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Errors, like straws, upon the surface flow;
He who would search for pearls must dive below

—John Dryden (1631–1700)
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Introduction

Why would you read an introduction?

It is common that each nonfiction book is preceded by an ‘intro-
duction’, or a ‘preface’, or a ‘foreword’ or sometimes a combina-
tion of the above. If you are (un)lucky, you might find a note from
the Editor, a foreword followed by the preface to the first edition,
a preface to the second edition and a general introduction. There,
first of all, you can read about how great the author is. Next, you
will find that the book is unique and better than all other books on
the topic written so far. Then, the author will delve into painstak-
ingly detailed description of each chapter, which by the way can be
found in the table of contents. Finally, there is time for compulsory
acknowledgements to all family and friends who the author forced
into reading his or her magnum opus. There is no escaping; fore-
words, prefaces and introductions are everywhere. Stanisław Lem
once wrote a book consisting entirely of forewords (Lem 1979).

People usually skip all of these intros as they are boring, preten-
tious, self-righteous and useless. All right, are you still with me? If
you managed to get that far, you might be one of the few who ac-
tually read introductions. Very well, then. I’ll try to be brief, down
to the point and not too conceited.

What is this book about?

As the title suggests, the book is about error analysis, with empha-
sis on applications in biology or, more generally, in life sciences.
Since the time of the great Ronald Fisher, statistics have become
an inherent part of biology. Very few numerical results from either
biological or medical studies can make their way into publication
without confirming their statistical significance. One way of doing
this is by providing a p-value from a statistical test, or – roughly
speaking – a probability of being wrong in a particular statement.
That is what this book is not about.

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



2 Understanding statistical error

The other way of assessing the significance of a result is by
finding its inherent error, or uncertainty. In my mind, a numer-
ical result quoted without any kind of uncertainty is meaningless.
Hence, it is good to know how to calculate errors. And that is what
the book is about.

Here I discuss various aspects of error analysis: a bit of the-
oretical background and practical ways of calculating confidence
intervals, but also graphical presentation of error bars and quoting
numbers with errors. I put emphasis on intuition and understand-
ing rather than practical computational recipes, although I give
exact formulae for types of errors. Beware: this is not a compre-
hensive book on statistics; it is rather focused on practical under-
standing of uncertainty analysis. You can find more details in the
table of contents, right after the introduction.

Who is this book for?

This book is written for an inquisitive biologist who wants to im-
prove his or her understanding of data analysis. While a biologist
is my target reader, the book may be useful for anyone who deals
with numerical data and wants to learn more about how to evaluate
and compare measurements. If you calculate various types of er-
rors using a software package and you would like to find out where
these errors come from, this book is for you. If you use standard
deviations, standard errors and confidence intervals, but you are
not sure what they really mean, this book is for you. If you strug-
gle with finding errors of the median or correlation coefficient,
this book is for you. Or, perhaps you are just curious and would
like to learn a few basic things about uncertainty analysis – this
book is also for you.

About maths

Despite the existence of a few attempts in the literature that use
a purely intuitive approach (e.g. Motulsky 2010), I believe that it
is very difficult to do statistics without maths. Plain English ex-
planations cannot replace the strict precision of a mathematical
equation. A simple derivation can explain where a given formula
came from. Hence, there is maths in this book. Not very complex,
not very extensive, but maths there is.

Needless to say, equations are required in practical applications,
so if you need to find a particular uncertainty not provided by the
statistical software you normally use, you can employ equations
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from this book. They can be easily encoded, either in any pro-
gramming language or even in a computer spreadsheet. Mathe-
matics in this book is quite basic; it doesn’t really go beyond the
level taught in a typical secondary school. Most equations contain
simple algebra and sums. The most advanced operator I use is a
derivative.

I don’t want to scare potential readers away. This is not a math-
ematical textbook! I apply equations only when necessary and I al-
ways try to accompany them with an intuitive explanation. Often,
I show the results of a computer simulation to illustrate the mean-
ing of a concept or formula. I have also made a few simplifications
and approximations here and there at the expense of mathematical
correctness. I hope this makes the maths in this book much easier
to understand.

I need to finish with a caveat. This is a book written primarily
for biologists, not for mathematicians or physicists. Hence, there
are no mathematical proofs, some derivations are not strict and
there is a general lack of mathematical rigour. A mathematician
might scowl at the content of this book, so if you are one, please
shut your eyes now.

Acknowledgements

I would like to thank Professor Angus Lamond, who carefully read
the manuscript from cover to cover and gave me a great deal of in-
valuable comments. Being a biologist, he helped me to understand
better my target reader (you!). He also helped me with my English,
which is not my first language.



Chapter 1

Why do we need to
evaluate errors?

A measurement without error is meaningless.
—My physics teachers

Think of a number, a measurement from an experiment. We can
determine in a microarray experiment, for example, levels of gene
expression following a treatment of interest. Let us assume the re-
sulting number is 19,086. It represents the intensity from a gene
probe expressed in some arbitrary units. This number by itself
doesn’t tell us much. We need to compare it with a result from the
control sample. Let’s say the control gives an intensity of 39,361
for the same gene.

Looking at these two numbers, you might conclude that
there is a twofold change in gene expression, and we all know
that a twofold change is compelling. So, the gene of interest is
suppressed under the treatment. Excellent! Time to publish the
results.

But not so fast. The problem is that each measurement has an
inherent uncertainty, or error. There is a limit as to how sure we
can be that the experimental result is reflecting the true parameter
we are trying to assess, in this case the level of gene expression.
In some types of experiments, uncertainties can be high, so having
two ‘naked’ numbers without knowing how robust they are doesn’t
mean the observed twofold change between our two conditions
has any significance.

Now imagine you have a lot of money and a lot of time, and
you can repeat your experiment (both control and treatment) 30
times. Each time, you measure expression of the same gene. The
result is shown in Figure 1-1.

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 1-1. Control (left) and treatment (right) samples from an imag-

inary microarray experiment. Each measurement was done in 30 repli-

cates. Clouds of points represent individual measurements; boxes

encompass data between the 25th and 75th percentiles; whiskers

span between the 5th and 95th percentiles. The line in the middle

represents the sample median. Although the two initial measurements

(circled points) differ by factor two, there is no statistically significant

difference between the samples.

It turns out that repeated measurements of the same quantity
reveal a huge scatter in the values obtained, with the results for
control and treatment largely overlapping. This is not atypical
in biology. You can aggregate your repeated results (a sample)
and represent them by calculating the sample mean and standard
error of the mean. These results are (30.7 ± 1.2) × 103 and
(28.3 ± 2.3) × 103 for control and treatment, respectively. Now we
have not only numbers, which come from repeated experiments,
but also errors that represent the uncertainties of our measure-
ments. These errors overlap, and a proper statistical test (e.g. a
t-test) shows that there is no statistically significant difference
between the mean value of the treatment and control (p = 0.2).
The previous simplistic conclusion that the treatment changed
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the level of gene expression has, therefore, been shown to be
incorrect.

A measurement without quoted error is meaningless.

This little example demonstrates why we need errors and error
bars. In this book, I will explain how to evaluate errors the easy
way. I will begin with basic concepts of probability distributions.



Chapter 2

Probability distributions

Misunderstanding of probability may be the greatest of all impediments
to scientific literacy.

—Stephen Jay Gould

Consider an experiment in which we determine the number of vi-
able bacteria in a sample. To do this, we can use a simple technique
of dilution plating. The sample is diluted in five consecutive steps,
and each time the concentration is reduced 10-fold. After the fi-
nal step, we achieve the dilution of 10−5. The diluted sample is
then spread on a Petri dish and cultured in conditions appropri-
ate for the bacteria. Each colony on the plate corresponds to one
bacterium in the diluted sample. From this, we can estimate the
number of bacteria in the original, undiluted sample.

Now, think of exactly the same experiment, repeated six times
under the same conditions. Let us assume that in these six repli-
cates, we found the following numbers of bacterial colonies: 5, 3,
3, 7, 3 and 9. What can we say about these results?

We notice that replicated experiments give different results.
This is an obvious thing for an experimental biologist, but can
we express it in more strict, mathematical terms? Well, we can
interpret these counts as realizations of a random variable. But
not just any completely random variable. This variable would fol-
low a certain law, a Poisson law in this case. We can estimate
and theoretically predict its probability distribution. We can use
this knowledge to predict future results from similar experi-
ments. We can also estimate the uncertainty, or error, of each
result.

Firstly, I’m going to introduce the concept of a random vari-
able and a probability distribution. These two are very closely re-
lated. Later in this chapter, I will show examples of a few impor-
tant probability distributions, without which it would be difficult
to understand error analysis.

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



8 Understanding statistical error

2.1 Random variables

I will not go into gory technical details. A random variable is a
mathematical concept, and it has a formal definition. For the pur-
pose of this book, let us say that a random variable can take random
values. It sounds a bit tautological, but this is probably the simplest
possible definition. In practice, a random variable is a result of an
experiment. Its randomness manifests itself in the differing values
of repeated measurements of the same quantity. It is quite com-
mon that each time you make your measurement, you obtain a
different number.

A random variable is a numerical outcome of an exper-
iment. It will vary from trial to trial as the experiment
is repeated.

Consider this example. Let us throw two dice and calculate the
sum of the numbers shown. This can be any number between 2
and 12. More importantly, some results are more likely than others.
For example, there is only one way of getting a 12 (a double 6),
but there are five different combinations resulting in the sum of 6
(1+ 5, 2+ 4, 3+ 3, 4+ 2 and 5+ 1). It is easy to see that throwing a
6 is five times more likely than throwing a 12.

An example of a non-random variable could be the number of
mice used in an experiment. If you have five mice, you have five
mice and the result stays unless you drink too much whisky and
begin to see little white mice everywhere.

Hold on. In Chapter 1, I showed an example of a repeated mea-
surement that gave a different value each time. So, what is going to
happen if you repeat your murine experiment many times? Well,
if you come back to the cage after a minute, you are quite likely
to find five mice again (unless you forgot to lock the cage). The
result is not going to change regardless of how many times you
count them. This type of repeated measurement is called pseudo-
replication.More about replication

and pseudoreplication in
Section 5.11.

But this is not what we are asking about. Typically, you would
be conducting an experiment (e.g. testing a drug), spanning over
many days in which you would record mice dying and surviving.
If you were to repeat the entire experiment many times, you might
find that 10 days after dosing the mice with a particular drug there
are three mice surviving in experiment 1, two mice alive in exper-
iment 2, four in experiment 3 and so on. Although your particular
measurement (counting mice) is ‘perfect’ and not biased by any
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error, the repeated experiments show the actual level of uncer-
tainty. Hence, contrary to simple intuition, the number of mice at
any given moment of time is a random variable. Most values in
biological experiments are random variables.

There are two kinds of random variables: discrete and contin-
uous. Discrete random variables can take only certain values, typ-
ically whole numbers. The number of mice is a discrete variable,
as it can only be 0, 1, 2, 3 and so on. Alternatively, discrete values
might be categorical, for example male/female. If necessary, cate-
gories can be converted into integer numbers. In contrast, contin-
uous random variables can take any values, typically any real num-
bers. The length of a mouse’s tail is an example of a continuous
variable.

2.2 What is a probability distribution?

Every random variable obeys a specific statistical law, called a
probability distribution. As the name suggests, this law tells us how
the random variable is distributed. Or, to convey it more precisely,

A probability distribution defines the probability of
finding the random variable within a certain range of
values.

I will use the following notation in this section. A random vari-
able (X ) is denoted by a capital letter. This is only a name. Small
letters (k, x) denote possible values that the random variable can
take. These are actual numbers.

Probability distribution of a discrete variable

Let us consider a discrete random variable X , which can assume
non-negative integer values 0, 1, 2, 3, . . . I will denote P(X = k) as
the probability of the variable X being equal to the value k. Mathe-
matically speaking, the probability of finding X between two num-
bers a and b is determined by the following equation:

P(a ≤ X ≤ b) =
b∑

k=a

P(X = k), (2-1)

which is, simply, the sum of all individual probabilities. For ex-
ample, in Figure 2-1a, three shaded bars show probabilities of
P(X = 5) = 0.16, P(X = 6) = 0.10 and P(X = 7) = 0.06. The sum
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Figure 2-1. Examples of probability distributions. (a) Distribution of a discrete random variable

X, where each bar shows the probability of X being equal to k. (b) Continuous distribution, prob-

ability of finding X between two values equals the area under the f(x) curve between these two

values. (c) The same distribution as in (b), with median, 𝜃, and mean, 𝜇, marked. (d) Cumulative

distribution, F(x), corresponding to the distribution f(x) from panel (c). By definition, F(𝜃) = 0.5.

of these probabilities is 0.32. Hence, P(5 ≤ X ≤ 7) = 0.32. The
total probability over all possible values of X is always unity:
P(0 ≤ X ≤ ∞) = 1.

Probability distribution of a continuous variable

A continuous random variable X can take on any real value x. Here
we use a probability density function, f (x), which defines the prob-
ability per unit x. As such, the value of this function for any spe-
cific x doesn’t have a simple intuitive meaning. It only makes sense
when integrated (or summed up) over a certain range:

P(a ≤ X ≤ b) =

b

∫
a

f (x)dx, (2-2)
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Graphically, this integral corresponds to an area under the
curve f (x) between a and b, as shown in Figure 2-1b. The
probability of finding X between 3 and 6 is indicated by the
light-shaded area and equals P(3 ≤ X < 6) = 0.36. The dark-
shaded region shows the probability of X being greater (or equal
to) 6, P(X ≥ 6) = 0.20. The interval is from 6 to infinity. The
total probability over all possible values of X is always unity:
P(−∞ ≤ X ≤ ∞) = 1.

If we narrow the range of integration to nothing (a = b), the
resulting probability is zero, as the area under the curve collapses
to nothing. Hence, P(X = 5) = 0 in a continuous distribution. Be-
cause X is as a continuous variable, it can assume an infinite num-
ber of values in any arbitrary interval around 5, so the chances of
hitting exactly 5 (I mean exactly) is infinitesimally small.

Cumulative probability distribution

Another useful function is a cumulative probability distribution, de-
fined as the probability that some random variable X is less than
x: F(x) = P(X < x). It can be graphically represented as the area
under the curve f to the left of x. Due to this definition, F(x) is
a monotonic1 function, growing from 0 to 1, with a characteristic
‘sigmoid’ shape in the plot. An example of a probability density
function, f (x), and its cumulative distribution, F(x), is shown in
Figure 2-1c and 2-1d. It can be understood as a left-tail probabil-
ity, that is, P(X < x). The right-tail probability is then P(X ≥ x) =
1 − F(x). These two terms are often used in statistical tests and for
finding confidence intervals. Many probability distributions (e.g.
the Student’s t-distribution in the Appendix) are tabulated as cu-
mulative distributions, typically as right-tail probabilities.

Cumulative distribution is a left-tail probability.

2.3 Mean, median, variance and standard deviation

A probability distribution of the random variable X tells us every-
thing we want to know about this variable. Sometimes, however,
we would like to reduce this knowledge to a simple number, that

1A function F(x) is monotonic if it grows with growing x. A curve of F
plotted versus x always goes up (or stays level) with increasing x.
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is, a parameter describing one particular aspect of the distribution.
For example, we might want to know where it is centred, or how
wide it is. In this section, I show a few such parameters: mean,
median, variance and standard deviation.

Please note that these are quantities calculated for a theoreticalPopulation, sample and
statistical estimators are
discussed in Chapter 4.

probability distribution. In practice, we often use them to describe
population properties, assuming that the population is, for example,
Gaussian. In contrast, mean, median, standard deviation (and so
on) calculated for a sample are called statistical estimators. Sample
parameters are found using similar, but not necessarily identical,
equations and should not be confused with the equations given
in this section. Sample parameters only approximate population
parameters. I will explain this later in the book.

For each random variable X , we can define the mean (also calledFor the sample mean,
see Section 4.4,

subsection ‘Mean’.
the expected value) of X as

𝜇 =
∞∑

k=0

kP(X = k), (2-3)

or

𝜇 =

∞

∫
−∞

xf (x)dx, (2-4)

for a discrete and continuous variable, respectively. The mean of a
random variable X is often denoted as X or ⟨X⟩. Equations (2-3)
and (2-4) can be interpreted as weighted means, where weights are
either individual probabilities in the case of a discrete variable, or
the probability density for a continuous variable.

The median of a random variable X is defined as a value 𝜃, whereFor the sample median,
see Section 4.4,

subsection ‘Median’.
F(𝜃) = 0.5. It divides the distribution into two halves with equal
probability, P(X ≤ 𝜃) = P(X ≥ 𝜃) = 0.5. The vertical lines in Fig-
ure 2-1c show the mean and the median. These two quantities are
equal for a symmetric distribution, such as a Gaussian distribution,
as discussed in Section 2.4.

Having found the mean, we can define a residual as a displace-For the sample standard
deviation see Section

4.4, subsection
‘Standard deviation’.

ment from the mean, X − 𝜇. Variance is then defined as the mean
squared residual,

𝜎2 = ⟨(X − 𝜇)2⟩. (2-5)

The square root of the variance, 𝜎 =
√
𝜎2, is called the standard

deviation and is one of the most important quantities in error
analysis. It measures dispersion of X and typically describes the
uncertainty of a measurement.
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2.4 Gaussian distribution

The Gaussian distribution is commonly observed in nature, and
because of that most people call it normal. For some reason physi-
cists call it Gaussian, even though it was a French mathematician,
Abraham de Moivre (1667–1754), who published its mathematical
formulation many years before Gauss (1777–1855) was even born.
I’m a physicist by nurture, so I’m going to call it Gaussian most
of the time, although I might occasionally confuse the reader by
using the other term.

A graph of the Gaussian distribution is often termed a bell curve
and is described by the following function:

f (x) = 1√
2𝜋𝜎2

e−
1
2 ( x−𝜇

𝜎
)2

, (2-6)

where 𝜇 is the mean and 𝜎 is the standard deviation. These quan-
tities are as defined in Section 2.3: if you take f (x) from equa-
tion (2-6) and plug it into equation (2-4), you will actually get 𝜇.
If you calculate the mean squared residual, by replacing x with
(x − 𝜇)2 in equation (2-4), you will get the variance, 𝜎2. The quan-
tity Z = (x − 𝜇)∕𝜎 is often called a Z-score, and it represents the
distance of x from the mean in units of standard deviation. The
Gaussian curve is symmetric with respect to the mean, and its
width is characterized by 𝜎.

An example of the Gaussian function is shown in Figure 2-2.
With increasing and decreasing mean, the bell-shaped curve shifts
either to the right or to the left; with increasing and decreasing
standard deviation, the curve becomes either broader or narrower.
I will denote the Gaussian (normal) distribution of mean 𝜇 and
standard deviation 𝜎 as  (𝜇, 𝜎)2.

Many quantities observed and measured in biology obey the
Gaussian distribution. For example, the distribution of heights of

Gaussian distribution of
random errors is shown

in Section 3.2.

a sufficiently large population of people is Gaussian. More im-
portantly for us, many errors are normally distributed (i.e. show a
Gaussian distribution; more about this later). Hence, in order to
find some confidence limits, we need to know probabilities either
within, or outside, certain intervals.

Gaussian probabilities are summarized in Table 2-1. Probabil-
ities of being within one, two and three sigma are also shown in

2A typical notation used in literature would contain the mean and the
variance,  (𝜇, 𝜎2), but since I use the standard deviation a lot in this
book, I decided to choose a nonstandard notation,  (𝜇, 𝜎).
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Figure 2-2. Gaussian distribution with mean, 𝜇 = 10 and standard

deviation, 𝜎 = 1.5. The arrows and numbers above the curve show

one, two and three sigma ranges and the corresponding probabilities.

Figure 2-2. For example, there is a ∼68% probability of finding a
random Gaussian variable within 𝜇 ± 1𝜎. This is why roughly two-
thirds of normally distributed data points are within one standard
deviation from the mean. But it works only when the distribution
approximates Gaussian (see Section 2.6). Obviously, the probabil-
ity outside this range (i.e. below 𝜇 − 𝜎 or above 𝜇 + 𝜎) is ∼32%.

Table 2-1. Probabilities for the Gaussian distribution. The first

column shows the range with respect to the mean; the second and

third columns show probabilities of finding a Gaussian random

variable inside and outside this range, respectively. The last column

shows approximate odds of being outside the range.

Range In Out Odds

± 1𝜎 68.3% 31.7% 1:3
± 1.96𝜎 95.0% 5.0% 1:20
± 2𝜎 95.4% 4.6% 1:20
± 2.58𝜎 99.0% 1.0% 1:100
± 3𝜎 99.7% 0.3% 1:400
± 4𝜎 99.994% 0.006% 1:16,000
± 5𝜎 99.99994% 0.00006% 1:1,700,000
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A 95% confidence interval (95% CI) which equates to a 5%
The meaning of the 95%
confidence interval (95%

CI) is explained in
Section 5.2.

p-value limit is commonly used in biology. From Table 2-1 you
can see that this corresponds to the interval 𝜇 ± 1.96𝜎. This num-
ber, 1.96, is worth remembering. It roughly corresponds to a ‘two
sigma’ result. Many physicists wouldn’t call a result significant un-
less it is better than three sigma. Hence you can often hear about
three sigma significance. It corresponds to the ‘out’ probability (or
a p-value) of 0.3%. This also highlights a difference between the
biology and physics communities. Biologists are willing to accept
a result which might be wrong on average once in 20 cases. Physi-
cists usually pull this limit down to 1 in 400. Whichever value you
prefer, what is really important is that you understand the assump-
tions you are making and their limitations.

Example: estimate an outlier

Consider a study on obesity in which we weigh 100 mice. The
mean weight from this sample is 20 g and the standard deviation is
5 g. One particular mouse of interest, let’s call it Jerry, weighs 30 g.
We want to know how Jerry stands against the entire population,
or, more precisely, what is the probability (p-value) of obtaining
such embarrassingly high body mass purely by chance, and not as
a result of either his genetic constitution or the environment he
grew in. Or, to express it in terminology used in biology: is Jerry
an outlier?

It seems very simple. Jerry is two standard deviations away from
the mean weight. From Table 2-1 we find that the probability of
being further than 2𝜎 away from the mean is 4.6%. Hence, this is
our p-value. But is it exactly what we are looking for? We can ask
two questions here. Is Jerry’s body mass significantly different from
that of a typical mouse? Or, is his mass significantly higher than
that of a typical mouse? In the former case, we are looking for a
two-tail probability (light-shaded area on both sides in Figure 2-2)
and the resulting p-value is 4.6%. In the latter case, we are only
interested in the right-hand tail, and because the Gaussian distri-
bution is symmetric, the resulting p-value is 2.3%. Is it significant?

Well, it depends. The result tells us that Jerry is (roughly) in
the top 2% of the population when it comes to body weight.
Clearly, he is a fatso. On the other hand, in a sample of 100 mice,
you’d expect on average about two little monsters weighing more
than 30 g, just because the probability of this event is about 2%.
In high-throughput biological experiments, it is typical to have
hundreds of thousands or even millions of measurements. You
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should not be surprised to come across some individual values
standing out four or five standard deviations from the mean.

Rare events are expected to be seen in large samples.

In this context, if you ask whether Jerry’s weight is unexpected
in the sample, the answer is no. Although he is hopelessly fat, he
doesn’t have to be viewed as an outlier in a statistical sense.

In statistics, an outlier is defined as an observation that
stands out from the sample.

There are methods, or rather rules of thumb, to decide if the given
observation is an outlier or not. Chauvenet’s criterion states that if
the Gaussian tail probability for the given point multiplied by the
sample size is less than 0.5, the point in question is an outlier. In
our case we multiply 0.023 by 100 and get 2.3 > 0.5. According to
Chauvenet’s criterion, Jerry is not an outlier3. The controversial
bit of this method is that it recommends removing outliers from
the sample before further processing. In biology, we are usually
interested in outliers, because they show interesting behaviour.
Therefore, if you decide to use Chauvenet’s criterion to ‘clean up’
your data, you had better know what you are doing.

2.5 Central limit theorem

This is one of the most important theorems in statistics. It has sig-
nificant implications for error theory. Roughly speaking, it states
that the sum of a large number of any independent random variables
is Gaussian. And when I say any, I mean it: these individual vari-
ables can have any arbitrary probability distribution. When you
add them up, original distributions are erased, and their sum is dis-
tributed normally. The same applies to the mean of all variables.

Let us have a look at the following example. Imagine that we
throw N dice together and calculate the mean value of all the
numbers shown, MN . We want to know how MN is distributed.
The most obvious way of finding a distribution is to repeat the

3Mind you, the Gaussian probability drops very quickly as we go away
from the mean. A 33-g mouse would be an outlier according to Chau-
venet’s criterion.
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Figure 2-3. Results of throwing N dice together (N = 1, 2,… , 9).

Each panel shows the distribution of the mean value shown by N dice.

Each distribution is calculated by throwing the dice 100,000 times. The

observed frequencies (vertical axis) are normalized to 1.

experiment many times and plot a histogram of all the numbers
obtained. For the purpose of this experiment, I threw the dice
100,000 times. Obviously, I didn’t spend all my afternoon tossing
little cubes; I did a computer simulation instead. The result is the
same.

We start with N = 1. If the die is honest, the probability of ob-
taining each number between 1 and 6 is equal. So, after throwing
it many times we should get a uniform distribution of numbers, as
shown in Figure 2-3 (top left panel). The distribution is flat.

I talked about two dice
as a random variable in

Section 2.1.

Now, let’s try two dice and find the mean (the sum divided by 2).
I have already mentioned this case before: getting the sum of 6
(mean = 3) is five times more likely than getting a 12 (mean = 6).
This is illustrated in the second panel in Figure 2-3, where dis-
tribution of the mean has a triangular shape, with a peak in the
middle. If we continue this experiment with ever increasing N, the
shape of the distribution of the mean begins to resemble the bell
curve of the Gaussian distribution.

Central limit theorem: the sum (or mean) of several
random variables with arbitrary distributions approx-
imates the Gaussian distribution.
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It might seem at the moment that the central limit theorem is
I will discuss sampling

distribution of the mean
in Section 5.4.

only a pointless exercise in throwing dice, but I cannot overem-
phasize its importance for statistics and error analysis. It will be-
come clearer when I discuss the sampling distribution of the mean
and the distribution of random errors.

Another practical consequence of the central limit theorem is
that certain distributions (some of them discussed later in this
book) become approximately Gaussian for a large sample size.
This is true for binomial, Poisson,𝜒2 and Student’s t-distributions.

2.6 Log-normal distribution

Log-normal distribution is a probability distribution of a random
variable whose logarithm is normally distributed. In other words,
if X is log-normally distributed, then Y = logX is normally dis-
tributed. And vice-versa: if Y is normally distributed, then X = 10Y

is log-normally distributed. I’m sure this formal definition is not
clear at all, so let us look at a real-life example.

Consider a proteomics experiment in which we find peptide ion
intensities (a measure of peptide abundances) using a mass spec-
trometer. We have 93,338 data points and find the mean, M =
2.1 × 106 (in arbitrary units). and the standard deviation, SD =
7.4 × 106. Right away, we can notice that something is not quite
right here: the standard deviation is huge, over three times larger
than the mean. The best thing to do in such cases is to plot the
distribution of your measurements. It is shown in Figure 2-4a.

You can immediately see that the distribution of peptide inten-
sities is very asymmetric. It looks, however, very different if we take
a logarithm (in this case using base 10, but that doesn’t matter) of
intensities and plot their distribution (Figure 2-4b). This vaguely
resembles a Gaussian distribution, and its mean and standard devi-
ation are Mlog = 5.7 and SDlog = 0.7, respectively. We often refer
to these two plots as having linear and logarithmic scale, and data
as being in linear and logarithmic space, respectively.

Log-normal distribution is not uncommon in biological exper-
iments. You can expect peptide or protein abundances estimated
from a mass spectrometer to be log-normally distributed. Sim-
ilar distributions are seen in gene expression experiments. Also,
drug potency, IC50, is typically log-normally distributed. If you en-
counter this kind of data, it is wise to take a logarithm of all data
points before further processing.

One thing I need to mention when discussing distributions that
are very far from Gaussian is how standard deviation can be used.
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Figure 2-4. An example of log-normal distribution. These are peptide intensities from a mass-

spectrometry experiment. (a) Normalized (to the total number of data points) distribution of in-

tensities. (b) Normalized distribution of the logarithm of the same intensities. Solid vertical line

shows the distribution mean, while dashed vertical lines mean ± standard deviation. The mean

minus standard deviation is outside the figure in panel (a).

It seems to be common knowledge that ‘you should expect about
two-thirds of the data points to be within one standard deviation
of the mean’. This is a true statement, but only under the assump-
tion that data are normally distributed. From Table 2-1, we can see
that the probability of a random variable being within one sigma
of the mean is about 68%, roughly two-thirds. Hence, if your
data follow the Gaussian distribution, you can expect the above
statement to be true. This doesn’t work for non-Gaussian distri-
butions. For example, among our peptides, 96% of data points are
within one standard deviation from the mean (i.e. within M ± SD).
This is much more than two-thirds. On the other hand, if we do
the same calculation for the logarithms of intensities, it turns out
that 67% of them are within Mlog ± SDlog. One should be very
careful with some popular statements in statistics: they usually
depend on certain assumptions that might or might not be true.

About two-thirds of data points are within one standard
deviation from the mean only when their distribution is
approximately Gaussian.

A few more comments regarding logarithms might be worth
See a very brief

discussion of the
geometric mean in

Section 4.4.

adding here. Firstly, it sounds quite obvious, but I need to men-
tion that the mean of logarithms does not equal the logarithm of
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the mean. Our log-normal distribution example shows it clearly.
The logarithm of the mean is logM = 6.3, whereas the mean of
logarithms is Mlog = 5.7. One cannot be replaced with the other.

Another note is on the logarithmic base in plots. Base 2 is very
common in biology, probably because it shows the ratio of 2 in a
natural way, as log22 = 1. However, there is nothing magical about
the ratio of 2; it does not have any special statistical or biological
meaning. As I demonstrated in Chapter 1, the ratio of 2 does not
automatically make things significant. Using base 10, on the other
hand, has an advantage in plots with logarithmic axes. When you
see a 6 on the axis, you know it corresponds to a million (106).
This is not the case in base 2 log plots; when you see a 12 on the
axis, it is not immediately obvious that it represents 4096 in the
linear space. Generally, it does not matter what logarithmic base
you use, as all of them are equally valid. The important thing is to
be consistent.

2.7 Binomial distribution

Let us begin with an example. Consider throwing a symmetric
coin five times. What is the probability of obtaining heads ex-
actly three times? When you toss a coin once, the probability of
getting heads is 0.5. If you toss the coin again, the probability
of having heads is 0.5 again. The result of the first throw does
not affect the outcome of the second throw (they are indepen-
dent). However, if you consider these two events together and ask
about the probability of having heads and heads, the second throw
gives a 0.5 probability out of the 0.5 from the first throw. Hence,
the probability of having heads after heads is half out of a half,
0.5 × 0.5 = 0.52 = 0.25. If you add a third throw, the probability
of having three heads would again be half of the probability of hav-
ing two heads, 0.53 = 0.125. This is a general rule in probability
theory; for independent events A and B, the probability that both
events occur is P(A and B) = P(A)P(B).

The probability of observing three heads is 0.53, but then we
require that the remaining two throws result in tails. Following a
similar logic as above, we deduce that the probability of having two
tails is 0.52. Eventually, the probability of having heads three times
and tails two times is the product of these two numbers, 0.53 ×
0.52 = 0.125 × 0.25 = 0.03125.

This seems to answer our question, but there is one more thing
to consider. The combination of three heads and two tails can
be obtained in more than one way, as illustrated in Figure 2-5,
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Figure 2-5. Ten different ways of having three successes among five

events. Each black circle indicates a success, while each white circle

shows a failure. The number of these possibilities is described by the

binomial coefficient,
( 5

2

)
= 5!

3!(5−3)!
= 5!

3!×2!
= 2×3×4×5

2×3×2
= 4×5

2
= 10.

where black circles represent heads and white circles represent
tails. There are 10 ways of getting three heads and two tails, each
of them equally likely with a probability of 0.03125. They are
mutually exclusive (i.e. we can observe only one combination at a
time), and either of these 10 combinations fulfils our requirement
of observing exactly three heads. For two mutually exclusive
events A and B, the probability that either of the events occurs
is P(A or B) = P(A) + P(B). Hence, we need to add all these 10
individual probabilities. Finally, the probability of getting heads
three times in a series of five coin throws is 10 × 0.03125 = 0.3125.

The random variable representing the number of observed
I will demonstrate

applications of the
binomial distribution in
Sections 3.2 and 5.6.

heads is described by the binomial distribution. More generally, we
talk about the probability of a number of successes in a sequence
of independent events. Each event (a flip of a coin in our example)
can end up in either a ‘success’ or a ‘failure’. If the probability
of success in each event is p (in the coin example, p = 0.5, but
it can be generalized to any probability), then the probability of
having exactly k successes in n events is described by the following
formula:

P(S = k) =
(

n
k

)
pk(1 − p)n−k. (2-7)

S is a binomially distributed random variable. I will show applica-
tions of the binomial distribution later in the book.

But now, let me try to explain the intuition behind this equation.
The first part,(

n
k

)
= n!

k!(n − k)!
, (2-8)

is called the binomial coefficient. The exclamation mark denotes
a factorial, for example, 5! = 1 × 2 × 3 × 4 × 5 = 120. It is often
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read ‘n choose k’, and describes the number of possible choices
of k elements from a set of n elements, or the number of ways k
successes can be distributed among n events. An example is shown
in Figure 2-5.

Furthermore, in equation (2-7), p is the probability of success
in a single event. As mentioned before, the probability that k suc-
cesses occur is pk. Since we want k successes, we must have n − k
failures. The probability of a single failure is 1 − p; therefore, the
probability of n − k failures is (1 − p)n−k. Taking these two things
into account, we have the total probability of pk(1 − p)n−k. How-
ever, such combination (k successes and n − k failures) can occur
in many ways. There are

(n
k

)
ways of selecting k successes out of n

events, so we have to multiply the total probability by this number,
and in this way we get equation (2-7).

A random variable with binomial distribution has the mean

𝜇 = np, (2-9)

and the standard deviation

𝜎 =
√

np(1 − p). (2-10)

When p = 0.5 (e.g. flipping a coin), the distribution is symmetric.
An example of such a distribution is shown in Figure 2-6. When
p is far from 0.5, the distribution is skewed. However, when n is
large enough, it becomes symmetric again and it approximates a
Gaussian distribution.
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Figure 2-6. Binomial probability distribution showing probability of

having k successes (horizontal axis) out of eight trials. The probability

of success in a single trial is 0.5.
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2.8 Poisson distribution

Consider radioactive decay. We know from physics that an atom
can decay spontaneously and emit an ionizing particle. This pro-
cess is stochastic, which means there is no way of predicting when
this is going to happen. We can only predict how likely it is for an
atom to decay over a certain period of time. From this, we can infer
statistical properties of a group of atoms in terms of probabilities
and expected decay rates. They will obey the Poisson distribution.

Imagine an experiment in which we register ionizing radiation
from radionuclides undergoing radioactive decay. With a sensitive
detector, we can count individual decay events. Let us do it for
a while. Recorded times of decay events are marked with black
dots in Figure 2-7a. Now we can group these events together and
count the number of decays in one-second intervals (or bins). This
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Figure 2-7. Poisson distribution. (a) Radioactive decay. Black dots show recorded times of

individual decay events. These are counted in 1-s intervals (bins), and the count rate per bin is

shown as a bar plot. The mean number of counts per bin is 3.5. (b) Distribution of the number of

counts per bin, calculated over the long period of time. This approximates Poisson distribution

with 𝜇 = 3.5 counts per bin. (c) Examples of Poisson distribution for the mean rate of 0.3, 1, 4

and 10. Curves show Gaussian distribution with the same mean and 𝜎 =
√
𝜇.
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binning is shown as a bar plot in Figure 2-7a. As you can see, the
number of counts per bin (or count rate) varies significantly from
bin to bin. There are 7 counts in the 8–9 s bin, but there are no
counts at all in the 1–2 s interval. This demonstrates the stochastic
nature of radioactive decay.

The Poisson distribution is a distribution of counts.

Although we cannot predict how many counts will appear in the
next second, we can find out how likely it is to observe a given
number of counts. Let us use the results of this experiment (but
carried out over a much longer time than the 20 s shown in Fig-
ure 2-7a) to build a distribution of the number of counts per bin.
This is done simply by counting the bins with no decays, bins with
one decay, with two decays and so on. The resulting frequency dis-
tribution (normalized, so the sum of all frequencies is 1) is shown
in Figure 2-7b. Unlike individual bin count rates, this distribution
is not random, and with a sufficiently large number of counts it
always looks the same. It tells us that it is most likely to have three
counts per bin, and it is rather unlikely to observe 10 counts over
one second.

This is the Poisson distribution, and it is characterized by the
mean number of counts per bin, 𝜇. For the given mean rate, 𝜇, the
probability of observing exactly k counts in a bin is

P(X = k) = 𝜇ke−𝜇

k!
. (2-11)

This function for a particular value of 𝜇 = 3.5 counts per second is
shown in Figure 2-7b. The probability of observing exactly three
counts in a second is about 0.22 in this example. Note that the
probability of finding no counts at all in a bin is non-zero and
equals

P(X = 0) = 𝜇0e−𝜇

0!
= 1 × e−𝜇

1
= e−𝜇. (2-12)

By definition4, 0! = 1. For 𝜇 = 3.5, we find P(X = 0) ≈ 0.03.

4You cannot multiply all the numbers from 1 up to zero, so mathemati-
cians decided to define 0! = 1. One of the reasons for this is for the bino-
mial coefficient [equation (2-8)] to work correctly. There is only one way
of choosing two successes out of two events, so we need (2

2) = 1. Hence,

(2
2) =

2!
2!×0!

= 1
0!
= 1, and therefore 0! = 1.
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Unlike the Gaussian distribution, which is characterized by a
mean and a standard deviation, there is only one free parameter
here, 𝜇. The standard deviation, which tells us how broad the dis-
tribution is, is the square root of the mean:

𝜎 =
√
𝜇. (2-13)

This is an interesting property and can be used to estimate errors
See Section 3.5 for

counting errors.
or confidence intervals on a quantity that follows the Poisson dis-
tribution.

The Poisson distribution is not limited to events occurring in
defined time intervals. It also can be applied to counts in a volume
or space or a combination of space and time units. For example,
the number of cell colonies growing on a Petri dish can be Pois-
sonian. You would measure counts per area in such an experiment.
Generally, a stochastic process is Poissonian if:

� events occur randomly,
� they are independent of each other, and
� the mean rate of events doesn’t change over time or space.

Independence of events is particularly important. For example,
motile cells can aggregate in clumps and their counts will not
conform to the Poisson distribution. Suppose you count such
clumped cells in different squares of a counting chamber. Some-
times you get a high result, and sometimes a very low one. The
standard deviation (dispersion) of your counts is going to be very
large, much larger than the square root of the mean. If you observe
such behaviour, the distribution of the counts most likely is not
Poissonian.

Another interesting property of the Poisson distribution is that
for large count rates, it approximates a Gaussian distribution. The
exact meaning of large is a bit vague, but I would say that in prac-
tical applications, 30 or so counts per bin would be large enough
to consider the observed distribution to be normal. Figure 2-7c
compares the shape of the Poisson and Gaussian distributions for
the increasing value of the mean.

Classic example: horse kicks

This example comes from Ladislaus von Bortkiewicz (1868–1931),
a Russian economist and statistician of Polish origin who lived and
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Table 2-2. Distribution of horse-kick deaths in the Prussian cavalry

(Von Bortkiewicz 1898). The first column shows the number of

horse-kick deaths in a ‘bin’ of one cavalry corps in one year. The

second column shows the recorded number of such events during

the entire study (20 years, 14 corps). The third column shows the

predicted number of events from the Poisson distribution with the

mean of 0.70 deaths per corps-year.

Deaths per corps-year Frequency Poisson prediction

0 144 139.0
1 91 97.3
2 32 34.1
3 11 7.9
4 2 1.4
5 or more 0 0.2

worked in Germany. In his book Das Gesetz der kleinen Zahlen5, he
analysed the number of soldiers in the Prussian cavalry killed by
horse kicks. His analysis covered 14 cavalry corps over 20 years.
He divided this into 280 individual corps-years (bins) and counted
the frequency of horse-kick deaths in each bin (Table 2-2). This
is analogous to the count rate in radioactive decay, although here
frequencies are calculated in space–time bins. For example, there
were no horse-kick deaths at all (count rate of zero) in 144 corps-
years, and the unfortunate four deaths in one army corps in one
year happened twice. The mean count rate is 𝜇 = 0.70 deaths per
corps-year. Von Bortkiewicz noticed that this count rate follows
quite precisely a Poisson distribution (Table 2-2, third column).

It is not surprising to see a rare occurrence of four horse-kick
deaths in an army corps in one year. We can find from the Poisson
distribution (𝜇 = 0.70 deaths per corps-year) that the probability
of having at least four events in one corps-year is 0.0058. This
looks rather small, but in 14 corps it gives the probability of 0.078
per year6. Hence, on average, we expect one such event in about
13 years (but see the ‘Inter-arrival times’ sub-section).

Inter-arrival times

This brings us to yet another interesting property of the Pois-
son distribution. How long do we have to wait between two

5The Law of Small Numbers.
61 − (1 − 0.0058)14 = 0.078.



