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Foreword

Michiel Postema is one of life’s more colourful characters. To the uninitiated,1

this fact is perhaps most evident from his courageous sartorial displays during
conference presentations. These fetching ensembles, however, represent much
more than the whimsical eccentricities that sometimes pervade academic circles.
Rather, my opinion is that the threads are simply an outward signature of an
extreme inner confidence; confidence of the kind that comes about when one
simply has a deeper, and broader, appreciation of the field than most of one’s
peer group. This is because Professor Postema is one of the most knowledgeable
and capable young researchers in the ultrasound arena today.

‘Ah, but you are his friend and are bound to say something like this, ..,’ you
may be thinking to yourself.

‘Well, ... yes, ... and no,’ is my reply. ‘Yes, he is indeed my friend, ... but
no, I am not bound to say anything other than the facts.’

So, I do not make the above statement lightly. I do it with the certainty,
and indeed the gratitude, that comes from having personally tapped into Michiel
Postema’s knowledge and intuition on many [and several significant] occasions
in the past. Furthermore, I state this in the knowledge that Postema’s previous
advice has gone some way towards guiding me towards excellence in my own
career. Publication of this present volume now opens up the possibility that
he might effect a similar service for the wider community! The most important
question at this juncture, dear reader, is whether you will allow yourself the
opportunity to be amongst the beneficiaries? Or to put it another way, is this
book going to help you? Flip forward just beyond this foreword and consider
the aspirational statement that Postema has selected from Peter Parker’s comic
strip alter-ego. Now, hold that thought — for we shall return to it at the end.

I first encountered Dr. Postema in 2005 at the Rotterdam Symposium on
Ultrasound Contrast Agents. He had given an authoritative talk on contrast
agent modelling, an area that my own group were trying to break into at the
time, and later over drinks, we agreed to develop something of a collaboration
in order to kick-start the programmes in our mutual areas. As is often the case,
tokens of appreciation were exchanged upon return to our host institutions: in
my opinion, I got the better deal. For the princely outlay of a bottle of (lesser
known but nonetheless excellent) single malt which I despatched from Dundee, I
received a copy of Medical Bubbles, the published version of Dr. Postema’s PhD

1The initiated of course, that is, those who already know and love Michiel, will know how
his ‘colourful’ nature can be manifested through many further possibilities — most of which
are guaranteed to raise a smile.
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thesis. The little book was a revelation, focussing as it did on the intricacies of
high speed imaging of shelled microbubbles under well-controlled circumstances
— exactly the area that my own group’s experimental programme was hinged
on. Within those hallowed pages, the practicalities had been addressed and
explored exhaustively, including some specific, and as it transpired to us, hugely
important nuances arising from the microscopy set-up. Moreover, analytical
protocols were also addressed in detail. In short, the monograph was a veritable
godsend to me and my PhD students. More than that, it was extremely well
written in terms of brevity, relevance and clarity — the very model for a thesis —
but more than that, the perfect foundation for a more complete and generalised
work — one that would eventually evolve to become the present text.

So, what of the competition? The ultrasound/microbubble field has text
books aplenty [viz, Recommended Reading, Appendix B] already, many of which
are quite superb. Do we really need another? Yes, actually we do — and for
the main reasons mentioned here below:

1. The pace of development for research in this area, especially in the hot
topic areas, such as microbubble-based drug delivery, and advanced bubble-
based diagnostics, is quite astounding. Any emerging monograph worth
its salt simply must include judicious reference to the most recent papers
so that foundational concepts are accurately contextualised, with appro-
priate caveats, in the most up to date fashion — Fundamentals of Medical
Ultrasonics accomplishes this in some style.

2. Moreover, multi-disciplinary teams are increasingly favoured for (e.g. re-
search council-funded) projects that fall at the interface of Physics/Engi-
neering with Life Sciences/Medicine, and, as the author himself outlines
in Chapter 1, with the perceived demand for technical and clinical ul-
trasound imaging on the rise, there is a clear need for a ‘one-stop shop’
that embraces all the relevant areas of expertise in an expansive fashion.
Fundamentals of Medical Ultrasonics is the first book in recent times to
include all these basic aspects of medical ultrasonics: including elastic-
ity, vibrations, waves, acoustics, transducers, radiation, imaging, bubble
physics, contrast agents and sonoporation. Moreover, as the biography
section will testify [Appendix C], a diverse spectrum of experts has been
assembled to inject the correct level of disciplinary detail in the most
authoritative way. That said, the presence of Professor Postema as a co-
author/editor on every chapter has also endowed the text with coherency
and consistency throughout.

3. Finally, where the target audience embraces the advanced undergraduate,
or postgraduate student population, Fundamentals of Medical Ultrasonics
represents the first recent and completely up-to-date book with all equa-
tions derived completely and explicitly from first principles. This level of
completeness will, it is hoped, find favour as a valuable student resource,
appealing to both the mathematically rigourous, and also serving to walk
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those who are less mathematically confident through the derivations in a
formal way.

The book thus fills several niches that are not well served at the present time.
Furthermore, the book is written in the most charming and idiosyncratic fashion
that allows Professor Postema’s character to shine though in each chapter. This
is exemplified with that beginning quote from your friendly neighbourhood web-
slinger, Mr Spider-Man. Is it appropriate I wondered, to have some comic-book
super hero quotation in what otherwise is a serious scientific work? I questioned
the author on what exactly he meant to evoke here, and had the reply that the
‘power’ in question was a metaphor for the output from ultrasound transducers,
coupled with the ‘responsibility’ to achieve minimal collateral damage by finding
the optimal operating parameters.

Perhaps, ..!
One thing is for sure, however, and that is that this initial quote simply starts

the whole thought-provoking business within this monograph. An intriguing
and uniquely considered page by page personal perspective on this compelling
research area then ensues, one that will have you smiling as those pennies begin
to drop and a new level of understanding begins to percolate through the little
grey cells.

What more is there to say? If your desire is to get up to speed with modern
ultrasonics in a medical context, together with the tools and techniques required
to appreciate the nittiest grittiest of details, then I can wholeheartedly recom-
mend this book. Use it. Enjoy it.

Dr. Paul Andrew Campbell
Reader in Physics & Royal Society Industry Fellow
University of Dundee
September 2010
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With great power comes great responsibility

Spider-Man (2002)
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1
Introduction

Ultrasonic imaging is an economic, reliable diagnostic technique. When taking
into account absolute hospital operating expenses, X-ray and ultrasound have
approximately the same price per examination. Other imaging techniques are
roughly three times as expensive, except for catheterisation, which is twenty
times as expensive. However, X-ray is a less desirable imaging technique than
ultrasound, due to the negative ionising radiation effects. Therefore, novel
ultrasound-based imaging techniques are being developed that may compete
with other imaging techniques.1

Fundamentals of Medical Ultrasonics treats the physical and engineering
principles of acoustics and ultrasound as used for medical applications. The
book covers the basics of elasticity, linear acoustics, wave propagation, non-
linear acoustics, transducer components, ultrasonic imaging modes, basics on
cavitation and bubble physics, as well as the most common diagnostic and ther-
apeutic applications. Its aim is to provide students and professionals in medical
physics and engineering with a detailed overview of physical and technical as-
pects involved in medical ultrasonic imaging, whilst being a useful reference for
clinical research staff.

Ultrasound has become the most used medical imaging modality in the
German-speaking world and will no doubt become the most used modality
world-wide. Hence, an increasing number of engineers working on medical ul-
trasonics development and implementation will need to be trained in this field.
Not only does Fundamentals of Medical Ultrasonics satisfy this need, it also
narrows the gap between the technician and the clinician who wants to know
“how stuff really works”.

1Postema M. Bubbles and ultrasound. Appl Acoust 2009 70:1305.
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1.1 Definition of sound

Sound waves are a form of mechanical vibration. They correspond to particle
displacements in matter. Unlike electromagnetic waves, which can propagate
in vacuum, sound waves need matter to support their propagation: a solid, a
liquid, or a gas. The ear is an excellent acoustic detector in air but its sensitivity
is limited to an interval between 20Hz and 20 kHz. Audio-frequency sound
is essential in communication and entertainment. The acoustics of buildings,
particularly concert halls, has been the subject of considerable study. Unwanted
audio-frequency sound is called noise. The study of noise and noise control is
an important part of engineering.
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Figure 1.1: Typical applications of electromagnetic (top) and acoustic
(bottom) frequencies.

Ultrasound refers to sounds and vibrations at frequencies above the upper
audible limit of 20 kHz to values that can reach 1 GHz, as shown in Figure 1.1.
Consequently, ultrasonics involve higher frequencies and smaller wavelengths
than audio acoustics. The highest theoretical ultrasonic frequency that can be
generated has been elegantly derived by Kuttruff.2 Consider a crystal consisting
of molecules separated by a distance d, through which a monotonous longitu-
dinal wave with speed cp is travelling. The phase difference ∆ϕ between two
molecules is then

∆ϕ = k d = 2π
f d

cp
, (1.1)

2Kuttruff H. Acoustics: An introduction. London: Taylor & Francis 2007.
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where f is the sound frequency and k is the wave number. If adjacent masses
oscillate in opposite phase, the situation is that of a standing wave. Therefore,
the highest theoretical ultrasonic frequency must be the frequency where ∆ϕ =
π or

f =
cp
2d
. (1.2)

Conversely, infrasound involves sounds and vibrations at low frequencies (below
20Hz) and long wavelengths. Because the physiological sensation of sound has
disappeared at these frequencies, our perceptions of infrasound and ultrasound
are different. Ultrasonic waves in fluids and solids are used for non-destructive
evaluation. The general principle is to excite and detect a wave at ultrasonic
frequencies and to deduce information from the signals detected. Example ap-
plications include the detection of flaws and inhomogeneities in solids, SONAR,
SODAR, medical imaging, and acoustic microscopy.

For applications of acoustics, ultrasonics, and noise control, it is important to
have a good understanding of the elasticity of materials and of wave propagation
in infinite fluids and solids.

1.2 A brief history of cavitation and ultrasonics

One of the first to write on the concepts of cavitation was Leonardo da Vinci.
Not only did he have a theory on the oversaturation of water:3

“Moreover the elements repel or attract each other, for one sees water
expelling air from itself, and fire entering as heat under the bottom
of a boiler and afterwards escaping in the bubbles on the surface of
the boiling water.”

He was also the first to describe the concept of surface tension:

“The centre of a particular sphere of water is that which is formed in
the tiniest particles of dew, which is often seen in perfect roundness
upon the leaves of plants where it falls; it is of such lightness that
it does not flatten out on the spot where it rests, and it is almost
supported by the surrounding air, so that it does not itself exert any
pressure, or form any foundation; and because of this its surface is
drawn towards its centre with equal force and they become magnets
one of another, with the result that each drop necessarily becomes
perfectly spherical, forming its centre in the middle, equidistant from
each point of its gravity, it always places itself in the middle between
opposite parts of equal weight.”

Leonardo da Vinci had theories on acoustics, too:

3Richter IA, Ed. The Notebooks of Leonardo da Vinci . Oxford World’s Classics paperback
edition. New York: Oxford University Press 1998.
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“I say that the sound of the echo is reflected to the ear after it has
struck, just as the images of objects striking the mirrors are reflected
into the eyes. And as the image falls from the object into the mirror
to the eye at equal angles, so sound will also strike and rebound at
equal angles as it passes from the first percussion in the hollow and
travels out to meet the ear.”

As such, we may state that Leonardo da Vinci had already depicted the ingre-
dients needed for contrast sonography five hundred years ago.

Not until the work of Daniel Bernoulli was it understood that negative pres-
sure can be produced within a liquid.4 Supposedly, Euler and d’Alembert de-
bated the consequences of negative pressures in the early eighteenth century.
Euler correctly assumed they would ultimately cause a rupture of the liquid,
yet d’Alembert refused to accept this view.

Following the Industrial Revolution, as steam turbines became more power-
ful, the rotation speed of ship-screw propellers increased dramatically. With the
increased rotation speed, an “extraordinarily rapid” kind of erosion of the pro-
pellers was observed.5 Silberrad showed pictures of ship-screws and described
the seriousness of this problem:

“These have been photographed from specimens cut from the first set
of propellers of the Mauretania, and exhibited at the recent Anglo-
Japanese Exhibition. These original propellers had three loose blades,
and an over-all diameter of about 17 ft. The metal, it will be seen,
is eaten away to the depth of in some cases more than 2 in. The
financial aspect of the question was thus very serious. Propellers of
the alloys in question cost anywhere between 130l. to 180l. a ton and
have a scrap value of less than half that amount, while the rapidity
of the wear was such that in the case of the Mauretania and Lusita-
nia they would, had no remedy been found, have required replacing
every few months, at a cost of some thousands of pounds, since each
propeller weighed about 20 tons.”

As for the cause of the erosion, Silberrad stated:

“Further, it will be noted that the area attacked is, as has already
been stated, near the hub. This was of large size, and it seems prob-
able that there was a certain centrifugal action causing a reduction
of pressure, and this region of reduced pressure was marked by the
erosion. Here Dr. Silberrad considers that cavitation might occur,
and, in consequence, water broken by intervening evacuated spaces
with no air present.”

4Bernoulli D. Hydrodynamica, sive de viribus et motibus fluidorum commentarii. Stras-
bourg: JH Dulsecker 1738.

5Silberrad O. Propeller erosion. Engineering 1912 33–35.
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The word cavitation for the formation of cavities due to negative pressures has
been attributed to Froude.6

In 1917, Lord Rayleigh published his masterpiece on cavitation.7 It starts
with:

“When reading O. Reynolds’s description of the sound emitted by wa-
ter in a kettle as it comes to the boil, and their explanation as due
to the partial or complete collapse of bubbles as they rise through
cooler water, I proposed to myself a further consideration of the
problem thus presented; but I had not gone far when I learned from
Sir C. Parsons that he also was interested in the same question in
connexion with cavitation behind screw-propellers, and that at his
instigation Mr. S. Cook, on the basis of an investigation by Besant,
had calculated the pressure developed when the collapse is suddenly
arrested by the impact against a rigid concentric obstacle. During
the collapse the fluid is regarded as incompressible.

In the present note I have given a simpler derivation of Besant’s
results, and have extended the calculation to find the pressure in the
interior of the fluid during the collapse. It appears that before the
cavity is closed these pressures may rise very high in the fluid near
the inner boundary.”

The equations presented are still applicable today.
Cavitation with a mechanical origin is called hydraulic cavitation. In a lab-

oratory environment, de Haller experimented with hydraulic cavitation on tur-
bines.8 A more recent study on hydraulic cavitation involves snapping shrimp:
predator shrimp that kill their prey by producing cavitation bubbles that col-
lapse near their victims.9

Sound waves can create negative pressures, too, resulting into acoustic cav-
itation. To learn more about this subject, we have to look into the science of
inaudible sound: ultrasonics.

In “Some Background History of Ultrasonics”, Klein called ultrasonography,
or: superaudible acoustics, “a by-product of the two world wars”:10

“To trace the progress of ultrasonics from its beginning, it is nec-
essary to recall the years 1914–1918 and Professor Paul Langevin
who founded this subject. In 1915, the U-boat menace threatened the
Allies. A Russian engineer named Chilowski submitted an idea for
submarine detection to the French Government. The latter invited

6Thornycroft JI, Barnaby SW. Torpedo-boat destroyers. Min Proc Inst Civ Eng 1895
122:51–69.

7Lord Rayleigh. On the pressure development in a liquid during the collapse of a spherical
cavity. Philos Mag 1917 32:94–98.

8de Haller P. Untersuchungen über die durch Kavitation hergerufenen Korrosionen.
Schweiz Bauzeit 1933 101:243–246.

9Versluis M, Schmitz B, von der Heydt A, Lohse D. How snapping shrimp snap: through
cavitating bubbles. Science 2000 289:2114–2117.

10Klein E. Some background history of ultrasonics. J Acoust Soc Am 1948 20:601–604.
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Langevin, then Director of the School of Physics and Chemistry in
Paris, to evaluate it. Chilowski’s proposal was to excite a cylindrical,
mica condenser by a high frequency singing arc (Poulson Arc) oper-
ated at about 100 kc. This device was intended to be a generator of an
ultrasonic beam for detecting submerged objects. The idea of locating
underwater obstacles by means of sound echoes had been previously
suggested by L.F. Richardson, in England. In 1912, following the
Titanic disaster, he proposed to set a high frequency hydraulic whis-
tle at the focus of a mirror and use the beam for locating submerged
navigational hazards. Sir Charles Parsons, the inventor of the vapor
turbine, became interested in this device and built one in accordance
to Richardson’s ideas. This apparatus was found unsuitable for the
job of searching underwater obstacles, but the idea was not lost.”

(...)

“By making use of the piezoelectric effects of quartz, Langevin in-
troduced the modern piston transducer. He became acquainted with
piezoelectric phenomena while a student at the laboratory of the
Curie brothers. Perhaps the most outstanding advance made by
Langevin in this field was his theoretical calculation and experimental
verification of the fact that a thin sheet of quartz sandwiched between
two steel plates constituted an electromechanical resonant system.”

(...)

“Various aspects of the piezoelectric piston transducer were investi-
gated by Langevin and his co-workers, among whom were a number
of British and American scientists. They observed many biological
and physical effects of the ultrasonic beam. For example, they noted
in their laboratory tank that small fish were killed as they swam into
the intense portion of the ultrasonic beam. Also, they saw incipient
cavitation in the water when the sound source was active and felt
painful effects upon the hand when struck in front of the beam.”

This is the first mentioning of acoustic cavitation.
But the cavities themselves produced sound waves as well. Bragg related

the sound of drops falling into water to cavities:11

“When photographs are taken from below the surface, it becomes clear
that an air cavity is often formed.”

(...)

“Now it appears that the note which we hear is the resonant note
of this cavity, probably given out when the cavity has closed over

11Bragg W. The World of Sound . London: G Bell and Sons 1920.
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at the top and burst again. My friend Richard Paget has actually
measured these cavities in various cases and then made models of
them in plasticine. Blowing across the top of the model cavity, he
finds that its note is practically the same as that the drop makes
when it falls. The note is very high, and has a frequency of two to
three thousand vibrations a second.”

In 1933, Minnaert presented his theory for the sounds created by bubbles in
water:12

“We will suppose that the bubbles give a sound because they pulsate in
closing. Periodically the bubble expands and contracts, the surround-
ing water being the inert mass which is set in vibration, while the
elasticity is due to the air of the bubble. A formula for the frequency
of such pulsations may be derived in a quite elementary way.”

Thus, he formulated a theory on the resonance frequency of bubbles. Conse-
quently, the resonance frequency of a free gas bubble in water is also referred to
as the Minnaert frequency. Noltingk and Neppiras were the first to formulate
an equation to describe the behaviour of gas-filled and empty cavities in a sound
field.13

In 1954, shortly after the introduction of clinical ultrasound,14,15 it was hy-
pothesised that cavitation bubbles grow from gas nuclei encapsulated by organic
skins. Because of the skins, these nuclei would not be subjected to diffusive
processes.16 This hypothesis could also be read as follows: If gas bubbles en-
capsulated by an elastic shell are sonicated, they may still act as cavitation
nuclei.

Fourteen years later, experiments were done with saline to create air bub-
bles in vivo.17,18 These rapidly diffusing air bubbles generated a characteristic
response to ultrasound, such that perfused vessels would appear “brighter” on
sonographic images. This new diagnostic technique was called ultrasound con-
trast imaging.

12Minnaert M. On musical air bubbles and the sound of running water. Philos Mag 1933
(S16):235–248.

13Noltingk BE, Neppiras EA. Cavitation produced by ultrasonics. Proc Phys Soc London
B 1950 63:674–685.

14Wild JJ. The use of ultrasonic pulses for the measurement of biologic tissues and the
detection of tissue density changes. Surgery 1950 27:183–188.

15Wild JJ, Neal D. Use of high-frequency ultrasonic waves for detecting changes of texture
in living tissues. Lancet 1951 655–657.

16Fox FE, Herzfield KF. Gas bubbles with organic skins as cavitation nuclei. J Acoust Soc
Am 1954 26:984–989.

17Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968 3:356–
366.

18Gramiak R, Shah PM, Kramer DH. Ultrasound cardiography: contrast studies in anatomy
and function. Radiology 1969 92:939–948.
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1.3 Outline and acknowledgements

The historic background in Chapter 1 has been based on the chapter “On Cav-
itation, High-speed Photography, and Medical Bubbles” in Medical Bubbles.19

Chapter 2 treats the basics of stress and strain analysis, including stress
tensors, principal stresses, strain, Hooke’s law, and stress functions. It has been
based on the Stress and Strain Analysis lectures by Michael J. Fagan and Michiel
Postema at The University of Hull.20

Chapter 3 covers the basics of vibrations, including mass–spring–dashpot
systems. It has been based on the Dynamics lectures by Keith Attenborough
and Michiel Postema at The University of Hull.21

Chapter 4 continues with waves, sound propagation, reflection, and trans-
mission. It has been based on the Acoustics lectures by Keith Attenborough
and Michiel Postema at The University of Hull.22

Chapter 5 describes the physics and engineering of ultrasound transducers.
It has been written by Andrew Hurrell.

Chapter 6 treats the theory of radiated fields. It has been written by Andrew
Hurrell.

Chapter 7 gives an overview of clinical ultrasonic imaging techniques. It has
been written by Knut Matre and Odd Helge Gilja.

Chapter 8 thoroughly analyses bubble dynamics relevant for the use of ul-
trasound contrast agents. We kindly acknowledge the American Association of
Physicists in Medicine for permission to reprint Figures 8.5 and 8.11, Bentham
Science Publishers for permission to reprint Figure 8.3, and Elsevier Science for
permission to reprint excerpts from several scientific papers and Figures 8.6 and
8.7.

Chapter 9 describes some of the imaging and therapeutic applications of
contrast-enhanced ultrasonics. We kindly acknowledge Bentham Science for
permission to reprint excerpts from a scientific paper and Expert Reviews for
permission to reprint Table 9.1.

When designing the cover, Stephen John Rees was inspired by equation 3.12.
Throughout this book, the illustrations were drawn, adjusted or pimped-up by
Spiros Kotopoulis.

19Postema MAB. Medical Bubbles. S.l.: s.n. 2004.
20Fagan MJ, Postema. An introduction to stress and strain analysis. Bergschenhoek:

Postema 2007.
21Attenborough K, Postema M. A pocket-sized introduction to dynamics. Bergschenhoek:

Postema 2008.
22Attenborough K, Postema M. A pocket-sized introduction to acoustics. Bergschenhoek:

Postema 2008.
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Stress, strain, and elasticity

with Michael J. Fagan

The mathematical formulation of wave propagation in solids involves the use of
the concepts and principles of 3-dimensional stress and strain analysis. Hence,
we start by outlining these principles.

2.1 The uniform state of stress

Consider a continuous 3-dimensional body subjected to an arbitrary system
of forces. The state of stress at a point O in the body can be studied by
considering an infinitesimal parallelepiped erected at this point. It is assumed
that the resultant forces acting on any two parallel faces are the same, i.e., a
uniform state or field of stress exists.

The isolated element is shown in Figure 2.1 referred to a Cartesian coordinate
system. The double subscript is interpreted as follows: The first subscript
indicates the direction of a normal to the plane or face on which the stress
component acts; the second subscript relates to the direction of the stress itself.
Note that σx ≡ σxx. Thus, τxy is the shear stress on the x-face in the y-direction.

The following sign convention is used: If face (F) and direction (D) are both
positive, τFD is positive; if F and D are both negative, τFD is positive; if F and
D are of opposite signs, τFD is negative.

By taking moments of the forces due to the stresses about each axis, we can
show that

τxy = τyx ;

τxz = τzx ;

τyz = τzy .

(2.1)
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Figure 2.1: Stresses acting on the positive (left) and negative (right)
faces of an infinitesimal body.

In future therefore, no distinction will be made between τxy and τyx, τxz and
τzx, or τyz and τzy. This means that only 6 Cartesian components are necessary
for the complete specification of the state of stress at any point in the body.
These terms can be conveniently assembled into the so-called stress tensor:

[σ] =

 σx τxy τxz

τyx σy τyz

τzx τzy σz

 . (2.2)

2.2 Stress on an inclined plane

It is required to find the state of stress on a plane inclined to the axes previously
setup, represented by the face ABC of the tetrahedron in Figure 2.2, assuming
that the stresses on faces OBC, OCA, and OAB are known. The position of the
plane can be specified by the length and orientation of the normal OD drawn
from the origin O to the plane ABC such that the angles ODA, ODB, and ODC
are all right angles. The length of OD is equal to r, and its position is given
by the angles AOD, BOD, and COD. The cosines of these angles are known as
direction cosines and are denoted by

cos AOD = l ;

cos BOD = m ;

cos COD = n .

(2.3)

It can be proven on geometrical grounds, that

l2 +m2 + n2 = 1, (2.4)
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Figure 2.2: Plane inclined to the axes, represented by the face ABC of
a tetrahedron.

so that only two of the direction cosines are independent.
The areas of the perpendicular planes OBC, OCA, and OAB may now be

found in terms of these direction cosines:

OA =
r

l
;

OB =
r

m
;

OC =
r

n
.

(2.5)

Let the area of face ABC be A, and that of OCA be Ay. The volume of the
tetrahedron can be written as 1

3Ar = 1
3AyOB = 1

3Ay
r
m , from which it follows

that Ay = A m. Hence,
Ax

l
=
Ay

m
=
Az

n
= A. (2.6)

These are the relationships between the areas of the four faces of the tetrahedron.
With the stress on the inclined plane represented by its three Cartesian

components sx, sy, and sz, the general state of stress on the tetrahedron is shown
in Figure 2.3. The equilibrium of the element can be examined by resolving the
forces acting on it in the directions of the three axes. For example, in the
x-direction,

sxA− σxAx − τyxAy − τzxAz = 0. (2.7)

Hence,
sx = σxl + τyxm+ τzxn. (2.8)
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Figure 2.3: State of stress on a tetrahedron.

Similar expressions exist for sy and sz. These three equations can be expressed
in matrix form:  sx

sy

sz

 =

 σx τxy τxz

τyx σy τyz

τzx τzy σz


 l

m

n

 . (2.9)

The resultant stress on the inclined plane is given by the resultant forces acting
on ABC divided by the area of ABC. Therefore,

s =
√
s2x + s2y + s2z. (2.10)

To find the normal stress on the plane, the forces parallel to the normal have
to be resolved, noting that the area ABC is common to all forces acting on this
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face:

N = sxl + sym+ szn =
[
l m n

]  sx

sy

sz

 =

=
[
l m n

]  σx τxy τxz

τyx σy τyz

τzx τzy σz


 l

m

n

 .
(2.11)

The square of the resultant stress is equal to the sum of the squares of the
normal stress and the shear stress on the plane, so that

T =
√
s2 −N2. (2.12)

The direction cosines of this resultant shear stress may also be found. Let l1,
m1, and n1 be the direction cosines of T with respect to XYZ. Then, in the
x-direction,

sxA = N A l + T A l1. (2.13)

Therefore,

l1 =
sx −N l

T
;

m1 =
sy −N m

T
;

n1 =
sz −N n

T
.

(2.14)

2.3 Transformation of stresses for rotation of
axes

By extending the theory developed in Section 2.2, it is possible to transform
the tensor of a given state of stress known for one set of axes to the tensor of
the same state in a second set of axes. For example, if the stress tensor in the
(x, y, z) coordinate system is [σ], it is possible to determine the stress tensor [σ′]
in another coordinate system (x′, y′, z′).

The relative rotation of the second system to the first is defined by 9 direction
cosines, where for example l1 is the angle between the x′-axis and the x-axis,
m1 is the angle between the x′-axis and the y-axis, and l2 is the angle between
the y′-axis and the x-axis.

The full set of cosines is

[L] =

 l1 m1 n1

l2 m2 n2

l3 m3 n3

 . (2.15)
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Consider a second Cartesian system (x′, y′, z′) and the set used in Section 2.2.
Let the x′-axis be coincident with the normal of the plane that was examined:
σx′ = N . The normal stress on the plane follows from (2.11):

σx′ = N =
[
l1 m1 n1

]  σx τxy τxz

τyx σy τyz

τzx τzy σz


 l1

m1

n1

 . (2.16)

By using the same method for the other axes, the other components of the stress
tensor [σ′] can be determined:

[σ′] = [L][σ][L]T. (2.17)

Using this equation, a tensorial state of stress in one coordinate system can be
easily converted into another system.

2.4 Principal stresses

A principal plane is defined as one on which the shear stress is zero. The normal
stress on this plane is known as the principal stress and is denoted by p. If the
direction cosines of the plane are l, m, and n, then resolving stresses on the
plane in the coordinate directions gives sx

sy

sz

 =

 p l

pm

pn

 =

 p 0 0

0 p 0

0 0 p


 l

m

n

 . (2.18)

Rearranging this with (2.9) gives σx − p τxy τxz

τyx σy − p τyz

τzx τzy σz − p


 l

m

n

 = 0. (2.19)

This matrix represents three linear equations in l, m, and n, which will have
non-trivial solutions if and only if

det |[σ]− [p]| = 0. (2.20)

Or, after expansion of the determinant

p3−(σx + σy + σz)p
2

+(σxσy + σyσz + σzσx − τ2xy − τ2yz − τ2zx)p

−(σxσyσz + 2τxyτyzτxz − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy) = 0.

(2.21)

This is known as the stress cubic. Its roots, which are always real, are the values
of the three principal stresses, p1, p2, and p3, which exist on three perpendicular
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planes. Note that the equation is independent of the direction cosines and
therefore the coordinate system. If a different set of axes had been used to
describe the element at point O, different values of applied stress σx, τxy, ...
would have resulted. However, the principal stresses would remain unaltered and
the same stress cubic would have been derived. This means that the coefficients
are the same, regardless of the original choice of axes, i.e., they are invariant.
By convention, the coefficients of the stress cubic are referred to as first, second,
and third stress invariants:

I1 = σx + σy + σz ;

I2 = σxσy + σyσz + σzσx − τ2xy − τ2yz − τ2zx ;

I3 = σxσyσz + 2τxyτyzτxz − σxτ
2
yz − σyτ

2
zx − σzτ

2
xy .

(2.22)

Thus, the stress cubic can be rewritten in terms of p and I:

p3 − I1p
2 + I2p− I3 = 0. (2.23)

and, as the stress invariants have the same values regardless of the axes chosen,
they must also be the same when the axes of reference correspond to the axes
perpendicular to the principal planes. Therefore,

I1 = p1 + p2 + p3 ;

I2 = p1p2 + p2p3 + p3p1 ;

I3 = p1 p2 p3 .

(2.24)

By convention, it is assumed that p1 > p2 > p3.
One further invariant dubbed I′2 is derived from I1 and I2:

I′2 = 2(I21 − 3I2). (2.25)

From (2.22),

I′2 = (σx − σy)
2 + (σy − σz)

2 + (σz − σx)
2 + 6(τ2xy + τ2xz + τ2yz), (2.26)

or, in terms of principal stresses,

I′2 = (p1 − p2)
2 + (p2 − p3)

3 + (p3 − p1)
2. (2.27)

The so-called Von Mises yield stress σys is related to I′2 as follows:

σ2
ys =

I′2
2
. (2.28)

I1 and I′2 are of particular interest to us because they are related to the octahe-
dral normal and octahedral shear stress, respectively.

The directions of the principal stresses can be found by substituting each of
the three values of p in turn into (2.19) and, using (2.4), solving for each set of
l, m, and n.
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2.5 Stationary values of shear stress

Shear planes contain maximum shear stresses corresponding to two of the prin-
cipal stresses (cf. the 2-dimensional situation, where Tmax = 1

2 (p1− p2), evident
from Mohr’s circle of stress in Figure 2.4). Therefore, there will be three of
these planes and their corresponding stresses.

Tmax

p3

p1

 τ

σ

p2

Figure 2.4: Mohr’s circle of stress.

Having determined the positions of the principal planes and values of the
principal stresses, then rotate the Cartesian coordinate system to correspond
to the directions of the normals of the principal planes, as demonstrated in
Figure 2.5. The stress components on the plane are sx

sy

sz

 =

 p1 0 0

0 p2 0

0 0 p3


 l

m

n

 =

 p1 l

p2 m

p3 n

 . (2.29)

The resultant stress is

s =
√
p21l

2 + p22m
2 + p23n

2, (2.30)

and the normal stress is

N = p1l
2 + p2m

2 + p3n
2. (2.31)

Therefore, the shear stress is given by

T 2 = S2 −N2 = (p21l
2 + p22m

2 + p23n
2)− (p1l

2 + p2m
2 + p3n

2)2. (2.32)
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Figure 2.5: State of stress after rotation of the Cartesian coordinate
system.

Using (2.4), one direction cosine can be eliminated:

T 2 = l2(p21 − p23) +m2(p22 − p23) + p23

−
[
l2(p1 − p3) +m2(p2 − p3) + p3

]2
.

(2.33)

The values of l and m, and therefore n, that maximise or minimise T are found
by differentiating (2.33) with respect to l and m and equating to zero:

T
∂T

∂l
= l(p1 − p3)

{
(p1 + p3)− 2

[
l2(p1 − p3) +m2(p2 − p3) + p3

]}
= 0;

T
∂T

∂m
= m(p2 − p3)

{
(p2 + p3)− 2

[
l2(p1 − p3) +m2(p2 − p3) + p3

]}
= 0.

(2.34)
Clearly, these equations vanish if l = m = 0 and n = 1, but this locates the plane
on which p3 acts, which by definition is a principal plane on which the shear
stress T = 0. The other minima can similarly be found on the other principal
planes. The maxima are found as follows. Assume l = 0. This satisfies the first
equation in (2.34). The second will vanish if

(p2 + p3)− 2
[
m2(p2 − p3) + p3

]
= 0, (2.35)
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or, simplified, if

(p2 − p3)(1− 2m2) = 0. (2.36)

This holds for

m = ± 1√
2
. (2.37)

Thus,

n = ± 1√
2
. (2.38)

Substituting back into (2.32), the shear is found to be

T =
1

2
(p2 − p3). (2.39)

By a similar approach, the other shear planes and shear stresses can be found;
the results are summarised in Table 2.1. The planes on which the maximum
shear stresses act are illustrated in Figure 2.6. Note for instance that the shear
stress 1

2 (p1 − p2) acts on a plane given by l = ± 1√
2
, m = ± 1√

2
, n = 0. The

normal to this plane is at right angles to the z (3) axis and bisects the right
angle between the x (1) and y (2) axes.

Corresponding to each shear stress, there is a normal stress (2.31). With
l = m = 1√

2
and n = 0, N = 1

2 (p1 + p2). Therefore, on this principal plane of

shear, there is a shear stress T = 1
2 (p1−p2) and a normal stress N = 1

2 (p1+p2).

2.6 Octahedral stresses

It is possible to find a more meaningful indication of the state of stress, rather
than the tensorial description, by considering the octahedral sections of the
element. These are planes equally inclined to the principle stress axes. From
consideration of Figure 2.7 it is obvious that each of the eight planes will be
subjected to the same value of direct stress and the same value of shear stress.
This means that whereas it took six parameters to describe the state of stress in a
set of rectangular sections, it takes only two to describe the magnitudes (though
not directions) of the stresses on octahedral sections. Note that octahedral

Tmin Tmax

l 0 0 ±1 0 ± 1√
2

± 1√
2

m 0 ±1 0 ± 1√
2

0 ± 1√
2

n ±1 0 0 ± 1√
2

± 1√
2

0

T 0 0 0 1
2 (p2 − p3)

1
2 (p1 − p3)

1
2 (p1 − p2)

Table 2.1: Minimum and maximum shear stresses and corresponding
direction cosines.



35

y (2)

z (3)

x (1)

 p
2
˗p

3

2

 p
1
˗p

3

2

 p
1
˗p

2

2

Figure 2.6: Planes of maximum shear stresses.

normal and shear stresses correspond to two fundamental effects of uniform
dilation and uniform shear.

The magnitudes of the octahedral stresses are easily obtained. If the direc-
tion cosines of the normal to the octahedral plane are l, m, and n, their values
must be l2 = m2 = n2 = 1

3 . Also,

σ0 =
1

3
(p1 + p2 + p3) =

I1
3

(2.40)

and

τ0 =
1

3

√
(p1 − p2)2 + (p1 − p3)2 + (p2 − p3)2 =

1

3

√
I′2. (2.41)

The octahedral stresses can obviously be quoted in terms of the components of
any tensor of the state:

σ0 =
1

3
(σx + σy + σz), (2.42)

and

τ0 =
1

3

√
(σx − σy)2 + (σy − σz)2 + (σz − σx)2 + 6(τ2xy + τ2xz + τ2yz). (2.43)
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Figure 2.7: State of stress on octahedral sections of an element. σ0 is
the octahedral normal stress, τ0 is the octahedral shear stress.

The octahedral shear stress is related to the Von Mises yield stress. Failure
occurs when

τ0 =

√
2

3
σys. (2.44)

2.7 Hydrostatic (dilational) and deviatoric stress
tensors

It is sometimes necessary to take account of the directions of the octahedral
shear stresses as well as their magnitudes. In this section, it is shown that any
general stress tensor can be split into two, where one part describes the effect
of the direct stress on the octahedral section, whereas the other describes the
effect of the octahedral shear stress.

The octahedral normal stress may be expressed in tensor form as

[σ0] =

 σ0 0 0

0 σ0 0

0 0 σ0

 . (2.45)

This is called the hydrostatic of dilational stress tensor. It describes a state of
stress without shearing present. The value of σ0 is the average of the direct
stresses on the leading diagonal of the general stress tensor [σ]. The remainder
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of the tensor, [σ]−[σ0], must describe the effect of the uniform octahedral shears
and is called the deviatoric tensor of the state.

Note that the dilational tensor produces a change in volume without change
in shape, while the deviatoric tensor produces a change in shape without change
in volume.

2.8 Strains and displacements

To examine the relationship between strain and displacement, in the first in-
stance only a 2-dimensional case will be considered. The displacements are
assumed to be small, so that the strains are small compared with unity.

For the element ABCD in Figure 2.8, stressing the element will result in
a displacement of the element in addition to straining. Direct strains are re-
sponsible for increases in length of the sides of the element, while shear strains
produce rotation of the lines, i.e., change of shape. The increase in length of

y

x

x u

y

v

dx

dy

A

D

B

C

A’ B’

C’D’

∂u__
∂x
     dx

∂v__
∂x
     dx

∂u__
∂y
     dy

∂v__
∂y
     dy

Figure 2.8: Stressing an element.
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AB to A′B′ is dx × (the variation of u with respect to x) = ∂u
∂x dx.

Therefore, the direct strain in the x-direction is

εx =
(dx+ ∂u

∂x dx)− dx

dx
=
∂u

∂x
. (2.46)

Similarly, in the y-direction

εy =
∂u

∂y
. (2.47)

Because of shear, AB and AD rotate through small angles θ and λ. For small
strains (dx≫ ∂u

∂x dx),

θ ≈ tan θ =
∂v
∂x

dx+ ∂u
∂x dx

=
∂v

∂x
, (2.48)

and

λ ≈ tanλ =
∂u

∂y
. (2.49)

The shear strain is the change in angle between two lines originally at right
angles:

γxy = θ + λ =
∂v

∂x
+
∂u

∂y
. (2.50)

Clearly, γyx = γxy.
In the case of a 3-dimensional rectangular prism with sides dx, dy, and dz,

a similar analysis will give

εx =
∂u

∂x
; εy =

∂v

∂y
; εz =

∂w

∂z
;

γxy =
∂u

∂y
+
∂v

∂x
; γyz =

∂v

∂z
+
∂w

∂y
; γxz =

∂w

∂x
+
∂u

∂z
.

(2.51)

Like stress, strain is a tensor quantity. It may be stored in a matrix εx
1
2γyx

1
2γzx

1
2γxy εy

1
2γzy

1
2γxz

1
2γyz εz

 . (2.52)

A strain tensor has all the properties of a stress tensor, and the same concepts
derived in previous Sections will apply to it:

1. Strain resolution
The normal strain on a plane with direction cosines l, m, and n is given
by

εN = [ l m n ]

 εx
1
2γyx

1
2γzx

1
2γxy εy

1
2γzy

1
2γxz

1
2γyz εz


 l

m

n

 . (2.53)
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2. Transformation of axes
The state of strain [ε′] can be found in any second coordinate system
defined by the direction cosine matrix [L] with respect to the first system
by the equation

[ε′] = [L][ε][L]T. (2.54)

3. Principal strains
In any pattern of deformation there is one set of rectangular directions
that suffer no relative rotation and are therefore free of shear. The linear
strains of these lines are called principal strains. They are found by solving εx − εp

1
2γyx

1
2γzx

1
2γxy εy − εp

1
2γzy

1
2γxz

1
2γyz εz − εp


 l

m

n

 = 0. (2.55)

In an isotropic material the principal axes of strain will coincide with the
principal axes of stress.

4. Stationary values of shear strain
The same technique can be applied to small strains to derive those planes
where the maximum and minimum values of the shear strain exist: 1

2γ13 =
1
2 (εp1 − εp3).

5. Volumetric and octahedral strains
The linear strain along each of the four octahedral axes that are equally
inclined to the three principal axes is

ε0 =
1

3
(εp1 + εp2 + εp3) =

1

3
(εx + εy + εz), (2.56)

which is related to the volumetric strain ∆ = εp1 + εp2 + εp3 . This is
proved by considering the volumetric strain of a prism with sides parallel
to the principal axes. If the sides are a1, a2, a3 and increase to a1 + εp1 ,
a2 + εp2 , a3 + εp3 , the volumetric strain

∆ =
change in volume
original volume

=
a1a2a3(1 + εp1)(1 + εp2)(1 + εp3)− a1a2a3

a1a2a3
.

(2.57)

Ignoring second order terms,

∆ = εp1 + εp2 + εp3 = 3ε0. (2.58)

6. Hydrostatic and deviatoric strain tensors
As for the stress tensor, the strain tensor can be split into its dilational
and deviatoric parts. The following relationships apply, which will be
discussed in the next Section:

σ0[U ] = κ∆[U ] (2.59)
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for the hydrostatic terms, and

[σ]− σ0[U ] = 2G

(
[ε]− ∆

3
[U ]

)
(2.60)

for the deviatoric terms. Here, κ is the bulk modulus and G is the shear
modulus.

