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Preface

A great challenge when dealing with severe diseases, such as cancer or diabe-
tes, is the implementation of an appropriate treatment. Design of treatment 
protocols is not a trivial issue, especially since nowadays there is significant 
evidence that the type of treatment depends on specific characteristics of indi-
vidual patients.

In silico design of high‐fidelity mathematical models, which accurately describe 
a specific disease in terms of a well‐defined biomedical network, will allow the 
optimisation of treatment through an accurate control of drug dosage and deliv-
ery. Within this context, the aim of the Modelling, Control and Optimisation of 
Biomedical Systems (MOBILE) project is to derive intelligent computer model‐
based systems for optimisation of biomedical drug delivery systems in the cases 
of diabetes, anaesthesia and blood cancer (i.e., leukaemia).

From a computational point of view, the newly developed algorithms will be 
able to be implemented on a single chip, which is ideal for biomedical applica-
tions that were previously off‐limits for model‐based control. Simpler hardware 
is adequate for the reduced on‐line computational requirements, which will lead 
to lower costs and almost eliminate the software costs (e.g., licensed numerical 
solvers). Additionally, there is increased control power, since the new MPC 
approach can accommodate much larger  –  and more accurate  – biomedical 
system models (the computational burden is shifted off‐line).

From a practical point of view, the absence of complex software makes the 
implementation of the controller much easier, therefore allowing its usage as a 
diagnostic tool directly in the clinic by doctors, clinicians as well as patients 
without the requirement of specialised engineers, therefore progressively 
enhancing the confidence of medical teams and patients to use computer‐aided 
practices. Additionally, the designed biomedical controllers increase treatment 
safety and efficiency, by carefully applying a “what‐if” prior analysis that is tai-
lored to the individual patient’s needs and characteristics, therefore reducing 
treatment side effects and optimising the drug infusion rates. Flexibility of the 
device to adapt to changing patient characteristics and incorporation of the 
physician’s performance criteria are additional great advantages.
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There were several highly significant achievements of the project for all dif-
ferent diseases and biomedical cases under study (i.e., diabetes, leukaemia and 
anaesthesia). From a computational point of view, achievements include the 
construction of high‐fidelity mathematical models as well as novel algorithm 
derivations. The methodology followed for the model design includes the fol-
lowing steps: (a) the derivation of a high‐fidelity model, (b) the conduction of 
sensitivity analysis, (c) the application of parameter estimation techniques on 
the derived model in order to identify and estimate the sensitive model param-
eters and variables and (d) the conduction of extensive validation studies based 
on patient and clinical data. The validated model is then reduced to an 
 approximate model suitable for optimisation and control via model reduction 
and/or system identification algorithms. The several theoretical (in silico) 
components are incorporated in a closed‐loop (in silico–in vitro) framework 
that will be evaluated with in vitro trials (i.e., through experimental evaluation 
of the control‐based optimised drug delivery). The outcome of the experiments 
will indicate the validity of the suggested closed‐loop delivery of anaesthetics, 
chemotherapy dosages for leukaemia and insulin delivery doses in diabetes. It 
should be mentioned that this is the first closed‐loop system including compu-
tational and experimental elements. The output of such a framework could be 
introduced, at a second step, in phase 1 clinical trials.

Chapter 1 is an overview of the framework for modelling, optimisation and 
control of biomedical systems. It describes the mathematical modelling of drug 
delivery systems that usually requires a pharmacokinetic part, a pharmacody-
namic part and a link between the two. Model analysis, parameter estimation 
and approximation are used here in order to obtain an in‐depth understanding 
of the model. Mathematical optimisation and control of the biomedical system 
could lead to a better prediction of the optimal drug and/or therapy treatment 
for a specific disease.

Chapter 2 presents in detail the theoretical background, computational tools 
and methods that are used in all the different biomedical systems analysed 
within the book. More specifically, Chapter 2 focuses on describing the compu-
tational tools, part of the developed multiparametric model predictive control 
framework presented in Chapter 1. It also presents the theory for multipara-
metric mixed‐integer programming and explicit optimal control. This is part of 
the larger class of hybrid biomedical systems (i.e., biomedical systems featuring 
both discrete and continuous dynamics).

Chapters 3 and 4 aim at applying the presented framework to the process of 
anaesthesia: both volatile as well as intravenous. They present the procedure 
step by step from the model development to the design of a multiparametric 
model predictive controller for the control of depth of anaesthesia. Chapter 3 
focuses on the process of volatile anaesthesia. A detailed physiologically based 
pharmacokinetic–pharmacodynamic patient model for volatile anaesthesia is 
presented where all relevant parameters and variables are analysed. A model 
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predictive control (MPC) strategy is proposed to assure safe and robust control 
of anaesthesia by including an on‐line parameter estimation step that accounts 
for patient variability. A Kalman filter is implemented to obtain an estimate of 
the states based on the measurement of the end‐tidal concentration. An on‐
line estimator is added to the closed control loop for the estimation of the PD 
parameter C50 during the course of surgery. Closed‐loop control simulations 
for the system for conventional MPC, explicit MPC and the on‐line parameter 
estimation are presented for induction and disturbances during maintenance 
of anaesthesia.

In Chapter 4, we describe the process of intravenous anaesthesia. The mathe-
matical model for intravenous anaesthesia is presented in detail, and sensitivity 
analysis is performed. The main objective is to develop explicit MPC strategies 
for the control of depth of anaesthesia in the induction and maintenance phases. 
State estimation techniques are designed and implemented simultaneously with 
mp‐MPC strategies to estimate the state of each individual patient. Furthermore, 
a hybrid formulation of the patient model is performed, leading to a hybrid mp‐
MPC that is further implemented using several robust techniques.

Chapter 5 is focused on type 1 diabetes mellitus, more specifically on model-
ling, model analysis, optimisation and glucose regulation. The basic idea is to 
develop an automated insulin delivery system that would mimic the endocrine 
functionality of a healthy pancreas. The first level is the development of a high‐
fidelity mathematical model that represents in depth the complexity of the 
glucoregulatory system, presents adaptability to patient variability and demon-
strates adequate capture of the dynamic response of the patient to various 
clinical conditions (normoglycaemia, hyperglycaemia and hypoglycaemia). 
This model is then used for detailed simulation and optimisation studies to 
gain a deep understanding of the system. The second level is the design of 
model‐based predictive controllers by incorporating techniques appropriate 
for the specific demands of this problem.

The last three chapters are focused on the development of a systematic 
framework for the personalised study and optimisation of leukaemia (i.e., a 
severe cancer of the blood): from in vivo to in vitro and in silico. More specifi-
cally, Chapter 6 is a general description of the independent building blocks of 
the integrated framework, which are further analysed in the next chapters. 
Chapter 7 focuses on the detailed description of the in vitro building block of 
the framework. More specifically, it includes analysis of the disease, analysis 
of the experimental platform and environmental (stress) stimuli that are 
monitored within the platform, and a description of cellular biomarkers for 
monitoring the evolution of leukaemia in vitro. Chapter  8 focuses on the 
in  silico building block of the framework. It describes the pharmacokinetic 
and pharmacodynamic models developed for the optimisation of chemo-
therapy treatment for leukaemia. Finally, the simulation results and analysis 
of a patient case study are presented.
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The main outcome of this work is to develop models and model‐based 
 control and optimisation methods and tools for drug delivery systems, which 
would ensure: (a) reliable and fast calculation of the optimal drug dosage with-
out the need for an on‐line computer, while taking into account the specifics 
and constraints of the patient model (personalised health care); (b) flexibility to 
adapt to changing patient characteristics, and incorporation of the physician’s 
performance criteria; and (c) safety of the patients, as optimisation of drug 
infusion rates would reduce the side effects of treatment. The major novelty 
introduced by mobile technology is that it is no longer necessary to trade off 
control performance against hardware and software costs in drug delivery 
 systems. The parametric control technology will be able to offer state‐of‐the‐
art model‐based optimal control performance in a wide range of drug delivery 
systems on the simplest of hardware. All of this will lead to some very  important 
advantages, like: enhancing the confidence of medical teams to use computer‐
aided practices, increasing the confidence of patients to use such practices, 
enhancing safety by carefully applying a “what‐if” prior analysis tailored made 
to patients’ needs, a simple “look‐up function,” an optimal closed‐loop response 
and cheap hardware implementation.

The book shows the newest developments in the field of multiparametric 
model predictive control and optimisation and their application for drug deliv-
ery systems.

This work was supported by the European Research Council (ERC), that 
is, by ERC‐Mobile Project (no. 226462), ERC‐BioBlood (no. 340719), the 
EU  7th Framework Programme (MULTIMOD Project FP7/2007‐2013, 
no.  238013), the Engineering and Physical Sciences Research Council 
(EPSRC: EP/G059071/1 and EP/I014640), the Richard Thomas Leukaemia 
Research Fund and the Royal Academy of Engineering Research Fellowship 
(to Dr. Ruth Misener).
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1

1.1  Mathematical Modelling of Drug 
Delivery Systems

Drug delivery can be defined as the process of administering a pharmaceutical 
agent in the human body, including the consequent effects of this agent on the 
tissues and organs. Mathematical modelling of drug delivery can be divided 
into two different yet complementary approaches, the pharmacokinetic and 
pharmacodynamic approaches. Pharmacokinetics describes the effect of the 
drug in the body, by capturing absorption, distribution, diffusion and elimina-
tion of the drug. Pharmacodynamics describes the effects of a drug in the body, 
which are expressed mathematically by relations of drug dose–body responses. 
Usually, modelling of the drug delivery system requires a pharmacokinetic 
part, a pharmacodynamics part and a link between the two (Figure 1.1).

1.1.1 Pharmacokinetic Modelling

Two approaches for pharmacokinetic models dominate the literature, the com-
partmental models and the physiologically based pharmacokinetic models.

1.1.1.1 Compartmental Models
The basic idea of compartmental modelling is to group organs with similar 
 properties, such as the well‐perfused organs, in one compartment and describe the 
uptake based on these tissues’ properties (e.g. drug solubility and perfusion). The 
basic assumptions of compartmental modelling are: (a) homogeneity: uniform 
distribution and instant mixing within the compartment; (b) conservation of mass; 
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(c) the intrinsic properties are constant (e.g. temperature and volume); (d) there are 
no time delays between compartments; and (e) all exiting fluxes are linearly pro-
portional to the drug concentration in the compartment.

The simplest approach is to consider the whole body as one single 
 compartment in which the drug is administered and also eliminated. Usually, 
this mathematical approach is used for the description of drugs that are 
intravenously injected and well diffused, the elimination of which follows 
first‐order kinetics. Practically, within the human body, usually more than 
one  compartment is considered due to the slow diffusion of the drug to the 
peripheral tissues (Figure 1.2).

There are several challenges related to compartmental model development, 
such as the correlation of the model parameters (e.g. transfer coefficients) to 
physiological parameters, as well as difficulties related to the determination 
of the appropriate number of compartments that should be used in order to 
represent the pharmacokinetics of a population. Furthermore, the ability of 
these models to give a valid estimation of the drug profile of a newly studied 
patient is rather questionable. The major source of model uncertainty is due 
to the fact that the values of the variables are based on the interpretation 
of the mean concentration profile of a group of patients. This mean concen-
tration profile in most of the cases is not representative of the behaviour 
of  patients in the group studied, let alone the whole patient population. 
These drawbacks are satisfied to a certain extent by the physiologically based 
pharmacokinetic models.

Kinetics

Dynamics

Cp Ce

PharmacodynamicsLinkPharmacokinetics

Effect

Figure 1.1 Mathematical representation of a drug delivery system. Source: Ette and 
Willliams (2007). Reproduced with permission of John Wiley and Sons.

In

C1, V1

k2k1

C2, V2

Out

Out

Figure 1.2 Schematic of a two‐compartment 
pharmacokinetic model. Source: Saltzman (2001). 
Reproduced with permission of Oxford 
University Press.
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1.1.1.2 Physiologically Based Pharmacokinetic Models
Physiological models are high compartmental models that use existing 
 knowledge of the physiological mechanisms which regulate the drug action. 
These models capture the administration, diffusion and elimination of a drug 
in body organs that react with the drug. The drug mass balance for each organ 
can be described by Equation 1.1 (Saltzman, 2001):

 
V dC

dt
Flow Flow q Vi

i
in out el i i,  (1.1)

where i is each specific organ/compartment, Vi is the organ volume, Ci is the 
drug concentration in the organ/compartment i, qel,i is the rate of drug metabo-
lism in the organ/compartment i, and Flowin and Flowout are the inflow and 
outflow of the drug in the organ/compartment i.

A schematic overview of a physiological pharmacokinetic model, where 
each body organ is considered an independent compartment, is shown in 
Figure 1.3.

This modelling approach requires an in‐depth understanding of the 
 physiology, but it describes more accurately than empirical compartmental 
models the drug delivery system. The advantages of physiologically based 
models over empirical compartmental models lie in the ability to be extrapo-
lated between different species and different drug dosages (Cashman et  al., 
1996; Saltzman, 2001). The main drawback of physiologically based models is 
that, sometimes, certain parameters cannot be measured, and their values are 
difficult to be accurately predicted.

The description of one compartment itself in either of the previously men-
tioned approaches can be described by complex interactions and flows between, 
for example, blood cells, plasma, intestinal fluid, a rapid interactive pool and a 
slow interactive pool.

Both compartmental and physiological models range from simple to more 
detailed models that are based on fewer assumptions. Simplifications in the 
previous scheme can be made, depending on the exact system which is studied. 
In Figure  1.3, organs which do not contain important amounts of the drug 
agent can be neglected (Saltzman, 2001). However, the level of detail added to 
the model depends on the data availability and the purpose of the model.

1.1.2 Pharmacodynamic Modelling

Pharmacodynamic models describe the effect of a drug in the body (i.e. the 
impact of a drug that enters the cell on the cellular function). Due to the high 
complexity of the drug mechanism of action that enables precise measurements 
of the drug effect, detailed pharmacodynamic models are not in use and empiri-
cal expressions which correlate the drug concentration with the drug effect are 
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more preferable (Holford & Sheiner, 1982). Practically, the pharmacodynamic 
model is determined by testing potential models and estimating the parameters 
when a reference pharmacokinetic model is used, and the accuracy of the phar-
macodynamic model is highly dependent on precision of the pharmacokinetic 
model. The usage of a pharmacokinetic model is essential for the valuable 
expression of a pharmacodynamic model, as the latter assumes that the concen-
tration of the drug is in equilibrium with the effect site, which might be the case 
only in the steady state.
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Figure 1.3 Schematic of a physiological pharmacokinetic model. Source: Saltzman (2001). 
Reproduced with permission of Oxford University Press.
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In general, pharmacodynamics is the study of dose–response relationships. 
For the development of pharmacodynamic models, target cells are exposed 
in vitro in different drug concentrations, and drug effect curves are obtained. 
These data are then used to fit empirical pharmacodynamic models (Table 1.1). 
An example of a common dose–response curve is presented in Figure 1.4. The 
drug effect curves are of crucial importance, especially for the early clinical 
trial phases, for the determination of maximal dose effect as well as for estima-
tion of the effective drug dosing window.

1.2  Model analysis, Parameter Estimation 
and Approximation

Model analysis includes analysis of parameters and variables of the developed 
pharmacokinetic model, in order to define uncertainty of parameters. This 
uncertainty usually originates from inter‐patient or experimental variability. In 
a consecutive step, the model is analysed towards its most influential parame-
ters and variables. The methods that are usually used in order to obtain in‐
depth understanding of the model are global sensitivity analysis, variability 
analysis, parameter estimation and parameters correlation.

Table 1.1 The most common types of empirical pharmacodynamic models.

Model Model equations Description

Fixed‐effect 
model

– Effect: present (1) or absent (0), or degree 
of effect

Linear 
model

E S C Eo E  drug effect, C  drug concentration,  
S  slope parameter, Eo  initial drug effect

Log‐linear 
model

E S C Ilog E  drug effect, C  drug concentration,  
S  slope parameter, I  constant

Emax model E E E C
EC Co

max

50

E  drug effect, C  drug concentration,  
Emax  maximum drug effect, Eo  initial drug 
effect from previous application,  
EC50  concentration producing half of the 
maximum drug effect

Sigmoid 
Emax model E E C

EC C

n

n n
max

50

E  drug effect, C  drug concentration,  
Emax  maximum drug effect, Eo  initial 
drug effect from previous application,  
EC50  concentration producing half of the 
maximum drug effect, n  constant affecting the 
shape of the drug effect–concentration curve

Source: Holford and Sheiner (1982). Reproduced with permission of Elsevier.
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1.2.1 Global Sensitivity Analysis

Global sensitivity analysis allows the understanding and identification of 
 crucial model parameters that affect the model output. In the case of mathe-
matical models that describe biomedical systems, global sensitivity analysis 
enables the identification of the relative influence of parameters of the phar-
macokinetic and/or pharmacodynamic part of the model, on the model output. 
Performance analysis is conducted in the graphical user interface/high‐ 
dimensional model representation (GUI‐HDMR) software, which uses random 
sampling HDMR (RS‐HDMR) to construct an expression for the output as a 
function of the parameters with orthogonal polynomials. This expression 
accounts for up to second‐order interactions and corresponds to the ANOVA 
decomposition truncated to the second order. From the coefficients of the 
 representation, the sensitivity index is derived. The sensitivity indices are cal-
culated based on partial variances, which themselves are calculated from the 
approximation of the model by orthonormal polynomials (Li et al., 2002; Ziehn 
and Tomlin, 2009).

1.2.2 Variability Analysis

Variability analysis focuses on the identification of the influence of the 
 individual parameters and variables on the model outputs. Global sensitivity 
analysis gives a measure of the relative influence of each parameter on the out-
put. However, that approach does not incorporate whether a higher or lower 
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Figure 1.4 Illustration of a pharmacodynamic dose–response curve.



Framework and Tools 9

value of the parameter or variable of interest is increasing or decreasing the 
model output. Variability analysis enables the detection of the influence of each 
parameter and variable on the output, therefore facilitating the  understanding 
of the actual physical influence of the pharmacokinetic and pharmacodynamic 
variables and parameters. In particular, when performing variability analysis, 
an investigation of whether an increase in the pharmacokinetic and/or 
 pharmacodynamic variable or parameter increases or decreases the model 
output, y, takes place (Equation 1.2):

 

−= ,
%,

, .max i min

n m
i

i

o

y y
y

P  (1.2)

where P%,i is the percentage of change due to an increase in variable or parameter i, 
ymax,i is the upper bound model output, ymin,i is the lower bound model output 
and ynom is the calculated nominal model output.

1.2.3 Parameter Estimation and Correlation

Parameter estimation is the process of fitting the model parameters to clinical 
data. If the parameters are estimated with high precision, then the model’s 
response is closer to reality. The parameter estimation problem is evaluated by 
the correlation matrix C of the estimated parameters. An entry in the off‐ 
diagonal elements of the correlation matrix C close to one ≈(| | 1)Cij  indicates 
a high correlation of the corresponding parameters i and j, whereas an entry of 
zero ≈( 0)ijC  indicates no correlation. The entries of the correlation matrix are 
calculated based on the variance–covariance matrix V, the variance of a 
parameter is given on the diagonal (Vii) and the covariance of two parameters i 
and j is given on the off‐diagonal elements (Vij).

 
C

V
V V

i ji j
i j

ii jj
,

, ,  (1.3)

 Cii 1 (1.4)

1.3  Optimization and Control

Mathematical optimization and control of biomedical systems could lead to 
a better prediction of the optimal drug and/or therapy treatment for a spe-
cific disease. Advanced mathematical and computational techniques such as 
multiparametric predictive control, sensitivity analysis and model reduction 
are extensively discussed in Chapter  2. Moreover, those techniques are 
applied in a variety of diseases (i.e. anaesthesia, diabetes and leukaemia) that 
are further discussed in the following chapters.
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Anaesthesia (see Chapters 3 and 4) is a process which provides hypnosis, 
analgesia and muscle relaxation while maintaining the vital functions of a liv-
ing organism. For efficient prediction and control of this bio‐process, a model 
predictive controller (see Chapter 2) is required.

In type 1 diabetes (see Chapter 5), the goal is to maintain the blood’s glucose 
concentration within normal levels. From a mathematical point of view, this 
can be formulated as a model predictive control problem.

In acute myeloid leukaemia (see Chapters 6, 7, and 8), the ultimate goal is to 
determine the optimal chemotherapy dose that would lead to minimization of 
the cancerous population while maintaining the normal/healthy population 
above a minimum acceptable level. From a computational point of view, this is 
a scheduling problem.

For all of these diseases, the overall framework for the design of optimal drug 
delivery systems is presented in Figure 1.5.

In order to move towards the design of optimal delivery systems, develop-
ment of a high‐fidelity model able to describe the biomedical problem for an 
individual patient has to take place. Identification of parameters that crucially 
affect the model output enables the model reduction and, at a second step, the 
predictive control of the drug dose, therefore leading to process optimization.

Especially in the case of acute myeloid leukaemia, we have developed an appro-
priate in vitro system which allows ex vivo experimentation of leukaemic patient 
cells for the more efficient understanding and further identification of parameters 
that crucially affect the model output (i.e. the drug dose determination). Moreover, 
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Figure 1.5 Framework towards optimal drug delivery systems.
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experimental data serve as an input for our mathematical model, allowing 
 validation and improvement (Chapters 6, 7, and 8). Therefore, this in vivo–in 
vitro–in silico closed loop enables the accurate study and further determination 
of the optimal drug dose for an individual/specific patient (Velliou et al., 2014).
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2

2.1  Introduction

This chapter focuses on describing the computational tools that are part of the 
developed multiparametric model predictive control (MPC) framework 
 presented in Chapter 1. The framework enables the solution of demanding opti
mization and control problems through a step‐by‐step procedure presented in 
this chapter. The key advantage of this is that it follows a multiparametric 
approach for the controller design that transfers the computational burden 
offline (Pistikopoulos 2000). Furthermore, the proposed procedure is not pro
cess dependent and can be adapted to any process at hand. All the steps included 
in the framework are realized through the developing software p latform PAROC 
(PARametric Optimization and Control). PAROC is a user‐friendly software 
platform that utilizes the communication between gPROMS ModelBuilder and 
MATLAB. Through this software interoperability, the  multiple steps are realized 
in a way that convenient for the user and, most importantly, tractable.

A comprehensive schematic representation of the framework is shown in 
Figure 2.1, and a thorough explanation of the computational tool required for 
the steps is provided within this chapter.

The high‐fidelity model developed in the modelling and design optimization 
step usually results in differential‐algebraic equation (DAE) systems of high 
complexity. The DAE systems are approximated by discrete time models in 
state‐space representation. In order to do that, complex model–order reduc
tion techniques as well as identification methods and toolboxes are employed. 
The key objectives are to simplify the representation of the system without 
compromising the accuracy of the high‐fidelity model. Although there is a 
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variety of model reduction and approximation techniques (Lambert et  al. 
[2013] and references therein), the System Identification Toolbox of MATLAB 
is also commonly used. In this chapter, we will focus on model reduction 
 techniques as a method of model approximation.

2.2  Sensitivity Analysis and Model Reduction

2.2.1 Sensitivity Analysis

The use of sensitivity analysis in the context of biomedical engineering is of 
critical importance. Sensitivity analysis has been increasingly used for the 
assessment of the robustness of complex biological and biomedical models and 
in uncertainty quantification (Kontoravdi et  al. 2005, 2010; Yue et  al. 2008; 
Kiparissides et al. 2009; Kucherenko et al. 2009). This is particularly relevant 
in the field of pharmacometrics when trying to estimate the relative influence of 
pharmacokinetics, pharmacodynamics and other uncertain parameters. 
Sensitivity analysis is also used in model simplification as an approach to 
decrease the parametric dimensionality of biological systems. On some 
 occasions, it might be possible to remove some parts of a model that do not 
significantly affect its response. This is usually done by fixing non‐ essential 
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Figure 2.1 A framework for explicit/multiparametric model predictive control and moving 
horizon estimation. Source: Naşcu et al. (2016). Reproduced with permission of Elsevier.
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parameters to their mean value, so that more attention can be dedicated to criti
cally important factors to perform tasks like parameter estimation or o ptimal 
design of experiment. In recent years, global sensitivity analysis has gained con
siderable attention due to its advantages over local sensitivity analysis approaches 
(Homma and Saltelli 1996; Saltelli 2004). Global sensitivity is model‐independent 
by design and can detect parametric interactions, unlike one factor at a time 
(OAT) local methods (Saltelli et al. 2010). An eminent class of global sensitivity 
analysis techniques is that of variance‐based method, which includes the well‐
known Sobol method of sensitivity indices (SIs) (Sobol 1993, 2001). One of the 
disadvantages of such methods that are based on Monte Carlo sampling is the 
necessity to repeatedly run potentially expensive simulations. This is exacer
bated in the case of high‐dimensional input spaces for which exploration may 
become computationally intractable. One way to reduce the computational 
expense of performing sensitivity  analyses has been the use of surrogate models 
or meta‐models. This approach  consists of using relatively simpler models that 
emulate the dynamic  behaviour of the original computationally intensive 
 models. Various surrogate  modelling approaches have been suggested, such as 
Gaussian process modelling,  polynomial chaos expansion (PCE) (Sudret 2008), 
radial basis function (Buhmann 2003) and high‐dimensional model representa
tion (actually, a particular instance of PCE) (Li et al. 2002). The two main diffi
culties of these approaches are: the ability to handle higher dimension spaces 
and the sampling requirements to achieve convergence. For example, regres
sion‐based PCE approaches are better suited for systems with no more than 10 
input variables (Blatman and Sudret 2010). Methods based on numerical inte
gration like high‐dimensional model  representation (HDMR) are able to per
form in high‐dimensional spaces but may  require a significant amount of 
sampling realization in order to achieve c onvergence. An efficient solution is the 
combined use of low computational screening methods to discard non‐essential 
variables prior to the use of a  variance‐based method on the  remaining param
eters. One of the most c ommonly used screening methods is the Morris method 
(Morris 1991). A  very powerful set of data‐driven approaches is the  class of 
inductive modelling methods, in particular the group method of data handling 
(GMDH) (Ivakhnenko and Muller 1995). The GMDH is based on the cybernetic 
principle of self‐organization and has the ability to perform with limited data 
samples and in very high‐dimensional spaces, by selecting important parame
ters in an adaptive fashion. Another advantage of the approach is its immunity 
to noise. This is a very relevant aspect, as in many cases the sensitivity analysis 
practitioner does not necessarily have access to a model but only noisy field data. 
The objective of this study is twofold: firstly, we demonstrate the screening 
capabilities of GMDH in combination with the HDMR approach; and,  secondly, 
the noise immunity capabilities are evaluated on numerical examples. The 
mathematical fundamentals to HDMR and GMDH are introduced, and a simple 
methodology combining both techniques is presented. This methodology is 
then applied to first principle biomedical models.



Modelling Optimization and Control of Biomedical Systems16

2.2.1.1 Sobol’s Sensitivity Analysis
Sobol’s sensitivity analysis method is a variance‐based approach based on the 
ANOVA decomposition (Sobol 2001; Sobol & Kucherenko 2005). If f is an inte
grable function defined on the unit hypercube In and xϵIn, x x xn( , , )1  the 
input variables, the output f(x) of the function may be expressed as:
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where f0 is the mean response of f; and the terms fi(xi) and fij(xi, xj) represent the 
first‐order and second‐order terms, and so on. The formula above is termed 
ANOVA decomposition. The component functions may then be expressed as 
integrals of f:
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One of the best known global sensitivity analysis methods was introduced by 
Sobol (2001). If it is assumed that f is square integrable over In, we have:
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The terms represent the variance and partial variance, respectively. Sobol’s SIs 
can be given by:
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If a set of variables y x xs( , , )1  is considered and z is a set of the complementary 
variables, we note x y z( , ). Using the previous definition of the variance, the total 
variance of the subset y can be computed as:

 D D Dy
tot

z (2.7)
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and:
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The following inequality holds:

 ≤ ≤ ≤0 1tot
y yS S  (2.9)

If S Sy y
tot 0, then f does not depend on y.

If S Sy y
tot 1, then f only depends on y.

The indices enable us to rank variables and discard unessential variables. 
Sensitivity analysis indices are usually computed through Monte Carlo numerical 
integration (Sobol, 2001).

 D f x f y z dxdz fy ( ) ( , ) 0
2 (2.10)

Using low‐discrepancy sequences has been shown to increase the efficiency 
of the technique, especially Sobol’s sequence for uniform sampling.

2.2.1.2 High‐Dimensional Model Representation
In order to efficiently build the map of the input–output behaviour of a model 
function involving high‐dimensional inputs (typically, n ~ )10 102 3 , the HDMR 
approach was introduced as a set of quantitative tools. In most engineering 
problems, the expansion of functions can be truncated to the second‐order 
component function by Li et al. (2002, 2006):
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A particular way of deriving an HDMR representation through Monte Carlo 
sampling is the random sampling HDMR (RS‐HDMR) technique. Since the 
computation of multidimensional integrals may become prohibitive (Sobol, 
1993), an alternative technique based on the use of interpolation of over 
f amilies over low‐order component functions has been introduced by Rabitz 
and co‐workers (Li et al., 2002). If a set of piecewise continuous component 
functions {φ} is considered, we can derive:
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Once a family of component functions has been selected, the coefficients
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In practice, these calculations are done through Monte Carlo integration. 
There is a direct relationship between the HDMR expansion coefficients and 
Sobol’s sensitivity analysis technique:
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The sensitivity indices are obtained by dividing with the total variance, even 
though the total effect coefficients and the total variance involving interaction 
orders greater than three will still require the use of Sobol’s original approach.

Although HDMR has been very successful in a number of sensitivity analysis 
studies, it can be problematic in the case of a large number of parameters. The 
calculation of its component often requires large sampling sets, even though 
the method is able to present high‐dimensional input–output relationships. In 
the case of computationally intensive simulation models, this may become very 
impractical.

2.2.1.3 Group Method of Data Handling
GMDH is based on the principle of self‐organization and is sometimes referred 
to as polynomial neural networks. This technique is based on representing 
complex functions through networks of elementary expressions, like other 
advanced surrogate‐modelling approaches such as neural networks or the 
HDMR approach. Lorentz (1966) and Kolmogorov (1957) have shown that any 
continuous function f(x1, …, xd) of dimension d on [0,1]d can be exactly repre
sented as a composition of sums and continuous one‐dimensional functions. 
The GMDH approach is very efficient in data‐driven modelling of complex 
systems, with several advantages over conventional neural networks. We can 
refer to Ivakhnenko and Muller (1995) and Lemke (1997) for more ample 
 theoretical description of the method. An advantage over the classical neural 
networks is that GMDH is inductive, adaptively creating models from data 
under the form of networks of optimized active neurons in an evolutionary 
manner. The aim is to estimate an optimal structure of a network that 
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self‐organizes itself during training, making this a combined structure and 
parameter estimation procedure that starts from a basic structure of the mean 
value of the time series output data.

A first layer is built by considering all possible variable pairs and inductively 
self‐constructing and validating neurons made of simple expressions, usually 
within linear or second‐order polynomials. This will result in a set of transfer 
functions for the first network layer. A number of fittest and best generalizing 
models consisting of neurons are then selected via an external criterion. After 
each single induction step, model validation is performed as an integrated 
critical part of model self‐organization. In the classical approach, in order to 
create a new layer, the selected neurons are subsequently used as inputs, while 
other neurons are discarded. More complex organizations can be generated by 
using the selection criterion and using the cybernetics inheritance principle. 
The final optimal complex structure consists of a single network. There is no 
need to predefine the number of neurons or layers to be used since they are 
adaptively determined through the learning process.

The model self‐organization stops itself when an optimal complex model has 
been found (i.e., further increasing model complexity would result in over‐
f itting the design data by starting to adapt to noise). This is an important 
advantage over the RS‐HDMR approach or regression‐based PCE, which 
require the computation of a full set of predefined parameters. HDMR requires 
the computation of a large number of r

i coefficients through numerical 
 integration pq

ij , for many combinations of parameters (xi, xj) and polynomial 
orders, and unessential parameters can only be weeded out a posteriori upon 
calculation of these coefficients.

2.2.1.4 GMDH–HDMR
As shown in this chapter, GMDH holds a number of advantages that are 
 essential to global sensitivity analysis. The method is able to handle high 
dimensionalities, this being important in the context of biomedical engineer
ing. Moreover, GMDH is, by design, a very efficient screening procedure in 
itself by adaptively weeding out unessential parameters in a computationally 
tractable manner. Also, it has good performance for small data samples. The 
presented method is based on the direct construction of the HDMR expansion 
by using GMDH inductive modelling. If a set of parameters ( ) ,xi i n1� � is con
sidered, additional ‘synthetic’ variables are built. These correspond to Legendre 
orthogonal  polynomials of up to a predefined order n and evaluated on the 
original variables: X x r nr i r i, ( ), ..1 .

The GMDH algorithm is performed only on these variables, imposing a mul
tilinear relationship between the variables. For the calculation of Sobol’s SIs, 
the coefficient of the GMDH expression is used.

The main advantage of this method is its inductive ability to eliminate unes
sential parameters during the modelling process, leading to the elimination of 
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the calculation of coefficients for parameters that do not contribute to the 
 variance of the output. The method, indeed, incorporates the screening step 
and calculation of SIs in a single procedure.

2.2.2 Model Reduction

Model order reduction (MOR) describes a methodology intended to reduce 
the dimensionality of a dynamical system while preserving its input–output 
behaviour (Figure 2.2). The main purpose of MOR originally stemmed from a 
need to derive approximations of large‐scale dynamical systems for simulation 
purposes. One major area of application has concerned the reduction of finite 
element models originating from the discretization of large‐scale systems of 
ordinary differential equations (ODEs), differential algebraic equations (DAEs), 
partial differential equations (PDEs) and partial differential algebraic equations 
(PDAEs). In effect, sophisticated discretization techniques yield computation
ally prohibitive high‐dimensional systems. These discretized systems tend to 
be extremely complex and sometimes intractable for the purposes of predic
tion and simulation, and even more so in the case of the resolution of inverse 
problems characterizing optimization, parameter estimation and MPC. In the 
context of multiparametric/explicit MPC, this complexity takes a very specific 
meaning. Indeed, complexity directly materializes in a steep increase in the 

Physical system

ODEs, DAEs PDEs, PDAEs

Approximate model

Reduced-order ODEs,
DAEs

Spatial discretization

Order reduction

Time discretization

Model predictive control

Figure 2.2 Schematic representation of the MOR approximation procedure.
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number of critical regions, which results from the compounded effect of a high 
number of state variables (parameters) and constraints (dependent on the 
length of the prediction horizon).

2.2.2.1 Linear Model Order Reduction
An important class of model reduction techniques concerns linear systems. 
A major area of application of this class of problem has been the reduction 
of  large‐scale microelectromechanical systems (Antoulas, 2005). Most MOR 
techniques are projection based (i.e. they consist of projecting the dynamics 
of the original system on a lower dimensional subspace). One major class of 
methods is singular value decomposition (SVD) methods, which are based 
on the more general concept of principal component analysis (PCA). PCA is a 
procedure concerned with inferring the covariance structure of a system by 
converting a set of observations of possibly correlated variables into a set of 
values of linearly uncorrelated variables called the principal components. The 
transformation results in a hierarchized set of principal components ordered 
by decreasing variance. In particular, it allows the identification of the princi
pal directions (e.g. state variables) in which the data vary. The two main classes 
of MOR techniques are SVD methods and moment‐matching approaches. In 
balanced truncation, a transformation is operated that projects the system 
dynamics in a space where the most observable systems correspond to the 
most controllable ones. Following the procedure described in Antoulas (2005), 
we formulate a dynamical system in an equivalent balanced form:

 
x Ax Bu

y Cx
t t t

t t

1  (2.16)

The linear gramians’ controllability and observability gramians, WC and WO, 
are defined as the unique positive definite solution to the Lyapunov equations:

 

AW W A BB

A W W A C C
C C

T T

T
O O

T  (2.17)

Finding a balanced form for these gramians consists of finding a diagonal 
matrix Σ such that:

 W W diagO C i i n( ) [ , ]1
 (2.18)

where:

 

W TW T

W T W T

C C T

O
T

O
1 1

 (2.19)
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where T is a transformation matrix, and the σi are the Hankel singular values. 
The transformation matrix is then used to reformulate the dynamical system in 
an equivalent balanced form:

 

x TAT x TBu

y CT x
t t t

t t

1
1

1  (2.20)

It is possible to truncate the system by retaining the states accounting for 
most of its dynamical behaviour by partitioning the balanced system: noting 
A TAT 1 and B TB, a reduced‐order LTI is obtained:

 

x A x B u
y C x

t t t

t t

1 1 11 1 1

1 1
 (2.21)

where:
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Those synthetic (i.e. physically meaningless) states form an ordered set of 
decreasing controllability and observability. Another very important class 
of  linear MOR techniques is that of moment‐matching approaches. This 
class of method consists of the interpolation of the transfer function of a sys
tem, usually via the Pade approximation (Gallivan et al. 1994). It also belongs 
to the wider class of projection techniques known as Krylov subspace methods 
(Krylov 1931). Two widely used moment‐matching methods are those of 
Arnoldi (1951) and Lanczos (1950). Current research concerns the combina
tion of the two paradigms (Antoulas and Sorensen 2001). These techniques 
are commonly referred to as SVD‐Krylov methods. For a thorough overview 
of  linear MOR techniques, the reader will refer to Antoulas (2005). In some 
cases, a linear system is not sufficient to accurately capture the dynamics of a 
 dynamical s ystem. As linearization potentially leads to a significant loss of 
information, nonlinear model reduction approaches are introduced.

2.2.2.2 Nonlinear Model Reduction
The second approach employed is nonlinear balanced truncation, which is a snap
shot‐based technique and an empirical extension of the linear balanced truncation 
technique. Consider a nonlinear system of ODEs of the following form:

 

x t f x t u t
y t h x t u t
( ) ( ( ), ( ))
( ) ( ( ), ( ))

 (2.23)

As in linear balanced truncation, the method consists of finding a trans
formation matrix T in order to project the state vector on a lower order sub
space x Tx. In order to compute these matrices, empirical gramians or 
covariance matrices are derived from simulation data from the system.
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Defining the following sets:
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where r is the number of matrices for perturbation directions, s the number of 
different perturbation sizes for each direction, and n the number of inputs of the 
system. Using the sets above, it is possible to derive empirical controllability and 
observability gramians as follows:
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ilm n nt( )  is given by ilm ilm ilm ilm ilm T
t x t x x t x( ) ( ) ( )0 0 , where xilm(t) 

is the state of the nonlinear system corresponding to the impulse input, 
u t c T e t um l i( ) ( ) 0; and x0

ilm corresponds to the steady state of the system. 
Similarly, an empirical observability gramian is defined by:
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lm n nt( )  is defined as lm
ij

ilm ilm jlm jlmt y t y y t y( ) ( ) ( )0 0 , where yilm(t) 
is the output of the system corresponding to the initial condition x c T e xm l i0 0. 
The yilm

0  corresponds to the output measurement when the system is at steady 
state. A balanced system is then obtained from the previously defined empirical 
gramians as:

 

x t Tf T x t u t
y t g T x u

( ) ( ( ), ( ))
( ) ( , )

1

1
 (2.27)

Using a Garlekin projection P I[ , ]0  matrix with the same rank as the reduced 
system, the unimportant states may be set at a nominal steady‐state value and 
the nonlinear reduced‐order model:
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Note that in the case of the presence of parametric uncertainty, the system may 
be reduced by treating the parameters as exogenous inputs in a similar way as 
the method described above:

 

x t f x t u t t
y t h x t u t t
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 (2.29)
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Simply by posing u
u

.

A classification of linear and nonlinear model reduction techniques can be 
found in Table 2.1, and Table 2.2 presents a summary of the literature on MOR 
for multiparametric model predictive control (mp‐MPC) applications.

2.3  Multiparametric Programming and Model 
Predictive Control

Multiparametric programming is a technique for solving any optimization 
problem, where the objective is to minimize or maximize a performance 
 criterion subject to a given set of constraints and where some of the  parameters 
vary between specified lower and upper bounds. The main characteristic of 
multiparametric programming is its ability to obtain: (1) the objective and 
optimization variable as a function of the varying  parameters, and (2) the 
regions in the space of the parameters where these functions are valid.

The advantage of using multiparametric programming to address these 
problems is that for problems pertaining to plant operations, such as for 
 process planning, scheduling and control, one can obtain a complete map of all 
the optimal solutions. Hence, as the operating conditions vary, one does not 
have to reoptimize for the new set of conditions (Pistikopoulos et al. 2007).

A general multiparametric programming problem may be formulated as follows:

 

min ( , )
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 (2.30)

Table 2.1 Classification of the main order reduction techniques

Linear systems (Antoulas 2000) Nonlinear systems

Moment‐matching 
methods SVD methods SVD methods

Linearization 
based

Arnoldi (Arnoldi 
1951)
Lanczos (Lanczos 
1950)

Balanced truncation 
(Moore 1982)
Singular perturbation 
method (Kokotovix 1976)
Hankel approximation
(Adamjan, Arov et al. 
1971; Antoulas and 
Sorensen 2001)

POD (Wong 1971; 
Astrid 2004)
Empirical balanced 
truncation (Lall, 
Marsden et al. 1999; 
Hahn and Edgar 2002)

TPWL 
(Rewieński and 
White 2001)

Source: P. V. Kokotovic, R. E. O’Malley, P. Sannuti, Singular Perturbations and Order Reduction in 
Control Theory ‐ an Overview, Automatica, 12: 123–132, 1976.
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Table 2.2 Summary of the literature on model order reduction for mp‐MPC applications.

Authors Methodologies Key features

Narciso and 
Pistikopoulos 
(2008)

Balanced 
truncation, 
mp‐MPC

Combines linear balanced truncation and 
explicit MPC, incorporating the error 
bound into the control formulation

Singh and 
Hahn (2005)

Empirical balanced 
truncation, 
Luenberg‐type 
observers

State estimation on nonlinear reduced‐
order models obtains through empirical 
balanced truncation.

Hovland et al. 
(2008)

POD, mp‐MPC, 
Kalman filters

Implementation of a ‘goal‐oriented’ model 
constrained optimization framework to 
determine the optimal POD reduction 
projection basis
Simultaneous use of Kalman state 
estimation on the reduced‐order systems

Bonis et al. (2012) Successive 
linearization, 
Krylov methods

‘Equation‐free’ successive linearization of 
nonlinear systems of ODEs to which an 
Arnoldi order reduction scheme is applied

Agarwal and 
Biegler (2013)

POD Implementation of a trust‐region 
framework to guarantee optimality 
conditions with respect to the original 
system in optimization problems defined 
on reduced‐order POD models

Hedengren and 
Edgar (2005)

Empirical balanced 
truncation, ISAT

Order reduction through empirical 
balanced truncation coupled to complexity 
reduction and linearization via ISAT

Xie et al. (2012) ANNs, POD A hybrid, data‐driven approach, 
constructing POD approximate models 
with ai(t) time‐varying coefficient(s) 
determined via ANN black‐box models 
and the basis function in POD from data 
plant ‘snapshots’

Lambert et al. 
(2013)

Empirical balanced 
truncation

Empirical balanced balance truncation 
combined with linearization and balanced 
truncation for application of mp‐MHE

Rivotti et al. 
(2012)

Empirical balanced 
truncation

Empirical balanced truncation combined 
with nonlinear mp‐NMPC

Lambert et al. 
(2013)

Variance‐based 
model reduction

Use numerical integration for a variance‐
based approximation technique using 
global sensitivity analysis principles.

Xie et al. (2011) POD, TPWL, 
mp‐MPC

POD model order reduction of the 
dimensionality with respect to the spatial 
coordinate and use of TPWL to linearize 
the time‐dependent coefficients in the 
POD expansion
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where f, g and h are twice continuously differentiable in x and θ.
If (2.30) has a quadratic objective function and linear constraints, and the 

parameters appear on the right‐hand side of the constraints, the equation will 
have the following form:

 

s.t.
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where c is a constant vector of dimension n, Q is an (n × n) symmetric positive 
definite constant matrix, A is a (p × n) constant matrix, F is a (p × m) constant 
matrix, b is a constant vector of dimension p, and X and Θ are compact 
 polyhedral convex sets of dimensions n and m, respectively. Note that a term of 
the form θT Px in the objection function can also be addressed in the following 
formulation, as it can be transformed into the form given in (2.31) by substitut
ing x s Q P1 T , where s is a vector of arbitrary variables of dimensions n, 
and P is a constant matrix of dimension (m × n).

If we apply the basic sensitivity theorem (Floudas 1995) to (2.31) at [x(θQ), θQ], 
we will obtain the following result:
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and Y is a null matrix of dimension (n × m). Thus, in the linear‐quadratic opti
mization problem, the Jacobian reduces to a mere algebraic manipulation of 
the matrices declared in (2.31).
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The space of θ where this solution remains optimal is defined as the critical 
region, CRQ, and can be obtained by using feasibility and optimality conditions. 
The notation CR will be used to denote the set of points in the space of θ that 
lie in CR, as well as to denote the set of inequalities which define CR. Feasibility 
is ensured by substituting xQ(θ) into the inactive inequalities given in (2.31), 
whereas the optimality condition is given by Q ( ) 0, where Q ( ) cor
responds to the vector of active inequalities, resulting in a set of parametric 
constraints. This is represented by:

 CR Ax b F CRR
Q Q

IG� � � �( ) , ( ) , ,0  (2.35)

where 


A, 


b  and 


F  correspond to the inactive inequalities; and CRIG represents 
a set of linear inequalities defining an initial given region. A compact represen
tation of CRQ is obtained from the parametric inequalities by removing the 
redundant inequalities:

 CR CRQ R , (2.36)

where Δ is an operator which removes redundant constraints (Pistikopoulos 
et al. 2007). Once CRQ, which is a polyhedral region, has been defined for a 
solution, [x(θQ), θQ], the next step is to define the rest of the region, CRrest, as 
proposed in Pistikopoulos et al. (2007):

 CR CR CRrest IG Q  (2.37)

We then obtain another set of solutions in each of these regions and their 
corresponding CRs. The algorithm terminates when there are no more regions 
to be explored, namely, when the solution of the differential equation (2.32) has 
been fully approximated by first‐order expansions.

The main steps of the algorithm are presented in Table 2.3. While defining 
the rest of the regions, some of the regions are split, and hence the same  optimal 
solutions may be obtained in more than one region. Therefore, the regions 
with the same optimal solutions are united, and a compact representation of 
the final solution is obtained.

The design of mp‐MPC is based on the validated procedure described in 
Pistikopoulos et al. (2002). The standard state‐space representation is used 
to formulate a model predictive controller of the generic form subjected to 
the state‐space model and constraints imposed by the boundary values of 
the input, output, state and measured disturbance vectors. The resulting 
multiparametric quadratic programming problem is solved with standard 
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multiparametric techniques using the POP toolbox in MATLAB, and the 
map of optimal control actions is acquired.

2.3.1 Dynamic Programming and Robust Control

The combination of multiparametric programming and dynamic program
ming (Bellman 1957) has been reported as a method suitable for reducing the 
complexity of the optimization problem involved in multistage decision pro
cesses, such as explicit model predictive control (Borrelli et  al. 2005; Faisca 
et al. 2008; Kouramas et al. 2011). By using this method, the original problem 
is disassembled into a set of smaller sub‐problems with lower dimensionality, 
which are sequentially solved in a recursive manner. Recently, this approach 
has been extended to the problem of constrained dynamic programming of 
mixed‐integer linear problems (Rivotti and Pistikopoulos 2013).

A brief review on parametric programming algorithms that handle problems 
with solely continuous optimization variables is presented in Table  2.4. 
Table 2.5 shows the most important algorithms for parametric optimization 
problems with mixed discrete and continous optimization decisions.

In Table  2.6, we present the most important works on sensitivity analysis 
and  parametric programming of infinite‐dimensional dynamic optimization 
problems.

Despite the significant amount of publications and algorithms proposed for the 
multiparametric problems presented in Table 2.6, most classes of problems remain 
active subjects of research. Even for well‐established classes of  problems, such as 
multiparametric linear programming problems, there is continued interest in fur
ther improving the efficiency of the algorithm, reducing the  complexity of exploring 
large‐dimensional parameter spaces, and extending the approach to wider ranges of 
uncertainty descriptions in the cost function or constraints of the problem.

Table 2.3 mp‐QP algorithm.

Step 1 In a given region, solve (2.31) by treating θ as a free variable to obtain a feasible 
point [θQ].

Step 2 Fix Q  and solve (2.31) to obtain [x(θQ), λ(θQ)].
Step 3 Compute [ ( ) ]M NQ

1
Q  from (2.32).

Step 4 Obtain [xQ(θ), λQ(θ)] from (2.34).
Step 5 Form a set of inequalities, CRR, as described in (2.35).
Step 6 Remove redundant inequalities from this set of inequalities, and define the 

corresponding CRQ as given in (2.36).
Step 7 Define the rest of the region, CRrest, as given in (2.37).
Step 8 If there are no more regions to explore, go to the next step; otherwise, go to Step 1.
Step 9 Collect all the solutions, and unify the regions having the same solution to obtain 

a compact representation.
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Table 2.4 Literature review on continuous parametric programming techniques  
for static problems.

Authors Theory development

Multiparametric linear programming
Gal and Nedoma (1972)
Gal (1995)

Linear objective – constraints
Extension of simplex algorithm – basis exchange

Dua et al. (2002)
Bemporad et al. (2000)

Solve LP and use sensitivity analysis to derive 
expressions. Use inactive inequalities and Lagrange 
multipliers to define regions. Avoid degenerate solutions.

Filippi and 
Romanin‐Jacur (2002)

Enhancement of Gal’s mp‐LP approach. Overcome
dual degeneracy via lexicographic pivoting.

mp‐Nonlinear Programming
Dua et al. (1999, 2004) Nonconvex optimization

Generate convex over‐estimator and under‐estimator.
Linearization of convex functions
mp‐NLP on the functions
Spatial B&B to obtain solution

Jonker et al. (2001) p‐Linear/quadratic optimization
Distinguish between 5 types of generalized critical points 
g.c. according to whether: (a) linear‐independent 
constraint qualification, (b) strict complementary 
conditions or (c) non‐degeneracy of Hessian and 
Lagrangian hold. Switch between regions according to 
what condition is fulfilled, to derive optimal mapping.
Complete enumeration of constraint space.

Dua et al. (2002) Quadratic objective linear constraints (mp‐QP)
Uses sensitivity analysis from Fiacco and Kyparisis (1986) 
to get the expressions.
Convex assumptions; no linearization

Tøndel et al. (2003) mp‐QP
Exploit the relation between polyhedral critical regions 
and sets of active constraints to improve the off‐line 
computation time of the explicit solution of Dua et al. 
(2002).

Berkelaar et al. (1999) Quadratic/linear complementarity program – QP/LCP
Use maximally complementarity conditions of interior 
point methods to characterize complete parametric 
region.
Key features: pivot step as in LP for switching basis
Use optimal basis identification/optimal partition 
identification.

(Continued )
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The benefits of using explicit model predictive control have motivated 
research aimed at extending the theory to several different classes of control 
problems. Table  2.7 presents references for problems that are common 
in  the  control literature which have been addressed using explicit model 
 predictive control.

Table 2.4 (Continued)

Authors Theory development

Zafiriou (1990) Quadratic programs
Obtain solutions for different sets of active constraints.

Fiacco and Ishizuka (1990)
Fiacco and Kyparisis (1988)

Convex problem
Sensitivity analysis around optimal
Linearization to obtain expressions

Benson (1982) Non‐convex problem
Convex over‐ and under‐estimators

Table 2.5 Literature review on mixed‐integer parametric programming techniques 
for static problems.

Authors Theory development

mp‐ Mixed‐integer linear programming
Acevedo and Pistikopoulos (1996, 1999) Modified branch‐and‐bound

Comparison procedure between parametric 
solutions

Ohtake and Nishida (1985) B&B algorithm for p‐MILP
LB: relaxed integers; UB: fixed integers
No formal comparison procedure

Dua and Pistikopoulos (2000) Decomposition between (m)p‐LP and MILP
Crema (2002) mp‐ILP: iterate between a MILP with free θ 

and ILP with fixed θ.
Stop when no improved realization is found.

mp‐ Mixed‐integer nonlinear programming
Dua et al. (1999) Convex systems

Iterate between an mp‐NLP and a MINLP
Acevedo and Pistikopoulos (1996)
Pertsinidis et al. (1998)
Papalexandri and Dimkou (1998)
Dua et al. (1999)

Convex systems
Iterate between an (m)p‐NLP and na (m)
p‐MILP
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Robust control can be defined as the solution of an optimal trajectory of the 
system under the presence of uncertainty and/or disturbances, which guaran
tees constraint satisfaction for all admissible values of uncertainty, and optimally 
steers the system to the target reference points (Bemporad and Morari 1999; 
Rawlings and Mayne 2009). The uncertainty can originate from model‐ mismatch, 
non‐captured hidden process dynamics and/or input or output disturbances 
(Muske and Badgwell 2002).

Table 2.6 Literature review on parametric programming/sensitivity analysis in dynamic 
optimization.

Authors Theory development

Ito and Kunisch (1992) Optimal control. Inequality constraints. Linear 
dynamics. Derive functions of control, state and 
adjoint variables with respect to problem 
parameters.

Diehl et al. (2002) On‐line dynamic optimization. Use derivatives of 
objectives and constraints with respect to 
parameters to derive a perturbation manifold. Use it 
as an approximation to the dependence of the 
optimal conditions. Not complete profile of optimal 
conditions in terms of parameters

Dontchev et al. (2000) Optimal control. Solution stability under 
perturbations. Expressions for neighbourhood 
around the optimal solution. Do not consider range 
of variations.

Büskens and Maurer (2000) Optimal control. Detailed sensitivity analysis of 
optimal solution. Use first‐ and second‐order Taylor 
expansion. Find sensitivity of adjoints and states. 
Employ SQP methods. No exploration of full 
parameter space

Malanowski and Maurer (2001)
Augustin and Maurer (2001)

Sensitivity analysis of nonlinear optimal control 
problems. Compute derivatives of optimal 
conditions as a function of parameters. Problems 
with high‐order path constraints

Solís‐Daun et al. (1999) Stability of a dynamic system subject to uncertainty. 
Optimal feedback control as a function of 
parameters. No constraints included. Cannot be 
used for a range of variations

Alt (1991) Optimal control. Objective: stability of optimal 
solution. Constraints included. Subject to 
perturbations. Restricted to neighbourhood around 
optimal
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Table 2.7 Relevant methods for designing robust model‐based controllers.

Authors
On‐line/off‐ 
line Remarks

Campo and Morari (1987) On‐line Min worst‐case ∞ norm
Lee and Yu (1997) On‐line Min worst‐case quadratic cost, use 

of dynamic programming for closed 
loop

Schwarm and Nikolaou (1999)
Badgwell (1997)

On‐line Min nominal objective s.t. 
robustness quadratic/linear 
constraints. Large number of 
combinations

Kassmann et al. (2000) On‐line Apply robustness constraints to 
steady‐state target calculation.

Scokaert and Mayne (1998) On‐line Min worst‐case quadratic, invariant 
set for stability

Kothare et al. (1996)
Casavola and Mosca (2007)

On‐line Min upper bound on worst‐case 
quadratic cost
Convert min‐max optimization to 
LMI‐based optimization.
Use also terminal cost and finite 
horizon tuning for stability.

Lee and Cooley (2000) On‐line Min worst‐case quadratic cost s.t. 
quadratic constraints for stability

Zafiriou (1990) Semi off‐line Min quadratic cost. Add stability 
constraints, no feasibility 
guaranteed. Large number of 
constraints combinations

Mayne and Schroeder (1997) Off‐line Min settling time; use invariant set.
Kouvaritakis et al. (2000) Semi off‐line Off‐line: obtain the gain of the 

feedback controller via min 
quadratic robust perf. s.t. linear 
matrix inequalities. On‐line: 
quadratic min to compute bias. 
Suboptimal strategy

Bemporad et al. (2003) Off‐line Min worst‐case − ∞ norm. Use 
of dynamic programming. Solve 
consecutively mp‐LPs.