Probability distributions 27

consecutive events (e.g. horse-kick deaths or radioactive decays)?
Black dots in Figure 2-7a suggest that random events are dis-
tributed rather randomly. The time between two consecutive
events, ΔT (called interarrival time), is a random variable with
a known probability distribution. Its cumulative distribution is
described by a very simple formula:

P(ΔT < t) = 1 − e−𝜇t. (2-14)

This is a direct consequence of equation (2-12), extended to an ar-
bitrary time interval, t. The probability of having no events over
time t is then e−𝜇t, and hence the probability of having at least one
event over this interval is 1 − e−𝜇t. This can be interpreted as the
probability that the next event occurs within time t after the previ-
ous event. It might sound a bit weird, but the same formula applies
to the waiting time after any arbitrarily chosen moment in time,
not just the previous event. This is because the probability that an
event occurs in a given period of time does not depend on whether
another event just happened. The events are independent!

The mean of this distribution, called mean inter-arrival time,
is 1/𝜇. This is how long, on average, we have to wait for the
next event (but see below). The corresponding probability is
P(ΔT < 1∕𝜇) = 1 − e−1 = 0.63, and it doesn’t depend on the actual
value of the mean.

Figure 2-8 shows the distribution of inter-arrival times for the
rare events of four horse-kick deaths in one corps-year. Obviously,
the longer you wait, the higher the cumulative probability that this
unfortunate event eventually happens. If you wait 20 years (the
period over which the study was carried out), there is a cumulative
∼79% probability of four deaths in a corps-year. After 60 years,
the probability goes up to 99%. The longer you wait, the more
likely it is that even an unlikely event will eventually happen. Per-
haps Prussian army officials should not be surprised. Mind you,
sometimes you might have to wait very long (see Exercise 2.3).

The mean inter-arrival time is 1/𝜇 = 13 years in our example.
This fact is often described, as ‘the event happens (on average)
once in 13 years’. To some extent, this is a true statement, but it
can be very misleading. Random independent events are exactly
what they are called: random and independent. The occurrence
of an event does not influence another, or at least the influence
is weak. Inter-arrival times vary greatly and certainly don’t show
any periodicity. For example, on average, there were just over a
dozen of commercial airplane crashes a year in the past decade. But
this doesn’t mean they happen every month, and certainly doesn’t
imply that there is an air crash due, just because there was one
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Figure 2-8. Cumulative distribution of inter-arrival times between

events in a Poisson process, calculated for the mean event rate of

𝜇 = 0.078 per year. The curve shows the probability of the next event

occurring within t years after the previous event. The vertical dashed

line shows the mean inter-arrival time of 1

𝜇
= 13 years.

a month ago. Similarly, from the point of view of statistics, we
should not be surprised if two of three major crashes occur in a
single month. Random independent events do it sometimes.

Random independent events do not exhibit periodic
behaviour.

2.9 Student’s t-distribution

You will not find observable quantities in biology that obey a t-
distribution. This distribution was created by mathematicians for
statistical tests and estimating confidence intervals. I will discuss
how this is done in Chapter 5. The first paper on t-distribution
was published in 1908 by William Gosset, who worked at the
Guinness Brewery in Dublin. He wasn’t allowed by his employer
to publish scientific papers, so he used a pseudonym, Student. This
name was later popularized by the famous statistician Ronald
Fisher.

Let us consider a population with mean 𝜇, from which we draw
a sample of size n. The sample’s mean and standard deviation are M
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Figure 2-9. Student’s t-distribution for an increasing number of de-

grees of freedom (shown in top-right corner). The thick black curve

represents the infinite number of degrees of freedom, which corre-

sponds to a Gaussian distribution  (0, 1).

and SD, respectively. I will explain all these concepts in Chapter 4.
The quantity

t = M − 𝜇

SD∕
√

n
(2-15)

obeys the Student’s t-distribution with n − 1 degrees of freedom.
See Section 4.8 for

explanation of the
degrees of freedom.

The number of degrees of freedom is defined as 𝜈 = n − 1 because
of the standard deviation in the denominator. This distribution is
useful when you want to estimate uncertainty of the mean from
repeated measurements (replicates). It is also used in comparing
means from two samples with a t-test. I will show useful applica-
tions of the t-distribution later.

The Student’s t-distribution is similar in shape to Gaussian
distribution (see Figure 2-9). In particular, when the number of
degrees of freedom is large, it actually approximates the Gaussian
distribution. Note that, due to the definition of t, the distribution
is centred on zero (so its mean is always zero). Its standard
deviation is

𝜎 =
√

𝜈

𝜈 − 2
(2-16)

when 𝜈 > 2. It is easy to notice that for a large number of points,
𝜎 ≈ 1. This is when the t-distribution approximates the standard-
ized Gaussian  (0, 1).
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Figure 2-10. Each panel shows a sample drawn from an unknown probability distribution. Box

plots show the median in the middle, each box stretches from the 25th to 75th percentiles and

whiskers are from the 5th to 95th percentiles.

2.10 Exercises

Exercise 2.1
Look carefully at Figure 2-10. It shows five samples drawn
from various probability distributions. For each sample, try to
recognize the distribution and estimate its mean and standard
deviation. Hint: pay attention to how data points are dis-
tributed. Which of these distributions are discrete, and which are
continuous?

Exercise 2.2
In an experiment, you transfected a marker into a population of
3 × 105 cells. The marker functionally integrates into the genome
at a rate of 1 in 105. What is the probability of obtaining at least
one marked cell after this procedure?

Exercise 2.3
In the UK National Lottery, six balls are drawn out of 49. An easy
calculation shows that there are(

49
6

)
= 49!

6!(49 − 6)!
= 13,983,816

possible ways of choosing six balls out of 49. Hence, the probabil-
ity of winning the jackpot in one draw (matching all six balls) is
P1 = 13,983,816−1 ≈ 7.15 × 10−8. If you play the lottery once every
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week, what is the mean winning rate (the mean number of jackpot
wins per year)? What is the corresponding mean inter-arrival time
between the wins (i.e. how long, on average, do you need to wait
to win the jackpot)?

Exercise 2.4
Compare the Student’s t-distribution with the Gaussian distribu-
tion. How well does the t-distribution approximate the Gaussian
one, depending on the number of degrees of freedom? Hint: con-
sider a particular tail probability, for example 5%, and compare
tabulated cumulative distributions (available in this book).



Chapter 3

Measurement errors

If your experiment needs statistics, you ought to have done a better ex-
periment.

—Ernest Rutherford

3.1 Where do errors come from?

The Latin word error means an error or mistake, or it means wan-
dering or going astray. In everyday use when we say error, we
usually mean mistake, which is an error caused by a fault: mis-
judgement, carelessness or forgetfulness. If you keep your cake
in the oven for too long, because you misread the recipe or sim-
ply forgot about it, it will burn and this is a mistake. If you mis-
judge the distance to the oncoming traffic and overtake when you
shouldn’t, you might cause a serious accident; this is a potentially
catastrophic mistake. In biology, we can talk about errors in DNA
replication where a nucleotide is altered, which might lead to a
mutation.

In statistics, the meaning of the word error is quite different.
It refers to measurement uncertainty, the deviation of the measured
quantity from its true value. In this meaning, an error is (usually)
not a mistake. This is best demonstrated by repeated measure-
ments, commonly called replicates. If you repeat the same experi-
ment several times and measure the same quantity, you are likely
to get a different result each time. In other words, you will observe
variability in the measured value.

In statistics, errors refer to measurement uncertainties.

There are many potential sources of this variability. Consider
the example from the beginning of Chapter 1: measuring gene

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Table 3-1. Examples of systematic and random errors.

Systematic Random

Incorrect instrument calibration
Model uncertainties
Change in experimental conditions
Mistakes
Sensitivity limits

Measurement errors
Sampling errors
Counting errors
Background noise
Intrinsic variability

expression in a microarray experiment. The final measurement of
the fluorescent dye emission is at the end of a long and compli-
cated chain of processing, which introduces errors at each step.
To complicate things even more, many subjects in biological mea-
surements are intrinsically variable, and so is gene expression.

Systematic errors

Generally speaking, there are two types of uncertainties to con-
sider: systematic and random errors (Table 3-1 and Figure 3-1).
Sometimes these two categories overlap a little. Systematic errors
are biases in measurements, typically caused by problems with in-
struments. They cause a shift or scaling of the mean of many repli-
cates. For example, if the scale in a mercury thermometer is in-
correctly placed, it will read temperatures consistently higher or
lower by a constant offset. A digital thermometer translates re-
sistance of a thermistor probe into temperature expressed, e.g., in
degrees Celsius. If a multiplicative coefficient used for this conver-
sion is incorrect (wrong calibration), you might end up with read-
outs shifted by an offset proportional to temperature. Increasingly,
results in modern biology are obtained through complex math-
ematical models implemented in computer software (e.g. mass
spectrometry). These models use various approximations of un-
derlying physics with inherent inaccuracy, and can be a source of
systematic errors.

If you change experimental conditions, you are likely to obtain
different results, again with the mean value systematically shifted.
For example, many experiments are sensitive to temperature, so
either setting the wrong temperature or allowing for temperature
drift will alter your measurements. All these systematic errors typ-
ically originate in a flawed experimental setup and usually can be
eliminated (or at least minimized) in well-designed experiments.



34 Understanding statistical error

Figure 3-1. Intuitive illustration of systematic and random errors. The
target symbolizes the true value of the measured quantity; the black
dots represent a series of measurements. Systematic errors shift all
measurements in the same direction, changing their mean value. Ran-
dom errors cause scatter (variation) in measurements, but do not affect
their mean.

Systematic errors can be minimized in good experi-
ments.

I am not going to discuss systematic errors anymore in this
book. They belong in the world of good experimental practice,
following protocols and instruction manuals. They have little to
do with statistics, and statistics is what I’m trying to explain here.

Random errors

Random errors, as the name suggests, change measurements in a
random way. They have random direction and random magnitude,
and should average to zero over many measurements. Therefore,
random errors do not introduce systematic bias into results and do
not affect the mean of many replicates. At least in an ideal world.

Random errors are inherent to every experiment in biology,
and while they may in some cases be reduced, they cannot be
removed simply by good experimental practice. You can estimate
and reduce random errors by taking multiple measurements
(replicates) as many times as possible.
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You cannot eliminate random errors; you have to live
with them.

In Sections 3.3 through 3.5, I will discuss different types of ran-
dom errors. This particular division or classification is entirely ar-
bitrary, and you might find different definitions in other textbooks.
It merely reflects what I want to tell you about random errors and
some of their properties.

3.2 Simple model of random measurement errors

Consider the following experiment. Let us determine the strength
of oxalic acid in a sample. The method we are going to use is a
titration, where we find the volume of sodium hydroxide (NaOH)
solution required to neutralize a given volume of the acid by ob-
serving the change in colour of a phenolphthalein indicator. This
procedure consists of several steps of volume and weight measure-
ments, each of them with a certain reading error. All these errors
will contribute to the final result. Let’s have a look at uncertainties
involved in this experiment:

� Volume of the acid sample
� Volume of NaOH solution used at this point
� Accuracy of NaOH concentration, which is affected by

� Weight of solid NaOH dissolved
� Volume of water added

� Judgement of the indicator colour.

This is a very simple example. In real life, many of the contributing
errors will be hidden from the observer. This happens, in particu-
lar, when raw data from a complicated instrument are processed by
computer software, for example in mass spectrometry or microar-
ray experiments. There is no way of knowing all of the possible
uncertainties arising between the observation and the result.

But we shall not despair. We can at least try to understand
how such errors affect the final result. In order to do this, let
us build a very simple model of measurement errors. Consider
a measurement of a quantity, whose true (unknown to us) value
is m0. As in the example above, the measurement is perturbed
by several small uncertainties. Each of them contributes a small
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random deviation, 𝜀i, which can be either positive or negative.
The measured value is then

m = m0 +
∑

i

𝜀i. (3-1)

Mathematically speaking, each perturbation 𝜀i can be regarded asThe central limit theorem
is described in

Section 2.5.
a random variable of mean zero, small standard deviation and un-
known distribution. Now, we can use the central limit theorem,
which states that the sum of many random variables with arbitrary
distributions is Gaussian. Ergo, the measured value, m, is normally
distributed around m0. It is easy to notice that contributions 𝜀i
with non-zero mean would be responsible for a systematic shift in
the measurement.

This simple model of errors was first introduced by Laplace in
1783. It is illustrated in Figure 3-2. Let us assume, for even more
simplicity, that all our perturbations are the same in magnitude
and can take only two values: +𝜀 or −𝜀, with equal probability of
1/2. You can model this process by tossing a coin at each step to
decide the sign of the perturbation. We start with the unperturbed,
true value m0 at the top of the plot in Figure 3-2a. After the first
coin flip, we can have the first perturbation of +𝜀 or −𝜀, with equal
probability of 1/2. After the second coin toss, we have four possible
outcomes, all of them with equal probability of 1/4:

−𝜀 − 𝜀 = −2𝜀
−𝜀 + 𝜀 = 0
+𝜀 − 𝜀 = 0
+𝜀 + 𝜀 = 2𝜀

The second and third combination of epsilons lead to the same
deviation, so this result is twice more likely than the first and
fourth combinations. Hence, the probabilities of obtaining −2𝜀,
0 and 2𝜀 are 1/4, 1/2 and 1/4, respectively. This is illustrated in
the second row of probabilities in Figure 3-2a. If we continue
further, we will find a wider range of sums of perturbations, with
values near zero more likely than values further away. This forms
a familiar binomial distribution and is shown in Figure 3-2b. ForThe binomial distribution

is explained in
Section 2.7.

a large number of perturbations, it approximates the Gaussian
distribution.

Random measurement errors are normally distributed.
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Figure 3-2. Simple model of random measurement errors. The hor-
izontal axis shows the deviation from the true, unknown value of
the measured quantity. There are several perturbations from the true
value in the process of measurement, each of them +𝜀 or −𝜀, with
equal probabilities. The measured result is the true value plus the sum
of all perturbations. Panel (a) shows probabilities of obtaining a given
deviation. There are more paths leading to small than large deviations,
so small deviations are more likely. They form a binomial distribution,
an example of which is shown in panel (b). For a large number of per-
turbations, it becomes Gaussian.

But what does it mean? As usually happens in statistics, theo-
retical distributions can be translated into real frequency counts,
when a measurement is repeated. The error model described here
suggests that if you were to measure a given quantity many, many
times, these measurements would form a Gaussian distribution
with the mean equal to the true value of the measured quantity.
Of course, in the real world the number of possible measurements
(replicates) is limited, and their mean is only an estimator of the

Statistical estimators will
be discussed in

Chapter 4. true value.
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Another consequence of the stochastic nature of errors is that
a quoted error is a statement of probability. A number and its
error written as ‘12 ± 3’ does not mean that the measured value
is between 9 and 15 for sure. It only means that we have some
confidence that the true measured quantity is in this range, but weI will explain confidence

intervals in Chapter 5. cannot guarantee this. Instead, we can produce a probability that
the given range contains the quantity in question. But, despite
our best efforts, the true measured quantity might be outside the
quoted region. Tough luck.

Reported error is always a statement of probability.

3.3 Intrinsic variability

Measurements are uncertain because the very process of measur-
ing is inaccurate. By building better instruments and refining ex-
perimental procedures, we might reduce this uncertainty to some
extent. However, even if we managed, by some miracle, to reduce
random and systematic measurement errors down to negligible
values, there still would be an uncertainty (often considerable) in
an outcome of a typical biological experiment. This is due to the
fact that the subject of measurements varies by its nature. Such
variability can be revealed in repeated measurements.

Imagine you want to find the height of a person. With a suffi-
ciently accurate height measure, you can probably establish how
tall someone is with an associated error of less than 1 cm. If you
repeat the measurement many times, the majority of your results
should be within ± 0.5 cm of the true height. This is fine, but it
only tells you about the height of one particular person. What if
you want to know what a typical human height is? You have no
guarantee that your subject is of average stature (and, almost cer-
tainly, he or she is not). You can gather a group of people, for ex-
ample your work colleagues, and measure them. Certainly, each of
them is going to have a different height, and the scatter between
measurements is going to be much larger than our measurement
error of ± 0.5 cm.

This is a considerable problem. Not only are measurements in-
accurate, but also the things that are measured change their prop-
erties in a random fashion. This intrinsic variability makes every
measurement different. To make things worse, the extent of this
variability in biological systems is usually larger than any other
type of error.
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Typically, intrinsic biological variability is the dominant
source of uncertainty.

3.4 Sampling error

Can we eliminate the intrinsic variability by taking multiple mea-
surements of the same thing? After all, if the measured thing
varies, we are probably interested in its average behaviour. For
example, from a sample of height measurements (your work col-
leagues), we can infer the mean height in the population of hu-
mans. This is fine, but if you select another group of people (e.g.
your family), you will find a different set of heights and a different
mean. Height is different from person to person; mean height is
different from sample to sample. This is the same problem again:
repeated measurements (a sample) can give us an estimate of the
mean height, but this estimate is inaccurate in its own way. Drat!

Sample and population
are discussed in Section
4.1; statistical estimators

are the topic of
Chapter 4.

Selecting a sample from the population introduces a new type
of uncertainty, called the sampling error. A sample only approxi-
mates the population and produces estimators of true population
parameters. Luckily, with proper statistical tools we can assess un-
certainties of these estimators. I will explain these concepts later in
the book. For the time being, let us avail ourselves of the following
(rather vague, I know) definition:

Sampling error is caused by observing a sample instead
of the entire population.

In this example, measurement errors are negligible in compar-
ison with sample scatter. Although this is rather typical in biol-
ogy, it is not always true, and the spread in the results can be due
to measurement error as well. Quite often, we don’t know where
the observed variability arises: it could be an intangible mixture of
both effects.

Sampling in time

Sampling can be performed not only by measuring several
subjects but also by measuring one subject at different time
points. Remarkably, these two types of sampling (across subjects
and across time) under certain conditions can give very similar
results. The main assumptions are that the observed process is
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stationary – its properties (mean, standard deviation etc.) do not
change in time – and that all subjects vary in the same way. In
mathematics, this property is described by the ergodic theorem.Ergodic theorem: under

certain conditions
sampling in space can

be replaced with
sampling in time.

This applies to many physical systems, as laws of physics do not
change from one laboratory to another. An electron is exactly
the same in your lab and on the Moon. In biology, however, we
cannot assume that all subjects are equal. Even ‘identical’ twins
might respond differently to the same stimulus. Therefore, you
should exercise the utmost caution when trying to extend results
from one subject to the entire population.

More about replication
and pseudoreplication in

Section 5.11.

Repeated measurements from the same subject are not
replicates.

Obviously, when you measure human height, you don’t expect
it to vary in time for one person1. On the other hand, if you want
to find a range of body temperatures for a healthy person, you
can measure one individual for several days, or measure a group
of people once. If they are all ‘typical’ and healthy, you should get
similar results, but this is not guaranteed. From the point of view
of an experimental biologist, it is always better to have a sample
of subjects (replicates), because any one subject might not be rep-
resentative. After stating these caveats, I can say that sampling in
time (e.g. from the same organism) is a valid scientific method, as
long as you know what you are doing.

Consider measuring protein abundance in vivo, estimated by
the intensity of a fluorescent marker. We assume that the expres-
sion level of this protein is stable. Like many other processes in the
cell, protein abundance is stochastic and varies at all timescales.
The grey curve in Figure 3-3 shows how such a process might
appear for one protein, although this is only a simulation done
for illustrative purposes. The true nature of this variability is un-

Population, sample and
statistical estimators are
explained in Chapter 4.

known, as we can only measure it at a certain time step, 60 seconds
in this example. If the process is stationary, the true unknown
intensity (grey curve) can be regarded as a population, whereas
timed measurements (black dots) can be treated as a sample taken
from this population. From the sample you can only find some

1Strictly speaking, height can and does vary for an individual as a result
of spinal compression, even during a day. You are taller in the morning
than in the evening!



Measurement errors 41

Time (s)

In
te

ns
ity

 (
ar
bi

tr
ar

y 
un

its
)

0 100 200 300 400 500

0
5

10
15

20

Figure 3-3. Example of a random stationary process where intensity is measured every 60
seconds. The grey line represents intrinsic, unobserved variability; the black dots show actual
measurements. These can be regarded as population and sample, respectively. The true (un-
known) mean intensity is 10.2, shown by the dashed line. The mean of the measurements is
9.4, and the standard deviation is 2.5. These are not real data but a simulation.

statistical estimators, like mean and standard deviation, that approx-
imate true unknown values. This kind of sampling in time doesn’t
apply to experiments, where the subjects change over time.

Taking a sample either from a population of subjects or from
a time series might look pretty straightforward, but the implica-
tions are far-reaching and not simple at all. In experimental bi-
ology, sampling (having several replicates) is the main and some-
times the only way of estimating measurement uncertainties.

3.5 Simple measurement errors

Measurement errors are random in nature and typically require
replicated experiments to estimate their size. From repeated ex-
periments, we can estimate the extent of variability resulting from
both biology and technical protocol. There are, however, a few
types of errors that can be estimated directly from measurements
without the need of replicates. The uncertainties I’m going to dis-
cuss in this section are purely measurement errors, and they do not
take into account the biological variability you encounter in most
experiments. Therefore, even if you can estimate measurement er-
rors directly, I still recommend doing the experiment in replicates.

Reading error

Direct measurements typically involve reading either a scale (e.g.
a ruler or analogue voltmeter) or a digital display (e.g. a digital
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PEP Ratio H/L
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0.006917 1.6493
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Figure 3-4. Reading errors. (a) Reading error of an analogue scale (e.g. a ruler) is typically
half of the smallest division, but there might be other factors contributing. (b) Fragment of a table
created by protein mass spectrometry analysis software. Digital readouts, in particular when data
are uploaded into a computer, are often shown with more figures than the actual resolution. This
is OK for performing further calculations, but non-significant figures have to be rejected when
presenting data in a publication.

voltmeter or computer). Measuring equipment is limited by its
own resolution. For example, if you use a ruler with a millimetre
scale (Figure 3-4a), you should be able to read the length to the
nearest millimetre, at best. If you can’t, you should probably visit
your optician. The reasonable estimate of uncertainty of length
would be, in this case, Δl = 0.5 mm. We use half of the smallest
division because error is typically represented as ±Δl, one error
up and one error down; the total size of error is 2Δl. This applies
to any device with a scale.

The reading error of a scale with markings is half of the
smallest division.

In real life, reading error is often larger than this, as there is
always a human involved and errare humanum est. A measurement
from a scale will vary depending on how your eye is lined up with
the subject and the reading device (e.g. a ruler). If your measured
subject is not placed immediately behind the ruler, the readout
will increase and decrease as you move your head left and right
due to parallax. Sometimes, it might be difficult to point where
your subject begins and ends while measuring its length. If you
have ever tried to measure the length of a mouse’s tail, you know
what I’m talking about. Occasionally, a scale might be too fine to
read accurately even by a person with good eyes.

Only the observer can ultimately decide what the actual
reading error is.
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I should point out that, quite often, the scale reading error is
largely irrelevant if the subject-to-subject variation (in whatever
you measure) is much larger than the reading error.

Digital readouts are an entirely different matter. You might be
tempted to assume that the reading error is half of the last digit dis-
played. If a digital thermometer shows 36.6 ◦C, the reading error
might be ± 0.05 ◦C. Or it might not. You really need to consult the
specifications of the instrument. For example, one particular high-
precision digital thermometer has, according to the manufacturer,
‘resolution of 0.01 ◦C’ and ‘accuracy better than 0.04 ◦C’. The first
number refers to the number of decimal places in the digital read-
out, and the second is the actual measurement error.

All becomes even more obscure when it comes to instruments
transferring data into a computer. Computers often present num-
bers with lots of digits (Figure 3-4b), but don’t be fooled into
thinking that actual measurements are so precise. These numbers
are usually a result of several calculations (sometimes, a complex
chain of sophisticated processing by very expensive software) and
are stored with the precision of a computer number. There will be
lots of figures in the number, but only a few of them are significant.
The rest are simply random junk.

I will explain significant
figures in Section 6.4.

Beware of superfluous precision in digital readouts.

There is a reason why raw instrumental data are stored with su-
perfluous precision. Typically, these numbers are used for further
calculations; for example, mean and confidence interval might be
computed from repeated measurements. If we truncate numbers
down to their actual precision at the beginning of calculations, we
might lose some of this precision in processing steps due to further
rounding and truncation. It is better to use the redundant digits
to make sure that rounding errors do not contribute to our final
result. When this is done, the final number and its error should be
truncated according to their actual precision.

See Section 6.4 for
quoting numbers with

errors.

Counting error

Consider an experiment in which we perform 10−5 dilution plating
of some bacteria. The source culture is diluted with sterile liquid
in subsequent steps and transferred onto an agar plate. We let the
bacteria grow, and after a while we find 11 colonies. We assume that
each colony originated from just one bacterium from the diluted
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culture. From this, it is easy to work out the bacterial count in the
source culture of 1.1 × 106, but what is the error of this estimate?
As usual, the best way of finding errors is to perform replicates
of your experiment and find the mean and the standard error (see
Chapter 4). However, in this particular case, there is a simpler and
quicker way.

Rare, random, independent events obey a Poisson law. BacterialI discuss the Poisson
distribution in

Section 2.8.
colonies on the plate appear randomly, they are not too frequent if
diluted enough, and each colony should be independent of another
if the experimental conditions are good. Under these assumptions,
the count of bacterial colonies on the plate is Poissonian. There-
fore, the mean count equals its variance. We can accept the ob-See equation (2-13).
served count as an estimate of the mean, and we use its square
root (standard deviation) as an estimate of uncertainty. As we have
found 11 colonies, the error is then

√
11 ≈ 3, which, after scaling

due to dilution, gives (1.1± 0.3) × 106 bacteria in the culture.

Counting error can be estimated by the square root of
the count.

I must stress that counted objects or events must be indepen-
dent to conform to the Poisson distribution. If cells attract or re-
pel each other, their distribution can be non-Poissonian, and then
counting error does not follow this simple rule.

Let us try to understand more clearly what this error estimate
really means. First of all, the fact that we have 11 colonies does
not mean that the sample size is 11. The sample size is one, as we
have one measurement and the result of this measurement is a
number, 11. This can be considered as one realization of a random
variable. The probability distribution of this variable can be re-
vealed in repeated experiments. If we managed to perform the en-
tire bacterial colony experiment many times (e.g. 10,000), we could
plot the underlying probability distribution and measure its pa-
rameters. As this would be rather impractical, I have simulated
such an experiment in a computer. We can call it a thought exper-
iment, or gedankenexperiment, as physicists often call it. Bacterial
colony counts from the first 16 plates, together with their esti-
mated counting errors (square root of the count), are shown in
Figure 3-5a. The first plate, with 11 ± 3 counts, is from our origi-The rules of quoting

numbers with errors are
described in Section 6.4.

nal experiment. Figure 3-5b shows the distribution of counts from
all 10,000 plates. This approximates a Poisson distribution. The
point and error bar above the distribution represent the mean ±
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Figure 3-5. A thought experiment in which bacterial colonies are
counted on agar plates. The experiment is repeated 10,000 (yes!)
times. (a) Counts from the first 16 plates. Dots show the actual count,
ci, from plate i, and error bars are Poissonian, ±

√
ci. The vertical line

represents the population mean, 𝜇 = 11 counts per plate. (b) Distribu-
tion of colony counts from all 10,000 plates. The point in the middle
and error bar show the mean and the standard deviation from the en-
tire distribution.

standard deviation of all data, which were 11.06 ± 3.34 in this
particular simulation. This is very well matched by our first plate,
shown at the bottom of Figure 3-5a. However, there is absolutely
no guarantee that another measurement is going to give us any-
thing so close to the true mean! We are not going to be so lucky
every time. For example, there were 17 colonies on plate 9, and

Standard error of the
mean is explained in

Section 4.5; confidence
intervals for count data

are discussed in
Section 5.9.

our error estimate was
√

17 ≈ 4. Hence, the true mean of 𝜇 = 11 is
outside the error bar, 17 ± 4. In fact, about one-third of all 10,000
measurements do not have the true mean within their error bars.
This demonstrates the probabilistic nature of error bars.

Counting error defined as the square root of the count is a stan-
dard error. It is a bit similar to the standard error of the mean in
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a way that estimates the width of the sampling distribution (more
about this in Section 4.5). But it is not a confidence interval. To
find a proper confidence interval on a count, we need to do a few
mathematical tricks. I will explain this in Chapter 5.

3.6 Exercises

Exercise 3.1
Measure the length of this book using a ruler. What is the
measurement error? If you had many copies of this book and
measured each of them, what could you tell about the book length
and its error?

Exercise 3.2
A local newspaper reported that Springfield is ‘the murder capi-
tal of the country’. There were six murders in Springfield and 19
in the notorious Capitol City in the last year, reported by the po-
lice. However, when the size of each city is taken into account,
there were 4.1 and 3.2 murders per 100,000 population in Spring-
field and Capitol City, respectively. The newspaper concluded that
Springfield has a higher murder rate and therefore deserves the ti-
tle of ‘murder capital’.
Is this title justified? Estimate uncertainties on murder rates in
both cities and compare them. Hint: if you multiply a number by
a constant, its error scales by the same constant.



Chapter 4

Statistical estimators

The average human has one breast and one testicle.
—Des MacHale

Consider a very simple experiment in which we weighed five mice.
Using electronic scales with 0.01 g accuracy, we found the fol-
lowing weights: 21.69, 25.00, 11.68, 17.05 and 18.61 g. From these
numbers, we can find the mean weight of 18.8 g with standard
deviation of 5.0 g and standard error of 2.2 g. Or, we can find
the median of 18.6 g. All these numbers are examples of statis-
tical estimators, and they describe sample properties. If you are
an experimental biologist, you have probably calculated hundreds
and thousands of statistical estimators without even realizing what
they were called, just like Mr Jourdain was surprised that he had
been speaking prose all those years. In this chapter, I will ex-
plain and discuss the most commonly used statistical estimators.
But firstly, we have to talk about the meaning of population and
sample.

4.1 Population and sample

The terms population and sample are nicked from social sciences,
where they are used in a very literal sense. A population is a large
group of people, for example the population of a country. A sample
is a small group selected, for example, either for polls or for some
other type of interrogation. It should be small enough to be easily
manageable. It is rather impractical to send a questionnaire to ev-
erybody in the country, so that is done only during the census once
in 10 or so years. However, a sample should be large enough to give
the required statistical confidence in the result. Asking your aun-
tie about her political views does not necessarily reflect the views
of the entire population. A typical opinion poll involves about a
thousand people.

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Table 4-1. Population and sample: a summary.

Population Sample

Population can be a somewhat
abstract concept.

Sample is what you get from
your experiments.

All possible specimens or
measurements

A representative selection

Huge size, impossible to handle Manageable size, n
measurements

Examples:
� all possible mice (that lived

in the past and will live in
the future)

� all people with eczema
� all possible measurements

of gene expression (infinite
population)

Examples:
� 12 mice in a particular

experiment
� 26 patients with eczema
� 5 biological replicates to

measure gene expression

Population is described by an
unknown distribution with
mean 𝜇, and standard
deviation 𝜎.

From a sample we can calculate
statistical estimators of
population’s 𝜇 and 𝜎

The sample should be representative. In other words, it should
reflect the distribution of important characteristics of the popula-
tion: gender, age, education, income and so on. Querying Premier
League footballers about their cars is not the best way of finding
what an average person drives.

In statistics, population and sample are slightly redefined, al-
though the main idea remains the same (Table 4-1). In an exper-
iment, you select a subset of all possible measurements or values.
The sample is usually easy to define; this is what you get from your
experiment. Typically, it is a set of numbers representing proper-
ties or characteristics of interest. Population can be a bit vague. If
you want to study mice, the population might represent all mice
in a given geographical region, all mice on Earth or even all mice
that ever existed. It gets even murkier when you measure more
abstract quantities, such as gene expression. The sample is your
spreadsheet with data, but what about the population? It is an ab-
stract set of all possible gene expression levels. Imagine you have
an infinite amount of time and infinite funds. You repeat your ex-
periment in infinite replicates and collect an infinite amount of
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gene expression levels. That would be a population. But you don’t
have infinite resources, so you can’t do this.

From the point of view of an experimental biologist, a popu-
Population parameters

characterizing a
probability distribution

are discussed in
Section 2.3.

lation has certain characteristics and we try to understand them
by studying a representative sample. The population is often de-
scribed by a theoretical probability distribution, for example a
Gaussian or Poisson distribution. These distributions are charac-
terized by (unknown) parameters, such as mean, 𝜇, and standard
deviation, 𝜎.

Population mean and standard deviation are unknown
and can only be estimated.

It is often impractical to study an entire population, even if it
is finite in size. Instead, we study a sample that is hopefully rep-
resentative of the population and find its mean and standard de-
viation. It is imperative to stress that these are not identical with
the population parameters. They only approximate them. Sample
characteristics are only estimators.

Please note that the term sample when used in statistics has a dif-
ferent meaning from what biologists are used to. In experimental
biology, sample usually means specimen, something you are going to
study. If you prepare your cell culture in five plates and send them
for protein quantification, there will be five biological samples to
be analysed. However, when these specimens are processed and
proteins are quantified, they will make (for a given protein) one
sample of protein abundances with size n = 5. In this meaning, a
sample is a set of numbers, usually obtained from biological repli-
cates. I will use the term sample in its statistical meaning.

In statistics, a sample is a set of numbers, usually ob-
tained from quantification of biological replicates.

4.2 What is a statistical estimator?

In the sixteenth-century surveyor’s manual Geometrei, Jacob Köbel
(Köbel 1535) defines a unit of length (see Figure 4-1):

Stand at the door of a church on a Sunday and bid 16 men to stop, tall
ones and small ones, as they happen to pass out when the service is
finished; then make them put their left feet one behind the other, and
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Figure 4-1. ‘Right and lawful rood’ from Geometrei, by Jacob Köbel (Frankfurt 1535). A
sixteenth-century unit of measure estimation by random sampling from a local population.

the length thus obtained shall be a right and lawful rood1 to measure
and survey the land with, and the 16th part of it shall be the right and
lawful foot.

This is quite a remarkable instruction. Almost 500 years ago,
Köbel introduced representative random sampling from a popula-
tion and standardized units of measure. He used 16 ‘replicates’ to
minimize random error. Finally, he calculated the sample mean –
a statistical estimator of the population mean.

Nowadays we do exactly the same. We take a sample from the
population to study its unknown properties. Typically we would
calculate sample mean and standard deviation. To distinguish
them from population parameters 𝜇 and 𝜎, I will denote them as
M and SD, respectively. They are called statistical estimators.

1Rood was a unit of measure equal to about 16 feet.
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A statistical estimator is a quantity derived from the
sample to estimate a parameter of the population.

An estimator from the sample is usually different, but hopefully
not hugely different, from the population parameter. Consider a
Gaussian mouse population with a mean body weight of 20 g and
a standard deviation of 5 g. I have just made up these numbers,
as I cannot be bothered to weigh all mice in the known universe.
From this population we select a sample of 30 mice, for example
by breeding them in the laboratory. We can weigh them easily, and
the distribution of their weights is shown in Figure 4-2 together
with the Gaussian population distribution. The mean from this
sample is very close to the true mean, but it doesn’t have to be. So,
how good is our sample mean? It is crucial to know the ‘quality’
of a statistical estimator, as otherwise it would be useless. In other
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Figure 4-2. Population and sample of mouse body weight. Solid curve represents the (hypo-
thetical) distribution of weights in mouse population. The black circle with error bars at the top
of the figure represents 𝜇 ± 𝜎. For the purpose of this example, the population was assumed to
be Gaussian with 𝜇 = 20 g and 𝜎 = 5 g. The sample of 30 mice is shown in grey points, with
sample mean (M = 20.4 g) and standard deviation (SD = 6.2 g) overlaid. Shaded bars show the
histogram of sample distribution.
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words, from our sample mean and standard deviation, we have to
come up with a robust error of the mean. We want to be able to
say with a certain level of confidence that the population mean is
within a particular range of values. I will show you how to do this
in Chapter 5.

4.3 Estimator bias

In an ideal world, an estimator should represent the true value of
the parameter estimated as accurately as possible. Obviously, by
selecting a (random) sample, a sampling error is introduced and
the estimator deviates from the true value. You can’t really do any-
thing about it except take a very large sample in order to minimize
the deviation. Such is the nature of things.

Since we can’t beat statistics and get rid of this deviation, we
can at least try to see how bad it is. In particular, it would be nice
to know whether the deviation is either random or systematic. A
random deviation should be negligible on average, whereas a sys-
tematic deviation would introduce .. . a systematic shift in the es-
timator.

A systematic deviation between the estimator and the
true parameter is called bias.

Let’s go back to our mice. Every time you take a sample of 30
mice, the mean sample body weight, M, is going to be different.
However, the mean value of M over many samples is going to be
very close to the true population mean, 𝜇. If you extend this sam-
pling into an imaginary experiment, in which you take an infinite
number of samples, the mean M will be exactly equal to 𝜇. The
sample mean is an unbiased estimator of 𝜇. Analysing an infinite
number of mice might be a bit beyond the abilities of a modestly
funded laboratory, but what I have in mind is a theoretical, expected
value of the estimator.

The expected value of an unbiased estimator equals the
true parameter.

To demonstrate the bias with reasonable precision, one can do
a computer simulation. I will show such an example later in this
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chapter. Or, in many cases, it is possible to perform an exact math-
ematical derivation to find the bias. For example, it turns out that
the arithmetic mean is unbiased, which is very nice. Standard de-
viation, on the other hand, is biased (especially in small samples),
although this bias can be corrected (see the ‘Unbiased estimator
of standard deviation’ sub-section).

4.4 Commonly used statistical estimators

Mean

The most commonly used statistical estimator is the sample mean,
M. For a sample of measurements x1, x2,… , xn, their arithmetic
mean is defined as

M = 1
n

n∑
i=1

xi. (4-1)

The error of the sample mean can be estimated by the standard
Standard error of the

mean and confidence
intervals are described in

Sections 4.5 and 5.4,
respectively.

error of the mean, although you might want to use confidence
intervals to give it some statistical meaning.

Please note that the sample mean, M, is markedly different from
the random variable mean, 𝜇, as defined by equations (2-3) and
(2-4). From a slightly simplified point of view, the population and
its probability distribution can be described by a random variable,
whereas the sample is a set of realizations of this random variable.
Hence, the random variable mean is the population mean, and the
sample mean approximates it. This holds true for other estimators
described in this section.

The sample mean has one interesting property. Deviations of
individual measurements from the mean, xi − M, are called resid-
uals. The sum of all residuals is zero:

n∑
i=1

(xi − M) =
n∑

i=1

xi − nM =
n∑

i=1

xi −
n∑

i=1

xi = 0. (4-2)

In particular, we can state the following:

The mean residual is always zero: ⟨x − M⟩ = 0.
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Weighted mean

Occasionally, when data points have different importance, or
weight, we might need to calculate a weighted mean. If a measure-
ment xi has a weight wi, the weighted mean is described by the
following formula:

Mw =
∑n

i=1 wixi∑n
i=1 wi

, (4-3)

If all weights are equal, this formula reduces to the arithmetic
mean [equation (4-1)].

The weighted mean is usually used to average points with
different errors. For example, if we were asked to find a mean
of two numbers, 3 and 7, then the result would be 5. However,
if these numbers had very different errors, 3 ± 0.5 and 7 ± 6,
then we would assign more weight or importance to the first
number, as it has much smaller error. The mean of these two
points should be closer to 3 than to 7. This can be achieved by
using the following weights:

wi =
1

SE2
i

,

where SEi is the standard error of xi. In fact, other types of errorSee Section 4.5 for
standard errors. estimates can be used as well. The weighted mean is then

Mw =

∑n
i=1

xi

SE2
i∑n

i=1
1

SE2
i

. (4-4)

This particular definition has some desired statistical proper-Standard error of the
weighted mean is shown

in Section 4.6.
ties. For example, the error of the weighted mean can be de-
rived directly from equation (4-4) (more about this later in this
chapter).

The difference between the ‘normal’ unweighted arithmetic
mean and the mean weighted by errors can be demonstrated in
the following example. Imagine an experiment in which we count
events from a ‘source’ and a ‘background’. These could be any
types of counts: for example, the number of cells under two condi-
tions, or the number of sequenced reads mapped against a particu-
lar region of the reference genome. Now, we want to find a source-
to-background ratio and its mean value. An example of such data
is shown in Figure 4-3.
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Figure 4-3. Illustration of the weighted mean. The data come from a simulated counting ex-
periment. Panels (a) and (b) show source and background count rates, respectively. The errors
bars represent counting errors. Panel (c) shows the source-to-background ratio with propagated
errors (see Chapter 7). The horizontal solid and dashed lines show the weighted and unweighted
mean, respectively. The errors of the unweighted and weighted mean are their corresponding
standard errors.

As it happens in real experiments, for some reason, the count
Error propagation for a

ratio is discussed in
Section 7.3.

rate occasionally drops, creating spurious high count ratios. How-
ever, as we propagated errors correctly from counts into count
ratios, these low-count data points have large errors (see Figure
4-3c). The unweighted mean doesn’t know about error bars and is
‘dragged up’ by the two measurements with high ratios. You could
argue that these are outliers and should be removed from the sam-
ple manually. This, however, is data manipulation bordering on
cheating. The weighted mean, on the other hand, assigns very low
importance to data with large errors and effectively ignores them,
so you don’t have to worry about them.