2.9 Generalised Hooke’s law

Hooke’s law states that the strain produced in an elastic material is proportional
to the applied stress. For a linear elastic material the principle of superposition
applied, so that the deformations may be determined independently and added.
Remember that a normal stress only produces a normal strain, while a shear
stress only produces a shear strain. Therefore, the strain due to σx in the x-
direction is σx

E (extension), with the Poisson effect producing a strain of −νσx

E
in the y- and z-directions. Hence, for a triaxial stress, the total normal strains
are given by

εx =
σx
E

− νσy
E

− νσz
E

=
1

E
[σx − ν (σy + σz)] ;

εy =
σy
E

− νσx
E

− νσz
E

=
1

E
[σy − ν (σz + σx)] ;

εz =
σz
E

− νσx
E

− νσy
E

=
1

E
[σz − ν (σx + σy)] ,

(2.61)

where E is Young’s modulus and ν is Poisson’s ratio. Alternatively, in matrix
form,  εx

εy

εz

 =
1

E

 1 −ν −ν
−ν 1 −ν
−ν −ν 1


 σx

σy

σz

 . (2.62)

By solving for the direct stresses we obtain σx

σy

σz

 =
νE

(1− 2ν)(1 + ν)


1−ν
ν 1 1

1 1−ν
ν 1

1 1 1−ν
ν


 εx

εy

εz

 . (2.63)

The shear strains are given by γxy

γxz

γyz

 =
1

G

 τxy

τxz

τyz

 (2.64)

or  τxy

τxz

τyz

 = G

 γxy

γxz

γyz

 . (2.65)
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The elastic constants, E, ν, and G, are related so that there are only two
independent constants. To determine the relationship consider a 2-dimensional
element in pure shear, i.e., σx = σy = σz = τxz = τyz = 0 and τxy ̸= 0.

The principal stresses for this system, acting on planes at 45o to the xy-axes,
are

p1 = τxy ;

p2 = −τxy ;

p3 = 0 .

(2.66)

From Hooke’s law,

εp1 =
p1
E

− νp2
E

=
τxy
E

(1 + ν). (2.67)

If the strains are resolved into a direction at 45o to the xy-axes, l = cos θ =
m = sin θ = 1√

2
. Combining this with (2.64) gives

εp1
=

1

2
γxy =

τxy
2G

. (2.68)

From (2.67) it now follows that

G =
E

2(1 + ν)
. (2.69)

2.9.1 The bulk modulus

Summing the three equations in (2.61) gives

εx + εy + εz =
1− 2ν

E
(σx + σy + σz). (2.70)

The sum on the left is the invariant that determines the volumetric strain (2.58),
while the right-hand term is the invariant that is equal to three times the hy-
drostatic stress (2.42). Therefore,

∆ =
3(1− 2ν)

E
σ0 =

σ0
κ
, (2.71)

where κ = E
3(1−2ν) is an elastic constant called the bulk modulus.

The relationship between the deviatoric tensors can easily be determined.
From (2.63), by subtracting the second and third equations from twice the first,
we obtain

σx − σ0 =
E

1 + ν

(
εx − ∆

3

)
= 2G

(
εx − ∆

3

)
. (2.72)

Thus, each direct stress of the deviatoric tensor, like each shear component, is
related by 2G to the corresponding element of the deviatoric strain tensor.
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2.9.2 Lamé’s constant

It has been shown that the total stress tensor can be split into its hydrostatic
and deviatoric parts. Each of these effects may then be described as a simple
proportion of the corresponding strain effect. This is advantageous since we
can often ignore the hydrostatic effect. In other cases, however, it may be
more convenient to retain the total tensors intact. Here we show that the split
relationship can be recombined to describe the total stress tensor as a linear
function of the total strain tensor and the volumetric strain:

[σ] = 2G[ε] +

(
κ− 2G

3

)
∆[U ]. (2.73)

Because κ and G are constants,

[σ] = 2G[ε] + λ∆[U ], (2.74)

where λ is Lamé’s constant:

λ = κ− 2G

3
=

Eν

(1 + ν)(1− 2ν)
. (2.75)

2.10 Equilibrium equations for three dimensions

Consider a small cuboid of finite size ∆x×∆y×∆z, with stresses acting on each
coordinate plane and their variations on opposite faces. Resolving the forces in
the x-direction and equating to zero for equilibrium, ignoring body forces, yields

σx ∆z∆y −
(
σx +

∂σx
∂x

∆x

)
∆z∆y

+τyx ∆x∆z −
(
τyx +

∂τyx
∂y

∆y

)
∆x∆z

+τzx ∆x∆y −
(
τzx +

∂τzx
∂z

∆z

)
∆x∆y = 0,

(2.76)

which after simplifying becomes

∂σx
∂x

+
∂τyx
∂y

+
∂τzx
∂z

= 0. (2.77)

Resolving in the other directions similarly gives

[σ]


∂
∂x
∂
∂y
∂
∂z

 =

 0

0

0

 . (2.78)

These equations ensure that equilibrium of the material is maintained.
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In two dimensions they can be simplified to

∂σx
∂x

+
∂τyx
∂y

= 0 ;

∂τxy
∂x

+
∂σy
∂y

= 0 .

(2.79)

2.11 Strain compatibility equations

The fundamental equations (2.51) relate the six components of strain in a 3-
dimensional system to only three components of displacement. The strains
therefore cannot be independent of one another.

Consider a 2-dimensional case. Since

εx =
∂u

∂x
(2.80)

and

εy =
∂v

∂y
, (2.81)

it follows that
∂2εx
∂y2

=
∂3u

∂x∂y2
(2.82)

and
∂2εy
∂x2

=
∂3v

∂x2∂y
. (2.83)

Also,

∂2γxy
∂x∂y

=
∂3u

∂x∂y2
+

∂3v

∂x2∂y
. (2.84)

Therefore,

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x∂y

. (2.85)

This is the condition of compatibility for 2-dimensional problems. The 3-
dimensional equations of compatibility are derived in a similar manner:

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x∂y

;

∂2εy
∂z2

+
∂2εz
∂y2

=
∂2γyz
∂y∂z

;

∂2εz
∂x2

+
∂2εx
∂z2

=
∂2γxz
∂x∂z

(2.86)
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and

2
∂2εx
∂y∂z

=
∂

∂x

(
−∂γyz

∂x
+
∂γxz
∂y

+
∂γxy
∂z

)
;

2
∂2εy
∂z∂x

=
∂

∂y

(
∂γyz
∂x

−∂γxz
∂y

+
∂γxy
∂z

)
;

2
∂2εx
∂x∂y

=
∂

∂z

(
∂γyz
∂x

+
∂γxz
∂y

−∂γxy
∂z

)
.

(2.87)

2.12 Plane strain

Consider a long cylinder held between fixed, rigid end plates. It is subjected to
an internal pressure, i.e., a purely lateral load. The cylinder can only deform
in the x- and y-directions. So, w = 0 along the length of the cylinder. From
(2.51),

εz = γxz = γyz = 0 (2.88)

and

εx =
∂u

∂x
;

εy =
∂v

∂y
;

γxy =
∂u

∂y
+
∂v

∂x
.

(2.89)

This is a state of plain strain, where each point remains within its transverse
plane following application of the load. Since εz = 0,

εz =
1

E
[σx − ν(σx + σy)] = 0, (2.90)

so that

εx =
1− ν2

E

(
σx − ν

1− ν
σy

)
;

εy =
1− ν2

E

(
σy −

ν

1− ν
σx

)
;

γxy =
1

G
τxy.

(2.91)

The compatibility equation must also be satisfied by this stressing regime, for
two dimensions that is:

∂2εx
∂y2

+
∂2εy
∂x2

=
∂2γxy
∂x∂y

. (2.92)

Differentiating (2.91) and using (2.79) with (2.92) gives(
∂2

∂x2
+

∂2

∂y2

)
(σx + σy) = 0. (2.93)
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This is the equation of compatibility in terms of stress. Therefore, we now have
three equations defining three unknowns:

∂σx
∂x

+
∂τyx
∂y

= 0 ;

∂τxy
∂x

+
∂σy
∂y

= 0 ;

∇2(σx + σy) = 0 .

(2.94)

2.13 Plane stress

Consider a thin plate whose loading is evenly distributed over the thickness
parallel to the plane of the plate. On the faces of the plate, σz = τzx = τzy = 0.
Since the plate is thin, it can be assumed the same is true through its thickness.
The stress–strain relationships are therefore

εx =
1

E
(σx − νσy) ;

εy =
1

E
(σy − νσz) ;

εz = − ν

E
(σx + σy) ;

γxy =
1

G
τxy .

(2.95)

Again, using the same strain compatibility equation with the equations for equi-
librium, it can be proven that

∇2(σx + σy) = 0, (2.96)

which is the same equation of compatibility as for the plane strain case.

2.14 Polar coordinates

Where axial symmetry exists, it is much more convenient to use polar coordi-
nates. The polar coordinate system (r, θ) and the Cartesian coordinate system
(x, y) are related by the expressions

x = r cos θ;

y = r sin θ;

r2 = x2 + y2;

θ = arctan y
x .

(2.97)
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2.14.1 Strain components in polar coordinates

Consider a pure radial strain, where the internal face of the element with original
length dr is displaced by a radial distance u and a tangential distance v. The
strained length of the element is dr + ∂u

∂r dr. Therefore, the radial strain

εr =
∂u
∂r dr

dr
=
∂u

∂r
. (2.98)

The tangential strain arises from the radial displacement

εθr =
(r + u) dθ − r dθ

r dθ
=
u

r
(2.99)

and the tangential displacement

εθθ =

(
r + ∂v

∂θ

)
dθ − r dθ

r dθ
=

1

r

∂v

∂θ
. (2.100)

Thus,

εθ =
u

r
+

1

r

∂v

∂θ
. (2.101)

The shear strain also has two components arising from each of the u and v
components. The total shear strain is

γrθ =
∂v

∂r
+

1

r

∂u

∂θ
− v

r
. (2.102)

So, in two dimensions, the strain components are

εr =
∂u

∂r
;

εθ =
u

r
+

1

r

∂v

∂θ
;

γrθ =
∂v

∂r
+

1

r

∂u

∂θ
− v

r
.

(2.103)

2.14.2 Hooke’s law

To write Hooke’s law in polar coordinates, the x and y subscripts are simply
replaced by r and θ. For example, in plane stress:

εr =
1

E
(σr − νσθ) ;

εθ =
1

E
(σθ − νσr) ;

γrθ =
1

G
τrθ .

(2.104)
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2.14.3 Equilibrium equations

By considering equilibrium of the radial and circumferential forces acting on an
element of unit thickness, we obtain

r∂σr
∂r

+
∂τrθ
∂θ

+ σr − σθ = 0 ;

∂σθ
∂θ

+
r∂τrθ
∂r

+ 2τrθ = 0 .
(2.105)

2.14.4 Strain compatibility equation

The three compatibility equations (2.103) defining the strain components can
be combined to give the equation of compatibility

∂2εθ
∂r2

+
1

r2
∂2εr
∂θ2

+
2

r

∂εθ
∂r

− 1

r

∂εr
∂r

=
1

r

∂2γrθ
∂r∂θ

+
1

r2
∂γrθ
∂θ

. (2.106)

2.14.5 Stress compatibility equation

Substituting (2.104) into (2.106) yields(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
(σr + σθ) = 0. (2.107)

For axially symmetrical problems, this may be further simplified to(
∂2

∂r2
+

1

r

∂

∂r

)
(σr + σθ) = 0. (2.108)

2.15 Stress functions

The preceding theory has shown that the solution of 2-dimensional problems
in elasticity requires the integration of the differential equations of equilibrium
together with the compatibility equations and the boundary conditions for the
problem.

In 1862, G.B. Airy proposed a stress function ϕ(x, y) that satisfied the above
conditions, defined by

σx =
∂2ϕ

∂y2
;

σy =
∂2ϕ

∂x2
;

τxy = − ∂2ϕ

∂x∂y
.

(2.109)
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When substituted into (2.96), we obtain

(
∂2

∂x2
+

∂2

∂y2

)(
∂2ϕ

∂y2
+
∂2ϕ

∂x2

)
= 0 (2.110)

or

∂4ϕ

∂x4
+ 2

∂4ϕ

∂x2∂y2
+
∂4ϕ

∂y4
= 0, (2.111)

which is equal to

∇4ϕ = 0. (2.112)

This is a biharmonic differential equation representing the compatibility equa-
tion for stress. It is difficult to solve for any but the simplest of problems. The
advantage of the Airy stress function, however, is that functions of x and y
can be devised that represent particular stressing regimes. This is known as
the semi-inverse method of analysis, while developing ϕ from known boundary
conditions is the direct method.

Examples

1. Single powers of x and y are no use because they give σx = σy = τxy = 0.

2. ϕ = Ax2 represents simple tension in the x-direction: σx = 0; σy = 2A;
τxy = 0.

3. ϕ = Axy represents pure shear parallel to the axes: σx = σy = 0; τxy =
−A.

4. ϕ = Ay3 represents pure bending: σx = 6Ay; σy = 0; τxy = 0.

5. ϕ = Ax4 does not satisfy (2.112).

6. ϕ = A
(
xy3 − 3

4xyh
2
)
represents a thin cantilever of thickness h, end-

loaded by force F : σx = 6Axy; σy = 0; τxy = 3A
(
1
4h

2 − y2
)
.

The boundary conditions are satisfied: τxy = 0 at y = ±1
2h for all values

of x; σy = 0 at y = ±1
2h for all values of x; σx = 0 at x = 0 for all values

of y.
The magnitude of F can be found by different approaches, for example:

P = 2

∫ h
2

0

τxyb dy for beam width b, giving F =
Ah3b

2
.
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2.16 Stress functions in polar coordinates

The Airy stress function may also be used in polar coordinates:

σr =
1

r2
∂2ϕ

∂θ2
+

1

r

∂ϕ

∂r
;

σθ =
∂2ϕ

∂r2
;

τrθ = − ∂

∂r

(
1

r

∂ϕ

∂θ

)
.

(2.113)

The biharmonic equation then becomes

∇4ϕ =

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)(
∂2ϕ

∂r2
+

1

r

∂ϕ

∂r
+

1

r2
∂2ϕ

∂θ2

)
= 0. (2.114)
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3
Vibrations

with Keith Attenborough

Before we can continue to the propagation of sound waves, we have to treat the
principles of free and forced vibrations.

3.1 Mass on a spring

Consider an object of a mass m attached by a massless elastic spring to a mo-
tionless ceiling at rest, as displayed in Figure 3.1. Let us define this equilibrium
position as x = 0. The mass is pulled back over a distance ∆x by a force F .
For a stationary mass,

F = s∆x, (3.1)

where s is the stiffness of the spring. The elastic potential energy gained equals
the work done by stretching the elastic object:

EP =

∫ ∆x

0

F dx =

∫ ∆x

0

s x dx =

[
1

2
s x2

]∆x

0

=
1

2
s∆x2. (3.2)

After release, we can define the excursion x(t) around the equilibrium by

mẍ = −s x (3.3)

or
a = − s

m
x. (3.4)

Using

a =
dv

dt
=

dv

dx

dx

dt
= v

dv

dx
, (3.5)
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m

m

s
s

Δx

F

F

Figure 3.1: Massm on a spring with stiffness s, pulled back by a distance
∆x.

we get

v
dv

dx
= − s

m
x. (3.6)

This can be rearranged to ∫
v dv =

∫
− s

m
xdx (3.7)

or
v2

2
= − s

m

x2

2
+ c. (3.8)

Since v(0) = 0 and x(0) = ∆x, c = s
m (∆x)

2
, yielding

v =
dx

dt
=

√
s

m
(∆x)

2 − s

m
x2, (3.9)

from which it follows that√
m

s

∫
1√

(∆x)
2 − x2

dx =

∫
dt. (3.10)



53

Using d
dx arcsinx = 1√

1−x2
, this becomes√

m

s
arcsin

x

∆x
= t+ c (3.11)

or

arcsin
x

∆x
=

√
s

m
(t+ c). (3.12)

Hence, a solution for (3.3) is given by

x = ∆x sin

(√
s

m
(t+ c)

)
. (3.13)

This can be further simplified to

x = ∆x sin (ω0t+ ϕ) , (3.14)

where

ω0 =

√
s

m
(3.15)

is the natural (or resonance) frequency of the system in radians per unit time,
and

ω0 = 2πf0 =
2π

T0
, (3.16)

where f0 is the resonance frequency in cycles per unit time and T0 is the res-
onance period. The excursion is maximal at x = 0, the phase ϕ = 1

2π. Thus,
(3.14) becomes

x = ∆x cosω0t. (3.17)

3.2 Free vibrations

Consider an undamped mass m on a spring with stiffness s, (3.3), the same as
displayed in Figure 3.1:

mẍ+ s x = 0 (3.18)

or
ẍ+ ω2

0 x = 0, (3.19)

where ω0 =
√

s
m is the resonance frequency of the system (3.15). The general

solution of this ordinary differential equation is

x = A cosω0t+B sinω0t. (3.20)

If x(0) = x0 and ẋ(0) = ẋ0,

x = x0 cosω0t+
ẋ0
ω0

sinω0t

= C sin (ω0t+ ϕ)

= C (sinω0t cosϕ+ cosω0t sinϕ)

= C sinϕ cosω0t+ C cosϕ sinω0t.

(3.21)
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Since C sinϕ = x0 and C cosϕ = ẋ0

ω0
,

x =

√
x20 +

ẋ2

ω2
0

sin

(
ω0t+ arctan

x0 ω0

ẋ0

)
. (3.22)

3.3 Damped free vibrations

Consider a mass–spring–dashpot system, for which the damping force is pro-
portional to the velocity, as demonstrated in Figure 3.2. Then (3.18) becomes

mẍ+ βẋ+ s x = 0, (3.23)

where β is the mechanical resistance. Using (3.15) and the damping coefficient

ζ =
β

2mω0
, (3.24)

we can express the system in terms of its damping and resonance frequency:

ẍ+ 2ζω0ẋ+ ω2
0x = 0. (3.25)

m

m

β

β

s

s

Δx

F

F

Figure 3.2: Massm on a spring with stiffness s, pulled back by a distance
∆x, resisted by a dashpot with resistance β.
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Assume x = Aeλt. Then,

λ2 + 2ζω0λ+ ω2
0 = 0. (3.26)

Thus,

λ =
−2ζω0 ±

√
4ζ2ω2

0 − 4ω2
0

2
= ω0

(
−ζ ±

√
ζ2 − 1

)
(3.27)

and
x = A1e

(−ζ+
√

ζ2−1)ω0t +A2e
(−ζ−

√
ζ2−1)ω0t. (3.28)

Now, different forms of motion result from different ζ values and this is the
reason for the assumed form of ζ. The following three conditions of damping
exist, represented in Figure 3.3:

1. Overdamped condition ζ > 1
Since

√
ζ2 − 1 is real, (3.26) has two distinct roots.

2. Critically damped condition ζ = 1
There is only one root: λ = −ω0. Therefore,

x = Ae−ω0t. (3.29)

Time

D
is
p
a
c
e
m
e
n
t

Time

D
is
p
a
c
e
m
e
n
t

Time

D
is
p
a
c
e
m
e
n
t

1

2

3

Figure 3.3: Schematic representation of (1) overdamped, (2) critically
damped, and (3) underdamped conditions.
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3. Underdamped condition ζ < 1
Since

√
ζ2 − 1 is imaginary, the solution is complex:

x = A1e
(−ζ+j

√
1−ζ2)ω0t +A2e

(−ζ−j
√

1−ζ2)ω0t

=
(
A1e

jω0t
√

1−ζ2
+A2e

−jω0t
√

1−ζ2
)
e−ζω0t.

(3.30)

Making use of e jθ = cos θ + j sin θ, we can reformulate this as

x =
(
A1e

jωdt +A2e
−jωdt

)
e−ζω0t

= [A1 (cosωdt+ j sinωdt) +A2 (cosωdt− j sinωdt)] e
−ζω0t

= [(A1 +A2) cosωdt+ j (A1 −A2) sinωdt] e
−ζω0t

= [B1 cosωdt+B2 sinωdt] e
−ζω0t

= Ce−ζω0t sin (ωdt+ ϕ) ,

(3.31)

where ωd is the damped natural frequency

ωd = ω0

√
1− ζ2. (3.32)

So the excursion amplitude decays by e−ζω0t. The damped period is

Td =
2π

ωd
. (3.33)

The damping coefficient can be deduced by measuring the excursion ampli-
tudes x1 = x(t1) and x2 = x(t2) at two times whose difference t2−t1 = Td:

δ ≡ loge
x1
x2

= ζω0Td =
2πζ√
1− ζ2

. (3.34)

Thus,

ζ =
δ√

(2π)
2
+ δ2

. (3.35)

3.4 Forced vibrations

Consider a mass–spring–dashpot system whose mass is subjected to a periodic
force F with amplitude F0:

F = F0 sinωt, (3.36)

as shown in Figure 3.4. The excursion of the mass can be described by adding
F to (3.23):

−s x− βẋ+ F0 sinωt = mẍ. (3.37)
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F

F

a b

Figure 3.4: Schematic representation of (a) a mass-forced system and
(b) a base-forced system.

Using (3.15) and (3.24), we can express the mass-forced system in terms of its
damping and resonance frequency:

ẍ+ 2ζω0ẋ+ ω2
0x =

F0 sinωt

m
. (3.38)

Now consider a mass–spring–dashpot system whose end is subjected to a peri-
odic excursion xb with amplitude b:

xb = b sinωt. (3.39)

The excursion of the mass can be described by

−s (x− xb)− βẋ = mẍ (3.40)

or

ẍ+
β

m
ẋ+

s

m
x =

s b sinωt

m
. (3.41)

A base-forced system can be expressed in terms of its damping and resonance
frequency by

ẍ+ 2ζω0ẋ+ ω2
0x =

s b sinωt

m
. (3.42)
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3.5 Undamped forced vibrations

Consider a mass-forced mass–spring system. If the system is undamped, (3.38)
reduces to

ẍ+ ω2
0x =

F0 sinωt

m
. (3.43)

The solution consists of the complementary function and the particular integral.
The complementary function is the solution of

ẍ+ ω2
0x = 0, (3.44)

which has been shown in (3.21) and (3.22):

x = x0 cosω0t+
ẋ0
ω0

sinω0t

=

√
x20 +

ẋ2

ω2
0

sin

(
ω0t+ arctan

x0 ω0

ẋ0

)
.

(3.45)

This is called the transient solution. The particular integral represents the
steady-state solution. It can be determined assuming the same form as the
driving function

x = X sinωt. (3.46)

Hence, substituting in (3.43) gives

−ω2X sinωt+ ω2
0X sinωt =

F0 sinωt

m
. (3.47)

Dividing through by ω2
0 sinωt and rearranging results in[

1−
(
ω

ω0

)2]
X =

F0

mω2
0

=
F0

s
(3.48)

or

X =

F0

s

1−
(
ω

ω0

)2 . (3.49)

So the steady-state solution of (3.43) is

x =

F0

s

1−
(
ω

ω0

)2 sinωt. (3.50)

The static deflection of a mass under a static load F0 is denoted by

δs =
F0

s
. (3.51)
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Now, the severity of the vibration can be expressed in terms of the amplitude
ratio or magnification factor

M =
X

δs
=

1

1−
(
ω

ω0

)2 . (3.52)

3.6 Damped forced vibrations

Consider a damped mass-forced mass–spring–dashpot system. The excursion
around equilibrium is given by (3.38):

ẍ+ 2ζω0ẋ+ ω2
0x =

F0 sinωt

m
. (3.53)

The complementary function is a solution of

ẍ+ 2ζω0ẋ+ ω2
0x = 0, (3.54)

which has been shown in (3.31):

x = Ce−ζω0t sin (ωdt+ ϕ) . (3.55)

The transient part of the solution damps out. The particular integral can be
determined assuming the form

x = A cosωt+B sinωt = X sin (ωt− ϕ) . (3.56)

Substituting in (3.53) gives

−ω2X sin (ωt− ϕ) + 2ζω0 ωX cos (ωt− ϕ)

+ω2
0X sin (ωt− ϕ) =

F0 sinωt

m
.

(3.57)

Dividing through by ω2
0 and rearranging results in[

1−
(
ω

ω0

)2]
X sin (ωt− ϕ) + 2ζ

ω

ω0
X cos (ωt− ϕ) =

F0 sinωt

mω2
0

. (3.58)

This can be rewritten as[
1−

(
ω

ω0

)2]
X (sinωt cosϕ− cosωt sinϕ)

+2ζ
ω

ω0
X (cosωt cosϕ+ sinωt sinϕ) =

F0 sinωt

mω2
0

(3.59)
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or {
−

[
1−

(
ω

ω0

)2]
X sinϕ+ 2ζ

ω

ω0
X cosϕ

}
cosωt

+

{[
1−

(
ω

ω0

)2]
X cosϕ+ 2ζ

ω

ω0
X sinϕ

}
sinωt =

F0 sinωt

mω2
0

.

(3.60)

This can be split up into two equations:{
−

[
1−

(
ω

ω0

)2]
X sinϕ+ 2ζ

ω

ω0
X cosϕ

}
cosωt = 0 (3.61)

and {[
1−

(
ω

ω0

)2]
X cosϕ+ 2ζ

ω

ω0
X sinϕ

}
sinωt =

F0 sinωt

mω2
0

. (3.62)

From (3.61), it follows that

ϕ = arctan


2ζ

ω

ω0

1−
(
ω

ω0

)2
 . (3.63)

After dividing through by sinωt, (3.62) is simplified to[
1−

(
ω

ω0

)2]
X cosϕ+ 2ζ

ω

ω0
X sinϕ =

F0

mω2
0

=
F0

s
. (3.64)

Combining (3.63) and (3.64) yields

X =

F0

s√√√√[1− ( ω

ω0

)2]2
+

(
2ζ

ω

ω0

)2 . (3.65)

Hence, the magnification factor

M =
1√√√√[1− ( ω

ω0

)2]2
+

(
2ζ

ω

ω0

)2 . (3.66)

Similarly, for a damped base-forced mass–spring–dashpot system, the steady-
state excursion amplitude is given by

X =
b√√√√[1− ( ω

ω0

)2]2
+

(
2ζ

ω

ω0

)2 . (3.67)



61

3.7 Nonlinear springs

Consider a mass–spring–dashpot system

mẍ+ βẋ+ f(x) = F (t), (3.68)

where f(x) is a function representing the variable stiffness of the system,

f(x) = s1x+ s2x
3, (3.69)

and F (t) is a periodic driving function. The driving function is divided into

F (t) = F1 cosωt+ F2 sinωt, (3.70)

so that

|F | =
√
F 2
1 + F 2

2 . (3.71)

After substituting

r =
β

m
, (3.72)

ϵ =
s2
m
, (3.73)

and

ω0 =

√
s1
m
, (3.74)

(3.68) can be rewritten as

ẍ+ rẋ+ ω2
0x+ ϵx3 =

F1 cosωt+ F2 sinωt

m
, (3.75)

which is referred to as Duffin’s equation. Again, we assume the same form as
the driving function

x = A cosωt. (3.76)

Substituting into (3.75) gives(
ω2
0 − ω2

)
A cosωt−Aωr sinωt+ ϵA3 cos3 ωt

=
(
ω2
0 − ω2

)
A cosωt−Aωr sinωt+ 3

4ϵA
3 cosωt+ 1

4ϵA
3 cos 3ωt

= F1

m cosωt+ F2

m sinωt.

(3.77)

If we neglect the higher harmonic,(
ω2
0 − ω2

)
A+

3

4
ϵA3 =

F1

m
(3.78)

and

−Aωr = F2

m
. (3.79)

Making use of (3.71), we obtain the general form of the relation between oscil-
lation amplitude and driving frequency:((

ω2
0 − ω2

)
A+ 3

4ϵA
3
)2

+A2ω2r2 ≡ S(ω,A)2 +A2ω2r2 = F 2, (3.80)

where S(ω,A) is the so-called response function.



62



4
Waves and sound

with Keith Attenborough

4.1 Wave equation

To explain the propagation of sound through a medium, we start with a 1-
dimensional situation.

Consider an infinitesimal element of length dx and cross-section dS. Let’s
assume the element is rigid in all directions except for the x-direction. Also,
let’s define a longitudinal compressive sound wave travelling in the x-direction.
Suppose that the centre of the element is displaced by a distance u as a result of
a sound pressure p. Then, the displacements of the boundaries are

(
u+ ∂u

∂x
dx
2

)
and

(
u− ∂u

∂x
dx
2

)
, respectively. The difference in volume, therefore, is[(
u− ∂u

∂x

dx

2

)
−
(
u+

∂u

∂x

dx

2

)]
dS = −∂u

∂x
dxdS. (4.1)

The volumetric strain

∆ = εx + εy + εz = −∂u
∂x

dxdS

dxdS
= −∂u

∂x
. (4.2)

By definition, the bulk modulus of elasticity κ is given by

κ =
stress

strain
=

p

∆
= − p

∂u/∂x
(4.3)

or

p = −κ ∂u
∂x
. (4.4)
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The difference in deformation is caused by a difference in the sound pressure is
p(u− 1

2 dx) at one side of the element and p(u+ 1
2 dx) at the other side. Hence,

the force acting on the element is expressed by

−
[
p(u+ 1

2 dx)− p(u− 1
2 dx)

]
dS = −∂p

∂x
dxdS. (4.5)

This force accelerates the mass ρ dxdS, with ρ being the density. The acceler-
ation equals the second time derivative of the displacement in the x-direction
u. Therefore, the following balance must hold:

−∂p
∂x

dxdS = ρ
∂2u

∂t2
dxdS, (4.6)

which gives the equation of motion

∂p

∂x
= −ρ ∂

2u

∂t2
. (4.7)

Substituting (4.4) for p into (4.7) results in

−κ ∂
2u

∂x2
= −ρ ∂

2u

∂t2
(4.8)

or

∂2u

∂t2
=
κ

ρ

∂2u

∂x2
, (4.9)

which is the displacement wave equation of a periodic fluctuation u in the x-
direction at a speed

c =

√
κ

ρ
. (4.10)

Taking the partial derivative with respect to x of (4.7) gives

∂2p

∂x2
= −ρ ∂3u

∂x ∂t2
, (4.11)

whereas taking the second derivative with respect to t of (4.4) gives

∂2p

∂t2
= −κ ∂3u

∂x ∂t2
. (4.12)

Combining (4.11) and (4.12) gives the linear wave equation

∂2p

∂t2
=
κ

ρ

∂2p

∂x2
= c2

∂2p

∂x2
. (4.13)
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4.2 Speed of sound in air

For an adiabatic change in an ideal gas,

PV γ = constant, (4.14)

where P is the absolute pressure, V the volume of an element, and γ the ratio
of specific heats. Differentiating with respect to V gives

V γ dP

dV
+ γPV γ−1 = 0. (4.15)

Dividing this through by V γ−1 gives

− V

dV
dP = γP. (4.16)

The volumetric strain is

∆ = −dV

V
(4.17)

and the stress associated with it is

p = dP. (4.18)

Hence, using (4.3), (4.16) can be written as

κ = γP. (4.19)

Therefore, the speed of sound in air

c =

√
κ

ρ
=

√
γP

ρ
. (4.20)

In an ideal gas,

PV = nRT , (4.21)

where n is the amount of substance, R is the gas constant, and T is the absolute
temperature. Replacing n by m

M and R by MR̄, in which M is the molar mass
and R̄ the specific gas constant, we obtain

PV = mR̄T = ρV R̄T , (4.22)

or
P

ρ
= R̄T , (4.23)

Thus, for an ideal gas,

c =

√
γR̄T . (4.24)
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4.3 Solutions of the 1-dimensional wave equa-
tion

Consider the wave equation (4.13)

∂2p

∂t2
= c2

∂2p

∂x2
(4.25)

and a solution of the form

p = f1(ct− x) + f2(ct+ x). (4.26)

Then,
∂2p

∂t2
= c2 (f ′′1 + f ′′2 ) (4.27)

and
∂2p

∂x2
= f ′′1 + f ′′2 . (4.28)

For the displacement equation (4.9), a similar solution is considered:

u = g1(ct− x) + g2(ct+ x). (4.29)

If we concentrate on the wave travelling in the positive direction (progressive
wave), described by g1, for the moment ignoring g2, at t = 0, u0 = g1(−x).
Also, at t = 1, u1 = g1(c−x). The displacement u1 caused by p1 must have the
same form as the displacement u0 caused by p0, only at a distance 1c further
on. Hence,

g1(−x0) = g1(c− x1) (4.30)

and thus

−x0 = c− x1 (4.31)

or

x1 = x0 + c. (4.32)

For the wave travelling in the negative direction (regressive wave), described by
g2, the corresponding equations are

g2(x0) = g2(c+ x1) (4.33)

and

x1 = x0 − c. (4.34)

Consider a plane single-frequency (monotonous) progressive wave, for which the
pressure deviation from the ambient constant value is described by

p = p0 cos
[
ω
(
t− x

c

)]
= p0 cos (ωt− kx) . (4.35)
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Here, p0 is the acoustic pressure amplitude and

k =
ω

c
(4.36)

is the wave number or propagation constant. Consider the spatial distribution
at a fixed time ωt = constant. Then, if x is equal to the wavelength λ, kx must
equal 2π, i.e.,

k =
2π

λ
, (4.37)

from which it follows that
c = fλ. (4.38)

4.4 Sound energy

The potential energy in a sound wave is

EP = −
∫
pdV. (4.39)

Note the negative sign because a pressure increase causes a volume decrease.
Since

V = V0 + dV = V0 − V0
dp

κ
, (4.40)

dV = −V0
dp

κ
= −V0

dp

ρc2
. (4.41)

Therefore,

EP =

∫
pV0
ρc2

dp =
p2V0
2ρc2

. (4.42)

The kinetic energy
EK = 1

2ρV0ν
2. (4.43)

Here, ν is the particle velocity. To find a relationship between p and ν, we
combine equations (4.4) and (4.10):

p = −ρc2 ∂u
∂x
. (4.44)

Consider (4.35) and (4.36). Since u has the form

u = u0 cos
(
ωt− ω

c
x
)
, (4.45)

(4.44) can be rewritten as

p = −ρcω u0 sin
(
ωt− ω

c
x
)

(4.46)

and

ν =
∂u

∂x
= −ω u0 sin

(
ωt− ω

c
x
)
. (4.47)
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These result in

p = ρ c ν. (4.48)

Therefore,

EK =
p2V0
2ρc2

(4.49)

and the total energy

ET = EP + EK =
p2V0
ρc2

. (4.50)

The energy per unit volume is defined by

E =
ET

V
=

p2

ρc2
. (4.51)

The energy that, at any instant, is contained in a column of unit cross sectional
area and of length dt is Ecdt. Therefore, the flow of energy, the instantaneous
intensity

It = Ec = p2

ρc
= p ν. (4.52)

The average intensity over a period T is

I =

∫ T

0

p(t)ν(t) dt = 1
2p0ν0, (4.53)

where p0 is the acoustic pressure amplitude and ν0 = −ωu0 is the amplitude of
the particle velocity.

4.5 Point and line sources

The sound power of a source is the rate at which the source produces sound
energy. It is an intrinsic property. If the power passing through an area S is
W , the intensity can also be defined as the power per unit area:

I =
W

S
. (4.54)

For a point source, the intensity of the sound in point at distance r from the
source is

I =
W

4πr2
. (4.55)

Thus,

I ∝ 1

r2
. (4.56)

Also, quoting (4.52),

I ∝ p2. (4.57)
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Therefore,

p ∝ 1

r
. (4.58)

The complex representation (cf. Section 4.10) of the acoustic pressure is

p =
p0
r
e j(ωt−kr). (4.59)

The spherical wave equation is given by

∂2

∂t2
(rp) =

κ

ρ

∂2

∂r2
(rp). (4.60)

For a cylindrical wave,

I =
W

2πr
. (4.61)

Hence,

p ∝ 1√
r
. (4.62)

The acoustic pressure is
p = p0 J0(kr) e

jωt, (4.63)

where J0 is the Bessel function of order zero of the first kind, written out in
(6.12). The cylindrical wave equation is given by

∂2p

∂t2
=
κ

ρ

(
∂2p

∂r2
+

1

r

∂p

∂r

)
. (4.64)

4.6 Doppler effect

If the sound source emitting at frequency f is moving at a velocity νs towards
its audience at rest, the wavelength is reduced to

λ′ = (c− νs)T. (4.65)

Hence, the frequency experienced is

f ′ =
f

1− νs
c

. (4.66)

If the source moves away from the audience, νs is negative. If the source moves
at supersonic speed (νs > c), the wavefront has the shape of a cone with an
aperture

sin
θ

2
=

c

νs
. (4.67)

If the audience is moving at a velocity νa towards the sound source, the frequency
experienced is

f ′ =
c+ νa

λ
=
(
1 +

νa
c

)
f. (4.68)
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4.7 Root-mean-square pressure

The root-mean-square pressure prms is defined by

p2rms =
1

T

T∫
0

p2 dt =
1

T

T∫
0

p20 cos2 ωt dt, (4.69)

where T is the period. Using cos 2θ = 2 cos2 θ − 1, this simplifies to

p2rms =
1

T

T∫
0

p20
2

(cos 2ωt+ 1) dt =
p20
2T

[
t− sin 2ωt

2ω

]T
0

=
p20
2
. (4.70)

Thus,

prms =
p0√
2
≈ 0.707p0 (4.71)

for a monotonous wave. In general,

pressure amplitude

root-mean-square pressure
=

p0
prms

= crest factor. (4.72)

4.8 Superposition of waves

Consider, from (4.35) and (4.36), a sound wave consisting of two different fre-
quencies and amplitudes

p = p0,1 cos
[
ω1

(
t− x

c

)]
+ p0,2 cos

[
ω2

(
t− x

c

)]
. (4.73)

Then,

p2 = p20,1 cos
2
[
ω1

(
t− x

c

)]
+ p20,2 cos

2
[
ω2

(
t− x

c

)]
+2p0,1p0,2 cos

[
ω1

(
t− x

c

)]
cos
[
ω2

(
t− x

c

)]
.

(4.74)

Using cosA cosB = 1
2 cos(A+B) + 1

2 cos(A−B), this becomes

p2 = p20,1 cos
2
[
ω1

(
t− x

c

)]
+ p20,2 cos

2
[
ω2

(
t− x

c

)]
+ p0,1p0,2 cos

[(
t− x

c

)
(ω1 + ω2)

]
+ p0,1p0,2 cos

[(
t− x

c

)
(ω1 − ω2)

]
.

(4.75)

Thus,

p2rms =
1

T

T∫
0

p2 dt = p21,rms + p22,rms. (4.76)
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This implies that for waves with different frequencies but the same amplitude,

p2rms = 2p21,rms = 2p22,rms. (4.77)

For a band of frequencies,

p2rms =

∫
p2f,rms df. (4.78)

If the waves have the same frequency, the phase becomes in important. Consider
the added waves

p = p0,1 cos (ωt− kx+ ϕ1) + p0,2 cos (ωt− kx+ ϕ2) . (4.79)

Then,

p2rms = p21,rms + p22,rms + 2p1,rmsp2,rms cos (ϕ1 − ϕ2) . (4.80)

Obviously, for waves of the same amplitude and phase,

prms = 2p1,rms = 2p2,rms, (4.81)

whereas for waves of the same amplitude but opposite phase,

prms = 0. (4.82)

4.9 Beats

Consider two waves of different frequency and amplitude, now not taking into
account any phase difference:

p = p0 cosω1t+m p0 cosω2t, (4.83)

where m is a scalar value. We substitute the average frequency

ω0 = 1
2 (ω1 + ω2) , (4.84)

substitute the difference frequency

Ω = ω1 − ω2, (4.85)

and make use of cos(A+B) = cosA cosB − sinA sinB:

p = p0 cos
(
ω0 − 1

2Ω
)
t+m p0 cos

(
ω0 +

1
2Ω
)
t

= p0(1 + m) cosω0t cos
1
2Ωt+ p0(1−m) sinω0t sin

1
2Ωt.

(4.86)

If the amplitudes and frequencies are close to each other, and the difference
frequency is in the audible range, beats equal to Ω are perceived.
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4.10 Complex representation of a plane, har-
monic wave

Both p0 cos(ωt−kx) and p0 cos(ωt−kx− 1
2π) = p0 sin(ωt−kx) satisfy the wave

equation. Since e
jπ
2 = j, their complex sum also satisfies the wave equation:

p0 cos(ωt− kx) + jp0 sin(ωt− kx) = p0e
j(ωt−kx). (4.87)

The first time derivative of (4.4) is known as the continuity equation:

∂p

∂t
= −κ ∂u

∂x∂t
= −κ ∂ν

∂x
. (4.88)

From (4.87), it is evident that

∂p

∂t
= jωp, (4.89)

whereas

−∂ν
∂x

= jkν =
jω

c
ν. (4.90)

Combining these gives

p =
κ

c
ν =

ρc2

c
ν = ρcν, (4.91)

which is the same result as (4.48). Hence, the impedance Z can also be expressed
in terms of p and ν:

Z = ρc =
p

ν
. (4.92)

The acoustic impedance is generally expressed in Rayls (1Rayl = 1Pa sm−1),
or, more conveniently, in MRayls.

4.11 Standing waves

Consider two waves of same amplitude moving in opposite directions:

p1 = p0e
j(ωt−kx) (4.93)

and

p2 = p0e
j(ωt+kx). (4.94)

Then

p1 + p2 = p0e
jωt
(
e−jkx + e jkx

)
= 2p0e

jωt cos kx. (4.95)

This is the expression for a standing wave with nodes at x = 1
2

(
i+ 1

2

)
λ and

antinodes at x = 1
2 iλ, where i ∈ Z.
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4.12 Fourier transform

In acoustics, it is very useful to express a signal s(t) by its frequency content.
The (complex) spectral density is obtained by the Fourier transform:

S(ω) =
1

2π

∞∫
−∞

s(t) e−jωt dt. (4.96)

A signal can be recovered by the inverse Fourier transform:

s(t) =

∞∫
−∞

S(ω) e jωt dω. (4.97)

4.13 Decibel scale

The threshold of normal hearing at 1 kHz ph is 2× 10−5 Pa. The threshold of
pain at 1 kHz is 20 Pa. These extremes represent a hearing range factor of 106

in Pa. The intensity equivalent of the threshold of hearing is

I0 =
p2

ρc
≈ 4× 10−10

4× 102
= 10−12 Wm−2. (4.98)

The power equivalent to the threshold of hearing is taken as W0 = 10−12 W.
These thresholds are used as reference quantities when defining sound levels on
logarithmic scales:

sound power level SWL = 10 log10
W

W0
dB re W0;

intensity level IL = 10 log10
I

I0
dB re I0;

sound pressure level SPL = 10 log10
p2

p2h

= 20 log10
p

ph
dB re ph.