Ramírez and Camacho  
(2001, 2002)

Semi off‐line Min worst‐case quadratic cost. 
CARIMA models, PWA solution via 
geometric arguments. No constraint 
considered min worst‐case quadratic 
cost. Rigorous on‐line LP to 
compare minima and locate solution
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2.4  Estimation Techniques

Estimation techniques are vital for obtaining information about a system’s state 
and condition but also for realizing control of a system based on the state infor
mation (Rao 2000; Rawlings and Mayne 2009). The purpose of estimation is 
hence often to reconstruct this state information from a possibly noisy set of 
measurements or when state estimation is not directly available. A long‐existing 
model‐based technique for state estimation is the Kalman filter (Welch and 
Bishop 2001), which is an unconstrained method. The Kalman filter is an algo
rithm that uses a series of measurements observed over time, containing noise 
and other inaccuracies, and produces estimates of unknown variables that tend 
to be more precise than those based on a single measurement alone. The use of 
constrained estimation techniques such as the moving horizon estimator (MHE) 
can lead to significant improvements of the estimation result (Rao 2000; Darby 
and Nikolaou 2007) by adding system knowledge. MHE is an  estimation method 
that obtains the estimates by solving a constrained optimization problem given a 
number, or horizon, of past measurements. It obtains not only the state informa
tion but also the noise sequence over the horizon.

The advantages of MHE over the Kalman filter are that, firstly, the MHE can 
handle constraints that could improve the estimation result significantly. 
Secondly, it estimates not only the state values but also the values of the distur
bance over the horizon.

The obtained estimates can then be used for the control of the system using 
MPC, which is a model‐based control method that solves a constrained opti
mization problem to obtain the optimal control action to fulfil the purpose of 
the system, for example a certain quality of the final product for as little pro
duction cost as possible. The main advantages of MPC are the handling of 
multiple‐input/multiple‐output systems and the handling of system constraints 
that for example represent limitations to guarantee the safety of the system.

Estimation techniques are often embedded in a control structure that relies on 
estimated values such as MPC (Rawlings and Mayne 2009). MPC solves a con
strained optimization to obtain the best control action and requires the current 
state information, which often cannot be measured directly but is only available 
as the result of an estimator. If noise is present in the available measurements, 
there will inevitably be an error in the estimator’s results. The MPC should hence 
not simply assume that the estimated values are correct but needs to consider 
the estimation error in order to obtain the best performance (Rawlings and Mayne 
2009). While the determination of this error set is rather straightforward for 
unconstrained estimators such as the Luenberger observer (Raković and 
Kouramas 2006; Mayne et al. 2009) or the unconstrained MHE (Sui et al. 2008), 
no method exists for constrained MHE. Since the constrained MHE can give 
 significantly better estimates than unconstrained methods, the controller based 
on those better estimates will also perform better (Rawlings and Mayne 2009).
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2.4.1 Kalman Filter

The Kalman filter is a standard method for unconstrained state estimations, and it 
follows a two‐step procedure to calculate the maximum a posteriori Bayesian esti
mate (Rao 2000; Welch and Bishop 2001; Rawlings and Mayne 2009). The first step 
is the time update, which uses the system model to predict the current state of the 
system based on the last estimate. The second step is the measurement update. 
The prediction from the previous step is updated by using the sensor information. 
Therefore, we can say that the Kalman filter is a predictor‐corrector type estimator 
that is optimal in the sense that it minimizes the estimated error covariance.

2.4.1.1 Time Update (Prediction Step)
Prediction of the state:

 − − − −= +/ 1 1/ 1 1ˆ ˆk k k k kx Ax Bu  (2.38)

Projection of the error covariance:

 P AP A Qk k k
T

kal/ 1 1  (2.39)

2.4.1.2 Measurement Update (Correction Step)
Computation of the Kalman gain:

 K P C CP C Rk k k
T

k k
T

kal/ /( )1 1
1 (2.40)

Update of the estimate with measurement:

 − −= + −/ / 1 / 1ˆ ˆ ( )k k k k k k k kx x K y Cx  (2.41)

Update of the error covariance:

 P I K C Pk k k k( ) / 1 (2.42)

In Equations (2.38) through (2.42), Qkal and Rkal represent the measure of 
 confidence in the model and the measurement, respectively.

The solution of the discrete algebraic Riccati equation (Söderström 2002):

 P A PA A PB B PB R B PA QT T T
kal

T
kal( ) 1  (2.43)

can be used for the calculation of the steady‐state gain which makes P P Pk 1 k  
constant.

2.4.2 Moving Horizon Estimation

The idea of moving horizon estimation is to estimate the state using a mov
ing and fixed‐size window of data. Once a new measurement becomes avail
able, the oldest measurement is discarded, and the new measurement is 
added. The concept is to penalize deviations between measurement data and 
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 predicted outputs. In addition – for theoretical reasons – a regularization term 
on the initial state estimate is added to the objective function. There are two 
main characteristics that distinguish MHE from other estimation strategies, 
such as the Kalman filter: (a) prior information in the form of constraints on 
the states, disturbances and parameters can be included; and (b) since MHE is 
optimization based, it is able to handle explicitly nonlinear system dynamics 
through the use of approximative nonlinear optimization algorithms. In 
Haseltine and Rawlings (2005), MHE was shown to possess superior estima
tion properties compared to the extended Kalman filter.

The Kalman filter considers only one set of measurements at a time. Rawlings 
and Mayne (2009) have shown that the Kalman filter is the algebraic solution 
to the following unconstrained least‐squares optimization problem:

 
−

− −

−

= =
Φ = − + +∑ ∑1

0
1 1

2 21
2

0 0 0
0 0

ˆ ˆ ˆ( ,  { }) x
k k

T T

k kP
k kQ R

x w x w v  (2.44)

where:

 
x Ax Bu Gw
y Cx v

k k k k

k k k

1  (2.45)

and Qk > 0, Rk > 0 and P0 > 0 are positive definite matrices. This optimization 
problem now opens the possibility to add system knowledge in the form of 
constraints. The constraints might for example capture the fact that a leak is 
always an outflowing stream, or account for non‐zero non‐Gaussian noise 
(Robertson and Lee 2002).

The optimization problem (2.44) is then not equivalent to the Kalman filter any
more. If all the available past measurements are used for the estimation, as in (2.44), 
the estimation problem grows unbounded with time. This is referred to as the full 
information estimator (Rao 2000). The derivation is based on the maximization of 
the a posteriori Bayesian estimate. In order to keep the estimation problem com
putationally tractable, it is necessary to limit the processed data, for example by 
discarding the oldest measurement once a new one becomes available. This essen
tially slides a window over the data, leading to the MHE. The data that are not 
considered anymore can be accounted for by the so‐called arrival cost so that the 
information is not lost. The MHE then considers only a limited amount of data, so 
that the constrained optimization problem becomes:
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 (2.46)
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where T is the current time; Q Rk k 0 0, , PT N T/ 1 0  are the covariances of 
wkvkxT N  assumed to be symmetric; N is the horizon length of the 
MHE; Y y yT N

T
T N
T

T
T T1 ,...,  is a vector containing the past N 1  measurements; 

U u uT N
T

T N
T

T
T T1

1,...,  is a vector containing the past N inputs; x, v, w denote 
the variables of the system; ˆ, ,ˆ ˆx v w denote the estimated variables of the system; 
and /ˆT T Nx −  and { } /

11 ˆˆ ,/
ˆ ˆ T N T T

TT x WT T N T T NW W w −

−−
− −= =  denote the decision variables of 

the optimization problem, respectively the estimated state variable and the 
noise sequence.

 − −

− −
− − − − − −

− + − −
/ 1

22 1 2
/ / / 1

ˆ ˆx
T N T

T T
T N T T N T T N T N T T NP P

x Y Ox cbU  (2.47)

is described as the smoothed arrival cost. For steady‐state MHE, Q Q R Rk k,  
and P PT N T 1|  are time invariant.

The current state of the system can be calculated from the initial state xT T N|  
by forward programming using the discrete time linear system if the determin
istic input UT

T N
1  and the noise sequence WT N

T 1  are known. It is thus sufficient 
to estimate the initial state −*T|T Nˆx  and the noise ˆW*

T. The concept of MHE is 
illustrated in Figure 2.3, where ( ) |T k T denotes the sample at time T − k obtained 
at time T.

The MHE is applied with the following steps:

1) The optimization problem (2.40) is solved to obtain −* |ˆT T Nx  and *ˆ
TW .

2) The current state estimate * |ˆT Tx  is obtained by substituting * |ˆT Tx −Ν  and 
*ˆ

TW   into the system dynamics 1ˆ ˆ ˆk k k kx Ax Bu Gw+ = + +  and projecting 
the  state  values forward from time T − N to the current time T by 

1
* * 1

/ /ˆ ˆ ˆ
T

N T j
T T T N T k

j T N
x A x A Gw

−
− −

−
= −

= + ∑
.

3) When the next measurement becomes available (at the next sampling 
instance), steps 1 and 2 are repeated.

Inputs u(T–k|T)

Noise sequence {w}

Estimation horizon

X(T–N+1|T)

T–N+1 T–1 T
Time

X(T)

Ts

Past Future

N Length of estimation horizon
Output
Sampling time
Sample at T–k at time T
back to T–N+1

Noise sequence {w} to be estimated
State x(T–N+1|T) to be estimated

y
Ts
.(T–k|T)

Measured outputs y(T–k|T)

Figure 2.3 Concept of MHE.
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Remark 2.1 In the case of  T N≤ , the full information estimator is solved using 

the arrival cost 1
0

2
/ /ˆT N T T N T P

x x −− −− . The horizon ‘fills up’, and no data are 

 discarded (Rao 2000).

Remark 2.2 Rao (2000) points out that wrongly posed constraints might lead 
to an infeasible optimization problem and that constraints on ˆ kv  could be prob-
lematic due to the possibility of outliers in the measurement. Any constraints 
posed in (2.40) should hence be chosen such that the real system does not violate 
them (Rao 2000).

This observation leads to the following assumption for the work in this thesis:

Assumption 2.1 The real system does not violate the constraints posed to the 
MHE – ˆ ˆ ˆ, ,x v V w W∈ Χ ∈ ∈  – which contain the origin in their interior.

The formulation of the MHE with the smoothed arrival cost is still an open issue 
which will be addressed here. In order to formulate and solve the  constrained 
MHE with multiparametric programming, the optimization problem needs to 
be reformulated into the standard multiparametric quadratic form.

Darby and Nikolaou (2007) have reformulated the MHE with the filtered 
arrival cost.

The multiparametric formulation of the constrained MHE is obtained by sub
stituting the state‐space formulation of the estimated + = + +1ˆ ˆ ˆk k k kx Ax Bu Gw , 

= −ˆ ˆk k kv y Cx  into:

{ }
1 1

1 1
1 1 ,{ } 1

1 1
1 1/ 1 1/

1

ˆ[ , ] min ( ) ( )ˆ

( ) ( ) ( )

T N
T N T N

T N
T T

T N k kT N x w k T NT
T T
k k T N T N T N SS T N T N T N

k T N

x w w Q w ww

v R v x x P x x

−
− + − +

−
− −

− + − +
= − +

− −
− + − + − − + − + −

= − +

= − ⋅ ⋅ −

+ ⋅ ⋅ + − ⋅ ⋅ −

∑

∑
(2.48)

subject to:
 

+ = ⋅ + ⋅ + ⋅
= ⋅ + → = − ⋅

⋅ ≤

1                            discrete statespace formulation
                                                   
                                           

k k k k

k k k k k k

x A x B u G w
y C x v v y C x

Hx x h
⋅ ≤
⋅ ≤

                path constraints on state variables
                                                          path constraints on the noise w
                                                

Kw w k
Lv v l

− + − − −= ⋅ + ⋅ + ⋅

1

1/ /

             path constraints on the noise v
ˆ       update of the cost to arriveT N T N T N T N kx A x B u G w

where N is the length of the horizon, T is the current point in time, Q and R 
are positive definite diagonal weighting matrices on the noises, and PSS is the 
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steady‐state solution for the Kalman filter. 1ˆ{ }T N
T Nw −

− +  and { }v T N
T

1 are sequences 
of independent, normally distributed random numbers with mean values w for 
{w} and zero‐mean for {v}. xT N T N1/  is the arrival cost, which captures the 
previous measurements that are not considered anymore. 1ˆT Nx − +  is the solu
tion of the MHE at the previous time step.

 
1

1 1

1 11
1 1 1 1ˆ ˆ,{ } 1 1

ˆ ˆ1 ˆ ˆmin ,{ } . .ˆ ˆ{ } { }2T
T N T N

T N T NT T
T N T N T Tx w T N T N

x x
x w H f

w w
θ

−
− + − +

− + − +−
− + − + − −

− + − +

   
  +           

 (2.49)

where:
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,
ca = diag(C) a,
ca = diag(C) g
ca = diag(C) b,

,

 (2.50)

where diag(·) denotes a matrix of appropriate size, with (·) on its main diagonal 
and zero everywhere else. Further details can be found in Darby and Nikolaou 
(2007) and Voelker et al. (2013).

The optimal solution to the MHE optimization (2.49) * 1 *
1 1ˆ( ),{ } ( )ˆ

TT
T N T Nwx θ θ−

− + − +    
(where * denotes the the optimizer of problem [2.49]) is a piecewise affine 
 function of the measurements, inputs and arrival cost.
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 (2.51)

where l is the number of critical regions (CRs).

Remark 2.3 Often, only the state estimate /ˆT Tx  is of interest, and hence it 
might be sufficient if only ˘ /xT T  has to fulfil the constraints rather than all /ˆk Tx  for 
all k T N  T, , . It might therefore suffice to pose constraints only on /ˆT Tx  
rather than the whole horizon by replacing the matrix col ˆ( )xd  with dx and the 
matrix diag ˆ( )xD  with ˆ0 ... xD 

 . This reduces the number of parameters in 
the optimization problem.

2.5  Explicit Hybrid Control

Mixed‐logical dynamical (MLD) systems are a well‐studied class of systems 
(Bemporad and Morari 1999; Heemels et al. 2001). Their basic principle is that, 
additionally to the commonly encountered continuous parts, discrete elements 
are present in the problem formulation, as either inputs, states, variables or 
outputs.

In particular, in the case where the discrete elements are switches, this 
immediately leads to bilinear terms. However, it was shown how these bilinear 
terms can be avoided, and via auxiliary variables a linear formulation can be 
obtained according to:

 x Ax B u B B zk k k k k1 1 2 3  (2.52a)

 y Cx D u D D zk k k k k1 2 3  (2.52b)

 E u E E z E x Ek k k k1 2 3 4 5 , (2.52c)

where (2.52a)–(2.52b) represent the state‐space model, while (2.52c) describes 
any type of constraints of the system (Bemporad and Morari 1999). The states 
at time k are thereby denoted by xk, the outputs by yk, the inputs by uk, the 
discrete (auxiliary) variables by δk and the continuous auxiliary variables by zk. 
Note that all matrices have appropriate dimensions.

Consequently, in order to obtain an optimal, model‐based control strategy, 
the following optimization problem needs to be solved:

 

J x J U X Y Z

k N
x

U

N

* min , , , ,

. . . . , ,
0

3 4 0 1s t  Eq  (2.53)
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where N is the number of steps considered (also referred to as the horizon), 
U u u uN 0 1 1, , , , X x x xN 0 1, , , , Y y y yN 1 2 1, , , ,  0 1 1, , , N , 

Z z z zN 0 1 1, , ,  and Ω is a terminal weight to ensure stability.

Remark 2.4 It is convention that no output yk is recorded at k 0. Thus, the 
mathematical representation of problem (2.48) is slightly inaccurate. However, this 
is accepted due to the increased meaning of the formulation due to its conciseness.

Problems of type (2.53) are referred to as mixed‐integer programming (MIP) 
problems. In the case of classical MPC, problem (2.53) is solved as soon as the 
nominal value for x0 becomes available. In the case of explicit MPC, problem 
(2.53) is solved offline over a certain bounded range of x0, and thus requires the 
solution of a multiparametric mixed‐integer programming (mp‐MIP) problem.

2.5.1 Multiparametric Mixed‐Integer Programming

The solution of mp‐MIP problems is very challenging. The additional com
plications introduced by the presence of integer variables are (a) combinatorial 
complexity and (b) nonconvexity. In this section, the problem and solution 
characteristics of mp‐MIP problems are described, before approaches are 
reviewed which have been proposed to solve certain mp‐MIP problems. Based 
upon these, a general framework for the solution of a certain class of mp‐MIP 
problems is presented, as well as a novel strategy on how to handle the pres
ence of nonconvexity in the description of the critical regions.

Remark 2.5 The most common mp‐MIP problems, and thus the ones  considered 
here, are multiparametric mixed‐integer linear and quadratic programming 
(mp‐MILP and mp‐MIQP, respectively) problems; mp‐MILP problems are a 
s ubclass of the mp‐MIQP problems with a linear objective function.

2.5.1.1 Problem and Solution Characterization
Here, the following mp‐MIQP problem is considered:
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maxR l q| 1

 (2.54)

where Θ is a polyhedral subset of the parameter space, and the matrices have 
appropriate dimensions. Note that this formulation only includes binary 
 variables. Furthermore, only Q 0 is considered.
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When the integer combination y y  is fixed in problem (2.54), the following 
multiparametric quadratic programming (mp‐QP) problem results:

 

z Q x H c x f
Ax b Ey F
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x
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T

n

min( ) ( )
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,

:



s.t.

qq
l
min

l l
max l q| , , , ,1

 (2.55)

where the index x denotes the part of the matrix or variable associated with the 
continuous variable x, and c yc Qx x xy , where Qxy is the part of Q associated 
with the combination of continuous and binary variables. Note that f(θ) does not 
influence the solution x(θ), as it is a scaling factor of the objective function value.

The solution of problems of type (2.55) has been studied extensively, and its 
solution characteristics are reported in Definitions 2.1 and 2.2 and Theorem 2.1.

Definition 2.1 Piecewise affinity and critical regions (Bemporad et al. 2002)
A function x Rn( ) :  , where Rq is a polyhedral set, is piecewise affine if 
it is possible to partition Θ into convex polyhedral regions, called critical regions, 
CRi, and x K r CRi i i( ) , .

Remark 2.6 The definition of a piecewise quadratic function is analogous.

Definition 2.2 Parametric profile The solution of an mp‐P problem is 
referred to as a parametric profile, and it consists of the closure of the critical 
regions and the solutions associated with them.

Theorem 2.1 Properties of  mp‐QP solution (Bemporad et  al. 2002; 
Dua et al. 2002) Consider the optimal solution mp‐QP problem, and let Qx 
be positive definite, Θ convex. Then, the set of feasible parameters f  is 
convex, the solution x(θ) is piecewise affine and the optimizer solution 
z Rf( ) :   is continuous, convex and piecewise quadratic.

In the case of mp‐MIQP problems of type (2.54), the solution properties are 
given by Theorem 2.2 and Lemma 2.1.

Theorem 2.2 Properties of  mp‐MIQP solution (Borrelli et  al. 2005) 
Consider the optimal solution of problem (2.54), and let Q be positive definite. 
Then, the solution x(θ) is piecewise affine, and the set CRi has the following form:

 CR G h w j ti
T

i j i j
T

i j i{ : , , , }, , , 1  (2.56)

where ti is the number of constraints that describe CRi.
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Lemma 2.1 Quadratic boundaries (Borrelli et  al. 2005) Consider the 
 solution of problem (2.54) as a combination of solutions of the mp‐QP problems 
 associated with all possible combinations of binary variables. Then, quadratic 
boundaries arise from the comparison of quadratic objective functions 
 associated with feasible combinations of binary variables.

2.5.1.2 Literature Review
The different approaches for the solution of mp‐MIP problems can be distin
guished based on their strategy to handle the integer variables: branch‐and‐bound 
methods, decomposition‐type approaches and exhaustive enumeration.

Branch‐and‐Bound Methods The first solution approach for mp‐MILP problems 
was presented by Acevedo and Pistikopoulos in 1997 (Acevedo and 
Pistikopoulos 1997): in order to  handle the integer variables y, they are relaxed 
in the original problem by treating them as continuous variables bounded 
between 0 and 1 (i.e. y p[ , ]0 1 ). Based on this root node, a binary search tree is 
generated and the binary variables were then successively fixed at each node of 
the search tree (Figure 2.4).

The resulting multiparametric linear programming (mp‐LP) problems were 
solved at each node. The solution to the mp‐LP problem was then compared to 
the upper bound according to:

 z z zUB( ) ( ) ( )* 0 (2.57)

where z*(θ) is the objective function value of the solution of the current node, 
and zUB(θ) is the objective function value of the upper bound. Note that all 
objective function values are linear, and thus Δz(θ) is always linear.

Node 0

y1

y2

Node 1
y1= 0

Node 3
y2= 0

Node 4
y2= 1

Node 5
y2= 0

Node 6
y2= 1

Node 2
y1= 1

Figure 2.4 A schematic representation of a binary search tree used in branch‐and‐bound 
methods for the solution of certain mp‐MIP problems.
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Remark 2.7 According to Theorem 2.2, the objective function value of an mp‐
MILP without bilinear terms is piecewise affine. Thus, (2.54) has to be considered 
for every intersection CRint of the polyhedral regions associated with z*(θ) and 
zUB(θ), respectively.

Consequently, Equation (3.9) is used to partition CRint according to:

 CR CR zint1 0( )  (2.58a)

 CR CR zint2 0{ ( ) } (2.58b)

where in CR1, z*(θ) is optimal; while in CR2, zUB(θ) remains optimal. Note that 
due to the linearity of Δz(θ), CR1 and CR2 are polyhedral.

As z*(θ) is a solution at a node of the binary search tree, it is possible that the 
associated solution y*(θ) is either integer (i.e. all the relaxed integer variables, if 
any, have a value of either 0 or 1) or not. If z*(θ) corresponds to an integer solution, 
then the upper bound in CRint is updated according to the conclusions drawn 
from (2.58). If z*(θ) does not correspond to an integer solution, then z*(θ) is a 
lower bound of an integer solution – if feasible – as it relaxes the integer variables, 
and thus allows them to adhere to values which, albeit not integer, yield a lower 
objective function value z*(θ) at the current node.

As it does not correspond to an integer solution, this current node has to be 
branched further, and (2.58) can be used to fathom parts of the parameter 
space considered, namely CR2 according to (2.58b), as in that region the c urrent 
best upper bound has a lower value than the lower bound provided by the 
solution z*(θ). A schematic representation of the comparison procedure is 
shown in Figure 2.55.

Remark 2.8 It is possible that CR1 or CR2 are empty sets (see Figure 2.5).

CRint

(a) (b) (c)

∆z(θ) ≤ 0

∆z(θ) ≤ 0

∆z(θ) ≤ 0

θ1 θ1 θ1

θ2θ2θ2

CRint CRint

Figure 2.5 A schematic representation of the comparison procedure employed in Acevedo 
and Pistikopoulos (1997). According to Equation (3.10), in case (a), CR CRint 1; in case 
(b), CR CRint 2; and in case (c), CRint is split into CR1 and CR2. Source: Acevedo and Pistikopoulos 
(1997). Reproduced with permission of American Chemical Society.



Modelling Optimization and Control of Biomedical Systems44

Once the entire solution at the current node has been considered, the union of 
all the parameter spaces that are passed on to the child nodes is considered. If 
the node is a terminal node or the union is empty, then no branching is 
 performed. Otherwise, two new nodes according to Figure 2.4 are created.

This approach only considered the purely linear case, and thus the objective 
function is always linear (Lemma 2.5.1 and Figure 2.5). However, in the case of 
quadratic and/or bilinear terms in the objective function, this might lead to 
nonconvexity when applying (2.58), as shown in Figure 2.6.

Thus, (2.55) cannot be applied in a straightforward way, as in Acevedo and 
Pistikopoulos (1997), and novel comparison procedures are needed. So far, 
two approaches have been presented in the open literature, and both rely on a 
concept called an envelope of solutions.

Definition 2.3 Envelope of  solutions An envelope of solutions describes 
the case where more than one solution is associated with one critical region. The 
optimal solution is thereby always present among those solutions associated 
with the critical region.

The first approach, presented by Oberdieck et  al. in 2014 (Oberdieck et  al. 
2014), creates McCormick relaxations (McCormick 1976) of the nonconvex 
parts of Δz(θ), that is:

 g z h( ) ( ) ( ) (2.59)

where g(θ) and h(θ) are affine functions. These relaxations are used to partition 
CRint according to:

 CR CR hint1 0( )  (2.60a)

 CR CR gint2 0( )  (2.60b)

 CR CR g hint3 0 0( ) , ( )  (2.60c)

∆z(θ) ≤ 0
CRint

θ1

θ2

∆z(θ) ≤ 0

CRint

θ1

θ2

∆z(θ) ≤ 0

CRint

θ1

θ2

(a) (b) (c)

Figure 2.6 A schematic representation of different scenarios for a comparison procedure of 
objective functions featuring bilinear and/or quadratic terms, an issue considered in Axehill 
et al. (2011, 2014) and Oberdieck et al. (2014).
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where in CR1 z*(θ) is optimal, while in CR2 zUB(θ) remains optimal, and in CR3 
an envelope of solutions containing z*(θ) and zUB(θ) is created (see Figure 2.7a).

Remark 2.9 In this case, it was assumed that only one zUB(θ) is associated 
with the critical region. However, due to the nonconvexity, this is not necessarily 
the case. However, all the stated results also hold for the case where the upper 
bound consists of an envelope of solutions. Thus, the simplest representation 
without an envelope of solutions in the upper bound is used.

In the second approach, presented independently by Axehill et al. (2011, 2014), 
no direct comparison using Δz(θ) is made. Firstly, the comparison is classified 
by solving the following optimization problem:

 max
CR

zmax ( )
int

 (2.61a)

 min
CR

zmin ( )
int

 (2.61b)

The solution of problem (2.61) allows for the following classification based on:

 

Case a

Case b

Case c

( ) :

( ) :

( ) :

max

min

min max

0

0

0 0

 (2.62)

If cases (a) or (b) are realized, then z*(θ) and zUB(θ), respectively, are assigned to 
CRint. However, if case (c) is realized, then an envelope of solutions, containing 
z*(θ) and zUB(θ), is created in CRint.

Remark 2.10 Solving the optimization problems in (2.61) might be challenging 
as Δz(θ) might be nonconvex. In Axehill et al. (2011, 2014), these problems are 
solved via a spatial branch‐and‐bound algorithm implemented in YALMIP 
(Löfberg 2004). Also note that in Axehill et al. (2011, 2014), the concept of subop-
timality was introduced, which however is not discussed further here.

A schematic representation of both comparison approaches is shown in 
Figure 2.7. In particular, it shows that while the approach presented in Oberdieck 
et al. (2014) reduces the volume of the critical region associated with an enve
lope of solutions (grey area in Figure 2.7), the number of critical regions created 
is smaller in the approach presented in Axehill et al. (2011, 2014).

Decomposition‐Type Methods A different solution approach for problems of 
type (2.54) was presented in 2002 by Dua et al. (Dua et al. 2002). Instead of 
gradually fixing the integer variables as proposed with the branch‐and‐bound 
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approach, the key idea was to decompose the original problem (2.54) into two 
subproblems: in the first subproblem, an integer candidate solution is found 
via global optimization, while in the second subproblem this integer candidate 
solution is substituted into the original problem (2.54), thus resulting in an 
mp‐QP of form (2.55).

Here, each step of the presented algorithm is considered in detail:

Step 0 – Initialization: The mp‐MIQP problem (2.54) is considered. A can
didate solution for the binary variables is found by solving the following 
MIQP problem:
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 (2.63)

where the parameter θ is treated as an optimization variable, and the 
 problem is solved using available MIQP solvers. If the problem is infeasible, 
problem (2.54) is also infeasible. Otherwise, an integer solution y* is obtained 
and subsequently fixed in problem (2.54), thus resulting in an mp‐QP of the 
form (2.55). This problem can be solved using one of the approaches pre
sented in the literature, which results in an initial partitioning of the param
eter space according to Theorem 2.1 and provides a parametric upper bound 
to the solution.

θ1 θ1

θ2 θ2

g(θ)

∆z(θ)

(a) (b)

∆z(θ)

h(θ)

Figure 2.7 A schematic representation of two comparison procedures presented for the 
solution of mp‐MIQP problems: in case (a), McCormick relaxations (McCormick 1976) are used 
to divide CRint into three regions, one of which contains an envelope of solutions (grey area) 
(Oberdieck et al. 2014), while in case (b) the entire CRint is regarded as an envelope of solution 
(grey area) (Axehill et al. 2011, 2014).
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Step 1  –  Candidate solution for binary variables: In the first step of 
the  algorithm, in each critical region CRi of the current upper bound, 
the parameter θ is treated as an optimization variable and the following 
optimization problem is solved:
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 (2.64)

where i v1, , , where v is the number of critical regions that constitute the 
upper bound; zUB,i(θ) is the objective function value of the upper bound 
 associated with the critical region CRi; | | is the cardinality; and Ji and Ti are 
the sets containing the indices of the integer variables of the integer combi
nation yUB,i associated with the upper bound zUB,i(θ) that attain the values 0 
and 1, respectively, that is:

 J k yi UB i
k{ | , }1  (2.65a)

 T k yi UB i
k{ | }, 0  (2.65b)

The two additional constraints in problem (2.64) compared to problem 
(2.63) are called parametric and integer cut, respectively. They ensure that 
the new candidate integer solution has a lower objective function value than 
the upper bound in at least one point, and that previously considered integer 
solutions are not considered again.

Step 2 – Solution of mp‐QP problem: Similarly to the initialization step, the 
candidate integer solution y* is substituted into problem (2.54), thus resulting in 
an mp‐QP of the form (2.55). This mp‐QP is then solved using an approach 
from the open literature (e.g. Bemporad et al. 2002; Dua et al. 2002; Tøndel et al. 
2003; Spjøtvold et al. 2006; Gupta et al. 2011; Feller et al. 2013), which results in 
an initial partitioning of the parameter space according to Theorem 2.1.

Step 3 – Comparison with upper bound: In order to avoid computational 
burden, no comparison procedure is performed in Dua et al. (2002). Instead, 
an envelope of solution is immediately created. Note that, due to the para
metric cut in problem (2.64), there will be at least one point in the originally 
considered critical region CRi where the objective function value of the new 
solution is lower than the one of the upper bound.
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Step 4 –Termination: If problem (2.64) is infeasible for critical region CRi, 
then CRi is not considered further. If problem (2.64) is infeasible for all criti
cal regions, then the algorithm terminates.

Exhaustive Enumeration A third method to solve problems of type (2.54) was 
presented by Borrelli (2003, ch. 8). Thereby, all possible combinations of binary 
variables, in total 2p according to Equation (2.54), are evaluated. Similar to the 
decomposition‐type approach, each combination is fixed in problem (2.54), 
resulting in the  corresponding mp‐QP which is solved. The solution to this mp‐
QP is then combined with the upper bound, as no comparison procedure 
is  carried out. The algorithm terminates when every integer combination has 
been evaluated.

Remark 2.11 Albeit quite simplistic, this method has proved to be numerically 
very stable, as it only relies on a suitable solver for the mp‐QP problem, and does 
not require the solution of bigger mp‐QP problems (branch‐and‐bound methods) 
or the use of global optimization (decomposition‐type methods).

Comments Based on the literature review, several comments can be made:

 ● Binary and continuous variables are treated separately in all solution 
approaches presented so far.

 ● The comparison between two parametric profiles is not straightforward, and 
might lead to envelopes of solutions (i.e. that more than one solution is 
 associated with a critical region).

 ● All approaches require the solution of mp‐QP problems, in order to solve for 
the continuous variables in the problem formulation.

 ● The approaches of handling the binary variables differ in their termination 
criterion: while branch‐and‐bound and decomposition‐type methods are 
exploratory (i.e. during the solution procedure, new problems are formu
lated), the complexity of the exhaustive enumeration methods is fixed 
a priori.

2.5.1.3 A General Framework for the Solution of mp‐MIQP Problems
Based on the similarities highlighted in the comments, it is possible to formulate 
a unified framework for the solution of mp‐MIQP problems of type (2.54). This 
framework incorporates all approaches presented so far and shows their under
lying similarities. This not only leads to a good theoretical understanding, but 
also is the basis for a unified software implementation of all the approaches.

This framework is based on five key components:

Initialization: The algorithm is initialized.
Integer handling: A candidate integer solution is found which is fixed in the 

original problem, thus transforming it into an mp‐QP problem. The three 
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options to find a suitable candidate are (a) global optimization (Dua et al. 
2002), (b) branch‐and‐bound (Acevedo and Pistikopoulos 1997; Axehill 
et  al. 2011, 2014; Oberdieck et  al. 2014) and (c) exhaustive enumeration 
(Borrelli 2003).

mp‐QP solution: The mp‐QP problem is solved using available solvers 
(e.g. Bemporad et al. 2002; Dua et al. 2002; Tøndel et al. 2003; Spjøtvold 
et al. 2006).

Comparison procedure: The objective function values of the mp‐QP 
problem and the upper bound in the critical region considered are com
pared against each other to form a new, tighter upper bound. The four 
comparison procedures are (a) no comparison of the objective function 
(Dua et al. 2002; Borrelli 2003), (b) comparison of the objective function 
over the entire  critical region considered (Axehill et  al. 2011, 2014), 
(c)  linearization of the nonlinearities in the objective function using 
McCormick relaxations (Oberdieck et  al. 2014) and (d) calculation of 
the  exact solution via piecewise outer approximation of quadratically 
constrained critical regions, a procedure which will be explained in detail 
in Section 3.2.5. Note that the approaches (a–c) might result in envelopes 
of solutions.

Termination: The algorithm terminates if a termination criterion is reached.

A schematic representation of the framework is shown in Figure 2.8.

Initialization

Integer handling

mp-QP solution

Comparison procedure

Termination? STOP

Figure 2.8 The general framework for the solution of mp‐MIQP problems.
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The framework presents several options for the ways that integer variables 
are handled and the comparison procedures are done. Since the integer 
 handling has a greater influence on the structure of the algorithm, as it changes 
how the problem is approached, this will be used to distinguish the way the 
unit operations are approached by the integer‐handling method chosen.

In this section, each aspect of the framework is discussed, and suggestions 
for their implementation are presented.

2.5.1.4 Detailed Analysis of the General Framework
Initialization The aim of the initialization procedure is to convert the input 
data efficiently into a suitable form such that the main algorithm can solve the 
problem. The initialization procedures for mp‐MIQP problems presented so 
far involve initializing the binary search tree (in the case of a branch‐and‐
bound procedure) (Acevedo and Pistikopoulos 1997; Axehill et al. 2011, 2014; 
Oberdieck et al. 2014), creating a list of all possible integer variable combinations 
(in the case of an exhaustive enumeration procedure) (Borrelli 2003) and 
setting the upper bound to ∞ (Acevedo and Pistikopoulos 1997; Dua et  al. 
2002; Oberdieck et al. 2014).

Remark 2.12 Notably, this part could also be used for other tasks, such as 
upper bound creation of initialization of parallelization strategies. These topics 
are subject to ongoing research and provide possibilities of lowering the computa-
tional burden.

Integer Handling The aim of this unit operation is to (a) find a candidate 
integer variable combination and (b) fix it in the original mp‐MIQP, resulting 
in an mp‐QP. As mentioned here, three different approaches have been 
presented:

Global optimization (Dua et al. 2002): A candidate binary variable solution 
is found by solving the global optimization problem (2.58).

Branch‐and‐bound (Acevedo and Pistikopoulos 1997; Axehill et al. 2011, 
2014; Oberdieck et al. 2014): The branch‐and‐bound procedure relies on 
relaxing the binary variables y p0 1,  to continuous variables y p0 1, , 
which results in a mp‐QP problem. Based on this relaxation, a binary search 
tree (see Figure 2.4), and at each node one binary variable, is fixed to either 
0 or 1. Additionally, each node inherits a parameter space from its parent 
node, where the mp‐QP is solved. This parameter space is based on the 
original parameter space Θ, after the following fathoming criteria have been 
applied:

 – The problem is infeasible.
 – An integer solution is found.
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 – The optimal objective function value of the parent node is greater 
than  the current best upper bound in the entire parameter space 
considered.

Exhaustive enumeration (Borrelli 2003): All possible combinations of binary 
variables, a total of 2p, are considered exhaustively. Note that this approach 
is identical to considering the final depth of a binary search tree.

Solution of the mp‐QP Problem The solution of the mp‐QP problem has been 
discussed extensively in the open literature. The two main approaches are:

 ● Geometrical approach (Bemporad et al. 2002; Dua et al. 2002; Tøndel et al. 
2003; Spjøtvold et  al. 2006; Patrinos and Sarimveis 2010, 2011): A geo
metrical interpretation of the polyhedral regions as half spaces is used to 
successively explore the initial parameter space. Different techniques dis
cussing different exploration and redundancy checks have thereby been 
discussed.

 ● Combinatorial approach (Gupta et al. 2011; Feller and Johansen 2013; Feller 
et al. 2013): The solution of the mp‐QP problem is viewed via the Karush–
Kuhn–Tucker conditions, where a certain combination of the inequality 
constraints is active and inactive, thus leading to a system of linear equa
tions. The consideration of all combinations of all constraints thereby 
exhaustively solves the problem. The different approaches presented aim at 
limiting this combinatorial complexity.

Comparison Procedure After the solution to the mp‐QP problem has been 
obtained, it has to be compared against the current upper bound. The need for 
such a comparison procedure arises from the fact that it is not possible to 
explore the parameter space like performed for the solution of the mp‐QP 
problem due to the presence of the integer variables.

Mathematically, this comparison procedure can be described as:

 
PP PP PPsol min 1 2 (2.66)

where PPi refers to the i ‐th parametric profile (see Definition 2.2); and PP PP1 2 
represents the union of the two parametric profiles. The main challenges to 
solve (2.65) are thereby:

Combinatorial complexity: In order to obtain PPSol, each critical region of PP1 
has to be compared to each critical region of PP2, thus leading to combinato
rial complexity.

Nonconvexity: The possibly quadratic nature of the objective functions might 
lead to nonconvexities. As the handling of nonconvex critical regions is a 
challenging problem, other ways have to be found to deal with this issue.
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Remark 2.13 All comparison procedures presented to date focus on how to deal 
with the nonconvexity, while little attention has been given to the combinatorial 
complexity of the problem. At the end of this section, we will present a first analy-
sis of the problem. Additionally, in the next section, a new comparison procedure 
resulting in the exact partitioning of the parameter space is presented.

In the open literature, three different comparison procedures have been 
presented:

 ● No objective function comparison (Dua et al. 2002): This approach, first 
presented in Dua and Pistikopoulos (1999), does not compare the objective 
functions of the two parametric profiles, but directly creates an envelope of 
solutions (see Definition 2.3).

 ● Objective function comparison over entire CR (Axehill et al. 2011, 2014): 
This approach was first presented in the realms of multiparametric dynamic 
programming (mp‐DP) problems (Borrelli et al. 2005), and later on applied 
to mp‐MIQP problems. It consists of classifying the situation in the cur
rently considered intersect of critical regions according to Figure 2.6. If case 
(c) is realized, then an envelope of solutions (Definition 2.3) is created over 
the entire critical region.

 ● Direct objective function comparison via McCormick relaxations 
(Oberdieck et al. 2014): In this procedure, the difference Δz(θ) between the 
objective functions in the considered intersect of critical regions is directly 
considered. If quadratic terms are present in Δz(θ), then affine under‐ and 
over‐estimators using McCormick relaxations (McCormick 1976) are calcu
lated. These estimators generate polyhedral regions, in which either the 
objective function of one of the parametric profiles is optimal or an envelope 
of solutions is created.

In order to lessen the combinatorial complexity of the system, it is necessary 
to incorporate additional information into the solution of the problem. In 
particular, it is necessary to classify each critical region CRk of parametric 
profile i according to the following criteria:

Case (a):  CRk does not overlap with any critical region from the other parametric 
profile, PPj.

Case (b):  CRk partially overlaps with one or multiple critical regions from the 
other parametric profile, PPj.

Case (c):  CRk completely overlaps with one or multiple critical regions from 
the other parametric profile, PPj.

This situation is schematically depicted in Figure 2.9.
Any part of CRk that does not overlap with PPj does not have to be consid

ered in the comparison procedure, as it cannot be compared to anything. Thus, 
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the number, or volume, of critical regions considered can be reduced, thus 
lessening the impact of the combinatorial complexity. However, to perform the 
classification according to Figure 2.9, the union of all critical regions in PPj has 
to be calculated, a procedure which also is subject to combinatorial complexity. 
However, this complexity is lower than the previous one, as it only requires the 
comparison of all critical regions associated with one parametric profile, not 
with two.

Termination In order to conclude the framework description, a suitable way 
of defining the termination criterion has to be outlined. The structure of 
this termination criterion depends on the integer‐handling approach 
chosen:

 ● Global optimization: If the problem is infeasible in every critical region
 ● Branch‐and‐bound: If the list of nodes N is empty
 ● Exhaustive enumeration: If all combinations of binary variables have been 

explored.

As mentioned, the exhaustive enumeration approach is thereby the only 
approach which allows for an a priori determination of the number of prob
lems that will be solved in the course of the algorithm.

Comments Based on the proposed framework, the following comments 
are made:

 ● Any of the comparison procedures presented can be combined with any 
of the integer‐handling strategies to create an algorithm which is most 
suitable to one’s needs. Among these combinations are also the mp‐
MIQP algorithms that have been presented so far. Thus, this framework 
sheds a  light on the development of these algorithms and gives great 
theoretical insight.

PPj

(a) (b) (c)

PPj

CRk

θ1

θ2
CRkθ2

θ1

PPj

CRkθ2

θ1

Figure 2.9 The three classifications of overlap between CRk and PPj.
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 ● It is possible to include relative and absolute sub‐optimality into this frame
work (the first description of which was presented in Axehill et  al. 2011, 
2014). However, it does not significantly add to the scientific content 
 presented and is thus omitted.

 ● If any advances are made in any of the components of the framework (e.g. 
initialization, integer handling or comparison procedure), then these 
advances can be readily incorporated into the existing framework. Thus, it is 
a flexible account not of a specific algorithm, but rather of a general solution 
approach for this class of problems.

Based on the last comment, in Section 2.5.1.5, a novel comparison procedure 
is presented which allows for the exact solution of mp‐MIQP problems, thus 
resulting in nonconvex critical regions.

2.5.1.5 Description of an Exact Comparison Procedure
To exactly solve a mp‐MIQP problem, possibly resulting in nonconvex critical 
regions, two main questions have to be answered:

 ● How can nonconvex critical regions be handled in the integer handling and 
the mp‐QP solution part of the framework (Figure 2.8)?

 ● Is it possible to solve mp‐MIQP problems exactly without employing global 
optimization?

In order to answer these questions, the difference between two objective 
 functions according to (3.9) is considered.

 z z zUB( ) ( ) ( )*  (2.67)

Assuming the same classification as in Figure 2.6, the exact comparison comes 
into effect in case (c), that is, when there is a transition of optimality between 
z*(θ) and zUB(θ) within the critical region CRint.

Therefore, if this case is realized, the following critical regions are created:

 CR CR zint1 0( )  (2.68a)

 CR CR zint2 0( )  (2.68b)

Note that this formulation is identical to the one introduced by Acevedo and 
Pistikopoulos (1997), however resulting in quadratically constrained regions 
CR1 and CR2. In addition to (3.20), affine over‐ and under‐estimators are 
 created according to Equation (3.11), that is:

 g z h( ) ( ) ( ). (2.69)
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In the next iteration of the algorithm, a new combination of integer variables 
has to be fixed:

 ● Global optimization: The quadratically constrained critical region can 
readily be incorporated into the problem, as the parameters are treated as 
optimization variables and the quadratic constraints of the critical region are 
conceptually of the same complexity as the parametric cuts.

 ● Branch‐and‐bound: The selection of a new integer variable to fix is regardless 
of the form of one of the critical regions in the parameter space considered; 
thus, it does not influence the integer‐handling procedure.

 ● Exhaustive enumeration: As this problem is predefined from the start due 
to the exhaustive enumeration of all integer combinations, a quadratically 
constrained upper bound region does not influence this integer‐handling 
method.

However, the next component of the framework, the solution of the mp‐QP 
solution, cannot be readily executed. For example, if global optimization is used 
to find a suitable combination of binary variables, then it would be necessary to 
solve a mp‐QP of form (2.55), where the initial parameter space Θ is quadrati
cally constrained.

In order to deal with this situation, the affine estimators of (2.69) are used to 
construct a polyhedron Ξ such that:

 CR  (2.70)

where CR denotes the quadratically constrained critical region.
Thus, any mp‐QP problem with an initial quadratically constrained param

eter space CR is solved in Ξ, which by definition also solves the mp‐QP in the 
space covered by CR (and beyond).

As a next step, the solution to this mp‐QP with augmented parameter space 
is compared to the current upper bound. If the upper bound only consists of 
polyhedral critical regions, then no additional action is necessary. However, if 
the upper bound consists of a quadratically constrained critical region, then 
two issues arise:

 ● How can an empty intersect (case (a) of Figure 2.9) be detected?
 ● How can the classification according to Figure 2.6 be performed?

The detection of an empty intersect between a polyhedral and a quadratically 
constrained critical region corresponds to the solution of the following 
 feasibility problem:

 
min
. .

0
s t CR

 (2.71)
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where CR and Φ denote a quadratically constrained and a polyhedral critical 
region, respectively. One way to approach problem (2.71) is the use of a 
spatial branch‐and‐bound algorithm, where the quadratically constrained 
critical region is approximated by a polyhedral critical region and a cor
responding linear program (LP) is solved until a predefined tolerance 
is reached.

Remark 2.14 Spatial branch‐and‐bound techniques are, among others, 
 commonly encountered in global optimization. However, problem (2.71) is not a 
(nonconvex) optimization problem, as it only requires to find one feasible point 

CR , regardless of the objective function value associated with it. Thus, 
only if exactly one point θ exists (within the predefined tolerance), the complexity 
of problem (2.71) is the same as the corresponding optimization problem, since, 
if only one point is feasible, this point is also optimal.

In order to perform a classification according to Figure 2.6, a similar a rgument 
to one just presented can be made: let CRint be a quadratically constrained 
critical region, and let Δz(θ) be quadratic. Then the following regions are 
defined:

 CR CR zint1 0  (2.72a)

 CR CR zint2 0  (2.72b)

At this point, it is possible to perform a feasibility test according to (2.71) on 
CR1 and CR2, and thus perform the classification:

 

CR
CR

CR CR

2

1

1 2

Case a
Case b
Case c

 (2.73)

where  denotes an empty set.

Remark 2.15 As this comparison procedure is performed for the solution of 
the mp‐QP problem obtained in CR, an additional step has to 
be  undertaken, in which the original quadratic constraints are added to the 
newly formed critical regions (e.g. CR1 and CR2) and the problem has to 
be solved again.

A schematic representation of the exact comparison procedure is shown in 
Figure 2.10.
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3.1  Introduction

Mathematical modelling and model‐based control of anaesthesia attracted the 
attention of researchers during the past decades and are believed to benefit 
the  safety of the patient undergoing surgery and provide anaesthetists with 
valuable insights. Currently, anaesthetists rely on common practice and their 
personal experience to determine drug infusion rates and drug inhalation 
 concentrations for the individual patient. The expectations are that detailed 
modelling and optimized regulation of anaesthesia could pave the way for per-
sonalized healthcare, where the individual patient characteristics are taken 
into account for optimal and flexible drug administration. This will improve 
the safety of the patient by minimizing side effects, the risk of awareness and 
overdosing during anaesthesia (Dua et al. 2010). When in need of an adequate 
mathematical model describing the process of drug distribution (pharmacoki-
netics [PK]) and drug effects (pharmacodynamics [PD]), employing model 
predictive control is the method of choice. With respect to model predictive 
control, one of the key challenges is the high inter‐patient and intra‐patient 
variability, which introduces a high degree of uncertainty into the system.

The anaesthetist faces the task of providing sufficient anaesthesia to the 
 individual patient during the ongoing surgery, while maintaining their vital 
functions. The available drugs lead to the desired effects of hypnosis, amnesia, 
analgesia and muscle relaxation, while the side effects on the cardiovascular 
system, the respiratory system and the central nervous system, if not supervised 
accordingly, can have such a high impact that they are life‐threatening.
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Volatile anaesthetics are preferred by most anaesthetists to provide hypno-
sis, because the concentration of the anaesthetic in the expired air is directly 
related to the partial pressure in the brain and thus gives a direct feedback of 
the hypnotic state of the patient. The uptake and the elimination of volatile 
anaesthetics occur in the lungs. Intravenous drugs (e.g. intravenous anaesthet-
ics or analgesics) are administered through a venous catheter and enter the 
cardiovascular system directly. From there, the drug is distributed to its side of 
action in the brain and/or the other tissues and organs.

Sufficient anaesthesia is provided by a combined administration of anaes-
thetics, analgesics, muscle relaxants and cardioactive drugs. The anaesthetic 
practice is based on the synergetic drug effects of anaesthetics and analgesics. 
One can assume that any administered drugs are interacting on a PK or PD 
basis with each other; therefore, a fundamental knowledge of drug interactions 
and possible side effects is mandatory for the anaesthetist.

The first essential step is to derive an adequate PK model describing the drug 
distribution. Physiologically based models for drug distribution go back to the 
1920s and the pioneering work of Teorell for drug uptake, distribution and 
elimination (Teorell 1937a, 1937b). Specific to volatile anaesthesia, an in‐depth 
analysis of the uptake of specific tissues and the influence of the partition 
 coefficient and physiological variables such as the cardiac output is given by 
Kety (1951). In the first physiologically based models, the tissues with similar 
properties, such as the well‐perfused organs, were grouped together, as pre-
sented by Mapleson (1963) and extended by Fiserova‐Bergerova (1992) and 
Lerou et al. (1991a, 1991b), who derived a 14‐compartment model for teaching 
and research purposes. This so‐called physiologically based pharmacokinetic 
(PBPK) modelling is the focus of researchers for drug delivery, uptake and dis-
tribution models (Hall et al. 2012). Pioneering work towards individual patient 
variables of volatile agents, applying a model mapping the circulation for the 
uptake of ether in a dog, goes back to Haggard (1924).

Individualized modelling of the drug effect is the more challenging task, 
because of higher variability (Mertens and Vuyk 1998). To determine the 
drug  effect (i.e. the hypnotic depth during anaesthesia), anaesthetists use 
the minimum alveolar concentration (MAC) as a guideline. MAC is defined as 
the  concentration required to prevent movement in response to surgical inci-
sion in 50% of patients. Usually, 1.3 MAC of volatile anaesthetic is administered 
during anaesthesia to assure sufficient anaesthesia in 90% of patients (Miller 
2015). Hence, by definition, this guideline of the MAC is based on probability. 
This highlights the challenge of identifying the individual patient’s sensitivity 
and hypnotic depth to avoid awareness or overdosing. Individual factors 
 influencing the individual patient’s sensitivity are, for example, age. Studies 
by  Brunner et  al. (1994) investigated the correlation of MAC with patient 
 characteristics or analgesics administered simultaneously during anaesthesia 
(e.g. elderly patients are more sensitive to anaesthetics); hence, MAC decreases 
with age (Mapleson 1996). Furthermore, the patient’s sensitivity towards the 
anaesthetic agent changes depending on the surgical stimulation or the 
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combination of drugs administered during anaesthesia, such as muscle relax-
ants and analgesics (Glass et al. 1997; Rosow 1997). Recent advances investigate 
the pharmacogenomic variability as an indicator of individual patients’ sensi-
tivity to anaesthetic agents (Searle and Hopkins 2009).

In this work, PBPK modelling is applied to describe the PK and address patient 
variability by including patient‐specific characteristics in the mathematical 
description (Hall et  al. 2012). The variability of the PK uncertainty is included 
analogously to Fiserova‐Bergerova (1992), where all volumes for blood tissue and 
gas compartments are assigned specific to the individual patient’s weight, height 
and age. By including these factors, the aim is to reduce significantly the variability 
in the PK, which is estimated to be around 60–80% (Mertens and Vuyk 1998). 
However, the challenge is the PD variability, which is assumed to be considerably 
higher, around 300–400% (Mertens and Vuyk 1998). Including the full PD variabil-
ity in the mathematical model representation might be very complex, if not impos-
sible. The consideration of all patient‐specific factors might still not capture the full 
uncertainty, and a control strategy based on such a model might not be safe for the 
patient if used as the underlying model of a model predictive controller.

Motivated by this challenge of the implying uncertainty, a detailed PBPK‐PD 
model is presented. All relevant PK and PD parameters and variables are a nalysed 
with respect to uncertainty imposed on the hypnotic depth measured by the 
bispectral index (BIS) and the end‐tidal concentration, employed as a guideline 
indicator of the anaesthetic depth when no BIS measurements are available. All 
PK parameters are determined as a function of the individual patient, whereas 
the PD ones are believed to be captured best by on‐line  estimation proposed for 
propofol by Sartori et  al. (2005). Hence, individual PD as a function of drug 
interaction, age dependency or pharmacogenetics is not included in this work.

3.2  Physiologically Based Patient Model

3.2.1 Pharmacokinetics

The physiologically based compartmental model for volatile anaesthetics, 
shown in Figure  3.1a, is based on Eger’s compartmental model for volatile 
anaesthesia and explained in detail in Krieger et al. (2014), where the tissues 
with similar properties are lumped together resulting in three body compart-
ments representing the vessel‐rich group (VRG), the muscle group (M) and the 
adipose tissue (F) (Eger 1974). Each body compartment is further divided into 
an ideally mixed‐blood and ideally mixed‐tissue part. This approach is based 
on a model for cancer chemotherapeutic drugs first presented by Bischoff 
(1986). The gas, blood and tissue volumes are individually adjusted to the 
weight, height, gender and age of the patient.

The compartments are described assuming a flow‐limited formulation. Hence, 
the diffusion through the capillary vessel walls is assumed to be rapid, and the 
mass transfer of the drug into the tissue is restricted by the perfusion of the 
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compartment. This approximation is not fundamental to the physiological 
 pharmacokinetic approach, but commonly used due to the lack of sufficient 
physiological information of, for example, membrane permeabilities, diffusion 
coefficients and tissue surfaces (Bischoff 1986). No inter‐tissue diffusion between 
the compartments (e.g. from the VRG to the adipose tissue) is included (Zwart 
et  al. 1972). This implies that mass exchange only occurs through the blood 
v essels. The transport time and the pulsatile character of the blood flow are 
neglected, because the equilibration times are large compared to the  cardiac 
cycle (Zwart et al. 1972). All fluxes leaving a gas, blood or tissue compartment 
are in equilibrium with the compartment.

The uptake of the anaesthetic agent is determined by two factors, the ventila-
tion of air and the perfusion of blood through the lungs. The ventilation is given 
by the product of the respiratory frequency fR and the tidal volume VT. Of the 
total minute ventilation V , only the alveolar ventilation VA, which is the total 
ventilation less the dead space ventilation VD, is taking part in the gas exchange.

 = = ( )A D R T DV f VV V V− −    (3.1)

Here, fR and VT are set by the anaesthetic machine and the anaesthetist, respec-
tively. Analogously to (3.1), the alveolar volume VA is determined by the lung 
volume VL less the dead space volume VD.

 V V VA L D (3.2)

To illustrate the applied mass balances and assumptions, the fluxes of gas and 
blood in the lungs are shown in Figure 3.1b.

Lungs

Patient body Fluxes in the lungs

(b)(a)

Vessel-rich group (VRG)

Muscles and skin (M)

Adipose tissue (F)

CI

CE

CaCv

Cv

CI CE

CA uL

VA

.

VD

.

Q – Qs

. .

.
Qs

Ca

Figure 3.1 Structure of the physiologically based patient model. (a) Patient body; (b) fluxes 
in the lungs. Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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During anaesthesia, the concentration of the inhaled volatile anaesthetic 
agent CI is set by the anaesthetist. To map the respiratory cycle and changing 
gas concentration in the lungs, the concentration in the alveoli just after inspi-
ration CAI

 is given in (3.3) analogous to the Bohr equation for carbon dioxide 
(Miller 2015), where the amount of inhaled anaesthetic gas is ideally mixed 
with the gas left in the lungs after expiration.

 C V V C V C VAI A T I T E A=  (3.3)

To determine the concentration during expiration, equilibrium between the 
end‐tidal expired concentration CE and the mixed venous blood concentration 
Cv  is assumed. Both concentrations are linked via the blood gas partition coef-
ficient λ (Eger 1974).

