.

Given these facts, we can now construct a multiplicative model, in which the odds of 
a low-weight birth among premature babies are expressed as the odds of a low-weight birth 
among term babies (=0.0558) times the OR (=12.475), which shows the difference in the 
odds between premature and term babies: 0.0558 × 12.475 = 0.6961. If we refer to the odds 
of a low-weight birth among the term babies as odds0, as X is coded 0 for this group, and the 
odds of a low-weight birth among premature babies as odds1, as X = 1 for this group, we can 
express the latter odds as follows: odds1 = odds0 ×  odds1/odds0  = odds0 × OR. In short, we 
have expressed the odds of an event occurring in one group (here: the premature babies) as a 
function of some base-odds (here: the odds of the event among term babies) times the OR that 
compares the two groups.

TABLE 17.1 2 × 2 Table of Joint Distribution of Prematurity and Low Birth Weight

BIRTH WEIGHT STATUS ROW MARGINAL FREQUENCIES

NORMAL (2500+ g) LBW (<2500 g)

Premature birth 

(<37 weeks)

No 215 12 227

Yes 102 71 173

Column marginal frequencies 317 83 400
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If we now take the natural logarithm of both sides of this equation and multiply the OR 
by X, which is the binary independent variable, coded 0 (term baby) or 1 (premature baby),2 
we get the basic logistic regression model:

Y = ln(odds1) = ln(odds0 × OR) = ln(odds0)+ ln(OR)X

In the final step, we rewrite this equation, setting ln(odds0) = b0 and ln(OR) = b1, and we get:

Y odds p
p

b b X= =

−

⎛

⎝

⎜

⎞

⎠

⎟ = +ln( ) ln
1 0 1

On the left side of the logistic regression equation we have the dependent variable Y, which is 
further specified as the log-odds or the natural logarithm of the odds; on the right side we have 
the familiar linear regression model with one intercept/constant (b0) term and one independent 
variable (X) and its associated regression coefficient (b1). Compared to the linear regression 
model, the only new part in the logistic regression model is the logit link function ln (p/1 – p).3

In order to see how we can use this model to predict a binary outcome, we will go back to 
the analysis of the 2 × 2 frequency table in Table 17.1. We already established that the odds of 
having an low birth weight baby among term births are: odds0 = 0.0558; and as b0 = ln(odds0), 
it follows that b0 = ln(0.0558) = –2.8860. Furthermore, b1 = ln(OR) = ln(12.475) = 2.5237. 
Substituting these values into the logistic regression equation, we get:

Y odds p
p

b b X X= =

−

⎛

⎝

⎜

⎞

⎠

⎟ = + = − +ln( ) ln . .
1

2 8860 2 52370 1

As the independent variable X is binary, coded 1 for premature babies and 0 for term babies, 
the logistic regression equation for term babies (X = 0) simplifies to:

Y0 = −2.8860 + 2.5237(0) = −2.8860

For premature babies, the equation becomes:

Y1 = −2.8860 + 2.5237(1) = −0.3623

We stated earlier that the dependent variable Y in the logistic regression model refers to the log-
odds of an event occurring, ln(odds) = ln(p/1 – p). To get back to the odds, (p/1 – p), we take 
the antilog, that is, we exponentiate both sides of the equation, and get the following equation:

e odds p
p

eY b b X
= =

−

=
+

1
0 1

2 For the following, some familiarity with logarithms is required to follow the argument. Appendix H 
contains an informal discussion of exponentiation and logarithms, which is enough to follow the discus-
sion here.
3 A link function specifies the mathematical transformation that links the linear predictor model to the 
outcome variable. So far we have encountered the identity link, in which the linear predictor model 
predicts the actual values of Y. Here we have the logit link, which means the linear equation predicts the 
log-odds of an event occurring: ln (p/(1 – p)). Both models belong to a large class of statistical models 
known as the General Linear Model.
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In the example, the specific results for the term babies (X = 0) are:

e e e e e e eY0 2 8860 2 5237 0 2 8860 2 5237 0 2 8860 0 2
= = × = × =

− + − − −. . ( ) . . ( ) . .. .8860 0 0558=

For the premature babies (X = 1), we get the following results:

e e e e eY1 2 8860 2 5237 1 2 8860 2 5237 1 0 0558 12 475= = × = × =
− + −. . ( ) . . ( ) . . −−

=
0 3623 0 6961. .

Now we can see that the logistic regression model can reproduce the odds and ORs in a 2 × 2 
table. It is a linear regression model predicting the log-odds of an outcome event; it is a multipli-
cative model predicting the odds of an outcome event. The regression coefficient representing 
the intercept (b0) gives us the value of the dependent variable Y = ln(odds), if all independent 
variables are set to zero. For the data in Table 17.1, the term b0 represents the value of Y, if 
the birth is not premature, that is, X1 = 0. (To recover the base-odds, we take the antilog of 
b0: e

b0 = e–2.8860 = 0.0558.) The regression coefficient associated with the independent variable 
(b1) gives us the change in the dependent variable Y, which is the change in the log-odds, for each 
one-unit change in the independent variable X. In the current example with a binary independent 
variable, a change in X from 0 to 1 represents the difference between a term and a premature 
baby. That means it represents the logarithm of the OR associated with that change. Taking the 
antilog, we get the OR again: eb1 = e2.5237 = 12.475. In words: The odds of a  low-birth-weight 
baby are approximately 12.5 times larger among premature than among term babies.

 ESTIMATING THE LOGISTIC REGRESSION MODEL

Table 17.2 shows the results from fitting the logistic regression model to the data in Table 17.1. 
In many ways, this output looks very much like the output from a linear regression model with 
an identity link function.4 We already know the point estimates of the regression coefficients, 
as we calculated the log-odds directly from the 2 × 2 frequency table. However, Table 17.2 
also provides the standard errors of the estimates of the regression coefficients, the associated 
OR estimates, and other information concerning statistical inference from the study sample to 
the target population.

TABLE 17.2 Logistic Regression Model Predicting Low Birth Weight From Prematurity Status

Iteration 0:   log likelihood = −204.25019 
Iteration 5:   log likelihood = −164.07955 

Logistic regression

Log likelihood = −164.07955

 Number of obs =    400
 LR chi2(1) =   80.34
 Prob > chi2 = 0.0000
 Pseudo R2 = 0.1967

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
Birth weight | Coef. Std. Err. z P>|z| Odds Ratio [95% Conf.Interv. of OR]

– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
premature | 2.52344 0.33447 7.54 0.000 12.4747 6.47457 24.02262

_cons | −2.88573 0.29662 −9.73 0.000 0.0558 0.31207 0.99822
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

4 With an identity link function, the dependent variable is simply the measured variable rather than 
transformation of it, as is the case with the logit link function.
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Analogous to the simple linear regression model discussed in Chapter 10, we can use the 
information in Table 17.2 and write out the regression equation as follows:

Y X�
= − +2 886 2 523. .

  (0.297) (0.334)

As we did for the linear regression with the identity link function, we test the null hypoth-
eses that the intercept term and the regression coefficient associated with the independent 
variable are equal to zero in the population from which the sample is drawn. Our test sta-
tistic, known as the Wald statistic, is also similar: We divide the estimated coefficient by 
its standard error, which, for larger samples, follows the normal distribution. In Table 17.2, 
the test statistic for the intercept is z = −2.886/0.297 = −9.73; for the regression coefficient 
associated with the independent variable (X), we have z = 2.523/0.334 = 7.54. For both 
 coefficients, the null hypothesis asserts that the population parameter is equal to zero. As the 
z-values exceed the critical value of ±1.96 (for an α-level of 0.05) by a substantial margin, 
the coefficients are highly significant (p < .0005). We conclude that prematurity is a signifi-
cant predictor of low birth weight.

As already mentioned, the regression coefficients estimate the changes in log-odds as a 
result of a one-unit change in the independent variable, but we can take the antilog to obtain 
the base-odds, eb0 = e–2.88573 = 0.0558, and the OR, eb1 = e2.52344 = 12.471. Through exponen-
tiation, we also obtain the confidence limits associated with the odds and OR. For example, 
the confidence limits for the original regression coefficient associated with prematurity are: 
2.52344 ± 1.96 × 0.33447, with the lower limit being 2.52344 − 1.96 × 0.33447 = 1.86788 and 
the upper limit 2.52344 + 1.96 × 0.33447 = 3.179. Taking the antilog of both values yields the 
OR confidence limits of e1.86788 = 6.47456 and e3.179 = 24.02275, allowing for some rounding 
errors.

 MAXIMUM LIKELIHOOD ESTIMATION

We presented the estimation results from the logistic regression model without commenting 
on how we arrive at these estimates. When we use the logistic regression model to estimate 
particular regression coefficients on the basis of sample data, we need a criterion to fit the 
model to the data. Recall that, for the linear regression model, we employed the least squares 
criterion to estimate the regression coefficients. That means, we choose the linear regression 
coefficients so as to minimize the squared deviations of the observed Y variable from the pre-
dicted Ŷ values based on the regression model. With logistic regression models, we cannot use 
the least squares criterion, because it requires a continuous outcome variable to compute the 
necessary sums of squares (SSs) and variances. Instead, our new criterion is the maximum 
likelihood criterion. That is, we choose estimates for the regression coefficients b0 and b1 in 
such a way that we maximize the likelihood of the observed outcome. We will go back to the 
example of Table 17.1 to clarify this point.

Among the 400 babies, 83 were low birth weight babies. If these 400 babies are a  random 
sample of a much larger target population of all births in a city’s hospitals over the last 5 years, 
we may want to know the probability that a baby in this target population is a low birth weight 
baby. To answer this question, we need to be able to predict the likelihood of the observed 
sample outcome based on different assumptions about the true population parameters. A func-
tion that connects the sample outcome to the assumed population values or parameters is 
called a likelihood function (L). As the outcome variable is binary and as it is reasonable to 
assume that the events producing a low birth weight baby in one case are independent of those 
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in another case, we can use the binomial probability distribution to predict the probability 
that a birth is low weight versus normal weight. The general form of the binomial likelihood 
distribution is as follows:

L p n
k n k

k n k( ) !
! !

( )π π π| =

−( )
−

−

Π 1

This expression looks complicated, but when broken down into its components, it is not that 
difficult to follow. Let us start with the left side of the equation: L(π/p). This shorthand expres-
sion simply indicates that the equation is used to compute the likelihood L (or probability) of 
observing a given sample proportion p of the binary variable for different (assumed) values of 
the population parameters, which in this case are the population proportions or probabilities 
π. On the right side of the equation we have the product operator Π (“pi”),5 the symbol for the 
sample size, n, and for the number of cases in the sample that show the outcome in question, 
k. For the data in Table 17.1, we have: a sample size of n = 400, of which k = 83 births resulted 
in low birth weight babies. Thus, the sample proportion of low birth weight babies is: p = k/n = 
83/400 = 0.2075. Now we use the binomial likelihood function to establish for which popula-
tion values (π) the observed sample outcome of p = k/n is most likely to occur:6

 

L p( ) !
! !

( )π π π| = −Π
400

83 317
183 317

As it turns out, if the population value π is equal to the sample proportion p = k/n = 83/400 = 
.2075, then we are most likely to observe the sample outcome of 83 low birth weight babies 
among 400 births. Put differently, for no other assumed π-value would a sample fraction of 
83/400 = 0.2075 be as likely to occur. Figure 17.1 shows a graph that depicts the likelihood 
function for different π-values in the range of 0.1 ≤ π ≤ 0.35. If the true population proportion 
(π) is smaller than 0.1 or larger than 0.35, the likelihood of observing 83 low birth weight 
babies in a sample of 400 babies is essentially equal to zero; that is the reason why the graph 
has been cut off beyond those points on the horizontal axis. If we substitute 0.2075 for π in 
the equation, we see that, at its peak, L = 400!/83!317! 0.207583 (1 – 0.2075)317 = 0.049, mean-
ing for an assumed population value of p = 0.2075, there is a 4.9% probability of observing 
exactly 83 out of 400 low birth weight babies.

This same maximum likelihood estimation principle can be applied to the logistic regres-
sion model, except that we seek to maximize the likelihood function for the logistic model 
based on different values for b0 and b1: L(π| b0, b1). In short, if we select our population param-
eters according to this principle, we get maximum likelihood estimates for these parameters.

The results in Table 17.2 already show the maximum likelihood estimates for the inter-
cept: b0 = –2.88573, and the regression coefficient: b1 = 2.52344. Based on this, we can calcu-
late the likelihoods for all four cells in Table 17.1:

1. First we can ask: What is the likelihood/probability of a low birth weight baby 
(Y = 1), if the baby is premature (X = 1)?

5 Instead of summing terms, as does the summation operator Σ xk, Π xk refers to the product of x1 times 
x2 times… xk.
6 Using a bit of calculus, we first convert the likelihood function into a log-likelihood: ln(L) = ln((400!)/
(83!317!)) + 83 × ln(p) + 317 × ln(1 – p) and take the derivative of that expression with respect to 
p: ∂L/∂p = 83/p – 317/1 – p. Setting this derivative to zero yields the resulting estimate for which L is 
at a maximum: p̂ = 83/400.
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FIGURE 17.1 Likelihood Function Based on Binomial Distribution.
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  As, in general, p = odds/(1 + odds) and the odds are estimated in the logistic model 
as odds = eb0+b1X we get:
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2. For the second cell, we ask: What is the likelihood/probability of a low birth weight 
baby (Y = 1), if the baby is not premature (X = 0)?
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3. For the third cell, we ask: What is the likelihood/probability of a normal weight 
baby (Y = 0), if the baby is premature (X = 1)?
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4. For the fourth and last cell, we ask: What is the likelihood/probability of a normal 
weight baby (Y = 0), if the baby is not premature (X = 0)?
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Now we have all the information to calculate the overall likelihood. For the 2 × 2 table we 
have four cells with different numbers of cases, ni, but, within each cell, each case has the 
same estimated likelihood πi or 1 − πi. Thus we have



17. LOGISTIC REGRESSION WITH ONE INDEPENDENT VARIABLE  207

n1 = 71 cases in cell 1 (Y = 1, X = 1), each of which has the same probability of being a 
low birth weight baby (0.4104);

n2 = 102 in cell 2 (Y = 0, X = 1), each of which has the same probability (1 − π) of not 
being a low birth weight baby (0.5896);

n3 = 12 in cell 3 (Y = 1, X = 0), each of which has the same probability of being a low 
birth weight baby (0.05286); and

n4 = 215 in cell 4 (Y = 0, X = 0), each of which has the same probability (1 − π) of not 
being a low birth weight baby (0.94714).

As the individual birth outcomes are assumed to be independent of each other, we can 
multiply the individual probabilities for each birth outcome and obtain the model likelihood 
based on the maximum likelihood estimates of the regression coefficients:

LM = 0.410471 × 0.5896102 × 0.0528612 × 0.94714215

This number is usually very small, close to zero. For that reason, and ease of mathematical 
manipulation, we usually compute the log-likelihood:

ln(LM) = 71 × ln(0.4104) + 102 × ln(0.5896) +12 × ln(0.05286) + 215 × ln(0.94714) 
= −164.07955

This log-likelihood estimate of −164.07955 is shown as part of the output in Table 17.2. In and 
of itself, it is not all that interesting, but it obtains meaning in the comparison to another log-
likelihood. Table 17.2 also shows a log-likelihood value listed under “iteration zero.” This is 
the initial likelihood for the so-called null model, in which all logistic regression coefficients 
are assumed to be zero (null hypothesis). If the logistic regression coefficient is equal to zero, 
the OR comparing premature to term babies is equal to one, which implies that both the odds 
and the probabilities of a low birth weight baby are the same for premature and term babies. If 
that null-hypothesis assumption is true, then the log-likelihood function would be based just 
on the fact that all babies share the same low birth weight risk π = 0.2075 and its complement, 
the probability of not being low birth weight, 1 − π = 0.7925. Overall there were 83 low birth 
weight babies and 317 normal weight babies; thus we can compute a simplified log-likelihood:

ln(L0) = 83 × ln(0.2075) + 317 × ln(0.7925) = −204.25019

In Table 17.2, this log-likelihood value is listed under “iteration zero.” If we subtract the 
log-likelihood of the regression model (LM) from the log-likelihood of the null model (L0) 
and multiply the difference by (−2), we get a test statistic that is distributed like a chi-square 
distribution with degrees of freedom (df) equal to the difference in the number of parameters 
estimated in the null model and the regression model:

(−2) × ln(LR) = [ln(L0) − ln(LM)] × (−2)

For the data in Table 17.1, we get: −2 × ln(LR) = [−204.25019 – (−164.07955)] × (−2) = 80.34. 
The associated df equal 2 − 1 = 1. The reason is that, in the null model, we set b1 = 0, so that 
the constant b0 remains as the only parameter to be estimated; in the regression model, we 
estimate both b0 and b1, and thus two parameters are estimated.
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Table 17.2 shows the estimate for the difference between the two log-likelihoods times 
(−2) under the label “LR” or “likelihood ratio.” As this ratio (or its log-transformation, which 
is also known as the deviance) compares the likelihood under the null hypothesis with no 
explanatory independent variables to the likelihood under the regression model with the maxi-
mum likelihood estimates for the regression coefficients, a statistically significant (α < 0.05) 
difference would tell us that the independent variable or variables in the model do contrib-
ute to explaining variation in the outcome. Thus, in the output from the software shown in 
Table 17.2, you see an overall p-value associated with the deviance or LR test of p < .0005. 
Based on this test, we reject the null hypothesis that the independent variable does not contrib-
ute to explaining variance in the outcome. This multivariate LR test functions like the f-test 
in linear regression or analysis of variance: It tests whether at least one of the independent 
predictor variables improves the prediction compared to the null model.

Finally, Table 17.2 also displays a statistic by McFadden, called the Pseudo R-squared.7 
This statistic can be easily computed from the results in the table:

Pseudo R2 = 1 – 
ln
ln

( )
( )
L
L

M

0

The fraction ln(LM)/ln(L0) is simply a ratio of the log-likelihood for the regression model LM 
over the null model L0. The log-likelihood of the null model is based on a model that does 
not explain any variation in the outcome probabilities; it can be thought of as conceptually 
similar to the total (unexplained) SS in linear regression. If the regression model with the 
maximum likelihood estimates for the regression coefficients explains some of the varia-
tion in the outcome probabilities among different groups defined by the independent vari-
able, then its likelihood must be larger than the likelihood of the null model: LM > L0. This 
implies that ln(LM) < ln(L0) and that the ratio of ln(LM)/ln(L0) < 1, if LM > L0. In other words 
the McFadden statistic can be thought of as being similar to a proportional reduction in 
error variance: if more variation in outcome probabilities is explained by the model, ln(LM) 
becomes smaller and the value of the Pseudo R2 becomes larger. For the logistic regression 
model in Table 17.2, we have:

Pseudo R2 = 1 – ln
ln

( )
( )

.

.
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L
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0

1 164 07955
204 25019

0 1967= −
−

−

=

Using the language borrowed from linear models with continuous outcome variables, we may 
say, somewhat loosely, that this logistic regression model accounts for almost 20% in unex-
plained variation of the outcome variable.

 LOGISTIC REGRESSION MODEL WITH A CONTINUOUS 
INDEPENDENT VARIABLE

The reader may wonder why we used a complicated model like the logistic regression model 
to compare just the odds or probabilities of a binary outcome in two groups. The analysis of 
a 2 × 2 frequency table is clearly easier using the straightforward methods of the last chapter. 
However, the great value of the logistic regression model is that it can be used for estimating 
the relationship between a binary outcome and any combination of continuous and categorical 

7 There are several different Pseudo R-squared statistics, but we will confine the discussion to this 
 commonly encountered statistic.
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TABLE 17.3 Logistic Regression Model Predicting Low Birth Weight From Weeks of Gestation

Iteration 0:   log likelihood = −204.25019 
Iteration 5:   log likelihood = −110.63846 

Logistic regression

Log likelihood = −110.63846 

Number of obs = 400
LR chi2(1) = 187.22
Prob > chi2 = 0.0000
Pseudo R2 = 0.4583

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
Birth weight | Coef. Std. Err. z P>|z| Odds Ratio [95% Conf.Interv. of OR]

– – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  
gestation(t) | −0.32740 0.03403 −9.62 0.000 0.72080 0.67428 0.77052

_cons | 2.01365 0.31848 6.32 0.000 7.49061 4.01246 13.98319
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

predictor variables, just as the linear regression model extends beyond the two-group com-
parison of the t-test. For the remainder of this chapter, we expand the logistic regression model 
to include just a single continuous independent variable. In Table 17.2, we applied the logistic 
regression model to the data in Table 17.1, which divided the predictor variable into a single 
dichotomy: premature versus term babies. However, if we have actual data on gestational 
weeks, we can ask how the odds of having a low birth weight baby change for each additional 
week of gestation. Table 17.3 shows the results from a regression model, in which X = weeks 
of gestation minus 21. The actual range of gestation is 21 to 44 weeks, but using the original 
variable would result in an intercept term that estimates the log-odds of a low birth weight 
baby, if gestation equals zero weeks.

That is obviously a meaningless estimate. By subtracting 21 weeks from the actual ges-
tation variable, the value zero on the transformed gestation variable is equivalent to the lowest 
observed gestational week of 21. Thus, the intercept term becomes interpretable: Its antilog 
estimates the odds of a low birth weight baby, if a baby is born after 21 weeks of gestation. 

The output in Table 17.3 is formally similar to that in Table 17.2, but the interpretation 
of the regression coefficient differs slightly, as the predictor variable is continuous (mea-
sured in weeks). As before, we can write the regression equation based on the information in 
Table 17.3 as follows:

Y X�
= −2 014 0 3274. .

 (0.318) (0.034)

Again we divide the coefficients by their respective standard errors to obtain the z-scores, 
which are the basis for the tests of the null hypotheses that a coefficient does not differ from 
zero in the population from which the sample is drawn.8 Thus we have the test for the inter-
cept coefficient, 2.01365/0.31848 = 6.32, and the regression coefficient associated with the 
independent variable, −0.32740/0.03403= −9.62. Both far exceed the critical value of ±1.96, 
at which the α-level = 0.05, leading us to conclude that both coefficients differ from zero. To 
interpret the results, it is easier to exponentiate the whole equation, which shows us how the 
odds of having a low birth weight baby change based on different levels of the independent 
predictor variable, here indicating weeks of gestation after week 21.

8 The Wald Test is analogous to the t-test of regression coefficients in linear models.
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Here is the antilog form of the regression equation, using the information in Table 17.3: 

e p
p

e e e baseodds ORY b b X b b X X X�
=

−

= = × = × = ×
+

1
7 4906 0 72080 1 0 1 . .

We already showed that the original regression coefficients, predicting the log-odds of the 
outcome variable, differ significantly from zero. This implies that, in the antilog form of the 
equation, the base-odds and the OR differ significantly from one. This is also confirmed by 
the 95% confidence intervals (CIs) for eb0 and eb1, neither of which contains the value of one. 
The interpretation of the equation is straightforward: If we substitute the value zero for X, the 
equation simplifies to p/(1 – p) = 7.4906 × 0.7208º =7.4906 × 1= 7.4906.9 As we employed a 
transformed gestation variable, subtracting 21 weeks from the original gestation variable, set-
ting X = 0 is equivalent to looking at babies born after 21 weeks of pregnancy. Our equation 
predicts that the odds of having a low birth weight baby in that gestation group are almost 7.5 
to 1. Now we assign X = 1, which refers to babies who have been born after 22 weeks of ges-
tation. that is, one week after the baseline week. It follows that the predicted odds of having 
a low birth weight baby fall to 7.4906 × 0.7208 = 5.3992; for babies born after 23 weeks of 
gestation, we have 7.4906 × 0.72082 = 3.8918, and so forth. Consequently, the interpretation 
of the OR = 0.7208 is that, for each additional week of gestation, the odds of having a low 
birth weight baby fall by about 28% (1 − 0.7208 = 0.2792).10

This logistic regression model with a continuous gestation variable as predictor is supe-
rior to the previous binary predictor of premature versus term babies, as it can explain more 
variation in the odds of low birth weight births. This is indicated both by the larger value of 
McFadden’s Pseudo R2 statistic (0.4583 in Table 17.3 versus 0.1967 in Table 17.2) and the 
larger value of the deviance statistic, which is a measure of the difference between the two 
log-likelihoods: 187.22 in Table 17.3 versus 80.34 in Table 17.2.

 JUDGING THE ASSUMPTIONS OF THE LOGISTIC REGRESSION MODEL

As with all statistical models, we need to assess how well the model fits the data. In the discus-
sion of linear regression models, we examined the behavior of individual error terms, which 
represent the deviations of observed values from predicted values, to obtain clues about the 
fit of the model. Error terms of the logistic model do not follow a normal distribution, but 
they follow the binomial distribution. The reason is obvious: The dependent outcome variable 
either takes on the value 1 (presence of the event or condition to be predicted) or the value 0 
(absence of the event or condition to be predicted). However, if we group the data based on 
categories of the continuous independent variable in question, we can examine whether certain 
assumptions of the model are borne out by the data or whether we need to modify the model 
for a better fit. For instance, the logistic regression model is a linear model in the log-odds:

Y odds p
p

b b X= ( ) =
−

⎛

⎝

⎜

⎞

⎠

⎟ = +ln ln
1 0 1

It is important to realize that, just like the linear regression model assumes a linear relation-
ship between the outcome variable Y and the continuous predictor variables (Xs), so does the 
logistic regression model, except that the dependent variable takes on the form of the logit 

9Recall that any number raised to the power of zero equals one; see Appendix H.
10 Alternatively, you could say that for each additional week of gestation the odds of having a low birth weight 
baby are only 72% as large as for babies born a week earlier, but that is a cumbersome way of putting it.
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FIGURE 17.2 Linear Predictions of Log-Odds Versus Observed Log-Odds: Logistic Regression 

Models With Linear Versus Categorical Predictors. 

link function, which assumes that the log-odds change by a constant amount (b1) for each unit 
increase in the independent variable X. We can test this assumption by comparing the log-odds 
predicted in the linear model to the log-odds observed within the categories of the indepen-
dent variable without imposing the linear constraint (Figure 17.2).

Figure 17.2 compares the results from two logistic regression models: a simple logistic 
regression model assuming a linear relationship between gestational weeks (X) and the log-
odds of low birth weight births: Y = ln(odds) = ln(p/1 – p) = b0 + b1X . However, compared 
to the earlier model, the independent variable “gestational weeks” has been combined into 6 
groups, 21 to 14 weeks, 25 to 28 weeks, and so forth, because we need sufficient numbers 
of cases within each category of the independent variable in order to compute odds and log-
odds. In the graph of Figure 17.1, the linear model is represented by the gray line. The second 
logistic regression model employed five dummy-coded independent variables,11 so that the 
log-odds within each of the six categories were not constrained to lie on a straight line. The 
unconstrained log-odds are connected by black lines in Figure 17.2. On the face of it, there 
seems to be some nonlinearity in the log-odds of low birth weight births. In fact, we can test 
whether the unconstrained model with the independent, dummy-coded, categorical variables 
is a better predictor than the linearly constrained model. For this test, we can use the LR test: 
If we compare the deviance of the categorical, that is, linearly unconstrained model (182.12) 
to the deviance of the linearly constrained model (165.26), we obtain a new deviance (or log-
LR) statistic (16.86) with 4 df. (The first model contains five categorical predictors plus the 
intercept requiring the prediction of six parameters; the second model contains the intercept 
term and one linear regression coefficient; thus df = 6 − 2= 4.) The p-value associated with the 
chi-squared statistic of 16.86 and 4 df is p < .002. Thus we conclude that the logistic regres-
sion model with linear predictors of the log-odds is not fully consistent with the data.12 

11 See Chapter 10 for a more detailed discussion of dummy codes.
12 Similar to the problem in Chapter 10, a polynomial regression model of third degree, Y = ln(odds) = 
b0 + b1X + b1X 2 + b1X 3, does provide a better model fit, as is indicated by a nonsignificant (p > .146) LR 
test comparing the polynomial model to the categorical predictor model.
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As a reader of research reports that employ the logistic regression model, you may not 
be interested in all the technical details of fitting such models, but you should be aware that 
the problem of checking the assumptions of a model is part and parcel of good data analysis 
practice. Readers of research reports in professional journals should expect some assurance in 
the methods section of an article that the appropriate tests have been run. Box 17.1 provides a 
summary of the assumptions underlying the use of the logistic regression model.

 

• Binary outcome variable
• Linearity of relation between the logarithm of the dependent odds and independent 

(interval/ratio-level) variable(s)
• Independence of individual observations (uncorrelated error terms)
• Binomial distribution of error terms, that is, binomially distributed variables within the 

categories defined by the independent variable
• Randomly drawn study sample for population inferences

BOX 17.1 ASSUMPTIONS OF LOGISTIC REGRESSION MODEL

 SUMMARY

In this chapter, we have introduced the logistic regression model, which has become a “popular” 
model for analyzing data with binary outcome variables (e.g., Forsman, Rudman, Gustavsson, 
Ehrenberg, & Wallin, 2012; Gaugler, Mittelman, Hepburn, & Newcomer, 2010; Shahin et al., 
2010). Its strength lies in the fact that the antilog forms of the estimated logistic regression coeffi-
cients can be readily interpreted in terms of odds and ORs. The logistic model presents a straight-
forward extension of the analysis of 2 × 2 frequency tables, while the basic statistical measures of 
odds and ORs are also the basic building blocks for the analysis of case-control studies.

So far, we have dealt only with logistic models containing a single independent variable. 
In the next chapter, we turn to the multiple logistic regression model as well as a few other 
extensions, such as multinomial and ordinal logit regression models.

Read: Shahin, E. S. M., Meijers, .J. M. M., Schols, J. M. G. A., Tannen, A., Halfens, R. J., & 
Dassen, T. (2010). The relationship between malnutrition parameters and pressure ulcers in 
hospitals and nursing homes. Nutrition, 26(9), 886–889.

(a) Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  Provide a clear definition of the outcome/dependent variable and a short description of the 
instrument used to measure it.

(d)  Provide a clear definition of all independent/predictor variables and a short description of 
the instruments used to measure them.

LITERATURE APPLICATION
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 EXERCISES

1. Researchers of a study conducted in several hundred hospitals report the results of a 
logistic regression model designed to predict the occurrence of urinary tract infections 
(UTIs), Y, based on the patient/nurse staffing ratio X:

Ŷ = −4.595 + 0.2864X

  (0.238) (0.031)

where Ŷ refers to the predicted log-odds of UTI occurrence in a hospital and X equals the 
number of patients per RN, ranging from a minimum of 1.5 to 9.

(a) What are the odds of a UTI if the patient–nurse ratio equals 2?
(b) What are the odds of a UTI if the patient–nurse ratio equals 8?
(c) Are the intercept and slope coefficients statistically significant at the 0.05 level?
(d) What is the 95% CI for the OR predicting the change in UTI?
(e) In your own words: What is the meaning of the intercept term? Is it interpretable?

2. A survey of 320 adults finds that 120 respondents are smokers (X = 1) and 200 are 
nonsmokers (X = 0). The survey respondents were asked whether they experienced 
pneumonia during the 12 months prior to the interview. Using a logistic regression 
model, analysts obtain the following estimates for the equation predicting the log-odds of 
pneumonia:

Ŷ = −3.6889 + 1.6094X

  (0.1993) (0.0422)

(a) What are the odds of nonsmokers experiencing pneumonia?
(b) What are the odds of smokers experiencing pneumonia?
(c) How many nonsmokers experienced pneumonia?
(d) How many smokers experienced pneumonia?

3. In a study of over 2,000 primary care patients, researchers report on a logistic regression 
model, which contains estimates to predict the log-odds of coronary heart disease (CHD) 
as follows: 

Ŷ = ln(p/(1 − p)) = −2.3 + 0.47 (HTN) + 0.01 (AGE),

(e)  In Tables 1 and 2 of the article, the authors compare the prevalence of “poor nutritional 
intake” among patients who experience pressure ulcers and those who did not. Using 
the figures provided in the tables, reconstruct the ORs predicting the odds of having a 
pressure ulcer based on poor nutritional intake or its absence. Is the relationship between 
nutritional intake and pressure ulcers greater or smaller among hospital or nursing home 
patients/residents?

(f)  In Tables 3 and 4 of the article, the authors report the results from (multiple) logistic 
regression models. Show how the 95% CIs for the ORs are obtained from the logistic 
regression coefficients and the standard errors.

(g)  Summarize the main findings in your own words. Are the conclusions of the authors 
 consistent with the evidence presented?
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where HTN (hypertension) is coded 0 = person has no HTN, 1 = person has HTN, and 
AGE is coded in years.

What are the odds that a 50-year old adult with HTN has CHD (all regression coefficients 
are statistically significant)?

4. Suppose you have a sample of 100 obese and 100 normal weight adults. Among the 
normal weight adults, the odds of having diabetes are 4/96. The logistic regression 
equation that predicts the log-odds of diabetes (Y) equals: Y = ln( p/(1 − p)) = −3.178 + 
1.792X, where X = 0 if the adult has normal weight and X = 1 if the adult is obese. How 
many obese adults in this study sample have diabetes?

5. The following table shows how many men (among 1,000 men) and how many women 
(among 1,000 women) are involved in car accidents per year. Write out the logistic 
regression equation, including the estimates of the regression coefficients, which reflects 
these facts.

INVOLVED IN CAR ACCIDENTS  
 YES = 1 NO = 0

Male = 0 40  960 1000

Female =1 20  980 1000

Total 60 1940 2000
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CHAPTER 18

 Logistic Regression Models With 
Multiple Predictors

 MULTIPLE LOGISTIC REGRESSION

In the last chapter, we introduced the logistic regression model to predict the odds of an event 
occurring based on either a binary or a single continuous predictor variable.

The general form of the multiple linear regression model looks very much like the gen-
eral form of the linear regression model with the identity link function.1 The only difference is 
that the link function for the logistic model is the logit or the log-odds of the event occurring:

Y odds p
p

b b X b X b X b Xk k= =

−

⎛

⎝

⎜

⎞

⎠

⎟ = + + + + +ln ( ) ln
1 0 1 1 2 2 3 3 �

where Y = ln(   p/1 – p) refers to the dependent variable, b0 is the intercept (or “constant”) in the 
equation, and the bk Xk terms refer to k independent variables, Xk , multiplied by their respective 
regression coefficients, bk.

Compared to the simple logistic regression models with one independent variable, the 
multiple logistic regression model contains two or more predictor variables. As with all multiple 
regression models, this leads to the additional complications of confounding and interaction 
effects.2

Before we address the problems of confounding and interaction effects in the logistic 
model, we will first take a look at the output from a multiple logistic regression model and 
explain how to interpret its coefficients.

 EMPIRICAL EXAMPLE OF A MULTIPLE LOGISTIC REGRESSION ANALYSIS

Table 18.1 shows the output from a logistic regression model that predicts low birth weight 
based on the marital status and formal education of the mother. The table contains the estimates 
of the logistic regression coefficients as well as the associated odds and odds ratios (ORs). 

1 With the identity link function, the dependent variable is equal to the measured scores; the logit link 
function represents a logarithmic transformation of the original scores.
2 See the discussion in Chapter 12.
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Employing this information, we can write the logistic regression equation with the standard 
errors as follows:

Estimated equation3: Ŷ = 3.168 − 0.586X1 − 0.349X2

Standard error of coefficients: (0.928) (0.283) (0.074)

p-values: ≤.038 ≤.001 ≤.001

Summary statistics: log-likelihood ratio (2 df): 25.67; p < .00005; Pseudo R2 = 0.628

Antilog form of equation: eŶ = (23.748) (0.556) X1 (0.706) X2

In many research reports published in nursing and medical journals, only the ORs, their 
associated p-values, or the 95% confidence intervals (CIs) are reported. Often the information 
about the log-likelihood ratio (LR) is not provided to the reader, even though it is essential 
for judging whether the equation as a whole has any predictive power.4 As is often the case 
in multiple regression models, the constant or intercept has no readily interpretable meaning, 
but that does not mean we should skip the base-odds, which are the antilog of the intercept 
term, in tables reporting the OR. As we will see, there is value in having this information for 
predictive purposes.

Before we interpret the estimates of the logistic regression coefficients, we begin by 
noticing that the log-LR, which equals twice the difference between the log-likelihood of the 
estimated regression model minus that of the null model, 2 × [(−191.41563) − (−204.25019)] = 
25.67, is statistically significant: p < .00005. Thus we conclude that the model as a whole 
does predict to some extent which babies are born with a low birth weight, but the predictive 
power is moderate (Pseudo R2 = 0.063). The intercept term, 3.168 for the log-odds, or 23.748 
for the base-odds, is not interpretable, because it represents the estimate of Ŷ, or eŶ, when the 

3 All coefficients in the book have been rounded to the third decimal.
4 By cont rast, f-tests for linear regression models are usually reported in applied journal articles.

TABLE 18.1 Logistic Regression Model Predicting Low Birth Weight From Marital Status 
and Years of Formal Education

Logistic Regression model with maritalstat (1=married, 0=not married) and years of education 
(8−17) as predictors

Iteration 0: log likelihood = −204.25019 

Logistic regression Number of obs =     400
 LR chi2(2) =  25.67
 Prob > chi2 = 0.0000
Log likelihood = −191.41563 Pseudo R2 = 0.0628

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Birth weight | Coef. Std. Err.  z P>|z| Odds Ratio [95% Conf. Interv. of OR]
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  maritalstat | −.58636 .28275 −2.07 0.038   .55635  .31964    .96834
  educatyrs | −.34871 .07406 −4.71 0.000   .70560  .61026     .81582
     _cons | 3.16751 .92827   3.41 0.001 23.74828 3.85011 146.48297
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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two independent variables are set to zero. For the binary marital status variable, zero denotes 
unmarried subjects, but zero for the education variable would literally refer to persons with no 
formal education at all, even though the data set only includes subjects with exposure to formal 
education ranging from 8 to 17 years. As there are no unmarried subjects without any formal 
education in the data set, we cannot use these estimates to extrapolate to such persons, as they 
are not represented at all in the data. However, while the estimate of the base-odds (23.748) is 
suspect and should not be interpreted to mean that unmarried mothers with no education face a 
96% probability of having a low birth weight baby,5 we can make predictions for women with 
educational attainments within the observed range of 8 to 17 years. For instance, an unmarried 
woman with 8 years of formal education faces the following odds of giving birth to a low-
weight baby: eŶ = (23.748)(0.556)0(0.706)8 = (23.748)(0.0617) = 1.4657, which translates into 
a 0.59 probability. By contrast, a married woman with 17 years of education would face a 3.4% 
probability: eŶ = (23.748)(0.556)1(0.706)17 = (23.748)(0.556)(0.00269) = .0355; thus

p = =
0 0355
1 0355

0343.
.