(4.99)

For air at room temperature (20 oC) and normal pressure (1.01 × 105 Pa), the
density ρ = 1.21 kgm−3 and the sound speed c = 343 m s−1. Hence, the acoustic
impedance

Z = ρc = 415 kgm−2 s−1 = 415 rayls. (4.100)

Then, the resulting relative intensity

I

I0
=

p2

ZI0
=

p2

415× 10−12
=

(
p

2.038× 10−5

)
=

(
p

ph

)2(
1

1.019

)2

, (4.101)
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so that the intensity level

IL = 10 log10
I

I0
= 10 log10

(
p

ph

)2

+ 10 log10

(
1

1.019

)2

= 20 log10
p

ph
− 20 log10 1.019 = SPL− 0.160 dB.

(4.102)

Hence, the difference between the sound pressure level and the intensity level is
negligible.

4.13.1 Propagation from a point source

The acoustic power of a point source in a lossless medium is

W = 4πr2I, (4.103)

so that
W ∝ 4πr2p2 (4.104)

and
W0 ∝ p2h. (4.105)

It follows that the sound power level is related to the sound pressure level:

SWL = 10 log10
W

W0
= 10 log10

4πr2p2

p2h

= 20 log10
p

ph
+ 10 log10 4πr

2 = SPL + 20 log10 r + 11 dB

(4.106)

or
SPL = SWL− 20 log10 r − 11 dB. (4.107)

On hard ground,

I =
W

2πr2
, (4.108)

resulting in
SWL = SPL + 20 log10 r + 8 dB (4.109)

or
SPL = SWL− 20 log10 r − 8 dB. (4.110)

Similarly, at a junction between a floor and a wall,

I =
W

πr2
, (4.111)

resulting in
SWL = SPL + 20 log10 r + 5 dB (4.112)

or
SPL = SWL− 20 log10 r − 5 dB. (4.113)

In general,

SPL = SWL+ 10 log10
Q

4πr2
, (4.114)

where Q is the directivity factor.



75

4.13.2 Distance doubling

Consider the sound pressure levels SPL1 at a distance r1 and SPL2 at a distance
r2 = 2r1 from the source. Then, for a point source,

SPL1 = SWL− 20 log10 r1 − 11 dB (4.115)

and
SPL2 = SWL− 20 log10 2r1 − 11 dB

= SWL− 20 log10 2− 20 log10 r1 − 11 dB

= SPL1 − 20 log10 2

= SPL1 − 6 dB.

(4.116)

For a line source,
I

I0
=

W

W0

1

2πr
. (4.117)

Therefore,

SPL ≈ IL = 10 log10
W

W0
− 10 log10 r − 10 log10 2π

= SWL− 10 log10 r − 8 dB.

(4.118)

In this case,
SPL1 = SWL− 10 log10 r1 − 8 dB (4.119)

and
SPL2 = SWL− 10 log10 2r1 − 8 dB

= SWL− 10 log10 2− 10 log10 r1 − 8 dB

= SPL1 − 10 log10 2

= SPL1 − 3 dB.

(4.120)

4.14 Vectorial notation for the wave equation

The 3-dimensional wave equation in terms of pressure is given by

p̈ = c2 ∇2p. (4.121)

where c =

√
modulus of elasticity

density
is the phase velocity,

∇ =



∂

∂x

∂

∂y

∂

∂z


, (4.122)
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and

∇2 = ∇ · ∇ =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
. (4.123)

In vector notation,
p = p0e

j(ωt−k·r), (4.124)

where k is the wave vector and r is the distance vector. Note that

k = |k|. (4.125)

Rewriting the wave equation in terms of a particle displacement vector u gives

ü = c2 ∇2u. (4.126)

Here,
u = u0e

j(ωt−k·r). (4.127)

4.15 Plane waves in isotropic media

So far, we have dealt with compressive (longitudinal) waves only, which cause
displacement parallel to the direction of propagation. Shear (transverse) waves
cause displacement perpendicular to the direction of propagation. Since fluids
cannot support shear stresses, shear waves can only propagate through solids.

In elastic media, the equation of motion (4.7) is rewritten in terms of the
stress tensor:

 σx τxy τxz

τyx σy τyz

τzx τzy σz




∂

∂x

∂

∂y

∂

∂z


= −ρ



∂2u

∂t2

∂2v

∂t2

∂2w

∂t2


. (4.128)

Let’s restate Hooke’s law:

[σ] = 2G[ε] + λ∆[U ], (4.129)

where G is the shear modulus, λ = κ− 2
3G is Lamé’s constant, and

[ε] =

 εx
1
2γyx

1
2γzx

1
2γxy εy

1
2γzy

1
2γxz

1
2γyz εz

 , (4.130)

in which the strains and shear strains are given by

εx =
∂u

∂x
; εy =

∂v

∂y
; εz =

∂w

∂z
;

γxy =
∂u

∂y
+
∂v

∂x
; γyz =

∂v

∂z
+
∂w

∂y
; γxz =

∂w

∂x
+
∂u

∂z
.

(4.131)
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Inserting Hooke’s law into (4.128) yields the wave equation for isotropic solids.
In vector notation,

(λ+ 2G)∇(∇ · u)−G∇×∇× u = ρ
∂2u

∂t2
. (4.132)

In an isotropic solid, the vector displacement of matter u can be written as

u = ∇ϕ+∇× ψ. (4.133)

The displacement involves a scalar potential ϕ and a vector potential ψ result-
ing from the fact that the movement consists of a translation and a rotation.
This means that the wave equation can be split into two equations. One cor-
responds to the propagation of a compressional (longitudinal) wave, while the
other corresponds to a shear (transverse) wave. In terms of the potentials the
two equations are:

∇2ϕ =
1

c2p

∂2ϕ

∂t2
(4.134)

and

∇2ψ =
1

c2s

∂2ψ

∂t2
, (4.135)

where cp and cs are the phase velocities of the compressional wave and the shear
wave, respectively. They are characteristic for the material and are given by

cp =

√
λ+ 2G

ρ
=

√
E

ρ

1− ν

(1 + ν)(1− 2ν)
(4.136)

and

cs =

√
G

ρ
=

√
E

ρ

1

2(1 + ν)
, (4.137)

where ν is Poisson’s ratio, not the particle velocity. If the material properties
are unknown, they can be determined from the compressional and shear wave
velocities, using

ν =

1
2

(
cp
cs

)2
− 1(

cp
cs

)2
− 1

, (4.138)

G = ρ c2s , (4.139)

and

E = 2(1 + ν)ρ c2s =
(1 + ν)(1− 2ν)

1− ν
ρ c2p. (4.140)
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4.16 Waves in fluids

In fluids, no shear deformation can occur. Hence, the shear modulus G = 0 and
the stress tensor

[σ] = p[U ]. (4.141)

Thus, Hooke’s law reduces to

[σ] = λ∆[U ]. (4.142)

Furthermore,
κ = λ. (4.143)

Consequently, the speed of sound is given by

cp =

√
κ

ρ
. (4.144)

4.17 Mechanisms of wave attenuation

All media attenuate sounds, so that the excursion u of a plane wave in the
x-direction decreases exponentially with the distance as

u ∝ e−αx, (4.145)

where α is the attenuation coefficient. α is usually expressed in m−1 or in
Neper/m. Since the acoustic power or the intensity are proportional to the
squared amplitude, the corresponding attenuation coefficients become 2α, as
shown in (4.154). The attenuation of a plane wave arises from the scattering of
energy from the parallel beam by regular reflection, refraction, and diffraction,
and from absorption mechanisms as a result of which the mechanical energy is
converted into heat.

Three main mechanisms of sound absorption can be identified:

1. Viscous damping. This corresponds to the friction associated with the
relative motion of the particles.

For a fluid, the viscous damping coefficient is given by

αv =
ω2η

2ρc3
, (4.146)

where η is the dynamic viscosity of the fluid. In principle, a second viscos-
ity coefficient can be defined but this is ignored here. Note that αv ∝ ω2.
The dissipation mechanisms can also be accounted for in solids by consid-
ering the elastic moduli to be complex.

2. Thermal damping. Here, a fraction of the energy carried by the wave is
converted into heat by thermoelasticity. Thus, energy is dissipated in the
material by thermal conductivity.
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The mechanism of attenuation by thermal conductivity is related to the
cycles of compression–dilatation associated with the passage of the wave.
These cycles are responsible for the establishment of local thermal gra-
dients within the material. Since the material is thermally conductive,
the temperature tends towards uniformity within the material. This phe-
nomenon contributes to the increase of the wave attenuation. The thermal
damping αθ ∝ ω2, as well. The relative importance of the viscous/thermal
attenuation depends on the state of matter. For gases,

αθ

αv
≈ 3

8
, (4.147)

for liquids,
αθ

αv
≈ 10−3, (4.148)

and for solids,
αθ

αv
≈ 0. (4.149)

This means that the viscous losses in gases are approximately three times
more important than the thermal losses, and in some cases thermal effects
must be considered. In solids and liquids, the attenuation is mainly due
to viscous friction, and thermal effects can be ignored.

3. Molecular relaxation. In this case, the temperature or pressure variations
associated with the passage of the wave are responsible for alterations in
molecular energy level configurations.

The cycles of compression–dilatation are also responsible for a modifi-
cation of the molecular configuration of matter. During the passage of
the wave, there may be a transition from one molecular configuration to
another. Afterwards, the molecules can revert to their original configu-
ration. This process transfers energy and is responsible for wave attenu-
ation by molecular relaxation. A relaxation time is associated with this
phenomenon.

In the linear regime, a solution of the wave equation can be written in complex
form as

u = u0e
j(ωt−kx). (4.150)

where k is the complex wave number including the effect of sound attenuation:

k = kRe − jα. (4.151)

Hence,

u = u0e
−αxe j(ωt−kRex) (4.152)

and

p = p0e
−αxe j(ωt−kRex) (4.153)
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It can be shown that the formulae for the characteristic impedance, surface
impedance, and reflection and transmission coefficients introduced for real wave
numbers later are valid when the complex wave number is used. Since I ∝ p2,

I = I0e
−2αx. (4.154)

Hence,

SPL ≈ IL = 10 log10 e
−2αx = 10 · 0.434 loge e−2αx

= −8.69αx dB,
(4.155)

yielding an attenuation D of

D = −8.69α dBm−1. (4.156)

4.18 Reflection and transmission

Now that the principles of sound propagation have been explained, we can have
a closer look at sound hitting a boundary between two media.

4.18.1 Derivation of Snell’s law

Huygens’ principle, that each point on a wavefront can be treated as a secondary
source, is consistent with the period T being constant between media. Since

T =
1

f
, (4.157)

the frequency f does not change with a change of media.
Consider oblique incidence of a wavefront on a plane interface, as shown in

Figure 4.1. The angle of incidence relative to the normal of the interface is θi
and the angle of transmission is θt. The sound speed of the incident wavefront is
c1 and of the transmitted wavefront c2. We chose such equidistant rays through
A, B, C, ..., so that it takes exactly T for the wavefront to advance from (A,
B, ...) to (A′, B′ , ...), and again T to advance from (A′, B′, ...) to (A′′, B′′,
...). Therefore, the distance AA′ = A′A′′ = BB′ = c1T = λ1, whereas B′B′′

= c2T = λ2. The shared hypotenuse of the triangles AB′A′′ and B′A′′B′′ is
denoted by d, so that

d sin θi = c1T (4.158)

and
d sin θt = c2T, (4.159)

from which it follows, that

sin θi
sin θt

=
c1
c2

=
λ1

λ2
=
kt
ki

(4.160)

or
ki sin θi = kt sin θt. (4.161)

This is known as Snell’s law.
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Figure 4.1: Incident rays on a plane interface.

4.18.2 Critical angle

In the case c2 > c1, there exists a critical angle of θi at which transmission
occurs parallel to the interface, i.e.,

sin θt = 1 (4.162)

or
cos θt = 0. (4.163)

Since

cos θt =

√
1− sin2 θt =

√
1−

(
c2
c1

)2

sin2 θi, (4.164)

the critical incidence angle is found at

θi = arcsin
c1
c2
. (4.165)

The index of refraction is defined by

n =
c1
c2
. (4.166)
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For n≫ 1, according to (4.164),

cos θt ≈ 1 (4.167)

and thus
θt ≈ 0. (4.168)

This means that the refracted sound travels in the direction of the normal to
the surface, whatever the angle of the incident sound is. The surface is then
said to be locally reacting or to satisfy and impedance condition.

4.18.3 Reflection and transmission of waves on a plane
fluid–fluid interface

Consider oblique incidence on a plane fluid–fluid interface, resulting in reflected
and transmitted waves. The fluids are characterised by their respective densities
and sound speeds c1 and c2. It is convenient to refer to the products of these
quantities, the characteristic or wave impedances Z1 and Z2. These represent
the ratios between pressure and velocity at any point in the wave. At a given
angle of incidence θi relative to the normal of the interface, the angles of reflec-
tion θr and transmission θt are found by writing Snell’s law of conservation of
the components of the wave numbers along the interface:

ki sin θi = kr sin θr = kt sin θt, (4.169)

where the wave numbers of the incident wave ki and of the reflected wave kr are

ki = kr =
ω

c1
≡ k1 (4.170)

and the wave number of the transmitted wave is

kt =
ω

c2
≡ k2. (4.171)

This implies that
θi = θr ≡ θ1 (4.172)

and
sin θ1
c1

=
sin θ2
c2

, (4.173)

where θ2 ≡ θt.

4.18.4 Reflection and transmission coefficients

Two basic continuity conditions must be satisfied at the interface (x = 0) at a
given time (t = constant):

1. Continuity of velocity: The normal components of the particle velocity
must be equal on either side of the interface:

νi cos θ1 − νr cos θ1 = νt cos θ2. (4.174)
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2. Continuity of pressure: The pressure variations must be equal on either
side of the interface:

pi + pr = pt, (4.175)

where
pi = A1 e

−jk1x;

pr = B1 e
jk1x;

pt = A2 e
−jk2x.

(4.176)

Since x = 0,
pi = A1;

pr = B1;

pt = A2.

(4.177)

Thus, (4.175) reduces to
A1 +B1 = A2. (4.178)

Using (4.92), (4.174) becomes

A1

Z1
cos θ1 −

B1

Z1
cos θ1 =

A2

Z2
cos θ2. (4.179)

The pressure reflection coefficient is defined by

R =
B1

A1
(4.180)

and the pressure transmission coefficient by

T =
A2

A1
, (4.181)

so that
T = R+ 1. (4.182)

Combining (4.178) and (4.179) yields

R =
Z2

cos θ2
− Z1

cos θ1
Z2

cos θ2
+ Z1

cos θ1

=
Z2 cos θ1 − Z1 cos θ2
Z2 cos θ1 + Z1 cos θ2

(4.183)

and

T =
2 Z2

cos θ2
Z2

cos θ2
+ Z1

cos θ1

=
2Z2 cos θ1

Z2 cos θ1 + Z1 cos θ2
. (4.184)

The sound intensity reflection coefficient equals the sound power reflection co-
efficient and is given by

RI =
Ir
Ii

=

(
B1

A1

)2

= R2 =
(Z2 cos θ1 − Z1 cos θ2)

2

(Z2 cos θ1 + Z1 cos θ2)
2 , (4.185)
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where Ii is the incident intensity and Ir is the reflected intensity. Owing to
conservation of energy,

RI +TI = 1, (4.186)

where TI is the sound intensity transmission coefficient, which equals the sound
power transmission coefficient,

TI =
Ir
Ii

=
4Z2Z1 cos

2 θ1

(Z2 cos θ1 + Z1 cos θ2)
2 =

(
A2

A1

)2
Z1

Z2
, (4.187)

where It is the transmitted intensity.

4.18.5 Normal incidence

At normal incidence, the cosines are equal to 1 and the expressions for R and
T are simplified to

R =
Z2 − Z1

Z2 + Z1
(4.188)

and

T =
2Z2

Z2 + Z1
. (4.189)

A good transmission means a low reflection coefficient. The sound intensity
reflection coefficient is simplified to

RI =

(
Z2 − Z1

Z2 + Z1

)2

, (4.190)

whereas the sound intensity transmission coefficient is simplified to

TI =
4Z2Z1

(Z2 + Z1)
2 . (4.191)

The energy loss when passing from steel to air is 99.96%. However, the trans-
mission can be improved by interposing a layer of material on the interface. The
idea is to reduce the difference of impedance by inserting an intermediate value
for the impedance.

4.18.6 Normal incidence on a wall (two fluid–fluid bound-
aries)

Consider normal incidence on a system of two plane interfaces, at x = 0 and
x = l, respectively. At the first interface, the basic continuity conditions are
formulated as

A1 +B1 = A2 +B2 (4.192)

and
A1

Z1
− B1

Z1
=
A2

Z2
− B2

Z2
. (4.193)
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At the second interface, the basic continuity conditions are formulated as

A2e
−jk2l +B2e

jk2l = A3e
−jk2l (4.194)

and
A2e

−jk2l

Z2
− B2e

jk2l

Z2
=
A3e

−jk2l

Z3
. (4.195)

This system of equations can be solved to give the following expression for the
power transmission coefficient:

TI =

(
A3

A1

)2
Z1

Z3
=

4Z3Z1

(Z3 + Z1)
2
cos2 k2l +

(
Z2 +

Z1Z3

Z2

)2
sin2 k2l

. (4.196)

4.18.7 Impedance of a rigid-backed fluid layer

If the third medium is rigid, the condition of pressure continuity at the second
interface is formulated as

A2e
−jk2l +B2e

jk2l = 0, (4.197)

whereas the condition of velocity continuity does not hold, since Z3 = 0.

A2e
−jk2l

Z2
− B2e

jk2l

Z2
= 0. (4.198)

Hence,
B2 = −A2e

−2jk2l. (4.199)

Substituting this in (4.192) and (4.193) yields

A1 +B1 = A2

(
1− e−2jk2l

)
(4.200)

and

A1 −B1 =
Z1

Z2
A2

(
1 + e−2jk2l

)
, (4.201)

respectively. The ratio of these equations is referred to as the relative surface
impedance. It represents the ratio of the acoustic pressure to the particle ve-
locity at x = 0.

Zs =
A1 +B1

A1 −B1
=
Z2

Z1

1− e−2jk2l

1 + e−2jk2l
=
Z2

Z1

e jk2l − e−jk2l

e jk2l + e−jk2l
(4.202)

Note that

coshϕ =
eϕ − e−ϕ

2
(4.203)

and

sinhϕ =
eϕ + e−ϕ

2
. (4.204)
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Therefore, (4.202) can be reduced to

Zs =
Z2

Z1
coth jk2l = Zc coth jk2l, (4.205)

where Zc = Z2

Z1
is the relative characteristic impedance of layer 2. Its inverse,

βc =
1
Zc

is the relative characteristic admittance.

4.19 Scattering

For structures with radii r much less than the acoustic wavelength, such as red
blood cells, the ultrasonic backscattering coefficient is

η(ω) ∝ k4 r6
(
κ1 − κ0
κ0

− ρ1 − ρ0
ρ0

)2

, (4.206)

where k is the acoustic wave number, κ1 is the compressibility of the scatterer,
κ0 is the compressibility of the surrounding medium, ρ1 is the density of the
scatterer, and ρ0 is the density of the surrounding medium.

Integrating the intensity of the scattered wave over all directions yields the
scattered power Ps. The acoustic size Qs of an object is defined as the scattered
power divided by the incident wave intensity Ii:

Qs =
Ps

Ii
. (4.207)

Since the density and compressibility parameters of blood cells hardly differ from
those of plasma, in the diagnostic ultrasonic frequency range, blood cells are
poor scatterers. So-called ultrasound contrast agents can be injected that help
to differentiate between blood and other tissue types, by providing additional
and desirably characteristic backscatter. Gas microbubbles are suitable contrast
agents because of their high compressibility and low density compared with the
surrounding medium.

4.20 Nonlinear propagation

The actual speed of a propagating sound wave is not just determined by the
elasticity of the medium, but also by the instantaneous density and the instanta-
neous particle velocity ν in the medium. The sound wave changes shape because
of these. The phase velocity of a sound wave can be expressed as:

cν = c+

(
1 +

1

2

B

A

)
ν, (4.208)

where A and B are temperature-dependent quantities. B/A has been generally
referred to as the nonlinearity parameter. From this equation, the distance at
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which the waveform has become a perfect saw-tooth immediately follows:

x∞ =
πc2

2ν0ω
(
1 + B

2A

) , (4.209)

where ν0 is the amplitude of the particle velocity.
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5
Transducers

Andrew Hurrell

Having thoroughly explored the underlying theoretical basis of ultrasonic prop-
agation in previous chapters, it is now necessary to consider how ultrasound
could be used in practice. Clearly this requires devices capable of transmit-
ting and receiving ultrasound, and thus it is necessary to consider transduction
mechanisms.

Within the field of medical ultrasonics the term “transducer” is often used to
refer to a device that has some transmit capability (whether that be transmit-
only or transmit/receive functionality). Ultrasonic devices intended to operate
in a receive-only mode are usually referred to as hydrophones. This distinc-
tion may seem a little arbitrary, but there is a good practical reason behind
it. All medical ultrasound devices need to be capable of generating ultrasound.
Some devices (particularly therapeutic ones) are exclusively transmitting de-
vices, whereas diagnostic devices need to be able to transmit and receive ultra-
sound. A receive-only device is only of interest when attempting to quantify the
ultrasonic field produced by an external source of ultrasound. Thus to distin-
guish between a source and a receiver, the terms transducer and hydrophone are
used respectively. Furthermore, ultrasonic transducers may have a wide range of
users (e.g. physiotherapists, ultrasonographers, researchers, medical physicists)
whilst hydrophones are likely to have a much more limited user base, specifically
those interested in quantifying ultrasonic fields.

The following chapter has been prepared with this distinction in mind, and,
whilst some of the topics covered herein may be equally applicable to both
hydrophones and transducers, others may not. The primary goal of this chapter
is to provide a comprehensive discussion of devices that are used to generate
ultrasound.

89
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5.1 The piezo-electric effect

5.1.1 Overview of piezo-electricity

The vast majority of ultrasonic transducers incorporate a piezo-electric element.
All piezo-electric materials contain an asymmetry in their internal structure
such that the centre of positive charges is offset relative to the centre of neg-
ative charges. If a deformation is applied to such a material there will be a
movement of positive charges relative to the negative ones, and a dipole mo-
ment proportional to the applied strain will be developed. This phenomena is
called the piezo-electric effect. The Greek πιέζω (piezo) means to press. It is
this process that allows receiving devices to produce a voltage signal in response
to an incoming ultrasonic wave. Similarly if an electric field is applied to the
piezo-electric material, the positive and negative charges will exhibit different
displacements. Since these displacements are not equal and opposite, the ma-
terial will change its external dimensions due to the internal strain. This is the
inverse piezo-electric effect and it is this mechanism that is exploited when an
ultrasonic transducer is used as a transmitter. The behaviour of piezo-electric
materials is therefore described by three categories of material constants:

• Mechanical constants, which affect the purely acoustic processes;

• Electrical constants, which affect the purely electric processes;

• Piezo-electro constants, which affect the conversion between mechanical
and electrical forms.

5.1.2 Piezo-electric nomenclature

Many of the physical quantities used to describe piezo-electric behaviour are
common to this and other chapters. However, in order to avoid confusion, it
has been necessary to adopt a nomenclature more common in electronics. Table
5.1 summarises the principal variables and constants used in this chapter.

The electro-mechanical transformation that occurs within a piezo-electric
material results in behaviour that can at first seem unexpected. If the electrodes
of a piezo-electric material are shorted together, there is a means by which
current can flow from one electrode to the other in response to an applied stress.
In contrast, when the electrodes are left open circuit, this current cannot flow
and internal electrostatic forces attempt to resist the motion of charges caused
by the applied stress. Thus an open circuit piezo-electric material appears stiffer
that it does when its electrodes are shorted together. Similarly the dielectric
behaviour of a piezo-electric materials that is free to vibrate will be different
from one that is clamped (and thus limited in its ability to vibrate).

For this reason, material constants describing the purely electrical properties
of a piezo-electric material have two forms; one for when the material is free, and
the other for when it is clamped. Equally, the purely mechanical properties of a
piezo-electric material have two forms: one for when the material is open circuit
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Symbol Unit Physical Quantity

D Cm−2 Electric displacement

E Vm−1 Electric field

S Strain

T Nm−2 Stress

Y Nm−2 Young’s modulus

c Nm−2 Elastic stiffness constant

d CN−1 or mV−1 Piezo-electric strain/charge constant

e Cm−2 or NV−1 m−1 Piezo-electric stress constant

g VmN−1 or m2 C−1 Piezo-electric voltage constant

k Electro-mechanical coupling constant

s m2 N−1 Elastic compliance constant

ϵ Fm−1 Dielectric constant

Table 5.1: Nomenclature used in this chapter to describe piezo-electric materials.

(no applied electric field), and the other for when it is short circuit (no electrical
displacement/charge density). A superscripted variable is used to identify the
condition at which a materials constant is determined. Table 5.2 indicates the
superscripting conventions that are used throughout this chapter.

Superscript
Variable

Physical Quantity Implied Condition Example

T Stress T = 0 (free) ϵT

S Strain S = 0 (clamped) ϵS

E Electric Field E = 0 (open-circuit) cE33

D Electrical Displace-
ment

D = 0 (short-circuit) cD33

Table 5.2: Nomenclature used in the context of piezo-electric materials.

Hooke’s law (discussed in Section 2.9), can be expressed in the alternative
nomenclature as

[T ] = [c][S]. (5.1)

A simple expression such as (5.1) can disguise the complexity of Hooke’s law,
and it is useful to take a moment and consider the situation more carefully. A
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full expansion of (5.1) to include all of the stress and strain components is

Txx

Txy

Txz

Tyx

Tyy

Tyz

Tzx

Tzy

Tzz


= [c]



Sxx

Sxy

Sxz

Syx

Syy

Syz

Szx

Szy

Szz


, (5.2)

where [c] is a 9 × 9 matrix. As discussed in Section 2.1 (Equation 2.1) many
diagonal components are equal. Incorporating these simplifications reduces (5.2)
to

Txx

Tyy

Tzz

Tyz

Tzx

Txy


=



cxxxx cxxyy cxxzz cxxyz cxxzx cxxxy

cyyxx cyyyy cyyzz cyyyz cyyzx cyyxy

czzxx czzyy czzzz czzyz czzzx czzxy

cyzxx cyzyy cyzzz cyzyz cyzzx cyzxy

czxxx czxyy czxzz czxyz czxzx czxxy

cxyxx cxyyy cxyzz cxyyz cxyzx cxyxy





Sxx

Syy

Szz

Syz

Szx

Sxy


. (5.3)

The notation used in the discussion above is somewhat cumbersome. To address
this problem the reduced notation of ANSI/IEEE 1761 will be adopted. Table
5.3 summarises the reduced notation.

Direction Subscript Numeric Subscript

xx 1

yy 2

zz 3

yz or zy 4

zx or xz 5

xy or yx 6

Table 5.3: Reduced notation.

Kolsky2 discusses the need for elastic energy to be a single-valued quantity,
and shows that this can only happen when there is symmetry in all non-diagonal

1ANSI/IEEE 176. ANSI/IEEE Standard on piezoelectricity . New York: IEEE 1987.
2Kolsky H. Stress Waves in Solids. New York: Dover 1963.
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Figure 5.1: How an applied strain affects a piezo-electric material.

elements of the stiffness matrix [c] (i.e., cij = cji for i, j ∈ 1, 2, 3, 4, 5, 6 and i ̸=
j). This means that, without loss of generality, [c] now contains a maximum
of 21 independent constants. Wherever a structure has further symmetry, ad-
ditionally simplifications of [c] may be employed. For this reason an isotropic
material has only two independent constants (Lamé’s constants).

5.1.3 Piezo-electric constitutive equations

Having introduced the concept of piezo-electricity the fundamental equations
that describe this effect will now be considered. The derivation of these equa-
tions follows the method established by Kino.3 Consider a piezo-electric mate-
rial as shown in Figure 5.1 with charge of magnitude +q on the positive charges
and −q on the negative ones. The asymmetry described earlier means that
the unstrained inter-row spacings are a and b. The inter-column spacing in
both the in-plane and out-of-plane directions is L. In the unstrained state, the
polarization (P ) of any given cell is

P =
dipole strength

volume
=

qa− qb

L2(a+ b)
=

q(a− b)

L2(a+ b)
. (5.4)

3Kino GS. Acoustic Waves: Devices, Imaging, and Analog Signal Processing. Upper
Saddle River: Prentice-Hall 1987.
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When a 1-dimensional strain is applied, the polarization becomes

P +∆P =
q(a+∆a)− q(b+∆b)

L2(a+∆a+ b+∆b)
. (5.5)

To a first order approximation ∆a = aS where S is the applied stain; a similar
approximation is valid for ∆b. Therefore the change in polarization is

∆P = (P +∆P )− P =
q[(a+ aS)− (b+ bS)− (a− b)]

L2(a+∆a+ b+∆b)
. (5.6)

If it is assumed that L2(∆a+∆b) makes a negligible contribution to the volume
of the strained unit cell then incorporating (5.4) into (5.6) yields

∆P =
q(a− b)

L2(a+ b)
S = eS. (5.7)

This simple derivation was restricted to one dimension; however, as has been
seen already, strain is a 3×3 tensor. The generalisation of (5.7) to cater for full
3-dimensional interactions is

[∆P ] = [e][S]. (5.8)

For a dielectric material the electrical displacement field is defined as

[D] = [ϵ][E] + [∆P ]. (5.9)

Incorporating (5.8) into (5.9) at constant strain leads to

[D] = [ϵS][E] + [e][S], (5.10)

where e is the piezoelectric stress constant.
The force on a charge due to the presence of an electric field is

F = q E. (5.11)

The stress on a positive charge in the upper row is given by

Tb =
Force

Area
=

+qE

L2
, (5.12)

whilst the stress on a positive charge in the lower row is given by

Ta =
−qE
L2

. (5.13)

Therefore the average stress due to the presence of an electrical field within the
material TE is given by

TE =
aTa + bTb
a+ b

=
−aqE
L2 + bqE

L2

a+ b
=

q(b−a)
L2

b+ a
= eE. (5.14)
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The total stress within the material will be the combination of the externally
applied stress, T , and the stress due to the electrical field, TE. Generalising to
three dimensions and applying Hooke’s law (5.1) yields

[T ] + [TE] = [cE][S]. (5.15)

Note that a varying electric field would lead to variations in the stress caused
by it. To avoid this complication the elastic constant matrix has become [cE]
to indicate that it has been evaluated at constant electric field. Substituting
(5.14) into (5.15) results in

[T ] = [cE][S]− [e][E]. (5.16)

Equations (5.10) and (5.16) are the stress–charge form of the piezo-electric con-
stitutive equations. Other forms of the piezo-electric equations based upon
different combinations of the underlying variables (stress, strain, charge and
voltage) are available. An example of the inter-relation between two forms is
now given.

Hooke’s law (5.1) tells us how stress and strain are related via the elastic
constant matrix [c] (or its inverse, the compliance matrix [s] = [c]−1) and simple
rearrangement of this equation yields

[sE] =
Strain

Stress
. (5.17)

Due to the inherent electro-mechanical coupling of a piezo-electric material (as
to be discussed later in Section 5.1.5), a changing electric field would result in
a change of the stiffness of the material. So as above, the elastic compliance
matrix [sE] is held at constant (probably zero) electric field. The piezo-electric
coefficients will be discussed in detail within Section 5.1.4, but for the moment
it is necessary borrow the definition of d and e from this section. Multiplying
the first definition of (5.22) by (5.17) yields the first definition of (5.21), and
therefore

[d] = [sE][e]. (5.18)

Substitution of (5.18) into (5.10) and (5.16) yields (5.19) and (5.20), which are
the strain–charge forms of the piezo-electric constitutive equations

[S] = [sE][T ] + [d][E] (5.19)

and
[D] = [d][T ] + [ϵT][E]. (5.20)

Note that in changing from (5.10) to (5.20) the independent mechanical variable
has changed from strain [S] to stress [T ]. The calculation of electrical displace-
ment [D] must reflect this change, and thus the dielectric coefficient used to
multiply the electric field [E] needs to be evaluated at constant stress rather
than constant strain. Hence (5.20) uses [ϵT] rather than [ϵS] as was used in
(5.10).
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5.1.4 Piezo-electric coefficients

Before moving on too far from constitutive equations for piezo-electric materials,
it is instructive to consider the piezo constants further. The piezo-electric strain
coefficient d is defined as

[d] =
Strain developed

Applied electric field
=

Electric displacement developed

Applied stress
. (5.21)

Similarly the piezo-electric stress constant e is defined as

[e] =
Stress developed

Applied electric field
=

Electric displacement developed

Applied strain
. (5.22)

Finally the piezo-electric voltage coefficient g is defined as

[g] =
Strain developed

Applied electric displacement
=

Electric field developed

Applied stress
. (5.23)

The relationship between [e] and [d] has already been identified in (5.18) where
Hooke’s law was exploited to convert between stress and strain coefficients. A
similar transformation can be used to convert between [d] and [g] coefficients.
Note from (5.21) and (5.23) that one equation involves electrical fields whereas
the other uses electrical displacements. In the absence of a polarization ∆P ,
(5.9) can be rearranged to give

[ϵ] =
[D]

[E]
=

Electrical displacement

Electrical field
. (5.24)

Once again, it is necessary to ensure that there are no changes to electrical
quantities arising from electro-mechanical coupling, so the condition T = 0 is
enforced and it becomes necessary to use ϵT to indicate this. This can be simply
expressed as

[d] = [ϵT][g]. (5.25)

In the most general case, each of the piezo-electric coefficient tensors can be
expressed as a 3×6 matrix. However as has been seen earlier in this chapter, the
effect of symmetry within the structure of a material can result in simplifications.
The reader is referred to the work of Rosenbaum4 and ANSI/IEEE 1761 for
further discussion of the classes of symmetry and their effect on the piezo-electric
coefficients.

The individual elements within one of the piezo-electric coefficients tensors
merit further consideration. For simplicity the following discussion is based
upon the piezo-electric strain coefficient d, but the concepts apply equally to
the other coefficients as well. Consider a slab of piezo-electric material as shown
in Figure 5.2. The upper and lower surfaces of the slab have had thin electrode
layers applied to them. These electrodes can then be used to apply an electric

4Rosenbaum JF. Bulk Acoustic Wave: Theory and Devices. Norwood: Artech House
1988.
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Figure 5.2: Coordinate system for a piezo-electric material.

field across the piezo-electric sample in order to generate a strain, or they can
be used to harvest charge that has built up as a result of an externally applied
stress. In either case, an electric field in the z-direction will be present.

Note that in this simple configuration, there are no electrodes on the other
4 faces of the sample. This means there is no means of making a connection
to allow a current to flow in the x- and y-directions. This means that D1 and
D2 must be zero. Recall the second of the strain–charge piezo-electric equations
(5.20) and consider specifically the first term [d][T ], which deals with the electro-
mechanical conversion. When written in full with condensed notation, this term
is

[d][T ] =

 d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d31 d32 d33 d34 d35 d36




T1

T2

T3

T4

T5

T6


. (5.26)

If a plane stress is applied in the z-direction, the component T3 will be non-zero.
SinceD1 andD2 must be zero, all contributions arising from the first and second
rows of the [d] matrix must have a zero sum. Thus it is only the coefficient d33
that will determine what electrical displacement is developed in response to this
stress. Note that both the applied stress and the electrical response are purely
in the z-direction; this is precisely what happens when a thin piezo-electric plate
is operated as a thickness expander (see Section 5.4.1).

Now consider a plane stress applied in the x-direction. In this case the
component T1 will be non-zero, and the coefficient d31 determines the electrical
displacement. Similar arguments apply to d32 when a plane stress in the y-
direction is applied. For this reason the coefficients d31 and d32 are of primary
importance when designing a transducer that will operate as a length expander.
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Clearly combinations of these effects are possible, so that if the piezo-electric
sample was subject to hydrostatic pressure, the electrical displacement devel-
oped in response to this would involve d31 · T1 + d32 · T2 + d33 · T3. For these
reasons, the coefficients d31, d32 and d33 are widely reported by manufacturers
of piezo-electric materials. For completeness, it should be noted that d15 and
d24 are of importance when designing transducers operating in a shear mode.

As has already been mentioned, the [d] coefficients are widely reported and
(5.25) can be used to derive the [g] coefficients if required. However, the ques-
tion “why have multiple piezo-coefficients?” needs addressing. Consider the
definitions (5.21) and (5.23); from (5.21) we see that that piezo-electric strain
coefficients ([d]) tell us what strain (and hence surface displacement) can be
expected for an applied electric field. This is precisely the data that would
be of use when designing a device to transmit ultrasound. Conversely an ultra-
sonic receiver needs to maximise the electric field (and hence voltage) developed
across the electrodes in response to the stress applied by an incident pressure
wave. Therefore the piezo-electric voltage coefficients ([g]) are of most use when
designing receivers. When designing a device that will both transmit and receive
ultrasound, both sets of coefficients will have to be considered.

5.1.5 Electro-mechanical coupling coefficient

In the previous section, the definitions of the piezo-electric coefficients expressed
the relationships between pairs of variables used in the constitutive equations.
During these derivations, care was taken to ensure that the coupling between
electrical and mechanical effects was handled appropriately. It is therefore de-
sirable to have one constant that expresses the full interaction between the
mechanical, electrical and piezo-electric properties of a material in a simple and
concise manner.

Consider a piezo-electric material under open circuit conditions. No current
flows from one electrode surface to the other and thus (5.20) becomes

[E] = − [d][T ]

[ϵT]
. (5.27)

Substituting (5.27) into (5.19) gives

[S] = [sE][T ] + [d]

(
−[d][T ]

[ϵT]

)
(5.28)

= [sE]

(
1− [d]2

[sE][ϵT]

)
[T ]. (5.29)

Now, recall Hooke’s law (5.1) but recast it in terms of the compliance matrix
[s] rather than the stiffness matrix [c] (q.v. (5.17)). This derivation began with
the explicit assumption that the piezo-electric material was subject to open
circuit conditions. Selecting the stiffness matrix appropriate for this boundary
condition gives

[S] = [sD][T ]. (5.30)
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Comparison of (5.30) and (5.29) reveals the relationship between the compliance
constants under short-circuit and open-circuit conditions, namely

[sD] = [sE]

(
1− [d]2

[sE][ϵT]

)
(5.31)

= [sE](1− k2), (5.32)

where the electro-mechanical coupling coefficient k is defined by

k2 =
[d]2

[sE][ϵT]
. (5.33)

It is trivial to rearrange (5.31) in terms of elastic constants so that

[cE] = [cD](1− k2). (5.34)

This is a highly significant result. Given that k2 ≥ 0, the components of [cE]
will always be smaller than their counterparts in [cD]. To understand this, recall
that if current cannot flow between the electrodes of a piezo-electric material,
the internal electrical stresses make the material appear stiffer than when a
current is free to flow. For this reason the matrix [cD] is often referred to as the
“stiffened” elastic constant matrix.

Consider now a clamped piezo-electric material where [S] = 0. In this case
(5.19) can be rearranged to give

[T ] = − [d][E]

[sE]
. (5.35)

Substituting (5.35) into (5.20) gives

[D] = [ϵT][E]− [d]

(
−[d][E]

[sE]

)
(5.36)

= [ϵT][E]

(
1− [d]2

[sE][ϵT]

)
(5.37)

= [ϵT][E]

(
1− [d]2

[sE][ϵT]

)
. (5.38)

As before, this result needs to be compared with the conditions imposed at
the beginning of the derivation. Under clamped conditions, the constant [ϵS]
would normally be expected to relate the electric displacement current [D] to the
electric field [E]. This enables the relationship between the dielectric constants
under clamped and free conditions to be defined as

[ϵS] = [ϵT]

(
1− [d]2

[sE][ϵT]

)
(5.39)

= [ϵT](1− k2). (5.40)
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Once again the electro-mechanical coupling coefficient provides the relationship
between the two forms of dielectric constant, just as it did with the elastic
constants

Before finishing the discussion on electro-mechanical coupling coefficient it
is important to remember that the definition of k2 (5.33) is based upon tensor
quantities and thus k2 is also a tensor. As was discussed with the piezo-electric
coefficients, some of the components of the matrix have particular significance.
The designer of a transducer operating in thickness mode will probably be look-
ing to find a material with a high d33 value. For this application, the k33 com-
ponent is likely to be the most relevant component of the electro-mechanical
coupling matrix. However, the determination of k33 imposes no restriction on
how the piezo-electric element is moving, so there may also be lateral/radial
extension occurring as well. For this reason many piezo-electric component
manufacturers also quote kt, which is the purely thickness mode coupling coef-
ficient when the material is laterally clamped.

5.2 Piezo-electric materials

5.2.1 Piezo-electric ceramic

Piezo-electricity was discovered in 1880 by the Curie brothers. This field has now
developed to a stage whereby almost all readers of this text will have a piezo-
electric device within a few centimetres of themselves (in the form of a timing
circuit in a wrist watch or mobile/cellular phone). Within medical ultrasonics,
piezo-ceramics are widely used, although some high frequency applications also
exploit piezo-polymer technologies.

There are many commercially available piezo-ceramics such as lead titanate
(PT), bismuth titanate, barium titanate, lead metaniobate (PMN), lithium nio-
bate and lead zirconate titanate (PZT). Subtle changes to the constituents and
their processing can lead to quite a variation in properties. By way of an ex-
ample PZT is commonly available in at least five different forms, some of which
are characterised as “hard” PZT whilst the others are “soft” PZT. Generally
speaking, softer materials have higher levels of internal damping. This leads to
the broader-bandwidth, shorter-pulse behaviour (as will be discussed in Section
5.3). In contrast, the harder ceramics have little if any damping and are thus
more resonant.

The majority of piezo-electric ceramics exhibit ferroelectric behaviour. A
ferroelectric material is one that can have its polarization reversed in response
to an external field. Typically the material needs to be heated beyond a critical
temperature (known as the Curie temperature) before the dipoles are free to
move. Materials of this type are internally organised into a series of domains.
Within each domain the internal dipoles are aligned, but there is no net polar-
isation due to the random orientation of domains with respect to each other.
In order to produce a material with a strong piezo-electric behaviour, these do-
mains need to oriented with their polarisations aligned; this is process is referred
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to as “poling”.