Geometric mean

The geometric mean is similar is some way to the arithmetic mean,
except that numbers are not added but are multiplied, and then the
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nth root is taken:

G =

(
n∏

i=1

xi

) 1
n

= n
√

x1 × x2 ×… × xn, (4-5)

The geometric mean can be used in cases where data pointsLog-normal distribution is
discussed in Section 2.6. (measurements) are meant to be multiplied rather than added. For

example, if your data are log-normally distributed, you might want
to use the geometric mean to describe its central value. However,
in my opinion, the geometric mean is redundant and there is no
need to use it. It is easy to show that the ‘ordinary’ arithmetic mean
of logarithms is equal to the logarithm of the geometric mean,

Mlog =
1
n

n∑
i=1

log xi =
1
n
log

n∏
i=1

xi = log

(
n∏

i=1

xi

) 1
n

= logG.

(4-6)

This is because the sum of logarithms is the logarithm of the
product. Hence, instead of using the awkward geometric mean,
you should log-transform your data (i.e. replace xi with log xi,
for each i). Then, you can use the bog-standard arithmetic mean.
The advantage of logarithmic data is that the standard deviation
works properly. If your data are log-normally distributed, the
standard deviation doesn’t make much sense, as demonstrated in
Section 2.6.

Don’t use the geometric mean; log-transform your data
instead.

Median

The median is a cousin of the mean. Likewise, it represents the
central location of the data. It splits the sample into two halves,
lower and upper, each with an equal number of data points. All
data points in the lower part are smaller than (or equal to) the
points in the upper half. I will denote the sample median as M̃.
The population median, 𝜃, divides the population in two halves:
P(X ≥ 𝜃) = P(X ≤ 𝜃) = 1

2
. As usual, M̃ is the estimator of 𝜃.

In order to find the median of a sample x1, x2,… , xn, let us first
sort our sample in ascending order, x(1) ≤ x(2) ≤ … ≤ x(n). Indices
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in brackets indicate the rank in the ordered sample, from the sam-
ple minimum, x(1), to the sample maximum, x(n). The sample me-
dian sits in the middle of this sequence. If n is odd, then M̃ = x( n+1

2
).

For example, for n = 17, the median is the ninth point in the sorted
sample, M̃ = x(9). If n is even, the sample median is in the middle of
the two central points: M̃ = 1

2
(x( n

2
) + x( n

2
+1)). For example, for n =

18, the median is between the ninth and 10th points in the sorted
sample:M̃ = 1

2
(x(9) + x(10)). In practice, there are more efficient al-

gorithms for finding the median without the need of sorting.
The difference between the mean and the median is that the

mean takes data values into account, whereas the median is de-
rived from their ranking. This makes the median immune to ex-
treme outliers. If you take a sample of five data points and sort
them, the median will be always equal to the third point, regard-
less of how small or large the extremes are. The mean, on the other
hand, can be significantly altered by a small number of outliers, as
demonstrated in Figure 4-3c.

The median is not sensitive to outliers.

Another useful property of the median is that it gives a better
‘feeling’ of the sample’s (or population’s) central value when the
distribution is very skewed. A classic real-life example is the dis-
tribution of salaries, which is very asymmetric, with a small frac-
tion of the population earning a lot. According to the Office for
National Statistics, the mean gross weekly salary in the United
Kingdom in 2012 was £607, whereas the median was £506.

The median represents the middle of the data in skewed
distributions.

Standard deviation

Mean (or median) represents the central location of the data, but
it doesn’t tell you anything about the spread of the sample. Some-
times measurements can be near-identical, sitting tightly close
to their mean value. In other experiments data points can be
scattered widely and wildly all over the place. Surely, we would
rather trust the mean when data are not too variable across the
sample. We could use the sample’s variability or spread to estimate
the confidence of the mean.
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Figure 4-4. Variability (or spread) in data. The graph illustrates 12
data points (dots) and their mean, M = 21.1 g (horizontal dashed line).
Vertical lines show deviations from the mean (residuals). The standard
and mean deviations are SDn−1 = 4.8 g and MD = 3.8 g, respectively.

Imagine you have a sample of n data points: x1, x2,… , xn. An ex-
ample is shown in Figure 4-4. The (arithmetic) mean, M, of these
data is described by equation (4-1). We could estimate the variabil-
ity in the data by looking at how far they deviate from the mean.
For this, we can calculate individual residuals, xi − M. If there is
little variability in the data, residuals are small. Great variability
gives large residuals.

Now we need to compress all the residuals into one convenient
number to represent variability. First of all, residuals are positive
and negative, so there is no point in averaging them. The mean
residual is always zero; see equation (4-2). Instead, we want to get
rid of the negative signs in residuals before averaging. One way
of doing this is by squaring each residual, (xi − M)2. Then, we can
find the mean squared residual and, in order to get back to the orig-
inal units of measure, take a square root of it:

SDn =

√√√√ 1
n

n∑
i=1

(xi − M)2, (4-7)

This is a standard deviation, but not exactly as you might know it.
The most commonly used formula is as follows:

SDn−1 =

√√√√ 1
n − 1

n∑
i=1

(xi − M)2. (4-8)
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This is the sample standard deviation you will find in most text-
books. Hence, I am going to use it throughout this book. In this
section, I’m going to call it SDn−1, in order to distinguish it from
other standard deviation estimators. Later in the book, for the sake
of simplicity, I will drop the ‘n − 1’ subscript and call it SD.

The only difference between SDn and SDn−1 is n − 1 in the de-
Degrees of freedom in
standard deviation are

explained in Section 4.8.

nominator in the latter formula, which is called Bessel’s correction.
One of the reasons for using n − 1 instead of n is that there are n − 1
degrees of freedom in calculating a sample standard deviation. The
other reason is more important, but a bit more complicated. I will
try to explain this next.

Unbiased estimator of standard deviation

Let us forget about standard deviation for a moment and con-
sider the sample variance instead. Variance is standard deviation
squared. Just like in standard deviation, you can use two estimators
of variance, SD2

n−1 or SD2
n. It turns out that SD2

n is biased, whereas
SD2

n−1 is unbiased, because including the ‘n − 1’ term removes the
bias.

A variance estimator with the ‘n − 1’ correction is unbi-
ased.

How can we verify this? Let us do another thought experiment.
Consider again a population of mice with mean body weight of
𝜇 = 20 g and standard deviation of 𝜎 = 5 g. The population vari-
ance is, obviously, 𝜎2 = 25 g2. Take a lot (let’s say a million, why
not?) of small samples (n = 5) from this population. For each sam-
ple, let’s calculate the two estimators of the variance. Having col-
lected a million SD2

n−1 and SD2
n values (which I have simulated

in a computer), we can plot their distributions, find mean values
and compare to the true variance, 𝜎2. This is illustrated in Fig-
ure 4-5 and shows that the mean SD2

n−1 is better in represent-
ing population variance than the mean SD2

n. These sorts of ex-
periments are almost impossible in practice, but an analytical cal-
culation can show the same result. A simple algebraic derivation
(e.g., Brandt 1999) can show that the mean uncorrected sample
variance is

⟨SD2
n⟩ = n − 1

n
𝜎2. (4-9)
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ance estimators, biased SD2

n and unbiased SD2
n−1. One million samples of five data points were

drawn from a Gaussian population,  (20, 5). For each sample, two variance estimators were
calculated. The graph shows distributions of both estimators; arrows indicate the mean of each
distribution; the dashed vertical line shows the true population variance, 𝜎2 = 25 g2. This simu-
lation demonstrates that ⟨SD2

n−1⟩ = 𝜎2 and ⟨SD2
n⟩ = 4

5
𝜎2 for the sample size of five.

Hence, on average, SD2
n will underestimate the true 𝜎2 by a factor

(n − 1) ∕n. Luckily for us, the ‘n − 1’ correction cures the underes-
timation problem,

⟨SD2
n−1⟩ = 𝜎2. (4-10)

This shows that the ‘n − 1’ corrected variance is an unbiased es-
timator. Regrettably, not everything in life is so beautiful. Bessel’s
correction works nicely for variances but not, alas, for standard
deviations. This is because averaging and squaring cannot be
swapped. The square of the mean is always less than (or equal to,
if all numbers are the same – but this is very unlikely in our case)
the mean of squares2. In particular,

⟨SDn−1⟩2 < ⟨SD2
n−1⟩. (4-11)

2This is called Jensen’s inequality, and its proof can be found in mathemat-
ical textbooks; it is easy to see how it works in a simple example of x1 = 3

and x2 = 5: ⟨x⟩2 =
[

1
2

(3 + 5)
]2

= 42 = 16, but ⟨x2⟩ = 1
2

(9 + 25) = 17.
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Figure 4-6. Bias of three standard deviation estimators as a func-
tion of the sample size. The graph shows how much the population
standard deviation is underestimated by each estimator. SDn−1 is the
default, commonly used estimator, and the other two incorporate sim-
ple corrections shown in equations (4-12) and (4-13).

Taking the root of both sides of equation (4-11) and taking into
account equation (4-10), we find that ⟨SDn−1⟩ < 𝜎, and, despite all
of our efforts, we still have a problem:

Even the ‘n − 1’ corrected standard deviation estimator
is biased and underestimates the population standard
deviation.

The bias is particularly large for very small samples. For n = 2,
3 and 4, the population 𝜎 is on average underestimated by 20, 11
and 8% (see Figure 4-6). This is really a shame!

But where is a will, there is a way. You can correct SDn−1 (again!)
and remove the bias altogether. All you need to do is to multiply
SDn−1 by a correcting factor. The exact form of this factor is rather
complicated, but there is a simple and useful approximation that
works well in practice (Gurland and Tripathi 1971):

SDc =
[
1 + 1

4 (n − 1)

]
SDn−1. (4-12)
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This corrected estimator of standard deviation is approximately
unbiased, with accuracy better than 0.3%. Another possible trick,
not as effective as SDc, but exceptionally simple, is to replace n − 1
in equation (4-8) with n − 1.5. The resulting estimator,

SDn−1.5 =

√√√√ 1
n − 1.5

n∑
i=1

(xi − M)2, (4-13)

is also approximately unbiased for n > 2. The bias for n = 3 and 4
is 2.3 and 0.9%, respectively (Figure 4-6).

The standard deviation estimator is extensively used in all kindsThe usage of t statistic to
find confidence intervals

of the mean is discussed
in Section 5.4.

of experimental sciences. It is surprising that the knowledge of
SDn−1 being biased for small samples is less than universal outside
the community of mathematicians and statisticians. On the other
hand, standard deviation is typically used to either find a confi-
dence interval or perform a t-test to compare two samples. In both
cases, a t statistic is used, which employs the ‘default’ SDn−1 estima-
tor and takes sample size into account (i.e. it gives correct results
for a small sample size). When you calculate the confidence inter-
val for the mean, you should use the uncorrected estimator SDn−1.

Mean deviation

In this chapter, I showed how to estimate variability in the sample
by a standard deviation. The idea was simple (see Figure 4-4): find
the deviations from the mean, get rid of negative signs by squaring
them and find their mean (or Bessel-corrected mean). But there is
another way of getting rid of negative signs, the way that looks
simpler on paper. Instead of squaring the residuals, we can take
the absolute value,

MD = 1
n

n∑
i=1

||xi − M|| . (4-14)

This quantity is called the mean absolute deviation3 (hereafter, mean
deviation), and it is an estimator of a sample’s variability. How does
the mean deviation compare to the standard deviation? It looks
simpler (there is no square), but in reality it is more difficult to
handle in algebraic calculations. Absolute values are a bit tricky
when it comes to derivatives (|x| is not differentiable at x = 0). On

3Sometimes denoted as MAD.
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the other hand, mean deviation doesn’t overestimate outliers as the
standard deviation does. The contribution of a data point to MD is
proportional to the deviation of this point from the mean, whereas
in SD it is proportional to the square of the deviation. That is why
in the example from Figure 4-4 the standard deviation, SD = 4.8
g, is greater than the mean deviation, MD = 3.8 g. In some cases,
occasional strong outliers can distort SD to the point at which a
researcher considers rejecting them, only because they ‘don’t look
right’. This is not a recommended practice. Perhaps using MD to
describe data dispersion would encourage treating data with more
respect.

Then again, standard deviation is very well established in statis-
tics. It is ‘built into’ the Gaussian distribution, and one or three
sigma probabilities are used widely. It is used to find confidence
intervals for the mean, a very important error measure. There
are advocates of using the mean deviation in everyday laboratory
practice (e.g. Gorard 2005), but the standard deviation, despite its
drawbacks, is doing very well and won’t disappear from statistics
books overnight.

Pearson’s correlation coefficient

Correlation is a statistical relationship between two random vari-
ables. In practice, we measure the correlation between two sets of
data, where data points correspond to each other, so that you can
arrange them in pairs. For example, if you have a group of genes
of interest, you can measure their expression level under two con-
ditions – let’s call them X and Y. For gene i, you will have a pair of
expression levels, (xi, yi). If genes behave similarly under the two
conditions, you would expect the two sets of measurements to be
correlated. Another example could be the relationship between the
heights of fathers and their adult sons (see Exercise 5.3).

Mathematically speaking, Pearson’s correlation coefficient for
two sets of (paired) measurements, x1, x2,… , xn and y1, y2,… , yn,
is defined as

r = 1
n − 1

n∑
i=1

(
xi − Mx

SDx

)(
yi − My

SDy

)
, (4-15)

where Ms and SDs are the mean and standard deviation of sample
s. Quantities in brackets are called standard scores or Z-scores for
each data point and tell us how many standard deviations from the
mean the given point is. The correlation coefficient r has a simple
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Figure 4-7. Correlation between two variables, x and y. Each panel shows 30 pairs of mea-
surements, (xi, yi). Numbers above panels show Pearson’s correlation coefficient, r. (a) Positive
correlation; (b) no correlation; and (c) strong negative correlation (anticorrelation).

intuitive meaning, which is best explained in a plot. Figure 4-7
shows examples of data with either positive correlation (r close to
1), no correlation (r close to 0) or negative correlation (r close to
−1). Two perfectly correlated samples (r = 1) would form a straight
line in a plot.

For small data sets, the correlation is usually poorly established.Confidence interval of the
correlation coefficient is

discussed in Section 5.7.
When you have only five pairs of numbers, the correlation coeffi-
cient might be quite high, but its uncertainty is going to be huge
and the correlation might not be statistically significant. I will dis-
cuss this in Chapter 5.

You should exercise caution when interpreting the correlation
coefficient. Correlation between two variables does not neces-
sarily imply a direct causal link between them. A famous exam-
ple comes from Australia, where it has been reported that when-
ever ice cream sales rise, so do shark attacks4. The two variables
are correlated, but this doesn’t mean that eating ice cream makes
you tastier for a shark. A more prosaic explanation is that in hot
weather, people both eat ice cream and go to the beach to swim
(with the sharks) more frequently.

The estimator described by equation (4-15) is biased, and it un-
derestimates the true correlation coefficient (in absolute values). It
is possible to correct for this, but the correction is mathematically
complicated, so I will only refer the curious reader to the relevant
literature (Olkin and Pratt 1958).

4This is probably a myth. I couldn’t find any actual data confirming this
correlation. However, it sounds very plausible and hilarious, so it makes
a good example.
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Proportion

At first glance, proportion is a very simple thing: a ratio of two
numbers. For example, if there are 6 mice out of the initial 10
alive 5 days into the experiment, the surviving proportion is 0.6.
If 134 people out of the sample of 998 voted for party X5, then the
proportion is about 0.13. In statistics we use the term number of
successes, and proportion is defined as

p̂ = Ŝ
n

, (4-16)

where Ŝ is the number of successes and n is the total number of
objects in question. Mind you, success is just a word; voting for party
X might turn out to be a complete failure after all.

As usual,the statistical estimator derived from the sample only
Confidence interval of a
proportion is discussed

in Section 5.8.

roughly approximates the true proportion in the population. The
larger the sample, the better the estimator, hence an opinion poll
based on three subjects (including one dog) is worthless. In sur-
vival experiments the number of animals (e.g. mice) is usually very
limited, so knowing the error of proportion is very important.

We can link proportion with the binomial distribution. A sam-
Binomial distribution is

explained in Section 2.7.
ple of size n can be considered as a series of n events with a proba-
bility of success p. A random variable S, representing the number
of successes, is binomially distributed with the mean np and the
standard deviation

√
np (1 − p); see equations (2-9) and (2-10). A

proportion of successes can be represented by a scaled random
variable, 𝜑 = S∕n. If you multiply or divide a random variable by
a constant, its mean and standard deviation scale by the same con-
stant. Therefore, the mean of 𝜑 is

𝜇𝜑 = p, (4-17)

and its standard deviation is

𝜎𝜑 =
√

p (1 − p)
n

. (4-18)

Proportion is distributed with a scaled binomial law.

5The author of this book denies any links to party X, if such a party exists
anywhere in the world.
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4.5 Standard error

The two most important statistical estimators you can calculate
from a sample are the mean and the standard deviation. The mean
tells us where the sample is centred; the standard deviation is a
measure of the sample spread. This is all beautiful, but we would
like to know more. In particular, we would like to know how well
the mean is established: we would like to know the error of the
mean. Standard deviation is not a good measure of this error,
as it doesn’t reflect the size of the sample. Surely, with 100 data
points we can pinpoint the mean much better than with only 5
data points! The error of the mean should somehow scale with
the sample size.

Let us conduct yet another thought experiment. Consider our
mouse population again, with body weights distributed normally
(𝜇 = 20 g and 𝜎 = 5 g). Let us take a random sample of five mice
and calculate the mean, M. Repeat this experiment eight times,
taking a different random sample every time. The result is shown
in Figure 4-8a. Because the distribution of body weight in the pop-
ulation is rather wide (𝜎∕𝜇 = 0.25), measurements from individual
samples are also scattered widely. This is reflected by the size of
standard deviation from each sample.

Now, allow ourselves full play and repeat sampling 100,000I will come back to the
sampling distribution in

Section 5.1.
times. I have simulated this in a computer, collected the mean for
each sample and plotted the distribution of sample means in Fig-
ure 4-8b. This is called the sampling distribution of the mean, and
it is probably one of the most important probability distributions
in this book. It doesn’t tell you how individual measurements are
distributed; it tells you how the sample mean is distributed, should
you perform your entire experiment many times.

Note that the sampling distribution is much narrower than
the original Gaussian distribution from which the samples were
drawn. The standard deviation of the population is 𝜎 = 5 g,
whereas the standard deviation of the sampling distribution from
Figure 4-8b is about 2.2 g. The width of the sampling distribution
depends on the sample size: the bigger the sample, the narrower
the distribution. Figure 4-8c and 4-8d show the same simulated
experiment performed for the sample size of 30. Although indi-
vidual measurements have similar scatter to that in Figure 4-8a,
sample means are much more concentrated around the true pop-
ulation mean. This is reflected by the much narrower sampling
distribution in Figure 4-8d. Remember: all the samples in Figure
4-8 come from the same population, and yet there is a considerable
difference between n = 5 and 30.
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Figure 4-8. Standard error of the mean for the sample sizes of five (left) and 30 (right). Top pan-
els show eight independent random samples. Grey dots represent individual body weights; black
circles with longer error bars correspond to sample mean ± standard deviation. The shorter er-
ror bars, marked with a thicker line, show the sample standard error. All samples come from a
normal population with 𝜇 = 20 g and 𝜎 = 5 g. Each of the bottom panels shows distribution of
sample means from 100,000 randomly generated samples. This is the sampling distribution of
the mean. The dot with error bars above the distribution illustrates the distribution mean, 𝜇m = 𝜇,
and standard deviation, 𝜎m = 𝜎∕

√
n, respectively. The sampling distribution of the mean is nar-

rower for a larger sample size, with 𝜎m = 2.2 and 0.9 g for n = 5 and 30, respectively.

Sample size matters!

You probably see where this is going. The width of the sampling
distribution can be perhaps used to estimate the uncertainty of the
mean. The narrower the sampling distribution, the better we can
constrain the mean.

What is this width, then? To find out, let us consider the sample
sum, S =

∑n
i=1 xi, first. A single measurement, xi, can be treated as a

random variable with a certain probability distribution (it doesn’t
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have to be Gaussian), with a mean 𝜇 and a standard deviation 𝜎.
The sample sum, S, can also be considered as a random variable
derived from individual measurements. Because it is a sum of n in-
dependent variables, we can use the central limit theorem to pre-
dict that it is going to be normally distributed for a large n. The
mean of the variable S is simply n𝜇, just because we added n in-

I discussed central limit
theorem in Section 2.5.

dependent random variables with the mean 𝜇 each. We also know
(from basic statistics) that variance is additive. If we add n ran-
dom variables with variance 𝜎2 each, the resulting variance is n𝜎2.
Hence, the standard deviation of the sum is the square root of its
variance,

√
n𝜎. We conclude that the sample sum, S, is distributed

normally with the mean n𝜇 and standard deviation
√

n𝜎.
The sample mean is M = S∕n (i.e. the sample sum scaled by a

factor 1∕n). When we scale a random variable, its mean and stan-
dard deviation scale in the same way, so we have to divide them by
n. This gives the mean and standard deviation of M of n𝜇∕n = 𝜇

and
√

n𝜎∕n = 𝜎∕
√

n, respectively.
To summarize, the sampling distribution of the mean ap-

proaches a Gaussian distribution for a large n. Its mean is the same
as the population mean, 𝜇m = 𝜇, and its standard deviation is

𝜎m = 𝜎√
n

. (4-19)

This is a measure of the uncertainty of the mean we are looking
for, but, alas, it is not very useful. We do not know the population
standard deviation, 𝜎, so we cannot find 𝜎m. We can, however, do
a trick commonly used in statistics. We can replace the unknown
population parameter with the known sample estimator. In this
case, we replace 𝜎 with SD and find the following estimator:

SE = SD√
n

. (4-20)

It is called the standard error of the mean. Please note that this is anRemember the counting
error from Figure 3-5? estimator calculated from just one particular sample. It estimates

𝜎m, but it is not equal to 𝜎m. Short, thicker error bars in Figure
4-8a and 4-8c show individual standard errors for each sample. If
you look carefully, you will notice that they change from sample to
sample (especially for n = 5), but they are all comparable with the
population 𝜎m, which is shown in the bottom panels of the figure.
This is how estimators work, and you are going to see it many
times throughout the book.



Statistical estimators 69

Also, the true population mean (usually unknown in real ex-
periments) is not always within the standard error from a sample.
For example, you can see from Figure 4-8a that the true mean is
outside of the SE error bars for samples 3, 4 and 7.

More about probabilistic
interpretation of the

standard error in
Section 5.5.

There is no guarantee that the true population mean is
within M ± SE.

Standard error, SE, is derived from the standard deviation, SD.
You can use various estimators of the standard deviation. If you
use the biased SDn−1, you will end up with a biased standard er-
ror, which underestimates the error of the mean. You can use the
corrected version, SDc, as shown in equation (4-12), to obtain an
(approximately) unbiased standard error. This correction should
not be used to find confidence intervals.

Table 4-2 shows the similarities and differences between stan-
dard deviation and standard error. Standard error is typically used

Table 4-2. Comparison of standard deviation and standard error
estimators. Equations in the top row show the Bessel-corrected
biased estimator SDn−1; however, it can be replaced with the
unbiased SDc from equation (4-12). The critical value t∗ is calculated
from the t-distribution and explained in Section 5.4.

Standard deviation Standard error

SD =

√
1

n−1

n∑
i=1

(xi − M)2 SE = SD√
n

Measure of dispertion in the
sample

Error of the mean

Gives an estimate of the true
population standard deviation,
𝜎

Tells you how accurately you can
estimate the mean

About 68% of data points should
be within M ± SD, but only if
the population is Gaussian.

In about 68% of repeated
experiments, the true mean 𝜇

is within M ± t∗SE.
Does not depend on sample size Gets smaller with increasing

sample size
To be used if you want to

estimate either the variability
or dispersion in your data

To be used only to assess the
uncertainty of the mean (but it
is better to use confidence
intervals)
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to express uncertainty in the sample mean. This is a standard pro-
cedure and there is nothing wrong with it. I would like to point
out, however, that the confidence, related to the standard error,Standard error as a

confidence interval is
discussed in Section 5.5.

varies with the sample size. I strongly recommend using ‘proper’
confidence intervals to express uncertainty of any estimator, in
particular for the sample mean.

Confidence intervals are
the topic of Chapter 5.

Standard error is a useful measure of uncertainty of the
mean; however, it is better to use confidence intervals
instead.

4.6 Standard error of the weighted mean

Standard error of the mean is expressed by a very simple formula.Weighted mean is
defined by equation

(4-3).
However, it cannot be applied to the weighted mean, just because
it doesn’t contain weights. It turns out that there is no simple ana-
lytical formula to calculate standard error of the weighted mean. A
few approximations have been suggested (Gatz and Smith 1995),
and one specific formula (Cochran 1977) seems to work quite well:

SE2
W = n

(n − 1)(
∑

wi)2

[∑
(wixi − WMw)2

− 2MW

∑
(wi − W )(wixi − WMW )

+ M2
W

∑
(wi − W )2

]
.

(4-21)

Here, W = 1
n

∑
wi is the mean weight and all sums are over i =

1,… , n. This equation might look a bit scary at first glance, but it
contains only simple sums and is easy to compute numerically.

Luckily, unless you have data with arbitrary weights, there

See Chapter 7 for error
propagation.

might be no need for using equation (4-21). When data are
weighted by errors, wi = 1∕SE2

i , we can derive error of the
weighted mean by error propagation. If we apply the error prop-
agation formula (equation 7-4) to the definition of the error-
weighted mean (equation 4-4), we find

SEW = 1√∑n
i=1

1
SE2

i

. (4-22)

Please note that this formula takes into account only contributions
from individual errors. It doesn’t care about how data points are
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distributed. There is a quiet assumption that SEi are not any ar-
bitrary uncertainties, but real standard errors (hence, the notation
SEi). Each weighted data point can be regarded as a mean with
its standard error. Then, as illustrated in Figure 4-8, the spread in
the means (its standard deviation) is similar to individual standard
errors, SEi ≈ SD.

An interesting thing happens when all individual uncertainties
(weights) are equal. If our errors are standard errors, we require
SEi = SD. In such a case, equation (4-22) transforms into

SEw = 1√∑n
i=1

1
SD2

= 1√
1

SD2

∑n
i=1 1

= 1√
n

SD2

= SD√
n

,

which is the standard error of the unweighted mean. This is exactly
what we expect, because when all errors are equal the weighted
mean reduces to the bog-standard arithmetic mean.

Figure 4-3 illustrates the difference between the unweighted
and weighted mean and their corresponding errors. The un-
weighted mean and its error from equation (4-20) are M = 2.8 ±
2.2, whereas the weighted mean and its error from equation (4-22)
are Mw = 1.7 ± 0.1. The unweighted error is artificially inflated
by three outliers. The contribution from large outlier errors to
the weighted error is negligible, because terms 1∕SE2

i in equation
(4-22) are very small for large SEi. Hence, this equation effectively
‘ignores’ huge spurious errors and takes into account only ‘proper’
errors from other ‘well-behaved’ data points.

4.7 Error in the error

It is possible to build the sampling distribution of the standard
deviation, analogous to the sampling distribution of the mean in
Section 4.6. We would take a lot of samples, measure the standard
deviation for each of them and build a distribution of all these SDs.
The width of this sampling distribution, expressed by its standard
deviation6, is a measure of SD uncertainty. This quantity can be

6To be more precise: standard deviation of the sampling distribution of
the standard deviation (!).
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found analytically, and the formula for the relative error in SD is
(e.g. Brandt 1999):

ΔSD
SD

= 1√
2 (n − 1)

. (4-23)

This formula also works if you replace SD with SE. If you wonderQuoting numbers and
errors is discussed in

Section 6.4.
why on Earth we would need such a thing, I can reassure you that
this is a very useful formula in everyday practice. This can be used
as a measure of the error in the error. Knowing the level of (relative)
uncertainty in your error is crucial when you want to quote it in
writing. I will come back to this later in the book.

4.8 Degrees of freedom

This is perhaps a good time to explain the concept of degrees of
freedom, which I use a few times in this book. By definition, it
is the number of independent pieces of information used to cal-
culate an estimator. Let us consider a sample, x1, x2,… , xn. There
are n independent values here. If we calculate the sample mean,
there are n degrees of freedom in it. However, there are only n − 1
degrees of freedom when finding the standard deviation (or vari-
ance), because we had to calculate the mean in the first place and
we lost one independent value by doing this.

Have a look at the following example. Consider a sample con-
sisting of three data points: 2, 3 and 7 (see Table 4-3). The sum
of these data points is 12, and the sample mean is M = 4. In the
next step we calculate residuals, xi − M, which are needed to find
the standard deviation. Because of the definition of the mean, the
sum of the residuals is always zero (equation 4-2). It constitutes
a constraint, which removes one degree of freedom. When you
know n − 1 residuals, you can always find the nth residual from this

Table 4-3. Calculating standard deviation from three data points, 2,
3 and 7. The last row shows the sum of the rows above. Standard
deviation is

√
14∕2 ≈ 2.65 with two degrees of freedom.

i xi xi − M (xi − M)2

1 2 −2 4
2 3 −1 1
3 7 3 9
Σ 12 0 14
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equation. For example, if you knew the first and second residual
to be −2 and −1, then the third residual must be 3. There are
only n − 1 independent pieces of information here. Hence, there
are n − 1 degrees of freedom for estimating either the standard
deviation or variance. Thus, when calculating the mean squared

The other reason is that
SD2

n−1 is an unbiased
estimator of variance.

residual (standard deviation), we divide the sum of squared
residuals by n − 1. This is one of the reasons for the formulation
of SDn−1, as shown in equation (4-8). For the same reason, we use
a t-statistic with n − 1 degrees of freedom for finding confidence
intervals of the mean (Section 5.4) and n − 2 in the definition of
the mean squared residual in the linear fit (Section 8.3).

4.9 Exercises

Exercise 4.1
Four independent experiments measured the random movement
of DNA in the nucleoplasm. The first experiment collected more
data and provided better statistics, and the remaining three ex-
periments were quick follow-ups. They found the diffusion coeff-
cients of 4.3 ± 0.6, 5 ± 2, 8 ± 5 and 6 ± 2, respectively (all in units
of 10−3μm2 s−1). Errors are standard errors. How would you com-
bine these results together, and how would you estimate the com-
bined error?

Exercise 4.2
Using equation (4-15), demonstrate that the correlation coeffi-
cient for two identical samples (xi = yi for each i) is exactly 1.
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Confidence intervals

Confidence is what you have before you understand the problem.
—Woody Allen

Experiments are about measurements; measurements give you
numbers. When you weigh a mouse, you get a number. When you
measure the distance between two fluorescent dots under a micro-
scope, you get a number. When you assess drug potency, you get
a number. The problem is that all these numbers are uncertain.
The uncertainty might come from the variability of the subject
(each mouse is different) or from measurement errors. Occasion-
ally, measurement errors can be estimated directly (e.g. reading
errors), but in many types of experiments there is no way of even
guessing the size of error involved. Typically, intrinsic variabil-
ity and measurement errors are mixed and entangled together, so
when we get our final number there is no way of telling how reli-
able it is.More about replicates in

Section 5.11. This is why you should perform experiments in replicates. You
repeat your measurement under the same conditions to get several
answers to the same question. This can be interpreted as taking a
sample from a (rather abstract) population. Using this terminol-
ogy, by doing an experiment in replicates you are interested in the
population parameter and estimate it from the sample.

Doing an experiment in n replicates corresponds to tak-
ing a sample of size n from an (unknown) population.

The most commonly estimated parameter is the mean. The
standard error can be used to assess the uncertainty of its estima-
tor, the sample mean. Have a look at sample no. 1 in Figure 4-8a.
We get five measurements, we find their mean and standard error
and we can quote the result as 18 ± 3 g. Quoting the sample mean
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and its standard error is a common practice in experimental sci-
ences. On one hand, it is good because it gives us a standardized
estimate of uncertainty of the mean. On the other hand, it is diffi-
cult (although possible) to give the standard error some statistical
significance.

This is where confidence intervals come in. In this approach, we
not only find the best value and its error, but also assign a certain
level of confidence to the error. Typically, we say that the mea-
sured quantity lies within a range of values with a certain confi-
dence. This range of values is called the confidence interval. In this
chapter, I will explain how to find confidence intervals for various
estimators and what they really mean.

5.1 Sampling distribution

I have already introduced the concept of the sampling distribu-Sampling distribution of
the mean is shown in

Figure 4-8.
tion while discussing the standard error. Now I am going to show
how the sampling distribution can help us to understand confi-
dence intervals. I’m afraid I’m going to bore you to death with
our little thought experiments, but I really think they are a nice
way of clarifying things that otherwise would require even more
boring and complicated maths to explain.

Here it is. Out of all the mice in the universe, let us select a
random sample of five and weigh each of them. From this sample,
we calculate the mean weight, M. This is a statistical estimator of
the population mean weight, 𝜇.

Again, imagine we can repeat this experiment 100,000 times and
collect 100,000 sample means. The frequency distribution of these
sample means is shown in Figure 5-1. Please note that drawing
100,000 samples of five mice is a very different experiment from
drawing one sample of 500,000 mice. In the former case we find
the sampling distribution of mean, and in the latter case we approx-
imate the population distribution. The sampling distribution is not
an approximation of the population distribution. It represents sta-
tistical behaviour of the sample of the given size. The sampling
distribution for n = 5 is different from the sampling distribution
for n = 30, as demonstrated in Figure 4-8. This can be done for
any statistical estimator, for example the mean, median, standard
deviation, proportion or correlation.

The sampling distribution is the distribution of a sta-
tistical estimator.
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Figure 5-1. Example of a simulated sampling distribution. 100,000 random samples of five
points were taken from a normal population of mouse body weight with 𝜇 = 20 g and 𝜎 = 5 g.
Mean weight was found for each sample. The graph shows the distribution of sample means –
the sampling distribution of the mean. The interval indicated by the arrow at the bottom of the
figure contains a fraction 𝛾 of all sample means, where 𝛾 is the requested confidence level.

The simulated sampling distribution of the mean, shown in
Figure 5-1, was collected from 100,000 samples randomly drawn
from a Gaussian population. As you can see, the sample means are
distributed quite widely. To assess the width of the distribution,
we can find its standard deviation. From Section 4.5, we already
know that the standard deviation of the sampling distribution
is called the standard error. However, as I will show later in this
book, the statistical intuition of the standard error is a bit dubious.
We can do better than that and express the width of the sampling
distribution from Figure 5-1 in terms of probability, or confidence.

Let us choose a particular confidence first, for example,
𝛾 = 0.95 (but see Section 5.3). Sometimes the confidence level is
given as a small number 𝛼 = 1 − 𝛾 , which in this case would be
𝛼 = 0.05. Conventional notation uses the Greek letters gamma
and alpha, to denote the ‘big’ and ‘small’ confidence levels,
respectively. We want to find an interval of mouse body weight,
such that the fraction 𝛾 (95%) of all sample means falls within this
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interval. It is very simple, as illustrated in Figure 5-1. All we need
is to cut off a total of 1 − 𝛾 = 5% of outliers on both sides. We
probably want a symmetric interval and cut off the same amount
of (1 − 𝛾) ∕2 = 2.5% on each side (dark-shaded regions). This
leaves 𝛾 = 95% of the samples in the middle. To do this, we can
order all 100,000 samples by increasing mean weight and reject
the top and bottom 2.5%. The resulting interval in Figure 5-1 is
from 15.6 to 24.3 g. It contains 95% of all sample means.

This example shows how to find an interval containing a certain
fraction of all possible samples. This is not a confidence interval;
this example only shows its intuitive meaning. You can think of
this as an ideal quantity which we will try to estimate.

The sampling distribution is not used to find confi-
dence intervals in practical applications.

For obvious reasons, you cannot have all the samples shown in
Figure 5-1. No funding body will ever let you breed half a million
mice for obesity studies. Not to mention animal activists in front
of your office. And all the local cats trying to get inside. All you
can have is just one sample of n replicates. That’s it. Fortunately,
there is a way here. As it happens in statistics, instead of repeating
the experiment a gazillion times, we can be smarter and predict
things theoretically. OK, when I say ‘we’, I really mean some damn
good mathematicians who did it in the past century. For many of
the commonly used statistical estimators, it is possible to estimate
the corresponding sampling distributions analytically and derive
confidence intervals from them. In the next few sections, I will
show how to do this in practice, but first we need to understand
properly what a confidence interval really is.

5.2 Confidence interval: what does it really mean?

Let us consider a 95% CI of the mean. I am choosing this only
for illustrative purposes; confidence intervals can be found for (al-
most) any parameter of interest and for any confidence level. Let
us take a (random) sample of 30 mice from the population with
the mean body weight of 𝜇 = 20 g. Mind you, in real life you don’t
know the population mean. You are trying to estimate it!

Section 5.4 shows how
to find the confidence

interval of the mean.

Having all the mice we can weigh them and find the sample
mean, M, standard deviation, SD, and the sample size, n (which
is usually chosen in advance). From these three numbers, we can
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Figure 5-2. The meaning of confidence intervals. An experiment, in which a random sample
of 30 mice was weighed, has been repeated 100 times. Each time we found the mean of the
sample and the 95% confidence interval of the mean, which are represented by dots and error
bars, respectively. We don’t know the true mean (𝜇 = 20 g, indicated with the horizontal line in
this simulated example), but we know that in 95% of cases it is going to be within our confidence
interval. The five cases out of 100 where the true mean is outside the 95% CI are indicated in
thicker black lines.

find the 95% CI of the mean. I will explicate later in this chapter
how to do this. We still don’t know what the true population mean
is, but now we have 95% confidence that it is within our interval.

What does this mean exactly? Have a look at Figure 5-2. It
shows the body mass experiment with 30 mice repeated 100 times.
The error bars encompass 95% CIs for each sample. As you can
see, every time the sample mean and the confidence interval are
different. Sometimes the true mean is included in the confidence
intervals, and sometimes it isn’t. The 95% confidence level means
that the population mean is included in 95% of the confidence
intervals. It is outside the confidence interval in 5% of samples.

The 95% CI will include the true population parameter
in 95% of the repeated experiments.

I would like to warn you about a misconception when it comes
to explaining the confidence intervals. The 95% CI does not mean
that we have 95% probability of finding the population mean
within this particular interval. The population mean is not a
random variable, so we cannot state the probability of finding
it within a certain range. The population mean is fixed, even
though we don’t know it. You have to repeat the experiment many
times, finding a different confidence interval every time. The true
unknown mean will be within 95% of these intervals, but there
is no way of telling whether one particular confidence interval
contains it or not.
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Hence, we cannot make any probability statement from just one
sample. When we quote a confidence interval, we implicitly imply
the hypothetical statement, ‘if we were to repeat our experiment
many times . . . ’

A 95% confidence limit does not mean you have a 95%
probability of finding the population parameter in it.

This is a subtle but important difference.

5.3 Why 95%?

It seems that there is something magical about 95%. Or 5%, de-
pending how you look at it. 95% CIs are commonly used in biol-
ogy, psychology, social sciences and so on. The limiting p-value of
5% is also popular. The choice of these particular values is com-
pletely arbitrary, and probably comes back to the times of the in-
fluential statistician Ronald Fisher (1890–1962). He published sta-
tistical tables with probability distributions calculated for a few
particular probabilities, including 0.05. These tables were used
widely by many researchers for many years to come. In his text-
book (Fisher 1970) describing the Gaussian distribution and its
standard deviation, he said:

The value for which P = 0.05, or 1 in 20, is 1.96 or nearly 2; it is con-
venient to take this point as a limit in judging whether a deviation
ought to be considered significant or not. Deviations exceeding twice
the standard deviation are thus formally regarded as significant. Using
this criterion we should be led to follow up a false indication only once
in 22 trials, even if the statistics were the only guide available. Small
effects will still escape notice if the data are insufficiently numerous to
bring them out, but no lowering of the standard of significance would
meet this difficulty.

This book, first published in 1925, is regarded to be one of the
most influential books of the twentieth century on statistical meth-
ods. The 95% CI, or a p-value of 0.05, was, so to speak, im-
printed in the minds of many generations of researchers. Nowa-
days it is commonly used, but, really, you don’t have to follow the
crowd.

There is nothing special about the 95% CI.
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You can use any reasonable confidence interval as long as you state
the corresponding probability. You can equally well use a 90% or
99% interval. If you want to be very stringent (or if you are a
physicist, but then, why are you reading this book?), you might
use a ‘three sigma’ limit, which corresponds to the probability of
99.7% (see Table 2-1).

Having said that, I am going to use 95% CIs in this book, just
for the sake of consistency. It does not diminish the generality
of any of the statements I am going to make. Every 95% confi-
dence given here can be replaced with any other probability, and
the same equations can be used.