.

 CONFOUNDING IN MULTIPLE LOGISTIC REGRESSION MODELS

Just as with multiple linear regression models applied to observational data, confounding is 
also an issue in multiple logistic regression models. Only if all the independent variables are 
uncorrelated would confounding be absent, but that rarely happens in observational studies. 
For the current data, a comparison of the output in Tables 18.1 and 18.2 shows how the esti-
mates of the logistic regression coefficients and their associated ORs are affected by confound-
ing. Notice first (at the bottom of the table) that marital status and educational attainment are 
negatively correlated, meaning that in this data set, married mothers have a somewhat lower 
average educational attainment than single mothers, primarily because of relatively few mar-
ried mothers with college degrees among these women. As a consequence, the association 
between marital status and the odds of giving birth to a low-weight baby is “suppressed.” If 
you compare the magnitudes of the logistic regression coefficients and their associated ORs in 
Tables 18.1 and 18.2, you see that the coefficients for the years-of-education variable change 
little between the simple model with only the education variable as predictor (b = −0.316) and 
the model with both education and marital status as predictor (b = −0.349). On the other hand, 
the change in the regression coefficient for the marital status variable is substantial: In the 
bivariate model with only marital status as predictor (Table 18.2) we do not see any significant 
effect (p > .314) with an estimate of the OR of 0.77 and a CI including one. In the multiple 
regression model of Table 18.1, the OR estimate is 0.56 (p ≤ .038) and the 95% CI ranges 
from 0.32 to 0.97. Thus, after controlling for years of education, we see that married women 
are less likely to have low-weight births.6 This effect was obscured in the simple regression 
model, because married women in this study had less education than the unmarried women, 
and less education is associated with a greater risk of low-weight births.

5

p odds
odds

=

+

=

+

=

1
23 748

1 23 748
0 9596.

.
. .

6 The careful reader of the last chapter may wonder why we used the phrase “less likely” here after 
warning before that an OR should not be confused with an RRR. That still remains the case, but it is 
legitimate to say “less likely” as long as we do not put the specific OR figure to this statement, because 
it is the case that whenever OR < 1, RR also must be less than 1.
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In principle, confounding is always an issue, when independent predictor variables are 
correlated. If confounding exists, we need to “control for” the confounding effect, because 
it obscures the “true” effect of or “true” association involving the variable of interest. In our 
example, statistically controlling for the effect of mothers’ education means that we must get 
an estimate of the strength of the relationship between the mother’s marital status and the 
odds of a low-weight birth that is unaffected by the mother’s education. This estimate is given 
by the OR in the multiple logistic regression model as OR = 0.556 (Table 18.1). Its meaning 
is straightforward: Suppose we computed the ORs within each of the subsamples formed by 
the years of educational achievement; for instance, there are mothers with 8, 9, … 16 years 
of schooling, and we compute the OR between marital status and low-weight births within 
each of these educational achievement groups. As mothers within these groups share the same 
 educational attainment, these ORs are not affected by difference in educational attainment. 

TABLE 18.2 Logistic Regression Model Predicting Low Birth Weight From Marital Status 
and Years of Formal Education Separately

Logistic Regression model with maritalstat (1=married, 0=not married) and years of education 
(8–17) as predictors

Logistic regression Number of obs =    400
 LR chi2(1) =   1.00
 Prob > chi2 =  0.3179
Log likelihood = −203.75133 Pseudo R2 = 0.0024

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
   bwt2 | Coef. Std. Err. z P>|z| Odds Ratio [95% Conf. Interv. of OR]
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
maritalstat |    −.26558 .26366  −1.01 0.314 .76676     .45733 1.28555
    _cons | −1.15643 .21668 −5.34 0.000  −1.58112  −.73175
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

Iteration 0:  log likelihood = −204.25019 

Logistic regression Number of obs =   400
 LR chi2(1) =   21.45
 Prob > chi2 = 0.0000
Log likelihood = −193.52757 Pseudo R2 = 0.0525

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
   bwt2 | Coef. Std. Err. z P>|z| Odds Ratio [95% Conf. Interv. of OR]
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
educatyrs | −.31560 .07123 −4.43 0.000  .72935  .63431   .83863
   _cons | 2.37153 .82770  2.87 0.004 10.71377 2.11539 54.26188
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

. corr maritalstat educ3, sig

 | marita~t educat~s
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – 
maritalstat | 1.0000
  educatyrs | −0.2111 1.0000
 | (0.0000)
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Thus, all we need in the end is to compute a weighted average of these within-group ORs, 
weighted that is by the number of cases within each group. This weighted average or pooled 
summary OR is the adjusted OR we seek: It reflects the average association of marital status 
with the odds of low-weight births, independent, or net of, educational attainment.

 INTERACTIONS IN MULTIPLE LOGISTIC REGRESSION MODELS

Whenever we have more than one independent predictor in a regression model, we must also 
test for interaction effects.7 In order to show how to interpret an interaction effect within the 
context of a multiple logistic regression model, we expand the model in Table 18.1 and add a 
binary variable for smoking status (1 = smoker, 0 = nonsmoker) as well as an interaction vari-
able involving smoking status and years of educational attainment, as shown in Table 18.3.

TABLE 18.3 Logistic Regression Model Predicting Low Birth Weight From Marital Status, 
Years of Formal Education, Smoking Status, and the Interaction of Smoking × Formal 
Education

Logistic Regression model with maritalstat(1=married, 0=not married), years of education 
(8–17), smoking status(1=smoker, 0=non-smoker) and the interaction of smoking status & 
years of  education as predictors

Log likelihood = −191.41563 Pseudo R2 = 0.0628

Iteration 0:   log likelihood = −204.25019 

Logistic regression Number of obs =     400
 LR chi2(4) =   33.73
 Prob > chi2 = 0.0000
Log likelihood = −187.38479 Pseudo R2 = 0.0826

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
 Birth weight | Coef. Std. Err. z P>|z| Odds Ratio [95% Conf. Interv. of OR]
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
   maritalstat |  −.66527  .28716 −2.32 0.021    .51413    .29285        .90262
    educatyrs |   −.41334  .08522 −4.85 0.000    .66144    .55969         .78168
     smoker | −3.62825 1.76174 −2.06 0.039     .02656    .00084         .83921
I:smoker-edu |    .20617  .08773  2.35 0.019    1.22896  1.03481           1.45954
    _cons |  4.62006 1.19381  3.87 0.000 101.50012 9.77856   1053.55728
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

. lrtest Table 18.1 model vs. Table 18.3 model, stats

Likelihood-ratio test LR chi2(2) = 8.0617
(Assumption: models are nested) Prob > chi2 = 0.0178
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    Model | Obs ll(null) ll(model) df
– – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 basemodel | 400 −204.2502 −191.4156  3
  newmodel | 400 −204.2502 −187.3848  5
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

7 Other names for “interaction effects” in the health care literature are “effect modifiers” (epidemiology) 
or “moderator variables” (social science and nursing research).
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First, we compare this expanded model to the simpler one in Table 18.1 and ask whether 
the addition of two new predictors (smoking status and its interaction with years of education) 
improves our ability to predict the odds of a mother having a low-weight baby. Comparing 
the new log-likelihood in Table 18.3 (−187.38479) to the one for the model in Table 18.1 
(−191.41563) gives us the basic for the LR with 2 df,8 which is our multivariate test statistic: 
2 × [(−187.38479) − (−191.41563)] = 8.06168. The p-value associated with this test is p ≤ 
.0178 leading us to reject the null hypothesis that the new variables do not add any predictive 
power. In addition, we see that McFadden’s Pseudo R2 is larger in the new model, increasing 
from 0.0628 to 0.0826.

In order to interpret the interaction effect depicted in the model correctly, we first go 
back to the logistic model with linear predictors of the log-odds of the outcome. The interac-
tion in this model is interpreted in the same way as an interaction in a linear regression model 
with an identity link:

Estimated equation: Ŷ = 4.620 − 0.665X1 − 0.413X2 − 3.628X3 + 0.206X4

Standard error of coefficients: (1.194) (0.287) (0.085) (1.762) (0.088)

p-values: ≤.001 ≤.021 ≤.001 ≤.039 ≤.019

Summary statistics: log-LR (4 df): 33.73; p < .00005; Pseudo R2 = 0.826

Antilog form of equation: eŶ = (101.5)(0.514)X1(0.661)X2(0.027)X3(1.229)X4

In this model, X1 refers to the binary marital status variable, X2 refers to the continuous 
years of education variable, X3 refers to the binary smoking status variable, and X4 is the mul-
tiplicative interaction term involving education and smoking: X4 = X2 × X3. As the interaction 
term involves the binary smoking status variable (X3), it is easy to construct separate equations 
for smokers (X3 = 1) and nonsmokers (X3 = 0):

Nonsmokers: Ŷ = 4.620 − 0.665X1 − 0.413X2 − 3.628(0) + 0.206(0)

Ŷ = 4.620 − 0.665X1 − 0.413X2

Antilog version of nonsmoker equation: eŶ = (101.5)(0.514)X1(0.661)X2

Smokers: Ŷ = 4.620 − 0.665X1 − 0.413X2 − 3.628(1) + 0.206(X2)

Ŷ = (4.620 − 3.628) − 0.665X1 − (0.413 − 0.206)X2

Ŷ = 0.992 − 0.665X1 − 0.207X2

Antilog version of smoker equation: eŶ = (2.697)(0.514)X1(0.813)X2

Figure 18.1 presents a graph depicting the interaction term between years of education and 
mothers’ smoking status. The graph shows that the odds of having a low birth weight baby are 
quite low for all nonsmoking mothers, even though additional years of education is associated 
with a slight decline in these odds. By contrast, smoking mothers with 8 years of education 
have very high odds of giving birth to a low-weight baby, but these odds rapidly decline 
with additional years of education, until they almost come down to the levels experienced by 
nonsmoking mothers. While the effect is linear at the level of log-odds, the decline in odds 
is exponential. As always, the existence of such an interaction means that the effect of one 

8 The LR test has 2 degrees of freedom (df), as we added two parameter estimates to the model.
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 variable (here: mothers’ education) differs, that is, has differential effects, depending on the 
level of another variable (here: smoking status).9

 MODEL FIT

As always, we must ask whether the statistical model we employed fits the data at hand. While 
the log-LR in Table 18.3 tells us that the model has some predictive power, and the Pseudo 
R2 tells us that the predictive power is quite modest, we also need to consider whether the 
data show patterns that are inconsistent with the assumptions of the model employed. Recall 
from the discussion of the linear regression model with an identity link, that we use the dif-
ference between the actually observed outcome score and the score predicted on the basis of 
the linear model (the error term) as an index of how well, or not so well, the model matches 
the data. Thus, the sum of squares (SS) of the error terms or residuals and its complement, the 
regression SS, can be used as an index of the relative fit of the model. In principle, we can do 
the same thing with the logistic regression model. The outcome variable either takes on the 
value one, which means the event of interest occurred, or zero, that is, the event of interest did 
not occur. In addition to the observed outcome, the logistic model gives us estimates of the 

9 Here we are interested only in establishing a pattern of interaction between two independent variables. 
The interpretation of this pattern is less certain, as the smoking variable only indicates whether or not 
the mother is a smoker, but not how much she smokes. There may well be additional confounding 
between the smoking and education variable not captured in these measures. For instance, female smok-
ers with higher education may be more likely to interrupt their smoking during pregnancy compared to 
female smokers with less education. This could explain at least in part, the precipitous decline in low 
birth weight babies among smoking mothers with higher education.

FIGURE 18.1 Changing Odds of Low Birth Weight Baby With Increasing Education: Comparison 

of Married Smokers and Married Nonsmokers.
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probability of the event occurring for each unique covariate pattern.10 Thus, we could apply a 
Pearson chi-squared test based on the differences between the observed number of outcomes 
and the expected number for each covariate pattern. Here is how this works.

Going back to the logistic regression model in Table 18.3, consider the independent vari-
ables. There are: a marital status variable with two categories (married or not), a smoking status 
variable with two categories (smoker or not), and a years-of-education variable with poten-
tially 10 categories (each year forming a separate group). Thus, the different combinations of 

10 While the model predicts log-odds, they can be converted to odds and ORs, which in turn can be 
converted to probabilities.

TABLE 18.4 Covariate Patterns for Logistic Regression Model in Table 18.3 
With Predicted Probabilities of Low Birth Weight Babies

. list birthwt prob maritalstat educyrs smoker if pattern==1
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +
 | birthwt prob maritalstat educyrs smoker |
 |– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –|
287. | 0 .3494843 0. not married 13 1. smoker |
288. | 1 .3494843 0. not married 13 1. smoker |
289. | 1 .3494843 0. not married 13 1. smoker |
290. | 0 .3494843 0. not married 13 1. smoker |
291. | 0 .3494843 0. not married 13 1. smoker |
 |– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –|
292. | 1 .3494843 0. not married 13 1. smoker |
293. | 0 .3494843 0. not married 13 1. smoker |
294. | 1 .3494843 0. not married 13 1. smoker |
293. | 0 .3494843 0. not married 13 1. smoker |
294. | 0 .3494843 0. not married 13 1. smoker |
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +

. list birthwt prob maritalstat educyrs smoker if pattern==2
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +
 | bwt2 prob maritals~t educ3 smoker |
 |– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –|
247. | 0 .0246361 1. married 16 0. non-smoker |
248. | 0 .0246361 1. married 16 0. non-smoker |
249. | 0 .0246361 1. married 16 0. non-smoker |
250. | 0 .0246361 1. married 16 0. non-smoker |
251. | 0 .0246361 1. married 16 0. non-smoker |
 |– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –|
252. | 0 .0246361 1. married 16 0. non-smoker |
253. | 0 .0246361 1. married 16 0. non-smoker |
254. | 0 .0246361 1. married 16 0. non-smoker |
255. | 0 .0246361 1. married 16 0. non-smoker |
256. | 0 .0246361 1. married 16 0. non-smoker |
 |– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –|
257. | 0 .0246361 1. married 16 0. non-smoker |
258. | 0 .0246361 1. married 16 0. non-smoker |
259. | 0 .0246361 1. married 16 0. non-smoker |
260. | 0 .0246361 1. married 16 0. non-smoker |
261. | 0 .0246361 1. married 16 0. non-smoker |
 |– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –|
262. | 0 .0246361 1. married 16 0. non-smoker |
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +



18. LOGISTIC REGRESSION MODELS WITH MULTIPLE PREDICTORS  223

the independent variables form 2 × 2 × 10 = 40 possible covariate patterns. In this particular 
data set, there are actually only 20 unique covariate patterns, because not all combinations 
of covariates actually occur in the data. Table 18.4 shows just two such covariate patterns: 
Pattern 1 shows 10 study participants who are smokers, have 13 years of formal education, 
and are not married. The logistic model assigns a probability 0.349 that mothers with these 
characteristics would give birth to a low birth weight baby. We also see that, for the 10 births 
in question, 4 actually are low birth weight babies. Thus the observed proportion (0.4) and the 
predicted probability (0.35) are quite close. Similarly for the covariate pattern of nonsmoking 
mothers with 16 years of formal education, the logistic model assigns a probability of 0.025 
to the occurrence of a low-weight birth, and we actually observe no case among the 21 births.

Not all of the covariate patterns produce similar closeness between the observed propor-
tions of low birth weight babies and the predicted probabilities, but overall the Pearson chi-
squared (df = 15) equals 14.99 with an associated p-value of .453. Thus, we would not reject 
the null hypothesis that the observed number of cases among all the covariate patterns equals 
the  number predicted by the model.

A similar goodness-of-fit test for logistic regression models is the Hosmer–Lemeshow 
(2000) test. The Pearson chi-squared test would be difficult to apply, if the number of covari-
ate patterns approaches the number of cases (n) in the sample—in the extreme, each covariate 
pattern would contain only one case and we could not observe proportions of cases within a 
covariate pattern experiencing the event of interest. For this reason, Hosmer and Lemeshow 
proposed a different grouping strategy. The proposed to rank-order all cases by their pre-
dicted probability from lowest to highest and to divide the sample into percentile groups, 
often between 8 and 12, depending in part on the size of the sample. For each of the percentile 
groups we have (a) the number of observed low birth weight babies and the number of normal 
weight babies, and (b) the number of expected low birth weight and normal babies based on 
the average probabilities predicted by the logistic model. Table 18.5 shows results after divid-
ing the data into nine percentile groups. The groups are uneven in size because boundaries are 

TABLE 18.5 Hosmer–Lemeshow Test: Observed and Expected Numbers of Low Birth 
Weight (L) and Normal Weight (N) Babies in Nine Percentile Groups Ranked by Average 
Probability of Low Birth Weight Babies

 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +
 | Group | Prob. | Obs_L | Exp_L | Obs_N | Exp_N | Total |
 + – – – – – – – – – + – – – – – – – – – – + – – – – – – – – – + – – – – – – – – – – + – – – – – – – – – + – – – – – – – – – + – – – – – – – +
 | 1 | 0.0921 |  7 |   6.5 | 84 | 84.5 | 91 |
 | 2 | 0.1388 |  9 |   9.4 | 59 | 58.6 | 68 |
 | 3 | 0.1647 |  6 |   5.6 | 28 | 28.4 | 34 |
 | 4 | 0.2164 |  4 |   4.5 | 18 |   17.5 | 22 |
 | 5 | 0.2352 |  8 |  7.5 | 24 | 24.5 | 32 |
 + – – – – – – – – – + – – – – – – – – – – + – – – – – – – – – + – – – – – – – – – – + – – – – – – – – – + – – – – – – – – – + – – – – – – – +
 | 6 | 0.2759 | 18 | 14.3 | 38 | 41.7 | 56 |
 | 7 | 0.2893 | 10 | 13.6 | 37 | 33.4 | 47 |
 | 8 | 0.3495 |  5 |  4.4 |  8 |   8.6 | 13 |
 | 9 | 0.6667 | 16 |   17.1 | 21 | 19.9 | 37 |
 + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – +

 number of observations = 400
 number of groups = 9
 Hosmer-Lemeshow chi2(7) = 3.06
 Prob > chi2 = 0.8789
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determined by how many cases fall into adjacent covariate patterns, ordered by the size of the 
predicted probabilities associated with each covariate pattern. Based on these numbers, the 
Hosmer–Lemeshow chi-squared test (df = number of groups − 2 = 9 − 2 = 7) returns a value 
of 3.06 with p > .878. From this we conclude that the predictions of the model are consistent 
with the observed outcome events.

 TESTING FOR INFLUENTIAL OUTLIER PATTERNS

As with linear regression models, in addition to examining the overall goodness-of-fit, we 
need to go beyond summary statistics and examine the data for outliers or influential observa-
tions before accepting the model as a good representation of the patterns in the data. As we 
saw in the last section, the predictor variables for the logistic model in Table 18.3 combine 
to produce 20 unique covariate patterns, for each of which we obtain a standardized residual 
comparing the observed number of events within the covariate pattern to the predicted number 
based on the model. While the standardization formula is a bit complicated,11 for our purposes 
it suffices to inspect the results in Figure 18.2. First notice that the graph in Figure 18.2 depicts 
squared standardized Pearson residuals. As for a normal distribution, the 95% confidence 
limits (CIs) would be ±1.96, the limits for the squared values would be 1.962 = 3.8416.

Assuming the Pearson residuals follow the normal distribution, we would expect only 
5% of the covariate patterns to produce residuals that fall outside the 95% CIs. That means we 
expect not more than 1 out of the 20 covariate patterns to have standardized residuals larger 
than 3.84. That is the case with these data: Only one positive standardized residual exceeds 
3.84; this covariate pattern involves 26 married smokers with 10 years of formal education. 
Among these, the model predicts the probability of a low birth weight baby to be .276, but 
the observed proportion is 11/26 = 0.423. The deviation also has the largest influence statistic 
( ).Δb j
�  This statistic measures by how much the estimated regression coefficients change, 

if cases with a particular covariate pattern were excluded from the analysis. The relative 

11 Interested readers may consult Hosmer and Lemeshow (2000).
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influence that a particular covariate pattern has on the magnitude of the estimated regression 
coefficients is indicated in the graph of Figure 18.2 by the diameter of the circles. In much of 
the published clinical literature, it is assumed that logistic (and other) regression models have 
been examined for their overall fit and sensitivity to outliers, but in many journals it is not a 
general practice to reassure the reader that such testing has actually occurred.

 EXTENSIONS OF THE LOGISTIC REGRESSION MODEL

Logistic or logit regression models are not only confined to binary outcome measures. One 
important extension is the multinomial logistic regression model,12 in which the outcome 
variable consists of three or more discrete categories without inherent ordering. For exam-
ple, Intrator, Zinn, and Mor (2004) examined hospitalization patterns among nursing home 
residents. In particular, these researchers wanted to know whether the presence of a nurse 
practitioner and the nursing-staff-to-residents ratio have any effect on the rate of prevent-
able hospitalizations, defined as hospitalizations for ambulatory-care-sensitive (ACS) condi-
tions. In the study, the researchers considered four possible, mutually exclusive outcomes 
comprising: (a) any hospitalization(s) with a primary discharge ACS diagnosis, (b) any other 
hospitalization(s), (c) death of resident, (d) or remaining in facility without hospitalization 
(reference group). Another frequent use of multinomial logit regressions is the prediction 
of multiple, but mutually exclusive disease outcomes based on a variety of continuous and 
 categorical independent variables (Arif & Delclos, 2012).

In order to discuss the multinomial logistic regression model, we turn to the example in 
Table 18.6. The goal of the analysis is to predict medication use among 400 mothers after birth 
depending on their formal education and age (measured in years), their weight (in pounds), 
current alcohol consumption (yes or no), and current smoking (yes or no). The dependent 
variable, medication use, comprises four mutually exclusive outcome categories: (a) tak-
ing neither headache nor antidepressant medications, (b) taking headache medications only, 
(c) taking antidepressants only, and (d) taking both types of medicines. The regression coef-
ficients in the table have been converted to relative-risk ratios (RRRs) instead of ORs,13 but 
other than that, there is not much change between the multinomial and the binary logistic 
regression model. Overall, the log-LR (41.69, df = 15) is statistically significant (p ≤ .0003), 
suggesting that at least some of the independent variables contribute to explaining variation in 
medication use, but the Pseudo R2 of 0.637 implies only modest predictive power. The output 
is organized into three sections containing the exponentiated regression coefficients and their 
associated p-values. The top section compares the risks of taking two types of medicines (only 
for headaches, only for depression, for both) to not taking either medicine types. For instance, 
compared to nonsmokers, smokers are 3.48 times (p < .0005) more likely to take depression 
medicines than nonsmokers; they are also three times (RRR = 3.05, p ≤ .017) more likely to 
take both headache and depression medicines. However, we cannot reject the null hypothesis 
that smokers are not more likely than nonsmokers to use headache medicines without depres-
sion medicines (RRR = 1.233, p ≥ .624). Similarly, mothers’ weight also predicts the use of 
depression medicines (RRR = 1.01, p < .005) and the combination of depression and headache 
medicines (RRR = 1.01, p ≤ .006): In both cases, each additional pound of weight increases 
the probability of taking these medicines by about 1%. Alcohol consumption may also con-
tribute to the risk of taking both depression and headache medicines (RRR = 2.8, p ≤ .03), 

12 Another name for this model is polytomous logistic regression.
13 Recall that an RR is a ratio of two probabilities, which in turn can be estimated from the odds involved, 
as p = odds/(1 + odds).
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but does not predict the use of depression medicines alone. The two demographic variables 
(mother’s age and education) do not predict any use of medications.

The two lower sections in Table 18.6 show additional risk comparisons, juxtaposing 
different combinations of medicine use: depression medicines versus headache medicines, 
depression and headache medicines versus headache medicines alone, and depression and 
headache medicines versus depression medicines alone. It is not difficult to see that these 
comparisons are redundant and can be derived from the previous risk comparisons. For 
instance, the (nonsignificant) sample estimate of the risk of taking headache medicines as 
opposed to no medicines is 1.233 times larger for smokers than nonsmokers. In the second 
section we see that, compared to nonsmokers, smokers are 2.823 times more likely to use 
depression medicines rather than headache medicines. It follows that, compared to nonsmok-
ers, smokers are 3.48 times more likely to use depression medicines rather than no medicines, 
as 1.233 × 2.823 = 3.48.

TABLE 18.6 Multinomial Logistic Regression Model With Four Categorical Outcomes

. mlogit medications education age weight alcohol smoker, rrr

Iteration 0:  log likelihood = −327.28534 

Multinomial logistic regression Number of obs =     400
 LR chi2(15) =   41.69
 Prob > chi2 = 0.0003
Log likelihood = −306.43833 Pseudo R2 = 0.0637
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
  medications | RRR P>|z| RRR P>|z| RRR P>|z| | LR(df=3) P>chi2
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
  base outcome: | comparison to base outcome: | LRs for models
     no meds | headache meds depression meds both meds | w/o predictor
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
    education |   .941 0.567  1.013 0.889 1.125 0.339 |  1.35   0.717
       age |  .968 0.267  .997 0.884 1.006 0.851 |  1.49 0.684
     weight | 1.004 0.240  1.010 0.002 1.011 0.006 |  14.51 0.002
    alcohol | 1.252 0.631 1.608 0.222 2.821 0.030 |  5.35 0.148
     smoker | 1.233 0.624 3.480 0.000 3.051 0.017 | 15.93 0.001
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
  base outcome: | comparison to base outcome:
headache meds | depression meds both meds
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
    education | 1.078 0.580 1.196 0.251
       age | 1.030  0.417 1.039 0.351
     weight | 1.005 0.245 1.007 0.190
    alcohol | 1.285 0.658 2.253 0.197
     smoker | 2.823 0.044 2.474 0.131
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
  base outcome: | comparison to base outcome:
   depress meds | both meds
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
    education | 1.110 0.467
       age | 1.009 0.800
     weight | 1.002 0.734
    alcohol | 1.754 0.319
     smoker |  .877 0.807
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
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As a general rule, if we have k outcome categories, labeled A, B, … K, and if we choose 
K as the reference category, then we could, for instance, estimate the RRRs comparing the 
risks of the outcomes A versus K, B versus K, and A versus B. But if we have an estimate 
for A versus K and B versus K, we also have an implied estimate of A versus B. Let us 
assume the logistic regression model gives us the following RRR estimates: RRRA-K = 4/2 and 
RRRB-K = 3/2. It follows that RRRA-B = (4/2)/(3/2) = 4/3.14

One additional advantage of employing the multinomial logistic regression model over 
separate binary logistic regression models, each comparing only two outcomes at a time, is 
that we can determine whether any of the predictor variables have significant associations 
across all comparison groups. Table 18.6 shows the log-LRs comparing the full model with 
all five predictor variables to five models with four predictor variables, after eliminating one 
predictor at a time from the full model. The results show that only the omission of weight and 
smoking status would appreciably reduce the predictive power of the multinomial model.

Multinomial logistic regression models make the same assumptions about the data as 
the binary logistic regression model, except for one addition: The model assumes that, if we 
eliminate one of the outcome categories, the estimates of the coefficients for the remaining 
binary outcome comparisons are not affected. For instance, in the example of Table 18.6, the 
RR probability of taking depression medicines associated with smoking should remain the 
same, whether or not the risk of taking headache medicines is considered in the model. This 
“independence of irrelevant alternatives” assumption can be tested using Hausman’s specifi-
cation test, but we leave this problem for the interested reader to explore (Kwak & Clayton-
Matthews, 2002).

Another extension of the logistic regression model is the ordinal logistic regression 
models. In Chapter 15, we have already considered several statistical models for ordinal out-
come variables, such as the Wilcoxon rank-sum tests or the Kruskal–Wallis test. However, 
these tests are limited to a single independent variable. Ordered logit regression models may 
be employed if the categories of the outcome variable can be ordered from least to most and 
the independent variables represent a mixture of continuous and categorical variables. There 
are several subtypes of this model, but the most common is the proportional-odds model. 
Suppose we want to predict self-rated responses to a survey question about a person’s health, 
with the ratings ranging from “poor” to “fair” to “good” to “excellent.” We could cut the 
responses in the following way: comparing poor to fair through excellent, poor and fair to 
good and excellent, and poor–good to excellent. Each time we estimate ORs comparing two 
groups. If the ORs are similar across all three splits of the outcome categories, then the data 
are consistent with the model assumption of proportional odds, and a single averaged OR 
would represent how the odds of higher self-rated health change at every cut-off point. As 
with all statistical models, the model assumptions need to be tested. For the proportional-odds 
model, the so-called Brant test and the score test can be used for this purpose; further reading 
on this topic is provided in Hosmer and Lemeshow (2000). Examples of the application of this 
model to clinical and nursing data can be found in Murray and colleagues (2007) and Wyatt, 
Sikorskii, Wills, and Su (2010).

 SUMMARY

This chapter concludes our discussion of models for categorical outcome variables. Models 
for categorical outcome variables (both ordered and unordered) have become much more 
common in the clinical literature, because many outcomes of interest in nursing and medicine 

14 The argument holds for ORs as well.
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are not measured at an interval or ratio level, which makes the application of linear models for 
continuous outcome variables suspect. By contrast, the logit regression models discussed in 
this chapter are capable of analyzing data containing outcome variables with few categories, 
which may or may not be ordered. Such qualitative variables are part and parcel of clinical 
judgments and a basic understanding of statistical models to analyze them is more and more 
required to read the clinical research literature.

In the next section of this book (Part IV), we turn to another class of statistical mod-
els that can be used to analyze yet another type of data that is relevant to clinical practice. 
Clinicians often evaluate the success or failure of treatments in terms of outcomes that lie in 
the future and may or may not occur. In such cases, we are not only interested in whether or 
not the event occurs (for that we could employ the logistic regression models discussed in this 
chapter), but also in when they occur. For example, we may want to be able to predict which 
patients discharged from a hospital will be rehospitalized for the same illness and at what time 
within the next 5 years. Or we may want to know for how long patients survive after a particu-
lar surgery or cancer treatment. Information about such events is often “censored” at a certain 
time, that is, we usually have incomplete follow-up information, as the observation periods are 
 inevitably limited. This requires special kinds of analysis models, to which we will turn next.

Read: Nojkov, B., Rubenstein, J. H., Chey, W. D., & Hoogerwerf, W. A. (2010). The impact of 
rotating shift work on the prevalence of irritable bowel syndrome in nurses. American Journal 
of Gastroenterology, 105(4), 842–847.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  Provide a clear definition of the outcome/dependent variable and a short description of the 
instrument used to measure it.

(d)  Provide a clear definition of all independent/predictor variables and a short description of 
the instruments used to measure them.

(e)  From the data in Table 3, reconstruct the bivariate ORs for each of the sleep-quality 
 measures and the presence or absence of irritable bowel syndrome. Compare these ORs to 
the estimates in Table 4. Why are they different?

(f)  Do the data in Table 3 suggest a possible interaction effect between the sleep-quality 
 measures and the different shifts? If no, why not; if yes, why?

(g)  Should the authors have presented only evidence from a main-effects model in Tables 4 
and 5? Defend your answer.

(h)  In a sentence, how would you describe the OR for Age in Table 5?

(i)  Do the authors provide enough information for the reader to judge the goodness-of-fit of 
the model?

(j)  Summarize the main findings in your own words. Are the conclusions of the authors 
 consistent with the evidence presented?

LITERATURE APPLICATION
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 EXERCISES

1. A binary logistic regression equation estimates the log-odds of coronary heart disease 
(CHD) as follows: Y = ln( p/(1 − p)) = −2.3 + 0.47 (HTN) + 0.01 (AGE), where HTN is 
coded 0 = person has no hypertension (HTN), 1 = person has HTN, and AGE is coded 
in years. What are the odds that a 50-year old adult with HTN has CHD (all regression 
coefficients are statistically significant)?

2. Suppose you have a sample of 100 obese and 100 normal weight adults. Among the 
normal weight adults, the odds of having diabetes are 4/96. The logistic regression 
equation that predicts the log-odds of diabetes (Y) equals: Y = ln( p/(1 − p)) = −3.178 + 
1.792X, where X = 0 if the adult has normal weight and X = 1 if the adult is obese. How 
many obese adults have diabetes?

3. The following logistic regression model predicts the odds of incurring a myocardial 
infarction (MI) based on age (in years), education (years of formal education), and sex 
(1 = female, 0 = male): Y = ln( p/(1 − p)) = −2.996 + 0.0198 (AGE) − 0.0513 (EDUC) 
– 0.1054 (SEX). All regression coefficients and the intercept are highly significant 
( p < 0.001). What is the OR that compares the odds of an MI among 60-year old men 
with a high school degree (12 years of education) compared to 45-year old women with a 
college degree (16 years of education)?

4. Observe the following output from a logistic regression, in which the outcome/dependent 
variable refers to the odds of having a major functional limitation (e.g., cannot walk 
independently, cannot dress oneself, cannot feed oneself), and age, education, sex, and 
marital status are all predictor/independent variables:

Variables in the Equation
B S.E. WALD DF. SIG. EXP(B) 95% C.I. FOR EXP(B)

LOWER UPPER

Age (in years) .041 .001 2732.53 1 .000 1.042 1.040 1.043

Education (years of formal education) −.105 .004 694.57 1 .000 .900 .894 .906

Sex (female vs. male) −.140 .024 34.49 1 .000 .869 .829 .911

Poverty (<100% vs. higher income) .831 .034 602.97 1 .000 2.295 2.147 2.452

Marital status: (reference category: 
married)
(widowed vs. married)
(divorced vs. married)
(separated vs. married)
(single/never mar. vs. married)

 

.116

.462

.466

.283

 

.039

.041

.067

.037

189.51

8.76
127.47
48.09
57.83

5

1
1
1
1

.000

.003

.000

.000

.000

 

1.123
1.587
1.594
1.328

 

1.040
1.465
1.397
1.234

 

1.213
1.720
1.819
1.428

Constant 2.494 .089 786.07 1 .000 .083

(a) In a single sentence, state how age affects having a serious functional limitation.
(b) Suppose you are comparing a person with 10 years of formal education to one with 

7 years of formal education; by how much do the odds of having a serious functional 
limitation differ between persons with 10 years, as opposed to 7 years, of formal 
education?
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(c) Based on the information provided in the table, is it possible to say that, for separated 
persons, the odds of having functional limitations are significantly higher than for 
widowed persons?
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CHAPTER 19

 Incidence Rates, Life Tables, and 
Survival Function

 CENSORING

So far, we have examined statistical models that predict outcomes without taking into account 
exactly when these outcomes or events occur. While repeated-measures analysis of variance 
(ANOVA) models can be used to analyze changes in outcome scores over selected time inter-
vals, such as the predetermined time intervals of repeated measurements in a panel study, 
these models do not take into account individual variations in the timing of the outcome of 
interest. Yet, in prospective studies of patients,1 we often follow a given set of individuals, 
defined by a common treatment or intervention or a common diagnosis, for a specified time 
to record adverse events or other outcomes of interest. These events, which include death, 
rehospitalizations after an initial discharge, or other critical endpoints such as a patient expe-
riencing the onset of specified symptoms, occur at different times for different individuals. As 
individuals cannot be followed for an indefinite period of time or data collection may be cut 
short due to death or unwillingness to participate further in a study, eventually all prospective 
longitudinal studies share the common problem of censoring.

Suppose we want to know whether, and when, a patient who is discharged from a hospi-
tal after a triple bypass surgery will be hospitalized again. We may be able to follow patients 
for up to 1 year, during which we ascertain all rehospitalizations. However, hospitalizations 
occurring 12 months or later after the initial discharge would not be recorded. Thus, infor-
mation about rehospitalization would be incomplete: We would know about hospitalizations 
during the 12-month observation period, but not after it. This incomplete information about 
rehospitalization is an example of censoring. Figure 19.1 presents a graphical illustration of 
censoring.

Suppose that some researchers follow newly diagnosed colon cancer patients for up to 
18 months. Such a study may focus on several adverse events of interest: death, rehospitaliza-
tion, immobility, adverse reactions to toxicity of chemotherapy, loss of hair or appetite, and 
so forth. Adverse events other than death and rehospitalization are recorded monthly at home 
visits of the patient/study participant. For each individual study participant, the research-
ers record the time he or she is enrolled in the study, counting from the day of diagnosis. 

1 A prospective longitudinal study may be experimental (clinical trials) or observational (cohort studies).

 PART IV. MODELS FOR TIME-TO-EVENT 
DATA/SURVIVAL ANALYSIS
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As Figure 19.1 shows, study participants 1, 3, and 5 are enrolled immediately after diag-
nosis, but participant no. 4 was enrolled in the second month and participant no. 2 in the 
third month after diagnosis. The observations on these two study participants are said to be 
“ left-censored,” as information about their health status at early home visits is missing.2 In 
addition, there is also the problem of right-censoring. For instance, participant no. 1 may 
have refused to continue in the study after 15 months; thus, no information on this patient’s 
morbidity and mortality status is available after this time. Likewise, participant no. 4 is lost 
to follow-up after the 14th month— perhaps the patient moved away without notifying the 
study personnel. Whatever the reason, these five individuals have been observed during time 
periods of different lengths. However, when we observe one individual for a longer time than 
another individual, the opportunity to observe an event or outcome of interest will be greater 
for the former than for the latter. From this it follows that simply comparing the incidences 
of an adverse event in different groups of individuals would lead to biases if the different 
observation times are not taken into account.