A typical poling sequence involves heating the ferro-electric material above
the Curie point so that the dipoles become mobile. If an external electric field
is applied, the dipoles within the domains will attempt to align themselves with
the external field. By then cooling the material to a temperature below the Curie
point, the orientation of the polarisations become “frozen” in place. Since all the
internal polarisations are now aligned, the material will exhibit a strong piezo-
electric response. Critically though, if the material is subsequently heated back
above the Curie temperature, the dipoles will become mobile again. If allowed
to cool without an external polarising field, the orientations of the dipoles will
return to their random state. This means that many piezo-electric materials
can be subject to thermal depolarisation when exposed to high temperatures.

Units “Hard” PZT “Soft” PZT PVDF PMN PT

d33 pCN−1 328 425 −33 83 70

d31 pCN−1 −128 −170 23 −16 −5.33

g33 VmN−1 0.028 0.0267 -0.31 0.032 0.037

g31 VmN−1 −0.011 −0.011 0.210 −0.007 −0.003

ϵTr 1300 1800 12 285 215

cD33 GPa 158 144 9.01 57.7 129

Y D
33 GPa 95.6 84.3 0.9 92.3 163

kt 0.47 0.47 0.14 0.34 0.515

k33 0.684 0.699 0.1 0.50 0.55

ρ kgm3 7700 7700 1780 6200 7050

c m s−1 4530 4324 2250 3050 4270

Z MRayls 34.9 33.3 4.01 18.9 30.1

Qm > 1000 70–80 < 2 < 15 > 1500

Table 5.4: Typical properties of various piezo-electric materials. Data provided
courtesy of: Meggitt SA, Kvistg̊ard, Denmark; MSI, Hampton, VA, USA; Piezo
Technologies, Indianapolis, IN, USA.

Most piezo-ceramics have good (or excellent) electrical-to-mechanical con-
version capabilities, as can be seen from the data in the first two rows of Table
5.4. Therefore all should make good sources of ultrasound. However, having a
high [d] coefficient is not the only criteria to consider. Due to both its lower den-
sity and lower elastic constants (and hence lower acoustic velocity), PMN has an
acoustic impedance that is much smaller than many other piezo-ceramics. This
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means that it will be easier to transfer energy from PMN into a lower acoustic
impedance load material (e.g., water). For the higher acoustic impedance mate-
rials (e.g., the PZTs) specific measures are needed (cf. Section 5.4.3) to ensure
the generated acoustic energy propagates into a water like medium.

The amount of internal damping also needs careful consideration. This can
be seen in the value of mechanical Q, Qm, which for PMN is typically less than
15, yet is often more than 1000 for “hard” PZT and PT. A low Qm is indicative
of a material that is is well suited to producing shorter acoustic signals with
relatively broad bandwidth. However, a high Qm should not automatically be
seen as a disadvantage. In fact, for those devices operating in a continuous
wave mode, low damping is a distinct advantage since is reduces the amount
of energy dissipated internally within the ceramic. For this reason therapeutic
ultrasound devices, particularly high intensity focussed ultrasound (HIFU) de-
vices, are almost exclusively based on “hard” PZT piezo-ceramics. There are
many other factors that influence the particular choice of ceramic for a given
application, such as thermal stability, ageing rate, piezo-electric efficiency, and
dielectric constant to name but a few.

5.2.2 Piezo-electric polymers

Piezo-polymer devices commonly use the polymer polyvinylidene fluoride (PVDF)
or its co-polymer with trifluoroethylene (P[VDF-TrFE]). However, some poly-
vinyl chlorides and co-polymers of Nylon also show piezo-electric activity. Com-
pared with piezo-ceramics, these materials have poor electrical-to-mechanical
conversion properties and thus poorer transmit efficiency. Table 5.4 shows the
[d] coefficients for PVDF to be an order of magnitude lower than those of the
PZTs listed. However piezo-polymers have a much higher receive efficiency (see
the [g] coefficients for PVDF). Piezo-polymers also have an acoustic impedance
that is much lower than all piezo-ceramics. This means that ultrasonic energy
propagating in a low impedance medium (such as water or biological tissue)
will find it easier to propagate into a piezo-polymer than it would into a piezo-
ceramic. Piezo-polymers are also the most highly damped of all the commonly
used piezo-electric materials. These three factors, low Qm, high [g], and low
Z, mean that piezo-polymers are the ideal choice for broadband, receive-only
devices such as hydrophones.

Piezo-polymers are available as very thin films. As will be seen in Section
5.4.1, the thickness of the piezo element is critical in determining the operational
frequency of a transducer. High-frequency operation, coupled with the high
levels of internal damping, mean that a well-designed piezo-polymer transducer
is capable of producing very short acoustic pulses. Thus, despite their poor
transmit efficiency, piezo-polymer transducers are commonly used in pulse/echo
diagnostic ultrasound systems requiring very high resolution but over acoustic
path lengths (e.g., ophthalmic and dermal scanning applications).

Like piezo-ceramics, piezo-polymers need to undergo a poling process. How-
ever, many piezo-polymers require an additional orientation process first. To
recap, piezo-ceramics contain highly oriented domains and the poling process
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is needed to ensure consistent alignment of the dipoles within these domains.
Piezo-polymers, however, are often semi-amorphous polymers; they contain
highly oriented crystallites within a randomly oriented amorphous phase. For
these materials, a remnant polarisation can only be imparted if the random
orientation polymer chains are “straightened out” prior to poling, and this is
commonly done by stretching the material. PVDF is typical of a piezo-polymer
that needs to undergo an orientation process. However, some piezo-polymers
(such as P[VDF-TrFE] co-polymer) have a inherent dipole moment and do not
need to undergo an orientation phase

For those materials that require orientation, stretch ratios can be large —
sometimes as much as 5 times the original length. Given that most piezo-
polmers are produced as sheets or rolls of film, two possibilities exist for the
orientation process. In the first case the film is stretched in one direction only.
With relation to the reduced notation of Table 5.3, the thickness of film is the
3-direction, whilst the direction of stretching is the 1-direction. This type of
film is referred to as uni-axial film and is characterised by having a large d31
coefficient but a small d32 coefficient.

Alternatively the film can be stretched equally in the two transverse (i.e.,
non-thickness) directions. Film processed in this manner is referred to as bi-
axial film and has d31 ≈ d32. It should be noted that d31 for uni-axial film is
approximately 3 times greater than it is for bi-axial film. Interestingly, the d33
coefficient appears reasonably constant regardless of which orientation method
is used. Piezo-polymers can be poled in a similar method to piezo-ceramics
(i.e., heat, apply E-field then cool without removing field), but alternative pol-
ing methods such as corona poling and hysteresis poling are also used. The
reader should consult Sessler,5 Wang et al.,6 and references therein for further
information about piezo-polymers and their preparation.

5.3 Transducer bandwidth

All ultrasonic transducers are inherently resonant devices, and therefore can
have their output altered by the effect of damping. An undamped resonant
system will be capable of producing a large output signal, but only over a
narrow frequency range. In contrast, a highly damped system will produce a
lower output signal, but will be capable of doing so over a much wider range of
frequencies. Quantification of the frequency response of a transducer typically
utilises the concept of bandwidth. To calculate bandwidth it is first necessary
to determine the peak of the frequency response, and also a threshold level at a
fixed reduction (typically −3 dB or −6 dB) relative to the peak. The points at
which the frequency response curve crosses this threshold are the lower (fl) and
upper (fu) cut-off frequencies, and bandwidth (BW ) is defined as the difference

5Sessler G. Piezoelectricity in polyvinylidenefluoride. J Acoust Soc Am 1981 70:1596–
1608.

6Wang TT, Herbert JM, Glass AM, Eds. The applications of ferroelectric polymers.
Bishopbriggs: Blackie 1988.
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between these two:

BW = fu − fl. (5.41)

The centre frequency (fc) and fractional bandwidth (FBW ) are defined as

fc =
fu + fl

2
and FBW =

BW

fc
× 100%, (5.42)

respectively. FBW can be expressed as either a decimal or percentage.

Figure 5.3: The effects of damping on a transducer’s frequency response.

Figure 5.3 shows two different transducer responses, to illustrate these con-
cepts. Both response curves in Figure 5.3 have the same centre frequency;
however, the peak amplitude of the undamped transducer is much higher than
that of its damped counterpart.

The temporal response of the same two transducers is shown in Figure 5.4.
The greater signal amplitude of the undamped transducer is clearly visible, but
it has a much longer pulse duration. In an imaging application (where short
pulses give rise to good axial resolution) the highly damped waveform would be
preferable. However, in a therapeutic application (where the aim is the most
efficient deposition of ultrasonic energy) the resonant transducer would be the
preferred choice.

5.4 Transducer construction

When embarking on the design of an ultrasonic transducer, it is useful for the
designer to have a simple goal in mind. One such example is:
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Figure 5.4: The effects of damping on a transducer’s frequency response.

The aim of good transducer design is to maximise the acoustic out-
put from the device, whilst achieving the desired bandwidth and
temporal response.

There is no single definition of what is “desired” since that may vary from one de-
vice to the next. As previously, a highly resonant transducer is often concerned
with maximising output at the expense pulse duration, whereas a transducer
in an imaging application will usually require a temporally localised signal to
maximise resolution. For this reason, it is often necessary to make compromise
decisions during the transducer design process. The remainder of this section is
dedicated to a discussion of the various components that go to make up an ul-
trasonic transducer. A cross-section through a typical single element transducer
can be found in Figure 5.5. During the subsequent discussions, important issues
relating to each component will be highlighted. This is intended to provide the
reader with the ability to make a more informed decision when working towards
the design goal.

5.4.1 Piezo-electric element

The range of materials available for use as the piezo-active component of a
transducer has been discussed in Section 5.2. However, the dimensions of the
piezo-electric element also need careful consideration, since they affect the type
of resonance exhibited by the transducer, as well as the natural frequency of
oscillation. Detailed discussion on the effect of piezo-electric element geometry
in relation to resonance modes is provided by Onoe and Tiersten.7

7Onoe M, Tiersten HF. Resonant frequencies of finite piezoelectric ceramic vibrators with
high electromechanical coupling. IEEE Trans Ultrason Eng 1963 10:32–38.
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Figure 5.5: Cross section through a typical single element transducer.

Figure 5.6: A selection of common piezo-electric element shapes. The grey
surface indicates the position of the electrode layer.
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A selection of the common piezo-electric element shapes can be found in
Figure 5.6. Before considering each of these shapes in detail, it is useful to define
the aspect ratio of the crystal. This quantity is often used as a convenient way
to identify the type of resonance exhibited by a given piezo-electric crystal:

Aspect ratio =
Width or Diameter

Thickness
. (5.43)

When a piezo-electric element resonates, its dimensions (in conjunction with
various material parameters) will determine what resonance mode is excited;
several common resonance modes are discussed later in this chapter. A trans-
ducer that excites only one resonance mode will be optimally efficient at the
resonant frequency of that mode. If multiple modes are excited, then each will
have a different resonant frequency. This may lead to a device with a broader
spectrum of operation, although the acoustic output in any one mode will be
restricted in comparison to a single mode transducer.

Intuitively it should be possible to derive a single expression relating the
resonant frequency of a piezo-electric element to its elastic constants [c], density
ρ, and dimensions. However, the possibility of multiple resonance modes, and
coupling of energy between them, means that this relationship often involves
the solution of transcendental equations.7 For this reason, many piezo-ceramic
manufacturers quote frequency constants N , so that piezo-electric element di-
mensions may be appropriately specified to achieve the desired resonant fre-
quency. Common used frequency constants are shown in Table 5.5 along with
the resonance mode for which they are of most use.

Constant Resonance Mode
Nt TE
Np RE

N3 or N33 LE
N1 or N31 WE

Table 5.5: Examples of commonly specified frequency constants.

All frequency constants are quoted on the assumption that the piezo-electric
element is acting as a half-wave resonator. However, as will be discussed in Sec-
tion 5.4.2, a backing impedance greater than that of the piezo-electric element
will force the piezo-electric to behave as a quarter-wave resonant device. In this
case the appropriate factor of 2 must be used in conjunction with the frequency
constants N , to obtain the correct operating frequency.

Thickness expander (TE)

When a piezo-electric element has a large lateral extent relative to its thickness,
the principle resonance is in the thickness direction. Examples of this can be
seen in Figure 5.6 (b) and (d). A resonance of this kind is referred to as a
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thickness expander (TE). When the aspect ratio falls below 10, other parasitic
resonance modes (e.g., radial, circumferential) are excited. The centre frequency
and dimensional requirements for operation as a TE are

fc =
Nt

thickness
; aspect ratio > 10.

Therapeutic transducers (e.g., physiotherapy and HIFU) often operate in a TE
mode. The vast majority of non-destructive testing (NDT) transducers also
operate in this manner.

Radial expander (RE)

The requirements for operation in RE mode are much the same as for TE, and
thus Figures 5.6 (b) and (d) are equally relevant. The applied electric field for
RE is in the same direction as TE (i.e., in the thickness direction). However,
the resultant extension is from the centre of the plate towards the edge in the
radial or width direction. The centre frequency and dimensional requirements
for operation as a RE are

fc =
Np

thickness
; aspect ratio > 10.

Length expander (LE)

Length expander (LE) resonances occur when a long thin rod has electrodes
on its end faces. Both the applied electric field and the resulting extension
are in the length direction. An example of a typical LE mode device can be
found in Figure 5.6 (a). The centre frequency and dimensional requirements for
operation as a LE are

fc =
N33

length
; length > 2.5× (all other dimensions).

LE resonance is commonly found in piezo-composite transducers, which often
involve rods of piezo-ceramic material embedded within a polymeric matrix.

Width expander (WE)

Width expander (WE) (sometimes called beam expander) resonances typically
occur when a flat strip has electrodes across the thickness direction. Figure
5.6 (c) shows a typical WE element. The centre frequency and dimensional
requirements for operation as a WE are

fc =
N31

length
; aspect ratio > 12 AND width > 4× length.

WE modes are some of the most widely used transducer forms since, in most
diagnostic imaging arrays, each element operates as a WE.
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5.4.2 Backing material

The choice of material used to provide the mechanical termination within an
ultrasonic transducer can have a critical effect on the performance of a device.
Kossoff8 was one of the first researchers to provide a comprehensive analysis
of this aspect of transducer performance. When an electrical signal is applied
to a piezo-electric element, conservation of momentum requires that the crystal
move symmetrically about its centreline, and therefore two acoustic signals are
generated: one travelling towards the transducer front-face and the other prop-
agating towards the transducer backing. Unless the backing material has the
same acoustic impedance as the piezo-electric material, there will be a reflection
of the backward travelling signal at the interface with the backing. Consider a
backing material with acoustic impedance lower than that of the piezo-electric
element. The phase change (ϕ) of a wave, with wavelength λ, due to transit
across a material of thickness l is given by

ϕ =
2πl

λ
. (5.44)

The forward travelling wave experiences a phase change ϕF as it travels from
the centreline to the front face of the piezo element given by

ϕF =
1

2

2πl

λ
=
πl

λ
. (5.45)

The rear travelling wave experiences a similar phase change as it propagates.
Recall from (4.188) that the pressure reflection coefficient at normal incidence,
R, is given by

R =
Z2 − Z1

Z2 + Z1
, (5.46)

where Z1 is the medium the wave is travelling from and Z2 is the medium
that the wave is travelling into. From (5.46) it can be seen that R will be
negative when going from a medium of high acoustic impedance to a one of
lower impedance (i.e., Z1 > Z2). This is indicative of a phase change of π
radians upon reflection. The wave also experiences a further phase change
during propagation towards the front face of the piezo-electric element. The
total phase change experienced by this wave (ϕB) is

ϕB =
πl

λ
+ π +

2πl

λ
=

3πl

λ
+ π. (5.47)

Constructive interference will occur when the phase difference between these
two wave components is a multiple of 2π. Hence

ϕB − ϕF =
2πl

λ
+ π = 2πn, where n ∈ 1, 2, 3, ... . (5.48)

8Kossoff G. The effects of backing and matching on the performance of piezoelectric ceramic
transducers. IEEE Trans Son Ultrason 1966 13:20–30.
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Solving for l reveals that maximum signal output due to constructive interfer-
ence of the two components occurs when

l =
λ

2
(2n− 1). (5.49)

This is the classic half-wave resonator condition, seen throughout acoustics (e.g.,
oscillations on a string, or resonances of a tube). Half-wave resonance occurs
when there are symmetrical boundary conditions (i.e., both surfaces of the res-
onator are bounded by a material that is acoustically hard, or both surfaces
face an acoustically soft impedance). When a resonator has asymmetric bound-
ary conditions (e.g., one surface hard, one surface soft) the resonator exhibits
quarter-wave resonance.3,9 Due to the high characteristic acoustic impedance
of most piezo-ceramics, it is difficult implementing a backing that has a much
higher acoustic impedance than the piezo-electric element. However, piezo-
polymers have much lower characteristic impedances than piezo-ceramics. This
means that backing materials with acoustic impedances that are both greater
than and less than that of the resonator are readily available. The effect of
backing material on resonance mode is discussed by Brown10 for the case of
piezo-polymer transducers.

The other purpose of a transducer’s backing is to provide damping. In
the case of a highly resonant transducer, the amount of damping should be
kept to an absolute minimum so that the piezo-electric element can resonate
freely. This is normally accomplished by providing an open cavity behind the
active element into which it can vibrate; this typed of undamped transducer is
often referred to as an air-backed transducer. The resonant (undamped) data
traces in Figures 5.3 and 5.4 were obtained from an air-backed device. A highly
damped transducer will typically have a dense, high attenuation backing. Such
backings are commonly produced by mixing fine metal, or alumina, powders
into an epoxy resin and then casting the mixture directly onto the back of the
piezo-electric materials. The damping provided by these sort of backings will
reduce the amplitude of the produced ultrasonic signal but will increase the
bandwidth (BW ), as can be seen for the damped data trace in Figures 5.3 and
5.4. Damping often also serves to slightly reduce fc, which, combined with the
increase in BW , results in an increase in FBW as well.

5.4.3 Acoustic impedance matching

For most medical ultrasonic applications, the transducer produces waves that
propagate into a medium with properties similar to water. The data in Table 5.4
shows that the acoustic impedance of the piezo-electric material is often much
greater than water. Consider the interface between a hard PZT (35MRayls) and
water (1.5MRayls). From (5.46) it can be seen that the piezo-ceramic/water

9Heuter TF, Bolt RH Sonics. New York: Wiley 1955.
10Brown LF. The effects of material selection for backing and wear protection/quarter-wave

matching of piezoelectric polymer ultrasound transducers. Proc IEEE Ultrason Symp 2000
2:1029–1032.
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interface has a reflection coefficient of 35−1.5
35+1.5 = 91.8%. This means that more

than 90% of the acoustic pressure produced within the piezo-ceramic is reflected
at the interface with water. This reflected acoustic signal will “ring-around”
inside the piezo-crystal, with less than 10% of the pressure able to propagate
into the water each time it encounters the crystal/water interface.

This physical limitation is often overcome by using one or more thin layers
applied to the front face of the transducer to provide a more gradual transition
in acoustic impedance. The following discussion considers only one matching
layer, but the reader is referred to Inoue et al.11 and Desilets et al.12 for a
description of multiple matching layers. Combining (4.192)–(4.195) yields an
expression for the reflection coefficient across a layer, Rlayer, of

Rlayer =
B1

A1
=

(Z1 + Z2)(Z2 − Z3)e
−j2k2l + (Z1 − Z2)(Z2 + Z3)

(Z1 + Z2)(Z2 + Z3)e−j2k2l + (Z1 − Z2)(Z2 − Z3)
. (5.50)

When the thickness of the layer, l, is a quarter of a wavelength long, i.e.,

l =
λ2

4
, (5.51)

it is found that
k2 l =

π

2
. (5.52)

This has the effect that the exponential term in (5.50) takes the value −1 + j0
and (5.50) reduces to

Rλ
4
=
Z2

2 − Z1Z3

Z2
2 + Z1Z3

. (5.53)

The numerator of (5.53) can be seen to vanish when

Z2 =
√
Z1 Z3, (5.54)

in which case Rλ
4
= 0.

To recap, theoretically it is possible to achieve a reflection coefficient of zero
(i.e., complete transmission) if a matching layer is applied to a transducer’s
surface as long as:

• the matching layer is one quarter of a wavelength long, and

• the acoustic impedance of the matching layer is the geometric mean of the
two media surrounding it.

Before proceeding, the limitations and assumptions used in the above analysis
need to be clearly stated. Firstly, the boundary conditions used in the derivation

11Inoue T, Ohta M, Takahashi S. Design of ultrasonic transducers with multiple acoustic
matching layers for medical application. IEEE Trans Ultrason Ferroelectr Freq Control 1987
34:8–16.

12Desilets CS, Fraser JD, Kino GS. The design of efficient broad-band piezoelectric trans-
ducers. IEEE Trans Son Ultrason 1978 25:115–125.
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relate to fluid media. Both the matching layer and the piezo-electric element
are solid media and therefore require a more comprehensive description involv-
ing shear wave propagation. Secondly, the underlying assumption is that the
bounding media (materials 1 and 3) are of infinite extent. Whilst this may be
true of the water (or water-like) material into which sound is propagating, it is
certainly not true of the piezo-electric element. As was discussed in Section 5.4.1
the piezo-element is deliberately designed to be a resonant structure. Therefore
the true impedance presented at the surface of the matching layer will be sub-
ject to loading by the acoustic backing applied on the piezo-element. Finally, no
attempt has been made to account for dissipation and loss within the matching
layer. For high frequency transducers such losses may be significant.

However, the above approach provides both a good illustration of the prin-
ciple of matching layers and is also a close enough approximation for many
practical applications, particularly at lower frequencies. If the above approach
is found too simplistic, or if multiply matching layers are to be considered, then
a more comprehensive theoretical model is required. Such discussion of the
acoustics of layered media is beyond the scope of this text but the reader is
referred to the excellent treatise by Brekhovskikh and Godin.13

The practicality of the two requirements of quarter-wave matching layers
(listed above) also merits further discussion. The thickness criterion of the
matching layer can be readily addressed either by careful machining of matching
layers cast onto the surface of the piezo-electric element or by means of precision
lapped layers that are subsequently applied to the transducer surface. However,
whenever matching layers are separately applied, care must be taken to ensure
that the bondline between the matching layer and the piezo-electric element is
kept as thin as possible (ideally < 1µm).

The impedance of the matching layer material presents more of a challenge.
Using (5.54) with the approximate values for the characteristic impedances of
water and piezo-ceramic listed earlier suggests that a matching layer material
should have an acoustic impedance of approximately 7.24MRayls. Most poly-
mers have acoustic impedances in the range 3–4.5MRayls, whereas glasses are
typically 14MRayls and most metals exceed 20MRayls. There are very few
materials whose characteristic acoustic impedance is close to 7MRayls. For
this reason, it is not uncommon to simply use a rigid, castable polymer (e.g.,
an epoxy resin) as a matching layer material under the assumption that its
impedance will be “close enough”. The validity of this assertion will now be
examined.

Figure 5.7 plots (5.50) for two values of matching layer impedance. Even a
small deviation from the target impedance of 7.24MRayls results in minimum
achievable reflection coefficient close to 0.2. If the best that can be achieved
is 20% of the signal amplitude being reflected at the surface of the 6MRayls
matching layer, it is clear that using a simple epoxy (typically 4MRayls) layer
will have a much higher reflection coefficient. Clearly this will severely compro-
mise transducer performance.

13Brekhovskikh L, Godin O. Acoustics of layered media I . Berlin: Springer 1990.
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Figure 5.7: The variation of reflection coefficient from a matching layer as a
function of its characteristic acoustic impedance.

To overcome the limitation on available materials, base resins such as epoxies
or polyurethanes are often filled with high density (e.g., tungsten) and/or high
velocity (e.g., alumina) powders to produce 0–3 composites with the required
characteristics. The properties of these composites can be readily predicted
with the Devaney14 model. Several authors15−17 have reported the use of such
composites as matching layers.

5.4.4 Electrical impedance matching

As with all transmission lines, power flow into a load is maximised when the
impedances of the load and the transmission line feeding it are matched. In
the context of an ultrasonic system, the load is the transducer itself and the
cable connecting it to the source of electrical signal is the transmission line.
Many function generators and RF amplifiers have 50Ω output. When devices
like these are connected with a cable of characteristic impedance 50Ω (such as

14Devaney AJ, Levine H. Effective elastic parameters of random composites. Appl Phys
Lett 1980 37:377–379.

15Wang H, Ritter TA, Cao W, Shung KK. High frequency properties of passive materials
for ultrasonic transducers. IEEE Trans Ultrason Ferroelectr Freq Control 2001 48:78–84.

16Rhee S, Ritter TA, Shung KK, Wang H, Cao W. Materials for acoustic matching in
ultrasound transducers. In Proc IEEE Ultrason Symp 2001 2:1051–1055.

17Zhou Q, Cha JH, Huang Y, Zhang R, Cao W, Shung KK. Alumina/epoxy nanocomposite
matching layers for high-frequency ultrasound transducer application. IEEE Trans Trans
Ultrason Ferroelectr Freq Control 2009 56:213–219.
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Figure 5.8: The Butterworth–Van Dyke equivalent circuit that is commonly
used to model piezo-electric devices.

RG58 co-axial cable), there is optimum power transfer between devices and no
undesirable standing waves within the cable. If this logic is then extended to
consider the transducer, this too should be matched to the electrical impedance
of the line used to drive it. Given the wide usage of 50-Ω systems, the remainder
of this section will be based around matching to 50Ω. However, the ideas could
equally be applied to other characteristic impedances.

CAUTIONARY NOTE : A number of commercially available pulser–
receiver systems have an electrical impedance that is not constant
as a function of time. Typically these device have a low impedance
whilst outputting the drive pulse, but a much higher impedance
when receiving. Furthermore it is rare for either of the electri-
cal impedances to be purely real (i.e., it is often a complex valued
impedance). Impedance matching a transducer to this type of pulser
is therefore much harder (if not impossible).

When attempting to model the electrical impedance of a piezo-electric trans-
ducer, it is common to use a simple circuit representation of the device. A
commonly used equivalent circuit is the Butterworth–Van Dyke model (see Fig-
ure 5.8) that places series inductive, capacitive and resistive components in
parallel with another capacitor; this is the equivalent circuit recommended in
ANSI/IEEE 176.1 However, an alternative equivalent circuit has been suggested
by Sherrit et al.18 that more accurately represents the loss mechanisms associ-
ated with many of the physical constants. Recall the basic equations defining
the impedances of simple electrical components:

ZR = R; ZL = jωL; ZC =
−j
ωC

. (5.55)

18Sherrit S, Wiederick HD, Mukherjee BK, Sayer M. An accurate equivalent circuit for the
unloaded piezoelectric vibrator in the thickness mode. J Phys D Appl Phys 1997 30:2354–
2363.
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The expressions for the impedance of an inductor ZL and of a capacitor ZC

both contain j (j2 = −1). Therefore any simple equivalent circuit such as
Figure 5.8 will have a complex-valued impedance. There are many common
ways of displaying complex-valued impedance data:

• A pair of plots of resistance and reactance (real and imaginary parts of
impedance).

• A pair of plots of impedance magnitude and phase.

• A pair of plots of conductance and susceptance (real and imaginary parts
of admittance; admittance is the reciprocal of impedance).

• A Smith’s Chart.

Note that only the last of these allows you to display complex data on a single
plot, without the need to overlay two plots on the same axes. For this reason
the Smith’s Chart representation will be used within this section for the display
of impedance data. For those readers unfamiliar with the Smith’s Chart, a thor-
ough explanation is provided by the chart’s creator, Philip Smith;19 however, a
brief summary follows:

• A Smith’s Chart has a horizontal axis running through the diameter of
a circular plot. This horizontal line is the real axis and has 0Ω on the
left edge and +∞Ω on the right edge. The resistance at the centre of the
plot is the reference impedance Z0 (assumed to be 50Ω throughout this
chapter).

• Any point below the real axis has a negative valued imaginary component
and is capacitive. Similarly adding capacitance moves a data point towards
the lower (capacitive) half of the chart.

• Any point above the real axis has a positive valued imaginary component
and is inductive. Similarly adding inductance moves a data point towards
the upper (inductive) half of the chart.

• The chart contains a series of concentric circles that are symmetric about
the real axis and the all coincide on the right edge of the plot. These are
circles of constant resistance.

• There are also two series of curves that run from the +∞-Ω point on the
real axis and pass into the upper and lower halves of the plot. These are
lines of constant reactance.

• Each point on the Smith’s Chart represents a unique complex-valued
impedance. A plot of impedance as a function of frequency will result
in curve on the chart.
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Figure 5.9: The Smith’s Chart.

An example of a Smith’s Chart can be found in Figure 5.9. Within this
figure the lines of constant resistance and reactance are shown in black. A data
point at 25− j25Ω has also been marked with a black dot; this will be referred
to later. For convenience, lines of constant conductance and susceptance are
also shown in pale grey; these lines are the mirror image of their impedance
counterparts. The Smith’s Chart is not only useful as a means of displaying
data but it can assist in the design of impedance matching networks. Recall the
equations for the combination of electrical impedances; a series combination of
components has an impedance given by

Zseries = Z1 + Z2, (5.56)

whereas a parallel combination is found through the equation

1

Zparallel
=

1

Z1
+

1

Z2
. (5.57)

In practice (5.57) is more conveniently dealt with by transforming the problem
from impedance (Z) to admittance (Y ) since Y = Z−1, therefore

Yparallel = Y1 + Y2. (5.58)

The implication of (5.56) and (5.58) in the context of the Smith’s Chart is that
it is easiest to add series components using the impedance version (black grid

19Smith PH. Electronic Applications of the Smith Chart . 2nd ed. Atlanta: Noble 2000.
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lines on Figure 5.9) whereas parallel components should be considered on an
admittance version of the chart (grey grid lines on Figure 5.9).

For example, the addition of a purely capacitive series component will cause
a counter-clockwise rotation of the marked data point along the 25-Ω line of
constant resistance (since a pure capacitor makes no change to the resistance,
but increases the negative reactive component). To bring the marked data point
to the 50-Ω point on the real axis requires the addition of a parallel inductor.
This will cause the data point to move towards the upper half of the chart
along a line of constant conductance. The marked data point has an impedance
25− j25Ω so thus has an admittance of 0.02 + j0.02 siemens. The value of the
inductive correction needed is obtained from the admittance equivalent of ZL

in (5.55). For convenience it is assumed that the operating frequency is 5MHz.

YL =
1

jωL
(5.59)

and therefore

L =
1

0.02× 2π × 5× 106
H = 1.6µH. (5.60)

In the above example, a single component could be used to match the electrical
impedance of the transducer with the driving impedance. A matching scenario
as simple as this is rare and often several reactive components are required. Un-
der these conditions, the tolerances on the values of the individual components
can become an issue. Furthermore very few components are purely reactive at
typical ultrasound frequencies; most capacitors and inductors have stray resis-
tances associated with them. Similarly, unless surface-mounted components are
used, the electrode legs all act as stray inductors. These factors mean that a
matching network made only from capacitors and inductors can be very sen-
sitive to small changes in the component values. To achieve a more “robust”
matching network, an alternative approach may be necessary.

Whilst it is well known that transformers can be used to step-up or step-
down voltages, their ability to transform electrical impedances is sometimes
overlooked. Consider a transformer with twice as many turns on its primary
coil than it has on its secondary; this transformer has a turns ratio n = 2. A
transformer of this nature would step-down electrical current by a factor of two.
However, due to conservation-of-energy considerations, this same transducer
would step-up voltage by a factor of two. Electrical impedance is the ratio of
voltage and current, so that

Zsecondary =
Vsecondary
Isecondary

=
nVprimary
1
n Iprimary

= n2 Zprimary. (5.61)

To exploit (5.61) in an impedance matching network, first consider the ratio
of the resistive parts of both driving impedance and transducer and set this
equal to n2. For the example in Figure 5.9 this is 50/25 = 2 = n2, and thus
the turns ratio n =

√
2. A primary winding with 7 turns and a secondary

winding of 4 turns has a turns ratio of 1.4, which is a reasonable approximation
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to the required value. A simple and practical rule for ensuring the transformer
is placed the correct way around in the matching circuit is

“place the largest number of turns against the largest impedance”.

With this in mind, the secondary winding (with 4 turns) is connected to the
piezo-electric element, whilst the primary winding (with 7 turns) faces the 50-Ω
line that is driving the transducer. This arrangement will ensure the transducer
now appears to have a resistive component of 50Ω at the frequency of interest,
although the reactive component will be non-zero. This is because the trans-
former will also have transformed any reactive component present, as well as
introducing additional reactive contributions from the inductance of the coils
and also inter-winding capacitances. The remaining reactive component can be
corrected for with a single passive component (i.e., capacitor or inductor). The
value of this reactive correction is calculated in exactly the same manner as
above.

When measuring the electrical impedance of a transducer (e.g., with an
impedance or vector network analyser) it should experience the same load con-
ditions as would be seen in normal usage. Failure to do so will lead to an in-
correct mechanical load on the transducer, which, due to the electro-mechanical
coupling of a piezo-electric device, will appear as a change in the electrical prop-
erties of the device. Therefore if a transducer is designed to produce ultrasound
that will propagate into water, its impedance should be measured with the face
of the device in water. If the water vessel in which the transducer is measured
is of limited size, care should also be taken to avoid acoustic reflections reaching
the transducer. Such acoustic reflections will affect the electrical properties of
the device, so the water vessel should ideally be lined with an acoustic absorber
to eliminate such reflection artefacts.

Having discussed how the Smith’s Chart may be used for impedance match-
ing, it is now beneficial to consider what an optimum end point of the matching
process should be.

Narrowband matching

When matching a narrowband transducer, the aim is to have maximum power
transfer into the transducer at the resonant frequency. At frequencies away
from resonance it should become increasingly difficult to drive the transducer.
A matching network compatible with this requirement would have its impedance
spiral passing through Z0 (= 50Ω) at the transducer’s centre frequency fc. The
impedance at all other frequencies is likely to deviate from Z0. The equation
for the pressure reflection coefficient (5.46) has a direct electrical analogue. For
a narrowband transducer matched to Z0, the numerator of this expression is
zero; thus the reflection coefficient is zero, and maximum power is transferred
into the transducer.
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Broadband matching

A broadband transducer can be achieved if one is prepared to compromise op-
timum efficiency at resonance to ensure better efficiency outside resonance. On
the Smith’s Chart this could be seen by having impedance spiral being relatively
close to Z0 over a wide range of frequencies. This means that whilst the reflec-
tion coefficient will always be non-zero, its value will be small over an extended
frequency range. In practice, arranging the resonant loop to be centred around
Z0 is an effective method to accomplish this goal.

Practical example

To demonstrate the advantages of impedance matching, the following practical
example is provided. The transducer shown here had a circular active element,
diameter 9mm. It was designed to operate with fc = 5MHz in water and have
moderately damped response to provide a compromise between signal amplitude
and bandwidth.

Figure 5.10: Electrical impedance before matching.

The initial electrical impedance of the transducer can be found in Figure
5.10. The centre frequency of the transducer has been marked on the figure
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with a black dot. Figure 5.10 has also been marked with two arrows to indicate
the path of fc during impedance matching.

Figure 5.11: Electrical impedance after matching.

Initially the impedance at the operating frequency is brought onto the 0.02-
siemens contour by the addition of a series capacitor. The remaining reac-
tive component is then corrected by the addition of a parallel inductor. The
impedance of the matched transducer can be seen in Figure 5.11, where an
impedance loop around 50Ω can be seen. The effect of impedance matching on
the acoustic performance of this transducer is shown in Figures 5.12 and 5.13.

Figure 5.12 shows that the peak-to-peak amplitude of the acoustic signal
has almost doubled due to impedance matching. Comparison of the spectra in
Figure 5.13 reveals that fl and fu at a level 6 dB below the peak are wider apart
for the matched transducer. This changes result in a increase in bandwidth from
2MHz (unmatched) to 2.35MHz (matched). In both cases fc is close to 5.3 MHz,
so FBW = 37% for the unmatched transducer, increasing to FBW = 43% for
the matched transducer.
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Figure 5.12: The effect of impedance matching on the temporal waveform from
a 5-MHz, 9-mm diameter, PZT transducer.

Figure 5.13: The effect of impedance matching on the spectrum of a 5-MHz,
9-mm diameter, PZT transducer.
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6
Radiated fields

Andrew Hurrell

The previous chapter was concerned solely with piezo-electric materials and the
manner by which they are incorporated into an ultrasonic transducer. Having
considered the internal structure of a transducer, the ultrasonic fields radiated
by such a device are now presented. This chapter begins with an examination
of continuous wave (CW) excitation, and specifically that from a circular plane
piston source. Whilst the predicted field for this type of source is well known,
it is of limited use in medical ultrasonics. Non-focussed physiotherapy devices
are about the only devices that produce CW fields from a circular plane piston
transducer. Despite these limitations, however, CW solutions are an instruc-
tive starting point as they introduce concepts that are useful in the study of
more complex fields. The CW field produced by rectangular transducers is also
presented.

Almost all devices capable of producing ultrasonic images do so with short
pulses. To illustrate the differences with CW fields, pulsed excitation is consid-
ered separately in Section 6.2. High intensity therapeutic ultrasound extensively
uses CW or quasi-CW excitation, but focussing is required to achieve the high
ultrasonic intensities. Focussed fields will be covered separately in Section 6.3.
This chapter finishes with an introduction to transducer arrays and how they
can be used to provide both steered and focussed ultrasonic beams.

It should be noted that fields produced by many ultrasonic transducers are
sufficiently complex that simple analytical descriptions do not exist. In these
cases, the only option is to employ numerical techniques (such as a finite ele-
ment or finite difference methods) to model the problem. However, numerical
solutions suffer from the disadvantage that they only solve for one specific set
of initial and boundary conditions, and may not necessarily yield a result that

123
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is generally applicable. In order to maintain generality, the field prediction
methods presented in this chapter are based on analytic solutions.

6.1 Continuous wave excitation

The most widely studied model of ultrasonic radiation is that of a plane piston,
radiating continuously at a single frequency, surrounded by a rigid baffle. Figure
6.1 contains a diagrammatic representation of an arbitrarily shaped piston in an
infinite baffle. Within this illustration, the measurement point is at coordinates
(x, y, z), an arbitrary point on the source is at coordinates (x′, y′, 0), and the
vector between them is r⃗. The acoustic field at the measurement point ex-
pressed in terms of the velocity potential ϕ(x, y, z) is provided by the Rayleigh

Figure 6.1: The plane piston source in an infinite baffle.
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integral:

ϕ(x, y, z) =

∫
S

v0e
j(ωt−kr)

2πr
dS, (6.1)

where dS = dx′ dy′ and v0 is the amplitude of the particle velocity. For conve-
nience, the temporal dependence ejωt will not be shown explicitly although its
presence is implied throughout. This integral is simply an expression of Huy-
gens’ principle and states that the acoustic field at measurement point (x, y, z)
is the sum of all spherically radiating point sources that go to make up the
surface S. The Rayleigh integral is simple in form, but much harder to solve
analytically, without some simplifying assumptions.

6.1.1 Circular plane piston in a rigid baffle

The full field

A common simplification of the geometry shown in Figure 6.1 is to require that
the source piston is circular1−4 For this case it is convenient to address the
problem in a cylindrical coordinate system (ρ, η, z) where ρ2 = x2 + y2 and

η = arctan
(

x
y

)
. A rigorous solution of the Rayleigh integral is beyond the

scope of this chapter and the reader is referred to the work of Hutchins et al.2

for a comprehensive mathematical derivation. However, the result obtained is
worthy of comment and is given by

ϕ(ρ, z) =
−j v0
k


 1 : ρ < a

1/2 : ρ = a

0 : ρ > a

 e−jkz +
1

π

π∫
0

e−jkr aρ cosψ − a2

a2 + ρ2 − 2aρ cosψ
dψ

 ,

(6.2)
where ψ is a variable of integration, a is the radius of the circular piston, and
r2 = z2 + a2 + ρ2 − 2aρ cosψ. The first term in (6.2) is a plane wave that only
makes a contribution to the field when ρ ≤ a. The second term is an edge wave
that radiates from all points on the circumference of the source. As this edge
wave propagates it interacts with both the plane wave component, and with the
edge wave components from elsewhere on the circumference of the disc. These
interactions produce an interference pattern whose amplitude can vary greatly
as a function of spatial position. An example of the complex spatial distribution
of the acoustic field radiated from a CW circular plane piston can be found in
Figure 6.2.

1Archer-Hall JA, Gee D. A single integral computer method for axisymmetric transducers
with various boundary conditions. NDT Int 1980 13:95–101.

2Hutchins DA, Mair HD, Puhach PA, Osei AJ. Continuous-wave pressure fields of ultra-
sonic transducers. J Acoust Soc Am 1986 80:1–12.

3Goldstein A. Steady state unfocused circular aperture beam patterns in nonattenuating
and attenuating fluids. J Acoust Soc Am 2004 115:99–110.

4Mast TD, Yu F. Simplified expansions for radiation from a baffled circular piston. J
Acoust Soc Am 2005 118:3457–3464.
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Figure 6.2: The axial acoustic pressure profile (upper) and a greyscale image
of a radial slice of the whole acoustic pressure field (lower) produced by a
circular plane piston transducer (diameter 10mm) driven with a continuous
1.5-MHz sinusoid. Black indicates positive acoustic pressure, white indicates
negative acoustic pressure. Greyscale image produced with AFiDS Suite (AMH
Consulting, Poole, UK).

The axial field

The general solution provided by (6.2) can be simplified to yield the field along
the acoustic axis of the source. On the acoustic axis, the radial coordinate ρ = 0
and therefore the velocity potential becomes

ϕ(0, z) =
−j v0
k

(
e−jkz − e−jk

√
z2+a2

)
. (6.3)

The relationship between acoustic pressure and velocity potential is given by

p = −ρ0
∂ϕ

∂t
, (6.4)

where ρ0 is the density of the medium within which the wave is propagating.
Given the form of the implicit temporal dependence, ejωt, a differentiation with
respect to time can be achieved by multiplying by jω. Inserting (6.3) into (6.4)
results in the following expression for the axial acoustic pressure:

p(0, z) =
ωρ0v0
k

ejωt
(
e−jkz − e−jk

√
z2+a2

)
. (6.5)

The magnitude of the term in parentheses in (6.5) defines the magnitude of the
spatial distribution of the “on-axis” wave. Expanding the exponentials inside
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the parentheses with Euler’s relation and combining real and imaginary parts
yields a purely trigonometric expression, viz.

cos kz − cos
√
z2 + a2 − j

(
sin kz − sin

√
z2 + a2

)
. (6.6)

Multiplying this expression by its complex conjugate and then applying several
trigonometric simplifications produces

|p(0, z)| = 2Z0v0

∣∣∣∣sin [k2 (√z2 + a2 − z)

]∣∣∣∣ , (6.7)

where Z0 is the acoustic impedance of the material.
An example of the axial profile of a CW piston obtained from (6.7) can be

found in Figure 6.2. This plot shows the presence of a series of minima and
maxima along the acoustic axis. These peaks and troughs are caused by the
interference between the principal plane wave from the transducer’s surface and
the wave radiating from the edges. Due to the high symmetry of a circular
source, the edge waves from every point on the circumference will all arrive at
a point on axis with the same phase. This can result in complete destructive
interference with the plane wave.