5.4 Confidence interval of the mean

Let us state the problem we are going to solve. There is a popula-Population and sample
are discussed in

Section 4.1.
tion from which we take measurements. For example a population
of all mice, each of them having a given body mass, or a popula-
tion of all possible gene expression levels for a given gene, under
certain conditions. The population is characterized by an unknown
mean, 𝜇, and standard deviation, 𝜎. From this population, we take
a sample. It can be a literal sample, like five actual mice, or a set
of measurements (replicates). The sample consists of n numbers,
from which we can find the sample mean, M, and standard devi-
ation, SD. The question is: how reliable is M? How do we find
an interval

[
M1, M2

]
such that the true mean is included in this

interval with a certain confidence, let’s say 95%?
Our aim is to find some constraints on the population mean, 𝜇,

which is our unknown. The starting point (see Figure 5-3a) is the
sampling distribution of the mean, which is the same as in Figure
5-1. It represents all possible samples of size n for the unknown
population. We would like to cut out a region containing 95% of
samples, as indicated in the plot. Because the width of the sampling
distribution is not known (it depends on the population’s 𝜎), we
can’t do it directly. Instead, we can transform this distribution into
a new distribution of known shape and width, where finding theStudent’s t-distribution is

described in Section 2.9. confidence interval is possible. We can do this by calculating the
so-called t-statistic,

t = M − 𝜇

SD∕
√

n
= M − 𝜇

SE
. (5-1)

I have introduced this transformation before. It shows how far our
sample mean deviates from the true mean in terms of standard
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Figure 5-3. Finding the 95% confidence interval of the mean. (a) A simulated sampling dis-
tribution (from 100,000 random samples of size n = 5) of the mean, M. (b) The corresponding
distribution of the statistic t. A simple mathematical transformation converts an unknown distri-
bution of the mean into a known, standardized distribution (Student’s t-distribution), from which
the required confidence interval can be found.

errors. It is only a mathematical trick, we cannot find t from the
sample because we don’t know 𝜇. However, we can predict how t
behaves statistically. In a thought experiment (where 𝜇 is known)
we can build its sampling distribution the same way we created the
sampling distribution of the mean: by taking lots of samples from
the original population and calculating t for each of them. The
sampling distribution of the statistic t is shown in Figure 5-3b.

Critical values for
t-distribution for selected

tail probabilities and
degrees of freedom are

shown in Table A-1.

And here is the crucial point: it can be shown1 that the t-statistic
follows a Student’s t-distribution with n − 1 degrees of freedom.
The form of this distribution is known analytically, and it is easy2

to calculate probabilities in any range of t, or vice versa, to find a
range of t corresponding to a given probability. You can do this
by looking up tabulated values of t-distributions at the end of
this book. Alternatively, any self-respecting statistical software can
do it. There are also many online t-distribution calculators to do
the job.

1It was first done by William Gosset; see Section 2.9.
2Actually, the calculation involves a rather awkward incomplete beta func-
tion; when I say ‘easy’, I mean it can be done quickly and precisely with
a computer.
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Anyway, it is fairly straightforward to find the so-called critical
value t∗, corresponding to the required probability, or confidence
level, and the number of degrees of freedom, n − 1. Figure 5-3c
shows a critical value t∗, cutting off 2.5% on each side and leav-
ing 95% probability in the middle (light-shaded area). In terms
of probabilities tabulated or computed by software, the right-tail
probability is P (T > t∗) = 0.025, where T is a random variable
with t-distribution. Because the t-distribution is symmetric, 95%
of the distribution is contained between −t∗ and +t∗, so our con-
fidence limit in t-space is

− t∗ ≤ t ≤ t∗. (5-2)

Now we can reverse our transformation and go back to the mean.
Solving equation (5-1) for 𝜇 gives us

𝜇 = M − tSE (5-3)

If t is between −t∗ and +t∗, equation (5-3) gives us limits on 𝜇 for
our particular sample, or, in other words, the confidence limit of
the mean:

M − t∗SE ≤ 𝜇 ≤ M + t∗SE. (5-4)

Hence, the half of the confidence interval (error) has the size

CI = t∗SE. (5-5)

This makes things very simple. The confidence interval of the
mean is a scaled standard error, and the scaling factor is the critical
value from the t-distribution, for a given confidence and n − 1 de-
grees of freedom. Treating half of the confidence interval as error,
we can rewrite equation (5-4) as

𝜇 = M ± t∗SE. (5-6)

As I pointed out in Section 2.9, Student’s t-distribution approxi-Selected critical values
for the Gaussian

distribution are listed in
Table 2-1.

mates Gaussian for larger n. In such case the critical value from the
standardized3 Gaussian distribution can be used instead of t∗. For
example, the 95% probability is enclosed within ± 1.96. So, a very
crude rule of thumb would be: the 95% CI for the mean is roughly
twice the standard error. But it only works roughly and only for

3Standardized means 𝜇 = 0 and 𝜎 = 1.
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Figure 5-4. Comparison between standard deviation (SD), standard error (SE) and 95% con-
fidence interval of the mean (CI95) for a sample size of 8 (left) and 100 (right). Both samples
were drawn from a Gaussian distribution with 𝜇 = 20 g and 𝜎 = 5 g.

large samples. I still recommend doing proper calculations using
the t-distribution.

A comparison between standard deviation, standard error and
95% CI is shown in Figure 5-4. Both standard error and con-
fidence interval scale with the sample size, and the 95% CI is
roughly twice the size of the SE.

Example

Consider a sample of seven mice with the following body weights
(in grams):

16.8 21.8 29.2 23.3 19.5 18.2 26.3

Let us calculate the 95% CI of the mean. First, we need to find
the mean, standard deviation and standard error of our sample:

M = 22.16 g,
SD = 4.46 g,
SE = 1.69 g.

This was very simple. Now, we need to find the critical value
from the Student’s t-distribution that cuts off (1 − 0.95)∕2 = 0.025
right-tail probability for n − 1 = 6 degrees of freedom. From
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Table A-1, we can find that t∗ = 2.447. From equation (5-5), we
get the confidence interval, CI = 2.447 × 1.69 g = 4.14 g. Finally,
we can write

𝜇 = 22 ± 4 g,

where the error quoted is the 95% CI. Please note that I haveRules for quoting
numbers and errors are

explained in Section 6.4.
quoted only one significant figure of the error and rounded the
mean to the same precision.

Now, let us find a different confidence interval, for example a
99% CI. The critical value for (1 − 0.99)∕2 = 0.005 and six degrees
of freedom is t∗ = 3.797, and the 99% CI is

𝜇 = 22 ± 6 g.

5.5 Standard error versus confidence interval

A confidence interval is a scaled standard error, as shown in equa-
tion (5-5), where the scaling factor is the critical value t∗. Let me
rewrite this equation explicitly, stating that this scaling factor de-
pends on the sample size, n, and on the required confidence, 𝛾 :

CI = t∗n−1 (𝛾) × SE. (5-7)

I will use this equation to compare the standard error with the
confidence interval. We can do this from two points of view.

How many standard errors are in a confidence
interval?

For a given value of confidence, the scaling factor gets larger
for a smaller n. You can see it from the tabulated values of t∗ in
Table A-1 in the Appendix. The second column from the right
shows the critical values (our scaling factor) for 95% confidence. I
visualized these data in Figure 5-5a. It shows how many standard
errors are in the 95% CI as a function of n. There is one outstand-
ing point in this plot; for the sample size of n = 2, the scaling factor
is huge, t∗1 (0.95) = 12.71. If you have only two data points in your
sample and calculate the standard error, the 95% CI will be almost
13 times larger! This illustrates how little confidence there is in a
tiny sample of two points. If you want a sensible result, you defi-
nitely need more replicates. For larger samples, the 95% CI corre-
sponds to about two standard errors (the limit for a very large n is
about 1.96).
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Figure 5-5. Standard error versus confidence interval. (a) The num-
ber of standard errors in a 95% confidence interval, t∗n−1 (0.95), as a
function of the sample size. The dashed line shows the asymptotic
t∗∞ (0.95) = 1.96 limit. (b) The confidence corresponding to the stan-
dard error for the given sample size. The dashed horizontal line is the
asymptotic “one sigma” probability of 68.3%.

What is the confidence of the standard error?

Now let us compare standard errors and confidence intervals from
a different point of view. We could ask: what is the confidence
corresponding to the standard error? In other words: what confi-
dence 𝛾 do we have to request to obtain a confidence interval of the
same size as the standard error? From equation (5-7), CI equals SE
when

t∗n−1 (𝛾) = 1. (5-8)

We are looking for a value of 𝛾 that gives the scaling factor of 1,
as a function of the sample size, n. It is possible to find it from the
t-distribution. I plot this relation in Figure 5-5b.

We know already that the standard error is smaller than the
95% CI, so we expect its confidence to be less than 95%. And in-
deed, it is always smaller than the asymptotic limit of about 68%.
You probably recall this number – it corresponds to one sigma in
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the Gaussian distribution (for a large n, the t-distribution becomes
normal). However, for smaller samples this confidence drops sub-
stantially.

This is why I advocate against using standard errors in plots,Statistical confidence is
explained in Section 5.2. where confidence intervals are feasible. Depending on the sam-

ple size, standard errors have different statistical confidence. For
example, if you compare two samples of different sizes, repeated
experiments will include the true population mean within the stan-
dard error in 58% and 68% of cases, for n = 3 and 50, respectively.
This is not a huge difference, but still, it is better to compare things
with identical statistical meaning. It doesn’t matter what confi-
dence you assume, whether it is 68%, or 95%, or any other, as
long as you are consistent.

It is better to use confidence intervals than to use stan-
dard errors.

5.6 Confidence interval of the median

Consider a population of any arbitrary probability distribution.Median was first
introduced in
Section 4.4.

The population median, Θ, divides it into two halves of equal
probability,

P (X ≤ Θ) = P (X ≥ Θ) = 1
2

. (5-9)

Here, X is a random variable describing our population. This sim-
ple fact is always true (by definition!), regardless of the shape of the
distribution. Let us draw a sample of n points from the population,
x1, x2,… , xn, and calculate its median, M̃ . How well does the sam-
ple median represent the true population median? Can we find
confidence intervals of M̃?

As before (Section 4.4, ‘Median’ sub-section), let us sort our
sample in ascending order, x(1) ≤ x(2) ≤ … ≤ x(n). The sample
median sits in the middle of this sequence. If the sample is truly
random and measurements are independent, then the probability
that the given point, x(i), is less than the population median, Θ, is
exactly 1

2
. This is a simple consequence of the median definition,

described by equation (5-9). Obviously, the probability that x(i) ≥
Θ is also 1

2
. By combining these probabilities for all data points, we

can find the probability of having k data points to be lower than
Θ, and the remaining n − k data points to be higher than Θ. Let’s
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call this probability Pk. You can think of this as the probability of
‘finding’ Θ between x(k) and x(k+1). This is not exactly true, because
the population median is not a random variable and does not have
a probability distribution. It is the sample that is random. The ac-
tual meaning is as usual: if we draw lots of samples, a fraction Pk
of them will have the true median between x(k) and x(k+1).

How can we calculate Pk? Let us use an analogy: we can com-

I used the same
argument in Section 5.2.

pare drawing individual data points from the population to tossing
a coin. For example, when x(i) < Θ, we call it ‘heads’; when x(i) ≥
Θ, we call it ‘tails’. Drawing n points and checking on which side
of the median they lie are the same as tossing the coin n times.
The probability of getting k heads (and n − k tails) from n trials

Binomial distribution is
described in Section 2.7.

can be calculated from the binomial distribution with p = 1
2
, using

equation (2-7):

Pk =
(

n
k

)
2−n. (5-10)

An example for the sample size of n = 18 is shown in Figure 5-6.
The sample median is in the middle between the ninth and 10th
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Figure 5-6. An example of the binomial distribution described by equation (5-10). The horizon-
tal axis shows the position (rank) in the sorted sample, that is, 1 corresponds to the first measure-
ment (sample minimum), 2 is the second smallest point and so on. 18 represents the last point
in the ordered sample (sample maximum). The sample median (not population median!) lies in
the middle, between the ninth and 10th ordered points. The graph shows the probability Pk of
‘finding’ the population median (see text). The confidence interval, 𝛾 , was selected to be as close
to 95% as possible. However, due to the discrete nature of the binomial distribution, the actual
probability is 𝛾 = 96.91%. A better approximation of the 95% CI can be found by interpolation
(see text).
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sorted data points. The probability of ‘finding’ the population me-
dian between these two data points is the same as the probability
of getting nine heads in 18 coin throws, and equals about 18.5%.
There are online binomial distribution calculators that can find
this value for you.

We can now add the binomial probabilities starting from the
middle of the distribution and moving outward, until we get
the desired confidence probability 𝛾 , for example 95%. Mathe-
matically speaking, we need to find an index d (between 0 and⌈n∕2⌉ − 1) such that

𝛾d+1 ≤ 𝛾 < 𝛾d, (5-11)

where 𝛾d is the probability of ‘finding’ 𝜃 between x(d) and x(n−d):

𝛾d = P (d ≤ W ≤ n − d) . (5-12)

Here, W is a binomial random variable for n events and a prob-
ability of success of 0.5. The probability 𝛾d is marked by the
light-shaded area in Figure 5-6. Again, there are online calcula-
tors and computer software that can find the cumulative prob-
ability from a binomial distribution. In our example, d = 5, as
𝛾d+1 = 0.904 and 𝛾d = 0.969. Please note that this gives us only an
approximation of the required confidence interval, and instead of
the 95% CI what we get here is a 96.9% CI. This is because the
binomial distribution is discrete. Our approximate confidence in-
terval extends from x(d) to x(n−d+1). Note that this procedure can
also return d = 0. In this case, the confidence interval includes all
of the sample points and cannot be constrained.

In order to improve the estimate, we can interpolate between
x(d) and x(d+1) at one end and between x(n−d) and x(n−d+1) at the other
end of the interval. Having found d, we need to compute the in-
terpolating factor (Hettmansperger and Sheather 1986):

I =
𝛾d − 𝛾

𝛾d − 𝛾d+1
.

From this, we can find

𝜆 =
(n − d) I

d + (n − 2d) I
,
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which is a quantity between 0 and 1, telling us how to mix the in-
terpolated quantities. Finally, the confidence limits for the median
are

M̃L = (1 − 𝜆) x(d) + 𝜆x(d+1),
M̃U = 𝜆x(n−d) + (1 − 𝜆) x(n−d+1).

(5-13)

Simple approximation

There is a convenient approximation for quick and easy estimation
of the confidence interval of the median, which does not require
searching in the binomial distribution (Olive 2005). The sorted
sample is x(1) ≤ x(2) ≤ … ≤ x(n). Let ⌊x⌋ denote the ‘floor’ of x,
which is the largest integer that is either smaller than or equal
to x, and let ⌈x⌉ denote the ‘ceiling’ of x, which is the smallest in-
teger larger than or equal to x. For example, ⌊3.2⌋ = 3, ⌈3.2⌉ = 4
and ⌊3⌋ = 3 = ⌈3⌉. Let us define indices

L =
⌊

n
2

⌋
−
⌈√

n
4

⌉
,

U = n − L.
(5-14)

Then, the standard error of the median is

S̃E =
x(U ) − x(L+1)

2
, (5-15)

and the confidence interval looks familiar:

M̃L = M̃ − t∗S̃E

M̃U = M̃ + t∗S̃E,
(5-16)

where t∗ is the critical value from a Student’s t-distribution with
U − L − 1 degrees of freedom, corresponding to the required con-
fidence level.

Example

Let me present a worked example, which will demonstrate the
confidence interval of the median step by step. Imagine a sample
of nine mice with the following body weights (in grams):

14.9 22.0 15.0 17.9 21.4 20.6 21.4 24.8 18.0
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The sorted sample is:

i 1 2 3 4 5 6 7 8 9

x(i) 14.9 15.0 17.9 18.0 20.6 21.4 21.4 22.0 24.8

The sample median is the fifth sorted point, M̃ = x(5) = 20.6 g.
From the binomial distribution and equation (5-12), we can find
𝛾1 = 0.996, 𝛾2 = 0.961, 𝛾3 = 0.820 and 𝛾4 = 0.492. Hence, the con-
dition [equation (5-11)] is fulfilled by d = 2:

0.820 ≤ 0.95 < 0.961.

Then, the approximate confidence interval is between x(2) = 15.0
and x(7) = 21.4 g. Now, we improve our result by interpolation. We
calculate I = 0.0778 and 𝜆 = 0.228. Finally, from equation (5-13)
we find the 95% confidence limits of the median [15.7, 21.9] g.
For comparison, the mean is M = 19.6 g and the 95% CI is
[17.0, 22.1] g.

The approximated method yields L = 2 and U = 7. From this
we get the standard error S̃E = 1.75 g. The critical t∗ for proba-
bility 0.025 and 4 degrees of freedom is 2.776 (Table A-1). Hence,
the approximate 95% CI is [15.7, 25.5] g.

5.7 Confidence interval of the correlation coefficient

Pearson’s correlation coefficient, r, is commonly used in experi-I have introduced
Pearson’s correlation

coefficient in Section 4.4.
mental sciences to express whether two quantities behave either
in a similar way (are correlated) or independently (are uncorre-
lated). However, there are all too many papers quoting only the
correlation coefficient (e.g. r = 0.73) without estimating its uncer-
tainty. This is probably OK for a large sample with hundreds or
thousands of measurements, but claiming that two quantities ‘are
correlated’, based on only five data points, is dubious. We need to
find a way of estimating the uncertainty of r, which will depend
on the sample size, n.Confidence interval of the

mean is explained in
Section 5.4.

In order to achieve our aim, we are going to follow a similar
schema as in finding confidence intervals of the mean. We are go-
ing to build a sampling distribution of the correlation coefficient,
do a clever transformation into a known theoretical distribution,
cut off required probabilities and find corresponding limits on r.

Let us assume a population of pairs of numbers, for which the
(unknown) correlation coefficient is 𝜌. We draw a sample of size
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Figure 5-7. (a) Nine examples of samples of 30 (x, y) pairs of points
with the correlation coefficient calculated for each of them. The sam-
ples are drawn from a population with 𝜌 = 0.66. (b) Sampling distri-
bution of the correlation coefficient. 100,000 samples, as above, were
drawn from the same population, and the distribution of r is plotted.

n and find this sample’s correlation coefficient, r. Let us repeat
the procedure many times. Figure 5-7a shows nine samples from
the population and their respective correlation coefficients. Fig-
ure 5-7b shows the distribution of these coefficients from 100,000
samples. As you can see, this distribution, unlike the sampling dis-
tribution of the mean (which is Gaussian), is asymmetric. Fortu-
nately for us, a simple formula called Fisher’s transformation,

Z′ = 1
2
ln 1 + r

1 − r
, (5-17)
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6 Sampling distribution of
the correlation coefficient
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Figure 5-8. Finding the 95% confidence interval of the correlation coefficient. (a) Sampling
distribution of the correlation coefficient, r. (b) The corresponding sampling distribution of Z′.
The distribution of r is not known. A simple mathematical transformation converts into a known
distribution (Gaussian), from which the required confidence interval can be found.

creates a statistic Z′, whose sampling distribution is normal, with
standard deviation

𝜎′ = 1√
n − 3

. (5-18)

The original and transformed sampling distributions are shown in
Figure 5-8. The procedure we apply here is analogous to finding
the confidence intervals of the mean. I will show how it works
using one practical example. Imagine we have a sample of 30
paired measurements, and the Pearson’s correlation coefficient
for them is r = 0.73. First, using equations (5-17) and (5-18), we
find Z′ = 0.929 and 𝜎′ = 0.192. These are the mean and stan-
dard deviation of a Gaussian distribution. Its sampling version is
shown in Figure 5-8b. As we know, 95% probability is included
within Z′ ± 1.96𝜎′ (see Table 2-1), hence the lower and upper lim-
its on Z′ are Z′

lo
= 0.929 − 1.96 × 0.192 = 0.553 and Z′

up = 0.929 +
1.96 × 0.192 = 1.31. Now, we reverse the formula (5-17) to find r,

r = e2Z′ − 1
e2Z′ + 1

. (5-19)

We simply plug Z′
lo

and Z′
up in equation (5-19) to find the cor-

responding limits on r. When we do this, we find rlo = 0.50 and
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rup = 0.86. Hence, the 95% CI on the correlation coefficient is
[0.50, 0.86]. This interval is asymmetric with respect to r = 0.73,
which reflects the asymmetry of the sampling distribution shown
in Figure 5-8a. We can write it down as an asymmetric plus-minus
error,

r = 0.73+0.13
−0.23.

As you can see, the uncertainty is quite substantial even for a
reasonably sized sample. The same calculation carried out for the
sample size of 6 yields the 95% CI, [−0.20, 0.97]. This is a huge
error, and you can’t say if the two quantities are correlated or not.
Hence, if you quote in your paper r = 0.73 from a sample of six
pairs and claim you have found a correlation, this is, delicately
speaking, an unfounded statement. Less delicately, it is utter
rubbish.

Significance of correlation

The significance of the correlation coefficient is neither an error
nor an uncertainty. However, it is closely related to errors and of-
ten used in biological publications, so I thought it deserves a short
discussion. Statistical significance is usually based on a null hy-
pothesis. In this case, the null hypothesis is that the sample comes
from a population with no correlation at all (i.e. the population
coefficient of correlation is 𝜌 = 0), and the observed correlation
of the sample (e.g. r = 0.73, as in Figure 5-9) is purely due to ran-
dom sampling. It just happened that something emerged out of
noise. The probability of this occurring by chance is the statistical
significance of the correlation. In Figure 5-9a, the sample is small
and this probability is p = 0.05. Hence, if we draw many samples
of this size from an uncorrelated population, one in 20 will show at
least this level of correlation. The 95% CI, [−0.20, 0.97], is con-
sistent with zero.

There is a completely different story, however, when the sample
size is larger. Figure 5-9b shows a sample with the same correla-
tion coefficient, r = 0.73, as in Figure 5-9a, but with 30 data points
instead of six. This time, the correlation is highly significant, with
the probability of getting it by chance p = 2 × 10−6. This is a re-
spectable value. We can safely claim that these data show a corre-
lation. This is supported by the 95% CI, which is not consistent
with zero.
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(a) n = 6,  r = 0.73 [−0.20, 0.97],  p = 0.05 (b) n = 30,  r = 0.73 [0.50, 0.86],  p = 2×10−6

Figure 5-9. Two samples of different sizes but yielding the same Pearson’s correlation coeffi-
cient of r = 0.73. The numbers above the panels show the sample size, n, correlation coefficient,
r and its 95% confidence interval and correlation significance.

How do we find the significance of correlation? The method is
rather simple. It can be shown that the quantity,

t = r
√

n − 2
1 − r2

, (5-20)

is distributed with a Student’s t-distribution with n − 2 degrees of
freedom. The requested p-value of the statistical significance is the
one-tail probability from the t-distribution, P (T ≥ t), where T is
a random variable with t-distribution.

Here is an example. For the samples shown in Figure 5-9a and
5-9b, the t values, found using equation (5-20), are 2-14 and 5-65,
respectively. The corresponding numbers of degrees of freedom
are 4 and 28. Using either a computer program or an online t-
distribution calculator, one can find one-tail probabilities of p =
0.05 and 2 × 10−6, respectively.

We need a one-tail probability because we are asking about the
probability of getting a correlation at least as strong as that ob-
served by random sampling. In other words, we want to know
the probability of getting a correlation ≥ r, which is P (T ≥ t)
in the t-distribution. This is the right-hand tail of the distribu-
tion. If the samples were anticorrelated (r < 0), we would be ask-
ing for the probability of getting a stronger negative correlation,
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that is, correlation ≤ r, which is P (T ≤ t), where t is negative.
This is the left-hand tail of the distribution. Due to symmetry,
P (T ≤ t) = P (T ≥ |t|), for t < 0.

Both here and when finding the confidence interval for the
mean (Section 5.4), we use a Student’s t-distribution. The way we
use it is different, though. When calculating the CI for the mean,
we had to find a t-value corresponding to the given tail probabil-
ity. Here, we do the opposite (i.e. for the given t, we need to find
the corresponding tail probability).

5.8 Confidence interval of a proportion

Imagine an experiment in which you have 10 mice. On day 0, you
infect them with something nasty and then watch the poor crea-
tures die. Every day, you count survivals and calculate the pro-
portion of the initial 10 that is still alive. The results are shown in
Table 5-1. What is the uncertainty of these proportions? Repeated
‘measurements’ will not help: when you have six mice, you have
six mice, regardless of how many times you count them. However,
if you repeated the entire experiment once again, you would prob-
ably get different counts and different proportions, as a function
of time. For example, on day 16 you might still have three mice
surviving. Doing survival experiments in many replicates is often
impractical, so we need to devise a method of estimating the un-
certainty of a proportion from just one sample.

Consider a large population from which we draw a sample
Proportion was

introduced in Section
4.4.

of size n. A proportion p̂ = Ŝ∕n of the sample will have the de-
sired property, where Ŝ is the number of ‘successes’. It can be
a proportion of voters supporting a specific political party, or

Table 5-1. Survival experiment. 10 mice are infected with a disease
on day 0. The number of surviving mice is recorded every day. The
last mouse dies on day 16.

Days Surviving mice Proportion

0–3 10 1.0
4–6 8 0.8
7 6 0.6
8–12 2 0.2
13–15 1 0.1
16+ 0 0
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it can be a proportion of mice alive after a few days of treat-
ment. This is an estimator of the true, unknown proportion in the
population.

In order to find a confidence interval of the proportion, we haveSampling distribution is
discussed in Section 5.1. to look at its sampling distribution. As usual, I did a simulated ex-

periment in my computer. I picked 100,000 random samples from
a large population with a given proportion of success of p = 0.134.
The proportion of successful elements varies from sample to sam-For random sampling

see Section 3.4. ple, due to .. . random sampling. From all these samples, I can plot
a frequency distribution of sample proportion, p̂. I repeated the ex-
periment for three sample sizes of n = 10, 50 and 998. The results
are shown in Figure 5-10. As in the case of the mean, the width
of the sampling distribution (specifically, its standard deviation) is
the standard error of the proportion.Proportion follows a

scaled binomial
distribution, see

Section 4.4.

Luckily, we can estimate this standard deviation directly from
the sample. We already know that the proportion is binomially
distributed and its standard deviation is expressed by equation
(4-18). Since we do not know the population proportion, p, we
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Figure 5-10. Sampling distribution of a proportion. 100,000 samples of size n = 998, 50 and 10
were randomly drawn from the population with a true proportion of success of 0.134. Frequency
distributions of the sample proportion are shown for each n. With decreasing sample size, the
sampling distribution becomes broader and asymmetric.
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replace it with its estimator, p̂, and get the standard error of the
proportion,

SEp̂ =

√
p̂ (1 − p̂)

n
, (5-21)

For example, if 134 people out of a sample of 998 support party
X, then the proportion is p̂ = 0.134 and its standard error is SEp̂ =
0.011. This error scales with 1∕

√
n and gets bigger for smaller sam-

ples. A similar proportion of 7 out of 50 people (p̂ = 0.14) would
give the standard error of 0.05. For a fixed sample size, SEp̂ is
largest when the proportion is p̂ = 0.5.

Now we want to convert the standard error into a more useful
confidence interval. The sampling distribution is known (scaled
binomial), and for a large n it approximates a Gaussian distribu-
tion. Hence, in order to find a 95% CI, you need to multiply the
standard error by Z = 1.96. For the voters example of SEp̂ = 0.011,
we find Z × SEp̂ = 0.021, and the 95% CI is [0.11, 0.16]. This is
often called the margin of error in surveys and opinion polls. You
might read in a newspaper, ‘13.4% of people would vote X; the
margin of error is 2%’. The problem is that newspapers will never
tell you what confidence interval the margin of error corresponds
to. You can only guess if it is 90 or 95%. It can also be the maxi-
mum CI, found for p̂ = 0.5 (in order to have one conservative error
estimate for all quoted proportions).

The ‘margin of error’ is usually the maximum 95% CI
of the proportion. But you never know.

This simple approach does not work well for small samples. As you
can see from Figure 5-10, when n gets smaller, the sampling distri-
bution becomes not only broader but also more skewed. Clearly, it
is no longer Gaussian, and we cannot simply multiply the standard
error by a Z factor. A transformation into a known distribution is
not easy here, so a few approximate methods have been developed,
to take into account skewness of the sampling distribution and es-
timate the confidence interval. One of the simplest and reasonably
accurate methods is the so-called adjusted Wald method (Agresti
and Coull 1998).

Consider a sample of size n, where Ŝ (number of successes) ele-
ments have the desired property. The proportion is p̂ = Ŝ∕n. First,
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we need to decide about the confidence level and find the corre-
sponding Gaussian score, Z. For example, for the 95% CI, it is

Selected Gaussian
probabilities are listed in

Table 2-1.

Z = 1.96. The adjusted proportion has Z2∕2 and Z2 added to the
numerator and denominator, respectively:

p′ =
Ŝ + Z2

2

n + Z2
. (5-22)

Then, the half-size of the confidence interval (margin of error) is

W = Z

√
p′ (1 − p′)
n + Z2

, (5-23)

and the confidence interval extends from p′ − W to p′ + W . If you
look carefully at equations (5-22) and (5-23), you will notice their
similarity to the standard error [equation (5-21)]. The margin of
error is Z multiplied by the adjusted standard error, where mod-
ifications replace Ŝ with Ŝ + Z2∕2 and n with n + Z2. These ad-
justments bring the estimated confidence intervals close to true
values. Note that for the 95% CI. Z2 ≈ 4, so when the sample is
large (e.g. hundreds of points), and the proportion is not too close
to zero, these two adjustments become negligible. Since the sam-
pling distribution is then roughly Gaussian (Figure 5-10), you can
use W = 1.96 × SEp̂ as the half-size confidence interval. Note that
this confidence interval is asymmetric with respect to the original,
uncorrected proportion p̂.

Let us go back to our survival experiment. Data from Table 5-1
are shown as a black thick line in Figure 5-11. Lightly shaded
large boxes show the 95% CIs of the proportion, calculated us-
ing the adjusted Wald method. These errors are quite substan-
tial. For example, when you have eight mice left, the confidence
interval of proportion is [0.49, 0.95]. The observed proportion is
only an estimator of the true, unknown value. It might be 0.8, it
might be 0.6, or it might be 0.94. You don’t know. The only thing
you know is that in repeated experiments, the true value would be
within the calculated confidence interval 95% of the time. There
is also a rather large error on the proportion of zero, [0, 0.32]4.

4The adjusted Wald method cuts off 2.5% of the probability distribution
on each side, leaving the 95% CI. When the proportion is 0, the lower
limit is fixed at 0, so after cutting off the top 2.5% there is 97.5% left.
Hence, the quoted confidence interval is in fact a 97.5% CI, not a 95%
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Figure 5-11. Confidence intervals (CIs) for proportion. The black line
shows the proportion of mice surviving in an experiment with the initial
number of mice, n = 10. The lightly coloured boxes show the 95% CIs
for this proportion. Darker, smaller boxes show the 95% CIs calculated
for the same proportion, but with n = 100.

Frighteningly, it seems you have up to three zombie mice at the
end of the experiment! You can improve your precision by in-
creasing the sample size (if it is possible to do so). Darker, smaller
boxes in Figure 5-11 illustrate the 95% CI for the sample size
of n = 100.

5.9 Confidence interval for count data

A Poisson, or count, distribution describes random, independentPoisson distribution is
discussed in Section 2.7. events that can be counted (e.g. a number of colonies on a Petri

dish, or a number of patient deaths over a certain period of time).
As I explained before, the standard deviation of a Poisson random
variable with the mean number of counts 𝜇 is 𝜎 =

√
𝜇. This, how-

ever, is a crude estimate of count uncertainty. We can do better
than that.

Finding confidence intervals usually involves the sampling dis-
tribution. If the sampling distribution is awkward, then we can

CI. You can either quote this interval with the appropriate note, or re-
calculate it by cutting off the top 5% (i.e. picking Z = 1.64) and risking
inconsistency with other intervals. The same problem exists for the pro-
portion of 1.
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transform it to a familiar form and do our probability calculations
there. The sampling distribution of the count number is a Pois-
son distribution, and we know its analytical form. If we measured
the number of bacterial colonies under identical conditions many
times, we could build a Poisson distribution out of these counts.
However, cutting a specific tail off a discrete distribution is not
easy. Have a look at Figure 2-1a: it shows the Poisson distribution
for 𝜇 = 4. The first bar (X = 0) contains about 1.8% of the total
probability, whereas the first two bars (X ≤ 1), encompass about
9.2%. How on earth are we going to cut exactly 2.5% off?

We can do a little trick. We can shift the entire distribution to
the left and to the right, by adjusting its mean, until the tail cut
off by our measured count number gives us exactly the required
probability. I realize that what I just said does not make any sense,
so let me explain this using a pretty picture.

A few examples of
Poisson distribution are

shown in Figure 2-7c.

Consider a measured count of k = 5, for example five bacterial
colonies. Now, draw a Poisson distribution for a given mean num-
ber of counts, 𝜇. Remember that 𝜇 does not have to be an integer
number, as it represents the mean. And here is the trick: imagine
an interactive picture (which I cannot draw in this rather static
book) in which we can ‘slide’ the distribution to the left and right
by increasing and decreasing 𝜇. Let us start with 𝜇 = 5 and de-
crease it until our k = 5 cuts off exactly 2.5% on the right-hand
side: P (X ≥ 5) = 0.025. This is shown in Figure 5-12a. Since 𝜇

is a continuous variable, we can do it exactly, without interpola-
tion. It turns out that the required mean is 𝜇1 = 1.62. We have just
found the lower confidence limit, xL = 1.62, that corresponds to a
2.5% cutoff. Now we can do the same above k = 5. We increase
𝜇 until the left-hand tail gives us 2.5%: P (X ≤ 5) = 0.025. This is
achieved for the new mean of 𝜇2 = 11.67. This is our upper confi-
dence limit.

This looks nice in a picture, but how do we calculate theseSampling distribution is
discussed in Section 5.1. values in practice? How do we find the mean that gives the Pois-

son distribution with the given tail? We would have to calculate
the cumulative Poisson distribution and find its reciprocal value.
Funnily enough, this can be done exactly, without approximations,
and it leads to yet another probability distribution, the 𝜒2 (chi-
square) distribution. I’m not going to discuss the properties of
𝜒2 distribution; an inquisitive reader can find that in any good
statistics book. I can only say that, like the t-distribution, it is
characterized by a number of degrees of freedom. Critical values
cutting off selected probabilities are tabulated in statistics books
and on the web. I will denote as 𝜒2 (p, n) the value that cuts off
the right-tail probability p in 𝜒2 distribution with n degrees of
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Figure 5-12. Finding confidence intervals for count data. In this example, we have k = 5 counts.
Both panels show the probability distribution of a random Poisson variable X. First, we move the
entire distribution to the left and find a mean, 𝜇1, such as P (X ≥ 5) = 0.025. Panel (a) shows a
Poisson distribution with the mean 𝜇1 = 1.62, and the dark-shaded bars show the tail probability
of 2.5%. Then we shift the distribution to the right and find a mean,𝜇2, such as P (X ≤ 5) = 0.025,
as demonstrated in panel (b). The 95% confidence interval on k is between 𝜇1and 𝜇2.

freedom. Then, the confidence limits on the count number k are
(Gehrels 1986)

kL = 1
2
𝜒2

(
1 − 𝛼

2
, 2k

)
,

kU = 1
2
𝜒2

(
𝛼

2
, 2k + 2

)
,

(5-24)

where 𝛼 = 1 − 𝛾 is the confidence level. For 95% CI, we have 𝛼 =
0.05 and the limiting probabilities are 0.975 and 0.025. Please note
that 𝜒2 probabilities are tabulated in various ways. Here I assume
that 𝛼 corresponds to the right-tail probability.

Tabulated confidence
limits for count data are

shown in Table A-2.

In our example, k = 5, we can find tabulated values
𝜒2 (0.975, 10) = 3.247 and 𝜒2 (0.025, 12) = 23.337, so our
95% CI is [1.6, 11.7]. This can be written as an asymmetric
plus-minus error, k = 5+7

−3. For your convenience, I have created
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a table of confidence limits for count data, which can be found in
the Appendix.

The standard error of the
count is discussed in
Section 3.5; rules for

quoting numbers with
errors are laid out in

Section 6.4.

A simpler, cruder way of assessing the uncertainty of the count is
its standard error, calculated as the square root of the count. From
the count number, k = 5, we have SE =

√
5 ≈ 2.24. This error can

be written as k = 5 ± 2. As you remember, the standard error of the
mean approximates a 68% CI for large samples. By analogy, we can
find a 68% CI for count data, using equation (5-24), which, for
k = 5, gives the interval [2.8, 8.4]. This can be written as x = 5+3

−2.
As you can see, there are many ways the uncertainty of a count can
be assessed:

Standard error 5 ± 2

68% CI 5+3
−2

95% CI 5+7
−3

I cannot stress how important it is to state what type of error you
quote. Each of them is different!

Simple approximation

For those who do not wish to use probability tables or who require
nonstandard confidence limits, I give a simple analytical approxi-
mation that allows quick and fairly accurate estimation of the con-
fidence intervals for count data. Here, k is the number of counts
and Z is the Gaussian cutoff for the given confidence limit (see
Table 2-1). For example, Z = 1.96 for the 95% CI. The approxi-
mation is as follows (Gehrels 1986):

kL = k − Z
√

k + Z2 − 1
3

,

kU = k + Z
√

k + 1 + Z2 + 2
3

.
(5-25)

For the 95% CI on k = 5, it gives the interval [1.56, 11.75], in a very
good agreement with the exact confidence interval [1.62, 11.67].

Errors on count data are not integers

Our best 95% CI for k = 5 is [1.6, 11.7]. After rounding, we can
write it as [2, 12], which doesn’t change the fact that the calcu-
lated bounds on the confidence interval are not integers. Once a
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colleague of mine, who is a physicist like myself, asked me, ‘But
surely, these errors on counts have to be integers, you cannot have
a count of 1.6, you can only have 1 or 2 counts! When you say that
k = 5+7

−3, you mean that k can be between 2 and 12 with a certain
degree of confidence. You cannot say that k is between 1.6 and 11.7,
right?’ It took me a moment to identify a very fundamental flaw
in his understanding of errors and confidence intervals. The con-
fidence interval of [1.6, 11.7] is not for the measured value of 5. It is
for the Poisson mean, 𝜇. And this value can be a real number, for
example 3.5, as in our example of radioactive decay shown in Fig-
ure 2-7. If we repeat our count measurement many times, and find
many (non-integer) 95% CIs, then the true mean will be within
calculated confidence intervals in 95% of our measurements.

Errors on integer counts represent uncertainty in find-
ing the non-integer Poisson mean.

5.10 Bootstrapping

Bootstrapping (resampling) is a computer-based method of assign-
ing an uncertainty to a statistical estimator, in cases where the sam-
pling distribution is either not known or is awkward to calculate.
Bootstrapping is rather straightforward, although it requires some
programming skills and might be computationally intensive. It is
based on a sample of measurements and can be used for any imag-
inable statistical estimator.

Section 5.4 shows how
to calculate confidence

intervals of the mean
using the t-distribution.

I will demonstrate bootstrapping on a simple example of the
arithmetic mean. Since we already know a method of finding
confidence intervals of the mean, we can compare it to resam-
pling. Consider a sample of 12 mice, for which we measured body
weights. The measurements are (in grams):

19.4, 18.2, 11.5, 17.2, 25.7, 19.2, 21.5, 16.7, 15.6, 27.7, 14.3, 16.3.

The mean, standard deviation and standard error of this sample
are M = 18.61 g, SD = 4.59 g and SE = 1.32 g. The critical value
from the t-distribution for p = 0.025 and 11 degrees of freedom
is (Table A-1) t∗ = 2.201. Hence, the 95% CI can be found as
[15.7, 21.5]. This was easy. Now, let us try bootstrapping the orig-
inal sample.

The method is charmingly simple: we select a random sample
from the original sample. The new sample must be the same size as
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the original (12), but it allows for repeated items. This is called re-
sampling with replacement. If we were to draw numbered balls from
an urn, each ball would be replaced in the urn after calling its num-
ber. Hence, the same ball can be called several times. For example,
a new sample can look like

15.6, 27.7, 16.3, 15.6, 18.2, 14.3, 16.3, 16.3, 16.7, 17.2, 19.4, 14.3.

In this example, the last measurement of the original sample,
16.3 g, is repeated three times, but the values 18.2, 17.2, 25.7 and
19.2 g are missing. The mean of this sample is 17.33 g, less than
the original sample.

Now we repeat this procedure many times, at least a thousand
or so. This will create a distribution of bootstrap means similar
to that shown in Figure 5-13. Each resampled sample gives us a
different ‘view’ on the original sample. All of them approximate
the sampling distribution of the mean. The next step is obvious:

Bootstrap mean
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Figure 5-13. Distribution of bootstrap means. The original sample
was resampled with replacement 106 times. The distribution of the
means of all these samples is shown here. Dark-shaded regions show
the top and bottom 2.5% of the means. The lightly shaded region in the
middle contains 95% of samples and corresponds to the 95% confi-
dence interval (CI). The 95% CI calculated from t-distribution (Section
5.4) is shown for comparison.
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we have to cut off the top and bottom 2.5% of all sample means.
The easiest way of doing this is by sorting the means in ascending
order. The range containing the remaining 95% of samples is our
95% CI. By resampling the original data 106 times, I have found
the 95% CI= [16.3, 21.3], slightly narrower than the interval found
using the t-distribution.

Please note that the bootstrap distribution is not identical to the
sampling distribution. The sampling distribution is built by sam-
pling from the whole population – which is impractical in real life.
The bootstrap distribution is built from just one sample, which is
actually easy to do. It approximates the sampling distribution, and
this approximation is usually good enough to be applied in prac-
tice, so it can be used to estimate the standard error of the mean.