 INCIDENCE RATES

Given the inherent time dimensions of the occurrences of adverse events, the way to get unbi-
ased information is to employ rates rather than proportions of people experiencing specific 
event outcomes. The crucial part of the definition of an incidence rate (IR) is that it involves 
both counts of events (incident cases of diseases for instance or of persons experiencing an 
adverse event) and explicitly defined time periods of observation. Thus, a rate is not simply a 
proportion of persons newly diagnosed with a specific disease over the total number of per-
sons in a particular population. The denominator of the “population at risk for the disease” is 
the product of the number of persons exposed times their associated average exposure time.

2 Of course, if we were interested in death as the sole outcome, left-censoring would not be an issue, as 
the study participants must all be alive at the time of enrollment.

FIGURE 19.1 Observation Periods for Five Participants in a Cohort Study.
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An incidence rate (IR) is a ratio of two quantities: the number of new (“incident”) cases diag-
nosed with a particular disease, or experiencing an adverse event for the first time, within a 
given time period over the population at risk for the disease or adverse event in that time period.

IR Number personsexperiencing incident events= of
Total person-time of observation

DEFINITION OF INCIDENCE RATE

An example will illustrate this definition: Suppose a researcher follows 10 smokers and 
10 nonsmokers, initially all 55 years old, for 10 years with the objective of documenting their 
first incidence of an acute myocardial infarction (AMI), should there be any. Given an obser-
vation period of 10 years, some of the study participants are quite likely to be lost to follow-
up: They may move away without leaving an address, refuse further participation, or die due 
to unrelated causes such as car accidents.

Table 19.1 shows some data for this hypothetical study.3 The first and fifth columns indi-
cate the years of exposure, that is, the year during which a person smoked or did not smoke. 
The second and sixth columns show the number of smokers or nonsmokers in each year, who 
were at risk for experiencing an AMI. The third and seventh columns incorporate a simplifying 
assumption about death or follow-up: We assume here that, if a person dies or is lost to follow-
up, this event always occurred exactly on the last day of the observation year, so that the per-
son was at risk for an AMI during the entire year of observation.4 Finally, the fourth and eighth 
columns show the disease outcome of interest: the first occurrence (incidence) of an AMI for 
a given person. Note that we defined the event of interest as the first occurrence of an AMI. 
That means, once a person has had an AMI, he or she no longer is at risk for another first AMI.

3 The main purpose here is to illustrate the concept of person-time of exposure, or “population at risk.”
4 Clearly, people do not only die on the last day of a year, but we could have chosen smaller time 
 intervals, for example, days, to make it more realistic.

TABLE 19.1 10-Year Follow-Up Data for 10 Smokers and 10 Nonsmokers to Record 
Incidences of a First Acute Myocardial Infarction

Non-Smokers: Smokers:

Year
Persons At 
Risk for AMI

Loss to 
Follow-up

New 
AMI | Year

Persons At 
Risk for AMI

Loss to 
Follow-up

New 
AMI

0–1
1–2
2–3
3–4
4–5
5–6
6–7
7–8
8–9
9–10

10
10
 9
 9
 8
 8
 8
 7
 7
6

0
1
0
0
0
0
1
0
0
0

0
0
0
1
0
0
0
0
1
0

|
|
|
|
|
|
|
|
|
|
|

0–1
1–2
2–3
3–4
4–5
5–6
6–7
7–8
8–9
9–10

10
9
9
8
8
7
6
6
4
4

1
0
0
0
1
0
0
1
0
0

0
0
1
1
0
1
0
1
0
0

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
Sums: 82 2 2 | 71 3 4
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As the data in Table 19.1 show, among nonsmokers the “population at risk” for expe-
riencing a first AMI or the “total person-time of observation” is equal to 82 person-years: 
2 × 10 + 2 × 9 + 3 × 8 + 2 × 7 + 1 × 6 = 82.5 During that time, we observe two new AMIs. 
Thus, the 10-year IR for nonsmokers is: IR = new AMIs/person-years at risk = 2/82 = 0.0244. 
Among smokers the “population at risk” for experiencing a first AMI or “total person-time of 
observation” is 71 person-years: 1 × 10 + 2 × 9 + 2 × 8 + 1 × 7 + 2 × 6 + 2 × 4 = 71. During 
that time, we observe four new AMIs. Thus, the 10-year IR for smokers is: IR = new AMIs/
person-years at risk = 4/71 = 0.0563.

If we divide the IR for smokers by the IR for nonsmokers, we get a relative risk (RR) 
estimate of RR = IRS/IRNS = 0.0563/0.0244 ≈ 2.3. Note that a simple ratio of the proportions 
of smokers versus nonsmokers, who experience an AMI, would have given us an estimate 
of RR = (4/10)/(2/10) = 2. The latter ratio does not take into account that nonsmokers, in 
the aggregate, were observed for 11 person-years more than smokers. Thus, in a prospective 
study, the RR should be computed as the ratio of two IRs, taking explicitly into account the 
time dimension of the observations. Only if the average follow-up time is the same in the 
two groups being compared, will the RR, based on the ratio of two proportions, equal the RR 
based on the ratio of the two IRs.

 THE CONSTRUCTION OF LIFE TABLES

Our discussion of time-to-event and survival analysis continues with the related concept of a 
life table. Life table analysis is used by demographers and health insurance actuaries to get 
estimates of mortality, survival rates, and life expectancy for the U.S. population as a whole 
as well as specific population groups defined by gender, ethnicity, state residency, and so 
forth. Table 19.2 contains an abbreviated version of a life table showing U.S. mortality and 
life expectancy based on 2008 data.6 In this table, we only present data for the first 3 years 
of life, followed by data for every 10th year. What you see here is a so-called “current” life 
table. It uses Census Bureau data from 2008 about the U.S. population (then approximately 
304 million people) and divides the population into 1-year age intervals (the age variable is 
referred to as “x”). The data in Table 19.2 are standardized to show anticipated deaths and 
survival per 100,000 persons born in 2008. Of course, the underlying assumption is that the 
survival pattern of the 2008 cohort can be extrapolated from survival patterns of current older 
age cohorts. If history is any guide, the resultant life expectancies are almost certainly under-
estimates of the future survival pattern of the 2008 cohort, but with each year of additional 
data, these estimates are revised to yield more accurate estimates for this cohort. The table 
content is read as follows: 

• We start with the column labeled “lx.” It is labeled “number surviving to age x”; that 
is, the column contains the number of persons alive at the beginning of the age inter-
val. Rather than showing us the total number of babies born in the United States in 
2008, this column starts in the first row with 100,000 newly born babies (l0).

5 Alternatively, we can obtain the sum as follows: six persons were observed for 10 years, one for 9, one 
for 7, one for 4, and one for 2 years. That makes: 6 × 10 + 1 × 9 + 1 × 7 + 1 × 4 + 1 × 2 = 82.
6 The full data are available from the Centers for Disease Control and Prevention as a pdf file under 
the heading “United States Life Tables, 2008—Tables updated using revised intercensal populations” 
at http://www.cdc.gov/nchs/products/life_tables.htm; for a detailed discussion of life table  methodology, 
see http://www.cdc.gov/nchs/data/nvsr/nvsr61/nvsr61_03.pdf
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• The column labeled “dx” shows us how many of these 100,000 babies die before their 
first birthday. Those are the deaths occurring during the age interval 0 to 1 (d0). If we 
divide the deaths in that age interval by the total number alive at the beginning of the 
age interval, we get…

• “qx” or “the probability of dying between the beginning of the age interval (x) and 
the end of the age interval (x + 1).” In the first row, we get the q0, which refers to the 
age interval 0 to 1.

• Now, we turn to the column labeled “person-years lived in age interval x to x + 1” 
(Lx). The number there is 99,425. As it turns out, there is one additional piece of 
information we need to make sense of this number. If you focus on the second row 
of the column labeled “number surviving to age x,” you see the number 99,341. This 
entry is simply computed as lx − dx or the difference between the number of persons 
alive at the beginning of any age interval and the number of persons who died during 
the age interval. This difference yields the number of persons alive at the beginning 
of the next age interval. Thus, in rows 1 and 2, we get: 100,000 − 659 = 99,341. Now, 
we know for sure that these 99,341 babies lived a full year to their first birthday. 
However, the Lx column (“person-years lived between ages x and x + 1”) shows the 
number 99,425. Why the difference? If you subtract 99,341 from 99,425, you get 
84. That means that the 659 infants, who died during the first year, lived a total of 
84 life-years. If we divide that total by 659, we get 84/659 = 0.127. Thus, these 659 
infants lived, on average, for only 12.7% of the duration of the first year, which is 

TABLE 19.2 Abbreviated U.S. Life Table Based on 2008 Population Data

PROBABILITY 
OF DYING 
BETWEEN 

AGES X AND 
X + 1

NUMBER 
SURVIVING 

TO AGE X

NUMBER 
DYING 

BETWEEN 
AGES X 

AND X + 1

PERSON-
YEARS LIVED 

BETWEEN 
AGES X AND 

X + 1

TOTAL 
NUMBER 

OF PERSON-
YEARS LIVED 
ABOVE AGE X

EXPECTA-
TION OF 
LIFE AT 
AGE X

Age(x) qx lx dx Lx Tx ex

0–1 0.006593 100,000 659 99,425 7,816,825 78.2

1–2 0.000479 99,341 48 99,317 7,717,399 77.6

2–3 0.000291 99,293 29 99,279 7,618,083 76.7
. . . . . . .

10–11 0.000080 99,162 8 99,158 6,824,368 68.8

20–21 0.000817 98,811 81 98,771 5,833,863 59.0

30–31 0.001040 97,862 102 97,811 4,850,380 49.6

40–41 0.001789 96,624 173 96,538 3,877,439 40.1

50–51 0.004318 93,974 406 93,771 2,922,590 31.1

60–61 0.008965 88,389 792 87,992 2,007,800 22.7

70–71 0.020298 77,372 1,571 76,587 1,172,767 15.2

80–81 0.052439 55,862 2,929 54,397 495,471 8.9

90–91 0.148357 22,287 3,306 20,634 99,092 4.4

99–100 0.314390 2,419 761 2,039 5,727 2.4

100+ 1.00000 1,659 1,659 3,688 3,688 2.2
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about 46 days. This 12.7% is also known as the “average fraction of survival during 
the last year lived.” While the table does not show a separate column for the “average 
fraction of survival,” the fraction is implicit and is based on the actual survival data 
for infants in 2008.

• For older individuals, the average fraction of survival tends toward 50%, as people 
tend to die relatively evenly across time during any 1-year interval. Babies are an 
exception, as many neonatal deaths occur in the first month after birth. In sum, Lx 
tells us how many total years were lived by all the persons, who were alive at the 
 beginning of an age interval (x), until the beginning of the next year (x + 1).

• The column labeled “Tx” shows the “total number of person-years lived above age x.” 
In other words, this column shows how many total years of living are left among 
those, who were alive at the beginning of age interval x, including all subsequent 
age intervals. For instance, T0 shows the number 7,816,825. That means, the initial 
100,000 babies born in 2008 are estimated to have a total of 7.82 million life-years 
left to live. T0 was calculated simply by adding up all the numbers in the Lx column.7

• The final step is the calculation of the “life expectancy” (see the last column labeled  
“ex”). Dividing the total number of person-years lived (Tx) by the number of persons 
alive at the beginning of a particular age interval x(lx) yields the average number of 
years lived beyond x(ex). For instance, in the first row we get: 7,816,825/100,000 = 
78.2. That is, in 2008, the average life expectancy of a U.S. resident at birth was 78.2 
years, assuming that the 2008 age-specific mortality pattern would continue in the 
future for this population cohort. From the column ex you can also see that a person, 
who already reached the 60th birthday was expected to live another 22.7 years. Of 
course, these are averages for the U.S. population as a whole. If you look at the more 
detailed life tables in the National Center for Health Statistics (NCHS) pdf file, you 
will see that life expectancy for women is about 5 years longer than for men, that 
White men have a 7-year longer life expectancy than Black men, and so forth.

Life tables display the survival (or mortality) patterns in populations or communities, even 
when the exact survival times of their members are not known. For instance, we mentioned 
the simplifying assumption that, for most age cohorts, deaths occur at a more or less constant 
rate within each year. However, while the life table assumes constant mortality rates within 
each age group, mortality (and survival) rates do change among different age groups. At the 
same time, life tables use current age-specific mortality patterns for the purpose of extrapolat-
ing to the life expectancy of a particular birth or age cohort.

 KAPLAN–MEIER  SURVIVAL FUNCTION

As mentioned in the beginning of this chapter, with cohort studies it is often possible to record 
the exact time (within a day) when a person dies or when a person withdraws for any other 
reason from the study. Hospitalizations or other events of interest may similarly be recorded 
for each study participant. This suggests that, rather than relying on some average probability 
of the occurrence of an adverse outcome within an arbitrary interval, we could construct a 

7 This includes, of course, all the years that are NOT shown in this abbreviated table; the full data are 
shown in the NCHS pdf file labeled “United States Life Tables, 2008—Tables updated using revised 
intercensal populations” at http://www.cdc.gov/nchs/products/life_tables.htm
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FIGURE 19.2 Kaplan–Meier Survival Estimates to 61 Days After Diagnosis: 500 Lung Cancer 

Patients Aged 65 to 70.

survival function that is adjusted every time the adverse event occurs or someone is lost to 
follow-up. Figure 19.2 shows such a survival step-function for 500 newly diagnosed lung 
cancer patients 65 to 70 years old. Table 19.3 shows the details of survival and mortality prob-
abilities just for the first 12 days after diagnosis. The probability of survival at a particular time 
t (st) is the complement of the probability of mortality, which is also known as the hazard rate 
(ht): st = 1 – ht. For instance, from the data in Table 19.3, we learn that among the 500 diag-
nosed lung cancer patients, one person died on the first day after diagnosis, another person on 
the second day, two on the third, and so forth. Thus the hazard rate on the first day is 1/500 = 
0.002; on the second day, it is 1/499 = 0.002004; on the third day it is 2/498 = 0.004016, and 
so forth. Notice that the denominator of the hazard rate is adjusted each time a person dies 
or is lost to follow-up, because both events reduce the population at risk for further deaths. 
An example can be seen in Table 19.3 on Day 5: The “persons at risk for death” are reduced 

TABLE 19.3 Six-Day Survival Pattern Among 500 Newly Diagnosed Lung Cancer Patients

Day Persons At 
Risk for Death

Loss to 
Follow-up

Deaths Probability of 
Death/Hazard Rate

Probability of 
Survival (st)

Probability (St) 
Cumulative Survival

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

1 500 0 1 0.002000 0.998000 0.998000

2 499 0 1 0.002004 0.997996 0.996000

3 498 0 2 0.004016 0.995984 0.992000

4 496 1 0 0.000000 1.000000 0.992000

5 495 0 1 0.002020 0.997980 0.989996

6 494 0 1 0.002924 0.997076 0.987101
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
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to 495, even though no one died during the previous day. The relationship among the hazard 
rate at time t, ht, the survival probability at time t, st, and the cumulative survival function, St, 
can thus be summarized as follows:

Hazard rate at time t, ht:

h d
nt

t

t

= ,

where dt is the number of persons dying during interval t and nt is the number of persons at 
risk for dying at time t.

Survival probability at time t, st:

s h n d
nt t

t t

t

= − =
−1 ,

where nt − dt is the number of persons surviving during interval t and nt is the number of 
persons at risk for dying at time t.

Cumulative survival probability up to time t, St:

S s s s st

k

ti t t tk= = × ×…×∏
1

,

where Π is the product operator indicating that the cumulative survival probability equals the 
product of each successive survival probability up to time t. This formula is also known as the 
product-limit formula.

DEFINITIONS OF HAZARD RATE, SURVIVAL 
PROBABILITY, AND KAPLAN–MEIER CUMULATIVE 

SURVIVAL ESTIMATES

The Kaplan–Meier  cumulative survival function is also known as the product-limit 
 survival function. Cumulative survival probabilities are computed as the products of all 
time-specific survival probabilities up to the time of interest. For example, based on the 
data in Table 19.3, we can calculate the cumulative survival probability at Day 3 as follows: 
S3 = 0.998000 × 0.997996 × 0.995984 = 0.992000. If we recompute the survival probabilities 
every time someone dies—in other words, we are not using broader, predetermined, time 
intervals like years or weeks—we obtain the Kaplan–Meier  survival function.

 SUMMARY

In this chapter, we introduced the basic concepts of censoring, IRs, and survival/mortality 
probabilities we employ in the analysis of time-to-event or survival data. Time-to-event data 
usually provide partial information about the occurrence of events within the restricted time 
of observation. The basic approach to handing censored data is to adjust risk estimates based 
on the time of exposure or observation.

In the next chapter, we will explore ways of comparing risks of adverse outcomes in dif-
ferent target populations. As always, as sample data vary from one study sample to the next, 
we will need statistical tests and confidence intervals for our estimates of survival functions.
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 EXERCISES

1. Here are data from a cohort study that compares the risk of lung disease (of any type) 
among coal miners and truck drivers after the age of 40. A total of 1,000 coal miners and 
1,600 truck drivers were followed for up to 10 years:

NO. OF COAL 
MINERS

FOLLOW-UP 
PERIOD 

PERSON-
MONTHS

NO. OF TRUCK 
DRIVERS

FOLLOW-UP 
PERIOD

PERSON-
MONTHS

   600 10 years 1000 10 years

   300 9 years 400 9 years

   200 8 years 200 8 years

   100 7 years 0 7 years

Total: 1200   Total: 1600

Incidences of lung disease among coal miners: 55 Incidences of lung disease among truck drivers: 38

 Based on these data, what is the RR of lung disease among coal miners compared to truck 
drivers?

2. Suppose you read in a study report that the RR of dying within 5 years of a colon cancer 
diagnosis is 1.6 (p < .001) times larger among men than among women. You also learn 
about the study that 400 of 1,000 men with colon cancer died within 5 years, and 200 
of 1,000 women with colon cancer died within 5 years. Are these results necessarily 
contradictory? Explain.

3. The Kaplan–Meier  cumulative survival function is defined as: St = ∏1
k sti = st1 × 

st2 × … × stk. Based on this, how can we express the Kaplan–Meier  cumulative mortality 
function? In words, what would the cumulative mortality function tell us?

Read: Chan, T. C., Hung, I. F. N., Luk, J. K. H., Shea, Y. F., Chan, F. H. W., Woo, P. C. Y., & 
Chu, L. W. (2013). Functional status of older nursing home residents can affect the efficacy 
of influenza vaccination. Journals of Gerontology. Series A, Biological Sciences and Medical 
Sciences, 68(3), 324–330.

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c)  Provide a clear definition of the outcome/dependent variable and a short description of 
how the outcome event was measured.

(d)  Provide a clear definition of all independent/predictor variables and a short description of 
the instruments used to measure them.

(e)  Is this study observational or experimental?

(f)  What can the reader learn from Figure 1?

(g)  Summarize the main findings in your own words. Are the conclusions of the authors 
 consistent with the evidence presented?

LITERATURE APPLICATION
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CHAPTER 20

 Comparing Survival Functions in Different 
Groups and Hazard Regression

 CONFIDENCE INTERVALS FOR SURVIVAL FUNCTION

In the last chapter, we introduced the Kaplan–Meier survival function to describe the cumulative 
survival probabilities in a single population group. As data are usually sample-based, a familiar 
statistical question arises: How much variation is there in the point estimates of survival functions 
from one sample to the next? To answer this question, we need to have a measure of the vari-
ance of the estimated survival function at any time t: Ŝt  . It is provided by Greenwood’s formula: 
Var( ) ( )S St t

d
n n d

t

t t t
$ $

= ×
−

2
Σ , summing over all events up to time t. However, the construction of the 

95% confidence intervals (CIs) is a bit more complex. Because survival functions are limited 
to values between zero and one, CIs of survival functions should also not exceed these limits. 
It is possible to convert the survival function into an unconstrained measure that can take on any 
positive or negative number using two successive logarithmic transformations, which is known 
as the log–log survivorship function: ln(−ln .1 Then we can obtain a 95% CI for that expres-
sion, adding or subtracting 1.96 standard errors: ln(−ln  ± 1.96ŝet.

2 Finally, we reconvert this 
expression by taking the antilog twice, and we obtain the desired 95% CI for the original sur-
vival function. Figure 20.1 contains the graph of the same Kaplan–Meier survival function as in 
Figure 19.2, but with the added band showing the 95% CI for the survivor function.

Table 20.1 shows the estimates of the 95% CI for selected days after diagnosis.

 THE LOG-RANK TEST

Suppose we compare the survival of lung cancer patients with Stage 1 nonsmall cell lung 
cancer diagnosis to the survival of Stage 4 (metastatic) nonsmall cell lung cancer patients. 
Figure 20.2 shows the separate survival graphs for these two groups of lung cancer patients.

1 As the survivor function is a cumulative probability function its values can only range from 0 (no sur-
vivors) to 1 (all sample members are still alive). If one takes the logarithm of probabilities between 0 
and 1, one obtains negative numbers between −∞ and 0. Multiplying this expression by (−) yields 
positive numbers between 0 and +∞. Finally, taking another log of positive numbers yields both positive 
and negative numbers.
2 The interested reader may consult Hosmer and Lemeshow (2008) for details.
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TABLE 20.1 95% Confi dence Intervals for Kaplan–Meier Survival Function at Selected 
Intervals (t)

Day
Persons At 

Risk for Death
Loss to 

Follow-up Deaths
Cumulative 

Survival Prob.(St)
Standard 

Error [95% Conf. Int.]
– – –– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

1
2
3
4
5
.

56
57
58
60
61

500
499
498
496
495

.
445
444
442
441
440

 0
0
0
1
0
.

0
 1
 0
 0

439

1
1
2
0
1
.
1
1
1
1
1

0.9980
0.9960
0.9920
0.9920
0.9900

.
0.8974
0.8954
0.8934
0.8914
0.8873

0.0020
0.0028
0.0040
0.0040
0.0045

 .
0.0136
0.0137
0.0138
0.0140
0.0145

0.9859
0.9841
0.9788
0.9788
0.9761

.
0.8673
0.8650
0.8628
0.8605
0.8554

0.9997
0.9990
0.9970
0.9970
0.9958

.
0.9211
0.9193
0.9175
0.9157
0.9126

– – 
–– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

FIGURE 20.1 Kaplan–Meier Survival Estimates to 61 Days After Diagnosis: 500 Lung Cancer 

Patients Aged 65 to 70.
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The fact that the 95% confidence bands, for almost the entire observation period, do 
not overlap is a graphical indication that the survival curves in the two groups are signifi-
cantly different. However, we need a formal test that the two survival functions differ over 
the entire observation period, that is, for all times t. The null hypothesis for this test would 
be: H0: Ŝs –1,t = Ŝs –4,t, that is, the survival functions are equal. The test statistic is a chi-squared 
statistic, known as the log-rank test. Its logic is as follows: Suppose we construct 2 × 2 fre-
quency tables for each time interval (t), when new deaths are recorded in either comparison 
group. Then we compare the number of deaths occurring at time t in one of the groups to 
the number of deaths we would expect, if the null hypothesis is true. Under the null hypoth-
esis, we would expect the same proportion of deaths among both population groups at risk 
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FIGURE 20.2 Comparison of Kaplan–Meier Survival Estimates for Two Groups: Stage 1 Versus 

Stage 4 Patients Aged 65 to 70.
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for dying. To illustrate how to set up a table that compares observed to expected mortality 
risks at a given observation day, we start with the data in Table 20.1 for Day 3. As the table 
shows, at the beginning of Day 3, there were n3 = 498 lung cancer patients at risk for dying. 
There were also d3 = 2 deaths, implying that, at the end of the day there were n3 − d3 = 
498 − 2 = 496 survivors, as nobody was lost to follow-up on the day. Thus, the mortality 
probability among all lung cancer patients in the sample at Day 3 equals d3/(n3 − d3) = 2/498 = 
0.00402. As it turns out, at Day 3 there were 327 lung cancer patients at risk for dying in the 
group with a Stage 1 diagnosis and 171 lung cancer patients at risk for dying in the group 
with a Stage 4 diagnosis. With this information, we can now construct a 2 × 2 table as shown 
in Table 20.2.

Note that at Day 3 we would expect 1.3 deaths in the Stage 1 group and 0.7 deaths in 
the Stage 2 group, if there is no difference in the death rate between the two groups. However, 
we actually observe zero deaths in the Stage 1 group and two deaths in the Stage 2 group. 
Now, at each Day t at which a death occurs we construct a similar 2 × 2 table and compare 
the observed and expected deaths in each comparison group. Then we add up all the observed 

TABLE 20.2 Survival/Mortality Occurrences at Day 3 Among 498 Lung Cancer Patients Still 
at Risk at t = 3

Lung Cancer 
Diagnostic Group

Persons At 
Risk for Death

|
| Deaths

|
| Survivors

|
| Expected Deaths:

– – –– – – – – – – – – – – – – – – – – – – – – – – – – – – | – – – – – – – – – – | – – – – – – – – – – – – | – – – – – – – – – – – – – – – – – 
Stage 1
Stage 2

327
171

|
|

0
2

|
|

327
169

|
|

(2/498) x 327 = 1.3 
(2/498) x 171 = 0.7

– – –– – – – – – – – – – – – – – – – – – – – – – – – – – – | – – – – – – – – – – | – – – – – – – – – – – – | – – – – – – – – – – – – – – – – – 
Total 498 | 2 | 496 | (2/498) x 498 = 2.0

– – –– – – – – – – – – – – – – – – – – – – – – – – – – – – | – – – – – – – – – – | – – – – – – – – – – – – | – – – – – – – – – – – – – – – – – 
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TABLE 20.3 Log-Rank Test to Compare Survival Distributions Between Two 
Groups of Lung Cancer Patients (Stage 4 vs. Stage 1 Diagnoses)

failure: mortality = 1, analysis time t: survival days

  | Stage 4 Stage 1 |      Total
– – –– – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – 
        Deaths  |   35    20 |     55
Person Days Observed  | 9290 19231 |  28521
– – –– – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – 
     Incidence rate  | .0037675 .00104 |  .0019284 RR = 3.623

Log-rank test for equality of survivor functions

stage | Events observed Events expected
– – –– – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
Stage 1 |    20    36.99
Stage 4 |    35     18.01
– – –– – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –   chi2(1) = 23.87
Total |    55    55.00    Pr>chi2 = 0.0000

and expected deaths over the entire survival distribution for both the Stage 1 and the Stage 2 
groups. This yields a simple chi-square test statistic, as is familiar from Chapter 16:3

= +∑
(Oj – Ej)

2

Ej

(Ostage 1 – Estage 1)
2

Estage 1

(Ostage 2 – Estage 2)
2

Estage 2

In this formula, Oj refers to the sum of all observed deaths over all times (here: days) t in 
group j, which in this two-group example refers to either the Stage 1 or the Stage 2 lung 
cancer patients. Similarly, Ej refers to the sum of all expected deaths in either group. With 
survival distributions being compared in two groups, the associated degrees of freedom (df) 
of this chi-squared test is 2 − 1 = 1. Table 20.3 provides summary statistics comparing the 
relative risk (RR) of mortality in Stage 1 and Stage 4 lung cancer patients as well as the results 
from the log-rank test. It is easy to see that the log-rank test (chi-square) can be extended 
to  multiple-group comparisons after computing the sums of observed and expected adverse 
outcomes in each of the groups. One of the attractive features of this test is that it makes no 
assumptions about the shapes of the survival curves compared.

 HAZARD FUNCTIONS AND HAZARD RATIOS

In the last chapter, we defined the probability or risk of dying at time t, mt, as the proportion 
of the individuals dying at time t divided over the number of individuals “at risk for dying” at 
time t. In Table 19.3 we provided examples of probabilities of dying during one-day intervals.4
Even though the numbers in the fifth column of Table 19.3 are proportions or probabilities, 
they refer to populations at risk observed for one day at a time. The recorded deaths actually 
occur over a time interval of 24 hours and the population at “risk for dying” theoretically does 
not simply refer to everyone alive at the beginning of a day, as some persons may be “lost to 

3 This is Bland and Altman’s (2004) version of the log-rank test. There is also a modified chi-squared test 
by Mantel (1966), often referred to as the Mantel–Haenszel test for survival data.
4 For example, according to the data in Table 19.3, on the third day of following lung cancer patients 
after diagnosis, 2 out of 498 patients at risk died resulting in a probability of .004016.
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follow-up” during the day before the full 24 hours have expired. Of course, with such a short 
time interval as a day, it is not worthwhile to record loss to follow-up in hourly intervals; for 
all practical purposes, the persons alive at the beginning of the day represent the population at 
risk for dying. It is nonetheless important to reflect on this inherent time dimension. Making 
the time dimension explicit reminds us that we are actually talking about a death rate per day. 
If tk refers to the beginning of a time interval of interest and tk + 1 refers to the beginning of the 
following time interval, then tk + 1 − tk = Δt5 refers to the duration of the time interval between 
tk and tk + 1, which may be measured in weeks, days, hours, seconds, and so forth, as required 
by the study. Using these shorthand symbols, we can define the hazard rate as the risk of an 
adverse event occurring per time interval Δt. If we shorten the time interval more and more, so 
that Δt→0, we get a measure of the “instantaneous” hazard of dying at a particular time t. If the 
hazard rate ht = 0, this means that no one is at risk for dying at time t. In that case the cumula-
tive survival function would not decline, that is, it would be constant at time t: St = c. A positive 
hazard rate (>0) implies a decline in the cumulative survival function, with smaller hazard rates 
producing more gradual declines and larger hazard rates producing more precipitous declines.6

Figure 20.3 offers a graphical depiction of two cumulative survival functions over an observa-
tion period of 400 days together with their different (and constant) hazard rates: ht = 0.01 and 
ht = 0.005. Even though the hazard rate for each of the curves is constant, the cumulative sur-
vival curve is curvilinear, which means that the slope of each curve becomes less steep. The 
reason is that with a constant hazard rate, the number of people dying each day declines, as 
the population at risk, or the remaining survivors, becomes smaller. One feature of constant 
hazard rates is very attractive when comparing the survival or mortality in two populations: For 
survival functions with constant hazard rates, the ratio of the hazard rates is the same over the 
entire time of observation. Thus, this ratio of the two hazard rates would describe the difference 
in the risk of dying between the two populations. For the survival functions in Figure 20.3, we 
can summarize the RR of dying by computing the hazard ratio (HR) as follows:

HR = h t g
h t g

( , )
( , )

.
.

.1
2

0 01
0 005

2 0= =

We can say that for these two population groups, the hazard or risk of dying is twice as large 
among the population with h(t) = 0.01 than among the population with h(t) = 0.005.

5 The Δ (read: “delta”) symbol is the general symbol for change between two time points.
6 Readers familiar with calculus will recognize the survival function as the integral of the hazard function: 
S(t) = exp(–∫t

0 h(t) dx).

Hazard rate at time t, ht:

h m
t

d
n

tt
t t

t

= =
⎛

⎝

⎜

⎞

⎠

⎟
Δ

Δ/

where Δt refers to the time interval between tk + tk + 1, dt is the number of persons dying during 
interval Δt, nt is the number of persons at risk for dying during the interval Δt, and mt refers to 
the probability of death during the time interval Δt, such that mt = dt/nt.

If the time interval becomes smaller, Δt→0, we obtain the “instantaneous” hazard rate.

DEFINITION OF THE HAZARD RATE
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FIGURE 20.3 Survival Functions With Two Different Constant Hazard Rates.

 COX PROPORTIONAL HAZARD REGRESSION

As it turns out, constant hazard rates are not all that common in health care studies. For 
instance, the risk of dying in the initial time period after some surgeries is often greater than 
the risk a few days later. However, hazard rates do not have to be constant over time for there 
to be a single HR that describes the RR of dying in the comparison groups. What is required 
is that the changing hazard rates over time maintain the same proportion between two differ-
ent comparison groups. This proportional hazard assumption can be summarized formally 
as follows: The ratios of the hazard of dying in groups 1 and 2 do not change between time j 
and time k:

h t g
h t g

h t g
h t g

j

j

k

k

( , )
( , )

( , )
( , )

1
2

1
2

=

Thus, if the hazard rate in group 1 at time j equals 0.01 and the hazard rate in group 2 at time j 
equals 0.005, then the HR at time j equals HR = 0.01/0.005 = 2.0. If at time k the hazard rate in 
group 1 changes to 0.016 and in group 2 it changes to 0.008, then the HR at time k would still 
be HR = 0.016/0.008 = 2.0. Thus, the crucial point is that hazard rates can change over time, 
and we may not even be interested in these exact changes, but as long as the hazard rates remain 
proportional, the difference in the hazard or risk of dying, or another adverse event, between 
different groups of individuals can be expressed in a single number, the hazard ratio (HR).

If we know the hazard rate in one comparison group and we know the HR, which is 
equivalent to an RR, then we can express the hazard of dying in the other group simply as:

ht(group 1) = ht(group 2) × HR

This is, of course, a prediction model that is very similar to the logistic regression model, 
in which we express the odds of an event occurring in one group as the odds of the event 
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occurring in another group times the odds ratio (OR).7 Just as the OR can be converted to the 
log-odds (logit), which then are used as the dependent variable in a linear regression model, 
we can take the logarithm of the HR and convert the multiplicative model above into a linear 
regression model:

ln[h1 (t)] = ln[h0 (t)] + bX

To see the equivalence to the logistic model, we rewrite the equation by subtracting the inter-
cept term from each side: Then ln[h1(t)] = ln[h0(t)] + bX becomes ln[h1(t)] – ln[h0(t)] = bX. 
From Appendix H, we know that we can rewrite the difference between two logarithms to the 
same base as the logarithm of the ratio of the numbers involved:

ln ln ln[ ] [ ]( ) ( ) ( )
( )

h t h h
h

bXt t
t1 0

1

0

− =
⎡

⎣

⎢

⎤

⎦

⎥ =

If we now exponentiate this equation, we see that the HR is nothing but the antilog of the 
regression coefficient:

h
h

et
t

bX1

0

( )
( )

=

In a two-group comparison, where X = 0 for the “base” group and X = 1 for the comparison 
group, the base hazard rate is set to 1, as eb0 = e0 = 1; and the HR is equal to eb1 = eb. For a 
continuous independent variable like age, eb would represent the HR for a one-unit change 
in X. For instance, comparing a 48- to a 47-year old person would be expressed as follows: 
eb(48–47) = eb1 = eb. In Table 20.4, we revert to the example of comparing the hazard of dying 
between Stage 1 and Stage 4 lung cancer patients 65 to 70 years old.

y = h1(t) = h0(t)HR = h0(t)e
bx

In its multiplicative form, the proportional hazard model expresses the hazard or risk of dying 
in population group 1 as the hazard of dying in population group 0 (baseline hazard) times the 
HR, which is represented by the exponential expression of ebx.

ln(y) = ln[h1(t)] = ln[h0(t)] + bX

After taking the logarithms on both sides of the equation, the proportional hazard model 
becomes a linear regression model, with the dependent variable expressed as the logarithm of 
the hazard rate, an intercept term representing the logarithm of the baseline group hazard and 
b the slope coefficient indicating by how many units the log-hazard changes for a unit change 
in the independent variable.

BASIC EQUATION FOR PROPORTIONAL HAZARD 
REGRESSION

When interpreting the output in Table 20.4, observe the formal similarity to the output from 
a logistic regression model. The overall test of the predictive power of the model is again 

7 See the discussion in Chapter 17.
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TABLE 20.4 Cox Regression Model Predicting Hazard of Dying Between Two 
Groups of Lung Cancer Patients (Stage 4 vs. Stage 1 Diagnoses) Aged 65 to 70

. stcox stage

failure _d: mortality == 1 analysis time _t: survdays

Iteration 0: log likelihood = –338.40897

Cox regression — Breslow method for ties

No. of subjects = 500 Number of obs =   500
No. of failures  = 55
Time at risk   = 28521
 LR chi2(1) =  21.93
Log likelihood  = –327.44512 Prob > chi2 = 0.0000

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
  _t | Coeff . Std. Err. z P>|z| Haz. Ratio [95% Conf. Interval]
– – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
stage | 1.2801   .2804 4.57 0.000  3.5970  2.0763  6.2316
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 

provided by the log-likelihood ratio (LR) test, which is equal to twice the difference between 
the log-likelihood of the null model (without any independent variable) and the model with 
stage as the only predictor variable: 2 × [−327.44512 – (−338.40897)] = 21.93. The associated 
p-value for this test yields a very low probability of a Type I error, p ≤ .00005, if we reject the 
null hypothesis that the independent variable has no effect on the hazard outcome. Thus, we 
can accept, with high confidence, the hypothesis that the stage at diagnosis affects the hazard 
of dying. The estimate for the regression coefficient associated with the staging variable is 
1.2801 and its antilog, e1.2801 = 3.597 is the HR. Thus, we estimate that individuals with a Stage 
4 lung cancer diagnosis have a 3.6 times greater risk of dying than Stage 1 lung cancer patients 
at any time during the observation period. The z-test is based on the assumption of a normal 
sampling distribution for the regression coefficient; it is the estimated regression coefficient 
divided by its standard error: z = 1.2801/0.2804 = 4.57. To obtain the 95% CI for the HR, we 
calculate 1.2801 ± 1.96 (0.2804) and exponentiate the results.8

It is not surprising that the Cox Proportional Hazard Model gives us results that are 
very similar to those from the log-rank test in Table 20.3, as the underlying survival curves 
are those in Figure 20.1. However, as always, when we apply statistical models to explain 
patterns in the data, we need to test whether the assumptions of the model are reasonable, 
given the data at hand. In particular, for the Cox Regression Model, we need to test whether 
the data meet the proportionality of hazards assumption. As with previous regression models, 
we can compare the model predictions to the observations: This allows us to examine the 
deviations between observations and predictions for any systematic patterns or large outliers. 
Figure 20.4 shows Kaplan–Meier survival plots, based on predicted and observed survival 
in both comparison groups. The graph clearly indicates that the predicted survival patterns 
track the observed patterns quite closely. Alternatively, we can test whether the residuals 
show any systematic tendency to change in magnitude or direction over the observation 
period. In the current case, this test, based on so-called scaled Schoenfeld residuals, returns a 

8 Here are the results: e1.2801 − 1.96(0.2804) = 2.0763; e1.2801 + 1.96(0.2804) = 6.2316.
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FIGURE 20.4 Predicted and Observed Kaplan–Meier Survival Functions: Predictions Are Based 

on Cox Proportional Hazard Model With Staging as Only Predictor.
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p-value ≥ .297, meaning, we cannot reject the null hypothesis that there is no systematic 
change in the residuals over time.