 
C C

E
v=  (3.4)

The driving factors of the anaesthetic uptake are the perfusion of the alveoli, 
given by the cardiac output Q less the shunt flow Qs; the blood gas partition 
coefficient; and the concentration difference between the mixed venous blood 
and the arterial blood (Miller 2015).

 u Q Q C CL s AI v= ( )( )   (3.5)

Given (3.5), the concentration in the arterial blood Ca is determined by a mass 
balance of inlet and outlet fluxes, indicated in Figure 3.1b by the dashed line.

 C Q C Q ua v L =  (3.6)

The mixed venous blood concentration is given by an average of all the blood 
concentrations in the compartments multiplied by the perfusion of the respec-
tive body compartment. To account for the venous shunt, which is diversion of 
blood from the artery directly to the vein, the last term in (3.7) is added.

 
C r C r Cv

i
Q i b i

i
Q i a , , ,1  (3.7)

The tissue compartments in Figure 3.1a are further divided into blood and 
tissue sub‐compartments, shown in Figure 3.2.

Blood

TissueVt, i

Vb, iQi Qi

Figure 3.2 Structure of one tissue compartment.
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The concentrations of the anaesthetic agent in the individual compartments 
are given by mass balances for each blood and tissue compartment.

 
V dC

dt
Q C C ub i

b i
i a b i t i,

,
, ,= ( )  (3.8)

 
V dC

dt
ut i

t i
t i,

,
,=  (3.9)

The mass balance of the VRG includes an additional term for the metabolism 
of the anaesthetic agent in the liver mliv, where Qliv  describes the perfusion of 
the liver (Saltzman 2001).

 
V dC

dt
u Q C mt VRG

t VRG
t VRG liv t VRG liv,

,
, ,  (3.10)

The driving force of the anaesthetic uptake by the tissue ut,i in each compart-
ment is the difference of the concentration in tissue at equilibrium for the given 
concentration in the blood Cb,i and the actual concentration in the tissue Ct,i 
(Eger 1974; Enderle and Bronzino 2011). The partition coefficients λi relate 
the  concentrations in the tissue Ct,i to the concentrations in the blood Cb,i 
at  equilibrium. Analogously to (3.5), the uptake of the tissue in the body com-
partments is described in (3.11).

 u Q C Ct i i i b i t i, , ,= ( )  (3.11)

The perfusion of each compartment i is given by Qi  and the ratio of the 
c ardiac output rQ i ,  perfusing the compartment.

 
 



Q r Qi Q i,  (3.12)

Similarly, the parameter rV ib ,  describes the ratio of the total blood volume Vb in 
compartment i and rV,i to the ratio of total body volume V.

 V r Vt i V i, ,=  (3.13)

 V r Vb i Vb i b, ,=  (3.14)

3.2.1.1 Body Compartments
The volumes of the body compartments are given as a part of the total body 
volume. The mass of the adipose tissue is a function of the Body Mass Index 
(BMI), age and gender of the patient (Deurenberg et al. 1991). The percentages 
of the body mass of the VRG and the vessel‐poor group (VPG) do not primarily 
depend on the BMI of the patient. Thus, they are assigned as a percentage of the 
ideal body weight for a person with the patient’s height and a BMI = 22 [kg/m2] 
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for both genders (Lemmens et al. 2006). The ideal body weight for a patient 
with height h is given in (3.15).

 
m h m kg

h mideal = 22 = [ ]
( [ ])

2
2with BMI

 (3.15)

The body mass, which is neither allocated to the adipose tissue nor to the 
VPG or VRG, is assigned to the muscle group. The mass and volume of VPG 
are calculated to determine the volume of the muscle group and not further 
considered in the mathematical model, as the perfusion and anaesthetic uptake 
of the VPG tissue is negligible for short‐term anaesthesia. The equations for 
the patient‐specific tissue compartment mass are given in Table 3.1.

The volume of the compartments is determined by the average density of the 
tissue of the compartment (Heymsfield et al. 2005).

 
i

i
i

mV
ρ

=  (3.16)

3.2.1.2 Blood Volume
The blood volume is adapted to the height h (in cm), weight m (in kg) and 
gender of the patient (published by Nadler et al. 1962).

 rCl V_B,f  h^  m0 3561 3 0 03308 0 1833. . .  

 V B m  h^  m_ , . . .0 3669 3 0 03219 0 6041 

3.2.1.3 Cardiac Output
The cardiac output Q in [L/min] as a function of the patient’s BMI, age and 
gender is adapted from Stelfox et  al. (2006). Gender = 1 denotes a female 
patient, and gender = 0 a male patient.

Table 3.1 Calculation of patient‐specific tissue mass.

Parameter Description Equation Unit Reference

mF Adipose mass ( . .
. . ) .

1 2 10 8
0 23 5 4 0 01

BMI gender
age m

kg (Deurenberg et al. 1991)

mVPG VPG mass 0 2. mideal kg (Miller 2015)
mVRG VRG mass 0 1. mideal kg (Miller 2015)
mM Muscle mass m m m mF VPG VRG kg

Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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Q 5 84 0 08 0 03 0 62. . . .BMI age gender (3.17)

Further coefficients for additional predictors such as simultaneously adminis-
tered agents or the patient’s health state can be found in Stelfox et al. (2006).

3.2.1.4 Lung Volume
The ventilated lung volume less the dead space determines the distribution 
volume of the inspired anaesthetic in (3.2) and (3.3). On average, men have 
larger lungs than women. During anaesthesia, the ventilated lung volume 
reduces to approximately the functional residual capacity, altered by atelectasis 
and anaesthetic side effects. The patient‐specific functional residual capacity 
as a function of the BMI in litres is given by Pelosi et al. (1998).

 VL 11 97 0 096 0 46. ( . ) .exp BMI  (3.18)

3.2.2 Pharmacodynamics

Pharmacodynamics describes the link between the concentration of the anaes-
thetic agent and the effect of the drug. An artificial effect site compartment 
represents the delay in the drug action:

 
dC
dt

k C Ce
e a e0  (3.19)

where Ca denotes the concentration in the arterial blood calculated in (3.6), Ce 
denotes the effect site concentration and ke0 denotes the delay of the drug action.

The hypnotic effect is measured by the BIS, calculated as a function of the 
concentration in the effect site compartment Ce by the Hill equation (3.20):

 
BIS BIS BIS BIS C

C Cmax
e

e
0 0

50
 (3.20)

where C50 is the concentration triggering 50% of the total effect or the potency 
of the drug; γ is the slope of the Hill equation in (3.20); BIS0 describes the initial 
effect at no anaesthetic concentration BIS0 100; BISmax describes the  maximum 
effect BISmax 0; and the three PD parameters ke0, C50 and γ are individual 
patient characteristics and might change during the course of anaesthesia, 
 triggered by, for example, surgical stimulation or drug interaction.

3.2.3 Individualized Patient Variables and Parameters

In this section, the possible range of the PK and PD variables and parameters 
as a function of the patient’s physiology (i.e. age, weight, height and gender) are 
calculated. Here, variables refer to values that might vary over time, whereas 
parameters are constant. For example, the cardiac output is referred to as a 
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variable, because it is likely to change during the course of anaesthesia as a 
function of the concentration of the anaesthetic agent, other simultaneously 
administered drugs and/or surgical stimulation. Typically, PK parameters are 
the tissue volumes, which are constant during the entire course of anaesthesia. 
For the presented model, the individual PK variables are the cardiac output, the 
distribution of the cardiac output on the compartments, the lung shunt, the 
dead space volume and the lung volume. The PK parameters are the partition 
coefficients, the tissue volumes and the blood volumes.

The deviation for the blood gas partition coefficient λ and the tissue parti-
tion coefficients λi were summarized and published by Eger (2005). The 
deviation for the cardiac output Q is calculated for patients of 45–100 kg, 
1.50–1.90 m, 18–90 years and both genders using (3.17). The shunt flow Qs 
results from a 0% to 30% shunt of the cardiac output increased by atelectasis, 
often occurring during anaesthesia (Miller 2015). For the distribution of 
the cardiac output to the different compartments, no deviation was found in 
the open literature. As the baroreflex is still active during light to moderate 
anaesthesia and aims to provide the essential well‐perfused organs with 
 oxygen, the ratio is assumed to increase slightly, whereas the perfusion of the 
fat and muscle group decreases (Miller 2015). The tissue volumes are calcu-
lated for patients of 45–100 kg, 1.50–1.90 m and both genders applying 
the equations in Table 3.1. The blood volumes are calculated based on the 
assumptions that the blood volume Vb is proportional to the perfusion of 
the compartment and that 60% of the total blood volume is distributed on the 
systematic tissue.

 V V rb i b Q i, ,.0 6


 (3.21)

The deviation in the lung volumes is given by (3.18) for patients with a BMI in 
the range of 20 to 40 covered in the study by Pelosi et al. (1998). The dead space 
is altered from a normal value of VD 150 mL ≈ 30% VT to VD 600 mL ≈ 60% 
VT caused by atelectasis (Miller 2015).

The PD parameters are ke0, C50 and γ in (3.19) and (3.20). The variation in the 
PD parameters were published in a study of Gentilini et al. (2001). The values 
at the boundary of the estimation problem were excluded.

All PK and PD variables and parameters, their default values and their ranges 
are summarized in Table 3.2.

3.3  Model Analysis

3.3.1 Uncertainty Identification via Patient Variability Analysis

In this section, the imposed uncertainty given by patient variability is identi-
fied. First, a separate simulation for the full range of PK and PD variability 
in  Table  3.2 was performed. The course of isoflurane‐based anaesthesia for 
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one patient with the given time‐varying inputs of fR, VT and CI is chosen as a 
case study for further analysis.

By comparison of the envelopes of uncertainty, the uncertainty introduced 
by PD variability is identified as more profound than the uncertainty intro-
duced by PK variability. More specifically, the maximum deviation from the 
BIS for default PK values is 25% in Figure 3.3, whereas the maximum deviation 
of the BIS including PD variability and PK values adjusted to patient 1 is 56% in 
Figure 3.3.

Normally during anaesthesia, the anaesthetist modifies the inhaled concen-
tration according to the obtained measurements in order to maintain adequate 
anaesthesia. The high deviation in the variables clearly supports the need of 
additional information about the patient in order to assure adequate hypnosis.

Table 3.2 Range and default values for PK and PD parameters and variables (partition 
coefficients at 37 °C for isoflurane).

Symbol Default value Deviation Unit Ref.

*PK λ 1.4 1.38–1.46 – (Eger 2005)

λF 50 43.84–55.8 – (Eger 2005)
λM 2.57 1.44–3.19 – (Eger 2005)
λVRG 1.65 1.45–1.86 – (Eger 2005)
Q 5000 3520–7300 mL/min (Stelfox et al. 2006)
Qs 150 0–1500 mL/min (Miller 2015)

rQ F , 0.054 0.045–0.054 – (Eger 1974)
rQ M , 0.181 0.1–0.181 – (Eger 1974)

rQ VRG , 0.75 0.75–0.765 – (Eger 1974)
Vb 4900 2875–6339 mL (Nadler et al. 1962)
Vb,F 160 69–205 mL (Nadler et al. 1962; Eger 1974)
Vb,M 410 276–688 mL (Nadler et al. 1962; Eger 1974)
Vb,VRG 1495 1293–2910 mL (Nadler et al. 1962; Eger 1974)
VD 150 150 − 600 mL (Miller 2015)
VL 2000 770–2200 mL (Pelosi et al. 1998)
Vt,F 14,500 4563–45,300 mL (Eger 1974)
Vt,M 33,000 20,010 − 55,789 mL (Eger 1974)
Vt,VRG 6000 4950–7942 mL (Eger 1974)

*PD C50 0.7478 0.4959 − 1.094 vol% (Gentilini et al. 2001)
γ 1.534 0.7915–2.351 – (Gentilini et al. 2001)
ke0 0.3853 0.0248–2.895 – (Gentilini et al. 2001)
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3.3.2 Global Sensitivity Analysis

In this section, the relative influence of the uncertain PK and PD parameters 
and variables on the measurable outputs is investigated via global sensitivity 
analysis. For volatile anaesthesia, the measurable outputs are the end‐tidal 
volatile anaesthetic concentration and the BIS. The results of the global 
s ensitivity analysis are several sensitivity indices with a value between 0 and 1, 
with 0 being non‐influential. The sensitivity index (SI) represents the relative 
influence of the parameter or variable on the output of interest at the given 
time; the sum of all SIs for the applied Sobol method converges to 1. The SIs of 
the PK and PD parameters and variables presented in this section are calcu-
lated with the graphical user interface/high‐dimensional model representation 
(GUI‐HDMR) software. To perform the analysis, all PK and PD parameters 
and variables are varied between their bounds; the resulting output and the 
scaled input from 0 to 1 for a large number of sampling points are required by 
the GUI‐HDMR software. For further details on how the SIs are derived, please 
see Chapter 2.

In total, four sensitivity analyses for the PK and PD variables and parameters 
with 26,000 sampling points were performed.

In Case 1, the influence of the PK variables and parameters on the end‐tidal 
concentration is investigated, because the PK variables and parameters 
describe the distribution of the anaesthetic agent in the human body. In Case 2, 
the influence of the PK variables and parameters on the BIS is investigated. 
The  PK variables and parameters affect the arterial concentration, which 
is linked via the effect site concentration to the BIS (3.19). In Case 3, the influ-
ence of the PD parameters, which characterize the link of the arterial blood 
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Figure 3.3 BIS for PK (left) and PD (right) variability in Table 3.2. The solid line marks the BIS 
for the model adjusted to patient 1. The grey dots mark the measured BIS. Source: Krieger 
et al. (2014). Reproduced with permission of Elsevier.
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concentration to the BIS, is investigated. In the last case, Case 4, all PK and PD 
variables and parameters were analysed with respect to the BIS. For Case 1 
and Case 2, all PD parameters were kept at their default values. In Case 3 the 
PK parameters were kept at their default values, while in Case 4 all PK and PD 
 variables and parameters were varied between their lower and upper bounds 
given in Table 3.2. The cases are summarized in Table 3.3.

For the sensitivity analysis, the inspired concentration, respiratory frequency 
and tidal volume were kept constant during the entire simulation. The SIs of all 
PK and PD variables and parameters for Cases 1–4 are summarized in Table 3.4.

The time‐varying PK and PD SIs of all cases defined in Table 3.3 are shown 
in Figure 3.4. The PK variables and parameters with an average SI < 0.01 were 
excluded for the purpose of clarity.

In Case 1, the distribution volume of the anaesthetic agent, the lung volume 
VL, has the highest sensitivity index during the entire course of anaesthesia 
with respect to the end‐tidal concentration CE. The PK variables with the next 
highest SIs are the cardiac output and the shunt flow. Hence, as expected, the 
ventilation and perfusion are the main influencing factors for the uptake of the 
anaesthetic agent.

For Case 2, lung volume, cardiac output and lung shunt are identified, analo-
gously to Case 1, as the crucial parameters with respect to the BIS, and hence 
the arterial blood concentration to which the BIS is directly linked through the 
effect site compartment via (3.19).

Case 3 shows that for short time instances, the SIs of the PD parameters γ and 
ke0 are approximately identical, while C50 has the highest index and hence the 
highest influence on the BIS. Under the assumption of a constant inspired con-
centration, the sensitivity of C50 increases to approximately 90% after 60 min. 
The results in Figure 3.4 for Case 3 are in accordance with the formulation of 
(3.19) and (3.20). The parameter γ changes the slope of the Hill equation, and 
ke0 affects the delay of the effect. Only C50 relates the final BIS to a given effect 
site concentration. Therefore, the PD parameters γ and ke0 only determine how 
fast the BIS is responding to a change in the inputs, but they are not affecting 
the steady‐state BIS value. In Case 4, the PD parameters are identified to have 

Table 3.3 Summary of the cases for sensitivity analysis.

Fixed variables Variables and parameters Output

Case 1 PD PK CE

Case 2 PD PK BIS
Case 3 PK PD BIS
Case 4 − PK, PD BIS

Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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the highest sensitivity towards the beginning of anaesthesia, whereas for a 
longer course of anaesthesia, especially the lung volume’s SI increases. As 
stated in Case 3, γ and ke0 only influence how fast the BIS is following a change 
in the input parameters, but not the total effect.

As a conclusion of the sensitivity analysis of Case 1 and Case 2 from a 
 physiological aspect, the cardiac output and shunt flow determine the anaes-
thetic uptake in the circulation, while the lung volume mainly determines the 
alveolar concentration in the lungs, as the driving force for the anaesthetic 

Table 3.4 Sobol’s sensitivity indices using GUI‐HDMR for Cases 1–4 given in Table 3.3 
after 3.5 min and 20 min.

Case 1: CE Case 2: BIS Case 4: BIS

Variable 5 min 20 min 5 min 20 min 5 min 20 min

*PK λ 0.0 0.0 0.0094 0.0134 0.0018 0.0031
λF 0.0 0.0 0.0 0.0 0.0 0.0
λM 0.0104 0.0259 0.0030 0.0127 0.0005 0.0028
λVRG 0.0312 0.0144 0.0097 0.0101 0.0020 0.0020
Q 0.1812 0.1428 0.0462 0.0919 0.0101 0.0187
Qs 0.1665 0.1763 0.2362 0.2134 0.0400 0.0457

rQ F , 0.0017 0.0034 0.0005 0.0016 0.0002 0.0005
rQ M , 0.0568 0.0937 0.0175 0.0489 0.0033 0.0111
rQ VRG , 0.0002 0.0004 0.0002 0.0006 0.0 0.0
Vb,F 0.0024 0.0027 0.0034 0.0023 0.0 0.0
Vb,M 0.0078 0.0085 0.0006 0.0001 0.0 0.0
Vb,VRG 0.0132 0.0043 0.0060 0.0030 0.0010 0.0006
VD 0.0055 0.0054 0.0076 0.0065 0.0013 0.0013
VL 0.4595 0.4766 0.6539 0.5663 0.1101 0.1215
Vt,F 0.0003 0.0003 0.0001 0.0001 0.0 0.0
Vt,M 0.0043 0.0067 0.0267 0.0265 0.0001 0.0003
Vt,VRG 0.0753 0.0559 0.0162 0.0369 0.0038 0.0071

*PD Case 3: BIS Case 4: BIS

C50 – – 0.4241 0.7709 0.3124 0.5698
γ – – 0.2840 0.1224 0.2813 0.0851
ke0 – – 0.2809 0.0815 0.1947 0.0638

CI 1 1.  vol% is kept constant during the entire analysis.
Source: Ziehn and Tomlin (2009). Reproduced with permission of Elsevier.
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uptake from the ventilation site. All other PK parameters have a considerably 
lower SI and can be regarded as negligible compared to the lung volume, the 
cardiac output and the lung shunt flow. Case 3 and Case 4 illustrate that C50 
is  the most important parameter in order to obtain the correct level of 
 anaesthesia for the individual patient.

For an in‐depth understanding of the actual physical influence of the PK 
and PD variables and parameters, it was investigated whether an increase in 
the PK or PD variable or parameter increases or decreases CE and/or BIS. The 
calculated outputs of CE and BIS are compared to the outputs of CE and BIS 
when changing the respective PK or PD variable or parameter one by one to 
the upper and the lower bounds, while keeping all other variables and param-
eters at their default values. The percentage of change comparing the default 
output of CE and BIS to the range of change between the upper and the lower 
bounds is summarized in Table 3.5.

The simulations clearly confirm the results obtained by the previous 
s ensitivity analysis.
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3.3.3 Correlation Analysis and Parameter Estimation

The envelope of BIS uncertainty by PK variability is significantly smaller than the 
envelope of uncertainty by PD variability (Figure 3.3). This motivates an attempt 
to estimate the PD parameters in order to capture the uncertainty as a conse-
quence of PK variability. First, all three PD parameters and the PK variable with 
the highest sensitivity, VL, are included in the parameter estimation problem.

The parameter estimation problem is evaluated by the correlation matrix C 
of the estimated parameters. An entry in the off‐diagonal elements of the 

Table 3.5 Percentage of change of CE and BIS after 5, 20 and 60 min, compared to the output 
with default PK and PD variables and parameters.

CE BIS

Variable 5 min 20 min 60 min 5 min 20 min 60 min

*PK λ 0.0 0.0 0.0 −2.01 −3.60 −4.12

λF −0.08 −0.10 −0.16 0.01 0.04 0.08
λM −9.59 −11.27 −13.97 1.46 4.29 6.73
λVRG −12.24 −5.03 −0.81 1.96 2.34 0.43
Q 28.89 17.34 8.97 −4.11 −7.71 −4.46
Qs −26.10 −21.25 −17.11 9.43 14.38 13.25

rQ F , −2.70 −2.86 −3.11 0.42 1.11 1.52
rQ M , −18.42 −17.67 −12.64 2.90 6.75 6.19
rQ VRG , −0.44 0.10 0.01 0.14 −0.04 0.00
Vb,F 0.0 0.0 0.00 0.0 0.0 0.0
Vb,M −0.26 −0.12 −0.10 0.06 0.05 0.05
Vb,VRG −8.26 −3.06 −0.47 1.50 1.44 0.25
VD 5.39 4.09 3.14 −1.92 −2.56 −2.24
VL −77.81 −50.87 −36.32 25.79 27.63 23.06
Vt,F −0.06 −0.24 −0.88 0.01 0.08 0.41
Vt,M −1.07 −4.02 −11.35 0.12 1.39 5.41
Vt,VRG −19.24 −10.59 −1.61 2.59 4.84 0.87

*PD C50 – – – 28.06 49.25 56.19
γ – – – 27.71 14.34 4.55
ke0 – – – −37.69 −52.55 −23.98

CI 1 1.  vol%, fR 12 and VT 500 mL performed with gPROMS.
Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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correlation matrix C close to one (| | 1)ijC ≈  indicates a high correlation of the 
corresponding parameters i and j, whereas an entry of zero (| | 0)ijC ≈  indicates 
no correlation. The entries of the correlation matrix are calculated based on 
the variance–covariance matrix V, the variance of a parameter is given on the 
diagonal elements (Vii) and the covariance of two parameters i and j on the 
off‐diagonal elements (Vij). Further details can be found in the gPROMS user 
guide (PSE 2015).
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During the following analysis, the upper bound of the envelope shown in 
Figure 3.3 is referred to as PKu, while the lower bound is referred to as PKl. 
The evaluation of the quality of the estimates is performed for both cases. The 
correlation matrix of VL and the three PD parameters obtained using gPROMS 
(PSE 2015) is given in Table 3.6.

The results show that VL and the PD parameters are highly correlated, in par-
ticular C50 and VL, where 50 , LC VC ≈ −0.99. As a consequence, C50 and VL c annot 
be estimated independently, or, for this case, the uncertainty imposed by varia-
bility in the PK variables and parameters can be captured, and a  sufficiently 
accurate BIS can be reproduced, by the adjustment of the PD parameters only. 
This statement is investigated for PKl and PKu, this time only estimating the PD 
parameters. The correlation matrix of the PD parameters for PKl and PKu and 
the final values for all PD parameters are given in Table 3.7.

In the second parameter estimation problem, the PD parameters γ and C50 
show minor correlation originated by the nature of (3.20). All values of the 
PD parameters are obtained by solving a maximum likelihood parameter 
estimation problem with gPROMS and lie within their respective bounds 
(Table 3.7; see also Bard 1974; PSE 2015). The results of the fit are shown in 
Figure 3.5. Here, PKl and PKu denote the upper and lower bounds of the PK 

Table 3.6 Correlation matrix C of C50, γ, ke0 and VL for the parameter 
estimation problem PKu and PKu; PKu above diagonal and PKl below 
diagonal.

C50 γ ke0 VL

C50 1 0.644 −0.691 −0.993
γ 0.662 1 −0.312 −0.713
ke0 −0.753 −0.368 1 0.697
VL −0.992 −0.663 0.791 1

Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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uncertainty envelope, and PK l,est and PK u,est the output for values of the PD 
parameters given in Table 3.7.

This analysis shows that, via PD parameter estimation, it is possible to 
 capture the uncertainty introduced by potential PK variability and that the 
PD parameters ke0, C50 and γ are sufficient to predict the correct BIS under 
uncertainty in the PK and PD variables and parameters. This statement is 
 further investigated for a set of measured patient data in Section 3.3.4.

3.3.4 Simulation Results

The anonymized data used for simulation purposes were provided by the 
Department of Medical Informatics in Anesthesiology and Intensive Care 
Medicine of the University of Gießen in Germany. The data of isoflurane con-
centration were measured with an anaesthesia ventilator (Primus, Draeger 
Medical), and BIS was measured by patient monitoring (IntelliVue MP70, 
Phillips). The data were recorded on‐line with an anaesthesia information 
management system (NarkoData, IMESO GmbH). The individual PD param-
eters for each of three patients were obtained by a parameter estimation prob-
lem as described in Section 3.3.3. For comparison, the expected BIS for the 
default PD parameters in Table 3.2 is added. All results are shown in Figure 3.6, 

Table 3.7 Correlation matrix of the PD parameters, entries for PKu above 
diagonal and PKl below diagonal, and estimated PD parameters for PKl and PKu.

C50 γ ke0 PKl PKu

C50 1 −0.759 −0.0033 C50 0.6177 0.8962
γ 0.0563 1 0.383 γ 1.4458 1.6369
ke0 0.431 0.348 1 ke0 0.4308 0.2978

Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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Figure 3.5 BIS output for estimated PD parameters in Table 3.7 capturing PK variability 
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where the measured data points are denoted with (meas), the BIS for individu-
ally estimated PD parameters is denoted with (est) and the expected BIS for the 
PD default values is denoted with (def ). The characteristics of the three patients 
and the values of the estimated PD parameters are given in Table 3.8.

As seen in Figure 3.6, the simulation results of the end‐tidal concentration 
CE for Patient 1 and Patient 3 are in good accordance with the measurements 
CE (meas). Hence, the PK model shows a good fit of the data. However, for 
Patient 2 the model is not predicting the measured end‐tidal concentration. 
This might be related to the underweight of the patient, BMI 14 5. , for which 
the PK parameters have to be modified with additional knowledge about the 
patient’s health state. The expected BIS for PD default variables, BIS (def ), 
published by Gentilini et al. (2001) showed the best match with the measured 
BIS for Patient 1. Especially for Patient 3, a considerable offset between the 
measurement and the predicted BIS is observed. For individually estimated 
PD parameters, the predicted BIS is in good accordance with the measure-
ment for all three patients.

This study shows the high inter‐patient variability of the PD parameters; 
already in the study for three patients in Table 3.8. a very wide range for the 
estimated PD parameters can be observed. This shows the need for on‐line 
adjustment of the PD parameters. The strategy of choice to assure sufficient 
and correct prediction of the anaesthetic state through the mathematical 
model is an on‐line parameter estimation (Parker and Doyle 2001).

Table 3.8 Patients’ characteristics, calculated values of the lung volume 
and cardiac output and estimated PD parameters.

Patient 1 Patient 2 Patient 3 Units

Age 61 65 66 Years
BMI 31.5 14.5 26.0 kg/m2

Height 1.69 1.7 1.63 m
Mass 90 42 69 kg
Gender m m f m/f
VL 1041 2200† 1449 mL
Q 6530 5052 5317 mL/min

C50 0.3989 0.4107 0.5661 vol%
γ 0.4945 0.5939 1.9974 −
ke0 1.7577 0.0248 0.374 −

†VL at the upper bound.
Source: Krieger et al. (2014). Reproduced with permission of Elsevier.
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Motivated by the high PK and PD patient variability (Mertens and Vuyk 
1998) and our interest in applying the derived model as the underlying model 
for model predictive control, this work provided an in‐depth analysis of an 
individualized physiologically based model for volatile anaesthesia and the 
influence of the individual patient variables and parameters on the outputs of 
interest, which are the BIS, as a measure of the hypnotic level, and the end‐tidal 
concentration of the volatile anaesthetic agent.

First, the PK variables and parameters were individually adjusted to the spe-
cific patient characteristics, and their influence was investigated by a global 
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Figure 3.6 Inspired and expired isoflurane concentrations and BIS for patient characteristics 
and parameters given in Table 3.8.
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sensitivity analysis and by changing the parameters one at a time within their 
bounds. Here, the parameters primarily determining the ventilation and perfu-
sion of the lungs, the lung volume, the shunt flow and the cardiac output were 
found to be the crucial factors.

Second, motivated by the high variability in the PD parameters of up to 400% 
(Mertens and Vuyk 1998), the PD parameters were included in the analysis and 
indeed proofed to be the crucial parameters with respect to the BIS, where C50, 
the effect site concentration at BIS = 50, was found to be the parameter with the 
highest sensitivity.

As a final remark, when applying the presented model as the underlying model 
for model predictive control, to assure safe control action and safe anaesthesia as 
well as account for the high inter‐ and intra‐patient variability, the PD parameters 
are recommended to be adjusted during the course of anaesthesia based on 
the  BIS measurements and updated accordingly (Ionescu et  al. 2008). The 
 adjustment of the PD parameters only was found to be sufficient, due to the cor-
relation of the PK and PD variables and parameters with respect to the BIS. As a 
consequence, even for a non‐correct prediction of the PK variable VL with the 
highest sensitivity, an estimate of the PD parameters can capture the introduced 
uncertainty. This strategy, of an on‐line parameter estimation of the PD param-
eters to update the underlying PD model, is believed to be suitable to capture the 
imposed model uncertainty by inter‐ and intra‐patient variability.

3.4  Control Design for Volatile Anaesthesia

In this section, the design and testing of the closed‐loop control strategy is 
presented. A schematic of the closed‐loop control structure is depicted in 
Figure 3.7.

The objective is to achieve a fast onset and stable maintenance of the desired 
depth of hypnosis measured by the BIS. In order to achieve this, the MPC 
manipulates the control input, the inspired concentration CI. The state feed-
back MPC calculates the optimal control strategy as a function of the states of 
the system.

State Estimator

PD PK

State Estimator

PD PK

State estimator

PD PK

BISR
MPC

BIS
Patient

CI

C

CE
Set point selector

Ce Ct,i, Cb,i
^

Figure 3.7 Closed‐loop control design for volatile anaesthesia.
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The available measurements are the BIS and the end‐tidal concentration CE. 
Given these measurements and the control input CI, the state estimator obtains 
the predicted states Ĉ  of the system that are not measurable.

For closed‐loop control validation, the patient model is simulated with other 
PK and PD variables and parameters compared to the nominal values.

3.4.1 State Estimation

For the applied state feedback MPC design, the optimal control law is obtained 
as a function of the system’s states. This is indicated by the state estimator block 
in the control design in Figure 3.7. For the control of volatile anaesthesia, the 
two measurable outputs are the end‐tidal concentration CE and the BIS. Due to 
the identified high uncertainty in the PD parameters, the strategy of choice is to 
estimate the states, which are the concentrations in the respective compart-
ments of the PK model and the effect site concentration Ce of the PD model, 
based on the measurement of the end‐tidal concentration CE. Due to the for-
mulation of (3.19), Ce is not observable from the measurement of CE.

The observability matrix

 

O   

C
CA

CAn 1



 (3.23)

for the system has low rank:

 rank(O) 6 n 7 

Hence, the strategy of choice is to estimate only the states of the PK model:
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where the state vector corresponds to the concentrations in the blood and tis-
sue compartments of the model. Additionally, the effect site concentration Ce 
of the PD model is obtained as a function of the arterial concentration Ca 
according to (3.19) given as follows:
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where ˆ ˆ
EE CC y=  refers to the estimated end‐tidal concentration.
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An estimation of ĈE based on the BIS measurement and the PD parameters 
of the Hill equation is not performed due to the high uncertainty in the PD 
parameters by inter‐ and intra‐patient variability and the tendency towards an 
inaccurate estimation.

3.4.1.1 Model Linearization
Given the assumption of constant inputs of respiratory frequency fR and VT 
and constant PK variables, the model equations presented here result in a 
l inear system with the seven states:

 x  C C C C C C Ce b V RG t V RG b M t M b F t F[ ]; ; ; ; ; ; ’ 
The only non‐linearity is introduced by the Hill equation (3.21), which relates 
the linear PK model to the effect measured by the BIS. In this work, we only 
consider linear mp‐MPC algorithms. For this specific case, as the Hill equation 
is an algebraic equation and no ODE, two options to compensate for the non‐
linearity are considered:

  I) Algebraic inverse of the Hill equation
II) Linearized Hill equation

a) Linearization at BIS reference point
b) Set of piecewise affine functions.

Both options and their advantages and disadvantages are discussed in this section.

I. Algebraic Hill Equation
One option is to calculate the reference effect site concentration CRe by the 
inverse of the Hill equation for the reference BISR (Ionescu et al. 2008; Naşcu 
et al. 2012):

 
C C BIS BIS

BIS BISe
R

R

50
0

1

max
 (3.26)

The control design consisting of the mp‐MPC controller, a state estimator, the 
patient and the inverse Hill equation is depicted in Figure 3.8.

This design requires robustification against the uncertainty in the PD param-
eters C50 and γ, which are parameters in the Hill equation (3.21) and (3.26). For 
the proposed design of compensating the non‐linearity by the inverse of the 
Hill equation, these parameters are not included in the control design where 
they can be compensated by the disturbance rejection formulation. Hence, this 
design can only compensate uncertainty in the PD parameter ke0.

The advantages and disadvantages of algebraic inverse of the Hill equation 
are summarized as follows:

 ✓ Exact approximation of the Hill equation
 ✕ Robustification strategy for inter‐patient variability in C50 and γ.



Volatile Anaesthesia 89

II. Linearized Hill Equation
The second design is a linearization of the Hill equation at the desired refer-
ence point. The given control design is depicted in Figure 3.9.

The linearized Hill equation is given by:

 BIS C bBIS BIS e BIS
lin lin lin

 (3.27)

where lin denotes the linearization point; that is, for linearization at BIS 50, 
the linearization constants are given by:

 
BIS BIS BIS

C50 0
504max  (3.28)
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0
502

max  (3.29)

II.i Linearization at Reference Point The linearized Hill equation at the operat-
ing point of BIS 50 was applied by Gentilini et al. (2001) and Yelneedi et al. 
(2009), resulting in the visualized linearization in Figure 3.10 for the nominal 
PD isourane parameters.
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Figure 3.8 Control design for algebraic Hill equation.
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However, this might not be accurate when the anaesthetist decides another oper-
ating point (e.g. BIS 40 or BIS 25), as in the case study for desflurane. 
Furthermore, the intersection of the linearized Hill equation and the y‐axis does not 
coincide with the initial condition of the patient during induction, where BIS 100. 
Hence, this strategy results in a large offset during induction of anaesthesia.

The advantages and disadvantages of linearization at reference point only are 
summarized as follows:

 ✓ Good approximation at reference point
 ✓ Straightforward implementation
 ✕ Linearization error out of linearization region.

II.ii Set of Piecewise Affine Functions Hence, a safer and more accurate lineariza-
tion procedure to achieve a smooth transition of the non‐linearity for the full Hill 
equation is a set of linear approximations, where the Hill equation is linearized at 
BIS 60 and BIS 30, and the controller is switching at the intersection points. 
The linearization for induction is obtained by a line through the points (BIS 100, 
Ce 0) and (BIS 60, C Ce e; BIS 60) (Figure 3.11).

The advantages and disadvantages of the piecewise affine linearization of the 
Hill equation are summarized as follows:

 ✓ Linearization of the full parameter space
 ✓ Compensation of uncertainty in C50 and γ
 ✕ Implementation of controller switching to guarantee stability.

3.4.2 On‐Line Parameter Estimation

The strategy of on‐line parameter estimation for anaesthesia control was 
 performed for propofol by Sartori et al. (2005) and Robayo et al. (2010). In 
Robayo et al. (2010), the authors estimate the slope of the linearized Hill 
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equation at BIS 50 as a function of the cross correlation between meas-
urement in the intensive care unit and prediction of the BIS. Sartori et al. 
(2005) formulate the non‐linear PK‐PD system by adding the parameters 
C50 and ke0 as states, the system is linearized at every step, and the states 
and parameters are estimated by an implementation of the Kalman filter. In 
Sreenivas et al. (2009), the authors mention an improved prediction of the 
BIS for an estimation of C50 for isourane‐based anaesthesia, given the 
measurement during induction. However, no method for the estimation of 
C50 is described.

3.4.2.1 Control and Algorithm Design
For the proposed control design, an additional block for the on‐line estima-
tion of C50 is added to the control structure depicted in Figure 3.12 (Krieger 
and Pistikopoulos 2014). The non‐linearity of the Hill equation is compen-
sated by its inverse (3.20) analogously to the design in Figure 3.13. Hence, the 
reference point on the effect site concentration Ce

R  is calculated as a function 
of the reference point on the hypnotic depth given by BISR and the PD 
parameters C50 and γ.

The process of the on‐line estimation block in Figure  3.12 is depicted in 
Figure 3.13. It can manually be switched on or off. If active, C50 is estimated 
and  updated under the conditions depicted in the flowchart presented in 
Figure 3.13.

The first estimation and update of C50 occur at least 5 min after induction of 
anaesthesia (t > 5 min). If the on‐line parameter estimation is switched on, the 
parameter estimation block becomes active, when an error between measure-
ment BISm and the predicted BIS by the Hill equation with the current parameters 
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^ Update C50
^

Figure 3.13 Decision process of the on‐line parameter estimation bloc. Source: Krieger et al. 
(2014). Reproduced with permission of Elsevier.
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is detected. A mismatch is defined as a deviation of prediction and measurement 
of more than 5% in the last 3 min, ∆BIS > 0:05:
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This triggers the on‐line estimation by solving a constrained non‐linear 
least‐squares problem. The solution of C50 is minimizing the error between 
BIS  and BISm:
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Constraints on the change of the estimated value of C50,t aim for a smooth 
transition of the parameter to the real value and secure stability against short‐
term disturbances and/or measurement errors. Before anaesthesia, C t50 1,  is set 
to the nominal value. Throughout the simulation, C50,t is initialized with its 
previous value C t50 1, . The solution of the estimation problem is constrained 
by ±20% of its previous value C t50 1,  and a lower and upper bound given in 
Table 3.2. Given a feasible and optimal value of C50,t of the estimation problem, 
the inverse Hill equation (3.20) is updated accordingly after each on‐line 
 estimation step. The least‐squares estimation problem is solved using GAMS 
and the global solver BARON (GAMS 2013). The  estimated parameter is 
sent to MATLAB via GDXMRW. An additional measure to enhance a smooth 
transition of the parameter to the real value is a minimum interval of 3 min 
between each on‐line estimation step (Figure 3.13).

3.4.2.2 Testing of the On‐Line Estimation Algorithm
This strategy is now tested for patient 3 as patient 3 is generally showing the 
highest offset for all control strategies (Krieger 2014). The mp‐MPC is designed 
using a ‘Perfect’ Observer for state estimation (CD1). The state estimator and 
mp‐MPC are both based on the derived PK‐PD model with nominal patient val-
ues, whereas the patient model is based on individualized variables and param-
eters. The described control strategy (CD) is tested for a constant reference point 
of BISR 40 for 100 min. The simulation results are shown in Figures 10.3–10.6.

During the initial 5 min, both controllers give an identical input, while after 
5 min the input of CD is adjusted according to the update of C50 in Figure 3.14. 
This update triggers a reference point change on the effect site concentration 
Ce

R  as a result of the updated value of C50 in the inverse Hill equation and better 
knowledge of the patient’s individual parameters. Figure  3.15 shows the 
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changing inlet concentration of the controller as a consequence of this refer-
ence point change of Ce

R  depicted in Figure 3.16. The reference concentration 
Ce

R  is updated with every new estimate of C50.
Figure 3.16 also shows the large offset for control design CD1 and empha-

sizes the need of an offset free control design. This offset in the effect site 
concentration originated from different

PK and PD variables and parameters of the nominal patient, and patient 3 
causes the further offset in the BIS shown in Figure 3.17.
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However, by the estimation of C50, CD converges to the reference point 
BIS 40 (Figure 3.17). Likewise, the estimated value of C50 converges to a final 
value of C50 = 0.647 (vol%).

To confirm and validate this result, the least‐squares parameter estimation 
with GAMS (2013), a maximum likelihood parameter estimation for nominal 
values of all the PK and PD variables and initialized with the nominal value of 
C50 was performed with gPROMS (PSE 2015). The obtained estimated value 
was C50 0 612.  (vol%). This result is reasonably close to the result obtained by 
the solution of the least‐squares problem and confirms the accuracy of the PD 
estimation result with GAMS (2013).
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3.4.3 Case Study: Controller Testing  
for Isourane‐Based Anaesthesia

The control design of CD is now tested for all three patients undergoing 
isourane‐based anaesthesia for a reference point change from BIS 40 to 
BIS 60 after 60 min of anaesthesia. The simulation results of all three patients 
are shown in Figures 3.18–3.21.

During the initial 5 min, the MPC computes an identical input for all three 
patients. However, after this short induction time, C50 of each patient is esti-
mated individually based on the obtained measurements of the BIS during the 
last 3 min depicted in Figure 3.20. The estimation of C50 results in an update of 
the reference effect site concentration Ce

R  in Figure 3.19. The measured BIS 
of  all three patients converges to the reference point BISR in Figure  3.20. 
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The required target effect site concentration to obtain BISR varies significantly 
between patients due to large inter‐individual variability. Figure 3.18 shows the 
individual control inputs obtained correctly through the individualized param-
eter estimation of C50 shown in Figure 3.21.

The estimated values of C50 converge to a constant value in less than 20 min 
of anaesthesia. Due to the change in BISR, the estimation of C50 is triggered 
 repeatedly (Figure 3.21). Here the updated parameter, C50, for patient 3 con-
verges faster to a steady value. C50 of patient 1 and patient 2 is repeatedly 
updated every 3 min, and at the constraint at the lower bound C Ct t50 50 10 8, ,.  
is active. This is  originated from the different slope of the individual Hill 
equations and the distinct deviation from the nominal value at BIS 40 and 
BIS 60.
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The on‐line estimation of C50 shows promising results towards an individu-
alized control strategy of anaesthesia. This strategy allows to adjust the con-
troller to the individual sensitivity of the patient towards the anaesthetic 
agent. Furthermore, the anaesthetist gains understanding of the patient’s 
sensitivity, which could be advantageous for future surgeries of the same 
patient. The presented strategy is believed to be safe for the patient, ensured 
by constraints in the controller configuration and in the formulation of the 
parameter estimation problem.

The tuning parameters of this strategy are (a) the permitted deviation from the 
initial value for C50 in the parameter estimation problem, which was set to ±20% 
in this study; (b) the percentage of deviation from the measured BIS, which trig-
gers an estimation of C50, set to 5% in this study; and (c) ∆t the sampling time 
between each parameter estimation, which was set to 3 min.

 Conclusions

The framework presented in this thesis provided a valuable guideline for model 
development and analysis when aiming for a robust control strategy and the 
design of a safe drug delivery system for anaesthesia (Figure 3.22).

Closing the loop of the anaesthetic system implies automatic drug infusion 
based on the model predictions and the feedback through the measured 
patient variables. Apart from hypnotic depth, anaesthesia is defined by amne-
sia, analgesia, muscle relaxation and the maintenance of the vital functions. 
A  multiple‐input/multiple‐output (MIMO) controller could regulate all of 
these variables (Biro 2013).

The presented control strategy combines mp‐MPC and online parameter 
estimation of C50 to address control of anesthesia under uncertainty. This strat-
egy showed a good performance during induction of anesthesia and adapted 
the controller’s dynamics to the individual patient’s sensitivity. The safety of the 
patient is assured by constraints in (a) the online parameter  estimation problem 
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Control

Closed-loop control
system validation

Robust control
strategies

Model Model analysis
Uncertainty
identi�cation

Figure 3.22 Framework presented in this thesis for volatile anaesthesia.
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and (b) the mp‐MPC specification. This set‐up allows extensive advance testing 
of the control performance. The control strategy was further evaluated for dis-
turbance rejection of commonly occurring disturbances during the course of 
surgery. Here, the online estimation of C50 showed promising results for slowly 
varying disturbances. However, further investigation is needed to guarantee 
safe and robust control also during fast‐acting disturbances. The online estima-
tion contributes to further understanding of the patient’s sensitivity, which 
could be advantageous for future surgeries of the same patient. In Chapter 4, we 
will focus on the control of intravenous anaesthesia.

Appendix

Variable Lists

Table 3A.1 Denotation of variables and parameters of the PBPK/PD model.

Symbol Denotation Units Symbol Denotation Units

BIS Bispectral index – Q Blood flow mL
min

C Concentration volatile anaesthetic vol% Qs Shunt flow mL
min

C50 Drug concentration at 50% effect vol% r Ratio –
fR Respiratory frequency 1

min
u Uptake mL

min

γ Slope Hill equation – V Volume mL
λ Partition coefficient – VD Dead space mL
ls Lung shunt – V Air flow mL

min
mliv Metabolism liver mL

min
VT Tidal volume mL

Table 3A.2 Denotation of subscripts in the PBPK/PD model.

Subscript Denotation Subscript Denotation

A Alveoli i Compartment
a Arterial I Inhaled
b Blood L Lungs
e Effect compartment t Tissue
E Exhaled v Mixed venous return
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4

4.1  A Multiparametric Model‐based Approach 
to Intravenous Anaesthesia

4.1.1 Introduction

Anaesthesia can be defined as a reversible pharmacological state where the 
patient muscle relaxation, analgesia and hypnosis are guaranteed. It is charac-
terized by unconsciousness through the action of anaesthetics, but also by loss 
of the ability to perceive pain through the action of analgesics. Analgesics block 
the sensation of pain; the hypnotics produce unconsciousness, while the muscle 
relaxants prevent unwanted movement of muscle tone.

The concept of intravenous (IV) anaesthesia compared to volatile anaesthe-
sia is simpler: it requires an IV line, and everything needed for general anaes-
thesia is supplied through this line. This will eliminate the need for sophisticated 
gas delivery systems or time‐consuming procedures such as establishing 
regional blocks or neuraxial blocks (Eikaas and Raeder 2009). The drugs used 
in IV anaesthesia are usually less toxic than inhalational agents, with less risk of 
malignant hyperthermia and no pollution of environmental air or the atmos-
phere. IV anaesthesia usually implies giving dedicated component therapy 
with different drugs for different effects, in general one drug for the hypnotic 
agent (propofol, ketamine, methohexital or midazolam) and another drug for 
analgesia and anti‐nociception (remifentanil, other opioids or ketamine).

The role of the anaesthetist has become more and more complex and indispen-
sable to maintain the patients’ vital functions before, during and after surgery. In 
order to do this, averaged population models are used to estimate the drug effect 
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in the patient’s body and calculate the corresponding drug infusion rates. These 
strategies do not take into account any measured variable in a feedback control 
scheme, and even if they reach the desired level of sedation fast, they can result in 
minimal values (undershoot) that are not safe for the patient. But if the control of 
depth of anaesthesia (DOA) is done automatically, anaesthetists will have more 
time to focus on critical issues that can threaten the safety of the patient.

Anaesthesia control deals with many challenges: inter‐ and intra‐patient vari-
ability, multivariable characteristics, variable time delays, dynamics dependent 
on hypnotic agent and stability issues. Hitherto, many proportional–integral–
derivative (PID) tuning techniques have been elaborated during recent decades, 
but since these classical controllers cannot anticipate the response of the patient 
and have no prior knowledge of the drug metabolism, their performance was 
sub‐optimal. Therefore, model‐based strategies using fuzzy, predictive and 
adaptive control algorithms have been elaborated and used in clinical trials.

The purpose of computer‐controlled closed‐loop systems is to formalize the 
process of observation and intervention to provide better and more  accurate 
control. Such systems use a near continuous signal of drug effect, calculate the 
error between the observed value and the set‐point value (selected by the user), 
and use this error in an algorithm to make frequent and regular adjustments to 
drug administration rates. Moreover, some computer‐controlled systems try to 
predict the future drug effect so that better adjustments will be done in advance

Drug administration is an asymmetrical process: we can actively infuse but 
cannot actively remove the drug. Because the relationship between dose and 
plasma concentration is so complex, target‐controlled infusion (TCI) systems 
are a logical choice of control actuator, so that the control input is a target 
concentration rather than an infusion rate. Many assumptions underpin the 
pharmacokinetic models used in TCI systems, and some are obviously incor-
rect (such as that of instant mixing of an administered drug within the central 
compartment). Not surprisingly, the predictive accuracy of current models is 
imperfect, and the choice of model for propofol is controversial.

4.1.2 Patient Model

For IV administration, the infused drug enters the circulatory system, where 
under the action of the heart it is mixed and evenly distributed. The drug must 
diffuse out of the circulatory system into extracellular volumes before it reaches 
the target organ or cells. Because it acts on the target, the controlling drug may 
also be subject to excretion by the kidneys and intestines, as well as biotransfor-
mation and inactivation by organs such as the liver, the renal epithelium, and 
the intestinal mucosa.

The model used for prediction should not be too complex, in order not to 
take too much computational time. On the other hand, it should capture very 
well the dynamics of the patient in response to an applied propofol signal. 
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The relationship between the infusion rate of propofol and its effect can be 
described with pharmacokinetic (PK) and pharmacodynamic (PD) models. A 
PK model describes the distribution of propofol in the body, and a PD model 
describes the relationship between propofol blood concentration and its 
 clinical effect. A compartmental model is used to describe the PK–PD blocks 
 representing the distribution of drugs in the body (i.e. mass balance). In each 
compartment, the drug concentration is assumed to be uniform, as perfect and 
instantaneous mixing is assumed. The structure of the compartmental model 
is depicted in Figure 4.1 (Schnider et al. 1998; Struys et al. 2004).

The PK–PD models most commonly used for propofol are the fourth‐order 
compartmental models described by Schnider et al. (1998, 1999) and Minto 
et al. (1997a, 1997b), respectively.

The PK model and the first term of the PD model are considered linear and 
are represented by the following equations:
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where C1 represents the drug concentration in the central compartment [mg/l]. 
The peripheral compartments 2 (muscle) and 3 (fat) model the drug exchange 
of the blood with well and poorly diffused body tissues. The concentrations of 
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Figure 4.1 Compartmental model of the patient. PK = the pharmacokinetic model; PD = the 
pharmacodynamic model. Source: Naşcu et al. (2014a). Reproduced with permission of IEEE 
Transactions on Biomedical Engineering.
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drug in the fast and slow‐equilibrating peripheral compartments are denoted 
by C2 and C3, respectively. The parameters kij for i 1 3: , ≠i j, denote the drug 
transfer frequency from the ith to the jth compartment; k10 is the frequency of 
drug removal from the central compartment; and u(t) [mg/min] is the infusion 
rate of the anaesthetic or analgesic drug into the central compartment. The 
parameters kij of the PK models depend on age, weight, height and gender and 
can be calculated for propofol (Naşcu et al. 2014a) as follows:
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where Cl1 is the rate at which the drug is cleared from the body, and Cl2 and Cl3 
are the rates at which the drug is removed from the central compartment to the 
other two compartments by distribution.

The lean body mass (lbm) for men (m) and women (f ) are calculated by:
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The pharmacodynamics describe the link of concentration of the anaesthetic 
agent to the effect of the drug. The PD mathematical model is presented as 
follows:

 
C t k C t x te e e0 1  (4.4)
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An additional hypothetical effect compartment is added to represent the 
lag between plasma drug concentration and drug response. The drug con-
centration in this compartment is represented by xe, called the effect‐site 
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compartment concentration. The effect compartment receives drug from the 
central compartment by a first‐order process, and it is considered as a virtual 
additional compartment. Therefore, the drug transfer frequency for propofol 
from the central compartment to the effect‐site compartment is considered 
in clinical practice to be equal to the frequency of drug removal from the 
effect‐site compartment k ke e0 1

10 456. [min ] (Schnider et al. 1998, 1999; 
Nunes et al. 2009).

When considering the drug effect observed on the patient, the Bispectral 
Index (BIS) variable can be related to the effect drug concentration Ce by the 
empirical static nonlinear relationship (4.5) (Schnider et al. 1998, 1999; Struys 
et al. 2003; Ionescu et al. 2008), also called the Hill curve, which corresponds to 
the second part of the PD model. E0 denotes the baseline value (awake 
state = without drug), which by convention is typically assigned a value of 100; 
Emax denotes the maximum effect achieved by the drug infusion; EC50 is the 
drug concentration at 50% of the maximal effect and represents the patient 
sensitivity to the drug; and γ determines the steepness of the curve.

The inverse of the Hill curve can also be defined as follows:
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For the automatic regulation of DOA in Figure 4.2, the anaesthetic agent (i.e. 
propofol) is the input and the BIS is the output of the system. Propofol is a 
powerful anaesthetic, for which the pharmacologic properties have been well 
described and studied on different types of patients. Because of its pharmaco-
logical profile, propofol is applicable for both induction and maintenance of 
hypnosis during anaesthesia and intensive care sedation (Ionescu et al. 2015).

Equations (4.1)–(4.4) complete the PK–PD patient model for IV anaesthesia.
The BIS is a signal that is derived from the electro‐encephalogram (EEG) 

used to assess the level of consciousness during anaesthesia. A BIS value of 
0 equals EEG silence, while a BIS value of 100 is the expected value of a fully 
awake and conscious adult patient; the 60–70 and 40–60 ranges represent light 
and moderate hypnotic conditions, respectively. The target value during 

Propofol (t) x1(t)
Ce propofol

(t)Effect site
compartment

Sigmoid
hill model

BIS (t)PK
model

PD model

Figure 4.2 Schematic representation of the nonlinear SISO patient model for intravenous 
anaesthesia. Source: Naşcu et al. (2014a). Reproduced with permission of IEEE Transactions 
on Biomedical Engineering.
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surgery is 50, giving us a gap between 40 and 60 to guarantee adequate sedation 
(Haddad et al. 2003; Bailey and Haddad 2005; Absalom et al. 2011).

4.1.3 Sensitivity Analysis

In this section, the methodologies presented in Chapter 2 are tested on the IV 
anaesthesia process. Based on the mathematical model presented there, global 
sensitivity analysis is first applied, in particular Sobol’s method of sensitivity 
indices, the high‐dimensional model representation (HDMR) approach and 
group method of data handling (GMDH)‐HDMR, to determine the relative 
influence of the PK–PD parameters and variables. GMDH‐HDMR relies on 
the direct construction of the HDMR expansion through GMDH inductive 
modelling. By analysing the anaesthesia model, it can be observed that the 
dynamics of the linear part is influenced by the age, height, weight and gender 
parameters. The characteristic of the nonlinear part is influenced by EC50, E0 
and γ parameters. The relative influence of the uncertain PK and PD parame-
ters and the variables on the measurable outputs is investigated. The sensitivity 
index (SI) represents the relative influence of the parameter or variable on the 
output at a given time. To perform the analysis using the mathematical models, 
an anaesthesia experiment was simulated. A step of 50 [mg/min] was applied 
on the anaesthetic drug infusion rate that represents the input of the model. 
The evolution of the output was investigated for an interval of 100 min, until a 
steady‐state regime is reached. During simulations, all parameters and varia-
bles were varied between their bounds. S1–S7 represent the sensitivity indices 
for age, height, weight, EC50, E0, γ and gender, respectively.

Figure 4.3 presents the evolution of the first‐order Sobol SIs at different sam-
ple points starting from t = 2 min to t = 100 min. At the beginning of anaesthesia 
E0, the baseline value (the awake state, without drug) has the highest SI with 
respect to the BIS, but it converges asymptotically to 0 with time as the patient 
enters the deep anaesthesia state. Analysing the SIs from Figure  4.3, it is 
observed that the most important parameter is EC50 (SI: S4), the drug concen-
tration at 50% of the maximal effect, representing the patient sensitivity to the 
drug. Note that EC50 (S4) increases exponentially and stabilizes when the BIS 
reaches its steady‐state regime. Also note that because the nonlinearity is rep-
resented by a sigmoid, the parameter γ (S6), which determines the steepness of 
the curve, has more influence in the beginning of anaesthesia due to the high 
nonlinearity of this zone. Note also that the SIs of the parameters of the linear 
part (PK) increase with the nonlinearity slope, but the corresponding values 
are less important than the ones for the parameters of the nonlinear part.

Table 4.1 represents a comparison of the results obtained with the various 
techniques: (a) Sobol’s sensitivity analysis, (b) GMDH‐HDMR and (c) HDMR 
reported for four of the parameters. These parameters are weight (S3), EC50 
(S4), E0 (S5) and γ (S6), and they were chosen as they have the highest SI at 
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t = 14 min when using Sobol’s sensitivity analysis as presented in Figure  4.3. 
The GMDH‐HDMR approach only computes the indices for the parameter it 
selects as important; therefore, S1 (age), S2 (height) and S7 (gender) are not 
calculated.