The great advantage of this method is its simplicity and flexibil-
ity. Obviously, you don’t have to use it to calculate the confidence
interval of the mean when the appropriate theory already exists.
It can be used for any other statistics, for example the median,
where confidence intervals require interpolation. In Section 5.6, I
showed an example of a sample of nine measurements for which
the 95% CI on the median was found using the binomial distri-
bution with interpolation. The result was [15.7, 21.9] g. Applying
the bootstrap to the same sample results in a slightly smaller 95%
CI of [17.5, 21.6] g.

Bootstrapping becomes particularly useful when you want to
estimate uncertainty of a complex estimator, for example the coef-
ficient of variation5. It can also be used for measurements with dis-
tributions far from Gaussian or log-normal. Basically, you might
use bootstrapping when other methods do not work.

If all else fails, use the bootstrap.

Bootstrapping has too many applications to mention here; a curi-
ous reader can have a look at one of the available textbooks (e.g.
Efron and Tibshirani 1993).

5.11 Replicates

Replication is the repetition of an experiment under the same
conditions, so that the variability of the measured quantity can

5The coefficient of variation is the standard deviation divided by the
mean.
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be estimated. Each of the repetitions is called a replicate. Repeti-
tion of the same measurement, which does not take inherent bio-
logical or technical variability into account, is not replication but
pseudo-replication. The design of an experiment that avoids pseudo-
replication is a big topic (see e.g. Hurlbert 1984).

I mentioned
pseudo-replication in the
example of counting five

mice again and again
(Section 2.1) and

repeated measurements
of the same subject

(Section 3.4, Sampling in
time sub-section).

I cannot stress enough how important replicates are in experi-
mental biology. In Chapter 3, I tried to demonstrate different types
of errors and show how to estimate them. Only a handful of simple
measurement errors can be estimated directly either from instru-
ment properties or from theory. In many experiments, errors are
too complicated and unpredictable.

Typically, the only way of estimating measurement er-
rors is to perform the experiment in replicates.

At this point, many biologists ask the inevitable question: how
many replicates do I need? Alas, there is no simple answer. The
honest answer is: it depends. Depends on your experiment, on
what you want to achieve; it also depends on how much funds and
time you have. Generally, there are two situations where you need
repeated measurements. First, when a particular quantity is mea-
sured and you want to find its variability and estimate its error,
which is the topic of this book.

The second situation is when you have two (or more) groups of
subjects (typically, treatment and control) and you want to com-
pare them. In particular, you want to know whether the measured
quantity varies between the groups. This is a part of hypothe-
ses testing and statistical power estimates, and it goes beyond the
scope of this book. For more information about sample size in
hypothesis testing, see, for example, Van Belle (2008) or Cohen
(1988).

Let us briefly discuss the first case. Consider the following ex-
ample. Figure 5-14 illustrates a (simulated) case of 30 replicates:
independent measurements of the same quantity under the same
conditions. It shows how the sample mean and its error evolve
as we add more replicates. When we have only one replicate
(the first point on the left in Figure 5-14), we don’t have any
statistics: mean doesn’t make much sense, and the standard de-
viation (and error) is undefined. Hence, you don’t know the un-
certainty of your measurement. You might be bang on the true
value, or you might be 50% off. Measurement without error is
meaningless.
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Figure 5-14. A computer simulation illustrating 30 replicates to mea-
sure the same quantity under the same conditions. Dots show indi-
vidual ‘measurements’, randomly generated from a Gaussian distribu-
tion of 𝜇 = 20 g and 𝜎 = 5 g. The solid, broken line is the cumulative
sample mean. At a given point, n, it shows the mean of measure-
ments from 1 to n. The two dashed lines above and below show the
95% confidence interval for the cumulative mean. The true mean (un-
known in real life) is marked with the straight dashed horizontal line.
The grey-shaded area shows the 95% variability interval of the cumu-
lative mean: if we repeated the entire procedure many times, 95% of
the cumulative means we determine would be within the shaded area
(see text).

With two replicates, we can find the mean and get a very rough
estimate of the error. The problem is that the sample of only two
points is rubbish from a statistical point of view. In our example,
the first two measurements are 21.4 and 26.7 g, so their mean is
24.1 g, not very far from the true mean. However, the 95% CI
(see Section 5.4) is a whopping ± 33 g! It is so huge that it doesn’t
fit in Figure 5-14 (dashed broken lines). The standard error, often

Standard error for a small
sample corresponds to

low confidence, as
shown in Figure 5-5.

used to represent the uncertainty, is much smaller, ± 2.6 g, but
it corresponds to a very small confidence of only 50%. If we
repeat the two-replicate measurement many times, only half of
the time the true mean is going to be within the standard error.
This is not good. Increasing the number of replicates helps, but
not immediately. You need a dozen or so replicates to ‘stabilize’
the mean and error.

The grey-shaded area in Figure 5-14 shows the variability of
the cumulative mean calculated as the 95% probability of the
sampling distribution. Let me explain how it was calculated. For
the given number of replicates, n, I repeated the entire experi-
ment (all n replicates) thousands of times and found the sampling
distribution of the mean. Then, I cut 2.5% off each side of the
distribution. What is left is a 95% cumulative mean theoretical
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variability interval. This is not a confidence interval, as explained
in Section 5.2, but it would be nice if the actual 95% CI calculated
from one sample somehow resembled this 95% variability. And it
does, for the large number of replicates! However, when you have
only a few replicates, the confidence interval can be quite different
than the variability interval (but keep in mind that this is one spe-
cific example). Compare the dashed lines and the shaded area in
Figure 5-14. A very small sample gives us poor confidence in the
mean result.

So, how many replicates do you need? Physicists have a rule
of thumb, saying that you need at least 30 replicates to get good
statistics. Some biologists I met would happily do an experiment
in one replicate. Judging from Figure 5-14, one might say that any
sample smaller than 12 is not very good. But, again, it depends on
what you need to achieve. Here, I’m going to present just one very
simple and intuitive method.

Sample size to find the mean

Here is a problem: we want to know the required sample sizeSampling distribution of
the mean is shown in

Figure 5-1.
(number of replicates), to estimate the mean with a given level
of accuracy. I will measure accuracy in terms of the confidence
interval. Recall the sampling distribution of the mean: it is nor-
mally distributed, and the standard deviation of this distribution
is 𝜎∕

√
n. Assume we are interested in a 95% CI error. From Ta-

ble 2-1, we find it is about 1.96 of the standard deviation, which we
can round up to

C ≈ 2𝜎√
n

. (5-26)

This is not really a confidence interval for the mean, as defined by
equation (5-5). Equation (5-26) simply represents the size of the
interval containing 95% of the Gaussian distribution. The differ-
ence between equations (5-5) and (5-26) reflects the difference be-
tween Gaussian and t-distributions, which is not huge unless the
sample is very small. In Figure 5-14, the Gaussian 95% is repre-
sented by the shaded area, whereas the actual confidence intervals
from the sample are shown by dashed lines. We can reverse the
relation [equation (5-26)] to find the required sample size,

n = 4𝜎2

C2
. (5-27)
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This is a crude estimation and requires a priori knowledge of the
population standard deviation. You can have a rough estimate of 𝜎
from a pilot study. Coming back to our murine example from Sec-
tion 2.1, the standard deviation of weight from a sample of mice
was 5 g. Assume you want to estimate the weight of a particular
strain with accuracy better than ± 2 g (95% CI). From equation
(5-27), we find n = 4 × 25∕4 = 25. You need at least 25 mice to do
this. Please note that n scales with C−2, so to get twice as good ac-
curacy you need a four times larger sample. To estimate the mean
weight within ± 1 g, you would need 100 mice.

Once again, equation (5-27) doesn’t work for very small sam-
ples. If it gives you n < 5, you should reconsider your calculations.

5.12 Exercises

Exercise 5.1
The experiment measures expression of a certain gene in wild-type
cells (control) and under a certain treatment which is supposed to
suppress it (treatment). The control is in 12 replicates; the treat-
ment is in five replicates. The normalized expression levels are as
follows:

Control Treatment

0.787
0.913
0.517
1.295
0.948
1.006
1.208
1.305
1.323
0.789
0.911
1.353

0.693
0.657
0.574
0.192
0.739

Find the 95% CIs for the mean for each sample. Do they overlap?
You can use either the tabulated t-distribution from Table A-1 in
the Appendix, any good statistical software, or one of the many
available online t-distribution calculators.
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Exercise 5.2
A bioluminescent reporter was used to measure transcriptional ac-
tivity of a gene of interest in a cell culture. The experiment was
performed in three biological replicates on day 1, and then re-
peated in five replicates on day 2. A control was used for normal-
ization. The normalized results are as follows:

Day 1 0.89 0.92 0.89
Day 2 0.55 0.76 0.61 0.83 0.75

Find the mean and 95% CI for each day. What can you say about
the true mean? How else can you use these data?

Exercise 5.3
A small-scale study in a local population tries to answer the ques-
tion ‘Is human height correlated between father and son?’ Twelve
fathers and 12 adult sons were measured:

Height of father (cm) Height of son (cm)

172.1 174.8
173.8 172.0
164.5 176.6
181.8 184.3
175.6 175.1
170.2 174.3
175.3 176.5
177.8 173.7
166.4 171.4
166.1 165.8
177.8 181.3
182.1 177.4

Find the correlation coefficient between these two quantities.
How strongly are they correlated? What is the uncertainty of the
obtained correlation? What’s its significance? What is your inter-
pretation of the result?

Exercise 5.4
Consider a large population of Scottish Highland midges (C. im-
punctatus). Through the mystic knowledge of the local clan chiefs
(obtained for a bottle of the finest whisky), you know that exactly
13.4% of all midges are completely impervious to the popular re-
pellent DEET. You created three genetically modified strains of
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midges with the hope of eradicating this resistance. You have ob-
tained a sample from each strain and found the following numbers
for DEET resistance:

Strain Sample size Resistance count

1 988 115
2 50 3
3 5 2

Calculate resistance proportions and their 95% CIs for each strain.
Are they consistent with the mystical true proportion of 13.4%?
Is strain 2 promising?

Exercise 5.5
How can you use bootstrapping to estimate the standard error of
the mean?

Exercise 5.6
Suppose you have an online tool that calculates the cumulative bi-
nomial probability distribution, P(W < k) and P (W ≤ k), where k
is a given integer number. How would you use it to find 𝛾d, defined
by equation (5-12)? Compute 𝛾2 for n = 9.



Chapter 6

Error bars

Errors using inadequate data are much less than those using no data at all.
—Charles Babbage

This chapter is going to be subjective, biased and prejudiced. I will
try to force my own personal preferences upon you. I will bicker
about incomprehensible plots commonly found in scientific pub-
lications. If you agree to endure this, please read this chapter and
learn how to improve your plots. If you don’t agree, read it anyway.

The topic of this chapter is a bit broader than the title suggests.
I will try to elaborate on graphical presentation of data in a more
general way. After all, a good plot can relay important information
about data and results quickly and efficiently. Some data are almost
impossible to present without plots. Throughout this book, I have
used plots to illustrate key concepts of statistics. We might recycle
an old saying:

One plot is worth a thousand numbers.

Here I will consider only plots presenting numbers. In most
cases these will consist of two axes, where one number is plot-
ted against the other. One of the axes might show a categorical
variable. For obvious reasons, I will not discuss figures with gels,
protein structures, interaction pathways, heat maps and so on. At
the end of the chapter, I will discuss how numbers and their errors
should be quoted in publications.

6.1 Designing a good plot

Figure 6-1 shows a simple plot you might see in a publication.
It contains all the elements of a good plot. It shows a simulated

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 6-1. A simple plot showing exponential decay of a protein

in a simulated experiment. Error bars represent propagated standard

errors from individual peptides. Errors in time are considered to be

negligible. The curve shows the best-fitting exponential decay model,

y (t) = Ae−t∕𝜏 , with A = 1.04 ± 0.05 and 𝜏 = 16 ± 3 h (95% confidence

intervals).

exponential decay. The horizontal axis represents time, while the
vertical axis shows the relative abundance. The data consist of nine
measurements, and are presented in the form of a scatter plot, with
one black dot corresponding to one measurement. Vertical error
bars show uncertainties of measurements. There are no horizontal
error bars in the plot. This is because here time is the explanatory
variable (i.e. the parameter that is set by the experimenter). Ob-
viously, there is a level of uncertainty in this number, in this case
resulting from the sample collection protocol, but we consider er-
rors in time to be negligible.

The measured quantity is the response variable. The explanatoryI will explain the terms
“explanatory” and

“response” variable in
Section 8.1.

variable is usually plotted on the horizontal axis. However, some-
times you might want to plot two response variables against each
other, to test how they are correlated. In this case you should plot
error bars (if available) in both axes. Generally, you should always
plot error bars in plots. There are a few exceptions, which I dis-
cuss later in this chapter. The curve in Figure 6-1 is an exponential
model fitted to the data. The best-fitting model parameters, with
their fitting errors, are given in the caption.

Elements of a good plot

As I mentioned before, a good plot enables the reader to see im-
portant facts about the data. Because we want to communicate
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with the reader efficiently, clarity of the plot is vital. There is no
point in showing a plot which is either unclear or unreadable.

When making a plot, always keep clarity of presentation
in mind.

The most basic elements of a good plot are:

� axes with scales and labels;
� data represented by symbols, lines, bars or boxes;
� error bars representing uncertainties; and
� model lines, where appropriate.

Each axis should be appropriately labelled. The label should
contain the name of the quantity plotted and its units, quoted in
brackets. Make sure the name is short, such as ‘abundance’, ‘dis-
tance’ or ‘normalized frequency’ and not ‘distance between tetO
and lacO tandem arrays’. If you have to break the label into sev-
eral lines, you should probably reconsider the wording. It is better
to use a mathematical symbol, such as 𝛩, and explain its meaning
in the figure caption rather than write a long and convoluted de-
scription in the axis label. Units should follow conventions used
in physics. For example, you should use ‘s’, not ‘sec’, and ‘μm’ in-
stead of ‘microns’. Obviously, when the quantity is dimensionless
(as the abundance in Figure 6-1), units are not necessary.

Make sure that all labels are easy to read. Adjust the font size
accordingly, so it is not too small. Don’t make it too large. Labels
should not dominate the plot.

Symbols representing data should be used with care. See Figure
6-2 for a few examples of bad and good applications. Always keep
clarity in mind. Use simple symbols (circles, squares, triangles) and
avoid complicated star-like shapes (unless you run out of simpler
shapes). When you show two or more data sets in one plot, use
symbols easy to distinguish. Symbols should be large enough to
recognize, but not too large so they overlap excessively. When you
have lots of points (in particular with multiple data sets), you might
consider joining them with a line instead of using symbols (Figure
6-2d), but only when it improves the overall clarity of the figure.

Colours can be used to differentiate between data categories in
the same plot. Selection of appropriate colours is a big topic on its
own, and I’m not going to discuss it in this book.
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(a)
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good

(b)

bad

good

(c)

bad

good

(d)

bad
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bad

good

Figure 6-2. A few examples of bad (top panels) and good (bottom panels) application of sym-

bols and lines in plots. These are simplified plots for illustrative purposes only. (a) Use simpler

symbols. (b) When presenting multiple data sets, use a different symbol for each set. (c) Scale

symbol sizes to avoid overlapping; with a huge number of points, use little dots. (d) Sometimes

you might consider joining the data points with a line to make the figure clear. (e) Interpolated

lines suggest an underlying model which actually does not exist. You can connect data points

with straight lines, as long as it is clear that they are for guidance only. This can be visually

highlighted by leaving little gaps between lines and symbols.

Lines in plots

Don’t be tempted to use interpolated lines (e.g. splines) to join
data points. They might look nice and smooth, but they can be
very misleading. The grey interpolated line in Figure 6-2e (top
panel) implies a peak (maximum) just right of the middle data
point. However, we don’t know how the observed system behaves
between our data points, unless we take more measurements to
fill in these gaps! The problem with interpolated lines is that the
reader might interpret them as a model, fitted to the data. It is
probably better to plot these points without any lines. If you feel
that lines are required to guide the eye, use straight-line segments,
as shown in the bottom panel. Straight lines do not imply a fitted
model, and, hopefully, the reader should understand that they are
there for guidance only. You can use an old-fashioned trick and
leave small gaps between lines and symbols, as in my figure, to
accentuate their guidance-only character.

Some guides to making better plots will tell you that connect-
ing data points with lines is not allowed. I would say: it depends.
Generally, yes, you should avoid any unnecessary lines, except for
model and trend lines. However, in some cases, particularly when
you present many intersecting data sets in one plot, connecting
lines might improve plot clarity.
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It is OK to join data points with lines, but only when it
is necessary for clarity of the plot.

If you decide to use such lines, you should exercise caution. You
might create two versions of the plot, with and without lines, and
ask a colleague which of them is easier to read. It must be abso-
lutely clear for the reader that these lines are for guidance only
and do not represent any model. It might be a good idea to make
a note in the figure caption.

In some cases, the dependence between variables shown in the
plot (let’s call them x and y) can be described by a mathematical
model. In the simplest case, where y is (roughly) proportional to
x, the relation can be described by a straight line, often called aSee Chapter 8 for simple

linear regression. trend line. Linear regression might be used to find the best-fitting
line, which can be added to the plot. It shows the essence of the
relation between x and y. It also shows the deviation of data points
from the theoretical relation. Obviously, the model can be more
complicated than the straight line. The exponential decay shown
in Figure 6-1 is analytical, but any type of numerical model, for
example a Monte Carlo simulation result, can be fitted to data and
plotted there.

A digression on plot labels

You might have noticed that some plots in this chapter don’t have
axis labels or even tick marks and numbers. In real research, it
would be totally unacceptable. I have done it here only for clarity,
as some of the figures would be too cluttered otherwise. I’m not
presenting any results here, so actual numbers and labels are not
essential. These plots show only one aspect of plot making, so I
made them as simple as possible. I still feel somewhat bad about
it, hence the disclaimer.

Nevertheless, this doesn’t make a valid excuse when presenting
real data. Most journal editors would politely ask you to correct
plots with missing labels, so it is not easy to publish an unlabelled
plot in a reputable journal (although it happens!). Unfortunately,
I have seen all too many poor plots in seminar and conference
talks, where people show whatever they fancy. Speakers often ‘for-
get’ to add axis labels, or labels are small, blurred and unreadable.
A poorly rendered picture copied in a hurry from the published
paper doesn’t help. Such a plot might look perfectly clear to the
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speaker, who spent days or weeks making it and knows every wig-
gle by heart. The audience, who are not necessarily familiar with
the subject, will only see an obscure collection of dots and hear a
vague comment such as ‘as you can see, it grows here and drops at
the end’. They will have no clue what the plot was about.

Plots should be clearly labelled in talks and presenta-
tions!

Logarithmic plots

Many quantities in biology are log-normally distributed. TheyLog-normal distribution is
discussed in Section 2.6. tend to have a huge dynamic range, which is difficult to encompass

in a linear scale. It is better to plot such data in a logarithmic scale.
The logarithmic scale can either show logarithms of data (e.g. −2,
−1, 0, 1, 2) or numbers that are logarithmically distributed (e.g.
0.01, 0.1, 1, 10, 100). Base 2 logarithmic plots are quite common in
biology, although I recommend using logarithms to base 10 (see
note at the end of Section 2.6).

A logarithmic plot is designed to show data spanning many or-
ders of magnitude in one simple picture. A few examples in Figure
6-3 present a comparison between linear and logarithmic versions
of the same plot. When data vary between 20 and 10,000 in some
arbitrary units, it is almost impossible to present it in a linear plot
(Figure 6-3a). The first three points sit tightly on the horizontal
axis and are almost indistinguishable. In contrast to this, the log-
arithmic plot nicely shows a relation between the data points and
wins on clarity of presentation. The vertical axis in this figure has
logarithmically distributed numbers.

Figure 6-3b and 6-3c show the same data coming from an
RNA-seq1 experiment. The quantities in the plot are gene expres-
sion levels (normalized counts per gene in units of FPKM2), with
one dot corresponding to one gene. These data are roughly log-
normally distributed and cover a whopping six orders of magni-
tude. The linear plot (Figure 6-3b) shows some correlation be-
tween the two replicates, but the bulk of the data are clustered at

1This is a method of measuring mRNA abundance in order to estimate
gene expression levels.
2Fragments per kilobase of exon per million fragments mapped.
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Figure 6-3. Examples of data shown in linear (top panels) and logarithmic (bottom) plots. (a)

Simple data spanning three orders of magnitude. (b) Gene expression from two replicates plotted

against each other. Note that data points with expression greater than 500 FPKM are not shown

in the linear plot. (c) Distribution of expression levels from the same experiment. (d) The two

samples represented by box plots are log-normally distributed.

small values and difficult to resolve. Also, the measured expres-
sions span about six orders of magnitude, and in order to show the
correlation between points with expression below ∼100 FPKM, I
had to exclude some of the highly expressed data from the linear
plot. You cannot easily fit it all! In the logarithmic version, all data
are shown, and we can see a nice linear correlation. Figure 6-3c

See Figure 2-4 for similar
data.

shows distributions (histograms) of these data. The linear plot is
not informative, and it is really difficult to say how the data are dis-
tributed by looking at it. The distribution of logarithms tells it all.
It is near-Gaussian and reveals a little shoulder at high expression
rates.

A very special way of presenting data is a box plot, which I will
discuss in detail in Section 6.2. Figure 6-3d shows two data sets,
spanning about two orders of magnitude, displayed as box plots.
Again, in the linear scale one of the boxes looks tiny and squashed,
whereas the logarithmic plot shows both boxes clearly, making
their comparison easy.

6.2 Error bars in plots

Traditionally, an error bar is drawn as a line with caps (see Fig-
ure 6-4). Both in a plot and in numerical notation, an error can
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Figure 6-4. A quick guide to plotting error bars. (a) A ‘plus-minus’ error, for example, 5 ± 3,

where error bar extends from 2 to 8. (b) Symmetric confidence interval, which can be written

as, for example, [2, 8]. (c) Asymmetric confidence interval, which can be written as, for example,

6+2
−4

.

be either symmetric or asymmetric. A symmetric error is most
common. It is usually denoted as a ‘plus-minus’ error, for example
5 ± 3. The error quoted (± 3) constitutes a half of the entire er-
ror bar, so the bar extends from 2 to 8 in this case. An asymmetric
error, such as 6+2

−4, has ‘plus’ and ‘minus’ bars of different lengths
(Figure 6-4c). Confidence intervals for either the correlation co-
efficient (Section 5.7) or a proportion (Section 5.8) are usually
asymmetric.

Various types of errors

An error bar can represent various things: standard deviation, stan-
See Table 4-2 and Figure

5-4 for SD, SE and CI
comparison.

dard error or a confidence interval (see Table 6-1 for a summary).
Occasionally, you can have a Poisson error (which is a standard
error) or a measurement error. More complicated uncertainties
might result from error propagation (see Chapter 7). Each of these
errors is different, so it is absolutely essential to inform the reader
which one you used.

Always state what type of uncertainty is represented by
your error bars.
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Table 6-1. Types of errors commonly used in graphs. I recommend using confidence intervals

in most cases.

Error bar What it represents When to use

Standard deviation Scatter in the sample Comparing two or more samples, although box
plots make a good alternative

Standard error Error of the mean The most commonly used error bar, although
confidence intervals have better statistical
intuition

Confidence interval Confidence in the result The best representation of uncertainty; can be
used in almost any case

There is a vital distinction between the standard deviation and
the standard error. When you want to demonstrate how widely the
sample is scattered, you might use the standard deviation. How-
ever, box plots (described later in this section) might be better
suited for this purpose. If you want to show the uncertainty of the
mean, you should use the standard error. But then again, the stan-
dard error, although commonly used, does not have a very good
intuition in terms of statistical confidence (see Section 5.5).

When you fit a curve to your data points using 𝜒2 fitting, youSee Section 8.6 for more
details on 𝜒2 fitting. need to use ‘one sigma’ errors from a Gaussian distribution. If each

data point represents a sample mean, then you should use the stan-
dard error. This is because the standard error represents the (one
sigma) standard deviation of the sampling distribution of the mean
(see Section 4.5).

Chapter 5 shows how to
find confidence intervals

for various statistical
estimators.

In most scenarios, it is better to use confidence intervals to
express uncertainty. They show the actual statistical confidence
in presented values. Confidence intervals can be calculated for
most statistical estimators used in everyday lab practice. They
also make comparison between two or more samples easier (see
Exercise 6.2).

In most cases, confidence intervals should be used for
error bars.

How to draw error bars

Figure 6-5 shows a few simplified examples of properly drawn er-
ror bars in various types of plots. Figure 6-5a shows a case where
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(a) (b) (c) (d)

Figure 6-5. Examples of error bars. These are simplified plots for illustrative purposes only. (a)

Only the response variable (vertical axis) has error bars. The explanatory variable (horizontal

axis) has either negligible errors, or it might be a categorical variable. (b) When both variables

have errors, use crosses. (c) In a crowded picture, error bars should be simplified and, perhaps,

greyed out. (d) A bar plot with error bars.

the variable on the horizontal axis either has no measurable error
(e.g. when it is an explanatory variable) or its error is negligible.
In such a case we would plot only vertical error bars, using the el-
ements shown in Figure 6-4: bars and caps. Figure 6-5b shows an
example of two response variables plotted against each other. This
might be a comparison between two replicates, a treatment versus
control, or any two quantities of interest, whether measured or de-
rived. Both variables have errors, so we need to plot vertical and
horizontal error bars. Again, we use bars with caps. If there is an
underlying model, or any expected relation between the variables,
we could add a trend or model line.

Figure 6-5c shows an example of a crowded plot, with many

See Section 8.1 for
explanatory and

response variables.

data points. Using the usual error bars with caps (as in Figure 6-5a)
would create a horrible mess. Instead, I excluded the caps and plot-
ted error bars in grey, so they don’t dominate the picture. Again,
clarity is essential.

The next panel shows how error bars should be drawn on top of
a bar plot. Typically, an error either with or without a cap is used.
No symbol for the data point is necessary, as it is represented by
the bar. I will elaborate on bar plots later in this section.

Box plots

Figure 6-6 illustrates box plots, sometimes referred to as box-and-
Another example of a

box plot is shown in
Figure 1-1.

whisker plots. They are usually used to compare different cate-
gories of data (e.g. various treatments), hence the horizontal axis
is typically a categorical axis, as in Figure 6-6a. However, with a
reasonably small number of data groups, you can make box plots
against a discrete numerical variable (Figure 6-6b).
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Figure 6-6. Examples of box plots. The line in the middle is the median (50th percentile), the

top and bottom of each box show the 25th and 75th percentiles, while the whiskers extend from

the 5th to 95th percentiles. (a) Each box corresponds to a different data category. The wild-type

(WT) box includes a ‘cloud’ of data points. (b) Box plots versus a numerical axis, representing

DNA short read quality distribution versus the nucleotide position in the read.

Individual boxes show data percentiles: median in the middle,
the box itself usually extends from the 25th to the 75th percentiles
(i.e. it contains the central 50% of data). The whiskers encompass
90% of data, extending from the 5th to the 95th percentiles. Al-
though the box almost universally represents the 25th to the 75th
percentile in most publications, there is no consensus on how to
draw the whiskers. Sometimes they represent the minimum and
maximum of the sample, sometimes the 2nd or 9th (and 98th or
91st) percentiles, or yet more complicated statistical constructs.
Make sure to describe your box plots in figure captions.

The great advantage of a box plot is that it is non-parametric
(i.e. it does not require deriving any particular estimators). It shows
pure, model-independent data in a simplified form. It can quickly
expose asymmetry (skewness) in the sample’s distribution. In par-
ticular, box plots can reveal differences between samples (e.g. con-
trol and treatment). A histogram shows data distribution more
precisely, but usually takes more space in a plot, which might be
an issue when several data sets are to be compared.

One of the nice additions to a box plot could be a cloud of
points. This is shown in the last box (labelled ‘WT’) in Figure
6-6a. Each data point in the sample is represented by one dot. To
maintain clarity, I dispersed the points horizontally, using a ran-
dom number generator. Otherwise, all these points would collapse
into one jumbled line. Some popular graphical packages create box
plots with outliers (points outside the whiskers) plotted as dots in
one line. This is fine when your sample is not very large. However,
since 10% of data are typically outside the whiskers, it can produce
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quite a few points on top of each other. A slight horizontal scatter
should alleviate the trouble.

Bar plots

This is the bit where I’m going to get very personal and prejudiced.
For some reason, bar plots are very popular among biologists and
used frequently. In my opinion, they are often misused and abused.
Let me explain why.

A bar plot is a plot consisting of bars, as in Figure 6-5d. Each
bar is a rectangle extending from zero (on the vertical axis) to the
value it represents. As bars are usually shaded, what you perceive
when looking at a bar plot is the area of each bar. If you plot two
shaded bars (rectangles) next to each other, the visually perceived
area of these two bars equals the sum of the areas of each bar. In
other words, the area is additive. Hence, to make any sense, the
quantities presented in the bar plot should be additive too.

Bar plots should only be used to present additive quan-
tities: counts, proportions and probabilities.

They are perfect for making histograms and probability distribu-
tions, as shown in many figures in this book. The area represented
by the bars makes perfect sense in such plots. Have a look at Fig-
ure 2-1a. Each bar shows a probability P (X = k). These proba-
bilities are additive, and bar areas are additive. The probability of
X being between 5 and 7 is the sum of probabilities for X = 5, 6
and 7. In the plot, it is represented by the total area of the three
dark-shaded bars.

However, it doesn’t make any sense to make a bar plot of speed,
temperature or distance, as is frequently done in biological publi-
cations. These quantities are not additive, so a bar plot suggesting
otherwise would be visually misleading.

The entire idea of a bar plot is that the area of each bar is pro-
portional to the value it represents (see Figure 6-7a). Therefore,
the bottom (or top, when presenting negative values) end of each
bar has to be at zero. If this obvious rule is not followed, the bar
plot is simply incorrect, as shown in Figure 6-7b.

Each bar has to start at zero.
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Figure 6-7. Bar plots should always start at zero in the vertical axis. All four panels show the

same two data points of 400 and 800 for control and treatment, respectively. Panel (a) correctly

shows that the treatment is twice the size of the control. Panel (b) has the vertical axis zoomed

in, which alters the perceived difference between the two conditions; in this case, the visible area

of the ‘treatment’ bar is nine times larger than the area of the ‘control’ bar, which is misleading.

The same problem occurs when using the logarithmic scale in panels (c) and (d). Here the lower

limit in the vertical axis is completely arbitrary (it cannot be zero!), making the visible bar areas

arbitrary as well.

This also means that a bar plot done in logarithmic scale is a
complete no-no. Things that are additive in linear scale (Figure
6-7a) are no longer additive when presented in logarithmic scale
(the sum of logarithms is not the logarithm of the sum!). Hence,
depending on the (completely arbitrary) choice of the vertical axis
minimum, they will give very different and very misleading results
(Figure 6-7c and 6-7d).

Don’t even think of making a bar plot in the logarithmic
scale.

You should pay attention to the dynamic range of a bar plot. If
data shown are highly variable and cover a wide range of values, the



Error bars 125

S
p

e
e

d
 (
μm

/m
in

)

1 2 3 4 5 6

0
.0

0
.5

1
.0

1
.5 (a)

Sample no.

S
p

e
e

d
 (
μm

/m
in

)

1 2 3 4 5 6

1
.2

1
.3

D
is

ta
n

c
e

 (
μm

)

0 5 10 15

0
1

0
2

0
3

0
4

0
0

1
0

2
0

3
0

4
0

(b)

Time (h)

D
is

ta
n

c
e

 (
μm

)

0 5 10 15

P
ro

te
in

 c
o

u
n

t

0 10 20 30 40 50

0
1

0
0

2
0

0
3

0
0

(c)

Degradation (h)

P
ro

te
in

 c
o

u
n

t

0 10 20 30 40 50

0
1

0
0

2
0

0
3

0
0

Figure 6-8. Inadvisable use of bar plots (top panels) and corresponding better alternatives

(bottom panels). (a) The range of speeds is very compressed and unreadable in the bar plot.

(b) Two overlapping bar plots are less clear than a scatter plot. Also, bar plots should not be

used in examples (a) and (b) because the quantity shown is not additive. (c) There are three

distributions of protein degradation time, coming from three cellular compartments, shown in

one graph. Again, overlapping bars are less clear than line histograms shown in the bottom

panel.

space available in the plot is effectively used. However, if your data
vary only a little, you might end up with very similar bars, as shown
in Figure 6-8a. This is because the bar plot forces the vertical axis
to start at zero. When using a scatter plot as in the lower panel, the
range of the vertical axis can be adjusted to present data clearly.

Bar plots are not ideal for presenting data with small
variability.

Another problem with bar plots is that they become incompre-
hensible if you try to present several data sets with many points.
This is demonstrated in Figure 6-8b and 6-8c. The plot in Figure
6-8b shows randomly generated data, but it mimics an actual plot
I saw in a seminar talk. It looks very busy and breaks the main rule
of clarity in making plots. The scatter plot version in the bottom
panel is much easier to read.

Moreover, multiple-data bars make this plot ambiguous. When
the horizontal axis is not categorical (as in this case), the bar width
usually indicates the range over which data were collected for this
bar. For example, in Figure 2-7a, radioactive decay events were
counted over 1-s intervals, and each bin covers 1 s horizontally.
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This doesn’t work when you have more than one category, as
demonstrated in Figure 6-8b. Look at the first point on the left
(in both data sets). In the upper panel, the black bar is to the left
of zero, and the grey bar is to the right of zero. It is not clear at all
to what time these two bars correspond. There is no such ambigu-
ity in the scatter plot in the lower panel, where you can clearly see
that the first point corresponds to the time of zero, in both data
sets.

Multiple data bar plots are not suited for plots where
the horizontal axis is not categorical.

Figure 6-8c shows a frequency distribution of protein degrada-
tion from three data sets. Bar plots, as shown in the top panel, do
not work very well, as the resulting plot looks very cluttered. We
could use colour to improve readability of the plot. However, it
still suffers from the same problem as panel Figure 6-8b: it is not
clear which values on the horizontal axis a given bar corresponds
to. The bottom panel shows the same histograms but is drawn us-
ing lines with different colours (shades of grey, in this case). These
are not perfect, and they require some effort to read, but line his-
tograms are clearer than the overlapping bar plots. Here, the width
of each histogram ‘bar’ (a horizontal segment) corresponds exactly
to the range of x-values over which the proteins were counted.

Multiple data bar plots can be cluttered and unreadable.

Unfortunately, this is not the end of the rant. Figure 6-9a shows
a kind of plot I see all too frequently in the literature. Some peo-
ple call it a dynamite plot3. It is supposed to compare a proportion
of a quantity (e.g. cell number), in two treatments (called T1 and
T2), with respect to the wild type (WT). These two values have
errors, whereas the WT is not a measurement and is plotted only
for reference. Such a graphical setup is common in biological pub-
lications.

There are a couple of things not quite right with this plot. First
of all, error bars are unidirectional. The lower arm of each error

3Search the internet for ‘dynamite plots’ and see more criticism. It is not
only me fulminating about them!
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Figure 6-9. Bar plots and error bars. (a) ‘Dynamite plot’; only upper error bars are visible. (b)

Errors are not necessarily symmetric! (c) Quite often, it is better to show symbols with error bars

than a bar plot. The fixed 100% WT reference is not a data point. (d) With only two numbers, a

graph might not be necessary.

bar is not visible. The reader can only guess that errors are, per-
haps, symmetric and extrapolate the lower error from the upper
bit.

A simple change in colours solves the problem, as demonstrated
in Figure 6-9b. In this particular example, error bars are asymmet-
ric (and confidence intervals of a proportionusually are asymmet-Confidence intervals of a

proportion are discussed
in Section 5.8.

ric!), so our initial impression of how T1 and T2 are related can be
completely wrong. It seems very obvious that error bars should be
fully visible, but for some reason (perhaps due to default settings
in the graphical software used) this mistake is rather common.

Make sure that both the upper and lower arms of each
error bar are clearly visible.

In my personal opinion, this plot can be further improved. Be-
cause all proportions shown are rather high, the plot has to be
stretched vertically in order to show the results clearly. Using sym-
bols instead of bars (Figure 6-9c) allows us to rescale the vertical
axis and make the plot more compact. In addition, the 100% WT
bar is not a measurement, so it is not necessary to show it as a
data point. Instead, I have added a horizontal line at the fraction
of 1 for easy comparison. The resulting plot is cleaner and easier
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to read and it saves some space, which might be important in a
figure-heavy article.

But do we always need a plot? A picture might be worth a thou-
sand words, but if you can present the result in just two num-
bers with their errors, then perhaps the plot is not necessary at all
(Figure 6-9d).

If you want to present only two numbers, a plot is not
always the best solution.

Pie charts

Err .. . no. Pie charts are an awful way of presenting any data. They
are uninformative and confusing. It is very hard to compare visu-
ally two sections of a pie chart with similar area. Data from any pie
chart can be presented in a bar plot to a much better effect. Be-
sides, you cannot add error bars in pie charts! Don’t do pie charts.
Just don’t.

Overlapping error bars

Treatment–control comparisons are all in a day’s work for a biolo-

For hypothesis testing
(not covered by this

book), you can refer to
standard textbooks, (e.g.

Sokal and Rohlf 1995).

gist. Often, this includes two sets of data (two samples). There ex-
ist statistical tests to compare various aspects of two (or more)
samples and tell us if they are different. For example, to find
out whether the sample mean is significantly different between
two conditions, we might use a t-test. The null hypothesis is that
both samples come from populations with the same mean. A two-
sample t-test would tell us the probability that the observed dif-
ference between the means is due to random sampling. When the
test p-value is small (e.g. < 0.01) we can reject the null hypothesis,
while the p-value represents the risk of rejecting a true hypoth-
esis. However, if the p-value is large, we can’t say anything. This
is where statistics turns nasty and shows us a finger. You cannot
claim that the means are the same.

This is what statistical tests are for, and any sample comparison
should be accompanied by the appropriate test p-value. Every now
and then, you might find a published figure with data points and
error bars (see Figure 6-10a) but no p-value immediately available.
In such cases, you might be tempted to guess if the two values are
significantly different or not, based on whether their error bars
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Figure 6-10. Overlapping error bars. (a) In some cases, overlap be-

tween error bars might be used as an indicator of whether the two

conditions differ significantly or not. (b) Error bar overlap between two

groups of data points does not have simple intuitive meaning. Note

that error bars are horizontally staggered for clarity of presentation.

overlap or not. This is a risky business, and you should make sure
that you understand what uncertainties the bars represent before
you attempt the assessment. The following example shows the pit-
falls of overlapping error bars. You can test your intuition on it.

Please read Exercise 6.2 at the end of this chapter, think about
it for a while, make your choice and then read the solution in ‘So-
lutions to Exercises’ at the end of the book.

As you can see, standard deviations make the comparison very
tricky. They don’t take the sample size into account, so you need
to do fiddly adjustments in your head. Standard errors are better,
but even non-overlapping error bars do not guarantee that there
is a significant difference between the samples. Probably the best
option is to use 95% confidence intervals, as they naturally give
the typically required significance when error bars do not overlap.
But beware!

Non-overlapping 95% CI might indicate significant
difference between sample means, but a proper statisti-
cal test should be performed to confirm this.

Looking at error bar overlap might help when comparing two
conditions, each consisting of one sample or measurement. In
other words, you might compare exactly two data points with
errors in the plot. It is easy to imagine a situation where each
condition consists of many samples, that is, several data points
(with errors) for each condition. For example, these points might
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represent a time course, as shown in Figure 6-10b. In such cases,
overlapping error bars do not give information about the differ-
ence between the two conditions. Error bars might overlap for
each pair of points, but the combined effect might still create a
statistically significant difference between the conditions. For ex-
ample, if you combine the last three data points in each condi-
tion in Figure 6-10b, their means are significantly different with
p = 0.007.

6.3 When can you get away without error bars?

Normally, I would recommend plotting error bars in every plot.
There are a few cases, however, where it is acceptable to skip error
bars, and I am going to briefly discuss them in this section.

On a categorical variable

This is a rather obvious case, but I need to mention it for com-
pleteness. When one of the axes shows a categorical variable, for
example a sample description (as in Figure 6-9c), or number (as in
Figure 6-8a, lower panel), then there is no error on this variable.

When presenting raw data

Errors in biological experiments are usually found from statistical
properties of a sample, for example its standard error. In such cases,
either sample elements don’t have any obvious uncertainties or
else these uncertainties are small in comparison with the scatter
of all data points (see the ‘When errors are small and negligible’
case below). When presenting individual points of these ‘raw’ data,
there is no need to plot error bars. The scatter of data serves as
a rough visual measure of error. Additional plot components can
help the reader to see data scatter (e.g. box plots in Figure 1-1)
or trend (e.g. the regression line with its confidence intervals in
Figure 8-6).

Large groups of data points

Figure 6-3b (both linear and logarithmic plots) shows an exam-
ple of thousands of data points plotted in one plot. It would be
very difficult to plot all error bars together with data points, as it
would make the plot horribly busy and unreadable. In such cases,
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we typically plot only data points with no error bars. The purpose
of the plot is to show how data are distributed, rather than indi-
vidual measurements. Each data point is shown in the context of
others and their variability. In such plots, outliers are (sometimes)
obvious. It might be a good idea to skip error bars for the bulk of
data, but add them to a few selected outliers or points of interest.
Please note that the ‘large group’ case overlaps with the ‘raw data’
case. Quite often, we have a lot of raw data points with no obvious
uncertainties.