To find the axial positions of these extrema first observe that for z > a the
square root in (6.7) can be replaced with its binomial expansion. Retaining only
the first two terms of the expansion gives

|p(0, z)| = 2Z0v0

∣∣∣∣sin(ka24z

)∣∣∣∣ . (6.8)

From (6.8) it can be seen that destructive interference corresponds to locations
where the sine function takes the value of 0. Similarly, the sine function takes
the value 1 when the interference is constructive. These z-locations are found
by setting

ka2

4z
=
nπ

2

{
n is odd: maxima

n is even: minima

}
. (6.9)

The furthest maximum from the transducer face is found by setting n = 1 in
(6.9). Solving for z reveals that this last axial maximum is found at a distance

z =
a2

λ
, (6.10)

where λ is the wavelength. This distance is often referred to as the near-field/far-
field transition point, or simply the “transition distance”. As pointed out by
Goldstein,3 the term “far-field” should only really refer to distances sufficiently
far from the transducer where the amplitude has a 1

r dependence. Whilst the
axial pressure amplitude is monotonically decreasing at distances beyond (6.10)
the true “far field” is often much further away.

Before proceeding, it is essential to stress the limitations on the use of (6.10).
All too often (6.10) is used to predict the position of the last axial maximum
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without regard to how the transducer is being used. The entire derivation above
was based around a CW source of excitation. When a transducer is driven with a
transient signal there may be little (if any) opportunity for interaction between
plane and edge wave components since they are temporally separated. This
can result in the last axial maximum being much closer to the transducer than
predicted by (6.10). Transient excitation will be further discussed in Section
6.2.

The directional response

For points that are truly in the far field of a circular plane piston it is also
possible to approximate the directional response without needing to evaluate the
full field description of (6.2). A comprehensive derivation of this approximation
is provided by Pierce5 but the key points are summarised below.

Figure 6.3: A circular plane piston source in an infinite baffle.

For a circular plane piston the geometry of Figure 6.1 is modified such that
the coordinate system is as shown in Figure 6.3. It can be shown that when r

5Pierce AD. Acoustics: An Introduction to Its Physical Principles and Applications. 1994
ed. Melville: Acoustical Society of America 1994.
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is approximated with the first two terms of its binomial expansion, and when
r ≫ a, the acoustic pressure p(r, θ, t) is given by

p(r, θ) = −j P0e
−jkr

2πr

∫ ρ=a

ρ=0

(∫ η=2π

η=0

ejkρ sin θ cos η dη

)
ρdρ, (6.11)

where θ is the out-of-plane angle, η is the in-plane angle and P0 is the pressure
amplitude. The zeroth order Bessel function of the first kind is defined as

J0(σ) =
1

2π

∫ 2π

0

ejσ cos ζdζ. (6.12)

Substituting (6.12) into (6.11) yields

p(r, θ) = −j P0e
−jkr

2πr

∫ ρ=a

ρ=0

2πJ0(kρ sin θ)ρdρ. (6.13)

However (6.13) can be further simplified with the relationship∫
σJ0(σ) dσ = σJ1(σ). (6.14)

To exploit (6.14) a change of variable σ = kρ sin(θ) is needed and thus∫ ρ=a

ρ=0

J0(kρ sin θ)ρdρ =
1

k2 sin2 θ

∫ σ=ka sin θ

σ=0

σJ0(σ) dσ. (6.15)

Combining (6.14) with (6.15), substituting into (6.13), and simplifying gives a
final form of

p(r, θ) =
−ja2P0

2

e−jkr

r
D(θ, k), (6.16)

where D(θ, k) (often referred to as the far-field directivity pattern of a circular
plane piston transducer) is given by

D(θ, k) =

[
2J1(ka sin θ

ka sin θ

]
. (6.17)

Figure 6.4 shows a plot of (6.17) for a transducer of radius 5mm, operating
at both 0.5 and 1.5MHz in water. The higher frequency case corresponds to
configuration displayed in Figure 6.2.

In his 1966 paper Williams6 observed that (6.17) is only valid at large dis-
tances from the source. This assertion was subsequently quantified by Gold-
stein,3 who compared the shape of far-field directional responses provided by
(6.16) with lateral profiles derived from (6.2) and found that the two were iden-
tical at 6.41 times the transition distance. He also considered the position of
the first minimum of (6.16) and the first minima of a lateral profile determined

6Williams Jr AO. Medium- and far-field expressions for velocity potential of circular plane
piston. J Acoust Soc Am 1966 39:1142–1144.
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Figure 6.4: The approximation to the far-field directivity function of a circular
plane piston as given by (6.17).

from a full beam expression such as (6.2). He showed that the positions of these
minima were the same at 1.15 times the transition distance.

These two cases are important because models based upon (6.17) are often
used to estimate the effective radius of an experimentally measured, plane piston
source. A determination of effective radius based upon the position of the first
lateral minimum is likely to be relatively accurate at distances of only 1.15
times the transition distance. However, it is not uncommon to evaluate effective
radius by comparing the experimentally determined −3-dB and −6-dB widths
of the main lobe with similar values from (6.17). This latter case is dependant
upon the shape of the main lobe and should therefore only be undertaken with
measurements taken at much greater axial distances.

Therefore as a general rule when determining effective radius from the width
of the main lobe, unless axial distances are sufficiently great (e.g., 6×transition
distance), reliance on the approximation provided by (6.17) may be unwise.
Instead a full description of the acoustic field radiated from the circular plane
piston should be used. Equation (6.2) can be readily evaluated with numerical
integration techniques or other solutions of comparable accuracy such as that
of Mast and Yu4 or Mellow.7

7Mellow T. On the sound field of a resilient disk in free space. J Acoust Soc Am 2008
123:1880–1891.
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6.1.2 Rectangular plane piston in an infinite baffle

The full field

Whilst circular plane pistons provide a useful, and comparatively simple, model
against which single element transducers can be compared, they are of little
benefit for non-circular geometries. The vast majority of diagnostic imaging
arrays use rectangular elements in either LE or WE modes. Prediction of the
field produced by these transducers requires the solution of the Rayleigh integral
for CW radiation from a rectangular plane piston.8,9

Figure 6.5: A rectangular plane piston source in an infinite baffle.

As with the case of the circular plane piston transducer, the reader is referred
to the literature for the detailed mathematical derivations, but the method
of Ocheltree and Frizzel8 is briefly described here. For rectangular sources a
Cartesian geometry is most appropriate. The rectangular source of dimensions
Lx and Ly (as shown in Figure 6.5) is subdivided into N smaller rectangular
regions. Each region is too large to be considered as a Huygens point source,

8Ocheltree KB, Frizzel LA. Sound field calculation for rectangular sources. IEEE Trans
Ultrason Ferroelectr Freq Control 1989 36:242–248.

9Ding D, Zhang Y, Liu J. Some extensions of the Gaussian beam expansion: radiation
fields of the rectangular and the elliptical transducer. J Acoust Soc Am 2003 113:3043–3048.
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but is still small enough to permit some simplifying assumptions. The centre of
the nth region is (xn, yn) and all regions have a width and height of ∆w and ∆h
respectively. The elemental area is thus ∆A = ∆w∆h. For an arbitrary point
in the field (x, y, z) the following distances can be defined

x̂n = x− xn ;

ŷn = y − yn ; (6.18)

r =
√
x̂2n + ŷ2n + z2 .

The CW pressure from a rectangular source can then be defined as

p(x, y, z) =
jρ∆Ac

λ

N∑
n=1

[
une

−jkr

r
sinc

(
kx̂n∆w

2r

)
sinc

(
kŷn∆h

2r

)]
, (6.19)

where un is the surface velocity of element n, and sinc(x) = sin(x)
x . The assump-

tions used in the derivation above require that the measurement point (x, y, z)
be in the far field of each rectangular subregions (NB: this does not require that
the measurement point is in the far field of the overall source). This assumption
can effectively be satisfied by ensuring that ∆w and ∆h are kept sufficiently
small. Ocheltree and Frizzel8 used a value of

∆w =

√
4λz

10
(6.20)

for their examples, with a similar expression for ∆h.

The axial field

Equation (6.19) has been used to calculate the axial acoustic pressure from a
square piston transducer whose side length matches the diameter of the circu-
lar plane piston of Figure 6.2. The results for the rectangular plane piston are
displayed in Figure 6.6. Note that for the square transducer, the last axial max-
imum is much further away than for the circular case. Furthermore, although

Figure 6.6: The axial acoustic pressure profile produced by a square plane piston
transducer (side length 10mm) driven with a continuous 1.5-MHz sinusoid.
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the on-axis pressure exhibits maxima and minima, the range of their amplitude
variation is much less than the circular case. As before, the explanation of these
features requires an understanding of the edge wave behaviour. The symmetry
of a circular source ensures that the path length to an on-axis point is the same
from all points on the circumference. This enables complete destructive inter-
ference of plane and edge wave components. In contrast, square (or rectangular)
sources have a very much restricted symmetry. Consider an on-axis measure-
ment point. The path length from this point to the corner of the source is larger
than the distance from the measurement point to the middle of one side. This
range of path lengths prevents all edge wave component arriving on-axis at the
same time and thus complete destructive interference with the plane wave does
not occur.

The directional response

The directional response of a rectangular radiator has already been implied in
the expression of the full pressure field. Recall that (6.19) is a sum of sinc
functions each of which relates to the far field of one of the rectangular sub-
regions. A familiar concept in optics is that the far-field radiation pattern of
an aperture is simply its spatial Fourier transform.10 A boxcar (or rectangle)
function is defined as one whose value is zero every where except for a single,
finite interval within which the value is constant. Therefore the velocity profile
of a plane rectangular source takes the shape of a boxcar function. It is well
known that the Fourier transform of a boxcar function is a sinc function. For a
rectangular plane piston the directional response is simply the product of two
sinc functions11 (one in each of the x and y directions) and is given by

p(r, θ, γ) =
−j4LxLyP0

2π

e−jkr

r
sinc

(
kLy

2
cos γ sin θ

)
sinc

(
kLx

2
sin γ

)
. (6.21)

Observe that (6.21) can be considered as the limiting case of (6.19) when the
source is only divided into one subregion.

6.2 Transient excitation

In his review of transient radiation, Harris12 discusses the wide range of analyt-
ical techniques available to the field patterns not due to CW excitation. One
of the most widely used methods for predicting transient fields was developed
by Stepanishen.13 The Stepanishen method relies upon a Green’s function ap-

10Goodman JW. Introduction to Fourier optics. 3rd ed. Englewood: Roberts 2005.
11Molloy CT. Calculation of the directivity index for various types of radiators. J Acoust

Soc Am 1948 20:387–405.
12Harris GR. Review of transient field theory for a baffled planar piston. J Acoust Soc Am

1981 70:10–20.
13Stepanishen PR. The time-dependent force and radiation impedance on a piston in a rigid

infinite planar baffle. J Acoust Soc Am 1971 49:841–849.
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proach to solve the Rayleigh integral (albeit expressed in terms of the acoustic
velocity potential).

For a piston transducer (i.e., one whose velocity distribution v(t) is uniform
across its surface S), the velocity potential can be expressed as

ϕ(r⃗, t) =

∫ t

0

v(t0) dt0

∫
S

g(r⃗, t|r⃗0, t0) dS, (6.22)

where g(r⃗, t|r⃗0, t0) is the appropriate Green’s function. To emphasize the dif-
ference between CW and transient cases, the temporal dependence of particle
velocity v(t) will be explicitly retained in all equations. For this type of problem,
the Green’s function has been previously solved14 and is given by

g(r⃗, t|r⃗0, t0) =
δ
(
t− t0 − |r⃗−r⃗0|

c

)
2π|r⃗ − r⃗0|

. (6.23)

Substitution of (6.23) into the second integral of (6.22) allows the definition of
a spatial impulse response function h(r⃗, t− t0) as

h(r⃗, t− t0) =

∫
S

δ
(
t− t0 − |r⃗−r⃗0|

c

)
2π|r⃗ − r⃗0|

dS. (6.24)

The solution for the velocity potential is therefore

ϕ(r⃗, t) =
∫ t

0
v(t0)h(r⃗, t− t0) dt0

= v(t) ∗ h(r⃗, t),
(6.25)

where ∗ denotes convolution. Thus the problem of finding the field produced by
transient excitation of an arbitrary piston shape has been reduced to finding the
relevant spatial impulse response function, and convolving this with the source
waveform.

6.2.1 Transient radiation from a circular plane piston

As for the CW case, the geometry of the circular plane piston problem is best
expressed in a cylindrical coordinate system (ρ, η, z), with a circular piston
radius a. The solution for the spatial impulse response function from a circular
piston has been shown by various authors13,15 to be expressed in two parts. For
field points within the projection of the circular piston (i.e., ρ < a)

h(r⃗, t) = 0 : t < t1, t > t3

= c : t1 < t < t2

= c
2πΩ(r⃗, t) : t2 < t < t3

(6.26)

14Morse PM, Ingard KU. Theoretical acoustics. Princeton: Princeton University Press
1986.

15Lockwood JC, Willette JG. High-speed method for computing the exact solution for the
pressure variations in the nearfield of a baffled piston. J Acoust Soc Am 1973 53:735–741.



135

and for points outside this projection (i.e,. ρ > a)

h(r⃗, t) = 0 : t < t2, t > t3

= c
2πΩ(r⃗, t) : t2 < t < t3

, (6.27)

where t1 = z
c and is the shortest propagation time from a point on the surface

of the transducer to the measurement point. In comparison with the CW case,
this is the arrival time of plane wave component from the transducer’s surface.
Similarly t2 =

√
z2 + (ρ− a)2/c and t3 =

√
z2 + (ρ+ a)2/c are the arrival

times of the edge wave components from the points on the circumference that
are nearest and farthest to the measurement point. Finally the function Ω(r⃗, t)
is given by

Ω(r⃗, t) = 2 arccos

(
(ct)2 − z2 + x2 − a2

2x
√

(ct)2 − z2

)
. (6.28)

The spatial impulse response function of (6.26) and (6.27) simply describes
the interaction of plane and edge wave components at the measurement point.
Inserting the spatial impulse response function into (6.25) yields the velocity
potential in terms of plane and edge wave interactions in much the same way
that (6.2) did for CW excitation of a circular piston source.

Figure 6.7 shows the radial field produced by the same circular piston source
as Figure 6.2, but this time driven by a single cycle of a sinusoid at 1.5 MHz,
to which a Gaussian window has been applied.

Figure 6.7: The axial acoustic pressure profile (upper) and a greyscale map of
a radial slice of the acoustic pressure field (lower) produced by a circular plane
piston transducer (diameter 10mm) driven with a single cycle Gaussian pulse
with centre frequency 1.5MHz. Greyscale image produced with AFiDS Suite
(AMH Consulting, Poole, UK).
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Comparison of the axial profiles of Figures 6.2 and 6.7 shows that the tran-
sient case has far fewer on-axis minima than the CW case; furthermore these
minima are broader and shallower than for CW excitation. It is also worth not-
ing that the position of the last axial maximum is different from that expected
when the transducer is driven continuously. Notice also from the greyscale map
the complete absence of off-axis side lobes and nulls from Figure 6.7. Due to
the finite duration of the pulsed signal there is no opportunity for the interfer-
ence between edge and plane wave components that would lead to such complex
off-axis behaviour. This figure clearly illustrates the differences between a CW
field compared with one from a transducer subject to transient excitation.

It is not uncommon to see expressions in application notes that are derived
from either (6.17) or (6.10) to characterise the field from a circular piston source
(e.g., to find the beam spread angle or the effective diameter of the source). How-
ever, in many cases it is also clear that the intended application involves using
the transducer with a transient signal. Clearly the CW assumption underlying
the theoretical expression is in contrast with the intended practical use of the
transducer. The user should clearly recognise and understand the differences
that can arise depending on how a transducer is driven.

6.2.2 Transient radiation from a rectangular plane piston

The reduced symmetry of a rectangular piston, relative to a circular one, leads
to a somewhat more complicated expression for h(r⃗, t). As was seen for circular
pistons, the propagation times between various points on the edge of the rect-
angular piston is a critical component in the form of the final expression of the
spatial impulse response. In the case of the circular piston three critical times
t1–t3 were identified and the spatial impulse response function had only three
non-zero components within (6.26) and (6.27). The Lockwood and Willette15

description of the spatial impulse response function of a rectangular plane pis-
ton identifies 8 separate time delays and this leads to a solution containing 18
separate components. These have been conveniently tabulated by San Emeterio
and Ullate16 and the reader is advised to consult this paper (and references
therein) for a comprehensive examination of this problem.

6.3 Focussing

Many medical ultrasonic systems employ one or more forms of focussing, and
several methods of focussing will be presented later. All the methods discussed
in this section are applicable to single element transducers; multi-element fo-
cussing methods (such as electronically phased arrays) are reserved for Section
6.4.

The simple representation of a focussed field within Figure 6.8 shows both
the curvature of the wavefronts and arrows indicating the direction of travel

16San Emeterio JL, Ullate LG. Diffraction impulse response of rectangular transducers. J
Acoust Soc Am 1992 65:651–662.
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at various locations. The wavefronts propagate forward until they converge at
the focal region, before diverging post-focus. The lateral extents of the acoustic
beam are clearly much smaller within the focal region than they are at source.
This aspect of focussing can be to minimise the lateral spread and is often used
in ultrasonic imaging systems to produce collimated beams of ultrasound. Note

Figure 6.8: The basics of focussing.

also from Figure 6.8 the arrows showing direction of wavefront travel become
much closer as the focal region is approached. This is a graphical illustration of
the concentration of acoustic energy at the focus, and the corresponding increase
of acoustic pressure and intensity within the focal region. The pressure focal
gain Gp of a focussed ultrasonic transducer system is defined as

Gp =
Pressure at transducer focus

Average pressure at transducer surface
. (6.29)

HIFU devices often incorporate shaped piezo-ceramic elements (sometimes in
combination with phased array technologies). These devices are designed to
exploit focussing to concentrate acoustic energy into a small area, thereby in-
creasing the ultrasound induced heating and subsequent tissue necrosis.

In practice real focussed fields are more complex than is indicated by Figure
6.8. As was seen previously, any radiating transducer surface will have plane
wave and edge wave components. Circularly radiating edge waves will also be
present for focussed ultrasound systems and thus, as before, there can be com-
plex field structures arising from the interference of these different components.
For this reason, the position of the focal depth may not necessarily coincide
with simple estimators of focal depth (for example, the radius of curvature of a
focussed radiator).

Focussed systems are often described in terms of the F -number (sometimes
referred to as Fn or F#) and is defined as

F -number =
zf
AW

, (6.30)

where zf is the focal depth of the transducer and AW is the aperture width.
For a circularly symmetric transducer system AW is simply the transducer
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diameter. However, for a rectangular transducer the length and width of the
active element will not generally be equal and there may be different focal
depths associated with each of these dimensions. Therefore it may be necessary
to define a separate F -number for the length and width foci.

6.3.1 Shaped piezo-electric elements

The simplest way of producing a focussed ultrasonic field is to use a piezo-electric
material that has an inherent radius of curvature. The case of a circular focussed
radiator was first considered by O’Neil,17 but has subsequently been addressed
by several authors, including Kossoff,18 Lucas and Muir,19 and Goldstein.20

The last of these papers provides a good review of the literature of focussed
sources.

Figure 6.9: Use of a shaped piezo-electric element to produce curved wavefronts.

The magnitude of the axial acoustic pressure of a spherically focussed circular
piston transducer (comparable to (6.8) for plane sources) is given by

|p(0, z)| = Z0v0
2A

A− z
sin

{
k

2
[B(z)− z]

}
, (6.31)

where B(z) =
√
z2 + 2b(A− z), b = A −

√
A2 − a2, and A is the radius of

curvature of the spherical bowl. For a spherical bowl subject to CW excitation,
the pressure focal gain can be approximated as

Gp =
πa2

Fgeoλ
, (6.32)

where Fgeo is the geometric focal length.

17O’Neil HT. Theory of focusing radiators. J Acoust Soc Am 1949 21:516–526.
18Kossoff G. Analysis of focusing action of spherically curved transducers. Ultrasound Med

Biol 1979 5:359–365.
19Lucas BG, Muir TG. The field of a focusing source. J Acoust Soc Am 1982 72:1289–1296.
20Goldstein A. Steady state spherically focused, circular aperture beam patterns. Ultra-

sound Med Biol 2006 32:1441-1458.
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6.3.2 Acoustic lenses

Figure 6.10: Use of an acoustic lens to induce curvature to previously parallel
wavefronts.

When considering acoustic lenses it is instructive to make a comparison
with optics. The speed of light in air is very close to the fundamental upper
limiting value of the speed of light in a vacuum. Therefore in practice, any
optical components must be made from materials in which the speed of light is
lower than that in the surrounding medium. Consequently a glass plate with
one planar and one convex surface (a plano-convex lens) will always form a
converging lens.

In contrast to the optics case, materials used to construct an acoustic lens
could have acoustic speeds that are either faster or slower than those in the
surrounding materials. Consider propagation of an ultrasound wave in water
(speed of sound 1480m s−1). Many epoxy resins have sound speeds in excess
of 2000m s−1, whilst the majority of metals have sound speeds greater than
3000m s−1. In contrast many silicone rubbers have a speed of sound below
1000m s−1. Clearly then, an acoustic plano-convex lens could be either con-
verging or diverging, depending on the velocity of sound in the material from
which it is made.

Another important difference between optics and acoustics arises from the
vast difference in the speeds of light and sound. The transit time of light across
an optical lens is negligible, but the same cannot be said for ultrasonics systems.
Consider the acoustic lens shown in Figure 6.11, where the material of the lens is
faster than the surrounding medium. In the time taken by a wave at the edge of
the lens to travel a distance Z1, a wave in water at the centre will have travelled
a distance Z2. Therefore the effective radius of curvature of the wavefront
leaving the lens is shown by the dashed grey line, which is much shallower than
the geometric radius of curvature. Consequently the effective focal length (also
shown with a dashed grey line) is ∆f larger than the geometric focal length.

A simple geometric calculation could be conducted to estimate the increase in
focal length as a function of lens properties and dimensions. However, this would
not account for phenomena such as edge/plane wave interactions or secondary
diffraction of the edge wave. In practice, when designing a transducer that
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Figure 6.11: Effective focal length of a lens: the solid black line indicates the
geometric focus, the dashed grey line the effective focus.

incorporates an acoustic lens, a numerical model is often used to predict the
true position of the acoustic focus.

6.4 Transducer arrays

The logical extension from a single element transducer is to have an array of
transducer elements. By dividing a piezo-electric material into smaller subre-
gions it is possible to reduce its effective capacitance. This in turn reduces
the electrical impedance of the piezo-electric element, and it is thus easier to
electrically drive the transducer. However, the major benefit of arrays derives
from the ability to be able to drive each element independently and specifically
the ability to adjust the precise time that transducer elements produce their
acoustic signal.

The simplest ultrasonic transducer “fires” its acoustic signal whenever a volt-
age is produced by the signal generator/amplifier driving it. However, almost
all transducer arrays introduce a variable length delay line to each transducer
element so that the instant that each element fires can be precisely controlled.
These type of arrays are known as phased arrays. This inter-element delay
function allows acoustic beams to be steered or focussed in an almost unlimited
number of different ways, and provides incredible flexibility in the nature of
ultrasonic fields that are produced.
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6.4.1 Beam steering

Consider initially an array where each element has a delay that is linearly pro-
portional to the distance from the top edge of the array as shown in Figure
6.12. As can be seen, in the very near field the discrete nature of each wavefront
can be identified. As these wavefronts propagate forward, diffractive spreading
means that they eventually combine to form one continuous wavefront. Note
that the wavefront is inclined relative to the surface of the array — the beam
has been steered by an angle θ.

Figure 6.12: Beam steering with an 8-element linear phased array.

Figure 6.12 would tend to suggest that all of the acoustic energy is propa-
gating at one angle only. In practice, two other factors influence the direction at
which ultrasound propagates. Firstly, each transducer element will have its own
directivity function. Typically elements are rectangular and thus a response of
the form (6.21) will probably be appropriate. The directional responses of all
elements will contribute to the far-field beam pattern, and thus in addition to
the main beam there will also be lower level side lobes. An example of this can
be found in Figure 6.13. As was seen in (6.21) the directional response of each
element is a function of both the element dimensions and the wave number.
Consequently the amplitude and position of side lobes is highly dependant of
the geometry of array and its operating frequency.

Figure 6.13 also identifies the second area of concern when looking at the
directional response of an array: that of grating lobes. Students of physics
will be familiar with diffraction gratings and the equation that describes them,
specifically that the angle of intensity maxima is given by

nλ = d sin θ, where n ∈ 1, 2, 3, ... . (6.33)

The elements of an ultrasonic array behave in a very similar manner to the
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Figure 6.13: Grating and side lobe artefacts on a 16-element array steering a
beam by 30o.

slots on a diffraction grating, and thus if the inter-element spacing d becomes
too large, grating lobes will be introduced. Wooh and Shi21 have combined
these two effects into a single expression for the directivity of an array in polar
coordinates D(θ, γ) such that

D(θ, γ) = D1(θ, γ) ·D2(θ, γ). (6.34)

In (6.34), D1(θ, γ) is the contribution due to the directivity of the individual
rectangular elements and is given by

D1(θ, γ) =

∣∣∣∣sinc(πa sin θ cos γλ

)
sinc

(
πL sin θ sin γ

λ

)∣∣∣∣ , (6.35)

whilst the diffraction grating term D2(θ, γ) is given by

D2(θ, γ) =

∣∣∣∣∣ sin
[
N πd

λ
(sin θS − sin θ cos γ)

]
N sin

[
πd
λ
(sin θS − sin θ cos γ)

] ∣∣∣∣∣ . (6.36)

In both (6.35) and (6.36), d is the inter-element separation, a is the width of an
individual element, L is the length of an individual element, N is the number
of elements in the phased array group, and θS is the steering angle.

CAUTIONARY NOTE : The geometry used to define angles is sub-
tly different between the convention used in this chapter and that
of Wooh and Shi. This accounts for the slight difference in form
between (6.35) and (6.21).

21Wooh S-C. and Shi Y. Three-dimensional beam directivity of phase-steered ultrasound.
J Acoust Soc Am 1999 105:3275–3282.
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6.4.2 Beam focussing

Phased arrays can also be used to focus an ultrasonic beam. This is probably the
most widely used of all focussing methods, since this technique is implemented
in almost all diagnostic imaging devices. As shown in Figure 6.14, the outermost
elements have the shortest delay (∆t1) and produce their acoustic signal first.
The next pair of elements to fire have delay ∆t2, with another pair of elements
firing shortly after at ∆t3. The innermost elements are the last to fire after
a delay of ∆t4. As with steered beams, diffractive spreading rapidly ensures
a curved wavefront is formed as a composite of the contributions from each
individual element.

Figure 6.14: Use of an electronic phasing of array elements to produce a curved
wavefront.

Since the various delays are not fixed, different focal depths can be obtained
by simply changing the relative delays. Almost all diagnostic ultrasound ma-
chines exploit this function to allow multiple, user-selectable, focal zones. As
drawn in Figure 6.14, the delays are selected so as to achieve a circularly curved
wavefront, but alternative shaped profiles (e.g., parabolic or hyperbolic) can by
appropriately selected delays. Beam steering is also commonly combined with
beam focusing to produce an acoustic beam that is focussed off to one side.

6.4.3 Transducer array configurations

Thus far the description of electronically phased arrays has concentrated only
on 1-dimensional (1D) linear arrays. However, 1D curved arrays (sometimes
referred to as curvilinear arrays) are common. As can be seen from Figure 6.15,
whilst a linear array images a parallel sided slice of the subject, a curvilinear
array interrogates a sector of a circle, and thus has a wider field of view at
depth that it does near the surface. Linear and curvilinear are probably the
most widely used diagnostic ultrasound arrays.

The acoustic field that is produced by a 1D phased array is only focussed in
the plane parallel to the long axis of the array. However, it may be desirable to
prevent the beam from spreading in the elevation direction (i.e., orthogonal to
the long axis of the array). This is commonly achieved by placing an acoustic
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Figure 6.15: Types of 1-dimensional phased array: (a) linear and (b) curvilinear.

lens in front of the array elements to limit the elevational beam spread. This
can be seen in Figure 6.16(a). Simple acoustic lenses have a fixed focal length.
This can be a limitation, particularly if the primary focus of the phased array
is significantly different from that of the front surface lens.

Figure 6.16: Elevational focussing for a phased array: (a) with an acoustic lens
and (b) the so-called 1.5D array with additional phased array elements in the
elevation direction.

The obvious extension to the simple 1D array is to have a few additional
rows of elements so that some form of phased array focussing in the elevation
direction is possible. Whilst there may be many array elements (> 100) in the
principal direction, the array will contain only a limited number of elements
(typically 8–12) in the other (elevation) direction. These have become known as
1.5D arrays and an example is shown in Figure 6.16(b). Clearly these devices
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have additional complexity, but provide a more flexible solution to the problem
of elevation focussing. Rather than having a fixed focal length lens, a 1.5D
array can have its elevation focal length adapted to suit the focal length in
the principal focussing direction. Two-dimensional arrays are the most recent
development in ultrasonic array technology and have the advantage of being
able to scan a volume (rather than a slice — which is the case with 1D arrays).
Furthermore, the ability to be able to independently phase rows and columns
allow beam steering in any direction. When coupled with high speed image
processing software, 2D arrays enable the clinician to view, rotate, and slice
the image in a myriad of different ways to aid diagnosis. A diagram of a 2D
array can be found in Figure 6.17(b). The last array type (annular arrays) are

Figure 6.17: Further phased arrays: (a) an annular array and (b) a 2D array.

commonly used in therapeutic ultrasound (particularly HIFU). Annular arrays
provide a simple “on-axis” focus, but the focal depth can be varied by altering
the phase of the individual annular elements. This is particularly useful when
trying to correctly target an ultrasound induced lesion on the region of tissue
being treated. Figure 6.17(a) shows a typical annular array configuration.
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7
Medical imaging

Knut Matre and Odd Helge Gilja

7.1 Standard ultrasonic imaging modes

The use of acoustic waves to obtain 2-dimensional (2D) images of human organs
and organ systems was first presented in the 1960s, by applying a single element
probe and mechanical movement of this probe, so-called static scanning. Al-
though the images had poor spatial resolution, they provided novel images of
the human foetus that caused debate about monitoring of the foetus.

Since then, ultrasonic imaging has undergone an enormous development.
Modern scanners for clinical use look similar to the line drawing in Figure 7.1,
not much unlike a full-blown personal computer on wheels with several hard
drives and integrated peripheral devices, but with ultrasonic probes attached.

This Chapter goes through the different imaging methods and discusses the
improvements that have been carried out to make ultrasound one of the most im-
portant imaging modalities in medicine. In the early years of ultrasonic imaging,
different modalities were obtained using separate instruments, for example, 2D
greyscale images and pulsed Doppler measurements required two separate exam-
inations. Modern ultrasound scanners have incorporated all imaging modalities
and these are now routinely used together for most clinical examinations.

7.1.1 A-mode

Of the single beam display methods, the A-mode (A = amplitude) is the simplest
form of displaying the received echo from tissue interfaces. Figure 7.2 shows how
the deflection in the z-direction of a travelling beam can be proportional to the
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Figure 7.1: Modern ultrasound scanner with a monitor (a), manual
controls (b), several probes (c), DVD-RW drive (d), and a printer (e).

amplitude of the received echoes. The z-axis can display time from transmitted
pulse, but if the ultrasound velocity is known, we can mark the z-axis as depth,
since

d =
ct

2
, (7.1)

where d is the depth and c is the ultrasound speed. Choosing an average speed
of ultrasound for biological tissue makes all dimensional measurements from
A-, M-, and B-mode calibrated at this speed. The most commonly used mean
ultrasound speed is 1540m s−1. Large deviations from 1540m s−1 will introduce
errors in the dimensional measurements.

The A-mode was the first display method used for clinical examinations.
Nowadays, it is mainly used for adjustment of the gain, time gain compensa-
tion (TGC), also called time varying gain (TVG). It is necessary to obtain an
even amplitude registration at all depths to compensate for the attenuation of
ultrasound in tissue. The attenuation determines the TGC slope. The A-mode



149

Time

Ultrasound

Direction

V
o
lt
a
g
e

Time

V
o
lt
a
g
e

A
m
p
lif
ic
a
ti
o
n

Time

V
o
lt
a
g
e

Time

Z

X

a

b

c

e

d

f

Figure 7.2: Display method for single-beam pulse-echo measure-
ments: (a) ultrasound ray, (b) radio-frequency (RF) data, (c) Hilbert-
transformed data, (d) time gain compensation (TGC), (e) A-mode, (f)
1D B-mode.

is a 1-dimensional (1D) imaging system with the amplitude of peaks indicating
signal strength.

The maximum distance for imaging, Rmax, is determined by the pulse repe-
tition frequency PRF:

Rmax =
c

2PRF
. (7.2)

If deeper structures need to be imaged, PRF must be reduced, which follows an
adjustment of the depth control.

7.1.2 B-mode

If the echoes are displayed as pixels on the screen with the brightness of each
pixel corresponding to the strength of the reflected signal, we obtain what is
called a B-mode (B = brightness) display. Again, it is necessary to use TGC to
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compensate for ultrasound attenuation. Each scan line can be considered an A-
mode image. By changing the beam direction in a manually controlled manner,
a 2D greyscale image can be obtained, as demonstrated in Figure 7.3. The
earliest 2D B-mode images were carried out using a mechanical registration of
the probe movement. By using a storage screen, a single 2D image was created.
This method could not be used on moving objects. The typical PRF for B-mode
imaging is between 2 and 4 kHz.

Figure 7.3: Schematic representation of 2D B-mode imaging.

7.1.3 M-mode

Displaying the echoes along one beam as a function of time is called M-mode (M
= motion), as shown in Figure 7.4. The advantage of this display mode is the
excellent time resolution. The sampling frequency can be up to 1 kHz, making it
useful to study movement of, for example, heart valve leaflets. The limitation of
this display form is that it can only be generated from one beam direction. The
so-called curved anatomical M-mode gives the user the opportunity to display
the M-mode for a chosen contour in the 2D B-mode image, independent of beam
direction.

Δx

Δx

Δt

Figure 7.4: Schematic representation of M-mode imaging.
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7.1.4 Real-time scanning

By moving the scanning beams in a controlled manner and obtaining a frame
rate of above approximately 20 frames s−1, live images can be obtained. Both
revolving and oscillating single element transducers were used in different me-
chanical sector probes. These were relatively cheap probes, but the disadvan-
tages were, in addition to the vibration from the motor and subsequent wear, a
small image view because of the sector format and a low frame rate. The most
advanced mechanical sector probe was the annular array, where several separate
transducer rings enabled focusing in both lateral and elevation dimensions, thus
improving the resolution of 2D images considerably. Nowadays, the annular
array is mainly used for endosonographic probes.

Figure 7.5(a) shows the working principle of the linear array developed in the
late 1960s. Each scan line with received echoes displayed in B-mode is completed
before the next pulse is transmitted from the neighbouring element. Therefore,
the scanner must have a number of parallel processing channels matching the
number of transmitted beams. Increasing the number of beams increases the
lateral resolution of the scanner, but also requires an increasing number of chan-
nels, which add to the complexity of the scanner. In contemporary scanners,
both transmitting and receiving are carried out using several elements. Elec-
tronic focusing is now the standard method for controlling the lateral resolution
of the B-mode images.

a

b

c

Linear 

Probe

Curvilinear

Probe

Sector

Probe

Figure 7.5: Real-time scanning transducer arrays: (a) linear probe, (b)
curvilinear probe, (c) sector probe.
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Figure 7.5(b) shows the working principle of the curvilinear probe. This is a
linear array of elements with a curved probe surface, giving a larger field of view
at depths. The disadvantage of this probe is that the beam density is reduced
at depths, which causes a reduced lateral resolution.

Figure 7.5(c) shows the working principle of the sector probe. This type
of probe is the standard probe for imaging the heart, where small intercostal
spaces limit the useful active area, the so-called footprint, of the probe. The
sector probe suffers even more from the reduction of beam density at depths.
As mentioned earlier, the sector scanning can be obtained using a mechanical
movement of a single element transducer. These days, nearly all sector probes
are of the phased array type, using electronic steering of the ultrasound beam.
Figure 7.6 shows how we can obtain controlled steering of the beam by using six
crystal elements during transmission with a short time delay between separate
transmission pulses. A typical number of elements is 64. Frame (a) shows all
elements activated at the same time, which results in a wavefront transmitted
straight forward. Frame (b) shows that a time delay introduced between ele-
ments results in a steered wavefront. With the phased array probe, high frame
rates can be obtained, typically for the heart 70–90 frames s−1 for maximum sec-
tor width (90 o) and 200–300 frames s−1 for a smaller sector. Figure 7.7 shows
some standard array probes used for diagnosis.

7.1.5 Dynamic focus

We can focus a single element transducer by using either a curved element or a
lens. This gives a narrow beam (focal zone) at one depth. Figure 7.8 shows the
principle of dynamic focus; in this example the received pulse is focussed using
six elements. The focal zone can be changed as echoes from increasing depths
are expected by altering the time delays. Thus, multiple focal zones can be
obtained. Sweeping of the focal zone during receiving is called dynamic focus.

Focussing and steering can be obtained for the linear and curvilinear probes
as well as the phased array. An important factor for dynamic focusing is the
probe aperture. A large probe aperture (many elements) focusses better than a
small probe aperture.

7.1.6 Compound scanning

Steering of the ultrasound beam for a linear probe in alternating directions
slightly off the normal direction gives better echoes from interfaces that are
close to parallel to the beam. This is called compound scanning. Compound
scanning improves the images of a circular object like the abdominal aorta
in cross-section, since almost the whole circumference will be recorded. The
disadvantage of compound scanning is that it only gives half the frame rate of
conventional linear scanning.
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Figure 7.6: Electronic sector scanning using the phased array for beam
steering.

7.1.7 Curved anatomical M-mode

Instead of displaying the M-mode of echoes along one beam, ultrasound scanners
have the possibility to draw a curved line in a stored 2D B-mode image and
to display the echoes from this trajectory. This is called the anatomical M-
mode. Figure 7.9 shows how the curved anatomical M-mode from the ventricular
septum of the heart is perceived.

7.1.8 Resolution of a B-mode image

In B-mode imaging, the image resolution is defined as the minimum distance
between two small objects that appear as two objects on the screen. Moving the
two objects any closer will result in only one echo on the display. The resolution
is usually different in different directions, labelled as axial resolution along the
beam, also called radial resolution for sector image formats, lateral resolution
across the beam (in-plane), and elevational or azimuthal for slice thickness (cf.
Figure 7.10). The latter is normally controlled by a fixed lens giving some
focusing of the slice thickness over a relatively large depth range. This can be
improved by using a 1.5D matrix probe employing five arrays of crystals and
with the use of time delays, as shown in Figure 6.16.
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a b c

Figure 7.7: Standard array probes: 11-MHz linear array (a), 4-MHz
curvilinear array (b), and 5-MHz, 1.5D matrix phased array (c).

The axial resolution R is defined by

R =
cτ

2
=

c

2B
, (7.3)

where τ is the pulse length and B is the pulse bandwidth. Thus, the axial
resolution is proportional to the pulse length. The improvement of images in
the 1980s and 1990s was a result of the development of wide-band transducers
that were able to transmit short pulses.

Across the beam, the in-plane lateral resolution L is mainly determined by
the size of the probe. For a spherical single element, it is defined by

L =
λF

D
, (7.4)

whereD is the transducer aperture, F is the focal depth, and λ is the wavelength.
Thus, the resolution improves with larger aperture.

7.1.9 Factors affecting image quality

Table 7.1 shows the most important factors determining image quality; some of
these can be controlled by the operator. A compromise between resolution and
penetration has to be determined for each application and also for each patient.
It is necessary to obtain sufficient penetration, which can primarily be obtained
by reducing the transmit frequency. Table 7.2 gives frequencies and penetration
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Figure 7.8: Principle of dynamic focus: (a) A spherical wavefront is
sensed; the signals from the central elements are time-delayed before
adding all signals from all elements, so that the focus can be changed
by changing time delays. (b) Multiple foci, here indicated by focal zones
F1–F3.

depths for routine ultrasound imaging of specific organs. Examples of B-mode

Factor Ameliorated by

Resolution Higher frequency
Dynamic focus
Larger transducer aperture

Penetration Lower frequency
Higher intensity

Frame rate Lower penetration depth
Smaller sector angle

Dynamic range Higher number of greyscale levels
Lower noise level
Harmonic imaging

Artefact rejection Harmonic imaging
Smaller side lobes

Table 7.1: Quality factors for B-mode imaging.
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Figure 7.9: Anatomical M-mode of the ventricular septum.

Elevation

Lateral

Axial

Figure 7.10: Axial, lateral, and azimuthal (elevation) dimensions of an
array probe.

images are shown in Figures 7.11–7.14.

Today, higher frequencies are used for the same application than five to
ten years ago. Improved instruments with better penetration have lead to an
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increase in standard probe frequency. As an example, the standard adult cardiac
probes have shifted from 2.5–3.3 up to 4–5MHz. Also, for wide-band probes,
enabling the adjustment of the frequency during scanning has made it possible
to optimise the acquisition for a specific patient condition. An adult phased
array probe of 4MHz can be typically used at 3.3–5MHz. These frequencies are
valid for fundamental imaging where the same frequency (band) is used for both
transmission and receiving. Other frequencies are used for harmonic imaging,
as discussed in the next Section.

The ability to display both strong and weak echoes in the same image, i.e.,
a high dynamic range, is an important factor for image quality. Sometimes the
pathology appears in the form of strong echoes, as with a calcified heart valve,
but sometimes as a weak echo, as with a small tumour.

The frame rate itself might be considered a quality factor for moving objects,
such as the myocardium and heart valves. Here, the user needs to adjust depth
and sector angle to obtain sufficient frame rate.