Sensitivity analysis using GMDH‐HDMR can be performed on a limited 
number of sample points, and as a result, the most important individual con-
tributions are detected. HDMR is able to do this with 256 Sobol sample points, 
but it will fail to operate properly for only 40 data points. For example, as 
depicted in Figure 4.4, the individual contribution of the third parameter (S3) 
is completely ignored, and the interaction is not detected either. The advantage 
of GMDH‐HDMR is that most of the time, it gives more accurate results than 
HDMR with a small number of data samples. HDMR becomes unreliable with 
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Figure 4.3 Evolution of the first‐order sensitivity indices.

Table 4.1 Comparison of GMDH and HDMR at t = 14.

Sobol GMDH‐HDMR (40) HDMR (40)

S4 0.37122289 0.44268 0.47
S5 0.11501718 0.111865 0.8305
S3 0.07972202 0.08903 0
S6 0.07690754 0.0715 0.99
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limited sets of samples as it can miss important first‐order contributions. 
Moreover, the strength of GMDH‐HDMR is the ability to be economical in 
the number of simulations required. This can be useful in the case of computa-
tionally expensive high‐fidelity models. GMDH inductively selects the most 
important parameters, performing as a sparse method for calculating SIs, with 
scarce recourse to model simulations. HDMR, in contrast, relies on the calcu-
lation of the SIs for all parameters and potential interactions. It captures non-
linear system outputs as a summation of variable correlations in a hierarchical 
order. In a full model expansion, it considers all possible variable interactions 
and their contribution to the original function. The first‐order term describes 
the average value of the fitness landscape near a reference point called the cut‐
centre. Second‐order terms express the independent effects of each variable if 
decision variables are deviated from the cut‐centre. Higher order terms denote 
the residual group effect of variables. Therefore, the terms are independent or 
orthogonal to each other to form a mean convergent series. From Table 4.1, it 
can be observed that γ (S6) has the highest SI with respect to the BIS. Since this 
method exhibits better results for this type of model, γ (S6) shows which 
patient is most sensitive to the drug.

4.1.4 Advanced Model‐based Control Strategies

Model predictive control (MPC) is a control methodology based on two main 
principles: explicit online use of a process model to predict the process output 
at future time instants, and the computation of an optimal control action by 
minimizing a cost function, including constraints on the process variables.

The main differences between the different types of MPC algorithms are: (a) 
the type of model used to represent the process and its disturbances; (b) the cost 
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Figure 4.4 Comparison GMDH‐HDMR for small data samples (N = 40), t = 14.
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function(s) to be minimized, with or without constraints; and (c) the type of 
optimization performed. Details of the method formulation are presented in 
Chapter 2.

4.1.4.1 Extended Predictive Self‐adaptive Control (EPSAC) Strategy
EPSAC is one of the various MPC design methods reported in the literature 
(Su et al. 2016), and it adopts the approach of iterative optimization based on 
a  predefined input trajectory (De Keyser and Van Cauwenberghe 1985; De 
Keyser 2003). A potential drawback of previous EPSAC methods is the incor-
poration of a convolution model in the formulation of the control algorithms. 
Since model parameters are obtained by introducing a step change to the 
 current input value specified by the base input trajectory, the predicted outputs 
at sampling instants further away from the current sampling instant become 
less accurate due to process nonlinearity, leading to inevitable modelling error 
that degrades the achievable closed‐loop performance. Another potential 
downside of this method is that the optimization problem has to be solved 
online. This issue is addressed in this chapter.

For the EPSAC approach (see De Keyser 2003), the controller output is 
obtained by minimizing the cost function:

 k N
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where the design parameters are: N1 = the minimum costing horizon; N2 = the 
maximum costing horizon; N2 − N1 = the prediction horizon; Nu = control 
 horizon; λ = weight parameter; and r = reference trajectory.

In our case, the process input is represented by the propofol infusion rate 
applied to the patient. The process output is the BIS and is predicted at time 
instant t over the prediction horizon N2 − N1, based on the measurements 
available at that moment and the future outputs of the control signal. The cost 
function is an extended EPSAC cost function that penalizes the control move-
ments using the weight parameter λ.

4.1.4.2 Multiparametric Strategy
For the mp‐MPC (see Chapter 2), the generic optimization problem solved is:
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where x = the states; y = the outputs; and u = the controls; all are (discrete) 
time‐dependent vectors, with the tracked output variables having time‐
dependent set points yR. Δu corresponds to changes in control variables, 

u k u k u k( ) ( ) ( )1 ; N = the prediction horizon; Nu = the control horizon; 
and X, U are the sets of the state and input constraints that contain the origin 
in their interior. The weight matrix for manipulated variables, R, is a positive 
definite diagonal matrix (R  0); QR is the weight for tracked outputs; and R1 
is a weight matrix for the control action changes (Δu). The control problem is 
posed as a quadratic convex optimization problem for which an explicit solu-
tion can be obtained. The key idea is to derive the optimal control inputs as 
a set of explicit affine functions of the current state of the system:
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 (4.9)

where s is the number of critical regions.

4.1.5 Control Design

The presence of the Hill nonlinearity complicates the use of linear controller 
synthesis. Two methods to overcome this problem have been proposed: (a) 
exact and (b) local linearization.

The local linearization is based on the linearized patient model (4.1), (4.4) 
and (4.5) using the parameter values of the nominal patient, known a priori, 
for a BIS value of 50 obtained using gPROMS (PSE 2015). The controller is 
designed using the linearized patient model as presented in Figure  4.5. 
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Figure 4.5 Controller design using local linearization.
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Figure  4.6 depicts the control design scheme where the designed controller 
minimizes the error between the BIS target value and the measured BIS, giving 
the patient the optimal propofol drug infusion rate that will derive the patient 
to the desired set point value.

Exact linearization is based on the compensation of the nonlinearity intro-
duced by the Hill curve (4.5) in the PD model (4.4) and (Figure 4.7). Since the Hill 
nonlinearity is a monotonic function of the normalized effect site concentration, 
it has an inverse presented in Equation (4.6). Using a parameter scheduling tech-
nique, the inverse Hill function could be implemented in the control design 
scheme, as illustrated by the block diagram in Figure 4.7. In the patient model, 
the Hill curve uses the nonlinear parameters of the real patient (E0, Emax, EC50, γ), 
while the inverse Hill function is using the nonlinear parameter corresponding to 
the nominal patient known a priori (E0

mean, Emax
mean, EC50

mean, γmean).
For this method, the controller is designed using the linear part (4.1) and (4.4) 

of the patient model (4.1), (4.4) and (4.5), with the linear parameters of the 
nominal patient (age, height, weight and gender) as presented in Figure 4.8. Note 
that the BIS target here is transformed in the Ce target using the inverse Hill 
function since the controlled variable is the estimated drug concentration Ĉe.

An exact linearization takes place only for the case where the patient model 
is identical to the nominal model; in this case, the nonlinearity is cancelled out 
(i.e. =ˆ

e eC C ).
An important challenge of depth of anaesthesia (DOA) control is the high 

inter‐ and intra‐patient variability. This results in different dynamics in the PK 
model, and changes in the parameters of the Hill function for each patient 
model. Four control strategies, a model predictive controller, EPSAC and three 
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Figure 4.6 Controller scheme using local linearization.
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different mp‐MPCs are designed and evaluated. The framework for the differ-
ent ways of designing the controllers is presented in Figure 4.9.

The patient response is simulated using the patient model block, composed 
of the PK–PD linear part (4.1), the effect site concentration (4.4) and the 
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Figure 4.9 Control scheme development flowchart. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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nonlinear PD part composed of the Hill nonlinearity (4.5). BIS can be 
measured; however, the states cannot and have to be estimated, either 
by using the drug rate input and the nominal state‐space patient model or by 
using the drug rate input and measured output (BIS) of the process, the state‐
space nominal model and a correction estimator based on the output changes.

To analyse the influence of the changes in the dynamics of the PK model on 
the control performances, two types of control schemes are implemented. One 
uses the states given by the nominal model (A), and the other uses an estimator 
to adjust the states based on the dynamics of each patient (B).

The influence on the changes of parameters of the Hill curve on the control 
performances is analysed by two types of control schemes; the first uses local 
linearization of the complete PK–PD patient model (C), and the second is 
based on the exact linearization (D). The following design parameters are 
used: the weight matrix for tracked outputs (y), QR 1000, the weight matrix 
for manipulated variables (u), R 1, the control horizon Nu 1 and the pre-
diction horizon N = 20 in both mp‐MPC and EPSAC. The EPSAC has an 
extra weighting factor λ from Equation (4.7), for which its default value 0 
was used. The states used in the design of the controllers are C1, C2, C3, Ce, as 
described in Equation (4.1). The clinically recommended sampling time is 5 s 
(Ionescu et al. 2008). N1, N2, and Nu are chosen based on the characteristics 
of the process and the desired performances. Based on Clarke et al. (1987) 
and Mohtadi et al. (1987), N should be large: at least 2 1n  but not larger than 
the rise time of the process. For anaesthesia, due to medical procedures, we 
are constrained to use a small sampling time, which leads to a choice of a 
greater value for N. Also, the dead time is not considered since it is very small 
and does not affect the process; therefore, N1 = 1. In choosing Nu for pro-
cesses with no unstable or underdamped poles, like anaesthesia, Nu = 1 is 
generally satisfactory. A choice of the Q, R and QR is given by Bryson’s rule 
(Franklin et  al. 2001). Usually the pump for the propofol drug infusion is 
limited to 200 mg/min (3.3 mg/s), but it can be observed from simulations as 
well as literature that the controller gives maximum values of 70 mg/min for 
the drug infusion. To test the ability of the controller in dealing with severe 
constraints and avoid giving the patient unnecessary amounts of drug infu-
sion (leading to longer recovery time), in this work the drug infusion is 
 limited to 50 mg/min.

4.1.5.1 Case 1: EPSAC
In this section, we apply a particular case of online MPC, the EPSAC. For the 
EPSAC approach, described in detail in De Keyser (2003), the controller output 
is obtained by minimizing the cost function (4.7)

In our case, the process input is represented by the propofol infusion rate 
applied to the patient. The process output is predicted at time instant t over the 



Modelling Optimization and Control of Biomedical Systems116

prediction horizon N N2 1, based on the measurements available at that 
moment and the future outputs of the control signal. The cost function is an 
extended EPSAC cost function that penalizes the control movements using 
the weight parameter λ. The structure of the control system proposed in this 
 section is shown in Figure 4.10.

The patient model block is composed of the PK model (4.1), the effect‐site 
compartment (4.4) and the Hill function (4.5). The control strategy is based on 
the exact linearization (see Figure 4.7) and the input–output (I/O) linear nomi-
nal part of the patient model (see Figure 4.7). The controller output is obtained 
by minimizing the cost function (4.7) with the design parameters in 
Section  4.1.4. The control algorithm uses for prediction a transfer function 
derived from the linear part (4.1) and (4.4) of the patient model. The inverse of 
the Hill curve (4.6) is used to compensate the nonlinearity as presented in 
Figure 4.8. The patient model uses the parameter values of the real patient, 
while the inverse of the Hill curve and the linear model used for the controller 
use the parameter values of the nominal patient from Table 4.2.

4.1.5.2 Case 2: mp‐MPC Without Nonlinearity Compensation
The structure of the control scheme is presented in Figure 4.11. This approach 
uses the explicit/multiparametric MPC strategy described in Chapter 2 based 
on local linearization of the patient model for the parameter values of the 
nominal patient from Table 4.2, as presented in Figure 4.5. The controller uses 
the error between the measured BIS and the BIS target value as well as the 
state‐space model of the nominal patient to give the patient the optimal propo-
fol drug infusion rate.

To obtain the linearized patient model, the PK and PD model for the 
nominal patient is implemented in gPROMS (PSE 2015), and the state space 
of the linearized nominal patient model at BIS 50 is determined. Using 
these matrices, the mp‐QP optimization problem (4.8) is solved to obtain 
the control laws using a MATLAB implementation of a multiparametric 
quadratic programming algorithm (Pistikopoulos et al. 1999; ParOs 2004) 
and to determine the mp‐MPC control laws that will be used to calculate the 
optimal control action.
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Figure 4.10 Case 1: EPSAC control scheme.
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4.1.5.3 Case 3: mp‐MPC With Nonlinear Compensation
This approach uses explicit/multiparametric MPC based on exact lineariza-
tion, as presented in Figure 4.7. The controller is designed on the linear part of 
the patient model using the values of the nominal patient from Table 4.2. The 
optimization problem (4.8) is solved offline using POP (ParOs 2004) to obtain 
the explicit control laws. Since the controller is now designed only on the linear 
part, it will use the error between the Ce target and the Ĉe given by the inverse 
Hill function as well as the state space of the nominal patient values to give 
the optimal propofol drug infusion rate, as depicted in Figure 4.12. Note that 
here the inverse Hill function uses the values of the nominal patient, while the 
patient model uses the real values of the real simulated patient.

Table 4.2 Biometric values of the virtual patients.

Patient Age Height (cm) Weight (kg) Gender EC50 E0 γ

1 40 163 54 M 6.33 98.8 2.24
2 36 163 50 M 6.76 98.6 4.29
3 28 164 52 M 8.44 91.2 4.1
4 50 163 83 M 6.44 95.9 2.18
5 28 164 60 F 4.93 94.7 2.46
6 43 163 59 M 12.0 90.2 2.42
7 37 187 75 F 8.02 92.0 2.1
8 38 174 80 M 6.56 95.5 4.12
9 41 170 70 M 6.15 89.2 6.89
10 37 167 58 M 13.7 83.1 1.65
11 42 179 78 F 4.82 91.8 1.85
12 34 172 58 M 4.95 96.2 1.84
Mean 38 169 65 M 7.42 93.1 3

Source: Naşcu et al. (2014a). Reproduced with permission of IEEE Transactions on Biomedical 
Engineering.
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Figure 4.11 Case 2:mp‐MPC without nonlinearity compensation – control scheme.
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4.1.5.4 Case 4: mp‐MPC With Nonlinearity Compensation and Estimation
This approach, like the one presented in Section  4.1.5.3, uses the explicit/
m ultiparametric MPC strategy and has a similar control scheme. In Figure 4.13, 
the design of the controller is based on exact linearization (Figure 4.7).

The difference is the use of a state estimator that will give the controller the 
states of the real patient. The real patient states are estimated using a Kalman 
filter (Welch and Bishop 2001) based on the state‐space model of the nominal 
patient, the online BIS measurement and the drug rate.

The Kalman filter is a standard method for unconstrained state estimations 
and follows a two‐step procedure to calculate the maximum a posteriori 
Bayesian estimate (Welch and Bishop 2001). The first step is the time update, 
which uses the nominal patient model to predict the current state of the system 
based on the last estimate. The second step is the measurement update. The 
prediction from the previous step is updated by using the sensor information. 
Therefore, we can say that the Kalman filter is a predictor‐corrector type 
 estimator that is optimal in the sense that it minimizes the estimated error 
covariance (Welch and Bishop 2001).

4.1.6 Results

In this section, the results of a simulation study to evaluate the four control 
strategies for the administration of propofol are presented. The controllers are 
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Figure 4.12 Case 3:mp‐MPC with nonlinearity compensation – control scheme.
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based on model‐based predictive control algorithms for automatic induction 
and control of DOA. DOA is monitored using the BIS during the induction 
and maintenance phases of general anaesthesia. The closed‐loop control tests 
are performed on a set of 12 patients (Ionescu et al. 2011) plus an extra patient 
representing the nominal values of all 12 patients (PaN: patient nominal). The 
parameter values of these patients are given in Table 4.2 and are also used 
to calculate the parameters of the patient model. For a particular patient, E0 
can be measured in the awake state and Emax is considered to have the same 
value, E Emax 0. These parameters are considered known a priori in the 
simulations.

All of the designed controllers are simulated first for the whole set of 
data presented in Table 4.2 in order to have a better understanding of their 
behaviour with the different types of patients, and also to be able to analyse the 
inter‐ and intra‐patient variability. Next, the four controllers will be tested 
against each other and simulated for different patients to compare their perfor-
mances by means of the BIS and the corresponding propofol infusion rates. 
The performances of the four controllers are evaluated, and the results are 
analysed comparatively. The target value during surgery is 50, giving us a range 
between 40 and 60 to guarantee adequate sedation, resulting in an overshoot/
undershoot lower than 10%.

4.1.6.1 Induction Phase
Ideally, the induction phase of the patient in an operational DOA is performed 
as fast as possible, such that little time is lost before the surgeon can start oper-
ating. It is therefore desirable that the patient reaches the BIS 50 target and 
remains within the target value without much undershoot or overshoot (i.e. 
values below BIS 40 and above BIS 60 should be avoided). In common prac-
tice, the operation procedure does not start until the patient reaches an adequate 
DOA, usually taking up to 15 min. Thus, a rise time between 5 and 7 min gives 
good performances.

In Figures  4.14, 4.16, 4.18 and 4.19, we have the simulations of the four 
 controllers for all 12 patients and the nominal one in the induction phase. 
Figure 4.15 presents the map of the critical regions (CRs; a CR is the region in 
the space of the parameters where the objective and optimization variables 
obtained as a function of the varying parameters are valid) for the controller 
using local linearization (Case 2). And in Figure 4.17, we have the map of the 
CRs for the controllers designed using exact linearization, by using the inverse 
of the Hill curve (Cases 3 and 4).

Simulations of some patients show very small oscillations around the 
steady‐state values. The average settling time for EPSAC is approximately 
7 min, and for the mp‐MPC controllers is approximately 5 min. As mentioned, 
adequate DOA takes up to 15 min, and a rise time between 5 and 7 min is 
preferable.
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The best performances are obtained for Case 2. It seems that the local lineari-
zation is able to deal with inter‐ and intra‐patient variability. Also, the process 
was linearized at BIS 50, which is the value of the controller set point. The 
EPSAC controller is more influenced by inter‐patient variability, and for some 
patients the settling time has greater values.
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Figure 4.14 BIS output for all 13 patients for Case 1. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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Figure 4.15 Map of critical regions, Case 2. Source: Naşcu et al. (2014a). Reproduced with 
permission of IEEE Transactions on Biomedical Engineering.
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For the nominal patient PaN, the four controllers (EPSAC and the mp‐MPC 
controllers) are simulated; the results are compared and presented in 
Figure  4.20. For patient 9, the most sensitive patient, this simulation is 
 presented in Figure 4.22. In Figure 4.21 and Figure 4.23, we have the cor-
responding propofol infusion rates for the two patients. We can observe 

0 1 2 3 4 5 6 7
40

50

60

70

80

90

100

Time (min)

B
IS

Figure 4.16 BIS output for all 13 patients for Case 2. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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Figure 4.17 Map of critical regions, Case 3 and Case 4. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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that due to the less aggressive behaviour of the EPSAC controller, the out-
put evolution will be smoother. In all cases, the propofol infusion rates are 
 limited to 50 (mg/min). The same conclusions as for Figures 4.20–4.23 are 
valid here. For both simulated patients, the EPSAC controller has a slower 
response.
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Figure 4.18 BIS output for all 13 patients for Case 3. Source: Naşcu et al. (2014a). Reproduced 
with permission of IEEE Transactions on Biomedical Engineering.
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Figure 4.19 BIS output for all 13 patients for Case 4. Source: Naşcu et al. (2014a). Reproduced 
with permission of IEEE Transactions on Biomedical Engineering.
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4.1.6.2 Maintenance Phase
During the maintenance phase, it is important that the controller rejects the 
disturbances occurring during surgery as fast as possible and bring the patient 
to the BIS target value. In this phase, typical disturbances can be applied addi-
tively to the output of the process to check the controller’s ability to reject 
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Figure 4.20 BIS response for the four controllers for PaN. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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Figure 4.21 Output for the four controllers for PaN. Source: Naşcu et al. (2014a). Reproduced 
with permission of IEEE Transactions on Biomedical Engineering.
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them (West et  al. 2013). A standard stimulus profile is defined and is 
 presented in Figure 4.24. Each interval denotes a specific event in the opera-
tion theatre. Stimulus A represents a response to intubation; B is a surgical 
incision that is followed by a period of no surgical stimulation (i.e. waiting for 
pathology result); C mimics an abrupt stimulus after a period of low‐level 
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Figure 4.22 BIS response for the four controllers for patient 9. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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Figure 4.23 Output for the four controllers for patient 9. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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stimulation; D is the onset of a continuous normal surgical stimulation; E, F 
and G simulate short‐lasting, larger stimuli within the surgical period; and H 
represents the withdrawal of stimulation during the closing period (Yelneedi 
et al. 2009).

In Figure 4.25 and Figure 4.27, the performance of disturbance rejection of 
the four controllers for PaN and a more sensitive patient (patient 9) are shown. 
The figures present the most challenging part of the disturbance rejection test, 
namely figure sections B–E. In Figure 4.26 and Figure 4.27, we have the corre-
sponding propofol infusion rate for PaN and patient 9, limited between 0 and 
50 mg/min. The simulations are performed for the maintenance phase using 
the disturbance signal (see Figure 4.24) between 60 and 140 min. The simulations 
show only small differences between the controllers and, thus, comparable 
performances of all four controllers. For the first control scheme, the behav-
iour of the controller is less aggressive; the response is slower, but it also has the 
smallest values of the undershoot.

4.1.6.3 Discussion
The aim of this study is to evaluate the performance of a model‐based predictive 
control algorithm and model predictive multiparametric control for automatic 
induction and control of DOA during the induction and maintenance phases. In 
order to implement the control strategies, an accurate model is needed. For 
many control techniques used in the control of DOA, compartmental models 
are used to represent the drug distribution in the body for patients undergoing 
anaesthesia.

60 70 80 90 100 110 120 130 140 150
–20

–10

0

10

20

30

40

Time (min)

B
IS

A B C

E GF

H

D

Figure 4.24 The artificially generated disturbance signal. Source: Naşcu et al. (2014a). 
Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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Some of the most important aspects of this application are the high inter‐ 
and intra‐patient variability, variable time delays, dynamics dependent on the 
hypnotic agent and model analysis variability. These are just some of the issues 
that are dealt with when trying to control the DOA.

The hypnotic agent propofol is given as input, and the output is described by 
the BIS, resulting in a single‐input–single‐output system (SISO). SISO patient 

Case 1
Case 2
Case 3
Case 4

50

40

30

20

10

0
80 85 90

Time (min)

95 100

P
ro

po
fo

l (
m

g/
m

in
)

Figure 4.26 Output for the four controllers for PaN with disturbance. Source: Naşcu et al. 
(2014a). Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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Figure 4.25 BIS response for the four controllers for PaN with disturbance. Source: Naşcu 
et al. (2014a). Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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models for control of most anaesthetic drugs already exist in the literature, and 
their parameters are estimated based on age, weight, gender and height.

Four different types of controllers are designed and tested. The first control-
ler is based on the online optimization EPSAC MPC technique. The other 
three controllers are based on the offline optimization mp‐MPC: one uses 
the linearized patient model, and the other two use the compensation of the 
nonlinear part of the patient model. The difference between the two control 
strategies using nonlinearity compensation is that for one of them, the states 
are computed using the nominal patient model, whereas the other one uses 
an online estimator.

In order to address the issue of inter‐ and intra‐patient variability, each of 
the four controllers are first tested for the whole set of patients presented in 
Table 4.2 for the induction and the maintenance phases. The maps of the criti-
cal regions for the mp‐MPC are presented in Figure 4.15 and Figure 4.17. One 
can observe that for the controllers using the nonlinearity compensation (exact 
linearization), there are less critical regions than for the controller using local 
linearization. This will make the controllers from Cases 3 and 4 easier to imple-
ment on embedded devices.

For the induction phase, the aim is to reach the target value as fast as possible 
and with as little undershoot as possible, trying to avoid BIS values under 40. 
For Case 1, representing the online EPSAC controller, we have an average set-
tling time of 390 s. The undershoot of the most sensitive patient is 4.6%. As 
can be observed from Figures 4.14, 4.16, 4.18 and 4.19, representing the BIS 
response of the mp‐MPC controllers, the three cases have very similar settling 
times, lower than for the EPSAC strategy, an average of 270 s. For the under-
shoot evaluation, we will consider the worst‐case scenario, meaning the most 
sensitive patient. We obtain for the first controller (Case 2) an undershoot of 
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Figure 4.27 BIS response for the four controllers for patient 9 with disturbance. Source: Naşcu 
et al. (2014a). Reproduced with permission of IEEE Transactions on Biomedical Engineering.
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3.7%; for Case 3, an undershoot of 5.8%; and, for Case 4, 5.78%. All undershoots 
are below 10%, which represents the maximum limit. For the induction phase, 
it can be said that all four controllers perform well, each of them having their 
own advantages (e.g. lower settling time or smaller undershoot).

The controllers are tested in the maintenance phase in order to see how well 
they can deal with disturbance rejection. In this phase, it is important for the 
controller to reject the disturbance as fast as possible and with as little under-
shoot/overshoot as possible. In Figure 4.25 and Figure 4.27, we can observe the 
four controllers’ response to a disturbance signal that mimics the events that 
occur in an operation theatre for PaN and for patient 9.

All four controllers are tested against each other for the induction and main-
tenance phases for two different patients. This will allow a comparison of their 
performances. The first patient is PaN, and the second patient used for com-
parison, patient 9, represents the most sensitive patient. It is worth mentioning 
that the controllers are designed using the values of the nominal patient, which 
means that for this patient we will have the best behaviour of the controllers. 
As can be observed from Figures 4.20, 4.21, 4.25 and 4.26, the BIS response and 
the output for PaN in the induction phase and the maintenance phase, 
respectively, the three offline controllers have a very similar behaviour. All the 
controllers present no undershoot and a fast settling time. The EPSAC control-
ler has a less aggressive behaviour, and hence a longer settling time compared 
to the mp‐MPC controllers; but, as can be observed in the maintenance phase, 
it will have less undershoot. In Figures 4.22, 4.23, 4.27 and 4.28, we have the BIS 
response and the output for patient 9 in the induction phase and the mainte-
nance phase. This patient represents the worst‐case scenario since it is the 
most sensitive patient. We can observe from the figures that all four controllers 
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Figure 4.28 Output for the four controllers for patient 9 with disturbance.



Intravenous Anaesthesia 129

have good performances and their responses are very close to each other. 
However, the controller from Case 2 gives the best performances for this 
patient in the induction phase, particularly; lower undershoot, 3.7%; and faster 
settling time, 300 s. This shows that the combination between the linearization 
method based on gPROMS and optimization methods based on mp‐MPC 
gives good results, even without the nonlinearity compensation.

It is important to state that the mp‐MPC controller designed using the line-
arized patient model is the simplest version of the four controllers, since it 
doesn’t use an estimator and it avoids using the nonlinearity compensation 
which introduces additional complexity in the DOA control. Moreover, it 
obtains the best performances, which can be explained through the fact that 
the nonlinearity of the Hill curve is more intense at extreme values of the BIS 
and weaker around the BIS value of 50, where the model was linearized and 
where the BIS target is set. If the induction phase and the maintenance phase 
are kept around the value of 50%, Case 2 will give very good performances. But 
if the disturbances take the process out of the 50% area, we can observe that the 
performances are not as good as in the case of nonlinearity compensation. 
Also, this is the reason why during the maintenance phase, the controller from 
Case 2 does not provide good performances if the disturbances are substantial. 
Due to the Hill nonlinearity, the real patient model has smaller gains at the 
extreme values of the control variable. In the case of substantial disturbances, 
the control variable goes to the extreme values, and the controller has a slower 
response but also a lower undershoot/overshoot.

Using nonlinearity compensation is a good alternative in this case. Moreover, 
the computations required for the nonlinearity compensation are rather 
straightforward (the inverse of the Hill curve), and there are no recursive com-
putations that might lead to accumulation of errors.

The estimator used for the mp‐MPC with nonlinearity compensation can 
also be applied for the mp‐MPC using local linearization. It was not used for 
this study because, as can be observed from the simulations, a case with non-
linearity compensation is more meaningful in the presence of disturbance.

The aim of the studies on control of anaesthesia is to be able to implement 
the controllers on embedded devices. These types of devices do not have the 
same computational power as the computers where simulations are performed 
in real time. This would make classical MPC more difficult to implement since 
matrix operations are harder to program on embedded devices. The mp pro-
gramming algorithms derive the explicit mapping of the optimal control 
actions as a function of the current states, resulting in the implementation of a 
simple lookup table and simple function evaluations. This makes the mp‐MPC 
controllers much easier to implement for the control of DOA.

For each patient, there will be a variable dose–response relationship. For the 
same reference value, the controller sends different drug rates, and the blood 
and effect‐site concentration levels are different for each patient. The safety 
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limits for propofol blood concentration and effect‐site concentration are 
 fulfilled by maintaining the drug infusion rate below 50 mg/min. It can be 
observed from Figures 4.21, 4.23, 4.26 and 4.28 that the drug infusion rates 
are maintained below this limit.

Note that the robustness of the performance is analysed by having the con-
trollers designed on a nominal model (Ionescu et al. 2008) and then tested on 
a wide set of patient model parameters, where the impacts of parameter 
uncertainties were analysed. Formal robust criteria can also be included 
(Kouramas et al. 2011), and this represents a topic of our ongoing research.

4.2  Simultaneous Estimation and Advanced Control

4.2.1 Introduction

In this chapter, we have designed and studied different controllers for the 
regulation of DOA during the induction and maintenance phases. The imple-
mentation of these controllers is based on the assumption that the state values 
are readily available from the system measurements and that we have a clear 
measurable output with not much noise influence. However, in reality, the 
measured output may be noisy and the system measurements may not produce 
this information directly – instead, the state information needs to be inferred 
from the available output measurements. This can be done by developing 
state estimators.

The use of estimation techniques will enable researchers to: (a) estimate the 
state of each individual patient, and adjust them based on his or her corre-
sponding dynamics; (2) overcome the noisy output measurements; and (c) deal 
with the system constraints (in conjunction with an MPC structure).

While in Section 4.1.5.4 for Case 4, a Kalman filter was implemented simul-
taneously with mp‐MPC, it was observed that the performance of the control-
ler was not significantly improved due to its limitations, such as handling 
system constraints and noise. As a result, in this section, the online and offline 
moving horizon estimator (MHE) will be investigated and implemented 
simultaneously with mp‐MPC. For comparison purposes, a Kalman filter also 
will be tested. All resulting controllers with the corresponding estimation 
techniques are tested for both the induction and maintenance phases for a set 
of 12 patients’ data.

4.2.2 Multiparametric Moving Horizon Estimation (mp‐MHE)

The idea of MHE is to estimate the state using a moving and fixed‐size window 
of data. Once a new measurement becomes available, the oldest measurement 
is discarded and the new measurement is added. The concept is to penalize 
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deviations between measurement data and predicted outputs. In addition – for 
theoretical reasons – a regularization term on the initial state estimate is added 
to the objective function. There are two main characteristics that distinguish 
MHE from other estimation strategies, such as the Kalman filter: (a) prior 
information in the form of constraints on the states, disturbances and param-
eters can be included; and (b) since MHE is optimization based, it is able to 
handle explicitly nonlinear system dynamics through the use of approximate 
nonlinear optimization algorithms. Here, MHE is first formulated as a mul-
tiparametric problem and then combined with an explicit mp‐MPC strategy.

Based on the MHE theory presented in Chapter 2, the resulting multipara-
metric MHE formulation can be obtained:
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where N is the length of the horizon; T is the current point in time; Q and R are 
positive definite diagonal weighting matrices on the noises; PSS is the steady‐
state solution for the Kalman filter; { } −
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independent, normally distributed random numbers with mean values w for 
{w} and zero‐mean for {v}; xT N T N1/  is the arrival cost, which captures the 
previous measurements that are not considered anymore; and − −/ˆT N T Nx  is 
the solution of the MHE at the previous time step.

4.2.3 Simultaneous Estimation and mp‐MPC Strategy

In this section, developed estimation strategies are implemented simultane-
ously with mp‐MPC for the control of IV anaesthesia. The proposed control 
design scheme for simultaneous estimation and mp‐MPC is presented in 
Figure 4.29.

The patient is simulated using the mathematical model of the patient com-
posed of the PK part (linear) and the PD part, including the Hill curve (non-
linear) as described in Section 4.1.2. The inverse Hill function block, designed 
based on the nominal patient model, is used to compensate for the nonlinearity 
introduced by the Hill curve in the PD model. This block uses the measured 
BIS and provides the corresponding Ĉe to the mp‐MPC block. The BIS target 
can be set by the user, but for general anaesthesia it is set to the value of 50. 
Since the mp‐MPC block uses the corresponding Ĉe of the measured BIS, the 
BIS target will be transformed in Ce target by using the inverse of the Hill curve 
block. The estimator block is used to estimate the state of each individual 
patient. The commonly used technique to generate the states for the controller 
in the absence of the real state measurements is to compute them by using the 
control action for the simulated patient and the nominal state‐space model. By 
estimating the states of every simulated patient, the controller (instead of using 
the states computed using the nominal patient model) will use the estimated 
values of states corresponding to each individual patient. Finally, the mp‐MPC 
block, using the individual patient states given by the estimator block, calcu-
lates the error between the Ĉe corresponding to the measured BIS from the 
patient and the target Ce, and provides the optimal drug rate u to the patient 
block in order to drive it to the desired target value.

Target BIS Measured BISTarget Ce Drug rate
ump-MPC Patient

linear model

Estimator

Estimated states

Patient
nonlinear model

Hill curve (f)

CeInverse Hill
f –1

Inverse Hill
f –1

Ce

Figure 4.29 Schematic of simultaneous mp‐MHE and mp‐MPC for intravenous anaesthesia. 
Source: Naşcu and Pistikopoulos (2017). Reproduced with permission of Elsevier.
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The Hill curve (4.5) introduces nonlinearities in the system which complicate 
the use of linear MPC controllers’ synthesis. To compensate for the nonlinear-
ity, a parameter scheduling technique, as presented in Section 4.1.4, the inverse 
of the Hill curve (4.6), is implemented in the controller with the nominal patient 
model parameters as shown in Figure 4.29; f is using the nonlinearity parameter 
of the real patient (E0, Emax, EC50, γ), while f 1 is using the parameter assumed 
by the controller (the nominal patient nonlinear parameters known a priori: 
E0

mean,  Emax
mean, EC50

mean,  γmean). The controller then aims at controlling the 
 estimated drug concentration Ĉe using a linear controller.

Using the explicit/multiparametric MPC formulation described in Chapter 2, 
the control strategy is based on the nonlinearity compensation and the state‐
space model of the PK–PD linear part for the nominal patient model. The 
 following mp‐QP optimization problem, Equation (4.11), is solved to obtain 
the control laws using the POP toolbox (Pistikopoulos et al. 1999) and deter-
mine the controller.
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where x̂ are the estimated states given by the state estimator; y = outputs; 
u = controls; w = process disturbances; and v is the measurement noise of all 
(discrete) time‐dependent vectors. The subsets of output variables that get 
tracked have time‐dependent set points yR. Finally, Δu are changes in control 
variables, u k u k u k 1 . The prediction horizon is denoted by N, and 
the control horizon by Nu. X, U are the sets of the state and input constraints 
that contain the origin in their interior. Both Q  0, the objective coefficient 
for the states, and P  0, the terminal weight matrix for the states, are positive 
definite diagonal matrices. The weight matrix for manipulated variables R  0 
is a positive definite diagonal matrix, QR is the weight matrix for tracked out-
puts and R1 is a weight matrix for the control action changes (Δu).

For the design of the controller, the following tuning parameters are used: the 
objective coefficients for states (x), Q 0 when we have no state estimation and 
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Q 1 in the case with state estimation; the weight matrix for tracked outputs 
(y), QR 1000; the weight matrix for manipulated variables (u), R 1; the con-
trol horizon, Nu 1; and the prediction horizon, N 20. The states used in the 
design of the controllers are C1, C2, C3, Ce as described in Equations (4.1) and 
(4.4). The clinically recommended sampling time is 5 s (Ionescu et al. 2008). 
N and Nu are chosen based on the characteristics of the process and the desired 
performances. Based on Clarke et al. (1987) and Mohtadi et al. (1987), N should 
be large, at least 2 1n  but no larger than the rise time of the process. For anaes-
thesia, due to medical procedures, we are constrained to use a small sampling 
time that will lead to a choice of a greater value for N. In choosing Nu, for 
 processes with no unstable/underdamped poles, like anaesthesia, Nu 1 is 
generally satisfactory. A choice of the Q, R and QR is given by Bryson’s rule 
(Franklin et al. 2001).

Figure 4.30 presents a typical solution of the multiparametric programming 
problem in the form of two‐dimensional projection of the critical space. The 
parametric vector θ consists of: the estimated states, the current time output 
and the output reference (BIS 50). Here θ1 and θ2 represent the concentration 
of the effect‐site compartment Ce and BIS.

4.2.4 Results

In this section, the results of a simulation study to evaluate the three control-
lers for the administration of propofol are presented. The three controllers are: 
(a) the nominal controller that uses no state estimation, (b) the simultaneous 
mp‐MPC and Kalman filter and (c) the simultaneous mp‐MPC and mp‐MHE. 
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Figure 4.30 Map of critical regions – mp‐MPC. Source: Naşcu and Pistikopoulos (2017). 
Reproduced with permission of Elsevier.



Intravenous Anaesthesia 135

DOA is monitored using BIS during the induction and maintenance phases 
of general anaesthesia. The closed‐loop control sets are performed on a set of 
12 patients plus an extra patient (Table 4.2) representing the nominal values 
of all 12 patients. The designed controllers are tested both under the assump-
tion that the output of the system is not influenced by noise and with the 
output corrupted by noise and disturbances.

The simulations are performed first for the set of data presented in Table 4.2, 
to have a better understanding of their behaviour on different types of patients, 
and analyse the inter‐ and intra‐patient variability. Next, the three controllers are 
tested against each other and simulated for different patients to compare their 
performances by means of BIS and the corresponding propofol infusion rates.

4.2.4.1 Induction Phase
Ideally, the induction of the patient is performed as fast as possible, such that 
little time is lost before the surgeon can start operating. It is therefore desirable 
that the patient reaches the BIS 50 target and remains within the target value 
without much undershoot or overshoot, (i.e. values below BIS 40 and over 
BIS 60 should be avoided).

Figures 4.31–4.36 present the simulations of the nominal controller and the 
two simultaneous mp‐MPC and estimation in the induction phase. Simulations 
of some patients show very small oscillations around the steady‐state values. 
The average settling time for the designed controller is: (a) 280 s for the nomi-
nal controller, (b) 240 s for the simultaneous mp‐MPC and Kalman filter and 
(c) 225 s for the simultaneous mp‐MPC and mp‐MHE. The best performance 
is obtained for the simultaneous mp‐MPC and mp‐MHE. The mp‐MHE is able 
to deal better with the inter‐ and intra‐patient variability.
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Figure 4.31 BIS response for all 13 patients in the induction phase – nominal mp‐MPC.
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Figure 4.32 Propofol infusion rate for all 13 patients in the induction phase – nominal 
mp‐MPC.
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Figure 4.33 BIS response for all 13 patients in the induction phase – simultaneous mp‐MPC 
and Kalman filter.
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Figure 4.34 Propofol infusion rate for all 13 patients in the induction phase – simultaneous 
mp‐MPC and Kalman filter.
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Figure 4.35 BIS response for all 13 patients in the induction phase – simultaneous mp‐MPC 
and mp‐MHE.
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The designed controllers are tested for the most sensitive patient, patient 9. 
Figure  4.37 and Figure  4.38 represent the BIS response of the patients, while 
Figure 4.39 shows the corresponding control action (drug infusion). It can be 
observed that all three controllers exhibit similar performances with a settling 
time of 200 s. Note that for all simulations, we have: (a) with blue, the mp‐MPC 
without state estimation; (b) with black, the simultaneous mp‐MPC and Kalman 
filter; (c) with magenta, the simultaneous mp‐MPC and mp‐MHE; and (d) with 
red, the set point for the BIS index. From Figure 4.38, where we zoom in on the 
BIS response of the three controllers, we can observe that the undershoot of the 
most sensitive patient is 2.2%. For the undershoot, the worst case is considered 
to mean the most sensitive patient (patient 9). Also, the simultaneous Kalman 
filter and mp‐MPC as well as mp‐MHE and mp‐MPC have similar performances 
for this case, where we have no noise corrupting the output. However, the simul-
taneous mp‐MHE and mp‐MPC combination has slightly better performance 
for both patients, since it is able to give better estimates of the patient states.

4.2.4.2 Maintenance Phase
During the maintenance phase, it is important that the controller rejects the 
disturbances occurring during surgery as fast as possible and brings the patient 
to the BIS target value. In this phase, typical disturbances can be applied addi-
tively to the output of the process to check the controller’s ability to reject them 
(West et  al. 2013). A standard stimulus profile is defined and presented in 
Figure 4.24. Each interval denotes a specific event in the operation theatre, as 
presented in Section 4.1.5.2.
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Figure 4.36 Propofol infusion rate for all 13 patients in the induction phase – simultaneous 
mp‐MHE and mp‐MPC.
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In Figure 4.40 and Figure 4.41, the performance of the disturbance rejection 
for the most sensitive patient (patient 9) is shown. Figure 4.42 presents the BIS 
response for the most challenging part of the disturbance rejection test, namely 
parts B–E, while in Figure 4.43 we have the corresponding propofol infusion 
rate for patient 9. The simulations are performed for the maintenance phase 
using the disturbance signal (see Figure 4.24). The simulations show only small 
differences between the controllers. The controller using mp‐MHE has a less 
aggressive behaviour and thus a smaller value for the undershoot.
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Figure 4.37 BIS response of the three controllers for patient 9 in the induction phase without 
noise. Source: Naşcu and Pistikopoulos (2017). Reproduced with permission of Elsevier.
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Figure 4.38 BIS response of the three controllers for patient 9 in the induction phase without 
noise – zoomed in. Source: Naşcu and Pistikopoulos (2017). Reproduced with permission of 
Elsevier.
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Figure 4.39 Propofol infusion rate of the three controllers for patient 9 in the induction 
phase without noise. Source: Naşcu and Pistikopoulos (2017). Reproduced with permission 
of Elsevier.
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Figure 4.40 BIS response of the three controllers for patient 9 in the maintenance phase 
without noise.
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Figure 4.41 Propofol infusion rate of the three controllers for patient 9 in the maintenance 
phase without noise.
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Figure 4.42 BIS response of the three controllers for patient 9 in the maintenance phase – the 
B–C–D–E interval – without noise.
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4.3  Hybrid Model Predictive Control Strategies

4.3.1 Introduction

In most drug delivery systems, such as controlling the DOA, the nonlinearities 
are typically present in the PD model of the system and are described by the 
Hill curve representing the relation between the concentration of the drug and 
the effect observed on the patient. For the case of infusion of anaesthetic 
agents, the nonlinear Hill curve approximation has been used in both volatile 
(Krieger et al. 2014) and IV (Naşcu et al. 2012, 2014a) anaesthesia.

Advanced control strategies using either hybrid and robust multiparamet-
ric MPC or simultaneous hybrid multiparametric MPC and state estimation 
techniques are developed and tested. Here, we first generate a piecewise lin-
earization of the Hill curve. The main advantage of this procedure is that the 
parameter space is linearized and the uncertainty in some key parameters 
of  the Hill curve is compensated for. As a result of the linearization, the 
anaesthesia model is described by a piecewise affine system. This will lead to 
a hybrid model predictive control (hMPC) problem formulation (Bemporad 
and Morari 1999) and thus a mixed‐integer quadratic programming (MIQP) 
problem formulation. However, the online implementation of hMPC involves 
the online solution of the MIQP problem, which introduces a high computa-
tional burden. To overcome this, the hMPC problem is solved explicitly 
offline via the solution of a state‐of‐the‐art multiparametric mixed‐integer 
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Figure 4.43 Propofol infusion rate of the three controllers for patient 9 in the maintenance 
phase – the B–C–D–E interval – without noise.
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quadratic programming (mp‐MIQP) problem (Dua et  al. 2002; Oberdieck 
and Pistikopoulos 2015).

Another important challenge in the control of DOA that is addressed in this 
chapter is the high inter‐ and intra‐patient variability, which introduces a high 
degree of uncertainty in the system. A number of robust control strategies and 
a state estimation technique are developed and presented simultaneously with 
the multiparametric hybrid model predictive control (mp‐hMPC) problem. 
State estimation is used for the unavailable states and to overcome issues that 
arise from noisy outputs. In particular, MHEs implemented in a multiparamet-
ric fashion (Darby and Nikolaou 2007; Voelker et al. 2013; Naşcu et al. 2014b) 
are used simultaneously with the hMPC control. The control strategies are 
tested on a set of 12 patients for the induction and maintenance phases of 
 general anaesthesia.

4.3.2 Hybrid Patient Model Formulation

A feature of the PD model for DOA control is the presence of nonlinearities 
corresponding to the Hill curve. Due to its S‐shaped profile, a piecewise 
 linearization of the Hill curve divides BIS into three partitions, where each 
partition i is associated with a different linear function BIS C C ei e i. The 
resulting piecewise affine formulation is shown in Table  4.3, where the 
parameters describing the PK model can be found in Table 4.2.

Table 4.3 Hybrid model for intravenous anaesthesia.

Intravenous anaesthesia

PK model 
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The binary variables δ thereby denote whether a certain partition is active. 
As a result, this system belongs to the class of hybrid systems (i.e. systems 
which are described by continuous as well as discrete dynamics and/or logical 
constraints).

Note that ii 1  holds, as only one linearization is active for every drug 
concentration Ce, and the choice of which linearization is active is described 
via the switching points λ1 and λ2 (see Figure 4.44).

Systems which can be described via the equations presented in Table 4.3 
are part of the mixed‐logical dynamical (MLD) systems, which are a well‐
studied class of systems (Bemporad and Morari 1999; Heemels et al. 2001). 
Their basic principle is that, in addition to the commonly encountered 
continuous parts, discrete elements are present in the problem formulation 
as inputs, states, variables or outputs. Additional information can be found 
in Chapter 2.

4.3.3 Control Design

4.3.3.1 Hybrid Formulation of the Control Problem:  
Intravenous Anaesthesia
Based on the piecewise affine formulation presented in Table 4.3, the following 
hybrid explicit MPC can be obtained (Bemporad and Morari 1999):
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Figure 4.44 The original Hill curve and a piecewise linearized version. The red dots denote 
the points around which the linearization was performed, while the purple arrows show the 
switching points λ1 and λ2, respectively. Source: Naşcu et al. (2017). Reproduced with 
permission of Elsevier.
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where x = states, y = outputs and u = controls, all (discrete) time‐dependent 
vectors. The prediction horizon is denoted by N, and the control horizon by 
Nu. X, U are the sets of the state and input constraints that contain the origin in 
their interior. The weight matrix for manipulated variables R  0 is a positive 
definite diagonal matrix, and QR is the weight matrix for tracked outputs. 
Thus, if a certain combination of integer variables is fixed, Equation (4.12) 
results in a convex QP. For the design of the controller, the following design 
parameters were used: the objective coefficients for states (x); the weight 
matrix for tracked outputs (y), QR 102; and the weight matrix for manipu-
lated variables (u), R 1.

Equation (4.12) can be recast as an mp‐MIQP problem, for which we have 
recently proposed the first exact solution reported in the literature (Oberdieck 
and Pistikopoulos 2015). Once the algorithm is initialized, a candidate solution 
is found which is fixed in the original problem, thus transforming it into an 
mp‐QP problem. The mp‐QP problem is solved using available solvers. Next, 
the objective values of the mp‐QP problem and the upper bound in the critical 
region considered are compared against each other to form a new, tighter 
upper bound. The algorithm terminates if a termination criterion is reached. 
More details on the exact solution can be found in Chapter 2.

Figure 4.45 presents a typical solution of the multiparametric programming 
problem in the form of two‐dimensional projection of the critical space. The 
parametric vector θ consists of: the estimated states, the current time output 
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and the output reference (BIS 50). Here θ1 and θ2 represent the concentration 
of the effect‐site compartment, Ce and the first state x1.

4.3.3.2 Robust Hybrid mp‐MPC Control Strategy: Offset Free
Another challenge for the DOA control is the high inter‐ and intra‐patient vari-
ability, which introduces a high degree of uncertainty in the system. Thus, robust 
control strategies or estimation techniques are required. Robust techniques and 
a multiparametric MHE technique which are able to deal with these types of 
problems have been developed.

One key problem of inter‐patient variability is the presence of an offset in the 
output of the process. Hence, the first (intuitive) approach is to introduce a 
new parameter Δy which captures this offset. In a mathematical form, it can be 
understood as expanding the definition of the output yk:
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and added penalties in the objective function of the problem:
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Figure 4.45 Map of critical regions – mp‐hMPC. Source: Naşcu et al. (2017). Reproduced 
with permission of Elsevier.
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Note that the offset Δy is assumed to be the same for the entire horizon. 
At each step, this offset is calculated and fed as a parameter to the system, 
thus resulting in an offset‐free approach. The advantage of this approach is 
its simplicity (in fact, Sakizlis et  al. [2004] proposed a similar strategy); 
however, it only provides a symptomatic approach, rather than tackling the 
underlying issue.

4.3.3.3 Control Scheme
The proposed control design scheme for the mp‐hMPC and the robust control 
strategies is presented in Figure 4.46.

The patient is simulated using the mathematical patient model composed of 
the PK part (linear) (4.1) and the PD part (4.4) and (4.5). The developed robust 
strategies presented in Section 4.3.3.2 are implemented within the mp‐MPC 
design. The robust hybrid mp‐MPC block calculates the error between the 
measured BIS from the patient and the target BIS, and provides the optimal 
drug rate u to the patient block in order to drive it to the desired target value.

4.3.4 Results

The closed‐loop control tests are performed on a set of 12 patients (Ionescu 
et  al. 2011) plus an extra patient representing the nominal values of all 12 
patients (PaN = patient nominal) presented in Table 4.2.

All of the designed controllers are simulated for the whole set of data pre-
sented in Table 4.2 to better understand their behaviour in different patients 
and analyse the variability. The performances of the controllers are evaluated in 
both the induction and maintenance phases of DOA. Note that the controllers 
are designed using the values of the nominal patient, which means that for this 
patient we will have the best behaviour of the controllers.

See the first paragraph of Section 4.1.6.1, “Induction phase,” and of Section 
4.2.4.2, “Maintenance phase,” for descriptions of these phases. A standard 
stimulus profile is defined and presented in Figure 4.24.

4.3.4.1 No Offset Correction
In Figure 4.47 and Figure 4.48, we have the simulations of all the patients and 
the nominal one in the induction phase for the mp‐hMPC controller without 
any robust techniques or state estimation. Figure  4.47 represents the BIS 
response of the patients, while Figure  4.48 represents the corresponding 

Target Robust hybrid
mp-MPC rate u

Drug
Patient

Measured
BIS

BIS

Figure 4.46 Robust hybrid mp‐MPC control scheme.
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control action. It can be observed that except for the nominal patient (which 
was used for the design of the controller), all patients present an offset from the 
set point. Such behaviour is explained due to the high inter‐ and intra‐patient 
variability. Figure 4.49 and Figure 4.50 present the simulations of all the patients 
and the nominal one for the maintenance phase, and it can be observed that, 
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Figure 4.47 BIS output for all 13 patients without offset correction – induction phase. 
Source: Naşcu et al. (2017). Reproduced with permission of Elsevier.
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Figure 4.48 Drug infusion for all 13 patients without offset correction – induction phase. 
Source: Naşcu et al. (2017). Reproduced with permission of Elsevier.
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similar to the induction phase, all patients (except the nominal one) present an 
offset from the set point.

The average settling time for the whole set of patients is 240 s, and the under-
shoot for the most sensitive patient (patient 9), representing the worst‐case 
scenario, is 5.7%.
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Figure 4.49 BIS output for all 13 patients without offset correction – maintenance phase. 
Source: Naşcu et al. (2017). Reproduced with permission of Elsevier.
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Figure 4.50 Drug infusion for all 13 patients without offset correction – maintenance 
phase. Source: Naşcu et al. (2017). Reproduced with permission of Elsevier.
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4.3.4.2 Offset Free
Figure 4.51 and Figure 4.52 present the simulations of all the patients and the 
nominal one in the induction phase for the mp‐hMPC using the offset correc-
tion. It can be observed from Figure 4.51, where we have the BIS response of 
the patients, that the controller is able to compensate for the offset and brings 
all the patients to the set point value of 50. In Figure 4.52, we have the corre-
sponding propofol infusion rate. Simulations of some patients show very small 
oscillations around the steady‐state values. The average settling time is 250 s.

The BIS response of all patients in the maintenance phase is depicted in 
Figure  4.53, while Figure  4.54 depicts the corresponding drug infusion rate. 
The controller compensates for disturbances, but due to pump limitations the 
simulations exhibit some offsets from the set point.

4.3.5 Discussion

This chapter discussed a piecewise affine formulation for a compartmental 
anaesthesia patient model, based on which a hybrid explicit/multiparametric 
MPC was proposed and developed. For the case when variability is not consid-
ered, it is shown that this requires the solution of a novel multiparametric 
mixed‐integer quadratic problem. In the presence of variability, robust explicit 
MPC techniques were incorporated within the overall hybrid explicit MPC 
strategy. These advanced control strategies are tested on a set of 12 patients 

0 1 2 3 4 5 6 7
30

40

50

60

70

80

90

100

Time (min)

B
IS

Figure 4.51 BIS output for all 13 patients – strategy 2 – induction phase. Source: Naşcu et al. 
(2017). Reproduced with permission of Elsevier.



Intravenous Anaesthesia 151

and a nominal one for the automatic induction and control of DOA during 
induction and maintenance phases.

The resulting mp‐hMPC controller was tested for the set of patients in the 
induction. For the nominal case with no offset correction, we can observe from 
Figures  4.47–4.50 that all patients present an offset from the desired target 
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Figure 4.52 Drug infusion for all 13 patients – strategy 2 – induction phase. Source: Naşcu 
et al. (2017). Reproduced with permission of Elsevier.
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Figure 4.53 BIS output for all 13 patients – strategy 2 – maintenance phase. Source: Naşcu 
et al. (2017). Reproduced with permission of Elsevier.
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value, with the exception of course of the nominal patient. This is due to the 
high inter‐ and intra‐patient variability, and this can be compensated by mak-
ing the control robust or using estimation techniques. Thus, robust techniques 
have been developed: offset correction. The strategies have been tested for 
the set of patients in the induction phase. It can be observed that the applied 
robust strategies manage to correct the offset from the nominal case, therefore 
improving the performances of the controller. In the induction phase, the 
 average settling time is 250 s. The operation procedure starts after the patient 
reaches an adequate DOA, usually taking up to 15 min and requiring a rise 
time between 4 and 5 min.

Even though some patients show small oscillations around the steady‐state 
values, the highest undershoot or overshoot is 5.8%. For DOA, undershoots or 
overshoots of up to 10% are acceptable provided that the set point is reached as 
soon as possible. This further confirms the satisfactory performance of the 
derived hybrid controller.

The nominal mp‐hMPC as well as the mp‐hMPC using offset correction 
are tested in the maintenance phase to see how well they can deal with dis-
turbance rejection. In Figure 4.49 and Figure 4.53, the controller’s response 
to a disturbance signal that mimics the events that occur in an operation 
theatre for all patients is shown. It can be observed that the robust controllers 
and the controller using mp‐MHE are able to overcome the offset, especially 
around the value of 50, with the remaining offset due to limits imposed on 
the controller.
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Figure 4.54 Drug infusion for all 13 patients – strategy 2 – maintenance phase. Source: 
Naşcu et al. (2017). Reproduced with permission of Elsevier.
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4.4  Conclusions

As the role of the anaesthetist has become more complex and indispensable to 
maintain the patients’ vital functions before, during and after surgery, automa-
tion of drug/anaesthetic administration may reduce workload while offering 
additional support during critical situations. Optimization and control of the 
depth of anaesthesia are also important for the safety of the patient and reduc-
tion of potential side effects.

The main objective of this chapter was to develop advanced explicit/
multiparametric model predictive control (mp‐MPC) strategies for the IV 
anaesthesia process.

The first section describes the mp‐MPC framework based on a mathematical 
model for IV anaesthesia featuring a PK and PD compartment model structure. 
Different strategies were applied to overcome issues related to the nonlinear 
part of the model, the Hill curve of the PD model. Specialized linearization 
techniques were employed for this purpose.