When errors are small and negligible

Often one of the variables presented in a scatter plot is an explana-
See Section 8.1 for

explanatory and
response variables.

tory variable, controlled by the experimenter. In such cases the un-
certainty, although measurable, is going to be small. Figure 6-10b
shows cell density plotted against time. The horizontal axis repre-
sents moments when samples were taken for analysis. This quan-
tity is not measured but is fixed by the experimenter, although the
distinction is a bit fuzzy. You still need to measure time, using a
clock or a timer. Also, the exact moment of taking a sample is of-
ten not precisely defined. However, if samples are collected every
few hours and it takes only a minute or so to do it, the error in
time becomes negligible.

By negligible, I mean so small that it can be ignored in data analy-
sis, as the other error, plotted on the vertical axis, is much more im-
portant. This is not always true; imagine an experiment in which
samples are collected every five minutes but it takes two or three
minutes to actually pick and process each sample. In such cases,
the error of time should be estimated by the experimenter and
included in the plot.

Occasionally, errors in both axes can be so small that they are
invisible in the plot. In such cases error bars can be skipped, but a
comment stating that ‘errors are smaller than symbols’ is manda-
tory in the figure caption or legend.

Where errors are not known

In an ideal world, the basic rule is simple:

If you don’t know the uncertainty of your result, go back
to the lab and repeat the experiment until you get it.
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A single number, with no uncertainty and no context (e.g. 19,086),An example with these
two numbers was shown

in Chapter 1.
is meaningless. If you plot it in a figure, it won’t carry much mean-
ing. In particular, it is impossible to compare it to another number
(e.g. 39,361), and state that one of them is significantly greater than
the other.

In the real world of laboratory practice, there are results that
come with no uncertainties. Some modern instruments magically
produce piles of numbers with no associated errors. There might
be another quantity expressing confidence in the result, for exam-
ple a p-value or a score. This doesn’t help if you want to plot some
of these numbers.

When presented with such a dilemma, you should consider two
options. The first one is quite obvious: do the experiment in repli-
cates and use the variability of each measurement (e.g. in the form
of the standard error) to assess its uncertainty. This is by far the
best way. If this is not possible, I would advise against plotting
them in a figure unless there is a clear context of other numbers il-
lustrating the distribution or variability of the data (see the ‘When
presenting raw data’ and ‘Large groups of data points’ sub-sections
above).

6.4 Quoting numbers and errors

There is one more thing I need to bring up before this chapter can
be concluded. It is not exactly about plots and error bars, but it is
closely related. Namely, how do you quote (or report) numbers
with their errors in writing? It seems a very straightforward busi-
ness: you write the best estimate of the quantity in question fol-
lowed by a plus-minus sign and the corresponding error. Where
appropriate, you add units and get, for example, 1.5 ± 0.3 μm. Sim-
ple as pie. Or is it? In fact, it is quite surprising to see how many
people get it wrong in publications, even in reputable journals.
Clearly, there is more to presenting numerical results than just
writing, or typing, some digits.

Significant figures

Firstly, we have to go back to basics and revise significant figures.

Significant figures (or digits) are those that carry mean-
ingful information.
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This implies that the remaining digits that may be present beyond

See discussion of
reading errors in Section

3.5.

the significant figures are random junk. In most cases, they are
by-products of calculations carried out to higher precision than
that of the original data. Also, a measuring device can report more
digits than its actual precision. You should never, ever quote them
in a publication.

Consider the following example. A microtubule has grown
4.1 μm in 2.6 minutes. What is the speed of growth of this micro-
tubule? If you divide 4.1 by 2.6 in a pocket calculator4, you will get
1.5769230775 μm/min. However, time and distance are recorded
down to only two significant figures, and their actual accuracy can
be even worse. Intuition tells us that only the first two digits of
the obtained number have any real meaning. The remaining fig-
ures are a by-product of the calculation and are completely mean-
ingless. We can only estimate that the speed of growth is about
1.6 μm/min, but even this is not quite certain until we get more
measurements (replicates) and find the speed uncertainty.

Writing significant figures

There are simple conventions stating which digits of a quoted fig-
ure are significant.

Generally, all digits, except leading and trailing zeroes,
are regarded as significant.

For example, 1.893 and 365 have four and three significant figures,
respectively. There are, however, exceptions from this rule.

Trailing zeroes after the decimal dot are considered sig-
nificant.

0.0034 has two significant figures, but writing the same num-
ber down as 0.003400 indicates that the last two zeroes are also
significant (i.e. we are confident in the last four digits: 3, 4, 0 and 0).

4A note to younger readers: in the old days a pocket calculator was a
dedicated electronic device performing a similar function to a ‘calculator’
app on your mobile phone.
5To be more precise, the result is a periodic number 1.5(769230).
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The confidence in the last significant figure is not always so great,
and should be expressed by a corresponding error. I will get to it
in a moment.

Trailing zeroes in integer numbers can be ambiguous.

Leading zeroes, on the other hand, are never significant. 34, 0.34
and 0.0034 have two significant figures. The amount of informa-
tion carried by these three numbers is the same: it is a number ‘34’
and an order of magnitude.

If you say ‘4012 patients took part in the study’ it is quite obvi-
ous that there were exactly four thousand and twelve patients. If
you say ‘4000 people gathered on the market square’ it probably
means ‘about 4000’ people. This can be guessed from the context.
However, the statement ‘samples were taken from 4000 patients’
can be ambiguous: it might be the exact number, but equally well it
might indicate only a rough size of the sample. In such situations it
might be better to quote an ambiguous number using exponential
notation: 4× 103 has one significant figure, while 4.000× 103 has
four. It is not a very elegant solution, but ambiguity should not be
allowed in strict scientific writing. Alternatively, you can quote an
approximate value as ∼4000, which is usually interpreted as ‘about
4000’ (more about it later in this section). The examples discussed
above are summarized in Table 6-2.

The last significant figure should be properly rounded in writ-
ing. The direction of rounding depends on the next digit, which

Table 6-2. Examples of quoted values with

different significant figures (s.f.).

Value quoted Number of significant figures

1.893 4
365 3
0.34 2

0.0034 2
0.003400 4

4000 1 or 4
4× 103 1

4.000× 103 4
4000.00 6
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is the first non-significant figure. If it is between 0 and 4, the pre-
ceding digit stays the same; if it is between 5 and 9, it is rounded
up. For example, if the result of calculations is 1.5234 and we know
that only two figures are significant, it should be quoted as 1.5. A
1.5534 result would be quoted as 1.6.

The last significant digit should be rounded.

Errors and significant figures

So, how do we find out how many figures of our number are signif-
icant? The best way is to get it from the error associated with the
number. First, we need to find the error, whether it is a standard
error, confidence interval or any other uncertainty, as discussed in
previous chapters of this book. Then, we need to find how many
digits of the error are significant. In most biological applications
this will be one or two digits, so if you don’t have any other way of
finding out, it is safe to assume only one significant figure of the
error.

When the number to quote is a sample mean, you can use er-
For error in the error see

equation (4-23).
ror in the error to find the number of significant figures. Error
in the error (introduced in Section 4.7) shows the level of un-
certainty in the standard deviation, but the same formula can be
used for the standard error or a confidence interval. Knowing how
uncertain the error is, we can decide how many digits should be
quoted. If the relative error in the error, ΔSE∕SE, is greater than
0.1, then the uncertainty of SE is at least 10% and thus we can
only trust its first digit. For example, if the calculated standard er-
ror is SE = 0.02377345 and we find ΔSE∕SE = 0.13, then the true
unknown value of the SE is somewhere between 0.018 and 0.029
(with ∼68% confidence), so we definitely cannot trust anything
beyond the first figure. Our best estimate of the standard error is
then SE = 0.02.

Table 6-3 summarizes relative error in the error for various
sample sizes and gives the suggested number of significant figures
in the error that should be retained. Unless you have a really huge
sample, you would typically keep only one or two digits of the er-
ror. Quoting too many figures in the error is a common mistake
found in many publications. If you say, for example, that your re-
sult is 2.567 ± 0.165, you implicitly suggest that you used at least
10,000 replicates to find these numbers!
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Table 6-3. Error in the error, calculated using equation (4-23), for

different sample size, n. The second column shows relative error in

the error, ΔSE∕SE. The last column indicates the number of

significant figures of the error that should be quoted.

Sample size Relative error in the error Number of s.f. to quote

10 0.24 1
100 0.07 2

1,000 0.02 2
10,000 0.007 3

100,000 0.002 3

Most biological experiments result in one or two sig-
nificant figures in the error.

Once we have found the error in the error, we can truncate (and
round) the corresponding number at the same decimal place as its
error. Consider a sample of 10 measurements that give the mean
of M = 1.23457456 and the standard error of SE = 0.02377345.
For n = 10, we find that the error has only one significant figure
(SE = 0.02) so we should truncate the mean at the second decimal
place and quote M = 1.23 ± 0.02. This is illustrated in Figure 6-11.

Table 6-4 demonstrates a few examples of correctly and incor-
rectly quoted numbers, with errors. The most common mistake,
apart from quoting non-significant figures, is truncating the num-
ber at a different decimal place than the error. Example (e) shows
how to quote either very small or very large numbers, using expo-
nential notation.

Number 1.23457456

Error 0.02377345

Align at the decimal point

Reject non-significant figures

and round the last remaining digit

Figure 6-11. Finding the number of significant figures from the error.

Once the error in the error is known (see text), align the number and

its error at the decimal point, and truncate the number at the same

decimal place as you would truncate the error. Both numbers should

be properly rounded at truncation.
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Table 6-4. Examples of correctly and incorrectly quoted numbers

with errors. In the ‘incorrect’ column, (a), (b) and (c) numbers are not

truncated at the same decimal place as errors; (d) is formally correct,

but a 5-digit precision of the error is highly unlikely in biological

applications; and (e) is ambiguous due to missing brackets.

Correct Incorrect

a 1.23 ± 0.02 1.2 ± 0.02
b 1.23423 ± 0.00005 1.23423 ± 0.5
c 6 ± 3 6 ± 3.0
d 75000 ± 12000 75156 ± 12223
e (3.5 ± 0.3) × 10−5 3.5 ± 0.3 × 10−5

Error with no error

As I have explained before, you should make every effort to find
the uncertainty of any quantity that makes its way to a publication.
There are, however, many cases where errors are not very impor-
tant in a particular context. Consider the following statements that
might occur in published articles:

1. Centromeres are transported by microtubules at an average
speed of 1.5 μm/min.

2. The new calibration method reduces error rates by ∼5%.
3. Transcription increases during the first 30 min.
4. Cells were incubated at 22◦C.

In all these examples, the numbers reported are only approximate.

Please read ‘Where
errors are not known’ in

Section 6.3 first.

Although the exact value of the uncertainty is not known, a reader
can at least guess the order of magnitude of the error. The rule of
thumb is:

All quoted figures are significant, and the uncertainty is
in the last digit.

For example, we can presume that both digits of 1.5 μm/min are
significant and the second of them is uncertain. We can guess
that the error is probably not too big, for example ± 0.2, or
maybe ± 0.3 μm/min. Otherwise, the authors would rather say
‘∼1.5 μm/min’ or ‘around 1–2 μm/min’. We can also guess that
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the error is not too small. If it was ±0.01 μm/min, then, presum-
ably, the authors would have quoted more figures, for example
1.52 μm/min.

The tilde (written as ‘∼’ and sometimes pronounced twiddles)
usually means ‘the same order of magnitude as’. The order of mag-
nitude of a quantity is the number of powers of 10 in this quan-
tity. For example, 5 is of the order of unity, so ∼5 means some-
where between 1 and 10. 200 is in the hundreds, therefore, ∼200
would mean somewhere between 100 and 1000. And so on. How-
ever, tilde is commonly used not to indicate the order of magni-
tude but rather to say ‘roughly’ or ‘about’.

Statement (3) above usually makes more sense in a context. For
example, it might refer to a figure showing how transcription rate
varies in time. In such cases it is merely a comment on some other
numerical data, and 30 minutes refers to a time interval that might
make more sense with the figure.

The last example shows a number with two significant fig-
ures. We can suspect that the authors maintained the temperature
within one degree of the stated value. If they said ‘22.4◦C’, we
would expect much higher temperature accuracy. Again, the num-
ber of significant figures and the context of the statement should
allow the reader to infer the likely extent of uncertainty.

Computer-generated numbers

Many biological experiments produce computer generated data
in the form of a text file or Excel file. They typically consist of
columns of numbers produced by the data-processing software.
Usually these numbers are stored with excessive precision, way
beyond the actual number of significant figures. The reason for
this is to avoid the accumulation of rounding errors during calcu-
lations. You shall not quote all the digits generated by a computer
in a publication or presentation. Truncate and round the quoted
figure appropriately, using the rules laid out in this chapter
(Table 6-6).

Don’t just copy and paste the computer output; always
follow number-and error-quoting rules.

Another problem with computer-generated numbers is the
so-called e-notation. A number 3.25 × 10−6 will be presented
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in computer output as 3.25e-6 or even 3.25e-006. It is quite
disturbing to see how often this notation is used in publications:
in tables, figures, even in the article text. This is horrible and
should not be allowed! Instead of the dreadful 3.25e-006, you
should use proper scientific notation, 3.25 × 10−6.

Every time you use computer e-notation, a puppy dies.

Finally, I have to mention a problem of fixed decimal places.
This problem is specifically related to computer spreadsheets like
Excel where it is rather hard to specify a given number of sig-
nificant figures to display, but it is all too easy to specify a given
number of decimal places. The left column in Table 6-5 is copied
from a spreadsheet, where the formatting option was set to dis-
play one decimal place. As these numbers drop from thousands to
less than one (presumably being logarithmically distributed), the
number of displayed figures drops from 6 to 0. The last number is
displayed as 0.0, but we don’t really know whether it is a true zero,
or something smaller than 0.05, rounded down to zero. This sort
of presentation ought to be avoided. Assuming that there are two
significant figures in each number, the right column in the table
shows their correct representation. Some information is missing
in the last two numbers, and it cannot be recovered without going
back to the original calculations.

Table 6-5. Fixed decimal places in a computer

spreadsheet can produce the wrong number of

significant figures. The left column is copied

from a worksheet with one fixed decimal place.

The right column shows the correct

representation of these numbers (2 s.f.).

Wrong Right

14524.2 1.5× 104

2234.2 2200
122.2 120
12.6 13
2.2 2.2
0.1 0.1?
0.0 ?
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Do not publish columns of values with a fixed num-
ber of decimal places; always round them to significant
figures.

Summary

In this section, I have outlined the rules for quoting numbers
and their errors in print. Although they sometimes might look
like unnecessary formalities, they are crucial for clarity and cor-
rectness of presentation. These rules concern all sort of publica-
tions, reports, posters and presentations. They are summarized in
Table 6-6. Please do follow them!

6.5 Exercises

Exercise 6.1
In a study of new antibiotics, bacterial cells were treated with three
new compounds, called T1, T2 and T3. Viability of bacteria was
studied in a resazurin assay, where the fluorescent intensity of each
sample is proportional to the number of live cells. Each condition

Table 6-6. Summary of rules for quoting numbers and errors.

When the error is known When the error is not known

� Estimate the error in the error, using
equation (4-23).

� This will tell you how many significant
figures of the error to quote (see also
Table 6-3).

� Typically, you quote 1–2 significant figures
of the error.

� Quote the number with the same
precision as the error (see Figure 6-11).

� You still need to guesstimate your error!
� Quote only figures that are significant,

e.g. p = 0.03, not p = 0.0327365.
� Use common sense!
� Try estimating the order of magnitude of

your uncertainty.
� Use ‘∼’ or ‘about’ qualifiers, where

appropriate.
� Example: measure the distance between

two spots in a microscope.
� Get 486.23 nm from computer

software.
� Resolution of the microscope is 100 nm.
� Quote 500 nm.
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(including the untreated wild type) was done in 12 replicates. The
measured intensities (in arbitrary units) are as follows:

No. WT (× 105) T1 (× 105) T2 (× 104) T3

1 9.08 2.86 1.24 33
2 16.5 3.73 1.33 63
3 11.7 1.95 1.52 51
4 3.11 1.76 0.989 39
5 27.4 12.5 2.74 71
6 1.24 1.29 0.514 36
7 8.86 2.2 1.34 67
8 11.2 3.55 1.89 84
9 0.972 0.735 0.669 22

10 4.48 2.09 1.07 42
11 2.21 1.10 0.519 676
12 3.22 1.12 0.383 954

Enter these numbers into a computer (I know, it’s dull) and create
a plot (using your favourite graphical software) to demonstrate the
results. Think of all possible types of plots you could make. How
would you represent data variability?

Exercise 6.2
Study Figure 6-12 carefully. The error bars in this figure are stan-
dard deviations. By looking at how much the error bars overlap,
estimate whether the sample means in each pair are significantly
different. Hint: make sure you take the sample size into account.

(a) n = 10 (b) n = 30 (c) n = 10 (d) n = 30 (e) n = 5 (f) n = 1000

Figure 6-12. Overlapping error bars. Each panel contains two samples, consisting of n points

each. Symbols and error bars show the mean and the standard deviation of each sample. See

Exercise 6.2.



Chapter 7

Propagation of errors

If people do not believe that mathematics is simple, it is only because they
do not realize how complicated life is.

—John von Neumann

In an experiment, two fluorescent dots are observed using a mi-
croscope. The instrument and its software provide the x, y and z
coordinates of each dot. Due to the design of the microscope, res-
olution in the x − y plane is better than in the z-direction. The
measurement error for both the x and y coordinates is 120 nm,
and the error of the z-coordinate is 200 nm. A postdoc makes a
measurement of two fluorescent dots and records the following
coordinates (in μm):

x y z

Dot 1 3.68 3.12 5.44
Dot 2 3.90 3.86 4.02

Let us denote the coordinates of the first and second dots
as (x1, y1, z1) and (x2, y2, z2), respectively. The corresponding
errors are

(
Δxy,Δxy,Δz

)
for both dots, where Δxy = 0.12 μm and

Δz = 0.2 μm.
Now we want to find the distance between the dots. The for-

mula is R =
√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2, and we find R =
1.62 μm. This is trivial. But, as you are very much aware, we are
not satisfied by a result without any error. Hence, we have to find
an uncertainty on the distance, ΔR. To do this, we need to learn
how to propagate errors from x, y and z into R. Propagation of er-
rors is the topic of this chapter.

7.1 What is propagation of errors?

Experiments produce numerical values, but these seldom serve
as final results. Usually, experimental data undergo various

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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transformations. For example, we might be interested in a ratio of
two conditions, hence we need to divide two numbers. Or, in order
to present the results in a plot, we might want to take a logarithm
of data. Generally speaking, data are often transformed through a
function of one or more variables. The logarithm is a function
of one variable, y = log x, and it transforms variable x into a new
variable, y. The ratio is a function of two variables, y = x1∕x2, and
two variables, x1 and x2, are transformed into a new variable y. I’m
going to use general notation to indicate transformation of one
variable,

y = f (x),

or many variables,

y = f (x1, x2,… xn) .

While it might be trivial to transform variables in this way, it is
not obvious how errors propagate from x to y. More specifically, if
a quantity x has error Δx, what is the error, Δy, of y = f (x), where
f is a known (and simple) function? For example, (3.1 ± 0.5) × 107

bacteria were counted in a sample. We want to plot this result
with a logarithmic scale. The base-10 logarithm of the count is
log(3.1 × 107) ≈ 7.49, but how do we find its error? Obviously, it is
not log(0.5 × 107)!

When you calculate new quantities from known values,
you also need to propagate their errors.

Any type of error can be propagated: standard deviation, standard
error or a confidence interval. However, error propagation is most
often applied to instrumental errors, when a new quantity has to
be derived from measurements. You can propagate uncertainties
derived from replicates, but see Section 7.4 for more discussion.

7.2 Single variable

Consider the following problem. We want to transform a value x
into a new value y using a formula y = f (x), where f is an analytical
function of x, for example a logarithm. If x has uncertainty Δx,
what is the uncertainty Δy of y? Or, in other words, having given
x ± Δx, how do we find y ± Δy?
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The answer is simple; you need to multiply the uncertainty of
y by the derivative of the transformation function,

Δy ≈
|||||
df
dx

|||||Δx. (7-1)

I show the derivation of this formula at the end of the chapter.The derivation of
equation (7-1) is in

Section 7.7.

Although it requires some calculus, I urge the reader to study it,
because apart from the maths it explains the intuitive meaning of
error propagation (there are pretty figures to illustrate it!). I always
think it is good to know where the given equation came from, in-
stead of just using it blindly.

Have a look at a few particular applications of equation (7-1).

Scaling

I will start with the simplest case of scaling. If a quantity x is mul-
tiplied by a constant a, how does its error change? The transfor-
mation function in this case is

f (x) = ax,

with derivative

df
dx

= a.

Plugging this into equation (7-1) gives us

Δy = |a|Δx. (7-2)

The result is very simple and intuitive. The error scales by the
same factor as the number. For example, 10 ± 1 scaled by factor 5
gives 50 ± 5.

Logarithms

Logarithms are used in experimental biology to express quantities
that vary by several orders of magnitude. Consider a logarithm to
an arbitrary base:

f (x) = logb x,
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where x > 0. Its derivative is

df
dx

= 1
x ln b

.

Using error propagation, equation (7-1) gives us

Δy = 1
ln b

Δx
x

. (7-3)

In the case of a commonly used base-two logarithm, we find

Δy = 1
ln 2

Δx
x

≈ 1.44Δx
x

.

For example, a fold change of x = 4.0 ± 0.5 will transform into
log2 x = 2.0 ± 0.2. In the case of a base-10 logarithm, the constant
in this equation is 1∕ ln 10 ≈ 0.43. Hence, the bacterial count ex-
ample from the beginning of the chapter will convert the count of
n = (3.1 ± 0.5) × 107 into log10 n = 7.49 ± 0.07.

This result has an interesting property – a relative error in the
linear space (Δx∕x) translates into absolute error (Δy) in the log-
arithmic space. If you have data where errors are typically 30%,
regardless of the measured value, then errors of logarithms will be
approximately constant (Figure 7-1).
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Figure 7-1. Errors of logarithms. (a) 30 measurements of x with un-

certainties. Errors are proportional to measurements, Δx∕x ≈ 0.3. (b)

Logarithms (base 10) of x and propagated errors. Errors proportional

to x result in constant errors of log x.
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7.3 Multiple variables

Sometimes, multiple variables with their errors are transformed
into a new quantity, and the transformation has a general form:

y = f (x1, x2,… xn) ,

where x1, x2, . . . , xn are independent variables1. In most cases, when
we need a sum or a ratio, there will be just two variables. But more
complicated transformations are not unheard of. The general for-
mula for error transformation is a simple extension of equation
(7-1):

Δy2 ≈
(

𝜕f
𝜕x1

)2

Δx2
1 +

(
𝜕f
𝜕x2

)2

Δx2
2 +⋯ +

(
𝜕f
𝜕xn

)2

Δx2
n,

(7-4)

where 𝜕f ∕𝜕x1 denotes a partial derivative of f with respect to x1The derivation of
equation (7-4) is shown

in Section 7.8.

and can be understood as the gradient of function f in the direc-
tion of x1. This formula looks a bit scary, but it is not difficult to
derive. I show how to do it at the end of this chapter. Again, I
encourage the reader to go through all the derivations and try to
understand their meaning. In particular, I explain how covariance
relates to this equation and why the variables x1, x2,… , xn need to
be independent.

Sum or difference

Let me show you how the general error propagation formula
[equation (7-4)] can be applied in specific cases. First, let us
consider a sum of two quantities, represented by the following
function:

f (x1, x2) = x1 + x2.

1Very briefly, two random variables are independent when realization of
one of them does not affect the probability distribution of the other. In
practice, these are results of experiments that do not affect each other. For
example, heights of two unrelated persons are independent, but heights
of fathers and sons are not (see Exercise 5.3).
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Partial derivatives of f with respect to x1 and x2 are

𝜕f
𝜕x1

= 1,

𝜕f
𝜕x2

= 1.

When used in equation (7-4) they give a familiar result,

Δy2 = Δx2
1 + Δx2

2. (7-5)

Errors add in quadrature. This makes perfect sense: errors are usu-
ally derived from standard deviations, and standard deviations of
independent variables do add in quadrature. Errors of a difference
x1 − x2 propagate in exactly the same way (i.e. they add in quadra-
ture, not subtract!).

The result in equation (7-5) has a simple geometrical interpre-
tation, shown in Figure 7-2a. The propagated error Δy can be un-
derstood as a hypotenuse of a right-angled triangle with legs Δx1
and Δx2. It can be seen that the propagated error is always greater
than (or equal to) either of the original errors. Also, when Δx1 is
much larger than Δx2, then Δy ≈ Δx1 and vice versa.

Ratio or product

Ratio is often used in biology to compare two conditions. The
transformation function can be written as

f (x1, x2) =
x1

x2
,

Δx
1

Δx
2

Δy

Δy2 = Δx
1  

+ Δx
2 (b)(a)

Δx
1

x
1

Δx
2

x
2
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y
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Figure 7-2. Geometrical interpretation of error propagation for (a) the

sum or difference, and (b) the ratio or product.
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and the derivatives are

𝜕f
𝜕x1

= 1
x2

,

𝜕f
𝜕x2

= −
x1

x2
2

.

Now we can put these into equation (7-4):

Δy2 =
(

1
x2

)2

Δx2
1 +

(
−

x1

x2
2

)2

Δx2
2. (7-6)

Assuming that x1 ≠ 0, we can multiply and divide the first term
by x2

1 :

Δy2 =
(

x1

x2

)2 (Δx1

x1

)2

+
(

x1

x2

)2 (Δx2

x2

)2

=
(

x1

x2

)2
[(

Δx1

x1

)2

+
(
Δx2

x2

)2
]

= y2

[(
Δx1

x1

)2

+
(
Δx2

x2

)2
]

.

Hence,

(Δy
y

)2

=
(
Δx1

x1

)2

+
(
Δx2

x2

)2

. (7-7)

Relative errors add in quadrature. I will invite interested readers
to prove that the product, f (x1, x2) = x1x2, gives the same error
propagation formula (see Exercise 7.1 at the end of the chapter).

Equation (7-7) is very similar to the propagation formula for
the sum, except that relative errors replace absolute errors. The
geometrical interpretation is the same, as shown in Figure 7-2b.

What happens if x1 = 0? You can certainly calculate the ratio
(y = 0∕x2 = 0), but how do you propagate errors? I was once su-
pervising students doing a laboratory experiment in which they
were taking a series of measurements, estimating their errors and
calculating ratios. In this particular experiment, the numerator in
the first measurement was always zero. They used equation (7-7)
to propagate errors and invariably ran into a problem because x1



Propagation of errors 149

was zero. They could calculate the ratio, but they were unable to
propagate errors and usually returned a lab report with one error
missing. When questioned about the missing value, they simply
answered, ‘I couldn’t divide by zero, so I ignored it.’ Surely, we
can do better.

It is actually quite trivial. All we need to do is substitute x1 = 0
in equation (7-6):

Δy2 =
(
Δx1

x2

)2

,

Δy =
Δx1||x2

|| . (7-8)

The error of the ratio becomes insensitive to the uncertainty of
the denominator, Δx2. This doesn’t mean that Δy remains small
even if Δx2 is huge. The error propagation formula works only
when both errors, Δx1 and Δx2, are small, so the transformation
function f (x1, x2) = x1∕x2 is approximately linear when x1 is dis-
turbed by Δx1 and/or x2 is disturbed by Δx2. Only in such cases
equation (7-8) is correct for x1 = 0. Obviously, we need x2 ≠ 0 all
the time: indeed, you can’t divide by zero.

I have collected error propagation formulae for a few com-
monly used transformations in the Appendix (Table A-3). You
should exercise caution when using these equations, as they might
not work in particular cases. If in doubt, always use the generic
formula [equation (7-4)] and derive your particular case.

7.4 Correlated variables

As I stressed before, the general error propagation formula [equa-
tion (7-4)] is valid only when variables x1, x2,… , xn are indepen-
dent (uncorrelated). Otherwise, we need to use covariance terms
(see derivation in Section 7.8). In the simplest case of two vari-
ables, the formula will look like this:

Δz2 ≈
(
𝜕f
𝜕x

)2

Δx2 + 2
𝜕f
𝜕x

𝜕f
𝜕y

Cov (x, y) +
(
𝜕f
𝜕y

)2

Δy2. (7-9)

It is not always easy to find the covariance term, but I’m go-
ing to show an application of this formula to linear regression in
Chapter 8.
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7.5 To use error propagation or not?

Consider the following example. A test of a new drug in five repli-
cated experiments gave the following values of half-maximal in-
hibitory concentration (IC50):

R1 R2 R2 R4 R5

IC50 (nM* ) 25 85 43 118 12

pIC50 7.6 7.1 7.4 6.9 7.9

∗Nanomolar is a unit of concentration, 1 nM = 10−9 mol dm−3.

The logarithmic version of IC50 is defined as pIC50 =
− log (IC50∕M), where M is one molar. We want to find the
mean and error of this quantity. We can do it two ways: (1)
find the mean and standard error of IC50, then convert it to a
logarithm and propagate the error; and (2) find logarithms of
each IC50 value and then find the mean and error. Let’s try both
methods. The mean and standard error of IC50 are M = 56.6 nM
and SE = 19.7 nM, which can be written as

The rules for quoting
numbers and errors are

explained in Section 6.4.
IC50 = 60 ± 20 nM.

From this and the equation for error propagation,Δy = 0.43Δx∕x,
we can find

pIC50 = 7.2 ± 0.1.

Alternatively, we can find logarithmic pIC50 values from individual
measurements and their mean and standard error, Mp = 7.38 and
SEp = 0.18, which can be written as

pIC50 = 7.4 ± 0.2.

These two results are slightly different. First of all, the logarithm
of the mean does not equal the mean of the logarithm. As I stressed
before, error propagation works well only when errors are small.
In this example, the relative error of IC50 is 35% and the loga-
rithm is not exactly linear at this scale. Hence, error propagation
introduced a bias. The second method, where we calculated log-
arithms of data first and then found the mean and the standard
error, is better because the final result is unaffected by additional
transformations.
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Do not use error propagation if you can transform
replicated data directly.

This advice usually refers to single-variable error propagation.
With many variables, it is a bit more complicated.

Consider an experiment on mice where the effect of a drug
on body mass is measured. We have a control group of 10 mice
and a treatment group of 12 mice where the drug was admin-
istered. From a statistical test (e.g. a t-test), we know that the
treated group is significantly heavier. Now we want to express
this as a treatment-to-control ratio of body mass. We can do
this by finding the mean and standard error of the body mass
in each group, calculating the mass ratio and propagating er-
rors using equation (7-7). We cannot calculate individual mass
ratios for each mouse because the two groups consist of dif-
ferent mice! Not to mention that the two groups are not even
equal-sized.

We can, however, imagine a slightly different experiment with
just one group of mice. We weigh them, administer the drug for
a certain period of time and weigh them again. Now we ask about
the average relative mass gain after the drug was given. It makes
more sense to calculate individual mass ratios and find their mean
and standard deviation. But is it any better than finding the mean
mass before and after exposure to the drug, calculating their ratio
and propagating errors? There is no simple answer as it depends
on what you want to measure. The first method would tell you
the average body mass gain of an individual. The second method
would estimate how the population mean had changed. They will
give slightly different answers, and the choice of the answer is
yours.

In practice, error propagation is used mostly when dealing with
measurement (instrumental) errors, as in the example below.

7.6 Example: distance between two dots

Now, when we have gone through all the theoretical derivations,
let us go back to the question posed at the very beginning of this
chapter. I showed an example of an experiment, in which we found
the 3D coordinates of two fluorescent dots and estimated their
uncertainties. We want to find the distance between the dots and
its error.



152 Understanding statistical error

Once again, the distance between the two dots is

R =
√

(x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2. (7-10)

Since we have six variables, x1, y1, z1, x2, y2 and z2, transformed into
R, we are going to use the propagation formula for multiple vari-
ables (7-4). In order to do this, we need to find partial derivatives
of R with respect to the coordinates. They are easy to find:

𝜕R
𝜕x1

=
x1 − x2

R
,

𝜕R
𝜕x2

=
x2 − x1

R
,

𝜕R
𝜕y1

=
y1 − y2

R
,

𝜕R
𝜕y2

=
y2 − y1

R
,

𝜕R
𝜕z1

=
z1 − z2

R
,

𝜕R
𝜕z2

=
z2 − z1

R
.

Now we can use equation (7-4) to propagate errors:

ΔR2 =
(x1 − x2

R

)2
Δ2

xy +
(x2 − x1

R

)2
Δ2

xy +
(y1 − y2

R

)2
Δ2

xy

+
(y2 − y1

R

)2
Δ2

xy +
(z1 − z2

R

)2
Δ2

z +
(z2 − z1

R

)2
Δ2

z

= 2
R2

{[
(x1 − x2)2 + (y1 − y2)2]Δ2

xy + (z1 − z2)2Δ2
z

}
.

Finally,

ΔR =
√

2
R

√[
(x1 − x2)2 + (y1 − y2)2

]
Δ2

xy + (z1 − z2)2 Δ2
z

(7-11)

All we need is to use the numerical values from equations (7-10)
and (7-11) and find R = 1.62 ± 0.26 μm.
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7.7 Derivation of the error propagation formula for one variable

Here I show one possible derivation of the error propagation for-
mula for one variable, shown in equation (7-1). A quantity y is cal-
culated from a known value x via a function y = f (x). Having a
known error Δx, we want to find the error Δy.

In general theory, x and y are random variables. For the purpose
of this derivation, I’m going to apply a more intuitive approach and
represent a random variable by a sample – a series of n measure-
ments x1, x2,… , xn. The transformed measurements are yi = f (xi)
for all i. The mean and standard deviation of the sample x are Mx
and SDx, respectively. I will use standard deviations as a measure of
errors, Δx = SDx and Δy = SDy, although these can be easily re-
placed with either standard errors or standard deviation-derived
confidence intervals. Our task is to find SDy.

Have a look at a particular measurement xi. Let 𝛿xi = xi − Mx
be the deviation from the mean (residual) of xi. It is indicated on
the horizontal axis in Figure 7-3. We can relate the propagated 𝛿yi
to the slope of function f , as illustrated in Figure 7-3a. When the
curve representing f is almost flat, a given 𝛿xi results in a small 𝛿yi.
In contrast, when f grows quickly, 𝛿xj of the same size results in a
much larger 𝛿yj.

If deviations 𝛿xi and 𝛿yi are small, we can write

𝛿yi

𝛿xi
≈

df
dx

. (7-12)

θ

f(x)

δxi δxj

δyi

δyj

f(x)

xx

yy
(b)(a)

δxi

δyi

Figure 7-3. Propagation of errors in the case of a single variable. The

transformation is y = f(x). (a) Deviation of the same size in x can create

a very different deviation in y, depending on the slope of the curve, rep-

resenting f. (b) The slope of f is its derivative, tan 𝜃 = df∕dx ≈ 𝛿yi∕𝛿xi.
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The derivative is calculated at point xi and it represents the
slope of f (tan 𝜃 in Figure 7-3b). In this equation, I replaced
differences with differentials. This requires that 𝛿xi and 𝛿yi are small
in comparison to the curvature of f (i.e. we request that within 𝛿xi,
the function f is approximately linear).

Propagation of errors works well only when errors are
small.

We can solve equation (7-12) for 𝛿yi:

𝛿yi ≈
df
dx

𝛿xi. (7-13)

Recall that 𝛿xi and 𝛿yi are small deviations from theSample standard
deviation is defined by

equation (4-8).
mean (residuals). By definition, the variance (standard deviation
squared) of y is

SD2
y = 1

n − 1

n∑
i=1

(
yi − My

)2
= 1

n − 1

n∑
i=1

𝛿y2
i . (7-14)

We can replace 𝛿yi with equation (7-13) and find

SD2
y ≈ 1

n − 1

n∑
i=1

(
df
dx

)2

𝛿x2
i =

(
df
dx

)2
1

n − 1

n∑
i=1

𝛿x2
i

=
(

df
dx

)2

SD2
x.

In our intuitive approach, errors are represented by standard de-
viations, hence we can write

Δy2 ≈
(

df
dx

)2

Δx2, (7-15)

or, after taking the square root of both sides,

Δy ≈
|||||
df
dx

|||||Δx. (7-16)
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The squared form is worth remembering, as it is consistent with
the multiple-variable formula I derive in the next section.

7.8 Derivation of the error propagation formula for multiple
variables

I will show how the error propagation formula is derived in the
case of two variables. Calculations are less tedious than for n vari-
ables, but all the steps of the derivation are still present and the
intuition behind it is the same. Let us call our two variables x and
y, and the transformation formula is z = f (x, y). This is a slight
departure from the previous naming convention, but it will make
equations easier to read.

I will follow the same route as in deriving the single-variablePlease read Section 7.7
first. formula in the previous section. x and y are random variables, rep-

resented by samples xi and yi, where i = 1,… , n. From these num-
bers, we can find mean values Mx and My, and standard deviations,
SDx and SDy. I’m going to use standard deviations as a measure
of errors. Our problem is as follows: having SDx and SDy, what
is SDz?

Let 𝛿xi = xi − Mx and 𝛿yi = yi − My be deviations from the
mean (residuals) for both samples. By analogy to equation (7-13),
residuals of the resulting value, 𝛿zi = zi − Mz, can be expressed by
the following formula:

𝛿zi =
𝜕f
𝜕x

𝛿xi +
𝜕f
𝜕y

𝛿yi, for i = 1,… , n (7-17)

The intuition here is similar to that in Figure 7-3. Each term in
the sum consists of a gradient (derivative) multiplied by a residual.
The gradient tells us how fast the function changes in the direction
of x or y.

In one dimension, the gradient df ∕dx describes the slope ofA one-dimensional
gradient is illustrated in

Figure 7-3b.
the curve f (x). In two dimensions, 𝜕f ∕𝜕x is the slope of a two-
dimensional surface f (x, y) in the direction of x, and 𝜕f ∕𝜕y is the
slope in the direction of y (see Figure 7-4). You can imagine this
two-dimensional surface as a mountain. As you climb it, you can
measure the slope along the north-south line and along the east-
west line at each point. When multiplied by the corresponding
residual, each gradient component gives us the contribution to the
‘vertical’ deviation in z. The sum of the two contributions gives the
total deviation from the mean of z.



156 Understanding statistical error

x

y

δx
i

δyi

Figure 7-4. Illustration of a partial derivative in two dimensions. The

grey contour plot represents a function z = f (x, y). You can imagine

this as a mountain presented in a map. From the point marked in

the map, you can climb up by one contour, 𝛿zi, by either moving

in the x direction by 𝛿xi, or moving in the y direction by 𝛿yi. The

partial derivatives with respect to x and y are then approximated by

𝜕z∕𝜕x ≈ 𝛿zi∕𝛿xi and 𝜕z∕𝜕y ≈ 𝛿zi∕𝛿yi, respectively. Each derivative

represents the slope of the mountain in the respective direction. In

this example, the slope in x direction is much steeper than the slope

in y direction.

Since we want to find the standard deviation of z, we need the
squared residual first,

𝛿z2
i =

(
𝜕f
𝜕x

𝛿xi +
𝜕f
𝜕y

𝛿yi

)2

=
(
𝜕f
𝜕x

)2

𝛿x2
i + 2

𝜕f
𝜕x

𝜕f
𝜕y

𝛿xi𝛿yi +
(
𝜕f
𝜕y

)2

𝛿y2
i .

We use 𝛿z2
i to find the variance of z,
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n∑
i=1

𝛿x2
i

+ 2
𝜕f
𝜕x

𝜕f
𝜕y

1
n − 1

n∑
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𝜕f
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)2

SD2
x + 2

𝜕f
𝜕x

𝜕f
𝜕y

Cov (x, y) +
(
𝜕f
𝜕y

)2

SD2
y .

The quantity Cov (x, y) in the middle term is called covari-Pearson’s correlation
coefficient is introduced

in Section 4.4.

ance and is related to Pearson’s correlation coefficient [equa-
tion (4-15)] as Cov (x, y) = rSDxSDy. When variables x and y are
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independent (uncorrelated), it covariance approximately zero.
This is because the mixed term in the middle, 𝛿xi𝛿yi, is some-
times positive, sometimes negative and its sum,

∑
i 𝛿xi𝛿yi, is ap-

proximately zero. In contrast, the squared terms, 𝛿x2
i and 𝛿y2

i , are
always positive, so they add up to create positive variances.

For the purpose of error propagation, we assume that variables
See Section 7.4 for

correlated variables.
x and y are independent, so we can get rid of the covariance term.
Otherwise, the covariance term must be included in calculations.
This is a very important assumption.

Variables for simple error propagation must be
independent.

If we interpret standard deviations as errors, we can rewrite the
last equation (with the covariance term removed) as

Δz2 ≈
(
𝜕f
𝜕x

)2

Δx2 +
(
𝜕f
𝜕y

)2

Δy2.

When extended to many variables, this gives the general error
propagation formula (7-4). In the case of one variable, it reduces
to equation (7-1).

7.9 Exercises

Exercise 7.1
We have two numbers and their errors: x1 ± Δx1 and x2 ± Δx2. We
calculate their product, y = x1x2. What is the error of y?

Exercise 7.2
The radius of a spherical cell was measured with 10% accuracy.
When you estimate the volume of the cell from this radius, what
is the accuracy of this estimation?

Exercise 7.3
Your task is to prepare a 10.0 mM solution of NaCl. The required
accuracy of the concentration is 0.1 mM. Considering that you can
measure the mass of NaCl to the nearest milligram and volume of
the solution to the nearest millilitre, how much NaCl do you need
to use to obtain the required molar concentration accuracy?