So far, we have only used the Proportional Hazard Regression Model to test for dif-
ferences in survival patterns of two groups, for which the log-rank test is entirely adequate. 
However, being a regression model, we can extend the analysis and include more categorical 
and continuous predictor variables. In Table 20.5, we show the results of a Cox Proportional 
Hazard Model with age and sex as additional predictors. In the context of focusing on the 
effects of cancer staging on survival, age, and sex are “control” variables or confounders. 
As the results show, the overall log-likelihood for this model is −323.31667, with twice the 
difference from the null model of −338.40897 being equal to 30.18 (p ≤ .00005). Thus, we 
conclude that the model as a whole does predict hazards of dying among the lung cancer 
patients. However, the individual predictor variables show significant effects for the staging 
(HR = 3.46, p < .0005) and the age variable (HR = 1.23, p ≤ .007), but not for sex (HR = 1.26, 
p ≥ .397). Based on this evidence, we can say that, after adjusting for age and sex, the estimate 
for the HR associated with the different lung cancer stages at diagnosis is slightly reduced to 
3.46. With age being a continuous variable representing years of age from 65 to 70, we can 
say that, independent of the staging of the lung cancer, the average hazard of dying increases 
by 26% for each additional year of age. However, there are no sex differences in the mortality 
risk among these newly diagnosed lung cancer patients. In fact, the LR tests, which compare 
proportional hazard regression models with different configurations of independent or predic-
tor variables,9 do confirm this pattern: Adding sex to the model, either to stage alone or age 
and stage, does not improve predictability, as the difference between these models is insig-
nificant, as the p-value is greater than .05. Adding age to the model, either to stage alone or to 

9 In Table 20.4, the log-likelihood for the model with stage as the only predictor is −327.44512. In 
Table 20.5, the log-likelihood for the model with all three predictors (stage, age, and sex) is −323.31667. 
Computing the difference and multiplying it by 2 yields the LR chi-square of 8.26 with p ≤ .0161.
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TABLE 20.5 Cox Regression Model Predicting Hazard of Dying Between Two Groups of 
Lung Cancer Patients (Stage 4 vs. Stage 1 Diagnoses) With Age and Sex as Control Variables

. stcox stage sex age

failure _d: mortality == 1   analysis time _t: survdays

Iteration 0:  log likelihood = –338.40897

Cox regression –– Breslow method for ties

No. of subjects = 500 Number of obs =   500
No. of failures = 55
Time at risk = 28521
   LR chi2(3) =    30.18
Log likelihood = –323.31667 Prob > chi2 =  0.0000

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  _t | Coeff . Std. Err.  z P>|z| Haz. Ratio [95% Conf. Interval]
– – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – –  – –  – –  – –  – – –
stage | 1.2417   .2810 4.42 0.000  3.4617    1.9958  6.0040
   sex |   .2308   .2722 0.85 0.397  1.2596         .7388  2.1474
   age |   .2040   .0750 2.72 0.007  1.2263      1.0587  1.4205
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Test of proportional-hazards assumption: p≥0.4962

Likelihood-ratio tests:

stage   vs. stage&sex LR chi2(1) = 0.87 Prob > chi2 = 0.3510

stage   vs. stage&age LR chi2(1) = 7.55 Prob > chi2 = 0.0060

stage   vs. stage&age&sex LR chi2(2) = 8.26 Prob > chi2 = 0.0161

stage&age   vs. stage&age&sex LR chi2(1) = 0.71 Prob > chi2 = 0.3994

stage&sex      vs. stage&age&sex LR chi2(1) = 7.39 Prob > chi2 = 0.0066

stage and sex, does improve the predictability. Overall, the test of proportionality assumption 
of the model, based on scaled Schoenfeld residuals, is not significant leading us to conclude 
that the model provides a reasonable description of the survival patterns.

The Cox Proportional Hazard Model is, by far, the most popular regression model used 
to analyze time-to-event data. As with other regression models, in which multiple predictors 
are used, the analyst needs to check for possible interactions among the predictors, before 
accepting a “main-effect” model without interactions. The model can also be modified in 
some cases, when the proportional hazard assumption does not hold across all comparison 
groups of interest, by introducing separate strata for such groups. In addition, like other 
regression models, the Cox Proportional Hazard Model can accommodate time-dependent 
covariates, that is, independent variables measured at different times. Despite this flexibil-
ity, when the proportional hazard assumption is violated across many comparison groups, 
particularly defined by continuous predictor variables like age or the body mass index, 
parametric survival regression models, which model survival times explicitly, are called for. 
These are beyond the scope of this book, but the interested reader may consult Hosmer and 
Lemeshow (2008).
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 SUMMARY

This chapter concludes our discussion of statistical models for time-to-event or survival data. 
Time-to-event data are quite common in clinical data sets, where loss to follow-up and conse-
quently censoring of outcome variables are a regular occurrence. For time-related outcomes, 
survival models are to be preferred over logistic models, which disregard the time-to-event 
(for an example, see Cai, Salmon, & Rodgers, 2009). The methods introduced in this and the 
previous chapter go a long way toward analyzing such data and are commonly encountered in 
the applied clinical literature. For more complicated analysis models, it is necessary to consult 
a bio-statistician.

In the final part of this book (Part V), we will turn our attention to statistical models that 
deal with measurement errors. Clinical data sets often contain quantified scales based on self-
report data, repeated physiological measures taken from the same patient, or multiple observa-
tions of the same patient by different observers/clinicians. In all of these cases, we observe 
measurement errors, and we need methods to account for them. We begin in the next chapter dis-
cussing commonly used indices of reliability for scale measures and for multiple observations.

Read: Stommel, M., Olomu, A., Holmes-Rovner, M., Corser, W., & Gardiner, J. C. (2006). 
Changes in practice patterns affecting in-hospital and post-discharge survival among ACS 
patients. BMC Health Services Research, 6, 140.

(a) Provide a very brief (three to four sentences) summary of what this study is about.

(b) Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c) What are the shortcomings, if any, in comparing historical cohorts?

(d) Provide a clear definition of the outcome/dependent variable and a short description of 
how the outcome event was measured.

(e) Provide a clear definition of all independent/predictor variables and a short description of 
the instruments used to measure them.

(f) Does the Kaplan–Meier survival curve in Figure 2 contradict the results in Table 3. If yes, 
why, if not, why not?

(g) In Table 2, the model LR χ2 (df: 16) = 282.51. What does that tell us? Why does this test 
have 16 dfs?

(h) In your own words, explain the meaning of the HRs for age and beta-blockers in Table 3. 
What do they tell us?

(i) Are the conclusions of the authors consistent with the evidence presented?

LITERATURE APPLICATION

 EXERCISES

1. In Table 20.5, the regression coefficient and HR for the variable sex are somewhat larger 
than the regression coefficient and HR for the variable age, yet the coefficient for age is 
statistically significant, while the sex coefficient is not. Explain why.
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2. As in Table 20.2, construct the relevant 2 × 2 table comparing observed and expected 
deaths at Day 57 for the data in Table 20.1.

3. The following graph shows the cumulative survival functions for two comparison groups. 
Do the survival patterns shown here meet the proportional hazard assumption? If yes, 
why? If no, why not?
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Kaplan–Meier Survival Estimates: Men Over the Age of 65
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CHAPTER 21

 Reliability Coeffi cients and 
Medical Test Evaluation

An ever-increasing number of clinical decisions are based on, or are supported by, test scores 
designed to capture different aspects of a patient’s physical and mental health. We use blood 
pressure (BP) readings, lipid scores, low-density lipoprotein cholesterol, and a host of other 
routine clinical measurements to supplement more subjective clinical judgments to understand 
a patient’s health status. In many situations, clinicians also use standardized tests based on 
observations and self-reports, such as physical function measures (SF-36) or depression scores 
(Center for Epidemiologic Studies-Depression Scale [CES-D]), to screen applicants for nurs-
ing homes, make decisions about eligibility for health services, and so forth. Furthermore, 
outcomes from population-based screening tests for a variety of cancers are often the starting 
point for more detailed testing and treatments. Given the ubiquity of clinical tests in clinical 
practice, it is obvious that we must be concerned about the quality of these tests. In general, test 
results and observations used in clinical practice or research should be “accurate” and should 
be capable of measuring the intended target, so that they can be useful tools in decision making.

In the psychometric tradition, these twin concerns about the veracity and accuracy of 
measurement are captured in the key concepts of validity and reliability. In a way, the con-
cern with validity is the most basic: Are we really measuring what we want to measure? This 
concern plays a role in both biological and psychological measurement. For instance, the 
prostate-specific antigen (PSA) test is an example of a test that is used as one factor in decid-
ing about the presence of cancerous cells in the prostate. However, the test does not measure 
the presence of cancerous cells directly; instead, it measures the presence of aprotein pro-
duced by cells of the prostate gland. One problem that has arisen with this test is that higher 
levels of PSAs in the bloodstream may just be indicators of an enlarged (noncancerous) pros-
tate (NCI, 2013). The presence of such false-positive results leads one to question the validity 
of the PSA as a screening test for prostate cancer. The test also produces some false-negative 
results, indicating the absence of prostate cancer when it is present. Again, this leads one to 
question the validity of the PSA.

Validity is also a substantial concern in psychological measurement. Many psychologi-
cal concepts of interest to nurses and physicians are measured indirectly: through patients’ 
responses to standardized self-report scales such as the Geriatric Depression Scale ( depression), 
the Self-rating Anxiety Scale (anxiety), or the Patient Health Questionnaire-9 (depression) 
scales (Kroenke & Spitzer, 2002; Yesavage et al., 1982–1983; Zung, 1971). Measures of 

 PART V. MEASUREMENT MODELS
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depression or anxiety derived from interview responses often include somatic symptoms like 
loss of appetite and sleeplessness or heart palpitations and sweating.1 Yet, all of these physical 
symptoms could also be the results of some extraneous factor like the effects of some medi-
cation, or a physical disease such as cancer. Thus, it is difficult to obtain “uncontaminated” 
measures of psychological states. The problem is not all that different with respect to biophysi-
ological measures. For example, the simple routine of weighing a person on a scale during a 
primary care visit is fraught with many measurement problems. Assuming that the goal is to 
get a measure of body weight, there is no question that all sorts of extraneous factors contrib-
ute to the actual measurement outcome, including variations in the weight of shoes and clothes 
as well as a  patient’s recent eating activities.

While the establishment of measurement validity is an arduous process, it only partially 
involves statistical methods.2 On the other hand, the reliability of a measurement procedure is 
primarily established using statistical calculations and estimations.

Reliability of measurement is a characteristic of the measurement tools or measurement 
procedures we use: If reality does not change, that is, if the traits, qualities, and characteristics 
we are interested in do not change, then the measurement tools we use to measure these traits, 
qualities, and characteristics should return the same results. Whether different clinicians or 
researchers apply a measurement tool, whether the measurement occurs at different times, 
or whether we use multiple indicators of the same underlying quantities being measured, 
the results should be consistent. While it is impossible to compare our measurement results 
directly against “reality” we can compare the results of multiple measurements. To the extent 
that such multiple measurement results are consistent, our measurement procedure can be 
said to be reliable. Thus, reliability in measurement is a precondition of validity3; it involves 
evidence, which shows that the measurement procedures are repeatable and provide similar 
results, provided that the underlying reality does not change.

 SYSTEMATIC VERSUS RANDOM MEASUREMENT ERROR

When we talk about the reliability of measurement, what we mean is that the measure-
ment process should be relatively free of random, that is, unpredictable measurement error.4

Consider measuring a patient’s BP several times within a relatively short time period. There 
are numerous factors that influence the actual readings: variation in the size of the pressure 
cuffs, variations in the precise location of the pressure cuffs around the arm, variations in 
the patient’s nervousness, or the patient’s calming down after hurrying to the primary care 
office, variations in background noise, different arms tested, different nurses or physicians 
taking the measurement, and so forth. Some of these measurement conditions can be stan-
dardized through a protocol that may prescribe, for instance, that the same nurse conducts 
the measurements using the same pressure cuff on the left arm of a patient. However, there 
are almost infinitely many small variations in the actual measurement procedure from one 
minute to the next, and there is no way to control all of them. The result is that, even if the 

1 See for instance the CES-D and the Hamilton Anxiety Scale (HAM-A).
2 For a more extensive discussion of measurement validity, see Stommel and Wills (2004).
3 A completely unreliable measurement procedure cannot be valid, but a reliable procedure may not be 
valid either, if it does not measure the intended target characteristic.
4 There are also systematic measurement errors—as when a wrongly calibrated scale consistently 
 indicates 10% higher weight—but this kind of measurement error does not affect the reliability or 
repeatability of the measurement results. 
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patient’s  underlying BP does not change, the readings are likely to fluctuate unpredictably 
from one measurement instance to the next. Table 21.1 shows eight hypothetical readings of 
the  diastolic blood pressure (DBP) from a single individual obtained within an hour.

The table contains only one column of actual data, which is the column labeled “Observed 
DBP.” At the bottom of the column we see that the mean observed DBP over eight readings 
equals 83. While we do not know the “true” DBP of this patient, it is reasonable to assume that 
an average of eight DBP readings comes closer to the true score than any individual reading.5

If we accept this logic, we can use the mean DBP reading as a “stand-in” estimate of the true 
score. Furthermore, we can subtract this “true” score from each observed score to obtain a 
deviation that represents the measurement error at any given measurement instance. In short, 
we can think of an observed measurement score as consisting of two components: a true score 
and a measurement error: Oi = T + ei. For instance, the first measurement in Table 21.1 shows 
the following decomposition of the observed score: 86 = 83 + 3, as 3 = 86 − 83.

The example in Table 21.1 also shows that the sum of all measurement “error terms” 
equals zero: ∑ei = 0. While it is of course true by definition that the sum of all deviations 
from a mean must be equal to zero, the interpretation of these deviations as measurement 
errors deviating from the “true” score depends on the reasonableness of the assumption. It is 
important to note that we refer here to random measurement error, which indeed behaves in 
such a way that some observed scores overestimate the true score and others underestimate 
it, with the mean of a long series of scores approaching the true score. As the mean of many 
scores comes closer and closer to the true score, measurement errors will cancel each other 
out, as more measurements are taken. With larger samples of repeated measurements of the 
same subject’s BP, or any other attribute of interest, we can obtain at least an estimate of the 
true score and, therefore, also an estimate of measurement error. The variance of these error 
terms gives an indication of how large the average measurement error is. It plays a central part 
in the notion of measurement reliability, as will be seen shortly.

5 Again, we are assuming here the absence of systematic measurement errors.

TABLE 21.1 Diastolic Blood Pressure (DBP) Readings Obtained From a Single 
Patient Within 1 Hour

Day
Observed 
DBP (xi)

Mean “true” 
DBP score 

(ti)

Deviations of 
 measured fro m 
“true” DBP (ei)

Squared 
 measurement 

error (ei)
2

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
1
2
3
4
5
6
7
8

86
82
81
83
86
85
79
82

83
83
83
83
83
83
83
83

 3
−1
−2
 0
 3
 2
−4
−1

9
1
4
0
9
4

16
1

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Sums:  Σ(xi): 664  Σ(ti): 664     Σ(ei): 0      Σ(ei)

2: 44

Means: Σ(xi)/8:   83 Σ(ti)/8:   83    Σ(ei)/8: 0 Σ (ei)
2/(8−1): 5.5

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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 THE CONCEPT OF MEASUREMENT RELIABILITY

Suppose now we have several DBP readings from many different patients. We can think of 
each of these DBP scores as being composed of the true underlying BP of an individual plus 
or minus some unavoidable measurement error. If the measurement errors are purely random, 
then the error components are not correlated with the true scores. It follows that the variance 
of the observed scores (Vo) is the sum of the variance of the true scores (Vt) and the variance 
of the measurement errors (Ve): Vo = Vt + Ve.

6 While we cannot observe the true scores and 
their variance directly, the equation suggests that, if we can get separate estimates of the error 
 variance, we would also get an estimate of the true variance: Vt = Vo – Ve.

Before we turn to methods that allow us to estimate true-score variance, we provide this 
general definition of measurement reliability:

Reliability of measurement is defined as the ratio of true-score variance over observed-score 
variance.

Rel V
V

V V
V

V
V

t

o

o e

o

e

o

= =
−

= −1

DEFINITION OF MEASUREMENT RELIABILITY

Now, let us assume for a moment we obtain three DBP readings on each of 20 individuals 
within a short time period, say, in less than 10 minutes. For the sake of argument, we further 
assume that the true DBP readings of these 20 individuals are entirely stable and we are in 
possession of an error-free measurement procedure. This would mean that the error variance 
equals zero and the observed score variance (among different individuals) equals the true-
score variance:

Vo = Vt + Ve = Vt + 0 = Vt

If Vt = Vo, the ratio of Vt over Vo must be equal to one. Thus, whatever reliability index we use, it 
should produce the value one in a situation of complete absence of measurement error (perfect 
reliability). Now assume that all measured individuals have the same true score, so that any 
observed variance in DBP readings just captures measurement error:

Vo = Vt + Ve = 0 + Ve = Ve

If Vo = Ve and Vt = 0, the ratio of true to observed variance must be equal to zero, implying that 
this measurement procedure lacks any reliability. In general, when the proportion of the vari-
ance of observed scores accounted for by measurement error, Vo/Vt, declines, the proportion 
of observed variance accounted for by the true scores, Vt /Vo, increases. Thus, a measurement 
procedure becomes more reliable to the extent that it produces less random measurement 
errors.

6 The variance of a sum of two uncorrelated variables equals the sum of their variances; for a detailed 
discussion, see the classic text by Nunnally and Bernstein (1994).
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 NOTE ON THE IMPORTANCE OF MEASUREMENT ERROR

It is not always appreciated how important measurement reliability is in evaluating the magni-
tude of estimated statistical coefficients. Suppose that two variables (x and y) are perfectly corre-
lated in the real world, with the underlying (unobserved) population Pearson’s correlation being 
ρ = 1.0. However, our measurement procedures are less than perfect; thus x may have a measure-
ment reliability of 0.8 and y a reliability of 0.9. As only the true-score portions of the observed 
measurement scores are correlated, the observed correlation can never be larger than the product 
of the square roots of the two reliabilities: 0 8 0 9 0 849. . .× = .7 In short, unreliability can sub-
stantially attenuate observed correlations, regression coefficients, and other statistical measures.

 THE INTRA-CLASS CORRELATION COEFFICIENT AS AN INDEX OF RELIABILITY

The very definition of reliability as relative absence of random measurement error suggests a 
way of estimating reliability empirically. First of all, if we want to sort out measurement errors 
from true scores, we need multiple measures of the same attribute. If we have only a single DBP 
reading from a sample of patients, we cannot disentangle true scores from measurement error, 
as we have no way to determine by how much DBP readings fluctuate from one reading to the 
next for a given patient. In that case, it would be impossible to determine what proportion of the 
observed score can be attributed to measurement error. But suppose we repeat the DBP measure, 
in short succession, a second and third time for the same patients. Now we can obtain three cor-
relations from the obtained data (Time 1 and Time 2; Time 1 and Time 3; Time 2 and Time 3). 
Even on the assumption that each patient’s “real” or “true” DBP will not change across these 
measurement occasions, we would not expect perfect correlations, as some measurement error 
is to be expected. Given our assumption that the “real” DBP of these 20 subjects is stable, any 
differences in DBP scores among the three scores of the same individual, that is, within- subjects 
variation of the scores, would then be equated to measurement error. By the same token, any dif-
ference in average DBP scores among separate individuals, that is, between-subjects variation, 
would then represent true-score variation. We can also use the analysis-of-variance (ANOVA) 
model to ascertain the amount of “true-score” variance, since we have assumed that mean scores 
for individuals across the three measurement occasions reflect their true scores.

Consider the data in Table 21.2. There are 20 individuals, represented by the ID variable. 
We further assume that all of the DBP measures are taken by different health care providers. 
In this situation, we cannot disentangle the effects that different raters/health care providers 
have on the DBP readings, and we treat all within-subjects variation in DBP as random error. 
With 60 observations (DBP scores) as the outcome variable, we could run a one-way ANOVA 
with the subject ID as the only factor. That way, we can single out between-subjects variance 
from the within-subjects variance, which in this case equals the error variance. Subtracting 
from the between-subjects variance the residual variance8 and dividing the difference by the 
between-subjects variance gives us an estimate of the intra-class correlation (ICC):9

ICC MS MS
MS

ID res

ID

=
−

=
−

=
302 53 14 35

302 53
0 9526. .

.
.

7 See Nunnally and Bernstein (1994).
8 The 60 outcome scores represent both between- and within-subjects variation.
9 An ICC is a measure of the degree of similarity among alternative measures of the same characteristics 
of the target individuals. Being alternative measures of the “same class,” we expect them to have the 
same population variance.
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TABLE 21.2 Diastolic Blood Pressure (DBP) Readings Obtained From 20 Different Patients 
Within 10 Minutes: Test of Reliability (ICC)

Data: 60 DBP Observations from 20 Individuals, each observed 3 times:

ID:
OBS:
DBP:

1
1

60

1
2

65

1
3

64

2
1

79

2
2

88

2
3

88

3
1

77

3
2

72

3
3

73

4
1

66

4
2

61

4
3

62

5
1

86

5
2

80

5
3

80

6
1

82

6
2

75

6
3

80

7
1

84

7
2

87

7
3

84

8
1

90
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – – – – 
ID:
OBS:
DBP:

8
2

87

8
3

96

9
1

69

9
2

69

9
3

66

10
1

70

10
2

68

10
3

66

11
1

59

11
2

66

11
3

61

12
1

72

12
2

75

12
3

78

13
1

77

13
2

77

13
3

86

14
1

62

14
2

57

14
3

49

15
1

72

15
2

67
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –  – – – – – 
ID:
OBS:
DBP:

15
3

68

16
1

48

16
2

54

16
3

60

17
1

80

17
2

74

17
3

77

18
1

62

18
2

67

18
3

60

19
1

70

19
2

75

19
3

74

20
1

75

20
2

76

20
3

68
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Number of obs = 60    R-squared = 0.9092

Source | Seq. SS  df MS F Prob >
– – – – – – – – – + – – – – – – – – – – – – – – –  – – – – – – – – – – – – – – – – – – – – – – –

Model
 id

 Residual

|
|
|

  5748
  5748
  574

19
19
40

302.526316
302.526316
    14.35

 21.08
 21.08

 0.0000
 0.0000

– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Total | 6322 59   107.152542

Intra-class correlations one-way random-effects model
Random effects: Number of tested individuals = 20 Number of raters = 3

rating       ICC  [95% Conf. Interval]

Average    .953    .901     .980

F test that ICC=0.00: F(19, 40)  = 21.082 Prob > F = 0.000
Note: ICC estimates reliability of the average measurement made on the same individual.

In this simple one-way model, the ICC estimate is based on only two sources of variation: 
between-subjects and within-subjects variation. The assumption is that there are no systematic 
differences in the average DBP scores across the 20 individuals obtained at three times within 
short intervals. This assumption would not be plausible if, say, for all 20 patients, the first 
measure was taken by nurse Marla, the second by nurse Latisha, and the third by nurse Ashley.

In the latter case, we could reasonably suspect that the individual idiosyncrasies in tak-
ing BP measures would show up as systematic differences affecting the average DBP scores 
obtained by each of the nurses. To demonstrate an observer effect, we modified the data in 
Table 21.2, subtracting a score of 2 from the first 20 observations (“Marla’s readings”), adding 
a score of 2 to all second 20 observations (“Latisha’s readings”), and leaving the third obser-
vations (“Ashley’s readings”) intact. Table 21.3 shows the two-way ANOVA with nurses/
measurement occasions added as a second factor.

Note that the mean DBP readings for the 20 patients by the three nurses are now 
different: 70, 74, and 72 instead of a consistent mean of 72 underlying the data in 
Table 21.2. The systematic differences in mean DBP readings among the three nurses 
increase the overall variation of DBP scores,10 while at the same time reducing the  proportion 

10 Compare the total sum of squares in Tables 21.2 and 21.3.
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TABLE 21.3 Diastolic Blood Pressure (DBP) Readings Obtained From 20 Different 
Patients Taken by Three Different Nurses Within 10 Minutes: Test of Reliability (ICC)

DBPBY Rater:

Variable | Obs Mean Std. Dev. Min Max
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Marla
Latisha
Ashely

|
|
|

20
20
20

70
74
72

10.45794
9.380832
11.63479

46
56
49

88
90
93

    Number of obs  =     60    R-squared   =  0.9114
    Root MSE   = 3.88655    Adj R-squared   = 0.8625

Source | Seq. SS  df MS F Prob > F
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Model
Nurse-rater

 id
 Residual

|
|
|
|

5908
160

5748
574

21
2

19
38

281.333333
80

302.526316
15.1052632

18.62
5.30

20.03

0.0000
0.0094
0.0000

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Total | 6482 59 109.864407

Intra-class correlations one-way random-eff ects model
Random eff ects: Number of tested individuals = 20 Number of raters = 3

rating       ICC  [95% Conf. Interval]

Average    .940    .865   .975

F test that ICC=0.00: F(19, 38)  = 21.028 Prob > F = 0.000
Note: ICC estimates reliability of the average measurement made on the same individual.

of between-subjects true scores represented by the variance or mean square associated with 
the ID variable.

At this point, the analyst must make a decision as to how to think about reliability, which 
can be captured in the juxtaposition of the terms consistency versus absolute agreement. Recall 
that we subtracted a constant, namely a score of 2, from each first DBP measure in Table 21.2 
and relabeled the result as “Marla’s DBP readings”; similarly we added a score of 2 to the sec-
ond DBP measure in Table 21.2 and named the results as “Latisha’s DBP readings.” Yet, the 
correlations between the original first and second observations and the one between the read-
ings of Marla and Latisha are identical: In both cases it is 0.8734. This follows directly from 
the formula for the Pearson’s correlation coefficient, which is not affected by shifts in mean 
scores of a variable.11 In other words, score differences between any two measured individuals 
are not affected by who conducts the measurement as long as one nurse consistently produces 
DBP readings that are higher by a set margin than those of a second nurse, even though there 
is disagreement on the absolute level of the DBP readings. Thus, if the issue is that measure-
ment procedure produces consistent rankings regardless of who is measuring, then a reliability 
index of internal consistency would be sufficient. If, on the other hand, it is important to have 
absolute agreement among the alternative observers or raters, then a reliability index should 
be sensitive to differences in the absolute levels of scores, in addition to their relative standing. 

11
 rxy

X X Y Y
n s s
i i

x y
=

− −

−

Σ( )( )
( ) ;1  if we add a constant c to every value of X, then the mean of X, X– will also be larger 

by the constant c, resulting in the same difference of (Xi – X–   ).
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The ICC in Table 21.3 based on a two-way mixed-effects ANOVA model shows an estimate 
of 0.94, slightly lower than the estimate of 0.953 in Table 21.2. This is so, because the second 
ICC takes into account the additional variation in scores associated with the different nurse 
raters. For a BP measure, this would certainly be an appropriate approach to measuring reli-
ability. Overall, the results from the repeated DBP readings are quite impressive. If we create a 
scale score that combines, that is, averages the scores across all three measurement occasions, 
then the average DBP score will have a reliability of 94% true-score variance.

There are a number of different ICCs, depending on the assumption we make about 
fixed effect versus random effects, for example, comparing a particular nurse versus consider-
ing them a random sample of potential measure takers. We may also be interested in the reli-
ability of a single measure taker rather than the reliability of the averaged values, on which we 
focused here. The interested reader may consult McGraw and Wong (1996) for more informa-
tion, including the construction of confidence intervals for the ICCs.

 CRONBACH’S ALPHA

Cronbach’s Alpha is the most widely used reliability coefficient for a summated (or aver-
aged) rating scale consisting of multiple indicator items. Typically, it is applied to responses 
from standardized rating scales, such as the CES-D depression scale. Such scales contain mul-
tiple questions or “items” (the CES-D has 20) designed to capture aspects of a psychological 
or health-related concept such as depression, anxiety, or physical functioning. Responses to 
individual items are usually predetermined, using rating scales with fixed numerical scores. 
Table 21.4 provides an example of response coding for the four “absence of well-being” sub-
scale items of the CES-D depression scale (Radloff, 1977). In this situation, each item is con-
sidered more or less an equally good indicator of the underlying trait or psychological state to 
be measured. To the extent that this is the case, each item captures at least part of the “true” 
depression state; thus, we would expect respondents’ answers to be internally consistent, which 
means they should correlate positively with each other. For instance, it would be inconceivable 
for a respondent to state that he or she was happy “most or all of the time” while also checking 
that he or she enjoyed life “rarely or none of the time.” At the bottom of Table 21.4, we see 
the six bivariate correlations among the four CES-D scale items. These positive correlations 
do confirm that the responses to these items share common variance. What we need is a single 
index number that captures the reliability of the averaged scale score consisting of these four 
items. Cronbach’s Alpha is the index of reliability commonly used for such data. The formula 
for Cronbach’s Alpha, using the original, unstandardized scores is as follows:
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where k represents the number of individual items or measures that are part of the summated 
or averaged score (here: k = 4), Σk

i σ
2
xi
 refers to the sum of the k individual item variances, and 

σ2
x is the symbol for the variance of the summated scale score. This scale score is the sum of 

the k individual measures and the variance of a summated score is defined as the sum of the 
individual variances plus two times the sum of the covariances among the variables:
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TABLE 21.4 Reliability of Four CES-D Items (Absence of Well-Being Subscale): 
Cronbach’s Alpha

Question Stem:During the past two weeks, how often have you felt this way?

RCESD4:  I felt just as good as other people.
RCESD8:  I felt hopeful about the future.
RCESD12:           I was  hap py.
RCESD17:              I enj oyed l ife.

Answer categories for the four absence of well-being items are REVERSE coded so that higher 
numbers indicate greater tendency towards depression:

0 = most or all of the time, 1 = occasionally or a moderate amount of the time, 2 = some or a 
little of the time, 3 = rarely or none of the time.

 item-test item-rest
Item | Obs corr.   corr.   corr. alpha Label
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
RCESD4 | 468 0.7094 0.4859 0.4856 0.7651 felt as good as others
RCESD8 | 468 0.7716 0.5705 0.4653 0.7230 hopeful
RCES12 | 468 0.8204 0.6649 0.4084 0.6745 happy
RCES16 | 468 0.7880 0.5919 0.4518 0.7117 enjoyed life
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Test scale |    0.4622 0.7741
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Inter item covariances (obs=468 in all pairs)
 Note: Diagonal entries are
 RPCESD4 RPCESD8 RPCES12 RPCES16 variances:
RPCESD4   0.7726    0.7726, 0.8329, 0.7430, 0.8649;
RPCESD8    0.3010   0.8329   Off-diagonal entries are
RPCES12   0.3128    0.4464    0.743  0covariances:
RPCES16   0.3395   0.3689  0.4552  0.8649 0.3010, 0.3128, 0.4464, 0.3395,
     0.3689, 0.4552
Inter item correlations (obs=468 in all pairs)

 RPCESD4 RPCESD8 RPCES12 RPCES16
RPCESD4   1.0000
RPCESD8   0.3752   1.0000
RPCES12    0.4128   0.5675  1.0000
RPCES16   0.4153   0.4346  0.5679   1.0000 Mean Correlation:0.4622
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Table 21.4 provides the inter-item covariance matrix for the four CES-D items from a 
study of 468 middle-aged (40–60) women, with the item variances on the diagonal and the 
inter-item covariances off the diagonal. With this information, we can compute the sum of the 
four individual item variances:

i

k

xi∑ = + + + =σ
2 0 7726 0 8329 0 7430 0 8649 3 2134. . . . .

Two times the sum of the covariances equals:

2 2 0 3010 0 3128 0 4464 0 3395 0 3689 0 4552 4 4476∑ = + + + + +( ) =σ ij . . . . . . .
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Thus, the variance of the summated scale score equals:

σ X
2 3 2134 4 4476 7 661= + =. . .

Substituting into the Cronbach’s Alpha formula, we get:
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It is instructive to apply the Cronbach’s Alpha coefficient to standardized variables or z-scores 
of the original item responses, as it allows us to see that the magnitude of the alpha coefficient 
depends only on two values: the number of measures or items (k) and the average correlation 
among them (r). The formula for the standardized Cronbach’s Alpha becomes12:
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This formula contains just two variables: k stands for the number of measures or items to be 
combined into a scale and stands r for the average correlation among them. This means that 
Cronbach’s Alpha is a measure of internal consistency, but not a measure of absolute agree-
ment. For instance, if 10 respondents had shown the following response patterns on two of 
the CES-D items: 0–0 (n = 5), 1–1 (n = 3), 2–2 (n = 2), then the sample correlation between 
these two items would be a perfect 1.0 among these 10 subjects; however, the same would 
be true for the following pairing: 0–1 (n = 5), 1–2 (n = 3), 2–3 (n = 2), even though the mean 
responses on the second item would be 1.7 instead of 0.7 for the first item. As Cronbach’s 
Alpha is based only on the number of items and the average inter-item correlation, it is insen-
sitive to systematic difference in mean responses across items. For a summated rating scale 
like the CES-D, which contains different indicator items to capture the underlying concept, 
this does not matter; in fact, it is often the case that some items (say the somatic indicators of 
depression) make a bigger or smaller contribution to the total scale score than other items (say 
the absence of well-being items in Table 21.4). However, for testing the reliability of repeated 
measures of the same measure, a reliability index like the ICC may be preferable, as it is sensi-
tive to changes in mean scores. That is one reason, why Cronbach’s Alpha is rarely used as an 
index of reliability for such repeated measurements as of the DBP. On the other hand, when 
mean differences between different measure takers or observers are quite small, Cronbach’s 
Alpha could be used as an index of reliability: For the data in Table 21.2, the alpha coefficient 
is 0.95, only slightly different from the ICC values of 0.953 and 0.94 in Tables 21.2 and 21.3.

The results in Table 21.4 are quite remarkable. Even though the average correlation 
among the four CES-D scores is only moderately strong at 0.4622, the magnitude of the Alpha 
reliability coefficient indicates substantial reliability for the four-item scale score: A = 0.7741. 
Thus, if we create a CES-D subscale score measuring “absence of well-being” that combines, 

12 As the variance of a standardized variable is always equal to 1 (see Appendix I), the sum of the indi-
vidual variances (Σk

i σ
2
xi
) must be equal to k; covariances between standardized variables are equal to the 

correlations among them, and thus 2Σ σij = 2Σ rij; with k variables there are k(k − 1) unique correlations, 
which means that the sum of the correlations equals k(k − 1) times the average correlation (r). Finally, 
the variance of the summed standardized variables σ2

zx must be equal to k + k(k –1)(r). Substitution into 
the original formula for Alpha yields: A k

k
k

k k k r= −( )− + −1 11 ( ) . 
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that is, averages the scores across all four measurement items, then this scale score will reflect 
an estimated or 77% true-score variance. Why should that be so? We started by assuming that 
each individual item response is influenced by the person’s “true” sense of well-being and all 
sorts of extraneous, unrelated factors, which we collectively call “measurement error.” About 
these random error components, we can say that sometimes a person overstates his or her 
sense of well-being; sometimes he or she underestimates it. Thus averaging four responses to 
similar items13 will give us a more reliable indication of a person’s sense of well-being than a 
single-item response.

There is an important caveat, when estimating the magnitude of Cronbach’s Alpha to 
gauge the reliability/consistency of responses to multiple questionnaire items: The application 
of Cronbach’s Alpha assumes that all the items are indicators of the same underlying concept 
to be measured. Thus, if indicators of related concepts, such as depression and anxiety, were 
combined into a single scale, Cronbach’s Alpha could not be used to distinguish between 
them. In addition, the “reliability” of any collection of even marginally correlated items will 
appear to be quite high, if the number of items is large enough. Let us assume we have 25 
items, for which the average inter-item correlation is only 0.15. Substituting these values into 
the standardized Alpha formula yields:
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Thus, even if a collection of items does not form a coherent unidimensional scale, but the 
number of items exceeds 20 or more, it is relatively easy to obtain “impressive” reliability 
estimates. Thus, before applying Cronbach’s Alpha, the dimensionality and scalability of the 
items must be established first.14

 COEFFICIENT OF CONCORDANCE W

In clinical practice and research, complex judgments must often be made incorporating a 
wide variety of evidence. One example would be the need to evaluate and grade the quality 
of the evidence for alternative treatments that the clinician may want to recommend (Guyatt 
et al., 2008). Another example of complex judgments would be the evaluation of the “medi-
cal urgency” for a liver transplant (HRSA, 2013), or the hiring decisions for a new nurse 
anesthetist concerning the choice among several applicants. In many situations such as these, 
professional judgments are required involving some kind of rating system. While it may not 
always be possible to clearly articulate all the implicit criteria used for judgment, it is possible 
and desirable to have several raters engage in ratings and judge the consistency of this rating 
process.