The second section describes the simultaneous mp‐MPC and state estima-
tion strategies for the IV anaesthesia. Different estimation techniques to 
estimate the state of each individual patient were implemented and tested. 
The estimators were applied simultaneously with the mp‐MPC to overcome 
challenges related to the inter‐ and intra‐patient variability and unmeasura-
ble and noisy outputs.

The final section describes a piecewise linearization of the Hill curve, leading 
to a hybrid formulation of the patient model and thus the development of hybrid 
mp‐MPC. Robust algorithms are implemented with the hybrid mp‐MPC to deal 
with the inter‐ and intra‐patient variability issue.

Some of the important aspects of this application is the high inter‐ and intra‐
patient variability and the unmeasurable data that have a high impact on the 
estimations and also on the performance of the controllers.

The results show a high‐efficiency optimal dosage and robustness of 
the  model predictive control algorithm to induce and maintain the desired 
Bispectral Index reference while rejecting typical disturbances from surgery.
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5

5.a  Type 1 Diabetes Mellitus: Modelling, 
Model Analysis and Optimization

5.a.1  Introduction: Type 1 Diabetes Mellitus

Type 1 diabetes mellitus (T1DM) is a metabolic disorder that is characterized by 
insufficient or absent insulin circulation, elevated levels of glucose in the plasma 
and beta cells’ inability to respond to metabolic stimulus. It results from autoim
mune destruction of beta cells in the pancreas, which is responsible for secretion 
of insulin, the hormone that contributes to glucose distribution in the human cells.

T1DM is one of the most prevalent chronic diseases of childhood. According 
to the American Diabetes Association, 1 in 400–600 children and adolescents 
in the USA have T1DM, and the incidence is increasing worldwide (Onkamo 
et al., 1999; Patterson et al., 2009) not only in populations with high incidence 
such as Finland (2010: 50/100,000 a year) but also in low‐incidence populations 
(30/100,000 a year) (see Figure 5.a.1).

T1DM can cause serious complications in the major organs of the body. 
Problems in the heart, kidney, eyes and nerves can develop gradually over 
years. The risk of the complications can be decreased only when blood glucose 
is efficiently regulated.

The most common treatment of T1DM is daily subcutaneous insulin injec
tions. This method subjects the patient to several complications, such as 
requirement of the patient’s appropriate education and adherence to a specific 
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lifestyle, risk of hypoglycaemia and therefore ability of the patient to manage 
the hypoglycaemic episodes, infection of injected sites and so on. Additionally, 
the patient is restricted to his treatment therapy, meaning that participation in 
daily activities without adhering to strict glycaemic control could provoke 
deviations from the normal glucose range, accompanied with medical con
sequences. Motivated by the challenge to improve the living conditions of a 
diabetic patient and actually to adapt the insulin treatment to the patient’s life 
rather than the opposite, the idea of an automated insulin delivery system that 
would mimic the endocrine functionality of a healthy pancreas has been well 
established in the scientific society.

5.a.1.1 The Concept of the Artificial Pancreas

Currently, the most advanced insulin delivery system for patients with T1DM 
is an insulin pump. The insulin pump delivers a basal dose of rapid‐acting 
 insulin and several bolus doses according to the meal plan of the patient. Good 
glycaemic control requires 4–6 measurements of blood glucose per day. These 
measurements, taken either by standalone finger‐stick meters or by continu
ous blood glucose sensors, are loaded into the pump usually by the user or by 
wireless connection. These measurements are an indicator of whether insulin 
administration needs adjustment. A wireless connection of the pump data with 
a personal computer offers a good programming of the pump settings.

The appropriate basal dose for a specific patient is set by the physician, and 
it can be modified to several profiles (e.g. weekdays and weekends). The bolus 
doses are set by the patient himself, depending on the meal content, and 
 indicated by the blood glucose levels.

Figure 5.a.1 Incidence of type 1 diabetes mellitus (T1DM) worldwide. Source: Onkamo et al. 
(1999). Reproduced with permission of Springer.
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The automation of this therapy constitutes the concept of the artificial pan
creas. Essentially, the artificial pancreas is a device composed of a continuous 
glucose monitoring system (CGMS), which reports blood glucose concentra
tion approximately every 5 min; a controller implemented on portable and 
remotely programmable hardware (a microchip), which computes the appro
priate insulin delivery rate according to the provided data from the sensor; 
and, finally, an insulin pump which infuses the previously calculated insulin 
amount. The insulin pump, which incorporates the controller and the CGMS, 
is wirelessly connected.

Many research groups worldwide have believed in this idea, and the research 
society has focused on the development of the key components for the 
 realization of the artificial pancreas. Pump and CGM manufacturers, as well as 
the US Food and Drug Administration (FDA) and several diabetes organiza
tions such as JDRF, are involved in projects by encouraging collaborations and 
solving practical issues to accelerate the design of the artificial pancreas. The 
state of the art on these topics related to the artificial pancreas can be found in: 
Kovatchev et al. (2010), Dassau et al. (2013), Thabit and Hovorka (2013), Soru 
et al. (2012), Cobelli et al. (2012), Breton et al. (2012) and Herrero et al. (2013).

Towards this direction, as shown in Figure  5.a.2, the development of an 
 artificial pancreas is given in two levels (Dua et al., 2006, 2009). The first level 
is the development of a high‐fidelity mathematical model that represents in 
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Figure 5.a.2 The framework of an automated insulin delivery system.
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depth the complexity of the glucoregulatory system, presents adaptability to 
patient variability and demonstrates adequate capture of the dynamic response 
of the patient to various clinical conditions (normoglycaemia, hyperglycaemia 
and hypoglycaemia). This model is then used for detailed simulation and 
 optimization studies to gain a deep understanding of the system. The second 
level is the design of model‐based predictive controllers by incorporating tech
niques appropriate for the specific demands of this problem.

5.a.2  Modelling the Glucoregulatory System

In the last 25 years, a large number of models describing the glucoregulatory 
system have been developed. The pharmacodynamics (effect of a drug on the 
body) and the pharmacokinetics (effect of the body to the drug) have been 
approached in several ways. Firstly, compartmental models have been devel
oped such as those of Bergman et al. (1981), Dalla Man (2007), Wilinska (2010) 
and their further extensions, which assume that the relative mechanisms and 
interactions of insulin and its effect on blood glucose can be represented within 
several compartments, which are connected through the underlying mass 
 balances. The most common difficulty occurring in this approach is to relate 
the model parameters (compartment’s volume, transfer rate between com
partments) to physiological parameters. To overcome these difficulties, physi
ological models are developed. These models accurately predict the drug–body 
interactions by using detailed description of the body environment (tissues, 
organs etc.). Examples of this type of approach are Sorenshen (1978) and 
Parker (2000). However, this approach can lead to complicated models whose 
validation requires a lot of experimental effort. Alternative models such as 
data‐driven models or hybrid models such as the one developed by Mitsis 
(2009) can also be used. A selection of models can be seen in Table  5.a.1. 
Inspired by these previous approaches and previous work in the group of 
Dua  and colleagues (Dua & Pistikopoulos, 2005; Dua et  al., 2006, 2009), a 
 physiologically based compartmental simulation model describing the 
 glucoregulatory system has been developed.

5.a.3  Physiologically Based Compartmental Model

The proposed model describes glucose distribution in the involved body com
partments, as presented in Figure 5.a.3, and the effect of insulin on glucose uptake 
and suppression of endogenous glucose production (EGP). At steady state, an 
approximation of constant physiological conditions, the blood glucose concentra
tion equals the net balance of endogenous glucose release in the   circulation 
and glucose uptake. When food is consumed, the contained carbohydrates break 



Table 5.a.1 Mathematical models of glucose–insulin system.

Mathematical models

Compartmental models

Number of compartments

Glucose 
kinetics

Insulin 
kinetics Validation Comments Reference

1 2 IVGTT data Minimal complexity
Healthy subjects

Bergman et al. 
(1981)

1 2 Literature data Minimal model for 
type 1 DM

Fisher (1991)

2 2 IVGTT data Healthy subjects Caumo (1993)
1 3 Literature data No published data for 

clinical evaluation
Berger and 
Rodbard (1991)

1 2 Literature data AIDA: educational 
tool

Lehmann and 
Deutsch (1992)

1 1 Literature data Experimental data on 
critically ill patients

Hann et al. 
(2005)

2 2 Literature data Average patient 
Circadian SI variation

Fabietti et al. 
(2006)

2 3 Literature data Critically ill patients Herpe et al. 
(2007)

2 3
3 effect of 
insulin action

Clinical study of 
closed‐loop insulin 
delivery in young 
people with T1DM

Validated simulation 
environment

Wilinska et al. 
(2010)

2 2 Experiments FDA approval Dalla Man et al. 
(2007a, 2007b)

Physiological models

6 6 Literature data Average 70 kg man Sorensen 
(1978)

6 6 Literature data Average 70 kg man 
Includes a meal 
sub‐model

Parker et al. 
(1999)

Models in the form of delayed differential equation

1 2
3 delayed 
insulin effect

Literature data Healthy subjects
Implicit delays

Tolić et al. 
(2000)

1 2 Literature data Healthy subjects
Explicit delays

Bennett (2004)

(Continued )
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down into glucose in the gastrointestinal tract which is absorbed through 
the  small intestine into the bloodstream. Physiologically, an increase in blood 
 glucose triggers pancreatic insulin release, which activates  glucose transporters to 
mediate glucose translocation into the insulin‐sensitive cells (adipose tissue, and 

Table 5.a.1 (Continued)

Glucose 
kinetics Insulin kinetics Validation Comments Reference

1 2 Literature data Healthy subject
Explicit delay

Engelborghs 
et al. (2001)

1 2 Literature data Healthy subjects
Explicit/implicit delays

Li et al. (2006)

1 2 Literature data Type 1 DM
Explicit delay

Chen et al. 
(2010)

Empirical models

Volterra model Literature data Mitsis et al. 
(2009)

ARMA model Literature data Eren‐Oruklu 
et al. (2009)

NARX model Literature data Ghosh and 
Maka (2009)

Compartmental‐neural 
networks

Literature data Mougiakakou 
et al. (2005)
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Figure 5.a.3 Structure of the physiologically based compartmental model of glucose 
metabolism in T1DM.
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skeletal and cardiac muscles) and additionally suppresses the EGP. In T1DM, the 
pancreatic insulin secretion is replaced by optimal administration of exogenous 
insulin that mimics the pancreatic response.

For the highly perfused organs (brain, liver, gut and kidney), glucose concen
tration is considered to be in equilibrium with the tissue glucose concentration. 
The periphery compartment lumps the adipose tissue and muscle cells. Glucose 
transfer from the blood capillaries to the interstitial fluid and glucose uptake in 
the periphery are described with two compartments. Homogeneity and instant 
mixing are assumed for every compartment, imposing all the exiting fluxes to 
be in equilibrium with the compartment. For the insulin‐insensitive organs, 
glucose uptake is assumed to be a constant ratio of the available glucose. The 
core of the model is described with Equations (5.a.1)–(5.a.6), and the definitions 
of the involved variables are presented in Table 5.a.2 and Table 5.a.3.

The driving force for glucose transport into the compartments is the blood–
tissue concentration difference. The concentration in every organ is given by 
mass balances in every compartment.
Brain (B):

 
V dC

dt
Q C C ug B

B
B H B B, ( )  (5.a.1)

Table 5.a.2 Variables of glucose metabolism model.

Symbol Definition Units

Qi Blood flow dL/min
QCO Cardiac output mL/min
Ci Glucose concentration mg/dL
Vg,i Accessible glucose volume of compartment i dL
ui Glucose uptake mg/min
ru,i Ratio of glucose uptake –
rCO,i Ratio of cardiac output –
excretion Excretion rate mg/min
EGP Endogenous glucose production mg/min
Ra Rate of glucose appearance mg/min
p Rate constant defined as the rate of loss of solute from 

blood to tissue
dL/min

Ip Plasma insulin pmol/L
Id Delayed insulin signal pmol/L
ML Liver glucose mass mg/kg



Modelling Optimization and Control of Biomedical Systems166

Kidney (K):

 
V dC

dt
Q C C u excretiong K

k
K H K K, ( )  (5.a.2)

Liver (L):

 
V dC

dt
Q C Q C Q C u BW EGPg L

L
L H G G L L L,

 (5.a.3)

Gut (G):

 
V dC

dt
Q C C u BW RG

G
G H G G ag, ( )  (5.a.4)

Heart (H):

 
V dC

dt
Q C Q C Q C Q C Q C ug H

H
B B L L P P K K CO H H,

 (5.a.5)

Periphery (P):

 
V dC

dt
Q C C p C Cg Pc

P
P H P P Pt, ( ) ( ) (5.a.6.1)

 
V dC

dt
p C C ug P ISF

Pt
P Pt P, , ( )  (5.a.6.2)

 u CP o Pt( )  (5.a.6.3)

where the Ci is the glucose concentration (mg/dL) in i compartment, Vg,i the 
accessible glucose volume (dL) of i compartment, Qi the blood flow (dL/min) 
in i compartment, ui the glucose uptake (mg/min), EGP the endogenous glu
cose production (mg/kg/min), Ra the rate of glucose appearance in the blood 
(mg/kg/dL) and λο the rate of glucose uptake (dL/min).

Table 5.a.3 Variable subscript denotation.

Subscript Denotation Subscript Denotation

i Organ compartment H Heart
B Brain P Periphery
K Kidney Pt Periphery tissue
L Liver P,ISF Interstitial periphery
G Gut
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For Equations (5.a.1)–(5.a.6), the blood flow in every organ i is described 
with Equation (5.a.7). The ratio of cardiac output perfusing every organ is 
 presented in Table 5.a.4.

 Q r Qi CO i CO,  (5.a.7)

Similarly, the glucose uptake in every organ is described with Equation (5.a.8), 
and the ratio of glucose uptake ru,i is presented in Table 5.a.5.

 u r Total uptakei u i, _  (5.a.8)

In the remainder of this section, the sub‐models of glucose metabolism functions 
are described in more detail.

5.a.3.1 Endogenous Glucose Production (EGP)

Approximately 80% of glucose is produced endogenously in the liver through 
gluconeogenesis and glucogenolysis, and 20% in the cortex of the kidney 
mainly through gluconeogenesis (Cano, 2002; Gerich, 2010). In this study, due 
to limited data availability, it is assumed that glucose is produced entirely by 
the liver. In T1DM, the rate of EGP depends on adequate control of the disease 

Table 5.a.4 Ratio of cardiac output at rest.

Tissue (rco,i) Reference

Brain 0.11 Ferrannini and DeFronzo (2004)
Liver 0.20 Ferrannini and DeFronzo (2004)
Kidneys 0.13 Ferrannini and DeFronzo (2004)
Gut 0.15 Ferrannini and DeFronzo (2004)
Periphery 0.40 Ferrannini and DeFronzo (2004)

Table 5.a.5 Ratio of glucose uptake.

Tissue (ru,b,i) Reference

Brain 0.45 Ferrannini and DeFronzo (2004)
Liver 0.13 Ferrannini and DeFronzo (2004)
Kidneys 0.02 Ferrannini and DeFronzo (2004)
Gut 0.07 Ferrannini and DeFronzo (2004)
Periphery 0.30 Ferrannini and DeFronzo (2004)
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(Roden & Bernroider, 2003). When referring to intensive insulin therapy, it can 
be assumed that EGP is approximately the same as in normal humans (Davis 
et al., 2000). The model describing the EGP in T1DM and used in Equations 
(5.a.2) and (5.a.3) is adapted from Dalla Man et al. (2007). ML (mg/kg) denotes 
the liver glucose mass, and Id (pmol/l) denotes the delayed insulin signal 
described by a chain of two compartments (I1, Id). The model parameters are 
estimated using available literature data (Boden et al., 2003).

 EGP k k M k Ip p L p d1 2 3  (5.a.9)

 

dI
dt

k I Ii p
1

1  (5.a.10)

 

dI
dt

k I Id
i d 1  (5.a.11)

5.a.3.2 Rate of Glucose Appearance (Ra)

The model describing the rate of glucose appearing in the circulation when 
food is consumed is adopted from Dalla Man et al. (2006).

5.a.3.3 Glucose Renal Excretion (Excretion)

In diabetes, the threshold of renal glucose reabsorption is exceeded when glucose 
concentrations increase above 180 mg/dl and glucose gets excreted by the kidney. 
It is assumed that renal glucose excretion (mg/min) increases proportionally to 
increasing blood glucose concentration (Rave et al., 2006; Wilinska et al., 2010).

 
E t

CL G G mg dL
G mg dL

renal K K

K

180
0

180
180

If /
If /

 (5.a.12)
(5.a.13)

where CLrenal (dl/min) is renal glucose clearance.

5.a.3.4 Glucose Diffusion in the Periphery

Glucose distribution and uptake in the periphery compartment are modelled 
according to the structure presented in Figure 5.a.4.

It is assumed that glucose is extracted from the arterial flux with a rate factor 
given in the current literature (Crone, 1965; Regittnig et al., 2003).

 p Q PS QP P1 exp /  (5.a.14)

where PS is the permeability across the capillary wall, a product of permeabil
ity of exchange surface to glucose P and exchange surface area S. This rate 
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factor can increase in case of increased blood flow to the periphery or increased 
perfusion due to increased capillary exchange area (e.g. during exercise). 
According to Gudbjörnsdóttir et  al. (2003), PS was increased significantly 
 during a one‐step hyperinsulinemic clamp. Equation (5.a.15) describes the 
influence of insulin on glucose permeability across the capillary wall:

 
dPS
dt

k PS k IPS PS p2 1, ,
 (5.a.15)

When glucose enters the interstitial fluid, it is absorbed by the tissues to pro
vide them with energy (5.a.6). The rate of uptake, λο (dL/min), is dependent on 
insulin concentration in the blood.

 
d
dt

k k I I with k
k

Io
o p basal o basal2 1

1

2
0( ) ( )          = bbasal  (5.a.16)

 S k kI 1 2/  (5.a.17)

where SI represents the patient’s sensitivity to insulin.

5.a.3.5 Adaptation to the Individual Patient

5.a.3.5.1 Total Blood Volume
The total blood volume (dL) is adapted to the patient’s height, weight and gen
der to account for the differences between obese and underweight patients and 
for males and females. The formula used for men is (Wennesland et al., 1959):

 TBV h BWM 0 285 0 316 2 820. . .  (5.a.18)

And for women (Brown et al. 1962):

 TBV h BWF 0 1652 0 3846 1 369. . .  (5.a.19)

The height (h) is in centimetres and weight (BW) in kilograms.

Cven

Cart

Interstitial
fluid

Tissue

Figure 5.a.4 Detailed glucose uptake in 
the periphery.
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5.a.3.5.2 Cardiac Output
The cardiac output (mL/min) can be efficiently approximated as a proportional 
relationship to the patient’s weight BW (kg) according to Equation (5.a.20) 
(Ederle et al., 2000):

 Q BWCO 224 3 4/  (5.a.20)

5.a.3.5.3 Compartmental Volume
Plasma proteins comprise approximately 8% of the plasma volume, and the 
erythrocytes about 38% of the total packed red blood cells volume or haemato
crit (Hemat) (Ferrannini & DeFronzo, 2004). This percentage of the total blood 
volume is inaccessible to glucose. Consequently, the accessible glucose volume 
in every compartment is determined as:

 V Hemat Hemat V Vg i i C i, V, ,. ( ) . ( )1 0 08 1 0 38  (5.a.21)

The blood volume of every compartment i is defined as the sum of venous 
and capillary volume. The glucose venous volume equals 60% of total blood 
volume, and the capillary volume 10% of total blood volume (Gerich et al., 
2001; Ederle, 2011). The compartmental venous and capillary volumes are 
defined as:

 V r TBVV i f i, , .0 6  (5.a.22)

 V r TBVC i c i, , .0 1  (5.a.23)

where rf,i refers to the ratio of total venous volume in compartment i and is 
calculated with Equation (5.a.24):

 r Q Qf i i i, /  (5.a.24)

and rc,i refers to the ratio of total capillary volume, respectively (Sorensen, 1978). 
and is presented in Table 5.a.6.

Table 5.a.6 Ratio of capillary volume.

Tissue (rc,i)

Brain 0.071
Liver 0.18
Kidneys 0.08
Gut 0.13
Periphery 0.53



Part A: Type 1 Diabetes Mellitus: Modelling, Model Analysis and Optimization 171

5.a.3.5.4 Peripheral Interstitial Volume
The total regional volume for the adipose tissue is defined as:

 V V V VP Capillary P Interstitial Intracellular, ,P ,P (5.a.25)

According to Oh and Uribarri (2006), the interstitial volume represents 
28%  of  the total body water, while the intracellular volume is 60%. Hence, 
V VIntracellular Interstitial0 47. .

According to Deurenberg et al. (1991):

 m BMI sex age mAT 1 2 10 8 0 23 5 4 0 01. . . . .  (5.a.26)

With

 d m Vi i i/  (5.a.27)

The interstitial volume of the muscles and the adipose tissue is considered to 
be 10% of the total tissue volume according to Johnson (2003) and Eckel (2003), 
respectively. Muscle mass is considered to be approximately 40% of the total 
body weight (5.a.28), according to Ackland et al. (2009).

 m BWmuscles 0 4.  (5.a.28)

The peripheral volume of the interstitial fluid is calculated with Equations 
(5.a.25)–(5.a.29), using Table 5.a.7:

 V V Vg P ISF Interstitial AT Interstitial musc, , , ,  (5.a.29)

5.a.3.6 Insulin Kinetics

Insulin kinetics comprises the mechanisms involved from the moment insulin 
is administered in the subcutaneous tissue until it is fully eliminated from 
the  body. Several models have been proposed in the literature (Kraegen & 
Chisholm, 1984; Nucci & Cobelli, 2000; Tarín et al., 2005; Kuang & Li, 2008), 
with   compartmental modelling being the most common approach. In this 
study, the structure to describe insulin kinetics is investigated when an insulin 
pump is used. Four alternative compartmental models are presented here 

Table 5.a.7 Density of muscles and adipose tissue.

Tissue Density (kg/L) Reference

Adipose tissue (dAT) 0.92 Gallagher et al. (1998)
Muscles (dmuscles) 1.04 Gallagher et al. (1998)
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(see Table 5.a.8) that describe experimental data of insulin kinetics and  compare 
in terms of identifiability and parameter accuracy, as discussed in Section 5.a.4.

The variable and parameter definitions for both models are shown in 
Table 5.a.9.

5.a.4  Model Analysis

In this section, the most suitable model for insulin kinetics is selected by 
 performing a series of analysis tests. Experimental data obtained in the litera
ture are used to estimate the model parameters. Additionally, the suggested 
structure of the EGP sub‐model is evaluated in terms of reliability, using again 
experimental data from the literature to estimate the model parameters and 
confirm the model’s accuracy. Consecutively, the previously presented entire 
mathematical model of glucose metabolism is analysed in order to identify 
the most influential parameters that contribute to the model’s uncertainty. This 
uncertainty originates from the high intra‐ and inter‐patient variability that 
dominates the system. Global sensitivity analysis, parameter estimation and 
accuracy tests are performed to evaluate the model’s ability to represent the 
physiology.

5.a.4.1 Insulin Kinetics Model Selection

The values of the parameters of the four models of insulin kinetics are identified 
via parameter estimation, performed in gPROMS (PSE, 2011b), using experi
mental data obtained from the literature (Boden et  al., 2003) The solution 
method used in gPROMS to obtain the optimal parameter estimates is to 
 minimize the maximum log‐likelihood objective function by solving a nonlinear 
optimization problem.

Figure  5.a.6 shows the plasma insulin concentration profiles produced by 
the suggested models versus the experimental data. Generally, we can conclude 
that all models describe relatively well the experimental data. However, a more 
in‐depth analysis reveals the strengths and the weaknesses of each model.

A Pearson’s chi‐squared test (x2) (PSE, 2011b) is performed (Table 5.a.10) to 
confirm the results indicated by Figure 5.a.5. For k N p degrees of freedom, 
where N is the number of experimental data and p the number of parameters, 
the x2 value is obtained for a 95% confidence level. The calculated x2 smaller 
than the reference x2 value indicates that the fit of the considered model is good.

The Akaike criterion (AIC; Akaike, 1974) is applied in order to select the most 
appropriate model that represents the experimental data. The test is presented 
in Equation (5.a.39):

 AIC Nln WRSS K( ) 2  (5.a.39)



Table 5.a.8 Model equations of three proposed insulin kinetics models and a reference model; schematic representation of the models.
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Table 5.a.9 Variable and parameter definition of Models 1, 2 and 3.

Symbol Definitions

S1, S2 Insulin mass (mU) in the subcutaneous compartments
I Insulin mass (mU) in the plasma compartment
ksub_1, ksub_2 Intercompartmental transfer rate constant (min−1)
kelim Elimination rate constant (min−1)
Vdist Insulin distribution volume (L/kg)
u, basal, bolus Continuous insulin infusion (U/min)

Table 5.a.10 Goodness of fit of proposed models and model selection.

Model 1 Model 2 Reference model Model 3

Pearson’s chi‐squared test (x2) 23.404 9.1041 10.729 9.0727
x2 Value (95%, k) 27.587 27.587 23.685 28.869
Akaike criterion 11.28 13.19 9.95 5.13
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Figure 5.a.5 Comparison of Models 1, 2 and 3 and a reference model with 
experimental data.
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where N denotes the number of data points, K the number of parameters and 
WRSS the weighted residuals sum of squares.

The Akaike values, as shown in Table 5.a.10, indicate that the most suitable 
model to describe the available experimental data is Model 3, when  compared 
to the other three models. Model 3 is a trilinear compartment, which involves 
two compartments to describe insulin absorption through the subcutaneous 
tissue and a single compartment for insulin in the plasma. This model of  insulin 
kinetics has been widely used in the literature (Wilinska et  al., 2005, 2010). 
Table 5.a.11 presents the optimal estimated values of all the model parameters.

The values of the estimated parameters for the reference model and Model 3 
are in good accordance with the literature (Wilinska et al., 2005).

5.a.4.2 Endogenous Glucose Production: Parameter Estimation

The experimental data used for parameter estimation are obtained from 
Boden et  al. (2003). The purpose of this experiment was to study the 
 mechanisms of endogenous glucose production during insulin excess and 
insulin deficiency, while maintaining blood glucose concentration constant. 
Therefore, the parameter related to the effect of glucose on the suppression 
of  EGP, kp2, was kept constant and equal to the mean value obtained from 
Dalla Man et al. (2007).

Figure  5.a.6 shows that the model fits well with the experimental data, 
and the values of the estimated model parameters can be seen in Table 5.a.12. 
A t‐test (PSE, 2011b) is performed that indicates accurate estimates of the 
parameters since the t‐value is larger than the reference t‐value for the 95% 
confidence level. Additionally, the confidence interval shows the precision of 

Table 5.a.11 Optimal mean parameter estimates and standard deviations reported 
in parentheses.

Model 1 Model 2 Reference model Model 3

ksub1 0.36(±0.28) 0.59(±0.3) – 0.025(±0.0017)
ksub2 0.016(±0.048) 0.042(±0.012) – –
kelim 0.017(±0.0065) 0.011(±0.004) 0.024(±0.014) 0.418 (±0.338)
Vdist 3.46(±1.57) 2.76(±0.5) 0.859(±0.63) 0.087(±0.072)
k – – 0.130(±0.1)
ka1 – – 0.0661(±0.019) –
ka2 – – 0.0035(±0.0006) –
km – – 69.25(±28.87) –
VmaxLD – – 0.116(±0.068) –
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the estimated values for the corresponding parameters and is calculated with 
Equation (5.a.40), considering the confidence level a = 95%.

 
Confidence Interval t n SD

n
a

2
1( )  (5.a.40)

5.a.4.3 Global Sensitivity Analysis

The model’s reliability is evaluated with the performance of global sensitivity 
analysis (GSA). The uncertain factors that have a relative influence on the 
model’s measurable output are determined and provide information on 
the proposed model’s structure, in an effort to reduce the model’s uncertainty 
by examining the most influential parameters. GSA has been performed with 
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Figure 5.a.6 Effect of subcutaneous insulin injection on endogenous glucose production.

Table 5.a.12 Parameter estimation results.

Symbol
Optimal estimate
(mean ± SD)

Confidence 
interval* (95%)

95%
t‐value

ki 0 024 0 0034. . 0.0085 2.82
kp1 3 058 0 17. . 0.42 7.33
kp3 0 014 0 0022. . 0.0053 2.7

Reference t‐value (95%): 1.94.
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graphical user interface/high‐dimensional model representation (GUI‐HDMR) 
software (Ziehn & Tomlin, 2009) which uses an expansion of the random 
 sampling HDMR (RS‐HDMR) method. The sampling was performed by simu
lating the model in gPROMS via the gO:MATLAB interface, developed by 
Krieger et al. (2014). The sensitivity index (SI) is scaled between 0 and 1, indi
cating that a SI equal to 0 refers to a non‐influential parameter. The parameters 
values vary between their upper and lower bounds, and for every GSA, a set of 
20,000 Sobol distributed points within the range were used to calculate the SI 
for specified time points. Sobol’s sampling set is preferred because it provides 
evenly uniform distributed points of the input space. The sum of all the 
SI  converges to 1. In this study, the effect of the parameters on blood glucose 
concentration was evaluated in two cases. In the first case, the SIs were calcu
lated for all the parameters to investigate their influence in a system with 
respect to intra‐ and inter‐patient variability. In the second case, only the 
parameters related to intra‐patient variability were included, assuming that the 
weight, the organ volumes, the insulin distribution and the meal absorption 
can be considered constants for an individual patient and were fixed at their 
default values. The results are presented in Table 5.a.13.

5.a.4.3.1 Individual Model Parameters
The model parameters are shown in Table 5.a.13. The range of the parameters 
Qco and Vg,i is calculated from Equations (5.a.18)–(5.a.23) when considering the 
body weight of 50–115 kg, height of 150–190 cm and age of 18–80 years. The 
default values are set for a male patient of 170 cm height, 52 years old and 94 kg. 
The range of the parameters related to the Ra and EGP is adapted from the Uva/
Padova Simulator. The default values of the parameters for these subsystems 
were set at the mean value. The ratio of cardiac output and the ratio of glucose 
uptake were considered to vary ±5%, a value chosen when performing a series 
of stochastic simulation studies, while the default values were obtained from 
Table 5.a.4 and Table 5.a.5. The range and the default value of the parameters 
for insulin kinetics were obtained from Wilinska et al. (2005). A big variation of 
the default value in the parameters k1, k2 was assumed to evaluate the predic
tion ability of the model. Finally, a ±20% variation was assumed for k1,PS and 
k2,PS. The initial guess of the values of the parameters k1, k2, and k1,PS, k2,PS was 
selected when performing a set of stochastic simulation studies in comparison 
with the simulation results provided by the Simulator.

A meal containing 50 g of carbohydrates and a 10 U bolus were given at 
420 min. The time points in Table 5.a.13 refer to 1 h and 5 h after meal con
sumption, and they were chosen to investigate the influence of the parameters 
when the sub‐models of meal absorption and bolus insulin kinetics are active, 
all the external disturbances are absorbed and the system is relatively balanced. 
For the first case, the most influential parameters are the k1, k2, kp3, kabs and ru,L 
at 480 min and k1, k2, ru,L and ru,H at 720 min. Hence, the parameters related to 



Table 5.a.13 Model parameters’ default values and range, and SIs for all parameters and for those related to intra‐patient variability calculated 
with the GUI‐HDMR toolbox.

Sensitivity Index

All parameters Intra‐patient parameters

Symbol Default Range 480 min 720 min 480 min 720 min Units

ka1 1 66 10 02. ( . . )1 0 2 66 10 2 0 0 – – min− 1

Vdist 5 38 10 02. ( . . )1 16 25 08 10 2 1.12E‐06 5.07E‐07 – – L/Kg
kelim 3 02 10 01. ( . . )6 79 134 55 10 2 0 0 – – min− 1

k1 3 00 10 04. ( . . )0 40 1 00 10 03 0.263565 0.340726 0.791256 0.445745 dL2 per pmol· min2

k2 2 00 10 01. ( . . )0 50 5 00 10 01 0.096337 0.418659 0.154249 0.565001 min− 1

kp1 5 38 10 00. ( . . )3 56 7 20 10 00 0 0 7.93E‐06 3.21E‐05 mg/kg/min
kp2 5 23 10 03. ( . . )2 44 8 02 10 03 0 0.000721 0 0 min− 1

kp3 1 43 10 02. ( . . )0 46 2 39 10 02 0.301874 0.005473 0.11209 0.039743 mg/kg/min per pmol/L
ki 0 78 10 02. ( . . )0 29 1 62 10 02 3.51E‐06 4.19E‐05 0 0.000163 min ‐ 1

k2_PS 4 00 10 03. ( . . )3 20 4 80 10 03 0.015557 0.004761 0 3.37E‐05 min− 1

k1_PS 5 00 10 04. ( . . )4 00 6 00 10 04 0.000932 0.000138 3.64E‐05 2.27E‐05 dL2 per pmol· min2

kmax 3 01 10 01. ( . . )0 21 5 82 10 01 0 0 – – min− 1

kmin 4 00 10 02. ( . . )2 19 5 82 10 02 0 0.000127 – – min− 1

kabs 8 84 10 03. ( . . )0 28 1 49 10 02 0.160871 1.67E‐05 – – min− 1

kgri 4 00 10 02. ( . . )2 19 5 82 10 02 0 8.23E‐05 – – min− 1

b 7 95 10 01. ( . . )6 27 9 62 10 01 3.63E‐05 0.001582 – – –
d 2 15 10 01. ( . . )0 92 3 37 10 01 0 0.001022 – – –

(Continued )



Sensitivity Index

All parameters Intra‐patient parameters

Symbol Default Range 480 min 720 min 480 min 720 min Units

CLrenal 5 00 10 05. ( . . )4 00 6 00 10 01 1.33E‐04 0 6.32 E‐05 0 dL/min
Qco 6 04 10 03. ( . . )3 76 7 02 10 03 0.003759 0.003217 6.69E‐05 2.64E‐05 mL/min
VK 3 90 10 00. ( . . )2 24 4 86 10 00 0.000289 0.000225 – – dL
VG 4 44 10 00. ( . . )2 55 5 54 10 00 0.012974 0.008315 – – dL
VP 1 09 10 01. ( . . )0 63 1 37 10 01 0 0.000374 – – dL
VB 3 06 10 00. ( . . )1 76 3 82 10 00 6.78E‐05 0.010876 – – dL
VL 5 62 10 00. ( . . )3 23 7 02 10 00 0 0.00272 – – dL
VH 1 34 10 01. ( . . )1 27 1 35 10 01 3.38E‐05 0.000164 – – dL
rco,K 1 78 10 01. ( . . )1 69 1 87 10 01 1.33E‐05 0.000539 1.16E‐05 0.006560 –
rco,G 1 95 10 01. ( . . )1 85 2 05 10 01 0.067301 0.004797 0 3.68E‐05 –
rco,P 4 39 10 01. ( . . )4 17 4 61 10 01

4.28E‐05 0.00048 6.26E‐05 0.003743 –
rco,B 1 38 10 01. ( . . )1 31 1 45 10 01 0.000107 0.003262 1.29E‐05 2.34E‐06 –
rco,L 2 44 10 01. ( . . )2 32 2 56 10 01 2.75E‐05 0.018778 1.04E‐05 0.000398 –
ru,K 2 00 10 02. ( . . )1 90 2 10 10 02 0 0.00064 0.000774 0.003097 –
ru,G 7 00 10 02. ( . . )6 65 7 35 10 02 0.02257 0.001398 0.008611 0.003169 –
ru,L 1 30 10 01. ( . . )1 24 1 37 10 01 0.052423 0.137398 0.027909 0.001827 –
ru,H 1 80 10 02. ( . . )1 71 1 89 10 02 0.000969 0.033467 0.000112 0.025256 –

Table 5.a.13 (Continued)
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glucose absorption from the periphery k1, k2 as a function of insulin concen
tration (5.a.16) are the most critical since they are related to the patient’s sen
sitivity to insulin and therefore their ability to absorb glucose. For the second 
case, the parameters k1, k2, ru,L and ru,H are the most influential.

The time‐varying parameters for the two cases defined in Table 5.a.13 are 
shown in Figure 5.a.7 and Figure 5.a.8. Only the parameters with the highest 
sensitivities are included in the graphs. For both cases, the sensitivities of 
parameters k1 and k2 remain high throughout the performance analysis, and 
both are increased after meal and bolus administration. The sensitivity of kp3, 
as expected, increases during bolus administration and decreases at the post
prandial state when insulin concentration decreases after the bolus peak. 
Additionally, for kabs, a parameter that indicates how fast the blood glucose 
is  absorbed from the small intestine, the sensitivity increases with meal 
 consumption and decreases when glucose has been absorbed. For the ratio of 
glucose absorption from the liver, the sensitivity is high at the fasting state and 
decreases relatively at the postprandial state, while the ratio of glucose absorp
tion from the heart increases after meal consumption, indicating that both of 
these parameters influence glucose regulation in accordance to Equations 
(5.a.3) and (5.a.5).

As a conclusion, it can be stated that the parameters with the most influen
tial role are those related to insulin effect on glucose. The parameters related to 
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Figure 5.a.7 Time‐varying SIs when all parameters are considered.
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insulin distribution, absorption and elimination through the subcutaneous 
 tissue, as well as the parameters related to glucose distribution in the various 
compartments, can be considered as non‐influential compared to the insulin 
effect–related parameters.

5.a.4.4 Parameter Estimation

The performance of the proposed model is evaluated with detailed simula
tion studies performed in gPROMS, and its prediction ability is verified when 
compared with data of 10 adult patients provided by the UVa/Padova T1DM 
Simulator. To demonstrate the prediction ability of the proposed model, a 
specific diet plan of 45 g of carbohydrates for breakfast, 70 g for lunch and 
70 g for dinner and the appropriate insulin regimen for each patient is set, and 
the simulation results are shown for the 10 patients. The same conditions are 
applied in the Simulator, and the blood glucose and plasma insulin concentra
tion profiles are used as experimental data to estimate the most influential 
model parameters (presented in Table 5.a.14). The parameters of the Ra and 
EGP sub‐models are also estimated for each patient to obtain patient‐specific 
glucose–insulin dynamics. The default values are used for the remaining 
nonsignificant parameters.
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5.a.5  Simulation Results

The performance of the proposed model is evaluated with detailed simulation 
studies performed in gPROMS (PSE, 2011a), and its predictability is verified 
when compared with data provided by the UVa/Padova T1DMS Simulator 
(Kovatchev et  al., 2011). To demonstrate the predictability of the proposed 
model, a specific diet plan of 45 g of carbohydrates for breakfast, 70 g for lunch 
and 70 g for dinner is set, and the simulation results are shown for three 
patients. The insulin regimen is predefined for each patient, as shown in 
Table 5.a.14. The same conditions are applied in the Simulator, and the blood 
glucose and plasma insulin concentration profiles are used as experimental 
data to estimate the most influential model parameters. Hence, the individual 
parameters of model 2 for insulin kinetics and k1, k2, ru, L and ke of glucose 
metabolism are estimated as shown in Table 5.a.14. The reported confidence 
interval for each value is a measure of the estimated precision, indicating that 
the smaller the interval, the more reliable the estimated value is.

Table 5.a.14 Optimal parameter estimates, presented as mean (lower‐upper) value 
for the 10 patients.

Symbol Value Units Symbol Value Units

k1 1 58 10 04.
( . . )2 11 38 4 10 05

dL2 per 
pmol · min

ki 8 15 10
0 294 1 34 10

03

02
.
. .( )

min− 1

k2 2 35 10 02.
( . . )1 17 4 53 10 02

min− 1 kp1 5.65
(3.97 – 7.2)

mg/kg/min

ru,L 1 7 10 01.
( . . )0 6 1 9 10 01

– kp2 4 73 10 03.
( . . )2 44 7 72 10 03

min− 1

kmax 3 53 10 02.
( . . )2 19 5 82 10 02

min− 1 kp3 1 49 10 02.
( . . )0 0551 2 39 10 02

mg/kg/min 
per pmol/L

kmin 7 62 10 03.
( . . )0 373 1 16 10 02

min− 1 kelim 1.36
(0.2996 – 2.1433)

min− 1

kabs 1 14 10 01.
( . . )0 214 5 82 10 01

min− 1 ksub 1 86 10 02.
( . . )1 21 2 46 10 02

min− 1

b 8 27 10 01.
( . . )7 36 9 29 10 01

– Vdist 1 54 10 02.
( . . )1 00 5 16 10 02

L/kg

d 1 91 10 02.
( . . )0 98 3 32 10 01

–
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Figure 5.a.9 Comparison of blood glucose concentration (mg/dL) as predicted from the 
proposed model with the Simulator, for the 10 adults when a meal plan of 45 g, 70 g and 
70 g of carbs are considered at 420 min, 720 min and 1080 min, respectively. The insulin 
infusion (U) is shown at the right axis for every patient.
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The glucose profiles of the proposed model compared to the Simulator are 
shown in Figure 5.a.9 for the 10 patients.

The simulation results indicate that the proposed model can predict accu
rately the blood glucose concentration profile in the fasting, prandial and 
postprandial states. The good fit of the model to the UVa/Padova Simulator 
shows that the estimates of the most influential parameters, as identified from 
the model analysis, are well adjusted for all cases.

5.a.6  Dynamic Optimization

One of the great challenges of an automated system is the delayed insulin 
absorption and action. That means that there is a time lag between the time 
insulin is given and the time to cause the maximum effect. This time lag is 
related to the type of insulin used, the route of administration, the detection of 
a glucose fluctuation and the patient’s sensitivity to insulin. The difference in 
the glycaemic response produced by the same dose of insulin in different indi
viduals indicates that there is a high intra‐patient variability involved in glu
cose–insulin interactions. When this variability is low, then a more predictable 
glycaemic response can be determined, which is important for a closed‐loop 
system. In order to reduce the factors that cause variability and deteriorate 
the prediction of the glycaemic response, open‐loop simulation analysis and 
optimization studies are performed to gain deep knowledge of the particular 
system and use the conclusions as a guideline for closed‐loop studies.

In this study, the UVa/Padova T1DM Simulator (Kovatchev et al., 2011; and 
see Appendix 5A) is used as the process model, which has been approved by 
the FDA to substitute animal trials in the pre‐clinical testing of certain control 
strategies in T1DM. Simulation studies are performed to quantify the delayed 
insulin effect on 10 adult patients. This analysis has motivated the performance 
of patient‐specific optimization studies, to find the optimal timing of insulin 
dosing to maintain the patient’s glycaemic target. An alternative to bolus dos
ing regimens is investigated in order to be incorporated in the closed‐loop 
insulin delivery strategy, and the results are presented.

5.a.6.1 Time Delays in the System

Time delay in a system is the time that intervenes from the instant the input, the 
control or a force is applied until the instant the effect is observed. In this par
ticular system, the input is the insulin dose, and the effect is the decrease in the 
blood glucose concentration. Figure 5.a.10 reveals the complexity of blood glu
cose regulation when subcutaneous rapid‐acting insulin is used. Rapid‐acting 
insulin is a human insulin analogue that, due to its chemical structure, reduces 
aggregation of insulin molecules and therefore accelerates the absorption 
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process. Assuming that the sampling time Ts is 5 min (available measurements 
of glucose concentration in the blood from the sensor), it can be noticed that 
insulin requires up to 15 min to initiate the decrease of blood glucose concen
tration, practically to observe a 1 mg/dl change of the concentration. This time 
involves the absorption of rapid‐acting insulin through the subcutaneous tissue 
and insulin action that can take up to 1–3 h for its maximum effect.

In Figure 5.a.11, 1 U bolus of rapid‐acting insulin is given at 60 min in four 
patients. It can be noticed that the time to observe a 10 mg/dl decrease of blood 
glucose concentration is not equal for the four patients. This can be explained by 
the fact that every patient responds differently to insulin and has a different ability 
to increase the body’s glucose uptake from the various tissues. This can be quanti
fied with the insulin sensitivity index. The more sensitive to insulin the patient is, 
the less amount of insulin is required. Patients 2 and 4 with a high insulin SI 
require less time for their blood glucose to be decreased than patients 1 and 3.

In Figure 5.a.12 for two patients, who high and low insulin sensitive, three 
bolus doses are given at 400 min without considering meal consumption. It can 
be noticed that the time required for glucose to be decreased by 10 mg/dl is 
dependent on the amount of bolus given. The delayed insulin effect decreases, 
while the amount of insulin bolus increases. This implies that the time delay 
property cannot be considered constant for an individual patient.
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Figure 5.a.11 Patient‐dependent time delay. Source: Zavitsanou et al. (2014). Reproduced 
with permission of IEEE.
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Reproduced with permission of IEEE.
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In conclusion, the dynamic system involves inherent time delays which are 
the delayed insulin absorption and action and also the approximately 10 min 
delayed glucose appearance in the blood after food consumption due to inter
stitial glucose kinetics, meaning the route from the mouth to the small intestine 
and then to the blood. Apart from these delays, there are additional technical 
delays which involve the delayed detection of blood glucose concentration 
change because the continuous glucose monitoring devices calculate blood 
glucose concentration by measuring interstitial fluid glucose concentration 
(Keenan et al., 2009). Hence, the time lag of the displayed glucose value and 
the real blood glucose value consists of the time lag between the Insulin 
Sensitivity Factor (ISF) and blood glucose accounting for the processing 
requirements as well.

5.a.6.2 Dynamic Optimization of Insulin Delivery

From the previous analysis, it has been evident that in order for patients 
to maintain their blood glucose close to their glycaemic target, the timing of 
the bolus insulin administration must be optimally decided to achieve safe 
glycaemic regulation. It has also been evident that each patient presents a 
unique response to insulin and therefore must be treated differently. Hence, 
patient‐specific optimization studies are performed to obtain the optimal 
insulin profile that minimizes the time glucose is outside of the normal range. 
The mathematical formulation of the optimization problem has the following 
general form:

 
min

d

t

i

f

w w dt
0

1 2  (5.a.41)

s.t.

 
G f x t x t y t u t di , , , ,  (5.a.42)
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i id d
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1 0 1
int

,,  (5.a.43)

 
w w G G1 1, max (5.a.44.a)

 
w w G G2 20, min  (5.a.44.b)

where tf is the time horizon, G is the blood glucose concentration described by 
the nonlinear process model specific for every patient (Kovatchev et al., 2011; 
and see Appendix 5A), and Gmax (140 mg/dL) and Gmin (70 mg/dL) are the 
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upper and lower glucose concentration bounds. Equation (5.a.44.a) is a soft 
constraint, as opposed to (5.a.44.b) which is a hard constraint to prevent from 
any severe health complications related to hypoglycaemia. At t0 400 min, a 
breakfast meal of 50 g of carbohydrates was given to the 10 patients. The opti
mal amount of insulin, appropriate to compensate for the forthcoming glucose 
increase due to the meal intake, was provided by the Simulator when closed‐
loop studies were performed and was chosen for every patient. The optimiza
tion studies were performed in gPROMS (PSE, 2011c). A window of 4 h before 
the meal was considered to include any extreme low insulin sensitive patient, 
and this time span was discretized every 2 min, which is the time the pump 
requires to deliver an insulin bolus (hence, Nint 120). A time‐invariant, 
binary variable di was considered to be 0 if no bolus was given or 1 at time i if 
a bolus was given. The mixed‐integer nonlinear programming problem was 
solved using the approach described in Bansal et al. (2003) as implemented in 
gPROMS. An augmented penalty strategy is employed to increase the possibility 
to obtain a global solution (PSE, 2011c).

The optimization results are presented in Figure 5.a.13 for six patients. The 
grey line shows the optimized glucose profile, while the black line shows the 
simulated profile when the bolus is given simultaneously with a meal. The opti
mal timing of insulin administration for every patient is summarized in 
Table 5.a.15. When the bolus is given at the optimal time, the glucose profile is 
improved in terms of maintenance of the concentration within the normal 
range for all the patients. In Table 5.a.15, the area between the upper glucose 
bound and the glucose profile is calculated. The difference of the values 
between the simulated and optimized curves indicates that a superior regula
tion of glucose is achieved when insulin infusion scheduling is considered. 
Additionally, hypoglycaemic events are not observed for any of the patients, 
despite the considerable difference in timing between them. This is related to 
the sensitivity of the patient to insulin, as mentioned, and for the specific 
optimal dose the patient would not reach the lower glucose bound.

5.a.6.3 Alternative Insulin Infusion

An alternative to bolus dosing is considered as a piecewise constant infusion 
rate that holds a specific value for 5 min time intervals. The profile is calculated 
with an optimizing criterion, the minimum range of glucose outside the normal 
bounds. Figure 5.a.14, for patient 1, includes the optimized glucose profile when 
the bolus is given at the time calculated with the previous optimization problem 
(a), and the glucose profile when a piecewise approach is considered (d) with a 
time frame of 32 min (Table 5.a.15); both are compared with the glucose profile 
when a bolus is given simultaneously with a meal (b). The two approaches pro
duce the same effect on glucose, indicating that a stepwise infusion could 
be considered as a possible mechanism since it provides flexibility and can be 
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better adjusted in an automated delivery system. In Figure 5.a.14, for patient 5, 
in order to avoid a long time frame (62 min) which can be restricting from a 
control point of view, a time frame of 30 min is considered. The glucose profiles 
are compared, and additionally the profile when bolus is given 30 min in advance 
(c) is included. The stepwise approach (d) and the 30 min bolus in advance 
(c) produce comparatively the same results. This approach, although it is not 
optimal, can still be regarded as a considerable alternative for control design.
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Figure 5.a.13 Optimization (grey line) and simulation (black line) glucose profiles. 
Source: Zavitsanou et al. (2014). Reproduced with permission of IEEE.
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Table 5.a.15 Area under the curve (outside the normal range).

Simulated 
glucose curve

Optimized 
glucose curve

Optimal time of 
bolus before meal

Patient 1 5 1747 03. e 4 4825 03. e 32 min

Patient 2 6 7083 04. e 5 8923 03. e 66 min
Patient 3 8 3306 03. e 5 1267 03. e 140 min
Patient 4 2 1919 03. e 1 3213 03. e 36 min
Patient 5 4 0646 03. e 1 7180 03. e 62 min
Patient 6 2 0961 05. e 3 9445 03. e 62 min
Patient 7 2 0833 05. e 2 7859 02. e 52 min
Patient 8 5 9726 04. e 1 2093 03. e 100 min
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Figure 5.a.14 Optimal glucose profiles when insulin is given as a bolus and as a piecewise 
constant infusion. Source: Zavitsanou et al. (2014). Reproduced with permission of IEEE.
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5.a.6.4 Concluding Remarks

Exogenous insulin administration causes delayed effect on glucose regulation. 
The involved time lags have been quantified for 10 patients, and it has been 
shown that for the same insulin dose, the delayed effect on glucose is patient 
dependent. Therefore, patient‐specific, in terms of appropriate insulin dosing 
for each patient, optimization studies were performed to find the optimal 
 timing to give the bolus dose. An alternative, stepwise insulin regimen has 
been considered, and the optimization results indicate that it could provide a 
considerable alternative for closed‐loop applications.

5.b  Type 1 Diabetes Mellitus: Glucose Regulation

5.b.1  Glucose–Insulin System: Typical Control 
Problem

T1DM is a lifelong disease, and therefore its treatment with exogenous insulin 
should have the minimal impact on the patient’s lifestyle. It is necessary to 
develop novel drug delivery techniques that suggest a structure of drug admin
istration which ensures the therapeutic efficacy and safety of the patient, and 
take into consideration the patient’s comfort and convenience. Motivated by 
the challenge to improve the living standard of a diabetic patient, the idea of an 
artificial pancreas that mimics the endocrine functionality of a healthy pan
creas has been well established in the scientific society. See Section  5.a.1.1, 
“The concept of the artificial pancreas,” for discussion.

The blood glucose–insulin system can be formulated as a typical control 
system. The plant is the glucoregulatory system itself, the manipulated varia-
ble is insulin and the controlled variable is blood glucose concentration, as 
presented in Figure 5.b.1. The system undergoes external disturbances such as 
meal consumption, exercise, illness, stress and so on. The two fundamental 
components of a control system are the model and the control strategy.

Several control methodologies have been suggested in the literature (Doyle 
et al., 2014; Thabit & Hovorka, 2014), such as PID, model predictive control 
(MPC) and fuzzy logic. MPC theory has been widely established as a possible 
choice for this particular application. Table 5.b.1 highlights the studies on MPC 
where its performance has been clinically evaluated in patients with T1DM.

Part B: Type 1 Diabetes Mellitus: Glucose 
Regulation
Stamatina Zavitsanou, Athanasios Mantalaris, Michael C.  
Georgiadis, and Efstratios N. Pistikopoulos
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Although the applied MPC theory for glucose regulation has reduced the 
occurrence of hypoglycaemic episodes in most clinical studies (Doyle et al., 
2014), the challenge remains when the patient is examined in free living condi
tions (Bequette, 2012), subjected to unannounced disturbances such as a meal. 
This involves the risk of direct prandial hyperglycaemia that leads to aggressive 
insulin action and possible postprandial hypoglycaemia. Another important 
issue is the high intra‐ and inter‐patient variability that dominates the system. 
To address this problem, patient‐specific approximations of the original 

Figure 5.b.1 Model‐based control structure.

Glucose
control

algorithm

Mechanical
pump

Glucose
sensorPatient

Normal glucose
range defined by

the physician

Signal is transmitted to the controller

Administration
of insulin

Meal, exercise
Continuous

measurements of
blood glucose

Calculation of
the optimal
insulin dose

Table 5.b.1 Selected clinical studies that evaluate MPC as a control strategy to regulate BG 
concentration in T1DM.

Clinical studies: 
references Summary

Hovorka et al. 
(2010, 2014)
Elleri et al. (2012, 
2013, 2011)

The MPC design of this study is based on Bequette (2005), using an 
internal model (Hovorka et al., 2002).

Kovatchev et al. 
(2010, 2013)

The linear MPC design is described in Magni et al. (2007). The model 
used for validation is found in Dalla Man et al. (2007) but modified 
adequately for T1DM. This model is linearized at average population 
basal conditions. The MPC specifications are tailored to each patient. 
An interface and safety module are included in Patek et al. (2012).

Russell et al. 
(2012)

Bihormonal closed‐loop system (El‐Khatib et al., 2010) insulin 
administration with MPC control and glucagon with PD. The internal 
model is ARMAX with identified model parameters.

Dassau et al. 
(2013)

The linear mp‐MPC design is described in Percival et al. (2010), the 
model used is a transfer function with patient‐specific parameters. 
More details on the explicit MPC can be found in Dua et al. (2006).

Breton et al. 
(2012)

Range correction module and safety supervision module (Kovatchev 
et al., 2009)

ARMAX, autoregressive–moving‐average (model); BG, blood glucose; MPC, model predictive 
control; mp‐MPC, multiparametric model predictive control; PD, pharmacodynamics; T1DM, 
type 1 diabetes mellitus.
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system (Magni et al., 2009; van Heusden et al., 2012) and control specifications 
are considered. Although this approach has minimized the effect of intra‐
patient variability on predictability of the internal model and therefore reliabil
ity of the regulation, inter‐patient variability remains an important source of 
uncertainty that requires advanced control techniques such as robust control 
(Sakizlis et al., 2004; Pistikopoulos et al., 2009) or complementary components 
(Breton et  al., 2012) to incorporate the effect and restrict its impact on the 
system. In this part, the involved steps of closed‐loop insulin delivery are pre
sented, while emphasis is given on the importance of developing a reliable, 
patient‐specific approximate model for MPC.

5.b.2  Model Predictive Control Framework

The general framework according to which the controller to regulate the BG 
 concentration is designed is presented in Figure  5.b.2, as adapted from 
Pistikopoulos (2009). It involves the development of a high‐fidelity model that 
accurately predicts the glucose–insulin dynamics in T1DM, the simplification of 
the original model with system identification or model order reduction techniques 
to derive a reliable approximation of the system dynamics, and finally the design 
of the appropriate control strategy. In the MPC formulation, one of the key com
ponents is the approximate model; it needs to be relatively simple to facilitate the 
computational complexity, but also very informative to enclose the system dynam
ics. The involved steps are described analytically in the remainder of this section.