7.1.10 Harmonic imaging

The method of harmonic imaging was first developed for contrast microbub-
bles. Tissue harmonic imaging (THI) exploits the gradual generation of higher
frequency harmonics as the ultrasound pulse travels through biological tissue.
Several advantages are obtained by using the second harmonic components gen-
erated by nonlinear processes. Higher-than-second harmonics are also received,

Fundamental Harmonic Penetration Organs
(MHz) (MHz) (cm)

2–3 1.6–2.8 30 Deep abdomen
4–5 3.6–4.6 20 Adult heart
6–7 4.2–6.6 10 Superficial abdomen

8–10 5.6–9.4 4


Peripheral vessels

Paediatric heart

Endosonographic

12–15 10–14 3



Skin

Eye

Mammae

Thyroid

Intravascular

Endosonographic

20–50 — 1

{
Skin

Eye

Table 7.2: Typical B-mode applications.
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Figure 7.11: B-mode image of the common carotid artery using an 11-
MHz linear array.

but with an increased reduction in signal amplitude. So far, only the second
harmonic components have been used for clinical B-mode imaging.

An artefact is a displayed echo not generated by an anatomic structure
but by the imaging system itself. Near-field artefacts, like reverberation, are
suppressed when using harmonic imaging, because there are only fundamental
frequencies at the transducer face and the nonlinear processes are not significant
until after some distance from the transducer. The near field also produces
image clutter that is difficult to interpret, as well as echoes from side lobes.
THI reduces image clutter and noise and therefore improves the signal-to-noise
ratio of the image.1 THI requires a receiver system with a high dynamic range
and sensitivity. It was first believed that this method could only be used for
ultrasound contrast imaging. Improvements in system design have made THI a
method used in routine B-mode imaging, too. Figure 7.15 shows typical images
from the abdomen using fundamental and harmonic imaging.

Harmonic images contain less noise and as a result more details can be
seen. For higher frequencies with lower penetration, less higher harmonics are
produced and the effect of using harmonic imaging is reduced.

1Tranquart F, Grenier N, Eder V, Pourcelot L. Clinical use of ultrasound tissue harmonic
imaging. Ultrasound Med Biol 1999 25:889–894.
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Figure 7.12: Apical four-chamber B-mode image of the heart using a
5-MHz, 1.5D matrix phased array probe. LA = left atrium, LV = left
ventricle, RA = right atrium, RV = right ventricle. Note the strong
reflection from a Swan–Ganz catheter in the RV for cardiac output mea-
surements (arrow).

7.1.11 3D/4D B-mode methods

3D and later 4D (i.e., a time sequence of 3D) B-mode imaging of the heart was
introduced using mechanical movement of the imaging plane. These early sys-
tems were not real-time; acquisition of images at a specific point in the cardiac
cycle was obtained from a number of heart beats, making the method difficult
to use. Limitations on image resolution and computer power of workstations led
to time-consuming rendering processes and made these methods a research tool
only. Less critical objects with respect to movement like the foetus and abdom-
inal organs can be imaged with mechanical steering of the imaging plane. One
of the most popular clinical systems uses a curvilinear array with a mechanical
movement. The disadvantage of this method is a low frame rate. Full (2D)
matrix probes have been developed and are getting increased clinical attention
for cardiac imaging.

In addition to the transcutaneous 3D/4D methods, 3D transoesophageal
probes for the heart have gained popularity for imaging cardiac valves. On
the abdomen, transducers with a position sensor are used in addition to the
electronic/mechanical probes discussed above. Here a small position sensor is
attached to a standard abdominal probe. Figure 7.16 shows a 3D image of the
pancreatic duct obtained with a position sensor.
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Figure 7.13: B-mode image of the kidney (K) and the spleen (S) using
a 4-MHz curvilinear abdominal probe.

For the heart, several arrangements for moving the imaging plane have been
published, but the full matrix probe is dominant in cardiac ultrasound, which
avoids the artefacts introduced by gated acquisition.2 An example of a 3D
image of the heart is shown in Figure 7.17. The frame rate is still an important
limitation of this method. Typical frame rates are 16–25 frames s−1.

7.2 Doppler methods

Methods based on the registration of the Doppler shift caused by moving reflec-
tors have become an increasingly important part of routine ultrasound exami-
nations. We can divide these methods into single-beam Doppler methods and
2D Doppler methods.

7.2.1 Single-beam Doppler methods

Figure 7.18 shows the different methods where the Doppler shift is registered
from one Doppler beam or a limited number of beams transmitted in the same

2McCulloch ML, Little SH. Imaging methodology and protocols for three-dimensional
echocardiography. Curr Opin Cardiol 2009 24:395–401.
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Figure 7.14: Using the panoramic function, the whole foetus can be
visualised with a 4-MHz probe.

L

G

Figure 7.15: Fundamental (left) and second harmonic (right) imaging
of the liver (L) and gallbladder (G), using a broadband 1–5 MHz probe.

direction. They are all based on the Doppler equation, which for a stationary
transmitter/receiver and a moving reflector, moving in the B-mode plane of
observation at a velocity v and a direction θ relative to the transducer axis, is
found by combining (4.66) and (4.68). The resulting Doppler shift is defined by
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Figure 7.16: 3D acquisition of the liver, gallbladder and pancreas using a
magnetic position sensor: Delineation of a pancreatic cyst (lower panel)
and a 3D object reconstruction by manual contour detection (upper
panel).

the difference in observed frequency and the transmitted frequency:

fD =
2 v
c cos θ

1− v
c cos θ

f0, (7.5)

where fD is the Doppler shift, f0 is the transmitted frequency, v is the magnitude
of the velocity of the blood, c is the speed of sound in blood, and θ is the angle
between the ultrasound beam and the blood flow direction. Since v ≪ c,

fD = 2f0
v

c
cos θ. (7.6)

Thus, the Doppler shift will be positive if the movement is towards the probe and
negative if away from the probe. Note that in order for the blood velocity to be
measured, the angle must be known or be small. Only the velocity component
along the axial beam is measured. The Doppler-shifted signal is demodulated.
This so-called Doppler signal is in the audible range and can be listen to via a
loudspeaker. Figure 7.19 shows the Doppler shift as a function of transmitted
frequency and velocity. The Doppler shift is proportional to the transmitted
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Figure 7.17: 3D image of the heart using a 3-MHz matrix probe: two
perpendicular planes of the left ventricle (left) and a volume-rendered
3D short axis of the left ventricle looking towards the mitral valve
(right).

frequency; a two-fold increase in transmitted frequency gives twice the Doppler
shift.

We often use a lower transmitting frequency for the Doppler pulse than for
B-mode pulse, since refections from blood are weaker than reflections from tissue
interfaces.

7.2.2 Continuous wave Doppler

As indicated in Figure 7.18(a), in the continuous wave Doppler (CWD) mode
the transmit element sends out a continuous wave of ultrasound and a separate
crystal is used for receiving the reflected ultrasound from both stationary and
moving reflectors. If we filter out the ultrasound from stationary targets, which
would have a frequency equal or very close to the transmitting frequency, we can
detect the Doppler-shifted frequencies. The CWD is sensitive to Doppler-shifted
reflections only from the hatched area in Figure 7.18(a).

7.2.3 Pulsed wave Doppler

The pulsed wave Doppler (PWD) mode is using the same crystal for transmit-
ting and receiving ultrasound, as shown in Figure 7.18(b), similar to B-mode
imaging. A short pulse of typically 6–12 cycles is transmitted with a typical
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Figure 7.18: (a) Continuous wave Doppler (CWD), (b) pulsed wave
Doppler (PWD), and (c) high pulse repetition frequency Doppler
(HPRF).

PRF of 5–15 kHz. The receiver is opened only for a short time window, called
the range cell or sample volume. This increases the axial resolution by ignoring
the Doppler shift until a set time after transmission. This time is seen as depth
in centimetres and not as time in microseconds by the observer. The increase
in axial resolution is an advantage of this method, but the trade-off is that with
a short ultrasound pulse, the frequency cannot be determined accurately. So
there is a compromise between the accuracy of Doppler-shift measurements and
depth resolution (axial resolution).

An additional problem with PWD is aliasing, which is introduced by the
PRF. Here, the Doppler frequency is sampled with the PRF. According to Shan-
non’s sampling theorem the PRF should be at least twice the highest frequency
in the signal. The highest Doppler shift that can be sampled without aliasing
is thus half the PRF, the Nyquist frequency:

fD,max =
PRF

2
. (7.7)

The corresponding blood velocity is called the Nyquist velocity. Since the PRF
is related to the penetration depth, the maximum velocity that can be measured
is also related to the depth range. Combining (7.2), (7.6), and (7.7) gives the
maximum unambiguous blood velocity as a function of the maximum distance
imaged:

vmax =
c2

8f0Rmax
. (7.8)



165

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
0

2

4

6

8

10

12

14

16

18

20

0.5 MHz

1.0 MHz

2.0 M
Hz

3.0
 M

Hz

4.
0 

M
H
z

5.
0 

M
H

z

7
.5

 M
H

z

1
0
 M

H
z

v cos θ (m s-1)

f D
 (

k
H

z
)

Figure 7.19: Doppler shift versus lateral velocity for three different
transmitting frequencies.

For example, at a distance of 10 cm, a 5-MHz Doppler system can detect veloc-
ities up to approximately 0.5m s−1 without aliasing.

7.2.4 High pulse repetition frequency Doppler

A method which enables the use of PWD for higher velocities is the high pulse
repetition frequency (HPRF) Doppler. Here, the next pulse is transmitted be-
fore the echoes from the first sample volume have been registered. Thus, the
HPRF Doppler has several sample volumes along the beam and a depth ambi-
guity is introduced. If the examiner is careful with the placement of the different
sample volumes, with only one sample volume covering a blood vessel, high ve-
locities can be measured in the pulsed mode. Figure 7.18(c) shows HPRF PWD
with only sampling in the artery. The HPRF Doppler is a standard mode for
most modern scanners. For many of these, this mode is automatically activated
when the user is adjusting the velocity scale outside the range giving no alias-
ing. Using only one sample volume along the beam is called low pulse repetition
frequency (LPRF) Doppler.

7.2.5 Directivity and spectral analysis

The RF-amplified Doppler-shifted signal is fed to a quadrature demodulator,
which multiplies the signal with both the cosine and sine of the transmitted
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frequency. This gives both the magnitude and sign of the Doppler signal. An
important property of CWD, PWD, and colour Doppler is the ability to de-
tect the direction of the velocity, towards (positive) and away from the probe
(negative).

The Doppler signal always contains a band of frequencies, because the re-
flections from blood cells across the vessel have different velocities, but also
because of the limitations of the method. After demodulation, the signal is
digitised and undergoes a Fourier-spectral analysis. This signal is displayed as
a time curve with a velocity distribution for typically every 5ms. Figure 7.20
shows a spectral curve from the normal carotid artery with a narrow band of
velocities in the acceleration of blood during systole, i.e., a flat velocity profile,
and a wider band of velocities during diastole, i.e., a parabolic velocity profile.
Thus, the spectral analysis gives information of blood flow quality as well as
velocity information.

7.2.6 Duplex scanning

Combining PWD and B-mode imaging, as in Figure 7.20, is called duplex scan-
ning. For the time intervals of B-mode measurements, the Doppler signal is
substituted with a synthetic signal from a missing signal estimator to produce
a continuous Doppler signal.3 A lower frame rate for the B-mode image results

3Kristoffersen K, Angelen BAJ. A time-shared ultrasound Doppler measurement and 2-D
imaging system. IEEE Trans Biomed Eng 1988 35:285–295.

Figure 7.20: Duplex scanning of the common carotid artery.
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for this combination. Most ultrasound scanners have the possibility to freeze
the B-mode image and update it with a low or high frame rate, gradually de-
creasing the quality of the Doppler acquisition as a result. The duplex scanning
mode makes Doppler methods easier to use and improves diagnosis. However,
one should keep in mind that the ultrasound beam should preferably be per-
pendicular to tissue interfaces and parallel to blood vessels. Figure 7.21 shows
an example of duplex scanning in the abdomen whilst recording high velocities
with HPRF Doppler.

Figure 7.21: Measuring high velocities in the arteria mesenterica supe-
rior, whilst using duplex scanning with HPRF Doppler.

7.2.7 Colour Doppler

Using many sample volumes along the beam requires many Doppler scan line
processor channels in parallel. Sweeping this beam with multiple sample vol-
umes give velocity information in a 2D area. The mean velocity is then con-
verted to a colour code for online interpretation. This method is called colour
Doppler (CD) or colour flow mapping (CFM). Usually the resolution for colour
Doppler is less than for B-mode, because a large beam width and sample vol-
ume are required for getting sufficient echoes from moving blood, resulting in
large colour picture elements. An important limitation of the colour Doppler
method is that it goes into aliasing often at normal arterial velocities, because
it is a pulsed Doppler system. The standard colour coding is here red for ve-
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locities towards the probe, blue for velocities away from the probe, and yellow
or green for velocities above the Nyquist limit. It is important to note that
colour Doppler only measures velocities along the beam and can not detect ve-
locities across the beam. Figure 7.22 shows a colour Doppler recording of the
common carotid artery. The colour Doppler mode is part of most contemporary
ultrasound examinations. It is used to visualise large and small vessels and to
identify hypo-echoic regions in the B-mode image. These could be different fluid
lumina like an artery, vein, or a cyst. Combining B-mode imaging with both
PWD and CD is called triplex scanning.

Figure 7.22: Colour Doppler of the common carotid artery, here shown
in greyscale. The virtual box in which the velocities are displayed in
colour is user-defined.

7.2.8 Power Doppler

An alternative colour coding is called power Doppler. Instead of the velocity,
here the signal power is displayed as one colour (yellow) with a longer time
constant introduced. This method is useful for detecting small vessels and also
for semi-quantitative measurement of blood perfusion and measurements of the
vessel lumen.
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7.2.9 Blood flow measurement

It is possible to measure blood flow by combining PWD and B-mode or power
Doppler. Blood flow is given by:

Q = Av cos θ, (7.9)

where Q is blood flow (volume per duration), v is the velocity averaged in space
and time, and A is the cross-sectional area. Blood flow is normally estimated
from the velocity in PWD mode with a large sample volume to cover both the
highest velocity at the centre of the vessel and the lowest velocity close to the
vessel wall. This mean velocity is then time-averaged over one or multiple heart
cycles and multiplied with the cross-sectional area. The vessel cross-section can
be measured from the B-mode image or from a power Doppler image. Fig-
ure 7.23 shows an example of flow measurement in the normal common carotid
artery. Despite the limited precision of the method, in normal straight sections
of an artery, good estimates can be obtained. There are few alternatives for
completely non-invasive blood flow measurements; magnetic resonance imaging
(MRI) is the only relevant option. The cardiac output of the heart can be
measured in a similar manner. The left ventricular outflow tract is close to
cylindrical and thus both the cross-section and velocity distribution are quite
symmetrical, even though some skewness in the velocity profile has been shown
both in the left ventricular outflow tract and the ascending aorta.4,5

7.3 Special techniques

There are several special ultrasound imaging techniques, which are performed by
different medical specialities, for example the special techniques for investigating
the gastrointestinal tract carried out by a gastroenterologist.6

7.3.1 Endosonographic methods

If the ultrasound array is small enough to be swallowed, the penetration depth
can be lowered and the frequency can be increased to obtain higher resolution.
Transoesophageal probes are used both in cardiology and in gastroenterology.
The latter probe usually also includes optical imaging. Other endosonographic
methods in use are transvaginal, transrectal, and intraluminal imaging of arter-
ies such as coronary arteries.

4Segadal L, Matre K. Blood velocity distribution in the human ascending aorta. Circulation
1987 76:90–100.

5Zhou YQ, Færestrand S, Matre K, Birkeland S. Velocity distributions in the left ventricu-
lar outflow tract and the aortic anulus measured with Doppler colour flow mapping in normal
subjects. Eur Heart J 1993 14:1179–1188.

6Ødegaard S, Hausken T, Gilja OH. Basic and New Aspects of Gastrointestinal Ultra-
sonography. Singapore: World Scientific Publishing 2005.
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Figure 7.23: Flow measurements in the common carotid artery by com-
bining velocity and cross-sectional area measurement: (a) A large sam-
ple volume (dark grey) covering most of the vessel gives a peak systolic
velocity of 0.8m s−1. The user-adjusted central line in the vessel indi-
cates the flow direction for automatic velocity scale adjustment. The
white line in the velocity spectrum indicates the time-averaged velocity,
here 0.3m s−1. (b) The cross-sectional area is obtained from the vessel
diameter d in the power Doppler image. Here, Q = 424mlmin−1.

7.3.2 Ultrasound-guided biopsy

Most biopsies in the abdomen are currently performed using ultrasound guid-
ance. Special probes with an open slit for the biopsy needle or attachments to
a standard ultrasound probe are used. The biopsy needle is visualised in the
B-mode image for safer and more accurate biopsies.

7.3.3 Tissue Doppler imaging (TDI)

If, by filtering, the Doppler shift from blood is removed and the Doppler shift
from moving tissue is detected, the velocity of the myocardium can be mea-
sured.7 Furthermore, the velocities along the beam placed in the myocardial
wall can be used to estimate the strain and rate of strain.8 This has become
useful for detecting myocardial dysfunction, e.g., myocardial ischemia, and can
also be used for other contracting muscles, such as the stomach.9 An alternative
is to use so-called speckle tracking.10 This can also be used for non-contracting

7McDicken WN, Sutherland GR, Moran CM, Gordon LN. Colour Doppler velocity imaging
of the myocardium. Ultrasound Med Biol 1992 18:651–654.

8Heimdal A, Støylen A, Torp H, Skjærpe T. Real-time strain rate imaging of the left
ventricle by ultrasound. J Am Soc Echocardiogr 1998 11:1013–1019.

9Gilja OH, Heimdal A, Hausken T, Gregersen H, Matre K, Berstad A, Ødegaard S. Strain
during gastric contractions can be measured using Doppler ultrasonography. Ultrasound Med
Biol 2002 28:1457–1465.

10Leitman M, Lysyansky P, Sidenko S, Shir V, Peleg E, Binenbaum M, Kaluski E, Krakover
R, Vered Z. Two-dimensional strain: a novel software for real-time quantitative echocardio-
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tissue by inducing deformation of the tissue by cyclic movement of the probe,
known as elastography.11

7.4 Artefacts

An important challenge in the clinical use of ultrasound is to identify and reduce
the different artefacts that frequently appear during scanning. In this section,
only the most common types of artefacts are mentioned. Many ultrasonic arte-
facts have been reduced in modern scanners, owing to improvements in signal
processing.

7.4.1 Attenuation

When the ultrasound pulse hits gas, bone, or another material that has an
acoustic impedance very different from biological soft tissue, we get a strong
echo from this transition. The ultrasound is attenuated too, so that a shadow
appears behind the structure. This is called an attenuation or shadow artefact.
An example is shown in Figure 7.24, where a stone is present in the gallbladder.
Similar attenuation artefact appear for most artificial materials, like the catheter
in the right ventricle shown in Figure 7.12, or any implant.

7.4.2 Reverberation

The other most common artefact is reverberation. When the reflected pulse
hits a strong reflecting interface like the skin or the probe itself, the ultrasound
pulse makes another passage and a deeper situated echo that does not corre-
spond to any anatomical interface appears on the screen. Reverberation can
be observed to some extend in most images. Figure 7.24 shows reverberation
where the ultrasound enters the gallbladder (arrowhead). This recording has
both reverberation and shadowing artefacts. Reverberation can be removed by
using second harmonic imaging and by reducing the power level.

7.4.3 Mirror artefact

The mirror artefact is similar to reverberation. Here, the artefact is generated
from multiple beam reflections between a organ with strong interface echoes and
a strong reflector, like the diaphragm. The artefact appears as a virtual object,
as if there were a mirror. The reflector can be at an angle to the ultrasound
beam.

graphic assessment of myocardial function. J Am Soc Echocardiogr 2004 17:1021–1029.
11Ophir J, Garra B, Kallel F, Konofagou E, Krouskop T, Righetti R, Varghese T. Elasto-

graphic imaging. Ultrasound Med Biol 2000 26:S23–S29.
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Figure 7.24: Attenuation (arrow) and reverberation (arrowhead) arte-
facts in an image of the gallbladder.

7.4.4 Side lobes

In B-mode imaging, side lobes of the ultrasound beam can cause anatomy out-
side the main beam to be mapped into the main beam. Side lobe artefacts may
appear in the Doppler mode as well. The side lobe could hit a blood vessel
while the main beam is outside the vessel. With colour Doppler, the colour
presentation of the blood velocity could be misplaced in the B-mode image.

7.4.5 Other artefacts

Other artefacts include geometric distortion caused by variations in sound speed
that refract the beam. Wave front aberration caused by irregular variation in
sound speed could occur. For a more comprehensive discussion of all artefacts,
we refer to some recent publications.12,13

12Rubens DJ, Bhatt S, Nedelka S, Cullinan J. Doppler artifacts and pitfalls. Radiol Clin
North Am 2006 44:805–835.

13Feldman MK, Katyal S, Blackwood MS. US artifacts. Radiographics 2009 29:1179–1189.
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7.5 Biological effects of ultrasound and safety
regulations

Since the start of the clinical use of ultrasound, there have been numerous stud-
ies on the effects of ultrasound on macromolecules, cells, animals, and patients
subjected to ultrasound exposure. Early studies on chromosome aberrations of
white blood cells subjected to a low-intensity ultrasound foetal Doppler instru-
ment showed alarming results.14 However, these results have not been verified
by others15 and some of the findings have been withdrawn.16

High-intensity ultrasound has been used to obtain an understanding of the
mechanisms of the interaction between ultrasound and biological tissue. Data
have been obtained to find the potential roles of sound speed, intensity, fre-
quency, and attenuation in the occurrence of a raised temperature, cavitation,
streaming and radiation. Before 1993, 100mWcm−2 was used as an upper
intensity limit for human exposure. This limit was determined by the spa-
tial average/temporal average intensity (SATA). This limit had been based
on the finding that tissue with high perfusion, e.g., heart and kidneys, does
not experience a significant temperature increase at ultrasound intensities be-
low 100mWcm−2 SATA. However, new equipment using dynamic focusing has
lead to much higher local intensity peaks. The spatial peak/temporal average
(SPTA) intensity is a better measure for the local intensity. In 1993, the United
States Food and Drug Administration introduced an overall intensity limit of
720mWcm−2 SPTA. For ophthalmic applications the corresponding limit was
set to 50mWcm−2 SPTA and for foetal heart rate monitors to 20mWcm−2

SPTA. It was also decided that the exposure level should be communicated to
the user by means of indices on the scanner display, giving information on po-
tential hazard. Because adverse effects of clinical ultrasound have been related
to temperature elevation and inertial cavitation, modern ultrasound equipment
shows two related indices: the thermal index and the mechanical index.17 These
indices change with ultrasound mode and acquisition settings.

7.5.1 Thermal index

The thermal index (TI) is a measure of the temperature rise in the tissue during
exposure. It is defined by

TI =
W

Wdeg
, (7.10)

14Macintosh IJ, Davey DA. Chromosome aberrations induced by an ultrasonic fetal pulse
detector. Br Med J 1970 4:92–93.

15Lucas M, Mullarkey M, Abdulla U. Study of chromosomes in the newborn after ultrasonic
fetal heart monitoring in labour. Br Med J 1972 3:795–796

16Macintosh IJ, Davey DA. Relationship between intensity of ultrasound and induction of
chromosome aberrations. Br J Radiol 1972 45:320–327.

17Abbott JG. Rationale and derivation of MI and TI: a review. Ultrasound Med Biol 1999
25:431–441.
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where W is the transmitted power and Wdeg is the estimated power needed to
raise the tissue temperature 1oC. It should be noted that TI does not indicate
the actual temperature rise in the tissue. Since different tissues give different
Wdeg, several thermal indices have been introduced. Three commonly used
thermal indices are the thermal index of soft tissue (TIS), the thermal index of
bone (TIB) and the thermal index of cranial bone (TIC). The relevance of these
has been widely discussed.18 Based on thermal indices, limitations of exposure
times have been recommended. For example, at TI = 2.0 the examination
should not exceed 60min, whereas at TI = 3.0 duration should be limited to
15min.

7.5.2 Mechanical index

The mechanical index (MI) gives an indication of mechanical damage of tissue
due to inertial cavitation. It is defined by

MI =
p−√
fc
, (7.11)

where p− is the maximum value of peak negative pressure anywhere in the ul-
trasound field, measured in water but reduced by an attenuation factor equal to
that which would be produced by a medium having an attenuation coefficient
of 0.3 dB cm−1 MHz−1, normalised by 1MPa, and fc is the centre frequency of
the ultrasound normalised by 1MHz. For MI< 0.3, the acoustic amplitude is
considered low. For 0.3<MI< 0.7, there is a possibility of minor damage to
neonatal lung or intestine.19 These are considered moderate acoustic ampli-
tudes. For MI> 0.7, there is a risk of cavitation if an ultrasound contrast agent
containing gas microspheres is being used, and there is a theoretical risk of cav-
itation without the presence of ultrasound contrast agents.20 The risk increases
with MI values above this threshold. These are considered high acoustic am-
plitudes. On commercial scanners, the MI has been limited to 1.9 for medical
imaging.21

Most obstetric investigations are carried out with both TI and MI lower than
1.0; higher values occurs only during short periods of Doppler application.22,23

As opposed to the TI, there is only one, primitive, tissue model used for the
calculation of the MI. Therefore, the accuracy and general applicability have

18Duck FA. Medical and non-medical protection standards for ultrasound and infrasound.
Prog Biophys Mol Biol 2007 93:176–191.

19British Medical Ultrasound Society. Guidelines for the safe use of diagnostic ultrasound
equipment 2000.

20ter Haar G. Safety and bio-effects of ultrasound contrast agents. Med Biol Eng Comput
2009 47:893–900.

21Voigt JU. Ultrasound molecular imaging. Methods 2009 48:92–97.
22Deane C, Lees C. Doppler obstetric ultrasound: a graphical display of temporal changes

in safety indices. Ultrasound Obstet Gynecol 2000 15:418–423.
23Sheiner E, Freeman J, Abramowicz JS. Acoustic output as measured by mechanical and

thermal indices during routine obstetric ultrasound examinations. J Ultrasound Med 2005
24:1665–1670.
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been under discussion, especially when using contrast agents. An alternative
mechanical index will have to be developed.

7.5.3 Clinical studies

Of special interest for the safety of clinical ultrasound are the many follow-
up studies of school children exposed to ultrasound in utero. There has been
no association between ultrasound and malignancies,24 but an increase in left-
handedness among male subjects has been found.25,26 This association is poorly
understood. A recent meta-analysis of all available studies on the safety of ultra-
sonography in pregnancy concluded that exposure to diagnostic ultrasonography
appears to be safe.27

7.5.4 Concluding remarks on biological effects

Even though there are many exposure conditions during ultrasound examina-
tion where the risk is clearly negligible, other exposures, including Doppler
modes, can lead to temperature rises and could be harmful. The user of ul-
trasound equipment should be aware of the possible harmful effects, and use
the equipment according to the recommendations from national and interna-
tional ultrasound societies. There are some differences in the recommendations
of ultrasound exposure between different countries. The similarities have been
summarised in a recent review.28

Of serious concern is the non-medical use of foetal ultrasound.29 Most health
experts and clinicians agree that such use should be avoided and ultrasound
should be considered a medical tool for providing clinical information. We are
obliged to closely monitor the reports on biological effects, especially when con-
sidering the technical improvements and modifications of ultrasound instrumen-
tation, because these often lead to higher ultrasound exposure. An example is
improved focusing techniques. A good principle is that of ALARA: As Low As
Reasonably Achievable. This principle is even more valid for the good quality
images obtained with modern ultrasound scanners. Reducing the transmitted
power instead of reducing signal gain is a good example of using this principle
in daily scanning.

24Salvesen KÅ, Eik-Nes SH. Ultrasound during pregnancy and birthweight, childhood ma-
lignancies and neurological development. Ultrasound Med Biol 1999 25:1025–1031.

25Salvesen KÅ. Ultrasound and left-handedness: a sinister association? Ultrasound Obstet
Gynecol 2002 19:217–221.

26Salvesen KÅ, Vatten LJ, Eik-Nes SH, Hugdahl K, Bakketeig LS. Routine ultrasonography
in utero and subsequent handedness and neurological development. Br Med J 1993 307:159–
164.

27Torloni MR, Vedmedovska N, Merialdi M, Betran AP, Allen T, Gonzalez R, Platt LD.
Safety of ultrasonography in pregnancy: WHO systematic review of the literature and meta-
analysis. Ultrasound Obstet Gynecol 2009 33:599–608.

28Houston LE, Odibo AO, Macones GA. The safety of obstetrical ultrasound: a review.
Prenat Diagn 2009 29:1204–1212.

29Phillips RA, Stratmeyer ME, Harris GR. Safety and U.S. Regulatory considerations in
the nonclinical use of medical ultrasound devices. Ultrasound Med Biol 2010 36:1224–1228.
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8
Bubble physics

The density and compressibility parameters of blood cells hardly differ from
those of plasma. Therefore, blood cells are poor scatterers in the clinical diag-
nostic frequency range. Since imaging blood flow and measuring organ perfusion
are desirable for diagnostic purposes, markers should be added to the blood to
differentiate between blood and other tissue types. Such markers must be acous-
tically active in the medical ultrasonic frequency range.

Figure 8.1 shows the resonance frequencies of free and encapsulated gas mi-
crobubbles as a function of their equilibrium radius. The resonance frequencies
of encapsulated microbubbles lie slightly higher than those of free gas bubbles,
but clearly well within the clinical diagnostic range, too. Based on their acoustic
properties, microbubbles are well suited as an ultrasound contrast agent.

In this chapter, microbubble behaviour in an ultrasound field is explored,
with special attention to the influence of the bubble shell.

8.1 Hollow sphere

Consider a thin-shelled sphere in equilibrium. Assume ps to be the difference
between the internal pressure and the ambient pressure, generally referred to as
the surface pressure. For any cross-sectional area A through the centre of the
sphere, the following force balance must hold:

psA = σ S, (8.1)

where S is the path around the area and σ is the surface tension. Introducing
the radius R yields

ps
(
πR2

)
= σ (2πR) , (8.2)
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Figure 8.1: Resonance frequencies of free (bold line) and lipid-
encapsulated (thin line) air microbubbles in water as a function of equi-
librium radius.

which equates to

ps =
2σ

R
. (8.3)

Hence, the smaller the bubble, the higher the difference between the internal
pressure and the ambient pressure. Since fluids are forced to flow from a location
with a higher pressure to a location with a lower pressure, a bubble without an
impenetrable solid shell cannot exist in true equilibrium.

8.2 Cavitation threshold

Now, consider a polytropic gas bubble in an infinite liquid. The following un-
stable equilibrium can be formulated:

pg + pv = p0 +
2σ

R0
, (8.4)

where pg is the gas pressure, pv is the vapour pressure, p0 is the ambient pressure,
and R0 is the quasi-equilibrium radius of the bubble.

If buoyancy and gas diffusion are slow compared with a change in ambient
pressure,

pgV
γ = constant, (8.5)

where V is the bubble volume and γ is the ratio of specific heats of the gas. For
air, γ = 1.4 is a good approximation. Substituting (8.4) for the gas pressure
gives for any situation n (

p0 − pv +
2σ

R0

)
V γ
0 = pnV

γ
n , (8.6)
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where V0 is the quasi-equilibrium bubble volume. Changing the liquid pressure
instantaneously, so that the liquid pressure at the bubble wall is pL, gives(

p0 − pv +
2σ

R0

)
V γ
0 =

(
pL − pv +

2σ

R

)
V γ . (8.7)

For a perfectly spherical bubble,(
p0 − pv +

2σ

R0

)(
4

3
πR3

0

)γ

=

(
pL − pv +

2σ

R

)(
4

3
πR3

)γ

, (8.8)

which can be rewritten as

pL =

(
p0 − pv +

2σ

R0

)(
R0

R

)3γ

+ pv −
2σ

R
. (8.9)

If the sonicating frequency is much lower than the bubble resonance frequency,
the pressure in the liquid changes very slowly and uniformly compared with the
natural time scale of the microbubble. The radius of a bubble R in response
to quasistatic changes in the liquid pressure is described by (8.9). Figure 8.2
shows the right-hand side of (8.9), for different R0.

For each curve, there exists a minimum (pcr, Rcr), where Rcr is the critical
radius and pcr is the critical quasi-isostatic pressure. The region to the right-
hand side of the critical radius represents unstable equilibrium conditions. If
the liquid pressure is lowered until it reaches a value below pcr, no equilibrium
radius exists, resulting in explosive growth of the bubble, much larger than R0,
hence the term cavitation threshold. The ambient pressure eventually increases
again, during the ultrasonic compression phase, causing the bubble to collapse
violently.

The critical radius is computed, knowing that, in (Rcr, pcr),

∂pL
∂R

= 0. (8.10)

Substituting the right-hand side of (8.9) for pL gives

−3γ

(
p0 − pv +

2σ

R0

)
R3γ

0

R3γ+1
cr

+
2σ

R2
cr

= 0, (8.11)

which equates to

Rcr =

[
3γ

2σ

(
p0 − pv +

2σ

R0

)
R3γ

0

] 1
3γ−1

, (8.12)

from which the critical pressure follows:

pcr = −p0 + pv −
(6− 2γ)σ

3γRcr
, (8.13)
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Figure 8.2: Solutions of (8.9) for different equilibrium radii 0.1 ≤ R0 ≤
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or, as a function of R0,

pcr = −p0 + pv −
(6− 2γ)σ

3γ

 2σ

3γ
(
p0 − pv +

2σ
R0

)
3γ−1

. (8.14)

If the situation is isothermal and if vapour pressure can be neglected, for bubbles
of radius R0 ≪ 2σ

p0
,

pcr ≈ −p0 − 0.77
σ

R0
. (8.15)

The critical radius, also referred to as the Blake radius, has been approximated
by

Rcr ≈ 2R0 . (8.16)

During the initial part of the collapse the acceleration R̈ is negative. This sign
changes as the gas inside the bubble begins to be compressed, and the rebound
begins.
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8.3 Fundamental equation of bubble dynamics

Consider an empty cavity with initial radius R0 that expands or contracts to R,
owing to a difference between the pressure in the liquid at the bubble wall and
the pressure in the liquid at infinity pL − p∞0 . Here, we take p∞0 = p0. In time
∆t, the liquid mass flowing across a surface outside the bubble with radius r
must equal the mass displaced by the expanding or contracting bubbles surface,
i.e.,

4πr2 ρ ṙ∆t = 4πR2 ρ Ṙ∆t. (8.17)

Hence, the particle velocity in the liquid can be expressed in terms of r, R, and
Ṙ:

ṙ =
R2Ṙ

r2
. (8.18)

The work done by an expanding or contracting bubble must equal the kinetic
energy of the surrounding liquid:

R∫
R0

(pL − p0) 4πR
2 dR =

1

2

∞∫
R

ṙ2ρ 4πr2 dr. (8.19)

Substituting (8.18) for ṙ simplifies the kinetic energy of the liquid to

Ek = 2ρ

∞∫
R

R4Ṙ2

r2
dr = 2π ρR3Ṙ2. (8.20)

Now the following equality should be noted:

∂

∂R

(
Ṙ2
)
=

1

Ṙ

∂Ṙ2

∂t
= 2R̈, (8.21)

so that (8.19) can be differentiated to R. This results in the fundamental equa-
tion of bubble dynamics:

pL − p0
ρ

= RR̈+
3

2
Ṙ2. (8.22)

If a bubble is subjected to a driving function P (t), (8.22) changes to

pL − p0 − P (t)

ρ
= RR̈+

3

2
Ṙ2. (8.23)

For a polytropic gas bubble, (8.9) is substituted for pL:

RR̈+
3

2
Ṙ2 =

1

ρ

[(
p0 − pv +

2σ

R0

)(
R0

R

)3γ

+ pv −
2σ

R
− p0 − P (t)

]
. (8.24)
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8.4 Pressure radiated by a bubble

To compute the acoustic pressure radiated by a bubble at any point in the
liquid, consider the equation of motion (4.7):

1

ρ

∂p

∂r
= −∂ṙ

∂t
− ṙ

∂ṙ

∂r
. (8.25)

Integrating over r gives

∞∫
r

1

ρ

∂p

∂r
dr = −

∞∫
r

∂ṙ

∂t
dr −

∞∫
r

ṙ
∂ṙ

∂r
dr, (8.26)

which can be solved by substituting (8.18) for ṙ:

p(r, t)− p0
ρ

= − ∂

∂t

(
R2Ṙ

r

)
− 1

2

R4Ṙ2

r4
. (8.27)

This is actually a representation of Bernoulli’s theorem,

p(r, t)− p∞0
ρ

= −∂Φ
∂t

− 1

2
v2, (8.28)

where v is the particle velocity and Φ is the velocity potential

Φ = −
∞∫
r

ṙ dr. (8.29)

The equation of motion in the liquid (8.27) can be further simplified to

p(r, t)− p0
ρ

= −2RṘ2 +R2R̈

r
− 1

2

R4Ṙ2

r4
. (8.30)

In the far field, at distances r ≫ R,

p(r, t)− p0
ρ

= −2RṘ2 +R2R̈

r
. (8.31)

8.5 Viscous fluids

The viscosity η of a Newtonian viscous fluid is by definition the ratio of stress and
rate of strain ε̇. In viscous fluids, the relations (2.61) and (2.74) do not apply.
It should be noted that the principal stresses have been defined as positive for
expanding media, as opposed to the definitions in fluid physics and acoustics.
If we take a hydrostatic stress p, for an incompressible liquid,

pL = −p− 2ηε̇r, (8.32)
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where ε̇r is the radial rate of strain. Using (8.18), the radial rate of strain can
be expressed in terms of r and R:

ε̇r =
∂ṙ

∂r
=

∂

∂r

(
R2Ṙ

r2

)
= −2R2Ṙ

r3
, (8.33)

which at the bubble surface (r = R) becomes

ε̇r = −2Ṙ

R
, (8.34)

Combining (8.22), (8.32), and (8.34) results in

1

ρ

(
pL − p0 −

4ηṘ

R

)
= RR̈+

3

2
Ṙ2. (8.35)

Introducing a driving function P (t) gives an equation similar to (8.24) for a
polytropic gas bubble:

RR̈+
3

2
Ṙ2 =

1

ρ

[(
p0 − pv +

2σ

R0

)(
R0

R

)3γ

+ pv −
2σ

R
− 4ηṘ

R
− p0 − P (t)

]
.

(8.36)
This is the Rayleigh–Plesset equation. Note that the Rayleigh–Plesset equation
can only be applied if the liquid is incompressible and if the gas is polytropic.

Figure 8.3 shows radius–time curves of two microbubbles subjected to con-
tinuous sine pressure waves with low, moderate, and high amplitudes. Both bub-
bles oscillate linearly at MI=0.01. With increasing driving amplitude, asym-
metries in radial excursion and expansion time rise, especially for the bigger
bubble, which is closer to the resonance size. At MI=0.8, both bubbles expand
to a factor of the initial size, followed by a rapid collapse for the smaller bubble.
The bigger bubble demonstrates collapses at MI=0.18 and higher.

8.6 Oscillations

The Rayleigh–Plesset equation describes highly nonlinear radially symmetric
bubble oscillations, but at low acoustic driving amplitudes, the behaviour is
linear. At such low amplitudes, a bubble behaves like a mass–spring–dashpot
system and (8.36) is just another way of writing (3.38), where the replacive mass

m = 4πR3
0ρ, (8.37)

the linear angular resonance frequency

ω0 =

(
1

R0
√
ρ

)√
3γ

(
p0 − pv +

2σ

R0

)
+ pv −

2σ

R0
− 4η2

ρR2
0

, (8.38)
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Figure 8.3: Simulated radius–time curves (radius R normalised by equi-
librium radius R0, time t normalised by period T ) of ultrasound con-
trast microbubbles with 0.55µm (left column) and 2.3µm (right column)
equilibrium radii. The modelled ultrasound field was a continuous sine
wave with a frequency of 0.5MHz and acoustic amplitudes correspond-
ing to (top–bottom) MI=0.01, 0.10, 0.18, 0.35, and 0.80. Reprinted
with permission from Postema M, Gilja OH. Ultrasound-directed drug
delivery. Curr Pharm Biotechnol 2007 8:355–361.

and the (viscous) damping

2ζ =
16πηR0

mω0
=

4η

ρω0R2
0

. (8.39)

The damping of a bubble pulsation is determined by the acoustic radiation, the
heat conduction, and the liquid viscosity. For microbubbles under sonication at
typical medical frequencies > 1MHz, viscous damping is dominant, as is evident
from (4.147). For an encapsulated microbubble, the presence of a shell has to
be taken into account, by adding an extra damping parameter ζs. From (3.63)
we know that the excursion of a forced damped harmonic oscillator has a phase
angle difference ϕ with the driving field. Figure 8.4 shows three curves of the
phase angle differences (ϕ + π) between a damped radially oscillating bubble
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and an incident 2-MHz sound field, as a function of R0. The curves have been
computed for a free microbubble, a SonoVueTM contrast microbubble, and an
Albunex R⃝ contrast microbubble. With increasing shell stiffness, the bubble
resonance size increases. At resonance, the bubble oscillates 3

2π rad out of
phase with the sound field. For bubble greater than resonance, the phase angle
difference approaches 2π rad, so that the bubble oscillates in phase with the
sound field. Below resonance size, the phase difference is still greater than π,
and approaches 3

2π for R0 much smaller than resonance size. Since the damping
due to the liquid viscosity ζv ∝ R−2, the phase difference approaches 3

2π for a
free bubble radius R0 ≪ 1µm. The approach to 3

2π below the minimum value of
the phase difference is stronger with the contrast bubbles, because ζs ∝ R−3. As
the damping becomes greater, the phase transition around resonance becomes
less abrupt, as Figure 8.4 demonstrates.1
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Figure 8.4: Phase angle difference (ϕ + π) between a damped radi-
ally oscillating bubble and an incident 2-MHz sound field, as a func-
tion of equilibrium radius R0. The thin line represents a free bubble,
the medium line a SonoVueTM microbubble, and the thickest line an
Albunex R⃝ microbubble.

The spherically symmetric oscillating behaviour of ultrasound contrast agent
microbubbles has been described with models based on the Rayleigh–Plesset
equation, modified for the presence of an encapsulating shell. Generally, the
presence of blood has a relatively small effect on bubble dynamics. To give an

1Postema M, Schmitz G. Ultrasonic bubbles in medicine: influence of the shell. Ultrason
Sonochem 2007 14:438–444.
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indication of the vast amount of existing models: Qin et al. defined 16 separate
dynamic bubble model classes.2 The reason for the high number of existing
models is the fact that most physical properties of encapsulated microbubbles
cannot actually be measured, so that pseudo-material properties have to be
chosen when predicting ultrasound contrast agent microbubble behaviour. Ex-
amples of such pseudo-material properties are shell elasticity parameters and
shell friction parameters.