Table 21.5 provides a simple example of rating five applicants to a clinical position, with 
the ratings undertaken by four interviewers. It is important to keep in mind these are unequivo-
cally ordinal ratings, so ICCs in particular, which assume at least interval-level  measurement, 
should not be used. With data like these, Kendall’s coefficient of concordance, also known as 

13 The term “similar items” is crucial here: It is assumed, when estimating the Cronbach’s Alpha 
 reliability coefficient that all items involved are designed to measure the same concept. If that is not 
the case, the alpha coefficient can give highly misleading information. This topic will be taken up in 
the next chapter on the principles of factor analysis.
14 In Chapter 22 on factor analysis, we address these issues in more detail.
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Kendall’s W, provides a suitable reliability coefficient. One version of the formula for the W 
coefficient is as follows:

W
R R
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2 1 12

In Table 21.5, n refers to the number of applicants to be judged.15 The numerator of this 
W formula shows the sum of squared deviations of each applicant’s average rank from the 
grandtotal rank of all rankings. As the judges rank n applicants, each judge’s mean rank equals 
(n + 1)/2; for the data in Table 21.5, we have: (5 + 1)/2 = 3. By the same token, the mean rank 
across all four judges and applicants, R, must also be 3. The denominator shows an expres-
sion, n(n2 − 1)/12, that gives the maximum possible sum of squared deviations in the numera-
tor, which would occur, if all raters agreed and the applicants’ average ranking simplifies to 
1, 2, … 5. Thus, Kendall’s W gives us a proportion indicating the ratio observed variation 
in rankings over the widest possible variation. If all raters agree on the different rankings, 
W = 1, if all applicants get the same average ranking, this means either that the raters cannot 
agree at all or they “refuse” to rank the applicants by giving everyone the same ranking. In 
that case W = 0, as the sum of squares in the numerator of the formula would be zero. Sample 
W-statistics are approximately distributed like a chi-squared distribution with n − 1 degrees of 

15 In gene ral, n refers to any set of objects that are rank-ordered.

TABLE 21.5 Ratings of Five Job Applicants by Four Raters: Kendall’s 
Coeffi cient of Concordance (W) as Reliability Test

 | Job Applicants:
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Raters: | 1 2 3 4 5
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  1 | 1 2 3 5 4
  2 | 2 3 1 5 4
  3 | 2 1 3 4 5
  4 | 1 3 2 4 5
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Average Rank of |
Applicant (MRi): |  1.5   2.25  2.25  4.5   4.5

Kendall’s Coeffi  cient of Concordance:

W = Σ(MRi−TMR)2/(N(N2−1)/12),

where MR = mean rank of applicant i, TMR = total mean rank of all applicants

Computation based on Data Example:

Σ[(1.5−3)2 + (2.25−3)2 + (2.25−3)2 + (4.5−3)2 + (4.5−3)2]/[5(52−1)/12] = 

  7.875/10 = 0.7875

Coeffi  cient & p-value (null-hypothesis: complete absence of agreement)

Kendall = 0.7875
P-value  =   0.0134
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freedom (df).We can use this fact to test the null hypothesis that there is no agreement among 
the raters. For the example in Table 21.5, we have a p-value ≤.0134; thus we would reject the 
null hypothesis and conclude that there is substantial agreement among these raters and the 
rankings can be considered quite reliable (W = 0.7875).

 COHEN’S KAPPA

Another class of reliability coefficients is kappa-based measures, which are commonly 
encountered in medical and nursing research and can also be used in clinical judgment situa-
tions. Different from the previous reliability coefficients, kappa coefficients can not only be 
applied to ordinal ratings but also to categorical judgments. A classic example would be the 
judgments of two or more radiologists who rate the same set of mammograms as indicating 
either malignancy or non malignancy (Crewson, 2005). Table 21.5 provides two simple exam-
ples of 100 mammograms rated by two radiologists. The first 2 × 2 frequency table indicates 
that radiologists A and B each agree that there are 30 images indicating malignant tumors, but 
they do not fully agree on which ones are indications of malignancy. One simple approach 
to such data would be to calculate the percentage of agreements: Both radiologists agree that 
22 images show malignancies and 62 do not. Thus, for the 100 examined images, we have 
(22 + 62)/100 = 0.84, or 84% agreement between the two radiologists. However, using a mere 
percentage is a flawed approach, because we could ask: How much agreement would there 
be by chance if the two radiologists were to throw the dice to decide which of the 30 women 
have a malignant tumor? In other words, if the judgments about the individual mammograms 
were completely independent, we could multiply the probability of identifying a malignant 
tumor (.3) by both radiologists to obtain the joint probability that both radiologists report a 
malignant tumor: .3 ×.3 = .09. We can repeat multiplication to obtain the joint probability that 
both radiologists rate the images as showing no malignancy: .7 ×.7 = .49. So, even if the judg-
ments of the two radiologists about individual cases were completely independent, we would 
still expect that 58% of the ratings agree (.09 + .49 = .58). To account for chance agreement, 
Cohen (1960) proposed an adjusted measure of agreement as follows:
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In the numerator, we have the difference between the proportion of observed agreement, 
po, and the proportion of agreement expected by chance, pe. Normally, we would expect that 
po > pe or that the amount of observed agreement exceeds the agreement level expected 
by chance. The denominator represents the maximum range, by which the proportion of 
observed agreement can exceed the proportion of expected random agreement, since po as 
cannot exceed 1. For the data in Table 21.6 we have:

κ =
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According to Land is and Koch (1977), kappa values of 0.41 to 0.60 can be considered 
“moderate,” those between 0.61 and 0.80 “substantial,” and those between 0.80 and 1.00 
“almost perfect.” Thus, a classification procedure resulting in a kappa of around 0.62 should 
be considered to possess a high level of inter-rater reliability. Estimators of standard errors 
for Cohen’s kappa are available for constructing confidence limits and for significance testing 
(Crewson, 2005; Lee & Tu, 1994). Kappa coefficients can also be computed if judgments are 
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made concerning more than two categories, for example, the radiologists might adopt a rating 
system with three categories: malignant, suspicious, and nonmalignant. Kappa coefficients 
are not confined to comparing the rankings of two raters: An extension to the case of multiple 
raters is also available (Landis & Koch, 1977).

While the idea of judging observed agreement levels relative to agreement levels 
expected by chance is attractive, kappa coefficients do have some drawbacks. One major 
issue is the effect that different marginal case distributions have on the magnitude of kappa 
coefficients.

Table 21.6 provides a second table, which shows the two radiologists again agreeing 
in their interpretations of 84 out of 100 mammograms, but the marginal percentages indicate 
far fewer malignant cases (10% vs. 30%). As a result, the magnitude of the kappa estimate 
drops dramatically from 0.619 to a mere 0.111. This difference is, of course, due to the fact 
that, in the second case, the expected chance agreement level is much higher. It is not clear 
whether this should be considered a “problem” in the sense that an 84% agreement should be 
considered less impressive, if an 82% agreement can be expected by chance. Nonetheless, the 

TABLE 21.6 Ratings of 100 Mammograms by Two Radiologists: Comparisons 
of Two Different Marginal Distributions With Same Percentage of Agreement

Ratings with .7/.3 Split in Marginal Distributions:

 | Radiologist A |
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – + – – – – –
Radiologist B | not malignant malignant |
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – + – – – – –
not malignant | 62   8 |   70
 malignant |   8 22 |   30
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – + – – – – –
 | 70 30 | 100

Agreement Expected Agreement Kappa Std. Err. Z Prob>Z
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
84.00% 58.00% 0.6190 0.1000 6.190 .0000

Kappa = (0.84 − 0.58)/(1 − 0.58) = 0.619

Ratings with .9/.1 Split in Marginal Distributions:

 |    Radiologist A |
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – –  + – – – – – –
Radiologist B | not malignant malignant |
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – –  + – – – – – –
 not malignant | 82  8 |  90
 malignant |    8  2 |   10
– – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – –  + – – – – – –
 | 90 10 | 100

Agreement Expected Agreement Kappa Std. Err. Z Prob>Z
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 
 84.00% 82.00% 0.1111 0.1000 1.11 0.1333

Kappa = (0.84 − 0.82)/(1 − 0.82) = 0.111
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more lopsided the marginal distributions, the more difficult it becomes for raters to exceed the 
standard set by the expected chance level of agreement. For a reader to judge the results from 
rater agreement studies, it is important to obtain information on the absolute level of agree-
ment in addition to the kappa coefficient to provide important context.

 EVALUATION OF MEDICAL TESTS

Medical tests are meant to be aids in clinical decision making. As such, they must meet the 
basic requirements of all measurement instruments: They must be valid and reliable. In the 
medical literature, the preferred terms are accuracy (validity) and reproducibility (reliability), 
indicating whether a test measures the intended target (accuracy) and delivers an acceptable 
level of precision upon repeated measurement (reproducibility). For instance, a blood glucose 
test may be used in the diagnosis of type 2 diabetes, but blood glucose levels are influenced 
by many factors, some of which exert transitory effects on the measured glucose levels, such 
as a patient having had a recent meal, the sampling fluctuations associated with drawing a 
particular blood sample, the quality control in the laboratory that produces the test results, and 
so forth. In short, a certain amount of measurement error, and thus unreliability, is endemic to 
all medical tests.

In most situations, where diagnostic and screening tests are used, the clinical deci-
sions refer to binary outcomes, for example, the ascertainment of the presence or absence 
of a certain disease or condition. Two index numbers, sensitivity and specificity, are usually 
employed to indicate how well a diagnostic or screening test performs in identifying whether 
a person has or does not have an illness or condition of interest. As it turns out however, we 
cannot compare test results to the “true state of affairs,” but only to other test results or diag-
nostic procedures that we take to be the “gold standard” for diagnosis. Those gold standards 
are, of course, subject to measurement error as well, even though they may be more reliable. 
For example, the gold standard in the evaluation of cancer screening tests is usually a biopsy; 
however, no biopsy procedure is 100% accurate (Kluttig et al., 2007). In the end, we are 
always comparing one fallible measure to another, even though we may have good reasons 
to prefer an established diagnostic tool as “better” than a new test. Keeping this in mind, we 
define sensitivity and specificity of a diagnostic or screening test as follows:

• The sensitivity of a diagnostic or screening test refers to the proportion of individuals 
in the target population, who have been—or will be—diagnosed with a disease and 
are identified by the test as having the disease.

• The specificity of a diagnostic or screening test refers to the proportion of individuals 
in the target population, who have been—or will be—diagnosed as disease free and 
are identified by the tests as not having the disease.

Note, we are not defining sensitivity and specificity in terms of the proportion of a target 
population who has or does not have the disease in question, because the only way to know 
whether they do or do not have the disease is by some other (fallible) methods of diagnosis. 
Thus, the descriptions in Table 21.7 of “true positives” or “true negatives,” while following 
customary usage, should be taken with a grain of salt: The “truth” of the disease state does 
depend on diagnostic procedures, which themselves are subject to some error.

In the hypothetical example of Table 21.7, we could have adopted the following criteria 
as our gold standard for the diagnosis of diabetes mellitus (DM): presence of hyperglycemia 
symptoms, a fasting plasma glucose value of FPG ≥ 126 mg/dL, and well-established diabetic 
retinopathy. Thus, to be diagnosed with DM, individuals would have to meet all of these 
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TABLE 21.7 Outcomes of a Diagnostic Medical Test of Hemoglobin A1c Levels and 
Diabetes Diagnosis Among 1,100 Individual Patients (Each Cell Shows the Proportion of 
Individuals With the Joint Diagnostic and Test Outcome)

DIABETES DIAGNOSIS ROW MARGINAL FREQUENCIES

DIAGNOSED 

WITH DIABETES

NOT DIAGNOSED 

WITH DIABETES

HbA1c
≥6.1% TP: 0.0573 FP: 0.0236 L: 0.081

<6.1% FN: 0.0336 TN: 0.8855 (1− L): 0.919

Column marginal frequencies P: 0.0909 (1 − P): 0.9091 1.000 (N = 1,100)

FN, false negatives; FP, false positives; L, level of test (percentage of positive test results); N, number of tested 
individuals; PR, prevalence of disease (percentage of tested individuals diagnosed with the four disease); 
TN, true negatives; TP, true positives.

criteria; those diagnosed as not having DM may not meet any of the criteria. Suppose now, we 
have HbA1c test results on 1,100 individuals, collected over 2 years in a large urban hospital, 
and want to know how good this test is in identifying DM patients. Using as an initial refer-
ence criterion that any person with a measured HbA1c ≥ 6.1% should be classified as having 
DM, there are four possible outcomes from the test:

True positives (TP): both the HbA1c test and the gold standard are positive
True negatives (TN): both the HbA1c test and the gold standard are negative
False positives (FP): the HbA1c test is positive, but the gold standard is negative
False negatives (FN): the HbA1c test is negative, but the gold standard is positive

POSSIBLE OUTCOMES OF A DIAGNOSTIC OR 
SCREENING TEST

Before we continue, it is worth pausing here to reflect on the formal similarity of these out-
comes to statistical hypothesis testing.

• A false-positive result from a diagnostic test is equivalent to the Type I error of a 
statistical test: That is, the evidence suggests either the effectiveness of an interven-
tion or the presence of a disease, when neither is the case; in fact, the results are due 
to mere random sampling or measurement error.

• A false-negative result from a diagnostic test is equivalent to the Type II error of a 
statistical test: In these situations, the evidence suggests either the lack of effective-
ness of an intervention or the absence of a disease, even though the intervention is 
effective or the disease is present, but mere random sampling or measurement error 
obscures this.

• A true positive result is equivalent to the power of a test: The test result agrees with 
the diagnosis about the presence of a disease, and the statistical inference agrees with 
the true state of affairs about the effectiveness of an intervention.

• Finally, a true negative test result leads us to the correct conclusion that the disease 
is absent, just as the acceptance of the null hypothesis is the correct conclusion, if an 
intervention is not effective.
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When assessing the usefulness of a diagnostic test, a clinician is usually less interested in 
its sensitivity and specificity and more in the test’s ability to predict disease outcomes. The 
index numbers reflecting the predictive ability of a diagnostic or screening test are known as 
positive and negative predictive values. Here are the requisite definitions in terms of the four 
basic test outcomes:

Sensitivity (SE): TP/P = TP/(TP + FN)
Specificity (SP): TN/(1 − P) = TN/(FP + TN)

Positive predictive value (PPV): TP/L = TP/(TP + FP)
Negative predictive value (NPV): TN/(1 − L) = TN/(TN + FN)

The prevalence (PR) of a disease in a target population: (TP + FN)
The level (L) of the test: (TP + FP)

Efficiency (E): (TP + TN)

DEFINITIONS OF TEST STATISTICS ASSOCIATED WITH 
DIAGNOSTIC OR SCREENING TESTS

If we apply these definitions to the data in Table 21.7, we get the following results:

SE = 0.0573/0.091 = 0.63; SP = 0.8855/0.909 = 0.974; PPV = 0.0573/0.081 = 0.707;
NPV = 0.8855/0.919 = 0.964; PR = 0.0573+0.0336 =0.091; L = 0.0573+0.0236 = 0.081;
E = 0.0573+0.8855 = 0.943.

Based on these data, we see that the HbA1c test with a cut-off point of 6.1% has a sensitivity 
of 0.63, which means that 63.0% of those diagnosed with DM also have an HbA1c result of 
equal to or greater than 6.1%. Similarly, specificity for this test is 0.974, or 97.4% of those 
with a negative diagnosis also fall below the critical test value of 6.1%. Likewise, the PPV 
of this test is 0.707, meaning that 70.7% of those with a positive test result actually are diag-
nosed with DM. Among those with a negative test result, 96.4% also have been diagnosed not 
to have DM (NPV = 0.964). What is perhaps not apparent from the definitions of the PPV 
and NPV is that their estimates are dependent on the prevalence of the disease in the target 
population. To demonstrate this, we convert the proportions in Table 21.7 to case numbers in 
Table 21.8, adding a second table with changed prevalence of the diagnostic results.

The data in Table 21.8 show the test results for two different patient populations, one 
with a 9.09% prevalence of DM according to the gold-standard diagnosis, the other with a 
36.36% prevalence of DM. Note that the sensitivity and specificity values of the tests remain 
the same in the two populations: SE = 63/100 = 252/400 = 0.63; SP = 974/1,000 = 682/700 = 
0.974. However, the PPV in the low-prevalence population is: PPVLPR = 63/89 = 0.708; 
and in the high-prevalence population it is: PPVHPR = 252/270 = 0.933. That means that the 
proportion of false-positive test results is 6.7% (1 − 0.933) in the high-prevalence patient 
population, but 29.2% (1 − 0.708) in the low-prevalence population. It is this dependency of 
false-positive rates on the prevalence of a disease that can make the application of screen-
ing tests in the general population quite problematic: When the prevalence of a disease is 
low—for many diseases like various cancer types prevalence is less than 0.5% in the general 
population—even a test with high levels of sensitivity and specificity returns mostly false-
positive results.
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TABLE 21.8 Dependence of Positive and Negative Predictive Values on Prevalence of 
Disease (Based on Gold-Standard Diagnostic Procedure)

TEST RESULTS FROM LOW-PREVALENCE POPULATION

PREVALENCE OF DIAGNOSIS:

100/1,100 = 9.09%

DIABETES DIAGNOSIS ROW MARGINAL FREQUENCIES

DIAGNOSED 

WITH DIABETES

NOT DIAGNOSED 

WITH DIABETES

HbA1c
≥6.1% 63 26 89

<6.1% 37 974 1,011

Column marginal frequencies: 100 1,000 1,100

TEST RESULTS FROM HIGH-PREVALENCE POPULATION

PREVALENCE OF DIAGNOSIS:

400/1,100 = 36.36%

DIABETES DIAGNOSIS ROW MARGINAL FREQUENCIES

DIAGNOSED 

WITH DIABETES

NOT DIAGNOSED 

WITH DIABETES

HbA1c
≥6.1% 252 50 279

<6.1% 142 650 824

Column marginal frequencies: 400 700 1,100

TABLE 21.9 Sensitivities and Specifi cities for a Range of Referent Values/Cut-Off Points of 
Hemoglobin A1c Levels to Test for the Presence of Diabetes Mellitus

THRESHOLD 

FOR 

CUT-OFF (%)

PREVALENCE SENSITIVITY 

(%)

SPECIFICITY 

(%)

TEST LEVEL 

(%)

KAPPA-

ADJUSTED 

SENSITIVITY 

(%)

KAPPA-

ADJUSTED 

SPECIFICITY 

(%)

EFFICIENCY 

(%)

≥4.5 0.091 100.0 0.0 100.00 0.00 9.09

≥4.7 0.091 100.0 4.2 85.79 100.00 1.66 12.91

≥4.9 0.091 99.0 8.5 72.88 94.73 3.53 16.73

≥5.1 0.091 98.0 31.6 63.26 84.46 4.90 37.64

≥5.3 0.091 97.0 54.4 50.79 79.68 7.72 58.27

≥5.5 0.091 94.0 71.3 40.46 76.00 11.18 73.36

≥5.7 0.091 89.0 85.4 31.29 68.81 15.11 85.73

≥5.9 0.091 78.0 94.9 21.28 61.89 22.89 93.36

≥6.1 0.091 63.0 97.4 12.10 57.75 41.92 94.27

≥6.3 0.091 47.0 98.1 7.38 46.02 57.73 93.45

≥6.5 0.091 30.0 98.7 3.44 27.51 77.30 92.45

≥6.7 0.091 12.0 99.2 1.04 10.50 100.00 91.27

≥6.9 0.091 0.0 99.8 0.00 0.00 90.73

≥6.9 0.091 0.0 100.0 0.00 0.00 90.91

So far, we have focused on a single cut-off point for the HbA1c test; but we could have 
chosen many other cut-off points as the critical value for our decision that the patient has the 
disease in question. Table 21.9 shows the sensitivities and specificities for 13 selected cut-offs 
or thresholds among the 1,100 patients, 100 of whom are diagnosed with DM (PR = 0.091). 
A brief look at Table 21.9 reveals the trade-off between sensitivity and specificity: lower 
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cut-off points are associated with higher sensitivity values, but lower specificity; higher cut-
off points are associated with lower sensitivity values, but higher specificity.16 Under these 
circumstances, what is the “right” cut-off point to choose?

The answer is not as straightforward as one might think. In particular, it depends on the 
purpose of the testing. Suppose, a medical researcher wanted to enroll DM patients in an inter-
vention study designed to improve patient control of DM. In such a study it would be important 
to have high confidence that all enrolled subjects do have DM. In that situation, one would 
choose a cut-off point that yields high specificity on the HbA1c tests, as that would ensure 
that the number of false-positive subjects in the study is minimized. On the other hand, if one 
intends to screen the general population for DM, it is more important to minimize false-negative 
results: We would not want to conclude that a tested person does not have DM, if in fact he or 
she has it. This situation would require us to choose a cut-off point, which results in high sensi-
tivity. In other situations, it may be tempting to choose as a cut-off point the one that produces 
the highest efficiency (percentage of correctly classified individuals, which equals TP plus TN).
However, like the predictive values, efficiency changes with the prevalence of a disease or con-
dition in the tested population and does not deliver an unequivocal index of “best” cut-off point.

To complicate matters further, sensitivity and specificity themselves are not unequivocal 
indices of the quality of a test. So far, we have not asked whether the sensitivity and specificity 
values of a test exceed the values we would get by chance. Employing kappa-based statistics, 
we could adjust for the level of expected sensitivity or specificity. Going back to the data in 
Table 21.7, we see that the overall level of the test (L), that is, the probability of getting a posi-
tive test result with HbA1c levels greater than or equal to 6.1% is 0.081 or 8.1% regardless 
of the actual diagnosis. Obviously, we anticipate that our test can do better than that among 
people who are diagnosed with diabetes. Thus, we require at a minimum that the sensitivity 
exceeds this level. Using the same logic as in the establishment of inter-rater reliability, we 
can use the results expected from a random test17 as our benchmark, to construct a kappa-
based adjusted sensitivity:

κ =
−

−

=
−

−

=
SE L

L1
0 632 0 081

1 0 081
0 600. .

.
.

Similarly, we can adjust the specificity values for expected specificities of a random test:

κ =
− −

− −

=
−

=
SP L

L
( )

( )
. .

.
.1

1 1
0 974 0 919

0 081
0 679

Now it becomes clear that a specificity of 97.4% is less impressive, if 91.9% of all test results 
are negative, regardless of diagnosis. Table 21.9 shows the test levels and kappa-adjusted 
sensitivities and specificities for selected cut-off levels of the HbA1c test. The prevalence of 
diabetes in the target population remains the same, regardless of the cut-off points chosen. On 
the other hand, the level of the test (L), that is, the percentage of tested individuals with a posi-
tive test result, depends on the cut-off point chosen for the HbA1c test: It declines with higher 
cut-off points. The kappa-adjusted sensitivity and specificity values suggest that the HbA1c 

16 Again, these trade-offs are analogous to the trade-offs between Type I and Type II errors in statistical 
hypothesis testing.
17 A random test would be useless in picking out those who have been diagnosed with DM, because 
such a test has the same probability of a positive test result among individuals with or without a DM 
diagnosis.
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performs better than a random test at all cut-off points, except if sensitivity and specificity 
both are either 0% or 100%. However, the test performance is not as good as suggested by the 
unadjusted sensitivity and specificity values (Kraemer, 1992).

So, how should we decide on what is a good test? One way to demonstrate the trade-offs 
between the sensitivity and specificity of a diagnostic or screening test is to graph a so-called 
receiver-operating curve (ROC). It shows the trade-off by plotting sensitivity values against 
the values of 1 − specificity for each test cut-off point contemplated. For example, the ROC 
plot in Figure 21.1 is based on the 13 cut-off points exhibited in Table 21.9.

The first question we might ask about the quality of the HbA1c test is, whether or not 
it outperforms a random test. A random test has average positive results equal to the level of 
the test (L), but in a random test, these results are unrelated to the actual diagnosis. Such a test 
would have the same probability of returning a positive result, regardless of whether a person 
has been diagnosed with DM or not.

In that case, the expected probability of a TP would be equal to PR × L (the product 
of prevalence and the level of the test) and the expected probability of a true negative result 
would be (1 − PR) × (1 − L). It can be shown that, for such a test, SE + SP = 1 and, therefore: 
SE = 1 − SP. In words, for a random test without any diagnostic capability, sensitivity equals 
one minus specificity. In Figure 21.1, the trade-off between sensitivity and specificity for a 
random test is indicated by the dashed diagonal line. For a test that actually contains new infor-
mation about the patients’ disease state, we would expect that TP > PR × L and TN > (1 − PR) × 
(1 − L). As the data in Table 21.7 show, at the test cut-off point of 6.1%, TP = 0.0573 > PR × 
L = 0.091 × 0.081 = 0.0074; TN = 0.885 > (1 − PR) × (1 − L) = 0.909 × 0.919 = 0.8354. Thus, 
the HbA1c test with a cut-off point greater than or equal to 6.1% does perform better than a 
random test. In fact, as the ROC in Figure 21.1 shows, the sums of sensitivity and specificity 
values exceed 1 at every cut-off point except at the extremes.18 Figure 21.1 also indicates that 

18 This can also be seen from the results in Table 21.9: there the sums of sensitivity and specificity 
exceed 100%.
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the area under the ROC curve equals 0.9296. The size of this area can be interpreted as the 
probability that a person diagnosed with DM will have a higher test score on the HbA1c test 
than a person not so diagnosed. In general, a greater area under the ROC curve indicates bet-
ter overall performance of the diagnostic or screening test. From this it follows that we could 
evaluate the comparative performance of two different test procedures, by comparing the areas 
under the ROC curves associated with the two different test procedures. Assume we send the 
blood vials of the 1,100 patients to two different laboratories and then compare the resulting 
test classifications. Figure 21.2 shows that the area under the ROC curve for the test results 
from the first laboratory (0.9296) is larger than the area under the ROC curve for the second 
laboratory (0.9071). DeLong, DeLong, and Clarke-Pearson (1988) developed a chi-squared-
based test for the comparison of areas under different ROCs. In this case, we obtain a chi-
squared value of 19.84 (df = 1, p < .0001) for the null hypothesis that the area under ROC1 = 
area under ROC2. Estimates of standard errors and confidence limits for the ROC areas are 
also available. We have established now that the HbA1c test is better than a random or “blind” 
test,19 and we have a method for evaluating the comparative performance of different tests or 
test procedures.

 SUMMARY

In this chapter, we have focused on several reliability indices, which are used to gauge the 
extent to which the measurements are free of random measurement error. This is of great 
importance for both research and clinical decisions: Unreliable measures reduce our ability 
to show relationships and they increase errors in clinical decisions. In practice, reliability of 

19  We could use the Pearson chi-squared test to establish the appropriate p-values, if we have informa-
tion on the sample size.
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measurement can only be established, if multiple measures or multiple indicators are avail-
able: We cannot estimate the amount of reliability or unreliability with a single score measure.

It is important to keep in mind that reliability, even if high, only speaks to the repeat-
ability of a measurement procedure, but not to its validity. Going back to the example of rat-
ing mammograms, even if two or more radiologists agree 100% on how to interpret the same 
radiographs, this is no “guarantee” that the interpretations reflect the “truth”: They might both 
be mistaken. The establishment of validity requires more than showing substantial internal 
consistency among multiple raters or indicators. Supporting the validity of a measurement 
tool or procedure may involve the use of external criteria (like biopsy results in the case of 
mammograms); it also requires a theoretically plausible measurement model that can be tested 
against data. One large class of statistical models, commonly used in the exploration and test-
ing of measurement models, is factor analysis. The next chapter will provide an outline and 
some simple examples of factor analytical techniques, as they are often encountered in health-
related research articles.

Read: Monsen, K. A., Lytton, A. B., Ferrari, S., Halder, K. M., Radosevich, D. M., Kerr, 
M. J., . . . Brandt, J. K. (2012). Evaluating reliability of assessments in nursing documentation.
Online Journal of Nursing Informatics, 15(3).

(a)  Provide a very brief (three to four sentences) summary of what this study is about.

(b)  Define the target population on which the statistical analysis is based. What were the 
eligibility and exclusion criteria for study records? Is the study sample a random sample 
of its target population?

(c)  Do the authors explain why they chose their particular measures of reliability?

(d)  In your own words, write a short paragraph about the major results.

(e)  Are the conclusions of the authors warranted?

LITERATURE APPLICATION

 EXERCISES

1. The following table shows the correlations among five depression symptoms obtained 
from a sample of 428 primary care patients. Using a hand calculator and the formula 
provided in this chapter, compute the sample Cronbach’s Alpha coefficient.

(obs=428)
 |   sad nervous  restles shope less eff ort
– – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
    sad | 1.000
 nervous | 0.567 1.000
 restless | 0.525 0.644 1.000
hopeless | 0.599 0.513 0.507 1.000
  eff ort | 0.545 0.524 0.532 0.604 1.000

2. If the error variance estimated for a measurement tool equals 15.6 and the total observed 
variance equals 19.5, what is the estimated reliability of this measurement tool?



21. RELIABILITY COEFFICIENTS AND MEDICAL TEST EVALUATION  275

3. Compute Kendall’s coefficient of concordance (W) for the following ratings of four 
mammograms by three medical students.

 | Mammograms:
 – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – –
Student Raters:  | 1 2 3  4
 – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – –
    1  | 1 2 2 3
    2  | 2 1 1 2
    3  | 2 3 3 2
 – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – –
1 = probably cancer-free
2 = uncertain
3 = probable cancer

4. The following table shows the distribution of the test results from a screening test 
among 10,000 tested individuals. Compute the following statistics: prevalence, 
sensitivity, specificity, positive and negative predictive values, efficiency, level of the test, 
kappa-adjusted sensitivity and specificity.

 | True Disease State:
 – – – – – – – – – – – + – – – – – – – – – – – – – + – – – – – – – – – – – –
Test Results: | has disease | no disease
 – – – – – – – – – – – + – – – – – – – – – – – – – + – – – – – – – – – – – –
   positive | 215 |   780
  negative |   35 | 8970
 – – – – – – – – – – – + – – – – – – – – – – – – – + – – – – – – – – – – – –
 | 250 | 9750

5. Using the statistical models discussed in this chapter, evaluate the reliability of one or two 
clinical tests used in your clinical practice.
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CHAPTER 22

 Factor Analysis

In the last chapter, we addressed reliability in measurement, but skirted issues of validity. 
As stated previously, reliability is essentially a matter of reproducibility and repeatability 
of measurement results, which implies the relative absence of random measurement error. 
To address validity in measurement is not just a statistical matter, but also a conceptual 
and theoretical problem. For instance, nurses have developed pain and symptom scales, are 
interested in psychological constructs such as self-efficacy, patient resiliency, depression 
and anxiety, and so forth, because of their well-documented relationship to patient coping 
behavior, speed of recovery from illness, or adherence to a medication regimen. In addi-
tion, concepts such as physical and social functioning and the very concept of health itself 
are indispensable for judging the effectiveness of clinical interventions. At the same time, 
such constructs are exceedingly abstract and are not easy to measure. Still, measurement of 
the key concepts in an investigation is the most basic requirement for progress in science: 
without valid and reliable measurement, we do not have an empirical basis, beyond the 
level of personal impression, for documenting advances in clinical treatment. As psychol-
ogy has been the first discipline to operationalize, that is, to develop, empirical indicators 
for concepts representing attitudes, behaviors, and emotions, the statistical models to test the 
appropriate measurement models have been developed in a specialized branch of statistic 
known as psychometrics.

Most of the psycho-social concepts mentioned—for example, pain, resiliency, 
depression—cannot be measured directly, but their presence must be inferred from empirical 
indicators, which often consist of observations of patient behavior or self-reports by patients. 
The most common approach to measuring such concepts is to use questionnaire responses 
to multiple questions, which are designed to cover the concept of interest. The development 
of such items is an arduous process, which takes many iterations. It is discussed in several 
research method texts (Polit & Beck, 2011; Stommel & Wills, 2004; Trochim & Donnelly, 
2008), but our focus here is on the main statistical tool employed in the development and 
confirmation of such multiple-item instruments: factor analysis.

At its most basic, factor analysis is a set of statistical techniques that can be used to 
either find variable groupings or clusters (exploratory factor analysis [EFA]) or test for 
the existence of predetermined variable groupings or clusters (confirmatory factor  analysis 
[CFA]). Many factor analysis models are based on the assumption that observed variables 
are expressions of some underlying latent variables, which are not directly observable. 
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Thus, if the factor model is a correct description of reality, these latent variables, also called 
common factors, would account for most if not all of the covariances or correlations among 
the observed variables.

To get a handle on the basic principles of factor analysis, we will start with a simple 
model. Suppose we want to measure clinical depression among a sample of patients. According 
to the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5),1 clini-
cal depression involves multidimensional symptoms; among them are depressed mood and 
anhedonia, which refers to the inability to experience pleasure, including a lack of positive 
affect. Many of the standardized depression scales, such as the Beck Depression Inventory 
(BDI), Hamilton Depression Scale (HDS), and Center for Epidemiologic Studies-Depression 
Scale (CES-D) have individual indicators of both depressed mood and anhedonia.2 Table 22.1 
shows six question items from among the 20 items of the CES-D self-report scale (Radloff, 
1977), together with the response formats and the codes in parentheses. The table also shows 
a hypothetical correlation matrix among these six items. The correlations are similar to what 
one might observe in a real data set, but they were constructed so as to fit a theoretical factor 
model exactly. When we analyze the responses to questions such as these depression items, we 
make the basic assumption that it is the underlying, unobservable depression, or its absence, 
that gives rise to the particular answers chosen by a respondent. For instance, an individual, 
who suffers from depression at the time when he or she is asked to fill out the questionnaire, 
is unlikely to choose the answer “most or all of the time” in response to the statement “I 
was happy.” Similarly, this respondent is likely to check “most or all of the time” or at least 
“occasionally or a moderate amount of time” following the statement “I feel sad.” Thus, we 
would expect that responses to these six questions all correlate positively with each other, as 
depressed individuals are likely to choose higher-scoring responses and non depressed indi-
viduals are likely to choose lower-scoring responses.

At the same time, we do not expect the responses to be perfectly correlated, because not 
all symptoms addressed in these six question items need to be present in a depressed person. 

1 Fifth edition of the Diagnostic and Statistical Manual of Mental Disorders, 5th edition (DSM-5), 
 published by the American Psychiatric Association (www.dsm5.org/Pages/Default.aspx).
2 Beck Depression Inventory (BDI), Hamilton Depression Scale (HDS), Center for Epidemiologic 
Studies-Depression Scale.

TABLE 22.1 Hypothetical Correlations Among the Responses to Six CES-D 
Question Items Designed as Indicators of Depression

X1: I felt depressed; X2: I felt hopeful about the future; X3: I was happy;
X4: I enjoyed life; X5: I had crying spells; X6: I felt sad.

Answer categories (with reverse coding for positively worded items 2, 3, 4):
“rarely or none of the time” (0 or 3); “some or little of the time” (1 or 2); 
“ occasionally or a moderate amount” (2 or 1);“most or all of the time” (3 or 0)

 | X1 X2 X3 X4 X5 X6
– – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  X1 | 1.00
  X2 | 0.21 1.00
  X3 | 0.34 0.40 1.00
  X4 | 0.34 0.40 0.64 1.00
  X5 | 0.56 0.24 0.38 0.38 1.00
  X6 | 0.63 0.27 0.43 0.43 0.72 1.00
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In addition, there are random measurement errors3 and individuals may differ in their under-
standing of the unique wording of a particular item.4

We can formalize these assumptions into a model. Earlier we stated that depression is 
a multidimensional concept that includes the dimensions of “depressed mood” and “lack of 
positive affect.” The six question items displayed in Table 21.1 are intended to capture these 
two distinct aspects of the depression concept, with three indicators for each subconcept. It 
may not be hard to discern, based on the contents of the items, which three question items are 
intended to capture a respondent’s depressed mood and which three are intended to capture a 
lack of positive affect. But a purely conceptual analysis of concepts and their question indi-
cators is not enough, because the important empirical question remains: Do the respondents 
actually make this distinction between depressed mood and absence of positive affect? Thus 
we have to use the empirical information contained in the correlation pattern to see whether 
the theoretical distinction we draw actually reflects how members of the target population 
think about depression.5 As for Table 22.1 the correlations were constructed that way on the 
basis of hypothetical data, a factor model is available that explains the observed correlations 
perfectly and comports with the theoretical assumptions. Figure 22.1 provides a graphical 
depiction of that model. It shows two (common) factors, with F1 referring to “Depressed 
Mood” and F2 referring to “Lack of Positive Affect.” The curved two-sided arrow on the left 
side indicates that we assume that these two factors are correlated, as they are subsumed under 
the broader concept of “Depression.” The gray boxes represent the measured variables, that 
is, the responses to the six CES-D items. According to the graph, they are being influenced by 
the two latent common factors, each of which affects the responses of three indicator variables 
directly. In addition, the responses to the six items are also influenced by “unique” factors 
(U), which may include reactions to the particular wording of an item as well as the effects of 
random measurement errors.

The following equations capture the main features of the factor model in Figure 22.1:

Z1 = 0.7F1 + 0.71U1; Z5 = 0.8F1 + 0.6U5; Z6 = 0.9F1 + 0.44U6

Z2 = 0.5F2 + 0.87U2; Z3 = 0.8F2 + 0.6U3; Z4 = 0.8F2 +  0.6U4

The dependent variables in these equations are standardized versions (zi-scores) of the 
observed indicator variables: They have means equal to zero and variances equal to one.6 
The coefficients associated with the factors, which are also standardized, are known as factor 
loadings (l). These factor loadings can be thought of as standardized regression coefficients 

3 Again, measurement error is ubiquitous; for instance, a particular respondent may have poor eyesight 
leading him to make the check mark on a response category that does not reflect his true feelings, or 
there may be data entry errors, and so forth.
4 Some questions may provoke responses that are unique to them, because the language used in them is 
misunderstood, for instance.
5 Depression is a well-developed psychological concept, but many concepts used in nursing research 
such as “perceptions of critical incidents” (O’Connor & Jeavons, 2003) or “student satisfaction with 
nursing education” (Espeland & Indrehus, 2003) are in an exploratory stage, whose value remains to 
be determined. Certainly during the scale development phase for such concepts, the researcher cannot 
know in advance how the responses to the proposed indicator items actually relate to each other in a 
particular target population.
6

 
z X X

SDi
i i

i

=
−

 
.



280 V. MEASUREMENT MODELS
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FIGURE 22.1 Graphical Depiction of Factor Model With Six Indicators and Two Correlated 

Factors.

or betas.7 Finally, the unique factors (Ui) represent all idiosyncratic influences on individual 
item responses (including measurement error). They are standardized as well with variances 
of one, and the standardized coefficients (ci) associated with the Ui reflect the strength of these 
unique influences on an observed indicator variable.