Chapter 8

Errors in simple linear
regression

It is proven that the celebration of birthdays is healthy. Statistics show
that those people who celebrate the most birthdays become the oldest.

—S. den Hartog

Regression analysis is a way of finding a relationship between
two or more variables. For example, we might be interested in
how body mass depends on height, or how microbial cell number
changes with increasing concentration of a drug. In the simplest
case of linear regression, which I’m going to discuss here, we want
to fit a straight line to a set of points, represented by their coordi-
nates xi and yi. I will show not only how to find the parameters of
this line, but also how to estimate their uncertainties and evaluate
the error of the prediction. At the end of this chapter, I will briefly
mention a more general case of curve fitting.

8.1 Linear relation between two variables

A linear relation between x and y can be written as

y (x) = ax + b, (8-1)

where a is the slope and b is the intercept. Unknown parameters a
and b are found by fitting function y(x) to data (xi, yi), i = 1,… , n. x
and y are sometimes called independent and dependent variables,
but this might create confusion with the concept of statistically
(in)dependent variables. Therefore, I’m going to follow a different
convention and call x the explanatory variable and y the response
variable.

These terms reflect intrinsic asymmetry in data: we are inter-
ested in how y responds to changes in x, not the other way round.

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.



Errors in simple linear regression 159

Sometimes x is a variable we actually control in order to measure
the response. For example, we might test how cells react to a drug
by changing its concentration over a certain range. In many cases,
however, we don’t control the explanatory variable, but we want
to compare two quantities characterizing objects of interest, for
example body mass and height (see the example below). In such
cases, the mass can be regarded as a response to the height (the
taller you are, the heavier you should be), modulated by all other
factors: diet, exercise and so on.

In linear regression, data are asymmetric: the response
variable results from the explanatory variable.

Mean response

We can understand linear relation in the usual terms of population
and sample. There is a (usually abstract) population of points with
a true regression line:

ȳ = 𝛼x + 𝛽. (8-2)

Here, 𝛼 and 𝛽 are the population slope and intercept, and ȳ is the
mean response to x. Formally, we should discuss it in terms of a ran-
dom variable Y , normally distributed around mean ȳ, for a given
x. In real populations, we can approximate the mean response by
averaging y over a small range of x.

Figure 8-1 shows data from a 1993 Hong Kong Growth Survey1:
Are you perplexed by h2

in linear regression? Wait
a few paragraphs.

height squared, h2, and body mass, m, of 25,000 adolescents. The
straight line in Figure 8-1 represents linear regression calculated
for the entire population using the least-squares method described
later in this chapter. I have approximated the mean response by
finding the average mass in horizontal bins containing 100 points
each. The approximated ȳ agrees very well with the regression line.

The regression line follows the mean response in the
population.

1Data obtained from http://wiki.stat.ucla.edu/socr/index.php/SOCR_
Data.

http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data
http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data
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Figure 8-1. Population, regression and mean response. Grey points
show data from the Hong Kong Growth Survey; the straight line is
the regression line m = 𝛼h2 + 𝛽, where 𝛼 = 15.9 ± 0.3 kg m-2 and
𝛽 = 10 ± 1 kg (95% CI). The histogram shows the mean mass in bins
containing 100 points, and it approximates the mean response in the
population data. Despite some variability, the mean response agrees
with the population regression line very well.

True response and noise

Another remarkable thing about the data from Figure 8-1 is the
substantial level of noise. Data points make a large splodge, and it
looks almost like a miracle that the mean response line follows the
straight regression line so closely. There is nothing miraculous
about it. In fact, Figure 8-1 is telling us both that there is a true
underlying linear relationship between m and h2, and that the
response is strongly affected by noise. The true response can be
expressed as

y = 𝛼x + 𝛽 + r, (8-3)

where r is the noise term. This equation reflects two things com-
monly found in biological data. Firstly, there is often a simple un-
derlying pattern, for example a linear relationship. Secondly, it is
obscured by noise, which can be very strong. This is how things
are, and we cannot do much about it. The level of noise should
not discourage you from analysing these data. Statistical tools like
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regression analysis enable us to extract the essence of the data and
discover the underlying pattern.

In biology, there is often an underlying simple relation-
ship between observables, even if it is badly affected by
noise.

Data linearization

By the way, I have plotted squared height on the horizontal axis
in this figure in order to linearize the data. We expect m and h to
be positively correlated: the taller you are, the heavier you are ex-
pected to be. However, body mass depends not only on height but
also on, well, let’s be frank: width. Physicians often use the body
mass index (BMI), B = m∕h2, to characterize someone’s bulkiness.
Therefore, it is not unreasonable to expect a roughly linear rela-
tion between m and h2. By transforming (h, m) into

(
h2, m

)
I have

converted data into their expected linear form, or linearized them.
Mind you, this is not just a random conversion: I used specific

knowledge about the subjects of the study to do this. This
procedure is recommended for all types of data. In particular,
if we expect the response to have an exponential dependence
on the explanatory variable, y = aebx, taking a logarithm of y
will convert this into a linear relation between x and log y:
log y = log a + b log (e) × x. Likewise, converting both x and y into
their logarithms linearizes a power-law dependence, y = axb, into
log y = log a + b log x.

Linearize your data where possible.

Alas, we cannot linearize an exponential relation with an offset,
y = y0 + aebx. In such cases, we need to use a more general curve-
fitting procedure; see Section 8.6 at the end of this chapter.

8.2 Straight line fit

Fromthe population we go down to a sample (xi, yi). Parameters
The concept of statistical
estimator was introduced

in Section 4.2.

a and b we want to find are statistical estimators of true unknown
parameters 𝛼 and 𝛽 in the same sense as the sample mean, M, is an
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Figure 8-2. A sample of 16 points randomly drawn from the Hong
Kong Growth Survey data presented in Figure 8-1. The model shown
is the best-fitting straight line m = ah2 + b. The residuals – deviations
of data from the model – are shown as grey vertical lines. The open
circle indicates the centroid of the data, (Mx, My).

estimator of the unknown population mean, 𝜇. From the point of
view of the sample, the actual response is

yi = axi + b + Ri, (8-4)

where Ri = yi − y (xi) is a residual. Please note that the term resid-Residuals defined as the
deviation from the mean

are introduced
in Section 4.4.

ual might have different meanings. It can be defined as either the
deviation from the mean or, as here, deviation from the model. In
either case, we calculate the sum of squared residuals, which is then
used to find the sample’s standard deviation [equation (4-8)], or to
fit a straight line (below).

The prediction of the model for any given x, or the predicted
response, is

y (x) = ax + b. (8-5)

Figure 8-2 shows a sample selected from the Growth Survey data.
The predicted model response (or, shortly, the model) is shown
as a straight line. The residuals are shown as vertical grey lines:
deviations of data from the predictions of the model.



Errors in simple linear regression 163

So, how do we find our model parameters in practice? We want
data points to lie as close to the fitted line as possible. This is usu-
ally done by minimizing the spread of residuals. Since the residu-
als can be either positive or negative, the best approach to straight
line fitting is to minimize the sum of squared residuals,

Q =
n∑

i=1

R2
i =

n∑
i=1

(yi − axi − b)2 . (8-6)

This is called the least-squares method.

The least-squares method minimizes the sum of
squared residuals.

The condition for Q to be minimal is that partial derivatives
with respect to both model parameters are zero: 𝜕Q∕𝜕a = 0 and
𝜕Q∕𝜕b = 0. After doing a bit of (rather straightforward and bor-
ing) calculus, we can solve these equations for a and b:

a =
Sxy

Sxx
,

b = My − aMx.
(8-7)

I use the following notation:

Mx =
1
n

n∑
i=1

xi,

My =
1
n

n∑
i=1

yi,

Sxx =
n∑

i=1

(xi − Mx)2,

Syy =
n∑

i=1

(yi − My)
2,

Sxy =
n∑

i=1

(xi − Mx)(yi − My).

(8-8)

The slope and intercept given by equations (8-7) are estima-
tors, in the same sense as other statistical estimators discussed
in Chapter 4. Our sample comes from a population, which is
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characterized by an unknown relation, equation (8-2). a and b are
our best shots at estimating 𝛼 and 𝛽. The good news is they are
unbiased, so parameters averaged over many samples are equal
to the true population parameters. Another interesting feature of
the least-squares linear fit is that the best-fitting line always passes
through the centroid of the data, (Mx, My), marked with the open
circle in Figure 8-2.

8.3 Confidence intervals of linear fit parameters

Equations (8-7) show how to calculate the best-fitting slope and
intercept of the least-squares straight line. Now we must find con-
fidence intervals on these estimates. One way of doing this is by
propagating errors from data to fit parameters.

See Section 8.6 for brief
discussion of fitting data

with known errors in.

Following asymmetry of explanatory and response variables, I
assume that x is measured precisely and y is somehow uncertain.
The problem is, uncertainties in y are not known. All we have here
are ‘naked’ data points (xi, yi). However, errors in y can be derived
from the spread of these data. We can use residuals (differences
between data and the model) as a proxy for errors in the response
variable. These can be directly propagated into errors of the fit
parameters, a and b.

Residuals can be regarded as a manifestation of noise. They
should be normally distributed around zero, and we can use the
following estimator to calculate a standard deviation:

SDR =

√√√√ 1
n − 2

n∑
i=1

R2
i . (8-9)

This is an unbiased estimator. The n − 2 is here because we loseSee Section 4.8 for
explanation of degrees of

freedom.
two degrees of freedom when calculating a and b. We can put
Ri = yi − (axi + b) into this equation, and after a few simple trans-
formations we find the form of SDR useful in practical applica-
tions,

SDR =

√
Syy − aSxy

n − 2
. (8-10)

Syy and Sxy are defined by equations (8-8).
SDR represents the scatter of data points around the regression

line, just like normal standard deviation represents the scatter of
data around the sample mean. You can think of it as the standard
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Figure 8-3. The sample from Figure 8-2 with the common error esti-
mated from the standard deviation of the residuals, Δyi = SDR.

deviation of the response after eliminating the trend or correla-
tion between x and y. SDR tells us something about the level of
noise. It characterizes a typical error in the response. If we believe
that all measurements yi are independent (they are not correlated),
and that the uncertainty of each yi is similar, we can use SDR as a
common uncertainty for each and every Δyi:

Δyi = SDR, (8-11)

for i = 1,… , n. Our sample with common errors in y is shown in
Figure 8-3.

We can use standard deviation of the residuals, SDR, to
estimate unknown errors in y.

Please note that SDR cannot be used to assess the quality of the
fit. This is a very different situation to a case where errors Δyi are
actually measured (or estimated) from the data. When we have
measured errors in the response variable, we can see how well our
data follow the model line, assess the fit quality (e.g. in terms of 𝜒2;
see Section 8.6) and decide if our model is correct. Here, we have
‘naked’ data points xi and yi with no error bars. We use the scatter
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in the sample to find errors on fit parameters. We assume that the
fit is ‘good’ and that the scatter of points around the model line is
due to noise and not due to an incorrect model.

Fit parameters, a and b, can be derived from data points (xi, yi)
using equations (8-7). Since there is an uncertainty in data, Δyi,
then there must be an uncertainty in the calculated fit parameters.
We can use the general error propagation formula to find these
uncertainties:

Δa2 =
SD2

R

Sxx
,

Δb2 = SD2
R

[
1
n
+

M2
x

Sxx

]
.

I show details of this derivation at the end of the chapter (Sec-
tion 8.7).

I discuss sampling
distribution in Section

5.1.

The uncertainties Δa and Δb are propagated from common un-
certainty in the response, which in turn is estimated by a standard
deviation SDR. Hence,Δa and Δb are also standard deviations. But
standard deviations of what, exactly? Another gedankenexperiment
can help us understanding this. Imagine we take a lot of samples
from the population, and fit each of the samples with a straight
line, finding its slope and intercept. From this, we can build the
sampling distribution of the slope (shown in Figure 8-4) and the
intercept (not shown). You can see a familiar trend in Figure 8-4:
the smaller the sample size, the wider the sampling distribution
and the slope is more uncertain.

The width of the sampling distribution of the slope is estimated
by our Δa (the same for the intercept). As you recall from Chapter
5, the width of the sampling distribution (its standard deviation,
to be more precise) is the standard error of the corresponding es-
timator. Therefore, Δa and Δb are in fact standard errors of a and
b, respectively,

SEa =
SDR√

Sxx

,

SEb = SDR

√
1
n
+

M2
x

Sxx
,

(8-12)

where Sxx is defined by equation (8-8).
In a typical situation, residuals (which can be regarded as ran-Section 3.2 shows why

we expect errors to be
normally distributed.

dom errors) are normally distributed. Under this assumption, the
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Figure 8-4. Sampling distribution of a slope. 100,000 samples of size n were randomly drawn
from the Hong Kong Growth Survey, shown in Figure 8-1. For each sample, the slope and the
intercept were calculated from a linear fit, using equations (8-7). The distribution of the slope for
three sample sizes is plotted. The slope is normally distributed around the true value of 𝛼 = 15.9,
with standard deviation estimated by equation (8-12).

estimators a and b are also normally distributed around true pa-
rameters characterizing the population (they are unbiased), as il-
lustrated in Figure 8-4.

In Section 5.4, I showed a useful transformation [equation (5-1)]
into a Student’s t-distribution. It allowed us to find the confidence
interval of the mean. Now we can use a similar trick,

ta =
a − 𝛼

SEa
.

where a is the unknown true population parameter. The statistic ta
has a Student’s t-distribution with n − 2 degrees of freedom. Fol-
lowing the method outlined in Section 5.4, we find the confidence
interval for the slope,

a − t∗SEa ≤ 𝛼 ≤ a + t∗SEa, (8-13)
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where t∗ is the critical value from t-distribution, corresponding to
the assumed confidence level. A similar calculation can be done
for the intercept:

b − t∗SEb ≤ 𝛽 ≤ b + t∗SEb. (8-14)

Here, 𝛽 is the true unknown population parameter. The recipe
for finding the best-fitting linear regression parameters with their
errors is as follows:

1. Data points are (xi, yi), where i = 1,… , n.
2. Use equations (8-8) to find Mx, My, Sxx, Syy and Sxy.
3. Use equations (8-7) to find fit parameters a and b.
4. Use equations (8-12) to find standard errors SEa and SEb.
5. Find critical t∗ from t-distribution with n − 2 degrees of free-

dom for the required confidence level.
6. Equations (8-13) and (8-14) give the confidence limits for the

fit parameters.

Obviously, any self-respecting statistical software package will do
this for you in a jiffy. But isn’t it nice to know where all these num-
bers come from and what they really mean?

Example

Sixteen adolescent youths2 have been measured and weighed.
Their body mass (m) and height (h) are summarized in this table:

1 2 3 4 5 6 7 8

h (m) 1.66 1.70 1.64 1.74 1.72 1.82 1.78 1.74
m (kg) 50.9 56.5 54.0 57.5 55.0 64.5 62.6 54.3

9 10 11 12 13 14 15 16

h (m) 1.68 1.76 1.69 1.74 1.77 1.69 1.78 1.77
m (kg) 49.9 62.5 62.5 65.8 68.4 60.9 74.3 64.3

This sample is shown in Figure 8-2. We expect a roughly linear
relationship between m and h2:

m = ah2 + b.

2The sample was randomly selected from the Hong Kong Growth Sur-
vey, see Figure 8-1.
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Despite the square in h2, this equation describes a linear model
and can be fitted to

(
h2

i , mi
)

data points using the least-squares
method. From equations (8-8), we find (4 s.f.)

Mx = 2.995 m2

My = 60.24 kg
Sxx = 0.4439 m4

Syy = 663.4 kg2

Sxy = 12.12 kg m2.

Then, equations (8-7) give us the slope and the intercept:

a = 27.30 kg m−2

b = −21.53 kg.

The standard errors are calculated from equations (8-12):

SEa = 7.314 kg m−2

SEb = 21.94 kg.

For sixteen data points and n − 2 = 14 degrees of freedom, the
critical value from the t-distribution (significance level of 95%)
is t∗ = 2.145 (see Table A-1). Finally, our best-fitting values with
their 95% CIs are

a = 27 ± 16 kg m−2

b = −22 ± 47 kg

These errors are quite large. You can also see it from Figure 8-
4, where the sampling distribution of the slope is very wide for
n = 16. The actual standard deviation of this sampling distribu-
tion is about 7.6 kg m−2, which is quite well approximated by our
estimator SEa ≈ 7.3 kg m−2. The main reason for large errors is
that the sample doesn’t span a large interval in h2 and m, so it is not
easy to establish the fit parameters accurately. In particular, when
all data points are far from zero, the intercept is very poorly con-
strained and probably shouldn’t be treated seriously. In this case,
we might consider a different regression model. In the limit of the
height of zero, we expect the body mass to be zero as well. Hence,
we expect the intercept to be zero, and we should use regression
through the origin (without intercept) instead (see Section 8-5).

It is worth noting that the slope, a, is not the BMI, despite having
the same units. If we wanted to find the mean BMI of the group,
we would have to calculate individual Bi = mi∕h2

i for each member
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and find their mean, standard error and the 95% CI. The result of
this calculation is B = 20.1 ± 1.6 kg m−2, which is somewhat dif-
ferent from the slope.

8.4 Linear fit prediction errors

The best-fitting line of a simple linear regression gives us a predic-

Error propagation is
discussed in Chapter 7.

tion of y for every x, expressed by a simple formula y (x) = ax + b.
In the previous section, we learned how to estimate errors of the
fit parameters. Can we find the uncertainty of the prediction y (x)
itself? Since y is a function of a and b, y = y (a, b), and errors (e.g.
standard errors) of a and b are known, perhaps we could simply
propagate errors from a and b to y, using the standard error prop-
agation formula [equation (7-4)],

SE2
y =

(
𝜕y
𝜕a

)2

SE2
a +

(
𝜕y
𝜕b

)2

SE2
b .

Unfortunately, this is not going to work. The error propagation
formula works only when the variables are independent. Pa-
rameters a and b are not independent! They are quite strongly
correlated. This is quite easy to see from Figure 8-2. The best-
fitting line always crosses the data centroid (the open circle). A
change in the slope would cause ‘pivoting’ of the line about this
centroid. An increase in slope (a steeper line) would decrease
the intercept on the y axis and vice versa. This creates a strong
correlation between the two variables. In order to illustrate this
effect better, I have performed a simple numerical experiment. I
have drawn 1000 random samples from the Growth Survey data,
calculated the slope and the intercept for each sample and plotted
these parameters in Figure 8-5. Clearly, there is a very strong
(anti-) correlation between the fit parameters.

We need to take this correlation into account. The correct error
propagation formula for correlated variables includes the covari-
ance term and is given by equation (7-9). In our case, it takes the
following form:

SE2
y =

(
𝜕y
𝜕a

)2

SE2
a + 2

𝜕y
𝜕a

𝜕y
𝜕b

Cov (a, b) +
(
𝜕y
𝜕b

)2

SE2
b . (8-15)

If residuals are normally distributed (and they usually are), we can
calculate the estimator of covariance between a and b. It is given
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Figure 8-5. Illustration of correlation between the slope, a, and the
intercept, b, of linear regression. 1000 samples of size n = 16 were
randomly selected from the Hong Kong Growth Survey data. Each
sample was fitted with a straight line, and the resulting fit parameters
are plotted. The slope and the intercept are very strongly correlated,
and this has to be taken into account when propagating errors.

by a simple formula (e.g. Press 2007),

Cov (a, b) = −SD2
R

Mx

Sxx
. (8-16)

Taking into account that 𝜕y∕𝜕a = x and 𝜕y∕𝜕b = 1 and substituting
SEa, SEb from equation (8-12) and Cov (a, b) from equation (8-16)
into equation (8-15), we get

SE2
y = x2

SD2
R

Sxx
− 2xSD2

R

Mx

Sxx
+ SD2

R

(
1
n
+

M2
x

Sxx

)

= SD2
R

(
1
n
+

x2 − 2xMx + M2
x

Sxx

)
= SD2

R

[
1
n
+

(x − Mx)2

Sxx

]
.

Finally,

SEy = SDR

√
1
n
+

(x − Mx)2

Sxx
, (8-17)

where SDR and Sxx are given by equations (8-9) and (8-8), respec-
tively. This formula gives the standard error of the prediction
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Figure 8-6. The same data and the best-fitting linear regression
model, as in Figure 8-2. The grey curves represent the 95% confi-
dence interval on the model prediction, found from equations (8-17)
and (8-18).

y = ax + b for any given x, where parameters a and b were cal-
culated from a linear fit to the given data set (xi, yi). Because the
prediction y is normally distributed, we can use the critical value
from the t-distribution with n − 2 degrees of freedom to find
confidence intervals on y, as we did for the confidence interval of
the mean and the confidence intervals of a and b,

y (x) − t∗SEy ≤ ȳ (x) ≤ y (x) + t∗SEy. (8-18)

Let us look at the data from the ‘Example’ in Section 8.3, where
we have already found the best-fitting line and the uncertainties
of its parameters. Now, using equation (8-18), we can calculate the
95% CI on y (x) for each x. The result, shown with grey lines in
Figure 8-6, is rather typical; the error of the prediction is smallest
in the centre, around the data centroid and gets larger towards
the edges of the data. This is the effect of error propagation. If
you disturb the fit parameters around their best-fitting values, the
regression line will shift up and down a bit as a result of the varying
intercept and will pivot slightly about the data centroid as a result
of the varying slope. Effectively, it will trace a bowtie shape which
can be seen in the figure.
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8.5 Regression through the origin

The body mass and weight example in Section 8.3 shows that
sometimes, due to the nature of the problem, we want to find a
simpler relation between x and y, namely,

y = ax. (8-19)

This is a model where the intercept is set to zero, known as re-
gression through the origin, as the regression line is forced to go
through the point (0, 0). The mathematics here is a simpler version
of derivations I presented previously, so I’m going to skip most of
the details and only show where equations differ from the more
general form.

The actual response is now yi = axi + Ri, and by minimizing the
sum of squared residuals we obtain

a =
Ŝxy

Ŝxx

. (8-20)

This is equivalent to equation (8-7), except that the sums are re-
defined as

Ŝxx =
n∑

i=1

xixi,

Ŝxy =
n∑

i=1

xiyi,

Ŝyy =
n∑

i=1

yiyi.

(8-21)

The common uncertainty is, as before, the standard deviation of
the residuals,

SDR =

√
Ŝyy − aŜxy

n − 1
. (8-22)

The main difference between this formula and equation (8-10) is in
the denominator. Here, we have n − 1, as we lose only one degree



174 Understanding statistical error

of freedom by calculating a (there is no b). Following the deriva-
tions shown at the end of this chapter, we can find the standard
error of the slope,

SEa =
SDR√

Ŝxx

. (8-23)

Again, this is the same equation as in the case of the more general
regression, except for the definitions of SDR and Ŝxx. The confi-
dence intervals are found using equation (8-13).

The fit prediction errors are much simpler in the case of the
regression through the origin. We have only one parameter, the
slope a, and we can use the single-variable error propagation for-
mula, given by equation (7-1):

SEy =
||||
dy
da

|||| SEa.

Because there is only one variable, we don’t have to deal with the
covariance term and we can apply this formula straightaway:

SEy = |x| SEa. (8-24)

Recall that dy∕da = d (ax) ∕da = x. The confidence interval can be
found using equation (8-18) with the critical value from the t-
distribution with n − 1 degrees of freedom.

Example

Let us redo the ‘Example’ from Section 8.3 using regression
through the origin model. With the same data and equations (8-
21), we get (4 s.f.):

Ŝxx = 144.0 m4

Ŝyy = 58730 kg2

Ŝxy = 2899 kg m2.

Remember: the sums Ŝxx, Ŝyy and Ŝxy are defined differently than
in the previous case. Then, equation (8-20) gives us the slope:

a = 20.14 kg m−2.

The standard error is calculated from equation (8-23):

SEa = 0.4056 kg m−2.
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Figure 8-7. The same data as in Figure 8-6, but fitted with a straight
line which is forced through the origin (see Section 8.5). The grey lines
represent the 95% confidence interval on the model prediction, found
from equations (8-24) and (8-18).

For 16 data points and n − 1 = 15 degrees of freedom, the critical
value from the t-distribution (significance level of 95%) is t∗ =
2.131 (see Table A-1). Finally, our best-fitting value of the slope
with its 95% CI is

a = 20.1 ± 0.9 kg m−2.

The uncertainty of the slope is an order of magnitude smaller than
in the case of the free intercept. This is not surprising, considering
the distribution of our data. As the points are clustered quite far
from the origin, fixing the regression line at the origin removes
most of the slope’s uncertainty. This is illustrated in Figure 8-7,
with the best-fitting line and its 95% CI. You can see that the re-
gression line has much less room to pivot and the slope is con-
strained much better.

Before you use regression through the origin, make sure that
this model makes sense with your data (i.e. that you really expect
the response variable to be zero when the explanatory variable is
zero). Otherwise, you might be applying the wrong model!

8.6 General curve fitting

Linear regression is a special case of curve fitting, where fit param-
eters and their uncertainties can be calculated analytically. In the
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Figure 8-8. General curve-fitting errors. (a) An exponential model
f (t) = A0 + Ae−t∕𝜏 was 𝜒2 fitted to 10 measurements, which are pre-
sented here with their ‘one sigma’ errors. (b) Finding confidence for
the e-folding factor. 𝜏 was moved and fixed, and model refitted to find
new 𝜒2. The 95% confidence limits on 𝜏 are marked by an increase
in 𝜒2 by 3.84.

general case of arbitrary (non-linear) curve fitting, this is not pos-
sible. The subject of curve fitting is huge and complex and would
require another book to explain things properly, so I’m going to
refer the curious reader to the literature (e.g. Press 2007 or Mo-
tulsky and Christopoulos 2004).

Here I will briefly address the following problem: say, we have
fitted a model (e.g. an exponential curve) to our data and obtained
best-fitting parameters for this model (e.g. the e-folding factor).
What are the uncertainties of these parameters?

Let us consider a very simple example, shown in Figure 8-
8. We have n measurements yi, with errors Δyi taken at time
points ti. These are idealized, simulated data, but they can repre-
sent a real process of biological degradation. We want to quantify
this process and find the time scale of decay and its uncertainty.
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Mathematically, we can describe the exponential decay as a func-
tion of time:

f (t) = A0 + Ae−t∕𝜏 . (8-25)

Here A0 is the asymptotic offset, A is the amplitude and 𝜏 is the
time scale of the decay (sometimes called the e-folding factor).
These three quantities are the fit parameters we want to find.

This exponential function can be fitted to the data, so it de-
scribes it in the best possible way. From the best-fitting model, we
can find the best-fitting time scale, 𝜏. The fitting is usually done
so as to minimize the dispersion of data around the curve. The
dispersion can be represented by the chi-square statistic,

𝜒2 =
n∑

i=1

[
yi − f (ti)

Δyi

]2

. (8-26)

It is not much different from the sum of squared residuals [equa-
tion (8-6)], but here each residual tells us how many error bars
away the measurement is from the model. Residuals are shown in
Figure 8-8a (bottom panel).

Note that Δyi should represent standard deviations of data.
Otherwise,𝜒2 defined by equation (8-26) will not have the desired
statistical properties. If your data points are sample means (which
is often the case), then Δyi should be standard errors (!) calculated
from these samples. This is because the sample mean is normally
distributed, and the standard deviation of this distribution is the
standard error of the mean. Simple?

Standard error of the
mean is explained in

Section 4.5.

Minimizing 𝜒2 is one of the least squares methods. There are
clever ways of minimizing 𝜒2, and most of them require iterative
numerical calculations. I used the Levenberg–Marquardt algo-
rithm (Press 2007) to do the fitting. Most self-respecting statisti-
cal software packages will have some least-squares fitting methods
built in. The best-fitting model parameters are 𝜏 = 2.0 h, A = 5.8
and A0 = 0.25. The minimized chi-square is 𝜒2

min = 6.92.
Now we use the following procedure to find a 95% CI for 𝜏. We

are going to slowly move 𝜏 away from its best-fitting value and see
what happens to 𝜒2. We do it by first decreasing 𝜏 in small steps.
Each time we fix 𝜏 at a new value, allowing the two remaining
parameters to vary freely, and refit the model to the data. With
every new 𝜏, the new minimized 𝜒2 is greater than 𝜒2

min, as we force
the model away from the best fit. In other words, the fit becomes
progressively worse as we move away from the optimum. We can
continue pushing 𝜏 away from the best value until the increase in
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chi-square, Δ𝜒2 = 𝜒2 − 𝜒2
min, reaches a certain critical limit. This

marks our lower confidence limit, 𝜏L. Then, we can do the same
on the other side of the best-fitting 𝜏 and find the upper limit, 𝜏U .
The result is presented in Figure 8-8b.

It can be shown that Δ𝜒2 is distributed as a chi-square distribu-

See Section 6.4 for rules
on quoting numbers and

errors.

tion with one degree of freedom. Hence, from distribution tables
we can find the critical value corresponding to the given confi-
dence level. For P = 0.05 (95% CI), the critical value is Δ𝜒2 =
3.84. The corresponding limits on 𝜏 are 1.4 and 3.1. Finally, our
best-fitting time scale with 95% CIs is 𝜏 = 2.0+1.1

−0.6.

8.7 Derivation of errors on fit parameters

Here I show the derivation of errors on linear fit parameters in the
general case of regression with a free intercept. These fit param-
eters, a and b, are derived from data points (xi, yi) using equations
(8-7), which I copy here for completeness:

a =
Sxy

Sxx
,

b = My − aMx.

We want to propagate uncertainty in the data,Δyi, into uncertain-
ties of the fit parameters, Δa and Δb. We use the general error
propagation formula [equation (7.4)]:

Δa2 =
n∑

i=1

(
𝜕a
𝜕yi

)2

Δy2
i = SD2

R

n∑
i=1

(
𝜕a
𝜕yi

)2

,

Δb2 =
n∑

i=1

(
𝜕b
𝜕yi

)2

Δy2
i = SD2

R

n∑
i=1

(
𝜕b
𝜕yi

)2

.

(8-27)

The derivative of a with respect to yi is

𝜕a
𝜕yi

= 𝜕

𝜕yi

Sxy

Sxx
= 𝜕

𝜕yi

∑n
k=1(xk − Mx)(yk − My)

Sxx

= 𝜕

𝜕yi

(xi − Mx)(yi − My)

Sxx
=

xi − Mx

Sxx
.

In the entire sum over k, only the ith term contains yi, so deriva-
tives with respect to yi of the remaining terms are zero. We can
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find the derivative of b in a similar fashion,

𝜕b
𝜕yi

= 𝜕

𝜕yi

(
My − aMx

)

= 1
n

𝜕

𝜕yi

n∑
k=1

yk − Mx
𝜕a
𝜕yi

= 1
n
− Mx

xi − Mx

Sxx
.

Now we can substitute these two derivatives into error propaga-
tion equations (8-27),

Δa2 = SD2
R

n∑
i=1

(
xi − Mx

Sxx

)2

= SD2
R

∑n
i=1 (xi − Mx)2

S2
xx

= SD2
R

Sxx

S2
xx

=
SD2

R

Sxx
.

and

Δb2 = SD2
R

n∑
i=1

(
1
n
− Mx

xi − Mx

Sxx

)2

= SD2
R

n∑
i=1

(
1

n2
− 2

Mx

n
xi − Mx

Sxx
+ M2

x
(xi − Mx)2

S2
xx

)

= SD2
R

[
1

n2

n∑
i=1

1 +
2Mx

nSxx

n∑
i=1

(xi − Mx) +
M2

x

S2
xx

n∑
i=1

(xi − Mx)2

]
.

You might recall that the sum of deviations from the mean is al-
See equation (4-2) in

Section 4.4.
ways zero, hence the middle sum in the square brackets disappears.
The first sum is simply n, and the last one was already defined as
Sxx. Finally, we get

Δb2 = SD2
R

[
1
n
+

M2
x

Sxx

]
.

8.8 Exercises

Exercise 8.1
In an experiment, mRNA degradation was defined as a logarithm
of the ratio of mRNA abundance at two different time points.
Degradation was measured for 22 genes using Northern blots (xi)
and RNA sequencing (yi). We want to compare these two meth-
ods. The mean and standard deviation of the two samples are as
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follows (4 s.f.): Mx = 0.3424 and SDx = 0.4123, and My = 0.2805
and SDy = 0.4187. The correlation coefficient between x and y is
r = 0.8725. Find the parameters a and b of a simple linear regres-
sion, y = ax + b, and their 95% CIs.

Exercise 8.2
Microbial growth was measured using dilution plating every 10
minutes. The estimated number of cells (in thousands) as a func-
tion of time (in minutes) is as follows:

Time Count Time Count Time Count

10 2.2 50 10 90 50.1
20 2.6 60 17.0 100 60.4
30 5.7 70 19.5 110 79.3
40 7.8 80 29.5 120 92.1

Find a linear regression between time and count and its uncertain-
ties. What is the culture doubling time?



Chapter 9

Worked example

Here we are. This is the end of the book. Well, almost. Before
we finish, I’d like to show you one more example. This time, the
example is going to be more elaborate and there will be more
than one way of finding the final result. I will guide you, step by
step, through all the calculations. Each derivation will involve var-
ious types of uncertainties and will refer you to different parts
of the book. The data consist of only a handful of numbers and
all calculations are very simple, so I encourage you to do them
yourself.

9.1 The experiment

At the University of Southern North Yorkshire at Skipton, Prof. D.
Nomal is conducting a study of a new cancer treatment drug called
D42. He prepared a simple pilot experiment for his students to
assess the effectiveness of the drug. He gave them a cancer cell line
and asked them to compare cells treated overnight with the drug
with an untreated control sample. Each of the students decided to
employ a different strategy.

The first student, Sasha, divided the cells into six separate
dishes, treated three of them with D42 and left the remaining
three as a control. Thus, he created two biological conditions
(treatment and control), each in three replicates. Sasha incubated
the cells overnight, and the next day he took an aliquot from each
dish and placed it in a counting chamber1 under a microscope.

1A counting chamber, also known by the fancy name of hemocytometer, is
a microscope slide with an indentation and a cover slip, to contain a small
but precisely known amount of liquid. When a cell suspension is loaded
into the chamber, one can count cells seen under the microscope.

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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His intention was to count cells in the same volume of liquid and
compare the numbers of living cells between the drug treatment
and the control.

The second student, Lyosha, also wanted to use the count-
ing chamber, but he decided to count both treated and untreated
cells at the same time. Hence, he created two derivative cell lines,
each expressing a different coloured fluorescent marker (green or
red), and then treated the red cells with D42 while keeping the
green cells as a control. He cultured them overnight in five repli-
cates each. The next morning, he paired and mixed each replicate
in equal proportions (i.e. replicate 1 from the control was mixed
with replicate 1 from the treatment and so on). Then, he loaded
a drop of each mixture into the counting chamber. This way he
could count treated and untreated cells at the same time in the
same volume, which, he hoped, would improve the accuracy of his
results.

The third student, Masha, decided to go a different route and
use a viability assay. She modified her cells to express a biolumi-
nescent enzyme that degrades quickly in dead cells and hence can
be used to quantify the amount of living cells. She prepared just
two biological samples: the drug treatment and the control. She
cultured them overnight, and the next morning she divided each
sample into a row of a 96-well microplate2. Since a row of the
plate consists of 12 wells, she obtained 12 technical replicates for
both the treatment and the control. Then, she measured the in-
tensity of light produced by each well, which was expected to be
proportional to the number of living cells. These intensities were
measured and recorded by an automated device which, after some
data processing, produced a series of numbers (with arbitrary nor-
malization). These numbers represent intensities of light emitted
by the cells (not actual cell counts).

9.2 Results

The raw data obtained from these experiments are provided in
Table 9-1 and visualized in Figure 9-1. All three experiments aim
at finding the fraction of cells surviving the overnight treatment
with D42. However, each of them does it in a different way.

2A microplate is a rectangular plate with small test tubes (‘wells’). In this
case, the plate has 12 rows and 8 columns of wells.
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Table 9-1. Experimental results from the three students. Sasha and Lyosha counted cells,
and Masha measured the intensity of a bioluminescent marker.

(a) Sasha (b) Lyosha

No. 1 2 3 1 2 3 4 5
Control 111 104 123 93 84 117 101 112
D42 16 18 14 6 8 12 10 18

(c) Masha

No. 1 2 3 4 5 6
Control 411684 473908 339111 398736 465518 441436
D42 46479 44307 37646 52363 48027 44133

No. 7 8 9 10 11 12
Control 436648 416488 483275 374190 354678 406482
D42 41420 34763 89598 41936 38746 44930

Sasha

Let’s start with Sasha’s results. There are two conditions and three
replicates. The replicates are independent of each other and are
not matched or paired between the conditions. The simplest thing
to do is to pool the replicates in each condition and add the cell
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Figure 9-1. Illustration of raw data from Table 9-1 collected by the three students. The error
bars in panels (a) and (b) are counting errors, estimated by the square root of the count. The
box plots are as defined in Section 6.2; the large black spots represent the mean of each sample,
and the small black symbols show the data in the top and bottom 5%.
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counts. This gives us total counts of nc = 338 and nt = 48 (I’m go-
ing to use indices c for control and t for treatment). The fraction
of surviving cells is defined as

f =
nt

nc
, (9-1)

and we obtain f = 0.142 from our counts. In this chapter, I will
quote all the intermediate results with at least one non-significant
figure at the end. This prevents the accumulation of rounding er-
rors during calculations. In fact, I have carried out all the calcula-
tions in a computer, using the full available precision, just in case.
The final results are always reported using only significant figures,
following the rules outlined in Section 6.4.

Let us find the uncertainty of f . We might be tempted to useProportion and its
uncertainty are

discussed in Sections
4.4 and 5.8, respectively.

the confidence interval of a proportion, but nt is not a propor-
tion of nc. If you recall its definition, the proportion is a ratio of
the number of ‘successes’ to the total number of ‘trials’. The cru-
cial point is that these successes are included in the trials: a pro-
portion of the trials ended up with a success. Our surviving cells,
nt, are not included in the control, nc. They are completely in-
dependent, and, if the drug is not particularly effective, it might
even happen that nt > nc, which is impossible in a real proportion.
Hence, the fraction f is not a proportion, in the sense defined by
equation (4-16).

We can, however, find a genuine proportion here. We can ‘pool’
the treatment and the control together and find the proportion of
the treatment survivals within the total count:

p̂ =
nt

nt + nc
. (9-2)

Using the counts from Sasha’s experiment, we find p̂ = 0.124. ThisThe binomial distribution
is introduced in Section

2.7.
is a real proportion estimator and it should follow a scaled bi-
nomial distribution, as discussed in Section 4.4, so we can find
its confidence intervals. Using equations (5-22) and (5-23), we
find p′ = 0.128 and W = 0.033. Hence, the 95% CI is between
p′ − W = 0.095 and p′ + W = 0.161. This gives the lower and up-
per errors on p̂ of Δp̂L = 0.029 and Δp̂U = 0.037, respectively. Fol-
lowing the rules of quoting the number and its error (Section 6.4),
we can finally write p̂ = 0.12+0.04

−0.03 (95% CI).
This is not what we are after, though, as we want f rather than p̂,

and these two quantities are different. Fortunately, it is very easy



Worked example 185

to derive a formula relating them, by comparing equations (9-1)
and (9-2):

f =
p̂

1 − p̂
. (9-3)

Now, since we have the uncertainty of p̂, we can propagate it
Error propagation is

explained in Chapter 7.
into f . The formula for a single-variable transformation (7-1) is

Δf =
|||||
df
dp̂

|||||Δp̂ =
Δp̂

(1 − p̂)2
. (9-4)

I will let you prove that df
dp̂

= 1
(1−p̂)2 . Because errors of p̂ are asym-

metric, we need to find the error of f separately for the lower and
upper errors of p̂. Using equation (9-4), we find ΔfL = 0.038 and
ΔfU = 0.048. Again, following the rules of quoting numbers and
errors, we write f = 0.14+0.05

−0.04 (95% CI).
This is a result. However, its uncertainty is based on the pooled

data, and it assumes that there is an unknown true proportion of
treatment survivals and that by random sampling the observed
proportion p̂ is binomially distributed. This doesn’t take into ac-
count some possible additional uncertainties, such as biological
variability and the non-uniformity of cell distribution in the test
tube. As a result, the distribution of p̂ might be wider than binomial
and our uncertainty might be underestimated.

This is what we have our replicates for. The variability between
replicates should include all additional sources of uncertainty and
can be measured directly. Instead of pooling, it is better to average
counts across replicates and find their uncertainties.

Let us use the sample mean and its confidence interval. The
Confidence intervals of

the mean are explained
in Section 5.4.

mean counts are Mc = 113 and Mt = 16.0, and their standard er-
rors, from equation (4-20), are SEc = 5.55 and SEt = 1.15, respec-
tively. The critical value from the t-distribution for the one-tail
probability of 0.025 and 2 degrees of freedom is 4.303 (Table A-1).
From this, using equation (5-5), we find the 95% CIs of ΔMc = 24
and ΔMt = 5.0. Then, we find the ratio of the means,

fm =
Mt

Mc
, (9-5)

which is fm = 0.142 in our case. Since we know the uncertainties
(confidence intervals) for the numerator and denominator, we can
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use the error propagation formula for a ratio, from equation (7-7):

Δfm = fm

√(ΔMt

Mt

)2

+
(ΔMc

Mc

)2

. (9-6)

Using the values derived above in this equation, we find Δfm =
0.053. Hence, after rounding the result, we get fm = 0.14 ± 0.05.
This result is similar to the one calculated from the pooled data,
f = 0.14+0.05

−0.04. This suggests that the additional errors I speculated
about do not influence the experimental result very much. On the
other hand, we have only three replicates, so our result (both the
number and its error) is quite uncertain. I would suggest using
more replicates to get a more robust outcome.