If the ultrasonic driving pressure is sufficiently high, the nonlinear microbub-
ble response results in harmonic dispersion, which not only produces harmonics
with frequencies that are integer multiples of ω (superharmonics) but also sub-
harmonics with frequencies less than ω of the form mω/n, where {m,n} ∈ N.

8.7 Disruption

At low acoustic amplitudes (mechanical index MI< 0.1), microbubbles pulsate
linearly. At high amplitudes (MI> 0.6), their elongated expansion phase is
followed by a violent collapse. During the collapse phase, when the kinetic
energy of the bubble surpasses its surface energy, a bubble may fragment into
a number of smaller bubbles. Fragmentation has been exclusively observed
with contrast agents with thin, elastic shells. Fragmentation is the dominant
disruption mechanism for these bubbles.

During the initial part of the collapse, the acceleration R̈ is negative. This
sign changes as the gas inside the bubble begins to be compressed, and the
rebound begins. Provided that surface instabilities have grown big enough to
allow for break-up, microbubble fragmentation has been expected and observed
close to this moment, when R̈ = 0. This has been confirmed by means of high-
speed photography. The occurrence of fragmentation has been associated with
inertial cavitation.

The number of fragments, N , into which a microbubble breaks up, is related
to the dominant spherical harmonic oscillation mode n by3

N ≈ n3 . (8.40)

Mode 2 oscillations have been observed with lipid-encapsulated microbubbles,
leading to fragmentation into 8 newly formed microbubbles.

Let us consider a single spherically symmetric microbubble with an inner
radius Ri and an outer radius R, a shell density ρs, negligible translation, in an
infinite fluid with density ρ. The kinetic energy of such a microbubble can be
approximated by

Ek ≈ 2π ρR3 Ṙ2 + 2π ρsR
3
i Ṙ

2
i

(
1− Ri

R

)
. (8.41)

2Qin S, Caskey CF, Ferrara KW. Ultrasound contrast agent microbubbles in imaging and
therapy: physical principles and engineering. Phys Med Biol 2009 54:R27–R57.

3Brennen CE. Fission of collapsing cavitation bubbles. J Fluid Mech 2002 472:153–166.
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Knowing that, for microbubbles with monolayer lipid shells,
Ri

R
< 0.01 and

ρs = 1.15 × 103 kgm−3, and for blood, ρ = 1.05 × 103 kgm−3, (8.41) can be
reduced to (8.20).

The surface free energy Es of a single encapsulated bubble is given by

Es = 4π R2
i σ1 + 4π R2 σ2 , (8.42)

where σ1 and σ2 denote the surface tension coefficient for the inner and outer
interface, respectively. For our microbubbles with monolayer lipid shells, we
consider a single interface model, using the effective surface tension σ:

σ = σ1 + σ2 . (8.43)

After fragmentation, the resulting microbubble fragments contain more surface
free energy

∑
iEf,i than the single bubble prior to fragmentation:

N∑
i=1

Ef,i ≈ 4
3π R

2
f,m σN ≈ 4

3π R
2 σN

1
3 = N

1
3 Es , (8.44)

where Rf,m is the mean fragment radius. Neglecting the elastic energy of the
shell and the internal energy of the gas core, it can be assumed that fragmen-
tation will only occur if:

Ek >
N∑
i=1

Ef,i − Es. (8.45)

Although asymmetric shape bubble oscillations have been observed, within
the size range of ultrasound contrast agent bubbles, spherical harmonic modes
higher than 2 can be neglected.

For microbubbles of radius R0 with a thick, stiff shell, such as QuantisonTM,
max(R(t)) ≪ R0. Thick-shelled bubbles have demonstrated gas release during
a high-amplitude ultrasonic cycle. The increased pressure difference between
the inside and outside of the bubble during the expansion phase of the wave
causes the shell to be stretched across the critical deformation, resulting in its
mechanical cracking. The released bubble has an oscillation amplitude much
higher than an encapsulated bubble of the same size.

Figure 8.5 shows the ultrasound-induced release of gas from an albumin-
encapsulated microbubble, driving the bubble at 0.5MHz with a peak-negative
acoustic pressure of 0.8MPa.4 The frames cover one full ultrasonic cycle (2µs).
This acoustic pressure is well within the clinical diagnostic range. Gas is seen to
escape from the thick-shelled microbubble with a 4.3µm diameter in the third
frame, in the beginning of the rarefaction phase of the ultrasound. The shell
itself is too rigid to expand. The released gas expands to a diameter of 12.3µm
in the eighth frame, after which it contracts. In the eleventh frame, the free gas

4Postema M, Bouakaz A, Versluis M, de Jong N. Ultrasound-induced gas release from
contrast agent microbubbles. IEEE Trans Ultrason Ferroelectr Freq Control 2005 52:1035–
1041.
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Figure 8.5: Gas release from the upper left of a QuantsionTM microbub-
ble during a single ultrasonic cycle (a), and a schematic representation
thereof (b). During the rarefaction phase (starting frame 2), gas escapes
until it reaches a maximum (frame 8). During the subsequent contrac-
tion, the free gas bubble is seen detached from the shell (frames 11 and
12). Each frame corresponds to a 19×19 (µm)2 area. Inter-frame times
are 0.1µs. Reprinted with permission from Postema M, van Wamel A,
ten Cate FJ, de Jong N. High-speed photography during ultrasound il-
lustrates potential therapeutic applications of microbubbles. Med Phys
2005 32:3707–3711.

microbubble, which has been subjected to motion blur, appears to be detached
from the encapsulated microbubble. In the twelfth frame, the gas is hardly
visible, owing to the compression phase of the ultrasound.

On the contrary, microbubbles with a thin, highly elastic monolayer lipid
shell, like SonoVueTM, have been observed to expand to more than ten-fold
their initial surface areas during rarefaction. The shell behaves like an elastic
membrane that ruptures under relatively small strain. By the time of maximal
expansion, therefore, the shell has ruptured, leaving newly formed clean free
interfaces.
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8.8 Diffusion

In a steady fluid, gas diffusion is given by Fick’s law:

∂C

∂t
= D

(
∂2C

∂r2
+

2

r

∂C

∂r

)
, (8.46)

where C is the mass concentration of the dissolved gas and D is the dissolution
constant. We introduce

u(r, t) = r (C − Cs) (8.47)

and the boundary condition

u(r, 0) = r (Ci − Cs) , (8.48)

where Ci is the initial mass concentration of the dissolved gas and Cs is the
saturation concentration in the liquid at the bubble wall. Then,

∂u

∂t
= D

∂2u

∂r2
. (8.49)

The solution of this ordinary differential equation is

u(r, t) = u(r, 0) erf(z), (8.50)

where
z =

r

2
√
Dt

. (8.51)

The error function erf(z ) is defined by

erf(z) =
2√
π

z∫
0

e−ξ2dξ (8.52)

and can be written as an asymptotic series

erf(z) = 1− e−z2

√
π

∞∑
n=0

(−1)n(2n− 1)!!

2n
z−(2n+1) = 1− e−z2

√
π

(
z−1 − z−3

3
+ · · ·

)
.

(8.53)
Substituting for u(r, 0), (8.50) now becomes

u(r, t) =
2r (Ci − Cs)√

π

r
2
√

Dt∫
0

e−ξ2dξ. (8.54)

Using the asymptotic series for erf(z) and the Taylor series for ez, it follows
that, at r = R, (

∂u

∂r

)
R

= (Ci − Cs)

(
1 +

R√
πDt

)
(8.55)



190

and, consequently, (
∂C

∂r

)
R

= (Ci − Cs)

(
1

R
+

1√
πDt

)
. (8.56)

At the bubble wall, the mass flow through the surface equals the diffusion:

D

(
∂C

∂r

)
R

=
1

4πR2

dm

dt
=

1

4πR2

d

dt

(
4

3
πR3ρg

)
(8.57)

or

4πR2Ṙρg = 4πR2D

(
∂C

∂r

)
R

(8.58)

where ρg is the density of the gas. Substituting (8.56) yields the bubble wall
velocity during dissolution:

Ṙ =
D (Ci − Cs)

ρg

(
1

R
+

1√
πDt

)
. (8.59)

In this equation, ρg is a function of R. Combining (4.22) and (8.4) rephrases
the ideal gas law for a gas bubble:

p0 +
2σ

R
=
ρgRT
M

, (8.60)

so that ρg is expressed in terms of known parameters:

ρg(R) =
M

RT
(p0 − pv) +

2Mσ

RT
1

R
= ρg(∞) +

2Mσ

RT
1

R
, (8.61)

where ρg(∞) is the density of the gas under the same conditions of pressure and
temperature with a gas–liquid interface of zero curvature.5 Substituting (8.61)
into (8.57) and computing the mass diffusion rephrases (8.59) as

Ṙ =
D (Ci − Cs)

ρg(∞) + 4
3
Mσ
RT

1
R

(
1

R
+

1√
πDt

)
(8.62)

or

Ṙ =
DRT (Ci − Cs)

M

1

p0 − pv +
4
3
σ
R

(
1

R
+

1√
πDt

)
. (8.63)

The concentration of gas at the bubble wall Cs is related to the internal gas
pressure by

Cs = k−1
g pg = k−1

g

(
p0 − pv +

2σ

R

)
, (8.64)

where kg is Henry’s constant defined in terms of the mass concentration of the
gas. The saturation concentration of the gas is, by definition,6

C0 = k−1
g p0. (8.65)

5Epstein PS, Plesset MS. On the stability of gas bubbles in liquid–gas solutions. J Chem
Phys 1950 18:1505–1509.

6Eller A, Flynn AG. Rectified diffusion during nonlinear pulsations of cavitation bubbles.
J Acoust Soc Am 1965 37:493–503.
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Hence, the concentration of gas at the bubble wall is related to the saturation
concentration in the liquid by

Cs = C0

(
1− pv

p0
+

2σ

p0R

)
. (8.66)

Equation (8.63) now reduces to

Ṙ =
DRT C0

Mp0

(
Ci

C0
− 1 + pv

p0
− 2σ

Rp0

1− pv

p0
+ 4

3
σ

Rp0

)(
1

R
+

1√
πDt

)
, (8.67)

which can be simplified to

Ṙ = DL

(
Ci

C0
− 1 + pv

p0
− 2σ

Rp0

1− pv

p0
+ 4

3
σ

Rp0

)(
1

R
+

1√
πDt

)
, (8.68)

where L is Ostwald’s solubility coefficient.7 If a hydrostatic overpressure ∆p is
introduced, the dissolution can be readily derived in a similar fashion:

Ṙ = DL

(
Ci

C0
− 1 + pv

p0
− ∆p

p0
− 2σ

Rp0

1− pv

p0
+ ∆p

p0
+ 4

3
σ

Rp0

)(
1

R
+

1√
πDt

)
. (8.69)

Figure 8.6 shows diameter–time curves of free dissolving nitric oxide gas mi-
crobubbles at two different ambient pressures. The dissolution process of a 2-
µm microbubble takes less than 2.5ms. Increasing the ambient pressure slightly
decreases the dissolution times.

8.9 Radiation forces

8.9.1 Travelling sound wave

Consider a pressure gradient ∇p across a bubble of volume V . The force acting
on the bubble must be

F = −V∇p. (8.70)

In an acoustic field, the pressure gradient constantly changes. Hence, we con-
sider the average force acting on the bubble, following the analysis by Leighton:8

⟨F ⟩ = −⟨V∇p⟩ . (8.71)

Now, consider a plane single-frequency (monotonous) progressive wave in the
x-direction, for which the pressure deviation from the ambient constant value
is described by (4.35):

p = PA cos(ωt− kx) (8.72)

7Bouakaz A, Frinking PJA, de Jong N, Bom N. Noninvasive measurement of the hydrostatic
pressure in a fluid-filled cavity based on the disappearance time of micrometer-sized free gas
bubbles. Ultrasound Med Biol 1999 25:1407–1415.

8Leighton TG. The Acoustic Bubbles. London: Academic Press 1994.
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Figure 8.6: Diameter–time curves of dissolving nitric oxide gas bub-
bles at atmospheric pressure (bold lines) and 100mmHg overpressure
(thin lines), respectively. Reprinted with permission from Postema M,
Bouakaz A, ten Cate FJ, Schmitz G, de Jong N, van Wamel A. Ni-
tric oxide delivery by ultrasonic cracking: some limitations. Ultrasonics
2006 44:e109–e113.

and
∇p = −kPA sin (ωt− kx) , (8.73)

where PA is the acoustic pressure amplitude, k is the wave number, and ω is
the angular driving frequency. At small acoustic amplitudes, a bubble oscillates
linearly:

R(t) = R0 − ξ cos(ωt− kx− ϕ), (8.74)

where ξ is the bubble oscillation amplitude and ϕ is the phase difference between
the sound field and the bubble. The volumetric change is then approximated
by

V (t) = 4
3π [R0 − ξ cos(ωt− kx− ϕ)]

3

= 4
3π
[
R3

0 − 3R2
0ξ cos(ωt− kx− ϕ) +3R0ξ

2 cos2(ωt− kx− ϕ)

− ξ3 cos3(ωt− kx− ϕ)
]

≈ V0

[
1− 3ξ

R0
cos(ωt− kx− ϕ)

]
.

(8.75)

Hence, the average force acting on the bubble is

⟨F ⟩ = −
⟨
V0kPA

[
1− 3ξ

R0
cos(ωt− kx− ϕ)

]
sin(ωt− kx)

⟩
. (8.76)
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Making use of sinA cos(A+B) = 1
2 sin 2A cosB − sin2A sinB, this becomes

⟨F ⟩ = −V0kPA (⟨sin(ωt− kx)⟩ + 3ξ
R0

⟨
sin2(ωt− kx) sinϕ

⟩
+ ⟨sin(ωt− kx) cos(ωt− kx) cosϕ⟩) .

(8.77)

The uneven terms are averaged out, whereas
⟨
sin2A

⟩
= 1

2 , so that

⟨F ⟩ = 3V0kPA

2

ξ

R0
sinϕ. (8.78)

Substituting (3.63) for ϕ and taking into account that sin arctanx = x√
1+x2

gives:

⟨F ⟩ = 3V0kPA

2

ξ

R0

2ζ ω
ω0√(

1−
(

ω
ω0

)2)2

+
(
2ζ ω

ω0

)2 . (8.79)

This force, acting in the direction of the sound field, is called the primary
radiation force.

8.9.2 Standing sound wave

Consider a bubble in a standing sound wave

p = 2PA cosωt cos kx (8.80)

and

∇p = −kPA sin (ωt− kx) . (8.81)

At small acoustic amplitudes, the radius is then given by

R(t) = R0 − ξ cos kx cos(ωt− ϕ). (8.82)

Analogous to (8.75), the volumetric change is approximated by

V (t) ≈ V0

[
1− 3ξ

R0
cos kx cos(ωt− ϕ)

]
. (8.83)

Consequently, the average force acting on the bubble is

⟨F ⟩ = −
⟨
2V0kPA

[
1− 3ξ

R0
cos kx cos(ωt− ϕ)

]
sin kx cosωt

⟩
. (8.84)

Again, the uneven terms are averaged out, so that

⟨F ⟩ = 3V0kPA

2

ξ

R0
sin 2kx cosϕ. (8.85)
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Substituting (3.63) for ϕ and taking into account that cos arctanx = 1√
1+x2

gives

⟨F ⟩ = 3V0kPA sin 2kx

2

ξ

R0

1−
(

ω
ω0

)2
√(

1−
(

ω
ω0

)2)2

+
(
2ζ ω

ω0

)2 . (8.86)

This force, acting in the direction of the nodes and anti-nodes of the sound field,
is called the primary Bjerknes force.

8.9.3 Radiation forces between bubbles

Consider an object in a sound field that causes a fluid acceleration v̇ at the
position of a bubble of interest. Defining u̇ as the acceleration of the bubble,
the net acceleration of the bubble relative to the fluid is u̇ − v̇. This relative
acceleration causes a drag force on the bubble −1

2ρV (u̇− v̇), where 1
2ρV is the

apparent mass of a moving bubble. Following Leighton’s derivation, the net
force on the bubble is

F = ρV v̇ − 1

2
ρV (u̇− v̇) = ρg(t)V u̇, (8.87)

from which an expression for u̇ immediately follows:

u̇ =
3V v̇

V + 2V
ρg

ρ

. (8.88)

If the mass of the gas inside the bubble is constant,

ρgV = ρ0,gV0, (8.89)

where ρ0,g is the density of the gas bubble in quasi-equilibrium. We assume the
bubble oscillates linearly according to

V (t) = V0 −∆V cosωt, (8.90)

where ∆V = 4πR2ξ. We substitute this for V and the density ratio f for
ρ0,g

ρ in

(8.88):
u̇

v̇
=

3(V0 −∆V cosωt)

(1 + 2f)V0 −∆V cosωt
. (8.91)

Using 1
1−x = 1 + x+ x2 + x3 + ..., this can be simplified to

u̇

v̇
=

3

1 + 2f

(
1− ∆V cosωt

V0

)(
1 +

∆V cosωt

(1 + 2f)V0

)
≈ 3

1 + 2f

(
1− 2f

1 + 2f

∆V

V0
cosωt

)
.

(8.92)
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Now, consider that the object causing the fluid acceleration v̇ is a bubble “1”
at distance r from the bubble of interest “2”. If V1 is the volume of bubble 1
at quasi-equilibrium, V2 is the volume of bubble 2 at quasi-equilibrium, ∆V1
is the volumetric expansion amplitude of bubble 1, and ∆V2 is the volumetric
expansion amplitude of bubble 2, then, assuming small oscillation amplitudes,
the instantaneous volume of bubble 1 is V1− cos(ωt+ϕ) and the instantaneous
volume of bubble of 2 is V2 − cosωt, where ϕ is the difference in oscillation
phase. We define ρ1 and ρ2 as the gas density at equilibrium of bubble 1 and
2, respectively. Similar to (8.87), the average force experienced by bubble 2 is

⟨F ⟩ = ⟨ρV u̇⟩ = ρ2V2 ⟨u̇⟩ =
3

1 + 2f

⟨
v̇ρ2V2 −

6f

(1 + f)2
v̇ρ2∆V2 cosωt

⟩
. (8.93)

Considering that V1 = 4
3πR

3
1 and that V̇1 = 4πR2

1Ṙ1, (8.18) can be rewritten in
terms of V1:

v =
R2

1Ṙ1

r2
=

V̇1
4πr2

=
ω∆V1 sin(ωt+ ϕ)

4πr2
, (8.94)

so that

v̇ =
ω2∆V1 cos(ωt+ ϕ)

4πr2
. (8.95)

Inserting this in (8.93) results in

⟨F ⟩ = 3

1 + 2f

ρ2ω
2∆V1V2
4πr2

⟨cos(ωt+ ϕ)⟩

− 6f

(1 + f)2
ρ2ω

2∆V1∆V2
4πr2

⟨cosωt cos(ωt+ ϕ)⟩

= − 3f

(1 + 2f)2
ρ2ω

2∆V1∆V2
4πr2

cosϕ.

(8.96)

This force is called the secondary radiation or secondary Bjerknes force. From
(8.96), it immediately follows that bubbles that oscillate in phase (ϕ = 0) attract
each other and that bubbles that oscillate out of phase (ϕ = π) repel each other.

8.10 Coalescence

To understand microbubble coalescence, one needs to comprehend the drainage
of the liquid separating the bubble surfaces. Reynolds noted that the viscosity
of a liquid can be determined by pressing two flat plates together, squeezing the
liquid out, and measuring the drainage velocity.9 Thus, he formulated an equa-
tion for the drainage velocity of a fluid between rigid surfaces. General theories
on the coalescence of colliding bubbles and droplets have been based on liquid

9Reynolds O. On the theory of lubrication and its application to Mr. Beauchamp Tower’s
experiments, including an experimental determination of the viscosity of olive oil. Philos
Trans Roy Soc A 1886 177:157–234.
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film drainage.10,11 Droplet coalescence finds applications in fuel ignition research
and aerosol studies, whereas the research on bubble coalescence focuses on thin
film physics and foam stability. This Section explores ultrasound-induced coa-
lescence of microbubbles. Controlled coalescence has potential applications in
the clinical field.12

Theories on bubble coalescence are generally based on the collision of un-
encapsulated bubbles or droplets, approaching each other at constant velocity.
During expansion, microbubbles may also come into contact with each other,
resulting in coalescence or bounce. We discriminate the following stages in the
coalescence mechanism, optically observed in Figure 8.7 and schematically rep-
resented in Figure 8.8. Initially, two bubbles approach collision while expanding
(Figure 8.8(a)). Prior to contact, there may be a flattening of the adjacent bub-
ble surfaces, trapping liquid in between (Figure 8.7(a), Figure 8.8(b)). This
trapped liquid drains (Figure 8.7(b), Figure 8.8(c)) until the separation reaches
a critical thickness. An instability mechanism results in rupture of the separa-
tion (Figure 8.8(d)) and the formation of a merged bubble (Figure 8.7(c)). After
coalescence the resulting bubble will have an ellipsoidal shape (Figure 8.7(d),
Figure 8.8(e)). Owing to surface tension, it will relax to a spherical shape.
When the contact time is less than the time needed for film drainage, the bub-
bles bounce off each other.13 We define bubble coalescence as the fusing of two
or more bubbles into a single bubble. The process begins with the flattening of
the bubble surfaces and is considered finished when the resulting bubble has a
spherical shape.

8.10.1 Flattening of the interface

Flattening of the opposing bubble surfaces occurs because the liquid inertia over-
comes the capillary pressure, as described in earlier work on colliding bubbles
with constant volumes. For colliding bubbles, flattening happens if the bubble
system has a Weber number We ' 0.5.14 The Weber number for two colliding
bubbles with radii R1 and R2, respectively, is given by the inertial force relative
to the surface tension force:

We =
ρu2

σ
Rm

, (8.97)

10Kralchevsky PA, Danov KD, Ivanov IB. Thin liquid film physics. In: Prud’homme R,
Khan S, eds., Foams, Theory, Measurements and Applications. New York: Marcel Dekker
1996 1–98.

11Narsimhan G, Ruckenstein E. Structure, drainage, and coalescence of foams and con-
centrated emulsions. In: Prud’homme R, Khan S, eds., Foams, Theory, Measurements and
Applications. New York: Marcel Dekker 1996 99–187.

12Postema M, Marmottant, Lancée CT, Hilgenfeldt S, de Jong N. Ultrasound-induced
microbubble coalescence. Ultrasound Med Biol 2004 30:1337–1344.

13Chaudhari RV, Hofmann H. Coalescence of gas bubbles in liquids. Rev Chem Eng 1994
10:131–190.

14Duineveld PC. Bouncing and coalescence phenomena of two bubbles in water. In:
Blake JR, Boulton-Stone JM, Thomas NH, eds., Bubble Dynamics and Interface Phenomena.
Volume 23 of Fluid mechanics and its applications. Dordrecht: Kluwer Academic Publishers
1994 447–456.
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Figure 8.7: Optical images of stages of ultrasound-induced microbubble
coalescence: (a) flattening of contact surfaces, (b) liquid film drainage,
(c) forming of a merged bubble, (d) turning into an ellipsoidal bubble.
Each frame in event (i) corresponds to a 21×21 (µm)2 area. Each frame
in events (ii)–(iv) corresponds to a 30× 30 (µm)2 area. Inter-frame times
are 0.33µs. Reprinted with permission from Postema M, Marmottant P,
Lancée CT, Hilgenfeldt S, de Jong N. Ultrasound-induced microbubble
coalescence. Ultrasound Med Biol 2004 30:1337–1344.

where u is the relative approach velocity of the bubble walls, ρ is the fluid
density, σ is the surface tension, and Rm is the mean bubble radius, which is
defined by

2

Rm
=

1

R1
+

1

R2
. (8.98)

Consider the Weber number criterium for approaching walls of expanding bub-
bles. Then, for bubbles with a constant centre-to-centre distance, u = Ṙ1+ Ṙ2 .
If the Weber number is low, bubble coalescence will always occur, without
flattening of the adjacent surfaces prior to contact. In the high Weber num-
ber regime, coalescence is determined by a second step, after flattening: film
drainage.
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Figure 8.8: Schematic representation of stages of expanding bubble co-
alescence: (a) bubble collision, (b) flattening of contact surfaces, (c)
liquid film drainage until a critical thickness (d), (e) film rupture, and
(f) formation of an ellipsoidal bubble.
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Figure 8.9: Schematic overview of variables used.

8.10.2 Film drainage

Consider two bubbles with radii R1 and R2, and internal pressures p1 and
p2, respectively, assumed spherical everywhere with the exception of a flattened
interface that separates them through a liquid film of thickness h (cf. Figure 8.9).
The drainage rate of the liquid film depends on the difference (p+Π) between
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the film pressure pf and the liquid ambient pressure p0. Here, p is the difference
in hydrodynamic pressure and Π is the disjoining pressure in the film. We
estimate the pressure in the film by the mean of pressures p1 and p2, since the
parallel film surfaces lead to equal pressure differences towards both bubbles:

p+Π = pf − p0 =
1

2
(p1 + p2)− p0 = σ

(
1

R1
+

1

R2

)
≡ pLY, (8.99)

where pLY is the Laplace–Young film pressure. The disjoining pressure begins to
slow down film thinning when h drops below 0.1µm, and becomes the dominant
pressure term (usually owing to Van der Waals forces) when h thins to about
10 nm.15 The eventual coalescence of ultrasound contrast agent microbubbles is
very fast compared with the film drainage time scales considered later. There-
fore, we may neglect Π and take p equal to the Laplace–Young pressure for the
films observed. As such, the pressure gradient determining the drainage velocity
is independent of the ambient pressure.

We choose an r–z coordinate system such that the film is symmetric around
the plane z = 0 and the line r = 0, and that its boundaries are located at
z = ±1

2h and r = Rf . The Laplace–Young pressure gradient drives liquid out
of the film. The radial velocity of the liquid is described by a combination of a
plug flow (present without any resistance to flow) and a laminar flow profile (in
z) of Poiseuille type induced by resistance at the film interfaces.16 The drainage
of the liquid film can be parameterised by functions of these two contributions.
Below, the two limiting cases of bubbles with no-slip interfaces and bubbles with
free interfaces are analysed.

8.10.3 No-slip interfaces

In the presence of surfactant at sufficient surface concentration, the interfaces
can be considered immobile (no-slip). In the case of no-slip interfaces, the
interfacial tangential velocity is zero, so the plug flow contribution is zero, as
shown in frame (a) of Figure 8.10.

The film drainage velocity for rigid radial surfaces (disks) is given by the
Reynolds equation:17

−∂h
∂t

=
2 p h3

3 η R2
f

. (8.100)

The drainage time, τd, between the initial film thickness hi and the critical film
thickness hc can be determined by integration of (8.100):

hc∫
hi

−dh

h3
=

τd∫
0

2 p

3 η R2
f

dt . (8.101)

15Marrucci G. A theory of coalescence. Chem Eng Sci 1969 24:975–985.
16Klaseboer E, Chevaillier JP, Gourdon C, Masbernat O. Film drainage between colliding

drops at constant approach velocity: experiments and modeling. J Colloid Interf Sci 2000
229:274–285.

17Sheludko A. Thin liquid films. Advan Colloid Interf Sci 1967 1:391–464.
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a b

Figure 8.10: Schematic flow profiles between no-slip interfaces (a) and
of free interfaces (b).

Flattening takes place when

Ṙ1 + Ṙ2 ≫ ∂h

∂t
, (8.102)

whereas the flat film drainage happens in the next stage, when

Ṙ1 ≈ Ṙ2 ≈ 0. (8.103)

Thus, during drainage, we may take p and Rf constant over time. Then we
obtain

τd =
3 η R2

f

4 p h2c

(
1− h2c

h2i

)
. (8.104)

If h2c≪h2i the drainage time can be approximated by

τd ≈ 3 η R2
f

4 p h2c
. (8.105)

8.10.4 Free interfaces

In the case of free interfaces, the Poiseuille contribution to the drainage flow
becomes negligible, and the drainage is inertial, as shown in frame (b) of Fig-
ure 8.10. The film drainage velocity for free radial surfaces is given by the
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equation18

−∂h
∂t

=

√
8 p

ρ

h

Rf
. (8.106)

Note that the viscous term is absent. Similarly to the no-slip case, making the
same quasi-static assumptions with regards to p and Rf , the drainage time can
be approximated by

τd ≈ Rf

√
ρ

8 p
log

(
hi
hc

)
. (8.107)

These drainage times are much smaller than those for the no-slip situation, and
depend only logarithmically on both the initial and the critical film thickness.

8.10.5 Film rupture

The disjoining pressure induces rupture by amplifying surface perturbations.
These are initialised by either thermal fluctuations or by capillary waves.19

For thermal perturbations of a gas bubble in the micrometre range, the initial

perturbation will be on the order of
√

kT
σ , where k is Boltzmann’s constant and

T is the absolute temperature, in our situation approximately 300K. Hence, the
initial thermal perturbation is lower than 1 nm.

A film gradually thins to a critical thickness at which it either ruptures
due to a local instability or at which it attains an equilibrium thickness. These
critical thicknesses dependent of surfactant concentration and film radius. They
lie in the range 20 nm< hc < 40 nm for film radii 60µm< Rf < 160µm.20

For ultrasound contrast agent film radii (Rf < 10µm), we may assume
critical thicknesses around 10 nm, knowing that below 10 nm Van der Waals
forces become very strong and rapid rupture of the film (and thus coalescence)
ensues. Because of the weak dependence on film thickness, predictions from
(8.107) for coalescence time scales can be quite accurate even without precise
knowledge of hi and hc.

8.11 Jetting

The jetting phenomenon for cavitation bubbles can be described as follows.21

Consider an oscillation bubble. Let’s define an infinite boundary to the right-
hand side of the bubble. During sonication, at the moment of maximal ex-
pansion (cf. Figure 8.11b1), the pressure inside the bubble is much lower than

18Kirkpatrick RD, Lockett MJ. The influence of approach velocity on bubble coalescence.
Chem Eng Sci 1974 29:2363–2373.

19Sharma A, Ruckenstein E. Critical thickness and lifetimes of foams and emulsions: role
of surface wave-induced thinning. J Colloid Interf Sci 1987 119:14–29.

20Angarska JK, Dimitrova BS, Danov KD, Kralchevsky PA, Ananthapadmanabhan KP,
Lips A. Detection of the hydrophobic surface force in foam films by measurements of the
critical thickness of film rupture. Langmuir 2004 20:1799–1806.

21Postema M, van Wamel A, ten Cate FJ, de Jong N. High-speed photography during
ultrasound illustrates potential therapeutic applications of microbubbles. Med Phys 2005
32:3707–3711.
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the ambient pressure, causing the bubble to collapse. The radial water flow is
retarded by the boundary. Therefore, the pressure at the right bubble wall is
less than the pressure at the right wall during the whole collapse phase and
the bubble becomes elongated perpendicular to the boundary. The pressure
gradient leads to different accelerations of the left and right bubble walls and
therefore to a movement of the centre of the bubble towards the boundary dur-
ing collapse. As the bubble collapses, the fluid volume to the left of the bubble
is accelerated and focussed, leading to the formation of a liquid jet directed
towards the boundary. This jet hits the right-hand-side bubble wall, causing a
funnel-shaped protrusion (cf. Figure 8.11b2) and finally impacts the boundary.

lj

a b

1

2

3

Figure 8.11: Two high-speed photographic frames (a1,2) and an overlaid
image thereof (a3) of microjetting — a microbubble acting as a microsy-
ringe — and a schematic representation of this phenomenon (b). On
the verge of microjetting (1, thin line), the microbubble has a diameter
of 17µm. During microjetting (2), liquid protrudes through the right
side of the microbubble, over a length of lj = 26µm. The jet is repre-
sented by the bold curve. The time between the two frames is 0.33µs.
Reprinted with permission from Postema M, van Wamel A, ten Cate
FJ, de Jong N. High-speed photography during ultrasound illustrates
potential therapeutic applications of microbubbles. Med Phys 2005
32:3707–3711.
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Empirical relations exist between bubble radius, jet length, and pressure at
the tip of jets. The radius of the jet Rj is related to the radius of the bubble on
the verge of collapsing Rc by22

Rj

Rc
≈ 0.1. (8.108)

The length of the jet, lj, defined as the full travel path of the protruded liquid,
is related to Rc by23

lj
Rc

≈ 3. (8.109)

From these two ratios, the amount of liquid within the jet, Vj, can be esti-
mated:24

Vj ≈ 0.1R3
c . (8.110)

The impact of a jet on a surface generates a high pressure region. The pressure
in this region has been referred to as water-hammer.25 For a perfectly plastic
impact, the water-hammer pressure of a cavitation jet is approximately26

pwh ≈ 1

2
ρ c vj, (8.111)

where pwh is the water-hammer pressure and vj is the jet velocity.
When administering microbubbles in the bloodstream, vessel walls are the

boundaries to which ultrasound-induced jets are to be targeted. From high-
speed optical observations of microjetting through ultrasound contrast agent
microbubbles, it has been computed that the pressure at the tip of the jet is
high enough to penetrate any human cell.27 Therefore, it has been speculated
whether liquid jets might act as microsyringes, delivering a drug to a region of
interest.

Of influence on the occurrence of all the above-mentioned phenomena are (a)
the ultrasonic parameters: transmit frequency, acoustic amplitude, pulse length,
pulse repetition rate and transmit phase; (b) the ultrasound contrast agent
composition: the composition of the shell, the bubble sizes, the size distribution
and the gas; (c) the physical properties of the medium: viscosity, surface tension,
saturation. Table 8.1 gives an overview of the nonlinear phenomena that have
been observed with ultrasound contrast agents, the type of ultrasound contrast
agent in which they have occurred, and the minimum acoustic regime required.

22Kodama T, Takayama K. Dynamic behavior of bubbles during extracorporeal shock-wave
lithotripsy. Ultrasound Med Biol 1998 24:723–738.

23Ohl CD, Ikink R. Shock-wave-induced jetting of micron-size bubbles. Phys Rev Lett
2003 90:214 502.

24Ohl CD, Ory E. Aspherical bubble collapse — comparison with simulations. In Lauter-
born W, Kurz T, eds., Nonlinear Acoustics at the Turn of the Millennium. New York:
American Institute of Physics 2000 393–396.

25Cook SS. Erosion by water-hammer. Proc Roy Soc London A 1928 119:481–488.
26de Haller P. Untersuchungen über die durch Kavitation hergerufenen Korrosionen.

Schweiz Bauzeit 1933 101:243–246.
27Postema M, van Wamel A, Lancée CT, de Jong N. Ultrasound-induced encapsulated

microbubble phenomena. Ultrasound Med Biol 2004 30:827–840.
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Phenomenon Schematic representation Shell class1 Regime2

Translation I, II, III, IV L, M, H

Fragmentation I, II L, M, H

Coalescence I, II L, M, H

Jetting I, II H

Clustering II, III L, M, H

Cracking II, III, IV L, M, H

aMicrobubble shell classes: (I) free or released gas; (II) thin shells < 10 nm; (III) thick
shells < 500 nm; (IV) very thick shells > 500 nm.

bAcoustic regimes: low (L) for MI< 0.3; medium (M) for 0.3 <MI< 0.7; high (H) for
MI> 0.7.

Table 8.1: Nonlinear phenomena and their occurrence regimes.
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CEUS and sonoporation

with Odd Helge Gilja and Annemieke van Wamel

In this chapter, contrast-enhanced ultrasound (CEUS) and ultrasound contrast
agent microbubble adjustments for drug delivery including sonoporation are
described. Although hundreds of papers have been published on this subject, we
will just briefly touch upon the topic using a physics and engineering approach.

9.1 Commercial ultrasound contrast agents

Microbubbles that are used for ultrasonic imaging purposes are termed ultra-
sound contrast agents. After intravascular injection of an agent into the circu-
lation, microbubbles pass the site of interest that is being examined by the clin-
ician. Upon sonication, the microbubbles generate a microbubble-characteristic
response, which is detected by the ultrasound scanner used. The resulting sono-
graphic image can then be interpreted by the clinician.

The development of ultrasound contrast agents has gone through several
generations.1 Table 9.1 gives an overview of the ultrasound contrast agents
that are most commonly used in imaging research.2 Free microbubbles represent
generation 0. These bubbles rapidly dissolve owing to diffusion.

To prevent rapid dissolution, generation 0 microbubbles were large: they
could have diameters up to 80µm. These large sizes would prevent the mi-
crobubbles from passing the lung capillaries; and thus also contributed to rapid

1Krestan C. Ultraschallkontrastmittel: Substanzklassen, Pharmakokinetik, klinische An-
wendungen, Sicherheitsaspekte. Radiologe 2005 45:513–519.

2Postema M, Schmitz G. Bubble dynamics involved in ultrasonic imaging. Expert Rev Mol
Diagn 2006 6:493–502.
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circulation clearance. Extended circulation time has been established with first
generation ultrasound contrast agents. These consist of air bubbles encapsu-
lated by a stabilising shell. With mean diameters below 6µm, these bubbles are
small enough to pass through capillaries.

If an ultrasound contrast agent contains perfluorocarbon gas rather than air,
the microbubbles will first swell, due to the diffusion of dissolved gases into the
bubbles, and then dissolve. The low diffusion rate of high-molecular-weight per-
fluorocarbons prolongs microbubble presence from seconds to minutes.3 Often,
the surface of the bubble shell has a negative charge, to prolong its presence in
target tissue.4

Ultrasound contrast agents can be designed to specifically target a biomarker
molecule, often a glycoprotein or receptor molecule, thus facilitating ultrasonic
molecular imaging. Third generation ultrasound contrast agents consist of mi-
crobubbles with such special targeting (functionalised) shell properties. Owing
to primary radiation forces, microbubbles can be forced to translate away from
the transducer, toward the vessel walls, increasing the success rate of targeting.

3Schutt EG, Klein DH, Mattrey RM, Riess JG. Injectable microbubbles as contrast agents
for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed
2003 42:3218–3235.

4Fisher NG, Christiansen JP, Klibanov A, Taylor RP, Kaul S, Lindner JR. Influence of
microbubble surface charge on capillary transit and myocardial contrast enhancement. J Am
Coll Cardiol 2002 40:811–819.
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9.2 CEUS

Originally, ultrasound contrast studies were performed for left ventricular func-
tion and myocardial perfusion.5 Nowadays, ultrasound contrast agents have,
among others, been used in the following diagnostic techniques: imaging the
heart,6 vasculature (including vasa vasorum), liver, spleen, kidneys,7 brain,8

measuring tissue perfusion, ejection fractions,9 detecting focal lesions in the
liver, angiogenesis assessment,10 characterising tumours, and detecting sites of
inflammation.11

Figure 9.1 shows how perfused areas become clearly visible when an ultra-
sound contrast agent is administered.

Figure 9.1: B-mode scans of the liver without (left) and with an ultra-
sound contrast agent present (right), using a dynamic 1–5-MHz probe.

Contrast-enhanced ultrasound (CEUS) represents a significant advancement
in the evaluation of angiogenesis in cancers in the digestive system. Particularly,

5Becher H, Burns PN. Handbook of Contrast Echocardiography: LV Function and My-
ocardial Perfusion. Berlin: Springer 2000.

6Miller AP, Nanda NC. Contrast echocardiography: new agents. Ultrasound Med Biol
2004 30:425–434.

7Heynemann H, Jenderka KV, Zacharias M, Fornara P. Neue Techniken der Urosonogra-
phie. Urologe 2004 43:1362–1370.

8Droste DW, Kaps M, Navabi DG, Ringelstein EB. Ultrasound contrast enhancing agents
in neurosonology: principles, methods, future possibilities. Acta Neurol Scand 2000 102:1–10.

9Mischi M, Jansen AHM, Kalker AACM, Korsten HHM. Identification of ultrasound
contrast agent dilution systems for ejection fraction measurements. IEEE Trans Ultrason
Ferroelectr Freq Control 2005 52:410–420.

10Heppner P, Lindner JR. Contrast ultrasound assessment of angiogenesis by perfusion and
molecular imaging. Expert Rev Mol Diagn 2005 5:447–455.

11Lindner JR. Microbubbles in medical imaging: current applications and future directions.
Nature Rev Drug Discov 2004 3:527–532.
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for the study of focal liver lesions, CEUS has been widely used for detection and
characterisation of malignancy. The unique feature of CEUS of non-invasive
assessment in real time of liver perfusion throughout the vascular phases has
led to a great improvement in diagnostic accuracy of ultrasound, but also in
guidance and evaluation of responses to therapy. Currently, CEUS is part of
the state-of-the-art diagnostic work-up of focal liver lesions, resulting in safe
and cost-effective patient management.

9.3 Some non-cardiac imaging applications

9.3.1 Liver

Ultrasonography is the most commonly used imaging modality worldwide for
diseases of the liver. However, it has limited sensitivity in the detection of small
tumour nodules. Moreover, ultrasonographic findings are often non-specific, as
appearances of benign and malignant liver lesions overlap considerably. The
introduction of microbubble contrast agents and the development of contrast-
specific techniques have opened new prospects in liver ultrasonography. The
advent of second-generation agents that enable continuous real-time contrast-
enhanced imaging has been instrumental in improving the acceptance and repro-
ducibility of the examination. With the publication of guidelines for the use of
contrast agents in liver ultrasonography by the European Federation of Societies
for Ultrasound in Medicine and Biology (EFSUMB),12,13 contrast-enhanced ul-
trasonography is now routinely used in clinical practice.

As opposed to contrast media used with computed tomography (CT) and
magnetic resonance (MR) imaging, ultrasound contrast agents can visualise the
capillary net of the examined tissue, because CEUS is considerably more sensi-
tive to very small amounts of contrast agent, even to single bubbles. Further-
more, because sonography is a dynamic method that is performed in real time,
additional information about tissue perfusion can be deduced from the influx
and washout of the contrast media, thus facilitating the differential diagnosis
of tumours. In addition, signals from the microbubbles enable the visualisation
of slow flow in microscopic vessels without Doppler-related artefacts. Various
software packages have been developed to enable quantification of changes in
contrast intensity and yield additional objective information over the entire
course of the contrast examination.