The graph in Figure 22.1 also incorporates additional features and assumptions:

1. The two latent factors are correlated, with rF1,F2 = 0.6.

2. All correlations between unique factors equal zero: rUi,Uj = 0.0.

3. All correlations between latent factors and unique factors equal zero: rFi,Uj= 0.0.

4. The amount of variance, which each observed indicator variable shares with 
the other variables through the common factor, equals the square of its factor 
loading (li

2).8 This shared variance is also known as communality, which is usually 
indicated by hi

2. The amount of variance that is unique to each observed indicator 
variable is represented by the square of the coefficient representing the influence of 
Ui: (ci

2). As the source of variance of an observed variable is either shared with the 
common factors (common variance) or unique, we get: communality = 
1 – uniqueness, or li

2 = 1−ci
2 = hi

2. Thus communality and uniqueness make up 
the total variance of the observed indicator variable.

7 See Chapter 12. In a simple regression, with one independent variable, or factor as in this case, the 
betas are equal to the correlation between the factor and the indicator variable. The reason for standard-
izing all the variables in these equations is that it simplifies the presentation: Covariances of standard-
ized variables reduce to correlations and variances are all equal to 1. See Appendix I for more details.
8 This is true, because each observed variable in this model loads only on a single factor. With multiple 
factor loadings, the expression for shared variance is a bit more complicated.
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With these equations and assumptions in place, we can now reconstruct the correlation matrix 
in Table 22.1. For instance, correlations between indicator variables of the same factor sim-
plify to the product of the two factor loadings involved, for example, rZ1,Z2 = 0.7 × 0.8 = 0.56. 
Correlations between indicator variables of different factors are equal to the product of 
the factor loadings and the correlation between the two factors, for example, rZ6,Z3 = 0.9 × 
0.6 × 0.8 = 0.43. Using the equations and the inter-factor correlations, we can reconstruct all 
correlations among the indicator variables in Table 22.1. When a factor model provides a good 
description of the inter-item correlation pattern, it represents a substantial empirical (and con-
ceptual) simplification of the data: After all, in the example we showed that the six indicator 
variables can be reduced to two factor variables, which capture the entire correlational pattern 
among the original six variables.

Of course, the factor model presented in Figure 22.1 reproduces the correlation matrix 
in Table 22.1 perfectly, because the latter was constructed on the basis of the predetermined 
factor model. However, in a typical research situation, we would have sample data and could 
compute the correlations among the relevant variables, but we would not know for sure what 
the underlying factor model should be; rather, in EFA we start with the data, which are subject 
to sampling fluctuations, and try to “extract” a factor model from the data that is both consis-
tent with the data and theoretically plausible.9 As it turns out, this is not always an easy task, 
because factor solutions are fundamentally indeterminate, that is, they have multiple solutions.

 STEPS IN EFA

 Initial Factor Extraction

While we have emphasized that factors are latent variables, which are not directly observable, 
in Figure 21.1 we treated them like any other observable variable, referring to standardized 
regression coefficients or “loadings” linking the observed variables to the factors. However, 
we have not yet answered the questions (a) how to obtain scores that represent these factors, 
and (b) how to determine how many factors are needed to represent the correlation pattern 
well enough. As EFA is a data reduction technique, the whole point of the technique is to find 
fewer factors than the number of original variables, which nonetheless capture most of the 
important variation in the data. For instance, in the factor model presented in Figure 22.1 we 
have two factors, labeled “Depressed Mood” and “Lack of Positive Affect” that account for 
the common variance among six variables. If we can find a way of substituting factor scores 
for the original scores from the six variables, we would still capture all the essential informa-
tion in the data, but would have simplified the analysis both from a conceptual and an empiri-
cal point of view.

There are entire books devoted to the ins and outs of factor-analytic techniques, but 
these are for the specialist to study. A full technical understanding requires knowledge of 
matrix algebra, because a major part of factor analysis revolves around the problems of 
 solving simultaneous equations.10 Still, given that factor-analytic applications are widespread 
in the nursing and medical literature (Watson & Thompson, 2006), it is important to gain a 
thorough conceptual understanding of this technique.

9 In some EFA, the underlying “theory” or conceptual framework is not yet well developed and research-
ers let themselves be guided to some degree by the patterns discovered in the data. Such analyses are 
preliminary and require confirmation with new data sets. For a nontechnical discussion of what is 
involved in scale development, see Chapter 16, Stommel and Wills (2004).
10 A classic text is Harman (1976); a nontechnical introduction is provided by Child (2006).
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Among the techniques for the initial extraction of factors are principal component analy-
sis (PCA),11 principal axis factoring, maximum likelihood factoring (MLF), least squares fac-
toring (LQF) and a few others. Here, we will not discuss all the details and differences among 
them, in part, because different extraction methods tend to give very similar results, if the data 
really can be represented by a few factors. Instead, we aim at clarifying the underlying ideas 
of what “factor extraction” represents, followed by an example of how to interpret the output 
from an EFA performed on actual data.

Suppose we have the scores of four respondents to two of the CES-D items shown in 
Table 22.1: X5: “I had crying spells” and X6: “I felt sad.” Now suppose further that, while each 
respondent experiences a different level of depressed mood, he or she is consistent in answering 
both questions. Thus we get the following pairs of scores: 0–0, 1–1, 2–2, and 3–3. Figure 22.2 
provides a graphical representation of the four scores on each of the variables.

As the paired scores on both variables are the same, the line connecting the scores is a 
45° diagonal. Given this perfect alignment of the scores on the two variables, we can simplify 
the description of each individual’s responses. Rather than describing each respondent’s posi-
tion using two scores from two variables, we could, without loss of information, transform 
the two scores of each individual into a single score on a new variable. Using the Pythagorean 
theorem about the length of the sides of a rectangular triangle, we can convert the two X5 and 
X6 scores into a new single score on the diagonal “depressed mood” line: DM X X= +5

2
6
2 . 

For instance, a respondent, who checked “occasionally or a moderate amount” (=2) on both 
of the original variables, would now get a score of DM = + = =2 2 8 2 832 2 . . In short, we 
have come up with a new single variable or “factor” that represents the responses of the study 

11 PCA is not exactly a factor-analytic tool, as it aims to decompose variance and not to account for cova-
riance or correlation patterns; however, as a practical matter, both methods often yield similar results.
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participants on two variables. In fact, we have collapsed a two-dimensional space defined by 
two coordinates into a one-dimensional space, defined by a single coordinate. While in this 
example the two item scores are perfectly correlated (r = 1.0), with real data, this is almost 
never the case. Figure 22.3 shows data for two variables (X1 and X2) that are highly, but not 
perfectly, correlated. Again, we could represent an individual’s score on the newly formed 
principal axis drawn to capture the maximum variation of individual scores in a single score. 
As it turns out, in this case, the scores of individuals on the newly formed principal axis 
capture more than 80% of total score variation of both original variables. Given the extrac-
tion method used here (PCA), we call this first “factor” a first “principal component.” An 
important point about this (initial) factor extraction is that the remaining variation is shown 
as perpendicular distances of data points from the principal axis line. With only two original 
variables, we could locate the precise location of all data points using a second axis perpen-
dicular to the first one, but then we would not have reduced the complexity of the data: We 
would have just replaced the coordinates of the scores on the original two observed variables 
by coordinates on the newly transformed factor variables.

As a matter of fact, it is always possible to replace the original variables with an equal 
number of transformed factor variables or principal components, which are weighted linear 
combinations of the original variables. If we have as many factors as original variables, we 
can predict the locations of all individual data points in n-dimensional space precisely.12 Still, 
there is a point to this: We have reexpressed the scores on the original variables as scores on 

12 The term “n-dimensional space” refers to the geometric representation of the data. With two indi-
cator variables, we need maximally two dimensions to represent the data points graphically, but as 
Figure 22.2 shows, if the two variables are perfectly correlated, all the data points lie on a single line, 
and we can use a one-dimensional depiction (i.e., a single straight line) to represent all data. With three 
original variables, we maximally need three dimensions to plot all data points exactly; this can be 
 generalized t o n-dimensional space, if n variables are involved.
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two new factor variables, but we have shown that one of these new factor variables  captures 
most of the variation in scores among the original two variables. This is only possible if 
and when the two original variables are correlated. In Figure 22.3, we see that the scatter 
of data points depicting scores on the two original variables is confined to a fairly narrow 
band along a single straight line: It is for this reason that we can replace the original scores 
on two variables with a single score on one factor variable or principal component and still 
capture most of the individual variation. If the two variables had not been correlated (r = 0), 
no simplification would have been possible, as no linearly transformed factor variable would 
exist that explains more variance than the original observed variables. This is as it should be: 
Two variables that are uncorrelated cannot possibly be indicators of the same underlying and 
unobserved latent variable.

Table 22.2 shows output from a factor analysis performed on actual data, using the same 
six CES-D variables as in Table 22.1. The analysis was performed on data from a sample of 371 
women between the ages of 21 and 60, who responded to all 20 CES-D questionnaire items, 
but for simplicity’s sake, we confine ourselves to just these six variables. The extraction method 
chosen here is PCA, which starts by extracting a first component or “factor,” which is a weighted 
sum of the six observed depression indicator variables; the weights are chosen in such a way that 
the first extracted component accounts for a maximum amount of variance among the individual 

TABLE 22.2 EFA of Responses to Six CES-D Question Items Designed 
as Indicators of Depression

X1: I felt depressed; X2: I felt hopeful about the future;
X3: I was happy; X4: I enjoyed life; X5: I had crying spells;
X6: I felt sad.

Factor analysis/Extraction Number of obs    = 371
Method: principal-component factors Retained factors   =   2
Rotation: (unrotated) Number of params  =   11
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
  Factor | Eigenvalue Diff erence Proportion Cumulative
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 Factor1 | 3.4167 2.4072 0.5694 0.5694
 Factor2 | 1.0095 0.3849 0.1682 0.7377
 Factor3 | 0.6246 0.2258 0.1041 0.8418
 Factor4 | 0.3988 0.0628 0.0665 0.9083
 Factor5 | 0.3360  0.1215 0.0560 0.9642
 Factor6 |  0.2145     . 0.0358 1.0000
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
LR test: independent vs. saturated: chi2(15) = 1024.26 Prob>chi2 = 0.0000

Initial Factor loadings (pattern matrix) and unique variances
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 Variable | Factor1 Factor2 | Uniqueness Communality
– – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   X1 | 0.7867 −0.3485 | 0.2597  0.7407
   X2 | 0.5346   0.6247 | 0.3239  0.6761
   X3 | 0.7886   0.3178 | 0.2772 0.7228
   X4 |  0.7404   0.3661 | 0.3177 0.6823
   X5 |  0.7714  −0.4117 | 0.2355 0.7645
   X6 | 0.8643 −0.3054 | 0.1598 0.8402
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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scores, which are located in the original six-dimensional space. (The solid line in Figure 22.3 is 
an example of such an extracted component, albeit from a two-dimensional space.). In a second 
step, we extract another component, which is orthogonal, that is, uncorrelated, to the first com-
ponent, and its weights are chosen so as to explain the maximum proportion of the variance in 
the data remaining after the variance associated with the first component is removed. We con-
tinue this process until we have as many components or factors as we have variables, at which 
point we will be guaranteed that all variation in the data can be explained by our factors.

Important information about the extraction results is contained in the column in 
Table 22.2 labeled “Eigenvalue.”13 In the current context, the eigenvalues represent the amount 
of variance that is accounted for by the extracted components or factors. Recall that the vari-
ance of standardized variables is always equal to one. With six (standardized) variables, we 
need to account for a total variance of 6. The first factor extracted has an associated eigenvalue 
of 3.4167. When divided by the sum of the six standardized variables, 3.4167/6 = 0.5694, we 
see that the first factor accounts for 56.94% of the total variance among these six variables.

Successive orthogonal components or factors account for additional parts or all of the 
remaining variance. For instance, the second factor has an eigenvalue of 1.0095, which trans-
lates into 16.82% additional variance accounted for. The overall cumulative proportion of vari-
ance accounted for by the first two factors is 0.7377, which is the sum of 0.5694 and 0.1682, 
except for a small rounding error. In an analysis involving standardized variables, the sum of 
the eigenvalues equals the number of variables, each of which has variance one. Many statisti-
cal software programs use an eigenvalue of one as a default criterion for determining when 
to stop the extraction of additional factors. This is by no means a rule of thumb that should 
always be followed—sometimes it makes sense to use different eigenvalue criteria or use a 
predetermined number of factors, if the researcher already has experience with and informa-
tion about the observed variables from prior studies—but as a criterion to limit the maximum 
number of factors extracted, it often makes sense. Remember, that a standardized variable has 
a variance of one. Replacing an observed variable with a factor that explains less variance than 
the observed variable would not be terribly helpful, as the goal here is to simplify and come 
up with fewer variables containing much of the information contained in the original observed 
variables. In addition, recall from the last chapter on reliability that observed variables usually 
contain a good deal of measurement error and the ultimate goal of factor analysis is to account 
for the common variance, that is, covariance among the observed variables. In short, in this 
case we extract two factors, which account for almost 74% of total variance.

Table 22.2 also shows the initial factor loadings as well as the communalities and 
uniqueness values associated with each original variable (uniqueness = 1 – communality). 
The communality value indicates what proportion of the variance of a variable is shared with 
the common factors and, thus, the other variables correlated with the common factors. As we 
can see, the communalities vary between 0.6761 and 0.8402, thus showing that the two-factor 
model accounts for substantial proportions of variances in each of the observed variable. If 
one or more communalities are very low, let us say less than 0.2, this would either indicate that 
the variable may not be correlated well with any of the other indicator variables or that more 
factors would need to be extracted to account for common variance. Incidentally, for a factor 
model with orthogonal or uncorrelated factors, there is a simple relationship between the fac-
tor loadings and the communalities: the sum of the squared loadings equal the communality. 

13 Eigenvalue is a term used in linear algebra. For a short description, see the Wikipedia entry by the 
same name. In this chapter, we have avoided using matrix algebra notation, which underlies much of 
the factor-analytic methods.
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For instance, the factor loadings of variable X6, “I felt sad,” can be used to compute the com-
munality value as follows: 0.86432 + (−0.3054)2 = 0.8402. As it turns out, the initial factor 
loadings are often difficult to interpret; we must take one additional step in the analysis and 
“rotate” the factors to obtain more interpretable factor loadings.

 Factor Rotation

We emphasized earlier that factor solutions are indeterminate: There is not only one solution, 
but multiple solutions. Each is an equally valid representation of the correlation pattern in the 
data. To see this point, we first take a look at the factor loadings in Table 22.3 and their graphi-
cal depiction in the two-dimensional graphs of Figures 22.3 and 22.4.

TABLE 22.3 Factor Loadings After Orthogonal and Oblique Rotations

X1: I felt depressed; X2: I felt hopeful about the future; X3: I was happy;
X4: I enjoyed life; X5: I had crying spells; X6: I felt sad.

Factor analysis: No. of obs = 371; Retained factors = 2; No. of params = 11;
   Initial Factor loadings (pattern matrix) and unique variances

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Variable | Factor1 Factor2 | Uniqueness Communality
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – – – – – –
  X1 | 0.7867 −0.3485 | 0.2597 0.7407
  X2 | 0.5346  0.6247 | 0.3239 0.6761
  X3 | 0.7886   0.3178 | 0.2772 0.7228
  X4 | 0.7404   0.3661 | 0.3177 0.6823
  X5 | 0.7714  −0.4117 | 0.2355 0.7645
  X6 | 0.8643 −0.3054 | 0.1598 0.8402
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Rotation: orthogonal varimax (Kaiser normalization)
Rotated factor loadings (pattern matrix) and unique variances

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Variable | Factor1 Factor2 | Uniqueness
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – – –
  X1 | 0.8327 0.2163 | 0.2597
  X2 | 0.0302 0.8217 | 0.3239
  X3 | 0.4199 0.7392 | 0.2772
  X4 | 0.3521 0.7472 | 0.3177
  X5 | 0.8601 0.1574 | 0.2355
  X6 | 0.8667 0.2983 | 0.1598
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Rotation: oblique oblim in (Kaiser normalization)
Rotated factor loadings (pattern matrix) and unique variances

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
Variable | Factor1 Factor2 | Uniqueness
– – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – –
  X1 |   0.8520   0.0186 | 0.2597
  X2 | −0.1698   0.8831 | 0.3239
  X3 |   0.2743   0.6926 | 0.2772
  X4 |   0.1986   0.7188 | 0.3177
  X5 |   0.8963 −0.0524 | 0.2355
  X6 |  0.8688   0.0987 | 0.1598
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
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Table 22.3 shows three sets of factor loadings (“pattern matrix”) for six CES-D items 
and two factors. The first pattern matrix again shows the results from the initial extraction in 
Table 22.2.

Based on the size and distribution of the 12 loadings after the initial extraction of two 
factors, it is not immediately obvious that these two factors represent clearly distinct dimen-
sions. The different signs of the loadings for Factor 2 do hint at the existence of separate 
dimensions, but often enough, the loadings of the initial factor solutions do not provide clari-
fying information concerning the underlying grouping or clusters of variables, even if there 
is such a grouping. This is often the case when a large number of variables and their loadings 
on several factors are examined. For maximum clarity about factor loading patterns, the ideal 
outcome would be that each variable has high loadings on only one factor, with the loadings 
on the other factors being close to zero. As it turns out, if the observed variables do fall into 
well-defined clusters that are separable, one can obtain such factor pattern matrices14 reveal-
ing the simple structure through the rotation of the coordinate axes.

To clarify the meaning of the previous statements, let us look at the graph in Figure 22.4. 
It shows that the six CES-D items do, in fact, form two distinct clusters based on their initial 
factor loadings: The variables belonging to the “depressive mood” cluster (X1, X5, X6) are 
closer to each other than the variables forming the “absence of positive affect” cluster (X2, 
X3, X4) and vice versa. Concerning the coordinate system, we first ignore the dark gray lines 
and focus on the (light gray line) horizontal and vertical axes in the graph: They represent the 
initial factors (F1, F2). The graph also shows six small circles, representing the six variables, 
whose location in the plane is determined by coordinates equal to their factor loadings. For 

14 A pattern matrix contains the factor loadings of the observed variables on the factors. Table 22.3 
 provides three examples.
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FIGURE 22.4 Change in Factor Loadings After Orthogonal Rotation.



288 V. MEASUREMENT MODELS

example, X1 (“I felt sad”) has a loading of 0.8643 on the initial Factor 1 (F1) and a loading of 
−0.3054 on F2. These values are the coordinates for X1, indicated by the perpendicular solid 
lines. It is obvious that the initial Factor 1 provides little discrimination between the variables 
belonging to the “depressive mood” cluster (X1, X5, X6) and the “absence of positive affect” 
cluster (X2, X3, X4): All of these loadings are fairly high. Only the loadings on Factor 2, which 
are negative for the first and positive for the second variable cluster, help to separate the 
clusters.

The dark gray lines in Figure 22.4 represent an orthogonal rotation, which produces 
another right-angled coordinate system.15 Here we used the popular varimax procedure for 
orthogonal rotation. This procedure maximizes the variance of the squared loadings of each 
factor, subject to the constraint that the rotated factors remain orthogonal or uncorrelated. Of 
course, maximizing the variance of the loadings means to make them as different from each 
other as possible. In short, this procedure would entail rotating the axes until a position is 
found, in which some loadings have large values and others relatively small values. Details of 
the calculations involved can be found elsewhere,16 but Figure 22.4 provides the results of the 
rotation, with the dark gray lines representing the rotated factors. There are several important 
observations to be made about this rotation: (a) we rotated the coordinate system, but left 
the original data untouched.17 That means that the relationships among the original variables 
and their clustering remain completely unaffected by the rotation. (b) As the second panel in 
Table 22.3 shows, the uniqueness, and thus the communality of shared variance, is unaffected 
by the rotation of the factor axes. (c) As with all orthogonal rotations, the sums of the squared 
factor loadings remain the same and equal the communality index for a variable. For instance, 
variable X1 has the following sums of squared factor loadings from the unrotated and rotated 
factor solutions: 0.78672 + (−0.3485)2 = 0.83272 + 0.21632. Both expressions are equal to the 
communality: 0.7407.

After rotation of the coordinate axes by 38°, we get new factors (F1′, F2′) and greater clar-
ity with respect to the factor loadings. Drawing perpendicular (dashed) lines for the variable 
X1 onto the rotated (dashed lines) factor axes, we can see that X1 now has a high loading on F1′ 
(0.8327) and a low loading on F2′ (0.2163), as do the other depressed mood items. Conversely, 
the three variables representing “absence of positive affect” have relatively high loadings on 
F2′ and much lower loadings on F1′.The important point here is that we made no changes in the 
original variables and their relative position to each other, but after rotation, the factor pattern 
matrix containing the factor loadings offers a clearer picture of the variable clusters.

With these data, we can improve on the clarity and separation of the factor loadings even 
further, if we relax the assumption that the factors are uncorrelated and perform an “oblique” 
rotation. As the items were originally all designed to be indicators of depression, we can 
assume that the factors extracted here represent sub-dimensions of depression. This would 
mean that the assumption of uncorrelated, orthogonal factors is somewhat suspect. There is 
every reason to expect that different clusters of depression indicators, which form separate 
subscales, are correlated at the level of the subscales. Figure 22.5 offers a visual representa-
tion of an oblique rotation, using a technique called oblimin. This procedure minimizes the 
covariance of the squared loadings for distinct factors.18 At the bottom of Table 22.3, we show 

15 Harman (1976) is a classic, comprehensive treatment of this subject.
16 An older but useful nontechnical treatment can be found in Kim and Mueller (1978).
17 We can express the location of each variable on the new coordinate system employing the following 
trigonometric equations: l1′ = l1cosθ + l2sinθ and l2′ = l1sinθ + l2cosθ, where l1 and l2 are the loadings on 
the initial factors F1 and F2 and l1′ and l2′ are the loadings on the orthogonally rotated factors F1′ and F2′.
18 Detailed explanations can be found in Haman (1976).
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the pattern matrix with factor loadings after the oblique rotation. In terms of separating the 
factor loadings on the two factors, such that each variable has a high loading on only one of 
the factors and a low loading on the other, the oblique rotation results in the clearest, that is, 
most easily interpretable pattern matrix. Figure 22.5 provides a graphical depiction of the 
obliquely rotated factor axes. It is apparent that the oblique rotation tracks the two clusters 
of variables better than the orthogonal rotation. In fact, the two obliquely rotated factors in 
Figure 22.5 correlate at a level of r = 0.4419. This implies that they share 19.53% of common 
variance (r2 = 0.44192 = 0.1953), enough to prefer oblique over orthogonal rotation as a better 
description of the data pattern. However, oblique rotations lead to more complex relationships 
between the factor loadings in the pattern matrix and the communality of the variables. This is 
so because, after oblique rotations, the factor loadings in the pattern matrix no longer equal in 
size the correlations between the variables and the factors, which are now shown in a separate 
“structure matrix” (see Table 22.4).

 EFA and Scale Development

Even though factor analysis can be used as a data reduction technique to identify any highly 
correlated clusters of variables, in the nursing and health care research literature, EFA is most 
of the time used for scale development. Researchers usually start with a conceptual explora-
tion of a construct of interest, such as job satisfaction or patient coping skills. After further 
exploration of the construct with a few members of the target population, perhaps using focus 
groups, scale developers then write question items they hope will capture the main aspects of 
the construct. At this stage, the researcher cannot know yet, which of the items will produce 
interpretable responses, so it is necessary to write many items in order to retain a sufficient 
number of usable items in the final scale. If a 10-item scale is the goal, one would typi-
cally develop 30 to 40 questionnaire items, many of which will turn out to be of little value. 
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TABLE 22.4 Pattern and Structure Matrices After Oblique Rotation

X1: I felt depressed; X2: I felt hopeful about the future; X3: I was happy;
X4: I enjoyed life; X5: I had crying spells; X6: I felt sad.

Variable-Factor Loadings (Pattern Matrix) and Variable-Factor
Correlations (Structure Matrix) after Oblimin Rotation

– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
 | Pattern Matrix |  Structure Matrix
 Variable | Factor1 Factor2 |  Factor1 Factor2
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   X 1 |   0.8520   0.0186 | 0.8602 0.3951
   X2 | −0.1698   0.8831 | 0.2205 0.8080
   X 3 |   0.2743   0.6926 | 0.5803 0.8138
   X 4 |   0.1986   0.7188 | 0.5163 0.8065
   X5 |  0.8963 −0.0524 | 0.8731 0.3437
   X 6 |   0.8688   0.0987 | 0.9124 0.4826
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

If the construct of interest is conceptually subdivided (as in the example in this chapter of 
“depressed mood” and “absence of positive affect”), then there must be a sufficient number 
of items which represent these “subscales” or factors. For the latter, a minimum of three items 
per subscale is absolutely essential, but four or five items are advisable. After deciding on a 
desirable number of items, the researcher must then determine how large a sample is needed to 
submit the new items to an exploratory analysis. As a rule of thumb, the study sample should 
be representative of the target population of interest and should contain at least 10 subjects per 
item in the instrument (Watson & Thompson, 2005).

EFA performed on data from small samples is unlikely to yield results that can be rep-
licated in another study. The reader of this chapter may perhaps have noted that we did not 
mention any significance testing or confidence intervals (CIs). That means we did not employ 
the usual apparatus of statistical inference and hypothesis testing. The main reason for this is 
that EFA is, well, exploratory. That is, we often start with some sample data and explore cor-
relation patterns within these data, but when we are developing an instrument, we rarely have 
well-developed hypotheses about which variables measure which concepts. In other words, 
to some degree, we use the data to determine which items “go together” with other items and 
form an interpretable scale. From a statistical point of view, we are taking advantage (if you 
can call it that) of sampling chance. As factor analysis is based on the analysis of correla-
tion (or covariance) tables, which are computed from sample data. Sample data are subject 
to sampling fluctuations, thus it should not be surprising that any particular factor structure 
“discovered” in a particular data set may not be reproducible with another data set. In order 
to reduce the chances of that happening, one should use fairly large samples with hundreds 
of subjects, if one plans to perform EFAs, as larger samples are less likely to be subject to 
sampling fluctuations.

We have described some criteria for how many factors to extract, for example, eigen-
values greater than 1, and what rotation methods to employ (orthogonal or oblique). Other 
criteria used to achieve “simple structure” include the decision to discard items that load on 
multiple factors, as such items are difficult to interpret. For many of these decisions during an 
EFA there are no simple rules that can be applied regardless of context. For instance, a rule to 
discard items that show no factor loadings larger than 0.3 is eminently reasonable, but even 
then we should not forget that factor loadings, like all statistical measures computed from 
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sample data, are subject to sampling chance. Furthermore, once variables are discarded, the 
data need to be reanalyzed with the remaining items to see whether the factors extracted in 
the prior analysis are still the same. In the final analysis, EFA is a very valuable tool in the 
development of scales, but a single exploratory analysis, even when performed on a large data 
set, is just the beginning and not the end of scale development.

Finally, once the exploratory analysis reveals that variables form consistent uni-dimen-
sional clusters, that is, the variables in a cluster have large loadings on a single factor and 
close to zero loadings (<0.2) on the other factors, the scale developer needs to decide whether 
the variable clusters represent meaningful and interpretable subscales on their own. This is, 
of course not a statistical criterion, but one of conceptual validity. The point here is that, 
with EFA, one cannot mechanically use a set of formal rules to decide which variables form 
scales, as the underlying mathematics ultimately group variables based on their correlations 
with each other. The question as to why two or more variables correlate is not a mathematical 
question: It is a substantive and theoretical question. For instance, two variables may cor-
relate for reasons other than that they are indicators of the same underlying latent variable. 
For instance, an indicator of depression may correlate with an indicator of anxiety, because 
depression and anxiety are often linked in the same person; thus, the decision about which 
items to retain in a depression or anxiety instrument rests on nonstatistical criteria as well. 
In short, we need to keep in mind a fundamental asymmetry in inferences concerning the 
scalability of several indicators: The lack of a correlation between two items designed to be 
indicators of the same concept would lead us to reject the hypothesis that they are measuring 
the same concept, but the presence of such a correlation is not proof that they are measuring 
the same concept.

1. In principle, one can subject any set of correlated variables to a factor analysis, but to be 
successful in obtaining a scalable multii tem instrument potential indicators must be vetted 
conceptually and pretested with members of the target population.

2. Factor analysis generally assumes interval-level observed variables and linear relation-
ships among the observed variables and latent factors.

3. Final factor solutions should at least contain three observed variables per factor; four or 
more per factor are preferable.

4. Sample sizes should be “large” to reduce sampling variability in the correlations and 
covariances that are the basis for factor analysis. Ideally the sample size for exploratory 
analysis should exceed 10 times the number of observed indicator variables involved; but 
n must be larger than the number of estimated parameters (e.g., the number of factor load-
ings, variances, and covariances to be estimated).

5. To achieve “simple structure,” only items that load on a single factor should be retained. 
As a practical matter, loadings on the reference factor should differ in magnitude from the 
loadings on nonreference factor(s) by at least 0.3.

6. Obliquely rotated factors that correlate well above 0.7 may not be sustainable as separate 
factors with new data; a simpler factor structure combining highly correlated factors may 
fit the data reasonably well.

REQUIREMENTS AND ASSUMPTIONS FOR 
SUCCESSFUL EFA
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 COMMENTS ON CFA

In this section, we confine ourselves to a few statements about CFA, as there are many excel-
lent treatments available now.19 Concerning the discussion of EFA so far, the reader may in 
fact have been wondering, why we did not mention any significance testing or CIs; in short, 
we did not engage the usual apparatus of statistical inference and hypothesis testing. The main 
reason for this is that EFA is exploratory. That is, we often start with some sample data and 
explore correlation patterns within these data, but when we are developing an instrument, we 
rarely have already well-developed hypotheses, which variables measure which concepts. 
This makes hypothesis testing difficult, because our hypotheses would be rather ad hoc, that 
is, formulated based on momentary hunches. In addition, if we are using data as a guide to 
formulating our measurement hypotheses, for example, which variables “go together” and 
measure a common concept, or what the size of the factor loadings are likely to be, we are not 
really engaging in statistical hypothesis testing, because we are taking advantage of sampling 
chance. In EFA, the raw data are the covariances or correlations among the variables, which 
we subject to the EFA. These are, of course, subject to the usual sampling chance, which 
means that the size of these correlations may vary from one sample to the next, making the 
factors extracted subject to sampling chance as well. Thus, the first rule of thumb, when per-
forming EFA for the purpose of developing scalable instruments is that the EFA be based on 
large study samples representative of the target population; and to obtain stable solutions, the 
sample size should, at a minimum, involve five cases per indicator item.

 By contrast to EFA, CFA is oriented toward hypothesis testing. The fundamental 
idea is to construct a factor model a priori and test for its compatibility with the data at hand. 
Of course, the construction of the factor model, like the one in Figure 22.1, is based on prior 
theory and the results of prior EFA. In particular, we employ CFA to validate the results from 
EFA with entirely different study samples. In fact, a major strength of CFA is that we can 
test, whether a particular measurement (factor) model holds for subjects of different target 
populations or whether the model is stable upon repeated measurement occasions of the same 
subjects. Furthermore, we can specify more precisely the specific features of a factor model. 
Going back to the graph in Figure 22.1, you see for instance that the model does not include 
direct factor loadings of the three depressed mood items on the lack of positive affect factor 
and no direct factor loadings of the lack of positive affect items on the depressed mood factor. 
In short, these (potential) factor loadings have been set to zero. If we impose this factor model 
on actual data and get estimates for the factor loadings and inter factor correlations, we can 
reconstruct a correlation matrix based on this factor model, as was shown for the correlation 
matrix in Table 22.1. However, this correlation matrix was generated by the factor model; so 
it is no wonder that there is a perfect fit.

 With correlation matrices based on observed sample data, there will generally not 
be a perfect fit between the observed correlation matrix and the one generated by the factor 
model. Even if the factor model holds true in the target population, mere sampling fluctua-
tions would prevent a perfect fit. However, how well our factor model does in explaining the 
observed correlation matrix can now be tested by constructing a residual matrix as shown in 
the simple four-variable example of Table 22.5. This residual correlation matrix contains the 
differences between the parallel elements of the observed correlation matrix and the one pre-
dicted on the basis of the hypothesized factor model. A perfect fit of the factor model would 
mean that all the elements of the residual matrix are equal to zero.

19 A short introduction may be found in Stommel and colleagues (1994), and an excellent nontechnical 
introduction is Byrne (2010).
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As the chi-squared test shows, the deviations from this research hypothesis are well 
within expected sampling chance for a sample of N = 134. Thus we accept the hypothesis that 
the factor model can reproduce the observed correlation matrix and is consistent with the data. 
Hypothesis testing in modern CFA is usually done comparing observed and expected covari-
ance matrices instead of the standardized correlation matrices. There are numerous fit indices 
having different advantages or disadvantages; however, the basic logic remains the same. CFA 
has become an indispensible tool for evaluating scaling models. Published measurement scales/
instruments based solely on a few exploratory factor models should be treated with consider-
able caution without confirmatory evidence tested on independent samples. CFA is a subtle 
analysis tool, which allows the researcher great flexibility in specifying a model, but a fuller 
treatment of CFA and its relation to structural equation modeling is beyond the scope of this 
book. The interested reader may start with a good, nontechnical introduction by Byrne (2010).20

 SUMMARY

In this chapter, we provided an introduction to the main principles underlying factor analysis. 
Factor analysis is a tool for data reduction, and as such it is indispensable to the researcher 
and analyst. For readers of health care and nursing research journals, the technical details of 
factor analysis are less important than a conceptual grasp of the main principles underlying 
this technique.

While factor analysis is explicitly used to find variable combinations, which represent 
common concepts, in a broader sense, it could be argued that all of statistics can be considered 
a tool for data reduction: It serves to discover or confirm patterns in the data, which are not 
“visible” in any other way. We hope that the reader, who made it this far, has come to appreci-
ate the power and subtlety of statistical analysis. Statistics has become a vast field, which is 
expanding rapidly. This is especially true in the health care field, where methods of “mining” 
the ever-increasing number of data sets can help identify, address, and sometimes solve prob-
lems concerning the distribution of diseases in the population, access to health care services 
or the effectiveness of clinical interventions.

20 The reference is to a book with applications for a specific software program, but this author has 
also published other monographs related to EQS and M-plus. Further general software packages that 
 perform CFA and structural equation modeling include SAS and STATA.

TABLE 22.5 Comparison of Observed, Predicted, and Residual Correlation 
Matrices After CFA

Correlation Matrices:
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –
   Observed Matrix: |  Predicted Matrix: | Residual Matrix:
  X1  X2  X3  X4 | X1  X2  X3  X4 | X1   X2   X3  X4
– – – – – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – + – – – – – – – – – – – – – – – – – – – – – –
X1 | 1.00 | 1.00 |  0.00
X2 | 0.55 1.00 | 0.49 1.00 |  0.06  0.00
X3 | 0.47 0.69 1.00 | 0.53 0.62 1.00 | −0.06  0.07 0.00
X4 | 0.54 0.66 0.73 1.00 | 0.57 0.66 0.72 1.00 | −0.03  0.00 0.01 0.00
– – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – –

Chi-squared test (df.=6): 7.64; p>0.266; N=134
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Read: Poghosyan, L., Aiken, L. H., & Sloane, D. M. (2009). Factor structure of the Maslach 
Burnout Inventory: An analysis of data from large scale cross-sectional surveys of nurses 
from eight countries. International Journal of Nursing Studies, 46(7), 894–902.

(a) Provide a very brief (three to four sentences) summary of what this study is about.

(b) Define the target population to which the statistical analysis can be generalized. What 
were the eligibility and exclusion criteria for study participants? Is the study sample a 
random sample of the target population?

(c) What was the purpose of employing both EFA and CFA?

(d) Why was EFA employed after CFA? What does that say about how much trust we can 
have in the final factor solution?

(e) The authors employed EFA to each country’s data separately. Argue for and against this 
decision.

(f) The authors wrote: “The fact that one other item failed to exhibit a substantial loading 
in Germany… and another item failed to exhibit a substantial loading in Armenia… is 
largely ignorable. This is suggested by the fact that all three … scales yield Cronbach 
Alphas, which exceed the critical value of .70.” Do you agree? Are similar magnitudes of 
Alpha values across countries evidence of a similar factor structure across countries?

(g) What additional information might a second CFA yield beyond the EFA presented?

LITERATURE APPLICATION

 EXERCISES

1. In your own words, distinguish exploratory from confirmatory factor analysis.

2. Suppose you have four indicators of anxiety, and a single common factor model explains 
all the joint variation among these variables. With factor loadings of Z1 −  F = 0.6, 
Z2 − F = 0.4, Z3 − F = 0.5, and Z4 − F = 0.6, what are the correlations among the observed 
variables?

3. If the number of factors accounting for 100% of the variance among the observed 
variables is smaller than the number of observed variables, what must be true about the 
correlations among the observed variables?

4. List reasons why an observed correlation matrix might differ significantly from a 
predicted correlation matrix based on a factor model.
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 Data Management and Privacy Concerns

In the Preface of this book, we emphasized that our goal was to prepare graduates from Doctor of 
Nursing Practice (DNP) programs and other advanced health care professionals to become more 
sophisticated users of the best research evidence available to facilitate both clinical practice and 
health system changes. In short, we envisioned that the readers would become clinical experts 
who could understand and evaluate current and future health care research, which offers more 
and more examples of sophisticated statistical analyses. Likewise, future administrative leaders 
must become familiar with the literature on program evaluation, which also has become more 
sophisticated with regard to the statistical analysis models used for evaluation. However, beyond 
being a more sophisticated reader of research literature, both health care providers and admin-
istrators work in environments in which electronic data records are proliferating at accelerating 
rates. Such data often contain valuable information about patient care problems, medical diagno-
ses, as well as billing and insurance information. They may also provide insights for administra-
tors concerned with improving organizational efficiency, quality of care, and compliance with 
organizational rules as well as state and federal laws. To the extent that such data contain personal 
identifiable information, they are subject to the Health Insurance Portability and Accountability 
Act (HIPAA) of 1996 and its amendments, as well as the 2009 Health Information Technology 
for Economic and Clinical Health Act (HITECH; see USDHHS, 2013a).