Lyosha

In many respects, Lyosha’s experiment is similar to Sasha’s and we
can use the same approach to analyse his data. First, we pool the
counts, calculate the proportion p̂ and its confidence interval and
then convert it into the fraction of living cells, f , and propagate its
errors:

nc = 507
nt = 54
p̂ = 0.096

p′ = 0.099
W = 0.025
Δp̂L = 0.022
Δp̂U = 0.027

p̂ = 0.10+0.03
−0.02

f = 0.107
ΔfL = 0.027
ΔfU = 0.034

f = 0.11 ± 0.03

Next, we look at the means across replicates with their uncer-
tainties and the ratio, fm = Mt∕Mc. Here are all the intermediate
steps and the final result:

Mc = 101
Mt = 10.8
SEc = 6.04
SEt = 2.06
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t∗ = 2.776
ΔMc = 17
ΔMt = 5.7

fm = 0.107
Δfm = 0.059

fm = 0.11 ± 0.06

Both approaches give the same result, but using replicates pro-
vides us with an uncertainty (95% CI) twice the size of that from
the pooled data. This is because replicated experiments can cap-
ture all types of variability affecting the measured quantity at dif-
ferent stages of the experiment. I will discuss this in more detail in
Section 9.3.

Lyosha’s data consist of five paired replicates. Biological repli-
cate 1 of the control was mixed in 1:1 ratio with biological repli-
cate 1 of the D42 treatment, and then both types of cells were
counted together in the same counting chamber. You might point
out that there is little difference between this and counting cells
in each sample separately (as Sasha did). You’d probably be right,
as the counting process in this experiment is very simple. How-
ever, when the measurement itself is more complicated, the mark-
and-mix approach can improve the results quite a bit. For exam-
ple, in a type of mass spectrometry called SILAC3 one cell sample
(e.g. a control) is grown in a normal medium, while the other con-
dition (e.g. a treatment) is grown in a medium containing heavy
(but stable) isotopes in some of the amino acids (e.g. using heavy
carbon 13C instead of normal 12C). When cells absorb the heavy
carbon, their proteins become marked (labelled) in a way that can
be distinguished by the mass spectrometer. Both samples are then
mixed and processed together. Because mass spectrometry is a
complicated procedure and introduces a lot of uncertainties, mea-
suring the two samples in parallel reduces some of these errors
significantly.

Lyosha’s cell counting is, obviously, not very complicated, but it

Once again, confidence
intervals of the mean are
explained in Section 5.4.

still might serve as an example of measuring marked cells together.
As an alternative to the two ways presented above, we can calculate
the surviving cell fraction separately for each matched replicate
pair and then do the statistics. Individual fractions calculated from
the raw data (simply by dividing row 3 by row 2 in Table 9-1b)
are as follows: 0.065, 0.095, 0.10, 0.099 and 0.16. The mean and
standard error from these numbers are fp = 0.104 and SEf = 0.016,

3Stable isotope labelling by amino acids in cell culture.
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and the critical t-value for 4 degrees of freedom is t∗ = 2.776. This
gives us the fraction from paired data, fp = 0.10 ± 0.04 (95% CI).

Because Lyosha’s experiment consists of five biological repli-

Poisson distribution is
discussed in Section 2.8.

cates, it gives us a chance to study its reproducibility in more de-
tail. If cells counted by Lyosha are randomly and independently
distributed, they should follow a Poisson distribution. Hence, the
count variance should be the same as the count mean. We can es-
timate the mean and the variance for each condition from the five
replicates. From the raw data, we get:

Mc = 101
VARc = 182

Md = 10.8
VARd = 21.2

In both conditions the variance is roughly twice that of the mean.
This indicates that perhaps there is an additional component to
the observed variability, beyond what we expect from random and
independent counts. I say ‘perhaps’, because we deal with small
numbers here and such excess in the variance can happen purely
by chance. There are statistical tests to assess this. For example,
Pearson’s chi-square test4 tells us that the probability of obtaining
such a high variance purely by chance is about 0.1, for both control
and D42 treatment counts. This is hardly a significant result, so we
cannot conclude that the observed variance is really higher than
the mean. We would need (many) more replicates to confirm this.

There is one more thing we can do with these data. Since theCorrelation is explained
in Section 4.4; its

confidence interval and
significance are

discussed in Section 5.7.

replicates are (partially) paired, we might expect a certain level
of correlation between the drug treatment and the control. The
correlation coefficient, defined by equation (4-15), is r = 0.742.
To find the confidence interval of this number, we use equations
(5-17), (5-18) and (5-19). We get

Z′ = 0.954
𝜎′ = 0.707

Z′
lo = −0.432

Z′
up = 2.340
rlo = −0.407
rup = 0.982

4I don’t want to go into details here, you can find more information about
this test in online resources (e.g. in Wikipedia).
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which gives a whopping uncertainty of the correlation coefficient,
r = 0.7+0.3

−1.1 . Just in case, we can calculate the significance of the
correlation. The t-statistic, defined by equation (5-20), is t = 1.914.
With three degrees of freedom, this gives us the probability of ob-
taining this level of correlation by chance of p = 0.08. Just as in the
case of variance, the result is not significant, and we conclude that
the correlation coefficient cannot be determined due to insuffi-
cient data.

Masha

Masha’s experiment doesn’t give us cell counts but bioluminescent
light intensities measured by a rather complicated device.Hence,

Log-normal distribution is
discussed in Section 2.6.

we cannot assume anything about either the level of variability, or
even the distribution of intensities. As you remember, some quan-
tities in biological experiments can be log-normally distributed.
In such cases, it might be better to log-transform all data before
calculating statistics like the mean or standard error. However, a
quick glance at Figure 9-1c shows that this is probably not the
case here. The boxes in the plot are symmetric (the treatment box
is less symmetric due to one outlier; I’ll come back to this in a
moment), whereas the log-normal distribution usually results in
skewed boxes, as illustrated in Figure 6.3d. Hence, there is prob-
ably no reason for log-transforming these data.

We can use the 12 replicates in each condition to find their
means and confidence intervals, calculate a ratio and propagate
errors. Before we do this, it might be a good idea to renormalize
the data, just for convenience, so we don’t have to handle large
numbers. Let us divide both control and treatment intensities by
the mean intensity from the control, Nc = 416,800. Then, we can
follow the same steps as we did for Sasha’s and Lyosha’s data. This
time we get

Mc = 1.000
Mt = 0.113
SEc = 0.032
SEt = 0.010

t∗ = 2.201
ΔMc = 0.070
ΔMt = 0.022

fm = 0.113
Δfm = 0.023

fm = 0.11 ± 0.02
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The mean control, Mc, is obviously 1, because of the way we nor-
malized these data. The surviving cell fraction, fm = 0.11 ± 0.02, is
consistent with the results obtained from the other data sets.

If you look at Masha’s data carefully, you might notice that
replicate 9 in the drug treatment looks suspiciously high, about
twice the typical intensity in other D42 replicates. This ‘outlier‘
might be due to either a random fluctuation or an actual problem
in sample preparation and processing. For example, Masha could
have made a pipetting mistake while loading samples onto the mi-
croplate. Unless we have a solid, independent proof that some-
thing has gone wrong, we cannot remove a datum just because it
looks suspicious. In our case there is only one such point and, on
its own, it does not affect the mean and its error very much.

Alternatively, we can calculate a statistic that is not sensitive toMedian is described in
Section 4.4, and its

confidence interval is
discussed in Section 5.6.

occasional outliers, for example a median. I’m going to repeat the
same steps as above, but instead of the mean and its confidence
interval, I’m going to use the median and its simplified version of
the confidence interval, described by equations (5-14), (5-15) and
(5-16):

M̃c = 0.993
M̃t = 0.106
Lc = 4, Uc = 8, S̃Ec = 0.036
Ld = 4, Ud = 8, S̃Ed = 0.004

d.o.f. = 3
t∗ = 3.182

ΔM̃c = 0.12
ΔM̃t = 0.011
fmed = 0.107

Δfmed = 0.017
fmed = 0.11 ± 0.02

Well, the median and its error turn out to be very similar to the
mean and its error. This is because the data are distributed sym-
metrically, so the mean and the median are essentially the same.

9.3 Discussion

Three independent experiments have been carried out to estimate
the effectiveness of the new cancer drug, D42. The aim was to find
out the fraction of cancer cells surviving a given dose of the drug
after 12 hours. I have suggested various ways of analysing data from
each experiment. The summary of results is shown in Figure 9-2.
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Sasha pooled

Sasha replicates

Lyosha pooled

Lyosha replicates

Lyosha paired

Masha mean

Masha median

Living cell fraction
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Figure 9-2. Results from various approaches to calculate the liv-
ing cell fraction after D42 treatment. The experiments and the meth-
ods are described in the text. The error bars are 95% confidence
intervals.

The good news is that all the results are consistent with each
other within error bars (95% CI). The not-so-good news is that
the error bars are quite dissimilar. For example, the confidence
interval on Lyosha’s replicated data is three times larger than the
confidence interval on Masha’s median. Even more worryingly, it
is twice the size of the error bar of his own pooled data. The same
experiment, depending on how we interpret its data, can give error
bars of a very different size.

The problem with pooling data is that by adding counts, we
lose crucial information about biological and technical variability.
The error of a proportion reflects only the random distribution
of counts between the two conditions (binomial distribution). In
real life, there are many other sources of error: for example, due
to the diversity of cells used in the experiment, variation in the
initial cell numbers or density, conditions of growth in each test

See Section 3.2 for a
simple model of

accumulated errors.

tube, uncertainty of the drug concentration, cell suspension non-
uniformity or pipetting errors, to name just a few. All these errors
accumulate and contribute to the total uncertainty, which can be
much more than the simple error of a proportion. This sort of un-
certainty, although impossible to predict theoretically, can be esti-
mated by using replicated data. And we do have replicates here, so
it is better to use the information they contain, instead of pooling
data.

If you have replicates, use them!
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This is why errors from the replicated data are larger than er-
rors from the pooled data. The replicates can ‘see’ all this addi-
tional variability, which the error of a proportion cannot.

Lyosha has paired his replicates in an attempt to reduce un-
certainties from the counting chamber. Although this procedure
resulted in a slightly smaller error bar, it is not clear whether the
observed error reduction is due to the improved experiment or
due to a random fluctuation. A correlation between the two condi-
tions would suggest that the pairing is real and that uncertainties
in the counting chamber (e.g. due to variation in the volume of
the liquid) affect both types of cells in the same way. However, the
correlation found was not statistically significant. Five replicates
is really not enough to build convincing statistics!

You always need more replicates.

Masha’s experiment resulted in much smaller error bars than
Sasha’s and Lyosha’s (replicated data); see Figure 9-2. It is not ob-
vious why. We can only speculate that the small number of counts
(in particular in the drug treatment) contributed to the larger er-
ror in Sasha’s and Lyosha’s experiments. Masha’s measurement was
based on a much larger sample (presumably millions) of cells, so
her uncertainties are not count based. On the other hand, sheI discussed random and

systematic errors in
Section 3.1.

didn’t use independently cultured biological replicates, so her ex-
periment did not capture biological variability. Her random tech-
nical uncertainties came from inaccurate pipetting and noise in
the bioluminescent marker activity. In addition, we should con-
sider the possibility of a systematic error due to a nonlinear rela-
tion between the living cell number and the bioluminescent light
intensity. We should also point out that Masha used 12 replicates
in each condition, which certainly had reduced the random error.

9.4 The final paragraph

In this chapter, I wanted to demonstrate how various types of un-
certainties are calculated in practice. Usually, biological data are
complex and there is no one ‘right’ way of finding errors. Some-
times, a simple error of a proportion or correlation would suffice.
But in most cases, independent replicates are needed to grasp the
amount of intrinsic variability and estimate real errors. I hope this
book will help you understand statistics a little bit more and use
this knowledge to estimate uncertainties in real biological experi-
ments. Remember: a measurement without error is meaningless.
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Exercise 2.1
a b c d e

Distribution Uniform Log-normal Poisson Gaussian Poisson
Mean 3.5 3.5 4 100 100
Standard 0.87 0.90 2 10 10
deviation

Exercise 2.2

Firstly, we need to calculate the expected value, or the mean, num-
ber of functionally transfected cells. It equals the total number of
cells multiplied by the transfection rate, 𝜇 = 3 × 105 × 10−5 = 3.
Since we are interested in the probability of having at least one
transfected cell, P(X > 0), the easiest way is to find the probability
of having no transfected cells, P (X = 0) first. Using the Poisson
formula (2-11), we find

P (X = 0) = 30e−3

0!
= 1 × e−3

1
= e−3 ≈ 0.05.

Hence, the probability of having at least one transfected cell is
P (X > 0) = 1 − P (X = 0) = 0.95.

Exercise 2.3

You play the lottery buying one ticket a week. Hence, the prob-
ability of winning in the time interval of Δt = 1 week is P1 =
7.15 × 10−8. We can solve equation (2-14),

P1 = 1 − e−𝜇Δt,

Understanding Statistical Error: A Primer for Biologists, First Edition. Marek Gierliński.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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for 𝜇 to find the mean winning rate:

𝜇 = − 1
Δt

ln (1 − P1) .

A year is, on average, 365.25 days long, which corresponds to 52.18
weeks. This gives Δt = 1

52.18
= 0.0192 years. Plugging this and P1

into the above equation gives the mean winning rate of 𝜇 = 3.72 ×
10−6 per year. On average, you will have to wait 1

𝜇
= 269, 000 years

to win the lottery. Good luck.

Exercise 2.4

Table A-1 shows right-tail probabilities for the t-distribution and
Table 2-1 shows (out) two-tail probabilities for the Gaussian dis-
tribution. Hence, we can directly compare 2.5% (one-tail) and
5% (two-tail) probabilities in the respective tables. The Gaussian
critical value for this probability is always z∗ = 1.96, while the t-
distribution critical value, t∗, depends on the number of degrees
of freedom, 𝜈. The second column from the right in Table A-1
shows t∗ as a function of 𝜈. When 𝜈 is small, the difference be-
tween z∗ and t∗ is huge (e.g. t∗ = 12.7 for 𝜈 = 1). In such cases, the
Student’s t-distribution is significantly different from the Gaus-
sian distribution. With increasing 𝜈, the critical t∗ drops gradually,
and eventually approximates the Gaussian critical value well. For
a ‘largish’ 𝜈 = 30, t∗ is about 4% larger than the asymptotic Gaus-
sian value. Your confidence intervals might be about 4% too small
if you assume the Gaussian distribution for this sample size. With
hundreds of degrees of freedom, the difference between the two
distributions becomes negligible in practical applications.

Exercise 3.1

Presumably, the smallest division on the ruler is 1 mm, hence
the reading error is ± 0.5 mm. However, when you measure the
book, you actually take two measurements (i.e. at both ends) and
find their difference. Most likely, one of them would be zero, be-
cause this is how you would place the ruler. But you still need to
do two readouts, and each of them will contribute its own error.

Error propagation is
explained in Chapter 7.

These errors add in quadrature, so the final measurement error is√
0.52 + 0.52 ≈ 0.7 mm.
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Modern books are cut to length with an accuracy far better than
the ruler measurement error. Hence, if you were to measure many
copies of the same book, you’d probably find exactly the same
result each time. When subject-to-subject variability is less than
the reading error, having multiple replicates does not make sense.
However, it is very unlikely that you will encounter such a situa-
tion in biology, where things are seldom cut to length but rather
show lots of variability.

Exercise 3.2

We can use square root of counts to estimate our uncertainties.
These can be applied only to the original raw counts, but not to
calculated rates. The raw murder numbers are ns = 6 and nc = 19,
so their uncertainties are Δns =

√
6 ≈ 2.4 and nc =

√
19 ≈ 4.4,

respectively (here, s stands for Springfield and c stands for Capitol
City). To find murder rates, each number is multiplied by a
constant: a number of inhabitants divided by 100,000. When a
number is scaled, its error scales in the same way, so fractional
errors are conserved. The fractional errors for our cities are
Δns∕ns ≈ 0.41 and Δnc∕nc ≈ 0.23. Note that the error on the

See Section 7.2 for error
propagation for scaling.

Springfield datum is rather large – just because the raw number
is so small. When applied to murder rates, these fractional errors
yield Δrs = rsΔns∕ns ≈ 1.7 and Δrc = rcΔnc∕nc ≈ 0.74. Hence,
the murder rates per 100,000 population with their errors are
rs = 4.1 ± 1.7 and rc = 3.2 ± 0.7. These two errors overlap entirely
(rc ± Δrc ‘sits’ inside rs ± Δrs), and we can safely conclude that
there is no statistically significant difference between them. A
chi-square test confirms this with p = 0.8. The title of the ‘murder
capital’ for Springfield is not justified.

Exercise 4.1

If we were to use the mean and standard error of the four results,
we would find D = (5.8 ± 0.8) × 10−3 μm2 s−1. However, this ig-
nores individual errors and the fact that the first experiment col-
lected more data and provided a more precise measurement. In-
stead, we should use the weighted mean, where weights are one
over the error squared [equation (4-4)]. The weights for the four
experiments are 2.8, 0.25, 0.04 and 0.25 (in units of 106 μm−4 s2).
Clearly, the first weight is an order of magnitude larger than the
other weights, so the first experiment will dominate the combined
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result. Using equations (4-4) and (4-22), we can find the weighted
mean and its error, D = (4.5 ± 0.5) × 10−3 μm2 s−1.

Exercise 4.2

Since xi = yi, we can replace all yi with xi in equation (4-15):

r = 1
n − 1

n∑
i=1

(
xi − Mx

SDx

)(
xi − Mx

SDx

)
= 1

n − 1

n∑
i=1

(
xi − Mx

SDx

)2

= 1
SD2

x

1
n − 1

n∑
i=1

(xi − Mx)2 = 1
SD2

x

SD2
x = 1.

I used the definition of sample standard deviation [equation (4-8)].

Exercise 5.1

First, we need to calculate the mean, standard deviation and stan-
dard error for each sample. This is easy. Then, we find the crit-
ical value t∗ for 95% confidence (2.5% one-tail probability), and
n − 1 = 11 and 4 degrees of freedom for the control and treatment,
respectively. Now, the confidence interval half-size is t∗SE, and the
confidence interval for each sample extends from −t∗SE to +t∗SE.
All these calculation steps are shown in this table:

Control Treatment

M 1.030 0.571
SD 0.267 0.220
SE 0.077 0.099
t∗ 2.201 2.776
t∗SE 0.170 0.274
95%CI [0.86, 1.20] [0.30, 0.85]

The 95% CIs for control and treatment do not overlap (just!).
This suggests that perhaps there is a statistically significant dif-
ference between them. However, to assess this significance, you
would have to do a proper statistical test (e.g. a t-test).
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Exercise 5.2

Using the same approach as in the previous exercise, we find

Day 1 Day 2 Day 1 + day 2

M 0.900 0.700 0.775
SD 0.0173 0.116 0.136
SE 0.0100 0.0518 0.0480
t∗ 4.303 2.776 2.365
t∗SE 0.0430 0.144 0.114
95% CI [0.86, 0.94] [0.56, 0.84] [0.66, 0.89]

Strangely, the 95% CIs from day 1 and day 2 do not overlap, so
it is not easy to tell where the true mean is. Each CI gives us a
95% confidence that the true mean is within it. If it is in the day
1 interval, than we are unlucky to have the rare (one-in-20) day 2
experiment, where the true mean is outside the measured CI. And
vice versa: if the true mean is within the day 2 interval, the day
1 experiment was unlucky. We could pool the data from two days
together (they are, after all, replicates!) and get a better grip on the
mean. The result is shown in the last column of the table above.

However, non-overlapping confidence intervals suggest a po-
tentially important difference between the two days. A t-test pro-
vides a p-value of 0.03, which makes the difference rather sig-
nificant (at least at the ‘default’ 0.05 level). One should exercise
caution when interpreting these results, as it is quite likely that
something had changed between day 1 and 2. Perhaps it was the
temperature, humidity, instrument calibration or any other factor
that might, or might not, have been under the experimenter’s con-
trol. The changing factor introduced a systematic error, whereas
the above calculations only find random errors. Sometimes even
the most careful experimentalists make mistakes. It is not uncom-
mon in biological experiments to see consistently different results,
between two different days or two different cell cultures, or even
between two different experimenters.

Exercise 5.3

Using equations from Sections 4.4 and 5.6, we find the following
quantities (3 s.f.):
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r 0.659
Z′ 0.792
𝜎′ 0.333
Z′

lo
0.138

Z′
up 1.445

rlo 0.138
rup 0.895
t 2.774
p 0.00983

The Pearson’s correlation coefficient is high, but quite uncer-
tain (r = 0.7+0.2

−0.6, 95% CI). On the other hand, it is not consistent
with zero, within error bars. This is confirmed by the high signif-
icance of correlation, p = 0.01. This all implies that the heights of
fathers and sons are correlated. However, I would suggest a further
study with a larger sample to confirm this finding.

Exercise 5.4

The proportions and the 95% CI calculated using the adjusted
Wald method are as follows (data shown as percentages):

Strain Proportion Lower Upper

1 11.6 9.8 13.8
2 6 1.5 17
3 40 12 78

They are all consistent with the true population proportion of
13.4%. It is worth pointing out that the second strain shows a
rather low proportion of only 6%, but despite the relatively large
sample size of 50, the errors are quite substantial. There is nothing
particularly promising about this strain. Bad luck.

Exercise 5.5

We need to bootstrap the measurements and calculate the mean of
each resampled sample. The distribution of these means approx-
imates the sampling distribution of the mean. As I explained in
Section 4.5, standard deviation of the sampling distribution of the
mean equals the standard error of the mean. Hence, the standard
deviation of bootstrapped means is an estimator of the standard
error.
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Exercise 5.6

Probabilities from non-overlapping intervals can be added to-
gether, so we can write

P (W < d) + P (d ≤ W < n − d) = P (W < n − d) .

This can be rearranged to find the required quantity:

𝛾d = P (d ≤ W < n − d) = P (W ≤ n − d) − P(W < d).

The right-hand side of the equation can be calculated using an
online probability distribution calculator. For the number of trials
n = 9, the number of successes d = 2 and the probability of success
in a single trial p = 0.5, we can find

𝛾2 = P (W ≤ 7) − P (W < 2) = 0.9805 − 0.0195 = 0.961.

Exercise 6.1

Figure S-1 shows three different graphical representations of the
data. It is always good to plot the original measurements to see
how they behave and spot any irregularities. In Figure S-1a, I have
plotted T1, T2 and T3 versus WT. Note that due to the large
span in values, I plotted logarithms of the data. Grey lines show
the best-fitting linear relations. You can clearly see that there are
two weird outliers in set T3, perhaps an indication of a prob-
lem with the experiment. You should probably go back to the lab
and repeat the experiment, if possible. Beware: removing awkward
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Figure S-1. Three different graphical representations of data from Exercise 6.1. (a) Raw inten-
sities for each replicate plotted against wild type. Grey lines show best-fitting linear functions with
no intercept. (b) Box plots. (c) Means with 95% confidence intervals.
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measurements without making a clear statement in the publica-
tion is a serious breach of scientific rules and methodology. Simply
speaking, it is cheating. You need to have a good reason to reject
data, and it has to be explained in the paper. I therefore keep these
two outliers for the purpose of this exercise.

Box plots are defined in
Section 6.2.

Figure S-1b uses box plots. They show how the data are dis-
tributed. Again, I plot logarithms of the data. As the boxes are
roughly symmetric, it suggests that the data are roughly log-
normally distributed. The asymmetry of T3 is caused by the two
outliers.

And, finally, Figure S-1c shows the mean and the 95% CI of
the mean for each condition. These are useful for direct compar-
ison between the conditions. For example, treatment T1 does not
seem to be very successful, whereas T2 and, in particular, T3 re-
duce bacterial numbers very efficiently. This is only a graphical
representation. In any case, an appropriate statistical test (e.g. a t-
test) should be performed to assess the efficacy of each treatment.

Exercise 6.2

This is a tricky question. It is difficult to judge whether two means
are significantly different just by looking at their standard devia-
tions. This is why standard errors or confidence intervals are bet-
ter for that purpose. Figure S-2 shows the original data, but with
standard errors and 95% CI added. The p-values quoted in each
panel come from the two-sample t-test, where the null hypothesis
is that the two means are equal. A small p-value indicates signifi-
cantly different means. Let us analyse this plot step by step.

(a) n = 10
p = 0.3

(b) n = 30
p = 0.06

(c) n = 10
p = 0.04

(d) n = 30
p = 3×10−4

(e) n = 5
p = 0.01

(f) n = 1000
p = 8×10−4

SE

95%

SD

Figure S-2. This is Figure 6-12 with standard errors and 95% confidence intervals added. The
statistical significance shown comes from a t-test.
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Figure S-2a and S-2b look identical in the original figure. Their
standard deviations are the same; they only differ in the sample
size. From Figure S-2, we can see that standard errors overlap in
S-2a but do not overlap in S-2b. 95% CIs do overlap in both cases.
The means are not significantly different in either panel.

Figure S-2c and S-2d look the same in the original figure again.
The figure above shows that their standard errors do not over-
lap at all. However, 95% CIs overlap in S-2c but do not overlap
in S-2d. The means in S-2c do not seem to be significantly dif-
ferent, but they are different in S-2d with highly significant p =
3 × 10−4. Hence, 95% CIs seem to be a good indicator of different
means.

Figure S-2e shows standard deviations that almost, but not
quite, overlap, in contrast to Figure S-2d, where they overlap by
about 50%. However, the means in S-2d are significantly different,
whereas the significance is marginal in S-2e. This is because the
sample in S-2e is very small. This demonstrates again that standard
deviation is not a very good choice when you want to compare two
or more samples.

Figure S-2f is a bit extreme. The standard deviations overlap
a lot, but the sample size is large. The t-test shows that the two
means are different with p = 8 × 10−4. Standard errors and 95%
CIs are too small to be seen.

Exercise 7.1

The transformation function is f (x1, x2) = x1x2. In order to apply
the error propagation formula, we need to find derivatives:

𝜕f
𝜕x1

= x2,

𝜕f
𝜕x2

= x1.

From this and the propagation equation [equation (7-4)], we find

Δy2 = x2
2Δx2

1 + x2
1Δx2

2 = x2
1 x2

2

(
Δx2

1

x2
1

+
Δx2

2

x2
2

)

= y2

[(
Δx1

x1

)2

+
(
Δx2

x2

)2
]

.
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Here I assumed that x1 ≠ 0 and x2 ≠ 0. Dividing both sides by y ≠
0, we find

(Δy
y

)2

=
(
Δx1

x1

)2

+
(
Δx2

x2

)2

,

which is identical to the ratio propagation formula (7-7).

Exercise 7.2

The radius, r, is measured with relative error of Δr∕r = 0.1. The
volume of the sphere is

V = 4
3
𝜋r3.

The derivative of the transformation function f (r) = 4
3
𝜋r3 with

respect to r is

df
dr

= 4𝜋r2.

Using the formula for error propagation (7-1), we find

ΔV = 4𝜋r2Δr = 3V Δr
r

.

From which we can find the relative error:

ΔV
V

= 3Δr
r

.

Hence, a 10% relative error in radius results in a 30% relative error
in volume.

Exercise 7.3

The relation between NaCl mass, m; solution volume, V ; molar
concentration, c; and molar mass, M, is as follows:

c = m
VM

. (S-1)
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The measurement errors are Δm and ΔV , and they propagate to
the error of concentration using equation (7-7):

(Δc
c

)2
=
(Δm

m

)2
+
(
ΔV
V

)2

. (S-2)

We need to find m from the above equation. First, we find V from
equation (S-1):

V = m
cM

. (S-3)

After substituting this into equation (S-2) and performing some
simple algebra, we finally find

m =
√
Δm2 + ΔV 2c2M2

Δc∕c
. (S-4)

The required molar concentration is c = 0.01 mol L−1 with accu-
racy Δc = 10−4 mol L−1. The molar mass of NaCl is M = 58.443 g
mol−1. Since the mass and volume can be read to the nearest mil-
ligram and millilitre, respectively, their errors are Δm = 5 × 10−4

g and ΔV = 5 × 10−4 L (half of the smallest division). Substitut-
ing all this into equations (S-4) and (S-3), we find m = 58 mg and
V = 99 mL. You can check this result by substituting these two
numbers into equation (S-2). This yields the required Δc∕c = 0.01.
These are minimal values, so in a real experiment I would recom-
mend that you at least double them, to make sure that the concen-
tration accuracy requirement is met.

Exercise 8.1

The key to this problem is to find the relation between known
mean, standard deviation and correlation coefficient, and the pa-
rameters described by equations (8-8). This is a very simple exer-
cise, and by looking at definitions we find:

Sxx = (n − 1) SD2
x,

Syy = (n − 1) SD2
y ,

Sxy = (n − 1) rSDxSDy.

I used the definition of Pearson’s correlation coefficient [equa-
tion (4-15)]. Using the numbers from the exercise, we can find
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Sxx = 3.570, Syy = 3.682 and Sxy = 3.163. Then, using equations
(8-7) and (8-12), we find the linear fit parameters and their stan-
dard errors: a = 0.8860, b = −0.0228, SEa = 0.1110 and SEb =
0.05867. The critical value from t-distribution with n − 2 = 20
degrees of freedom and P = 0.025 is t∗ = 2.086 (see Table A-1).
Hence, our best estimates for the slope and the intercept with 95%
CIs are a = 0.9 ± 0.2 and b = 0.0 ± 0.1.

Exercise 8.2

There is a trap in this question. I asked for a ‘linear regression’,
but the data are clearly not linear! See Figure S-3a. You can fit it
with a straight line if you really want, but it is not going to make
any sense. Data represent cell growth, so we rather expect an ex-
ponential dependence,

N = N0e𝜇t,

where N0 is a constant and 𝜇 is the growth rate. After taking a
logarithm of this equation, we can establish a linear relation,

lnN = lnN0 + 𝜇t.

The logarithm of cell count as a function of time is shown
in Figure S-3b. It shows a clear linear relationship. Applying
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Figure S-3. Cell growth data in (a) linear and (b) logarithmic scale.
Since we expect exponential growth of cell numbers, the logarithmic
graph gives a linear relation between the two variables. Best-fitting
straight lines are shown in black, and prediction 95% confidence inter-
vals are shown in grey.
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regression equations (8-7), (8-13) and (8-14) to (ti, lnNi) data
yields

𝜇 = 0.035 ± 0.003 min−1,
lnN0 = 7.4 ± 0.2,

where errors are 95% CI. The cell-doubling time, t2, can be found
by comparing the growth equation and t = 0 with t = t2:

N1 = N0,
N2 = N0e𝜇t2 .

From the doubling requirement N2 = 2N1, we find

t2 = ln 2
𝜇

.

By using this formula and propagating errors (Δt2∕t2 = Δ𝜇∕𝜇), we
can find

t2 = 20 ± 2 min .
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Table A-1. Critical values, t∗, for Student’s t-distribution. For the
given number of degrees of freedom, 𝜈 (left), and for the given
probability, p (top), the table shows the critical value t∗ that cuts off
the right-tail probability p from Student’s t-distribution with 𝜈 degrees
of freedom: p = P (T𝜈 > t∗).

P

t*

Probability
0.0005 0.001 0.0025 0.005 0.025 0.05

1 636.6 318.3 127.3 63.66 12.71 6.314
2 31.60 22.33 14.09 9.925 4.303 2.920
3 12.92 10.22 7.453 5.841 3.182 2.353
4 8.610 7.173 5.598 4.604 2.776 2.132
5 6.869 5.893 4.773 4.032 2.571 2.015
6 5.959 5.208 4.317 3.707 2.447 1.943
7 5.408 4.785 4.029 3.499 2.365 1.895
8 5.041 4.501 3.833 3.355 2.306 1.860
9 4.781 4.297 3.690 3.250 2.262 1.833
10 4.587 4.144 3.581 3.169 2.228 1.812
11 4.437 4.025 3.497 3.106 2.201 1.796
12 4.318 3.930 3.428 3.055 2.179 1.782
13 4.221 3.852 3.372 3.012 2.160 1.771
14 4.140 3.787 3.326 2.977 2.145 1.761
15 4.073 3.733 3.286 2.947 2.131 1.753
16 4.015 3.686 3.252 2.921 2.120 1.746
17 3.965 3.646 3.222 2.898 2.110 1.740
18 3.922 3.610 3.197 2.878 2.101 1.734
19 3.883 3.579 3.174 2.861 2.093 1.729
20 3.850 3.552 3.153 2.845 2.086 1.725
25 3.725 3.450 3.078 2.787 2.060 1.708
30 3.646 3.385 3.030 2.750 2.042 1.697
40 3.551 3.307 2.971 2.704 2.021 1.684
50 3.496 3.261 2.937 2.678 2.009 1.676
100 3.390 3.174 2.871 2.626 1.984 1.660
1000 3.300 3.098 2.813 2.581 1.962 1.646
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Table A-2. Confidence intervals for counts. There are three
confidence intervals given in each row, 90%, 95% and 99% with 2
significant figures each. For example, a 95% CI for 5 counts is
[1.6,12].

90% 95% 99%

Low High Low High Low High

1 0.051 4.7 0.025 5.6 0.005 7.4
2 0.36 6.3 0.24 7.2 0.1 9.3
3 0.82 7.8 0.62 8.8 0.34 11
4 1.4 9.2 1.1 10 0.67 13
5 2 11 1.6 12 1.1 14
6 2.6 12 2.2 13 1.5 16
7 3.3 13 2.8 14 2 17
8 4 14 3.5 16 2.6 19
9 4.7 16 4.1 17 3.1 20
10 5.4 17 4.8 18 3.7 21
11 6.2 18 5.5 20 4.3 23
12 6.9 19 6.2 21 4.9 24
13 7.7 21 6.9 22 5.6 25
14 8.5 22 7.7 23 6.2 27
15 9.2 23 8.4 25 6.9 28
16 10 24 9.1 26 7.6 29
17 11 25 9.9 27 8.3 31
18 12 27 11 28 8.9 32
19 12 28 11 30 9.6 33
20 13 29 12 31 10 35
21 14 30 13 32 11 36
22 15 31 14 33 12 37
23 16 33 15 35 13 38
24 17 34 15 36 13 40
25 17 35 16 37 14 41
26 18 36 17 38 15 42
27 19 37 18 39 15 43
28 20 38 19 40 16 45
29 21 40 19 42 17 46
30 22 41 20 43 18 47
40 30 52 29 54 26 59
50 39 63 37 66 34 71
60 48 74 46 77 42 83
70 57 85 55 88 50 95
80 66 96 63 100 59 110
90 75 110 72 110 67 120
100 84 120 81 120 76 130
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Table A-3. Propagation of errors for a few commonly used
transformations.

Function Error

y = ax Δy = aΔx

y = axb Δy
y

= bΔx
x

y = a logb cx Δy = a
ln b

Δx
x

y = aebx Δy
y

= bΔx

y = 10ax Δy
y

= a ln (10)Δx

y = ax1 ± bx2 Δy =
√

a2Δx2
1 + b2Δx2

2

y = x1x2, y =
x1

x2

Δy
y

=

√(
Δx1

x1

)2

+
(
Δx2

x2

)2
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Index

actual response (in regression), 162

bar plots, 123–128
with error bars, 126–128

bias, 52–53
binomial coefficient, 21
binomial distribution, 20–22, 36, 65, 87,

96, 184
bootstrapping, 103–105
box plots, 121–123

categorical variable, 9, 112, 121, 125,
130

central limit theorem, 16–18, 36, 68
centroid of the data, 164
Chauvenet’s criterion, 16
chi-square distribution, 100, 178
chi-square statistic, 177
common uncertainty, 165, 173
confidence interval

of the correlation coefficient, 90–95,
188

of curve fitting parameters, 175–178
of linear fit prediction, 170–172
of the mean, 80–84
the meaning of, 77–79
of the median, 86–90, 190, 191
of a proportion, 95–99, 184
standard error as, 84–86
why 95%?, 79–80

correlation coefficient, 63–64, 156,
188

confidence interval of, 90–95, 188
significance of, 93–95, 189

counting distribution, see Poisson
distribution

counting error, 43–46
covariance, 149, 156, 170
critical t value, 82, 89, 168, 172, 185
cumulative distribution, 11, 27, 88
curve fitting, 175–178

degrees of freedom, 29, 59, 72–73, 81,
89, 94, 100, 164, 167, 172, 173

derivative, 144–148, 152–156, 163, 178
partial, 146, 152, 156, 163
and slope, 153, 154

dice, 8, 16

e-notation, 139
error bars, 112–141

in bar plots, 126–128
how to draw, 120–121
overlapping, 128–130
plots with no error bars, 130–132

error in the error, 71–72, 135, 136
error propagation

correlated variables, 149
difference, 146
logarithm, 144–145
multiple variables, 146–149
product, 147–149
ratio, 147–149, 186
from replicated data, 150–151
scaling, 144
single variable, 143–145, 185
sum, 146–147

errors
asymmetric, 93, 98, 101, 119, 127, 185
counting, 43–46
measurement, 35–38
random, 34, 50, 192
reading, 41–43
relative, 72, 135, 145, 148
sampling, 39–41
systematic, 33–34

estimator, see statistical estimator
expected value, see mean
explanatory variable, 113, 121, 131, 158,

175

factorial, 21
of zero, 24

Fisher’s transformation, 91
fitting

curve, 175–178
straight line, 162–164

Gaussian distribution, 13–16
and central limit theorem, 16

gedankenexperiment, see thought
experiment

geometric mean, 55–56
graphs, see plots

independent variables, 146, 149, 157, 170
interarrival times, 26–28
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intercept, 158, 163, 171
confidence interval of, 168
standard error of, 166

intrinsic variability, 38–39

least-squares method, 163, 177
Levenberg–Marquardt algorithm, 177
linearization of data, 161
linear regression

best-fitting parameters, 161–164
errors of prediction, 170–172
through the origin, 173–175

linear scale, 18, 117, 124
logarithmic plots, 117–118
logarithmic scale, 18, 117, 143
log-normal distribution, 18–20

margin of error, 97
mean

geometric, 55–56
of a random variable, 12
of a sample, 53
weighted, 54–55

mean absolute deviation, see mean
deviation

mean deviation, 62–63
mean response (in regression), 159
measurement errors, 35–38
median

in box plots, 122
confidence interval of, 86–90, 190
of a random variable, 12
of a sample, 56–57

normal distribution, see Gaussian
distribution

outlier, 15–16, 57, 122, 131, 190

Pearson’s correlation coefficient, see
correlation coefficient

pie charts
don’t make them, 128

plots
bar, 123–128
box, 121–123
error bars in, 118–130
labels, 116
lines, 115
logarithmic, 117–118
symbols, 114
with no error bars, 130–132

Poisson distribution, 23–28, 44,
188

interarrival times, 26–28
population, 12, 39, 47–49, 74
predicted response (in regression),

162
probability distribution, 9–11

binomial, see binomial distribution
chi-square, see chi-square distribution
continuous, 10–11

cumulative, 11, 27, 88
discrete, 9–10
Gaussian, see Gaussian distribution
log-normal, see log-normal

distribution
Poisson, see Poisson distribution
t-distribution, see t-distribution

propagation of errors, see error
propagation

proportion, 65, 184
confidence interval of, 95–99,

184
standard error of, 97

pseudoreplication, 8, 106

radioactive decay, 23
random errors, 34–35, 50, 166, 192

normal distribution of, 35–38
random events, 25, 28
random variable, 8–9

continuous, 10
discrete, 9
mean of, 12
median of, 12
standard deviation of, 12
variance of, 12

reading errors, 41–43
regression, 158

linear, see linear regression
replicates, 74, 105–109, 191

technical and biological, 192
resampling, 103
residuals, 12, 53, 162, 177
response variable, 113, 121, 158, 175

sample, 12, 39, 47–49, 74
sampling distribution, 75–77

of the correlation coefficient, 91
of the mean, 66
of a slope in linear regression, 167

sampling error, 39–41
significant figures, 43, 84, 132–138

definition, 132–133
and errors, 135–136
how to write, 133–135

SILAC (stable isotope labelling by
amino acids in cell culture),
187

slope, 153, 155, 158, 163, 169, 171
confidence interval of, 167
and derivative, 154
standard error of, 166, 174

standard deviation
of a random variable, 12
of a sample, 57–59
unbiased estimator, 59–62

standard error, 66–70
as a confidence interval, 84–86
of linear fit parameters, 166
of a proportion, 97
of the weighted mean, 71

standard score, see Z-score
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statistical estimator, 49–52
bias, 52–53

straight line fit, 161–164
Student’s distribution, see t-distribution
systematic errors, 33–34

thought experiment, 44, 59, 66, 75, 81,
166

true response (in regression), 160
t-distribution, 28–29, 69, 80–82, 89, 94,

167–169, 172, 185
t-statistic, 29, 80, 94, 167

unbiased estimator, 52–53

variance, 12, 68, 73
of a random variable, 12
of a sample, 59–60
unbiased estimator, 59–60

Wald method (adjusted), 97–99
weighted mean, 54

standard error of, 71

Z-score, 13, 63
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