12Albrecht T, Blomley M, Bolondi L, Claudon M, Correas JM, Cosgrove D, Greiner L, Jäger
K, Jong ND, Leen E, Lencioni R, Lindsell D, Martegani A, Solbiati L, Thorelius L, Tranquart
F, Weskott HP, Whittingham T. Guidelines for the use of contrast agents in ultrasound.
January 2004. Ultraschall Med 2004 25:249–256.

13Claudon M, Cosgrove D, Albrecht T, Bolondi L, Bosio M, Calliada F, Correas JM, Darge
K, Dietrich C, D’Onofrio M, Evans DH, Filice C, Greiner L, Jäger K, Jong N, Leen E, Lencioni
R, Lindsell D, Martegani A, Meairs S, Nolsøe C, Piscaglia F, Ricci P, Seidel G, Skjoldbye B,
Solbiati L, Thorelius L, Tranquart F, Weskott HP, Whittingham T. Guidelines and good
clinical practice recommendations for contrast enhanced ultrasound (CEUS) — update 2008.
Ultraschall Med 2008 29:28–44.
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9.3.2 Pancreas

The pancreas, lying deep to the stomach and duodenum, is among the most
inaccessible organs in the body for visualisation with ultrasonography. Hence,
confirmation of pancreatic disease has remained a great challenge in clinical
imaging. However, transabdominal ultrasonography has developed to be a use-
ful tool in the differential diagnosis of pancreatic tumours because the technique
is inexpensive, easy to perform, and widely available. Nevertheless, only after
the introduction of second-generation contrast media has transabdominal sonog-
raphy yielded results comparable to those of other diagnostic modalities. CEUS
can be used to improve detection of pancreatic lesions or to characterise pan-
creatic lesions already visible with ultrasonography. Moreover, the staging of
some pancreatic lesions can be improved by the use of contrast media. How-
ever, there is an important difference between a pancreatic CEUS study and
the well-established liver CEUS study: the blood supply of the pancreas is en-
tirely arterial and the enhancement of the gland begins almost together with
the aortic enhancement. With CEUS the enhancement reaches its peak between
15 s and 20 s after injection of the ultrasound contrast agent. Accordingly, pan-
creatic tissue enhancement is earlier and shorter than that of the liver due to
the absence of a venous blood supply like the portal vein for the liver. Af-
ter a marked parenchymal enhancement in the early contrast-enhanced arterial
phase, there is a progressive washout of contrast medium with gradual loss of
echogenicity.14−17

9.3.3 Gastrointestinal tract

Colon cancer is one of the world’s most commonly occurring malignancies. The
main therapy is surgical resection. To diagnose colon cancer, endoscopy is the
preferred method, but in many places around the world, X-ray is still applied.
Using ultrasonography, the normal gastrointestinal (GI) wall is visualised as
a layered structure consisting of five to nine layers, depending on transmitted
frequency. When digestive cancers develop, the wall layers become blurred, wall
thickness is increased, and the ultrasound appearance of the GI wall resembles
a kidney, i.e., pseudo-kidney sign or target lesion. However, CEUS does not yet
have a place in the work-up of patients with suspected colonic cancer.

On the contrary, in ultrasound imaging of inflammatory bowel diseases,
CEUS appears to be a promising tool to visualise and quantify perfusion of
the bowel wall layers. Recent studies indicate that CEUS measurement is as-

14Faccioli N, Crippa S, Bassi C, D’Onofrio M. Contrast-enhanced ultrasonography of the
pancreas. Pancreatology 2009 9:560–566.

15Dörffel Y, Wermke W. Neuroendocrine tumors: characterization with contrast-enhanced
ultrasonography. Ultraschall Med 2008 29:506–514.

16Faccioli N, D’Onofrio M, Malagò R, Zamboni G, Falconi M, Capelli P, Mucelli RP. Re-
sectable pancreatic adenocarcinoma: depiction of tumoral margins at contrast-enhanced ul-
trasonography. Pancreas 2008 37:265–268.

17Recaldini C, Carrafiello G, Bertolotti E, Angeretti MG, Fugazzola C. Contrast-enhanced
ultrasonograpic findings in pancreatic tumors. Int J Med Sci 2008 5:203–208.
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sociated with other clinical parameters of disease activity in Crohn’s disease.
Accordingly, CEUS of bowel inflammation may be a significant future method
for the diagnostic work-up of these patients and possibly also for monitoring
effect of treatment.18−21

9.4 Molecular imaging

Dayton and Rychak define molecular imaging as the non-invasive application
of an imaging modality to discern changes in physiology on a molecular level.22

Although ultrasound contrast agents have been intended for perfusion imaging,
they have proven useful in molecular imaging as well, after modification of the
microbubble shell. Dayton and Rychak discern two targeting strategies: active
targeting, in which a ligand specific for a particular molecular target is used, and
passive targeting, in which the physicochemical properties of the agent are used
to achieve retention at the target site. Molecular imaging and targeting have
been reviewed elsewhere in depth. In summary, the main applications include
the deep tissue detection of angiogenesis, inflammation, plaques, and thrombi,
which are involved in most cardiovascular and malignant diseases.

9.5 Increased drug uptake

It has been proven by numerous groups that the cellular uptake (endocytosis) of
drugs and genes is increased when the region of interest is under sonication, and
even more so when an ultrasound contrast agent is present.23 This increased
uptake has been attributed to the formation of transient porosities in the cell
membrane that are big enough for the transport of drugs into the cell. The
transient permeabilisation and resealing of a cell membrane is called sonopo-
ration.24 The sonoporation-induced cellular uptake of markers with molecular

18Serra C, Menozzi G, Labate AM, Giangregorio F, Gionchetti P, Beltrami M, Robotti D,
Fornari F, Cammarota T. Ultrasound assessment of vascularization of the thickened termi-
nal ileum wall in Crohn’s disease patients using a low-mechanical index real-time scanning
technique with a second generation ultrasound contrast agent. Eur J Radiol 2007 62:114–121.

19Migaleddu V, Scanu AM, Quaia E, Rocca PC, Dore MP, Scanu D, Azzali L, Virgilio G.
Contrast-enhanced ultrasonographic evaluation of inflammatory activity in Crohn’s disease.
Gastroenterology 2009 137:43–52.

20Quaia E, Migaleddu V, Baratella E, Pizzolato R, Rossi A, Grotto M, Cova MA. The
diagnostic value of small bowel wall vascularity after sulfur hexafluoride-filled microbubble
injection in patients with Crohn’s disease. Correlation with the therapeutic effectiveness of
specific anti-inflammatory treatment. Eur J Radiol 2009 69:438–444.

21Nylund K, Hausken T, Gilja OH. Ultrasound and inflammatory bowel disease. Ultrasound
Q 2010 26:3–15.

22Dayton PA, Rychak JJ. Molecular ultrasound imaging using microbubble contrast agents.
Frontiers Biosci 2007 12:5124–5142.

23Postema M, Gilja OH. Ultrasound-directed drug delivery. Curr Pharm Biotechnol 2007
8:355–361.

24Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by
sonoporation in vitro. Ultrasound Med Biol 1997 23:953–959.
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weights between 10 kDa and 3MDa has been reported in several studies.25,26

Schlicher et al. have shown that ultrasound-induced cavitation facilitates cellu-
lar uptake of macromolecules with diameters up to 56 nm.27 Even solid spheres
with a 100-nm diameter have been successfully delivered with the aid of sono-
poration.28 This implies that drug size is not a limiting factor for intracellular
delivery. However, the pore opening times can be so short that, if the drug is
to be effectively internalised, it should be released close to the cell membrane
when poration occurs.29

9.6 Causes of sonoporation

There are five non-exclusive hypotheses for explaining the sonoporation phe-
nomenon. These have been summarised in Figure 9.2.

It has been hypothesised that expanding microbubbles might push the cell
membrane inward, and that collapsing bubbles might pull cell membranes out-
ward.30 These mechanisms require microbubbles to be present in the close
vicinity of cells. A separate release mechanism should then ensure localised de-
livery. Although jetting only occurs in a high-MI regime, it is very effective in
puncturing cell membranes.

Jetting has been observed through cells using ultrasound contrast agent
microbubbles. However, the acoustic impedance of the solid cell substratum
formed the boundary to which the jetting took place, not the cell itself.31 Also,
there has not been any proof yet of cell survival after jetting. In a separate study,
the role of jetting was excluded as a dominant mechanism in sonoporation.32

If a microbubble is fixed to a membrane, the fluid streaming around the
oscillating bubbles creates enough shear to rupture the membrane.33 Here again,
a separate release mechanism should then ensure localised delivery. Finally, it
has been speculated that lipid-encapsulted microbubbles, in the compressed

25Miller DL, Bao S, Morris JE. Sonoporation of cultured cells in the rotating tube exposure
system. Ultrasound Med Biol 1999 25:143–149.

26Karshafian R, Samac S, Banerjee M, Bevan PD, Burns PN. Ultrasound-induced uptake
of different size markers in mammalian cells. Proc IEEE Ultrason Symp 2005 1:13–16.

27Schlicher RK, Radhakrishna H, Tolentino TP, Apkarian RP, Zarnitsyn V, Prausnitz MR.
Mechanism of intracellular delivery by acoustic cavitation. Ultrasound Med Biol 2006 32:915–
924.

28Song J, Chappell JC, Qi M, VanGieson EJ, Kaul S, Price RJ. Influence of injection
site, microvascular pressure and ultrasound variables on microbubble-mediated delivery of
microspheres to muscle. J Am Coll Cardiol 2002 39:726–731.

29Mehier-Humbert S, Bettinger T, Yan F, Guy RH. Plasma membrane poration induced by
ultrasound exposure: implication for drug delivery. J Control Release 2005 104:213–222.

30van Wamel A, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, de Jong
N. Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation.
J Control Release 2006 112:149–155.

31Prentice P, Cuschieri A, Dholakia K, Prausnitz M, Campbell P. Membrane disruption by
optically controlled microbubble cavitation. Nature Phys 2005 1:107–110.

32Postema M, Gilja OH. Jetting does not cause sonoporation. Biomed Tech (Biomed Eng)
2010 55:S19–S20.

33Marmottant P, Hilgenfeldt S. Controlled vesicle deformation and lysis by single oscillating
bubbles. Nature 2003 423:153–156.
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Figure 9.2: Possible mechanisms of sonoporation: (a) push, (b) pull, (c)
jetting, (d) shear, (e) translation.

phase, translate through cell membranes or channels in the cell membrane. In
case of therapeutic loading, the load would be delivered directly into the target
cell.

The main advantage of the latter mechanism is that microbubble translation
by means of ultrasonic radiation forces requires very low acoustic pressures.
Hence, any potential damaging bioeffects due to inertial cavitation can be ruled
out.

Although the fragmentation of therapeutic load-bearing microbubbles must
release their loads, the actual actual drug or gene delivery is in this case a passive
process, dependent on diffusion speed and release proximity to the target cells.
Fragmenting microbubbles cannot create pores in cells, since fragmentation costs
energy.

Without the presence of an agent, it has been assumed that sonoporation
is caused by bubbles, which have been generated in the transducer focus as a
result of inertial cavitation.34,35

34Miller DL, Nyborg WL. Theoretical investigation of the response of gas-filled micropores
and cavitation nuclei to ultrasound. J Acoust Soc Am 1983 73:1537–1544.

35Miller DL, Song J. Lithotripter shock waves with cavitation nucleation agents produce
tumor growth reduction and gene transfer in vivo. Ultrasound Med Biol 2002 28:1343–1348.
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9.7 Drug carriers

Instead of just facilitating the transient opening up of cell membranes, a mi-
crobubble might also act as the vehicle itself to carry a drug or gene load to a
perfused region of interest, in which case the load has to be released with the
assistance of ultrasound. Apart from mixing ultrasound contrast agent with a
therapeutic agent, several schemes have been proposed to combine microbubbles
with a therapeutic load. The following seven microbubble structure classes for
drug delivery have been discriminated:36 (a) attachment to the outer shell sur-
face; (b) intercalation between monolayer phospholipids; (c) incorporation in a
layer of oil; (d) complexes with smaller particles (secondary carriers); (e) phys-
ical encapsulation in a polymer layer and coating with biocompatible material;
(f) surface loading of protein-shelled microbubbles; (g) entire volume loading of
protein-shelled microbubbles. The drugs are to be released at the site of interest
during insonication,37 presumably by disrupting the microbubble shell.

9.8 Gene delivery

The albumin shells of ultrasound contrast agents can bind proteins and oligonu-
cleotides.38 Local gene delivery of a virus vector attached to albumin-encapsu-
lated microbubbles has been performed in vivo.39

It has been demonstrated in vitro that higher doses of deoxyribonucleic acid
(DNA) were delivered during ultrasound insonication when the DNA was loaded
on albumin-encapsulated microbubbles than when unloaded microbubbles were
mixed with plasmid DNA. Amounts of DNA loading on microbubbles have been
between 0.002 (pg µm−2)40 and 2.4 (pg µm−2).41

9.9 Therapeutic gases

Instead of attached a drug to the encapsulation, therapeutic compounds in the
gas phase could be encapsulated with thick shells, to keep them from dissolving.
At the region of interest, the shell would be cracked with ultrasound, releasing

36Tinkov S, Bekeredjian R, Winter G, Coester C. Microbubbles as ultrasound triggered
drug carriers. J Pharm Sci 2009 98:1935–1961.

37Klibanov AL. Targeted delivery of gas-filled microspheres, contrast agents for ultrasound
imaging. Adv Drug Delivery Rev 1999 37:139–157.

38Porter TR, Xie F. Therapeutic ultrasound for gene delivery. Echocardiography 2001
18:349–353.

39Shohet RV, Chen S, Zhou Y-T, Wang Z, Meidell RS, Unger RH, Grayburn PA. Echocar-
diographic destruction of albumin microbubbles directs gene delivery to the myocardium.
Circulation 2000 101:2554–2556.

40Christiansen JP, French BA, Klibanov AL, Kaul S, Lindner JR. Targeted tissue transfec-
tion with ultrasound destruction of plasmid-bearing cationic microbubbles. Ultrasound Med
Biol 2003 29:1759–1767.

41Frenkel PA, Chen S, Thai T, Shohet RV, Grayburn PA. DNA-loaded albumin microbub-
bles enhance ultrasound-mediated transfection in vitro. Ultrasound Med Biol 2002 28:817–
822.
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liquid content

gas encapsulation

surrounding liquid

Figure 9.3: An antibubble consists of a liquid core encapsulated by a
gas shell.

the gaseous content.42,43 However, only few therapeutic compounds exist in the
gaseous phase, e.g., nitric oxide and several gaseous anaesthetics.

9.10 Antibubbles

A therapeutic agent inside the microbubble shell may react with the shell and
dampen the bubble oscillations. Therefore, it might be more suitable to have
the therapeutic agent in the core of the microbubble, separated from the shell
by a gaseous layer. Incorporating a liquid drop containing drugs or genes inside
an ultrasound contrast agent microbubble, however, is technically challenging.
As opposed to bubbles, antibubbles consist of a liquid core surrounded by a
gas encapsulation (cf. Figure 9.3). Such a droplet inside a bubble may be
generated with the jetting phenomenon: the collapse of a bubble near a free
surface produces a liquid jet, which may break up into one or several droplets.44

Another option would be to stabilise the liquid core by means of a biodegradable
skeleton attached to the microbubble shell.

42Bloch SH, Wan M, Dayton PA, Ferrara KW. Optical observation of lipid- and polymer-
shelled ultrasound microbubble contrast agents. Appl Phys Lett 2004 84:631–633.

43Dayton P, Morgan K, Allietta M, Klibanov A, Brandenburger G, Ferrara K. Simultane-
ous optical and acoustical observations of contrast agents. Proc IEEE Ultrason Symp 1997
2:1583–1591.

44Postema M, ten Cate FJ, Schmitz G, de Jong N, van Wamel A. Generation of a droplet
inside a microbubble with the aid of an ultrasound contrast agent: first result. Lett Drug Des
Discov 2007 4:74–77.
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9.11 Cell death

It has been noted that if microbubbles can create pores, it is also possible to
create severe cell and tissue damage. There is an inverse correlation between
cell permeability and cell viability,45,46 i.e., not all cell membrane pores are
temporary. This indicates that sonoporation is just a transitory membrane
damage in the surviving cell. Cell lysis results from irreversible mechanical cell
membrane damage,47 which allows intracellular content to leak out. Recently,
ultrasound-induced apoptosis has been observed with cancer cells in vitro,48 and
also in the presence of an ultrasound contrast agent.49 Apart from situations
where lysis is desired (sonolysis),50 ultrasonic settings should be chosen such that
cell lysis is minimal. Side effects observed are capillary rupture, haemorrhages,
and dye extravasation.51 These side effects, however, have been associated with
relatively high microbubble concentrations, long ultrasonic pulse lengths, and
high acoustic intensities.

9.12 High-intensity focussed ultrasound

High-intensity focussed ultrasound (HIFU) is a new non-invasive modality of
cancer therapy using the thermal effects of ultrasound to ablate tumours.52,53

The ultrasound energy is focussed in a small region inside the body, increas-
ing the local temperature at which cell death occurs, whereas the temperature
outside the focal region is low enough to prevent tissue damage. The small le-
sion size results in a long treatment time, usually several hours.54 Experiments

45Miller DL, Dou C, Song J. DNA transfer and cell killing in epidermoid cells by diagnostic
ultrasound activation of contrast agent gas bodies in vitro. Ultrasound Med Biol 2003 29:601–
607.

46Hallow DM, Mahajan AD, McCutchen TE, Prausnitz MR. Measurement and correlation
of acoustic cavitation with cellular bioeffects. Ultrasound Med Biol 2006 32:1111–1122.

47Feril Jr LB, Kondo T, Takaya K, Riesz P. Enhanced ultrasound-induced apoptosis and
cell lysis by a hypotonic medium. Int J Radiat Biol 2004 80:165–175.

48Watanabe A, Kawai K, Sato T, Nishimura H, Kawashima N, Takeuchi S. Apoptosis
induction in cancer cells by ultrasound exposure. Jap J Appl Phys 2004 43:3245–3248.

49Abdollahi A, Domhan S, Jenne JW, Hallaj M, Dell’Aqua G, Mueckenthaler M, Richter
A, Martin H, Debus J, Ansorge W, Hynynen K, Huber PE. Apoptosis signals in lymphoblasts
induced by focused ultrasound. FASEB J 2004 18:1413–1414.

50Miller MW, Miller DL, Brayman AA. A review of in vitro bioeffects of inertial ultrasonic
cavitation from a mechanistic perspective. Ultrasound Med Biol 1996 22:1131–1154.

51Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or
drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005 45:329–335.

52ter Haar GR. High intensity focused ultrasound for the treatment of tumors. Echocardio-
graphy 2001 18:317–322.

53Liu Y, Kon T, Li C, Zhong P. High intensity focused ultrasound-induced gene activation
in sublethally injured tumor cells in vitro. J Acoust Soc Am 2005 118:3328–3336.

54Tung Y-S, Liu H-L, Wu C-C, Ju K-C, Chen W-S, Lin W-L. Contrast-agent-enhanced
ultrasound thermal ablation. Ultrasound Med Biol 2006 32:1103–1110.
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have been performed in vitro55 and in vivo,56 demonstrating that the lesion size
can be increased using an ultrasound contrast agent at the region of interest.
Moreover, tissue damage can be produced more frequently, by lower acoustic
intensities and shorter exposure, with an ultrasound contrast agent present.57

By making use of shock waves, even more destructive effects can be achieved.
Techniques such as extracorporeal shock wave lithotripsy (ESWL) find applica-
tions in kidney stone fragmentation.58,59

9.13 Concluding remarks

It is a challenging task to quantify and predict which bubbly phenomenon occurs
under which acoustic condition, and how these may be utilised in ultrasonic
imaging. Aided by high-speed photography, our improved understanding of
encapsulated microbubble behaviour will lead to more sophisticated detection
and delivery techniques.

More sophisticated methods use quantitative approaches to measure the
amount and the time course of bolus or reperfusion curves and have shown
great promise in revealing effective tumour response to anti-angiogenic drugs in
humans before tumour shrinkage occurs. These are beginning to be accepted
into clinical practice. In the long term, targeted microbubbles for molecular
imaging and eventually for directed anti-tumour therapy are expected to be
tested.

In principle, in any perfused region that can be reached by ultrasound,
ultrasound-directed drug delivery could be performed. However, since the ul-
trasonic fields used with diagnostic ultrasound scanners differ greatly per organ
targeted, some regions will be far from ideal. The ultrasonic frequencies trans-
mitted in endoscopy are much higher than the resonance frequencies of con-
ventional ultrasound contrast agents. Therefore, for such applications, smaller
carriers will have to be developed for ultrasound-directed drug delivery.

In conclusion, combining ultrasound contrast agents with therapeutic sub-
stances may lead to simple and economic methods of treatment with fewer side
effects, using conventional ultrasound scanners. Ultrasound-directed drug de-
livery has great potential in the treatment of malignancies.

55Fujishiro S, Mitsumori M, Nishimura Y, Okuno Y, Nagata Y, Hiraoka M, Sano T, Marume
T, Takayama N. Increased heating efficiency of hyperthermia using an ultrasound contrast
agent: a phantom study. Int J Hyperthermia 1998 14:495–502.

56Kaneko Y, Maruyama T, Takegami K, Watanabe T, Mitsui H, Hanajiri K, Nagawa H,
Matsumoto Y. Use of microbubble agent to increase the effects of high intensity focused
ultrasound on liver tissue. Eur Radiol 2005 15:1415–1420.

57Tran BC, Seo J, Hall TL, Fowlkes JB, Cain CA. Microbubble-enhanced cavitation for
noninvasive ultrasound surgery. IEEE Trans Ultrason Ferroelectr Freq Control 2003 50:1296–
1304.

58Eisenmenger W. The mechanisms of stone fragmentation in ESWL. Ultrasound Med Biol
2001 27:683–693.

59Eisenmenger W, Du XX, Tang C, Zhao S, Wang Y, Rong F, Dai D, Guan M, Qi A.
The first clinical results of “wide-focus and low-pressure” ESWL. Ultrasound Med Biol 2002
28:769–774.
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A
List of symbols

Chapter 1
M L T I Θ dimensions

cp phase velocity of a compressional wave L T−1

d distance between molecules L
f frequency T−1

k wave number L−1

∆ϕ phase difference

Chapter 2

A area L2

Ai area of face i L2

E Young’s modulus M L−1 T−2

G shear modulus M L−1 T−2

I1 first stress invariant M L−1 T−2

I2 second stress invariant M2 L−2 T−4

I3 third stress invariant M3 L−3 T−6

l direction cosine
li direction cosine
L direction cosine matrix
m direction cosine
mi direction cosine
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n direction cosine
ni direction cosine
N normal stress M L−1 T−2

p principal stress M L−1 T−2

pi principal stress in direction i M L−1 T−2

r distance L
s resultant stress M L−1 T−2

si stress in direction i M L−1 T−2
T shear stress M L−1 T−2

Tmax maximum shear stress M L−1 T−2

Tmin minimum shear stress M L−1 T−2

u displacement in the x-direction L
U unity
v displacement in the y-direction L
w displacement in the z-direction L
x x-coordinate L
y y-coordinate L
z z-coordinate L

γij shear strain on face i in direction j
ε strain
ε0 octahedral strain
εi strain in direction i
εN normal strain
εp principal strain
θ lateral angle
κ bulk modulus M L−1 T−2

λ Lamé’s constant M L−1 T−2

ν Poisson’s ratio
σ stress M L−1 T−2

σ0 octahedral normal stress M L−1 T−2

σi stress in direction i M L−1 T−2

σys Von Mises yield stress M L−1 T−2

τ0 octahedral shear stress M L−1 T−2

τij shear stress on face i in direction j M L−1 T−2

ϕ stress function M L T−2

Chapter 3

a acceleration L T−2

A excursion amplitude L
Ai excursion amplitude L
b base excursion amplitude L
B excursion amplitude L
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c constant L2 T−2

c constant T
C excursion amplitude L
EP potential energy M L2 T−2

f(x) variable stiffness function M L T−2

f0 resonance frequency T−1

F force M L T−2

F0 force amplitude M L T−2

Fi driving function amplitude M L T−2

j complex number with the property j2 = −1
m mass M
M magnification factor
r resistance T−1

s spring stiffness M T−2

s1 spring stiffness M T−2

s2 spring stiffness M L−2 T−2

S(ω,A) response function M2 L2 T−4

t time T
T0 resonance period T
Td damped period T
v velocity L T−1

x x-coordinate L
ẋ first time derivative of x L T−1

ẍ second time derivative of x L T−2

∆x step size L
x0 initial position L
xb base excursion L
X steady-state amplitude L

β mechanical resistance M T−1

δ relative excursion amplitude
δs static deflection L
ϵ harmonic displacement L−2 T−2

ζ damping coefficient
λ auxiliary solution T−2

ϕ phase
ϕ phase
ω angular frequency T−1

ω0 resonance angular frequency T−1

ωd damped natural frequency T−1

Chapter 4

Ai incident pressure amplitude in medium i M L−1 T−2
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B/A nonlinearity parameter
Bi reflected pressure amplitude in medium i

at a given time M L−1 T−2

c sound speed L T−1

ci sound speed in medium i L T−1

cp phase velocity of a compressional wave L T−1

cs phase velocity of a transverse wave L T−1

cν phase velocity L T−1

d distance L
D attenuation L−1

E Young’s modulus M L−1 T−2

EK kinetic energy M L2 T−2

EP potential energy M L2 T−2

ET total energy M L2 T−2

E energy per unit volume M L−1 T−2

f frequency T−1

f ′ experienced frequency T−1

fi(x) pressure function i of x M L−1 T−2

f ′′i second partial derivative of f
gi(x) displacement function i of x L
G shear modulus M L−1 T−2

i scalar i ∈ Z
I average intensity M T−3

I0 threshold of hearing intensity M T−3

Ii incident intensity M T−3

Ir reflected intensity M T−3

It instantaneous intensity M T−3

It transmitted intensity M T−3

IL intensity level
j complex number with the property j2 = −1
J0 Bessel function of order zero of the first kind
k wave number L−1

ki wave number in medium i L−1

ki wave number of incident wave L−1

kr wave number of reflected wave L−1

kRe real wave number L−1

kt wave number of transmitted wave L−1

k wave vector L−1

l interface location L
m scalar value
M molar mass M
n amount of gas
n refraction index
p acoustic pressure M L−1 T−2

p0 pressure amplitude M L−1 T−2

p0,i pressure amplitude of wave i M L−1 T−2
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pi acoustic pressure of wave i M L−1 T−2

pi,rms root-mean-square pressure of wave i M L−1 T−2

pi pressure of incident wave M L−1 T−2

pf,rms root-mean-square pressure at frequency f M L−1 T−2

ph hearing threshold M L−1 T−2

pr pressure of reflected wave M L−1 T−2

prms root-mean-square pressure M L−1 T−2

pt pressure of transmitted wave M L−1 T−2

p pressure vector M L−1 T−2

p̈ second time derivative of p M L−1 T−4

P absolute pressure M L−1 T−2

dP pressure difference M L−1 T−2

Ps scattered power M L2 T−3

Qs acoustic object size L2

r distance L
ri distance of location i L
r distance vector L
R reflection coefficient
RI intensity reflection coefficient
R gas constant M L2 T−2 Θ−1

R̄ specific gas constant L2 T−2 Θ−1

s(t) signal
S area L2

S(ω) frequency-domain representation
dS element cross-section L2

SPL sound pressure level
SPLi sound pressure level at ri
SWL sound power level
t time T
T period T
T transmission coefficient
TI intensity transmission coefficient
T absolute temperature Θ
u displacement in the x-direction L
u0 initial displacement L
u displacement vector L
ü second time derivative of u L T−2

U unity
V volume L3

dV volume difference L3

V0 initial volume L3

W sound power M L2 T−3

W0 threshold of hearing power M L2 T−3

x x-coordinate L
dx element length L
x0 initial position L
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xi position at time i L
x∞ saw-tooth distance L
Z acoustic impedance M L−2 T−1

Zc relative characteristic impedance
Zi acoustic impedance of medium i M L−2 T−1

Zs relative surface impedance

α attenuation coefficient L−1

αv viscous damping coefficient L−1

αθ thermal damping coefficient L−1

βc relative characteristic admittance
γ ratio of specific heats
γij shear strain on face i in direction j
∆ volumetric strain
ε strain
εi strain in direction i
η dynamic viscosity M L−1 T−1

η(ω) backscattering coefficient
θ aperture
θi angle of incidence in medium i
θi angle of incidence
θr angle of reflection
θt angle of transmission
κ bulk modulus M L−1 T−2

κi compressibility of medium i M L−1 T−2

λ Lamé’s constant M L−1 T−2

λ wavelength L
λ′ reduced wavelength L
λi wavelength in medium i L
ν particle velocity L T−1

ν0 particle velocity amplitude L T−1

νa velocity of the audience L T−1

νi phase velocity of incident wave L T−1

νr phase velocity of reflected wave L T−1

νs velocity of sound source L T−1

νt phase velocity of transmitted wave L T−1

Π disjoining pressure M L−1 T−2

ρ density M L−3

ρi density of medium i M L−3

σ stress M L−1 T−2

σi stress in direction i M L−1 T−2

τij shear stress on face i in direction j M L−1 T−2

ϕ scalar potential L2

ϕi phase of wave i
ψ vector potential L2

ω angular frequency T−1



225

ωi angular frequency i T−1

Ω beats frequency T−1

Chapter 5

a spacing L
Ai incident pressure amplitude in medium i

M L−1 T−2

b spacing L
Bi reflected pressure amplitude in medium i

at a given time M L−1 T−2

BW bandwidth T−1

c elastic stiffness constant M L−1 T−2

C capacitance M−1 L−2 T4 I2

d piezo-electric strain/charge constant M−1 L−1 T3 I
D electric displacement L−2 T I
D electric displacement (superscript)
e piezo-electric stress constant L−2 T I
E electric field M L T−3I−1

E electric field (superscript)
fc centre frequency T−1

fl lower cut-off frequency T−1

fu upper cut-off frequency T−1

F force M L T−2

FBW fractional bandwidth
g piezo-electric voltage constant L2 T−1 I−1

HIFU high-intensity focussed ultrasound
I current I
j complex number with the property j2 = −1
k electro-mechanical coupling constant
ki wave number of medium i L−1

l thickness L
L inductance M L2 T−2 I−2

LE length expander
L spacing L
n turns ratio
N frequency constants L T−1

NDT non-destructive testing
P polarisation L−2 T I
PMN lead metaniobate
PT lead titanate
PVDF polymer polyvinylidene fluoride
PZT lead zirconate titanate
q charge T I
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Qm mechanical Q-factor
R resistance M L2 T−3 I−2

R reflection coefficient
RE radial expander
s elastic compliance constant M−1 L T2

S strain
S strain (superscript)
T stress M L−1 T−2

T stress (superscript)
TE thickness expander
V voltage M L2 T−3 I−1

WE width expander
Y Young’s modulus M L−1 T−2

Yi admittance of medium i M−1 L−2 T3 I2

Zi acoustic impedance of medium i M L−2 T−1

Zi electrical impedance of component i M L2 T−3 I−2

ϵ dielectric constant M−1 L−3 T4 I2

λ wavelength L
ρ density M L−3

ϕ phase
ω angular frequency T−1

Chapter 6

a piston radius L
A radius of curvature L

∆A elemental size L2

AW aperture width L

b b = A−
√
A2 − a2 L

B B(z) =
√
z2 + 2b(A− z) L

c speed of sound L T−1

CW continuous wave
d inter-element spacing L
D directivity of an array L−2

F# F -number
Fgeo geometric focal length L
Fn F -number
g Green’s function L−1 T−1

Gp pressure focal gain
h impulse response function L T−1

∆h height L
HIFU high-intensity focussed ultrasound
j complex number with the property j2 = −1
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Ji Bessel function of order i of the first kind
k wave number L−1

L length L
Li length in direction i L
n scalar n ∈ N
N number of elements
p pressure M L−1 T−2

P0 pressure amplitude M L−1 T−2

r distance L
S surface L2

t time T
∆t time delay of element i T
v0 particle velocity L T−1

∆w width L
x x-coordinate L
y y-coordinate L
z z-coordinate L
zf focal depth L
Z0 acoustic impedance M L−2 T−1

γ γ-coordinate
δ Kronecker delta function T−1

η η-coordinate
θ θ-coordinate
ρ ρ-coordinate L
ρ0 density M L−3

ϕ velocity potential L2 T−1

ω angular frequency T−1

Ω Ω-function

Chapter 7

A area L2

A amplitude
ALARA As Low As Reasonably Achievable
B pulse bandwidth T−1

B brightness
c sound speed L T−1

CD colour Doppler
CFM colour flow mapping
CWD continuous wave Doppler
d depth L
D aperture L
f0 transmit frequency T−1
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fc centre frequency T−1

fD Doppler shift T−1

fD,max maximum Doppler shift T−1

F focal depth L
HPRF high pulse repetition frequency
L lateral resolution L
LPRF low pulse repetition frequency
M motion
MI mechanical index
MRI magnetic resonance imaging
p− peak negative pressure M L−1 T−2

PRF pulse repetition frequency T−1

PWD pulsed wave Doppler
Q flow L3 T−1

Rmax maximum distance L
RF radio frequency
R resolution L
SATA spatial average/temporal average
SPTA spatial peak/temporal average
t time T
TGC time gain compensation
THI tissue harmonic imaging
TI thermal index
TIB thermal index of bone
TIC thermal index of cranial bone
TIS thermal index of soft tissue
TVG time varying gain
v velocity L T−1

vmax maximum velocity L T−1

W power M L2 T−3

Wdeg power needed to raise the temperature by 1oC M L2 T−3

z z-coordinate L

θ angle
λ wavelength L
τ pulse length T

Chapter 8

A area L2

C mass concentration M L−3

C0 saturation mass concentration M L−3

Ci initial mass concentration M L−3

Cs surface saturation mass concentration M L−3
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D dissolution constant L2 T−1

Ef,i fragment surface free energy M L2 T−2

Ek kinetic energy M L2 T−2

Es surface free energy M L2 T−2

f equilibrium density ratio
F force M L T−2

h thickness L
hc critical thickness L
hi initial thickness L
k wave number L
kg Henry’s constant L2 T−2

k Boltzmann’s constant M L2 T−2 Θ−1

lj jet length L
L Ostwald’s solubility coefficient
m mass M
MI mechanical index
n oscillation mode
N number of fragments
p pressure M L−1 T−2

∆p overpressure M L−1 T−2

p0 ambient pressure M L−1 T−2

p∞0 pressure at infinity M L−1 T−2

pcr critical pressure M L−1 T−2

pg gas pressure M L−1 T−2

pi pressure inside bubble i M L−1 T−2

pL liquid pressure M L−1 T−2

pLY Laplace–Young pressure M L−1 T−2

pn pressure in situation n M L−1 T−2

pv vapour pressure M L−1 T−2

pwh water hammer pressure M L−1 T−2

P (t) driving function M L−1 T−2

PA pressure amplitude M L−1 T−2

r distance L
ṙ particle velocity L T−1

R radius L

Ṙ surface velocity L T−1

R̈ surface acceleration L T−2

R0 quasi-equilibrium radius L
Rc collapse radius L
Rcr critical radius L
Rf film radius L
Rf,m mean fragment radius L
Ri radius of bubble i L

Ṙi surface velocity of bubble i L T−1

Ri inner radius L
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Ṙi inner surface velocity L T−1

Rm mean radius L
R gas constant M L2 T−2 Θ−1

R̄ specific gas constant L2 T−2 Θ−1

S path L
t time T

∆t time step T
T period T
T absolute temperature Θ
u velocity L T−1

u̇ acceleration L T−2

v fluid velocity L T−1

v̇ fluid acceleration L T−2

vj jet velocity L T−1

V volume L3

∆V expansion amplitude L3

V0 quasi-equilibrium volume L3

Vi equilibrium volume of bubble i L3

∆Vi expansion amplitude of bubble i L3

Vj jet volume L3

Vn volume in situation n L3

We Weber number
x x-coordinate L

γ ratio of specific heats
ε̇ rate of strain T−1

ε̇r radial rate of strain T−1

ζ damping coefficient
ζs shell damping coefficient
ζv viscous damping coefficient
η dynamic viscosity M L−1 T−1

ξ oscillation amplitude L
ρ density M L−3

ρg gas density M L−3

ρi equilibrium density of bubble i M L−3

ρs shell density M L−3

σ surface tension M L−1 T−2

σi surface tension at interface i M L−1 T−2

τd drainage time T
ϕ phase difference
Φ velocity potential L2 T−1

ω angular frequency T−1

ω0 angular resonance frequency T−1
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Chapter 9

CEUS contrast-enhanced ultrasound
DNA deoxyribonucleic acid
ESWL extracorporeal shock wave lithotripsy
GI gastrointestinal
HIFU high-intensity focussed ultrasound

Symbols

∇ϕ grad ϕ =
(

∂ϕ
∂x

∂ϕ
∂y

∂ϕ
∂z

)T
∇2ϕ ∇ · ∇ϕ = div grad ϕ

= ∂2ϕ
∂x2 + ∂2ϕ

∂y2 + ∂2ϕ
∂z2 (Laplacian)

∇ · ϕ div ϕ

∇× ϕ curl ϕ
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cell death, 216
CEUS, 205, 208
circular plane piston

CW
axial field, 126

directivity, 128
full field, 125

transient, 134
coalescence, 195
compound scanning, 152
contrast agent, 205
critical angle, 81
critically damped condition, 55
Curie temperature, 100
curved anatomical M-mode, 153
CWD, 163
cylindrical wave, 69
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damping, 103

coefficient, 54
molecular relaxation, 79
thermal, 78
viscous, 78

decibel scale, 73
diffusion, 189
direction cosines, 26
directivity factor, 74
displacement, 37
displacement wave equation, 64
disruption, 186
distance doubling, 75
Doppler, 160
Doppler effect, 69
drug carriers, 214
drug uptake, 211
Duffin’s equation, 61
duplex scanning, 166
dynamic focus, 152

ear sensitivity, 18
elastic media, 76
electro-mechanical coupling coefficient,
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endocytosis, 211
energy, 67
equation of motion, 64
equilibrium equations, 42
expenses, operating, 17

F-number, 137
Fagan, Michael, 236
fluid–fluid interface, 82, 84
fluids, 78
focal gain, 137
focussing, 136

acoustics lens, 139
phased arrays, 143
shaped piezo-electric elements, 138

Fourier transform, 73
frequency

highest, 18
Minnaert, 23
natural, 53
resonance, 53

gene delivery, 214
GI tract, 210
Gilja, Odd Helge, 236
grating lobes, 141

harmonic imaging, 157
HIFU, 216
history, 19
hollow sphere, 177
Hooke’s law, 40

polar coordinates, 46
HPRF, 165
Hurrell, Andrew, 236
Huygens’ principle, 80

ideal gas, 65
image quality, 154
imaging, 147
impedance, 72

air, 73
characteristic, 80
surface, 80

infrasound, 19
intensity, 68

introduction, 17
isotropic material, 39
isotropic media, 76

jetting, 201

Kotopoulis, Spiros, 237

Lamé’s contant, 42
Langevin, Paul, 21
line source, 68
linear wave equation, 64

solutions, 66
liver, 209

M-mode, 150
magnification factor, 59, 60
mass on a spring, 51
mass–spring system, 53
mass–spring–dashpot system, 54, 56
Matre, Knut, 237
MI, 174
Minnaert, Marcel, 23
modes, 147
Mohr’s circle, 32
molecular imaging, 211
moments of forces, 25

noise, 18
nonlinear propagation, 86
nonlinear springs, 61
normal incidence, 84

oscillations, 183
outline, 24
overdamped condition, 55
oversaturation, 19

pancreas, 210
phase difference between two molecules,

18
piezo-electric coefficients, 96
piezo-electric constitutive equations, 93
piezo-electric effect, 90
piezo-electric materials

ceramics, 100
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typical properties, 101
plane waves

complex representation, 72
point source, 68, 74
Poisson effect, 40
Poisson’s ratio, 40
polar coordinates, 45
poling, 101
Postema, Michiel, 235
Poulson Arc, 22
power, 68
pressure

negative, 20, 21
root-mean-square, 70

principal stress, 30
PVDF, 102
PWD, 163
PZT, 100

quality factors, 155

radiation forces, 191
Rayleigh integral, 124
Rayleigh, Lord, 21
Rayleigh–Plesset equation, 183
real-time scanning, 151
rectangular plane piston

CW
axial field, 132
directivity, 133
full field, 131

transient, 136
reflection, 80

coefficient, 82
resolution, 153
resonance, 23, 53, 103
resonance modes, 107
reverberation, 171
rigid-backed fluid layer, 85
rotation of axes, 29

safety, 173
SATA, 173
scattering, 86
shear modulus, 40, 41
shrimp, 21

side lobes, 172
Smith’s chart, 115
Snell’s law, 80
sonic cracking, 187
sonoporation, 211, 212
sound, 18, 19, 63
speed of sound

in air, 65
SPTA, 173
standing wave, 72
stiffness

spring, 53
strain, 37

compatibility equation, 47
compatibility equations, 43
direct, 38
normal, 38
plane, 44
polar coordinates, 46
principal, 39
rotation of axes, 39
shear, 38
tensor, 38
deviatoric, 39, 41
dilational, 39
hydrostatic, 39

volumetric, 39, 41, 63
strain analysis, 25
strain–charge piezo-electric equations,

95
stress

compatibility equation, 47
cubic, 30
functions, 47
polar coordinates, 49

inclined plane, 26
invariants, 31
normal, 25, 28, 32
octahedral, 34
plane, 45
principal, 30, 41
resultant, 28, 32
rotation of axes, 29
shear, 25, 29, 32
tensor, 26
deviatoric, 36, 41
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dilational, 36
hydrostatic, 36

uniform state of, 25
Von Mises, 31, 36
yield, 31

stress analysis, 25
stress–charge piezo-electric equations,

95
superposition, 70
surface tension, 19
symbols, 219

TDI, 170
therapeutic gas, 214
threshold of pain, 73
TI, 173
Titanic, 22
transducer, 89, 123

backing, 109
construction, 104
electrical impedance matching, 113
matching layer, 110

transmission, 80
coefficient, 82

ultrasound, 18
ultrasound contrast agent, 205
ultrasound contrast imaging, 23
underdamped condition, 56

van Wamel, Annemieke, 237
vibrations, 51

forced, 56
damped, 59
undamped, 58

free, 53
damped, 54
undamped, 53

viscous fluids, 182
VIZ, 233
Von Mises yield stress, 36

wave equation, 63
vectorial notation, 75

waves, 63

Young’s modulus, 40
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