5.b.2.1 “High‐Fidelity” Model

The mathematical model used in this study as a virtual patient for closed‐loop 
control validation studies and to derive simplified or approximate models nec
essary for model‐based control is the model developed by the Cobelli group 

“High-fidelity” dynamic model

System
identification

Model reduction
techniques

Approximate model

Control design

Optimal control action

Modelling/
simulation

Identification/
approximation

Model-based
control and validation

Closed-loop
control system

validation

Figure 5.b.2 Framework for MPC controller design.
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(Dalla Man et  al., 2007a, 2007b) and approved for pre‐clinical closed‐loop 
studies from the FDA as the Uva/Padova Simulator. The model is simulated 
and fully validated in gPROMS (Appendix 5A) using individual patient param
eters obtained from the UVa/Padova Simulator for 10 adults.

5.b.2.2 The Approximate Model

Sources of nonlinearity in the model of glucose–insulin interactions can be 
found not only in nonlinear expressions of specific variables (e.g. gastric emp
tying) but most importantly in nonlinear dependencies among variables (e.g. 
insulin‐dependent peripheral glucose absorption). Sources of nonlinearity 
originated from insulin action on glucose uptake from the periphery and over
all effect on blood glucose decrease. Another challenging inherent source of 
nonlinearity in this system is the involved time delays. The time that intervenes 
from the instant the input is applied until the instant the effect on glucose is 
observed is not proportional to insulin dosage.

The internal model used to predict the future output G(t) depending only on 
past inputs u(k − 1), u(k − 2), …, is usually considered to be linear because this 
constitutes the calculation of the optimal insulin infusion relatively simplified 
in a MPC framework.

5.b.2.2.1 Linearization
The model of the UVa/Padova Simulator is linearized (Appendix 5C). The 
linear model involves 12 states:

x G G X Q Q Q I I I I I Ip t disp sto sto gut del del sc sc l p1 2 1 2 1 2

When the model is linearized at the steady state, an approximation of constant 
physiological conditions, the glucose concentration does not coincide with the 
profile of the original model in the presence of meal disturbances and insulin 
boluses, resulting in large offset. To overcome the difficulty to find stable equi
librium points during meal consumption and insulin absorption, which trigger 
the system away from the steady state, and to capture the dynamics of the sys
tem during fasting, and prandial and postprandial conditions of different meal 
sizes and insulin boluses, a series of parameter estimation studies are per
formed to estimate the values of specific parameters of the linear model related 
to meal and insulin absorption that are described with nonlinear equations 
(Appendix 5C). The parameter estimation studies are performed in gPROMS 
(PSE, 2011b) and involve the design of patient‐specific in silico experiments of 
different meal plans and insulin regimens that take into consideration:

1) Effect of one meal on BG concentration  –  no bolus is considered 
(Experiment A)

2) Effect of one bolus on BG concentration  –  no meal is considered 
(Experiment B)
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3) Effect of one meal and bolus given simultaneously (Experiment C)
4) Steady state – no bolus and meal are considered (Experiment D)
5) Day simulation with different meal sizes and bolus doses (Experiment E).

The values of the estimated parameters are presented in Table 5.b.2 for the 
10 adults.

5.b.2.2.2 Physiologically Based Model Reduction
In order to reduce the computational complexity in a control application 
caused by the relatively large size of the previously presented 12‐state linear 
physiological model, physiologically based model order reduction is used to 
mathematically transform the model equations to provide the same dynamical 
behaviour but in a smaller system. The involved time delays of the system, both 

Table 5.b.2 Estimated parameters of linearized model for 10 adults.

Experiments Patient 1 Patient 2 Patient 3 Patient 4 Patient 5

A(2,2) C, D, E −0.10475 −0.12086 −0.30005 −0.1493 −0.21861
A(2,3) C, D, E −0.01763 −0.01307 −0.01682 −0.065476 −0.00679
A(5,5) A −0.00516 −0.01893 −0.00897 −0.018062 −0.00361
A(6,4) A 0.01314 0.00157 0.00314 0.009870 0.01552
Bd(2, 1) C, D, E 1.627 0.17399 2.2616 3.9858 0.50847

Reduced model

A(9,9) B, E −0.043407 −0.018901 −0.020299 −0.018992 −0.025647
A(9,10) B, E 2.891E‐5 0.0 −1.073E‐6 −6.346E‐6 2.208E‐5
A(10,9) B, E 0.003991 0.001407 0.001059 0.002412 0.004241
A(10,10) B, E −0.026149 −0.021764 −0.01929 −0.021041 −0.04864

Patient 6 Patient 7 Patient 8 Patient 9 Patient 10

A(2,2) C, D, E −0.07788 −0.13319 −0.08963 −0.17237 −0.21344
A(2,3) C, D, E −0.024081 −0.049294 −0.01747 −0.00375 −0.01069
A(5,5) A −0.015856 −0.014347 −0.00743 −0.02216 −0.01217
A(6,4) A −0.000119 6.386E‐4 0.00442 −3.458E‐7 −1.407E‐5
Bd(2, 1) C, D, E 3.516 1.5165 1.4351 0.72648 2.1189

Reduced model

A(9,9) B, E −0.012480 −0.020122 −0.025168 −0.018841 −0.017661
A(9,10) B, E −4.983E‐8 −1.460E‐8 −2.548E‐8 −1.053E‐7 −3.308E‐8
A(10,9) B, E 8.275E‐4 0.001284 0.001802 0.001677 0.001356
A(10,10) B, E −0.018837 −0.013686 −0.014726 −0.030188 −0.022085
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in glucose absorption from food and in insulin absorption through the subcu
taneous tissue, do not allow the lumping of many compartments and further 
simplification of the model. The equations to be reduced are the states 
[Isc1 Isc2 Il Ip]′. The compartments Isc1 and Ip are forced to be left unmodified 
since they are used in other equations in the model (Appendix 5B).

The linear equations are described with the general formulation:

 
dy
dt

Ky (5.b.1)
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The new system is described by Equation (5.b.1), where K̂ is the new set of 
parameters with rank n 2. The new parameters are found by solving a maximum 
likelihood parameter estimation problem in gPROMS (PSE, 2011b) that deter
mines the values of the new set of parameters that maximize the probability that 
the new mathematical equations will predict the dynamics of the original model 
that is used to specify suitable experiments obtained from the experiments.

 

ˆ ˆdy Ky
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=  (5.b.2)

The set of the reduced equations is defined as:
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The values of the parameters are presented in Table 5.b.2 for the 10 patients.
Hence, the states of the reduced model are:

 
x G G X Q Q Q I I I Ired p t disp sto sto gut del del sc p1 2 1 2 1  

Further reduction of the model states leads to loss of the system dynamics. The 
model is discretized with ts 5 min. Figure 5.b.3 compares the dynamic model 
with the state‐space reduced‐order model, and Figure 5.b.4 shows the accuracy 
of the linearized model.

The model accuracy is calculated using Equation (5.b.3), and for patient 2 it 
is 81%.
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The advantage of the linearized model over the previously presented model is 
that the states represent the states of the original model, and therefore the deep 
knowledge of the system’s behaviour facilitates the design of control studies. 
Yet again, this model is large, which makes the design of explicit MPC relatively 
difficult.
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Figure 5.b.3 Comparison of full‐state and reduced linearized model for patient 2.
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Figure 5.b.4 Comparison of original model and linearized model when 50 g of carbs are 
consumed and a 5 U bolus is given to patient 2.
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5.b.3  Control Design

5.b.3.1 Model Predictive Control

The suggested control strategy appropriate for glucose regulation with manip
ulating insulin infusion refers to MPC theory (Dua et  al., 2006, 2009). The 
reference point of all the MPC methodologies is the use of a mathematical 
representation of the controlled system (model) to predict the system’s output/
states, for a finite time horizon (prediction horizon). The model is used for the 
formulation of an optimization problem that minimizes an appropriately cho
sen objective function. Decision variables of this problem are the future values 
of the manipulated variable (insulin) in a generally smaller future time horizon, 
the control horizon. When the optimal sequence of the future control laws is 
determined, only the first value is applied on the system and the optimization 
problem is then reformulated and solved at the next time instant, when new 
system information is available. The basic concept of MPC is illustrated in 
Figure 5.b.5.

The appropriate current control action is obtained by solving on‐line, at each 
sampling instant, the finite‐horizon open‐loop optimal control problem:
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 (5.b.4)

where x n
  is the state, n 10; u m

  is the input, m 1, the insulin infusion 
in this case; d 

m is the meal disturbance; y p
  is the output; p 1 is the 

blood glucose concentration; and k  0 T is a nonnegative integer represent
ing the sample number. A n n

  is the state transition matrix, B n m
  is the 

input matrix, E n m
  is the disturbance matrix and C p n

  is the output 
matrix. N is the prediction; M is the control horizon; and Q, QR, R and R1 are 
the controller’s tuning parameters, which are the weight matrix for the states, 
the output (glucose), the control input (insulin) and the change of control 
input, respectively. The variables wk

g
  and υ are introduced to account for 

process and observation uncertainty, respectively. Matrix G n


g is used to 
fine‐tune the effect of the process uncertainty on the states. In order to account 
for this type of uncertainty, an optimal state estimation is determined for 
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reliable glucose regulation. A linear Kalman filter is a suitable state estimator 
for the examined system, assuming a zero‐mean normally distributed process 
disturbance wk and measurement noise υk with covariance matrices Q and R.

 w N Q R0 0 0 0~ ~ ., N ,and  

Details on the Kalman filter can be found in Appendix 5B.

5.b.3.2 Proposed Control Design

The general proposed control design is presented in Figure 5.b.6. Depending 
on the nature of the meal disturbances di, as defined in Table 5.b.3, different 
components are activated.

Hence, the control designs presented in Table 5.b.4 are evaluated for different 
types of meal disturbances di.

5.b.3.3 Prediction Horizon

Because the system involves high input and disturbance delays, in order to 
 predict the after‐effect of a given input at time k (see Figure 5.a.10), the predic
tion horizon should be at least equal to the time lag. However, every patient has 
different glucose–insulin dynamics, and the time delay factor should be con
sidered patient specific. Although the time lag is dependent on the insulin dose 
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r(t|k)
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Figure 5.b.5 Basic scheme of discrete MPC.
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(see Section 5.a.6), for the insulin infusion rates considered in the closed‐loop 
system, an assumption of constant patient‐specific time delays can be reason
able. Table 5.b.5 shows the prediction horizon of the 10 patients that was cal
culated as the average time to observe a 1 mg/dL change in blood glucose 
concentration when simulation studies of a step change of 0.5 U/h insulin dose 
from 0 to 5 U/h were performed.

MPC 1

Patient

u1

G

Gref1

d
MPC 2

State
estimator

u2

Gref2

Reference control

Correction control
x, d

yref

G–yref

ˆ ˆ

Figure 5.b.6 Proposed control strategy to compensate for unknown meal disturbances 
consisting of two controllers: the reference control that regulates glucose for a reference 
meal plan, and the correction control that regulates the difference of the glucose between 
a real and reference meal plan.

Table 5.b.3 Meal disturbance types.

Symbol Disturbance type

dp Predefined
da Announced
du Unknown

Table 5.b.4 Control designs.

CD1 Online MPC with predefined disturbance
CD2 Online MPC with announced disturbance
CD3 Reference and correction MPC for unmeasured disturbance
CD4 Online MPC with unmeasured disturbance
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5.b.3.4 Control Design 1: Predefined Meal Disturbance

When a patient follows an exact meal plan, meaning that the exact amount and 
the time of the meal are known in advance, this information is introduced in 
the general regulation design as a predefined meal plan and the MPC 1 in 
Figure 5.b.6 is activated (the MPC specifications are presented in Table 5.b.6).

5.b.3.5 Control Design 2: Announced Meal Disturbance

When information concerning the amount of meal is provided at the time, the 
disturbance is considered as announced, and the control strategy involves 
again the MPC 1 of Figure 5.b.6 (see Table 5.b.6 for specifications).

5.b.3.6 Control Design 3: Unknown Meal Disturbance

In the case of unmeasured meal disturbances, there is no information concern
ing the amount and time of the meal. In this case, a nominal controller reacts 
aggressively to regulate the glucose deviation from the reference point, which 
means increased insulin infusion as long as glucose violates the constraints. 
But this control action involves the risk of postprandial hypoglycaemia due to 
insulin after‐effects and also immediate prandial hyperglycaemia. Therefore, a 
different control design is proposed to compensate for unknown disturbances, 
as illustrated in Figure 5.b.6. It consists of the patient model; an MPC controller, 
acting as a reference regulator; a second MPC controller, acting as the correc
tion control; and a state estimator. The proposed control design regulates the 
glucose concentration when a reference meal plan is considered and addition
ally responds appropriately to compensate for the deviation from the reference 
meal when a different‐sized meal is consumed.

MPC 1: Reference Control
The desired glucose value Gref1 is set by the endocrinologist for every patient. 
A predefined reference meal plan is considered to trigger the control action. 

Table 5.b.5 Prediction horizon for the 10 patients.

Patient OH Patient OH

Patient 1 13 


 65 min Patient 6 10 


 50 min
Patient 2 11 



 55 min Patient 7 8 


 40 min
Patient 3 7 



 35 min Patient 8 11 


 55 min
Patient 4 10 



 50 min Patient 9 14 


 70 min
Patient 5 13 



 65 min Patient 10 13 


 65 min
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Feedback about the current state is obtained by the model output yref, as calcu
lated when the reference tracking problem with an announced disturbance is 
solved and the optimal insulin infusion is applied.

MPC 2: Correction Control
MPC 2 aims to find the optimal insulin infusion rate to regulate the difference 
of glucose as a real measurement coming from the patient, G, and glucose as 
calculated when solving the reference control problem, yref. This difference can 
be regarded as an unmeasured disturbance of the system that leads to an offset 
in the set point, Gref ,2 0. So the correction control is described as a distur
bance rejection problem. In order to remove the offset and the nonzero distur
bances, the original system is augmented with a disturbance model. In order to 
reduce the computational effort, the states describing the meal absorption 
[ ]Q Q Qsto sto gut1 2  are removed from the state‐space model. The output 
feedback of the patient is obtained as the difference between the actual meas
urement and the reference control output (G ‐ yref), and the state feedback is 
obtained by a state estimator that provides information about the current state 
of the patient and the additional disturbance.

The matrix Bd
n nd
  is chosen to be the Bd matrix of Section  5.b.3, and 

matrix C Id
n nd d
 . The new derived augmented linear model (n nd7 1, ) 

is detectable (see Equation [5.b.5]), which means that the states will converge 
to the real states when a Kalman filter is used; hence, this strategy can be 
employed:

 
rank

I A B
C C n n

d

d
d 8  (5.b.5)

The estimated states are:

 1 2 1ˆ p t disp del del sc px G G X I I I I d = ′   

and y G yref2 . The control specifications for MPC 1 and MPC 2 are presented 
in Tables 5.b.6 and 5.b.7. The desired glucose value yref1 is set at 100 mg/dL for 
all patients.

Table 5.b.6 Inequality constraints.

Variable Value Variable Value Variable Value

ymin 80 mg/dL umin 0 Δumin 0

ymax 140 mg/dL umax TDD * U/min Δumax 0.005 U/min

TDD, Total daily dose of each patient.
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5.b.3.7 Control Design 4: Unknown Meal Disturbance

The performance of a single MPC controller when unknown meal disturbances 
are imposed is evaluated with CD4 (the MPC specifications are presented in 
Table 5.b.6).

5.b.4  Simulation Results

In this section, the control designs are evaluated for predefined, announced 
and unknown disturbances for 10 adults with T1DM, provided by the Simulator. 
The model is developed in gPROMS, while the control designs are in MATLAB 
and gO:MATLAB to exchange data between the two environments.

5.b.4.1 Predefined and Announced Disturbances

The results are illustrated in Figure 5.b.7. Meals of 45, 70 and 60 g of carbs are 
consumed at 420, 720 and 1080 min, respectively.

5.b.4.2 Unknown Disturbance Rejection

In this section, the CD3 control design as explained before is evaluated. The 
ability of the controller to maintain the blood glucose concentration in the nor
mal range is tested for large meal sizes of 75, 100 and 90 g of carbohydrates 
given for breakfast at 7:00 am, lunch at 13:00 pm and dinner at 18:00 pm, 
respectively. The reference meal plan is 20, 30 and 25 g, respectively. The 
results are compared to the CD4 for the same meal sizes and presented in 
Table 5.b.8 and Table 5.b.9.

Table 5.b.8 shows that with CD3, on average 54% of the time is spent within 
the normal glucose values, while with CD4 the percentage of time spent in the 
normal range is 45%. With CD3 there is no event of hypoglycaemia and the 
minimum observed glucose value is 71 mg/dL for adult 9, in opposition to CD4 
for which an average 3.1% of the time is spent in hypoglycaemia with a mini
mum observed glucose value of 43 mg/dL. Additionally, the time spent in 

Table 5.b.7 Specifications of MPC 2 and the Kalman filter.

Variable Value Variable Value Variable Value

y2, min −10 mg/dL umin 0 U/min Q̂ 100

Y2, max 10 mg/dL umax 0.02 U/min R̂ 5
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Predefined disturbance Announced disturbance
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Figure 5.b.7 MPC control for 10 adults of UVa/Padova Simulator for predefined (CD1) and 
announced meal disturbances (CD2). Upper graphs: blood glucose concentration (mg/dL) 
profiles; lower graphs: control action, insulin (U/min).
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hyperglycaemia (>180 mg/dL) is much higher for CD4, with 22.8% of the time 
spent in the hyperglycaemic range, while for CD3 the respective percentage is 
13.3%. The glucose profile and the control action with both CD3 and CD4 are 
presented in Figure 5.b.8 for adult 6 for illustrative purposes.

Table 5.b.8 CD3 (predefined meal plan).

% Time 
<70

% Time 
<80

% Time
80<G <140

% Time
140<G <180

% Time
180<G <250

% Time
>250

Gmin

(mg/dL)
Gmax

(mg/dL)

Adult1 0 1.7 44.4 38.9 14.9 0 72 247
Adult2 0 0 68.4 28.4 3.1 0 83 187
Adult3 0 5.9 36.4 49.3 8.3 0 76 233
Adult4 0 0 52.8 44.8 2.4 0 87 181
Adult5 0 1.7 59.7 18.4 20.1 0 76 228
Adult6 0 5.5 56.6 14.9 22.9 0 76 226
Adult7 0 0 67.0 20.1 12.8 0 82 205
Adult8 0 6.2 57.6 28.8 7.3 0 75 226
Adult9 0 2 57.6 27 12.5 0 71 250
Adult10 0 2.1 45.5 24.0 21.9 6.5 76 276

Mean 0 2.5 54.6 29.46 12.62 0.65 77.4 225.9
SD 0 2.4 10.1 11.4 7.4 2.0 5.0 28.9

Table 5.b.9 CD4 (unmeasured).

% Time 
<70

% Time 
<80

% Time 
80<G <140

% Time 
140<G <180

% Time 
180<G <250

% Time 
>250

Gmin

(mg/dL)
Gmax

(mg/dL)

Adult1 0.3 2.4 54.5 15.3 24.3 3.5 69 269
Adult2 0 2.1 54.5 25.7 17.7 0 74 205
Adult3 4.5 5.9 44.4 38.2 10.1 1.4 43 256
Adult4 7.6 10.7 20.5 46.2 22.6 0 59 249
Adult5 0 0 49.6 23.6 26.7 0 83 237
Adult6 4.8 6.2 48.2 11.4 31.5 2.4 53 252
Adult7 6.6 12.8 52.8 9.1 16.1 8.6 58 288
Adult8 7.6 9.7 50.3 32.3 6.9 0 59 208
Adult9 0 0 44.7 35 14.2 5.9 85 283
Adult10 0 2.8 31.0 30.0 30.2 6.2 73 295

Mean 3.1 5.3 45.0 26.7 20.0 2.8 65.6 254.2
SD 3.4 4.6 11.0 12.0 8.4 3.1 13.4 31.2
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5.b.4.3 Variable Meal Time

Figure 5.b.9 shows the glucose profile for adult 6 when a meal of 50 g is given 
30 min before, 30 min after and simultaneously with the predefined 30 g refer
ence meal. It can be noticed that good glycaemic control is achieved in all cases 
with no occurring event of hypoglycaemia. When the meal is consumed 30 min 
before the predetermined meal time, prandial hyperglycaemia is occurring 
since insulin is not acting yet.

5.b.4.4 Concluding Remarks

The closed‐loop control validation studies show that the proposed control 
design CD3 can efficiently regulate the blood glucose concentration when 
tested for large meal sizes. There is no reported event of hypoglycaemia, while 
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Figure 5.b.8 Comparison of glucose regulation with control designs 3 and 4 for adult 6. The 
meals are given at 420, 720 and 1080 min and contain 75, 100 and 90 g of carbohydrates, 
respectively.
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the mean maximum glucose value is 226 mg/dL. When this control design is 
compared with CD4, it becomes obvious that superior control can be achieved 
when the feedforward action of the MPC controller is enhanced in the pres
ence of unknown meal disturbances. Further closed‐loop validation studies 
are required to verify the reliability of the proposed control performance. 
Hence, the proposed control strategy can be regarded as a potential strategy to 
compensate for the unknown meal disturbances since the validation studies 
performed for the UVa/Padova Simulator model indicate promising closed‐
loop glucose regulation.

5.b.5  Explicit MPC

The previously presented control strategy involves the on‐line solution, at each 
sampling instant, of the finite horizon open‐loop optimal control problem. 
In  order to overcome the significant online computations involved in the 
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Figure 5.b.9 Evaluation of CD3 when a meal of 50 g is given 30 min in advance, 30 min after 
and simultaneous with the reference meal of 30 g.
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closed‐loop control implementation, an alternative solution of the on‐line 
optimization problem has been proposed (Pistikopoulos et al., 2007) which lies 
on a parametric optimization‐based approach. In essence, the online problem 
is replaced by the off‐line derivation of the explicit mapping of the optimal 
decisions in the space of the plant uncertainty, as presented in Figure 5.b.10. 
This approach is presented using a simplified version of the original model for 
illustrative reasons.

The design of the controller involves the following steps:

1) The derivation of a reduced‐order linear state‐space model
2) The design of a multiparametric model predictive controller.

5.b.5.1 Model Identification

A reduced‐order, discrete‐time, state‐space model is designed with the System 
Identification Toolbox of MATLAB (R2010b) and by using the simulation data 
of the glucose–insulin model. A linearized, discrete‐time, state‐space model is 
mathematically represented by the following form:

 x k Ax k Bu k1  (5.b.6)

 y k Cx k Du k  (5.b.7)

For the particular system, the matrices A, B, C and D are:

 

A B
0 99827 0 0052979

0 0066081 0 97978
0 0001448 0 00. .

. .
. . 114586

0 00055274 0 0056066

1866 4 15 02 0

. .

. .C D

Optimization problem

Parametric controller
u(t) =g(x*)

Control u(t) Plant state x*

Process outputs yPLANTInput disturbances
w(t)

Figure 5.b.10 Multiparametric MPC.
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Figure 5.b.11 compares the dynamic model with the state‐space, reduced‐order 
model. The state‐space model approximates well the dynamic behaviour, with 
an error of 11%.

A nominal mp‐MPC is designed (Pistikopoulos et al., 2002) using the linear 
state‐space model presented previously, with constant matrices A, B, C and D. 
The following MPC formulation is considered for the glucose–insulin system:

 

min

. .
,

,
u u i

N

i ref i
j

N

j
t t Nu

y u

J Q y y R u

s t x t
1 1

2

0
1

2

1 Ax t Bu t
y t Cx t Du t

u u y
y G

i

i

1 60 0 6 60 1401 2,
tt i i N

u I t j j N
y

i u

, ,
, ,

1
0 1

 (5.b.8)

where ui is the manipulated variables (insulin, meal), yi is the controlled variable 
(glucose), yref is the optimal glucose profile, Ny is the total horizon and Nu is the 
control horizon (8,1). Food is considered as an input, with a specific modelled 
profile to test the response of the system.

For the case of constant system matrices, the optimization problem is a mul
tiparametric quadratic programming (mp‐QP) problem and can be solved with 
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Figure 5.b.11 Comparison of the original and state‐space model.



211

standard multiparametric programming techniques (Pistikopoulos et al., 2007). 
In this study, Parametric Optimization Software was used (ParOS, 2003) to obtain 
the explicit controller description, which is the optimal map of the control varia
bles as a function of the parameters of the system. This optimal map consists of 
61 critical regions and the corresponding control laws. Each of the critical regions 
is described by a number of linear inequalities i iA x b≤  and its corresponding 
control is piecewise linear U K x cf i i, where i is the index of solutions. A two‐
dimensional representation of the critical regions is shown in Figure 5.b.12.

At 600 min and 1200 min, two meals are introduced in the system of 50 mg 
and 90 mg of carbohydrates. The second graph shows insulin concentration in 
the blood after subcutaneous administration.

The performance of the controller is illustrated in Figure 5.b.13.

5.b.5.2 Concluding Remarks

The advantages of using the mp‐MPC control method in drug delivery systems are:

 ✓ Suitable for portable applications
 ✓ Testing off‐line of different scenarios to ensure the patient’s safety
 ✓ Advantages of MPC over other control designs.

Further in silico validation is required to improve the mp‐MPC performance in 
the context of the proposed framework.
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Figure 5.b.12 Critical regions for mp‐MPC.
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Appendix 5.1

A5.1 Model of UVa/Padova Simulator

Glucose Metabolism
A two‐compartment model is used to model the glucose subsystem, with Gp 
and Gt representing the plasma and tissue glucose mass (mg/kg), respectively.

 

dG
dt

EGP R U E k G k Gp
a ii p t1 2 0G Gp pb (5.A.1)

 

dG
dt

k G k G Ut
p t id1 2 0G Gt tb (5.A.2)

 
G

G
V

p

g
G Gb0  (5.A.3)

where EGP (mg/kg/min) is the endogenous glucose production, Ra (mg/kg/
min) is the rate of glucose appearance in the bloodstream after meal consump
tion, Uii and Uid (mg/kg/min) are insulin‐independent and insulin‐dependent 
glucose utilization, E (mg/kg/min) is the renal glucose excretion, k1, k2(min− 1) 
are rate parameters of glucose kinetics and Vg (dL) is the glucose distribution 
volume.
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Figure 5.b.13 Closed‐loop control performance.
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Rate of Glucose Appearance (Ra) from Meal

 

dQ
dt

k Q D tsto
kgri sto

1
1 1 0 0Qsto  (5.A.4)

 

dQ
dt

k Q k Qsto
empt sto gri sto

2
2 1 2 0 0Qsto  (5.A.5)

 

dQ
dt

k Q k Qgut
abs gut empt sto2 0 0Qgut  (5.A.6)

 
Q Q Qsto sto sto1 2 0 0Qsto  (5.A.7)

 
R

fk Q t

BWa
abs gut

Ra 0 0 (5.A.8)

k k k k a Q b D t b Q d Dempt min
max min

sto sto2 1 1tanh ( ) tanh (tt) 2

(5.A.9)

 
a1

5
2 1D b

 (5.A.10)

 
b1

5
2 D d

 (5.A.11)

where Qsto1, Qsto2 (mg) = the glucose mass in solid and liquid phase, respectively; 
Qsto (mg) = the overall glucose mass in the stomach; Qgut (mg) is the glucose 
mass in the small intestine; kempt(min− 1) is the rate of gastric emptying; a1 and b1 
are model parameters; kmax, kmin (min− 1) are the max and min gastric emptying; 
kabs (min− 1) is the rate constant of intestinal absorption; kgri is the rate constant 
of grinding; f (dimensionless) is the fraction of intestinal absorption; b and d are 
percentages of the dose; and D (mg) is the amount of ingested meal.

Endogenous Glucose Production (EGP)

 
EGP k k G k Ip p p p del1 2 3 2 0EGP EGPb (5.A.12)

 

dI
dt

k I Idel
i del p

1
1 1 0I Ipb (5.A.13)

 

dI
dt

k I Idel
i del del

2
2 1 0I Id pb (5.A.14)

where Idel2 (pmol/l) = the delayed insulin signal (chain of two compartments), 
kp1 = (mg/kg/min) the extrapolated EGP at zero glucose and insulin, kp2 
(min−1) = the liver glucose effectiveness, kp3 (mg/kg/min per pmol/l) = the insu
lin action on the liver and ki (min− 1) = the rate parameter for the delay between 
insulin signal and action.
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Insulin‐Dependent Glucose Utilization

 
U V G

k Gid
m t

m t0
0U Uid idb (5.A.15)

 
V V V Xm m mx disp0 00V Vm m  (5.A.16)

 

dX
dt

p X p I Idisp
u disp u p BASAL2 2 0 0Xdisp  (5.A.17)

 U U Utot ii id (5.A.18)

where Xdisp (pmol/L) = insulin in the interstitial fluid, Vm0 (mg/kg/min) and km0 
(mg/kg) are the Michaelis–Menten related parameters, Vmx (mg/kg/min per 
pmol/liter) is the disposal of insulin sensitivity and p2u (min− 1) is the rate con
stant of insulin action on peripheral glucose utilization.

Glucose Renal Excretion

 
E

k G k if G k
if G k

e p e p e

p e

1 2 2

20
0 0E  (5.A.19)

where ke1 (min− 1) is the glomerular filtration rate, and ke2 (mg/kg) is the glucose 
renal threshold.

Insulin Kinetics

 

dI
dt

k k I u tsc
d a sc

1
1 1 1 10I Isc sc ss (5.A.20)

 

dI
dt

k I k Isc
d sc a sc

2
1 2 2 2 20I Isc sc ss (5.A.21)

 

dI
dt

m m I m Il
l p1 3 2 0I Il lb (5.A.22)

 

dI
dt

m m I m I k I k Ip
p l a sc a sc2 4 1 1 1 2 2 0I Ip pb (5.A.23)

 
I

I
V

p

i
I Ib0  (5.A.24)

 
m HE m

HE
b

b
3

1

1
 (5.A.25)

where Il (pmol/kg) is insulin mass in the liver; Ip (pmol/kg) is insulin mass in 
the plasma; I (pmol/l) is the plasma insulin concentration; Isc1 (pmol/kg) is the 
amount of non‐monomeric insulin in the subcutaneous space; Isc2 (pmol/kg) is 
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the amount of monomeric insulin in the subcutaneous space; u(t) (pmol/kg/
min) is the exogenous insulin infusion rate; m1, m2, m3, m4 (min− 1) are the rate 
parameters of insulin kinetics; VI (L/kg) is the insulin distribution volume; kd 
(min− 1) is the rate constant of insulin dissociation; ka1 (min− 1) is the rate constant 
of non‐ monomeric insulin absorption; and ka2 (min− 1) is the rate constant of 
monomeric insulin absorption.

Appendix 5.2

The optimal state estimation is calculated using the algorithm given in 
Equations (5.B.1)–(5.B.5), which includes a two‐step approach (Chui & Chen, 
2008). The first step predicts the state and covariance estimates using the 
model equations and previous estimates, while the second updates the predic
tion using information from the observations.

Time Update/“Prediction”

State prediction:

 1 1ˆ ˆk kkx Ax Bu− −= +  (5.B.1)

Projection of the error covariance:

 P AP A Qk k
T

1  (5.B.2)

Measurement update/“correction”

Computation of the Kalman gain:

 
K P H HP H Rk k

T
k

T 1
 (5.B.3)

State estimate update:

 
( )ˆ ˆ ˆk k k k kx x K z Hx− −= + −  (5.B.4)

Error covariance update:

 P I K H Pk k k  (5.B.5)

Appendix 5.3

Linearized Model

Matrices A, B, C, D and Bd. Bd accounts for the basal level of the states.
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6

6.1  Towards a Personalised Treatment for 
Leukaemia: From in vivo to in vitro and in silico

Leukaemia is a severe cancer of the blood, currently affecting more than 8000 
individuals in the UK on an annual basis (for more details, see Chapter  7). 
Traditional clinical diagnosis and further treatment focus on each patient’s 
clinical symptoms and signs, characteristics (e.g. sex and family history) and 
laboratory imaging evaluation. This process is a reactive approach to the disease, 
initiating after the disease symptoms appear. Moreover, in the past, drug devel-
opment by pharmaceutical industries was based on empirical observations. 
However, nowadays, with the significant progress constantly taking place in the 
areas of genomics, proteomics and metabolomics, it is believed that specific 
information related to the genetic characteristics and proteomic and metabo-
lomic profiles of an individual patient could be used to tailor medical care (so‐
called personalised medicine). In this context, personalised healthcare is expected 
to deliver a step change in (a) quality and value of care, through more precise and 
personalised diagnostics as well as cost‐effective and targeted therapies; (b) the 
pharmaceutical industry through a more efficient drug development process 
based on improved disease and drug discovery platforms and modelling of 
patient‐specific and disease‐specific biomarker endpoints; and (c) the diagnostics 
industry through the advent of diagnostic tests. Some of the challenges in delivery 
of personalised medicine lie in (a) the fidelity and validity of current experimental 
systems (i.e. in vitro) used to investigate human disease, (b) the integration of 
patient‐specific and disease‐specific datasets (i.e. in silico) and (c) the application 
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of these models into practice to identify simple targets and more efficient, yet less 
toxic, therapies for a specific condition (i.e. in vivo). Therefore, “closing the loop” 
from in vivo to in vitro and in silico is a first step towards optimisation and, 
consequently, personalisation of chemotherapy treatment.

Figure 6.1 describes the different parts of the integrated platform for optimi-
sation of chemotherapy for leukaemia treatment, which is currently being 
designed in the Centre for Process Systems Engineering at Imperial College 
London (Velliou et al., 2014).

This platform includes (a) an in vitro and (b) an in silico part. Development 
and optimisation of (a) and (b) will eventually bridge the gap between laboratory 
experimentation/mathematical modelling and in vivo optimal chemotherapy 
treatment for a specific individual.

The following sections include a more detailed description of each individual 
block of the platform described in Figure 6.1.

6.2  In vitro Block of the Integrated Platform 
for the Study of Leukaemia

An appropriate in vitro platform (i.e. a 3D structure that mimicked the bone 
marrow) was developed by Mortera et  al. (2010, 2011), consisting of highly 
porous polyurethane (PU; pore size = approx. 100 µm) of dimensions 5 × 5 × 5 mm 
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Figure 6.1 Towards optimisation/personalisation of chemotherapy for leukaemia 
treatment. Source: Velliou et al. (2014). Reproduced with permission of Elsevier.
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(Figure 6.2), which allows perfusion of nutrients and oxygen within the matrix. 
The adhesion signals of the extracellular matrix (ECM) are recapitulated by coat-
ing this PU cube with collagen type 1. This 3D scaffolding system successfully 
supported the long‐term expansion of leukaemic cell lines for over 6 weeks. 
Moreover, it successfully supported expansion and differentiation of umbilical 
cord blood cells (blood cells with high proliferation/differentiation potential that 
are extracted from the cord which arises from the navel that connects the foetus 
with the placenta) without any exogenous cytokines for a timeframe of 4 weeks, 
in contrast to traditional 2D culture systems that allowed umbilical cord blood 
cells expansion only for a few days in the absence of exogenous growth factors. 
Therefore, this 3D scaffolding system provides an ideal laboratory high‐through-
put technical platform for screening several environmental factors and identify-
ing those that are crucial for the successful ex vivo expansion of normal and 
leukaemic blood.

More details on the in vitro studies of leukaemia are described and analysed 
in Chapter 7.

6.3  In silico Block of the Integrated Platform 
for the Study of Leukaemia

The most common treatment for acute myeloid leukaemia (AML), a severe 
and aggressive type of leukaemia, is intensive chemotherapy (see also 
Chapter 7). The latter involves exposure of the patient to cytotoxic drugs which 
interact with highly proliferative cells. More specifically, only cells that are in 
specific phases of the cell cycle (e.g., the process by which cells duplicate; see 
also Chapter 7) will be eliminated. Since healthy cells also proliferate in order 
to renew the cellular material, they will equally be affected. It is, therefore, 
crucial to maintain a balance between the number of cancer cells killed and the 
loss of healthy cells. However, clinical treatment protocols ignore the mecha-
nisms behind drug action on the normal and abnormal populations, which can 
lead to over‐ or under‐treatment. A more rational approach for the design of 

5 mm

(a)

5 mm

5 mm

(b) (c)

Figure 6.2 (a): Geometry of the 3D scaffolds; (b–c) scanning electron microscopy (SEM) 
images of the highly porous 3D scaffolds, including seeded leukaemic cells. 
Source: Velliou et al. (2014). Reproduced with permission of Elsevier.
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clinical treatment protocols based on the personalisation of the chemotherapy 
schedule for each individual patient was developed by Pefani et al. (2013, 2014; 
for more details, please see Chapter 8). A schematic overview of the modelling 
approach is presented in Figure 6.3.

The model is composed of two main sections: pharmacokinetics (PK), which 
describes the elimination of the drug by the organs, and pharmacodynamics 
(PD), which accounts for the effects of the drug on the cells in the bone mar-
row, which is the location of the tumour generation. The main input to the 
system is the treatment inflow, the value of which is calculated based on 
the administration route and the injection rate of the drug. The resulting drug 
concentration reaches the body through the bloodstream, delivering it to the 
organs, which absorb it at different rates. Mass balances are performed in each 
of these organs, giving the drug concentration profiles. The drug concentration 
profiles calculated in the PK model are the main input for the PD model, in 
which the effect of the drug on the normal and the cancer cell populations is 
computed according to cell cycle kinetics of each population. Two separate 
models are used for each of them.

Because most of the cancer cells are proliferating, the cell cycle model in this 
case incorporates three compartments in which the cells are non‐resting. Each 
of them is described by the mass balance between body compartments (includ-
ing cell death by drug action, if applicable). The transition rates are dependent 
on cell cycle times and natural apoptosis rates in each of the phases (Basse 
et al., 2003). The normal cell population model considers a proliferative popu-
lation and a resting population that can move into a proliferative state. In both 
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Figure 6.3 Mathematical optimisation of chemotherapy treatment for AML. 
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cases, the cell cycle kinetics are modelled through a set of ordinary differential 
equations (ODEs) (one per compartment y):

 
dP
dt

k T P k T P effect Py
y y y y y y j y1 1 1  (6.1)

where Py and Py−1 are the number of cells in compartments y and y − 1; ky(Ty) 
and ky−1(Ty−1 ) are the transition rates from compartment y and y − 1, respec-
tively (dependent on the duration of the corresponding phases, Ty and Ty−1); 
and effectj is the effect of drug j in the compartment.

More details on the in silico studies of leukaemia are described and analysed 
in Chapter 8.

6.4  Bridging the Gap Between in vitro and in silico

As mentioned in Section  6.2, an appropriate in vitro platform (see also 
Chapter 7) will enable the ex vivo cultivation of leukaemia derived from patients 
and, consequently, the identification and quantification of factors that crucially 
affect the cancer’s evolution. Data derived from the in vitro platform will serve 
as an input for the in silico platform (see also Chapter 8), leading to the con-
struction of advanced models and ultimately to the prediction of the optimal 
chemotherapy dosage for a specific individual (Figure 6.1).

Chapters 7 and 8 focus on a detailed description of the in vitro and in silico 
studies of leukaemia.
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7

7.1  Description of Biomedical System

This chapter describes human normal and abnormal (i.e., so‐called leukaemia) 
haematopoiesis, the latter being a severe cancer of the blood. The process of 
haematopoiesis – normal and abnormal – as well as the bone marrow (BM) 
architecture and the cell cycle procedure are analysed. Moreover, current 
experimental platforms for studying leukaemia ex vivo and parameters that 
have to be taken into consideration when designing a treatment protocol (i.e., 
chemotherapy) are discussed and analysed.

7.1.1 The Human Haematopoietic System

Haematopoiesis (or haemopoiesis) is the process of blood cell production from 
haematopoietic stem cells (HSCs). The word is derived from the Greek word 
αἷμα, which means blood, and the verb ποιεῖν, which means to make. In the 
human body, this process takes place in a three‐dimensional (3D) microenvi-
ronment, the BM (see also Section 7.1.2).

HSCs are unique mainly due to their self‐renewal ability (i.e., the ability to 
divide and produce at least one daughter cell identical to the mother one), as 
well as their ability to differentiate into either the myeloid or the lymphoid 
blood lineage, therefore leading to the formation of a variety of mature blood 
cells such as megakaryocytes, macrophages, erythroid cells (erythrocytes), 
platelets, dendritic cells (Quesenberry and Colvin, 2001; Buttery and 
Shakesheff, 2008), lymphocytes (T and B cells), natural killer cells and plasma 
cells (Figure 7.1) (Quesenberry and Colvin, 2001; Ryan et al., 2001). HSCs can 
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be divided into long‐term stem cells (LT‐HSCs) and short‐term progenitor 
cells (ST‐HSCs). LT‐HSCs have a self‐renewal capability which may last up to 
several months, and they may differentiate towards progenitor cells. ST‐HSCs 
have shorter self‐renewal capability compared to LT‐HSCs; they can differenti-
ate immediately towards a variety of mature blood cells (Marshak et al., 2001).

The HSC differentiation process is regulated by cytokines and growth 
 factors. Cytokines are small molecules of protein or glycoprotein nature that 
act as signalling molecules (Gilman et al., 2001). They act in short distances 
and concentrations by binding in specific cell membrane receptors, and their 
role is crucial for the progression of haematopoiesis, inflammation and immu-
nity. Many cytokines can participate in a variety of actions at different stages 
and lineages of haematopoiesis. Examples of cytokines that regulate the hae-
matopoietic system are the interleukins (cytokines with pleiotropic actions), 
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thrombopoietin (regulator of megakaryocytopoiesis and platelet synthesis), 
erythropoietin (crucial for erythrocyte production) and the inhibitors (which 
mainly inhibit the differentiation of progenitor to mature blood cells, therefore 
blocking the haematopoietic process) (Quesenberry and Colvin, 2001).

7.1.2 General Structure of the Bone Marrow Microenvironment

In adult humans, the process of haematopoiesis takes place in the BM, which is 
a 3D organ of high complexity. In the BM of an adult human, approximately 
6 billion cells are produced per kilogram of body weight on a daily basis, from 
which 2.5 billion cells are red blood cells, 2.5 billion are platelets and 1 billion are 
granulocytes (Abboud and Lichtman, 2001; Beutler et al., 2001). The BM lies 
within the trabecular bone which, together with the BM stroma, is the physical 
support for the maintenance of haematopoiesis (Panoskaltsis et al., 2005). The 
stroma consists of a variety of cells: endothelial cells (they cover the inner part 
of the sinus and control the inflow and outflow of molecules), reticular cells 
(they form part of the adventitial coating of the vascular sinus), adipocytes (they 
develop by lipogenesis of fibroblast‐like cells, and they promote haematopoie-
sis), bone cells (osteoblasts and osteoclasts), macrophages and lymphocytes 
(they enhance cell–cell interaction in the BM and produce growth factors essen-
tial for haematopoiesis). In addition to the stroma cells that nurture the haema-
topoietic process in microenvironmental niches, an important feature of the 
BM is the extracellular matrix (ECM) (Abboud and Lichtman, 2001; Beutler et 
al., 2001; Charbord, 2001). The ECM is a supportive structure which consists of 
proteins: the so‐called extracellular matrix proteins (EMPs), such as proteogly-
cans and glycoaminoglycans (structural macromolecules); laminin, hemonectin 
and fibronectin, which are adhesive proteins; as well as collagen types I, III and 
IV (Abboud and Lichtman, 2001; Beutler et al., 2001; Panoskaltsis et al., 2005).

The ECM together with the BM stroma and the trabecular bone form a 3D 
structure which in combination with the blood vessels and sinusoids serve as an 
appropriate microenvironment for the haematopoietic process to take place 
(i.e., the haematopoietic inductive microenvironment [HIM]) (Trentin, 1970; 
Naito et al., 1992). In the HIM, growth, proliferation, differentiation and self‐
renewal of HSCs take place via the interactions between HSCs, the ECM, the 
BM stroma and cytokines, leading to the production of a variety of mature blood 
cells. In haematopoiesis, one HSC is able to divide at least 50 times and generate 
1015 cells (Dorshkind, 1990; Kollet et al., 1993; Panoskaltsis et al., 2005).

For the efficient reproduction of ex vivo haematopoiesis, it is essential to 
maintain, on the one hand, the self‐renewal potential and, on the other hand, 
the differentiation capability of HSCs towards progenitors and eventually 
mature blood cells. For this maintenance to be achieved, it is critical to provide 
an in vitro HIM which should mimic the structure and properties of the in vivo 
HIM (see also Section 7.2).
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7.1.3 The Cell Cycle

Each living cell results from the division of a mother cell. This process of cell 
reproduction is essential for the maintenance of a living organism from the 
simplest single cell to advanced organisms. The cell cycle can be defined as a 
series of events which lead to the duplication and further division of a single 
cell to two daughter cells. The cell cycle can be divided in four stages, or phases: 
the G1 phase (growth phase), the S phase (DNA‐synthesis phase), the G2 phase 
(pre‐mitotic phase) and the M phase (mitosis phase) (Figure 7.2 and Table 7.1). 
G1 and G2 are considered gap phases as they are phases at which more time is 
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Figure 7.2 The cell cycle.

Table 7.1 The phases of the cell cycle.

State Phase Process taking place in each phase

Quiescent/resting G0 The cell either has left the cycle or has not entered it 
yet; the cell does not divide.

Interphase G1 Cells increase in size.
S The genetic material (DNA) of the cell is duplicated.
G2 At this gap phase between DNA synthesis and mitosis, 

cell growth takes place.
Cell division M Cell division (cytokinesis) takes place, leading to two 

daughter cells.
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given for the cells to grow (a process that is much more time‐consuming than 
duplication and chromosome segregation). An additional phase is the G0, 
which describes a phase at which the cells are not in any of the cell cycle phases, 
and therefore are non‐dividing (Morgan, 2007).

Control of the cell cycle can be defined as a series of tightly regulated molecular 
switches which trigger the initiation of specific cell cycle events at a certain regu-
latory checkpoint (Morgan, 2007). Control of the cell cycle and consequently 
transition from one phase to another are regulated by enzymes, the cyclin‐
dependent kinases (CDKs). CDKs are activated at specific stages of the cell cycle 
by binding to cyclins (i.e., regulatory proteins). Cyclins function as positive regu-
latory molecules that help the transition from one stage of the cell cycle to the 
next, depending on their concentration which fluctuates throughout the cell 
cycle. More specifically, the initiation of the cell cycle starts in mid‐ to late G1 
phase, when cyclin E reaches a maximum concentration/expression. Cyclin E 
binds to its CDKs, giving the signal for the G1/S switch. Similarly, cyclin A regu-
lates the S/G2 transition and cyclin B the entrance to mitosis (i.e., the G2/M 
transition) (Hartwell et al., 1989; Murray and Krischner, 1989; Morgan, 1997).

Extensive research has indicated that cell cycle progression is crucial for the 
evolution of leukaemia since the main characteristic of a cancer cell is an 
uncontrolled high proliferation (Figure  7.3). Consequently, most available 
chemotherapy drugs target stopping this high proliferation by interfering with 
the cell cycle and blocking cells that are in the process of replication (see, e.g., 
Balgobind et al., 2010; Kaiser et al., 2011). Different chemotherapy drugs act in 
different phases of the cell cycle (see also Section 7.1.5).
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7.1.4 Leukaemia: The Disease

Leukaemia is a severe cancer of the haematopoietic system characterized 
by the inability of blood progenitors to mature normally, leading to the accu-
mulation of immature white blood cells (i.e., the so‐called blasts) in the BM 
(Beutler et al., 2001). Alternatively, this disease can be viewed as the forma-
tion of an abnormal haematopoietic tissue, the initiation of which is the result 
of the function of a small amount of leukaemic stem cells (LSCs) (Passegué 
et al., 2003). Depending on the decrease of the normal blood cell populations, 
the disease symptoms can consist of fatigue, haemorrhage, infections and 
fever. Moreover, dyspnoea or other symptoms may occur as leukaemic cells 
circulate in the body and infiltrate tissues. The health condition of the patient 
depends on the amount of normal blood cells compared with those that are 
leukaemic. According to Cancer Research UK in 2011, 8616 people in the UK 
were diagnosed with leukaemia, and in 2010 4503 deaths from that disease 
occurred. Moreover, 82,300 new cases of leukaemia were diagnosed in 2012 
within the European Union.

Leukaemia can be divided in different types, depending on the haematopoi-
etic lineage at which the proliferation disorder occurs. More specifically, mye-
loid leukaemia occurs in the myeloid lineage, and lymphocytic leukaemia occurs 
in the lymphoid lineage. Depending on the speed of the disease, the evolution 
of leukaemia can be divided into acute (i.e., the number of the blasts increases 
rapidly, leading to a faster disease evolution) and chronic (i.e., the progress of 
the disease is slower, as there is a production of partly mature but not functional 
white blood cells). Based on this categorization, the following four general types 
of leukaemia can be found: acute myeloid leukaemia, chronic myeloid leukae-
mia, acute lymphocytic leukaemia and chronic lymphocytic leukaemia.

Acute myeloid leukaemia (AML) is one of the most aggressive types of 
 leukaemia. According to Cancer Research UK, approximately 2921 cases of 
AML occurred in 2011 in the UK. AML is a type of leukaemia which is charac-
terized by an increased proliferation of immature blasts in the myeloid lineage 
and as a consequence insufficient red blood cell production. These blasts have 
low proliferation capability. However, a small population of cells with higher 
proliferation capacity and self‐renewal potential (i.e., the LSCs) are the key 
component for the maintenance of the disease (Bonnet and Dick, 1997). AML 
is usually the result of somatic mutations in either a pluripotent HSC or a 
slightly differentiated progenitor cell, and it leads to a deregulation and/or 
inhibition of normal haematopoiesis due to space restrictions and inhibitory 
and clonal factors specific to the disease (Lowenberg et al., 1999; Lichtman, 
2001; Panoskaltsis et al., 2003).

Chronic myeloid leukaemia (CML) (alternatively known as chronic granulo-
cytic leukaemia [CGL]) is a stem cell disease of the myeloid lineage that is 
characterized by an exaggerated granulocytosis, anaemia, granulocytic imma-
turity, basophilia and splenomegaly. There is an extreme cellular accumulation 
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in the BM, and from a genetic point of view in 90% of the cases a reciprocal 
translocation between chromosomes 9 and 22 is observed (i.e., the so‐called 
Philadelphia (Ph) chromosome or translocation). In many cases, the disease 
can progress into a very high‐speed phase, resembling AML (Lichtman, 2001). 
CML is a rather rare cancer of the blood. According to Cancer Research UK, 
675 patients were diagnosed with CML in 2011 in the UK.

Acute lymphocytic leukaemia (ALL) (alternatively known as acute lymphoblas-
tic leukaemia) is a type of leukaemia which mostly affects children. Approximately 
4000 cases of ALL are reported on an annual basis in the USA, of which two‐
thirds are children (Pui and Evans, 2006). According to Cancer Research UK, 654 
cases of ALL were diagnosed in 2011 in the UK ALL is a leukaemia in which the 
cellular deregulation occurs in the lymphoid lineage of the haematopoietic sys-
tem. More specifically, an abnormality in the lymphocytes takes place, leading to 
an accumulation of non‐functional white blood cells (blasts) in the BM, as a 
result of abnormal cellular proliferation, blocking of cellular differentiation and 
increased resistance to apoptosis (i.e., cell death) (Pui, 2009).

Chronic lymphocytic leukaemia (CLL) is a type of leukaemia which is charac-
terized by an accumulation of immature lymphocytes (i.e., of the B‐cell line-
age) in the human BM, peripheral blood and lymphoid tissues (Kipps, 2001). 
The progress of CLL is much slower than that of ALL, and it affects older 
adults (i.e., people above 51 years of age). According to the National Health 
Service (NHS), about 2400 people are diagnosed in the UK with CLL on an 
annual basis, and the disease affects 2.7 persons per 100,000 in the USA (Kipps, 
2001). According to Cancer Research UK, in 2011, 3233 people were diagnosed 
with CLL in the UK. According to the American Cancer Society, 15,490 people 
in the USA were diagnosed with CLL in 2009.

7.1.5 Current Medical Treatment

The most common treatment for all types of leukaemia is chemotherapy. For 
more accelerated types (such as AML), a first round of induction chemotherapy 
starts directly after diagnosis, followed by a remission period before the con-
solidation, which normally consists of additional chemotherapy and in some 
cases transplantation from a donor or from the patient’s HSCs  –  the latter 
being rarer (Cancer Research UK, 2011).

A variety of chemotherapy drugs are generally used, depending on the type 
of leukaemia. The most commonly used drugs for treatment of leukaemia are 
cytarabine (cytosine arabinose [ara‐C]), which is an antimetabolite targeting to 
block the DNA/RNA replication by attacking the cells that are in the S phase of 
the cell cycle, and the anthracycline drugs (such as fludarabine), which attach 
cells that are in the G1 phase of the cell cycle (American Cancer Society, 2013). 
Current chemotherapy treatment protocols are designed based on pre‐clinical 
animal experiments, empirical clinical trials as well as the acquired experience 
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of subspecialist physicians. The design parameters for these protocols consist 
of the patient BM aspirate examination (blasts percentage, immunophenotype, 
cytogenetic and molecular analysis) and patient physiological characteristics 
(height and weight) for the normalization of the dose applied on the body 
 surface area (BSA).

In the remainder of this chapter, the available experimental platforms for in 
vitro studies of haematopoietic normal and abnormal (i.e., cancerous cells) are 
described in detail. Moreover, the effect of a variety of environmental factors 
on the cellular evolution – on a macroscopic kinetics, a cell cycle progression 
and a metabolic level – is pointed out. These environmental factors should be 
taken into consideration when designing experiments, as their impact is of 
great importance for the leukaemic evolution in vitro and, therefore, for under-
standing the mechanisms of the blood cancer progression.

7.2  Experimental Part

7.2.1 Experimental Platforms

A first step towards understanding and further optimising chemotherapy for 
AML treatment is the conduction of in vitro studies that aim at the reproduc-
tion of the in vivo environment (Mayani et al., 2009). A variety of ex vivo research 
in both normal and abnormal haematopoiesis is conducted in a two‐ 
dimensional (2D) environment (e.g., laboratory T‐flasks or micro‐plates). For 
example, Koller et  al. (1993) achieved expansion of BM mononuclear cells 
(MNCs) ex vivo in stirred 2D laboratory flasks. Collins et al. (1998) successfully 
expanded peripheral and cord blood cells in serum‐free spinner cultures. 
Giarratana et al. (2005) successfully grew and differentiated cord blood cells ex 
vivo. Despite the fact that 2D cultures enable the understanding of growth and 
differentiation of HSCs, (a) they require a high amount of exogenous growth 
factors that differ from the in vivo environment, therefore creating an artefact in 
the culture and consequently in the cell kinetics; and (b) they are unable to reca-
pitulate the in vivo BM microenvironment (Rabinowitz et al., 1993; Engelhardt 
et al., 2001; Kirito et al., 2003; Levac et al., 2005; Panoskaltsis et al., 2005).