The basic privacy rule of HIPAA involves the prohibition of using and disclosing per-
sonal health information without authorization of the patient. There are a few exceptions, 
listed under the heading of Treatment, Payment, and Health Care Operations (TPO), which 
involve sharing of information with other providers and insurance plans for treatment and 
payment purposes. In addition, there are various public health exceptions, for instance, when 
HIPAA-covered entities may report to relevant public agencies information pertinent to epi-
demics and so on. In the following sections, we will discuss the main issues involved in using 
this information for research and quality improvement purposes.

 RESEARCH USING DATA IN CLINICAL SETTINGS

Existing data sources in clinical settings are assembled for a variety of purposes and involve 
several sources: (a) patient self-report data obtained through clinical interviews or written 
questionnaires; (b) patient health histories and histories of medication use; (c) results from 
laboratory tests and other biophysiological measures; (d) provider observations and evaluation 
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of patients available in patient records; (e) records of diagnostic and treatment  histories; 
(f)  billing and coding information and insurance records. As all such information is tied to 
individual patients, access to this information is principally restricted to personnel involved 
in the treatment or financial billing of particular patients. It is important to realize that, even 
if a clinician or administrator has legitimate access to such information about patients in 
treatment, such information cannot be used for research purposes unless a formal research 
proposal has been submitted and approved by the relevant institutional review board (IRB).

All data collection and analysis, whose main purpose is to enhance knowledge rather 
than treat individual patients or address internal organizational issues, are classified as 
research. More specifically, according to the Code of Federal Regulation (see Title 45 CFR 
46.102; USDHHS, 2013b), research is defined as “a systematic investigation, including 
research development, testing, and evaluation, designed to develop or contribute to gener-
alizable knowledge.” Such activities are subject to review by local and other relevant IRBs, 
whose main function is to protect the rights of the research subjects and to weigh the potential 
benefits and risks of a research undertaking. Data sets collected or assembled as part of a 
research project must meet the confidentiality requirements of the IRB, which may include 
reviews by the Data and Safety Monitoring Boards (DSMBs).

A HIPAA-covered entity may use or disclose health information for research purposes, 
if it has been de-identified (in accordance with 45 CFR 164.502(d), and 164.514(a)–(c) of the 
Rule). Thus, whenever possible, clinical data sets that, in their original form, contain private 
health information should be stripped of all identifiable information (see Box 23.1 for more 
information on de-identification), if they are to be used in secondary data analysis for research 
purposes.

In addition to the approval of the analysis plan by the IRB, clinical and administrative 
data sets may be made available for secondary analysis to researchers only after the signing 
of a “data use agreement” between the researchers and the “covered entity” (health care orga-
nization). Such agreements would (a) specify the particular uses of the data sets, (b) identify 
all persons with access to the data, (c) list provisions for safeguarding the data, and (d) detail 
procedures for destroying the data after a specified period for analysis.

If personally identifiable information is to be accessed for research purposes, it is impor-
tant to remember that HIPAA privacy rules require that patients must have given prior autho-
rization that their data can be used for such purposes. Many hospitals nowadays ask patients 
to sign consent forms that include such provisions, but if signed consent forms do not exist, 
it is principally the responsibility of the researcher to obtain such consent. Even when gen-
eral written consents have been obtained, IRBs may require the researcher to go back to the 
patients, if any identifiable data are used. 

In some research situations, contacting former patients and obtaining consent after the 
fact may involve an undue burden or be impossible, if patient records go back for several 
years. In such cases, the IRB may provide a waiver of the consent requirement, but only after 
making a determination that “the use or disclosure of protected health information involves no 
more than a minimal risk to the privacy of individuals” (see OCR HIPAA Privacy; USDHHS, 
2013c). In addition, such waivers require IRB-approved plans to guard against improper dis-
closure and to delete all personally identifiable information as soon as it is no longer necessary 
for the research. In these instances, the researchers are required to submit the reasons detailing 
why access to personally identifiable information is vital. In all such cases, it is the preroga-
tive of the IRB to determine whether researchers/data users follow adequate procedures, and 
data access may be revoked, if violations occur. It is important to remember that researchers 
must obtain waivers, even in the case of deceased subjects: the determination of what consti-
tutes adequate protection of privacy is never to be made by the researchers themselves.
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 PRINCIPLES FOR STORING AND ARCHIVING DATA SETS

A few simple rules can go a long way to ensure confidentiality and anonymity of patients, and 
assist researchers, in case a study or evaluation project is audited.

First, as a basic principle, the analyst should distinguish between the original data set as 
received from a HIPAA-covered entity and the analytical file. A copy of the original data with-
out any additions or alterations should be retained on a secure server or an encrypted medium 
like a CD or jump drive, which would be stored in a secure file location. If the original data are 
not de-identified, but contain information that allows for personal identification, it is highly 
advisable to separate this information from the remaining data and substitute a new study ID, 
while retaining the identification information in a separate file with the study ID. The latter 
file is preferably stored in a different, secure location. Access to such information needs to 
be highly restricted, involving no one other than the principal investigator or the project data 
manager.

Second, analytical files to be used in daily work should always be in de-identified for-
mat, only containing the study ID for reference. Especially for projects that involve several 

• Names
• Address information, except for township, census tract, state or zip code1

• Telephone numbers
• Fax numbers
• E-mail addresses
• Social security numbers
• Medical record numbers
• Biometric identifiers, including finger and voice prints
• Full face photographic images and comparable image
• Health plan beneficiary numbers
• Credit card numbers
• Bank and other organizational account numbers
• Certificate/license numbers
• Vehicle identifiers and serial numbers, including license plate numbers
• Device identifiers and serial numbers
• Web universal resource locators (URLs) for personal websites
• Internet protocol (IP) address numbers

EXAMPLES OF PERSONAL IDENTIFIERS THAT NEED TO 
BE EXCLUDED FROM “DE-IDENTIFIED” DATA SETS

BOX 23.1

1 Note: Indicators of smaller geographic units should be suppressed, if a combination with other infor-
mation in the file (e.g., age of subject > 100) would allow individual identification. Public use data 
released by the National Center for Health Statistics have long followed such rigorous procedures to 
protect the confidentiality of survey respondents.
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analysts and users of the data, it is advisable to create a “master data file,” that contains—
where applicable—missing value imputations for variables with nonresponse, new scale vari-
ables, and other transformed variables to be used in the analysis. This step ensures consistency 
among several analysts of the same data set and facilitates the audit trail, if questions about 
data veracity were to be raised.

Third, analytical data sets need to be accompanied by a codebook that specifies the list of 
all variables in the data set; variables and value labels associated with the codes; information 
on all newly created transformed variables (e.g., computation formulas for scale variables); 
information on missing value imputations, using flags to identify imputed values. Software 
commands that incorporate the data transformations contained in the data file (recoding, scale 
computations, missing value imputations, and so on) are necessary for both audit trails and 
future analysts, if the data were to be used again in secondary analysis.

Fourth, the study documentation should contain analytical notes accompanying the data, 
providing information on the purpose of the original research project that led to the assembly 
of the data set, the source of the data, and the sampling procedures used. The latter would 
include the identification of weighting variables or variables identifying primary sampling 
units, if complex sampling designs were involved.

Finally, research activities are usually subject to requirements imposed by a grant agency 
or other sponsors of the research, and these requirements may involve rules about keeping the 
data for a specified period of time. Often such rules stipulate which, if any, personal identifica-
tion information should be kept. Thus, it is important to be aware of the distinction between 
confidentiality and anonymity. When researchers promise confidentiality in a consent form, 
they promise not to divulge any information that links analysis reports to the persons, whose 
information was used. Likewise, they promise that no unauthorized person gains access to 
personal identification information. However, as long as the researcher is in possession of a 
key that links the study ID to specific identifiable individuals, these study individuals remain 
traceable in a study audit. Thus, anonymity cannot be guaranteed. To minimize the risks of 
inadvertent disclosure of personal information, good data management demands that any and 
all information that allows for personal identification be destroyed, as soon as the study pro-
tocol no longer requires recontacting individuals (as in longitudinal studies) and stipulations 
in the contract with the sponsoring agency are fulfilled. Careless handling of data, including 
the use of unencrypted files containing personal identification information, and the copying 
of data files onto a large number of computers or data storage media, has no place in this 
electronic age.

 SUMMARY

At the end of this brief overview of data management and privacy issues, we want to 
stress again that handling data, collected on individual patients in a health care setting, 
requires the utmost diligence and care. The principle of “do no harm” does not only apply 
to patient care itself, but also to the data we collect about these patients. It may be tempting 
to use one’s access to confidential information as a data source for answering an interesting 
research question, but there is a clear demarcation line between data accessed for reasons 
of patient care or internal organizational issues and data acquired for research purposes. 
The latter always requires IRB approval of a proposed research project, even if it is small 
and unfunded; and it goes without saying that publications based on data accessed without 
IRB approval violate the spirit, if not the letter of HIPAA and the Title 45 Code of Federal 
Regulation 46.
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APPENDIX A

 Estimating Population Variance 
From Sample Variance

We want to show that the sample variance with n − 1 in the denominator (sx
2) is an unbiased 

estimator σ� x
2
 of the population variance (σ x

2):
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We start by noting that the population variance can be decomposed into two components: the 
variance of individual values around the sample means and the variance of sample means 
around the true, usually unknown, population mean.1 
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1 When we take random samples of size n from a target population, the sample means fluctuate around 
the true population mean; thus the distance of each individual value from the population mean can be 
decomposed into the difference of that individual value from a sample mean and the difference of the 
sample mean from the population mean.
2 Sample means vary around the population mean, but as sample means are averages of n values, they 
vary less than the individual values around the population mean. In fact, the variance of sample means 
around the population mean equals the variance of individual values around the population mean 
divided by the sample size of n: σ x n2 / .
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As, n
n
−

<
1 1, the expression Σ ( )x x

n
i −

2  underestimates the population variance (although in large 
samples, the bias becomes negligible). To correct for this bias, we multiply the expression by  
n/(n − 1) and get:
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 One-Sided Probabilities for z -Scores of the 
Standard Normal Distribution

Z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
3.0
3.1
3.2
3.3
3.4
3.5

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

.5000

.5398

.5793

.6179

.6554

.6915

.7258

.7580

.7881

.8159

.8413

.8643

.8849

.9032

.9192

.9332

.9452

.9554

.9641

.9713

.9773

.9821

.9861

.9893

.9918

.9938

.9953

.9965

.9974

.9981

.9987

.9990

.9993

.9995

.9997

.9998

.5034

.5438

.5832

.6217

.6591

.6950

.7291

.7612

.7910

.8186

.8438

.8665

.8869

.9049

.9207

.9345

.9463

.9564

.9649

.9719

.9778

.9826

.9865

.9896

.9920

.9940

.9955

.9966

.9975

.9982

.9987

.9991

.9993

.9995

.9997

.9998

.5080

.5478

.5871

.6255

.6628

.6985

.7324

.7642

.7939

.8212

.8461

.8686

.8888

.9066

.9222

.9357

.9474

.9573

.9656

.9726

.9783

.9830

.9868

.9898

.9922

.9941

.9956

.9967

.9976

.9983

.9987

.9991

.9994

.9996

.9997

.9998

.5120

.5517

.5910

.6293

.6664

.7019

.7357

.7673

.7967

.8238

.8485

.8708

.8907

.9082

.9236

.9370

.9485

.9582

.9664

.9732

.9788

.9834

.9871

.9901

.9925

.9943

.9957

.9968

.9977

.9983

.9988

.9991

.9994

.9996

.9997

.9998

.5160

.5557

.5948

.6331

.6700

.7054

.7389

.7704

.7996

.8264

.8508

.8729

.8925

.9099

.9251

.9382

.9495

.9591

.9671

.9738

.9793

.9838

.9875

.9904

.9927

.9945

.9959

.9969

.9977

.9984

.9988

.9992

.9994

.9996

.9997

.9998

.5200

.5596

.5987

.6368

.6736

.7088

.7422

.7734

.8023

.8289

.8531

.8749

.8944

.9115

.9265

.9394

.9505

.9599

.9678

.9744

.9798

.9842

.9878

.9906

.9929

.9946

.9960

.9970

.9978

.9984

.9989

.9992

.9994

.9996

.9997

.9998

.5239

.5636

.6026

.6406

.6772

.7123

.7454

.7764

.8051

.8315

.8554

.8771

.8962

.9131

.9279

.9406

.9515

.9608

.9686

.9750

.9803

.9846

.9881

.9909

.9931

.9948

.9961

.9971

.9979

.9985

.9989

.9992

.9994

.9996

.9997

.9998

.5279

.5675

.6064

.6443

.6808

.7157

.7486

.7794

.8079

.8340

.8577

.8790

.8980

.9147

.9292

.9418

.9525

.9616

.9693

.9756

.9808

.9850

.9884

.9911

.9932

.9949

.9962

.9972

.9980

.9985

.9989

.9992

.9995

.9996

.9997

.9998

.5319

.5714

.6103

.6480

.6844

.7190

.7518

.7823

.8106

.8365

.8599

.8810

.8997

.9162

.9306

.9430

.9535

.9625

.9700

.9762

.9812

.9854

.9887

.9913

.9934

.9951

.9963

.9973

.9980

.9986

.9990

.9993

.9995

.9996

.9998

.9998

.5359

.5754

.6141

.6517

.6879

.7224

.7549

.7852

.8133

.8389

.8621

.8830

.9015

.9177

.9319

.9441

.9545

.9633

.9706

.9767

.9817

.9857

.9890

.9916

.9936

.9952

.9964

.9974

.9981

.9986

.9990

.9993

.9995

.9997

.9998

.9998
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The numbers in the body of the table represent the area under the normal curve to the left of 
the standardized z-value. As the standard normal curve is symmetric around the mean of zero, 
50% of the area under the normal curve lies to the left of the z-value of zero.

Steps in determining probability values associated with specific z-values of a normally 
distributed test-statistic:

• Convert the (normally distributed) test statistic into a standardized z-score: z
x

=
− μ

σ

.

• Truncate the obtained z-score to the nearest lower z-value in the table. For example, a 
z-value of 2.432 can be approximated by the value 2.43 in the table.

• Locate the area under the curve to the left of this z-value in the body of the table at the 
intersection of the row value representing z-increment of 0.1 and the column value 
representing z-increments of 0.01. For example, the area under the curve associated 
with a z-value of 2.43 can be found at the intersection of the row labeled “2.4” and 
the column labeled “.03”: it is 0.9925.

• As the table shows the area under the normal curve below the indicated z-value, the 
probability of obtaining a z-score of 2.43 or larger for a normally distributed test 
statistic is p ≤ .0075 (1 − .9925).

• For negative z-scores, the table entries indicate the area under the normal curve to the 
right of the z-score. For example, with a z-score of −2.43, the area under the curve to 
the right of this z-score covers 0.9925.

• To obtain the two-sided probability that a test statistic differs from the null- hypothesis 
value of zero by the absolute value of the z-score in either direction, we multiply the 
one-sided probability by 2, as the normal distribution is symmetric. For example, 
the probability of obtaining a z-score of +2.43 or larger or −2.43 or smaller equals 
p ≤ .015 (.0075 × 2).
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 Table of Critical t -Values for Several 
Signifi cance Levels of t -Distributions With 

Different Degrees of Freedom (df)

Probabilities (Signifi cance Levels):

(One-Tailed): .10 .05 .025 .02 .01 .005 .0025 .001 .0005

(Two-Tailed): .20 .10 .05  .04 .02 .01  .005 .002 .001

df
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

3.078

1.886

1.638

1.533

1.476

1.440

1.415

1.397

1.383

1.372

1.363

1.356

1.350

1.345

1.341

1.337

1.333

1.330

1.328

1.325

1.323

1.321

1.319

1.318

1.316

1.315

1.314

1.313

1.311

1.310

6.314

2.920

2.353

2.132

2.015

1.943

1.895

1.860

1.833

1.812

1.796

1.782

1.771

1.761

1.753

1.746

1.740

1.734

1.729

1.725

1.721

1.717

1.714

1.711

1.708

1.706

1.703

1.701

1.699

1.697

12.71

4.303

3.182

2.776

2.571

2.447

2.365

2.306

2.262

2.228

2.201

2.179

2.160

2.145

2.131

2.120

2.110

2.101

2.093

2.086

2.080

2.074

2.069

2.064

2.060

2.056

2.052

2.048

2.045

2.042

15.89

4.849

3.482

2.999

2.757

2.612

2.517

2.449

2.398

2.359

2.328

2.303

2.282

2.264

2.249

2.235

2.224

2.214

2.205

2.197

2.189

2.183

2.177

2.172

2.167

2.162

2.158

2.154

2.150

2.147

31.82

6.965

4.541

3.747

3.365

3.143

2.998

2.896

2.821

2.764

2.718

2.681

2.650

2.624

2.602

2.583

2.567

2.552

2.539

2.528

2.518

2.508

2.500

2.492

2.485

2.479

2.473

2.467

2.462

2.457

63.66

9.925

5.841

4.604

4.032

3.707

3.499

3.355

3.250

3.169

3.106

3.055

3.012

2.977

2.947

2.921

2.898

2.878

2.861

2.845

2.831

2.819

2.807

2.797

2.787

2.779

2.771

2.763

2.756

2.750

127.3

14.09

7.453

5.598

4.773

4.317

4.029

3.833

3.690

3.581

3.497

3.428

3.372

3.326

3.286

3.252

3.222

3.197

3.174

3.153

3.135

3.119

3.104

3.091

3.078

3.067

3.057

3.047

3.038

3.030

318.3

22.33

10.21

7.173

5.893

5.208

4.785

4.501

4.297

4.144

4.025

3.930

3.852

3.787

3.733

3.686

3.646

3.611

3.579

3.552

3.527

3.505

3.485

3.467

3.450

3.435

3.421

3.408

3.396

3.385

636.6

31.60

12.92

8.610

6.869

5.959

5.408

5.041

4.781

4.587

4.437

4.318

4.221

4.140

4.073

4.015

3.965

3.922

3.883

3.850

3.819

3.792

3.768

3.745

3.725

3.707

3.690

3.674

3.659

3.646

(continued)
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Probabilities (Signifi cance Levels):

(One-Tailed): .10 .05 .025 .02 .01 .005 .0025 .001 .0005

(Two-Tailed): .20 .10 .05  .04 .02 .01  .005 .002 .001

df
40
50
60
80

100 
1000

z 

|
|
|
|
|
|
|

1.303

1.299

1.296

1.292

1.290

1.282

 1.282

1.684

1.676

1.671

1.664

1.660

1.646

1.645

2.021

2.009

2.000

1.990

1.984

1.962

1.960

2.123

2.109

2.099

2.088

2.081

2.056

2.054

2.423

2.403

2.390

2.374

2.364

2.330

2.326

2.704

2.678

2.660

2.639

2.626

2.581

2.576

2.971

2.937

2.915

2.887

2.871

2.813

2.807

3.307

3.261

3.232

3.195

3.174

3.098

3.091

3.551

3.496

3.460

3.416

3.390

3.300

3.291

The numbers in each column of the body of the table represent the t-threshold values associ-
ated with the probability values at the top of the column. Example (see the graph below): 

0

.1

.2

.3
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–5 –4 –3 –2 –1 0 1 2 3 4 5
t-value

t-distribution, df = 6, Prob (t < –2.45) = 0.1, Prob (t > +2.45) = 0.1

Probability that t > 2.45Probability that t < –2.45

t-Distribution With 6 Degrees of Freedom

For a t-distribution with 6 degrees of freedom (df), the area (probability) under the curve to 
the right of the t-value of 2.447 comprises 0.025 of the total area. Being symmetric, the area 
under the curve to the left of the t-value of −2.447 also comprises 0.025 of the total area. The 
joint probability of exceeding the absolute value of (t >|± 2.447|) on both sides equals 0.05. 
At the bottom of the table (see row labeled “z ”), there are the threshold values for the standard 
normal distribution. For larger samples (n > 120) the differences between the t-distribution 
and the normal distribution are negligible. 

Steps in determining appropriate threshold t-values associated with selected probabili-
ties for a test statistic following a t-distribution:

• Determine the df, which equal n minus the number of free population parameters to 
be estimated: df = n − no. of parameters; for example, with a sample size of 8, an 
independent sample t-test comparing two group means has df = 8 − 2 = 6.

• Locate the t-value corresponding to the chosen significance level. For instance, if a 
two-tailed significance level of α = 0.05 is chosen as the decision criterion for reject-
ing the null hypothesis, a t-distribution with 28 df has a threshold value of t = 2.447.

• Compute the t-value from the sample data; for example, t-value = a mean difference 
divided by its standard error.

• If the computed t-value is greater than the threshold value of 2.447, then the null 
hypothesis can be rejected at the p < .05 level.
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 Normalizing a Nonnormal Distribution

Normalizing the distribution of a variable can have several related meanings. In prepara-
tion for data analysis, analysts often transform a nonnormal distribution into an approxi-
mately normal one, so as to better meet the assumptions of normal distribution tests about 
the shape of the sampling distribution. Not every nonnormal distribution can be transformed 
into an approximately normal one, but frequently uni-modal and skewed distributions can be 
 transformed into normal distributions as the following graph for the body mass index (BMI) 
distribution shows.
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Researchers often use other transformations, such as the square root transformation (√x–)
or 1/x.

Note: Normalization of a variable should not be confused with its standardization: 
 converting a variable into a z-score leaves the shape of the distribution unchanged.
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 Table of Critical f-Values at the Signifi cance 
Level of a = 0.05 of f-Distributions With 

Different Degrees of Freedom (df)

DF1 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 ∞

DF2

 1 161.5 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5 241.9 246.0 248.0 250.1 251.1 252.2 253.3 254.3

 2 18.51 19.00 19.16 19.26 19.30 19.33 19.35 19.37 19.39 19.40 19.43 19.45 19.46 19.47 19.48 19.49 19.50

 3 10.13 9.552 9.277 9.117 9.014 8.941 8.887 8.845 8.812 8.786 8.703 8.660 8.617 8.594 8.572 8.549 8.526

 4 7.709 6.944 6.591 6.388 6.256 6.163 6.094 6.041 5.999 5.964 5.858 5.803 5.746 5.717 5.688 5.658 5.628

 5 6.608 5.786 5.410 5.192 5.050 4.950 4.876 4.818 4.773 4.735 4.619 4.558 4.496 4.464 4.431 4.399 4.365

 6 5.987 5.143 4.757 4.534 4.387 4.284 4.207 4.147 4.099 4.060 3.938 3.874 3.808 3.774 3.740 3.705 3.669

 7 5.591 4.737 4.347 4.120 3.972 3.866 3.787 3.726 3.677 3.637 3.511 3.445 3.376 3.340 3.304 3.267 3.230

 8 5.318 4.459 4.066 3.838 3.688 3.581 3.501 3.438 3.388 3.347 3.218 3.150 3.079 3.043 3.005 2.967 2.928

 9 5.117 4.257 3.863 3.633 3.482 3.374 3.293 3.230 3.179 3.137 3.006 2.937 2.864 2.826 2.787 2.748 2.707

10 4.965 4.103 3.708 3.478 3.326 3.217 3.136 3.072 3.020 2.978 2.845 2.774 2.700 2.661 2.621 2.580 2.538

11 4.844 3.982 3.587 3.357 3.204 3.095 3.012 2.948 2.896 2.854 2.719 2.646 2.571 2.531 2.490 2.448 2.405

12 4.747 3.885 3.490 3.259 3.106 2.996 2.913 2.849 2.796 2.753 2.617 2.544 2.466 2.426 2.384 2.341 2.296

13 4.667 3.806 3.411 3.179 3.025 2.915 2.832 2.767 2.714 2.671 2.533 2.459 2.380 2.339 2.297 2.252 2.206

14 4.600 3.739 3.344 3.112 2.958 2.848 2.764 2.699 2.646 2.602 2.463 2.388 2.308 2.266 2.223 2.178 2.131

15 4.543 3.682 3.287 3.056 2.901 2.791 2.707 2.641 2.588 2.544 2.403 2.328 2.247 2.204 2.160 2.114 2.066

16 4.494 3.634 3.239 3.007 2.852 2.741 2.657 2.591 2.538 2.494 2.352 2.276 2.194 2.151 2.106 2.059 2.010

17 4.451 3.592 3.197 2.965 2.810 2.699 2.614 2.548 2.494 2.450 2.308 2.230 2.148 2.104 2.058 2.011 1.960

18 4.414 3.555 3.160 2.928 2.773 2.661 2.577 2.510 2.456 2.412 2.269 2.191 2.107 2.063 2.017 1.968 1.917

19 4.381 3.522 3.127 2.895 2.740 2.628 2.544 2.477 2.423 2.378 2.234 2.156 2.071 2.026 1.980 1.930 1.878

20 4.351 3.493 3.098 2.866 2.711 2.599 2.514 2.447 2.393 2.348 2.203 2.124 2.039 1.994 1.946 1.896 1.843

21 4.325 3.467 3.073 2.840 2.685 2.573 2.488 2.421 2.366 2.321 2.176 2.096 2.010 1.965 1.917 1.866 1.812

22 4.301 3.443 3.049 2.817 2.661 2.549 2.464 2.397 2.342 2.297 2.151 2.071 1.984 1.938 1.889 1.838 1.783

23 4.279 3.422 3.028 2.796 2.640 2.528 2.442 2.375 2.320 2.275 2.128 2.048 1.961 1.914 1.865 1.813 1.757

24 4.260 3.403 3.009 2.776 2.621 2.508 2.423 2.355 2.300 2.255 2.108 2.027 1.939 1.892 1.842 1.790 1.733

(continued)
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DF1 1 2 3 4 5 6 7 8 9 10 15 20 30 40 60 120 ∞

DF2

25 4.242 3.385 2.991 2.759 2.603 2.490 2.405 2.337 2.282 2.237 2.089 2.008 1.919 1.872 1.822 1.768 1.711

26 4.225 3.369 2.975 2.743 2.587 2.474 2.388 2.321 2.266 2.220 2.072 1.990 1.901 1.853 1.803 1.749 1.691

27 4.210 3.354 2.960 2.728 2.572 2.459 2.373 2.305 2.250 2.204 2.056 1.974 1.884 1.836 1.785 1.731 1.672

28 4.196 3.340 2.947 2.714 2.558 2.445 2.359 2.291 2.236 2.190 2.041 1.958 1.869 1.820 1.769 1.714 1.654

29 4.183 3.328 2.934 2.701 2.545 2.432 2.346 2.278 2.223 2.177 2.028 1.945 1.854 1.806 1.754 1.698 1.638

30 4.171 3.316 2.922 2.690 2.534 2.421 2.334 2.266 2.211 2.165 2.015 1.932 1.841 1.792 1.740 1.684 1.622

40 4.085 3.232 2.839 2.606 2.450 2.336 2.249 2.180 2.124 2.077 1.925 1.839 1.745 1.693 1.637 1.577 1.508

60 4.001 3.150 2.758 2.525 2.368 2.254 2.167 2.097 2.040 1.993 1.836 1.748 1.649 1.594 1.534 1.467 1.389

120 3.920 3.072 2.680 2.447 2.290 2.175 2.087 2.016 1.959 1.911 1.751 1.659 1.554 1.495 1.429 1.352 1.254

∞ 3.842 2.996 2.605 2.372 2.214 2.099 2.010 1.938 1.880 1.831 1.666 1.571 1.459 1.394 1.318 1.221 1.000

The f-distribution or probability density function (PDF) comprises a “family” of functions. 
The functions differ depending on two parameters: the degrees of freedom (df) in the numera-
tor of the f-ratio (df1) and the degrees of freedom in the denominator (df2) of the f-ratio. The 
graph below shows just one f-distribution with df1 = 10 and df2 = 10. The distribution is 
skewed to the right and the blackened area under the curve corresponds to 5% of the total area 
under the curve. This area lies to the right of the critical f-value of 2.978.

The graph indicates that any test statistic, which has the shape of the f-distribution with 
df1 = 10 and df2 = 10, would produce a sample f-value of 2.978 or larger by chance only 
5% of the time, if the null hypothesis of no effect is true. Thus, for this f-distribution, an 
f-value obtained from the sample data larger than 2.978 would be considered “statistically 
significant.”
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We use f-values in the table to determine whether a sample f-ratio occurs by chance in 
less than 5% of all possible samples drawn randomly from the same target population:

1. Compute the f-ratio with the appropriate df in the numerator and the denominator 
from the sample data.

(continued)
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2. Read off the critical f-value at which α = 0.05 located at the intersection of df1 
(numerator) and df2 (denominator) for the distribution with the appropriate df. 
(Use nearest df for approximations.)

3. Compare the magnitude of the sample value of the f-ratio to the critical f-value; if 
the former is larger than the latter, the result is “statistically significant” at the 0.05 
level. 

Example: The critical f-value for an f-distribution (df1 = 4, df2 = 120) equals f(4,129) = 2.447. 
Thus, any observed sample f-ratio >2.447 would lead to the rejection of the null hypothesis 
with at least 95% confidence that the inference is true. Exact f-values for different α-values 
are usually obtained from software applications.
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 Proof That Phi = Pearson’s r

Here are the formulas for the correlation coefficients Phi and Pearson’s r:

Phi( )
( )

Φ =
−AD BC

EFGH  

r Cov z z X X Y Y
n s s

z z
nxy x y

i i

x y

x y
= =

− −

−

=

−

( )
( )( )

( ) ( )
Σ Σ

1 1

Because the proof using the formula equivalence involves exceedingly tedious algebra, we 
use example data to show the equivalence. The data table is similar to Table 16.3, but in order 
to simplify the calculations, we chose smaller numbers: 

2 × 2 Table Showing Joint Distribution of Study Subjects Across Two Variables: Gender and 
Diabetes Status (Numerical Example)

DIABETES STATUS (=Y) ROW MARGINAL FREQUENCIES

HAS DIABETES (1) NO DIABETES (0)

Gender (=X)
Women (1) 3 (=A) 9 (=B) 12 (=G)

Men (0) 3 (=C) 5 (=D) 8 (=H)

Column marginal frequencies 6 (=E) 14 (=F) 20 (=A+B+C+D)

1. Using the Phi formula, we get: Phi( ) ( ) ( )
.

.Φ =
× − ×

× × ×

=
−

=
−

= −
3 5 3 9
6 14 12 8

15 27
8064

12
89 7998

0 13363

2. Using the Pearson’s r formula, we first compute the covariance and variances: 

As X G
A B C D= = =
+ + +( ) .12

20 0 6 and Y E
A B C D= = =
+ + +( ) .6

20 0 3, and Xi and Yi can only take 

on the value 1 or 0, we can express the covariance and variances of X and Y as follows: 
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Cov XY
X X Y Y

n
i i

( ) =
−( ) −( )

−

= − − × + − −

∑

1
1

19
1 0 3 1 0 6 3 1 0 3 0 0[( . )( . ) ( . )( .66 3 0 0 3 1 0 6 9) ( . )( . )× + − − ×

 + − − × = −( . )( . ) ] .0 0 3 0 0 6 5 0 03158

Var X
X X
n

i
( ) =

−( )

−

= − × + −( ) × =
∑

2

2 2

1
1

19
1 0 6 12 0 0 6 8 0 252632[( . ) . ] . ;

Var Y
Y Y
n

i
( ) =

−( )

−

= −( ) × + −( ) × =
∑

2
2 2

1
1

19
1 0 3 6 0 0 3 14 0 221053[ . . ] . ;

Finally, we express the Pearson’s r as standardized covariance:

r Cov XY
SD SDxy

x y

= =
−

×

=
−( ) .

. .
.

.
0 03158

0 252632 0 221053
0 03158

0 502655 0 47016
0 13363

×

= −

.
.
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 Table of Critical Chi-Square Values for 
Several Signifi cance Levels of 

Chi-Square Distributions With Different 
Degrees of Freedom (df)

Probabilities (Signifi cance Levels)

0.10 0.05 0.025 0.01 0.005

df |
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2.706 

4.605 

6.251 

7.779 

9.236 

10.645 

12.017 

13.362 

14.684 

15.987 

17.275 

18.549 

19.812 

21.064 

22.307 

23.542 

24.769 

25.989 

27.204 

28.412 

34.382 

40.256 

51.805 

63.167 

74.397 

85.527 

96.578 

107.57 

118.50 

3.841 

5.991 

7.815 

9.488 

11.070 

12.592 

14.067 

15.507 

16.919 

18.307 

19.675 

21.026 

22.362 

23.685 

24.996 

26.296 

27.587 

28.869 

30.144 

31.410 

37.652 

43.773 

55.758 

67.505 

79.082 

90.531 

101.88 

113.15 

124.34 

5.024 

7.378 

9.348 

11.143 

12.833 

14.449 

16.013 

17.535 

19.023 

20.483 

21.920 

23.337 

24.736 

26.119 

27.488 

28.845 

30.191 

31.526 

32.852 

34.170 

40.646 

46.979 

59.342 

71.420 

83.298 

95.023 

106.63 

118.14 

129.56 

6.635 

9.210 

11.345 

13.277 

15.086 

16.812 

18.475 

20.090 

21.666 

23.209 

24.725 

26.217 

27.688 

29.141 

30.578 

32.000 

33.409 

34.805 

36.191 

37.566 

44.314 

50.892 

63.691 

76.154 

88.379 

100.43 

112.33 

124.12 

135.81 

7.879

10.597

12.838

14.860

16.750

18.548

20.278

21.955

23.589

25.188

26.757

28.300

29.819

31.319

32.801

34.267

35.718

37.156

38.582

39.997

46.928

53.672

66.766

79.490

91.952

104.22

116.32

128.30

140.17
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The table shows critical threshold chi-square (χ2) values for five probabilities. The χ2-values in 
the body of the table indicate the threshold values, beyond which the area under the χ2-curve 
equals the proportion of the area indicated at the top of a column as the probability or signifi-
cance level. Example (see the graph below): The probability that a test statistic following the 
χ2-distribution with 2 degrees of freedom (df) exceeds the value 5.991, even though the null 
hypothesis is true, equals p = .05.

Steps in determining appropriate χ2-values associated with selected probabilities for a 
test statistic following a chi-square distribution:

• Determine the df; for a frequency tabulation, df = (no. of rows − 1) × (no. of columns − 1).
• Locate the chi-square value corresponding to the chosen significance level. For 

instance, if the significance level of α = 0.01 is chosen as the decision criterion for 
rejecting the null hypothesis, a chi-square-distribution with 2 df has a threshold value 
of χ2 = 9.21.

• Compute the χ2-value from the sample data.
• If the computed χ2-value is greater than the threshold value of 9.21, then the null 

hypothesis can be rejected at the p < .01 level.

Chi-Square Distribution With 2 Degrees of Freedom

χ2

P
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 Refresher on Exponential and 
Logarithmic Transformations

Even though exponential and logarithmic functions are part of College Algebra, some readers 
may want to review this appendix to refresh their familiarity with these transformations, as 
they are essential in understanding the output from logistic and survival regression models. 
The aim here is to provide an informal introduction; the use of a hand-held calculator may be 
advisable as you read through this appendix.

 EXPONENTIALS

Consider the following sequence of numbers:

32 16 8 4 2 1 1
2

1
4

1
8

1
16

1
32

, , , , , , , , , ,

We can rewrite this sequence of numbers using power expressions to the base 2:

2 2 2 2 2 2 1
2

1
2

1
2

1
2

1
2

5 4 3 2 1 0
1 2 3 4 5, , , , , , , , , ,

In case you have forgotten, another way of writing the fractions is as follows: 
1
2

22
2

=
−

, so that 
the whole sequence can also be written as:

25, 24, 23, 22, 21, 20, 2−1, 2−2, 2−3, 2−4, 2−5

Note: The original number sequence shows as its highest value 32 and as its lowest value 1/32, 
which can also be expressed as a decimal: 0.03125. In short, the original number sequence 
only contains positive (>0) numbers. By contrast, the exponents for the rewritten number 
sequence of 25 to 2−5 range from +5 to −5. In addition, they contain the value 0.

As you can see from the example sequence, 20 = 1; in fact, any number raised to the 
power of zero equals one. This follows directly from the basic rules of multiplication and 
 division of the original numbers.
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 Addition/Subtraction Rules for Exponents

Suppose you want to multiply 8 × 4; it is quite obvious that 8 × 4 = 32. Now, using our previ-
ous examples, we can substitute 23 for the number 8, as 8 = 2 × 2 × 2 = 23; likewise we can 
substitute 22 for the number 4, as 4 = 2 × 2 = 22. From this, it follows that the product 8 × 4 
could be rewritten as 23 × 22, which can also be written as: 2 × 2 × 2 × 2 × 2 = 25 = 32. Thus we 
note that while the base numbers are multiplied, the exponents are added: 23 × 22 = 2(3 + 2) = 25.

This principle works in the same way for the division of base numbers and the subtrac-
tion of exponents: Suppose you want to divide 32 by 4; again, it is obvious that 32/4 = 8. 
Substituting the exponential expressions to the base 2 for the original numbers, we get 32 = 25, 
4 = 22, and 8 = 23. Thus, the division of the base numbers, 32/4 = 8, can be rewritten as 
25/22 = 23. Note that the division of the base numbers is expressed as a subtraction of the 
exponent numbers: 25/22 = 2(5 − 2) = 23. You can also show this after rewriting 25/22 as a ratio of 
two products of 2s:

32
4

2
2

2 2 2 2 2
2 2

2 2 2
1

2
5

2
3

= =
× × × ×

×

=
× ×

=

Now let us see what happens, if we divide a number by itself. For instance, 8/8 is obviously 
equal to 1. Expressed as exponential numbers to the base 2, we get:

8
8

2
2

2 2 2
2 2 2

2 2 1
3

3
3 3 0

= =
× ×

× ×

= = =
−( )

In short, dividing any number by itself will result in one; when replacing the number in the 
ratio by an equal-valued exponential number, the difference in the associated exponents will 
be equal to zero, regardless of what base is chosen. Another example of this principle would 
be the division of 27 by itself: 27/27 = 1 and 33/33 = 3(3 − 3) = 30 = 1.

Finally, we see why we can rewrite the fraction 1/4 as 2−2: 1/4 = 20/ 22 = 2(0 − 2) = 
2−2 = 1/22 = 1/4.

 Fractional Exponents

As 24 = 16, we call 2 the fourth root of 16. This is written as 164  = 16¼ = 2. From this, it 
 follows that 25½ = 252  = 5, as 52 = 25 and 27⅓ = 3, as 33 =27, and so on. We can also solve 
27⅔ = 9, as 27⅔ = (27⅓)2 = 32 = (272)⅓ = 729⅓ = 9.