For the latter to take place, several researchers focused on the development 
and further study of normal and leukaemic haematopoiesis in 3D culturing 
systems. In particular, these cultures recapitulate the architectural characteris-
tics of the BM microenvironment by using a variety of polymer‐based bioma-
terials and/or the BM ECM by using specific proteins and/or the BM stromal 
support by co‐culturing HSCs with appropriate cellular systems (Lee‐Thedieck 
and Spatz, 2012). For example, Tun et al. (2002) observed an increased expan-
sion and proliferation of murine BM cells in a 3D polyvinyl formal (PVF) 
porous scaffolding system compared to suspension cultures. Feng et al. (2006) 
managed to successfully expand HSCs in 3D polyethylene terephthalate (PET) 
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scaffolds coated with fibronectin to mimic the ECM of the BM. The expansion 
in 3D was much higher than that observed in 2D controls. Lutolf et al. (2009) 
observed increased proliferation of murine HSCs in polyethylene glycol (PEG) 
hydrogels. Moreover, in the presence of specific proteins such as Wtn3 and 
N‐cadherin, proliferation decreased in the PEG hydrogels similarly to what 
was observed in vivo, pointing out that the hydrogels mimicked efficiently the 
BM niche. Lee and Kotov (2009) manufactured inverted colloidal crystal (ICC) 
scaffolds using a layer‐by‐layer (LBL) assembly technique. The created micro-
film functioned as a 3D ex vivo mimicry of the thymic microenvironment as 
successful differentiation of HSCs towards T cells was observed. Nichols et al. 
(2009) fabricated ICC polystyrene and silica gel scaffolds that successfully sup-
ported maintenance and differentiation of murine HSCs towards B cells for a 
time frame of 2 weeks. Mortera‐Blanco et al. (2010, 2011) developed 3D col-
lagen‐coated polyurethane (PU) scaffolds that supported the long‐term (up to 
6 weeks) growth of AML and the long‐term cytokine‐free expansion of HSCs 
derived from umbilical cord blood, respectively. Leisten et al. (2012) proposed 
a 3D collagen‐based gel system as an efficient in vitro bone marrow niche 
model in which haematopoietic progenitor cells (HPCs) proliferate and expand 
highly when co‐cultured with MSCs. Ferreira et  al. (2012) constructed 3D 
fibrin scaffolds in which successful expansion of HSCs derived from umbilical 
cord blood took place in the presence of exogenous cytokines and stromal sup-
port. Alijtawi et al. (2014) observed an increased resistance of the HL‐60 and 
Kashumi leukaemic cell lines to drug (cytarabine)‐induced apoptosis in 3D 
polyglycolic acid/poly‐L‐lactide (PGA/PLLA) copolymer disks, compared to 
cell co‐cultures in 2D. Raic et al. (2014) developed macroporous PEG diacrylate 
(PEGDA) hydrogels which were co‐polymerized with the minimal integrin 
RGD in order to enable cell adhesion. Within these hydrogels when co‐cultured 
with human BM mesenchymal cells and/or osteoblast‐like cells, expansion, 
differentiation and maintenance of HSC stemness were achieved.

7.2.2 Crucial Environmental Factors in an in vitro System

In order to achieve an efficient ex vivo recapitulation of the BM niche, next to 
the 3D architectural characteristics (e.g., structure, presence of adhesion pro-
teins or appropriate cellular stromal support), particular consideration needs to 
be given to environmental conditions such as oxygen, nutrient and growth fac-
tor concentrations. In Section 7.2.2.1, a detailed description of the impact of 
environmental parameters on normal and/or abnormal haematopoiesis is given.

7.2.2.1 Environmental Stress Factors and Haematopoiesis
Fluctuations in the microenvironmental conditions (e.g., oxygen concentra-
tion, and composition and concentration of nutrients such as glucose, cytokines 
or other growth factors) may be experienced as an environmental stress and, as 
a consequence, can highly affect the normal and abnormal haematopoietic 
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proliferation, metabolic activity, resistance and further evolution. For example, 
a variety of researchers have shown that oxidative stress (i.e., increase in the 
concentration of reactive oxygen species [ROS]) leads to activation of survival 
pathways, and it is a key factor that promotes progression of cancerous stem 
cells as well as resistance to chemotherapy (see as examples Fruehauf and 
Meyskens, 2007; Lyu et al., 2008; Liu et al., 2009; Adbal Dayem et al., 2010).

Especially in the case of the abnormal haematopoietic situation of AML, 
alterations of the oxygen and glucose concentration, on the one hand, in the 
different body compartments (e.g., in the BM and the peripheral blood or 
the  liver) and, on the other hand, between patients (e.g., individual cases of 
hypoglycaemia or hyperglycaemia) may lead to a different stress adaptation of 
the leukaemic population. The latter will most likely affect the cancer growth, 
the inactivation kinetics and the response to a chemotherapeutic drug in vivo.

A variety of research has revealed the strong relation between resistance, 
that is, longer survival and increased proliferation of haematopoietic and/or 
leukaemic cells and/or resistance to chemotherapy, with (1) oxygen or (2) star-
vation stress in vitro and/or in vivo.

For example, Fecteau et al. (2013) observed an increased in vitro survival of 
cells from BM aspirates of patients with CLL in 5% O2 compared to 20% O2. 
This increased survival under hypoxic conditions was a result of the MSC 
increased proliferation and production of soluble pro‐survival factors (i.e., 
CXCL12). Interactions between CLL and (increased) MSCs lead to enhanced 
CLL resistance.

Wilkinson et al. (2012) state that chronic oxidative stress may contribute to 
increased resistance of lymphoma patients to chemotherapy. This is due to the 
fact that oxidative stress leads to alteration of the mitochondria, that is, release 
of intermembrane proteins which lead to an increased permeabilization of the 
outer mitochondrial membrane and further resistance to apoptosis.

Zhou et al. (2010) pointed the possible relation between the relapse of AML 
and increased oxidative stress in vivo. Specifically, parameters related to oxida-
tive stress – such as activities of adenosine deaminase and xanthine oxidase, 
antioxidant capacity (T‐AOC), and levels of human thioredoxin (TRX) and 
indoleamine 2,3‐dioxygenase – as well as expression of specific genes related to 
oxidative stress were monitored in patients with AML for a time period from a 
primary to a relapsed status. Low T‐AOC and upregulated TRX expression 
lead to a relapse of the disease, indicating a strong correlation between oxida-
tive stress and AML development and relapse.

Lodi et al. (2011) observed that hypoxia is a key factor that affects the meta-
bolic activity, that is, the adaptation of phospholytic and glycolytic metabolism, 
and evolution of KG1a and K562 leukaemic cell lines. Mitochondrial respiration 
remained unaltered for both cell lines, indicating the ability of these leukaemic 
cell lines to increase their resistance under oxidative stress.
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Giuntoli et al. (2011) studied the effect of the level of glucose on the growth 
and proliferation of K562 cell lines, U937 cell lines or primary chronic myeloid 
leukaemia cells under hypoxic conditions (i.e., 0.1% O2) as well as under nor-
moxia (i.e., 21% O2). Although in general, lower growth was observed for 
lower glucose concentrations in hypoxia as well as in normoxia, glucose short-
age in hypoxia led to increased size of the leukaemic (compared to the normal) 
haematopoietic population.

Herst et al. (2011) has pointed a possible relation between the level of glyco-
lytic metabolism of AML blasts and resistance to chemotherapy. Analysis of 26 
BM aspirates showed that AML cells with higher glucose consumption were 
more tolerant to in vitro apoptosis caused by all‐trans retinoic acid (ATRA) 
and/or arsenic trioxide (ATO).

Deorosan and Nauman (2011) studied the effect of the glucose level on the 
metabolic state of MSCs cultivated in vitro in a 3D collagen‐based matrix as 
well as in a 2D system. They showed that the initial glucose level highly affects 
the metabolic state of the cells, throughout 6 days of culture. More specifically, 
they characterized the metabolic state of the MSCs via the change in the level 
of lactate (i.e., the more lactate produced, the more the cellular metabolism 
was on the anaerobic site) and via the change in the level of pyruvate (i.e., in the 
case of glycolysis, pyruvate is the main metabolic product). It was shown that 
in the 2D culture when starting with higher glucose levels, higher lactate was 
produced, indicating that the relative cellular metabolic state was anaerobic, 
compared to lower initial levels of glucose for which the lactate‐to‐pyruvate 
ratio was lower. However, in the 3D system, although the glucose level clearly 
affects the cellular viability (i.e., it is higher for higher glucose), no systematic 
trend of the lactate‐to‐pyruvate ratio was observed, pointing out that the 3D 
system needs more in‐depth investigation.

In general, from all the studies discussed here, it is clear that a systematic 
monitoring of environmental factors (Section 7.2.1), such as oxygen and glu-
cose concentration, are essential, on the one hand, for a better understanding 
of the (normal and abnormal) haematopoietic cellular proliferation and meta-
bolic activity, and, on the other hand, for more efficient in vitro mimicry of 
in  vivo systems (i.e., in which fluctuations of those factors occur). For the 
latter to take place efficiently, progressive replacement of the 2D cultures with 
3D scaffolds is essential (Section 7.2.2). In the 3D systems, in addition to the 
more efficient reproduction of the actual characteristics of the BM, such as 
the desired niche and an environment suitable for HSC expansion and dif-
ferentiation (Panoskaltsis et  al., 2005), oxygen and glucose form gradients 
within the matrix, therefore mimicking more realistically the human BM. 
Efficient control and monitoring of oxygen and glucose gradients should take 
place throughout the conduction of experiments in 3D systems (Provin et al., 
2008; Xu et al., 2008; Streeter and Cheema, 2011).
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7.2.3 Growth and Metabolism of an AML Model System 
as Influenced by Oxidative and Starvation Stress: A Comparison 
Between 2D and 3D Cultures

This section describes in detail an experimental study which deals with the 
systematic monitoring and comparison of the proliferation and metabolic 
evolution of an AML model system in 3D and 2D cultures for different oxy-
gen and glucose conditions close to physiological (in vivo) levels (Velliou 
et al., 2013, 2015). More specifically, K‐562 cell lines were cultivated in 3D 
PU porous scaffolds coated with collagen as well as in 2D suspension cul-
tures in 5% (hypoxia) as well as 20% (normoxia) oxygen and for three differ-
ent glucose levels: 4.3 g/L (optimal level generally applied in laboratory 
growth media), 1.3 g/L (highest human physiological level in vivo) and 
0.6 g/L (lowest human physiological level in vivo) for 2 weeks. This time span 
was selected as the total chemotherapy cycle, for AML treatment lasts 
approximately 10  days (NHS Trust, UK), and understanding the effect of 
environmental factors on a leukaemic population within that time frame 
would be appropriate for comparison and/or future combination with in 
vitro chemotherapy  experiments. The cellular proliferation and metabolic 
evolution were monitored.

7.2.3.1 Materials and Methods
Fabrication, Coating and Sterilization of 3D Scaffolds
3D scaffolds were fabricated and coated as previously described in Mortera 
Blanco et al. (2010).

Scaffold Fabrication For the scaffold fabrication, 3 g of PU (Noveon, Belgium) 
was added in 60 mL of dioxan (99.8% pure; Sigma Aldrich, UK). The foams 
were fabricated by thermally induced phase separation (TIPS) of polymer 
solution, followed by solvent sublimation as described in Safinia et al. (2005). 
The PU solution was frozen at −186 °C and maintained there for 2 h. Removal 
of the solvent took place by freeze‐drying in an ethylene glycol bath at −15 °C 
for approximately 3 days. Prior to coating, scaffolds were cut into 5 × 5 × 5 mm3 
cubes.

Scaffold Coating After cutting, the scaffolds were coated with collagen type I 
from calf skin (Sigma Aldrich). The cubes were first dipped in ethanol (70% 
v/v) for 1 min, then transferred in phosphate buffered saline (PBS; Gibco, UK) 
for 10 min, and then centrifuged at 2500 rpm for 10 min. Hereafter, the scaf-
folds were transferred in 62.5 µg/mL of collagen type I solution – 0.1 M soluble 
acetic acid, dissolved in deionised water – of pH 7 (re‐adjusted with addition of 
0.1 M NaOH) and centrifuged at 2000 rpm for 20 min. At the end, scaffolds 
were washed once more with PBS at 1500 rpm for 10 min.
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Scaffold Sterilisation Prior to cell seeding, sterilisation of the scaffolds took 
place by combinatory exposure to ethanol (70% v/v) and UV (230 v, 50 Hz, 0.14 A; 
Kedro Laboratory Products, UK). More specifically, the scaffolds were 
immersed in ethanol for 2 h and then washed twice with PBS – in which they 
were kept for 15 min for each washing step – before exposure for 8 min under 
UV. After sterilisation, the scaffolds were added in growth medium (see 
Section 2.3) in a humidified incubator for 3 days at 37 °C and 5% CO2 in order 
to be examined for possible contaminations.

Inoculum Preparation
The human leukaemic cell line K‐562 (human erythromyelo‐blastoid leukae-
mic cell line; product no. CCL‐243, ATCC, UK) which was originally derived 
from a patient with a blast crisis of CML (i.e., therefore resembling AML) was 
chosen as an AML model system. It has been previously reported by our group 
that this cell line can successfully expand in 3D PU collagen‐coated scaffolds 
(Mortera‐Blanco et al., 2010). After thawing, as recommended by the cell line 
supplier, the cells were expanded by cultivation on standard polystyrene non‐
pyrogenic tissue culture flasks (Fisher Scientific, USA) and in a humidified 
incubator at 37 °C in an atmosphere of 5% CO2. The cultivation medium was 
IMDM medium (Invitrogen Ltd, UK), supplemented with 10% foetal bovine 
serum (FBS, heat inactivated; Invitrogen Ltd) and 1% penicillin/streptomycin 
(Invitrogen Ltd). Feeding and appropriate re‐suspension of the cells in fresh 
medium took place every 48 h, as indicated by the supplier, until a sufficient 
cell number for the experimental purposes was reached.

Cell‐culturing Conditions
During the experiments, cells were cultured in DMEM, no‐glucose medium 
(Invitrogen Ltd) supplemented with 10% foetal bovine serum (FBS, heat inac-
tivated; Invitrogen Ltd), and 1% penicillin/streptomycin (Invitrogen Ltd) and 
either 4.3 (optimal glucose concentration as suggested by the cell line supplier 
and, therefore, considered as control [CTR]), 1.3 (highest concentration in the 
human blood, resembling hyperglycaemia [HIGH]) or 0.6 (lowest concentra-
tion in the human blood, resembling hypoglycaemia [LOW]) g/L of glucose.

2D Cultures For culturing the cells in suspension (i.e., 2D), 100 μL of cell suspen-
sion (5 × 105 cells/well) was added in a high‐throughput system (i.e., a six‐well 
tissue culture plate) that contained 1.5 mL of exhausted medium at 37 °C and 5% 
CO2 and in either normoxia (20% O2) or hypoxia (5% O2) with appropriate 
glucose concentration (i.e., [LOW], [HIGH] or [CTR]). The plates were placed 
in either a hypoxic or a normoxic incubator. Medium was changed approxi-
mately every 48 h, and the volume was re‐adjusted when needed – depending on 
the cell counts – in order to maintain the cell density suggested by the supplier, 
that is, between 105 and 106 cells per millilitre for a time period of 2 weeks.
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3D Cultures For culturing the cells in the scaffolds (i.e., 3D), 100 μL of cell 
 suspension (6 × 105 cells/well) was used in order to have approximately the 
same initial inoculum level as the 2D system, since we have observed that the 
seeding efficiency of the K‐562 cell lines was approximately 70–80% (see also 
Mortera Blanco et  al., 2010). They were seeded onto the sterilized collagen 
scaffolds, placed in 24‐well tissue culture plates and incubated for 15 min at 
37 °C, 5% CO2 and either 5 or 20% O2 (depending on the oxygen condition of 
the experiment) in order to allow the cells to settle into the scaffolds. Hereafter, 
15 mL of appropriate medium (as described above for the 2D cultures) was 
added in each well. The plates were placed in either a hypoxic or a normoxic 
incubator, and medium was changed approximately every 48 h for 2 weeks.

Determination of Growth in Two Dimensions
Determination of growth took place almost on a daily basis for all the condi-
tions under study. For growth determination in the 2D system, the whole 
medium of three different wells was removed (triplicate) and a cell count was 
performed by using the haemocytometer. 20 μL of cell suspension was added to 
20 μL of erythrosin B (ATCC, USA). 10 μL of this solution was used to fill the 
two chambers of the haemocytometer. The number of viable (unstained) and 
non‐viable (stained red) cells were counted in five 4 × 4 squares, and this number 
was extrapolated to the total volume of the equivalent well.

Determination of Growth in Three Dimensions
Quantitative assessment of the cell proliferation in the 3D scaffolds took place 
by means of changes in the number of metabolically active cells using the tetra-
zolium compound (3‐(4,5‐dimetylthiazol‐2‐yl)‐5‐(3‐carboxylmethox‐yphe-
nyl)‐2‐(4sulfophenyl)‐2H‐tetrazolium [MTS]; CellTiter96® AQueous Solution 
Cell Proliferation Assay, Promega, USA) (Yang et al., 2002). MTS was added 
and incubated with the scaffolds seeded with cells over 3 h at 37 °C, 5% CO2 and 
either 5 or 20% O2 (depending on the oxygen condition of the experiment). 
Absorbance was measured at 490 nm. In order to correlate absorbance with 
actual cell numbers, a calibration curve was constructed, correlating the cell 
number in known 2D suspension with the absorbance at 490 nm after applying 
the MTS assay. This calibration curve was used for the calculation of cell num-
bers, enabling the comparison with the 2D system.

Analysis of Metabolites
Analysis of nutrients and metabolites took place with the use of the Nova 
Bioprofiler 400 (Nova Biomedical, UK). 1.5 ml of (waste) medium was pipet-
ted and transferred in an Eppendorf tube. Centrifugation took place at 
2000 rpm for 5 min for removal of cells that could be present in the medium. 
Supernatants were stored at −20 °C prior to analysis. Samples for nutrient and 
metabolite analysis were collected approximately on a daily basis for all the 
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conditions under study, and from two different wells/conditions in order to 
account for possible variability between different wells. Nova Bioprofiler can 
detect glucose of levels up to 0.1 mM. For glucose levels lower than that, a 
glucose assay kit (abcam, UK) was used, which is able to determine glucose 
levels lower than 1 mM.

Statistical Analysis
The experiments were performed in duplicate (n = 2), and cell proliferation was 
determined in triplicate (n = 3) and bioprofiler in duplicate (n = 2) for each 
occasion. Analysis of variance was performed with a level of significance of 
p < 0.05 in order to evaluate the statistical difference/indifference between 
 different conditions.

7.2.3.2 Results and Discussion
Cellular Proliferation
In general, the cellular proliferation was higher in normoxia (20% O2) com-
pared to hypoxia (5% O2) for both the 3D and 2D system (Figure 7.4) (Velliou 
et al., 2015), apart from the [CTR] (i.e., 4.3 g/L glucose) in the 3D system at 
which no significant (p < 0.05) difference in the cell proliferation was observed 
for the two different oxygen conditions (Figure 7.4c and 7.5d).

In normoxia (i.e., 20% O2), for both the 2D and the 3D systems, no effect of 
the glucose concentration on the cellular proliferation is observed until day 9 
(Figure 7.4a and 7.5c), after which significant differences (p < 0.05) can be seen 
for different glucose levels. More specifically, in the 2D culture system, signifi-
cantly lower (p < 0.05) cell numbers are observed for the [LOW] level of glucose 
(i.e., 0.6 g/L), compared to [HIGH] (i.e., 1.3 g/L) and [CTR] (i.e., 4.3 g/L), from 
day 9 up to day 12. For this time period, no significant differences were observed 
in the cell numbers between [CTR] and [HIGH], and only at the end of the 
culturing period (i.e., day 14), the [CTR] level leads to significantly higher 
(p < 0.05) cell numbers compared to the lower glucose levels (Figure  7.4a). 
Similar trends can be observed for the 3D system: from day 9 on, a [LOW] level 
of glucose results in significantly lower cell proliferation compared to [CTR] 
and [HIGH]. Moreover, no significant difference in the proliferation between 
the two latter conditions is observed (Figure 7.4c).

In contrast, in hypoxia (i.e., 5% O2), for both the 2D and 3D systems, there is 
a higher impact of the glucose level on the cell proliferation (Figure 7.4b and 
7.5d). More specifically, for the 2D system, the effect of glucose on the K‐562 
growth becomes significant (p < 0.05) from day 9 on. From that time point, 
lower glucose (i.e., [LOW]) leads to lower proliferation, and the highest prolif-
eration is observed for the [CTR] (Figure 7.4b). The difference in the cell num-
ber for [CTR], [HIGH] and [LOW] is more evident compared to normoxia 
(Figure 7.4a and 7.4b). In the scaffolds, the impact of the level of glucose on the 
K‐562 expansion becomes significant (p < 0.05) between the [CTR] and the two 
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Figure 7.4 K‐562 growth (a,b) the 2D and (c,d) the 3D systems, at different oxygen levels: (a,c) 20% O2, and (b,d) 5% O2. 
Different colours represent different glucose levels: ( ) [CTR], ( ) [HIGH] and ( ) [LOW]. Source: This figure was originally 
published in (Velliou et al., 2015), and has been re-used with permissions.
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lower glucose concentrations ([HIGH] and [LOW]) on day 2 and among all 
three glucose levels from day 4 on. Especially, the lowest glucose level (i.e., 
[LOW]) seems to be limiting for growth in the 3D scaffolds in 5% O2, as the cell 
expansion throughout 2 weeks is very low (Figure 7.4d).

Currently, there is very limited literature available, especially in 3D scaffold-
ing systems, studying the proliferation of haematopoietic cells under oxygen 
and glucose concentrations close to physiological levels. However, several of 
the findings of Velliou et al. (2013, 2015) are in agreement with the available 
literature. For example, lower growth of K‐562 for lower glucose levels and in 
hypoxic compared to normoxic conditions was also observed by Giuntoli et al. 
(2011) in a 2D culture system. More specifically, K‐562 as well as chronic leu-
kaemia primary cells had lower proliferation in hypoxia (0.1% O2) compared to 
normoxia (20% O2), and low glucose levels in the growth medium (1.1 g/L) 
lead to lower proliferation for both oxygen conditions compared to higher 
glucose (4.3 g/L). A reversed effect of the impact of oxygen on cell survival, 
compared to our findings, was observed by Fecteau et  al. (2013) for MSCs 
derived from the BM of patients with CLL 2D culture; that is, higher survival 
and proliferation of the primary cells were observed in hypoxia (5%) compared 
to normoxia (20%).

Metabolic Evolution
Next to the cell growth, the metabolic activity of the cells (i.e., production of 
glutamate and lactate) for all the conditions under study was monitored and 
compared for different environmental conditions ([LOW], [HIGH] and [CTR] 
glucose, and 5 and 20% O2) and systems (2D vs. 3D). On the one hand, moni-
toring the cell metabolism could better elucidate the differences among the 
culturing systems and conditions, and, on the other hand, possible alterations 
of the metabolic activity could affect AML progression as well as drug response 
(e.g., Herst et al., 2011).

From a glutamate production point of view, for [CTR] glucose for almost all 
days, no significant (p < 0.05) difference between 2D and 3D can be seen in 
either hypoxia or normoxia (Figure 7.5a and 7.5b). This was most likely due to 
the fact that glucose was present in excess and the cells did not prioritise the 
glutamine (‐glutamate) pathway as a glucose supplement in cellular metabo-
lism (Deberardinis and Cheng, 2010). In contrast, under glucose limitations 
(i.e., [LOW] and [HIGH] glucose), significantly higher (p < 0.05) glutamate 
production took place in the 2D compared to the 3D system (Figure 7.5c, 7.6d, 
7.5e and 7.6f ), most likely due to glucose limitations: glutamine acts supple-
mentary to glucose metabolism for the macromolecule production and cellular 
energy demands (Deberardinis and Cheng, 2010; Wise and Thompson, 2010). 
In general, higher glutamate synthesis took place in hypoxia, compared to 
 normoxia both for the 2D and 3D systems (Figure 7.5). This is not surprisingly, 
as several studies have shown that under hypoxia, a switch from oxidative 



Figure 7.5 Evolution of glutamate [Glu] for all the environmental conditions under study. 
Different colours represent the two different culturing systems: ( ) 2D cultures and ( ) 3D 
scaffolds. Source: This figure was originally published in (Velliou et al., 2015), and has been 
re-used with permissions.
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Different colours represent the two different culturing systems: ( ) 2D cultures and ( ) 3D 
scaffolds. Source: This figure was originally published in (Velliou et al., 2015), and has been 
re-used with permissions.



In vitro Studies: Acute Myeloid Leukaemia 253

Time (days)

(Lac)-Low
0.03

(e)

0.02

0.01

0.025

0.015

0.005

0

(L
ac

) 
nm

ol
/c

el
l

1 2 3 4 5 6 7 8 9 10 11 12 130 14

(L
ac

) 
nm

ol
/c

el
l

(Lac)-Low

Time (days)

1 2 3 4 5 6 7 8 9 10 11 12 130 14

0.06
(f)

0.05

0.04

0.03

0.02

0.01

0

Time (days)

(Lac)-HIGH

(L
ac

) 
nm

ol
/c

el
l

1 2 3 4 5 6 7 8 9 10 11 12 130 14

0.07
(d)

0.06

0.05

0.04

0.03

0.02

0.01

0

Figure 7.6 (Cont’d)



Modelling Optimization and Control of Biomedical Systems254

metabolism (alteration of acetyl‐CoA to citrate ratio) to reductive glutamine 
metabolism (increase in a‐ketoglutarate to citrate) takes place (Fedt et  al., 
2013). This switch leads consequently to an enhanced glutamate production.

For lactate synthesis, apart from the [CTR] level of glucose in normoxia at 
which the lactate production was the same for 2D and 3D systems (Figure 7.6a), 
for all other conditions significantly higher (p < 0.05) lactate was produced in 
2D compared to 3D, as cellular proliferation is much higher in the 2D system 
(Figure 7.6b–f). For all glucose concentrations under study, as expected, higher 
lactate was produced in hypoxia, confirming the anaerobic cell metabolism 
(Figure 7.6). Nevertheless, a significant amount of lactate was also produced in 
normoxia as well, possibly as a result of the Warburg effect. The latter is sug-
gested to be a characteristic of highly proliferative and/or cancerous cells 
that – due to alterations or damage at the mitochondria – independently of the 
presence of oxygen do not enter the tricarboxylic acid (TCA) cycle, therefore 
following the anaerobic pathway (Warburg 1956; Vander Heiden et al., 2009, 
2010). The K‐562 cell lines are cancerous, highly proliferative cells, and there-
fore most likely following partly the anaerobic pathway under normoxic condi-
tions in both the 2D and the 3D systems (Figure 7.6).

7.2.3.3 Conclusions
From the findings of Velliou et al. (2013, 2015), it can be concluded that the 
K‐562 cell lines can proliferate and maintain for 2 weeks in medium with glu-
cose close to in vivo physiological levels (much lower than generally applied in 
laboratory systems) in both normoxia (20% O2) and hypoxia (5% O2). Generally, 
the cells proliferate higher and are metabolically more active in suspension 
(i.e., 2D), compared to the PU collagen‐coated 3D scaffolds, following a similar 
trend. Higher glutamate production was observed in hypoxia for all glucose 
conditions under study, and in hypoxia, as expected, the anaerobic metabolic 
pathway of lactate synthesis is followed. Lactate is also produced in normoxia, 
possibly as a result of the Warburg effect.

The differences that we report on the K‐562 proliferation under different 
oxygen and glucose levels as well as between the 2D and 3D cultures can be of 
significant importance when applying chemotherapy in vitro. Most chemo-
therapy agents that are generally applied for the treatment of patients with 
AML are targeting highly proliferative cells, such as anthracyclines such as 
DNR which are targeting cells of the G1 phase of the cell cycle (Cancer Research 
UK, 2011). Therefore, under oxidative or glucose stress or in a 3D microenvi-
ronment, cells proliferating slower may be less susceptible to chemotherapeu-
tics. Future work should focus on unravelling the mechanisms of interaction of 
the cells with the 3D microenvironment in order to give more light to the 
observed differences in proliferation. Moreover, studying the combined effect 
of the environmental stresses and chemotherapy in both the 2D and 3D system 
would be of high importance towards chemotherapy optimisation.
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7.3  Cellular Biomarkers for Monitoring 
Leukaemia in vitro

The possible oxidative and starvation cellular stress, as shown in Sections 7.2.2 
and 7.2.3, should be systematically followed and/or quantified through in vitro 
studies. Efficient monitoring of the level of oxidative and metabolic stress and 
further adaptation can take place via the selection and further quantification of 
specific biomarker(s) (i.e., intracellular molecules), the expression and/or con-
centration of which may alter depending on the fluctuation of oxygen and 
glucose in the system. In order to select ‘stress’ biomarker(s), an in‐depth 
investigation of possible mechanisms of oxidative and starvation stress cellular 
responses is needed. Hereafter, autophagy, a crucial mechanism which is acti-
vated in the absence of nutrients and at low oxygen levels, is described, and 
potential biomarker molecules are summarized (Velliou et al., 2014).

7.3.1 (Macro‐)autophagy: The Cellular Response to Metabolic 
Stress and Hypoxia

Autophagy is a cellular mechanism which aims at the maintenance of homeo-
stasis of a normal cell, via degradation of organelles and cellular components 
by the lysosomes (Levine and Kroemer, 2008; Banerji et al., 2012; Kongara and 
Karantza, 2012; Lozy and Karantza, 2012; Choi et al., 2013). Autophagy is acti-
vated as a result of exposure to a stress factor and most probably in the absence 
of nutrients (i.e., glucose starvation), as well as under hypoxic conditions (Lum 
et al., 2005; Scherz‐Shoural et al., 2007). Degradation of damaged mitochon-
dria, aggregated proteins and other cellular organelles via the autophagic 
mechanism protects the cells from apoptotic signalling (Moore et al., 2006; Jin 
and White, 2007). Autophagy may be important in the regulation of cancer 
development and in the determination of the response of cancer cells to chem-
otherapy (Degenhardt et al., 2006; Hippest et al., 2006; Wilkinson et al., 2012).

Several researchers have shown that autophagy plays a crucial role in main-
tenance of normal haematopoiesis and function of HSCs (Kundu et al., 2008; 
Warr et  al., 2013), and others have shown that autophagy may lead to an 
increased resistance (to chemotherapy) and survival of several cancers, includ-
ing haematological malignancies. For example, Mortensen et  al. (2011b) 
observed that loss of autophagy resulted in loss of normal function of murine 
HSCs, leading to the expansion of a progenitor cell population in the BM which 
has as a consequence a severe myeloproliferation. This myeloproliferation 
strongly resembled human AML, indicating a possible link between mainte-
nance of autophagy and avoidance of malignancies such as AML. Wallington‐
Beddoe et  al. (2011) showed that activation of autophagy (induced by the 
FTY720 drug) leads to increased survival of ALL cells.
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7.3.2 Biomarker Candidates

7.3.2.1 (Autophagic) Biomarker Candidates
For ‘switching on’ and maintenance of the autophagic response, a variety of 
genes are overexpressed, and proteins – mainly kinases – are activated and/or 
de‐activated (i.e., depending on whether they have a positive or negative regu-
latory role in autophagy). Therefore, in order to monitor autophagy in an 
in vitro system, many different biomarkers of the genomic and/or protein levels 
can be considered (see, as an overview, Table 7.2).

A possible candidate‐biomarker is the serine threonine kinase ULK1, which 
is a key initiator of autophagy; its activation is essential for clearance of cellular 
mitochondria and ribosomes (Kundu et  al., 2008). This kinase is activated 
under growth factor deprivation and leads to activation of the glycogen synthe-
sis kinase‐3 (i.e., GSK3) that phosphorylates the acetyltransferase TIP60, which 
in turn acetylates and activates ULK1 (Lin et al., 2012). Another crucial kinase 
which is directly related to autophagy is the mTOR kinase, which under normal 
nutrient concentrations binds and phosphorylates the ULK1, therefore sup-
pressing autophagy. Under nutrient deprivation, this kinase is a result of the 
activation of the P53 gene, therefore enabling activation of ULK1 and autophagy 
(Feng et  al., 2005). Another possible candidate biomarker is the Atg7 gene, 
which is an essential gene for activation of autophagy and further regulation of 
HSC maintenance (Kundu et al., 2008; Mortensen et al., 2010, 2011a). It has 
been shown that deleting this gene in murine HSCs leads to death as a result of 
an accumulation of mitochondria and ROS, increased proliferation and DNA 
damage (Mortensen et al., 2010, 2011a). FOXO3A also can be a possible bio-
marker. It has been found that it has a critical role in autophagy induced in 
mice in a cytokine‐free environment (Warr et al., 2013).

Table 7.2 Stress biomarkers for normal and abnormal HSCs.

Biomarker Genomic Protein

LKBI‐AMPK +
AMPK +
ULK1 +
P53 +
PTEN +
Atg7 +
HIF +
mTOR kinase +
FOXO3A +
FUMH +
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Several researchers have reported a tumour suppressor role of autophagy. 
More specifically, it has been shown that activation of the AMPK pathway has 
a suppressor role in AML. AMPK is a protein kinase which regulates protein 
and energy homeostasis at an intracellular level via autophagic recycling of 
intracellular components. Practically, AMPK acts as a metabolic sensor of 
alteration of the intracellular lipid composition, and it restores energy by main-
taining the balance of adenosine triphosphate (ATP) versus adenosine 
monophosphate (AMP), through the LKBI‐AMPK activation. The latter (i.e., 
LKBI‐AMPK) is a tumour suppressor in AML (Green et al., 2010). Activation 
of the P53 and PTEN genes has shown to have a tumour‐suppressive role as 
they allow initiation of autophagy via inhibition of the activity of the mTOR 
kinase (Feng et al., 2005).

7.3.2.2 (Non‐autophagic) Stress Biomarker Candidates
A biomarker related to oxidative stress is the hypoxia‐induced factor (HIF), 
which is the central regulator of oxygen homeostasis. More specifically, the 
HIF1‐a regulator is overexpressed in many cancer types, and HIF proteins 
mediate cell adaptation to hypoxia (Zhong et al., 1999; Birner et al., 2000; Talks 
et al., 2000; Warr and Passegue, 2013).

A possible starvation stress biomarker is the metabolic enzyme fumarate 
hydratase (FUMH) which converts fumarate to malate and is essential for 
glycolysis. This enzyme highly controls the intracellular levels of fumarate, 
and silencing of the expression of FUMH leads to fumarate intracellular accu-
mulation (Ratcliffe, 2007).

7.4  From in vitro to in silico

As described in this chapter, appropriate ex vivo culturing systems can be of 
substantial importance, elucidating key mechanisms and factors that affect the 
evolution of leukaemia. Quantitative information on these key mechanisms is 
an appropriate input for the construction of predictive models for the in silico 
description of leukaemia. These models can serve as tools for the optimisation 
of chemotherapy protocols leading to a personalised treatment for each indi-
vidual patient (see also Chapter  8). Moreover, quantification of appropriate 
intra‐cellular biomarkers that are related to the chemotherapy cell resistance 
can enable the combination of macroscopic kinetics with microscopic informa-
tion (specific for individual patients), leading to the construction of more 
detailed models of grey or white box nature. Due to their nature, these models 
will be more accurate and precise (in comparison to available macroscopic 
black box models) in the prediction of the response of individual patients to 
chemotherapy, as they will incorporate microscopic genetic and/or metabolic 
information which is patient specific.



Modelling Optimization and Control of Biomedical Systems258

 References

Abboud, C.N. & Lichtman, M. (2001) Structure of the marrow and the 
hematopoietic microenvironment. In: E. Beutler, B.S. Coller, M.A. Lichtman, 
T.J. Kipps & U. Seligsohn (eds.), Williams Hematology. McGraw‐Hill, 
New York.

Alijtawi, O.S., Li, D., Xiao, Y., Zhang, D., Ramachandran, K., Stehno‐Bittel, L., 
Van Veldhuizen, P., Lin, T.L., Kambhampati, S. & Garimella, R. (2014) A novel 
three‐dimensional stromal‐based model for in vitro chemotherapy sensitivity 
testing of leukemia cells. Leukemia & Lymphoma, 55(2), 378–391.

Adbal Dayem, A., Choi, H.‐Y., Kim, J.‐H. & Cho, S.‐G. (2010) Role of oxidative 
stress in stem, cancer, and cancer stem cells. Cancers, 2, 859–884.

Balgobind, B.V., Zwaan, C.M., Reinhardt, D., Arentsen‐Peters, T.J.C.M., Hollink, 
I.H.I.M., de Haas, V., Kaspers, G.J.L., de Bont, E.S.J.M., Baruchel, A., Stary, J., 
Meyer, C., Marschalek, R., Creutzig, U., den Boer, M.L., Pieters, R. & van den 
Heuvel‐Eibrink (2010) High BRE expression in pediatric MLL‐rearranged AML 
is associated with favorable outcome. Leukemia, 24(12), 2048–2055.

Banerji, V. & Gibson, S.B. (2012) Targeting metabolism and autophagy in the 
context of haematologic malignancies. International Journal of Cell Biology, 
2012, 1–9.

Beutler, E., Coller, B.S., Lichtman, M.A., Kipps, T.J. & Seligsohn, U. (eds.) (2001) 
Williams Hematology. McGraw‐Hill, New York.

Birner, P., Schind, M., Obermair, A., Plank, C., Breitenecker, G. & Oberhuber, G. 
(2000) Overexpression of hypoxia‐inducible factor 1a is a marker for an 
unfavorable prognosis in early‐stage invasive cervical cancer. Cancer Research, 
60, 4693–4696.

Bonnet, D. & Dick, J. (1997) Human acute myeloid leukemia is organized as a 
hierarchy that originates from a primitive hematopoietic cell. Nature Medicine, 
3(7), 730–737.

Buttery, L. & Shakesheff, K.M. (2008) A brief introduction to different cell types. 
In J. Polak, S. Mantalaris & S.E. Harding (ed.), Advances in Tissue Engineering, 
39–41. Imperial College Press, London.

Cancer Research UK (2011) Leukaemia. http://www.cancerresearchuk.org/
health‐professional/cancer‐statistics/statistics‐by‐cancer‐type/leukaemia

Charbord, P. (2001) Microenvironmental cell populations essential for the support 
of hematopoietic stem cells. In L.I. Zon (ed.), Hematopoiesis: A Developmental 
Approach, 691–701. Oxford University Press, New York.

Choi, A.M.K., Ryter, S.W. & Levine, B. (2013) Autophagy in human health and 
disease. New England Journal of Medicine, 368, 651–552.

Collins, P.C., Miller, W.M. & Papoutsakis, E.T. (1998) Stirred culture of peripheral 
and cord blood hematopoietic cells offers advantages over traditional static 
systems for clinically relevant applications. Biotechnology and Bioengineering, 
59(5), 534–543.



In vitro Studies: Acute Myeloid Leukaemia 259

DeBerardinis, R.J. & Cheng, T. (2010) Q’s next: the diverse function of glutamine 
in metabolism, cell biology and cancer. Oncogene, 29(3), 313–324.

Degenhardt, K., Mathew, R., Beaudoin, B., Bray, K., Anderson, D., Chen, G., 
Mukherjee, C., Shi, Y., Gelinas, C., Fan, Y., Nelson, D.A. & White, E. (2006) 
Autophagy promotes tumor cell survival and restricts necrosis, inflammation 
and turmirogenesis. Cancer Cell, 10(1), 51–54.

Deorosan, B. & Nauman, E.A. (2011) The role of glucose, serum, and three‐
dimensional cell culture on the metabolism of bone marrow‐derived 
mesenchymal stem cells. Stem Cells International, 2011, 1–12.

Dorshkind, K. (1990) Regulation of hemopoiesis by bone marrow stromal cells 
and their products. Annual Reviews of Immunology, 8, 111–137.

Engelhardt, M., Douville, J., Behringer, D., Jahne, A., Smith, A., Henschler, A. & 
Lange, W. (2001) Hematopoietic recovery of ex vivo perfusion culture 
expanded bone marrow and unexpanded peripheral blood progenitors after 
myeloblastive chemotherapy. Bone Marrow Transplant, 27(3), 249–259.

Fedt, S.M., Bell, L.M., Keibler, M.A., Olenchock, B.A., Mayers, J.R., Wasylenko, 
T.M., Vokes, N.I., Guarente, L., Vander Heiden, M.G. & Stephanopoulos, G. 
(2013) Reductive glutamine metabolism is a function of a‐ketoglutarate to citrate 
ratio in cells. Nature Communications, 4(2236). doi:10.1038/ncomms3236

Fecteau, J.‐F., Messmer, D., Zhang, S., Cui, B., Chen, L. & Kipps, T.J. (2013) 
Impact of oxygen concentration on growth of mesenchymal stromal cells from 
the marrow of patients with chronic lymphocytic leukemia. Blood, 121, 
971–974.

Feng, Q., Chai, C., Jiang, X.S., Leong, K.W. & Mao, H.Q. (2006) Expansion of 
engrafting human hematopoietic stem/progenitor cells in three‐dimensional 
scaffolds with surface‐immobilized fibronectin. Journal of Biomedical Material 
Research PART A, 78, 781–791.

Feng, Z., Zhang, H., Levine, A.J. & Jin, S. (2005) The coordinate regulation of the 
p53 and mTOR pathways in cells. PNAS, 102(23), 8204–8209.

Ferreira, M.S., Jahnen‐Dechent, W., Labude, N., Bovi, M., Hieronymus, T., Zenke, 
M., Schneider, R.K. & Neuss, S. (2012) Cord blood‐hematopoietic stem cell 
expansion in 3D fibrin scaffolds with stromal support. Biomaterials, 33(29), 
6987–6997.

Fruehauf, J.‐P. & Meyskens, F.‐L. Jr. (2007) Reactive oxygen species: a breath of life 
or death? Clinical Cancer Research, 13, 89–794.

Giarratana, M.C., Kobari, L., Lapillonen, H., Chalmers, D., Kiger, L., Cynober, T. 
et al. (2005) Ex vivo generation of fully mature human red blood cells from 
hematopoietic stem cells. Nature Biotechnology, 23, 69–74.

Gilman, A., Goodman, L.S., Hardman, J.G. & Limbird, L.E. (2001) Goodman & 
Gilman’s: The Pharmacological Basis of Therapeutics, 9th ed. McGraw‐Hill, 
New York.

Giuntoli, S., Tanturli, M., Gesualdo, F.D., Barbetti, V., Rovida, E. & Sbarba, P.D. 
(2011) Glucose availability in hypoxia regulates the selection of chronic myeloid 



Modelling Optimization and Control of Biomedical Systems260

leukemia progenitor subsets with different resistance to imatinib‐mesylate. 
Haematologica, 96(2), 204–212.

Green, A.S., Chapuis, N., Maciel, T.T., Willems, L., Lambert, M., Arnoult, C., 
Boyer, O., Bardet, V., Park, S., Foretz, M., Viollet, B., Ifrah, N., Dreyfus, F., 
Hermine, O., Moura, I.C., Lacombe, C., Mayeux, P., Bouscary, D. & Tamburini, 
J. (2010) The LKB1/AMPK signaling pathway has tumor suppressor activity in 
acute myeloid leukemia through the repression of mTOR‐dependent oncogenic 
mRNA translation. Blood, 116, 4262–4273.

Herst, P.M., Howman, R.A., Neeson, P.J., Berridge, M.V. & Ritchie D.S. (2011) The 
level of glycolytic metabolism in acute myeloid leukemia blasts at diagnosis is 
prognostic for clinical outcome. Journal of Leukocyte Biology, 89, 51–55.

Hippest, M.M., O’Toole, P.S. & Thorburn, A. (2006) Autophagy in cancer: goof, 
bad or both? Cancer Research, 66, 9349–9351.

Jin, S. & White, E. (2007) Role of autophagy in cancer: management of metabolic 
stress. Autophagy, 3(1), 28–31.

Kaiser, M., Kuhnl, A., Reins, J., Fischer, S., Ortiz‐Tanchez, J., Schlee, C., 
Mochmann, L.H., Heesch, S., Benlasfer, O., Hofmann, W.K., Thiel, E. & Baldus, 
C.D. (2011) Antileukemic activity of the HSP70 inhibitor pifithrin‐mu in acute 
leukemia. Blood Cancer Journal, 1(7), e28.

Kipps, T.J. (2001) Classification of malignant lymphoid disorders In: E. Beutler, 
B.S. Coller, M.A. Lichtman, T.J. Kipps & U. Seligsohn (eds.), Williams 
Hematology. McGraw‐Hill, New York.

Kirito, K., Fox, N. & Kaushansky, K. (2003) Thrombopoietin stimulates Hoxb4 
expression: an explanation for the favourable effects of TPO on hematopoietic 
stem cells. Blood, 102(9), 3172–3178.

Koller, M.R. & Palsson, B.O. (1993) Tissue engineering: reconstitution of human 
hematopoiesis ex vivo. Biotechnology and Bioengineering, 42, 909–930.

Kongara, S. & Karantza, V. (2012) The interplay between autophagy and ROS in 
tumorigenesis. Frontiers in Oncology, 2(175), 1–13.

Kundu, M., Lindsten, T., Yang, C.‐Y., Wu, J., Zhao, F., Zhang, J., Selak, M.A., Ney, 
P.A. & Thompson, C.B. (2008) Ulk1 plays a critical role in the autophagic 
clearance of mitochondria and ribosomes during reticulocyte maturation. 
Blood, 112, 1493–1502.

Lee, J. & Kotov, N.A. (2009) Notch ligand presenting acellular 3D 
microenvironments for ex vivo human hematopoietic stem‐cell culture made 
by layer‐by‐layer assembly. Small, 5, 1008–1013.

Lee‐Thedieck, C. & Spatz, J.P (2012) Artificial niches: biomimetic materials for 
hematopoietic stem cell culture. Macromolecular Rapid Communications, 33, 
1432–1438.

Leisten, I., Kramann, R., Ventura‐Ferreira, M.S.V., Bovi, M., Neuss, S., Ziegler, P., 
Wagner, W., Knuchel, R. & Schneider, R.K. (2012) 3D co‐culture of 
hematopoietic stem and progenitor cells and mesenchymal stem cells in collagen 
scaffolds as a model of the hematopoietic niche. Biomaterials, 33, 1736–1747.



In vitro Studies: Acute Myeloid Leukaemia 261

Levac, K., Karabu, F. & Bhatia, M. (2005) Identification of growth factor 
conditions that reduce ex vivo cord blood progenitor expansion but not alter 
human repopulating function in vivo. Haematologica, 90(2), 166–172.

Levine, B. & Kroemer, G. (2008) Autophagy in the pathogenesis of disease. Cell, 
132(1), 27–42.

Lichtman, M.A. (2001) Classification and clinical manifestations of the clonal 
myeloid disorders. In: E. Beutler, B.S. Coller, M.A. Lichtman, T.J. Kipps & U. 
Seligsohn (eds.), Williams Hematology. McGraw‐Hill, New York.

Lin, S‐Y., et al. (2012) GSK3‐TIP60‐ULK1 signaling pathway links growth factor 
deprivation to autophagy. Science, 336, 477(2012).

Liu, R. Li, Z., Bai, S., Zhang, H., Tang, M., Lei, Y., Chen, L., Liang, S., Zhao, Y.‐I., 
Wei, Y. & Huang, C. (2009) Mechanism of cancer cell adaptation to metabolic 
stress: proteomics identification of a novel thyroid hormone‐mediated gastric 
carcinogenic signaling pathway. Molecular and Cellular Proteomics, 8(1), 
70–84.

Lodi, A., Tiziani, S., Khanim, F.L., Drayson, M.T., Gunther, U.L., Bunce, C.M. & 
Viant, M.R. (2011) Hypoxia triggers major metabolic changes in AML cells 
without altering indomethacin‐induced TCA cycle deregulation. ACS Chemical 
Biology, 6, 169–175.

Lowenberg, B., Downing, J. & Burnett, A. (1999) Acute myeloid leukemia. New 
England Journal of Medicine, 341(14), 1051–1062.

Lozy, F. & Karantza, V. (2012) Autophagy and cancer cell metabolism. Seminars in 
Cell and Developmental Biology, 23, 395–401.

Lum, J., Bauer, D.E., Kong, M., Harris, M.H., Li, C., Lindsten, T. & Thompson, 
C.B. (2005) Growth factor regulation of autophagy and cell survival in the 
absence of apoptosis. Cell, 120, 237–248.

Lutolf, M.P., Doyonnas, R., Havenstrite, K., Koleckar, K. & Blau, H.M. (2009) 
Perturbation of single hematopoietic stem cell fates in artificial niches. 
Integrative Biology (Cambridge), 1, 59–69.

Lyu, B.N., Ismailov, S.B., Ismailov, B. & Lyu, M.B. (2008) Mitochondrial concept of 
leukemogenesis: key role of oxygen‐peroxide effects. Theoretical Biology and 
Medical Modelling, 5(23), 1–11.

Marshak, D.R., Gardner, R.L. & Gottlieb. D. (eds.) (2001) Stem Cell Biology. Cold 
Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Mayani, H., Flores‐Figueroa, E. & Chavez‐Gonzalez, A. (2009) In vitro biology of 
human myeloid leukaemia. Leukaemia Research, 33, 624–637.

Moore, M.N., Allen, J.I. & Somerfield, P.J. (2006) Autophagy: role in surviving 
environmental stress. Marine Environmental Research, 62, S420–S425.

Morgan, D.O. (1997) Cyclin‐dependent kinases: engines, clocks, and 
microprocessors. Annual Review of Cell and Developmental Biology, 13, 
261–291.

Morgan, D.O. (2007) The Cell Cycle‐Principles of Control. New Sciences Press, 
London.



Modelling Optimization and Control of Biomedical Systems262

Mortensen, M. & Simon, A.K. (2010) Nonredundant role of Atg7 in mitochondrial 
clearance during erythroid development. Autophagy. 6, 423–425.

Mortensen, M., Soilleux, E.J., Djordjevic, G., Tripp, R., Lutteropp, M., Sadighi‐
Akha, E., Stranks, A.J., Glanville, J., Knight, S., Jacobsen, S.‐E.W., Kamil R. 
Kranc, K.R. & Simon, A.K. (2011a) The autophagy protein Atg7 is essential for 
hematopoietic stem cell maintenance. The Journal of Experimental Medicine, 
208(3), 455–467.

Mortensen, M., Watchon A.S. & Simon, A.K. (2011b) Lack of autophagy in the 
hematopoietic system leads to loss of hematopoietic stem cell function and 
dysregulated myeloid proliferation. Autophagy, 7(9), 1069–1070.

Mortera‐Blanco, T., Mantalaris, A., Bismarck, A., Aqel, N. & Panoskaltsis, N. 
(2011) Long‐term cytokine‐free expansion of cord blood mononuclear cells in 
three‐dimensional scaffolds. Biomaterials, 32, 9263–9270.

Mortera‐Blanco, T., Mantalaris, A., Bismarck, A. & Panoskaltsis, N. (2010) 
Development of a three‐dimensional biomimicry of human acute myeloid 
leukemia ex vivo. Biomaterials, 31, 2243–2251.

Murray, A.W. & Krischner, M.W. (1989) Dominoes and clocks: the union of two 
views of the cell cycle. Science, 246, 614–621.

Naito, K., Tamahashi, N., Chiba, T., Kaneda, K., Okuda, M., Endo, K., Yoshinaga, 
K. & Takahashi, T. (1992) The microvasculature of the human bone marrow 
correlated with the distribution of hematopoietic cells: a computer‐assisted 
three‐dimensional reconstruction study. Tohoku Journal of Experimental 
Medicine, 166, 439–450.

Nichols, J.E., Cortiella, J., Lee, J., Niles, J.A., Cuddihy, M., Wang, S. et al. (2009) 
In vitro analog of human bone marrow from 3D scaffolds with biomimetic 
inverted colloidal crystal geometry. Biomaterials, 30, 1071–1079.

Panoskaltsis, N., Mantalaris, A. & Wu, D.J.H. (2005) Engineering a mimicry of 
bone marrow tissue ex vivo. Journal of Bioscience Engineering, 100, 28–35.

Panoskaltsis, N., Reid, C.D.L. & Knight, S.C. (2003) Quantification and cytokine 
production of circulating lymphoid and myeloid cells in acute myelogenous 
leukemia (AML). Leukemia, 17, 716–730.

Passegué, E., Jamieson, C.H.M., Ailles, L.E. & Weissman, I.L. (2003) Normal and 
leukemic hematopoiesis: are leukemias a stem cell disorder or a reacquisition of 
stem cell characteristics? PNAS, 100, 11842–11849.

Provin, C., Takano, K., Sakai, Y., Fujii, T. & Sirakashi, R. (2008) A method for the 
design of 3D scaffolds for high‐density cell attachment and determination of 
optimum perfusion culture conditions. Journal of Biomechanics, 41, 1436–1449.

Pui, C.H. (2009) Acute lymphoblastic leukaemia: introduction. Seminars in 
Hematology, 46(1), 1–2.

Pui, C.H. & Evans, W.E. (2006) Treatment of acute lymphoblastic leukemia. The 
New England Journal of Medicine, 354, 166–178.

Quesenberry, P.J. & Colvin, G.A. (2001) Hematopoietic stem cells, progenitor 
cells, and cytokines. In: E. Beutler, B.S. Coller, M.A. Lichtman, T.J. Kipps & 
U. Seligsohn (eds.), Williams Hematology. McGraw‐Hill, New York.



In vitro Studies: Acute Myeloid Leukaemia 263

Rabinowitz, J., Petros, W., Stuart, A. & Peter, W. (1993) Characterization of 
endogenous cytokine concentrations after high‐dose chemotherapy with 
autologous bone marrow support. Blood, 81(9), 2452–2459.

Ratcliffe, P.J. (2007) Fumarate hydratase deficiency and cancer: activation of 
hypoxia signaling? Cancer Cell, 11, 303–305

Safinia, L., Mantalaris, A. & Bismarck A. (2005) Towards a methodology for the 
effective surface modification of porous polymer scaffolds. Biomaterials, 26, 
7537–7547.

Scherz‐Shouval, E., Shvets, E., Fass, E., Shorer, H., Gil, L. & Elazar, Z. (2008) 
Reactive oxygen species are essential for autophagy and specifically regulate the 
activity of Atg4. The EMBO Journal, 26, 1749–2760.

Streeter, I. & Cheema, U. (2011) Oxygen consumption rate of cells in 3D culture: 
the use of experiment and simulation to measure kinetic parameters and 
optimise culture conditions. Analyst, 136, 4013–4019.

Talks, K.L., Turley, H., Gatter, K.C., Maxwell, P.H., Pugh, C.W., Ratcliffe, P.J. & 
Harris, A.L. (2000) The expression and distribution of the hypoxia‐inducible 
factors HIF‐1a and HIF‐2a in normal human tissues, cancers, and tumor 
associated macrophages. American Journal of Pathology, 157, 411–421.

Trentin, J.J. (1970) Influence of hematopoietic organ stroma (hematopoietic 
inductive microenvironments) on stem cell differentiation. In: A.S. Gordon 
(ed.), Regulation of Hemopoiesis, 161–186. Appleton‐Century‐Crofts, 
New York.

Tun, T., Miyoshi, H., Aung, T., Takahashi, S., Shimizu, S., Kuroha, T., Yamamoto 
M. & Ohshima, N. (2002) Effect of growth factors on ex vivo bone marrow cell 
expansion using three‐dimensional matrix support. Artificial Organs, 26(4), 
333–339.

Vander Heiden, M.G., Cantley, L.C. & Thompson, C.B. (2009) Understanding the 
Warburg effect: the metabolic requirements of cell proliferation. Science, 324, 
1029–1033.

Vander Heiden, M.G., Locasale, J.W., Swanson, K.D., Sharfi, H., Heffron, G.J, 
Amador‐Noguez, D., Christofk, H.R., Wagner, G., Rabinowitz, J.D., Asara, J.M. 
& Cantley L.C. (2010) Evidence of an alternative glycolytic pathway in rapidly 
proliferating cells. Science, 329, 1492–1499.

Velliou, E., Dos Santos, S.B., Fuentes‐Gari, M., Misener, R., Pefani, E., 
Panoskaltsis, N., Mantalaris, A. & Pistikopoulos, E.N. (2014) Key 
environmental stress biomarker candidates for the optimisation of 
chemotherapy treatment of leukaemia. Malta Journal of Health Science, 
accepted. doi:10.14614/CHEMOLEUK.2.29

Velliou, E.G., Dos Santos, S.B., Papathanasiou, M.M., Fuentes‐Gari, M., Misener, 
R., Panoskaltsis, N., Pistikopoulos, E.N. & Mantalaris, A. (2015) Towards 
unravelling the kinetics of an acute myeloid leukaemia model system under 
oxidative and starvation stress: a comparison between two‐ and three‐
dimensional cultures. Bioprocess and Biosystems Engineering, 38(8), 
1589–1600.



Modelling Optimization and Control of Biomedical Systems264

Velliou, E., Fuentes Gari, M., Dos Santos, S., Misener, R., Panoskaltsis, N., 
Mantalaris, A. & Pistikopoulos, E.N. (2013) The effect of oxygen and glucose 
stress on the evolution of a leukemia model system in an in vitro bone marrow 
mimicry. Paper presented at the 13th AIChE annual meeting, San Francisco, CA.

Wallington‐Beddoe, C.T., Hewson, J., Bradstock, K.F. & Bendall, L.J. (2011) 
FTY720 produces caspase‐independent cell death of acute lymphoblastic 
leukaemia cells. Autophagy, 7(7), 707–715.

Warburg, O. (1956) On the origin of cancer cells. Science, 123, 309–314.
Warr, M.R., Binnewies, M., Flach, J., Reynaud, D., Garg, T., Malhorta, R., Debnath, 

J. & Passegue, E. (2013) FOXO3A directs a protective autophagy program in 
hematopoietic stem cells. Nature, 494, 323–327.

Warr, M.R. & Passegue, E. (2013) Metabolic makeover of HSC. Cell Stem Cell, 
12, 1–3.

Wilkinson, S.T., Tome, M.E. & Briehl, M.M. (2012) Mitochondrial adaptations to 
oxidative stress confer resistance to apoptosis in lymphoma cells. International 
Journal of Molecular Sciences, 13, 10212–10228.

Wise, D.R. & Thompson, C.B. (2010) Glutamine addiction: a new therapeutic 
target. Trends in Biochemical Science, 35, 427–433.

Xu, S., Li, D., Xie, Y., Lu, J. & Dai, K. (2008) The growth of stem cells within 
β‐TCP scaffolds in a fluid‐dynamic environment. Materials Science and 
Engineering, 28, 164–170.

Zhong, H., Marzo, A.M., Laughner, E., Lim, M., Hilton, D.A., Zagzag, D., 
Buechler, P., Isaacs, W.B., Semenza, G.L. & Simons, J.W. (1999) Overexpression 
of hypoxia‐inducible factor 1α in common human cancers and their 
metastases. Cancer Research, 59, 5830–5835.

Zhou, F.‐L., Zhang, W.‐G., Wei, Y.‐C., Meng, S., Bai, G.‐G., Bai‐ Wang, B.‐Y., 
Yang, H.‐Y., Tian, W., Meng, X., Zhang, H. & Chen, S.‐P. (2010) Involvement of 
oxidative stress in the relapse of acute myeloid leukemia. The Journal of 
Biological Chemistry, 285, 15010–15015.



265

Modelling Optimization and Control of Biomedical Systems, First Edition.  
Edited by Efstratios N. Pistikopoulos, Ioana Naşcu, and Eirini G. Velliou. 
© 2018 John Wiley & Sons Ltd. Published 2018 by John Wiley & Sons Ltd.

8

8.1  Introduction

In the UK (Cancer Research UK, 2008), it is estimated that more than 1 in 
3 people will be afflicted with cancer in their lifetime. For one such cancer, 
leukaemia – a neoplasm of the blood and bone marrow (BM) – 1 in 71 men and 
1 in 105 women will be affected, with incidence sharply rising in adults over the 
age of 50. Approximately 40% of those affected with leukaemia will have acute 
myeloid leukaemia (AML).

Leukaemia is a cancer of the BM and blood wherein blood cells are unable to 
develop or function normally, are overproduced at an immature stage of devel-
opment and overtake any normal elements remaining in the BM and blood (see 
also Chapter 7). This uncontrolled growth compounds the morbidity and mor-
tality due to the disease by inhibiting development of healthy blood and immune 
cells through multiple mechanisms (Panoskaltsis et al., 2003, 2005).

The most common treatment for most types of leukaemia is intensive 
 chemotherapy given through the vein (intravenous [IV]). This therapy can 
be life‐threatening since only relatively few patient‐specific and leukaemia‐
s pecific factors are considered in current protocols; choice of chemotherapy, 
intensity and duration often depends on either the availability of a clinical trial, 
the treating physician’s experience or the collective experience of the treating 
 centre, with significant international protocol variability. Inter‐patient and 
intra‐leukaemia variability add complexity to these treatment decisions and 
are not yet adequately addressed, possibly accounting for the 30–45% long‐
term survival rates in young people with one type of BM cancer, AML. For 
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those who are cured, there is a lifetime of increased risks of secondary cancers, 
cardiovascular disease and diabetes due to the adverse effects of treatment.

In order to overcome these limitations, there is a need for personalised treat-
ments that incorporate both the individual patient characteristics and features 
specific to the patient’s leukaemia (different for every patient).

Mathematical modelling is undoubtedly a useful tool that can be used for the 
automation of chemotherapy treatment due to its advantages in systematically 
exploring extensive datasets in order to capture a system’s dynamics and subse-
quently provide better insight for process enhancement. Towards this direction, 
various mathematical models have been developed for different biomedical sys-
tems (Parker and Doyle, 2001; Sherer et al., 2006; Ledzewicz and Schättler, 2007; 
Dua et al., 2008; Harrold and Parker, 2009; Krieger et al., 2013) with the aim to 
describe the disease under chemotherapy and afterwards propose the optimal 
treatment design. For the most part, these models aim to describe the disease 
dynamics of a hypothesised average patient case study. Under this assumption, 
these models do not include patient and disease‐specific characteristics as 
parameters in the model, but they use mean values derived from a number of 
patient‐volunteer studies. However, there is a lack to our knowledge of models 
that include personalised patient and disease information and use optimisation 
methods in order to design optimal personalised chemotherapy protocols.

The need for more personalised treatment design has been discussed 
in various works (Undevia et al., 2005; Garattini, 2007; Essers and Trumpp, 
2010), and the main sources of inter‐ and intra‐patient variability are in the 
cellular kinetics of the tumour and normal cell populations and the kinetics 
of the anticancer agents when they enter the human body. Thus, the desired 
mathematical model for the simulation of patient behaviour and tumour 
response during chemotherapy should consist of three parts: (a) the cell cycle 
model, which is the target of drug action; and the (b) pharmacokinetic (PK) and 
(c) pharmacodynamic (PD) aspects that provide the complete description of 
drug diffusion and action after administration.

8.1.1 Mathematical Modelling of the Cell Cycle

The cell cycle is the set of cell mechanisms that duplicate the cell’s material and 
divide it into two daughter cells, with the purpose either to preserve or to 
expand the cell population (see also Chapter 7). Cancer is unavoidably con-
nected to the cell cycle, as the origin of the disease is out‐of‐control cell growth 
due to an abnormality in the process of cell proliferation. The macro effect of 
this abnormal cell proliferation is the uncontrollable regulation of tissue growth 
leading to the creation of tumours, masses of malfunctioning cells that are 
harmful for the body. In that sense, a better insight of the cell cycle procedure 
will provide more information about cancer dynamics, which would unques-
tionably be useful for chemotherapy treatment design.
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Chemotherapy drugs aim to stop this uncontrollable cell proliferation by 
interfering with the cell cycle and killing the cells in replication. 
Chemotherapeutic drugs are classified according to the cell cycle phase in 
which they are active. Some drugs react selectively with cells during a par-
ticular cell cycle phase (cell cycle–specific drugs), whereas others react with 
cells in all phases (cell cycle–nonspecific drugs). Some examples of com-
monly used cell‐specific drugs are the anthracyclines, such as daunarubicin 
(DNR), doxorubicin and idarubicin, that inhibit DNA and RNA synthesis 
(i.e. during the S and G1 phases); antimetabolites, such as methotrexate and 
Ara‐C, that are S phase–specific drugs; and cell cycle–nonspecific drugs, 
such as platinum drugs (e.g. carboplatin), that react with all the phases of 
the cell cycle. A drug’s specificity makes the cell cycle’s role a critical factor 
for the efficacy of the treatment.

Advances in experimental tools and setups gave rise to more sophisticated 
experiments and research in the 1980s and 1990s, which have focused mainly 
on the characterisation of patient variability in cell cycle kinetics.

Mathematical models that describe the cell cycle have been developed since 
the very first experimental data were obtained. The most common type of 
modelling approach is the compartmental model, where compartments are 
used to describe the different cell phases or combination of phases into  clusters. 
In that case, the mathematical model consists of the mass balances of cells in 
each compartment of the model. The simplest mathematical model assumes 
that the entire cell cycle forms one compartment (Swierniak et. al, 2009), 
whereas the most detailed model considers each phase as one compartment 
(Sherer et al., 2006).

However, compartmental models fail to account for system heterogeneity, 
and a rigid population is assumed with common characteristics of size, age, 
mass and so on. Population‐based models (PBMs) are another modelling 
type which describes the effect of the cell heterogeneity on the cell culture 
dynamics. In these models, the cell cycle is organised into population bal-
ances differentiated over time and another property that evolves in parallel 
with the cell cycle progression (i.e. over mass for the mass‐structured cell 
cycle) (Sidoli et al., 2006).

Although the PBMs are more robust and accurate than compartmental 
 models, they introduce a considerable number of unknown parameters, some 
of which are difficult to experimentally measure. In general, for both types of 
models (compartmental and PBM), the required parameters for the cell cycle 
mathematical model consist of the transition rates of cells between cell cycle 
phases, the proliferation rates of the cells, the distribution of cell populations 
(normal and abnormal) into the cell cycle phases and the natural apoptotic rate 
of each cell cycle phase. For the calculation of these parameters, the experi-
mental measurement available is the duration of the cell‐cycling phases. If 
the time‐history profile of each cell cycle phase is known thereafter, the 
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distribution of the cell population into phases, proliferation rates and transi-
tion rates can be estimated (Basse et  al., 2003). As far as the cell natural 
 apoptotic rate is concerned, since the model purpose is chemotherapy action 
on cells, a valid assumption often used is that there is a minor probability that 
the cell will follow a natural apoptosis path and the apoptotic rate equals zero 
(Basse et al., 2003). In that sense, the prevailing system measurement required 
is the duration of each phase in the mitotic cycle.

Models in the literature assume constant cell‐cycling times and transition 
rates between the phases which make the model purely deterministic (Fister 
and Paneta, 2000; Ledzewicz and Schättler, 2002; Dua et al., 2008; Swierniak 
et al., 2009). These models fail to capture the intra‐patient invariability in the 
duration of the cycling phases and are adequate only to capture the behaviour 
of a mean cell cycle function. Works with more accurate approach are those 
which consider the cycle duration as a stochastic distribution between a mini-
mum and maximum range (Basse et al., 2003; Kimmel and Swierniak, 2003; 
Sherer et al., 2006). In this approach, cells of the same population have dif-
ferent distribution characteristics. However, a large window for modelling 
amelioration still remains for the improvement of the compartmental models 
to account for intra‐patient variability, let alone the PBMs that should include 
this variability as functions over both time and another system characteristic.

8.1.2 Pharmacokinetic and Pharmacodynamic Mathematical 
Models in Cancer Chemotherapy

The most crucial branches of pharmacology essential for both drug develop-
ment and management of drug information are PK and PD. PK generally aims 
to give the time‐concentration history of the drug throughout the body, while 
PD aims to describe the drug effects on the body. Those two are intimately 
connected, as the effects of the drug on the body depend on the drug concen-
tration at the molecular site of action.

The combination of PK and PD consists of the complete action of the drug 
on the human body (i.e. the time‐dependent procedure for a drug to reach and 
act on a cell). The steps of the drug action in the body are as follows, and they 
are described in Figure 8.1 (Ratain and Plunkett, 2003):

1) Drug administration
2) Drug absorption and metabolism through gastrointestinal tract in case of 

oral administration of a drug
3) Metabolism of the drug in the liver
4) Drug delivery in the cell environment, and protein binding to act on the cell
5) Drug action (PD)
6) Drug returned either to the liver or to the kidney, and excreted by biliary or 

urinary excretion.
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8.1.2.1 PK Mathematical Models
The major mechanisms of the PK drug action in the body consist of the drug 
absorption, distribution, metabolism and excretion (Figure 8.2). Drug absorp-
tion is considered in cases of non‐IV dose administration (subcutaneous [SC], 
oral etc.) where the drug inflow reaches the systemic circulation with a certain 
time delay (absorption rate) and in a decreased amount (bioavailability) as 
some of the initial drug given is being bounded during the absorption. 
Afterwards, the drug is distributed throughout the fluids and tissues of the 
body and is then metabolised in the liver and the kidneys. Finally, the drug is 
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Figure 8.1 Schematic diagram of PK and PD: blue boxes are for the PK model, and they are 
connected to the red cycle that represents the PD part of drug action. Source: Ratain and 
Plunkett (2003). Reproduced with permission of Elsevier.
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Figure 8.2 The process of drug delivery. Drug delivery is governed by four mechanisms: 
absorption, distribution, metabolism and excretion. Each of these mechanisms is deprived 
of further mechanisms. Inter‐ and intra‐patient variability in these mechanisms is the 
probable source of PK variability.
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eliminated and excreted via the kidneys by either the urinary or biliary route 
(Saltzman, 2001).

High inter‐patient variability exists in the amount of drug concentration 
produced by the same dose administered. This inter‐patient variability is 
 certainly correlated to the PK mechanisms described here, although the exact 
source of variability is yet to be defined. Extensive works (Undevia et al., 2005; 
Garattini, 2007) review the probable patient information that could correlate 
with the drug concentration in the tumour site and successively in the treat-
ment outcome.

To begin with, absorption depends on the drug absorption rate and bioavail-
ability. The absorption rate is the time delay from the time of administration 
until the drug reaches the systemic circulation, when it is given non‐intrave-
nously. This term has meaning mainly for the case of oral administration, where 
the drug is first inserted to the gastrointestinal (GI) tract; for SC dosage, this 
rate represents a drug leak from the SC injection site to the blood. Bioavailability 
refers to the final amount of drug reaching the blood compartment. Again, this 
term is mostly applied to oral administration, where drug losses occur in the GI 
tract. Both bioavailability and absorption rate vary between different patients 
and depend on factors such as the absorptive area, the transition time of the 
drug to the blood, the blood flow and the GI environment, which are all proba-
ble sources of patient variability.

Moreover, drug distribution involves the drug transition from the intravas-
cular to the extravascular space. The amount of the distributed drug will define 
the distribution volume of the drug and depends on the level of binding pro-
teins where a proportion of the drug is bounded and the amount of free drug is 
reduced. The drug metabolism takes place on the remaining free drug that 
reaches the liver and in some cases the kidney. The metabolism kinetics 
depends on the patient hepatic blood uptake and the enzymatic activity of the 
patients. Lastly, excretion is related to the kidney action to eliminate and 
remove the inactive drug and will again differ between patients, resulting in 
varying drug clearance rates.

In summary, there is patient variability in all four mechanisms of drug 
delivery described here. This patient variability definitely contributes to the 
different treatment outcome between patients. Especially for the anticancer 
agents, the variability in the amount of active drug that reaches the tumour 
location (without the drug bounded during absorption and distribution) will 
finally affect the concentration of the active metabolite produced and the 
drug intra‐cellular activation.

Currently, two types of PK model are used: the compartmental and the physi-
ological models. In compartmental modelling, body organs are grouped into 
compartments, and drug is assumed to be absorbed, distributed and elimi-
nated in these compartments. These are standardised models in frequent use 
by pharmaceutical companies, and commercial tools exist for the development 
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of this type of models for a variety of drugs (see e.g. http://www.iconplc.com/
technology/products/nonmem/, http://www.pharsight.com/products/prod_
winnonlin_home.php and http://www.mathworks.co.uk/discovery/pharma 
cokinetic.html). However, the ability of these models to give a valid estimation 
of the drug profile of a newly studied patient is rather questionable. The major 
source of model uncertainty is due to the fact that the values of the variables 
are based on the interpretation of the mean concentration profile of a group of 
patients. This mean‐concentration profile in most of the cases is not repre-
sentative of the behaviour of patients in the group studied, let alone the whole 
patient population. Furthermore, since these models are empirical and include 
the concentration profile in the body, as a totality they do not allow for the model 
extension to account for more detailed phenomena in the tumour location, 
such as by linking the concentration profile to a detailed PD model of the drug 
mechanism when it is intracellularly activated and acts.

These drawbacks are satisfied to a certain extent by the physiologically based 
pharmacokinetic (PBPK) models. A physiological model is a highly compart-
mental model that considers all the organs reacting with the drug. The model 
is derived from the equilibrium balances in these organs. PBPK models depend 
on two types of information: the patient physiological and the drug biochemi-
cal information. Physiological parameters consist of the body organ volume 
(Vi) and the blood flow rate in the body organs (Qi). These parameters have 
been extensively measured during the past decade and are correlated to patient 
characteristics such as sex, age, body mass index and cardiac output (Brody, 
1945; Wennesland et al., 1959; Brown et al., 1962; Chouker et al., 2004; Pichardo 
et al., 2007). Moreover, the biochemical parameters are the parameters for the 
calculation of the drug metabolism rate. One common assumption in PBPK 
models is that the metabolism follows Michaelis–Menten kinetics, and the 
required parameters are the drug maximal velocity (Vmax) and the Michaelis–
Menten affinity constant (km).

In recent decades, remarkable progress has been noted regarding the exper-
imental design for the parameters of PBPK models. Initially for the PK model 
metabolism, information was only available from animal experiments, and 
scaling was used afterwards for the approximation of the equivalent human 
values. However, there is a level of uncertainty in this method, as the human 
organism is much more complex than other species and such a relation can only 
succeed to give a rough guess of a human value and not the accuracy required. 
Nowadays, established methods exist to correlate PBPK parameters to in vitro 
and allometric data (Chaturvedi et al., 2001; Jones et al., 2009), and commer-
cial tools exist for the calculation of these parameters for given drugs (http://
www.cyprotex.com/home/, http://www.simulations‐plus.com and http://
www.simcyp.com).

A level of detail can be added to the PBPK models by further separating each 
compartment (i.e. organ) into the vascular, interstitial and intracellular parts. 
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The vascular is the part of the organ with the blood vessels from which the 
drug is inserted within the organ (interstitial), and then the drug reaches the 
intracellular part of the cell environment. This modification would introduce a 
wale of parameters that includes the physiochemical characteristics of drug 
chemicals within the interstitial, vascular components (Schmitt et  al., 2008; 
Peyret and Krishnan, 2011; Yun and Edginton, 2013). More elegant future 
models would combine this level of information with cellular information to 
provide cellular‐level PBPK models that could give insight of probable correla-
tion between patient cell characteristics and the different PK profile (Caldwell 
et al., 2012). Table 8.1 lists some paradigms of the two types for PK models for 
anticancer agents.

Table 8.1 PK models of cancer drugs.

Compartmental models

Eight‐compartmental model for methotrexate (MTX) (Reich et al., 1977)
Multicompartmental model for doxorubicin (Reich et al., 1977)
Three‐compartmental model for idarubicinol (Looby et al., 1997)
Two‐compartmental model for methotraxate (Hijiya et al., 2006)
Two‐compartmental model for etoposide (Hijiya et al., 2006)
Two‐compartmental model for teniposide (Hijiya et al., 2006)
One‐compartmental model for Ara‐C (Hijiya et al., 2006)
Two‐compartment model for etoposide (Relling et al., 1998)
Two‐compartmental pharmacokinetic model for etoposide (Panetta et al., 2002)
Compartmental modelling of cyclosporine, etoposide and 
mitoxantrone

(Lacayo et al., 2002)

Two‐compartment model of idarubicin (Gillies et al., 1987)
Three‐compartment model of mitoxantrone (Richard et al., 1992)

Physiological models

Physiological model for Ara‐C (Morrison et al., 1975)
Physiological model for Ara‐C (Ara‐C) (Dedrick et al., 1972)
Physiological model for thriopental (Bischoff and Dedrick, 1968)
Physiological model for methotrexate (Himmelstein and Lutz, 1979)
Physiologican model for adriamycin/doxorubicin (Himmelstein and Lutz, 1979)
Physiological model for actinomycin‐d (Lutz et al., 1977)
Physiological model for adriamycin (Chen and Gross, 1979)
Physiological model for cis‐dichlorodiammine‐platinum (Chen and Gross, 1979)
Physiological model for cyclotidine (Chen and Gross, 1979)
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8.1.2.2 PD Mathematical Models
The PD model describes the effect of the drug action to enter the cell and cease 
its function. Because of the complexity of the drug mechanism of action, 
detailed PD models are not in use. Expressions relating the drug concentration 
to the drug effect are preferable. In that way, the accuracy of the PD model is 
highly dependent on the precision of the PK model.

The most widely used models are the drug effect models. These models 
relate the drug concentration to the drug effect, which in our case is the 
number of dead cells. These models contain estimated parameters from 
real‐life data, and drug effect depends only on the drug concentration. 
Table 8.2 summarises the expressions of these models.

8.2  Chemotherapy Treatment as a Process 
Systems Application

Models aiming to describe the actions of chemotherapy should consist of 
mathematical expressions for all steps of drug treatment, from administration 
to intracellular action. All parts are described in Figure 8.3, where the general 

Table 8.2 Formulas of PD models.

Model Model equations Description

Linear model E S C Eo E: drug effect
C: drug concentration
S: slope parameter
Eo: initial drug effect

Log‐linear model E S C Ilog E: drug effect
C: drug concentration
S: slope parameter
I: constant

Emax model E E E C
EC Co

max

50

E: drug effect
C: drug concentration
Emax: maximum drug effect
Eo: initial drug effect from previous 
application
EC50: concentration producing half of the 
maximum drug effect

Sigmoid Emax model E E C
EC C

n

n n
max

50

n: constant affecting the shape of the drug 
effect–concentration curve

Source: Holford and Sheiner (1982). Reproduced with permission of Elsevier.
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framework for the derivation and function of such a mathematical model is 
described.

To start, the initial dose load given to the patient in combination with the 
administration route and injection rate will be used for the calculation of 
treatment inflow (Figure 8.3, box 1), the main input for the PK model. The PK 
model (Figure  8.3, box  2) depends on patient‐specific characteristics and is 
composed of the set of drug mass balances in patient organs for the calculation 
of the drug concentration profile. This profile is the main input for the PD 
model. The PD model (Figure 8.3, box 3) calculates the number of both normal 
and cancer cells which have died due to drug administration; these are then 
successively subtracted from the starting number of cells (Figure 8.3, box 4) in 
order to calculate the number of each cell type which remain following the 
chemotherapy cycle. Thereafter, a new optimisation problem will be intro-
duced and solved only if there are tumour cells still present (in this model), and 
normal cells are in sufficient number such that the patient can tolerate another 
chemotherapy cycle. Within this framework, optimal chemotherapy cycles will 
be designed which aim to effectively control the treatment schedule (inflow, 
dose load) in order to eradicate the maximum possible disease while main-
taining normal cells within predefined limits. The optimal treatment will be 
different on a case‐by‐case basis and will be based on physiological character-
istics of the patient that determine the drug kinetics and cell characteristics 
that determine the diseased and normal population dynamics.

8.2.1 Physiologically Based Patient Model for the Treatment 
of AML With DNR and Ara‐C

In this section, a mathematical model is formulated to simulate the chemo-
therapeutic action of two anti‐leukaemic drugs, DNR and Ara‐C, commonly 
used in clinical practice for the treatment of AML. The model describes the 
dynamic interactions of leukaemic and normal cells exposed to chemothera-
peutic drugs by a system of ordinary differential equations (Pefani et  al., 
2013, 2014).

A quick guide to the developed model is presented in Table  8.3, while 
Appendix 8A includes the model in full detail. Initially, a drug dose (u,j) of 
anti‐leukaemic agent j is injected into the patient intravenously over duration,j 
(8.1). The inflow rate of drug j is then transmitted by direct injection into the 
blood and is circulated to the whole body (8.2). This inflow is the main input 
for the calculation of the drug concentration in the blood (CB,j), taking into 
account patient‐specific parameters such as the total patient blood volume 
(VB), the blood flow in organs (Qi, with i: heart [H], liver [Li], bone marrow 
[M], lean [Le] and kidneys [K]) and Ci,j is the concentration of drug j in organs 
i. The drug is transmitted via the blood to the organs, and the general mass 
balance in the organs is the one in Equation (8.3) that includes the elimination 
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rate of the drug in the kidneys and the liver (k,i,j). After drug elimination and 
action, the drug is excreted through the urine with a clearance rate (kk,j) from 
the kidneys.

The PD model is used for the calculation of drug effect, which is the per-
centage of dead cells due to drug action. The main input for PD is the drug 
concentration in the tumour location, which for AML is the concentration of 
drug in the BM (CM,j) as is calculated by the PK model; and Emax,j, E50,j and slope 
are the PD parameters that depend on the drug j. The effect,j calculated by the 
PD model is the percentage of cells which react with the drug j and are killed. 
This effect is multiplied by the number of cells reacting with the drug in order 
to calculate the number of cells that died due to treatment and the remaining 
cells after drug action. The mass balance is in Equation (8.5), where y is the cell 
cycle phase (y: G1, S, G2 or M), Py is the cell population in phase y and k is the 
transition rate of cells from one phase to the next (i.e. ky−1 is the transition rate 
from phase y − 1 to phase y).

The SC route is an alternative dose route where the drug is injected in the 
individual’s derma (S). In this type of drug administration, the drug inflow 
reaches the systemic circulation with a certain time delay (absorption rate) and 
in a decreased amount (bioavailability), as some of the initial drug given is 

Table 8.3 Brief guide to model equations.
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Source: Pefani et al. (2014). Reproduced with permission of IEEE.
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being bounded during the drug absorption from the SC site to the blood com-
partment. For the model of the SC route, Equation (8.2) will be replaced by 
Equations (8.2a) and (8.2b), which account for drug bioavailability (kb) and 
absorption delay (ka).

8.2.2 Design of an Optimal Treatment Protocol for 
Chemotherapy Treatment

Treatment design will be mainly based on the control of four schedule 
parameters:

 ● Drug use
 ● Dose load
 ● Dose duration
 ● Number of dose applications.

The optimisation algorithm is presented in Table 8.4.
The objective function is the minimisation of the leukaemic (Cellsleuk) cells 

subject to the treatment schedule, which is defined by the drug use (j), the 
dose load (un,j), the dose duration (tn,j), the number of applications (NA) and 
the interval period between two succeeding dose applications (τn). The four 
first parameters are the optimisation schedule variables, whereas the inter-
val period between two doses is a design variable calculated by the frequency 

Table 8.4 Chemotherapy process optimisation algorithm.
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j u t NA

leuk
n j n j

Cells
, , ,, ,

Equality constraints Cells f effectnor n j n j, , ,

Cells f effectleuk n j n j, , ,

effect f Cn j M n j, , ,

C f lowM n j n j, , ,inf

Inflow
u
t

appl where
appl
appln j

n

n NA
n j

n j

n
,

,

,
,

,
,

1

1
0

1 1

1 2

time
time

n j

n j n j

,

, ,
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*n is the number of dose applications; j is the drug; tn,j is the duration of each dose application; 
un,j is the dose load of each application; Cellsleuk,n,j is the number of leukaemic cells; Cellsnor,n,j is 
the number of normal cells; effectn is the the PD effect of drug j over application n; CMn,j is the BM 
concentration; Inflown,j is the inflow of drug j during application n; τn is the duration between two 
succeeding dose applications; NA is the total number of applications.
Source: Pefani et al. (2014). Reproduced with permission of IEEE.
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of doses (i.e. if two or four doses will be applied daily), as defined by clini-
cians. The control parameters define the drug inflow that has physical 
meaning only for the periods of chemotherapy treatment, whereas the value 
of the inflow is set to 0 for the periods between two succeeding chemo-
therapy cycles.

The feasible optimisation solutions are defined by the set of the equality and 
inequality constraints. Equality constraints consist of the expressions used 
to calculate the number of leukaemic (Cellsleuk) and normal (Cellsnor) cells 
throughout the treatment. Both cell populations are functions of the drug 
PD effect (effectn), which is defined by the drug concentration profile in the 
tumour location (i.e. the BM) (CM,n,j). The drug concentration profile is deter-
mined by the treatment inflow, a variable calculated by the schedule and the 
design parameters. Moreover, the inequality constraints consist of constraints 
on the number of normal cells that will have to be higher than a 3‐log reduc-
tion throughout the treatment (path constraint), and by treatment completion 
they will have to be higher than the number of leukaemic cells (endpoint 
constraint).

8.2.3 Mathematical Model Analysis Using Patient Data

8.2.3.1 Model Sensitivity Analysis
To gain a further understanding of the model and the crucial parameters that 
highly affect the treatment outcome (i.e. the level of leukaemic cells), a global 
sensitivity analysis and quasi–Monte Carlo based high‐dimensional model 
representation using Sobol’s indices were performed using the graphical user 
interface/high‐dimensional model representation (GUI‐HDMR) software 
(Ziehn and Tomlin, 2009). The output of interest is the number of leukaemic 
cells, and the parameters checked are the cell cycle times and the PK and PD 
parameters, which are listed in Table 8.5.

Specifically, the drug elimination rates in the liver were included for the stud-
ied drugs, as inter‐patient variability has been indicated and reported in the 
ULCH (2009) and BC Cancer Agency (2007) works. The same works also 
report patient variability for the DNR kidney clearance rate; however, there is 
no measured variability of the kidney clearance rate for Ara‐C, and this param-
eter is not included in the sensitivity analysis. For the inter‐patient variability 
of the PD parameters, the work of Quartino et al. (2007) has been used, which 
includes analysis of PD action of DNR and Ara‐C on BM samples of 179 
patients with AML. Moreover, the cell cycle parameters’ ranges are as calcu-
lated and reported in the work of Raza et al. (1990) with experiments on the 
cell kinetics characterisation of 54 patients diagnosed with ALM.

For calculation of the parameters sensitivity index (SI), 40,000 simulations 
were run of all the possible combinations of the tested parameters within their 
assigned ranges. The SI results are presented in Table 8.5.
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The SA results clearly indicate cell cycle phases’ duration as the most crucial 
parameters, where Tc has an effect of 60.4% on the treatment outcome and Ts 
has 27.05% effect. Of note, the limit for a parameter to be accounted as crucial 
for the measured variable is at least 10%.

8.2.3.2 Patient Data
The project is submitted and approved by the North West London Hospitals 
Trust for the provision of health records of patients diagnosed with AML and 
treated within Northwick Park Hospital using DNR and Ara‐C anti‐leukaemic 
agents under either IV or SC doses applied. The clinical data of the six patients 
are under two clinical applied treatment protocols, one intensive and the other 
non‐intensive: (a) daunarubicin (DNR) and cytosine arabinoside (Ara‐C) used 
in standard IV doses (DA 3 + 10), and (b) low‐dose Ara‐C (LDAC) adminis-
tered subcutaneously (SC). The clinical data comprised the required patient 
physiological characteristics, the blast percentage in BM aspirate at disease 
diagnosis, the chemotherapy treatment protocol and the blast percentage 
together with marrow cellularity of the marrow examinations after the applied 
chemotherapy protocol. For conversion purposes, the measured number of 

Table 8.5 PK, PD and cell cycle parameters and inter‐individual ranges used for model 
sensitivity analysis and sensitivity index results.

Symbol
Default 
value Deviation Reference

Sensitivity 
Index

PK kl,Ara‐C 0.069 0.067–0.07 (UCLH, 2009) 0.0007
kk,DNR 1.5 0.036–1.7 (BC Cancer Agency, 2007) 0.017
kl,DNR 0.015 0.014–0.017 (BC Cancer Agency, 2007) 0.000085

PD Emax,Ara‐C 0.83 0.79–0.86 (Quartino et al., 2007) 0.0003
E50,Ara‐C 0.29 0.25–0.33 (Quartino et al., 2007) 0.0049
Emax,DNR 0. 91 0.88–0.93 (Quartino et al., 2007) 0.00925
E50,DNR 0.09 0.076–0.1 (Quartino et al., 2007) 0.0928
slopeDNR 1.23 1.06–1.4 (Quartino et al., 2007) 0.000468

Cell cycle Ts 15 6–43 (Raza et al., 1990) 0.2705
TC 60 18–211 (Raza et al., 1990) 0.604

* kl,Ara‐C is the Ara‐C liver elimination rate (min−1); kk,DNR is the DNR clearance rate by the kidneys 
lt

min ; kl,DNR is the DNR elimination rate in the liver (min−1); Emax,Ara‐C is the Ara‐C maximum 
drug effect; E50,Ara‐C is the Ara‐C concentration at half drug effect mg

lt ; Emax,DNR is the DNR 
maximum drug effect; E50,DNR is the DNR concentration at half drug effect mg

lt ; slopeDNR is the 
slope scaling factor for DNR kinetics; Ts is the S phase duration (h); and TC is the total cell cycle 
duration (h).
Source: Pefani et al. (2014). Reproduced with permission of IEEE.
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cells in the BM of an average AML patient is 1 trillion cells (Williams et al., 
1983). This average number of cells is then multiplied by the cellularity factor 
given for each patient; this is 0.2 for a hypo‐cellular BM, 0.9 for a normo‐
ce llular BM of a patient younger than 30 years, 0.5 for a normo‐cellular BM of 
a patient between 30 and 65 years old, 0.4 for a normo‐cellular BM of a patient 
older than 65 years and 0.95 for a hyper‐cellular BM (Williams et al., 1983). 
These conversion rules used data for the current presented analysis that are 
provided in Appendix 8B.

8.2.3.3 Estimation of Patient‐Specific Cell Cycle Parameters
In this section, data presented in Appendix 8B of the health records of six AML 
patients are used for the estimation of leukaemic cell cycle parameters that are 
the critical model parameters as indicated by the sensitivity analysis results. 
One important assumption on which the estimation is based is the cell cycle 
times during the interval period between two succeeding chemotherapy cycles. 
As mentioned, this period is a recovery period lasting 20–30 days during which 
the patient receives no treatment.

Under this assumption, two problems are formulated and solved for the 
 estimation of the cell cycle parameters. The first problem concerns the interval 
period between completion of one cycle and the BM aspirate prior to its 
 successive cycle. For this period, the leukaemic cell cycle parameters are set to 
Ts = 40 h and Tc = 211 h. The provided leukaemic population measurement at 
the end of this interval period together with the duration of this period are then 
used for the estimation of the leukaemic population at the beginning of the 
recovery period, which is the leukaemic population at completion of the last 
applied chemotherapy cycle.

The second parameter estimation problem uses this calculated leukaemic 
population at the end of the chemotherapy cycle together with the provided 
initial tumour burden at the beginning of each chemotherapy cycle and the 
treatment schedule in order to fit and estimate the leukaemic cell cycle param-
eters (Ts, Tc) under chemotherapy.

This parameter estimation problem is solved using gPROMs (gPROMs, 
2003), and the fitted cell cycles for the six patients are listed in Table 8.6.

The results show variability of the cycling times that are different between 
patients and between the chemotherapy cycles of the same patient. The mean 
calculated time for Ts is 15 h, with a range between 9 and 21 h, and for Tc the 
mean value is 47.5 h with variability within 33–68 h.

Another observation from the fitted cell cycle results is that the longer Tc 
times were indicative of disease relapse (P001 fourth cycle, P006 third cycle). 
This relation between Tc and disease increase has a scientific explanation, as 
the longer cycling times indicate a longer G0/G1 phase. It is well reported 
(Komarova and Wodarz, 2005; Lewin et al., 2007; Michor, 2008) that the G0/G1 
phase is a factor related to disease resistance and relapse, since cells in this 
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phase are not detected by the drugs and they form residual disease after treat-
ment completion. The reverse relation was observed for Ts time, where the longer 
Ts indicated lower leukaemic cell populations. The slower S phase duration is 
linked to a higher percentage of cell population in this phase that respectively 
increases the probability of the leukaemic cells to be detected and eradicated 
by anti‐leukaemic S phase–specific drugs such as DNR and Ara‐C.

Moreover, a very interesting point in the resulting cell cycle distributions is 
that patients successfully treated under the LDAC protocol are characterised 
by lower Tc duration compared to patients under the DA protocol. An inter-
esting fact in clinical practice is that patients who receive a low dose of SC 
treatment present as good treatment results as patients who receive much 
higher doses of DNR and Ara‐C administered IV. In order to capture this fact, 
the model uses lower duration of the non‐proliferating phase for the cases of 
patients with successful results of low‐dose Ara‐C treatment. Physically, this 

Table 8.6 Cell cycle times fitted for the clinical data of 6 patients under LD and DA protocol 
(Appendix 8B).

Patient number Ts (h)* Tc (h)*

Patients under LD protocol

001 (First cycle) 13 45
001 (Second cycle) 16 40
001 (Third cycle) 11 45
001 (Fourth cycle) 18 65
002 (First cycle) 21 45
006 (First cycle) 20 33
006 (Second cycle) 14 46
006 (Third cycle) 14 68
006 (Fourth cycle) 20 40
016 (Second cycle) 14 45

Patients under DA protocol

011 (First cycle)  9 53
026 (First cycle) 15 47
026 (Second cycle) 15 40
016 (First cycle) 10 54

Mean 15 47.5
Range (9–21) (33–68)
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means that for a patient to be successfully treated by a low‐dose treatment, an 
explanatory scenario is that the majority of his or her cells will be in prolifera-
tion, and thus susceptible to the drug.

8.3  Analysis of a Patient Case Study

Patient 016 is a patient case study treated under the DA protocol for the first 
chemotherapy cycle and under the LDAC protocol for the second cycle. As 
shown in the simulation results (Table  8.7), this patient presents leukaemic 
population reduction from the first chemotherapy cycle, and normal cells are 
higher than leukaemic cells. However, by the completion of the second cycle, 
residual disease exists and BM hypoplasia is not achieved. For this reason, the 
optimisation problem is solved for both chemotherapy cycles.

8.3.1 First Chemotherapy Cycle

For the first chemotherapy cycle, Ara‐C is suggested to be continuously admin-
istered over daily infusions. The total dose of Ara‐C is kept constant over the 
simulation protocols (i.e. 200 mg/m2 daily dose load). For DNR, the same 
schedule is followed with a dose increase to 90 mg/m2 (Table 8.8).

Under this chemotherapy protocol, the leukaemic population is further 
minimised, and by completion of the first cycle, the leukaemic population is 
2.43 × 108 cells less with a cost of 2.3 × 108 normal cells (Figure 8.4).

8.3.2 Second Chemotherapy Cycle

For the second chemotherapy protocol, the schedule suggested includes daily 
doses of 40 mg of Ara‐C applied as daily continuous infusions for 10 days 
(Table 8.9).

Table 8.7 Leukaemic population of patient P016 based on simulation model results.

Date Leukaemic population (model)

First cycle start date: 03/07/2010 8.55 × 1011 cells
First cycle end date: 13/07/2010 3.29 × 108 cells
BM aspirate after first cycle: 17/08/2010 9.46 × 109 cells
Second cycle start date: 07/09/2010 7.62 × 1010 cells
Second cycle end date: 17/09/2010 3.96 × 108 cells
Bone marrow aspirate after second cycle: 12/10/2010 4 × 109 cells
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Table 8.8 Optimal schedule of the first chemotherapy cycle for Patient P016.

Protocol Dose load
Dose 
duration

Application 
route Application schedule

DA protocol
DNR 90 mg/m2 1 min IV One daily applications on 

days 1, 3 and 5
Ara‐C 200 mg/m2 Daily IV 1 daily application, for days 

1–10
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Figure 8.4 Patient P016 behaviour over the first chemotherapy cycle (days 1–11) and the 
recovery period prior to the second chemotherapy cycle (days 11–67). The dashed line is for 
the leukaemic cell population over the optimised protocol; the straight black line is for the 
leukaemic cell over the simulation of the clinical applied protocol; the cycle signs are for the 
normal population at the start and end dates of the optimisation protocol; the x signs are 
for the normal population at the start and end dates of the simulation protocol; and the 
grey line represents BM hypoplasia objective.

Table 8.9 Optimal LDAC induction treatment protocol for Patient P016.

Protocol
Dose 
load

Dose 
duration

Application 
route Application schedule

SC Ara‐C
First cycle 40 mg Daily SC One daily application for days 1–10
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Figure 8.5 presents the normal and leukaemic cell dynamics. The leukae-
mic population has a further decrease of 3.2 × 108 cells, and the normal 
population is kept in the same order of magnitude. This is expected if we 
consider that the normal population consists of proliferating cells suscep-
tible to the treatment and quiescent cells serving as backup cells in times of 
BM depletion. Since the transition rate of quiescent cells depends on the 
population depletion, the population will be adjusted to the loss and 
the transition rate will be adapted to keep the population constant. For the 
optimal protocol, since dose injection rate is lower and constant over the 
optimal treatment protocol, it will allow a constant transition of quiescent 
cells to proliferation, which will result in a more rigid normal cell popula-
tion recovery over this protocol. Moreover, by treatment completion, the 
leukaemic population is reduced 3.3 × 109 cells, resulting in BM hypoplasia, 
as the final population is lower to the limit of leukaemic population (reduced 
1 × 109 cells) (Table 8.10).
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Figure 8.5 Patient P016 behaviour over the second chemotherapy cycle (days 67–77) 
and the recovery period prior to the BM aspirate at treatment completion (days 77–100). 
The dashed line is for the leukaemic cell population over the optimised protocol; the 
straight black line is for the leukaemic cell over the simulation of the clinical applied 
protocol; the cycle signs are for the normal population at the start and end dates of 
the optimisation protocol; the x signs are for the normal population at the start and 
end dates of the simulation protocol; and the grey line represents BM hypoplasia 
objective.
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8.4  Conclusions

Treatment for AML with chemotherapy may result in acute and long‐term 
life‐threatening complications due to drug toxicity. Only relatively few patient‐ 
and leukaemia‐specific factors are taken into consideration in current proto-
cols, and choice of treatment often depends on the treating physician’s 
experience. With the advent of novel treatments and large amounts of patient‐ 
and leukaemia‐specific genomic data, there is a clear need for a systematic 
approach to the design and execution of chemotherapy regimens. We address 
these challenges in AML treatment by deriving a mathematical model that 
combines the leukaemia‐specific actions on the cell cycle (i.e. drug target) with 
patient‐specific pharmacology of the drugs (pharmacokinetics). Mathematical 
modelling is a tool that can be used for the automation of chemotherapy treat-
ment due to its advantages in systematically exploring extensive datasets in 
order to capture a system’s dynamics and subsequently provide better insight 
for process enhancement. We have developed a model for the simulation of 
patients with AML undergoing treatment with two standard chemotherapy 
protocols, one intensive and the other non‐intensive: (a) daunarubicin (DNR) 
and cytosine arabinoside (Ara‐C) used in standard IV doses (DA = 3 + 7 or 
3 + 10), and (b) low‐dose Ara‐C (LDAC) administered SC. Sensitivity analysis 
of the developed model identifies cell cycle times as the critical parameters that 
control treatment outcome. For model analysis, clinical data of six patients who 
underwent chemotherapy are used for the estimation of cell cycle time distri-
bution. The patient data comprise disease characteristics (tumour burden, cell 

Table 8.10 Leukaemic and normal cell populations for P016, over the simulation 
and optimisation induction treatment protocols.

Date

Leukaemic 
population over 
simulation

Normal 
population over 
simulation

Leukaemic 
population over 
optimisation

Normal 
population over 
optimisation

Beginning of first 
cycle

8.55 × 1011 2.83 × 1010 8.55 × 1011 2.83 × 1010

End of first cycle 3.29 × 108 5.5 × 108 8.6 × 107 3.2 × 108

Beginning of 
second cycle

7.62 × 1010 2.83 × 1010 1.82 × 1010 2.83 × 1010

End of second 
cycle

3.96 × 108 5.39 × 109 7.6 × 107 5.35 × 109

BM aspirate after 
second cycle

4 × 109 7 × 108
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cycle times and normal cell population) as well as patient‐specific characteris-
tics (gender, age, weight and height). The estimated mean S phase duration (Ts) 
is 15 h (range: 9–21 h), and mean whole cell cycle duration (Tc) is 47.5 h (range: 
33–68 h). The estimated data reveal a clear relationship of cell cycle times to 
treatment outcomes. Specifically, low Ts duration combined with high Tc 
 duration indicate worse treatment outcomes, whereas the reverse combination 
is indicative of a good response to treatment. In order to improve effectiveness 
of AML therapy and reduction of toxicity, treatment with chemotherapy is pre-
sented as an optimal control problem with the main aim of obtaining a treat-
ment schedule which could maximise leukaemic cell kill, yet minimise death of 
the normal cell population in the bone marrow. By the end of treatment, the 
leukaemic population should be reduced to a level of approximately 109 cells, at 
which point BM hypoplasia is achieved. Both the mathematical modelling and 
optimisation algorithm are illustrated through the analysis of a patient case 
study treated under the two analysed protocols, and the results clearly demon-
strate the potential amelioration of treatment design through optimisation.

In summary, this chapter presents the potential for improved treatment 
design in AML therapy, dependent on disease and patient characteristics, 
defined on a case‐by‐case basis. This design would provide the opportunity to 
personalise treatment protocols for gold standard intensive and non‐intensive 
therapies as well as for novel drugs through the use of optimisation methods.

Appendix 8A Mathematical Model

8A.1 Treatment Inflow
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The inflow rate is the rate of the administered dose applied over the dosage 
duration. The dose is adjusted to the patient by its multiplication with the body 
surface area, calculated by the Mosteller empirical equation as is currently 
done in clinical practice. These equations are used for the calculation of the 
inflow rate given the treatment schedule characteristics (i.e. the dose load and 
duration of administration). Moreover, these two characteristics comprise the 
control variables for the optimisation problem.
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8A.2 Pharmacokinetic Model

For both drugs, DNR and Ara‐C, physiologically based PK (PBPK) models are 
used to calculate drug concentration of the active metabolite in specific human 
organs at each time point. Initially, the drug is injected into the blood and cir-
culates to the whole body. The mass balance for the blood compartment is:
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j ara C DNr

i i j K K j B B j
,

: , , ,
: ,

, , , iinf ,low j (8A.4)

where CB,j is the concentration of drug j in the blood compartment; VB is the 
total patient blood volume; Qi is the blood flow in organs i: heart (H), liver (Li), 
bone marrow (M), lean (Le) and kidney (K); Ci,j is the concentration of drug j in 
organs i; and inflow is the treatment inflow as calculated in Equation (8A.1).

The metabolic action takes place in the liver, and then the active metabolite 
is circulated in the body via the blood. The mass balance in the body organs is 
as follows:

 
V

dC
dt

Q C Q C k C Vi
i j

i B j i i j i j i j iT
,

, , , ,  (8A.5)

The drug is transmitted via the blood to the organs, and the general mass bal-
ance in the organs is the one in Equation (8A.5). The term k,i,j is the elimination 
rate of the drugs in the body organs and has physical meaning only for the liver. 
After drug elimination and action, the drug is excreted through urine with 
clearance rate (kk,j) from the kidneys. An extra factor is introduced in the mass 
balance of the kidneys (8A.6) to account for the drug clearance (kk,j). After its 
metabolism and action, the drug j is excreted through urine, and the cumula-
tive excretion is calculated by Equation (8A.7):
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8A.3 Pharmacodynamic Model

The PD model is used for the calculation of the drug effect, which is the per-
centage of dead cells due to drug action. The PD model is derived from one 
equation (Equation 8A.8) where the main input is drug concentration in the 
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location of the tumour, which for AML is the concentration in BM (CM,j) and is 
calculated by the PK model.

 
effect

E C

E C
j

j M j
slope j

j M j
slope j,

max, ,
,

, ,
,

50
 (8A.8)

where Emax,j, E50,j and slope are the PD parameters that depend on the drug j 
and are validated using clinical data.

8A.4 Cancer Cell Cycle Model

A dynamic model is used for the description of the cell cycle through chemo-
therapy treatment. The selected compartments are the cells in the G1, S, G2 
and M phases. G1 is the first compartment after the starting point of the cell 
cycle and lasts TG1 hours. Afterwards, the cell proceeds to the S phase (DNA 
replication). The S phase lasts TS hours, and the cell is transferred to the last 
compartment, G2 and M (G2M), that last TG2M hours and result in two new‐
born cells. The mathematical model consists of the mass balances between 
these compartments and is described by the following equations:

 
dG
dt

k G M k G effect Gj
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dS
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where G1, S and G2M represent the cell population in cell cycle compartments; 
k1, k2 and k3 are the transition rates between cell phases; and effect,j is calculated 
by the PD model (8A.8) and is the percentage of each cell cycle population killed 
by the anticancer drug. This parameter has physical meaning only if a drug acts 
on a particular cell phase, that is, for drug Ara‐C the effect will be 0 for phases 
G1 and G2M, whereas for DNR the effect will be 0 only for phase G2M. The 
transition rates are functions of the duration of the cell cycle phases and are 
calculated by Equations (8A.12) through (8A.14):
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k

TG M G M
3

2 2
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where μG1, μS and μG2M are the natural apoptosis rates for each cell cycle phase.
As the cell cycle is a dynamic model, it depends on the initialisation state. 

The initial distribution of the cell population in the cell phases is difficult to 
measure and will be estimated by Equations (8A.15) through (8A.17):
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where TC is the total cell cycle time and N(0) is the initial number of cancer 
cells in the modelled cell cycle population.

8A.5 Normal Cell Cycle Model

The normal stem cell reserve contains cells which can replicate, differentiate 
or die. These cells are grouped into two compartments, proliferating (P) and 
non‐proliferating (Q) cells. Non‐proliferating cells are G1 phase cells grouped 
together with quiescent cells. These cells are activated and transmitted to the 
proliferating compartment at a rate (β(Q)) that is reciprocal to the number of 
quiescent cells (8A.20), that is, when the number of cells is low, more cells will 
be activated in order to preserve the stem cell population. The set of mathe-
matical equations expressing the behaviour of normal cells is as follows:
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where γ is the death rate in the proliferative phase, δ is the death rate in the 
non‐proliferative phase, τ is the duration of proliferation, βο is the maximum 

recruitment rate, θ is the cell population of the growth phase when o

2
 and 

n is a positive parameter depicting the sensitivity of the transition rate to the 
cell population of the growth phase.
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8A.6 Drug Subcutaneous Route

For the model of the SC route, Equation (8A.4) will be replaced by Equations 
(8A.4a) and (8A.4b), which account for drug bioavailability (kb) and absorption 
delay (ka):
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Appendix 8B Patient Data

Patient number: 001
Disease status: Secondary
Patient characteristics:
Age: 75 years Sex: F Height: 152 cm
Body weight: 56 Kg BSA: 1.54 m2

I. Baseline characteristics

Pre‐treatment data
Bone marrow aspirate
% Blasts in BM aspirate 21%
Prognostic category Intermediate
Full blood count Date: 12/03/2010
WBC (×109 L) 8.7

II. Chemotherapy treatment schedule

Cycle Date Drugs Doses
Dose 
reduction Route Number of days and schedule given

1 Day 1 Ara‐C 20 mg SC 10 days, twice a day every 12 h

2 Day 37 Ara‐C 20 mg SC 10 days, twice a day every 12 h

3 Day 69 Ara‐C 20 mg SC 10 days, twice a day every 12 h

4 Day 105 Ara‐C 20 mg SC 10 days, twice a day every 12 h
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III. Response to treatment

Completion 
of course Cycle 1

Repeat 
marrow Cycle 2

Repeat 
marrow Cycle 3

Repeat 
marrow Cycle 4

Repeat 
marrow

Date Day 36 Day 70 Day 91 Day 146

Cellularity 
(1 = hypo, 
2 = normo, 
3 = hyper)

 3 3 2  3

Blasts (%) 14 4 5 15

Marrow 
response

PR CR CR Relapse

Patient number: 002
Disease status: Secondary
Patient characteristics:
Age: 72 years Sex: F Height: 150 cm
Body weight: 47 Kg BSA: 1.4 m2

I. Baseline characteristics

Pre‐treatment data
BM aspirate
% Blasts in BM aspirate 83%
Prognostic category Intermediate
Full blood count Date: 06/02/2008
WBC (×109 L) 46.5

II. Chemotherapy treatment schedule

Cycle Date Drugs Doses
Dose 
reduction Route Number of days and schedule given

1 Day 1 Ara‐C 20 mg SC 10 days, twice a day every 12 h

2

3

4
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III. Response to treatment
Marrow examinations 

Completion 
of course Cycle 1

Repeat 
marrow Cycle 2

Repeat 
marrow Cycle 3

Repeat 
marrow Cycle 4

Repeat 
marrow

Date Day 48

Cellularity 
(1 = hypo, 
2 = normo, 
3 = hyper)

3

Blasts (%) 4

Marrow 
response

CR

Patient number: 006
Disease status: De novo
Patient characteristics:
Age: 71 years Sex: F Height: 160 cm
Body weight: 57 Kg BSA: 1.59 m2

I. Baseline characteristics

Pre‐treatment data
BM aspirate
% Blasts in BM aspirate 36 %
Prognostic category –
Full blood count Date: 06/02/2008
WBC (×109 L) 1.6

II. Chemotherapy treatment schedule

Cycle Date Drugs Doses
Dose 
reduction Route Number of days and schedule given

1 Day 1 Ara‐C 20 mg SC 10 days, twice a day every 12 h

2 Day 42 Ara‐C 20 mg SC 10 days, twice a day every 12 h

3 Day 74 Ara‐C 20 mg SC 10 days, twice a day every 12 h

4 Day 109 Ara‐C 20 mg SC 10 days, twice a day every 12 h
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III. Response to treatment
Marrow examinations

Completion 
of course Cycle 1

Repeat 
marrow Cycle 2

Repeat 
marrow Cycle 3

Repeat 
marrow Cycle 4

Repeat 
marrow

Date Day 42 Day 70 Day 110 Day 145

Cellularity 
(1 = hypo, 
2 = normo, 
3 = hyper)

1 1 3 1

Blasts (%) 3 2 2 0

Marrow 
response

CR CR CR CR

Patient number: 011
Disease status: Secondary
Patient characteristics:
Age: 24 years Sex: M Height: 170 cm
Body weight: 59.5 Kg BSA: 1.68 m2

I. Baseline characteristics

Pre‐treatment data
BM aspirate
% Blasts in BM aspirate 56 %
Prognostic category –
Full blood count Date: 18/10/2011
WBC (×109 L) 0.9

II. Chemotherapy treatment schedule

Cycle Date Drugs Doses
Dose 
reduction Route Number of days and schedule given

1 Day 1 Ara‐C 168 mg IV 10 days, twice a day every 12 h

DNR 100 mg IV 1 h dose on days 1, 3 and 5

2

3

4
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III. Response to treatment
Marrow examinations 

Completion 
of course Cycle 1

Repeat 
marrow Cycle 2

Repeat 
marrow Cycle 3

Repeat 
marrow Cycle 4

Repeat 
marrow

Date Day 48

Cellularity 
(1 = hypo, 
2 = normo, 
3 = hyper)

1

Blasts (%) 3

Marrow 
response

CR

Patient number: 016
Disease status: Secondary
Patient characteristics:
Age: 80 years Sex: M Height: 167.5 cm
Body weight: 79.3 Kg BSA: 1.92 m2

I. Baseline characteristics

Pre‐treatment data
BM aspirate
% Blasts in BM aspirate 90 %
Prognostic category –
Full blood count Date: 30/06/2010
WBC (×109 L) 3.3

II. Chemotherapy treatment schedule

Cycle Date Drugs Doses
Dose 
reduction Route Number of days and schedule given

1 Day 1 DNR 95 mg IV 1 h dose on days 1, 3 and 5

Ara‐C 190 mg IV 10 days, twice a day every 12 h

2 Day 66 Ara‐C 20 SC 10 days, twice a day every 12 h

3
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III. Response to treatment
Marrow examinations 

Completion 
of course Cycle 1

Repeat 
marrow Cycle 2

Repeat 
marrow Cycle 3

Repeat 
marrow Cycle 4

Repeat 
marrow

Date Day 45 Day 101

Cellularity 
(1 = hypo, 
2 = normo, 
3 = hyper)

3 2

Blasts (%) 1 1

Marrow 
response

CR CR

Patient number: 026
Disease status: De novo
Patient characteristics:
Age: 45 years Sex: F Height: 169.3 cm
Body weight: 94.8 Kg BSA: 2.11 m2

I. Baseline characteristics:

Pre‐treatment data
BM aspirate
% Blasts in BM aspirate 71 %
Prognostic category –
Full blood count Date: 26/05/2011
WBC (×109 L) 1.2

II. Chemotherapy treatment schedule

Cycle Date Drugs Doses
Dose 
reduction Route Number of days and schedule given

1 Day 1 DNR 150 mg IV 1 h dose on days 1, 3 and 5

Ara‐C 170 mg IV 10 days, twice a day every 12 h

2 Day 56 DNR 85 mg IV 1 h dose on days 1, 3 and 5

Ara‐C 170 mg IV 8 days, twice a day every 12 h

3
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III. Response to treatment: marrow examinations 

Completion 
of course Cycle 1

Repeat 
marrow Cycle 2

Repeat 
marrow Cycle 3

Repeat 
marrow Cycle 4

Repeat 
marrow

Date Day 48 Day 116

Cellularity 
(1 = hypo, 
2 = normo, 
3 = hyper)

2 2

Blasts (%) 0 0

Marrow 
response

CR CR
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