 LOGARITHMS

Consider the equation: 2x = 32. It shows the number 32 as equivalent to the base number raised 
to the power of x. Thus, if the number 32 is given to us, we are asking: To what power must we 
raise the (base) number 2, in order to get the (yield) number 32? The number x to which 2 must 
be raised to yield the number 32 is called the logarithm to the base 2. In this case, it is easy to 
solve the equation for x in our head: 2x = 32 implies that x must be equal to 5, as 25 = 32. We 
write the logarithmic equation as follows:

log2 32 = 5 (“the logarithm of 32 to the base 2 equals 5”).
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In principle, we can express any number y as the logarithm to the base 2: 2x = y. We can also 
express any number y as the logarithm to the base 10. For instance, if y = 100, the logarithm 
to the base 10 is 2, as 10x = 100 implies that x must be equal to 2: 102 = 100. We write this 
logarithmic equation as follows: 

log10 100 = 2 (“the logarithm of 100 to the base 10 equals 2”).

Finally, we already saw that we are not just limited to whole numbers in the exponents. In 
addition to fractions, exponents can take on any real number, such as 0.153. Even if the num-
ber is “irrational” (which means it cannot be written as a finite fraction), it can always be 
approximated with a fraction to any level of precision, and we already saw how to solve an 
equation with a fractional exponent. For instance, raising 2 to the power of 153/1,000 yields 
the following equation: 20.153 = 1.1119. As we can represent 0.153 as the fraction, 153/1,000, 
we can solve 20.153 = y in this way: 20.153 ( )2153 1

1000  = 1.1119.
The same applies to logarithms. We can find the exponent to the base 10 (or any other 

base) that will yield any number we like with sufficient precision: for instance, y = 102.301 ≈ 200, 
as 102.301 = 199.98. We say that the logarithm to the base 10, which yields 200, equals approxi-
mately 2.301.

 Conversions to Logarithms

The conversion of positive fractional numbers (like odds ratios [ORs] and relative-risk ratios 
[RRRs]) to logarithms yields numbers that encompass the whole range (positive and negative) 
of the numbers. For instance, we can convert the sequence listed earlier: 

32 16 8 4 2 1 1
2

1
4

1
8

1
16

1
32

, , , , , , , , , ,

into the following sequence of logarithms to the base 2: 

5, 4, 3, 2, 1, 0, −1, −2, −3, −4, −5,

as 25 = 32, 24 = 16, … 20 = 1, 2−1 = 1/2, and so on.
We now see that the first sequence of only positive numbers pivots around the value 

one, with the fractions being the reciprocals of the whole number, for example, 1/16 = inverse 
of 16. The resulting distribution of values tends to be highly skewed, as is the case for ORs 
and RRRs. However, after converting this sequence to logarithms to base 2, we obtain a 
 second sequence that is symmetric around the pivot of zero.

 Logarithms to the Base e

In most statistical applications of logarithms, we use a seemingly weird base number called 
“e” (e = 2.718281828; the “e” stands for the 18th-century Swiss mathematician Euler). The 
reason for using “e” as a base number (instead of 2 or 10) is that it actually simplifies many 
calculations in calculus. The number is also the basis for compound interest calculations.

Here, we treat “e” just like any other number. Thus, instead of using the base 2 or the 
base 10 to find the logarithm, we use the base e: ex = y. This expression is also known as the 
exponential function.



The logarithm associated with the base number e, loge, is also known as the “natural 
logarithm.” It is symbolized as “ln.” If you have a hand-held calculator, you should have but-
tons for both the symbols “e x” (the exponential function) and the symbol “ln” or “lnx” for the 
logarithm to the base e. For instance, if you type in the number 5 for x and then press “ex,” you 
should get e5 = 2.7182818285 = 148.41316. If you then take the natural logarithm of this num-
ber, you should get back to 5, as that is the number to which e was raised to obtain 148.41316.

 Algebraic Rules for Logarithms

We already know that log216 = 4, as 24 = 16. We could rewrite log216 = log2(4
2) = 4; but 

log24 = 2, so 2 log24 = 4. As a general rule, we have that the logarithm of a number raised to 
the nth power equals n times the logarithm of the number: log2(4

2) = 2 log24 or, in general: 

log(an) = n log(a)

Other important relations are:

log(ab) = log(a) + log(b)

log(a/b) = log(a) – log (b)

These rules follow directly from the rules for exponentials:

Using the base 2, we have 2x = y. Suppose x = 3 + 2 = 5; then 25 = 23 + 2 = 2322.

Now, let us take the logarithm of the expression 2x: log22
x = x log22; 

if x = (3 + 2), we have: log22
3 + 2 = log2(2

322); 

but also: log22
3 + 2 = (3 + 2)log22 = 3log2(2) + 2log2(2);

thus: log2(2
322) = 3log2(2) + 2log2(2).

Likewise: log2(2
3/22) = log22

3 − 2 = 3log2(2) − 2log2(2).
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 Standardization of Interval-Level Variables

• Standardizing an interval-level variable (xi) means converting it into a z-score: 
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• The standard deviation of a z-score always equals 1, since the square root of one 
equals one:
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• The covariance between two standardized variables zx and zy equals the Pearson’s r 
correlation:
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Answers to Selected Exercises

CHAPTER 2

1. (a) Pap smear results (interval)
 (b) Body mass index (interval/ratio)
 (c) Food groups (nominal)
 (d) Biopsy results from breast tissue (ordinal)
 (e) Food preferences (ordinal)
 (f ) Religious affiliation (nominal)

2. Mean rank for men (sex = 2): 4; mean rank for women (sex = 1): 6.5. Mean DBP score 
for men (sex = 2): 92.5; mean BDP score for women (sex = 1): 83.33. Since ranks were 
assigned such that lower number = higher score, both ways of scoring lead to the 
conclusion that men in this sample have higher average DBP.

CHAPTER 3

1. (a) Mean = 12.1.
 (b) Median = (10 + 1)/2 = 5.5th value, thus: (11 + 12)/2 = 11.5.
 (c) Standard deviation = 5.3.
 (d)  The IQR is bounded by the 2.75th value [(n + 1)/4 = 2.75] and the 8.25th value 

{[(n + 1) × 3]/4 = 8.25}, thus the IQR ranges from 7.75 to 16.5, a difference of 8.75.
 (e) (a) Mean = 13.7.
   (b) Median = 11.5.
   (c) Standard deviation = 9.43.
   (d) IQR = 7.75–16.5.
 (f)  Changing the outlier value changed the mean and the standard deviation, but had no 

effect on the median and the IQR.
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2. (a) Distribution C has the largest SD, followed by distribution B and then distribution A.
     Notice that the extreme values in distribution C are farther apart than in distribution B, 

which are farther apart than in distribution A. All the values in distribution A differ 
by 2, but in distribution B there is a “jump” in the middle, where the two values differ 
by 6. Distribution C shows increments of 1 between the values at either extreme, but a 
difference of 16 between the fifth and sixth value.

 (b)  Distribution C is skewed to the right (mean > median), while the other two 
distributions are symmetric around the mean.

CHAPTER 4

1. (a) With replacement: P(5 red balls) = (3/5)5 = .078.
 (b)  Without r eplacement: P(5 red balls) = (30/50)(29/49)(28/48)(27/47)(26/46) = .067.

4. No. The probability of catching the flu and the probability of experiencing pollen 
allergies are unlikely to be independent.

6. P = .192; this probability is also known as the “positive predictive value” or PPV.

CHAPTER 5

3. (a) 6!/(3!3!) = 20.

5. (a)  Given the sample size, we assume the sampling distribution of the mean has a normal 
shape. Thus the 95% CI for the mean is: 148 ± 1.96 × 1.25 = 149 ± 2.45. Since 150 
mg/dL lies within the 95% CI, the sample evidence is consistent with the hypothesis.

 (b) No. 145 mg/dL lies outside the 95% CI of 149 ± 2.45.
 (c)  No. The sampling distribution of the mean is not to be confused with the distribution 

of individual values/scores within a particular sample. While the sampling 
distribution of sample means may well be normally distributed, we cannot assume 
that the actual sample values within the sample of 256 nursing home residents 
are normally distributed. Thus, we cannot assume that 10% of the residents have 
LDL cholesterol levels above 181, even though that value is 1.65 sample standard 
deviations above the sample mean (181−148)/20 = 1.65.

CHAPTER 6

1. (a)  80 × 108/L ± 1.96 × 0.746 × 108/L = 80 × 108/L ± 1.462 × 108/L. 

(SEM × FPC =
 

20
400

900 400
900 1

× −
−  = 0.746).

 (b)  No. The 95% CI covers the range of 78.538 × 108/L to 81.462 × 108/L.

4. The standard errors of sample statistics are smaller in larger study samples, indicating less 
sampling fluctuation and greater ability to discover smaller differences.

CHAPTER 7

1. No. If the nursing home residents are not randomly assigned to the mattress brands, there 
may be many confounding factors, such as the average weight of residents in wing A 
being higher than in wing B. 
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CHAPTER 8

1. (a) Yes.
 (b) No, we can.
 (c) No. The standard error of the test statistic is 26 169/  = 26/13 = 2.
 (d) Yes. The t-value equals −4.0 = (86 − 94)/2. 
 (e)  The 95% CI for the test statistic does not include the null value of 0: 

−8.0 ± 1.96 × 2. 

2. Answer (c) is correct: 145 ± 1.372. 
[SD = 441  = 21; SEM = 21 900/  = 0.7; SE = 1.96 × 0.7].

4. (a) −2.807; p < .023
 (b) −3.1034; p < .015
 (c) −5.6569; p < .005
 (d) −2.7456; p > .05 
 (e) −5.4995; p < .001

CHAPTER 9

1. (a) f = (15,000/3)/(45,000/300) = 33.33.
 (b)  Variance attributable to the independent factor: 15,000/(15,000 + 45,000) = 0.25 

or 25%.
 (c) Error variance? 45,000/300 = 150.
 (d)  The exact  f-value at the cut-off point of α = 0.05 (significance level) for an 

f-distribution with 3 df in the numerator and 300 df in the denominator equals 2.635. 
Using the table in Appendix E, we can get an approximate f-value, since df2 = 
300 > 120 and df2 = 300 < ∞. The table indicates that the f-value must be less than 
2.68 at the 0.05 cut-off point. Since the observed f = 33.33 far exceeds the 0.05 
cut-off point, the association is significant.

3. (a)  No. The over all f-test results in a p-value > .14; thus, we have no firm grounds to 
conclude that depression scores differ in the target population groups of nonsmokers, 
former smokers and current smokers. 

 (b) Error variance = 17,750 × (1 − η2) = 17,750 × 0.8 = 14,200.
 (c)  No, this is an observational study. It involves random selection of a sample from 

a specified target population, but not random assignment of subjects to different 
smoking patterns.

 (d)  To adjust the risk of a Type I error in multiple t-tests, we can use a significance level 
of α = 0.05/3 = 0.0167.

CHAPTER 10

1. rxy = 8/(3 × 4) = 0.067.

2. b1 = ∑(Xi − X)(Yi − Y)/ ∑(Xi − X)2 = Cov(XY)/Var(X) = 8/9 = 0.89.

4. (a)  Among adults, each additional inch of height, on average, translates into 4.9 pounds 
of additional weight. 

 (b)  6 foot 1 inch = 73 inches; thus = −149 + 4.9(73) = 208.7. A 6 foot 1 inch tall adult is 
expected to weigh 208.7 pounds on average. 
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 (c)  The intercept of −149 has no meaning in itself, since there are no adults with 
zero height. 

 (d)  Yes. If the standard error had been 4.0, the t-value for the regression coefficient 
would have been 4.9/4.0 = 1.225. We would have to conclude that the true population 
regression coefficient is likely to be zero, since t < 1.96, the conventional cut-off 
point for a 0.05 significance level. Such a finding would not make any sense, since 
it implies that the average weight of taller persons is not greater than the average 
weight of shorter persons.

8. Cov(XY) = 0.5 × 8 × 10 = 40.

CHAPTER 11

4. (a)  SS (intervention vs. control group): 50; SS (sex): 8; SS (sex–group interaction): 12.5; 
BGSS: 50 + 8 + 12.5 = 70.5; WGSS: 5; TSS: 70.5 + 5 = 75.5.

 (b)  df (intervention vs. control group): 1; df (sex): 1; df (interaction): 1; 
df model: 1 + 1 + 1 = 3; df error: 4; df total: 3 + 4 = 8 − 1 = 7.

 (c)  Model f-ratio: (70.5/3)/(5/4) = 23.5/1.25 = 18.8; this is larger than the critical f-value 
of 6.591 (α = 0.05) for the f-distribution with 3 df1 and 4 df2. The f-ratio for the 
group factor is 50/1.25 = 40; the f-ratio for the sex factor is 8/1.25 = 6.4, and the 
f-ratio for the interaction is 12.5/1.25 = 10.

 (d)  The intervention improves adherence scores in general, but is more effective among 
women than among men as indicated by the significant interaction term.

CHAPTER 12

1. R2 = Model SS/TSS = 717.689/1059.511 = 0.6774.

2. (a)  Turnover rates among hospital nurses are lower in hospitals that pay more: for each 
$1,000 in average nurses’ salaries above the national median earnings, turnover 
rates in hospitals decline by 0.7%. Turnover rates among hospital nurses are higher 
among hospitals with older nursing staff: for each additional year in average age of 
the nursing staff, turnover rates increase by 0.5%. Finally, turnover rates are lower in 
rural hospitals (−0.85%) and urban hospitals (−2.23%), when compared to suburban 
hospitals. 

 (b)  Ŷ = 17.70 − 0.70(3) + 0.50(0) − 2.23(0) = 17.7 − 2.1 = 15.6. Thus, the expected 
annual turnover rate among nurses in a suburban hospital that pays its nurses $3,000 
more than the U.S. median earnings is 15.6%.

 (c)  Yes. If we compute the ratios of the sample regression coefficients to their respective 
standard errors, we get the t-values: 17.7/1.82 = 9.73; 0.7/0.25 = 2.8; 0.5/0.18 = 2.78; 
0.85/0.38 = 2.24; 2.23/0.76 = 2.93. In all of these cases, the estimated t-value based 
on the sample data exceeds the critical t-value of ±1.96, which would indicate 
statistical significance at the α-level of 0.05. Since the study sample comprises 
n = 450 hospitals, we can safely assume that the sample estimates of the regression 
coefficients are normally distributed, and we would reject the null hypothesis that 
a regression coefficient equals zero in the population, when a sample regression 
coefficient exceeds ±1.96 standard errors. 
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 (d)  The intercept shows the value of the predicted dependent variable (Ŷ ), if all the 
independent variables (Xi) are set to zero. In this example, the intercept indicates that 
suburban hospitals with a nursing staff of U.S. median age and median wages will 
have a predicted average turnover rate of 17.7%.

3. The first equation predicts that African Americans in the urban area have 
3.6 [= 2.7 + 0.9(1)] emergency department (ED) visits per person, while members of 
other ethnic groups have, on average, 2.7 [= 2.7 + 0.9(0)] ED visits per person. However, 
when taking into account family income, the differences between African Americans and 
other ethnic groups decline from 0.9 annual ED visits to 0.5 annual ER visits. Finally, 
after also accounting for differences in health insurance, there are no longer significant 
differences in the frequency of annual ED visits between African Americans and other 
ethnic groups in this urban area. In other words, if we were to compare African American 
and other ethnic families with the same family income and the same health insurance 
coverage (that is what “accounting for the effects of the other variables” means), then we 
would no longer find any differences in the frequency of ED visits per person.

CHAPTER 13

2. Changes in the outcome variable are the same/do not differ for intervention and control 
groups.

3. No. Changes in the outcome variable are the same for intervention and control groups; 
that all comparison groups (including the control group) change at the same rate cannot 
be attributed to the intervention. 

CHAPTER 15

2. (a)  Spearman’s rho correlation tests whether the two rankings of the same hospitals are 
correlated.

 (b) The two teams report rankings that are independent of each other.
 (c) rs = 0.912, p < .001.

3.  (a) Wilcoxons’s rank-sum test for independent samples.
 (b) The mean ratings/rank sums are the same for both states.
 (c)  No. The rank sum for State A equals 140.5, for State B 159.5. This difference is not 

significant (p > .55).

CHAPTER 16

1. (a)  Comparing seniors to juniors, we have: OR = (100/350)/(80/520) = 1.86; 
RR = (100/450)/(80/600) = 1.67.

 (b)  95% CI of OR: SE of ln(OR) = 0.165; ln(OR) ± 1.96 × SE = 0.62 ± 0.165; 
lower limit: e0.455 = 1.576; upper limit: e0.785 = 2.192; thus, 1.576 < OR < 2.192. 
95% CI of RR: SE of ln(RR) = 0.136; ln(RR) ± 1.96 × SE = 0.513 ± 0.136; 
lower limit: e0.377 = 1.458; upper limit: e0.649 = 1.94; thus, 1.458 < RR < 1.94.
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 (c)  Neither the OR nor the RR differs from the value 1 in the target population. 
χ2 = 14.31 with 1 df; p < .005.

 (d) Phi = (100 × 520 – 80 × 350)/ 180 870 450 600 0 117× × × = . .
 (e)  If the sample is representative of seniors and juniors in the school, we can state that 

seniors are 1.67 times more likely to smoke than juniors.

3. If RR > 1, OR > 1. Since RR = p1/p2, RR > 1 implies p1 > p2; then p1/(1 − p1) > p2/(1 − p2) 
and OR > 1. 

5. χ2 = 34.03 with 1 df; p < .005.

CHAPTER 17

2. (a) What are the odds of nonsmokers experiencing pneumonia? e−3.6889 = 0.025.
 (b) What are the odds of smokers experiencing pneumonia? e−3.6889+1.609 = 0.125.
 (c)  How many nonsmokers experienced pneumonia? The probability of pneumonia 

among nonsmokers can be obtained from the odds: p = odds/(1 + odds) = 
0.025/1.025 = 0.0244; 205 × 0.0244 = 5.

 (d) p = odds/(1 + odds) = 0.125/1.125 = 0.1111; 135 × 0.1111 = 15.

3. Ŷ = ln(p/(1 − p)) = −2.3 + 0.47 (1) + 0.01 (50) = −1.33; odds: e−1.33 = 0.264 to 1.

CHAPTER 18

3. Log odds among men: ln(p/(1 − p)) = −2.996 + 0.0198(60) − 0.0513(12) − 0.1054(0) = 
−2.4236.

 Log odds among women: ln(p/(1 − p)) = −2.996 + 0.0198(45) − 0.0513(16) − 
0.1054(1) = −3.0312.

 Difference in log odds: −2.4236 − (−3.0312) = 0.6076; thus OR = e0.6076 = 1.836.
 Alternatively, OR = e−2.4236/e−3.0312 = 0.0886/0.04826 = 1.836.

4.  (a)  The odds of suffering a serious functional limitation increase by 4.2% with each year 
of age.

 (b)  Compared to a person with 10 years of formal education, the odds of a serious 
functional limitation are predicted to be 37.2% higher [OR associated with education 
years is 0.9; thus, 0.9(7−10) = 0.9−3 = 1/0.93 = 1.372].

 (c)  Yes. Even though the odds ratios in the table compare each marital status group to the 
reference category of “married” people—and thus, we do not have a direct formal test 
of the difference between separated and widowed persons—the wide gap between 
the upper limit of the 95% CI for widowed persons and the lower limit of the 95% CI 
for separated persons would make it likely that the odds ratios in the two groups are 
significantly different.

 CHAPTER 19

1. RR = (55/11,000)/(38/15,200) = 2.

3. The Kaplan–Meier cumulative mortality function equals 1 – the survival function: 
Mt = 1 – St. The cumulative mortality function gives us the proportion of a target 
population having died at time t.
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CHAPTER 20

1. The magnitudes of the regression coefficient and HR for the variables sex and age are not 
comparable, since these variables are measured in different units. To test for statistical 
significance, we use the ratio of a regression coefficient to its associated standard error, 
which in this example is larger for age than for sex.

3. The graphs of the cumulative survival functions appear to cross, thus the survival patterns 
shown do not meet the proportional hazard assumption.

CHAPTER 21

1. Cronbach’s Alpha: A = (5/4)[1 – 5/(5 + 5 × 4 × 0.556)] = 0.86.

4. Prevalence: 0.025; sensitivity: 0.86; specificity: 0.92; PPV: 0.216; NPV: 0.996; 
efficiency: 0.9185; level of test: 0.0995; kappa-adjusted sensitivity: 0.845; kappa-adjusted 
specificity: 0.196.

CHAPTER 22

2. r12 = 0.6 × 0.4 = 0.24; r13 = 0.6 × 0.5 = 0.3; r14 = 0.6 × 0.6 = 0.36; r23 = 0.4 × 0.5 = 0.2; 
 r24 = 0.4 × 0.6 = 0.24; r34 = 0.5 × 0.6 = 0.3.

3. Some of the variables are perfectly correlated with other variable(s) or a linear 
combination of other variables.





333

Index

addition rules
exponents, 321–322

probability, 34
analysis of covariance (ANCOVA)

assumptions, 127–128
pretest/posttest study designs, 151–152

analysis of variance (ANOVA)
factorial

assumptions, 127–128
decomposition of variance, 125
interaction effects, 120
one main effect, 121
orthogonal/balanced designs, 125
synergistic effect, 123
two main and one interaction effect, 123
two main effects, 122
two-way factorial design, 119–120

one-way
assumptions, 89–90
between-group sum of squares (BGSS), 92
between-group variance, 93
error sum of squares (ESS), 105
error variation, 92
eta-squared variable, 97
and polynomial regression, 111–112
within-group sum of squares (WGSS), 92
within-group variance, 93

repeated-measures
assumptions, 157
f-test, 157
attrition effects, 157–158
degrees of freedom, 155
physical activity/walking-intervention study, 

152–157
ANCOVA. See analysis of covariance

ANOVA. See analysis of variance
a priori reasoning, probability, 31
attrition effects, 157–158

bar graph, 14
Bayes’ theorem, 34–36
between-group sum of squares (BGSS), 92
between-group variance, 93
BGSS. See between-group sum of squares
bimodal distribution, 14
binomial likelihood function, 205–206
BMI. See body mass index
body mass index (BMI), 149

categorical level of measurement. 
See nominal level of measurement

categorical predictor variables, 107–110
cause−effect relationship, 64–65
censoring, 231–232
central limit theorem, 47
central tendency, measures of

mean, 18–19
median, 17–18
mode, 17
purpose of, 16

CFA. See confirmatory factor analysis
Chi-square distributions, significance level, 

317–319
CIs. See confidence intervals
clinical practice, role of statistics, 1–4
coefficient of concordance, 263–265
Cohen’s Kappa, 265–267
conditional probability, 30, 33
confidence intervals (CIs)

inferences, population parameters, 55–57
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confidence intervals (CIs) (cont.)
odds ratio, 189–190
relative-risk ratio, 192
regression coefficients, 104, 136–137
for survival function, 241

confidence level, 51
confirmatory factor analysis (CFA)

definition, 277
vs. exploratory factor analysis, 292
hypothesis testing, 293

confounding, 138–141, 217–219
continuous independent variable 

linear regression, 106
logistic regression, 209

logistic regression model, 208–210
continuous variable, 10, 14, 71
correlated data analysis, 65–66
correlation coefficient

Pearson’s r, 112–115
Spearman’s rho, 181–182
Phi, 193, 315

covariance, 112–114
Cox proportional hazard regression model, 246–250
Cronbach’s Alpha, 260–263
cross-sectional study designs, 65–66
cumulative survival probability, 238

data management
issues in, 297–300
privacy concerns

45 CFR 46.102, 298
45 CFR 164.502(d), 298
45 CFR 164.514(a)–(c), 298 
Data and Safety Monitoring Boards, 298
de-identification, 298–299
Health Information Technology for Economic and 

Clinical Health Act, 297
Health Insurance Portability and Accountability 

Act of, 297
storing and archiving data sets, principles for, 

299–300
decomposition of variance

definition, 89–90
factorial ANOVA, 125
multiple linear regression model, 138–141

degrees of freedom (dfs)
Chi-square distributions, significance level, 317–319
concept of, 93
f-distribution, significance level, 311–313
repeated-measures ANOVA, 155
t-distribution, significance level, 307–308

dependent variable, 65, 90
descriptive statistics, 13

descriptive univariate statistics
frequency distribution

description, 13–16
measures of, 23–25

measures of central tendency
mean, 18–19
median, 17–18
mode, 17
purpose of, 16

measures of dispersion
interquartile range, 20–22
range, 20
standard deviation, 22–23
variance, 22–23

measures of frequency distribution
kurtosis, 23–25
skewness, 23–25

deviance, 208
dfs. See degrees of freedom
diagnostic test

definitions of test statistics, 269
outcomes of, 268
sensitivity, 267, 269–273
specificity, 267, 269–273

discrete variable, 10–11
disjoint events, 34
dispersion, measures of

interquartile range, 20–22
range, 20
standard deviation, 22–23
variance, 22–23

dummy coding, 108

EFA. See exploratory factor analysis
effect size (ES), 58–60
elementary probability rules

addition rule, 34
independent, 32
multiplication rule, 32–34

error sum of squares (ESS), 105
error variation, 92
ES. See effect size
ESS. See error sum of squares
eta-squared variable, 97
experimental study. See intervention study
explained variation, 92
exploratory factor analysis (EFA)

vs. confirmatory factor analysis, 292
definition, 277
factor rotation, 286–289
initial factor extraction, 281–286
scale development, 289–291

exponentials, 321
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exponents
addition rules, 321–322
fractional, 322
subtraction rules, 321–322

factor analysis
confirmatory

definition, 277
vs. exploratory factor analysis, 292
hypothesis testing, 293

definition, 277
exploratory

vs. confirmatory factor analysis, 292
definition, 277
factor rotation, 286–289
initial factor extraction, 281–286
scale development, 289–291

factorial ANOVA
assumptions, 127–128
decomposition of variance, 125
interaction effects, 120
one main effect, 121
orthogonal/balanced designs, 125
synergistic effect, 123
two main and one interaction effect, 123
two main effects, 122
two-way factorial design, 119–120

factorial designs, 119
factor loadings, 279–280
false-negative diagnostic test, 268
false-positive diagnostic test, 268
f-distribution

definition, 312
significance level, degrees of freedom, 311–313

Fisher’s exact test, 195
fixed factor, 161
fractional exponents, 322
f-ratio, 93–94
frequency distribution

description, 13–16
measures of

kurtosis, 23–25
skewness, 23–25

2 × 2 frequency tables
correlation coefficient Phi, 193
Fisher’s exact test, 195
nominal/categorical data analysis, 185–187
odds ratio

confidence intervals, 189–190
definition, 187
joint distribution of study subjects, 187–189
similarities and differences in magnitudes, 192

Pearson Chi-squared statistic test, 193–195

relative-risk ratio
confidence intervals, 192
definition, 191
similarities and differences in magnitudes, 192

Friedman test, 179–181
f-statistic, 95

goodness-of-fit test, 98

hazard functions, 244–245
hazard rate, 238, 245–246
hazard ratios, 244–245
health care research, sources of randomness, 66–67
histogram, 16

incidence rate (IR), 232–234
independence, probability rule, 32
independent-sample t-test

assumptions, 78
conducting, 79–81
definition, 72

independent variable, 65, 90
index of reliability, 257–260
inferential statistical test. See t-test
inferential statistics, 13
intent-to-treat (ITT) analysis, 158
interaction effects

definition, 120
general interpretation, 124–125

interquartile range (IQR), 20–22
interval-level of measurement, 10
interval-level variables, standardizing, 325
intervention study, 63–65
intra-class correlation (ICC) coefficient, 257–260
IQR. See interquartile range
IR. See incidence rate
iteration zero, 207
ITT. See intent-to-treat analysis

Kaplan−Meier survival function, 236–238
Kappa coefficients, 265–266
Kolmogorov−Smirnov (K−S) test, 78
Kruskal−Wallis test, 178–179
kurtosis, 23–25

last observation carried forward (LOCF), 158
least squares criterion, 102
levels of measurement, variables

interval, 10
nominal, 9
ordinal, 9–10
ratio, 10

life tables, construction of, 234–236
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likelihood function
binomial, 205–206
definition, 204

likelihood ratio (LR), 208
linear regression models

ANOVA approach, 105–106
assumptions, 106–107
categorical predictor variables, 107–110
confidence interval for regression coefficients, 104
description, 101–105
least squares criterion, 102
modified functional shapes, 110–112
Pearson’s r correlation, 115–116
regression coefficients—multiple regression, 

136–137
regression sum of squares (RegSS), 105
residual sum of squares (RSS), 105

LOCF. See last observation carried forward
logarithms

algebraic rules, 323–324
base e, 323
conversions, 323
principle, 322–323

logistic regression model
assumptions, 210–212
continuous independent variable, 208–210
description, 201–203
estimation of, 203–204
interpretation, odds ratio, 200–201
maximum likelihood estimation, 204–208
multiple

confounding, 217–219
empirical example, 215–217
influential outlier patterns testing, 224–225
interactions, 219–221
multinomial, 225–227
statistical model fit, 221–224

log-likelihood, 207
log-rank test, 241–244
longitudinal study designs, 65
lopsidedness vs. symmetry. See kurtosis
LR. See likelihood ratio

Mann−Whitney U test, 171–174
mathematical reasoning, probability, 31
maximum likelihood estimation, 204–208
mean, 18–19
measurement error

importance, 257
systematic vs. random, 254–255

measurement levels, variables
interval, 10
nominal, 9

ordinal, 9–10
ratio, 10

measurement reliability, 256
measure of association

correlation coefficient Phi, 193
Fisher’s exact test, 195
nominal/categorical data analysis, 185–187
odds ratio

confidence intervals, 189–190
definition, 187
joint distribution of study subjects, 187–189
similarities and differences in magnitudes, 192

Pearson Chi-squared statistic test, 193–195
relative-risk ratio

confidence intervals, 192
definition, 191
similarities and differences in magnitudes, 192

measures of central tendency
mean, 18–19
median, 17–18
mode, 17
purpose of, 16

measures of dispersion
interquartile range, 20–22
range, 20
standard deviation, 22–23
variance, 22–23

measures of frequency distribution
kurtosis, 23–25
skewness, 23–25

median, 17–18
mixed-effects regression models, 161–168
mode, 17
model sum of squares (MSS), 105
moderator effects. See interaction effect
MSS. See model sum of squares
multicollinearity, 141
multilevel modeling, 168
multinomial logistic regression model, 225–227
multiple linear regression model

assumptions, 134, 144–145
confounding, 138–142
decomposition of variance, 138–141
empirical example, 134–136
general form, 134
interactions, 142–144
interpretation, regression equations, 136–138
multicollinearity, 141
reasons for, 133
standardized regression coefficients, 142

multiple logistic regression model
confounding, 217–219
empirical example, 215–217
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influential outlier patterns testing, 224–225
interactions, 219–221
multinomial, 225–227
statistical model fit, 221–224

multiplication rule, 32–34

National Health and Nutrition Examination Survey 
(NHANES), 63

NHANES. See National Health and Nutrition 
Examination Survey

nominal level of measurement, 9
nonexperimental study. See observational study
nonmetric vs. metric variables, 11
nonnormal distribution, normalizing, 309
nonparametric statistics, 11

Friedman test, 179–181
Kruskal−Wallis test, 178–179
Mann−Whitney U test, 171–174
Spearman’s rank-order correlation, 181–182
Wilcoxon rank-sum test, 171–174
Wilcoxon signed-rank test, 174–176
Wilcoxon sign test, 176–178

normal distribution, 44–47
null hypothesis, 43

observational study, 63–65
odds ratio (OR)

confidence intervals, 189–190
definition, 187
joint distribution of study subjects, 187–189
logistic regression model, 200–201
similarities and differences in magnitudes, 192

one-sample t-test
assumptions, 73
conducting, 74–76
definition, 71
description, 72
testing assumptions, 77–78

one-way analysis of variance
assumptions, 89–90
multiple groups, 96–97
and polynomial regression, 111–112

OR. See odds ratio
ordinal level of measurement, 9–10
ordinal statistics

Friedman test, 179–181
Kruskal−Wallis test, 178–179
Mann−Whitney U test, 171–174
Spearman’s rank-order correlation, 181–182
Wilcoxon rank-sum test, 171–174
Wilcoxon signed-rank test, 174–176
Wilcoxon sign test, 176–178

outliers, 15–16

paired-sample t-test
assumptions, 84
definition, 72
equality of means, 83
sample data, 81–82

parametric statistics, 11
PDF. See probability density function
peakedness vs. spread of distribution. See skewness
Pearson Chi-squared statistic test, 193–195
Pearson’s r coefficients, 315–316
Pearson’s r correlation

alternative versions, 115
covariance, 112–114
definition, 114
linear regression model, 115–116
standardized covariance, 114–115

Phi correlation, 115
Phi correlation coefficient, 193
pie chart, 14
point-biserial correlation, 115
population parameters, 134
population variance, estimation, 303–304
positive predictive value (PPV)
power analysis, 60–61
PPV. See positive predictive value
probabaility

Bayes’ theorem, 34–36
definition, 30
elementary rules

addition rule, 34
independent, 32
multiplication rule, 32–34

empirical evidence
conditional probability, 30
unconditional probability, 31

independence, 32
mathematical reasoning, 31

probability density function (PDF), 312
probability model, 31
probability sampling design, 66
product-limit survival function. See Kaplan−Meier 

cumulative survival function
proportional hazard assumption, 246
prostate-specific antigen (PSA) test, 253
p-value, 51

qualitative vs. quantitative variables, 11

random assignment
intervention effects, 49–50
purpose of, 39

randomized block designs, 127
randomized clinical trial, 64
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randomized nutrition intervention study, 64
random measurement error, 254–255
randomness

definition, 30
health care research, 66–67

range, 20
ratio-level of measurement, 10
realibility coefficients

coefficient of concordance, 263–265
Cohen’s Kappa, 265–267
Cronbach’s Alpha, 260–263
ICC coefficient, 257–260

regression coefficients, 136–137
regression sum of squares (RegSS), 105
RegSS. See regression sum of squares
relative-risk ratio (RRR)

confidence intervals, 192
definition, 191
similarities and differences in magnitudes, 192

reliability
index of, 257–260
measurement, 67
of measurement, 254, 256

REML. See restricted maximum likelihood
repeated-measures ANOVA

assumptions, 157
attrition effects, 157–158
degrees of freedom, 155
physical activity/walking-intervention study, 152–157

repeated-measures study designs, 65
research practice, role of statistics, 1–4
residual sum of squares (RSS), 105
restricted maximum likelihood (REML), 166
robust test, 77
RRR. See relative-risk ratio
RSS. See residual sum of squares

sample size, 54–55, 57–58, 60–61
sample space, 31
sampling design, 66
sampling distribution, 40–44, 51
sampling distribution of mean difference, 41
sampling distribution of test statistic, 43
sampling without replacement, 31
screening test

definitions of test statistics, 269
outcomes of, 268
sensitivity, 267, 269–273
specificity, 267, 269–273

SEM. See standard error of mean
sensitivity

definition, 35
diagnostic/screening test, 267, 269–273

significance level
decision criterion, 48
definition, 43
degrees of freedom

Chi-square distributions, 317–319
f-distribution, 311–313
t-distribution, 307–308

p-value, 51
significance-level criterion, 98
significance testing, 47–50
skewness, 23–25
Spearman’s rank-order correlation, 181–182
specificity

definition, 35
diagnostic/screening test, 267, 269–273

standard deviation, 22–23
standard error, 51
standard error of mean (SEM), 54–55
standard error of mean difference, 53
standardized coefficients, 137
standardized covariance, 114–115
standardized effect size, 59
standardized regression coefficients, 

137–138, 142
standard normal distribution, 53

normal distribution, 44
probability density, 45
z-scores, 305–306

statistical decision making, significance 
tests, 50

statistical inference
normal distribution, 44–47
purpose of, 39
sampling distribution, 40–44, 51
significance testing, 47–49

statistical power, 58–60
statistical significance, 67
subtraction rules, exponents, 321–322
survival function

confidence intervals, 241
hazard rates, 245–246

survival probability, 238
synergistic effect, 123
systematic measurement error, 254–255

test statistic, 43, 93
threshold values, 11
total sum of squares (TSS), 92
true negative diagnostic test, 268
true positive diagnostic test, 268
TSS. See total sum of squares
t-test

definition, 71
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independent-sample
assumptions, 78
conducting, 79–81
definition, 72

one-sample
assumptions, 73
conducting, 74–76
definition, 71
description, 72
testing assumptions, 77–78

paired-sample
assumptions, 84
definition, 72
equality of means, 83
sample data, 81–82

two-way factorial design, 119–120
type I error, 42, 47, 49–50
type II error, 47, 49–50

unconditional probability, 31
uncorrelated data analysis, 65–66
unexplained variation, 92
unimodal distribution, 16
univariate descriptive statistics

frequency distribution
description, 13–16
measures of, 23–25

measures of central tendency
mean, 18–19
median, 17–18
mode, 17
purpose of, 16

measures of dispersion
interquartile range, 20–22
range, 20
standard deviation, 22–23
variance, 22–23

measures of frequency distribution
kurtosis, 23–25
skewness, 23–25

validity, 253–254
variables

categorical predictor, 107–110
cause−effect relationship, 64–65
continuous, 10, 71
dependent, 65, 90
discrete, 10–11
eta-squared, 97
general concept, 7–8
independent, 65, 90
measurement levels

interval, 10
nominal, 9
ordinal, 9–10
ratio, 10

nonmetric vs. metric, 11
qualitative vs. quantitative, 11

variance
between-group, 93
decomposition of, 89–90
definition, 93
measures of dispersion, 22–23
within-group, 93

WGSS. See within-group sum of squares
Wilcoxon rank-sum test, 171–174
Wilcoxon signed-rank test, 174–176
Wilcoxon sign test, 176–178
within-group sum of squares (WGSS), 92
within-group variance, 93

z-scores, one-sided probability, 305–306
z-test, 73
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